
Lattice Automata

Orna Kupferman and Yoad Lustig

Hebrew University, School of Engineering and Computer Science, Jerusalem 91904, Israel
{orna,yoadl}@cs.huji.ac.il

Abstract. Several verification methods involve reasoning about multi-valued sys-
tems, in which an atomic proposition is interpreted at a state as a lattice element,
rather than a Boolean value. The automata-theoretic approach for reasoning about
Boolean-valued systems has proven to be very useful and powerful. We develop
an automata-theoretic framework for reasoning about multi-valued objects, and
describe its application. The basis to our framework are lattice automata on finite
and infinite words, which assign to each input word a lattice element. We study
the expressive power of lattice automata, their closure properties, the blow-up in-
volved in related constructions, and decision problems for them. Our framework
and results are different and stronger then those known for semi-ring and weighted
automata. Lattice automata exhibit interesting features from a theoretical point of
view. In particular, we study the complexity of constructions and decision prob-
lems for lattice automata in terms of the size of both the automaton and the under-
lying lattice. For example, we show that while determinization of lattice automata
involves a blow up that depends on the size of the lattice, such a blow up can be
avoided when we complement lattice automata. Thus, complementation is eas-
ier than determinization. In addition to studying the theoretical aspects of lattice
automata, we describe how they can be used for an efficient reasoning about a
multi-valued extension of LTL.

1 Introduction

Several recent verification methods involve reasoning about multi-valued Kripke struc-
tures in which an atomic proposition is interpreted at a state as a lattice element1,
rather than a Boolean value. The multi-valued setting arises directly in systems in which
the designer can give to the atomic propositions rich values like “uninitialized”, “un-
known”, “high impedance”, “don’t care”, “logic 1”, “logic 0”, and more (c.f., the IEEE
Standard Multivalue Logic System for VHDL Model Interoperability [IEEE93]), and
arise indirectly in applications like abstraction methods, in which it is useful to allow
the abstract system to have unknown assignments to atomic propositions and transi-
tions [GS97, BG99], query checking [Cha00], which can be reduced to model checking
over multi-valued Kripke structures, and verification of systems from inconsistent view-
points [HH04], in which the value of the atomic propositions is the composition of their
values in the different viewpoints. The various applications use various types of lattices
(see Figure 1). For example, in the abstraction application, researchers have used three

1 A lattice 〈A, ≤〉 is a partially ordered set in which every two elements a, b ∈ A have a least
upper bound (a join b) and a greatest lower bound (a meet b).

B. Cook and A. Podelski (Eds.): VMCAI 2007, LNCS 4349, pp. 199–213, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

200 O. Kupferman and Y. Lustig

values ordered as in L3 [BG99], as well as its generalization to linear orders [CDG01].
In query checking, the lattice elements are sets of formulas, ordered by the inclusion or-
der [BG01]. When reasoning about inconsistent viewpoints, each viewpoint is Boolean,
and their composition gives rise to products of the Boolean lattice, as in L2,2 [EC01].
Finally, in systems with rich values of the atomic propositions, several orders may be
used with respect to the various values, which in fact do not always induce a lattice.

The automata-theoretic approach uses the theory of automata as a unifying para-
digm for system specification, verification, and synthesis [Kur94, VW94, KVW00].
Automata enable the separation of the logical and the algorithmic aspects of reasoning
about systems, yielding clean and asymptotically optimal algorithms. The automata-
theoretic framework for reasoning about Boolean-valued systems has proven to be very
versatile. Automata are the key to techniques such as on-the-fly verification, and they
are useful also for modular verification, partial-order verification, verification of real-
time and hybrid systems, open systems, and infinite-state systems. Many decision and
synthesis problems have automata-based solutions and no other solution for them is
known. Automata-based methods have been implemented in both academic and indus-
trial automated-verification tools (c.f., COSPAN and SPIN).

In this work, we describe an automata-theoretic framework for reasoning about multi-
valued objects. Consider a lattice L. For a set X of elements, an L-set over X is a
function S : X → L assigning to each element of X a value in L. For an alphabet
Σ, an L-language is a function L : Σ∗ → L that gives a value in L to each word
over Σ. A nondeterministic lattice automaton on finite words (LNFW, for short) gets as
input words over Σ and assigns to each word a value in L. Thus, each LNFW defines
an L-language. Technically, in an LNFW A = 〈L, Σ, Q, Q0, δ, F 〉, the sets of initial
and final states are L-sets over Q (i.e., Q0, F ∈ LQ describe the “initial value” and the
“acceptance value” of each state), and δ is an L-set over Q×Σ ×Q (i.e., δ ∈ LQ×Σ×Q

describes the “traversal value” of each labeled transition). Then, the value of a run of A
is the meet of values of the components of the run (that is, the initial value of the first
state, the traversal values of the transitions that have been taken, and the acceptance
value of the last state), and the value that A assigns to a word is the join of the values
of the runs of A on w.

The definition of LNFW is not too surprising, and, as we mention in the sequel, it is
similar to previous definitions of “weighted automata”. Things, however, become very
interesting when one starts to study properties of LNFWs. Essentially, in the Boolean
setting, the only important piece of information about a run is the membership of its
last state in the set of accepting states. In the lattice setting, on the other hand, all the
components of the run are important. To see the computational challenges that the lattice
setting involves, consider for example the simple property of closure under join for
deterministic lattice automata (LDFW, for short, where only a single initial/successor
state is possible (has a value different from ⊥)). Stating that LDFW are closed under
join, one has to construct, given two LDFWs A1 and A2, an LDFW A such that for
every word w, the value of A on w is the join of the values of A1 and A2 on w. In
the traditional Boolean setting, join corresponds to union, and it is easy to construct
A as the product of A1 and A2. In the lattice setting, however, it is not clear how
to define the traversal value of the transitions of A based on the traversal value of

Lattice Automata 201

the transitions of A1 and A2. We show that, indeed, the product construction cannot
work, and the LDFW A must contain in its state space a component that depends on L.
Dependency in L cannot be avoided also when we determinize LNFWs: every LNFW
A has an equivalent LDFW A′. Nevertheless, while in the traditional Boolean case
the construction of A′ involves the subset construction [RS59] and for A with n states
we get A′ with 2n states, here the subset construction looses information such as the
traversal value with which each state in the set has been reached, and we show a tight
mn bound on the size of A′, where m = |L|.

