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Preface

This volume contains the papers presented at VMCAI 2007: Verification, Model
Checking and Abstract Interpretation held January 14–16, 2007 in Nice. VMCAI
provides a forum for researchers from the communities of verification, model
checking, and abstract interpretation, facilitating interaction, cross-fertilization,
and advancement of hybrid methods that combine the three areas. This years
VMCAI was held in conjunction with POPL, allowing further cross-fertilization
between programming language research and the areas covered by VMCAI.

There were 85 submissions to VMCAI 2007. Each submission was reviewed by
at least three Program Committee members. The committee decided to accept
21 papers. The program also includes invited talks by Tom Reps, Moshe Vardi,
and Hongseok Yang and tutorials by Ken McMillan, Madhusudan Parthasarathy,
and Peter Revesz.

We would like to acknowledge the financial support from Microsoft Research
and Andrei Voronkov for assistance with the EasyChair conference system.

November 2006 Byron Cook
Andreas Podelski
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Scott Stoller Stony Brook University, USA
Tayssir Touili LIAFA - Université Denis Diderot Paris, France
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Patrick Cousot École Normale Supérieure, France
E. Allen Emerson The University of Texas at Austin, USA
Giorgio Levi University of Pisa, Italy
Andreas Podelski University of Freiburg, Germany
Thomas W. Reps University of Wisconsin-Madison, USA
David Schmidt Kansas State University, USA
Lenore Zuck University of Illinois at Chicago, USA

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



VIII Organization

External Reviewers

Eugene Asarin
James Avery
Ittai Balaban
Laurent Van Begin
Josh Berdine
Julien Bertrane
Ahmed Bouajjani
Marius Bozga
Thomas Brihaye
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DIVINE: DIscovering Variables IN Executables

Gogul Balakrishnan and Thomas Reps

Comp. Sci. Dept., University of Wisconsin
{bgogul,reps}@cs.wisc.edu

Abstract. This paper addresses the problem of recovering variable-like enti-
ties when analyzing executables in the absence of debugging information. We
show that variable-like entities can be recovered by iterating Value-Set Analysis
(VSA), a combined numeric-analysis and pointer-analysis algorithm, and Aggre-
gate Structure Identification, an algorithm to identify the structure of aggregates.
Our initial experiments show that the technique is successful in correctly identi-
fying 88% of the local variables and 89% of the fields of heap-allocated objects.
Previous techniques recovered 83% of the local variables, but 0% of the fields of
heap-allocated objects. Moreover, the values computed by VSA using the vari-
ables recovered by our algorithm would allow any subsequent analysis to do a
better job of interpreting instructions that use indirect addressing to access arrays
and heap-allocated data objects: indirect operands can be resolved better at 4%
to 39% of the sites of writes and up to 8% of the sites of reads. (These are the
memory-access operations for which it is the most difficult for an analyzer to
obtain useful results.)

1 Introduction

There is an increasing need for tools to help programmers and security analysts under-
stand executables. For instance, companies and the military increasingly use Commer-
cial Off-The Shelf (COTS) components to reduce the cost of software development. They
are interested in ensuring that COTS components do not perform malicious actions (or
can be forced to perform malicious actions). Viruses and worms have become ubiquitous.
A tool that aids in understanding their behavior could ensure early dissemination of sig-
natures, and thereby help control the extent of damage caused by them. In both domains,
the questions that need to be answered cannot be answered perfectly—the problems are
undecidable—but static analysis provides a way to answer them conservatively.

The long-term goal of our work is to develop bug-detection and security-
vulnerability analyses that work on executables. As a means to this end, our immediate
goal is to advance the state of the art of recovering, from executables, Intermediate
Representations (IRs) that are similar to those that would be available had one started
from source code. We envisage the following uses for the IRs: (1) as an aid to a hu-
man analyst who is trying to understand the behavior of the program, and (2) as the
basis for further static analysis of executables. Moreover, once such IRs are in hand,
we will be in a position to leverage the substantial body of work on bug-detection and
security-vulnerability analysis based on IRs built from source code.

One of the several obstacles in IR recovery is that a program’s data objects are not
easily identifiable in an executable. Consider, for instance, a data dependence from

B. Cook and A. Podelski (Eds.): VMCAI 2007, LNCS 4349, pp. 1–28, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 G. Balakrishnan and T. Reps

statement a to statement b that is transmitted by write/read accesses on some variable
x. When performing source-code analysis, the programmer-defined variables provide
us with convenient compartments for tracking such data manipulations. A dependence
analyzer must show that a defines x, b uses x, and there is an x-def-free path from a
to b. However, in executables, memory is accessed either directly—by specifying an
absolute address—or indirectly—through an address expression of the form “[base +
index × scale + offset]”, where base and index are registers, and scale and offset are
integer constants. It is not clear from such expressions what the natural compartments
are that should be used for analysis. Because executables do not have intrinsic entities
that can be used for analysis (analogous to source-level variables), a crucial step in the
analysis of executables is to identify variable-like entities. If debugging information is
available (and trusted), this provides one possibility; however, even if debugging infor-
mation is available, analysis techniques have to account for bit-level, byte-level, word-
level, and bulk-memory manipulations performed by programmers (or introduced by
the compiler) that can sometimes violate variable boundaries [3,18,24]. If a program
is suspected of containing malicious code, even if debugging information is present, it
cannot be entirely relied upon. For these reasons, it is not always desirable to use de-
bugging information—or at least to rely on it alone—for identifying a program’s data
objects. (Similarly, past work on source-code analysis has shown that it is sometimes
valuable to ignore information available in declarations and infer replacement informa-
tion from the actual usage patterns found in the code [12,21,23,28,30].)

Moreover, for many kinds of programs (including most COTS products, viruses, and
worms), debugging information is entirely absent; for such situations, an alternative
source of information about variable-like entities is needed. While the reader may won-
der about how effective one can be at determining information about a program’s behav-
ior from low-level code, a surprisingly large number of people—on a daily basis—are
engaged in inspecting low-level code that is not equipped with debugging information.
These include hackers of all hat shades (black, grey, and white), as well as employees
of anti-virus companies, members of computer incident/emergency response teams, and
members of the intelligence community.

Heretofore, the state of the art in recovering variable-like entities is represented by
IDAPro [15], a commercial disassembly toolkit. IDAPro’s algorithm is based on the ob-
servation that accesses to global variables appear as “[absolute-address]”, and accesses
to local variables appear as “[esp + offset]” or “[ebp - offset]” in the executable. That
is, IDAPro recovers variables based on purely local techniques.1 This approach has
certain limitations. For instance, it does not take into account accesses to fields of struc-
tures, elements of arrays, and variables that are only accessed through pointers, because
these accesses do not fall into any of the patterns that IDAPro considers. Therefore, it
generally recovers only very coarse information about arrays and structures. Moreover,
this approach fails to provide any information about the fields of heap-allocated objects,
which is crucial for understanding programs that manipulate the heap.

The aim of the work presented in this paper is to improve the state of the art by
using abstract interpretation [10] to replace local analyses with ones that take a more

1 IDAPro does incorporate a few global analyses, such as one for determining changes in stack
height at call-sites. However, the techniques are ad-hoc and based on heuristics.
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DIVINE: DIscovering Variables IN Executables 3

comprehensive view of the operations performed by the program. We present an
algorithm that combines Value-Set Analysis (VSA) [4], which is a combined numeric-
analysis and pointer-analysis algorithm that works on executables, and Aggregate Struc-
ture Identification (ASI) [23], which is an algorithm that infers the substructure of
aggregates used in a program based on how the program accesses them, to recover
variables that are better than those recovered by IDAPro. As explained in §5, the com-
bination of VSA and ASI allows us (a) to recover variables that are based on indirect
accesses to memory, rather than just the explicit addresses and offsets that occur in
the program, and (b) to identify structures, arrays, and nestings of structures and arrays.
Moreover, when the variables that are recovered by our algorithm are used during VSA,
the precision of VSA improves. This leads to an interesting abstraction-refinement
scheme; improved precision during VSA causes an improvement in the quality of vari-
ables recovered by our algorithm, which, in turn, leads to improved precision in a sub-
sequent round of VSA, and so on.

The specific technical contributions of the paper are as follows:

– We present an abstract-interpretation-based algorithm for recovering variable-like
entities from an executable. In particular, we show how information provided by
VSA is used in combination with ASI for this purpose.

– We evaluate the usefulness of the variables recovered by our algorithm to a hu-
man analyst. We compare the variables recovered by our algorithm against the de-
bugging information generated at compile time. Initial experiments show that the
technique is successful in correctly identifying 88% of the local variables and 89%
of the fields of heap-allocated objects. Previous techniques based on local analysis
recovered 83% of the local variables, but 0% of the fields of heap-allocated objects.

– We evaluate the usefulness of the variables and values recovered by our algorithm
as a platform for additional analyses. Initial experiments show that the values com-
puted by VSA using the variables recovered by our algorithm would allow any
subsequent analysis to do a better job of interpreting instructions that use indi-
rect addressing to access arrays and heap-allocated data objects: indirect memory
operands can be resolved better at 4% to 39% of the sites of writes and up to 8% of
the sites of reads.

Our current implementation of the variable-recovery algorithm—which is incorpo-
rated in a tool called CodeSurfer/x86 [25]—works on x86 executables; however, the
algorithms used are architecture-independent.

The remainder of the paper is organized as follows: §2 provides an abstract memory
model for analyzing executables. §3 provides an overview of our approach to recover
variable-like entities for use in analyzing executables. §4 provides background on VSA
and ASI. §5 describes our abstraction-refinement algorithm to recover variable-like en-
tities. §6 reports experimental results. §7 discusses related work.

2 An Abstract Memory Model

In this section, we present an abstract memory model for analyzing executables. A
simple model is to consider memory as an array of bytes. Writes (reads) in this trivial
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4 G. Balakrishnan and T. Reps

memory model are treated as writes (reads) to the corresponding element of the array.
However, there are some disadvantages in such a simple model:

– It may not be possible to determine specific address values for certain memory
blocks, such as those allocated from the heap via malloc. For the analysis to be
sound, writes to (reads from) such blocks of memory have to be treated as writes to
(reads from) any part of the heap.

– The runtime stack is reused during each execution run; in general, a given area
of the runtime stack will be used by several procedures at different times during
execution. Thus, at each instruction a specific numeric address can be ambiguous
(because the same address may belong to different activation records at different
times during execution): it may denote a variable of procedure f, a variable of
procedure g, a variable of procedure h, etc. (A given address may also correspond
to different variables of different activations of f.) Therefore, an instruction that
updates a variable of procedure f would have to be treated as possibly updating the
corresponding variables of procedures g, h, etc.

Fig. 1. Memory-regions

To overcome these problems, we work
with the following abstract memory
model [4]. Although in the concrete se-
mantics the activation records (ARs) for
procedures, the heap, and the memory
for global data are all part of one ad-
dress space, for the purposes of analy-
sis, we separate the address space into a
set of disjoint areas, which are referred
to as memory-regions (see Fig. 1). Each
memory-region represents a group of lo-
cations that have similar runtime proper-

ties. For example, the runtime locations that belong to the ARs of a given procedure
belong to one memory-region. For a given program, there are three kinds of regions:
(1) global-regions, for memory locations that hold global data, (2) AR-regions, each
of which contains the locations of the ARs of a particular procedure, and (3) malloc-
regions, each of which contains the locations allocated at a particular malloc site.

3 Overview of Our Approach

Our goal is to subdivide the memory-regions of the executable into variable-like entities
(which we call a-locs, for “abstract locations”). These can then be used as variables in
tools that analyze executables. Memory-regions are subdivided using the information
about how the program accesses its data. The intuition behind this approach is that data-
access patterns in the program provide clues about how data is laid out in memory. For
instance, the fact that an instruction in the executable accesses a sequence of four bytes
in memory-region M is an indication that the programmer (or the compiler) intended to
have a four-byte-long variable or field at the corresponding offset in M. In this section,
we present the problems in developing such an approach, and the insights behind our
solution, which addresses those problems. Details are provided in §5.
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DIVINE: DIscovering Variables IN Executables 5

3.1 The Problem of Indirect Memory Accesses

Past work on analyzing executables [4,15] uses the addresses and stack-frame offsets
that occur explicitly in the program to recover variable-like entities. We will call this
the Semi-Naı̈ve algorithm. It is based on the observation that access to global variables
appear as “[absolute-address]”, and access to local variables appear as “[esp + off-
set]” or “[ebp + offset]” in the executable. Thus, absolute addresses and offsets that
occur explicitly in the executable (generally) indicate the starting addresses of program
variables. Based on this observation, the Semi-Naı̈ve algorithm identifies each set of
locations between two neighboring absolute addresses or offsets as a single variable.
Such an approach produces poor results in the presence of indirect memory operands.

Example 1. The program initializes the two fields x and y of a local struct through the
pointer pp and returns 0. pp is located at offset -12,2 and struct p is located at offset -8
in the activation record of main. Address expression “ebp-8” refers to the address of
p, and address expression “ebp-12” refers to the address of pp.

typedef struct {
int x, y;

} Point;

int main(){
Point p, *pp;
pp = &p;
pp->x = 1;
pp->y = 2;
return 0;

}

proc main
1 mov ebp, esp
2 sub esp, 12
3 lea eax, [ebp-8]
4 mov [ebp-12], eax
5 mov [eax], 1
6 mov [eax+4], 2
7 mov eax, 0
8 add esp, 12
9 retn

Instruction 4 initializes the value of pp. (Instruction “3 lea eax, [ebp-8]” is
equivalent to the assignment eax := ebp-8.) Instructions 5 and 6 update the fields
of p. Observe that, in the executable, the fields of p are updated via eax, rather than via
the pointer pp itself, which resides at address ebp-12. �

In Ex. 1, -8 and -12 are the offsets relative to the frame pointer (i.e., ebp) that oc-
cur explicitly in the program. The Semi-Naı̈ve algorithm would say that offsets -12
through -9 of the AR of main constitute one variable (say var 12), and offsets -8
through -1 of AR of main constitute another (say var 8). The Semi-Naı̈ve algorithm
correctly identifies the position and size of pp. However, it groups the two fields of p
together into a single variable because it does not take into consideration the indirect
memory operand [eax+4] in instruction 6.

Typically, indirect operands are used to access arrays, fields of structures, fields of
heap-allocated data, etc. Therefore, to recover a useful collection of variables from ex-
ecutables, one has to look beyond the explicitly occurring addresses and stack-frame
offsets. Unlike the operands considered in the Semi-Naı̈ve algorithm, local methods do

2 We follow the convention that the value of esp (the stack pointer) at the beginning of a pro-
cedure marks the origin of the procedure’s AR-region.
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6 G. Balakrishnan and T. Reps

not provide information about what an indirect memory operand accesses. For instance,
an operand such as “[ebp + offset]” (usually) accesses a local variable. However,
“[eax + 4]” may access a local variable, a global variable, a field of a heap-allocated
data-structure, etc., depending upon what eax contains.

Obtaining information about what an indirect memory operand accesses is not
straightforward. In this example, eax is initialized with the value of a register. In gen-
eral, a register used in an indirect memory operand may be initialized with a value read
from memory. In such cases, to determine the value of the register, it is necessary to
know the contents of that memory location, and so on. Fortunately, Value-Set Analysis
(VSA) described in [4,24] (summarized in §4.1) can provide such information.

3.2 The Problem of Granularity and Expressiveness

The granularity and expressiveness of recovered variables can affect the precision of
analysis clients that use the recovered variables as the executable’s data objects.

Example 2. The program shown below initializes all elements of array p. The x-
members of each element are initialized with 1; the y-members are initialized with
2. The disassembly is also shown. Instruction L1 updates the x-members of the array
elements; instruction 5 updates the y-members.

typedef struct {
int x,y;

} Point;

int main(){
int i;
Point p[5];
for(i=0;i<5;++i) {

p[i].x = 1;
p[i].y = 2;

}
return p[0].y;

}

proc main
0 mov ebp,esp
1 sub esp,40
2 mov ecx,0
3 lea eax,[ebp-40]

L1: mov [eax], 1
5 mov [eax+4],2
6 add eax, 8
7 inc ecx
8 cmp ecx, 5
9 jl L1

10 mov eax,[ebp-36]
11 add esp,40
12 retn

Fig. 2(a) shows how the variables are laid out in the AR of main. Note that there is
no space for variable i in the AR for main because the compiler promoted i to register
ecx. �
As a specific example of an analysis client, consider a data-dependence analyzer, which
answers such questions as: “Does the write to memory at instruction L1 affect the read
from memory at instruction 10”. Note that in Ex. 2 the write to memory at instruction
L1 does not affect the read from memory at instruction 10 because L1 updates the x
members of the elements of array p, while instruction 10 reads the y member of array
element p[0]. To simplify the discussion, assume that a data-dependence analyzer
works as follows: (1) annotate each instruction with used, killed, and possibly-killed
variables, and (2) compare the used variables of each instruction with killed or possibly-
killed variables of every other instruction to determine data dependences.
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p[4].y

p[4].x
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. . .

-40

-36

ret-addr

var_40

var_36

0

. . .

(a) (b)

Fig. 2. AR of main for the
program in Ex. 2: (a) actual
layout, and (b) layout ob-
tained from the Semi-Naı̈ve
approach

Consider three different partitions of the AR of main:

VarSet1: As shown in Fig. 2(b), the Semi-Naı̈ve ap-
proach from §3.1 would say that the AR of main has
two variables: var 40 (4 bytes) and var 36 (36 bytes).
The variables that are possibly killed at L1 are {var 40,
var 36}, and the variable used at 10 is var 36. There-
fore, the data-dependence analyzer reports that the write to
memory at L1 might affect the read at 10. (This is sound,
but imprecise.)

VarSet2: As shown in Fig. 2(a), there are two variables
for each element of array p. The variables possibly killed at

L1 are {p[0].x, p[1].x, p[2].x, p[3].x, p[4].x}, and the variable used at in-
struction 10 is p[0].y. Because these sets are disjoint, the data-dependence analyzer
reports that the memory write at instruction L1 definitely does not affect the memory
read at instruction 10.

VarSet3: Suppose that the AR of main is partitioned into just two (summary) vari-
ables: (1) p[?].x, which is a representative for the x members of the elements of
array p, and (2) p[?].y, which is a representative for the y members of the elements
of array p. The summary variable that is possibly killed at instruction L1 is p[?].x
and the summary variable that is used at instruction 10 is p[?].y. These are disjoint;
therefore, the data-dependence analyzer reports a definite answer, namely, that the write
at L1 does not affect the read at 10.

Of the three alternatives presented above, VarSet3 has several desirable features:

– It has a smaller number of variables than VarSet2. When it is used as the set of
variables in a data-dependence analyzer, it provides better results than VarSet1.

– The variables in VarSet3 are capable of representing a set of non-contiguous
memory locations. For instance, p[?].x represents the locations corresponding
to p[0].x, p[1].x, . . . , p[4].x. The ability to represent non-contiguous se-
quences of memory locations is crucial for representing a specific field in an array
of structures.

– The AR of main is only partitioned as much as necessary. In VarSet3, only one
summary variable represents the x members of the elements of array p, while each
member of each element of array p is assigned a separate variable in VarSet2.

A good variable-recovery algorithm should partition a memory-region in such a
way that the set of variables obtained from the partition has the desirable features of
VarSet3. When debugging information is available, this is a trivial task. However, de-
bugging information is often not available. Data-access patterns in the program provide
information that can serve as a substitute for debugging information. For instance, in-
struction L1 accesses each of the four-byte sequences that start at offsets {−40, −32,
. . . , −8} in the AR of main. The common difference of 8 between successive offsets is
evidence that the offsets may represent the elements of an array. Moreover, instruction
L1 accesses every four bytes starting at these offsets. Consequently, the elements of the
array are judged to be structures in which the one of the fields is four bytes long.
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4 Background

In this section, we describe (1) Value-Set Analysis (VSA) [4], and (2) Aggregate Struc-
ture Identification (ASI) [23]. This material is related to the core of the paper as follows:

– We use VSA as the mechanism to understand indirect memory accesses (see §4.1)
and obtain data-access patterns (see §4.2) from the executable.

– In §5, we show how to use the information gathered during VSA to harness ASI to
the problem of identifying variable-like entities in executables.

4.1 Value-Set Analysis (VSA)

VSA [4] is a combined numeric-analysis and pointer-analysis algorithm that determines
an over-approximation of the set of numeric values or addresses that each register and
memory location holds at each program point. In particular, at each program point, VSA
provides information about the contents of registers that appear in an indirect memory
operand. A key feature of VSA is that it tracks integer-valued and address-valued quan-
tities simultaneously. This is crucial for analyzing executables because numeric values
and addresses are indistinguishable at runtime. Moreover, unlike earlier algorithms that
analyze executables [8,11], VSA takes into account data manipulations involving mem-
ory locations also. To track the contents of memory locations, the initial run of VSA
uses the variables recovered via the Semi-Naı̈ve approach from §3.1.

For the program in Ex. 1, the initial run of VSA computes an over-approximation
of the contents of the x86 registers (eax, ax, ah, al, ebx, etc.) and the memory-
locations that correspond to var 12 (4 bytes) and var 8 (8 bytes). Similarly, for
the program in Ex. 2, the initial run of VSA computes an over-approximation of the
contents of the x86 registers and the memory-locations that correspond to var 40 (4
bytes) and var 36 (36 bytes). For both examples, the initial a-locs will be refined by
our abstraction-refinement algorithm in §5. In the remainder of the paper, we overload
the term “a-loc” both for the entities recovered by the Semi-Naı̈ve algorithm (which
are what we used in our previous work [4]), as well as for the entities identified by
the abstraction-refinement algorithm of §5. (There should be no confusion, as it should
always be clear from context which kind of a-loc is intended.)

VSA is a flow-sensitive, context-sensitive, interprocedural, abstract-interpretation
algorithm (parameterized by call-string length [27]) that is based on an independent-
attribute domain described below.

Call-Strings. The call-graph of a program is a labeled graph in which each node rep-
resents a procedure, each edge represents a call, and the label on an edge represents
the call-site corresponding to the call represented by the edge. A call-string [27] is a
sequence of call-sites (c1c2 . . . cn) such that call-site c1 belongs to the entry procedure,
and there exists a path in the call-graph consisting of edges with labels c1, c2, . . . , cn.
CallString is the set of all call-strings in the program.

A call-string suffix of length k is either (c1c2 . . . ck) or (∗c1c2 . . . ck), where c1,
c2, . . . , ck are call-sites. (c1c2 . . . ck) represents the string of call-sites c1c2 . . . ck.
(∗c1c2 . . . ck), which is referred to as a saturated call-string, represents the set {cs|cs ∈
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CallString, cs = πc1c2 . . . ck, and |π| ≥ 1}. CallStringk is the set of saturated call-
strings of length k, plus non-saturated call-strings of length ≤ k.

Value-Sets. During VSA, a set of numeric values and addresses is represented by a
value-set that is a safe approximation of the actual set. Suppose that n is the number of
memory-regions in the executable. A value-set is an n-tuple of strided intervals of the
form s[l, u], with each component of the tuple representing the set of addresses in the
corresponding region [24]. For a 32-bit machine, a strided-interval s[l, u] represents the
set of integers {i ∈ [−231, 231 − 1]|l ≤ i ≤ u, i ≡ l(mod s)}.

– s is called the stride.
– [l, u] is called the interval.
– 0[l, l] represents the singleton set {l}.

For Ex. 2, the value-sets are 2-tuples. We follow the convention that the first component
always refers to the set of addresses (or numbers) in the global region and ∅ denotes the
empty set. For instance, the tuple (1[0, 9], ∅) represents the set of numbers {0, 1, . . . , 9}
and the tuple (∅, 4[−40, −4]) represents the set of offsets {−40, −36, . . . , −4} in the
AR-region for main. (Although we refer to “tracking integer-valued and address-valued
quantities simultaneously”, the analysis makes no distinction between the two: values
in the Global region could be either, and are treated appropriately according to what
instruction is performed [4,24].)

VSA Domain. Let Proc denote the set of memory-regions associated with procedures
in the program; AllocMemRgn denote the set of memory-regions associated with heap-
allocation sites;3 Global denote the memory-region associated with the global data area;
and a-loc[R] denote the a-locs that belong to memory-region R. We work with the
following basic domains:

MemRgn = {Global} ∪ Proc ∪ AllocMemRgn
ValueSet = MemRgn → StridedInterval⊥

AlocEnv[R] = a-loc[R] → ValueSet

AbsEnv maps each region R to its corresponding AlocEnv[R] and each register to a
ValueSet:

AbsEnv =

(register → ValueSet)
× ({Global} → AlocEnv[Global])
× (Proc → AlocEnv[Proc]⊥)
× (AllocMemRgn → AlocEnv[AllocMemRgn]⊥)

3 The implementation actually uses an augmented abstract domain that overcomes some of the
imprecision that arises due to the need to perform weak updates—i.e., accumulate information
via join—on fields of summary malloc-regions. In particular, the augmented domain, which is
described in [5], often allows our analysis to establish a definite link between a heap-allocated
object of a class that uses 1 or more virtual functions and the appropriate virtual-function table.
Due to space considerations, this aspect could not be described in the present paper. The results
reported in §6 are based on the augmented domain.
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VSA associates each program point with an AbsMemConfig:

AbsMemConfig = (CallStringk → AbsEnv⊥)

In the above definitions, ⊥ is used to denote a partial map. For instance, a ValueSet
may not contain offsets in some memory-regions. Similarly, in AbsEnv, a procedure P
whose activation record is not on the stack does not have an AlocEnv[P]. In addition
to determining an over-approximation of the set of numeric values and addresses for
each a-loc in the executable, VSA also finds a conservative estimate of the targets of
indirect function-calls and indirect jumps—see [4]. Instead of describing VSA in detail,
we highlight some of its features that are useful in a-loc recovery.

– Information about indirect memory operands: For the program in Ex. 1, VSA de-
termines that the value-set of eax at instruction 6 is (∅, 0[−8, −8]), which means
that eax holds the offset −8 in the AR-region of main. Using this information, we
can conclude that [eax+4] refers to offset −4 in the AR of main.

– VSA provides data-access patterns: For the program in Ex. 2, VSA determines that
the value-set of eax at program point L1 is (∅, 8[−40, −8]), which means that eax
holds the offsets {−40, −32, . . . , −8} in the AR-region of main. (These offsets are
the starting addresses of field x of elements of array p.)

– VSA tracks updates to memory: This is important because, in general, the registers
used in an indirect memory operand may be initialized with a value read from mem-
ory. If updates to memory are not tracked, we may neither have useful information
for indirect memory operands nor useful data-access patterns for the executable.

4.2 Aggregate Structure Identification (ASI)

ASI is a unification-based, flow-insensitive algorithm to identify the structure of ag-
gregates in a program [23]. The algorithm ignores any type information known about
aggregates, and considers each aggregate to be merely a sequence of bytes of a given
length. The aggregate is then broken up into smaller parts depending on how it is ac-
cessed by the program. The smaller parts are called atoms.

The data-access patterns in the program are specified to the ASI algorithm through a
data-access constraint language (DAC). The syntax of DAC programs is shown in Fig. 3.
There are two kinds of constructs in a DAC program: (1) DataRef is a reference to a
set of bytes, and provides a means to specify how the data is accessed in the program;
(2) UnifyConstraint provides a means to specify the flow of data in the program.

Pgm ::= ε | UnifyConstraint Pgm
UnifyConstraint ::= DataRef ≈ DataRef

DataRef ::= ProgVars |
DataRef[UInt:UInt] |
DataRef\UInt+

Fig. 3. Data-Access Constraint (DAC) language. UInt is the set of non-negative integers; UInt+

is the set of positive integers; and ProgVars is the set of program variables.
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Note that the direction of data flow is not considered in a UnifyConstraint. The
justification for this is that a flow of data from one sequence of bytes to another is
evidence that they should have the same structure. ASI uses the constraints in the DAC
program to find a coarsest refinement of the aggregates.

There are three kinds of data references:

– A variable P ∈ ProgVar refers to all the bytes of variable P.
– DataRef[l:u] refers to bytes l through u in DataRef. For example, P[8:11]

refers to bytes 8..11 of variable P.
– DataRef\n is interpreted as follows: DataRef is an array of n elements and
DataRef\n refers to the bytes of an element of array DataRef. For example,
P[0:11]\3 refers to the sequences of bytes P[0:3], P[4:7], or P[8:11].

Instead of going into the details of the ASI algorithm, we provide the intuition behind
the algorithm by means of an example. Consider the source-code program shown in
Ex. 2. The data-access constraints for the program are

p[0:39]\5[0:3] ≈ const 1[0:3];
p[0:39]\5[4:7] ≈ const 2[0:3];

return main[0:3] ≈ p[4:7];

The constraints reflect the fact that the size of Point is 8 and that x and y are laid
out next to each other. The first constraint encodes the initialization of the x members,
namely, p[i].x = 1. The DataRef p[0:39]\5[0:3] refers to the bytes that
correspond to the x members in array p. The last constraint corresponds to the return
statement; it represents the fact that the return value of main is assigned bytes 4..7
of p, which correspond to p[0].y.

The result of ASI is a DAG that shows the structure of each aggregate as well as
relationships among the atoms of aggregates. The DAG for Ex. 2 is shown in Fig. 4(a).
An ASI DAG has the following properties:

– A node represents a set of bytes.
– A sequence of bytes that is accessed as an array in the program is represented

by an array node. Array nodes are labeled with
⊗

. The number in an array node
represents the number of elements in the array. An array node has one child, and the
DAG rooted at the child represents the structure of the array element. In Fig. 4(a),
bytes 8..39 of array p are identified as an array of four 8-byte elements. Each
array element is a struct with two fields of 4 bytes each.

– A sequence of bytes that is accessed like a C struct in the program is represented by
a struct node. The number in the struct node represents the length of the struct; the
children of a struct node represent the fields of the struct. In Fig. 4(a), bytes 0..39
of p are identified as a struct with three fields: two 4-byte scalars and one 32-byte
array.

– Nodes are shared if there is a flow of data in the program involving the correspond-
ing sequence of bytes either directly or indirectly. In Fig. 4(a), the nodes for the
sequences of bytes return main[0:3] and p[4:7] are shared because of the
return statement in main. Similarly, the sequence of bytes that correspond to the
y members of array p, namely p[0:39]\5[4:7], share the same node because
they are all assigned the same constant at the same instruction.
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Fig. 4. (a) ASI DAG, (b) ASI tree, and (c) struct recovered for the program in Ex. 2

The ASI DAG is converted into an ASI tree by duplicating shared nodes. The atoms
of an aggregate are the leaves of the corresponding ASI tree. Fig. 4(b) shows the ASI
tree for Ex. 2. ASI has identified that p has the structure shown in Fig. 4(c).

5 Recovering A-Locs Via Iteration

We use the atoms obtained from ASI as a-locs for (re-)analyzing the executable. The
atoms identified by ASI for Ex. 2 are close to the set of variables VarSet3 that was dis-
cussed in §3.2. One might hope to apply ASI to an executable by treating each memory-
region as an aggregate and determining the structure of each memory-region (without
using VSA results). However, one of the requirements for applying ASI is that it must
be possible to extract data-access constraints from the program. When applying ASI
to programs written in languages such as Cobol this is possible: the data-access pat-
terns are apparent from the syntax of the constructs under consideration. Unfortunately,
this is not the case for executables. For instance, the memory operand [eax] can ei-
ther represent an access to a single variable or to the elements of an array. Fortunately,
value-sets provide the necessary information to generate data-access constraints. Recall
that a value-set is an over-approximation of the set of offsets in each memory-region.
Together with the information about the number of bytes accessed by each argument
(which is available from the instruction), this provides the information needed to gen-
erate data-access constraints for the executable.

Furthermore, when we use the atoms of ASI as a-locs in VSA, the results of VSA
can improve. Consider the program in Ex. 1. Recall from §3.1 that the length of var 8
is 8 bytes. Because value-sets are only capable of representing a set of 4-byte addresses
and 4-byte values, VSA recovers no useful information for var 8: it merely reports
that the value-set of var 8 is � (meaning any possible value or address). Applying
ASI (using data-access patterns provided by VSA) results in the splitting of var 8 into
two 4-byte a-locs, namely, var 8.0 and var 8.4. Because var 8.0 and var 8.4
are each four bytes long, VSA can now track the set of values or addresses in these
a-locs. Specifically, VSA would determine that var 8.0 (i.e., p.x) has the value 1
and var 8.4 (i.e., p.y) has the value 2 at the end of main.

We can use the new VSA results to perform another round of ASI. If the value-
sets computed by VSA are improved from the previous round, the next round of ASI
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may also improve. We can repeat this process as long as desired, or until the process
converges (see §5.4).

Although not illustrated by Ex. 1, additional rounds of ASI and VSA can result in
further improvements. For example, suppose that the program uses a chain of pointers
to link structs of different types, e.g., variable ap points to a struct A, which has
a field bp that points to a struct B, which has a field cp that points to a struct C,
and so on. Typically, the first round of VSA recovers the value of ap, which lets ASI
discover the a-loc for A.bp (from the code compiled for ap->bp); the second round
of VSA recovers the value of ap->bp, which lets ASI discover the a-loc for B.cp
(from the code compiled for ap->bp->cp); etc.

To summarize, the algorithm for recovering a-locs is

1. Run VSA using a-locs recovered by the Semi-Naı̈ve approach.
2. Generate data-access patterns from the results of VSA
3. Run ASI
4. Run VSA
5. Repeat steps 2, 3, and 4 until there are no improvements to the results of VSA.4

It is important to understand that VSA generates sound results for any collection of
a-locs with which it is supplied. However, if supplied very coarse a-locs, many a-locs
will be found to have the value � at most points. By refining the a-locs in use, more
precise answers are generally obtained. For this reason, ASI is used only as a heuristic
to find a-locs for VSA; i.e., it is not necessary to generate data-access constraints for
all memory accesses in the program. Because ASI is a unification-based algorithm,
generating data-access constraints for certain kinds of instructions leads to undesirable
results. §5.5 discusses some of these cases.

In short, our abstraction-refinement principles are as follows:

1. VSA results are used to interpret memory-access expressions in the executable.
2. ASI is used as a heuristic to determine the structure of each memory-region accord-

ing to information recovered by VSA.
3. Each ASI tree reflects the memory-access patterns in one memory-region, and the

leaves of the ASI trees define the a-locs that are used for the next round of VSA.

ASI alone is not a replacement for VSA. That is, ASI cannot be applied to executables
without the information that is obtained from VSA—namely value-sets.

In the rest of this section, we describe the interplay between VSA and ASI: (1) we
show how value-sets are used to generate data-access constraints for input to ASI, and
(2) how the atoms in the ASI trees are used as a-locs during the next round of VSA.

5.1 Generating Data-Access Constraints

This section describes the algorithm that generates ASI data-references for x86
operands. Three forms of x86 operands need to be considered: (1) register operands, (2)
memory operands of form “‘[register]”, and (3) memory operands of the form “[base +
index × scale + offset]”.

4 Or, equivalently, until the set of a-locs discovered in step 3 is unchanged from the set previously
discovered in step 3 (or step 1).
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To prevent unwanted unification during ASI, we rename registers using live-ranges.
For a register r, the ASI data-reference is rlr[0 : n − 1], where lr is the live-range of
the register at the given instruction and n is the size of the register (in bytes).

In the rest of the section, we describe the algorithm for memory operands. First, we
consider indirect operands of the form [r]. To gain intuition about the algorithm, con-
sider operand [eax] of instruction L1 in Ex. 2. The value-set associated with eax is
(∅, 8[−40, −8]). The stride value of 8 and the interval [−40, −8] in the AR of main
provide evidence that [eax] is an access to the elements of an array of 8-byte ele-
ments in the range [−40, −8] of the AR of main; an array access is generated for this
operand.

Recall that a value-set is an n-tuple of strided intervals. The strided interval s[l, u]
in each component represents the offsets in the corresponding memory-region. Alg. 1
shows the pseudocode to convert offsets in a memory-region into an ASI reference.
SI2ASI takes the name of a memory-region r, a strided interval s[l, u], and length (the
number of bytes accessed) as arguments. The length parameter is obtained from the in-
struction. For example, the length for [eax] is 4 because the instruction at L1 in Ex. 2 is
a four-byte data transfer. The algorithm returns a pair in which the first component is an
ASI reference and the second component is a Boolean. The significance of the Boolean
component is described later in this section. The algorithm works as follows: If s[l, u] is
a singleton, then the ASI reference is the one that accesses offsets l to l+length−1 in the
aggregate associated with memory-region r. If s[l, u] is not a singleton, then the offsets
represented by s[l, u] are treated as references to an array. The size of the array element
is the stride s whenever (s ≥ length). However, when (s < length) an overlapping set
of locations is accessed by the indirect memory operand. Because an overlapping set of
locations cannot be represented using an ASI reference, the algorithm chooses length
as the size of the array element. This is not a problem for the soundness of subsequent
rounds of VSA because of refinement principle 2. The Boolean component of the pair
denotes whether the algorithm generated an exact ASI reference or not. The number of
elements in the array is (u − l)/size� + 1.

For operands of the form [r], the set of ASI references is generated by invoking
Alg. 1 for each non-empty memory-region in r’s value-set. For Ex. 2, the value-set
associated with eax at L1 is (∅, 8[−40, −8]). Therefore, the set of ASI references is
{AR main[(-40):(-1)]\5[0:3]}.5 There are no references to the Global region because
the set of offsets in that region is empty.

The algorithm for converting indirect operands of the form [base + index × scale +
offset] is given in Alg. 2. One typical use of indirect operands of the form [base + index
× scale + offset] is to access two-dimensional arrays. Note that scale and offset are
statically-known constants. Because abstract values are strided intervals, we can absorb
scale and offset into base and index. Hence, without loss of generality, we only dis-
cuss memory operands of the form [base+index]. Assuming that the two-dimensional
array is stored in row-major format, one of the registers (usually base) holds the start-
ing addresses of the rows and the other register (usually index) holds the indices of the

5 Offsets in a DataRef cannot be negative. Negative offsets are used in the paper for clarity.
Negative offsets are mapped to the range [0, 231 − 1]; non-negative offsets are mapped to the
range [231, 232 − 1].
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Algorithm 1 SI2ASI: Algorithm to convert a given strided interval into an ASI
reference
Input: The name of a memory-region r, strided interval s[l, u], number of bytes accessed length.
Output: A pair in which the first component is an ASI reference for the sequence of length

bytes starting at offsets s[l, u] in memory-region r and the second component is a Boolean that
represents whether the ASI reference is an exact reference (true) or an approximate one (false).

if s[l, u] is a singleton then
return 〈 “r[l : l + length − 1]”, true〉

else
size ← max(s, length)
n ← �(u − l)/size� + 1
ref ← “r[l : u + size − 1]\n[0 : length − 1]”
return 〈ref, (s < length)〉

end if

Algorithm 2 Algorithm to convert the set of offsets represented by the sum of two
strided intervals into an ASI reference
Input: The name of a memory-region r, two strided intervals s1[l1, u1] and s2[l2, u2], number

of bytes accessed length.
Output: An ASI reference for the sequence of length bytes starting at offsets s1[l1, u1] +

s2[l2, u2] in memory region r.

if (s1[l1, u1] or s2[l2, u2] is a singleton) then
return SI2ASI(r, s1[l1, u1] +si s2[l2, u2], length)

end if
if s1 ≥ (u2 − l2 + length) then

baseSI ← s1[l1, u1]
indexSI ← s2[l2, u2]

else if s2 ≥ (u1 − l1 + length) then
baseSI ← s2[l2, u2]
indexSI ← s1[l1, u1]

else
return SI2ASI(r, s1[l1, u1] +si s2[l2, u2], size )

end if
〈baseRef, exactRef〉 ← SI2ASI(r, baseSI, stride(baseSI))
if exactRef is false then

return SI2ASI(r, s1[l1, u1] +si s2[l2, u2], length)
else

return concat(baseRef, SI2ASI(“”, indexSI, length))
end if

elements in the row. Alg. 2 shows the algorithm to generate an ASI reference, when
the set of offsets in a memory-region is expressed as a sum of two strided intervals as
in [base+index]. Note that we could have used Alg. 1 by computing the abstract sum
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(+si) of the two strided intervals. However, doing so results in a loss of precision
because strided intervals can only represent a single stride exactly, and this would
prevent us from recovering the structure of two-dimensional arrays. (In some circum-
stances, our implementation of ASI can recover the structure of arrays of 3 and higher
dimensions.)

Alg. 2 works as follows: First, it determines which of the two strided intervals is used
as the base because it is not always apparent from the representation of the operand. The
strided interval that is used as the base should have a stride that is greater than the length
of the interval in the other strided interval. Once the roles of the strided intervals are
established, the algorithm generates the ASI reference for base followed by the ASI
reference for index. In some cases, the algorithm cannot establish either of the strided
intervals as the base. In such cases, the algorithm computes the abstract sum (+si) of
the two strided intervals and invokes SI2ASI.

Alg. 2 generates a richer set of ASI references than Alg. 1. For example, consider
the indirect memory operand[eax+ecx] from a loop that traverses a two-dimensional
array of type char[5][10]. Suppose that the value-set of ecx is (∅, 10[−50, −10]), the
value-set of eax is (1[0, 9], ∅), and length is 1. For this example, the ASI reference
that is generated is “AR[-50:-1]\5[0:9]\10[0:0]”. That is, AR is accessed as
an array of five 10-byte entities, and each 10-byte entity is accessed as an array of ten
1-byte entities.

5.2 Interpreting Indirect Memory-References

This section describes a lookup algorithm that finds the set of a-locs accessed by a mem-
ory operand. The algorithm is used to interpret pointer-dereference operations during
VSA. For instance, consider the instruction “mov [eax], 10”. During VSA, the
lookup algorithm is used to determine the a-locs accessed by [eax] and the value-sets
for the a-locs are updated accordingly. In [4], the algorithm to determine the set of a-locs
for a given value-set is trivial because each memory-region in [4] consists of a linear
list of a-locs generated by the Semi-Naı̈ve approach. However, after ASI is performed,
the structure of each memory-region is an ASI tree.

In [23], Ramalingam et al. present a lookup algorithm to retrieve the set of atoms
for an ASI expression. However, their lookup algorithm is not appropriate for use in
VSA because the algorithm assumes that the only ASI expressions that can arise during
lookup are the ones that were used during the atomization phase. Unfortunately, this is
not the case during VSA, for the following reasons:

– ASI is used as a heuristic. As will be discussed in §5.5, some data-access patterns
that arise during VSA should be ignored during ASI.

– The executable can possibly access fields of those structures that have not yet
been broken down into atoms. For example, the initial round of ASI, which is
based on a-locs recovered by the Semi-Naı̈ve approach, will not include accesses
to the fields of structures. However, the first round of VSA may access structure
fields.
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We will use the tree shown in Fig. 4(b) to describe the lookup algorithm. Every node
in the tree is given a unique name (shown within parentheses). The following terms are
used in describing the lookup algorithm:

– NodeFrag is a descriptor for a part of an ASI tree node and is denoted by a triple
〈name, start, length〉, where name is the name of the ASI tree node, start is the
starting offset within the ASI tree node, and length is the length of the fragment.

– NodeFragList is an ordered list of NodeFrag descriptors, [nd1, nd2, . . . ,
ndn]. A NodeFragList represents a contiguous set of offsets in an aggregate.
For example, [〈a3, 2, 2〉, 〈a4, 0, 2〉] represents the offsets 2..5 of node i1; offsets
2..3 come from 〈a3, 2, 2〉 and offsets 4..5 come from 〈a4, 0, 2〉.

The lookup algorithm traverses the ASI tree, guided by the ASI reference for the given
memory operand. First, the memory operand is converted into an ASI reference using
the algorithm described in §5.1, and the resulting ASI reference is parsed into a list of
ASI operations. There are three kinds of ASI operations: (1) GetChildren(aloc),
(2) GetRange(start,end), and (3) GetArrayElements(m). For example,
the list of ASI operations for “p[0:39]\10[0:1]” is [GetChildren(p),
GetRange(0,39), GetArrayElements(10), GetRange(0,1)]. Each
operation takes a NodeFragList as argument and returns a set of NodeFragList
values. The operations are performed from left to right. The argument of each operation
comes from the result of the operation that is immediately to its left. The a-locs that are
accessed are all the a-locs in the final set of NodeFrag descriptors.

The GetChildren(aloc) operation returns a NodeFragList that contains
NodeFrag descriptors corresponding to the children of the root node of the tree asso-
ciated with the aggregate aloc.
GetRange(start,end) returns a NodeFragList that contains NodeFrag

descriptors representing the nodes with offsets in the given range [start : end].
GetArrayElements(m) treats the given NodeFragList as an array of m ele-

ments and returns a set of NodeFragList lists. Each NodeFragList list represents
an array element. There can be more than one NodeFragList for the array elements
because an array can be split during the atomization phase and different parts of the
array might be represented by different nodes.

The following examples illustrate traces of a few lookups.

Example 3. Lookup p[0:3]
[〈i1, 0, 40〉]

GetChildren(p) ⇓
[〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈i2, 0, 32〉]

GetRange(0,3) ⇓
[〈a3, 0, 4〉]

GetChildren(p) returns the NodeFragList [〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈i2, 0, 32〉].
Applying GetRange(0,3) returns [〈a3, 0, 4〉] because that describes offsets 0..3
in the given NodeFragList. The a-loc that is accessed by p[0:3] is a3. �
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Example 4. Lookup p[0:39]\5[0:3]
[〈i1, 0, 40〉]

GetChildren(p) ⇓
[〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈i2, 0, 32〉]

GetRange(0,39) ⇓
[〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈i2, 0, 32〉]

GetArrayElements(5) ⇓
[〈a3, 0, 4〉, 〈a4, 0, 4〉],
[〈a5, 0, 4〉, 〈a6, 0, 4〉]

GetRange(0,3) ⇓
[〈a3, 0, 4〉],
[〈a5, 0, 4〉]

Let us look at GetArrayElements(5) because the other operations are similar
to Ex. 3. GetArrayElements(5) is applied to [〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈i2, 0, 32〉].
The total length of the given NodeFragList is 40 and the number of required array
elements is 5. Therefore, the size of the array element is 8. Intuitively, the operation
unrolls the given NodeFragList and creates a NodeFragList for every unique n-
byte sequence starting from the left, where n is the length of the array element. In this
example, the unrolled NodeFragList is [〈a3, 0, 4〉, 〈a4, 0, 4〉, 〈a5, 0, 4〉, 〈a6, 0, 4〉,
. . . , 〈a5, 0, 4〉, 〈a6, 0, 4〉]. The set of unique 8-byte NodeFragLists has two ordered
lists: {[〈a3, 0, 4〉, 〈a4, 0, 4〉], [〈a5, 0, 4〉, 〈a6, 0, 4〉]}. �

Partial updates to a-locs. The abstract transformers in VSA are prepared to perform
partial updates to a-locs (i.e., updates to parts of an a-loc) because NodeFrag elements
in a NodeFragList may refer to parts of an ASI tree node. Consider “p[0:1] =
0x10”.6 The lookup operation for p[0:1] returns [〈a3, 0, 2〉], where 〈a3, 0, 2〉 refers
to the first two bytes of a3. An abstract transformer that “gives up” (because only part
of a3 is affected) and sets the value-set of a3 to � in such cases would lead to imprecise
results.

The value-set domain (see §4.1, [24]) provides bit-wise operations such as bit-wise
and (&vs), bit-wise or (|vs), left shift (�vs), right shift (�vs), etc. We use these oper-
ations to adjust the value-set associated with an a-loc when a partial update has to be
performed during VSA. Assuming that the underlying architecture is little-endian, the
abstract transformer for “p[0:1] = 0x10” updates the value-set associated with a3
as follows:

ValueSet′(a3) = (ValueSet(a3) &vs 0xffff0000) |vs (0x10).

5.3 Hierarchical A-Locs

The iteration of ASI and VSA can over-refine the memory-regions. For instance, sup-
pose that the 4-byte a-loc a3 in Fig. 4(b) used in some round i is partitioned into two
2-byte a-locs, namely, a3.0, and a3.2 in round i + 1. This sort of over-refinement can
affect the results of VSA; in general, because of the properties of strided-intervals, a
4-byte value-set reconstructed from two adjacent 2-byte a-locs can be less precise than

6 Numbers that start with “0x” are in C hexadecimal format.
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if the information was retrieved from a 4-byte a-loc. For instance, suppose that at some
instruction S, a3 holds either 0x100000 or 0x110001. In round i, this information is ex-
actly represented by the 4-byte strided interval 0x10001[0x100000, 0x110001] for a3.
On the other hand, the same set of numbers can only be over-approximated by two 2-
byte strided intervals, namely, 1[0x0000, 0x0001] for a3.0, and 0x1[0x10,0x11] for a3.2
(for a little-endian machine). Consequently, if a 4-byte read of a3 in round i + 1 is han-
dled by reconstituting a3’s value from a3.0 and a3.2, the result would be less precise:

ValueSet(a3) = (ValueSet(a3.2) �vs 16)|vsValueSet(a3.0)
= {0x100000, 0x100001, 0x110000, 0x110001}
⊃ {0x100000, 0x110001}.

2(a3.0)

4(a3)

2(a3.2)

Fig. 5. Hierarchical a-locs

We avoid the effects of over-refinement by keeping
track of the value-sets for a-loc a3 as well as a-locs a3.0
and a3.2 in round i + 1. Whenever any of a3, a3.0,
and a3.2 is updated during round i + 1, the overlap-
ping a-locs are updated as well. For example, if a3.0
is updated then the first two bytes of the value-set of
a-loc a3 are also updated (for a little-endian machine).
For a 4-byte read of a3, the value-set returned would be
0x10001[0x100000, 0x110001].

In general, if an a-loc a of length ≤ 4 gets partitioned into a sequence of a-locs
[a1, a2, . . . , an] during some round of ASI, in the subsequent round of VSA, we use a
as well as {a1, a2, . . . , an}. We also remember the parent-child relationship between a
and the a-locs in {a1, a2, . . . , an} so that we can update a whenever any of the ai is
updated during VSA and vice versa. In our example, the ASI tree used for round i + 1
of VSA is identical to the tree in Fig. 4(b), except that the node corresponding to a3 is
replaced with the tree shown in Fig. 5.

One of the sources of over-refinement is the use of union types in the program. The
use of hierarchical a-locs allows at least some degree of precision to be retained in the
presence of unions.

5.4 Convergence

The first round of VSA uncovers memory accesses that are not explicit in the program,
which allows ASI to refine the a-locs for the next round of VSA, which may produce
more precise value-sets because it is based on a better set of a-locs. Similarly, sub-
sequent rounds of VSA can uncover more memory accesses, and hence allow ASI to
refine the a-locs. The refinement of a-locs cannot go on indefinitely because, in the
worst case, an a-loc can only be partitioned into a sequence of 1-byte chunks. However,
in most cases, the refinement process converges before the worst-case partitioning oc-
curs. Also, the set of targets that VSA determines for indirect function-calls and indirect
jumps may change when the set of a-locs (and consequently, their value-sets) changes
between successive rounds. This process cannot go on indefinitely because the set of a-
locs cannot change between successive rounds forever. Therefore, the iteration process
converges when the set of a-locs, and the set of targets for indirect function calls and
indirect jumps does not change between successive rounds.
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5.5 Pragmatics

ASI takes into account the accesses and data transfers involving memory, and finds a
partition of the memory-regions that is consistent with these transfers. However, from
the standpoint of accuracy of VSA and its clients, it is not always beneficial to take into
account all possible accesses:

– VSA might obtain a very conservative estimate for the value-set of a register (say
R). For instance, the value-set for R could be �, meaning that register R can possibly
hold all addresses and numbers. For a memory operand [R], we do not want to
generate ASI references that refer to each memory-region as an array of 1-byte
elements.

– Some compilers initialize the local stack frame with a known value to aid in de-
bugging uninitialized variables at runtime. For instance, some versions of the Mi-
crosoft Visual Studio compiler initialize all bytes of a local stack frame with the
value 0xC. The compiler might do this initialization by using a memcpy. Generat-
ing ASI references that mimic memcpywould cause the memory-region associated
with this procedure to be broken down into an array of 1-byte elements, which is not
desirable.

To deal with such cases, some options are provided to tune the analysis:

– The user can supply an integer threshold. If the number of memory locations that
are accessed by a memory operand is above the threshold, no ASI reference is
generated.

– The user can supply a set of instructions for which ASI references should not be
generated. One possible use of this option is to suppress memcpy-like instructions.

– The user can supply explicit references to be used during ASI.

In our experiments, we only used the integer-threshold option (which was set to 500).

6 Experiments

In this section, we present the results of our preliminary experiments, which were de-
signed to answer the following questions:

1. How do the a-locs identified by abstraction refinement compare with the program’s
debugging information? This provides insight into the usefulness of the a-locs re-
covered by our algorithm for a human analyst.

2. How much more useful for static analysis are the a-locs recovered by an abstract-
interpretation-based technique when compared to the a-locs recovered by purely
local techniques?

6.1 Comparison of A-Locs with Program Variables

To measure the quality of the a-locs identified by the abstraction-refinement algorithm,
we used a set of C++ benchmarks collected from [1] and [22]. The characteristics of the
benchmarks are shown in Tab. 1. The programs in Tab. 1 make heavy use of inheritance
and virtual functions, and hence are a challenging set of examples for the algorithm.
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(a)

(b)

Fig. 6. Breakdown (as percentages) of how a-locs matched with program variables: (a) local
variables, and (b) fields of heap-allocated data-structures

We compiled the set of programs shown in Tab. 1 using the Microsoft VC 6.0 com-
piler with debugging information, and ran the a-loc recovery algorithm on the executa-
bles produced by the compiler until the results converged. After each round of ASI, for
each program variable v present in the debugging information, we compared v with the
structure identified by our algorithm (which did not use the debugging information),
and classified v into one of the following categories:

– Variable v is classified as matched if the a-loc-recovery algorithm correctly identi-
fied the size and the offsets of v in the corresponding memory-region.

– Variable v is classified as over-refined if the a-loc-recovery algorithm partitioned v
into smaller a-locs. For instance, a 4-byte int that is partitioned into an array of
four char elements is classified as over-refined.

– Variable v is under-refined if the a-loc-recovery algorithm identified v to be a part
of a larger a-loc. For instance, if the algorithm failed to partition a struct into its
constituent fields, the fields of the struct are classified as under-refined.

– Variable v is classified as incomparable if v does not fall into one of the above
categories.

The results of the classification process for the local variables and fields of heap-
allocated data structures are shown in Fig. 6(a) and Fig. 6(b), respectively. The left-
most column for each program shows the results for the a-locs recovered using the
Semi-Naı̈ve approach, and the rightmost bar shows the results for the final round of the
abstraction-refinement algorithm.

On average, our technique is successful in identifying correctly over 88% of the
local variables and over 89% of the fields of heap-allocated objects (and was 100%
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correct for fields of heap-allocated objects in almost half of the examples). In contrast,
the Semi-Naı̈ve approach recovered 83% of the local variables, but 0% of the fields of
heap-allocated objects.

Table 1. C++ Examples

Insts Procs Mallocs
NP 252 5 2
primes 294 9 1
family 351 9 6
vcirc 407 14 1
fsm 502 13 1
office 592 22 4
trees 1299 29 10
deriv1 1369 38 16
chess 1662 41 24
objects 1739 47 5
simul 1920 60 2
greed 1945 47 1
ocean 2552 61 13
deriv2 2639 41 58
richards 3103 74 23
deltablue 5371 113 26

Fig. 6(a) and Fig. 6(b) show that for some
programs the results improve as more rounds
of analysis are carried out. In most of the pro-
grams, only one round of ASI was required
to identify all the fields of heap-allocated data
structures correctly. In some of the programs,
however, it required more than one round
to find all the fields of heap-allocated data-
structures. Those programs that required more
than one round of ASI-VSA iteration used a
chain of pointers to link structs of different
types, as discussed in §5.

Most of the example programs do not have
structures that are declared local to a proce-
dure. This is the reason why the Semi-Naı̈ve
approach identified a large fraction of the local
variables correctly. The programs primes and
fsm have structures that are local to a proce-
dure. As shown in Fig. 6(a), our approach iden-
tifies more local variables correctly for these
examples.

6.2 Usefulness of the A-Locs for Static Analysis

The aim of this experiment was to evaluate the quality of the variables and values dis-
covered as a platform for performing additional static analysis. In particular, because
resolution of indirect operands is a fundamental primitive that essentially any subse-
quent analysis would need, the experiment measured how well we can resolve indirect
memory operands not based on global address or stack-frame offsets (e.g., accesses
to arrays and heap-allocated data objects). We ran several rounds of VSA on the col-
lection of commonly used Windows executables listed in Tab. 2, as well as the set of
benchmarks from Tab. 1. For the programs in Tab. 1, we ran VSA-ASI iteration until
convergence. For the programs in Tab. 2, we limited the number of VSA-ASI rounds
to at most three. Round 1 of VSA performs its analysis using the a-locs recovered by
the Semi-Naı̈ve approach; the final round of VSA uses the a-locs recovered by the
abstraction-refinement algorithm. After the first and final rounds of VSA, we labeled
each memory operand as follows:

– A memory operand is untrackable if the size of all the a-locs accessed by the mem-
ory operand is greater than 4 bytes, or if the value-set associated with the address
expression of the memory operand is �.

– A memory operand is weakly-trackable if the size of some a-loc accessed by the
memory operand is less than or equal to 4 bytes, and the value-set associated with
the address expression of the memory operand is not �.
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– A memory operand is strongly-trackable if the size of all the a-locs accessed by the
memory operand is less than or equal to 4 bytes, and the value-set associated with
the address expression of the memory operand is not �.

Recall that VSA can track value-sets for a-locs that are less than or equal to 4 bytes,
but reports that the value-set for a-locs greater than 4 bytes is �. Therefore, untrack-
able memory operands are the ones for which VSA provides no useful information at
all, and strongly-trackable memory operands are the ones for which VSA definitely pro-
vides useful information. For a weakly-trackable memory operand, VSA provides some
useful information if the operand is used to update the contents of memory; however,
no useful information is obtained if the operand is used to read the contents of memory.
For instance, if [eax] in “mov [eax], 10” is weakly-trackable, then VSA would
have updated the value-set for those a-locs that were accessed by [eax] and were
of size less than or equal to 4 bytes. However, if [eax] in “mov ebx, [eax]” is
weakly-trackable, the value-set of ebx is set to � because at least one of the a-locs
accessed by [eax] is �; this situation is not different from the case when [eax] is
untrackable. We refer to a memory operand that is used to read the contents of memory
as a use-operand, and a memory operand that is used to update the contents of memory
as a kill-operand.

Table 2. Windows Executables. (n is the num-
ber of VSA-ASI rounds.)

Insts Procs Mallocs n Time
mplayer2 14270 172 0 2 0h 11m
smss 43034 481 0 3 2h 8m
print 48233 563 17 3 0h 20m
doskey 48316 567 16 3 2h 4m
attrib 48785 566 17 3 0h 23m
routemon 55586 674 6 3 2h 28m
cat 57505 688 24 3 0h 54m
ls 60543 712 34 3 1h 10m

In Tab. 3, the “Weakly-Trackable Kills”
column shows the fraction of kill-operands
that were weakly-trackable during the first
and final rounds of the abstraction re-
finement algorithm, and the “Strongly-
Trackable Uses” column shows the frac-
tion of use-operands that were strongly-
trackable during the first and final round of
the algorithm. In the table, we have classi-
fied memory operands as either direct or
indirect. A direct memory operand is a
memory operand that uses a global address
or stack-frame offset. An indirect memory
operand is a memory operand that does not

use a global address or a stack-frame offset (e.g., a memory operand that accesses an
array or a heap-allocated data object).

Both the Semi-Naı̈ve approach and our abstract-interpretation-based a-loc-recovery
algorithm provide good results for direct memory operands. However, the results for
indirect memory operands are substantially better with the abstraction-interpretation-
based method. For the set of C++ programs from Tab. 1, the results of VSA improve
at 50% to 100% of the indirect kill-operands, and at 7% to 100% of the indirect use-
operands. Similarly, for the Windows executables from Tab. 2, the results of VSA im-
prove at 4% (routemon: 7% → 11%) to 39% (mplayer2: 12% → 51%) of the
indirect kill-operands, and up to 8% (attrib, print: 4% → 12%, 6% → 14%) of
the indirect use-operands.

We were surprised to find that the Semi-Naı̈ve approach was able to provide a small
amount of useful information for indirect memory operands. For instance, trees,
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Table 3. Fraction of memory operands that are trackable after VSA. The number in parenthesis
shows the number of rounds (n) of VSA-ASI iteration for each executable. (For Windows exe-
cutables, the maximum number of rounds was set to 3.) Boldface and bold-italics in the Indirect
columns indicate the maximum and minimum improvements, respectively.

Weakly-Trackable Strongly-Trackable
Kills (%) Uses (%)

Indirect Direct Indirect Direct
Round 1 n 1 n 1 n 1 n

NP (4) 0 100 100 100 0 100 100 100
primes (4) 0 100 100 100 0 83 100 100
family (4) 0 100 100 100 0 100 100 100
vcirc (5) 0 100 100 100 0 100 100 100
fsm (2) 0 50 100 100 0 29 98 100
office (3) 0 100 100 100 0 100 100 100
trees (5) 10 100 98 100 25 61 96 100
deriv1 (4) 0 100 97 99 0 77 98 98
chess (3) 0 60 99 99 0 25 100 100
objects (5) 0 100 100 100 0 94 100 100
simul (3) 0 100 71 100 0 38 57 100
greed (5) 3 53 99 100 3 10 98 98
ocean (3) 9 90 99 100 6 42 98 100
deriv2 (5) 0 100 100 100 0 97 95 100
richards (2) 0 68 100 100 0 7 99 99
deltablue (3) 1 57 99 100 0 16 99 99

mplayer2 (2) 12 51 89 97 8 8 89 92
smss (3) 9 19 92 98 1 4 84 90
print (3) 2 22 92 99 6 14 89 92
doskey (3) 2 17 92 97 5 7 79 86
attrib (3) 7 24 93 98 4 12 86 90
routemon (3) 7 11 93 97 1 2 81 86
cat (3) 12 22 93 97 1 4 79 84
ls (3) 11 23 94 98 1 4 84 88

greed, ocean, deltablue, and all the Windows executables have a non-zero per-
centage of trackable memory operands. On closer inspection, we found that these in-
direct memory operands access local or global variables that are also accessed directly
elsewhere in the program. (In source-level terms, the variables are accessed both di-
rectly and via pointer indirection.) For instance, a local variable v of procedure P that
is passed by reference to procedure Q will be accessed directly in P and indirectly in Q.

Several sources of imprecision in VSA prevent us from obtaining useful information
at all of the indirect memory operands. One such source of imprecision is widening
[10]. VSA uses a widening operator during abstract interpretation to accelerate fixpoint
computation. Due to widening, VSA may fail to find non-trivial bounds for registers
that are used as indices in indirect memory operands. These indirect memory operands
are labeled as untrackable. The fact that the VSA domain is non-relational amplifies this
problem. (To a limited extent, we overcome the lack of relational information by ob-

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



DIVINE: DIscovering Variables IN Executables 25

taining relations among x86 registers from an additional analysis called affine-relation
analysis. See §5 in [4] for details.) Note that the widening problem is orthogonal to
the issue of finding the correct set of variables. Even if our a-loc recovery algorithm
recovers all the variables correctly, imprecision due to widening persists. (Recently, us-
ing ideas from [7] and [13], we have implemented techniques to reduce the undesirable
effects of widening, but do not yet have numbers to report.)

Nevertheless, the results are encouraging. For the Windows executables, the num-
ber of memory operands that have useful information in round n is 2 to 4 times the
number of memory operands that have useful information in round 1; i.e., the results
of static analysis do significantly improve when a-locs recovered by the abstraction-
interpretation-based algorithm are used in the place of a-locs recovered from purely
local techniques. Our initial experiments show that the techniques are also feasible in
terms of running time.

7 Related Work

In [18], Miné describes a combined data-value and points-to analysis that, at each pro-
gram point, partitions the variables in the program into a collection of cells according to
how they are accessed, and computes an over-approximation of the values in these cells.
Miné’s algorithm is similar in flavor to the VSA-ASI iteration scheme in that Miné finds
his own variable-like quantities for static analysis. However, Miné’s partitioning algo-
rithm is still based on the set of variables in the program (which our algorithm assumes
will not be available). His implementation does not support analysis of programs that
use heap-allocated storage. Moreover, his techniques are not able to infer from loop ac-
cess patterns—as ASI can—that an unstructured cell (e.g., unsigned char z[32]
has internal array substructures, (e.g., int y[8]; or struct {int a[3]; int
b;} x[2];).

In [18], cells correspond to variables. The algorithm assumes that each variable is
disjoint and is not aware of the relative positions of the variables. Instead, his algorithm
issues an alarm whenever an indirect access goes beyond the end of a variable. Because
our abstraction of memory is in terms of memory-regions (which can be thought of
as cells for entire activation records), we are able to interpret an out-of-bound access
precisely in most cases. For instance, suppose that two integers a and b are laid out next
to each other. Consider the sequence of C statements “p = &a; *(p+1) = 10;”.
For the access *(p+1), Miné’s implementation issues an out-of-bounds access alarm,
whereas we are able to identify that it is a write to variable b. (Such out-of-bounds
accesses occur commonly during VSA because the a-loc-recovery algorithm can split a
single source-level variable into more than one a-loc, e.g., array p in Ex. 2.)

Other work on analyzing memory accesses in executables. Previous techniques deal
with memory accesses very conservatively; generally, if a register is assigned a value
from memory, it is assumed to take on any value. For instance, although the basic goal
of the algorithm proposed by Debray et al. [11] is similar to that of VSA, their goal is
to find an over-approximation of the set of values that each register can hold at each
program point; for us, it is to find an over-approximation of the set of values that each
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(abstract) data object can hold at each program point, where data objects include global,
stack-allocated, and heap-allocated memory locations in addition to registers. In the
analysis proposed by Debray et al., a set of addresses is approximated by a set of con-
gruence values: they keep track of only the low-order bits of addresses. However, unlike
VSA, their algorithm does not make any effort to track values that are not in registers.
Consequently, it loses a great deal of precision whenever there is a load from memory.

Cifuentes and Fraboulet [8] give an algorithm to identify an intraprocedural slice of
an executable by following the program’s use-def chains. However, their algorithm also
makes no attempt to track values that are not in registers, and hence cuts short the slice
when a load from memory is encountered.

The two pieces of work that are most closely related to VSA are the algorithm for
data-dependence analysis of assembly code of Amme et al. [2] and the algorithm for
pointer analysis on a low-level intermediate representation of Guo et al. [14]. The al-
gorithm of Amme et al. performs only an intraprocedural analysis, and it is not clear
whether the algorithm fully accounts for dependences between memory locations. The
algorithm of Guo et al. [14] is only partially flow-sensitive: it tracks registers in a flow-
sensitive manner, but treats memory locations in a flow-insensitive manner. The al-
gorithm uses partial transfer functions [31] to achieve context-sensitivity. The transfer
functions are parameterized by “unknown initial values” (UIVs); however, it is not clear
whether the the algorithm accounts for the possibility of called procedures corrupting
the memory locations that the UIVs represent.

Several platforms have been created for manipulating executables in the presence of
additional information, such as source code, symbol-table information, and debugging
information, including ATOM [29] and EEL [17]. Bergeron et al. [6] present a static-
analysis technique to check if an executable with debugging information adheres to a
user-specified security policy.

Rival [26] presents an analysis that uses abstract interpretation to check whether
the assembly code of a program produced by a compiler possesses the same safety
properties as the source code. The analysis assumes that source code and debugging
information is available. First, the source code and the assembly code of the program
are analyzed. Next, the debugging information is used to map the results of assembly-
code analysis back to the source code. If the results for the corresponding program
points in source and assembly code are compatible, then the assembly code possesses
the same safety properties as the source code.

Identification of structures. Aggregate structure identification was devised by Rama-
lingam et al. to partition aggregates according to a Cobol program’s memory-access
patterns [23]. A similar algorithm was devised by Eidorff et al. [12] and incorporated
in the AnnoDomani system. The original motivation for these algorithms was the Year
2000 problem; they provided a way to identify how date-valued quantities could flow
through a program.

Mycroft [20] gave a unification-based algorithm for performing type reconstruction;
for instance, when a register is dereferenced with an offset of 4 to perform a 4-byte ac-
cess, the algorithm infers that the register holds a pointer to an object that has a 4-byte
field at offset 4. The type system uses disjunctive constraints when multiple type recon-
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structions from a single usage pattern are possible. However, Mycroft’s algorithm has
several weaknesses. For instance, Mycroft’s algorithm is unable to recover information
about the sizes of arrays that are identified. Although not described in this paper, our im-
plementation incorporates a third analysis phase, called affine-relation analysis (ARA)
[4,16,19], that, for each program point, identifies the affine relations that hold among
the values of registers. In essence, this provides information about induction-variable
relationships in loops, which can allow VSA to recover information about array sizes
when one register is used to sweep through an array under the control of a second loop-
index register.

Decompilation. Past work on decompiling assembly code to a high-level language [9]
is also peripherally related to our work. However, the decompilers reported in the liter-
ature are somewhat limited in what they are able to do when translating assembly code
to high-level code. For instance, Cifuentes’s work [9] primarily concentrates on recov-
ery of (a) expressions from instruction sequences, and (b) control flow. We believe that
decompilers would benefit from the memory-access-analysis method described in this
paper, which can be performed prior to decompilation proper, to recover information
about numeric values, address values, physical types, and definite links from objects to
virtual-function tables [5].
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Abstract. We study the safety verification problem for business-process
orchestration languages with respect to regular properties. Business
transactions involve long-running distributed interactions between mul-
tiple partners which must appear as a single atomic action. This illusion
of atomicity is maintained through programmer-specified compensation
actions that get run to undo previous actions when certain parts of the
transaction fail to finish. Programming languages for business process or-
chestration provide constructs for declaring compensation actions, which
are co-ordinated by the run time system to provide the desired trans-
actional semantics. The safety verification problem for business pro-
cesses asks, given a program with programmer specified compensation
actions and a regular language specifying “good” behaviors of the sys-
tem, whether all observable action sequences produced by the program
are contained in the set of good behaviors.

We show that the usual trace-based semantics for business process
languages leads to an undecidable verification problem, but a tree-based
semantics gives an algorithm that runs in time exponential in the size
of the business process. Our constructions translate programs with com-
pensations to tree automata with one memory.

1 Introduction

Long-running business processes involve hierarchies of interactive activities be-
tween possibly distributed partners whose execution must appear logically
atomic to the environment. The long-running and interactive nature of busi-
ness processes make traditional checkpointing and rollback mechanisms that
guarantee transactional semantics [13] difficult or impossible to implement. For
example, the long-running nature makes the performance penalties associated
with locking unacceptable, and the interactive nature makes rollback impossible
since some parts of the transaction (e.g., communications with external agents)
are inherently impossible to undo automatically. Business processes therefore
implement a weaker notion of atomicity based on compensations, programmer-
specified actions that must be executed to semantically “undo” the effects of
certain actions that cannot be undone automatically, should parts of the trans-
action fail to complete. A long-running transaction is structured as sagas [12],
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a sequence of several smaller sub-transactions, each with an associated compen-
sation. If one of the sub-transactions in the sequence aborts, the compensations
associated with all committed subtransactions are executed in reverse order.

Flow composition or orchestration languages, such as wscl [17], wsfl [18],
bpml [2], and bpel4ws [1], provide primitives for programming long-running
transactions, including programmer-specified compensations and structured con-
trol flows. For example, bpel4ws provides the compensate construct that can
be used by the programmer to specify actions that must be taken if later ac-
tions fail. The formal semantics for these languages (or their core features) are
given as extensions to process algebras with compensations (e.g., compensating
CSP or cCSP) [6,5] or transaction algebras with compensation primitives (called
the sagas calculus) [4]. One central issue is to develop automatic static analysis
techniques to increase confidence in the correctness of complex business pro-
cesses implemented in these languages [14]. For example, in a business process
implementing an e-commerce application, it may be desirable to verify that no
product is shipped before a credit check is performed, or that the user’s account
is credited if it is found later that the order cannot be fulfilled. In this paper,
we present model checking algorithms for the automatic verification of temporal
safety properties of flow composition languages with compensations. We take
the automata theoretic approach and specify safety properties as regular sets of
traces of observable actions. Then, the verification problem can be formulated
as a language containment question: check that any trace that can be produced
by the execution of a saga also belongs to the set of “good” behaviors prescribed
by the specification.

Our starting point is the sagas calculus [4], although our results generalize to
most other languages with similar core features. We show that the safety verifi-
cation problem for programs in the sagas calculus and safety properties encoded
as finite word automata is undecidable in the usual trace-based semantics [6,3].
On the other hand, perhaps surprisingly, the verification problem becomes de-
cidable (in time exponential in the size of the sagas program) if we associate a
tree semantics with the execution. The tree semantics exposes more structure on
the sequence of observable actions by making the sequential or parallel operator
at each intermediate step observable. For the tree semantics, we consider safety
properties encoded as regular tree languages, rather than word languages. The
key hurdle is that the tree language of a sagas program is not regular: this is
intuitively clear since first, the compensations are dynamically pushed on to a
(possibly unbounded) stack, and second, the actions on the execution path up to
an abort are related to the compensation actions thereby requiring comparisons
on sibling subtrees.

Our main technical tool consists of tree automata with one memory [7], that
generalize finite tree automata by allowing a memory element which is built up
as the automaton walks a tree bottom-up and which can be compared across
children. Specifically, we show that the tree language of any program in the sagas
language is accepted by a tree automaton with one memory. Tree automata with
one memory generalize pushdown automata over words and tree automata with
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equality tests [8]. However, their emptiness problem is decidable [7], and they are
closed under intersection with finite tree automata. Our construction, together
with the above properties of tree automata with one memory, provides a decision
procedure for the safety verification problem. While automatic model checking
techniques for web services and business process applications have been proposed
before [10,11,9], to the best of our knowledge, we provide the first automatic
handling of compensation stacks.

2 Sagas with Compensation

A saga is a high-level description of the interaction between components for web
services. The building blocks of sagas are atomic actions, which execute with-
out communication from other services. In addition, to each atomic action is
attached a (possibly null) compensation, which is executed if the action succeeds
but a later action in the saga does not complete successfully. Sagas are then built
from (compensated) atomic actions, sequential and parallel composition, nonde-
terministic choice, and nesting. The execution order for compensating actions is
determined by interpreting each sequential composition operator in reverse.

More formally, given an alphabet Σ of atomic actions containing a special
null action 0, and a set of variable names X , the set of transaction terms T

Σ,X

over Σ and X is the smallest set which includes the atomic terms a ÷ b, for
a, b ∈ Σ, the variables x ∈ X , and is closed under binary operators for sequen-
tial composition (;), parallel composition (‖), and nondeterministic choice (⊕),
and the unary saga-nesting operator {[ · ]}. The binary expression a ÷ b attaches
to a the compensating action b. The operators ‖ and ⊕ are commutative and
associative, while the sequential operator ; is defined here to be left-associative.
We refer to terms of the form {[t]} as transactions, and use T

Σ,X
{[·]} to denote the

set of transactions. For an atomic action a ∈ Σ, we abbreviate a ÷ 0 with a.
A saga is given as a tuple S = 〈Σ, X, s0, T 〉, where T : X → T

Σ,X
{[·]} maps

variables to transactions, and s0 ∈ X determines the top-level transaction. We
frequently abuse the notation and write x = {[t]} in place of T (x) = {[t]}, and as
Σ, X , and T are usually understood from the context, we often refer to a saga
by its transaction variable s0. We refer to any term of the form {[t]} �= s0 as a
nested saga or subtransaction.

Example 1. The sagas calculus is capable of expressing realistic long-running
business transactions. Suppose AcceptOrder, Restock, FulfilledOK,
CreditCheck, CreditOK, BookCourier, CancelCourier and PackO-

rder are atomic actions with the obvious meanings, and consider the saga

Main = {[ (AcceptOrder ÷ Restock); FulfillOrder;FulfilledOK ]}
FulfillOrder = {[ WarehousePackaging ‖ CreditCheck;CreditOK ]}
WarehousePackaging =

{[ (BookCourier ÷ CancelCourier)‖PackOrder ]}.
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Table 1. The formal semantics for a saga S = 〈Σ, X, s0, T 〉. The symbols P and Q
range over transaction terms, a and b range over the atomic actions of Σ, x ranges over
the variables of X, α, α′, α′′ range over observations, β, β′, β′′ range over compensation
stacks, and �, �P , �Q range over outcomes.

(null)

〈0, β〉 0−→ 〈�, β〉
(atom-s)

〈a ÷ b, β〉 a−→ 〈�, b; β〉

(atom-f)

〈β, 0〉 α−→ 〈�, 0〉
〈a ÷ b, β〉 α−→ 〈�, 0〉

(atom-a)

〈β, 0〉 α−→ 〈�, 0〉
〈a ÷ b, β〉 α−→ 〈∗, 0〉

(seq-s)

〈P, β〉 α−→ 〈�, β′′〉 〈Q,β′′〉 α′
−→ 〈�, β′〉

〈P ; Q,β〉 α;α′
−−−→ 〈�, β′〉

(seq-fa)

〈P, β〉 α−→ 〈�, 0〉 � ∈ {�, ∗, �, ∗}
〈P ;Q, β〉 α−→ 〈�, 0〉

(par-s)

〈P, 0〉 α−→ 〈�, β′〉 〈Q, 0〉 α′
−→ 〈�, β′′〉

〈P‖Q,β〉 α‖α′
−−−→ 〈�, β′‖β′′; β〉

(par-f)

〈P, 0〉 α−→ 〈�P , 0〉
〈Q, 0〉 α′

−→ 〈�Q, 0〉
�P , �Q ∈ {�, �}
〈β, 0〉 α′′

−−→ 〈�β, 0〉

〈P‖Q,β〉 (α‖α′);α′′
−−−−−−→ 〈�P ∧ �Q ∧ force(�β), 0〉

(par-a)

〈P, 0〉 α−→ 〈�P , 0〉
〈Q, 0〉 α′

−→ 〈�Q, 0〉
�P ∈ {∗, ∗}
�Q ∈ {�, ∗, �, ∗}

〈P‖Q, β〉 α‖α′
−−−→ 〈�P ∧ �Q, 0〉

(nondet)

〈P, β〉 α−→ 〈�, β′〉
〈P ⊕ Q,β〉 α−→ 〈�, β′〉

(var)

〈T (x), β〉 α−→ 〈�, β′〉
〈x, β〉 α−→ 〈�, β′〉

(saga)

〈P, 0〉 α−→ 〈�, β〉
{[P ]} α−→ �

(sub-s)

〈P, 0〉 α−→ 〈�, β′〉
〈{[P ]}, β〉 α−→ 〈�, β′; β〉

(sub-f)

〈P, 0〉 α−→ 〈�, 0〉
〈{[P ]}, β〉 α−→ 〈�, β〉

(sub-a)

〈P, 0〉 α−→ 〈∗, 0〉
〈{[P ]}, β〉 α−→ 〈∗, 0〉

(sub-forced-f)

〈P, 0〉 α−→ 〈�, 0〉 〈β, 0〉 α′
−→ 〈�, 0〉

〈{[P ]}, β〉 α;α′
−−−→ 〈force(�), 0〉

(sub-forced-a)

〈P, 0〉 α−→ 〈∗, 0〉
〈{[P ]}, β〉 α−→ 〈∗, 0〉

(forced)

〈β, 0〉 α−→ 〈�, 0〉
〈P, β〉 α−→ 〈force(�), 0〉

The saga Main encodes a long running business transaction where an order
is deemed a success upon the success of order placement, credit check, courier
booking, and packaging. If some action were to fail during the transaction, then
compensations would be run for the previously completed actions. For example,
if the packaging were to fail after the credit check and courier booking had
completed, then the courier booking would be canceled, and the order restocked.

The operational semantics of sagas are shown in Table 1. To reduce the number
of rules, we define them up to structural congruence implied by the associativity
of ;, ‖ and ⊕, the commutativity of ‖ and ⊕, as well as the identities 0;P ≡
P ; 0 ≡ P and P‖0 ≡ 0‖P ≡ P , for transaction terms P . The execution of a saga
leads to an outcome which is either success, failure, or abortion, represented by
the boxed symbols �, � and ∗ respectively. The semantics is given for a fixed set
of variables X and mapping T : X → T

Σ,X
{[·]} from variables to sub-transactions.

An observation is a term constructed from atomic actions and the sequen-
tial and parallel composition operators. The semantics of sagas is given by the
rule (saga), whose consequent {[P ]} α−→ � specifies that the execution of trans-
action {[P ]} results in outcome �, emitting the observation α. The semantics
relation uses an auxiliary relation 〈t, β〉 α−→ 〈�, β′〉 which dictates that the ex-
ecution of term t results in the outcome �, while the initial compensations β
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Table 2. The composition operation ∧

∧ � � ∗ � ∗
� �
� − �
∗ − ∗ ∗
� − � ∗ �
∗ − ∗ ∗ ∗ ∗

are destructively replaced by the compensations β′. The observation α in these
relations describes the flow of control while t is executed.

The special symbols � and ∗ are the forced failure and abortion outcomes, and
result from failure or abortion in a parallel thread of execution. When a thread
encounters failure, the entire transaction must subsequently fail. When each
thread can complete its compensations, the resulting outcome is �; otherwise
∗ results. The (associative and commutative) binary operator ∧ over the set
{�, �, ∗, �, ∗} determines the outcome of two branches executing in parallel.
Its definition is given in Table 2 (since ∧ is commutative, only half the table is
displayed). The auxiliary function force : {�, �, ∗, �, ∗} → {�, ∗} is given by
force(�) = �, and force(�) = ∗, for � ∈ {�, ∗, �, ∗}.

We briefly describe the operational semantics given in Table 1, for a more
detailed discussion, see [4]. The rule (null) says that the null process never
fails. The rules (atom-s), (atom-f), and (atom-a) deal with atomic action
execution. If action a succeeds, rule (atom-s) installs the compensation b on the
compensation stack. If a fails (rules (atom-f) and (atom-a)) when the currently
installed compensation is β, then β should be executed. If all compensating
actions of β execute successfully (as in (atom-f)), then the outcome for the
term a ÷ b is �; if some compensating action of β fails (as in (atom-a)), then
the outcome for the term a ÷ b is ∗.

The rules (seq-s) and (seq-fa) execute the sequential composition of two
terms. The rule (par-s) declares the order in which compensations from parallel
branches are executed. When the terms P and Q result in the compensations
β′ and β′′, then the term P‖Q results in the compensation β′‖β′′; β, where β
is the compensation for actions before P‖Q. The associated rules (par-f) and
(par-a) deal with failure on parallel branches and failed compensation after
failure on parallel branches respectively. Rule (var) executes the term bound to
a variable by T , rule (nondet) executes one branch of a nondeterministic choice,
and (forced) allows a thread to fail due to the failed execution of another. The
remaining rules specify the semantics of nested sagas.

Example 2. Consider the saga 〈{a, b, c, d, e, 0}, {s0}, s0, T 〉 with T (s0) =
{[a ÷ b; c ÷ d‖e ÷ 0]}. That is, the action a occurs before c, while e occurs in
parallel. If the action c were to fail, then the completed actions a, and possibly
e, are to execute their compensations. Since e has a null compensation, only b
would be executed. Figure 1 shows an execution of the saga, where c fails after
a and e have both executed, and a’s compensation b is run successfully.
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〈b ÷ 0, 0〉 b−→〈�, 0〉1 〈0, 0〉 0−→〈�, 0〉6
〈a ÷ b, 0〉 a−→〈�, b〉1 〈c ÷ d, b〉 b−→〈�, 0〉2 〈e ÷ 0, 0〉 e−→〈�, 0〉1 〈0, 0〉 0−→〈�, 0〉5

〈a ÷ b; c ÷ d, 0〉 a;b−−→〈�, 0〉3 〈e ÷ 0, 0〉 e−→〈�, 0〉3
〈a ÷ b; c ÷ d‖e ÷ 0, 0〉 a;b‖e−−−→ 〈�, 0〉4,∗

{[a ÷ b; c ÷ d‖e ÷ 0]} a;b‖e−−−→ �7

Fig. 1. An execution of saga s0 from example 2. The corresponding rules from table 1
are (1) atom-s, (2) atom-f, (3) seq-s, (4) par-f, (5) forced, (6) null, and (7) saga.
An additional application of (null) is omitted in (∗).

3 Trace Semantics

From the operational semantics of a saga and a fixed environment, we define a
trace language, containing all sequences of observations that may be generated
from an execution. The function trace defines this language by induction over
the structure of observations, as generated by the execution of a saga, as

trace(a) = {a}
trace(t1; t2) = trace(t1) ◦ trace(t2)
trace(t1‖t2) = trace(t1) ⊗ trace(t2)

where ◦ and ⊗ denote the concatenation and interleaving composition
of languages: L1 ◦ L2 = {w1 · w2 | w1 ∈ L1, w2 ∈ L2} and L1 ⊗ L2 =
{x1y1 . . . xkyk | x1 . . . xk ∈ L1, y1 . . . yk ∈ L2}.

Let S = (Σ, X, s0, T ) be a saga. The trace language LW (s) of a variable s ∈ X

is defined as {trace(α) | ∃�.{[T (s)]} α−→ �}. The trace language LW (S) of a saga
S is the language LW (s0). Clearly, the language LW (S) may not be regular.

Unfortunately, the trace language of sagas is unsuitable for verification since,
as Theorem 1 shows, language inclusion in a regular set is undecidable. While we
state the theorem for sagas, a similar theorem also holds for other compensable
flow composition languages such as cCSP [6].

Theorem 1. The language inclusion problem LW (S) ⊆ LR, for an input saga
S = 〈Σ, X, s0, T 〉 and regular language LR ⊆ Σ∗, is undecidable.

Proof. We proceed by reduction from the halting problem of 2-counter machines,
similarly to the proof for process algebras in [15]. Let M be a 2-counter machine
with n numbered instructions: 〈1 : ins1〉 . . . 〈n − 1 : insn−1〉〈n : halt〉 where each
insk for k ∈ {1, . . . , n − 1} is either cj = cj + 1; goto �, or cj = cj − 1; goto �,
or if cj = 0 then goto � else goto �′, for j ∈ {1, 2}. Furthermore, let Σ =
{zerok, inck, deck | k ∈ {1, 2}}∪{0}, where zerok, inck, and deck stand for zero-
assertion, increment, and decrement actions, respectively, where we associate
(in the obvious way) traces of M with Σ-sequences. We construct a saga S,
whose language is the Σ-sequences corresponding to traces of M, irrespective
of M’s control location, and a finite state automaton A, whose language is the
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Σ-sequences corresponding to traces of M, irrespective of M’s counter values.
With these constructions, the intersection LW (A) ∩ L(S) is the language of Σ-
sequences corresponding to traces of M.

We define S to be the saga 〈Σ, X, s0, T 〉, where X = {Ck, Zk | k ∈ {1, 2}} ∪
{s0} are the variables of S, s0 is the top-level transaction, and T , mapping
variables to transaction terms, is given by

Zk �→ {[(zerok; Zk) ⊕ (inck; Ck; Zk)]}
Ck �→ {[(inck ÷ deck; Ck; Ck)]}

}

for k ∈ {1, 2}

and s0 �→ {[(Cm1
1 ; Z1)||(Cm2

2 ; Z2)]}. Intuitively, the transaction term T (Ck) de-
fines a state of M which attempts to decrease the value of counter k by one,
the transaction term T (Zk) defines a state which holds the value of counter k
at 0, and the term T (s0) defines a state in which the counter values start at m1
and m2 respectively. Finite traces of S exist, since any action may fail, and if Ck

ever fails its compensating action of deck, then the entire transaction s0 aborts.
Notice that traces of S correspond to runs of a “stateless” M, where every step
could execute any instruction.

The finite state machine A over alphabet Σ has states {1, 2, . . . , n + 1}, one
for each instruction, and a sink state n + 1. The transitions are given by the
instructions of M as follows. If instruction i is an increment (resp., decrement)
of counter cj followed by a move to �, then A has a transition 〈i, incj , �〉 (resp.,
〈i, decj , �〉). If i moves to � when cj = 0, and �′ otherwise, then A has the
transitions 〈i, zeroj , �〉 and 〈i, 0, �′〉. Each state also has a self loop on the action
0. The automaton is completed by adding a transition 〈k, σ, n + 1〉 for each state
k in which σ is otherwise not enabled (note that this construction induces a self
loop 〈n + 1, σ, n + 1〉 for all σ ∈ Σ). Every state of A is accepting, however since
n has no enabled actions, the language of A is not universal. In particular, A’s
language does not include Σ-sequences whose (proper) prefixes correspond to
halting computations of M. Notice that the traces of S correspond to runs of a
“memoryless” M, where every step ignores the values of the counters.