Of special interest is the complementation problem2 for LNFW. In the Boolean set-
ting, it is easy to complement deterministic automata, and complementation of non-
deterministic automata involves determinization. In the lattice setting, determinization
involves an mn blow up, and moreover, complementation involves an nm blow up even
if we start with a deterministic automaton. Interestingly, by adopting ideas from the the-
ory of automata on infinite words [KV01]3, we are able to avoid determinization, avoid
the dependency in m, and complement LNFW with a 2n blow up only. For this purpose
we define universal lattice automata (LUFW, for short), which dualize LNFW, show
that complementation can be done by dualization, and that LUFW can be translated to
LNFW with a 2n blow up4.

Once we prove closure properties, we proceed to study the fundamental decision
problems for the new framework: the emptiness-value and the universality-value prob-
lems, which corresponds to the emptiness and universality problems in the Boolean
setting and decide, given A, how likely it is (formalized by means of values in L) for
A to accept some word or all words; and the implication-value problem, which corre-
sponds to the language-inclusion problem and decides, given two LNFWs A1 and A2,
how likely it is that membership in the language of A1 implies membership in the lan-
guage of A2. We show that, using the tight constructions described earlier, the problems
have the same complexities as the corresponding problems in the Boolean setting.

We then turn to applications of LNFW for reasoning about multi-valued tempo-
ral logics and systems. We define the logic Lattice LTL (LLTL, for short), where the
constants can take lattice values, and whose semantics is defined with respect to multi-
valued Kripke-structures. We extend LNFW to the framework of automata on infi-
nite words, define nondeterministic lattice Büchi word automata (LNBW, for short),
and show that known translations of LTL to nondeterministic Büchi word automata
[VW94] can be lifted to the lattice setting. Then, we use LNBW to solve the satisfiabil-
ity and model-checking problems for LLTL, and show that both problems are PSPACE–
complete — not harder than in the Boolean setting. In addition, we study some basic
theory of lattice automata on infinite words. In particular, we show that the comple-

2 Discussing complementation, we restrict attention to De Morgan lattices, where complemen-
tation inside the lattice is well defined (See Section 2.1).

3 As we discuss in the paper, there are several common computational aspects of LNFW and
automata on infinite words, as reasoning in both theories has to cope with the fact that the
outcome of a run depends on its on-going behavior, rather than its last state only.

4 We note that the latter construction is not trivial; it has the flavor of the construction in [MH84]
for the case of infinite words, but unlike [MH84] (or the much simpler Boolean case), the result
LNFW is nondeterministic; if one seeks an equivalent LDFW, a dependency in m cannot be
avoided.

202 O. Kupferman and Y. Lustig

mentation construction of [KV01] can be combined with the ideas we use in the case of
LNFW complementation, thus LNBW complementation involves a 2O(n log n) blow up
and is independent of m.

Related Work. We are aware of two previous definitions of automata over lattices and
their applications in verification. Our framework, however, is the first to study the theo-
retical aspects of lattice automata, rather than only use them. Also, the applications we
suggest go beyond these that are known. Below we discuss the two known definitions
and compare them with our contribution. In [BG01], Bruns and Godefroid introduce
Extended Alternating Automata (EAA, for short). EAA extend the automata-theoretic
approach to branching-time model checking [KVW00], they run on trees, and map each
input tree to a lattice value. EAA have been used for query checking [BG01] and model
checking multi-valued μ-calculus [BG04]. EAA are incomparable with the model we
study here. On the one hand, EAA are more general, as they run on trees and are alter-
nating. On the other hand, they are not making full use of the lattice framework, as their
“lattice aspect” is limited to the transition function having lattice values in its range.

Also, the application of reasoning about LLTL properties, which we describe here,
cannot be achieved with EAA, as it involves a doubly-exponential translation of LLTL
to μ-calculus, which we avoid. In [CDG01], Chechik, Devereux, and Gurfinkel define
multiple-valued Büchi automata (XBüchi automata, for short) and use them for model
checking multiple-valued LTL. Like LNFW, each transition in a XBüchi automata has a
traversal value and the automata define L-languages. Unlike LNFW, XBüchi automata
(and the multiple-valued LTL that correspond to them) are restricted to lattices that are
finite linear orders. Thus, the setting and its potential applications is weaker.

In addition to lattice-based multi-valued logics, other related concepts were inves-
tigated. Lattice-based automata (for distributive lattices) can be seen as a special case
of weighted automata [Moh97], which are in turn a special case of semiring automata
[KS86]. Semiring automata is a very general algebraic notion of automata in which com-
putations get values from some semiring. However, the model of semiring automata
is algebraic in nature and is relatively far from the standard notion of finite automata.
Weighted automata is another notion in which computations get values from a semiring,
one that closely resembles the standard model of finite automata. In fact, since a distribu-
tive lattice is a semiring in which ⊕ is a join and ⊗ is a meet, the definitions of lattice
automata are a special case of the definitions of weighted automata. However, while (dis-
tributive) lattices are semirings, lattices share some properties that general semirings do
not. Specifically, the idempotent laws (i.e., a ∨ a = a and a ∧ a = a) as well as the
absorption laws (i.e., a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a), which are very intuitive
in a logical context, do not hold in a general semiring, and do hold for lattices. Further-
more, the complementation operand that is essential for choosing lattices as a framework
for multi-valued reasoning, has no natural interpretation in a general semiring. Finally,
our results here go beyond these that are known for semiring automata. In particular, we
consider also automata on infinite words, both nondeterministic and universal automata,
and we study the computational aspects of constructions and decision problems.

Due to space limitations, proofs are omitted and can be found in the full version at
the authors web pages.