It only remains to check that LW (S) � L(A) if and only if M has a halting
computation. First suppose that LW (S) � L(A), and let w ∈ �LW (S) \ L(A).
Since w is not accepted by A, a prefix of w corresponds to a halting trace of M
(recall that A must have moved to state n) consistent with M’s control. Since
w is accepted by S, w also corresponds to a trace of M consistent with M’s
counter values. Thus M has a halting computation. On the other hand, if M has
a halting computation then A rejects a Σ-sequence with a prefix corresponding to
a halting trace of M, which is a trace of S since the counter values are necessarily
consistent; thus LW (S) � L(A). Thus, the language inclusion problem LW (S) ⊆
L(A) is undecidable. ��

4 Tree Semantics

In this section we give an alternative interpretation to the set of observations
given by a saga. Instead of interpreting executions as flattened sequences of
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actions, we interpret them as trees where the actions become leaves, and the com-
position operators become internal nodes. We then give an automata-theoretic
classification of a sagas by building tree automata which recognize the set of
trees representing valid executions.

4.1 Yield Language of a Saga

Trees. A (ranked) alphabet is a tuple 〈F , ar〉 where F is a finite alphabet, and
ar is a map, called arity, from F to N. The set of symbols from F of arity k
(i.e., {f ∈ F | ar(f) = k}) is denoted Fk. The set of symbols of arity zero are
called constants; arity one symbols (resp. two, k) are called unary (resp. binary,
k-ary) symbols. In what follows, we assume F has at least one constant, i.e.,
F0 �= ∅. For ease of notation we write F , omitting ar, by assuming that the arity
information is encoded into each symbol in F .

A finite ordered tree t over a ranked alphabet F is a mapping from a prefix-
closed set dom(t) ⊆ N

∗ to F , such that (1) each leaf is mapped to a constant: for
all p ∈ dom(t), we have t(p) ∈ F0 iff {j | p · j ∈ dom(t)} = ∅; and (2) each inter-
nal node mapped to symbol f ∈ Fk has exactly k children numbered 1, . . . , k:
for all p ∈ dom(t), if t(p) ∈ Fk and k ≥ 1, then {j | p · j ∈ dom(t)} = {1, . . . , k}.
The set of all trees over alphabet F is denoted Trees(F). A set of trees is a tree
language.

Yield Language. Fix the saga S = 〈Σ, X, s0, T 〉, and let F be a ranked alpha-
bet consisting of a constant symbol for each atomic action of Σ, as well as the
binary symbols σ; and σ‖.

Given an observation α from an execution of S, the set yield(α) of yield trees
over the tree alphabet F is defined inductively as

yield(a) = {a}
yield(t1; t2) = {σ;(t′1, t

′
2) | t′1 ∈ yield(t1), t′2 ∈ yield(t2)}

yield(t1‖t2) = {σ‖(t′1, t
′
2) | t′1 ∈ yield(t1), t′2 ∈ yield(t2)}

where σ(t1, t2) denotes the tree with a σ-labeled root whose left and right chil-
dren are the roots of the trees t1 and t2 respectively, and a is an atomic action of
Σ. Informally, a yield tree considers the term α as a finite ordered tree over the
alphabet of atomic actions and the sequential and parallel compositions. The
yield language of S, denoted L(S), is the set

L(S) =
⋃

{[T (s0)]} α−→�

yield(α).

Example 3. The yield language of the saga s0 = {[a ÷ b; c ÷ d‖e ÷ 0]} from
example 2, consisting of six trees, is shown in Figure 2.
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Fig. 2. The yield language of {[a ÷ b; c ÷ d‖e ÷ 0]}

4.2 Tree Automata with One Memory

Tree Automata. A finite tree automaton over F is a tuple A = 〈Q, F , Qf , Δ〉
where Q is a finite set of states, F is a finite alphabet, Qf ⊆ Q is a set of final
states, and Δ is a set of transitions (i.e., a relation) of the form f(q1, . . . , qk) → q
for q, q1, . . . , qk ∈ Q, f ∈ Fk.

A run of A on a tree t is a labeling r : dom(t) → Q such that t(�) → r(�) ∈ Δ
for each leaf �, and t(n)(r(n · 1), . . . , r(n · k)) → r(n) ∈ Δ for each internal node
n. A run r is accepting if r(Λ) ∈ Qf , and we say that a tree t is accepted by A if
there exists an accepting run of A on t. The language of A, denoted L(A) is the
set of trees which are accepted by A. A tree language L is regular if there exists
a finite tree automaton A such that L = L(A).

Example 4. Regular tree languages can specify many interesting properties of
sagas. For example, the property “all b-actions occur (sequentially) after all
a-actions,” over the actions {a, b, c}, is specified by the tree automaton A =
〈{qa, qb, qc, qf}, {a, b, c, σ;, σ‖}, {qa, qb, qc, qf}, Δ〉, where Δ contains the transi-
tions:

a → qa b → qb c → qc

σ;(qa, qb) → qf σ;(qa, qf ) → qf σ;(qf , qb) → qf

σ‖(qc, q) → q σ‖(q, qc) → q σ‖(qa, qa) → qa σ‖(qb, qb) → qb

σ;(qc, q) → q σ;(q, qc) → q σ;(qa, qa) → qa σ;(qb, qb) → qb

for q ∈ {qa, qb, qc, qf}. Given a tree t ∈ L(A) where both a and b occur (as leaves)
in t, let r be an accepting run of A on t. The transitions of A ensure that there
is some internal node n such that every ancestor of n is labeled with qf , and no
descendant of n is labeled with qf . This path of qf -labeled nodes in r divides t:
no a’s (b’s, resp.) can occur in a right-subtree (left-subtree, resp.) of a qf -labeled
node. On the other hand, every such tree is accepted by A.

Unfortunately, as Example 5 shows, the yield language of a saga may be non-
regular, and hence we must expand the expressive power of finite tree automata
to model the yield language of sagas. The extended model we consider allows a
tree automaton to use an arbitrarily large memory.

Example 5. Consider the simple saga S = 〈{a, b}, {s}, s, s �→ {[s‖a ÷ b]}〉 for
which any finite run must reach a failure, resulting in an observation of a’s
followed sequentially by b’s. The yield language L(S) consists of the set of bi-
nary trees where the root node is a sequential composition, and each subtree’s
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internal nodes are parallel compositions. Every leaf of the left subtree is labeled
with a, while every leaf of the right subtree is labeled with b, and there are at
least as many a’s as b’s. This tree language is not regular.

Tree Automata with One Memory. A more powerful family of tree automata
can be obtained by extending the finite tree automata with a tree-structured
memory for which equality of the memory built from subtrees can be enforced.
Given a ranked memory alphabet Γ , define ΦΓ as the smallest set of composition-
closed functions over Trees(Γ ) where (1) if f ∈ Γn then the constructor function
λx1, . . . , xn.f(x1, . . . , xn) is in ΦΓ ; (2) if n ∈ N and 0 < i ≤ n, then the pro-
jection function λx1, . . . , xn.xi is in ΦΓ ; (3) if f ∈ Γn and 0 < i ≤ n, then
the pattern matching (partial) function that associates each term f(t1, . . . , tn)
with ti, written λf(x1, . . . , xn).xi, is in ΦΓ . A tree automaton with one memory
(TAWOM) [7] A = 〈F , Γ, Q, Qf , Δ〉 consists of an input alphabet F , an alpha-
bet Γ of memory symbols, a set Q of states, a set Qf ⊆ Q of final states, and
a transition relation Δ. The transition relation Δ is given as a set of transitions
of the form

f(q1, . . . , qn) c−→
F

q

where q1, . . . , qn, q ∈ Q, f ∈ Fn, c ⊆ {1, . . . , n}2 defines an equivalence relation
of index m on {1, . . . , n}, and λx1, . . . , xm.F (x1, . . . , xm) is a function from ΦΓ .
We often denote the function λx.F (x) ∈ ΦΓ simply as F , and the composition
of functions F, G ∈ ΦΓ (when F and G are naturally composable) as F · G.

A configuration of A is a pair 〈q, γ〉 of a state q ∈ Q and memory term
γ ∈ Trees(Γ ). Intuitively, a TAWOM constructs a configuration in a bottom-
up manner, computing the new memory state from the memory states of each
child. The transitions also check for equality between the children’s memory
states, based on the given equivalence relation.

A run of A is a labeling r : dom(t) → Q × Trees(Γ ) such that for each leaf �,

t(�) −−−→
r(�)2

r(�)1 ∈ Δ

(where we use subscripts for tuple indexing), and for each internal node n with
t(n) of arity k, there exists F ∈ ΦΓ such that

t(n)(r(n · 1)1, . . . , r(n · k)1)
c−→
F

r(n)1 ∈ Δ

and F (r(n · 1)2, . . . , r(n · m)2) = r(n)2,

where c is of index m, and r(n · i)2 = r(n · j)2 when i ≡c j, for i, j ∈ {1, . . . , k}.
A run r is accepting if r(Λ) ∈ Qf , and the language of A, denoted L(A), is the
set of trees on which there exist accepting runs of A.

Example 6. TAWOM can encode pushdown automata [7]: a transition (q, α ·
γ) a−→ (q′, β ·γ) from the state q and stack α·γ on letter a to the state q′ and stack
β · γ can be written (considering letters as unary symbols) as a(q) −−−−−−→

λx.βα−1x
q′.
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Example 7. The yield language of the saga {[s‖a ÷ b]} from Example 5 is ac-
cepted by the automaton A = 〈{a, b, σ‖, σ;}, {γ0, γ}, {qa, qb, qf}, {qa, qf}, Δ〉
where Δ contains the following transitions:

σ‖(qa, qa) �−−−−−−−−−−→
λx1,x2.γ(x1,x2)

qa σ‖(qb, qb)
�−−−−−−−−−−→

λx1,x2.γ(x1,x2)
qb

σ‖(qa, qa) �−−−−−−→
λx1,x2.x1

qa σ‖(qa, qa) �−−−−−−→
λx1,x2.x2

qa

σ;(qa, qb)
1=2−−→ qf a

�−→
γ0

qa b
�−→
γ0

qb

Note that the equivalence relation {〈1, 1〉, 〈1, 2〉, 〈2, 1〉, 〈2, 2〉} is here denoted by
1 = 2, and � denotes the identity relation. An accepting run of A can successfully
match the right subtree’s memory state with the left subtree’s memory state,
as σ; is consumed, only when there are least as many a’s as b’s. The frequency
of the memory symbol γ0 is the exact number of b’s, and a lower-bound of the
number of a’s.

Lemma 1. 1. The class TAWOM is closed under intersection with finite tree
automata.

2. The emptiness problem for TAWOM is decidable in time exponential in the
size of the automaton.

3. For a TAWOM A and a finite tree automaton B, L(A) ⊆ L(B) is decidable
in time exponential in the size of A and doubly exponential in the size of B.

Proof. The first result is by a product construction. The second result is from
[7], and the third is immediate from the complementation of finite tree automata
[8], the product construction, and part (2). ��

4.3 Verification in the Tree Semantics

We now give an algorithm for the automata-theoretic verification of regular tree
specifications. Our main technical construction is a TAWOM that accepts the
yield language of a saga.

For a saga S = 〈Σ, X, s0, T 〉, define the reachable terms of T
Σ,X from s0,

denoted Reach(TΣ,X , s0), to be the smallest set which includes s0 and is closed
under T (·), and the inverses of {[ · ]}, ;, ‖, and ⊕.

Theorem 2. For every saga S there exists a tree automaton with one memory
A such that L(S) = L(A).

In our construction, the transitions of A encode the semantics of sagas as given
in section 2. For clarity, we deal only with the transitions generating yield-
trees of successfully compensated computations (including computations that
need not compensate). The transitions for failed compensations, which finish
with the abort outcome, are similar; the main technical difference is that the
TAWOM projection functions become necessary. Because of this, and the hand-
coded nature of the previous example, the automaton of example 7 does not
match up exactly with the one constructed by our theorem, which is a much
larger automaton.
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Proof. Fix the saga S = (Σ, X, s0, T ). We define the tree automaton with one
memory A = (F , Γ, Q, Qf , Δ) in what follows. The states of A are the reachable
terms of S combined with outcomes:

Q =
{

〈t, �〉, 〈t, �〉c

∣
∣
∣
∣
t ∈ Reach(TΣ,X , s0)

� ∈ {�, �, ∗}

}

,

while the final states are Qf = {s0} × {�, �, ∗}, the input alphabet is F =
Σ ∪{σ;, σ‖}, and the memory alphabet is Γ = {γt | t ∈ Reach(TΣ,X , s0)}, where
the arity of γt is the arity of the top level operator in t (e.g., γt1;t2 ∈ Γ2). The
states of A encode the outcomes for executions of particular terms, and the
superscript c of a state 〈t, �〉c is used for the outcome of a compensation for
the term t. The trees Trees(F) encode execution observations of S, which can
be decoded by in-order traversal, and the trees Trees(Γ ) encode compensation
stacks.

In what follows we present a definition schema for the transition relation, and
define Δ to be the smallest relation satisfying our schema. By convention we de-
note an arbitrary equivalence relation with e, a state of A with q, and a function
from ΦΓ with ϕ. The function flip is defined as λx1, x2.x2, x1. Throughout our
schema, we enforce the following properties:

(P1) For every closest 〈{[t]}, �〉-labeled ancestor n of a 〈t, �〉-state in an accepting
run t, t(n · 1) is a compensation tree of t(n · 0). This property ensures that
when a subtransaction {[t]} fails with the observation tree t(n·0), the proper
compensating actions are observed in t(n · 1).

(P2) A term which does not complete any action does not appear in an accepting
run. This property is a technical convenience; without this, the automaton
we defined would necessarily accept trees with 0-labeled leaves.

The definition schema is as follows.

Atomic actions. The atomic actions generate the leaves of memory and obser-
vation trees. For reachable atomic terms a ÷ b,

a
�−−−→

γa÷b

〈a ÷ b, �〉 and b
�−−−→

γa÷b

〈a ÷ b, �〉c

handle the execution of a, and allow for the compensation b to execute. This
takes care of the rule (atom-s) from table 1, while the rule (atom-f) is taken
care of by (P1).

Sequential composition. The memory trees at σ;-labeled nodes must be re-
versed when constructing the compensation’s memory tree; thus we apply the
flip function. For reachable sequential terms t1; t2 and outcomes � ∈ {�, �},

σ;(〈t1, �〉, 〈t2, �〉) �−−−→
γt1;t2

〈t1; t2, �〉

and σ;(〈t1, �〉c, 〈t2, �〉c) �−−−−−−→
γt1;t2 ·flip

〈t1; t2, �〉c
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partially handle rule (seq-s), where t1 completes successfully but t2 may fail
after performing at least one action, whereas the transitions generated by

if q
e−→
ϕ

〈t1, �〉 then q
e−→
ϕ

〈t1; t2, �〉 and if q
e−→
ϕ

〈t1, �〉c then q
e−→
ϕ

〈t1; t2, �〉c

handle the cases where t1 completes but t2 fails before completing any action,
or t1 fails after completing at least one action, as in rule (seq-fa). Note that
the case where t1 fails before completing any action corresponds to an empty
F -subtree for t1; t2, and is taken care of by (P2).

Parallel composition. With parallel threads, we get away without needing the
� outcome by the invoking property (P2). For reachable parallel terms t1‖t2 and
outcomes �1, �2 ∈ {�, �},

σ‖(〈t1, �1〉, 〈t2, �2〉) �−−−−→
γt1‖t2

〈t1‖t2, �1 ∧ �2〉

and σ‖(〈t1, �〉c, 〈t2, �〉c) �−−−−→
γt1‖t2

〈t1‖t2, �〉c

handle rule (par-s) where t1 and t2 may complete successfully, and partially
rule (par-f) where t1 or t2 fail after completing at least one action, whereas the
transitions generated by

if q
e−→
ϕ

〈ti, �i〉 then q
e−→
ϕ

〈t1‖t2, �〉 and if q
e−→
ϕ

〈ti, �〉c then q
e−→
ϕ

〈t1‖t2, �〉c,

for i ∈ {1, 2}, handle the other cases of (par-f) where one parallel branch fails
before completing any action. Again the case where both branches fail before
completing any action is taken care of by (P2).

Nondeterministic choice. The rule (nondet) of table 1 is taken care of by
closing our transitions over nondeterministic terms. For the reachable terms
t1 ⊕ t2, i ∈ {1, 2}, and outcomes � ∈ {�, �}, the transitions generated by

if q
e−→
ϕ

〈ti, �〉 then q
e−→
ϕ

〈t1 ⊕ t2, �〉

and if q
e−→
ϕ

〈ti, �〉c then q
e−→
ϕ

〈t1 ⊕ t2, �〉c

coincide exactly with (nondet).

Subtransactions. For the reachable subtransaction terms {[t]}, the transitions
generated by

if q
e−→
ϕ

〈t, �〉 then q
e−→
ϕ

〈{[t]}, �〉 and if q
e−→
ϕ

〈t, �〉c then q
e−→
ϕ

〈{[t]}, �〉c

take care of successful completion, as in rules (sub-s) and (saga), while com-
pensated completions of (sub-f) and (saga) are handled by

σ;(〈t, �〉, 〈t, �〉c) 1=2−−−→
γ{[t]}

〈{[t]}, �〉 and 0 �−−−→
γ{[t]}

〈{[t]}, �〉c.
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The first group of transitions here helps ensure (P1) by enforcing identical
memory-trees between a partially-completed subtransaction and its compensa-
tion. The second group is used to match a completed (but locally failed, and
thus already compensated for) subtransaction with a null compensation. Note
that while technically we do not want to consider leaves labeled with 0, it is
possible to replace the previous set of transitions with a more complicated set
which introduces the memory symbol γ{[t]} arbitrarily at any place in the tree.

For the reachable variables x ∈ X and outcomes � ∈ {�, �}, the transitions
generated by

if q
e−→
ϕ

〈T (x), �〉 then q
e−→
ϕ

〈x, �〉 and if q
e−→
ϕ

〈T (x), �〉c then q
e−→
ϕ

〈x, �〉c

allow named subtransactions, as in (var).

It is not difficult to check that properties (P1) and (P2) are preserved in our
schema, and that the language of A is the yield language of S. ��

From this construction, and Lemma 1, we get the main result.

Corollary 1. [Saga Verification] For every saga S and regular tree language
specification (given as a nondeterministic finite tree automaton B), the verifica-
tion problem L(S) ⊆ L(B) can be decided in time exponential in the size of S
and doubly exponential in the size of B.

This provides an exponential time algorithm in the size of the structure. On
the other side, the problem is PSPACE-hard in both the structure and the
specification, by reduction from term reachability of process algebras [16] and
universality of word automata respectively.

5 Conclusions and Future Work

We have presented a first step towards automatic verification of business pro-
cesses with compensations. While this paper provides a complexity-theoretic
upper bound on the complexity of model checking, engineering effort is needed
before we can obtain a practical tool for business process verification. Among
other things, this means that our algorithms must be extended to model dataflow
as well as deal with programming language features that are absent in the ab-
stract formulation.
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Abstract. This paper explores a way to apply model checking tech-
niques to parallel programs that use the nonblocking primitives of the
Message Passing Interface (MPI). The method has been implemented as
an extension to the model checker Spin called Mpi-Spin. It has been ap-
plied to 17 examples from a widely-used textbook on MPI. Many correct-
ness properties of these examples were verified and in two cases nontrivial
faults were discovered.

1 Introduction

Parallelism has proved remarkably effective at providing the high level of per-
formance demanded by scientific computing. But parallel programming is no-
toriously difficult and, as the complexity of scientific applications increases,
computational scientists find themselves expending an inordinate amount of ef-
fort developing, testing, and debugging their programs. Concerns about this level
of effort—and the correctness of the resulting programs—have led to growing in-
terest in new verification and validation approaches for scientific computing [6].

Model checking is a formal verification method that is widely-used in many
hardware and software domains and in theory could be applied to scientific
software. Yet significant hurdles must be overcome before model checking can
be practically applied in the scientific domain. Among these is the fact that
model checkers operate on a model of a program, rather than on the program
itself. Hence techniques must be developed to construct finite-state models of
scientific programs.

This paper describes a way to create finite-state models of programs that
employ the “nonblocking” communication primitives of the Message Passing
Interface (MPI) [3, 4]. MPI is a large message-passing library with subtle and
complex semantics and has become the de facto standard for high-performance
parallel computing. The nonblocking primitives provide a precise way to specify
how computation and communication can be carried out concurrently in an MPI
program. For example, one may specify that a communication task is to begin
at one point in an MPI process and that the process should block at a subse-
quent point until that task has completed; computational code can be inserted
between these two points to achieve the desired overlap. An algorithm expressed
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in this way can be mapped efficiently to hardware architectures, common in high-
performance computing, that utilize distinct, concurrently-executing components
for communication and computation. Because of this, nonblocking communica-
tion is ubiquitous in MPI-based scientific software and is generally credited with
playing a large role in the high level of performance that scientific computing has
achieved.

While previous work applying model checking techniques to MPI programs
has focused on various aspects of MPI, including the basic blocking point-to-
point and collective functions [9,8,7,11,10], “one-sided” operations [5] and pro-
cess management [2], none has dealt with nonblocking communication. There are
two reasons that might explain this. First, the semantics of nonblocking commu-
nication are considerably more complex than those of blocking communication.
The nonblocking semantics involve the introduction of types, constants, and a
number of functions for creating and manipulating objects of those types, as
well as complex rules prescribing how the MPI infrastructure is to carry out
requests concurrently with program execution. Second, it is not obvious how to
represent the state of a nonblocking MPI program in a way that is amenable to
standard model checking techniques. MPI blocking communication operations
map naturally to primitives provided by a model checker such as Spin [1]: Spin

channels can be used to represent queues of buffered messages en route from one
MPI process to another and the send and receive channel operations correspond
closely to the blocking MPI send and receive functions. No Spin data structure
corresponds to an MPI nonblocking communication request nor supports the
myriad operations upon it.

We proceed with a brief summary of the MPI nonblocking primitives (Sec.
2). This is followed by a detailed description of our approach for modeling non-
blocking MPI programs for verification by standard explicit-state model checking
techniques (Sec. 3). Discussion of a preliminary validation of the approach fol-
lows (Sec. 4): it has been implemented as an extension to Spin called Mpi-Spin

and has been applied to the 17 examples in the popular MPI textbook [12]
dealing with nonblocking communication. Many correctness properties of these
examples were verified and, in two cases, nontrivial faults were discovered.

2 Nonblocking Communication

The standard mode blocking function used to send a message from one MPI
process to another is MPI_Send. Its arguments specify a communicator object
that represents the communication universe in which the processes live, the rank
of the destination process (an integer process ID relative to the communicator),
the number and type of elements to send, their location in memory (the send
buffer), and an integer tag. It blocks until the message has been completely
copied out of the send buffer—either into a system buffer or directly into the
receive buffer at the destination process. In particular, the MPI infrastructure
may block the sender until the destination process is ready to receive the message
synchronously.
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The nonblocking version of this function is MPI_Isend. It takes the same
arguments as MPI_Send but in addition it allocates and returns a handle r to
a request object. This function initiates the sending of the message and does
not block. A subsequent call to MPI_Wait on r blocks until the message has
been completely copied out of the send buffer and then deallocates the request
object. In particular, MPI_Send is equivalent to MPI_Isend followed immediately
by MPI_Wait.

The receive operations MPI_Recv and MPI_Irecv work in an analogous way.
In particular, MPI_Irecv initiates the receiving of a message and the subsequent
call to MPI_Wait blocks until the incoming message has been completely copied
into the receive buffer, from either a system buffer or directly from the send
buffer. The receive request will only be paired with a message whose destina-
tion, tag, and communicator fields match the source, tag, and communicator
fields of the receive, respectively. Unlike sends, the source and tag arguments
for the receiving functions can take the wildcard values MPI_ANY_SOURCE and
MPI_ANY_TAG, specifying that the receive will accept a message from any source,
and/or with any tag, respectively.

MPI makes certain guarantees concerning how receives and messages are
paired (or “matched”) [3, Sec. 3.5]. Fix two processes p and q. A receive r posted
from q cannot be paired with a message emanating from p if there is an earlier-
posted unpaired message from p to q that matches r. Similarly, a message s
emanating from p cannot be paired with a receive posted from q if there is an
earlier-posted unpaired receive from q that matches s.

These strictly negative guarantees are complemented by the following positive
ones. If s is an unpaired send request posted by p and r is an unpaired receive
request posted by q, and r and s match, then (1) s will complete unless r is paired
with another message and completes, and (2) r will complete unless s is paired
with another receive request and completes. In particular, at least one of r, s will
complete.

The function MPI_Test can be invoked on r to determine whether r has com-
pleted without blocking; it sets a boolean flag to 0 if r has not completed, else
it sets this flag to 1 and proceeds as MPI_Wait.

MPI_Request_free can be invoked on r to indicate that the request object
should be deallocated as soon as the request completes (in which case no subse-
quent call to MPI_Wait is necessary).

A number of MPI functions operate on arrays (ri) of request handles. The
function MPI_Waitany takes such an array and blocks until at least one request
has completed. It then chooses one of the completed requests, returns its index
i, and proceeds as if MPI_Wait were invoked on ri. MPI_Waitall blocks until
all requests in the array have completed and then proceeds as if MPI_Wait were
invoked on all ri. MPI_Waitsome blocks until at least one has completed and
then invokes MPI_Wait on all that have completed and returns the subset of
indices of all completed requests. The functions MPI_Testany, MPI_Testall,
and MPI_Testsome work in an entirely analogous way but never block.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Model Checking Nonblocking MPI Programs 47

The function MPI_Probe takes source, tag, and communicator arguments and
blocks until it determines there is an incoming message that matches these pa-
rameters. However, it does not consume the message (as a receive operation
would) but simply returns certain information about the message which can
then be used in a subsequent receive operation. MPI_Iprobe is similar but re-
turns a flag instead of blocking. MPI guarantees that if a send request is posted
with parameters matching those passed to MPI_Probe, then MPI_Probewill even-
tually return, though there can be a delay between the posting and the return of
the probe. Similarly, repeated calls to MPI_Iprobe must eventually return true
if a matching send is posted.

MPI_Cancel is invoked on r to attempt to cancel the request. The cancellation
may or may not succeed. If it does succeed then any receive buffer involved
in the canceled communication should remain unchanged; if it does not then
execution should proceed as if MPI_Cancel were never called. A subsequent call
to MPI_Test_canceled on the status object of r is used to determine whether
or not the cancellation succeeded.

Persistent requests are created by calling MPI_Send_init or MPI_Recv_init.
The arguments are similar to those for MPI_Isend and MPI_Irecv but, unlike
ordinary requests, a persistent request r is inactive until started by invoking
MPI_Start on r. After invoking MPI_Wait (or one of the other completion oper-
ations) on r, the request object is not deallocated but is returned to the inac-
tive state until it is re-started. A persistent request is deallocated by invoking
MPI_Request_free. MPI_Startall starts all persistent requests in an array.

An example of the use of nonblocking communication is given in the MPI/C
code of Fig. 1, which is extracted from [12, Ex. 2.18]. In this program, multiple
producers repeatedly send messages to a single consumer. The consumer posts
receive requests for each producer in order of increasing rank, and then waits
on each request in a cyclic order. After a receive request completes, the message
is consumed and another receive request is posted for that producer. Note that
overlap between computation and communication is achieved because the con-
sumer may consume a message from a producer while the MPI infrastructure
carries out the requests to receive data from other producers.

3 Modeling Approach

We now describe our notion of a model of an MPI program that consists of a fixed
number of processes and uses the functions described in Sec. 2. For this work, we
make a few simplifying assumptions: the only communicator is MPI_COMM_WORLD,
each process is single-threaded, there is no aliasing of request handles, and no
non-zero error codes are returned by the MPI functions. In future work we expect
to eliminate each of these assumptions.

Our model consists of a particular kind of guarded transition system for each
processandaglobalarrayofcommunication records representingbufferedmessages
andoutstanding requests.Theexecutionsemantics aredefinedsothat, atanyglobal
state, either an enabled transition from one process or a transition corresponding
to an action by the MPI infrastructure may be selected for execution.
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MPI_Comm_rank(comm, &rank);
MPI_Comm_size(comm, &size);
if (rank != size-1) { /* producer code */

while (1) {
/* produce data */
MPI_Send(buffer->data, buffer->datasize, MPI_CHAR, size-1 tag, comm);
}

} else { /* consumer code */
for (i=0; i < size-1; i++)
MPI_Irecv(buffer[i].data, MAXSIZE, MPI_CHAR, i, tag, comm,
&(buffer[i].req));

for (i=0; ; i=(i+1)%(size-1)) {
MPI_Wait(&(buffer[i].req), &status);
/* consume data */
MPI_Irecv(buffer[i].data, MAXSIZE, MPI_CHAR, i, tag, comm,
&(buffer[i].req));

}
}

Fig. 1. Code excerpt from [12, Ex. 2.18], Multiple producer, single consumer

We now sketch how this can be made precise. We first fix values for the
following parameters: the number n ≥ 1 of MPI processes, an upper bound b ≥ 0
on the total number of buffered messages that may exist at any one time, and an
upper bound r ≥ 0 on the total number of outstanding requests that may exist
at any one time. We consider it an error if the outstanding request bound can be
exceeded. On the other hand, if a send is posted after the buffer bound has been
reached, execution can proceed but the MPI infrastructure will not be allowed
to buffer messages. The difference in how our model treats these two bounds
stems from the different roles these concepts play in MPI. The MPI Standard
states that each request object consumes some system resources and so there
must be some limit on the number of outstanding requests. (The precise limit is
implementation-dependent but is expected to be reasonably high.) Furthermore,
a function that allocates a new request, such as MPI_Isend, will not block if this
limit has been reached—instead, an error occurs. On the other hand, a correct
MPI implementation should never report an error if it has insufficient space to
buffer messages; at worst, the send operations will not complete until they can
be paired with matching receives or sufficient buffer space becomes available.

We begin with the definition of communication record, then describe the tran-
sition system for a single process, and finally define the global model and exe-
cution semantics.

3.1 Communication Records

A communication record is an 11-tuple

(core, source, dest, datatype, count, tag, data, handle, status, freeable, match).
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For each of these components (or fields) we give a description and a default value.
The symbol ‘−’ will denote the appropriate default value wherever it appears.
We let C denote the set of all communication records. The null element of C is
the one for which all fields have their default values; it is also the default value
for C.

The field core (or core state), captures the most essential information about
the object: whether the record is for a request or message, a send or receive
request, whether it has been canceled, completed, or matched, and so on. The
core state is completely specified by the values of 9 boolean flags that answer
the questions given in Fig. 2a. With a few exceptions, these are self-explanatory.
A request is active if it is either (1) a nonpersistent request that has not been
canceled or completed, or (2) a persistent request that has been started and
has not been canceled or completed since last being started. A send request or
message is visible if it can be detected by a probe on the receiver side.

At first glance it appears there could be as many as 29 distinct core states.
But it is clear that many of the combinations are not possible, and in fact a
simple reachability analysis reveals that only a small number (24, including a
special null value) can occur. This analysis, carried out with Spin, considers all
ways in which a communication record can be created, modified, and destroyed
by the 13 types of primitive state transformations described in this paper (Fig.
4). The 24 reachable core states are enumerated in Fig. 2b and the transitions
between them are depicted in Fig. 3. The default value is s0.

The integer fields source, dest, count, and tag mean exactly what one would
expect; the special wildcard values may be used for the source and tag fields of
receive requests. The default values are all 0.

The datatype field specifies the type of the elements comprising the message.
We assume there is a fixed, finite set of datatypes numbered 0, 1, . . . , d − 1
and that for each i we are given size(i), the size (in bytes) of datatype i. In
our implementation, there are several integer types of various sizes, an empty
type of size 0, and a symbolic type (of size 4) used to model floating point
values as symbolic expressions. There is no reason this could not be extended in
many ways, including to incorporate MPI derived datatypes. The default value
is 0.

For requests, the data field is an integer referring to the location of the start
of the send or receive buffer. We will see below that the local memory of a
process is modeled as a finite sequence of bytes; this integer refers to the index
in that sequence. For messages, this integer instead encodes the sequence of
bytes comprising the message. We assume there is a fixed procedure to losslessly
encode any sequence of bytes into an integer, and decode the integer back into
the byte sequence. The default is 0.

Our modeling approach requires that for each process, a unique integer ID be
associated to each variable that will hold a request handle (i.e., each variable of
type MPI_Request in MPI/C). It is assumed that there is at most one variable
containing any given handle. (While aliasing of handles is allowed in MPI, this
feature is rarely used. One could incorporate aliasing into our approach using
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R: Is this a request?
B: Is this a buffered message?
P: Is this a persistent request?
S: Is this a send request?
A: Is this an active request?
C: Is this a request that has completed successfully?
V: Is this a visible (but unmatched) send request or buffered message?
M: Is this a matched (but incomplete) send request or buffered message?
X: Is this a request that has been successfully canceled?

(a) Core state flags

ID name RBP S ACVMX
s0 NullState · · · · · · · · ·
s1 InvisibleSendReq � · · �� · · · ·
s2 VisibleSendReq � · · �� · � · ·
s3 MatchedSendReq � · · �� · · � ·
s4 CompleteSendReq � · · ��� · · ·
s5 CanceledSendReq � · · � · · · · �
s6 UnmatchedRecvReq� · · · � · · · ·
s7 MatchedRecvReq � · · · � · · � ·
s8 CompleteRecvReq � · · · �� · · ·
s9 CanceledRecvReq � · · · · · · · �

s10 InactiveSendPreq � · �� · · · · ·
s11 InvisibleSendPreq � · ��� · · · ·

ID name RBP S ACVMX
s12 VisibleSendPreq � · ��� · � · ·
s13 MatchedSendPreq � · ��� · · � ·
s14 CompleteSendPreq � · ���� · · ·
s15 CanceledSendPreq � · �� · · · · �
s16 InactiveRecvPreq � · � · · · · · ·
s17 UnmatchedRecvPreq� · � · � · · · ·
s18 MatchedRecvPreq � · � · � · · � ·
s19 CompleteRecvPreq � · � · �� · · ·
s20 CanceledRecvPreq � · � · · · · · �
s21 InvisibleMessage · � · · · · · · ·
s22 VisibleMessage · � · · · · � · ·
s23 MatchedMessage · � · · · · · � ·

(b) Reachable core states

Prod0 Prod1 Cons MPI c0 c1 c2 c3 c4

0 − − − − −
1 irecv0 v1 − − − −
2 isend v2 v1 − − −
3 reveal1 v3 v1 − − −
4 upload1 v5 v1 v4 − −
5 isend v6 v5 v1 v4 −
6 reveal0 v7 v5 v1 v4 −
7 match0 v5 v4 v8 v9 −
8 irecv1 v5 v10 v4 v8 v9

9 match1 v4 v8 v9 v11 v12

10 wait v8 v9 v11 v12 −
11 isend v2 v8 v9 v11 v12

12 synch0 v2 v11 v12 v13 v14

13 wait0 v2 v11 v12 v13 −
14 irecv0 v2 v1 v11 v12 v13

15 download1 v2 v1 v15 v13 −
16 wait1 v2 v1 v13 − −
17 wait v2 v1 − − −

(c) An execution prefix for program of Fig. 1

co
re

so
ur

ce
de

st
ha

nd
le

m
at

ch

v0 s0 − − − −
v1 s6 0 2 0 −
v2 s1 1 2 0 −
v3 s2 1 2 0 −
v4 s4 1 2 0 −
v5 s22 1 2 − −
v6 s1 0 2 0 −
v7 s2 0 2 0 −
v8 s3 0 2 0 0
v9 s7 0 2 0 −

v10 s6 1 2 1 −
v11 s23 1 2 − 1
v12 s7 1 2 1 −
v13 s4 0 2 0 −
v14 s8 0 2 0 −
v15 s8 1 2 1 −

(d) Communication record
values used in prefix

Fig. 2. Communication records
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Fig. 3. Transitions between communication record core states

techniques similar to those for modeling references to heap-allocated data in Java
or C, but we have chosen to defer this for future work and concentrate here on
issues particular to nonblocking communication.) The integer handle field thus
specifies the unique handle variable referring to that request. It is not used for
messages. The default is 0.

The status field is used only for completed receive requests. It is a 4-tuple
giving the source, tag, count and status type of the received message. (The source
and tag information is redundant unless wildcards were used in the receive.)
The status type can be either undefined (the default), canceled (the request
was successfully canceled), normal (the message was successfully received), or
empty. The last case is used in MPI to signify certain exceptional scenarios. In
the default value, the status is undefined, and the source, tag, and count are
all 0.
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The boolean field freeable is 1 for a request that can be deallocated as soon
as it completes (because of a user call to MPI_Request_free). Otherwise it has
the default value 0. It is not used for messages.

A send request or message that has been matched with a receive request will
have its integer match field set to the handle of the receive request. Since the rank
of the receiver is the dest field, and we are assuming unique references to request
objects, this uniquely determines the matching receive request. The match field
is not used in receive requests, or in messages or send requests that have not
been paired. The default is 0.

3.2 Local Process Model

A local process model of rank R with global buffer bound b and global request
bound r is a tuple L = (Q, q0, T, h, l) where Q is a set of local control states,
q0 ∈ Q is the initial control state, T ⊂ Q×E×Q is a set of local transitions (the
event set E is defined below), and h and l are nonnegative integers specifying,
respectively, the number of request handle variables available to the process and
the size, in bytes, of the local memory (excluding the request handle variables).

Let X = {0, . . . , 255, UNDEF}; these are the possible values for a unit of
the local memory. Let Y = {0, . . . , h − 1, UNDEF, NULL}; these are the possible
values for a request handle variable. The set W = X l×Y h represents all possible
states of the process memory. A local state of L is an element of Q × W . The
initial state of L has control state q0 and all local memory and request variables
set to UNDEF.

The event set E consists of ordered pairs 〈γ, φ〉, where γ : W × Cb+r →
{true, false} is a guard specifying when the transition is enabled and φ : W ×
Cb+r → W × Cb+r is a transformation function describing the change to the
local state and communication record array effected by the transition. A trans-
formation that modifies the communication record array is required to fall into
one of the 8 categories of Fig. 4a. Each of these transformations is specified
by certain parameters that are functions on W ; these parameters represent the
expressions that occur as arguments in the corresponding MPI function. For ex-
ample, at a state with process memory w, the isend transformation modifies the
communication record array by inserting the record

(s1, R, dest(w), dtype(w), count(w), tag(w), buf(w), req(w), −, −, −).

The only change to the process memory W is to set the value of the request han-
dle variable in position req(w) to req(w). A wait transformation on a completed
or canceled nonpersistent request removes the record from the array, sets the
value of the request handle variable to NULL, sets the status object at position
status(w) in local memory to the appropriate value, and so on.

Each MPI function described in Sec. 2 can be modeled using suitable choices
of guards and primitive transformations. For example, an MPI_Isend at control
state q is modeled with two outgoing transitions t1 and t2. The first leads to
an “error” trap state, indicating that the outstanding request bound has been
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transformation corresponding MPI function
isend(buf, count, dtype, dest, tag, req) MPI_Isend
irecv(buf, count, dtype, source, tag, req) MPI_Irecv
wait(req, status) MPI_Wait
cancel(req) MPI_Cancel
send_init(buf, count, dtype, dest, tag, req) MPI_Send_init
recv_init(buf, count, dtype, source, tag, req) MPI_Recv_init
free(req) MPI_Request_free
start(req) MPI_Start

(a) Primitive state transformations effected by an MPI process

transformation effect summary
match(i, j) match send request/message with receive request
upload(i) copy data from send to system buffer
download(i) copy data from system to receive buffer
synch(i) copy data from send to receive buffer
reveal(i) make invisible send request/message visible

(b) Primitive state transformations effected by the MPI infrastruc-
ture

Fig. 4. The 13 primitive MPI state transformations

violated, and has guard γ1, which holds iff the communication record array
contains r requests. Transition t2 leads to the state for the next point of control,
has guard ¬γ1, and a transformation of the isend type described above.

The more complex MPI functions can be translated using more states and
some of the local memory. Say, for example, we wish to translate a call to
MPI_Waitany on the array of request handles that starts with the k-th han-
dle and has length m. To do this, we introduce an intermediate state q′, and add
transitions t1 = (q, 〈γ1, φ1〉, q′), t2 = (q′, 〈γ2, φ2〉, q′), and t3 = (q′, 〈γ3, φ3〉, q′′),
where q′′ is the state for the next point of control. The guard γ1 holds iff there
exists j such that k ≤ j < k+m and the communication record array contains a
request from process R with handle j that has completed or been canceled. The
transformation φ1 sets some scratch variable i (residing in some part of the local
memory reserved for this purpose) to the least such j. The guard γ2 holds iff
there exists j such that i < j < k+m and the array contains a request from pro-
cess R with handle j that has completed or been canceled. The transformation
φ2 sets i to the least such j. The guard γ3 is true and φ3 is a wait transformation
on the request with handle i. The effect of all this is to wait until at least one
request has completed or been canceled and then nondeterministically choose
one of them and apply wait to it.

3.3 Global Model

Finally, a model of a nonblocking MPI program with n processes, global buffer
bound b, and global request bound r is an n-tuple M = (L0, . . . , Ln−1), where for
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each i, Li is a local process model of rank i with bounds b and r. Let Wi denote
the set of all local states for Li. A global state of M is an element

(w0, . . . , wn−1, c0, . . . , cb+r−1) ∈ W0 × · · · × Wn−1 × Cb+r.

The initial state is one for which each wi is initial and all cj are null. An exe-
cution of M is a sequence of global states, starting with the initial state, such
that a global transition exists between each pair of consecutive states. A global
transition corresponds to the execution of an enabled local transition or an MPI
infrastructure transition.

The MPI infrastructure transitions correspond to the 5 transformations in
Fig. 4b. Given a global state, one match transition is enabled for each pair (i, j)
for which all of the following hold: (1) 0 ≤ i, j < b + r, (2) ci is an unmatched
receive request and cj is an unmatched send request or buffered message, (3) the
parameters of ci and cj “match” in the MPI sense, and (4) pairing ci and cj would
not violate the ordering rules of the MPI Standard. The effect of the transition
is to change the two entries in the communication record array to indicate the
two records are matched. An upload transition models the completion of a send
request by copying the message data from the send buffer into some system
buffer. One such transition is enabled for each send request as long as the number
of buffered messages is less than b. The effect is to complete the send request
record and create a new record for a buffered message. A download transition
models copying a message from a system buffer to the receive buffer; this results
in changing the local state of the receiver appropriately, deleting the record
for the message, and completing the receive request record. A synch transition
corresponds to copying the message directly from the send to the receive buffer
and completes both requests. A reveal transition makes an invisible send request
or message visible; it is only enabled if all preceding send requests/messages
emanating from the same sender and destined for the same receiver are already
visible.

An execution prefix for the example of Fig. 1 is described in Figs. 2c and 2d.
In each row (other than 0) of Fig. 2c there is a transition from either one of
the three processes or the MPI infrastructure. This is followed by a description
of the state of the communication record array after executing the transition.
The vi refer to entries in the table of Fig. 2d. This table contains one entry for
each communication record value occurring in the prefix and gives the values for
the 5 most essential fields of each. The subscripts on the transitions from the
consumer and the MPI infrastructure refer to the rank of the sending process.

3.4 Order

We have seen that both process and infrastructural transitions may insert, delete,
and modify entries in the communication record array, but we have not yet
discussed the way in which the entries of this array are ordered. It is clear
that the order must reflect some information concerning the temporal order in
which the requests were generated, in order to prevent violations to the MPI
matching rules. On the other hand, if we maintain this temporal ordering in
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its full precision, we risk creating unnecessary distinctions between states and
an explosion in their number. The trick is to keep track of just as much “his-
tory” as is required to prevent violations of the MPI matching rules, and no
more.