Lattice Automata 203

2 Preliminaries

2.1 Lattices

Let 〈A, ≤〉 be a partially ordered set, and let P be a subset of A. An element a ∈ A is an
upper bound on P if a ≥ b for all b ∈ P . Dually, a is a lower bound on P if a ≤ b for
all b ∈ P . An element a ∈ A is the least element of P if a ∈ P and a is a lower bound
on P . Dually, a ∈ A is the greatest element of P if a ∈ P and a is an upper bound on
P . A partially ordered set 〈A, ≤〉 is a lattice if for every two elements a, b ∈ A both the
least upper bound and the greatest lower bound of {a, b} exist, in which case they are
denoted a ∨ b (a join b) and a ∧ b (a meet b), respectively. A lattice is complete if for
every subset P ⊆ A both the least upper bound and the greatest lower bound of P exist,
in which case they are denoted

∨
P and

∧
P , respectively. In particular,

∨
A and

∧
A

are denoted � (top) and ⊥ (bottom), respectively. A lattice 〈A, ≤〉 is finite if A is finite.
Note that every finite lattice is complete. A lattice is distributive if for every a, b, c ∈ A,
we have a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

The traditional disjunction and conjunction logic operators correspond to the join
and meet lattice operators. In a general lattice, however, there is no natural counterpart
to negation. A De Morgan (or quasi-Boolean) lattice is a lattice in which every element
a has a unique complement element ¬a such that ¬¬a = a, De Morgan rules hold, and
a ≤ b implies ¬b ≤ ¬a. In the rest of the paper we consider only finite5 distributive De
Morgan lattices.

1
2

{b}

1

0

L2

{a, b}

{a} {c}

{b, c}

∅
2{a,b,c}

{a, b, c}

{a, c}

0

1 (1,1)

(0,0)

L3 L2,2

(0,1) (1,0)

Fig. 1. Some lattices

In Figure 1 we describe some (finite distributive De Morgan) lattices. The elements
of the lattice L2 are the usual truth values 1 (true) and 0 (false) with the order 0 ≤ 1.
The lattice L3 contains in addition the value 1

2 , with the order 0 ≤ 1
2 ≤ 1, and with

negation defined by ¬0 = 1 and ¬1
2 = 1

2 . The lattice L2,2 is the Cartesian product
of two L2 lattices, thus (a, b) ≤ (a′, b′) if both a ≤ a′ and b ≤ b′. Also, ¬(a, b) =
(¬a, ¬b). Finally, the lattice 2{a,b,c} is the power set of {a, b, c} with the set-inclusion

5 Note that focusing on finite lattices is not as restrictive as may first seem. Indeed, even when
the lattice is infinite, the problems we consider involve only finite Kripke structures, formulas,
and automata. Therefore, only a finite number of lattice elements appear in a problem, and
since the lattice is distributive, the logical operations closure of these values is still finite.

204 O. Kupferman and Y. Lustig

order. Complementation is interpreted as set complementation relative to {a, b, c}. In
this lattice, for example, {a} ∨ {b} = {a, b}, {a} ∧ {b} = ⊥, {a, c} ∨ {b} = �, and
{a, c} ∧ {b} = ⊥.

A join irreducible element l ∈ L is a value, other then ⊥, for which if l1 ∨ l2 ≥ l
then either l1 ≥ l or l2 ≥ l. By Birkhoff’s representation theorem for finite distributive
lattices in order to prove that l1 = l2 it is sufficient if to prove that for every join
irreducible element l it holds that l1 ≥ l iff l2 ≥ l. We denote the set of join irreducible
elements of L by JI(L). A meet irreducible element l ∈ L is a value for which if
l1 ∧ l2 ≤ l then either l1 ≤ l or l2 ≤ l. Note that in a De Morgan lattice an element
is meet irreducible iff its complement is join irreducible. We denote the set of meet
irreducible elements of L by MI(L).

Consider a lattice L (we abuse notation and refer to L also as a set of elements, rather
than a pair of a set with an order on it). For a set X of elements, an L-set over X is
a function S : X → L assigning to each element of X a value in L. It is convenient
to think about S(x) as the truth value of the statement “x is in S”. We say that an
L-set S is Boolean if S(x) ∈ {�, ⊥} for all x ∈ X . The usual set operators can
be lifted to L-sets as expected. Given two L-sets S1 and S2 over X , we define join,
meet, and complementation so that for every element x ∈ X , we have 6 S1 ∨ S2(x) =
S1(x) ∨ S2(x), S1 ∧ S2(x) = S1(x) ∧ S2(x), and comp(S1)(x) = ¬S1(x).

2.2 Lattice Automata

Consider a lattice L and an alphabet Σ. An L-language is an L-set over Σ∗. Thus
an L-language L : Σ∗ → L assigns a value in L to each word over Σ. A nonde-
terministic lattice automaton on finite words (LNFW, for short) is a six-tuple A =
〈L, Σ, Q, Q0, δ, F 〉, where L is a lattice, Σ is an alphabet, Q is a finite set of states,
Q0 ∈ LQ is an L-set of initial states, δ ∈ LQ×Σ×Q is an L-transition-relation, and
F ∈ LQ is an L-set of accepting states.

A run of an LNFW on a word w = σ1 ·σ2 · · ·σn is a sequence r = q0, . . . , qn of n+1
states. The value of r on w is val (r, w) = Q0(q0) ∧ ∧n−1

i=0 δ(qi, σi+1, qi+1) ∧ F (qn).
Intuitively, Q0(q0) is the value of q0 being initial, δ((qi, σi+1, qi+1)) is the value of
qi+1 being a successor of qi when σi+1 is the input letter, F (qn) is the value of qn

being accepting, and the value of r is the meet of all these values, with 0 ≤ i ≤ n − 1.
We refer to Q0(q0) ∧ ∧n−1

i=0 δ(qi, σi+1, qi+1) as the traversal value of r and refer to
F (qn) as its acceptance value. For a word w, the value of A on w, denoted A(w) is the
join of the values of all the possible runs of A on w. That is, val(A, w) =

∨
{val(r, w) :

r is a run of A on w}. The L-language of A, denoted L(A), maps each word w to its
value in A. That is, L(A)(w) = val(A, w).