Our approach is to maintain the communication record array in such a way
that the b+r entries always occur in the following order: (1) the send requests and
messages that need to be matched (i.e., those with core state s1, s2, s11, s12, s21,
or s22), (2) the receive requests that need to be matched (s6, s17), (3) all other
non-null records, and (4) all null records. These sections are further refined as
follows. Within section 1, all records with source 0 occur first, followed by those
with source 1, and so on. Within each of these subsections, those with destination
0 occur first, followed by those with destination 1, and so on. Within each of these
subsubsections, the records occur according to the order in which the requests
were posted. Within section 2, all records with destination 0 occur first, followed
by those with destination 1, and so on. Within each of these subsections, the
records occur according to the order in which the requests were posted. Notice
that, for receives, the further division by source is not possible because of the
possible use of MPI_ANY_SOURCE. Within section 3, the records are placed in any
canonical order. (In our implementation, each communication record value is
assigned a unique integer ID; the canonical order is that of increasing ID.)

Each primitive MPI transformation is engineered to preserve this order. For
example, in line 4 of Fig. 2c, an upload transition applied to the send request
v3 that was in section 1, at position 0, causes the send request to be completed
(v4) and moved to section 3, in position 2. A new record for a buffered message
(v5) is inserted at the original position of the send request.

4 Validation

We have implemented the approach of Sec. 3 as an extension to Spin called
Mpi-Spin. The core of the implementation is a C library for manipulating com-
munication records. The library provides functions corresponding to the primi-
tive MPI state transformations of Fig. 4. Because the memory required to store
a single communication record is quite large, the library employs a “flyweight”
pattern which (1) assigns a unique integer ID to each communication record
value it encounters, and (2) stores a single copy of the record in a hash table.
By using these IDs, the communication record array can be represented as an
integer array in the Promela model. The library functions that operate on the
array are incorporated into the Promela model using Spin’s embedded C code
facility. The user can access these functions through preprocessor macros defined
in a header file. There is one macro for each of the MPI primitives discussed in
this paper, and their syntax corresponds closely to the syntax for the C bindings
of MPI, making it particularly easy to create models of C/MPI programs (Fig.
5). The MPI infrastructure events are incorporated into the model through an
additional “daemon” process that, at each state, nondeterministically selects one
of the enabled infrastructure events for execution.
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active proctype consumer() {
MPI_Request req[NPRODUCERS];
byte i = 0;

MPI_Init(Pconsumer, Pconsumer->_pid);
do
:: i < NPRODUCERS ->

MPI_Irecv(Pconsumer, RECV_BUFF, COUNT, MPI_POINT,
Pconsumer->i, TAG, &Pconsumer->req[Pconsumer->i]);

i++
:: else -> i = 0; break
od;
do
:: MPI_Wait(Pconsumer, &Pconsumer->req[Pconsumer->i],

MPI_STATUS_IGNORE);
MPI_Irecv(Pconsumer, RECV_BUFF, COUNT, MPI_POINT, Pconsumer->i,

TAG, &Pconsumer->req[Pconsumer->i]);
i = (i + 1)%NPRODUCERS

od;
MPI_Finalize(Pconsumer)

}

Fig. 5. Mpi-Spin source for model of consumer process of Fig. 1

By default, Mpi-Spin checks a number of generic properties that one would ex-
pect to hold in any correct MPI program. These include (1) the program cannot
deadlock, (2) there are never two outstanding requests with buffers that inter-
sect nontrivially, (3) the total number of outstanding requests never exceeds the
specified bound r, (4) when MPI_Finalize is called there are no request objects
allocated for and there are no buffered messages destined for the calling process,
and (5) the size of an incoming message is never greater than the size of the
receive buffer. In addition, Mpi-Spin can check application-specific properties
formulated as assertions or in linear temporal logic.

Mpi-Spin includes some primitives that do not correspond to anything in
MPI, but are useful for modeling MPI programs. For example, there is a type
MPI_Symbolic (together with a number of operations on that type) that can
be used to represent floating-point expressions symbolically. Previous work [11]
showed how symbolic techniques can be used to verify that a parallel program
computes the same result as a trusted sequential version of the program on any
input. Another primitive, MPI_POINT, represents an “empty” MPI datatype that
can be used to abstract away data completely; this is particularly useful for
constructing a model of the MPI communication skeleton of a program, as in
Fig. 5.

We applied Mpi-Spin to Examples 2.17–2.33 of [12], attempting to verify
generic and application-specific properties of each. (The source code for Mpi-

Spin and all input and output for these experiments are available at http://
www.cis.udel.edu/ siegel/projects.) The symbolic technique was applied
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to various configurations of the Jacobi iteration examples (2.17, 2.27, 2.32; the
sequential version is Ex. 2.12). Ex. 2.17 is one of the cases for which Mpi-Spin

discovered a fault. The problem occurs when the number of matrix columns is
less than twice the number of processes. In this case, on at least one process
two send requests will be posted using the same buffer: the single column stored
on that process. For configurations outside of that range, equivalence with the
sequential program was verified successfully. One of the larger configurations for
Ex. 2.17 involved N = 11 matrix columns distributed over n = 4 processes,
k = 2 loop iterations, r = 16, and b = 0; its verification resulted in searching
256,905 states and consumed 30 MB of RAM. The configuration with N = 7,
n = 3, k = 2, r = 12, b = 6 required 65,849 states and 8 MB.

For each of the producer-consumer systems (2.18, 2.19, 2.26, 2.28, 2.33) the
following were checked: (p0) freedom from deadlock and standard assertions,
(p1) every message produced is eventually consumed, (p2) no producer becomes
permanently blocked, and (p3) for a fixed producer, messages are consumed in
the order produced. Again, various configurations were used in each case; one
of the largest involved the verification of p0 for Ex. 2.18, with n = 8, r = 14,
and b = 0, which resulted in 1.8 million states and consumed 235 MB. Some of
the properties were and some were not expected to hold on particular systems
and, in general, the expected result was obtained for each property-system pair.
An exception was Ex. 2.19. In this program, the second for loop in Fig. 1 is
replaced with

i = 0;
while(1) {
for (flag=0; !flag; i= (i+1)%(size-1)) {
MPI_Test(&(buffer[i].req), &flag, &status);

}
/* consume data */
MPI_Irecv(bufer[i].data, MAXSIZE, MPI_CHAR, i, tag, comm,

&buffer[i].req);
}

The idea is that the busy-wait loop allows the consumption of messages in what-
ever order they arrive, rather than enforcing a cyclic order. However, while check-
ing p0, Mpi-Spin discovered that i is erroneously incremented after the call to
MPI_Test sets flag to true and before exiting the loop. This causes the con-
sumer to consume from and repost to the wrong producer and can lead to a
violation of the outstanding request bound (and other errors). After correcting
this problem, the expected results were obtained.

These preliminary experiments were encouraging in several ways: (1) the tool
was able to achieve a conclusive result on all of the examples to which it was
applied, including some of nontrivial size, (2) the resources consumed were not
excessive, at least by the standards of model checking, and (3) the tool discov-
ered two nontrivial faults that had survived two editions of a widely-used text.
However, these examples were admittedly small, and the true viability of the
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approach will only become apparent as we attempt to scale it to larger and
more realistic scientific programs. This will be the focus of our future work.
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Abstract. We present and discuss techniques for performing and im-
proving the model-checking of higher-order, functional programs based
upon abstract interpretation [4]. We use continuation-passing-style con-
version to produce an abstractable state machine, and then utilize ab-
stract garbage collection and abstract counting [9] to indirectly prune
false branches in the abstract state-to-state transition graph. In the pro-
cess, we generalize abstract garbage collection to conditional garbage
collection; that is, we collect values which an ordinary reaching-based
collector would have deemed live when it is provable that such values
will never be referenced. In addition, we enhance abstract counting, and
then exploit it to more precisely evaluate conditions in the abstract.

Keywords: Abstract interpretation, static analysis, abstract counting,
abstract garbage collection, ΓCFA, higher-order languages.

1 Introduction

We are interested in analysing and verifying the behavior of programs written
in call-by-value, higher-order programming languages based on the λ-calculus,
such as Scheme or Standard ML. (However, techniques developed for this class
of languages can be profitably adapted for other higher-order languages, such as
Haskell or Java.) Our goal is to describe the construction of a model checker for
higher-order programs in such a way that it is eligible to achieve precision en-
hancements by garbage collecting “dead” environment structure in the abstract
state space traversed by the program.

We decompose building a garbage-collecting model checker for a higher-order
language into four steps:

1. Convert the language’s semantics into state-to-state rules of the form ς ⇒ ς ′.
2. Axiomatize the rules by modelling control explicitly, i.e., with continuations.
3. Instrument the resulting state machine with garbage collection.
4. Construct an abstract interpretation of this machine’s transition relation.

The abstract state-to-state transition that results induces a finite, directed graph
between abstract states, which sets the stage for model checking. However, the
abstraction that makes the state-space finite and hence checkable, can obscure
the property we seek, and so render the entire analysis useless. Folding states
in the concrete state space together introduces spurious paths; if these spurious
paths admit the possibility of “bad” behavior, then our computable abstract

B. Cook and A. Podelski (Eds.): VMCAI 2007, LNCS 4349, pp. 59–73, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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analysis will erroneously conclude that a correct program might give rise to
incorrect behavior. The program succeeds, but the analysis has failed.

We address this problem with Step (3) above: garbage-collecting elements of a
machine state (such as its environment structure and bound values) permits the
abstract interpretation to prune false branches from the state space’s transition
graph. To get a feel for the reduction in the state space, consider the following
doubly nested loop, written in a direct-style Scheme:

(letrec ((lp1 (λ (i x)
(if (= 0 i) x

(letrec ((lp2 (λ (j f y) (if (= 0 j)
(lp1 (- i 1) y)
(lp2 (- j 1) f

(f y))))))
(lp2 10 (λ (n) (+ n i)) x))))))

(lp1 10 0))

Figure 1 shows the flow-sensitive, context-sensitive abstract transition graphs
generated by this loop first without, and then with, abstract garbage collection.
Garbage-collecting environment structure during the exploration of the abstract
state space yields an order of magnitude improvement in the size of the state
space—enough so that the doubly-nested structure of the loop is visually ap-
parent from the second graph. (Besides the improvement in analytic precision,
we also get a secondary benefit in that the processor time and memory space
needed to explore the abstract state space are also greatly reduced.)

Abstract garbage collection sets the stage for another technique known as
abstract counting [9]. With abstract counting, we track the “cardinality” of an
abstract object; that is, we track whether an abstract object currently represents
zero, one or more than one concrete values. Suppose we were to use sets of
concrete values for our abstract values. Ordinarily, if abstract value A were
equal to abstract value B, we could not infer that any concrete value a ∈ A is
equal to any concrete value b ∈ B, except for the case where A and B have size
one. The ability to transfer abstract equality to concrete equality allows us to
more precisely evaluate conditions, e.g. (= x y), in the abstract.

In previous work [9], we developed a higher-order flow-analysis framework,
ΓCFA, which synergistically combines abstract counting and abstract garbage
collection as we’ve just outlined above. The benefit of combining the two is
that we can use abstract counts to reason more precisely about reachable values
during abstract garbage collection. This, in turn, increases the chance that we
can cut off even more branches from the abstract transition graph.

Our purpose in this paper is to show how ΓCFA technology can be applied to
the problem of model-checking software written in higher-order languages. Our
technical contributions are:

1. Enhancing abstract garbage collection by switching from reachability to us-
ability as the criterion for liveness. That is, our garbage collector discards
abstract values and environment structure which are “reachable,” but whose
use is dominated by conditions which have become unsatisfiable. We term
this conditional garbage collection.
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Fig. 1. These images are abstract state-to-state transition graphs generated from the
same doubly nested loop. Construction of the top graph did not utilize abstract garbage
collection. The bottom graph is the result of garbage collecting at each step.

2. Using abstract counting to more precisely evaluate conditionals during ab-
stract garbage collection. We also improve the precision of abstract counting
by accounting for objects that remain invariant across transitions.

2 CPS

Our first task in preparing a program for model checking is to put it into a
continuation-passing style (CPS) representation [1,6,12]. In CPS, function calls
do not return; they are one-way control transfers. Further, all control structures
(call, return, loops, exceptions, and so forth) are encoded using this restricted
mechanism. Among other benefits, CPS reifies implicit control context, thus
rendering it into a form that can be handled by the abstract garbage-collection
machinery we’ll be using.

The grammar for our particular CPS representation is given in Figure 2. Note
that our language has some syntactic structure more reminiscent of A-Normal
Form (ANF) [10] than minimal CPS: it includes an explicit if conditional form,
instead of encoding conditionals as primitive procedures that take multiple con-
tinuation arguments, and we also have a let form for binding variables to the
results of “trivial” expressions, which can be trees of primop applications whose
leaves are variables, constants and λ terms. We also provide a letrec form for
defining mutually-recursive functions, and a halt form that terminates the com-
putation, providing its final result. Note the signature syntactic distinction of
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const ∈CONST = Z + {#f}
prim ∈PRIM = {+, *, equal?, <, . . .}

v ∈VAR ::= a set of identifiers

e, f ∈EXP ::= v | const
| (λ (v1 · · · vn) call)
| (prim v1 · · · vn)

call ∈CALL ::= (f e1 · · · en)
| (if ec et ef )
| (let ((v e)) call)
| (letrec ((v lam)∗) call)
| (halt e)

Fig. 2. A grammar for restricted CPS. Programs are alphatised terms with no free
variables, i.e., any two binding variables are distinct.

a CPS representation: the arguments ei to a function call (f e1 · · · en) cannot
themselves be function calls—that would require function calls to return a value,
which CPS does not permit.

3 Generating the Abstract State Graph with ΓCFA

Our objective in this section is to create a computable, finite abstract transition
relation—that is, a small-step operational semantics for our CPS language whose
set of possible machine states is finite. (We skip over the development of the
corresponding concrete semantics. It is completely standard, and can, in any
event, be inferred from the abstract semantics.) Figure 3 gives the state-space
for ΓCFA.

The set Ŝtate is the set of possible abstract states—the nodes in the forthcom-
ing abstract transition graph. We distinguish two kinds of states: Êval states and
Âpply states. In an Êval state, execution has reached a call site, e.g. (f e1 · · · en),
where the function f and its arguments ei need evaluation. In an Âpply state,
execution has reached the application of a procedure to a vector of argument
values.

In Êval states, arguments are evaluated under the current environment, which
is decomposed into a “local” variable-to-binding portion (B̂Env ) and a “global”
binding-to-value portion (V̂Env) [11]. Given a factored environment (β̂, v̂e), a
variable maps to a value in two stages: (1) the time of its binding in the current
environment β̂ is found: β̂(v); and (2) the value attached to the variable at this
time is looked up: v̂e(v, β̂(v)). Consequently, the binding (v, t̂) acts as a reference
to this value. (When using a binding in this referential sense, we refer to it as
a member of R̂ef to emphasize the distinction.) We also sometimes refer to the
variable environment v̂e as the abstract heap.
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ς̂ ∈ Ŝtate = Êval + Âpply
Êval = ĈALL × B̂Env × V̂Env × Ĉount × T̂ime
Âpply = P̂roc × D̂∗ × R̂ef

∗
× V̂Env × Ĉount × T̂ime

β̂ ∈ B̂Env = VAR → T̂ime
b̂ ∈ B̂ind = VAR × T̂ime

v̂e ∈ V̂Env = B̂ind → D̂
r̂ ∈ R̂ef = B̂ind
d̂ ∈ D̂ = P(B̂as + P̂roc)

p̂roc ∈ P̂roc = Ĉlo
ĉlo ∈ Ĉlo = LAM × B̂Env
b̂as ∈ B̂as = · · ·

μ̂ ∈ Ĉount = B̂ind → {0, 1, ∞}
t̂ ∈ T̂ime = a finite set of abstract times

Fig. 3. The abstract state-space

The set of abstract denotable values (D̂) is the power set of basic values (B̂as)
and procedures (P̂roc). The finite set T̂ime takes the place of Shivers’ contour
set [11]; consequently, the context-sensitivity of the analysis depends on the
choice of the set T̂ime and the next-time function, ŝucc : Ŝtate × T̂ime → T̂ime.

Up to now, our semantic domains have been completely standard for a higher-
order control-flow analysis; we now introduce the extra machinery that gives our
ΓCFA abstract semantics the ability to engage in abstract garbage collection and
counting. Every state features a counter map μ̂. For a binding b̂ and counter μ̂,
the count μ̂(b̂) approximates how many concrete bindings the abstract bind-
ing b̂ represents. The set of approximate counts is {0, 1, ∞}, where the symbol
∞ denotes any number greater than one, and the operator ⊕ is the natural
abstraction of addition.

The argument-evaluation function Â : EXP × B̂Env × V̂Env → D̂ is:

Â(const , β̂, v̂e) = {const}
Â(v, β̂, v̂e) = v̂e(v, β̂(v))

Â(lam , β̂, v̂e) = {(lam , β̂)}
Â([[(prim v1 · · · vn)]], β̂, v̂e) = Ô(prim)〈Â(v1, β̂, v̂e), . . . , Â(vn, β̂, v̂e)〉

where the function Ô : PRIM → (D̂∗ → D̂) maps a primitive to a sound
abstraction.

Figure 4 defines the transition ς̂ ≈> ς̂ ′. The first transition rule (arg. eval.)
looks up the procedure for the expression f , evaluates the arguments e1, . . . , en

and moves forward. The next rule (conditional) makes a best-effort attempt
to avoid forking on conditional evaluation. The subsequent rule (let-binding)
covers the Êval -to-Êval transition for let constructs. The (letrec-binding) rule
is similar, but it implements recursive environment structure by evaluating the λ
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([[(f e1 · · · en)]], β̂, v̂e, μ̂, t̂) ≈> (p̂roc, d̂, r̂, v̂e, μ̂, ŝucc(ς̂ , t̂))

where

⎧
⎨

⎩

p̂roc ∈ Â(f, β̂, v̂e)
d̂i = Â(ei, β̂, v̂e)
r̂i = if ei ∈ VAR then (ei, t̂) else ⊥

(arg. eval.)

([[(if ec et ef )]], β̂, v̂e, μ̂, t̂) ≈> (p̂roc, 〈〉, v̂e, μ̂, ŝucc(ς̂ , t̂))

where p̂roc ∈

⎧
⎪⎨

⎪⎩

Â(et, β̂, v̂e) #f 	∈ Â(ec, β̂, v̂e)
Â(ef , β̂, v̂e) {#f} = Â(ec, β̂, v̂e)
Â(et, β̂, v̂e) 
 Â(ef , β̂, v̂e) otherwise

(conditional)

([[(let ((v e)) call)]], β̂, v̂e, μ̂, t̂) ≈> (call , β̂[v �→ t̂ ], v̂e ′, μ̂′, ŝucc(ς̂, t̂))

where
{

v̂e ′ = v̂e 
 [(v, t̂) �→ Â(e, β̂, v̂e)]
μ̂′ = μ̂ ⊕ (λ .0)[(v, t̂) �→ 1]

(let-binding)

([[(letrec ((v e)∗) call)]], β̂, v̂e , μ̂, t̂) ≈> (call , β̂′, v̂e ′, μ̂′, t̂ ′)

where

⎧
⎪⎪⎨

⎪⎪⎩

t̂ ′ = ŝucc(ς̂, t̂)
β̂′ = β̂[vi �→ t̂ ′]

v̂e ′ = v̂e 
 [(vi, t̂ ′) �→ Â(lami, β̂
′, v̂e)]

μ̂′ = μ̂ ⊕ (λ .0)[(vi, t̂ ′) �→ 1]

(letrec-binding)

(([[(λ (v1 · · · vn) call)]], β̂), d̂, r̂, v̂e , μ̂, t̂) ≈> (call , β̂′, v̂e ′, μ̂′, ŝucc(ς̂ , t̂))

where

⎧
⎨

⎩

β̂′ = β̂[vi �→ t̂ ]
v̂e ′ = v̂e 
 [(vi, t̂) �→ d̂i]
μ̂′ = μ̂[(vi, t̂) �→ μ̂(vi, t̂) ⊕ if (vi, t̂) = r̂i then 0 else 1].

(proc. app.)

Fig. 4. The abstract transition ς̂ ≈> ς̂ ′. (ΓCFA)

terms within the next environment β̂′. The final rule (proc. app.) covers Âpply-
to-Êval transitions for the application of a procedure.

In an improvement upon previous work [9], we include machinery to detect
when a binding remains invariant across a call. The sole purpose of passing
a vector of references (i.e., bindings) is to determine when a variable is being
rebound to itself. In the (proc. app.) rule, when it’s found that a binding is being
rebound to itself, its abstract cardinality—the number of concrete bindings it
represents—does not increase.

The root of the abstract graph for a program call is the initial machine state,
an Êval state with an empty environment and a counter that maps everything
to 0: (call , ⊥, ⊥, (λ .0), t̂0).

Note that using a CPS-based representation renders all the rules of our seman-
tics axioms: none of the rules in Figure 4 are inference rules with antecedents.
Thus, a CPS semantics really captures the notion of a “machine,” where each
transition depends on a local, bounded amount of computation and context.

Finally, note what happens when we cast our fairly standard higher-order
control-flow analysis as an abstract small-step semantics: it maps a program
into a finite state-graph. . . which is exactly what a model-checker needs. Before
invoking a model checker, however, we’ll first turn our attention to techniques
to “sharpen” our abstract state graph, reducing the degree of approximation
inherent in its finite structure.
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4 Governors

Conditional abstract garbage collection attempts to discard even some “reach-
able” abstract objects by proving that an unsatisfiable condition guards their
use. This requires a syntactic function that yields the sequence of the conditions
that hold upon reaching an expression. For example, in the expression:

(let ((a 3))
(if (= a b) e1 e2))

The binding ( �→ a 3) and the condition (= a b) govern the use of the expres-
sion e1, whereas ( �→ a 3) and (not (= a b)) govern the use of e2. Formally,
given a term t and a subterm s ∈ t, the governors of s within t are the conditions
in the vector G(t, s), where G is defined in Figure 5.

G(v, s) = 〈〉
G(const , s) = 〈〉

G([[(λ (v1 · · · vn) call)]], s) = G(call , s)

G([[(e1 · · · en)]], s) =

{
G(ei, s) s ∈ ei

〈〉 otherwise

G([[(let ((v e)) call)]], s) =

⎧
⎪⎨

⎪⎩

G(e, s) s ∈ e
〈[[(�→ v e)]]〉 § G(call , s) s ∈ call
〈〉 otherwise

G([[(letrec ((v lam)∗) call)]], s) =

⎧
⎪⎨

⎪⎩

〈[[(�→ vi lami)]]〉 § G(lami, s) s ∈ lami

〈[[(�→ vi lami)]]〉 § G(call , s) s ∈ call
〈〉 otherwise

G([[(if ec et ef )]], s) =

⎧
⎪⎨

⎪⎩

〈ec〉 § G(et, s) s ∈ et

〈[[(not ec)]]〉 § G(ef , s) s ∈ ef

〈〉 otherwise

Fig. 5. The governor function. (We write v1 § v2 to concatenate two vectors.)

5 Conditional Abstract Garbage Collection

In previous work [9], we based abstract garbage collection on the same notion
as concrete garbage collection: reachability. That is, if object a is reachable, and
a points to b, then object b is also considered reachable. Reachability, however,
is overly conservative, as it might keep objects uncollected when they will never
again be used.

Consider the following thunk-creating function, f:

(define (f a b c d)
(λ () (if (equal? a b) c d)))
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Analyzing the expression (f x x y z) produces an abstract closure contain-
ing entries for the variables a, b, c and d in its environment. So, all four
bindings would be considered reachable from this closure. In reality, however,
it is impossible to reach the binding to the variable d, since the predicate
(not (equal? a b)) governs its use, and because the predicate is provably
unsatisfiable from the information x = a = b. To lessen such problems, we
annotate object-to-object links with governing conditions in the abstract heap
v̂e; these conditions must be satisfiable for a binding to be potentially
usable.

To build this stronger GC, we first need the concept of the set of bindings
touched by a value. The touching function accepts an environment, a counter
and a value, and it returns the bindings directly touched by that value:

T̂ μ̂
v̂e(lam , β̂) = {(v, β̂(v)) : v ∈ free(lam) and (β̂, v̂e, μ̂, 〈〉) MaySat G(lam , v)},

where the MaySat (may satisfy) relation includes a binding only if all of its
governors could be satisfiable.

The MaySat relation is a subset of (B̂Env × V̂Env × Ĉount × Ĝov
∗
) × Ĝov

∗
.

The notion that a compound environment (β̂, v̂e, μ̂, g) may satisfy a vector of
governors g′ is defined recursively:

(β̂, v̂e, μ̂, g) MaySat g′1 (β̂, v̂e, μ̂, g § 〈g′1〉) MaySat 〈g′2, . . . , g′n〉
(β̂, v̂e, μ̂, g) MaySat 〈g′1, . . . , g′n〉

The base case, (β̂, v̂e, μ̂, g) MaySat 〈〉, holds trivially.
Clearly, we can specify a number of rules to describe the MaySat relation on

a single governor. The less obvious rules are below. For any case not covered,
the MaySat relation can always conservatively report “yes,” Were the relation
MaySat to always report “yes,” the GC would become reachability-based.

Binding governors are trivially satisfied, and they also yield an equivalence:

( �→ v e) ∈ g

(β̂, v̂e, μ̂, g) MaySat (≡ v e)

Surprisingly, with the use of abstract counting, we can also attempt to prove
complete equality (≡) for function values by checking (efficiently) to see if two
closures happen to describe the same function:

Â(v1, β̂, v̂e) = Â(v2, β̂, v̂e) = (lam , β̂′) ∀v ∈ free(lam) : μ̂(v, β̂′(v)) = 1
(β̂, v̂e, μ̂, g) MaySat (≡ v1 v2)

We may also choose to invoke an external theorem prover in an attempt to
demonstrate the MaySat relation. In other work [8], we explored the sound inte-
gration of abstract interpretation and theorem proving. The issues and solutions
encountered there are adaptable to this context as well.
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At this point, we can define the remainder of the garbage-collection machinery.
Basic values touch nothing; for denotables, we extend touching:

T̂ μ̂
v̂e{p̂roc1, . . . , p̂rocn} = T̂ μ̂

v̂e(p̂roc1) ∪ · · · ∪ T̂ μ̂
v̂e(p̂rocn).

We can then extend the notion of touching to states:

T̂ (call , β̂, v̂e, μ̂, t̂) =
{

(v, β̂(v)) :
v ∈ free(call ), and
(β̂, v̂e, μ̂, 〈〉) MaySat G(call , v)

}

T̂ (p̂roc, d̂, r̂, v̂e, μ̂, t̂) = T̂ μ̂
v̂e(p̂roc) ∪ T̂ μ̂

v̂e(d̂1) ∪ · · · ∪ T̂ μ̂
v̂e(d̂n).

These functions return the root set from which garbage collection begins. Note
that the touching function does not return the references supplied, r̂. These
references are never used to index into the abstract heap v̂e, and so do not
constitute a reachable use.

The resource we care about is the set of reachable bindings (not values),
so the following relation links binding to binding, skipping over intervening
values:

b̂toucher �̂μ̂
v̂e b̂touched iff b̂touched ∈ T̂ μ̂

v̂e(v̂e(b̂toucher)).

The abstract reachable-bindings function, R̂ : Ŝtate → P(B̂ind) computes the
bindings reachable from a state:

R̂(ς̂) = {b̂ : b̂root ∈ T̂ (ς̂) and b̂root �̂μ̂ς̂

v̂e ς̂

∗
b̂}.

Now we can define the abstract GC function, Γ̂ : Ŝtate → Ŝtate:

Γ̂ (ς̂) =

{
(p̂roc, d̂, r̂, v̂e|R̂(ς̂), μ̂|R̂(ς̂), t̂) ς̂ = (p̂roc, d̂, r̂, v̂e, μ̂, t̂)
(call , β̂, v̂e|R̂(ς̂), μ̂|R̂(ς̂), t̂) ς̂ = (call , β̂, v̂e, μ̂, t̂).

Less formally, abstract garbage collection restricts the global variable environ-
ment and the counter to those bindings which are reachable from that state.1

For any state, we can make a garbage-collecting transition instead of a regular
transition:

Γ̂ (ς̂) ≈> ς̂ ′

ς̂ ≈>Γ̂ ς̂ ′
.

Unlike the flow-analytic version of ΓCFA, there is no advantage for precision in
delaying a collection, so every transition now collects.2 Figure 6 provides a visual
representation of the abstract heap both without governors (traditional ΓCFA)
and with governors (our enhanced ΓCFA).

1 When an entry in a counter μ̂ is restricted, it maps to 0 rather than the value ⊥.
2 Some optimizations, such as Super-β copy propagation, require that the flow analysis

preserves information about dead bindings as long as possible. If counting can prove
a dead binding equivalent to a live binding, it is sometimes efficient to replace the
live variable with the otherwise dead variable.
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b̂1 �� �������	p̂roc1
��

b̂2

��������������� �� �������	p̂roc2

��
b̂3

�� �������	p̂roc3

b̂1 �� �������	p̂roc1

(equal? x y)

��

b̂2

��������������� �� �������	p̂roc2

(< z 3)

��
b̂3

�� �������	p̂roc3

Fig. 6. Two illustrations of an abstract environment (v̂e). Abstract bindings (in boxes)
behave like addresses. Abstract values are in circles. Solid arrows denote that a binding
yields a particular value in this abstract machine state’s total environment v̂e. Dotted
arrows denote that a value touches (T̂ ) a particular binding. The labels on dotted
arrows denote the guards which must be satisfiable in order for the binding to be
semantically touchable. The image on the left denotes a heap without governors; the
image on the right includes sample governors which must be satisfied for a value to
touch a binding.

6 Termination

Näıvely exploring the entire abstract transition graph, while sound, is not the
best approach to running the analysis. At the very least, the state-space should
be explored in depth-first order; each time a new state ς̂ is encountered, the
analysis should check to see whether there exists previously-visited state ς̂ ′ such
that ς̂ � ς̂ ′. If so, this branch terminates soundly.

Even this approach, however, misses opportunties to cut off forking due to
conditionals such as if. Instead, the search can use two work lists: a normal
work list, and a join-point work list. In the normal phase, the search pulls from
the normal work list. When queueing subsequent states, a state applying a join-
point continuation3 goes in the join-point work list. After exhausting the normal
work list, the search runs garbage collection on all states in the join-point list.
After this, the search is free to merge (through � : Apply×Apply → Apply) those
states currently at the same continuation. Aggressive merging lowers precision in
exchange for speed, whereas less enthusiastic merging leads to higher precision
but more time. After this, the join-point and normal lists are swapped, and the
exploration continues.

7 A Small Example

In this section, we will trace through a small example that very simply demon-
strates how abstract garbage collection leads to increased flow-sensitivity even
in a context-insensitive analysis. Flow-sensitivity, in turn, is important when
3 Join-point continuations are easily annotated during CPS conversion.
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Fig. 7. Abstract state transition graphs without, and then with, abstract garbage col-
lection for the infinite lock-unlock loop example

verifying the safety of programs that must obey an ordering in their use of an
API. We opt for a very simple specification: that calls to lock and unlock are
in the right order and never nested.

Take the following program:

(define (lockloop n)
(if (= n 0) (begin (lock mutex) (lockloop 1))

(begin (unlock mutex) (lockloop 0))))
(lockloop 0)

Clearly, this program will forever alternate between locking and unlocking mutex.
But can we model check the computation’s abstract state space to verify that it
correctly observes the lock/unlock protocol? Unfortunately, if we proceed with
an ordinary 0CFA-level abstract interpretation, we’re told that this code could
potentially lock mutex twice. Here’s what happens:

1. The flow set for n grows to {0}.
2. The true conditional arm is taken.
3. mutex is locked.
4. lockloop is called recursively.

5. The flow set for n grows to {0, 1}.
6. Both conditional arms are taken.
7. The analysis tries to re-lock mutex.
8. Lock-order-safety verification fails.

The problem we’re encountering is that in a traditional abstract interpre-
tation, the flow sets increase monotonically. With abstract garbage collection
enabled, however, flow sets can contract, and we get the following scenario:

1. The flow set for n grows to {0}.
2. The true conditional arm is taken.
3. mutex is locked.
4. The flow set for n is GC’d.
5. lockloop is called recursively.
6. The flow set for n grows to {1}.

7. The false conditional arm is taken.
8. mutex is unlocked.
9. The flow set for n is GC’d.

10. lockloop is called recursively.
11. The flow set for n grows to {0}.
12. Lock-order verification succeeds.

With abstract garbage collection enabled, this small example is verified to
be safe with respect to proper locking behavior even with 0CFA-level precision.
Figure 7 depicts the abstract transition graphs generated both without, and then
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with, abstract garbage collection enabled. As before, the simplification makes it
possible visually to reconstruct the control flow of the code from the garbage-
collected graph.

Note that we have not verified the (enormous) state space produced by inter-
leaving execution steps of the locking thread with execution steps of some other
thread in some concurrent semantics, which, of course, is the context in which
we usually care about locks. We have simply verified that a single sequential
computation manipulates a resource such as a lock or a file descriptor according
to the requirements of some prescribed use protocol.

8 A Higher-Order Example

Garbage collection also plays a critical role in taming higher-orderness during
model checking. Consider the following code, which demonstrates this point:

(define mylock (identity lock))
(define myunlock (identity unlock))
(mylock mutex) (myunlock mutex)

Once again, running the 0CFA-level interpretation without garbage collection
fails to verify. Running it again, but with garbage collection, succeeds.

As before, the problem is flow-set merging. Both lock and unlock are seen
flowing out of the identity function id when myunlock is bound. Hence, the
flow set for myunlock includes both lock and unlock. Thus, it appears to the
program that “lock lock” is a possible sequence.

With garbage collection enabled, the flow set for the return value of id is col-
lected before the second call, thereby keeping the flow set of myunlock to strictly
unlock. Consequently, the only lock sequence exhibited is “lock unlock.”

Figure 8 contains the abstract transition graphs both with and without garbage
collection for a 0CFA-level contour set. Once again, the collected graph has ex-
actly the linear progression of states we expect from this example. The uncollected
graph is even more unwieldy than expected. This happens because continuations
(unseen in the direct-style code) also merge in the abstract, and this leads to fur-
ther losses in precision and speed. In the garbage-collected version, however, flow
sets for continuations are also collected.

When a sequence of locks must be taken in order to use a resource, handling
higher-orderness precisely is even more important, for then code patterns such as
the following become commonplace and natural to the functional programmer:

(map lock lock-list)
...
(map unlock lock-list)

Fortunately, with ΓCFA, the flow sets for f don’t merge between invocations of
map, as they ordinarily would without garbage collection.
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Fig. 8. Abstract state transition graphs without and then with abstract garbage col-
lection for the higher-order lock-unlock example

9 Understanding Abstract Garbage Collection

It’s worth exploring the subtle interaction between flow sensitivity, continuations
and abstract GC with a quick case-wise analysis. Programmers hoping to have
their programs validated by this technology should know when abstract GC wins,
and when it loses.

Suppose the call site (f ... e) with continuation argument e invokes the
function (λ (... k) ...) during abstract interpretation. Let’s also assume a
0CFA contour set for now. We can divide this situation into three possible cases.

The first case is when this function is being called recursively as a self-tail call.
That is, a frame for this λ term is live and topmost on the stack, the continuation
e is the variable k, and the function f evaluates to this λ term. Because this
is a tail call, the flow set for the variable k is going to merge with itself. In
other words, no precision is lost for this continuation. As a result, no additional
branching results when this function returns to the values that k represents.
This is important, because iteration constructs such as for loops and while
loops transform to this kind of tail recursion in CPS. The extra intelligence we
have added about re-binding a variable to itself prevents counting precision from
degrading in this case, too.

The second case is when this λ term is being called recursively (perhaps
indirectly or mutually) but not as a tail-call. That is, a frame for this λ term
is live on the stack. This liveness makes the binding for k uncollectable. As a
result, the flow set for the return point e will merge into the flow set for the
continuation k, which already contains return points for the external call to this
λ term. Consequently, when interpretation returns from this λ term, it will return
to external callers from internal or indirectly recursive call sites. If the precision
loss is an issue, switching to a 1CFA contour set or to polymorphic-splitting [13]
removes some of this kind of merging.

The third case is when this λ term is not live on the stack; that is, an external
call to this λ term. In this case, the binding to the continuation variable k is
collectable. Consequently, before merging the flow set for the return point e into
the flow set for the continuation k, the flow set for the continuation k is reset to
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empty. So, in the abstract interpretation, this λ term returns only to the return
points in the flow set for the return point e.

This behavior is a major departure from ordinary flow-sensitive 0CFA anal-
yses, where a function spuriously returns to the return points of all previous
callers. The net effect of this behavior is to augment the degree of polyvariance
achieved for any given contour set. Perhaps most importantly, we can make
promises to the programmer that if they use strict tail-recursion and impera-
tive iteration constructs such as while and for, they will be rewarded during
abstract interpretation.

10 Implementation

We have an implementation of ΓCFA for Scheme, written in Haskell. This is the
implementation that we used to analyse the lock protocols of the examples in
the previous two sections. The implementation also produces warnings for pos-
sible list-access violations, e.g. taking the car of the empty list. In addition, it
performs shape analysis on linked lists, reporting back locations through which
improper (i.e., non-nil-terminated) lists may pass. At present, the implementa-
tion does not utilize an external theorem prover for the MaySat relation. We are
currently working with our colleagues at Georgia Tech to integrate the ACL2
theorem prover into the system.

11 Related Work

The analysis of recursive, higher-order functions in the λ calculus has a rich his-
tory dating back to Church’s original work. In recent years, software verification
and model-checking have made strides with tools such as SLAM [2] and TERMI-
NATOR [3]. TERMINATOR, in fact, can reason about function pointers, which
are a strictly weaker, environmentless cousin to the higher-order closures we deal
with here. Fusing Leuschel et al.’s recent work [7] on symbolic closures with our
own presents a promising avenue for future research.

ΓCFA is embedded within the Cousots’ framework of abstract interpreta-
tion [4,5]. It falls into the family of sound, context-sensitive, flow-sensitive, non-
monotonic model checkers for higher-order programs. ΓCFA differs from other
approaches in that it is geared specifically toward controlling spurious branches
that result from control structures such as continuations and higher-order func-
tions. We believe it is possible to adapt the notion of abstract garbage collection
to abstract-interpretation-based checkers.
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Abstract. This paper presents our integration of efficient resolution-
based theorem provers into the Jahob data structure verification system.
Our experimental results show that this approach enables Jahob to au-
tomatically verify the correctness of a range of complex dynamically
instantiable data structures, such as hash tables and search trees, with-
out the need for interactive theorem proving or techniques tailored to
individual data structures.

Our primary technical results include: (1) a translation from higher-
order logic to first-order logic that enables the application of resolution-
based theorem provers and (2) a proof that eliminating type (sort) in-
formation in formulas is both sound and complete, even in the presence
of a generic equality operator. Our experimental results show that the
elimination of type information often dramatically decreases the time
required to prove the resulting formulas.

These techniques enabled us to verify complex correctness properties
of Java programs such as a mutable set implemented as an imperative
linked list, a finite map implemented as a functional ordered tree, a hash
table with a mutable array, and a simple library system example that
uses these container data structures. Our system verifies (in a matter
of minutes) that data structure operations correctly update the finite
map, that they preserve data structure invariants (such as ordering of
elements, membership in appropriate hash table buckets, or relationships
between sets and relations), and that there are no run-time errors such
as null dereferences or array out of bounds accesses.

1 Introduction

One of the main challenges in the verification of software systems is the analysis
of unbounded data structures with dynamically allocated linked data structures
and arrays. Examples of such data structures are linked lists, trees, and hash
tables. The goal of these data structures is to efficiently implement sets and rela-
tions, with operations such as lookup, insert, and removal. This paper explores
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the verification of programs with such data structures using resolution-based
theorem provers for first-order logic with equality. We only summarize the main
ideas here; see [4] for details.

Initial goal and the effectiveness of the approach. The initial motivation
for using first-order provers is the observation that quantifier-free constraints on
sets and relations that represent data structures can be translated to first-order
logic. This approach is suitable for verifying clients of data structures, because
such verification need not deal with transitive closure present in the implemen-
tation of recursive data structures. The context of this work is the Jahob system
for verifying data structure consistency properties [7]. Our initial goal was to in-
corporate first-order theorem provers into Jahob to verify data structure clients.
While we have indeed successfully verified data structure clients, we also discov-
ered that this approach has a wider range of applicability than we had initially
anticipated, in several respects. 1) We were able to apply this technique not only
to data structure clients, but also to data structure implementations, using recur-
sion and ghost variables and, in some cases, confining data structure mutation to
newly allocated objects only. 2) Theorem provers were effective at dealing with
quantified invariants that often arise when reasoning about unbounded numbers
of objects. 3) Using a simple partial axiomatization of linear arithmetic, we were
able to verify not only linking properties traditionally addressed by shape anal-
yses, but also ordering properties in a binary search tree, hash table invariants,
and bounds for all array accesses.

The context of our results. We find our current results encouraging and
attribute them to several factors. Our use of ghost variables eliminated the need
for transitive closure in specifications for our examples. Our use of recursion in
combination with Jahob’s approach to handling procedure calls resulted in more
tractable verification conditions. The semantics of procedure calls that we used
in our examples is based on complete hiding of modifications to encapsulated
objects. This semantics avoids the pessimistic assumption that every object is
modified unless semantically proven otherwise, but currently prevents external
references to encapsulated objects using simple syntactic checks. Finally, for
those of our procedures that were written using loops instead of recursion, we
manually supplied loop invariants.

Key ideas. The complexity of the properties we are checking makes verification
non-trivial even under these assumptions, and we found it necessary to introduce
the following techniques for proving the generated verification conditions.

1. We introduce a translation to first-order logic with equality that avoids the
potential inefficiencies of a general encoding of higher-order logic into first-
order logic by handling the common cases and soundly approximating the
remaining cases.

2. We use a translation to first-order logic that ignores information about sorts
that would distinguish integers from objects. The results are smaller proof
obligations and substantially better performance of provers. Moreover, we
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prove a somewhat surprising result: omitting such sort information is always
sound and complete for disjoint sorts of the same cardinality. This avoids the
need to separately check the generated proofs for soundness. Omitting sorts
was essential for obtaining our results. Without it, difficult proof obligations
are impossible to prove or take a substantially larger amount of time.

3. We use heuristics for filtering assumptions from first-order formulas that
reduce the input problem size, speed up the theorem proving process, and
improve the automation of the verification process.

The first two techniques are the main contribution of this paper; the use of the
third technique confirms previous observations about the usefulness of assump-
tion filtering in automatically generated first-order formulas [13].

Verified data structures and properties. Together, these techniques en-
abled us to verify, for example, that binary search trees and hash tables correctly
implement their relational interfaces, including an accurate specification of re-
moval operations. Such postconditions of operations in turn required verifying
representation invariants: in binary search tree, they require proving sortedness
of the tree; in hash table, they require proving that keys belong to the buckets
given by their hash code. To summarize, our technique verifies that

1. representation invariants hold in the initial state;
2. each data structure operation

a) establishes the postcondition specifying the change of a user-specified
abstract variable such as a set or relation; for example, an operation
that updates a key is given by the postcondition

content = (old content \ {(x, y) | x = key}) ∪ {(key, value)};
b) does not modify unintended parts of the state, for example, a mutable

operation on an instantiable data structure preserves the values of all
instances in the heap other than the receiver parameter;

c) preserves the representation invariants; and
d) never causes run-time errors such as null dereference or array bounds

violation.

We were able to prove such properties for an implementation of a hash table, a
mutable list, a functional implementation of an ordered binary search tree, and a
functional association list. All these data structures are instantiable (as opposed
to global), which means that data structure clients can create an unbounded
number of their instances. Jahob verifies that changes to one instance do not
cause changes to other instances. In addition, we verified a simple client, a library
system, that instantiates several set and relation data structures and maintains
object-model like constraints on them in the presence of changes to sets and
relations.

What is remarkable is that we were able to establish these results using a
general-purpose technique and standard logical formalisms, without specializing
our system to particular classes of properties. The fact that we can use continu-
ously improving resolution-based theorem provers with standardized interfaces
suggests that this technique is likely to remain competitive in the future.
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From the theorem proving perspective, we expect the techniques we identify
in this paper to help make future theorem provers even more useful for program
verification tasks. From the program verification perspective, our experience sug-
gests that we will soon have a verified library of linked data structures that we
can use to build and verify larger applications.

public ghost specvar content :: "(int * obj) set" = "{}";

public static FuncTree empty_set()
ensures "result..content = {}"

public static FuncTree add(int k, Object v, FuncTree t)
requires "v ~= null & (ALL y. (k,y) ~: t..content)"
ensures "result..content = t..content + {(k,v)}"

public static FuncTree update(int k, Object v, FuncTree t)
requires "v ~= null"
ensures "result..content = t..content - {(x,y). x=k} + {(k,v)}"

public static Object lookup(int k, FuncTree t)
ensures "(result ~= null & (k, result) : t..content)

| (result = null & (ALL v. (k,v) ~: t..content))"

public static FuncTree remove(int k, FuncTree t)
ensures "result..content = t..content - {(x,y). x=k}"

Fig. 1. Method contracts for a tree implementation of a map

2 Binary Tree Example

We illustrate our technique using an example of a binary search tree implement-
ing a finite map. Our implementation is written in Java and is persistent, which
means that the data structure operations do not mutate existing objects, only
newly allocated objects. This makes the verification easier and provides a data
structure which is useful in, for example, backtracking algorithms.

Figure 1 shows the public interface of our tree data structure. The interface
introduces an abstract specification variable content as a set of (key,value)-
pairs and specifies the contract of each procedure using a precondition (given
by the requires keyword) and postcondition (given by the ensures keyword).
The methods have no modifies clauses, indicating that they only mutate newly
allocated objects. In Jahob, the developer specifies annotations such as proce-
dure contracts in special comments /*: ... */ that begin with a colon. The
formulas in annotations belong to an expressive subset of the language used by
the Isabelle proof assistant [16]. This language supports set comprehensions and
tuples, which makes the specification of procedure contracts in this example very
natural. Single dot . informally means “such that”, both for quantifiers and set
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comprehensions. The notation f x denotes function f applied to argument x.
Jahob models instance fields as functions from objects to values (objects, inte-
gers, or booleans). The operator .. is a variant of function application given by
x..f = f x. Operator : denotes set membership, ~= denotes disequality, Un (or,
overloaded, +) denotes union and \<setminus> (or, overloaded, −) denotes set
difference.

public static Object lookup(int k, FuncTree t)
/*: ensures "(result ~= null & (k, result) : t..content)

| (result = null & (ALL v. (k,v) ~: t..content))" */
{

if (t == null) return null;
else

if (k == t.key) return t.data;
else if (k < t.key) return lookup(k, t.left);
else return lookup(k, t.right);

}

Fig. 2. Lookup operation for retrieving the element associated with a given key

class FuncTree {
private int key;
private Object data;
private FuncTree left, right;
/*:
public ghost specvar content :: "(int * obj) set" = "{}";

invariant nullEmpty: "this = null --> content = {}"

invariant contentDefinition: "this ~= null -->
content = {(key, data)} + left..content + right..content"

invariant noNullData: "this ~= null --> data ~= null"

invariant leftSmaller: "ALL k v. (k,v) : left..content --> k < key"
invariant rightBigger: "ALL k v. (k,v) : right..content --> k > key" */

Fig. 3. Fields and representation invariants for the tree implementation

Figure 2 presents the tree lookup operation. The operation examines the tree
and returns the appropriate element. Note that, to prove that lookup is correct,
one needs to know the relationship between the abstract variable content and
the data structure fields left, right, key, and data. In particular, it is necessary
to conclude that if an element is not found, then it is not in the data structure.
Such conditions refer to private fields, so they cannot be captured by the pub-
lic precondition; they are instead given by representation invariants. Figure 3
presents the representation invariants for our tree data structure. Using these
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public static FuncTree update(int k, Object v, FuncTree t)
/*: requires "v ~= null"

ensures "result..content = t..content - {(x,y). x=k} + {(k,v)}" */
{

FuncTree new_left, new_right; Object new_data; int new_key;
if (t==null) {

new_data = v; new_key = k;
new_left = null; new_right = null;

} else {
if (k < t.key) {

new_left = update(k, v, t.left);
new_right = t.right;
new_key = t.key; new_data = t.data;

} else if (t.key < k) {
new_left = t.left;
new_right = update(k, v, t.right);
new_key = t.key; new_data = t.data;

} else {
new_data = v; new_key = k;
new_left = t.left; new_right = t.right;

}
}
FuncTree r = new FuncTree();
r.left = new_left; r.right = new_right;
r.data = new_data; r.key = new_key;
//: "r..content" := "t..content - {(x,y). x=k} + {(k,v)}";
return r;

}

Fig. 4. Map update implementation for functional tree

representation invariants and the precondition, Jahob proves (in 4 seconds) that
the postcondition of the lookup method holds and that the method never per-
forms null dereferences. For example, when analyzing tree traversal in lookup,
Jahob uses the sortedness invariants (leftSmaller, rightBigger) and the def-
inition of tree content contentDefinition to narrow down the search to one of
the subtrees.

Jahob also ensures that the operations preserve the representation invariants.
Jahob reduces the invariants in Figure 3 to global invariants by implicitly quan-
tifying them over all allocated objects of FuncTree type. This approach yields
simple semantics to constraints that involve multiple objects in the heap. When
a method allocates a new object, the set of all allocated objects is extended, so a
proof obligation will require that these newly allocated objects also satisfy their
representation invariants at the end of the method.

Figure 4 shows the map update operation in our implementation. The post-
condition of update states that all previous bindings for the given key are absent
in the resulting tree. Note that proving this postcondition requires the sortedness
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invariants leftSmaller, rightBigger. Moreover, it is necessary to establish all
representation invariants for the newly allocated FuncTree object.

The specification field content is a ghost field, which means that its value
changes only in response to specification assignment statements, such as the one
in the penultimate line of Figure 4. The use of ghost variables is sound and
can be explained using simulation relations [5]. For example, if the developer
incorrectly specifies specification assignments, Jahob will detect the violation of
the representation invariants such as contentDefinition. If the developer spec-
ifies incorrect representation invariants, Jahob will fail to prove postconditions
of observer operations such as lookup in Figure 2.

Jahob verifies (in 10 seconds) that the update operation establishes the post-
condition, correctly maintains all invariants, and performs no null dereferences.
Jahob establishes such conditions by first converting the Java program into a
loop-free guarded-command language using user-provided or automatically in-
ferred loop invariants (the examples in this paper mostly use recursion instead of
loops). A verification condition generator then computes a formula whose valid-
ity entails the correctness of the program with respect to its explicitly supplied
specifications (such as invariants and procedure contracts) as well as the absence
of run-time exceptions (such as null pointer dereferences, failing type casts, and
array out of bounds accesses). The specification language and the generated ver-
ification conditions in Jahob are expressed in higher-order logic [16]. In the rest
of this paper we show how we translate such verification conditions to first-order
logic and prove them using theorem provers such as SPASS [22] and E [20].

3 Translation to First-Order Logic

This section presents our translation from an expressive subset of Isabelle formu-
las (the input language) to first-order unsorted logic with equality (the language
accepted by first-order resolution-based theorem provers). The soundness of the
translation is given by the condition that, if the output formula is valid, so is
the input formula. The details of the translation are in [4].

Input language. The input language allows constructs such as lambda expres-
sions, function update, sets, tuples, quantifiers, cardinality operators, and set
comprehensions. The translation first performs type reconstruction. It uses the
type information to disambiguate operations such as equality, whose translation
depends on the type of the operands.

Splitting into sequents. Generated proof obligations can be represented as
conjunctions of multiple statements, because they represent all possible paths
in the verified procedure, the validity of multiple invariants and postcondition
conjuncts, and the absence of run-time errors at multiple program points. The
first step in the translation splits formulas into these individual conjuncts to
prove each of them independently. This process does not lose completeness, yet
it improves the effectiveness of the theorem proving process because the resulting
formulas are smaller than the starting formula. Moreover, splitting enables Jahob
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to prove different conjuncts using different techniques, allowing the translation
described in this paper to be combined with other translations [23, 8]. After
splitting, the resulting formulas have the form of implications A1∧ . . .∧An ⇒ G,
which we call sequents. We call A1, . . . , An the assumptions and G the goal of
the sequent. The assumptions typically encode a path in the procedure being
verified, the precondition, class invariants that hold at procedure entry, as well as
properties of our semantic model of memory and the relationships between sets
representing Java types. During splitting, Jahob also performs syntactic checks
that eliminate some simple valid sequents such as the ones where the goal G of
the sequent is equal to one of the assumptions Ai.

Definition substitution and function unfolding. When one of the assump-
tions is a variable definition, the translation substitutes its content in the rest of
the formula. This approach supports definitions of variables that have complex
and higher-order types, but are used simply as shorthands, and avoids the full
encoding of lambda abstraction in first-order logic. When the definitions of vari-
ables are lambda abstractions, the substitution enables beta reduction, which
is done subsequently. In addition to beta reduction, this phase also expands
the equality between functions using the extensionality rule (f = g becomes
∀x.f x = g x).

Cardinality constraints. Constant cardinality constraints express natural gen-
eralizations of quantifiers. For example, the statement “there exists at most one
element satisfying P” is given by card {x. P x} ≤ 1. Our translation reduces
constant cardinality constraints to constructs in first-order logic with equality.

Set expressions. Our translation uses universal quantification to expand set
operations into their set-theoretic definitions in terms of the set membership op-
erator. This process also eliminates set comprehensions by replacing x ∈ {y | ϕ}
with ϕ[y �→ x]. These transformations ensure that the only set expressions in
formulas are either set variables or set-valued fields occurring on the right-hand
side of the membership operator.

Our translation maps set variables to unary predicates: x ∈ S becomes S(x),
where S is a predicate in first-order logic. This translation is applicable when S
is universally quantified at the top level of the sequent (so it can be skolemized),
which is indeed the case for the proof obligations in this paper. Fields of type
object or integer become uninterpreted function symbols: y = x.f translates as
y = f(x). Set-valued fields become binary predicates: x ∈ y.f becomes F (y, x)
where F is a binary predicate.

Function update. Function update expressions (encoded as functions fieldWrite
and arrayWrite in our input language) translate using case analysis. If applied
to arbitrary expressions, such case analysis would duplicate complex subterms,
potentially leading to an exponential expansion. To avoid this problem, the trans-
lation first flattens expressions by introducing fresh variables and then duplicates
only variables and not complex expressions, keeping the size of the translated
formula polynomial.
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Flattening. Flattening introduces fresh quantified variables, which could in pri-
nciple create additional quantifier alternations, making the proof process more
difficult. However, each variable can be introduced using either existential or
universal quantifier because ∃x.x=a ∧ ϕ is equivalent to ∀x.x=a ⇒ ϕ. Our
translation therefore chooses the quantifier kind that corresponds to the most
recently bound variable in a given scope (taking into account the polarity),
preserving the number of quantifier alternations. The starting quantifier kind at
the top level of the formula is ∀, ensuring that freshly introduced variables for
quantifier-free expressions become skolem constants.

Arithmetic. Resolution-based first-order provers do not have built-in arithme-
tic operations. Our translation therefore introduces axioms that provide a partial
axiomatization of integer operations +, <, ≤. In addition, the translation supplies
axioms for the ordering relation between all numeric constants appearing in the
input formula. Although incomplete, these axioms are sufficient to verify our
examples.

Tuples. Tuples in the input language are useful, for example, as elements of sets
representing relations, such as the content ghost field in Figure 3. Our trans-
lation eliminates tuples by transforming them into individual components. The
translation maps a variable x denoting an n-tuple into n individual variables
x1, . . . , xn bound in the same way as x. A tuple equality becomes a conjunc-
tion of equalities of components. The arity of functions changes to accommo-
date all components, so a function taking an n-tuple and an m-tuple becomes
a function symbol of arity n + m. The translation handles sets as functions
from elements to booleans. For example, a relation-valued field content of type
obj => (int * obj) set is viewed as a function obj => int => obj => bool and
therefore becomes a ternary predicate symbol.

Approximation. Our translation maps higher-order formulas into first-order
logic without encoding lambda calculus or set theory, so there are constructs
that it cannot translate exactly. Examples include transitive closure (which other
Jahob components can translate into monadic second-order logic [23]) and sym-
bolic cardinality constraints (as in BAPA [8]). Our first-order translation ap-
proximates such subformulas in a sound way, by replacing them with True or
False depending on the polarity of the subformula occurrence. The result of the
approximation is a stronger formula whose validity implies the validity of the
original formula.

4 From Multisorted to Unsorted Logic

This section discusses our approach for handling type and sort information in
the translation to first-order logic with equality. This approach proved essential
for making verification of our examples feasible. The key insight is that omitting
sort information 1) improves the performance of the theorem proving effort, and
2) is guaranteed to be sound in our context.
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To understand our setup, note that the verification condition generator in Ja-
hob produces proof obligations in higher-order logic notation whose type system
essentially corresponds to simply typed lambda calculus [2] (we allow some sim-
ple forms of parametric polymorphism but expect each occurrence of a symbol to
have a ground type). The type system in our proof obligations therefore has no
subtyping, so all Java objects have type obj. The verification-condition generator
encodes Java classes as immutable sets of type obj set. It encodes primitive Java
integers as mathematical integers of type int (which is disjoint from obj). The
result of the translation in Section 3 is a formula in multisorted first-order logic
with equality and two disjoint sorts, obj and int.1 On the other side, the stan-
dardized input language for first-order theorem provers is untyped first-order
logic with equality. The key question is the following: How should we encode
multisorted first-order logic into untyped first-order logic?

The standard approach [11, Chapter 6, Section 8] is to introduce a unary
predicate Ps for each sort s and replace ∃x::s.F (x) with ∃x.Ps(x) ∧ F (x) and
replace ∀x::s.F (x) with ∀x.Ps(x) ⇒ F (x) (where x :: s in multisorted logic
denotes that the variable x has the sort s). In addition, for each function symbol
f of sort s1 × . . . sn → s, introduce a Horn clause ∀x1, . . . , xn. Ps1(x1) ∧ . . . ∧
Psn(xn) ⇒ Ps(f(x1, . . . , xn)).

The standard approach is sound and complete. However, it makes formulas
larger, often substantially slowing down the automated theorem prover. What if
we omitted the sort information given by unary sort predicates Ps, representing,
for example, ∀x::s.F (x) simply as ∀x.F (x)? For potentially overlapping sorts,
this approach is unsound. As an example, take the conjunction of two formulas
∀x::Node.F (x) and ∃x::Object.¬F (x) for distinct sorts Object and Node where
Node is a subsort of Object. These assumptions are consistent in multisorted
logic. However, their unsorted version ∀x.F (x) ∧ ∃x.¬F (x) is contradictory, and
would allow a verification system to unsoundly prove arbitrary claims.

In our case, however, the two sorts considered (int and obj) are disjoint and
have the same cardinality. Moreover, there is no overloading of predicate or
function symbols other than equality. Under these assumptions, we have the
following result. Let ϕ∗ denote the result of omitting all sort information from
a multisorted formula ϕ and representing the equality (regardless of the sort of
arguments) using the built-in equality symbol.

Theorem 1. There exists a function mapping each multisorted structure I into
an unsorted structure I∗ and each multisorted environment ρ to an unsorted
environment ρ∗, such that the following holds: for each formula ϕ, structure I,
and a well-sorted environment ρ,

�ϕ∗�I
∗

ρ∗ if and only if �ϕ�Iρ

The proof of Theorem 1 is in [4, Appendix F]. It constructs I∗ by taking a new
set S of same cardinality as the sort interpretations S1, . . . , Sn in I, and defining

1 The resulting multisorted logic has no sort corresponding to booleans (as in [11,
Chapter 6]). Instead, propositional operations are part of the logic itself.
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the interpretation of symbols in I∗ by composing the interpretation in I with
bijections fi : Si → S. Theorem 1 implies that if a formula (¬ψ)∗ is unsatisfiable,
then so is ¬ψ. Therefore, if ψ∗ is valid, so is ψ.

A resolution theorem prover with paramodulation rules can derive ill-sorted
clauses as consequences of ϕ∗. However, Theorem 1 implies that the existence of
a refutation of ϕ∗ implies that ϕ is also unsatisfiable, guaranteeing the soundness
of the approach. This approach is also complete. Namely, notice that stripping
sorts only increases the set of resolution steps that can be performed on a set of
clauses. Therefore, we can show that if there exists a proof for ϕ, there exists a
proof of ϕ∗. Moreover, the shortest proof for the unsorted case is no longer than
any proof in multisorted case. As a result, any advantage of preserving sorts
comes from the reduction of the branching factor in the search, as opposed to
the reduction in proof length.

Impact of omitting sort information. Figure 5 shows the effect of omitting
sorts on some of the most problematic formulas that arise in our benchmarks.
They are the formulas that take more than one second to prove using SPASS
with sorts, in the two hardest methods of our Tree implementation. The figure
shows that omitting sorts usually yields a speed-up of one order of magnitude,
and sometimes more. In our examples, the converse situation, where omitting
sorts substantially slows down the theorem proving process, is rare.

Time (s) Proof length Generated clausesBenchmark
SPASS E SPASS SPASS E

w/o w. w/o w. w/o w. w/o w. w/o w.
1.1 5.3 30.0 349.0 155 799 9425 18376 122508 794860
0.3 3.6 10.4 42.0 309 1781 1917 19601 73399 108910
4.9 9.8 15.7 18.0 174 1781 27108 33868 100846 256550FuncTree.Remove
0.5 8.1 12.5 45.9 301 1611 3922 31892 85164 263104
4.7 8.1 17.9 19.3 371 1773 28170 37244 109032 176597
0.3 7.9 10.6 41.8 308 1391 3394 41354 65700 287253

0.22 +∞ 59.0 76.5 97 - 1075 - 872566 953451
FuncTree.RemoveMax 6.8 78.9 14.9 297.6 1159 2655 19527 177755 137711 1512828

0.8 34.8 38.1 0.7 597 4062 5305 115713 389334 7595

Fig. 5. Verification time, and proof data using the provers SPASS and E, on the hardest
formulas from our examples

5 Experimental Results

We implemented our translation to first-order logic and the interfaces to the first-
order provers E [20] (using the TPTP format for first-order formulas [21]) and
SPASS [22] (using its native format). We also implemented filtering described
in [4, Appendix A] to automate the selection of assumptions in proof obligations.
We evaluated our approach by implementing several data structures, using the
system during their development. In addition to the implementation of a relation

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Using First-Order Theorem Provers 85

as a functional tree presented in Section 2, we ran our system on dynamically
instantiable sets and relations implemented as a functional singly-linked list, an
imperative linked list, and a hash table. We also verified operations of a data
structure client that instantiates a relation and two sets and maintains invariants
between them.

Table 6 illustrates the benchmarks we ran through our system and shows their
verification times. Lines of code and of specifications are counted without blank
lines or comments.2

Our system accepts as command-line parameters timeouts, percentage of re-
tained assumptions in filtering, and two flags that indicate desired sets of arith-
metic axioms. For each module, we used a fixed set of command line options to
verify all the procedures in that module. Some methods can be verified faster
(in times shown in parentheses) by choosing a more fine-tuned set of options.
Jahob allows specifying a cascade of provers to be tried in sequence; when we
used multiple provers we give the time spent in each prover and the number of
formulas proved by each of them.

The values in the “entire class” row for each module are not the sum of all
the other rows, but the time actually spent in the verification of the entire class,
including some methods not shown and the verification that the invariants hold
initially. Running time of first-order provers dominates the verification time, the
remaining time is mostly spent in our simple implementation of polymorphic
type inference for higher-order logic formulas.

Verification experience. The time we spent to verify these benchmarks went
down as we improved the system and gained experience using it. It took approx-
imately one week to code and verify the ordered trees implementation. However,
it took only half a day to write and verify a simple version of the hash table.
It took another few days to verify an augmented version with a rehash function
that can dynamically resize its array when its filling ratio is too high.

6 Related Work

We are not aware of any other system capable of verifying, without interactive
theorem proving, such strong properties of operations on data structures that
use arrays, recursive memory cells, and integer keys.

Verification systems. Boogie [3] is a sound verification system for the Spec#
language, which extends C# with specification constructs and introduces a
particular methodology for ensuring sound modular reasoning in the presence
of aliasing and object-oriented features. Specification variables are present in
Boogie [9] under the name model fields. We are not aware of any results on
2 We ran the verification on a single-core 3.2 GHz Pentium 4 machine with 3GB

of memory, running GNU/Linux. As first-order theorem provers we used SPASS
and E in their automatic settings. The E version we used comes from the CASC-J3
(Summer 2006) system archive and calls itself v0.99pre2 “Singtom”. We used SPASS
v2.2, which comes from its official web page.
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Benchmark lines of code lines of specification number of methods
Relation as functional list 76 26 9
Relation as functional Tree 186 38 10
Set as imperative list 60 24 9
Library system 97 63 9
Relation as hash table 69 53 10

Benchmark Prover method
Verification
time (sec)

decision
procedures (sec)

formulas
proved

cons 0.9 0.8 9
remove all 1.7 1.1 5
remove 3.9 2.6 7

AssocList E lookup 0.7 0.4 3
image 1.3 0.6 4
inverseImage 1.2 0.6 4
domain 0.9 0.5 3
entire class 11.8 7.3 44
add 7.2 5.7 24
update 9.0 7.4 28
lookup 1.2 0.6 7
min 7.2 6.6 21

FuncTree SPASS + E max 7.2 6.5 22
removeMax 106.5 (12.7) 46.6+59.3 9+11
remove 17.0 8.2 26
entire class 178.4 96.0+65.7 147+16
add 1.5 1.2 9
member 0.6 0.3 7

Imperative
List

SPASS getOne 0.1 0.1 2

remove 11.4 9.9 48
entire class 17.9 14.9 74
currentReader 1.0 0.9 5
checkOutBook 2.3 1.7 6

Library E returnBook 2.7 2.1 7
decommissionBook 3.0 2.2 7
entire class 20.0 17.6 73
init 25.5 (3.8) 25.2 (3.4) 12
add 2.7 1.6 7
add1 22.7 22.7 14

HashTable SPASS lookup 20.8 20.3 9
remove 57.1 56.3 12
update 1.4 0.8 2
entire class 119 113.8 75

Fig. 6. Benchmarks Characteristics and Verification Times
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non-interactive verification that data structures such as trees and hash tables
meet their specifications expressed in terms of model fields.

Abstract interpretation. Shape analyses [19,18] typically verify weaker prop-
erties than in our examples. In [10] the authors use the TVLA system to verify
insertion sort and bubble sort. In [17, Page 35], the author uses TVLA to ver-
ify implementations of insertion and removal operations on sets implemented as
mutable lists and binary search trees. The approach [17] uses manually supplied
predicates and transfer functions and axioms for the analysis, but is able to infer
loop invariants in an imperative implementation of trees. Our implementation
of trees is functional and uses recursion, which simplifies the verification and re-
sults in much smaller running times. The analysis we describe in this paper does
not infer loop invariants, but does not require transfer functions to be specified
either. The only information that the data structure user needs to trust is that
procedure contracts correctly formalize the desired behavior of data structure
operations; if the developer incorrectly specifies an invariant or an update to a
specification variable, the system will detect an error.

Translation from higher-order to first-order logic. In [6, 12, 14] the au-
thors also address the process of proving higher-order formulas using first-order
theorem provers. Our work differs in that we do not aim to provide automation
to a general-purpose higher-order interactive theorem prover. Therefore, we were
able to avoid using general encoding of lambda calculus into first-order logic and
we believe that this made our translation more effective. The authors in [6, 14]
also observe that encoding the full type information slows down the proof pro-
cess. The authors therefore omit type information and then check the resulting
proofs for soundness. A similar approach was adopted to encoding multi-sorted
logic in the Athena theorem proving framework [1]. In contrast, we were able
to prove that omitting sort information preserves soundness and completeness
when sorts are disjoint and have the same cardinality.

Type systems and separation logic. Recently, researchers have developed a
promising approach [15] that can verify shape and content properties of imper-
ative recursive data structures (although it has not been applied to hash tables
yet). Our approach uses standard higher-order and first-order logic and seems
conceptually simpler, but generates proof obligations that have potentially more
quantifiers and case analyses.
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Abstract. An interpolant for a mutually inconsistent pair of formulas
(A, B) is a formula that is (1) implied by A, (2) inconsistent with B, and
(3) expressed over the common variables of A and B. An interpolant can
be efficiently derived from a refutation of A∧B, for certain theories and
proof systems. In this tutorial we will cover methods of generating inter-
polants, and applications of interpolants, including invariant generation
and abstraction refinement.

1 Introduction

An interpolant for a mutually inconsistent pair of formulas (A, B) is a formula
that is (1) implied by A, (2) inconsistent with B, and (3) expressed over the com-
mon variables of A and B. Craig’s interpolation lemma [1] states that every pair
of inconsistent first-order formulas has an interpolant. For certain theories and
proof systems, we can derive an interpolant for (A, B) from a refutation of A∧B.
For example, interpolants can be derived from resolution proofs in propositional
logic. We can also derive interpolants from refutation proofs in first-order logic,
and in the quantifier-free fragment of first-order logic with various interpreted
theories [5].

Interpolants derived from proofs have a variety of applications in model check-
ing. In various contexts, interpolation can be used as a substitute for image
computation, which involves quantifier elimination and is thus computationally
expensive. The idea is to replace the image operation with a weaker approxima-
tion that is still strong enough to prove a given property.

For example, interpolation can be used to construct an inductive invariant
of a sequential system, such as a hardware design or a program. This invariant
contains only information actually deduced by a prover in refuting counterex-
amples a given property. Thus, in a certain sense, this method abstracts the
invariant relative to a given property, exploiting the prover’s ability to focus the
proof on a small set of relevant facts. This avoids the complexity of computing
the strongest inductive invariant (i.e., the reachable states) as is typically done
in model checking, and works well in the the case where a relatively simple,
localized invariant suffices to prove a property of a large system.

This approach gives us a complete procedure for model checking temporal
properties of finite-state systems that allows us to exploit recent advances in
SAT solvers for the proof generation phase. Experimentally, the method is found
to be quite robust for industrial hardware verification problems, relative to other
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model checking approaches [4]. The same approach can be applied to infinite-
state systems, such as programs and parameterized protocols, using first-order
provers, or proof-generating decision procedures. Using interpolants to avoid the
expense of predicate image computations, we can obtain substantial efficiencies
in software model checking [6]. Moreover, using appropriate techniques we can
guarantee to find an inductive invariant proving a given property, if one exists in
the prover’s theory (though in general the verification problem is undecidable).

Interpolants can also be used for abstraction refinement in various con-
texts. For example, the Blast software model checker uses interpolants to derive
predicates for use in predicate abstraction [2], and also to refine the predicate
transition relation, to compensate for the inaccuracy of the Cartesian image
approximation [3].

The tutorial will cover methods for generating interpolants from proofs, for
both the propositional and first-order cases, and the various applications of these
methods.
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Abstract. We define the class of single-parent heap systems, which rely on a
singly-linked heap in order to model destructive updates on tree structures. This
encoding has the advantage of relying on a relatively simple theory of linked lists
in order to support abstraction computation. To facilitate the application of this
encoding, we provide a program transformation that, given a program operating
on a multi-linked heap without sharing, transforms it into one over a single-parent
heap. It is then possible to apply shape analysis by predicate and ranking abstrac-
tion as in [3]. The technique has been successfully applied on examples with trees
of fixed arity (balancing of and insertion into a binary sort tree).

1 Introduction

In [3] we propose a framework for shape analysis of singly-linked graphs based on a
small model property of a restricted class of first order assertions with transitive clo-
sure. Extending this framework to allow for heaps with multiple links per node entails
extending the assertional language and proving a stronger small model property. At this
point, it is not clear whether such a language extension is decidable (see [11,12] for
relevant results).

This paper deals with verification of programs that perform destructive updates of
heaps consisting only of trees of bounded or unbounded arity, to which we refer as
multi-linked heaps. We bypass the need to handle trees directly by transforming heaps
consisting of multiple trees into structures consisting of singly-linked lists (possibly
with shared suffixes). This is accomplished by “reversing” the parent-to-child edges of
the trees populating the heap, as well as associating scalar data with nodes. We refer to
the transformed heap as a single-parent heap.

Verification of temporal properties of multi-linked heap systems can be performed as
follows: Given a multi-linked system and a temporal property, the system and property
are (automatically) transformed into their single-parent counterparts. Then, a counter-
example-guided predicate- (and possibly ranking-) abstraction refinement method
([3,4]) is applied. If a counter-example (on the transformed system) is produced, it is
automatically mapped into a counter-example of the original (multi-linked) system.

The rest of this paper is organized as follows: After we discuss related work,
we present the formal model in Section 2 and define predicate abstraction thereof.

� This research was supported in part by ONR grant N00014-99-1-0131, and SRC grant 2004-
TJ-1256.
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Section 3 defines systems over single-parent heaps and Section 4 describes their model
reduction. Section 5 defines systems over multi-linked heaps, and Section 6 shows how
to transform them to single-parent heap systems. We conclude in Section 7.

Related Work

Numerous frameworks have been suggested for analyzing singly-linked heaps, e.g.,
[7,8,10,16,19], all assuming that programs access heap cells solely by reachability from
variables. This effectively disallows backward traversal, a necessary feature when re-
ducing trees to singly-linked structures.

The correspondence between tree structures and singly-linked structures is the basis
of the proof of decidability of first-order logic with one function symbol in [9]. More
generally, the observation that complex data structures with regular properties can be re-
duced to simpler structures has been utilized in [13,15,17,20]. However, it is not always
straightforward to apply, and, to our knowledge, has not been applied in the context of
predicate abstraction. Several assumptions that hold true in analysis of “conventional”
programs over singly-linked heaps (e.g., C- or Pascal-programs), cannot be relied upon
when reducing trees to lists. For example, the number of roots of the heap is no longer
bounded by the number of program variables.

The use of path compression in heaps to prove small model properties of logics of
linked structures, has been used before, e.g., in [6] and more recently in [3,21]. Our
work on parameterized systems relies on a small model theorem for checking induc-
tiveness of assertions. The small model property there is similar to the one here with
respect to stratified data. However, with respect to unstratified data (such as graphs),
the work on parameterized systems suggests using logical instantiation as a heuristic
(see, e.g., [1]), whereas here completeness is achieved using graph-theoretic methods.

2 The Formal Framework

In this section we present our computational model, as well as the method of predicate
abstraction.

2.1 Fair Discrete Systems

As our computational model, we take a fair discrete system (FDS) 〈V, Θ, ρ, J , C〉, where

• V — A set of system variables. A state of D provides a type-consistent interpre-
tation of the variables V . For a state s and a system variable v ∈ V , we denote by
s[v] the value assigned to v by the state s. Let Σ denote the set of all states over V .

• Θ — The initial condition: An assertion (state formula) characterizing the initial
states.

• ρ(V, V ′) — The transition relation: An assertion, relating the values V of the vari-
ables in state s ∈ Σ to the values V ′ in a D-successor state s′ ∈ Σ. We assume that
every state has a ρ-successor.

• J — A set of justice (weak fairness) requirements (assertions); A computation
must include infinitely many states satisfying each of the justice requirements.
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• C — A set of compassion (strong fairness) requirements: Each compassion require-
ment is a pair 〈p, q〉 of state assertions; A computation should include either only
finitely many p-states, or infinitely many q-states.

For an assertion ψ, we say that s ∈ Σ is a ψ-state if s |= ψ.
A run of an FDS D is a possibly infinite sequence of states σ : s0, s1, . . . satisfying

the requirements:

• Initiality — s0 is initial, i.e., s0 |= Θ.
• Consecution — For each � = 0, 1, . . ., the state s�+1 is a D-successor of s�. That

is, 〈s�, s�+1〉 |= ρ(V, V ′) where, for each v ∈ V , we interpret v as s�[v] and v′ as
s�+1[v].

A computation of D is an infinite run that satisfies

• Justice — for every J ∈ J , σ contains infinitely many occurrences of J-states.
• Compassion – for every 〈p, q〉 ∈ C, either σ contains only finitely many occurrences

of p-states, or σ contains infinitely many occurrences of q-states.

We say that a temporal property ϕ is valid over D, denoted by D |= ϕ, if for every
computation σ of D, σ |= ϕ. We are interested in safety properties, of the form � p, and
progress properties, of the form � (p → � q), where p and q are state assertions. Since
our methodology for verifying safety properties can be easily extended to verification
of progress properties (along the lines of [4]), we restrict here to the former. Yet, we
include the fairness requirements here for sake of completeness, while they are only
necessary when dealing with progress.

2.2 Predicate Abstraction

The material here is a summary of [14] and [3]. We fix an FDS D = 〈V, Θ, ρ, J , C〉
whose set of states is Σ. We consider a set of abstract variables VA = {u1, . . . , un}
that range over finite domains. An abstract state is an interpretation that assigns to each
variable ui a value in the domain of ui. We denote by ΣA the (finite) set of all abstract
states. An abstraction mapping is presented by a set of equalities

αE : u1 = E1(V ), . . . , un = En(V ),

where each Ei is an expression over V ranging over the domain of ui. The abstraction
αE induces a semantic mapping αE : Σ �→ ΣA, from the states of D to the set of
abstract states.

Usually, most of the abstract variables are boolean, and then the corresponding ex-
pressions Ei are predicates over V , which is why this type of abstraction is referred to
as predicate abstraction. The abstraction mapping αE can be expressed succinctly by
VA = E(V ).

Throughout the rest of the paper, when there is no ambiguity, we shall refer to αE

simply as α. For an assertion p(V ), we define its α-abstraction (with some overloading
of notation) by α(p) : ∃V.(VA = E(V ) ∧ p(V )).
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The semantics of α(p) is ‖α(p)‖ : {α(s) | s ∈ ‖p‖}. Note that ‖α(p)‖ is, in general,
an over-approximation – an abstract state S is in ‖α(p)‖ iff there exists some concrete
p-state that is abstracted into S. A bi-assertion β(V, V ′) is abstracted by:

α2(p) : ∃V, V ′.(VA = E(V ) ∧ V ′
A = E(V ′) ∧ β(V, V ′))

See [3] for a discussion justifying the use of over-approximating abstractions in this
setting. The abstraction of D by α is the system

Dα = 〈VA, α(Θ), α2(ρ),
⋃

J∈J
α(J),

⋃

(p,q)∈C
〈α(p), α(q)〉 〉

The soundness of predicate abstraction is derived from [14]:

Theorem 1. For a system D, abstraction α, and a temporal formula ψ:

Dα |= ψα =⇒ D |= ψ

3 Single-Parent Heaps

A single-parent heap system is an extension of the model of finite heap systems (FHS)
of [3] specialized for representing trees. Such a system is parameterized by a positive
integer h, which is the heap size. Some auxiliary arrays may be used to specify more
complex structures (e.g., ordered trees). However, each node u has a single link to which
we refer as its “parent,” and denote it by parent(u).

For example, we present in Fig. 1 a program that inserts a node into a binary sort tree
rooted at a node r. To allow for the presentation of a sorted binary tree, we use an array
ct (child-type) such that ct [u] equals left or right if node u is, respectively, the left or
right child of its parent. We also require that any two children of the same parent must
have different child-types. One may wish to show, for example, that program TREE-
INSERT satisfies the following for every x:

no-loss : parent∗(x, r) → � parent∗(x, r)
no-gain : x �= n ∧ ¬parent∗(x, r) → � ¬parent∗(x, r)

The ε-expressions, εj.cond in lines 8 and 12 denote “choose any node j that satisfies
cond.” For both statements in this program, it is easy to see that there is exactly one node
j that meets cond. However, this is not always the case, and then such an assignment is
interpreted non-deterministically. We also allow for universal tests, as those in lines 5
and 9, that test for existence of a particular node’s left or right child.

We now formally define the class of single-parent heap systems. Let h > 0 be the
heap size. We allow the following data types:

bool Variables whose values are boolean. With no loss of generality, we assume that
all finite domain (unparameterized) values are encoded as bools;

index Variables whose value is in the range [0..h];
index �→ bool arrays (bool arrays) that map heap elements to some finite domain (such

as ct above);
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r, t : [1..h] init t = r
n : [1..h]
parent : array [0..h] of [0..h] init parent[n] = parent[r] = 0

and parent[0] = 0 ∧ ∀u . parent[u] �= n
ct : array [0..h] of {left, right}

init ∀i �= j . parent[i] = parent[j] �= 0 → ct[i] �= ct[j]
data : array [0..h] of [1..k]
done : bool init FALSE�

�����������������������

1 : while ¬done do�
�������������������

2 : if data[n] = data[t] then
3 : done := TRUE

4 : elseif data[n] < data[t] then�
����

5 : if ∀j.parent[j] �= t ∨ ct[j] �= left then
6 : (parent[n], ct[n]) := (t, left)
7 : done := TRUE

else
8 : t := ε j . parent[j] = t ∧ ct[j] = left

�
����

9 : elseif ∀j.parent[j] �= t ∨ ct [j] �= right then
10 : (parent[n], ct[n]) := (t, right)
11 : done := TRUE

else
12 : t := ε j . parent[j] = t ∧ ct[j] = right

�
�������������������

13 :

�
�����������������������

Fig. 1. Program TREE-INSERT inserts a new node n into a binary sort tree rooted at node r

index �→ index arrays (index arrays), that describe the heap structure. We allow at
most two index arrays, which we usually denote by parent and parent ′.

We assume a signature of variables of all of these types. Constants are introduced as
variables with reserved names. Thus, we admit the boolean constants FALSE and TRUE,
and the index constant 0. In order to have all functions in the model total, we define
both bool and index arrays as having the domain index. A well-formed program should
never assign a value to Z[0] for any (bool or index) array Z . On the other hand, unless
stated otherwise, all quantifications are taken over the range [1..h].

We refer to index elements as nodes. If in state s, the index variable x has the value
�, then we say that in s, x points to the node �. An index term is the constant 0, an index
variable, or an expression Z[y], where Z is an index array and y is an index variable.

Atomic formulae are defined as follows:

• If x is a boolean variable, B is a bool array, and y is an index variable, then x and
B[y] are atomic formulae.

• If t1 and t2 are index terms, then t1 = t2 is an atomic formula.
• A Transitive closure formula (tcf ) of the form Z∗(x1, x2), denoting that x2 is Z-

reachable from x1, where x1 and x2 are index variables and Z is an index array.

We find it convenient to include “preservation statements” for each transition, that de-
scribe the variables that are not changed by the transition. There are two types of such
statements:

1. Assertions of the form pres({v1, . . . , vk}) =
∧k

i=1 v′i = vi where all vi’s are scalar
(bool or index) variables;

2. Assertions of the form presH({a1, . . . , ak}) =
∧k

i=1 ∀h �∈ H . a′
i[h] = ai[h]

where all ai’s are arrays and H is a (possible empty) set of index variables. Such
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error ∧ error′ ∧ presEx(error)
∨

¬error ∧�
���������������������������������

π = 1 ∧ ¬done ∧ π′ = 2 ∧ presEx(π)
∨ π = 1 ∧ done ∧ π′ = 13 ∧ presEx(π)
∨ π = 2 ∧ data[t] = data[n] ∧ π′ = 3 ∧ presEx(π)
∨ π = 2 ∧ data[t] �= data[n] ∧ π′ = 4 ∧ presEx(π)
∨ π = 3 ∧ π′ = 1 ∧ done′ ∧ presEx(π, done)
∨ π = 4 ∧ data[n] < data[t] ∧ π′ = 5 ∧ presEx(π)
∨ π = 4 ∧ data[t] ≤ data[n] ∧ π′ = 9 ∧ presEx(π)
∨ π = 5 ∧ π′ = 6 ∧ (∀j.parent[j] �= t ∨ ct[j] �= left) ∧ presEx(π)
∨ π = 5 ∧ π′ = 8 ∧ (∃j.parent[j] = t ∧ ct[j] = left) ∧ presEx(π)
∨ π = 6 ∧ n = 0 ∧ error′ ∧ presEx(error)
∨ π = 6 ∧ π′ = 7 ∧ n �= 0 ∧ parent′[n] = t ∧ ct′[n] = left ∧ presEx(π, parent[n], ct [n])
∨ π = 7 ∧ π′ = 1 ∧ done′ ∧ presEx(π, done)
∨ π = 8 ∧ π′ = 1 ∧ (∃j . parent[j] = t ∧ ct[j] = left ∧ t′ = j) ∧ presEx(π, t)
∨ π = 9 ∧ π′ = 10 ∧ (∀j.parent[j] �= t ∨ ct[j] �= right) ∧ presEx(π)
∨ π = 9 ∧ π′ = 12 ∧ (∃j.parent[j] = t ∨ ct[j] = right) ∧ presEx(π)
∨ π = 10 ∧ n = 0 ∧ error′ ∧ presEx(error)
∨ π = 10 ∧ π′ = 11 ∧ n �= 0 ∧ parent′[n] = t ∧ ct′[n] = right ∧ presEx(π, parent[n], ct [n])
∨ π = 11 ∧ π′ = 1 ∧ done′ ∧ presEx(π, done)
∨ π = 12 ∧ π′ = 1 ∧ (∃j . parent[j] = t ∧ ct[j] = right ∧ t′ = j) ∧ presEx(π, t)
∨ π = 13 ∧ π′ = 13 ∧ presEx(π)

�
���������������������������������

Fig. 2. The transition relation of TREE-INSERT. The variable π represents the program counter.

an assertion denotes that all but finitely many (usually a none or a single) entries of
arrays indexed by certain nodes remain intact.

Note that preservation formulae are at most universal. We abuse notation and use the
expression presEx (v1, . . . , vk) to denote the preservation of all variables, excluding the
terms v1, . . . , vk, which are either variables or array terms of the form A[x].

Fig. 2 presents the transition relation associated with the program of Fig. 1. The
implied encoding introduces an additional bool variable error which is set to TRUE

whenever there is an attempt to assign a value to A[0], for some array A. Consequently,
the transitions corresponding to statements 6 and 10 set error to TRUE if n = 0, which
is tested before assigning values to parent [n] and to ct [n].

A restricted A-assertion is either one of the following forms: ∀y . Z[y] �= u,
∀y . Z[y] �= u ∨ B[y], ∀y . Z[y] �= u ∨ ¬B[y], presH(Z), and presH(B), where Z is an
index array and B is a bool array, and H is a (possibly empty) set of index variables. A
restricted EA-assertion is a formula of the form ∃�x . ψ(�u, �x), where �x is a list of index
variables, and ψ(�u, �x) is a boolean combination of atomic formulae and restricted A-
assertions, where restricted A-assertions appear under positive polarity. Note that in
restricted EA-assertions, universally quantified variables may not occur in tcf’s. As the
initial condition Θ we allow restricted EA-assertions, and in the transition relation ρ
and fairness requirements we only allow restricted EA-assertions without tcf’s. Prop-
erties of systems are restricted EA-assertions, and abstraction predicates are boolean
combinations of atomic formulae and non-preservation universal formulae. Note that
restricted EA-assertions are more expressive than restricted A-assertions of [3] in that
they allow, by means of existential and universal quantification, for traversal of trees in
both directions.
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4 Computing Symbolic Abstractions of Single-Parent Heaps

We show how to symbolically compute the abstraction of a single-parent heap system
by extending the methodology of [3]. That methodology is based on a small model
property establishing that satisfiability of a restricted assertion is checkable on a small
instantiation of a system. The main effort here is dealing with the extensions to the
assertional language introduced for single-parent heap systems. For simplicity, it is as-
sumed that all scalar values are represented by multiple boolean values.

Assume a vocabulary V of typed variables, as well as the primed version of said
variables. Furthermore, assume that there is a single unprimed index array in V as well
as a single primed one. These will be denoted throughout the rest of this section by
parent and parent ′, respectively. A model M of size h + 1 for V consists of:

• A positive integer h > 0;
• For each boolean variable b ∈ V , a boolean value M [b] ∈ {FALSE, TRUE}. It is

required that M [FALSE] = FALSE and M [TRUE] = TRUE;
• For each index variable x ∈ V , a value M [x] ∈ [0..h]. It is required that M [0] = 0;
• For each bool array B ∈ V , a function M [B] : [0..h] → {FALSE, TRUE};
• For each index array Z ∈ {parent , parent ′}, a function M [Z] : [0..h] → [0..h].

Let ϕ be a restricted EA-assertion, which we fix for this section. We require that if a
term of the form parent ′[u] occurs in ϕ where u is a free or existentially quantified vari-
able in ϕ, then ϕ also contains the preservation formula associated with parent . Note
that this requirement is satisfied by any reasonable ϕ — assertions that contain primed
variables occur only in proofs for abstraction computation (rather than in properties of
systems), and are generated automatically by the proof system. In such cases, the as-
sertion generated includes also the transition relation, which includes all preservation
formulae. We include this requirement explicitly since the proof of the small model
theorem depends on it.