An LNFW is a deterministic lattice automaton on finite words (LDFW, for short) if
there is exactly one state q ∈ Q such that Q0(q) �= ⊥, and for every state q ∈ Q and
letter σ ∈ Σ, there is exactly one state q′ ∈ Q such that δ(q, σ, q′) �= ⊥. An LNFW
is simple if Q0 and δ are Boolean. Note that the traversal value of a run r of a simple
LNFW is either ⊥ or �, thus the value of r is induced by F .

6 If S1 and S2 are over different domains X1 and X2, we can view them as having the same
domain X1 ∪ X2 and let S1(x) = ⊥ for x ∈ X2 \ X1 and S2(x) = ⊥ for x ∈ X1 \ X2.

Lattice Automata 205

Traditional nondeterministic automata over finite words (NFW, for short) correspond
to LNFW over the lattice L2. Indeed, over L2, the value of a run r on a word w is either
�, in case the run uses only transitions with value � and its final state has value �,
or ⊥ otherwise. Also, the value of A on w is � iff the value of some run on it is �.
This reflects the fact that a word w is accepted by an NFW if some legal run on w is
accepting.

Example 1. Figure 2 depicts three LNFWs. When we draw an LNFW, we denote the
fact that δ(q, σ, q′) = l by an edge attributed by (σ, l) from q to q′. For simplicity,
we sometimes label an edge with a set S ⊆ Σ × L. In particular, when Σ = L,
we use (l, �) to denote the set {(l, �) : l ∈ L} and we use (l, l) to denote the set
{(l, l) : l ∈ L}. For states q with Q0(q) = l �= ⊥, we draw into q an edge labeled l, and
for states q with F (q) = l �= ⊥, we draw q as a double circle labeled l. For example,
the LNFW A2 = 〈L, L, {q1, q2}, Q0, δ, F 〉 is such that Q0(q1) = � and Q0(q2) = ⊥.
Also, for every l ∈ L, we have δ(q1, l, q1) = δ(q2, l, q2) = �, and δ(q1, l, q2) = l. All
other triplets 〈q, l, q〉 ∈ Q × L × Q are mapped by δ to ⊥. Finally, F (q1) = ⊥ and
F (q2) = �.

(l, l)
q2

�q3�
A3

(l, l)
q1

(l, l)
�

A2

�q1 q2

(l, �) (l, �) (l, �)

�
A1

�q1

(l, l) (l, �)

Fig. 2. Three LNFWs

Let us consider the L-languages of the LNFWs in Figure 2. The LNFW A1 is de-
terministic. Its single run r a word w = l1 · l2 · · · ln starts in q1 with value � and
whenever the letter li is read, the traversal value so far is met with li. The acceptance
value of r is �, thus the value of r on w is

∧n
i=1 li. Hence, the language L1 of A1 is

such that L1(l1 · l2 · · · ln) =
∧n

i=1 li. The LNFW A2 is nondeterministic. Reading a
word w = l1 · l2 · · · ln, it guesses a letter li with which the transition from q1 to q2 is
made. Since the values of the self loops in q1 and q2 are � and so are the initial and
acceptance values, the value of such a run on w is li. Taking the join on all runs, we get
that the language L2 of A2 is such that L2(l1 · l2 · · · ln) =

∨n
i=1 li. Finally, the LNFW

A3 is also nondeterministic. Here, going from q1 to q3 two successive letters are read,
each contributing its value to the traversal value of the run. Hence the language L3 of
A3 is such that L3(l1 · l2 · · · ln) =

∨n−1
i=1 (li ∧ li+1).

In the traditional Boolean setting, a universal automaton (UFW, for short) accepts a
word w if all its runs on w are accepting. Lifting this definition to the lattice frame-
work, a universal lattice automaton (LUFW, for short) has the same components as an
LNFW, only that the value of a run r = q0 . . . qn on a word w = σ1 · σ2 · · · σn is
val(r, w) = comp(Q0(q0)) ∨

∨n−1
i=0 comp(δ(qi, σi+1, qi+1)) ∨ comp(F (qn)), and the

value of A on w is val(A, w) =
∧

{val(r, w) : r is a run of A on w}. Thus, LUFW
dualize LNFW in the three elements that determine the value of an automaton on a run:

206 O. Kupferman and Y. Lustig

first, the way we refer to the components of a single run is disjunctive (rather than con-
junctive). Second, the way we refer to the collection of runs is conjunctive (rather than
disjunctive). Finally, the initial values, transition values, and acceptance values are all
complemented.

Example 2. Consider the three LNFWs discussed in Example 1. When we view them as
LUFW, their languages L̃1, L̃2, and L̃3 are such that L̃1(l1 · l2 · · · ln)=

∨n
i=1 comp(li),

L̃2(l1·l2 · · · ln)=
∧n

i=1 comp(li), and L̃3(l1·l2 · · · ln)=
∧n−1

i=1 (comp(li)∨comp(li+1)).

Remark 3. In many applications, the input words to the LNFW are generated by a
graph in which each vertex is labeled by a letter in Σ. In some applications, the transi-
tion relation of the graph is an L-set, thus each edge has a value in L. Accordingly, in a
more general framework, each letter in Σ has a weight — a value in L that corresponds
to the value of the edge between the current and next vertices. Then, the value of a
run of the automaton over a weighted word w = 〈σ1, l1〉 · 〈σ2, l2〉 · · · 〈σn, ln〉 takes the
weights of the letters into account: when we are in state qi, read a letter 〈σi+1, li+1〉, and
move to state qi+1, the contribution to the value of the run is li+1 ∧ δ(qi, σi+1, qi+1)
(rather than δ(qi, σi+1, qi+1) only). Since the lattice is distributive, it is easy to see
that the value of such an LNFW over the word w is equal to the meet of its value on
〈σ1, �〉 · 〈σ2, �〉 · · · 〈σn, �〉 with

∧
1≤i≤n li. Thanks to this decompositionality, it is

easy to adjust our framework to automata that read words with weighted letters. For
technical simplicity, we assume no weights.

Remark 4. It is interesting to compare LNFW’s to EAA’s as defined in [BG04]. (For-
mally, EAA are defined only for infinite trees but it is easy to accommodate them to
finite words). In EAA, there is no explicit concept of transition value. Since, however,
EAA are alternating, it is possible to model a transition into state q with value l by the
formula q ∧ l. By taking the meet of a transition with a lattice value, it is possible to
ensure that in all runs, the value attached to the source vertex of the transition is at most
l. Intuitively, the value of an EAA run flows “upwards” while the value of an LNFW
run flows “downwards”. An interesting outcome of this observation is that while it is
natural to define the value of a prefix of a run of an LNFW, an LNFW run, it does not
seem possible to define the value of a prefix of an EAA run. We find the ability to refer
to this value helpful both in understanding the intuition behind the runs of automata and
in reasoning about them — as we will demonstrate in Section 3.

3 Closure Properties

In this section we study closure properties of LNFW and LDFW. We show that LNFW
and LDFW are closed under join, meet, and complementation, show that LNFW can
be determinized and simplified, and analyze the blow-up that the various constructions
operators involve. In addition to the dependency in the size n of the original automaton
(or automata, in case of the join and meet operators), our analysis refers to the size m
of the lattice over which the automata are defined. The dependence on both n and m is
tight and the proofs in full version provide both upper bounds and lower bounds.

Lattice Automata 207

3.1 Nondeterministic Automata on Finite Words

Theorem 5 [closure under join and meet]. Let A1 and A2 be LNFW over L, with
n1 and n2 states, respectively. There are LNFW A∨ and A∧, with n1 + n2 and n1 · n2
states, respectively, such that L(A∨) = L(A1)∨L(A2) and L(A∧) = L(A1)∧L(A2).

The constructions are slight variants of the standard Boolean case constructions.

Theorem 6 [simplification]. Let A be an LNFW (LDFW) with n states, over a lattice
L with m elements. There is a simple LNFW (resp. LDFW) A′, with n · m states, such
that L(A′) = L(A).

Intuitively, the state space of A′ is Q × L, where 〈q, l〉 stands for state q with value l.
We now turn to consider determinization of LNFW. For simple LNFW, determiniza-

tion can proceed using the subset construction as in the Boolean case [RS59]. If we
start with a general LNFW A with state space Q, this results in an LDFW A′ with state
space 2Q×L. As Theorem 7 below shows, LNFW determinization does depend on L,
but we can do better than maintaining subsets of Q×L. The idea is to maintain, instead,
functions in LQ, where each state q of A is mapped to the join of the values with which
A might have reached q. Note that the resulting automaton is a simple LDFW.

Theorem 7 [determinization]. Let A be an LNFW with n states, over a lattice L with
m elements. There is a simple LDFW A′, with mn states, such that L(A′) = L(A).

We now turn to study complementation on LNFW. As with traditional automata, it is
possible to complement an automaton through determinization. Starting with an LNFW
with n states over a lattice with m elements, we can construct, by Theorem 7, a simple
LDFW which can be easily complemented to LNFW with mn states. We now show that
by using universal automata, it is possible to circumvent determinization and avoid the
dependency on m. We first observe that viewing an LNFW as an LUFW complements
its language. The proof is easy and is based on applying De Morgan rules on val (A, w).

Lemma 1. Let A be an LNFW and let Ã be A when viewed as an LUFW. Then,
L(Ã) = comp(L(A)).

Theorem 8. Let A be an LUFW, with n states. There is an LNFW A′, with 2n states,
such that L(A′) = L(A).

The intuition being the proof of Theorem 8 is as follows. Let A = 〈L, Σ, Q, Q0, δ, F 〉.
Consider a word w = σ1 · · · σn. The runs of A on w can be arranged in a directed
acyclic graph G = 〈Q × {0, . . . , n}, E〉, where E(〈q, i − 1〉, 〈q′, i〉) for all q, q′ ∈
Q and 1 ≤ i ≤ n. Each edge 〈〈q, i − 1〉, 〈q′, i〉〉 in G has a value in L, namely
comp(δ(q, σi, q

′)). Also, vertices in Q × {0} and Q × {n} have an initial and an ac-
ceptance value, respectively, induced by comp(Q0) and comp(F). The value of A on
w is the meet of the values of the paths of G, where a value of a path is the join of the
values of its components. In order for A′ to map w to this value, we let A′ keep track
of paths that still have to contribute to a component value, and let the traversal value of
the runs of A′ maintain the value contributed so far. Thus, as in the subset construction,

208 O. Kupferman and Y. Lustig

A′ follows all runs of A (that is, all the paths of G). However, at any time during the
run, A′ may decide nondeterministically to take into account the current component
value of some of the paths. Two things happen in a transition in which A′ decides to
take into account paths that go through a vertex whose state component belongs to a set
P ⊆ Q. First, the traversal value of the transition is the meet of the traversal value of
transitions that enter P . Second, in its subset construction, A′ release the set P , as there
is no further need to follow paths that visit P .

In Section 3.3, we present a general paradigm for decomposing lattice automata to
Boolean automata, each associated with a join-irreducible element of the lattice. The
paradigm can be used for proving Theorem 8 too. In the full version we describe a
direct construction, which applies the paradigm, but hides the intermediate Boolean
automata.

We can now complement an LNFW A by transforming the LUFW with the same
structure as A to an LNFW. Hence, by Lemma 1 and Theorem 8, we have the following:

Theorem 9 [closure under complementation]. Let A be an LNFW with n states.
There is an LNFW A′, with 2n states, such that L(A′) = comp(L(A)).

3.2 Deterministic Automata on Finite Words

Theorem 10 [closure under join and meet]. Let A1 and A2 be LDFW over L. There
are LDFW A∨ and A∧ such that L(A∨) = L(A1) ∨ L(A2) and L(A∧) = L(A1) ∧
L(A2). If A1 has n1 states, A2 has n2 states, and L has m elements, then A∨ has at
most n1 · n2 · m2 and at least n1 · n2 · m states, and A∧ has n1 · n2 states.