Given a model M , one can evaluate the formula ϕ over the model M . The model M
is a satisfying model for ϕ, if ϕ evaluates to TRUE in M , i.e., if M |= ϕ. An index term
t ∈ {u, Z[u]} in ϕ, where u is an existentially quantified or a free variable, is called a
free term. Let Tϕ denote the minimal set consisting of the following:

– The term 0 and all free terms in ϕ;
– For every array Z ∈ V , if Z[u] ∈ Tϕ then u ∈ Tϕ;
– For every bool array B ∈ V , if B[u] ∈ ϕ, then if B is unprimed, parent [u] ∈ Tϕ,

and if B is primed, parent ′[u] ∈ Tϕ;
– If parent ′[u] ∈ Tϕ then parent [u] ∈ Tϕ (this is similar to history closure of [3]).

Let M be a model that satisfies ϕ with size greater then |Tϕ|+1 as follows: Let N be the
set of [0..h] values that M assigns to free terms in Tϕ. Assume that N = {n0, . . . , nm}
where 0 = n0 < · · · < nm. Obviously, m ≤ |Tϕ|. Define a mapping γ : N → [0..m]
such that γ(u) = i iff M [u] = ni (Recall that M [Tϕ] = N , so that γ is onto).

We now define the model M . We start with its size and the interpretation of the
scalars: M [h] = m+1; For each bool variable b, M [b] = M [b]; For each term u ∈ Tϕ

M [u] = γ(u).
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Let Z ∈ {parent , parent ′} be an index array, and let j ∈ [0..m]. Consider the Z-
chain in M α : nj = u0, . . . such that for every i ≥ 1, M [Z](ui−1) = M [ui]. If there is
some i ≥ 1 such that ui ∈ N , then let k be the minimal such i. We then say that uk−1
is the M representative of Z for j and define M [Z](j) = γ(uk). If no such i exists,
then M [Z](j) = m+1.

As for the interpretation of M over bool arrays, we distinguish between the case of
unprimed and primed arrays. For an unprimed (resp. primed) bool array B, for every
j ∈ [0..m], if the M representative of parent (resp. parent ′) is defined and equals v,
then let M [B](j) = γ(v). Otherwise, M [B](j) = M [B](nj). As for M [B](m+1), let
d ∈ [0..h] be the minimal such that M [d] �∈ N . Then M [B](m+1) is defined to be
M [B](d).

Example 1 (Model Reduction).

(a) A single-parent heap model
M

(b) The reduction
M of M

Fig. 3. Model Reduction

Let parent and data be index and bool arrays respectively, and let ϕ be the assertion:

ϕ : ∃u, v . u �= v ∧ ∀y . (parent [y] �= u ∨ data[y])

Since there are no free variables in ϕ, and since no array term refers to the uth or vth

element, it follows that Tϕ consists only of the index terms u and v. Let M be a model
of ϕ of size 7, as shown in Fig. 3(a). The interpretations by M of terms in Tϕ are the
highlighted nodes. Each node y is annotated with the value M [data](y) (e.g., the node
pointed to by u has data value of FALSE). M , which is the reduction of M with respect
to Tϕ, is given in Fig. 3(b). The M representative of parent for M [v] is given by the
node highlighted by a dashed line in Fig. 3(a). As shown here, the node pointed to by v
in M takes on the properties of this representative node.

In the full version of the paper [2] we prove:

Theorem 2. If M |= ϕ then ϕ is satisfiable by a model of size at most |Tϕ| + 1.
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The discussion below is similar to the one in [3]; see details there. For a restricted EA-
assertion ϕ and a positive integer h0 > 0, define the h0-bounded version of ϕ, denoted
by �ϕ�h0 , to be the conjunction ϕ ∧ ∀y . y ≤ h0. Theorem 2 can be interpreted as
stating that ϕ is satisfiable iff �ϕ�|Tϕ| is satisfiable.

We next extend the small model theorem to the computation of abstraction of sys-
tems. Consider an abstraction α, where the set of (finitely many combinations of) val-
ues of the abstract system variables V

A
is {U1, . . . , Uk}. Let sat(ϕ) be the subset of

indices i ∈ [1..k], such that Ui = Eα(V ) ∧ ϕ(V ) is satisfiable. Then α(ϕ)(V
A
) =∨

i∈sat(ϕ)(VA
= Ui).

Consider the assertion ψ0 : Ui = Eα(V ) ∧ ϕ(V ). Let h0 = |Tψ0 |. Our reinter-
pretation of Theorem 2 states that ψ0 is satisfiable iff �ψ0�h0 is satisfiable. Therefore,
sat(�ϕ�h0) = sat(ϕ). Thus, α(ϕ)(V

A
) ↔ α(�ϕ�h0)(VA

). This can be extended to ab-
straction of assertions that refer to primed variables. Recall that the abstraction of such
an assertion involves a double application of the abstraction mapping, an unprimed ver-
sion and a primed version. Assume that ϕ(V, V ′) is such an assertion, and consider
ψ1 : (Ui = E

A
(V )) ∧ (Uj = E

A
(V ′)) ∧ ϕ(V, V ′). Let h1 = |Tψ1 |. By the same

reasoning, we have α(ϕ)(V
A
, V ′

A
) ↔ α(�ϕ�h1(VA

, V ′
A
)).

Next we generalize these results to entire systems. For an FHS S = 〈V, Θ, ρ, J , C〉
and positive integer h0, we define the h0-bounded version of S, denoted �S�h0 , as
〈V ∪ {H}, �ρ�h0, �J �h0 , �C�h0〉, where �J �h0 = {�J�h0 | J ∈ J } and �C�h0 =
{(�p�h0 , �q�h0) | (p, q) ∈ C}. Let h0 be the maximum size of the sets Tψ , for every
abstraction formula ψ necessary for computing the abstraction of all the components of
S. Then we have the following theorem:

Theorem 3. Let S be an FHS, α be an abstraction mapping, and h0 the maximal size
of the relevant sets of free terms as described above. Then the abstract system Sα is
equivalent to the abstract system �S�α

h0
.

As a consequence, in order to compute the abstract system Sα, we can instantiate the
system S to a heap of size h0, and use propositional methods, e.g., BDD-techniques1,
to compute the abstract system �S�α

h0
. Note that h0 is linear in the number of system

variables. This process is fully automatic once the predicate base is given. The exact
manner by which predicates themselves are derived (e.g., by user input or as part of a
refinement loop) is orthogonal to the method presented here.

5 Multi-linked Heap Systems

In this section we define multi-linked heap systems with a bounded out-degree on nodes.
A multi-linked heap is represented similar to a single-parent heap, only, instead of hav-
ing a single index array, we allow for some k > 1 index arrays, each describing one
of the links a node may have. We denote these arrays by link1, . . . , linkk. Thus, each
link i is an array [0..h] �→ [0..h]. We are mainly interested in non-sharing heaps, which
satisfy the following requirements:

1 In our experiments we use TLV ([18]).
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1. For every i = 1, . . . , k, link i[0] = 0.
2. No two distinct positive nodes may share a common positive child. This require-

ment can be formalized as

∀j, � ∈ [1..h], i, r ∈ [1..k] . (j �= �) ∧ (link i[j] = link r[�]) → link i[j] = 0

3. No two distinct links of a positive node may point to the same positive child. This
can be formalized as

∀j ∈ [1..h], s, t ∈ [1..k] . (s �= t) ∧ (link s[j] = link t[j]) → link s[j] = 0

A state violating one of these three requirements is called a sharing state. We refer to
the conjunction of these three requirements as the formula no sharing. A multi-linked
system is called sharing-free if none of its computations ever reaches a sharing state,
nor does a computation ever attempt to assign a value to A[0] for some array A.

Let D : 〈V, Θ, ρ, J , C〉 be a k-bounded multi-linked heap system. Fig. 4 describes
a BNF-like syntax of the assertions used in describing D. There, Ivar denotes an
unprimed index variable, Iarr denotes an unprimed index array, Bvar denotes an
unprimed bool variable, and Barr denotes an unprimed bool array. The expression
reach(x, y) abbreviates (x, y) ∈ (

⋃k
i=1 link i)∗, and the expression cycle(x) abbrevi-

ates (x, x) ∈ (
⋃k

i=1 link i)+. The Preservation assertion is just like in the single-parent
case and we require that if Assign appears in τ , then the Preservation assertion that
is conjoined with it includes preservation of all variables that don’t appear in the left-
hand-side of any clause of Assign.

MCond1 ::= TRUE | Bvar | Barr[Ivar] | Ivar = Ivar | Ivar = 0 |
Iarr[Ivar] = Ivar | Iarr[Ivar] = 0 |
MCond1 ∨ MCond1 | ¬MCond1

MCond2 ::= MCond1 | reach(Ivar,Ivar) | cycle(Ivar) |
¬MCond2 | MCond2 ∨ MCond2

Assign ::= ε | Bvar′ | ¬Bvar′ | Barr′[Ivar] | ¬Barr′[Ivar] |
Bvar′ = Bvar | Ivar′ = 0 | Ivar′ = Ivar |
Iarr′[Ivar] = Ivar | Iarr′[Ivar] = 0 | Assign ∧ Assign

Θ ::= MCond2 ∧ no sharing

ρ ::= TRUE | MCond1 ∧ Assign ∧ Preservation | ρ ∨ ρ

J ::= ∅ | J ∪ { MCond1}
C ::= ∅ | C ∪ {(MCond1,MCond1)}

Fig. 4. Grammar for Assertions for Multi-Linked Systems

For example, consider a binary tree, which is a multi-linked heap with bound 2 and
no sharing. Each of left and right is a link . Program TREE-INSERT in Fig. 5 is the
standard algorithm for inserting a new node, n, into a sorted binary tree rooted at r. In
[2] we describe the transition relation of the algorithm.
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r, t, n : [1..h] init t = r ∧ ¬reach(r, n) ∧ ¬cycle(r)
left, right : array [0..h] of [0..h] init no sharing
data : array [0..h] of bool
done : bool init done = FALSE�

�����������������������

1 : while ¬done do�
�������������������

2 : if data[n] = data [t] then
3 : done := TRUE

4 : elseif data[n] < data[t] then�
����

5 : if left[t] = 0 then
6 : left[t] := n
7 : done := TRUE

else
8 : t := left[t]

�
����

9 : elseif right[t] = 0 then
10 : right[t] := n
11 : done := TRUE

else
12 : t := right[t]

�
�������������������

13 :

�
�����������������������

Fig. 5. Program TREE-INSERT of Fig. 1, adapted to the encoding of trees as multi-linked heaps

6 Reducing Multi-linked into Single-Parent Heaps

We now show how to transform multi-linked heap systems into single-parent heap sys-
tems.

6.1 The Transformation

Let Dm : 〈Vm, Θm, ρm, Jm, Cm〉 be a k-bounded multi-linked heap system. Thus, Vm

includes the index arrays link1, . . . , linkk. We transform Dm into a single-parent heap
system Ds : 〈Vs, Θs, ρs, Js, Cs〉 as follows:

The set of variables Vs consists of the following:

1. Vm \ {link1, . . . , linkk}, i.e., we remove from Vm all the link arrays;
2. An index array parent : [0..h] �→ [0..h] that does not appear in Vm;
3. A bool array ct : [0..h] �→ [0..k] that does not appear in Vm (recall our convention

that “bool” can be any finite-domain type);
4. A new bool variable error; error is set when Dm contains an erroneous transition

such as one that introduces sharing in the heap, or attempts to assign values to A[0]
for some array A.

Intuitively, we replace the index link arrays with a single index parent array that re-
verses the direction of the links, and assign to ct [i] (child type) the “birth order” of i in
the heap. The variable error is boolean and is set when Dm cannot be transformed into a
singe-parent system. This is caused by either an assignment to A[0] or by a violation of
the non-sharing requirements. When such an error occurs, error is raised, and remains
so, i.e., ρs implies error → error′.

A single-parent state is said to be well formed if the parent of 0 is itself, and no parent
has two distinct children with the same birth order, i.e.,

wf : parent [0] = 0 ∧ ∀i �= j . (parent [i] = parent [j] �= 0 → ct [i] �= ct [j])
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To transform ρm, Jm, and Cm into their Ds counterparts, it suffices to transform
M-assertions over Vm ∪ V ′

m into restricted EA-assertions over Vs ∪ V ′
s. To transform

Θm, which is of the form no sharing ∧ ϕ, where ϕ is an MCond2, into Θs, we take
the conjunction of wf and the transformation of ϕ. It thus remains to transform M-
assertions. Recall that ρm is a disjunction of clauses (see Section 5), each one of the
form

ϕ ∧ τ ∧ presEx (Vm − {V })

where V ⊆ Vm, ϕ is an MCond over Vm, and τ is an Assign statement of the form∧
v∈V v′ = Ev(Vm) (where Ev is some expression). When we transform such a ρm-

disjunct, we sometimes obtain several disjuncts. We assume that each has its obvious
presEx assertions over Vs. At times, for simplicity of representation, we do not express
the transformation directly in DNF. Yet, in those cases, the DNF form is straightforward.

It thus remains to show how to transform M-assertions into restricted EA-assertions.
This is done by induction on the M-assertions, where we ignore the preservation part
(which, as discussed above, is defined by the transition relation for both Dm and Ds.)

Let ψ be an M-assertion. In the following cases, ψ remains unchanged in the trans-
formation:

1. ψ contains no reference to index variables and arrays;
2. ψ is of the form x1 = x2 where x1 and x2 are both primed, or both unprimed,

index variables;
3. ψ is of the form x1 = x2 where x1 is a primed, and x2 is an unprimed, index

variable;
4. ψ is of the form x = 0 where x is a (either primed or unprimed) index variable;
5. ψ is of the form B[x], where B is a bool array.

The other cases are treated below. We now denote primed variables explicitly, e.g., x1
refers to an unprimed variable, and x′

1 refers to a primed variable:

1. An assertion of the form link j [x2] = x1 is transformed into

(x2 = 0 ∧ x1 = 0)
∨ (x2 �= 0 ∧ x1 = 0 ∧ ∀ . (parent [z] �= x2 ∨ ct [z] �= j))
∨ (x2 �= 0 ∧ x1 �= 0 ∧ parent [x1] = x2 ∧ ct [x1] = j)

In the case that x2 �= 0 and x1 = 0, x2 should have no jth child. If x2 �= 0 and
x1 �= 0, then x1 should have x2 as a parent and the child type of x1 should be j.

2. A transitive closure formula reach(x1, x2) is transformed into

(x1 �= 0 ∧ x2 �= 0 ∧ parent∗(x2, x1)) ∨ (x2 = 0)

The first disjunct deals with the case where x1 and x2 are both non-0 nodes, and
then the reachability direction is reversed, reflecting reversal of heap edges in the
transformation to a single-parent heap. The second disjunct deals with the case that
x2 = 0, and then, since k > 0, there is a path from any node into 0.

3. A transitive closure formula cycle(x), where x is an index variable, is transformed
into parent∗(parent [x], x).
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4. An assertion of the form “x′
1 = link j [x2]” is transformed into:

(x2 = 0 ∧ x′
1 = 0) ∨ (x2 �= 0 ∧ x′

1 = 0 ∧ ∀y . (parent [y] �= x2 ∨ ct [y] �= j))
∨ (x2 �= 0 ∧ ∃y . (parent [y] = x2 ∧ ct [y] = j ∧ x′

1 = y)

In case x2 = 0, this transition sets x1 to 0 since we assume that in non-sharing
states link j [0] = 0 for every j = 1, . . . , k. Otherwise, if x2 has no jth child, then
x1 is set to 0. Otherwise, there exists a y which is the jth child of x2, and then x1
is set to y.

5. An assertion of the form “link ′
j [x1] = x2” is transformed into:

Err ∧ error′ ∨
¬Err

∧ (x2 = 0 ∨ (x2 �= 0 ∧ parent ′[x2] = x1 ∧ ct ′[x2] = j))

∧
(

∀z.(parent [z] �= x1 ∨ ct [z] �= j)
∨ ∃z.(parent [z] = x1 ∧ ct [z] = j ∧ (z = x2 ∨ parent ′[z] = 0))

)

Where Err is defined by:

x1 = 0 ∨ (x2 �= 0 ∧ parent [x2] �= 0 ∧ (parent [x2] �= x1 ∨ ct [x2] �= j))

I.e., the assignment may cause an error by either attempting to assign a value to
link j [0], or by introducing sharing (when x2 either has a parent that is not x1, or is
x1’s ith child for some i �= j).
When there is no error, x2 should become the jth child of x1 unless it is 0, which
is expressed by the first conjunct of the non-error case; in addition, any node that
was the jth child of x1 before the transition should become “orphaned,” which is
expressed by the second conjunct of the non-error case.

The following observation follows trivially from the construction above:

Observation 1. The transformation of an M-assertion is a restricted EA-assertion.

In [2] we show how to transform the multi-linked heap system defined by the program
in Fig. 5 into a single-parent heap system. We also establish there:

6.2 Correctness of Transformation

In order for the above transformation to fit into the verification process proposed in
Section 1, we have to show that the result of the verification, as carried out on the
transformed system and property, holds with respect to the untransformed counterparts.
Such a result is provided by Theorem 4 below. To show that the abstraction computation
method of Section 4 is sound with respect to a transformed program and property, we
use Observation (1) and Theorem 5 below.

Let Dm : 〈Vm, Θm, ρm, Jm, Cs〉 be a k-bounded multi-linked heap system over the
set of variables Vm, with k > 1, and let Ds : 〈Vs, Θs, ρs, Js, Cs〉 be its transformation
into a single-parent heap system. The transformation into a single-parent heap system
induces a mapping S : Σm → Σs.

The following theorems are presented without proofs, which are found in the full
version [2].
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Theorem 4 (Soundness). Assume that for every s ∈ Σm, s |= no sharing. Let ϕm

be a temporal property over M-restricted A-assertions over Vm, and let ϕs be ϕm,
where every assertion over Vm is replaced with its transformation into a restricted EA-
assertion over Vs. Then: Ds |= ϕs ⇐⇒ Dm |= ϕm

While Theorem 4 shows that validity of temporal formulae carries from multi-linked
systems into single-parent ones only when the former satisfy non-sharing, we prove
that if the latter never reaches an error state, then the former never violates non-sharing:

Theorem 5 (Non-sharing). If Ds |= � ¬error then Dm |= � no sharing.

Thus, to verify Dm |= ϕm, one would initially perform a “sanity check” by verifying
Ds |= � ¬error. If this is successful, then the process outlined in Section 1 can be
carried out. Theorem 4 guarantees not only that correctness of Ds implies correctness
of Dm, but also that a counterexample over Ds is mappable back into Dm.

7 Conclusion

We describe a transformation from programs that perform destructive updates over
multi-linked heaps without sharing into single-parent heaps that is based on the idea of
simulating a tree (or forest) by a set of converging lists. We then apply an abstraction-
based verification framework to automatically verify properties of systems over multi-
linked heaps.

We applied our technique to verify properties of insertion into AVL trees. We are
currently implementing more benchmarks, including an implementation of 2-3 trees.
We are also extending the transformation to allow for unbounded out-degrees in the
multi-linked heap, and to heaps whose “backbone” is single-parent, which would allow
us to model algorithms that “flip” heap edges (a surprisingly useful feature). In the
longer term, we would like to investigate how to use multi-linked heap systems as the
basis for further structure simulation (e.g., as in [20,13]).

Acknowledgement. We would like to thank Viktor Kuncak and Greta Yorsh for their
insight regarding structure simulation. We also would like to thank the anonymous re-
viewers for their constructive comments.
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Abstract. Research on the automatic verification of heap-manipulating programs
(HMPs) — programs that manipulate unbounded linked data structures via point-
ers — has blossomed recently, with many different approaches all showing leaps
in performance and expressiveness. A year ago, we proposed a small logic for
specifying predicates about HMPs and demonstrated that an inference-rule-based
decision procedure could be performance-competitive, and in many cases superior
to other methods known at the time. That work, however, was a proof-of-concept,
with a logic fragment too small to verify most real programs. In this work, we
generalize our previous results to be practically useful: we allow the data in heap
nodes to be mutable, we allow more than a single pointer field, and we add new
primitives needed to verify cyclic structures. Each of these extensions necessitates
new or changed inference rules, with the concomitant changes to the proofs and
decision procedure. Yet, our new decision procedure, with the more general logic,
actually runs as fast as our previous results. With these generalizations, we can
automatically verify many more HMP examples, including three small container
functions from the Linux kernel.

1 Introduction

Heap-manipulating programs (HMPs) are programs that access and modify linked data
structures consisting of an unbounded number of uniform heap nodes. They are a some-
what idealized model of programs with dynamic memory allocation, and given that
most real software applications use dynamic memory allocation, they are an important
frontier for software verification.

Research on verification of HMPs has blossomed recently, with over a dozen papers
published in the past year alone, and many different approaches showing incredible
progress. For example, automatically verifying the sortedness of applying bubble sort
to a singly-linked list required well over 4 minutes of runtime for a state-of-the-art
approach a year and a half ago [25], whereas by a year ago, we could verify sorted-
ness (and no memory leaks or cycles) in less than 2 minutes [2]. Verifying no leaks
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or cycles (but not sortedness) took us only 11.4 seconds, but this verification could be
done in a mere 0.08 seconds a half year later! [29] While one may quibble about de-
tails when comparing performance results in this research area (e.g., machine speeds
vary slightly, many papers do not report exact run times or the precise property being
verified, amount of human effort is hard to quantify, etc.), the overall trend of rapid
advancement is clear. Numerous approaches are now efficient enough to be potentially
practically relevant.

Given the large amount of related work, we provide here only a very crude sketch
of the research milieu surrounding our work. We can roughly group most work on
HMP verification into three broad categories: shape analysis based on abstract inter-
pretation [13], deductive verification using classical Floyd-Hoare-style pre- and post-
conditions [36] augmented with a specialized logic for heap structures, or model
checking [37] using predicate abstraction [15] to deal with the infinite state space.

Perhaps most widely known is the shape analysis work, epitomized by the TVLA
system [31]. As the name implies, a major strength of these approaches is in the anal-
ysis of the shape of heap structures, and they are able to handle shapes, like trees, that
most other approaches cannot. Data, on the other hand, is commonly abstracted away,
e.g., the impressively fast 0.08 second verification cited above ignores data in heap
nodes. Earlier shape analysis work also required user assistance to specify “instrumen-
tation predicates” and how they are affected by updates. More recent work has improved
precision (e.g., [33]) and automation (e.g., [29]).

The deductive approach to verifying HMPs is the most venerable, dating back to
Nelson’s pioneering work [10]. Nelson was working with first-order logic, imposing
a penalty in both performance and manual effort. Much more recently, PALE [18] is
based on the weak, monadic, second-order logic of graph types, which is a decidable
logic for which the MONA decision procedure [30] exists. Unfortunately, the complex-
ity is non-elementary, so the decision procedure must be used with care. Separation
logic [27] is apparently the key to much greater efficiency, with recent results report-
ing fast verification times (e.g., [6]) and interprocedural scalability [4]. A decidable
fragment of separation logic is also known [5]. Deductive approaches typically require
manual effort, particularly to specify loop invariants, but recent work is addressing that
problem as well (e.g., [26,28]).

Model checking, on the other hand, has always emphasized full automation, includ-
ing automatic computation of invariants via fixpoints, and great precision. Model check-
ing has revolutionized hardware verification, and with the use of predicate abstraction,
has started to impact software verification as well (e.g., [15,16,32,17]). Predicate ab-
straction conservatively abstracts a program into a Boolean program whose state space
is the truth valuations of a finite set of predicates over the concrete program state. Once
the predicates are specified, the method runs fully automatically. (In this paper, we do
not consider heuristics for discovering predicates.) To verify HMPs, we therefore need
a logic for specifying predicates about the heap state. Furthermore, to compute ab-
stract pre- or post-images, the decision procedure for the logic must be extremely fast,
since most predicate abstraction approaches make numerous queries to the decision
procedure. Dams and Namjoshi were the first to explore this approach, but not having
a decision procedure for their logic, they had to rely on manual guidance to assure
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termination [14]. Balaban et al. proposed a simple logic and small-model-theorem-
based decision procedure, and demonstrated the feasibility and promise of this ap-
proach [7]. Alternatively, Lahiri and Qadeer proposed first-order axioms for their heap
properties and used a first-order prover [23]. In both works, the decision procedure
was a major bottleneck, and performance was substantially worse than the more estab-
lished approaches. We were inspired by these pioneering works and created a simple
logic and novel decision procedure that demonstrated that an approach based on model
checking and predicate abstraction could be performance competitive, and often supe-
rior, to other methods available at the time [1,2].1 (Other recent promising logics for the
predicate-abstraction-based approach include [21] and [34], but no decision procedures
are available yet.)

In addition to the fast run times and low memory usage, another feature of our ap-
proach was the architecture of the decision procedure. Rather than being based on a
small model theorem, it fires inference rules until saturation, backtracking as needed.
Such a decision procedure promises several potential benefits: it simplifies integration
into a combined satisfiability-modulo-theories solver; it suggests the ability to gen-
erate proofs automatically, which could be checked for higher assurance; and proof-
generation suggests the possibility of computing interpolants, which have demonstrated
enormous potential for improving model-checking efficiency [35]. Accordingly, there
is value in pursuing an inference-rule-based decision procedure for HMP verification,
as long as the performance is adequate, which it is.

Unfortunately, our previous work was only a proof-of-concept. The logic we proposed
is too simplistic: data in heap nodes was not allowed to change, we could not specify
important properties about cyclic lists, and heap nodes had only a single pointer field.
These restrictions eliminated the vast majority of real programs from consideration.

Contributions: This paper expands and generalizes our previous, preliminary results
to be practically useful:

– The new logic and decision procedure allow data stored in heap nodes to be muta-
ble. With this extension, our method can in principle model any operations on data
to full bit-accuracy. (In practice, of course, data fields will be downsized as much
as possible, as is typical in model checking.) Changing the logic to allow data up-
dates necessitated discovering and adding four new inference rules to the decision
procedure.

– We now allow a finite number of pointer fields per heap node. This is needed by all
but the most simplistic data structures. This change required all inference rules to
be parameterized over the pointer fields, and the proofs must consider interacting
constraints arising from the different points-to relations.

– To support cyclic data structures (e.g., cyclic singly- and doubly-linked lists), we
added a generalized, ternary transitive closure between operator btwn f (x,y,z), sim-
ilar to Nelson’s [10]. While the idea of such an operator is not new, how to support
such an operator in an inference-rule-based decision procedure is completely new.

1 The published paper has some minor errors, which are corrected in the technical report [2].
The technical report gives run times for the corrected algorithm, which are also much faster
than in the paper, due to an improved implementation.
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This was the most difficult change to our decision procedure, requiring the addition
of 14 new inference rules, most of which are quite complicated.

– Despite the vastly increased complexity of the inference rule set, the essential struc-
ture of the decision procedure remained unchanged — the basic approach is still
empirically very efficient. In fact, with continuing improvements to the implemen-
tation, performance actually improved slightly.

– The additional inference rules did greatly complicate the theoretical underpinnings
of our approach. We report some theoretical results for our new logic and decision
procedure: our decision procedure is sound and always terminates, and the decision
procedure is complete for the fragment of the logic without updates. (In practice,
completeness was not an issue, as we could verify all examples that we could spec-
ify.) The statements of the theorems are completely analogous to our previous work
(e.g., “The decision procedure is sound.”), but the proofs had to be completely re-
worked to account for the greater complexity of the expanded logic.

Overall, the contributions in this paper enable us to very efficiently verify a much larger
variety of HMPs, including three small container functions from the Linux kernel.

2 Review of Our Previous Logic and Decision Procedure

To make this paper self-contained, we briefly review our original, simple logic and the
proof-of-concept decision procedure. Details are in the published paper and technical
report [1,2].

One of the most fundamental concepts for verifying HMPs is unbounded reachability
(a.k.a. transitive closure) between nodes, i.e., can one follow pointers from node x to
node y. Several papers have previously identified the importance of transitive closure for
HMPs, e.g., [9,10,11,12,7,23,38]. Unfortunately, adding support for transitive closure
to even simple logics often yields undecidability [12], hence our decision to start with
a minimal logic and add features as needed to verify real examples.

In particular, the logic we originally proposed in [1] is as minimal as imaginable
while usable to verify some non-trivial HMPs using predicate abstraction. Fig. 1 shows
the logic. While there can be an arbitrary amount of data, allowing modeling with

term ::= v | f (term)
atom ::= f ∗(term, term) | term= term | d(term) | b

literal ::= atom | ¬atom

Fig. 1. Our original, simple transitive closure logic [1]. v is any of a finite set of node variables
that point to heap nodes. b is any of a finite set of Boolean variables that model data not contained
in heap nodes. Each heap node has a finite set of data fields D, each able to hold a Boolean value,
and d ∈ D. These model data contained in a heap node, with whatever precision is desired. There
is a single pointer field f in each heap node, which points to another heap node. The term f (x)
denotes the heap node reached by following the f pointer from node x. Similarly, the atom d(x)
denotes the content of data field d in node x. Transitive closure is specified with f ∗(x,y), which
denotes whether node x reaches node y by following 0 or more f pointers. The decision procedure
decides satisfiability of conjunctions of literals.
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f (x)=y f ∗(x,z)
x=z f ∗(y,z)

FUNC

Fig. 2. Inference rule example. This is a typical inference rule from the decision procedure. Above
the line are antecedents; below the line are consequents. This rule says that if we get to node y
by following one f pointer from node x, and if we can get from x to z by following 0 or more
f pointers, then we conclude that x = z or that we can get from y to z by following 0 or more f
pointers.

bit-accurate precision, there is only a single pointer field, with a single transitive closure
operator, which greatly restricts the heap properties that could be specified.

To specify the effect of program assignments that modify pointers in the heap, i.e.,
modify f , we need to be able to specify a transition relation between the old and new
values of f . Accordingly, for each assignment of the form f (τ1) := τ2, we allow the
user to specify a pointer function symbol f ′ that represents the value of f after the
assignment. The semantic relationship between f and f ′ is

f ′ = update( f ,τ1,τ2) (1)

Our decision procedure implicitly constrains f and f ′ appropriately, which is previous
work. However, our original logic did not have the analogous constructs to allow heap
data to be modified.

Conjunction and disjunction are conspicuous by their absence. The decision proce-
dure decides satisfiability of a conjunction of literals. The satisfiability of a conjunction
of predicates is the fundamental operation in computing the abstract pre- or post-image
operators in predicate abstraction, potentially being called an exponential number of
times per image, so we designed the decision procedure for that problem. We would
handle a general formula with disjunctions by going to DNF and checking satisfiability
of each disjunct separately.

The decision procedure is based on applying inference rules (IRs). Viewed from a
high level, the decision procedure repeatedly searches for an applicable IR, applies it
(i.e. adds one of its consequents to the set of literals), and recurses. The recursion is
necessary for those IRs that branch, i.e. have multiple consequents. If the procedure
ever infers a contradiction, it backtracks to the last branching IR with an unexplored
consequent, or returns unsatisfiable if there is no such IR. If the procedure reaches a
point where there are no applicable IRs and no contradictions, it returns that the set of
literals is satisfiable. Fig. 2 shows one sample inference rule. The decision procedure
for our original logic has 17 inference rules, some of which are parameterized.

3 New Extensions to Logic and Decision Procedure

Our previous work was proof-of-concept: HMP verification based on model-checking
and predicate abstraction could be performance competitive with other approaches,
thanks to our efficient, inference-rule-based decision procedure. But our simplistic logic
was too inexpressive for all but a few examples.
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This paper addresses that problem. In the following subsections, we describe three
extensions to our original logic and decision procedure. These extensions are absolutely
indispensable for verifying a wide range of real programs. For each extension, we give
a short example illustrating typical program constructs that motivated the extension,
and then present how we changed the logic and decision procedure. The BNF for the
extended logic is provided in Fig. 3.

3.1 Mutable Data Fields

Fig. 4 presents a simple example of a procedure that mutates data fields. The procedure
sets the values of the data field of all nodes in the non-empty acyclic singly-linked input
list head to true. Necessary assumptions are formalized by the assume statement on
line 2 of the program. The body of the procedure is simple; it traverses the list, and on
line 5 assigns true to the data field d at each iteration. The specification is expressed by
the assert statement on line 8, and indicates that whenever line 8 is reached, head must
point to an acyclic singly-linked list with data field d of all nodes set to true.

Assignments that modify a data field d ∈ D have the general form d(τ) := b, where
τ is a term, and b is a data variable. Line 5 of the HMP of Fig. 4 is an example of
such assignment. In order to be able to handle data mutations, for each data assignment
we allow the user to introduce a data function symbol d′ that represents d after the
assignment. The semantic relationship between d and d′ is

d′ = update(d,τ,b) (2)

Our decision procedure implicitly enforces the constraint (2) when it encounters the
symbols d and d′. We accomplished this through the additional set of inference rules
that capture the effects of a data field update. Fig. 5 presents these rules, and for ex-
ample PRESERVEVALUE ensures the data values of nodes that are not equal to τ are
preserved.

3.2 Cyclicity

We illustrate the extension for supporting cyclic lists with an example called INIT-
CYCLIC in Fig. 6. The procedure takes a node head that points to a cyclic list and sets
the data fields of all nodes in the list to true. Necessary assumptions are again formal-
ized by the assume statement on line 2 of the program. In the predicates required for the
verification of this example, the subformulas of the form btwn f (x,y,z) express that by
following a sequence of f links from node x, we’ll reach node y before we reach node z,
i.e. node y comes between nodes x and z. The fact that head is reachable from f (head)

term ::= v | f (term)
atom ::= f ∗(term, term) | term= term | d(term) | b | btwn f (term, term, term)

literal ::= atom | ¬atom

Fig. 3. The syntax of our new logic. Aside from the addition of the important new btwn atom, the
pointer function symbol f now ranges over a set of names F .
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112 Z. Rakamarić, J. Bingham, and A.J. Hu

enforces the cyclicality assumption. The body of INIT-CYCLIC is straightforward. First,
the data field of head is set to true on line 4. Then, the loop sets the data fields of all
other nodes in the list to true. The specification is expressed by the assert statement on
line 9, and indicates that whenever line 9 is reached, data fields of all nodes in the list
have to be set to true.

Cyclic lists are commonly used data structures, and therefore supporting cyclicity
is very important. In our experience and others’ [10,24], expressing “betweenness” is
often necessary to construct invariants to verify cyclic list HMPs. For example, in order
to prove the assertion on line 9 of INIT-CYCLE, the predicate abstraction engine must
be able to construct an appropriate loop invariant (i.e. at line 5). This invariant must be
strong enough to imply that all nodes x lying between head and curr on the cyclic list
have d(x) = true. It is not hard to show that our base logic of Sect. 2 is not capable of
expressing this.

To solve this deficiency, we have added a generalized, ternary transitive closure be-
tween predicate btwn f (x,y,z) to our logic, similar to Nelson’s [10]. Formally, the in-
terpretation of a between atom is defined as follows: a between atom btwn f (τ1,τ2,τ3)
is interpreted as true iff there exist n0,m0 ≥ 0 such that τ2 = f n0(τ1), τ3 = f m0(τ1),
n0 ≤ m0, and for all n,m such that τ2 = f n(τ1), τ3 = f m(τ1), we have n0 ≤ n and
m0 ≤ m.

While the idea of such a construct is not new, how to support it in an inference-rule-
based decision procedure is completely new. This was also the most difficult extension
of our decision procedure, requiring the addition of 14 new inference rules presented in
Fig. 7, most of which are quite involved. For instance, BTW9 asserts that if x, y, z, and
w are on the same chain, y is between x and w, and f (z)=w, then y is also between x and
z, unless y=w. Furthermore, the introduction of the between atom broke our soundness
and completeness results from the previous paper, and we had to completely redo all of
our proofs. We give the intuition behind our new theoretical results in Sect. 4, while the
complete proofs are presented in the technical report [3].

3.3 Multiple Pointer Fields

Fig. 8 shows a list container procedure LINUX-LIST-DEL from the Linux kernel. It
illustrates the need for both multiple pointer fields and cyclic lists. The procedure takes

1: procedure INIT-LIST(head)
2: assume f ∗(head,t)∧ f ∗(head,nil)∧ f (nil)=nil
3: curr := head;
4: while ¬curr=nil do
5: d(curr) := true;
6: curr := f (curr);
7: end while
8: assert d(t)
9: end procedure

Fig. 4. INIT-LIST initializes the data fields of an acyclic singly-linked list. In the assume and
assert statements, variable t represents an arbitrary node (see Sect. 5).
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a node entry and removes it from a cyclic doubly-linked list. Each node in the list has
two pointer fields: a prev and a next pointer. The body of the procedure is simple; it
connects the prev and next pointers of entry’s neighbors, thus removing entry from the
list. The assumptions and specifications for this example are quite involved and are
given in our technical report [3].

Cyclic doubly-linked lists are widely used data structures. For instance, they are
commonly used in kernels, such as the Linux kernel from where this example was
taken. Handling multiple pointer fields is theoretically hard; it is a well-known result
that unrestricted use of reachability in the presence of only two pointer fields is unde-
cidable [12]. We therefore had to take special care in defining our extension. It turns
out that if each individual reachability operator only refers to a single pointer field and
there are no quantifiers, the decidability results still hold. This restriction prevents us
from, e.g., expressing transitive closure in a tree, since that would require formulas like
(left ∨ right)∗(root, leaf ). However, we can still handle doubly-linked lists and similar
structures.

On the logic side, this extension is reflected in symbol f being an element of a set of
pointer function symbols F , rather than a single pointer function symbol (see Sect. 2).
Our extended decision procedure supports for multiple pointer fields by instantiating
the inference rules for each pointer field. In a sense, the decision procedure processes
each field as a separate theory, and interaction between these theories is limited to com-
munication of deduced term equalities and disequalities.

4 Correctness of the Decision Procedure

In this section, we will give the soundness and completeness theorems that show the
correctness of our decision procedure. The detailed proofs of all theorems and more
formal presentation of the decision procedure can be found in the technical report [3].

We’ll start with noting that the problem our decision procedure solves is NP-hard,
hence a polytime algorithm is unlikely to exist.

Theorem 1. Given a set of literals Φ , the problem of deciding if Φ is satisfiable is
NP-hard.

Theorem 1 still holds when Φ contains no pointer function updates, no btwn predicates,
no data fields, and only mentions a single pointer function f ; hence it even applies to
our simplistic original logic [1].

d′(τ)
b

¬d′(τ)
¬b

EQDATA

¬τ =x
d(x)
d′(x)

¬d(x)
¬d′(x)

PRESERVEVALUE

d(x) ¬d′(x)
τ =x

EQNODES1
¬d(x) d′(x)

τ =x
EQNODES2

Fig. 5. Data update inference rules. The rules are used to extend our logic to support a data
function symbol d′ with the implicit constraint d′ = update(d,τ,b), where τ ∈ V and b is a
boolean variable.
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The following theorem tells us that if iterative application of the IRs in the decision
procedure yields a contradiction, then we can conclude that the original set of literals is
unsatisfiable.

Theorem 2. The inference rules of Fig. 5, Fig. 7, Fig. 9, and Fig. 10 (see Appendix A)
are sound.

The proof proceeds by arguing in turn that each of the IRs given in the figures is sound.
To prove completeness we first reduce the problem to sets of literals in a certain

normal form, then prove completeness for only normal sets:
Let Vars(Φ) denote the subset of the node variables V appearing in Φ .

Definition 1 (normal). A set of literals Φ is said to be normal if all terms appearing
in Φ are variables, except that for each f ∈ F and v ∈ Vars(Φ) there may exist at most
one equality literal of the form f (v) = u, where u ∈ Vars(Φ).

Theorem 3. There exists a polynomial-time algorithm that transforms any set Φ into
a normal set Φ ′ such that Φ ′ is satisfiable if and only if Φ is satisfiable.

Thanks to Theorem 3, our decision procedure can without loss of generality assume
that Φ is normal. Let us call a set of literals Φ consistent if it does not contain a con-
tradiction, and call Φ closed if none of the IRs of Fig. 7 and Fig. 9 are applicable. Our
completeness theorem may then be stated as follows.

Theorem 4. If Φ is consistent, closed, and normal, then Φ is satisfiable.

The proof of Theorem 4 is quite technical, and involves reasoning about the dependen-
cies between digraphs of partial functions and the digraphs of their transitive closures.

If the procedure reaches a point where there are no applicable IRs and no contra-
dictions, then the inferred set of literals is consistent, closed, and normal. Hence, by
Theorem 4, it may correctly return satisfiable. We still don’t have a proof that the pro-
cedure is complete when its input includes a data or pointer field update. Fortunately,
not having such a theorem does not compromise the soundness of verification by predi-
cate abstraction. In practice, in our experiments of Sect. 5, we never found any property

1: procedure INIT-CYCLIC(head)
2: assume f ∗(head,t) ∧ f ∗( f (head),head) ∧ ¬head =nil
3: curr := f (head);
4: d(head) := true;
5: while ¬curr=head do
6: d(curr) := true;
7: curr := f (curr);
8: end while
9: assert d(t)

10: end procedure

Fig. 6. INIT-CYCLIC sets data fields of all nodes in a cyclic list to true. Additional predi-
cates required for the verification: curr =head, curr = f (head), btwn f (curr,t,head), t =head,
btwn f (head,t,curr), f ∗(t,curr).
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btwn f (x,x,x)
BTWREFLEX

f ∗(x,y) f ∗(y,z) f (z)=x
btwn f (x,y,z)

BTW1

btwn f (x,y,z)
f ∗(x,y)
f ∗(y,z)

BTW2
f (x)=w btwn f (x,y,z)
btwn f (w,y,z) x=y

BTW3

btwn f (x,y,z) btwn f (x,z,y)
y=z

BTW4
f ∗(x,y) f ∗(x,z)

btwn f (x,y,z) btwn f (x,z,y)
BTW5

f ∗(x,y) f ∗(y,z) f ∗(z,x)
btwn f (x,y,z)
btwn f (y,z,x)
btwn f (z,x,y)

btwn f (x,z,y)
btwn f (z,y,x)
btwn f (y,x,z)

x=y x=z y=z
BTW6

f ∗(x,y)
btwn f (x,x,y)
btwn f (x,y,y)

BTW7

btwn f (x,y,z) f (x)=z
y=x y=z

BTW8
f (z)=w btwn f (x,y,w) f ∗(x,z)

btwn f (x,y,z) y=w
BTW9

btwn f (x,y,z) btwn f (w,z,y) f ∗(x,w)
f ∗(z,w) y=z

BTW10
btwn f (w,x,y) btwn f (w,y,z)

btwn f (w,x,z)
BTW11

btwn f (v,u,x) btwn f (v,u,y) btwn f (u,x,y)
btwn f (v,x,y)

BTW12
btwn f (x,y,z) ¬x=z

btwn f ′(x,y,z)
btwn f (x,τ1,z)
¬τ1 =z

UPDBTWN

Fig. 7. Between inference rules. Here x, y, z, etc. range over variables V and f ∈ F ranges over
pointer fields. UPDBTWN enforces the implicit constraint f ′=update( f ,τ1,τ2), where τ1 and τ2
are variables (see Sect. 2).

violations caused by the extended decision procedure erroneously concluding that a set
of literals was satisfiable.

Theorem 5. The decision procedure always terminates.

The theorem follows from the fact that none of the IRs create new terms, and there is
only a finite number of possible literals that one could add given a fixed set of terms.

Our soundness, completeness, and termination results given in this section also en-
sure that the logic without pointer and data field updates is decidable. Furthermore, we
believe that our logic with updates is subsumed by the slightly more general decidable
logic presented in [7], and therefore also decidable.

5 Experimental Results

We ran our experiments using the new decision procedure2 in the same verification set-
up as before [2]: a straightforward implementation of model checking with predicate
abstraction. Once the predicates are specified, everything is fully automatic, including
computation of most-precise abstract images and loop invariants.

Table 1 gives a baseline performance comparison on the same examples from our
previously published work [2]. Table 2 gives results for the more than twice as many
examples that we could not verify previously. We ran all experiments on a 2.6 Ghz
Pentium 4 machine.