The meet construction coincides with the one for LNFW. For the join construction, we
first simplify A1 and A2 using Theorem 6 and only then apply the construction for
LNFW7.

We now turn to study complementation of LDFW. In the Boolean setting, comple-
mentation of deterministic automata is easy, and involves dualization. In the lattice set-
ting dualization does not work, and should be combined with simplification. Therefore,
we have the following.

Theorem 11 [closure under complementation]. Let A be an LDFW, with n states,
over L. There is an LDFW A′, with n · m states, such that L(A′) = comp(L(A)).

3.3 Lattice Automata on Infinite Words

Lattice automata can run on infinite words and define L-languages of words in Σω. A
nondeterministic Büchi lattice automaton on infinite words (LNBW, for short) has the

7 The gap between the upper and the lower bound in Theorem 10 follows from the fact that the
exact dependency in m depends on the type of the lattice L. For all types, the join construction
requires at most an m2 blow-up, and at least an m blow-up. By considering the types individ-
ually, it is possible to tighten the bound. In particular, for a lattice that is a full order, the tight
bound is n1 ·n2 ·m, and for the powerset lattice, the tight bound is n1 ·n2 ·mlog2 3. Essentially,
the different types of lattices induce different ways to partition the m2 pairs of lattice values
between the state space of the joint automaton and the value accumulated by the run in the
form of traversal value.

Lattice Automata 209

same components as an LNFW, thus A = 〈L, Σ, Q, Q0, δ, F 〉, only that it runs on infi-
nite words. A run of A on a word w = σ1·σ2 · · · is an infinite sequence r = q0, q1, . . . of
states. The traversal value of r on w is trval(r, w) = Q0(q0) ∧

∧
i≥0 δ(qi, σi+1, qi+1).

The acceptance value of r on w is acval (r, w) =
∧

i≥0
∨

j≥i F (qj). The value of r on
w is val (r, w) = trval(r, w) ∧ acval (r, w).

Note that the acceptance value of a run corresponds to the Büchi condition in the
Boolean case. There, F should be visited infinitely often, thus all suffixes should visit
F . Accordingly, here, the meet of all suffixes is taken, where each suffix contribute the
join of its members.

Theorem 12 [LNBW closure properties]. Let A1 and A2 be LNBWs with n1 and n2
states, respectively.

1. There is an LNBW A∨ with n1 + n2 states such that L(A∨) = L(A1) ∨ L(A2).
2. There is an LNBW A∧ with 3 · n1 · n2 states such that L(A∧) = L(A1) ∧ L(A2).
3. There is an LNBW Ã1 with 2O(n1 log(n1)) states such that L(Ã1) = comp(L(A1)).

The proof of Theorem 12 follows from a general paradigm for transformation between
lattice automata. The key observation is that a lattice-automaton over lattice L can be
decomposed to a family Boolean automata where each Boolean automaton in the family
corresponds to a join-irreducible (or meet irreducible) element of L. A transformation
on the lattice automaton can then be obtained by applying the transformation on the
underlying Boolean automata, which can then be composed back to a lattice automa-
ton. For the paradigm to work, we need to ensure some consistency requirements that
have to do with maintaining the order of the lattice. In the following NBW stands for
Nondeterministic Büchi automata on Words. We proceed with the details.

For an underlying set of states Q, we introduce an ordering on NBWs whose state
space is Q. For i ∈ {1, 2}, let Ai = 〈Σ, Q, Q0

i , δi, Fi〉 be an NBW. Let A1 ≤ A2 when
Q0

2 ⊆ Q0
1, δ2 ⊆ δ1, and F2 ⊆ F1. Intuitively, “smaller automata have more accepting

runs”. Formally, it is easy to see that A1 ≤ A2 implies L(A2) ⊆ L(A1).
A family {Al}l∈L of NBWs that share a state space and are indexed by lattice ele-

ments is L-consistent if l1 ≤ l2 implies Al1 ≤ Al2 . Similarly, a family is L-reverse-
consistent if l1 ≤ l2 implies Al1 ≥ Al2 .

Lemma 2 [decomposition]. For an LNBW A it is possible to construct, in logarithmic
space, the following L-consistent families:

1. A family {Al}l∈JI(L) of NBWs such that for all w ∈ Σω, we have w ∈ L(Al) iff
A(w) ≥ l.

2. A family {Al}l∈MI(L) of NBWs such that for all w ∈ Σω, we have w �∈ L(Al) iff
A(w) ≤ l.

The proof for the join irreducible case is based on a construction of the NBWs Al

according to criteria like Q0
l = {q ∈ Q | Q0(q) ≥ l}. The proof of the meet irreducible

case is based on a construction according to criteria like Q0
l = {q ∈ Q | Q0(q) �≤ l}.

For tuples of NBWs, we say that 〈A1, . . . , Ak〉 ≤ 〈B1, . . . , Bk〉 iff Ai ≤ Bi for
every i ∈ {1, . . . , k}. We say that a construction ϕ : NBWk → NBW is monotone if

210 O. Kupferman and Y. Lustig

〈A1, . . . , Ak〉 ≤ 〈B1, . . . , Bk〉 implies ϕ(〈A1, . . . , Ak〉) ≤ ϕ(〈B1, . . . , Bk〉). A con-
struction is antitone if 〈A1, . . . , Ak〉 ≤ 〈B1, . . . , Bk〉 implies ϕ(〈A1, . . . , Ak〉) ≥
ϕ(〈B1, . . . , Bk〉).

Lemma 3. Let k ≥ 0 be an integer. For every i ≤ k, let {Ai
l}l∈L be an L-consistent

family. If ϕ : NBWk → NBW is a monotone construction, then {ϕ(A1
l , . . . Ak

l)}l∈L
is an L-consistent family. Similarly, if ϕ is antitone then {ϕ(A1

l , . . .Ak
l)}l∈L is an L-

reverse-consistent family.