2 The decision procedure is publicly available at http://www.cs.ubc.ca/∼zrakamar
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Table 1. Performance comparison against our previous work [2]. Although our extensions re-
quired adding several complex inference rules to the decision procedure, the running times stayed
roughly the same: there was no practical performance penalty. “property” specifies the verified
property; “CFG edges” is the number of edges in the control-flow graph of the program; “preds”
is the number of predicates required for verification; “DP calls” is the number of decision proce-
dure queries; “old time” is the total execution time from [2] (faster than [1]); “new time” is the
total execution time using our new decision procedure.

program property CFG edges preds DP calls old time (s) new time (s)

LIST-REVERSE NL 6 8 184 0.1 0.2
LIST-ADD NL∧AC∧ IN 7 8 66 0.1 0.1

ND-INSERT NL∧AC∧ IN 5 13 259 0.5 0.5
ND-REMOVE NL∧AC∧RE 5 12 386 0.9 0.9

ZIP NL∧AC 20 22 9153 17.8 17.3
SORTED-ZIP NL∧AC∧SO∧ IN 28 22 14251 23.4 22.8

SORTED-INSERT NL∧AC∧SO∧ IN 10 20 5990 14.2 13.8
BUBBLE-SORT NL∧AC 21 18 3444 11.4 11.1
BUBBLE-SORT NL∧AC∧SO 21 24 31446 119.5 114.9

The examples from Table 1 perform operations on acyclic singly linked lists — re-
verse, add elements, remove elements, sort, merge, etc. Therefore, we have been able to
verify them without using the extensions described in this paper. The comparison sup-
ports our claim that although we greatly improved the expressiveness of the logic and
therefore extended the decision procedure with a number of intricate inference rules,
the practical running times haven’t changed.

Table 2 presents results of the experiments using examples that involve data field up-
dates, cyclic lists, and doubly-linked lists. We could not handle them using the old logic
and decision procedure. However, we have been successful in verifying them using the
described new features added to our logic and decision procedure. These example pro-
grams are the following:

REMOVE-ELEMENTS – removes from a cyclic list elements whose data field is false.
REMOVE-SEGMENT – removes the first contiguous segment of elements whose data

field is true from a cyclic singly-linked list. This example is taken from a paper by
Manevich et al. [24].

1: procedure LINUX-LIST-DEL(entry)
2: p := prev(entry);
3: n := next(entry);
4: prev(n) := p;
5: next(p) := n;
6: next(entry) := nil;
7: prev(entry) := nil;
8: end procedure

Fig. 8. LINUX-LIST-DEL is a standard function that removes a node from a cyclic doubly-linked
list taken from a Linux kernel
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Table 2. Results for HMPs that could not be handled in our previous work. “property” specifies
the verified property; “CFG edges” denotes the number of edges in the control-flow graph of the
program; “preds” is the number of predicates required for verification; “DP calls” is the number
of decision procedure queries; “time” is the total execution time.

program property CFG edges preds DP calls time(s)

REMOVE-ELEMENTS NL∧CY∧RE 15 17 3062 8.8
REMOVE-SEGMENT CY 17 15 902 2.2
SEARCH-AND-SET NL∧CY∧DT 9 16 4892 5.3

SET-UNION NL∧CY∧DT∧ IN 9 21 374 1.4
CREATE-INSERT NL∧AC∧ IN 9 24 3020 14.8

CREATE-INSERT-DATA NL∧AC∧ IN 11 27 8710 39.7
CREATE-FREE NL∧AC∧ IN∧RE 19 31 52079 457.4

INIT-LIST NL∧AC∧DT 4 9 81 0.1
INIT-LIST-VAR NL∧AC∧DT 5 11 244 0.2
INIT-CYCLIC NL∧CY∧DT 5 11 200 0.2

SORTED-INSERT-DNODES NL∧AC∧SO∧ IN 10 25 7918 77.9
REMOVE-DOUBLY NL∧DL∧RE 10 34 3238 24.3

REMOVE-CYCLIC-DOUBLY NL∧CD∧RE 4 27 1695 15.6
LINUX-LIST-ADD NL∧CD∧ IN 6 25 1240 6.4

LINUX-LIST-ADD-TAIL NL∧CD∧ IN 6 27 1598 7.3
LINUX-LIST-DEL NL∧CD∧RE 6 29 2057 24.7

SEARCH-AND-SET – searches for an element with specified integer value in a cyclic
singly-linked list, and initializes integer data fields of previous elements. Although
this example uses merely 2-bit integers, it shows that our logic and decision proce-
dure support any finite enumerated data type.

SET-UNION – joins two cyclic lists. This example is taken from a paper by Nelson [10].
CREATE-INSERT, CREATE-INSERT-DATA, CREATE-FREE – create new nodes (mal-

loc), initialize their data fields, and insert them nondeterministically into a linked
list. Also, remove nodes from a linked list and free them.3

INIT-LIST, INIT-LIST-VAR, INIT-CYCLIC – initialize data fields of acyclic and cyclic
singly-linked lists, and set values of data variables.

SORTED-INSERT-DNODES – inserts an element into a sorted linked list so that sorted-
ness is preserved. Every node in the linked list has an additional pointer to a node
that contains a data field which is used for sorting.

REMOVE-DOUBLY – removes an element from an acyclic doubly-linked list.
REMOVE-CYCLIC-DOUBLY – removes an element from a cyclic doubly-linked list.

This example is taken from a paper by Lahiri and Qadeer [23].
LINUX-LIST-ADD, LINUX-LIST-ADD-TAIL, LINUX-LIST-DEL – examples from Li-

nux kernel list container that add and remove nodes from a cyclic doubly-linked
list.

Our technical report [3] provides pseudocode and lists the required predicates for all
examples.

3 malloc and free are modelled as removing and adding nodes to an infinite cyclic list [20].
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The safety properties we checked (when applicable) of the HMPs are roughly:

– no leaks (NL) – all nodes reachable from the head of the list at the beginning of the
program are also reachable at the end of the program.

– insertion (IN) – a distinguished node that is to be inserted into a list is actually
reachable from the head of the list, i.e. the insertion “worked”.

– acyclic (AC) – the final list is acyclic, i.e. nil is reachable from the head of the list.
– cyclic (CY) – list is a cyclic singly-linked list, i.e. the head of the list is reachable

from its successor.
– doubly-linked (DL) – the final list is a doubly-linked list.
– cyclic doubly-linked (CD) – the final list is a cyclic doubly-linked list.
– sorted (SO) – list is a sorted linked list, i.e. each node’s data field is less than or

equal to its successor’s.
– data (DT) – data fields of selected (possibly all) nodes in a list are set to a value.
– remove elements (RE) – for examples that remove node(s), this states that the

node(s) was (were) actually removed. For the program REMOVE-ELEMENTS, RE
also asserts that the data field of all removed elements is false.

Often, the properties one is interested in verifying for HMPs involve universal quantifi-
cation over the heap nodes. For example, to assert the property NL, we must express
that for all nodes t, if t is reachable from head initially, then t is also reachable from
head (or some other node) at the end of the program. Since our logic doesn’t support
quantification, we introduce a Skolem constant t to represent a universally quantified
variable [8,7]. Here, t is a new node variable that is initially assumed to satisfy the an-
tecedent of our property, and is otherwise unmodified by the program. For the program
of Fig. 4, we express NL by conjoining f ∗(head,t) to the assume statement on line 2,
and conjoining f ∗(head,t) to the assertion on line 8. Since (after the assume) t can be
any node reachable from head, if the assertion is never violated, we have proven NL.

6 Future Work and Conclusions

We have introduced a logic for verifying HMPs that is expressive enough, and an
inference-rule-based decision procedure for the logic that is efficient enough, to ver-
ify a wide range of small, but realistic programs. There are many directions for future
research, some of which are outlined here.

We have found that even minimal support for universally quantified variables (as in
the logic of Balaban et al. [7]) would allow expression of many common heap structure
attributes. For example, the current logic cannot assert that two terms x and y point to
disjoint linked lists; a single universally quantified variable would allow for this prop-
erty (see Nelson [9, page 22]). We also found that capturing disjointedness is necessary
for verifying that LIST-REVERSE always produces an acyclic list; hence we were un-
able to verify this property. We believe that our decision procedure can be enhanced to
handle this case, either by introducing limited support for quantifiers, or by adding a
new “disjoint predicate” with appropriate inference rules.

A broader expressiveness deficiency is the expression of more involved heap struc-
ture properties, such as for trees. Though our logic cannot capture “x points to a
tree”, we believe that it is possible that an extension could be used to verify simple
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properties of programs that manipulate trees, for example that there are no memory
leaks. It may also be possible to use techniques like structure simulation [22] or field
constraint analysis [19], which use decidable logics to verify data structures originally
beyond the scope of such logics (e.g., skip lists). We have run our decision procedure
on some queries for MONA generated by the field constraint analysis tool Bohne [19],
where we appear to be faster than MONA, but the queries have run so quickly on both
tools that the comparison is meaningless.

We also plan on investigating how existing techniques for predicate discovery and
more advanced predicate abstraction algorithms mesh with our decision procedure.

We have initial results showing the possibility of incorporating our decision proce-
dure into a combined satisfiability-modulo-theories decision procedure and have started
exploring such integration. We believe that by doing so, it would be possible to improve
the precision of heap abstraction used by the existing software verification tools that
employ theorem provers. We also plan to look into extending our decision procedure to
generate proofs and interpolants.4
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1. J. Bingham and Z. Rakamarić. A Logic and Decision Procedure for Predicate Abstraction
of Heap-Manipulating Programs. In Conf. on Verification, Model Checking and Abstract
Interpretation (VMCAI), 2006.
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A Inference Rules from Previous Work [1,2]

x=x
IDENT

f ∗(x,x)
REFLEX

f (x)=y
f ∗(x,y)

TRANS1

f ∗(x,y) f ∗(y,z)
f ∗(x,z)

TRANS2
f (x)=y f ∗(x,z)

x=z f ∗(y,z)
FUNC

f (x1)=x2 f (x2)=x3 · · · f (xk)=x1 f ∗(x1,y)
y=x1 y=x2 · · · y=xk

CYCLEk

f ∗(x,y) f ∗(y,x) f ∗(x,z)
x=y f ∗(z,x)

SCC
f ∗(x,y) f ∗(x,z)

f ∗(y,z) f ∗(z,y)
TOTAL

f (x)=z f (y)=z f ∗(x,y) f ∗(y,x)
x=y

SHARE
d(x) ¬d(y)

¬x=y
NOTEQNODES

Fig. 9. Basic inference rules. Here x, y, z, etc. range over variables V and d ∈ D ranges over data
fields. Note that CYCLEk actually defines a separate rule for each k ≥ 1.

f ′(τ1)=τ2
f (τ1)=w

UPDATE

f (x)=y
x=τ1
y=w

f ′(x)=y UPDFUNC1
f ′(x)=y

x=τ1
y=τ2

f (x)=y UPDFUNC2

f ∗(x,y)
f ′∗(x,τ1)
f ′∗(w,y)

f ′∗(x,y) UPDTRANS1
f ′∗(x,y)

f ∗(x,τ1)
f ∗(τ2,y)

f ∗(x,y) UPDTRANS2

f ∗(x,τ1) f ′∗(x,y)
f ∗(x,y) f ′∗(τ1,y)

UPDTRANS3
f ′∗(x,τ1) f ∗(x,y)

f ′∗(x,y) f ∗(τ1,y)
UPDTRANS4

Fig. 10. Pointer update inference rules. The rules are used to extend our logic to support a pointer
function symbol f ′ with the implicit constraint f ′ =update( f ,τ1,τ2), where τ1 and τ2 are vari-
ables, and w is a fresh variable used to capture f (τ1).
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Abstract. In this paper we analyze the complexity of checking safety and termi-
nation properties, for a very simple, yet non-trivial, class of programs with singly-
linked list data structures. Since, in general, programs with lists are known to have
the power of Turing machines, we restrict the control structure, by forbidding
nested loops and destructive updates. Surprisingly, even with these simplifying
conditions, verifying safety and termination for programs working on heaps with
more than one cycle are undecidable, whereas decidability can be established
when the input heap may have at most one loop. The proofs for both the undecid-
ability and the decidability results rely on non-trivial number-theoretic results.

1 Introduction

The design of automatic verification methods for programs manipulating dynamic
linked data structures is a challenging problem. Indeed, the analysis of the behavior
of such programs requires reasoning about complex data structures that have general
graph-like representations. There are several approaches for tackling this problem ad-
dressing different subclasses of programs and using different kinds of formalisms for
representing and reasoning about infinite sets of heap structures, e.g., [21,17,24,10].

We consider in this paper the class of programs manipulating linked data structures
with a single data-field selector. It corresponds to programs manipulating linked lists
with the possibility of sharing and circularities. It is well-known that programs han-
dling lists can simulate, for instance, 2-counter machines, when the control structure is
unrestricted. A customary approach to finding decidable classes of counter automata is
to consider flat control structures that is, no nested loops are allowed [14,15,7]. The de-
cidability of the reachability and termination problems for counter automata is usually
established by reduction to the validity problem of Presburger arithmetic [22].

We analyze the problems of deciding safety and termination for programs with lists,
assuming the flatness condition on the control structure. Since this restriction is gener-
ally not enough, we assume moreover that the program does not perform assignments to
selector fields (destructive updates). That is, a program can only traverse the input data
structure, but not modify it. We found out that, surprisingly, even this restricted class of
programs is undecidable. By further restricting the input heap to at most one cycle, we
can establish the decidability of checking both safety and termination properties. The
proof relies on the encoding of the set of configurations reachable by the program, as
a formula in a decidable fragment of the theory of addition and divisibility [23], that is
described in [11].

Let us present in more detail the results. We start with the observation that flat pro-
grams with lists can be used to encode the solutions of general Diophantine systems.

B. Cook and A. Podelski (Eds.): VMCAI 2007, LNCS 4349, pp. 122–136, 2007.
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The existence of such solutions is a well-known undecidable problem, a.k.a Hilbert’s
Tenth Problem [20]. Our reduction uses simple flat programs to encode the z = x + y
and z = [x,y] (least common multiple) relations, relying on the fact that multiplication
can be defined using only addition and least common multiple.

The source of undecidability lies exactly in the complexity of the input data structure.
We noticed that the least common multiple relation can only be encoded by programs
running on input structures with at least two (separate) cycles. This observation leads to
a decidability result, by imposing that the input heap has at most one cycle. We obtain
decidability by first representing the program with lists as a counter automaton. The idea
of modeling general programs with singly-linked lists as counter automata, originates
in [8,3]. However, due to the restricted form of our programs, we define a different
encoding than the one described in [8,3], that uses deterministic actions on counters,
and preserves the flatness of the control structure. In consequence, we reduce the safety
and termination problems from programs with lists to flat counter automata. Finally,
we show that, for the latter we can effectively compute the exact loop invariants, using
the decidable theory of [11]. In this way, we reduce the original problems of checking
safety and termination to verifying validity of formulae in a known decidable logic.

1.1 Related Work

Programs manipulating singly-linked lists have gained a lot of attention within the past
two years, as shown by the fairly large number of recent publications on the subject
[2,5,19,1,10]. Interestingly, the idea of abstracting away all the list segments with no
incoming edges is common to many of these works, even though they are indepen-
dent and use different approaches and frameworks (e.g. static analysis [19], predicate
abstraction [1], symbolic reachability analysis [2] and proof search [5]). The fact that
the number of sharing points in abstract heap structures is bounded by the number of
variables in the program is also behind the techniques proposed in [19,10].

The work that is probably closest to ours has been reported in [8] and [3]. However,
the authors’ concerns there were rather to develop a general framework for the analysis
of programs with lists, than to assess the complexity of the verification problems. Their
translation of programs into counter automata uses a generic scheme, which works in
the presence of destructive updates. Our translation method concerns programs with-
out destructive updates, the main reason for this being that of establishing decidability.
Other closely related work is the one of Chakaravarthy [12], reporting on the undecid-
ability of the points-to analysis in non-flat programs with scalar variables, for which the
generated memory configurations are of the same type as in the case of singly-linked
lists. Moreover, a reduction from Hilbert’s Tenth Problem is also used to prove unde-
cidability, however this result does not hold against the flatness condition on the control
structure.

2 Preliminaries

2.1 Programs with Lists

We consider imperative programs working with a set of pointer variables PVar. The
pointer variables refer to list cells. Pointers can be used in assignments such as u :=
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l ∈ Lab; u,v, i, j ∈ PVar

Program := {l : Stmnt;}∗

Stmnt := W hileStmnt | I f Stmnt | AsgnStmnt | Assert

W hileStmnt := while Guard do {AsgnStmnt;}∗ od

I f Stmnt := if Guard then {Stmnt;}∗ [
else {Stmnt;}∗] fi

AsgnStmnt := u := null | u := new | u := v | u := v.next | u.next := null | u.next := v

Assert := assert(Guard)

Guard := u = v | u = null | ¬Guard | Guard ∧Guard | Guard ∨Guard | true

Fig. 1. Abstract Syntax of Flat Programs with Lists

null, u:= v and u := v.next, u.next := v and u.next := null, and new cell
creation u:= new. The control structure is composed of iteration (while) statements
and conditionals (if-then-else), and is supposed to be flat, meaning that there are
no further conditionals or iterations inside a while loop. This syntactic restriction is
sufficient to ensure that the control flow graph of the program has no nested loops. The
guards of the control constructs are pointer equality u = v, undefinedness u = null
tests, and boolean combinations of the above. The assert statement has no effect if the
condition is true, otherwise the program is sent to an error state.

An assignment statement is said to be a destructive update if it is of the form u :=
new, u.next := v or u.next := null. These are the only statements that can modify
a heap structure. Programs without destructive updates can only traverse the heap, but
not modify it.

The semantics of programs with lists is defined in terms of heap updates. For a de-
tailed presentation, the reader is referred to [9]. Formally, a heap is a rooted graph in
which each node has at most one successor. In the rest of the paper, for a set A we de-
note by A⊥ the set A∪{⊥}. The element ⊥ is used to denote that a (partial) function is
undefined at a given point, e.g. f (x) = ⊥.

Definition 1. Let PVar be a set of pointer variables. A heap is a tuple H =
〈N,S,V,Roots〉, where N is a finite set of nodes, S : N → N⊥ is a successor function,
V : PVar → N⊥ is a function associating nodes to variables, and Roots ⊆ PVar is a set
of root variables.

Intuitively, the nodes represent heap-allocated cells, the successor function describes
the position of the next selectors, for each node, and the variable mapping keeps track
of which nodes are directly pointed to by program variables. The set of roots denotes
special points in the heap, which will be used mainly in Section 4 for technical purposes.
For now, we consider the following conditions, that must be satisfied by any program
P, operating on a heap 〈N,S,V,Roots〉:

– for all r ∈ Roots, V (r) is defined,
– P does not change the values of the variables in Roots,
– all nodes in N are reachable via S, from a node pointed to by a variable in Roots,
– all nodes in N having two or more distinct predecessors via S are pointed by a

variable in Roots.
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Technically, the conditions above are not real limitations, since any program with lists
can be transformed into a program that meets the requirements concerning Roots. In
particular, the third point can be ensured by keeping a free list pointed to by a root vari-
able, and linking all nodes that become unreachable from the other program variables
(garbage nodes) into it.

A heap is said to be n-cyclic if it contains exactly n different cycles. Notice that,
since each node in the heap can have at most one selector, each cycle must reside in a
separate part of the heap. A list segment is a sequence of nodes n1,n2, . . . ,nk related by
the successor function (S(ni) = ni+1,1 ≤ i < k), such that either (i) n1 and nk are the only
roots in the sequence, or (ii) n1 is the only root and S(nk) = ⊥. Obviously, the number
of list segments is bounded by the number of roots. In the following, we will denote by
lsH(n,m) the list segment that lies between the roots n and m in H, or lsH(n,⊥), if the
last node of the list segment has a null successor. The subscript may be omitted when it
is not needed or obvious from the context. If the two roots are distinct and not directly
connected (either they are disconnected or there are other root in between) we consider
that ls(n,m) = /0. If V (u) = n and V (v) = m, for some u,v ∈ PVar, we may also denote
ls(n,m) by ls(u,v). The length of a list segment ls(n,m), i.e. the number of nodes it
contains, is denoted by |ls(n,m)|.

2.2 Arithmetic of Integers

The undecidability of first-order arithmetic of natural numbers occurs as a consequence
of Gödel’s Incompleteness Theorem [16], discovered by A. Church [13]. Consequences
of this result are the undecidability of the theory of natural numbers with multiplica-
tion and successor function and with divisibility and successor function, both discov-
ered by J. Robinson in [23]. To complete the picture, the existential fragment of the
full arithmetic i.e., Hilbert’s Tenth Problem was proved undecidable by Y. Matiyase-
vich [20]. The interested reader is further pointed to [6] for an excellent survey of the
(un)decidability results in arithmetic.

On the positive side, the decidability of the arithmetic of natural numbers with ad-
dition and successor function 〈N,+,0,1〉 has been shown by M. Presburger [22], result
which has found many applications in modern computer science, especially in the field
of automated reasoning. Another important result is the decidability of the existential
theory of addition and divisibility, proved independently by A. P. Beltyukov [4] and L.
Lipshitz [18]. Namely,it is shown that formulas of the form ∃x1, . . .∃xn

∧K
i=1 fi(x)|gi(x)

are decidable, where fi,gi are linear functions over x1, . . .xn and the symbol | means
that each fi is an integer divisor of gi when both are interpreted over N

n. The decid-
ability of formulas of the form ∃x1, . . .∃xnϕ(x), where ϕ is an open formula in the
language 〈+, |,0,1〉, is stated as a corollary in [18]. This theory will be denoted further
by 〈N,+, |,0,1〉∃.

A related result has been presented in [11], involving the class of formulae of the
form QzQ1x1 . . .Qmxmϕ(x,z), where Q,Qi ∈ {∀,∃} and ϕ is a boolean combination of
formulae of the form f (z)|g(x,z), and arbitrary Presburger formulae. In other words, the
first variable occurring in the quantifier prefix is the only variable allowed to occur to the

left of the divisibility sign. The decidability of this class of formulae, denoted by L(1)
| ,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



126 M. Bozga and R. Iosif

has been established in [11] using quantifier elimination, by reduction to Presburger
arithmetic.

However, the result on 〈N,+, |,0,1〉∃ remains one of the strongest decidability re-
sults in integer arithmetic. It can be shown that even formulae involving one universal
quantifier, i.e. of the form ∃x1, . . .∃xn∀y ϕ(x,y) are undecidable. This is done using the
classical definition of the least common multiple relation [x,y] = z : ∀t x|t ∧ y|t ↔ z|t.
The undecidability of this fragment is a direct consequence of the following1:

Theorem 1. The satisfiability and validity problems for the quantifier-free fragment of
the theory 〈N,+, []〉 of natural numbers with addition and the least common multiple
relation are undecidable.

2.3 Counter Automata

A counter automaton with n counters is a tuple A = 〈x,Q,→〉, where x = {x1, . . . ,xn}
are the counter variables, Q is a finite set of control states, and →∈ Q× Φ× Q are the
transitions, and Φ is the set of arithmetic formulae with free variables from {xi,x′

i | 1 ≤
i ≤ n}. A configuration of a counter automata with n counters is a tuple 〈q,ν〉, where
ν is a mapping from x to N. The transition relation is defined by (q,ν) −→ (q′,ν′) iff

there exists a transition q
ϕ−→ q′ such that, if σ is an assignment of the free variables of ϕ

(denoted in the following by FV (ϕ)), such that, for all x ∈ x, σ(x) = ν(x) and σ(x′) =
ν′(x), we have that ϕσ holds and ν(x) = ν′(x), for all variables x with x′ �∈ FV (ϕ).
A run of A is a sequence of configurations (q0,ν0),(q1,ν1), . . . such that (qi,νi) −→
(qi+1,νi+1), for each i ≥ 0.

The control graph of a counter automaton A is the graph having as vertices the set
Q of control states, and, for any two states q and q′, there is an edge between q and

q′ in the control graph if and only if there exists a transition q
ϕ−→ q′ in A. A counter

automaton is said to be flat if its control graph has no nested loops.

3 Undecidable Flat List Programs

In this section we define the safety and termination properties for various classes of flat
list programs with possibly unbounded input, and prove their undecidability. A decid-
able subclass is defined in the next section. Before proceeding, we need to introduce
several notions.

Definition 2. A tuple of strictly positive natural numbers n ∈ N
k is said to be encoded

by a heap H = 〈N,S,V,Roots〉, denoted as H(n), if and only if there exists two mappings
e : {1, . . . ,k} → Roots and f : {1, . . . ,k} → Roots⊥ such that, for all 1 ≤ i ≤ k, ni =
|lsH(e(i), f (i))|.

1 Theorem 1 gives a simple proof of the undecidability of 〈N,+, |,0,1〉 that is different from the
one published by J. Robinson in [23]. However, the undecidability of Hilbert’s Tenth Problem,
which is used here was not known in 1949.
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In other words, each number is represented by a list segment in between two root vari-
ables, or between a root variable and ⊥. Notice that the condition ni > 0 for all 1 ≤ i ≤ k
implies that e(i) and f (i) actually delineate a non-trivial list segment.

Definition 3. Two heaps H = 〈N,S,V,Roots〉 and H ′ = 〈N′,S′,V ′,Roots〉 are
said to share the same structure, denoted by H � H ′ if and only if for all r1,r2 ∈
Roots lsH(r1,r2) �= /0 ⇐⇒ lsH′(r1,r2) �= /0.

In other words, H and H ′ differ only by the lenghts of their list segments that are
delineated by roots. Notice that � is an equivalence relation on heaps. This leads to
a notion of parametric heap H(x), defined as the infinite set of heaps that share the
same structure, with respect to a set of variables x = {x1, . . . ,xk}, ranging over natural
numbers. Given any interpretation x �→ n, we have that H(n) ∈ H(x). In other words,
H(x) is the equivalence class of H(n) with respect to �. By lsxi(u,v) we denote the
set {ls(u,v) | ni = |ls(u,v)| in some H(n1, . . . ,ni, . . . ,nk) ∈ H(x1, . . . ,xi, . . . ,xk)}. For
instance, in Figure 2 (a), lsx(u,v) in H(x,y,z) denotes all list segments that encode the
values of x, and lsy(v,⊥), lsz(w,⊥) encode all possible values of y and z, respectively.

We consider the following definition of safety properties:

Definition 4. Let P be a flat list program, S = {li : assert(ϕi)}k
i=1 a set of statements

occurring in P, and H(x) a parametric heap. P is said to be safe w.r.t H(x) and S if and
only if for all heaps G ∈ H(x), and 1 ≤ i ≤ k, ϕi is true whenever P, started on input G,
reaches li.

The above property is vacuously true if the given program never reaches any of the
locations in S. In order to cover this case, we consider the following definition of termi-
nation, with respect to a parametric heap.

Definition 5. Let P be a flat list program, and H(x) a parametric heap. P is said to
terminate w.r.t H(x) if and only if for all heaps G ∈ H(x), P started on input G, has a
finite execution.

Notice that Definition 4 corresponds to partial correctness, whereas the combination of
Definitions 4 and 5 can express total correctness, as understood in the setting of program
verification using Hoare logic.

In order to prove undecidability of safety and termination for flat list programs, with
respect to parametric heaps, we shall use the undecidability of the validity problem
for the quantifier-free fragment of the theory of addition and least common multiple
〈N,+, []〉, which is stated by Theorem 1. The reduction is as follows: given a quantifier-
free formula ϕ of 〈N,+, []〉, we build a flat list program P and a parametric heap H(x),
such that ϕ is valid if and only if P is safe w.r.t H(x). The same reasoning is done
for termination. This leads to undecidability results for both the safety and termination
problems, as defined in the previous.

The key of the reduction is to use three basic programs, Px=y, Px+y=z and P[x,y]=z
(Figure 2), that encode the atomic formulae x = y, x + y = z and [x,y] = z, respectively.
Each program works on a heap of a predefined shape, also shown in Figure 2. The pro-
gram Px=y, in Figure 2 (a) is guaranteed to terminate, since both the lists pointed to by u
and v are acyclic. Moreover, if i and j are both null at the end, the lists have equal length.
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The program in Figure 2 (b) is guaranteed to terminate because both lists pointed to
by u and w are acyclic. Moreover, at the end line, both i and j are null if and only if both
lists have equal length, which is only the case if and only if x + y = z. In this case the
variable v plays the only role of splitting the list segment pointed to by u into lsx(u,v)
and lsy(v,⊥).

The program in Figure 2 (c) terminates because eventually i = u and j = v at the same
time. In fact this happens after a number of loop iterations equal to the least common
multiple of x and y. Then k is null at the end if and only if the length of the list pointed
by w equals this number, i.e. [x,y] = z.

ϕ Pϕ Cϕ Hϕ

(a)

x = y

1: i := u;
2: j := w;
3: while i �= null ∧ j �= null do
4: i := i.next;
5: j := j.next;
6: od;

i = null
∧
j = null

y
v

x
u

(b)

x+y = z

1: i := u;
2: j := w;
3: while i �= null ∧ j �= null do
4: i := i.next;
5: j := j.next;
6: od;

i = null
∧
j = null

x y

z

u v

w

(c)

[x,y] = z

1: i := u.next;
2: j := v.next;
3: k := w.next;
4: while (i �= u ∨ j �= v)

∧ k �= null do
5: i := i.next;
6: j := j.next;
7: k := k.next;
8: od;

k = null
∧
i = u
∧
j = v

x

z

u

w

y
v

Fig. 2. Basic Programs

Let us consider now a quantifier-free formula ϕ(x) in the language of 〈N,+, []〉.
Since we are interested in reducing the validity problem, i.e ∀x . ϕ(x), it is sufficient to
consider w.l.o.g. that ϕ is a disjunction of atomic formulae of the forms x = y, x+ y = z
or [x,y] = z and their negations. Let ϕ =

∨n
i=1 ψi, where ψi is either (1) xi = yi, (2)

xi + yi = zi, (3) [xi,yi] = zi or their negations, for xi,yi,zi ∈ x. For each condition of the
form (2) or (3) the input heap contains a separate heap as in Figure 2 with roots ui, vi

and wi. Then the program encoding the validity of ϕ has the following structure:
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Pψ1 ;
if C¬ψ1 then Pψ2 ;

if C¬ψ2 then Pψ3;
...
assert(false);
...

fi
fi

where, for all 1 ≤ p ≤ n we have:

– if ψp is a positive literal, Pψp and Cψp are as in Figure 2.
– if ψp is a negative literal, Pψp is P¬ψp and Cψp is ¬C¬ψp .

Moreover, the program has to test that all list segments encoding occurrences of the
same variable are of the same length. This can be done in the beginning, using a se-
quence of flat programs of the same kind as Px=y, and is skipped for brevity reasons.

For any heap that corresponds to the parameterized input, the above program reaches
the assert(false) statement if and only if the input encodes a tuple of numbers that
falsifies all disjuncts of the original formula. Hence the program is safe if and only if
for all instance H(n) of the parametric input heap H(x), n satisfies at least one clause
ψi, hence ϕ is valid. This proves the undecidability of the safety problem.

To show undecidability of the termination problem, we use the same reduction, with
the only difference that the assert(false) statement is replaced by a non-terminating
loop while(true) do ... od. The program then terminates if and only if ϕ is valid.

Notice further that the least common multiple relation has been encoded using an
input heap with at least two separate cycles. The above considerations lead to the fol-
lowing Theorem:

Theorem 2. The classes of problems of verifying safety and termination properties, for
flat list programs without destructive updates, running on n-cyclic inputs, with arbitrary
n > 1, are undecidable.

3.1 Extensions of the Undecidability Results

The properties of safety and termination for list programs parameterized by the shape of
their input are universally quantified properties (see Definition 4 and 5). The following
reachability property is existential:

Definition 6. Let P be a flat list program, l a control location of P, and H(x) a para-
metric heap. l is said to be reachable in P w.r.t. H(x) if and only if there exists a heap
G ∈ H(x) such that P, started with input G, eventually reaches l.

We can show undecidability of the reachability problem by reduction from the satisfia-
bility problem for the quantifier-free fragment of 〈N,+, []〉 (Theorem 1). The reduction
is similar to the one in the previous section.

Theorem 3. The problem of verifying reachability for flat list programs without de-
structive updates, running on n-cyclic input, with arbitrary n > 1 is undecidable.
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Up to now, we have considered separately the problems of verifying safety and ter-
mination properties for programs parameterized by the shape of the input heap, and
abstracting away the exact lengths of the list segments. We show now how these re-
sults can be extended to verifying properties of programs with either unknown shape,
or empty input heap.

Definition 7. Let P be a flat list program, and S = {li : assert(ϕi)}k
i=1 a set of state-

ments occurring in P. P is said to be correct w.r.t S if and only if for all heaps H, P
started on input H, reaches location li, and ϕi is true whenever the control is at li, for
all 1 ≤ i ≤ k.

The problem of correctness of a program P with unknown input can be shown undecid-
able by reducing the safety problem for programs on parameterized heaps to it. Namely,
given P,H(x) and S = {li : assert(ϕi)}n

i=1 a set of the statements in P, we can build a
program Q such that P is a subset of Q, and P is safe w.r.t. H(x) and S if and only if Q
is correct w.r.t. S. In order to obtain Q, we prefix P with a program T , i.e. Q = T ;P. The
role of T is to test that the input heap is an instance of H(x). In case this test succeeds,
the control is passed on to P, otherwise, T (and implicitly Q) does not terminate.

In order to build the tester program T , we remember that each list segment is marked
by two root variables. For each ls(u,v), with u,v ∈ Roots, T will test if v is the first root
variable reachable starting from u:

i := u;
while

∧
w∈Roots i �= w do

i := i.next;
od
assert(i = v);

Note that this program might not terminate, in case when the given input heap is not an
instance of H(x), the list pointed to by u is cyclic, and the starting point of the loop is
not properly marked by a root variable.

Corollary 1. The correctness problem for flat list programs is undecidable.

The other problem for which we show undecidability, based on the previous results, is
the reachability problem for non-deterministic flat list programs, started on empty heap.
A non-deterministic program uses undefined guards of the conditional statements, i.e.
while * do ... do or if * then ... else ... fi.

Definition 8. Let P be a non-deterministic flat list program, and l a control location of
P. l is said to be reachable on empty heap if and only if P, started with the empty heap,
has at least one execution path leading to l.

We show undecidability of the reachability problem on empty heap, by reduction from
the reachability problem on parametric input heap (Definition 6). Namely, given a pro-
gram P and a parametric heap H(x), we build a program Q as sequential composition
of a (non-deterministic) constructor program C and P, i.e. Q = C;P, such that for a
given location l of P, P reaches l w.r.t. H(x) if and only if l is reachable on empty heap.
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Intuitively, C is a flat non-deterministic program with dynamic creation and destructive
updates, that will create an arbitrary instance of H(x). For each list segment lsx(u,v) of
H(x), C will have a loop of the form:

i := u;
i.next := new; i := i.next;
while * do

i.next := new; i := i.next;
od
if v = null then v := i;
else i.next := v;
fi

Note that each distinct path through the loop generates a list segment of a different
length. Consequently, each path through C will generate a different instance of H(x).
Then there exists an instance H(n) of H(x), such that l is reachable in P started on H(n)
if and only if there exists a path through Q that reaches l and vice versa.

Corollary 2. The problem of reachability on empty heap for non-deterministic flat list
programs is undecidable.

4 Decidability on Acyclic and 1-Cyclic Heaps

As pointed out before, the undecidability of the safety and termination problems for
programs parameterized by the shape of the input heap relies on the fact that the input
heap has at least two loops. In this section, we prove that, by restricting the input heap to
have at most one loop, both problems become decidable. In practice, this result provides
a precise and fully automated way of analyzing simple programs with list iterators, i.e.
variables that can only traverse a list, but not modify it.

The tool for proving decidability is a sub-fragment of the arithmetic of addition
and divisibility 〈N,+, |,0,1〉, namely the class of formulae of the form QzQ1x1 . . .
Qmxmϕ(x,z), where ϕ is a boolean combination of divisibility predicates of the form
f (z)|g(x,z) and Presburger constraints. The restriction here is that z is the only variable

occurring to the left of the divisibility sign. This fragment, called L(1)
| , has been shown

decidable in [11].

4.1 From List Programs to Counter Automata

Let P be a flat list program without destructive updates, and H(x), x = {x1, . . . ,xk} be a
parametric heap with at most one cycle. Since P is flat, its control structure has a finite
number of branches, and each branch is a finite sequence of simple loops, connected
via linear paths. Assume that, for each loop, one can describe the relation between the
input and output heaps, after any number of iterations. Then the input-output relation
of the whole program can be described as a finite composition of relations. In order to
compute this relation, we simulate P by a counter automaton A, and reduce both the
safety and termination problems for P to safety and termination problems for A.
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Let Roots = {r1, . . . ,rp} be the set of root variables of H(x), and H = 〈N,S,V,Roots〉
be an instance of H(x). We recall upon the fact that each node n ∈ N must be reachable
from a node pointed to by a variable from Roots. Moreover, each variable from PVar,
that is not a root variable, can be assigned by P. Since the structure of the heap does
not change during the execution of P, the current configuration of the program can be
represented only by recording the position of the variables from PVar \ Roots in the
structure. Let u be such a variable. If V (u) is defined, i.e. V (u) = n ∈ N, then n must be
reachable from at least one root variable, call it ri, for some 1 ≤ i ≤ p. The number of
steps on the path between V (ri) and V (u) is denoted by δi. The pair of integers 〈i,δi〉
gives the exact position of u in H, see e.g. Figure 3 (right). Obviously, this encoding of
the position is not unique, since u may be reachable from more than one root variable,
and there might be more than one path from ri to u, due to the possible presence of a
cycle. In the following, let root(u) and dist(u) denote the first and the second elements
of the pair encoding the position of u.

The counter automaton corresponding to P is A = 〈x ∪ y,Q,−→〉, where the set of

counters consists of a set of parameters x and a set of working counters y = {y1, . . . ,yr},
i.e. one working counter for each variable from PVar\Roots = {u1, . . . ,ur}, and the set
of control states Q = Lab ×{1, . . . , p}r. A configuration of A is a tuple 〈q,δ1, . . . ,δr〉 ∈
Q×N

r, where:

– q = 〈l,ρ1, . . . ,ρr〉 represents the current program label, and the current roots of the
iterator variables of P.

– δi is the distance of ui from its root ρi, for each 1 ≤ i ≤ r.

In principle, the counter yi keeps track of dist(ui), w.r.t root(ui). A transition between
two configurations c = 〈〈l,ρ〉,δ〉 and c′ = 〈〈l′,ρ′〉,δ′〉 is triggered by the execution of
a program statement l : s; l′, and is denoted by c

s−→ c′. The table in Figure 3 (left)

summarizes the transition relation for all non-destructive assignment statements from
Figure 2.1.

The most interesting case is ui := u j.next, which is depicted in Figure 3 (right).
Notice that all assignment statements are encoded by deterministic transitions in the
counter automaton. Since the program P is supposed to be flat, the resulting counter
automaton will also have a flat control structure.

Assignment Control change Counter update
ui := null ρ′

i = 0 y′i = 0
ui := u j ρ′

i = ρ j y′i = y j
ui := u j.next ρ′

i = ρ j y′i = y j +1

ρ′
i = ρ j

δ j

ui
u j

δ j δ′i = δ j +1

ui := uj .next

ρ j

ui

δi

ρi

Fig. 3. Semantics of Assignments

A guard condition of the form ui = null is encoded by an arithmetic constraint on the
position of u. We distinguish between three situations:
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– root(ui) = 0, e.g. because of an assignment ui := null,
– root(ui) �= 0 is the origin of a path that ends in a cycle, in which case ui = null is

false,
– the path starting with root(ui) �= 0 is finite, and let πi denote the set of list segments

on this path. In this case, we have: yi > ∑lsx(n,m)∈πi
x, meaning that ui has gone

beyond the end of the path.

Due to the fact that the encoding of the variables is not unique, a pointer equality con-
dition of the form ui = u j has a more complex encoding, which is going to be detailed
next. The fact that the parametric structure of H(x) is known, is playing an important
role. Suppose that ui = u j is true for some arbitrary instance H = 〈N,S,V,Roots〉 of
H(x), i.e V (ui) = V (u j) = n0 ∈ N. We distinguish two cases, as shown in Figure 4:

– n0 does not belong to a cycle in H. In this case, there is a unique path from
V (root(ui)) to n0, and a unique path from V (root(u j)) to n0. Let lsx0(m1,m2) be
the list segment on which n0 resides, πi be the set of list segments on the path from
V (root(ui)) to m1, and π j be the set of list segments on the path from V (root(u j))
to m1. Consequently, we have:

0 ≤ yi − ∑
lsx(n,m)∈πi

x = y j − ∑
lsx(n,m)∈π j

x ≤ x0

For instance, the guard corresponding to the configuration in Figure 4 (a) is: 0 ≤
yi − x1 = y j − x2 ≤ x3.

– n0 belongs to the only cycle in H. Let γ denote the set of list segments in the cycle,
and πi, j denote the paths from V (root(ui, j)) to the beginning of γ, respectively.
Then we have:

(

∑
lsx(n,m)∈γ

x
)
|
(
(yi − ∑

lsx(n,m)∈πi

x)− (y j − ∑
lsx(n,m)∈π j

x)
)

As an example, the guard corresponding to the configuration in Figure 4 (b) is:
x3 + x4|(yi − x1)− (y j − x2)

The semantics of a pointer equality condition in the program with lists can be written
as a finite disjunction of all possible configurations, which will fall into one of the cases
above. This formula denotes all possible values of x and y for which ui = u j in H(x).
Therefore, a boolean condition on pointers, of the form ¬Guard or Guard � Guard,
for � ∈ {∧,∨} can be translated to a counter automaton guard, by replacing all atomic

ri r j

x1 x2

x3

ui = u j

(a)

ri r j

x1 x2

x3

ui = u j

(b)

x4

Fig. 4. Two Cases of Equality between Pointers
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propositions with the corresponding formulae on counters. Notice that, since H(x) has
at most one cycle, all divisibility predicates will have the same expression on the left-
hand side.

4.2 Reasoning About Counter Automata

Our translation scheme associates one program statement exactly one action on coun-
ters, therefore the resulting counter automaton A preserves the control structure of the
original program P. In particular, if P was flat, A is also flat. The goal of this section is
to compute, for a given control location q of A, the relation between the input values of
the counters and the values at q. Since A is flat, it is sufficient to compute, for each loop,
the input-output relation after n iterations of the loop, and define global input-output
relations by composition. The safety and termination properties are decidable if this

relation can be expressed in a decidable logic. We shall use here the L(1)
| fragment of

〈N,+, |,0,1〉 [11], explained in Section 2.2.

By construction, all transitions of A are of the form q
ϕ(x,y,y′)−−−−−→ q′ where ϕ is of the

form:
ϕ(x,y,y′) : ψ(x,y) ∧

∧

1≤i, j≤r

y′
i = biy j + ci (1)

with ψ a boolean combination of divisibility predicates of the form f (x)|g(x,y) (the
same f occurs everywhere to the left of |) and Presburger constraints, bi ∈ {0,1} and
ci ∈ Z, for all 1 ≤ i ≤ r.

It can be easily shown that this class of relations is closed under composition, defined
as:

(ϕ1 ◦ ϕ2)(x,y,y′) = ∃y′′ ϕ1(x,y,y′′) ∧ ϕ2(x,y′′,y′)
In other words, the existential quantifiers above can be eliminated, the result being
written as another relation of the same form. As a consequence, we can assume without

losing generality, that each control path q1
ϕ1−→ q2 . . .qn−1

ϕn−1−−−→ qn, with no incoming or

outgoing transitions, is equivalent to a single transition q1
ϕ1◦...◦ϕn−1−−−−−−→ qn.

Without losing generality, we consider that A consists of only two transitions:

q
ψ(x,y) ∧ ∧

1≤i, j≤r y′
i=biy j+ci−−−−−−−−−−−−−−−−→ q and q

¬ψ(x,y)−−−−→ q′

Here the variables x are meant as parameters, while y are the working counter variables.
Let I(n,x,y,y′) denote the relation between the input (y) and the output (y′) values of the
counters after exactly n iterations of the loop, where x are the values of the parameters.
For the moment, let us assume that I(n,x,y,y′) is effectively computable and can be

expressed in the quantifier-free fragment of L(1)
| .