Lemma 4 [composition]. Let {Al}l∈JI(L) be an L-consistent family of NBWs, param-
eterized by the join irreducible elements of L. There is an LNBW A, sharing the state
space of the family, such that for every w ∈ Σω and l ∈ JI(L), it holds that w ∈ L(Al)
iff L(A)(w) ≥ l. Furthermore, the construction of A can be made in logarithmic space.

The proof is based on the construction of A from {Al}l∈JI(L) according to criteria like
Q0(q) =

∨
{l ∈ JI(L) | q ∈ Q0

l }.
We now have the basic building blocks needed to apply the paradigm of reduc-

ing lattice automata constructions to Boolean ones. Below we show how to apply this
paradigm in the case of LNBW complementation. The other cases are simpler and are
left to the reader. As a first step, we need a Boolean construction for NBW complemen-
tation that is an antitone.

Lemma 5. There exists an antitone construction ϕ : NBW → NBW such that for
every NBW A, we have L(ϕ(A)) = comp(L(A)). Furthermore, if A has n states, then
ϕ(A) has at most 2O(n log(n)) states, and the construction can be made using space
polynomial in n.

In the full version, we prove the lemma by proving that (a small variant of) the [KV01]
construction for NBW complementation is antitone. To prove the results for join and
meet of languages, we need similar constructions of monotone (rather than antitone)
constructions of union and intersection. The standard construction for union is already
monotone. For the meet case, a small variant of the usual [Cho74] construction for
intersection is needed, and is discussed in the full version.

We can now complete the construction for LNBW complementation. Given an LNBW
A, we use the decomposition lemma to construct a consistent family {Al}l∈MI(L) of
NBWs such that A(w) ≤ l iff w �∈ L(Al) for all w ∈ Σ. By applying the construction
from Lemma 5, we get a reverse-consistent family {A′

l}l∈MI(L) of NBWs such that
A(w) ≤ l iff w ∈ L(A′

l) for all w ∈ Σ.
Next, we re-index the family by identifying A′

l with A′′
comp(l). Since an element

is meet irreducible iff its complement is join irreducible, the resulting family
{A′′

comp(l)}l∈MI(L) is indexed by the join irreducible elements of L and can be seen as
{A′′

l }l∈JI(L). Furthermore, for l1, l2 ∈ JI(L), if l1 ≤ l2, then comp(l2) ≥ comp(l1).
Therefore, since {A′

l} is a reverse-consistent family, we get that A′
comp(l1) ≤A′

comp(l2);
i.e., A′′

l1
≤ A′′

l2
. Thus, {A′′

l }l∈JI(L) is a consistent family.
Finally, we apply the composition lemma on {A′′

l }l∈JI(L) to get a single LNBW
Ã. To prove that Ã is indeed comp(A) fix a word w ∈ Σω and a join irreducible
element l ∈ JI(L). The following equivalences hold: Ã(w) ≥ l iff w ∈ L(A′′

l) iff

Lattice Automata 211

w ∈ L(A′
comp(l)) iff w �∈ L(Acomp(l)) iff A(w) ≤ comp(l) iff comp(A(w)) ≥ l. The

result follows from Birkhoff’s representation theorem.

4 Applications

In this section we apply our framework to the satisfiability and model-checking prob-
lems of multi-valued LTL. We first discuss decision problems for LNFW and LNBW.

4.1 Decision Problems

Consider an LNFW (or LNBW) A over a lattice L. The range of A is the set of lattice
values l for which there is a word w that A accepts with value l. Thus, range(A) =⋃

w∈Σ∗ val(A, w). The emptiness value of A, denoted e val(A), is then the join of all
the values in its range; i.e., e val(A) =

∨
range(A). Intuitively, e val(A) describes

how likely it is for A to accept a word. In particular, if e val(A) = ⊥, then A gives
value ⊥ to all the words in Σ∗. Over Boolean lattice, e val (A) = ⊥ if A is empty and
e val (A) = � if A is not empty. Note, however, that for a general (finite distributive De
Morgan) lattice, e val(A) �= ⊥ does not imply that there is a word that is accepted with
value e val (A). The emptiness-value problem is to decide, given an LNFW (or LNBW)
A, a value l ∈ L, and an order relation ∼∈ {<, ≤, =, ≥, >}, whether e val(A) ∼ l.

Theorem 13. The emptiness-value problem for LNFW (or LNBW) is NLOGSPACE-
complete.

In the full version we discuss the universality-value and the implication-value prob-
lems, which corresponds to the universality and the language inclusion problems in the
Boolean setting.

4.2 LLTL Model Checking and Satisfiability

As discussed in Section 1, the multi-valued setting appears in practice either directly,
with multi-valued systems and specifications, or indirectly, as various methods are re-
duced to reasoning in a multi-valued setting. In this section we show how lattice au-
tomata provide a unifying automata-theoretic framework for reasoning about multi-
valued systems and specifications,

A multi-valued Kripke structure is a six-tuple K = 〈AP, L, W, W0, R, L〉, where
AP is a set of atomic propositions, L is a lattice, W is a finite set of states, W0 ∈ LW

is an L-set of initial states, R ∈ LW×W is an L-transitions relation, and L : W → LAP

maps each state to an L-set of atomic propositions. We require R to be total in its first
element, thus for every w ∈ W there is at least one w′ ∈ w such that R(w, w′) �= ⊥.
A path of K is an infinite sequence w1, w2, . . . of states. For technical simplicity, we
assume that W0 and R are Boolean. As discussed in Remark 3, it is easy to adjust
our framework to handle weighted input letters, and hence, weighted initial states and
transitions. In the Boolean setting, a path of K is one that has value �, thus w1 ∈ w0
and R(wi, wi+1) for all i ≥ 1.

212 O. Kupferman and Y. Lustig

The logic LTL is a linear temporal logic. Formulas of LTL are constructed from
a set AP of atomic propositions using the usual Boolean operators and the temporal
operators X (“next time”) and U (“until”). The semantics of LTL is traditionally defined
with respect to computations of Kripke structures in which each state is labeled by a set
of atomic propositions true in this state and each two states are either connected or
not connected by an edge. Note that traditional Kripke structures correspond to multi-
valued Kripke structures over the lattice L2. We define the logic Latticed-LTL (LLTL,
for short), which is the expected extension of LTL to multi-valued Kripke structures.
The syntax of LLTL is similar to the one of LTL, except that the logic is parameterized
by a lattice L and its constants are elements of L. Let π = w1, w2, . . . be a path of
a multi-valued Kripke structure. The value of an LLTL formula ψ on the path π in
position i, denoted val(π, i, ψ) is inductively defined as follows:

– For a lattice element l ∈ L, we have val(π, i, l) = l for all π and i.
– For an atomic proposition p ∈ AP , we have val(π, i, p) = wi(p) for all π and i.
– val(π, i, ¬ψ) = ¬val (π, i, ψ).
– val(π, i, ψ ∧ θ) = val(π, i, ψ) ∧ val(π, i, θ).
– val(π, i, Xψ) = val(π, i + 1, ψ).
– val(π, i, ψUθ) =

∨
k≥i(val (π, k, θ) ∧

∧
i≤j<k val(π, j, ψ)).

For an LLTL formula ψ, the satisfiability value of ψ, denoted sat(ψ), is∨
{val(π, 1, ψ) : π ∈ (LAP)ω}. Thus, the satisfiability value describes how likely

it is for some path to satisfy ψ. The LLTL satisfiability problem is to determine, given
an LLTL formula ψ, a value l ∈ L, and an order relation ∼∈ {<, ≤, =, ≥, >}, whether
sat(ψ) ∼ l. For a multi-valued Kripke structure K and an LLTL formula ψ, the sat-
isfaction value of ψ in K , denoted sat(K, ψ), is

∧
{val(π, 1, ψ) : π is a path of K}.

Thus, the satisfaction value describes how likely it is for all paths of K to satisfy ψ.
The LLTL model-checking problem is to determine, given a multi-valued Kripke struc-
ture K , an LLTL formula ψ, a value l ∈ L, and an order relation ∼∈ {<, ≤, =, ≥, >},
whether sat(K, ψ) ∼ l.

Theorem 14. Given an LLTL formula ψ, there is an LNBW Aψ such that for every
word w ∈ (LAP)ω , we have Aψ(w) = val(w, 1, ψ).

We can now use the automata-theoretic approach in order to solve the satisfiability and
model checking problems for LLTL.

Theorem 15 [LLTL satisfiability and model checking]. The LLTL satisfiability-
value and satisfaction-value problems are PSPACE-complete.

The proof is similar to the standard automata-theoretic approach to verification proofs.
The full proof can be found in the full version.

Note that Theorem 15 also follows from reduction to several Boolean problems as
presented in [BG04]. The advantage of the approach presented here, is solving LLTL
model checking and satisfiability using direct lattice methods. The advantages of such
direct methods were argued in [BG04], which solved the model checking for μL (the
lattice extension of μ-calculus) directly, using EAA. Theorem 15, however, does not
follow from the latter due to the doubly-exponential blow up of translating LTL formu-
las to mu-calculus.

Lattice Automata 213

References

[BG99] G. Bruns and P. Godefroid. Model checking partial state spaces with 3-valued
temporal logics. In Proc. 11th CAV, LNCS 1633, pages 274–287, 1999.

[BG01] G. Bruns and P. Godefroid. Temporal logic query checking. In Proc. 16th LICS,
pages 409–420, 2001.

[BG04] G. Bruns and P. Godefroid. Model checking with 3-valued temporal logics. In 31st
ICALP, LNCS 3142, pages 281–293, 2004.

[CDG01] M. Chechik, B. Devereux, and A. Gurfinkel. Model-checking infinite state-space
systems with fine-grained abstractions using SPIN. In SPIN Workshop in model-
checking software, LNCS 2057, pages 16-36, 2001.

[Cha00] W. Chan. Temporal-logic queries. In Proc. 12th CAV, LNCS 1855, pages 450–463,
2000.

[Cho74] Y. Choueka. Theories of automata on ω-tapes: A simplified approach. Journal of
Computer and System Sciences, 8:117–141, 1974.

[EC01] S. Easterbrook and M. Chechik. A framework for multi-valued reasoning over
inconsistent viewpoints. In Proc. 23rd ICSE, pages 411–420, 2001.

[GS97] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Proc. 9th
CAV, LNCS 1254, pages 72–83, 1997.

[HH04] A. Hussain and M. Huth. On model checking multiple hybrid views. Technical
Report TR-2004-6, University of Cyprus, 2004.

[IEEE93] IEEE standard multivalue logic system for VHDL model interoperability
(std logic 1164), 1993.

[Imm88] N. Immerman. Nondeterministic space is closed under complement. SIAM Journal
on Computing, 17:935–938, 1988.

[KS86] W. Kuich and A. Salomaa. Semirings, Automata, Languages. EATCS Monographs
on Theoretical Computer Science. Springer-Verlag, 1986.

[Kur94] R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton
Univ. Press, 1994.

[KV01] O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. ACM
TOCL, 2(2):408–429, July 2001.

[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. Journal of the ACM, 47(2):312–360, March 2000.

[MH84] S. Miyano and T. Hayashi. Alternating finite automata on ω-words. Theoretical
Computer Science, 32:321–330, 1984.

[Moh97] Mehryar Mohri. Finite-state transducers in language and speech processing. Com-
putational Linguistics, 23(2):269–311, 1997.

[RS59] M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal
of Research and Development, 3:115–125, 1959.

[Saf88] S. Safra. On the complexity of ω-automata. In Proc. 29th FOCS, pages 319–327,
1988.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and
Computation, 115(1):1–37, November 1994.

	Introduction
	Preliminaries
	Lattices
	Lattice Automata

	Closure Properties
	Nondeterministic Automata on Finite Words
	Deterministic Automata on Finite Words
	Lattice Automata on Infinite Words

	Applications
	Decision Problems
	LLTL Model Checking and Satisfiability

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