A safety property for a counter automaton can be described by a pair 〈q,φ(x,y)〉,
where φ(x,y) is a formula expressible in the quantifier-free fragment of L(1)

| , with the
following meaning: for all valuations of the parameters, whenever the control reaches
the location q, the values of the counters must satisfy φ. Moreover, let us assume that all
atomic predicates in I and ϕ satisfy the condition that only variables from x may appear
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to the left of the divisibility sign, and moreover, that only one linear combination f (x)
can occur in this position. With the assumptions above, the safety problem reduces to
checking the validity of the formula:

σ Δ= ∀x∀y∀y′∀n . I(n,x,y,y′) → φ(x,y′)

Termination is the problem whether the counter automaton reaches its final control
location, for every valuation of the parameters. In our case, this is equivalent to the
validity of:

θ Δ= ∀x∃n∃y∃y′ . I(n,x,y,y′) ∧ ¬ϕ(x,y′)

We can prove the validity of σ and θ by proving that their negations are contra-

dictions. For instance, ¬σ is expressible in the decidable fragment of L(1)
| [11], as:

∃z . ¬σ[z/ f (x)] ∧ z = f (x). Same is done for θ. In order to prove decidability of safety
and termination for counter automata, it is sufficient to show how to express I as a

quantifier-free formula of L(1)
| . This is achieved in the proof of the following Theorem:

Theorem 4. The safety and termination problems for flat counter automata with tran-
sitions of the form (1) are decidable.

The decidability of safety and termination for programs with lists is consequence of
Theorem 4:

Corollary 3. The problems of verifying safety and termination properties, for flat list
programs without destructive updates, running on acyclic and 1-cyclic inputs, are
decidable.

5 Conclusions

We addressed the problems of verifying safety and termination properties for programs
handling singly-linked lists, without destructive update assignments, and whose control
structure is flat. We found out that, despite the strong syntactic restrictions, these pro-
grams, parameterized by the size of the input heap, have the expressive power of Turing
machines. These undecidability results are a consequence of the complexity of the in-
put data structures, even when the program does not change the structure. By further
limiting the input heaps to at most one cycle, we obtain decidability of the safety and
termination problems. All our results rely on non-trivial number-theoretic arguments.
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Abstract. In automata-theoretic model checking we compose the design under
verification with a Büchi automaton that accepts traces violating the specifica-
tion. We then use graph algorithms to search for a counterexample trace. The
basic theory of this approach was worked out in the 1980s, and the basic algo-
rithms were developed during the 1990s. Both explicit and symbolic implemen-
tations, such as SPIN and and SMV, are widely used. It turns out, however, that
there are still many gaps in our understanding of the algorithmic issues involved
in automata-theoretic model checking. This paper covers the fundamentals of
automata-theoretic model checking, review recent progress, and outlines areas
that require further research.

1 Introduction

Formal verification is a process in which mathematical techniques are used to guar-
antee the correctness of a design with respect to some specified behavior. Automated
formal-verification tools, such as COSPAN [47], SPIN [49] and SMV [16,59], based on
model-checking technology [20, 63], have enjoyed a substantial and growing use over
the last few years, showing an ability to discover subtle flaws that result from extremely
improbable events [22]. While until recently these tools were viewed as of academic in-
terest only, they are now routinely used in industrial applications, resulting in decreased
time to market and increased product integrity [23, 24, 56]. It is fair to say that auto-
mated verification is one of the most successful applications of automated reasoning in
computer science.

As model-checking technology matured, the demand for specification language of
increased expressiveness increased interest in linear-time formalisms [3]. The automata-
theoretic approach offers a uniform algorithmic framework for model checking linear-
time properties [55, 75, 77] It turns out, however, that there are still many gaps in our
understanding of the algorithmic issues involved in automata-theoretic model check-
ing. This paper covers the fundamentals of automata- theoretic model checking, review
recent progress, and outline areas that require further research.
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2 Basic Theory

The first step in formal verification is to come up with a formal specification of the de-
sign, consisting of a description of the desired behavior. One of the more widely used
specification languages for designs is temporal logic [61]. In linear temporal logics,
time is treated as if each moment in time has a unique possible future. Thus, linear tem-
poral formulas are interpreted over linear sequences, and we regard them as describing
the behavior of a single computation of a system. (An alternative approach is to use
branching time. For a discussion of linear vs. branching time, see [76].)

In the linear temporal logic LTL, formulas are constructed from a set Prop of atomic
propositions using the usual Boolean connectives as well as the unary temporal connec-
tive X (“next”), F (“eventually”), G (“always”), and the binary temporal connective
U (“until”). For example, the LTL formula G(request → F grant), which refers to the
atomic propositions request and grant, is true in a computation precisely when every
state in the computation in which request holds is followed by some state in the future
in which grant holds. The LTL formula G(request → (request U grant)) is true in a
computation precisely if, whenever request holds in a state of the computation, it holds
until a state in which grant holds is reached. In LTL model checking we assume that the
specification in given in terms of properties expressed by LTL formulas.

LTL is interpreted over computations, which can be viewed as infinite sequences of
truth assignments to the atomic propositions; i.e., a computation is a function π : IN →
2Prop that assigns truth values to the elements of Prop at each time instant (natural
number). For a computation π and a point i ∈ IN , the notation π, i |= ϕ indicates that
a formula ϕ holds at the point i of the computation π. In particular, π, i |= Xϕ iff
π, i + 1 |= ϕ, and and π, i |= ϕUψ iff for some j ≥ i, we have π, j |= ψ and for all k,
i ≤ k < j, we have π, k |= ϕ. The connectives F and G can be defined in terms of the
connective U : Fϕ is defined as true Uϕ, and Gϕ is defined as ¬F¬ϕ. We say that π
satisfies a formula ϕ, denoted π |= ϕ, iff π, 0 |= ϕ. We denote by models(ϕ) the set of
computations satisfying ϕ.

Designs can be described in a variety of formal description formalisms. Regardless
of the formalism used, a finite-state design can be abstractly viewed as a labeled transi-
tion system, i.e., as a structure of the form M = (W, W0, R, V ), where W is the finite
set of states that the system can be in, W0 ⊆ W is the set of initial states of the system,
R ⊆ W 2 is a transition relation that indicates the allowable state transitions of the sys-
tem, and V : W → 2Prop assigns truth values to the atomic propositions in each state
of the system. (A labeled transition system is essentially a Kripke structure.) A path in
M that starts at u is a possible infinite behavior of the system starting at u, i.e., it is
an infinite sequence u0, u1 . . . of states in W such that u0 = u, and ui R ui+1 for all
i ≥ 0. The sequence V (u0), V (u1) . . . is a computation of M that starts at u. It is the
sequence of truth assignments visited by the path, and can be viewed as a function from
IN to 2Prop. The language of M , denoted L(M), consists of all computations of M that
start at a state in W0. Note that L(M) can be viewed as a language of infinite words over
the alphabet 2Prop. The language L(M) can be viewed as an abstract description of the
system M , describing all possible “traces”. We say that M satisfies an LTL formula ϕ
if all computations in L(M) satisfy ϕ, that is, if L(M) ⊆ models(ϕ). When M satisfies
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ϕ we also say that M is a model of ϕ, which explains why the technique is known as
model checking [22].

One of the major approaches to automated verification is the automata-theoretic
approach, which underlies model checkers that can handle linear-time specifications.
The key idea underlying the automata-theoretic approach is that, given an LTL for-
mula ϕ, it is possible to construct a finite-state automaton Aϕ on infinite words that
accepts precisely all computations that satisfy ϕ. The type of finite automata on infi-
nite words we consider is the one defined by Büchi [12]. A Büchi automaton is a tuple
A = (Σ, S, S0, ρ, F ), where Σ is a finite alphabet, S is a finite set of states, S0 ⊆ S
is a set of initial states, ρ : S × Σ → 2S is a nondeterministic transition function, and
F ⊆ S is a set of accepting states. A run of A over an infinite word w = a1a2 · · ·, is a
sequence s0s1 · · ·, where s0 ∈ S0 and si ∈ ρ(si−1, ai) for all i ≥ 1. A run s0, s1, . . .
is accepting if there is some accepting state that repeats infinitely often, i.e., for some
s ∈ F there are infinitely many i’s such that si = s. The infinite word w is accepted
by A if there is an accepting run of A over w. The language of infinite words accepted
by A is denoted L(A). The following fact establishes the correspondence between LTL
and Büchi automata [78] (for a tutorial introduction for this correspondence, see [75]):

Theorem 1. Given an LTL formula ϕ, one can build a Büchi automaton Aϕ =
(Σ, S, S0, ρ, F ), where Σ = 2Prop and |S| ≤ 2O(|ϕ|), such that L(Aϕ) = models(ϕ).

This correspondence reduces the verification problem to an automata-theoretic prob-
lem as follows [77]. Suppose that we are given a system M and an LTL formula ϕ. We
check whether L(M) ⊆ models(ϕ) as follows: (1) construct the automaton A¬ϕ that
corresponds to the negation of the formula ϕ (this automaton is called the complemen-
tary automaton), (2) take the cross product of the system M and the automaton A¬ϕ

to obtain an automaton AM,ϕ, such that L(AM,ϕ) = L(M) ∩ L(A¬ϕ), and (3) check
whether the language L(AM,ϕ) is empty, i.e., AM,ϕ accepts no input.

Theorem 2. Let M be a labeled transition system and ϕ be an LTL formula. Then M
satisfies ϕ iff L(AM,ϕ) = ∅.

If L(AM,ϕ) is empty, then the design is correct. Otherwise, the design is incorrect and
the word accepted by L(AM,ϕ) is an incorrect computation.

The emptiness problem for an automaton is to decide, given an automaton A, whether
L(A) = ∅, i.e., if the automaton accepts no word. Algorithms for emptiness are based
on testing fair reachability in graphs: an automaton is nonempty if starting from some
initial state we can reach an accepting state from where there is a cycle back to it-
self [15]. An algorithm for nonemptiness is the following: (i) decompose the transi-
tion graph of the automaton into maximal strongly connected components (mscc) (lin-
ear cost depth-first search [26]); (ii) verify that one of the mscc’s intersects with F
(linear cost). More sophisticated Büchi nonemptiness algorithms have been studied,
e.g., [27, 33]. When the automaton is nonempty, nonemptiness algorithms return a wit-
ness in the shape of a “lasso”: an initial finite prefix followed by a finite cycle. (If the
accepting states are “sink” states, then the finite cycle following the initial prefix can be
ignored.) Thus, once the automaton A¬ϕ is constructed, the verification task is reduced
to automata-theoretic problems, namely, intersecting automata and testing emptiness of
automata, which have highly efficient solutions [75]. Furthermore, using data structures
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that enable compact representation of very large state spaces makes it possible to verify
designs of significant complexity [8, 13].

The linear-time framework is not limited to using LTL as a specification language.
ForSpec and PSL are recent extensions of LTL, designed to address the need of the
semiconductor industry [1, 3]. There are also those who prefer to use automata on infi-
nite words as a specification formalism [78]; in fact, this is the approach of COSPAN
[47, 55]. In this approach, we are given a design represented as a finite transition sys-
tem M and a property represented by a Büchi (or a related variant) automaton P . The
design is correct if all computations in L(M) are accepted by P , i.e., L(M) ⊆ L(P ).
This approach is called the language-containment approach. To verify M with respect
to P , we: (1) construct the automaton P c that complements P , (2) take the product of
the system M and the automaton P c to obtain an automaton AM,P , and (3) check that
the automaton AM,P is nonempty. As before, the design is correct iff AM,P is empty.
Thus, the verification task is again reduced to automata-theoretic problems, namely
complementing and intersecting automata and testing emptiness of automata.

3 Automata-Theoretic Model Checking Revisited

By the late 1990s, the automata-theoretic approach to model checking seems to have
stabilized. The algorithms developed can be classified as as explicit, based on explicit
state enumeration, e.g., [27, 42], or implicit/symbolic, based on a symbolic encoding of
the state space, using binary decision diagrams (BDDs) [13] or satisfiability solving [8].
These algorithms have been implemented in various model-checking tools [16, 49, 59].

In the last few years, further progress has been been on several aspects of automata-
theoretic model checking. As a result of this progress, we know both more and both less.
We now know that the simple picture that prevailed by the late 1990s is too simplistic,
but we do not have a clear understanding of the space of relevant algorithms. In the rest
of this section, we survey the progress made over the last few years and highlight the
questions that have been opened by this progress.

3.1 Translating LTL Formulas to Büchi Automata

Translating LTL formulas to automata is a key building block in linear-time model
checking. While the focus of the original translation [81, 78] was on mathematical
simplicity, it was not appropriate for explicit model checking, since the automata con-
structed were always exponential in the size of the formula. Already in [80] it was
shown that instead of starting with an exponentially large state pace, the translation can
create states on a demand-driven basis. The optimized translation of [42] avoided the
exponential blow-up in many cases of practical interest and was was used in the ex-
plicit model checker SPIN [49]. The original translation of [78], was appropriate for
symbolic model checking and, after appropriate optimization [21], is used in symbolic
model checkers such as NuSMV [16]. An approach to LTL translation via alternating
automata was described in [74], again motivated by mathematical simplicity.

Two papers published in 1999 [28, 30] showed that [42] is not the last word on ex-
plicit LTL translation, which opened the door to many more papers [31, 34, 37, 38, 45,
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43, 39, 70, 67, 73]. In fact, so many papers have been published over the last few years
on this topic that it is difficult to say what is the best approach to translating LTL to
automata. This is compounded by several issues:

– All the cited papers focus on optimizing automata generation (with respect to time
and/or space), rather than optimizing model checking. It is not clear, however,that
improving automata-generation performance yields an improvement in model-
checking performance. One exception is [67], which aims at optimizing model
checking by generating “more deterministic” automata, but again does not offer
any evidence of improvement in model checking.

– There are reasons to believe that none of the existing LTL translators perform well
on nontrivial formulas. For example, [68] reports not being able to translate a cer-
tain formula, expressing a conjunction of fairness conditions, by many of the avail-
able tools. A specialized tool generated an automaton with about 1200 states from
this formula. Note that symbolic model checkers routinely handle BDDs with mil-
lions of nodes. It is not clear why LTL translators cannot handle automata with only
thousands of states.

– A generalized Büchi automaton is a tuple A = (Σ, S, S0, ρ,F), where F is a set
{F1, . . . , Fk} of subsets of S, called accepting sets. A run of A is accepting if ac-
cepting set is visited infinitely often. It is known that a generalized Büchi automaton
with k accepting sets can be degeneralized, that is, converted to an equivalent Büchi
automaton, at the cost of multiplying the number of states by k [15]. As is shown
in [42], it is natural to translate LTL to generalized Büchi automata. While symbolic
model checkers support generalized Büchi automata, SPIN does not support them
and requires degeneralization. There are, however, some who argue that it may be
advantageous to avoid degeneralization [72]; see discussion of nonemptiness algo-
rithms below.

– Industrial experience has shown that LTL is too weak expressively for industrial
applications (see [79] for theoretical justification), resulting in more expressive in-
dustrial language such as ForSpec and PSL [1, 3]. So far there he been no report
of an effort to develop an explicit translator for ForSpec or PSL. Some industrial
symbolic implementations of ForSpec and PSL are known to exists; for example,
Intel has a symbolic translator for ForSpec [4], but little is known about them.
See [14, 17, 62] for recent descriptions of symbolic translations for certain frag-
ments of PSL. None of these translations handle all features of PSL.

3.2 Deterministic vs. Nondeterministic Automata

For certain formulas, the very approach of translating temporal assertions to nonde-
terministic Büchi automata should be re-visited. The majority of the properties being
verified are safety properties, whose violation can be witnessed by a finite counterex-
ample. It is known that in such cases the complemented properties can be translated
into automata on finite words [51]. Such automata can be determinized, though at
a possibly exponential cost [64]. It may seem that such blow-up should be avoided,
but symbolic model checking can be viewed as online determinization of the asser-
tion automaton [51]. Thus, determinization is in some sense inherent to symbolic
model checking.
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Recent results point to the advantage of translation to deterministic automata in the
context of SAT-based model checking [2]. Unlike the standard propositional encoding
of LTL formulas [8, 18, 57], which is polynomial in the size of the formula, the encod-
ing in [2] is exponential. It is shown in [2] that such encoding can nevertheless lead to
improved model-checking performance. When the automaton is nondeterministic, the
model checker has to find a bad behavior of the design under verification as well as an
accepting run of the automaton on that behavior. When the automaton is deterministic,
the search for an accepting run is avoided. This result raises the possibility that trans-
lation to deterministic automata would also be advantageous in the context of explicit
and BDD-based model checking. (A theoretical advantage of translating to determin-
istic automata is described in [54], but it is not clear if this leads also to a practical
advantage.)

3.3 Nonemptiness Algorithms

There are three types of nonemptiness algorithms for Büchi automata: explicit, BDD-
based, and SAT-based.

Explicit Algorithms. As mentioned earlier, an obvious algorithm for nonemptiness
of Büchi automata is the following: (i) decompose the transition graph of the input
automaton into maximal strongly connected components using depth-first search, and
(ii) verify that one of the component intersects with F (or with all members of F for
generalized automata).

For large state spaces, maintaining the required data structures in main memory
might be infeasible. An alternative algorithm, NDFS, was proposed in [27]. NDFS
conducts two depth-first searches, but does not require a decomposition into maximal
strongly connected components. This algorithm, with some modifications [44, 50], is
the algorithm implemented in SPIN. NDFS was improved further in [66].

Other works [28,40] developed optimized versions of the mscc-based algorithm and
argued that it performs better than NDFS and its variants. The experimental evidence is
limited, however, to automata with not too large state space, while NDFS was designed
for large state spaces, where the mscc decomposition cannot be carried out in main
memory. (NDFS can use state hashing, which underapproximates the set visited by the
search [27].) The emerging picture is that mscc-based algorithms are appropriate for
main-memory implementations, whereas NDFS algorithms are appropriate when the
state space is too large for a main-memory implementation.

NDFS was extended to generalized Büchi automata in [72]; instead of conducting
two depth-first searches, we may need to conduct k + 1 depth-first searches, where k
is the number of accepting sets of the automaton. Thus, the blow-up in the size of the
state space is replaced by a blow-up in the number of depth-first searches. It is not clear
that this yields an improvement in performance.

A thorough discussion and experiments involving nonemptiness algorithms can be
found in [29], which also introduces optimized versions of the mscc-based algorithm
of [28] and the NDFS-based algorithm of [72]. At this point these two algorithms seem
to be the best of their types. These algorithms are implemented in the model-checking
library Spot, which is publicly available at spot.lip6.fr. For a survey of distributed
algorithms for explicit model checking, see [6].
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BDD-Based Algorithms. In the symbolic approach, we do not construct the state
graphs of the system and property automaton explicitly. Rather, these graphs are de-
scribed in a logical language, cf. [5]. The model-checking algorithms can then work
directly on the symbolic representation. BDD-based model checkers such as SMV use
propositional formulas as the user-level representation formalism. The tool then trans-
lates these formulas into Reduced Ordered Binary Decision Diagrams (BDDs) [11] and
the nonemptiness algorithm works directly on these BDDs [13]. BDD-based algorithms
are set based (the algorithms manipulates sets of states) and cannot directly implement
depth-first search. In the symbolic approach, the property automaton also has to be rep-
resented symbolically [19,13]; in fact, that representation captures directly the structure
of the automaton described in [78]. While the explicit representation of the automaton
can be exponentially large with respect to the LTL formula it represents, the symbolic
representation is linear in the size of the formula.

A set-based algorithm for fair reachability was described in [33], based on a fixpoint
characterization of fair reachability [32]. The algorithm performs a nested fixpoint com-
putation, which implies that it uses, in the worst case, a quadratic number of symbolic
operations (with respect to the number of nodes in the state graph). This should be
contrasted with explicit nonemptiness algorithms, which run in linear time.

The algorithm of [33], referred to as the EL algorithm, is the one implemented on
available symbolic model checkers [16, 59]. A heuristic optimization of the EL algo-
rithm called CTY, was proposed in [48]. An improvement of CTY, called OWCTY, was
proposed in [35], where it was argued that it is preferred to the standard EL algorithm,
but this conclusion was disputed in [71].

Both CTY and OWCTY retain the structure of a nested fixpoint computation with a
quadratic number of image operations. In contrast, the algorithm presented in [9] uses
only n logn symbolic operations. Disappointingly, this algorithm does not perform bet-
ter in practice than EL and its variants [71]. Further improvement was provided in [41],
which described an algorithm with a linear number of symbolic steps. Unfortunately,
there is no experimental information on the performance of that algorithm in practice.

Another approach to the fair-reachability problem is to reduce it to a simple reach-
ability problem [7]. This replaces the nested fixpoint computation by a simple fix-
point computation, at the cost of doubling the number of BDD variables. Practical
performance of this algorithm has been disappointing [7]. On the other hand, it was
shown in [10] that for a certain class of LTL formulas the nested fixpoint algorithms
can be replaced by a simple fixpoint algorithm with no increase in the number of
variables, resulting in significant performance improvement. (A general characteriza-
tion of LTL formulas for which model checking can be performed without nested fix-
points is provided in [54]. That characterization, however, does not yield a practical
algorithm.)

A hybrid approach to LTL symbolic model checking, that is, an approach that uses
explicit representations of the property automaton, whose state space is often quite man-
ageable, and symbolic representations of the system, whose state space is typically ex-
ceedingly large, was studied in [68]. They compared the effects of using: (i) a purely
symbolic representation of the property automaton, (ii) a symbolic representation, using
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binary encoding1, of explicitly compiled property automaton, and (iii) a partitioning of
the symbolic state space according to an explicitly translated property automaton. This
comparison was applied to three model-checking algorithms: the nested fixpoint algo-
rithm of [33], the reduction of fair reachability to reachability of [7], and the simple
fixpoint algorithm of [10]. The emerging picture from this comparison is quite clear;
the hybrid approach outperform pure symbolic model checking, while partitioning out-
performs binary encoding. The conclusion is that the hybrid approaches benefits from
state-of-the-art techniques in explicit compilation of LTL formulas. Also, partitioning
gains from the fact that symbolic operations are applied to smaller sets of states.

SAT-Based Algorithms. In bounded model checking we check whether there exists
a counterexample trace of bounded size (that is, both the prefix and the cycles have to
be of bounded size). As is shown [8], this can be expressed as a propositional formula
whose satisfiability implies the existence of a counterexample. While propositional sat-
isfiability is NP-complete, today’s satisfiability-solving tools, known as SAT solvers,
can solve instances with up to hundreds of thousands of variables [83]. It turned out that
SAT-based bounded model checkers can handle designs that are order-of-magnitude
larger than those handled by BDD-based model checkers, making this technology quite
popular in the industry, cf. [25].

In spite of several papers on symbolic translation of LTL in the context of SAT-based
model checking [8, 18, 57], we are far from having reached a solid understanding on
the relative merits of the different approaches. These papers study various propositional
encodings of LTL extended with past temporal connectives. These encodings compare
favorably with what is referred to as “automata-theoretic encoding”. The latter refers to
a binary encoding of automata generated by some LTL translator. This encoding ignores
the inner structure of automata states. In automata generated from LTL formulas, the
states are sets of subformulas; a reasonable automata-theoretic encoding should then
take the inner structure of states into account, rather than use an arbitrary binary en-
coding of states. Also, the reduction of fair reachability to reachability [7] has yet to be
evaluated in the context of SAT-based model checking.

3.4 Büchi Properties

As mentioned earlier, in some cases it is desirable to specify properties directly in
terms of Büchi automata, rather in terms of a temporal logic. In this case the automata-
theoretic approach requires complementation of the property automaton. Note that
while it is easy to complement properties given in terms of formulas in temporal logic,
complementation of properties given in terms of nondeterministic automata is not sim-
ple. Indeed, a word w is rejected by a nondeterministic automaton A if all the runs of A
on w rejects the word. Thus, the complementary automaton has to consider all possible
runs, and complementation has the flavor of determinization.

For Büchi automata on infinite words, which are required for the modeling of live-
ness properties, optimal complementation constructions are quite complicated, as the
subset construction is not sufficient. Due to the lack of a simple complementation

1 That is, we encode n states by log n Boolean variables.
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construction, the user is typically required to specify the property by a deterministic
Büchi automaton [55] (it is easy to complement a deterministic Büchi automaton), or
to supply the automaton for the negation of the property [49]. Thus, an effective al-
gorithm for the complementation of Büchi automata would be of significant practical
value.

Efforts to develop simple complementation constructions for nondeterministic au-
tomata started early in the 1960s, motivated by decision problems for second-order
logics. Büchi suggested a complementation construction for nondeterministic Büchi au-
tomata that involved a complicated combinatorial argument and a doubly-exponential
blow-up in the state space [12]. Thus, complementing an automaton with n states re-
sulted in an automaton with 22O(n)

states. In [69], Sistla et al. suggested an improved
implementation of Büchi’s construction, with only 2O(n2) states, which is still, however,
not optimal. Only in [65], Safra introduced a determinization construction, which also
enabled a 2O(n log n) complementation construction, matching a lower bound described
by Michel [60] (cf. [58]). Thus, from a theoretical point of view, some considered the
problem solved since 1988.

A careful analysis, however, of the exact blow-up in Safra’s and Michel’s bounds
reveals an exponential gap in the constants hiding in the O() notations: while the upper
bound on the number of states in the complementary automaton constructed by Safra
is n2n, Michel’s lower bound involves only an n! blow up, which is roughly (n/e)n.
Recent efforts focused on narrowing the gap between the upper and lower bounds. A
new complementation construction, which avoids determinization, was introduced in
[52], and then tightened in [36] to yield an upper bound of (0.97n)n. On the other hand,
Michel’s bound was improved in [82] to yield a lower bound to (0.76n)n. Thus, the gap
between the lower and upper bound has narrowed, but it is still exponentially wide. (For
a study of the relationship between complementation and the OWCTY fair-reachability
algorithm, see [53].)

The construction if [52] has been implemented with many added optimizations [46].
This optimized construction proved to be highly effective on Büchi automata obtained
from LTL formulas. It is shown in [46] that the automaton obtained by complement-
ing Aϕ, for a random LTL formula ϕ, is not much larger than the automaton A¬ϕ.
This, however, does not imply that the construction is equally effective when applied to
generic Büchi properties. So far no tool supports model checking Büchi properties.

4 Concluding Remarks

Since its introduction in 1981, model checking has proved to be a highly successful
technology. The automata-theoretic approach offers a uniform algorithmic framework
for model checking linear-time properties. As we saw, recent progress has increased our
knowledge, but also opened many questions, regarding the translation of temporal prop-
erties to automata, algorithms for fair reachability, and complementation of Büchi prop-
erties. We hope to see many of these questions answered in the coming years. Equally
important, we hope to see software tools implementing new algorithmic developments
in this area.
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Informaticae, 70(1–2):127–154, 2006.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



150 M.Y. Vardi

73. X. Thirioux. Simple and efficient translation from LTL formulas to Büchi automata. Electr.
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Abstract. The standard counterexample-guided abstraction-refinement
(cegar) approach uses finite transition systems as abstractions of con-
crete systems. We present an approach to represent and refine abstrac-
tions of infinite-state systems that uses regular languages instead of finite
transition systems. The advantage of using languages over transition sys-
tems is that we can store more fine-grained information in the abstraction
and thus reduce the number of abstract states. Based on this language-
based approach for cegar, we present new abstraction-refinement al-
gorithms for hybrid system verification. Moreover, we evaluate our ap-
proach by verifying various non-linear hybrid systems.

1 Introduction

The verification of infinite-state systems is often done by abstracting the concrete
system to an abstract finite state system. The abstract system over-approximates
the concrete one, i.e., it includes all the behaviors of the concrete system. How-
ever, it can include behaviors that do not correspond to behaviors of the con-
crete system. Such behaviors are called spurious. In the counterexample-guided
abstraction-refinement (cegar) paradigm [6] one usually starts with a very
coarse abstraction and uses spurious counterexamples to iteratively refine the
abstraction until verification reveals whether or not the property in question
holds. cegar has been successfully used for verifying many different classes of
infinite-state systems. For instance, cegar has been adopted and used for the
verification of hybrid systems [5, 1, 17]. In this paper, we focus on the safety
verification of hybrid systems. However, in principle, the presented method also
applies to other infinite-state systems.

The standard cegar approach uses finite transition systems as abstractions
of the concrete systems. The use of transition systems has the following disad-
vantages. Assume that we have abstract states a, b, c with transitions from a to
b and from b to c (we write a→b and b→c with the obvious meaning). Even if
a→b and b→c are not spurious, it is not necessarily the case that a→b→c is
not spurious. If a→b→c is spurious, we can refine the abstraction by splitting
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at least one of the abstract states such that the concrete system is reflected
more closely. Splitting abstract states in such a way that the spurious sequence
a→b→c does not appear in the abstraction anymore can be difficult. Further-
more, the splitting of an abstract state introduces additional abstract states and
it can introduce new spurious counterexamples. This can lead to a state space
explosion of the abstract systems. For instance, in the worst case, the number
of abstract states can double in each refinement step of the cegar algorithm
for hybrid system [5]. One method [10] to address this problem splits abstract
states based on graph-topological properties of the finite transition system.

As a means to reduce the number of abstract states we present an alternative
to finite transition systems as abstractions in the cegar paradigm. Namely,
we use languages to over-approximate the behaviors of concrete systems. In
our approach, a language contains at least the sequences of abstract states that
correspond to runs of the concrete system. The use of languages allows us to store
more fine-grained information in the abstraction, and to refine the abstraction,
we do not necessarily need to split abstract states. For instance, in the example
above, if the sequence a→b→c of abstract states is spurious, we can remove all
sequences from the language that contain a→b→c as a subsequence. For checking
whether a sequence of abstract states is spurious, we present an extension of the
method that is used in the hybrid system verifier hsolver [18, 19]. As in the
standard cegar approach, we also allow to split abstract states to refine the
abstraction. We use deterministic finite automata to represent the languages
and present automata operations for refining the abstractions. We evaluate our
language-based approach on various non-linear hybrid systems using a prototype
implementation. Our experiments demonstrate that the use of languages often
reduces the number of splittings significantly.

To our knowledge, the use of languages for representing and refining abstrac-
tions in the context of cegar for hybrid system verification is novel. The ob-
servation that regular languages/automata can be used to improve abstraction-
refinement algorithms already appeared in [7]. However, [7] mainly focuses on
the completeness of abstraction-refinement algorithms for infinite-state systems
in general and does not provide concrete algorithms that beneficially make use
of finite state automata in practice. Related to our work with respect to lan-
guages for representing the behavior of hybrid systems are [2] and [4,3]. Roughly
speaking, Asarin et al. [2] use languages to show decidability of the reachability
problem of a certain class of hybrid systems, and Brihaye et al. [4,3] use words of
languages to construct bisimilar finite transition systems for so-called o-minimal
hybrid systems. Other methods for verifying systems with continuous dynam-
ics by over-approximating their behaviors, and automatically and incrementally
refining the abstractions appeared recently in [9, 14]. In [9], rectangular hybrid
automata [12] are used to over-approximate the behavior, and [14] uses finite
transition systems. Both methods only apply to hybrid systems with restricted
(linear, multi-affine) continuous dynamics.

We proceed as follows. In §2, we give the definition of hybrid systems that
we use in this paper and the verification problem that we address. In §3, we
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describe our method for using languages as abstractions. In §4, we give details
on how we manipulate the languages that represent our abstractions and in §5,
we present methods to check if sequences of abstract states are spurious. In §6,
we report on experimental results. Finally, in §7, we draw conclusions.

2 Verification of Hybrid Systems

Hybrid systems are systems with continuous and discrete state variables. In this
paper, we use the mathematical model from [17, 19], which we briefly recall in
this section. It captures many relevant classes of hybrid systems, and many other
formalisms for hybrid systems in the literature are special cases of it.

We use a set S to denote the modes of a hybrid system, where S is finite
and nonempty. I1, . . . , Ik ⊆ R are compact intervals over which the continuous
variables of a hybrid system range. Φ denotes the state space of a hybrid system,
i.e., Φ = S × I1 × · · · × Ik. Note that it is not a severe practical restriction that
the continuous variables have to range over compact intervals because, in most
applications, the variable ranges are bounded and engineers use their experience
to choose reasonable values for the interval bounds.

Definition 1. A hybrid system H is a tuple (Flow , Jump, Init ,Unsafe), where
Flow ⊆ Φ × R

k, Jump ⊆ Φ × Φ, Init ⊆ Φ, and Unsafe ⊆ Φ.

Informally speaking, the predicate Init specifies the initial states of a hybrid
system H = (Flow , Jump, Init ,Unsafe) and Unsafe the states that should not
be reachable from an initial state. The relation Flow specifies how the system
may develop continuously by relating each state to the corresponding derivative,
and Jump specifies how H may change states discontinuously by relating each
state to its successor states. Formally, the behavior of H is defined as follows:

Definition 2. A flow of length l ≥ 0 in a mode s ∈ S is a function r : [0, l] → Φ
such that the projection of r to its continuous part is differentiable and for all
t ∈ [0, l], the mode of r(t) is s. A trajectory of H is a sequence of flows r0, . . . , rp

of lengths l0, . . . , lp such that for all i ∈ {0, . . . , p},
(i) if i > 0 then (ri−1(li−1), ri(0)) ∈ Jump, and
(ii) if li > 0 then (ri(t), ṙi(t)) ∈ Flow, for all t ∈ [0, li], where ṙi is the deriva-

tive of the projection of ri to its continuous component.

In the following, we denote the length of a flow r by |r|. Moreover, we address
the state ri(t) in a trajectory by the pair (i, t). This naturally gives us a (lexi-
cographical) order � on the states in a trajectory.

Definition 3. A (concrete) counterexample of H is a trajectory r0, . . . , rp of
H such that r0(0) ∈ Init and rp(|rp|) ∈ Unsafe. H is safe if it does not have a
counterexample.

We use the following constraint language to describe hybrid systems. The vari-
able s ranges over S and the variables x1, . . . , xk range over I1, . . . , Ik, respec-
tively. In addition, to denote the derivatives of x1, . . . , xk we use the variables
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ẋ1, . . . , ẋk that range over R,1 and to denote the targets of jumps, we use the
primed variables s′, x′

1, . . . , x
′
k that range over S and I1, . . . , Ik, respectively.

Constraints are arbitrary Boolean combinations of equalities and inequalities
over terms that may contain function symbols like +, ×, exp, sin, and cos.

We assume in the remainder of the text that a hybrid system is described
by our constraint language. That means, the flows of a hybrid system are given
by a constraint flow(s, x1, . . . , xk, ẋ1, . . . , ẋk), the jumps are given by a con-
straint jump(s, x1, . . . , xk, s′, x′

1, . . . , x
′
k), the initial states are given by a con-

straint init(s, x1, . . . , xk), and a constraint unsafe(s, x1, . . . , xk) describes the
unsafe states. To simplify notation, we do not distinguish between a constraint
and the set it represents.

Example 1. For illustrating the above definitions, consider the following simple
hybrid system. The hybrid system has two modes m1, m2 and the continuous
variables x1 and x2, where x1 ranges over the interval [0, 2] and x2 over [0, 1], i.e,
Φ = {m1, m2} × [0, 2] × [0, 1].

The set of initial states are given by the constraint init(s, x1, x2) = (s =
m1 ∧ x1 = 0 ∧ x2 = 0) and unsafe(s, x1, x2) = (x1 > 1 ∧ x2 = 1) describes the
unsafe states. The hybrid system can switch modes from m1 to m2 if x2 = 1, i.e.,

jump(s, x1, x2, s
′, x′

1, x
′
2) = (s = m1 ∧ x2 = 1 → s′ = m2 ∧ x′

1 = x1 ∧ x′
2 = x2) .

The continuous behavior is quite simple: In mode m1, the values of the variables
x1, x2 change with slope 1; in mode m2, the slope of x1 is 1 and x2 has slope
−1. For a flow in mode m1, the constraint 0 ≤ x1 ≤ 1 must hold and in mode
m2, 1 ≤ x1 ≤ 2 must hold. The corresponding flow constraint is

flow(s, x1, x2, ẋ1, ẋ2) = (s = m1 → ẋ1 = 1 ∧ ẋ2 = 1 ∧ 0 ≤ x1 ≤ 1)∧
(s = m2 → ẋ1 = 1 ∧ ẋ2 = −1 ∧ 1 ≤ x1 ≤ 2) .

Note that the constraint 0 ≤ x1 ≤ 1 in flow forces a jump from mode m1 to m2 if
x1 becomes 1. Otherwise, the system makes no progress. In general, an invariant
that has to hold in a mode can be modeled by formulating a flow constraint that
does not allow a continuous behavior in certain parts of the state space.

A trajectory of the hybrid system starting from the initial state (m1, (0, 0))
is r0, r1, where the flows r1, r2 : [0, 1] → Φ are given by

r0(t) = (m1, (t, t)) and r1(t) = (m2, (t + 1, 1 − t)) .

Obviously, this hybrid system is safe.

The verification problem we address in the following is to prove automatically
that a hybrid system is safe. Note that the reachability problem for hybrid
systems is undecidable [12]. So, it is only possible to give semi-algorithms for
this problem that (hopefully) terminate on many relevant problem instances. In
this paper, our focus is on verifying that a given hybrid system is safe and on
1 The dot does not have any special meaning here; it is only used to distinguish dotted

from undotted variables.
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efficiency for instances of practical relevance. For the sake of readability, we use
in the remainder of the paper the term “algorithm” liberally in the sense that
we do not require that an algorithm terminates for every input instance.

3 Language-Based Abstractions

In this section, we present our language-based approach of abstracting hybrid
systems and refining abstractions. For the remainder of the text, let H =
(Flow , Jump, Init ,Unsafe) be a hybrid system.

As in many abstraction techniques we cover H ’s state space Φ by using finitely
many subsets of Φ, which we call regions. We identify the regions by naming them
with the symbols of an alphabet Ω and a function γ that assigns to every element
of Ω a region and that covers Φ, i.e., Φ =

⋃
b∈Ω γ(b).

Intuitively speaking, we use a word b1 . . . bn ∈ Ω+ to represent all the trajec-
tories of H that pass in the order of the occurrences of the symbols through the
regions γ(b1), . . . , γ(bn).

Definition 4. Let w = b1 . . . bn ∈ Ω+ with n ≥ 1. A trajectory r1, . . . , rp of H
follows w if there exists a non-decreasing sequence (i1, t1), . . . , (in+1, tn+1) with
respect to the ordering � such that

(i) i1 = 1 and t1 = 0,
(ii) 0 ≤ tj ≤ |rij |, for all j ∈ {1, . . . , n},
(iii) in+1 = p, tn+1 = |rp|, and rp(|rp|) ∈ γ(bn), and
(iv) for all j ∈ {1, . . . , n} and all (i′, t′), if (ij, tj) � (i′, t′) ≺ (ij+1, tj+1) then

ri′ (t′) ∈ γ(bj).

Note that different trajectories can follow the same word and a trajectory can
follow different words.

Example 2. Consider again the hybrid system from Example 1. Assume that its
state space is covered by γ : {a, b, c, d} → Φ with γ(a) = {m1} × [0, 1

2 ] × [0, 1],
γ(b) = {m1} × [ 12 , 1] × [0, 1], γ(c) = {m2} × [1, 3

2 ] × [0, 1], and γ(d) = {m2} ×
[32 , 2] × [0, 1]. Let r1, r2 be the trajectory from (m1, (1

4 , 1
4 )) to (m2, (7

4 , 1
4 )) with

r1(t) = (m1, (1
4 + t, 1

4 + t)) and r2(t) = (m2, (1 + t, 1 − t)) ,

for t ∈ [0, 3
4 ]. The trajectory r1, r2 follows the word abcd, since the sequence

(1, 0), (1, 1
4 ), (1, 3

4 ), (2, 1
2 ), (2, 3

4 ) is non-decreasing with respect to � and satisfies
the conditions (i)–(iv) in Definition 4.

Definition 5. We call a word w ∈ Ω+ prefix-spurious ( suffix-spurious, respec-
tively) if there is no trajectory r1, . . . , rp that follows w and starts in Init , i.e.,
r1(0) ∈ Init (ends in Unsafe, i.e., rp(|rp|) ∈ Unsafe, respectively). Moreover,
we call w midfix-spurious if there is no trajectory that follows w. For the sake
of brevity, we use the following abbreviations: p-spurious for prefix-spurious, s-
spurious for suffix-spurious, and m-spurious for midfix-spurious.

Note that if a word is m-spurious then it is p-spurious and s-spurious. However,
if a word is p-spurious or s-spurious, we cannot conclude that it is m-spurious.
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Algorithm 1. Language-based abstraction-refinement algorithm
Input: hybrid system H
1: Ω ← {b}, where b is some symbol
2: L ← Ω+

3: let γ : Ω → 2Φ be the function with γ(b) = Φ
4: while L �= ∅ do
5: for all b ∈ Ω with L ∩ {bv | v ∈ Ω∗} �= ∅ and b is p-spurious do
6: L ← L \ ext({bv | v ∈ Ω∗})
7: end for
8: for all b ∈ Ω with L ∩ {ub | u ∈ Ω∗} �= ∅ and b is s-spurious do
9: L ← L \ ext({ub | u ∈ Ω∗})

10: end for
11: for all w ∈ C(Ω) with |w| = maxlen and L ∩ {uwv | u, v ∈ Ω∗} �= ∅ do
12: L ← removeMidfixSpurious(H,L, w)
13: end for
14: split region γ(a) in regions U and V , for some a ∈ Ω
15: Ω ← Ω ∪ {b}, where b is a fresh symbol
16: L ← La∼b

17: update γ, i.e., γ(a) = U , γ(b) = V , and γ(c) is not altered for c ∈ Ω \ {a, b}
18: end while

We assume that we can check if a word is p-spurious, s-spurious, or m-spurious.
Since the reachability problem for hybrid systems is undecidable [12] such a check
has to be over-approximating, i.e., it returns either “spurious” or “don’t know”
(see §5 for more details on mechanizing such a check). Additionally, such a check
may detect that a trajectory follows the given word, and returns “not spurious”
in that case. This additional information can be used to further optimize the
following algorithms. However, in order to keep the exposition simple, we do not
consider this further.

To verify that the hybrid system H is safe, we use languages L such that every
counterexample of H follows a word in L. We iteratively choose words w ∈ L and
check whether w is p-spurious, s-spurious, or m-spurious. Assume that L ⊆ Ω+,
where Ω is some alphabet. If we can show that w is p-spurious, we remove the
words of the form wv with v ∈ Ω∗ from L, if we can show that w is s-spurious,
we remove the words uw with u ∈ Ω∗ from L, and if we can show that w is
m-spurious, we remove the words uwv with u, v ∈ Ω∗ from L. If the language
becomes empty, we know that H is safe. In addition to the checks if a word is
p-spurious, s-spurious, or m-spurious, we can split a region. For reflecting a split,
we add a new symbol b to Ω, update γ, and add certain words to L.

Various details are left open in the description above. In the following, we pro-
vide the details by describing the language-based counterexample-abstraction-
refinement algorithm in Alg. 1.

Note that the language L can be infinite. So, instead of checking all words in
L in an iteration (lines 4–18 of Alg. 1), we only check the words up to a given
maximal length maxlen, which we fix in advance. Moreover, we restrict ourselves
to contracted words, i.e., words in which a subword of the form bb with b ∈ Ω
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Algorithm 2. removeMidfixSpurious
Input: hybrid system H , language L, word w
1: N ← ∅
2: for l ← length of w downto 2 do
3: for all subwords w′ of w of length l and w′ is not a subword of a word in N do
4: if w′ is m-spurious then L ← L \ ext({uw′v | u, v ∈ Ω∗})
5: else N ← N ∪ {w′}
6: end for
7: end for
8: return L

does not occur. The reason for this is that if, e.g., ubbv is m-spurious then ubv
is also m-spurious. Let C(Ω) denote the set of contracted words in Ω+. The
contraction of a word w is the word w′, where we remove repeated symbols, i.e.,
we replace the maximal subwords of the form b . . . b in w by b. For K ⊆ Ω∗,
we define ext(K) as the language that contains a word u ∈ Ω∗ iff there is some
v ∈ K such that the contractions of u and v are the same.

The decision in which order to check the words in C(Ω) of length at most
maxlen is non-trivial. In particular, should we check short words or long words
first? On the one hand, a longer word is more likely to be identified, e.g., as m-
spurious since at most as many trajectories follow a word as any of its subwords.
On the other hand, if we identify a short word w, e.g., as m-spurious then we
do not need to check longer words in which w occurs. In each iteration (lines 4–
18), Alg. 1 checks the words in the following order. First, we check words if they
are p-spurious or s-spurious (lines 5–7 and 8–10, respectively). We only check
words of length 1, i.e., for a region, we check if it contains initial and unsafe
states. If we identify b ∈ Ω as p-spurious, we remove ext({bu | u ∈ Ω∗}) from L.
Analogously, if we identify b ∈ Ω as s-spurious, we remove ext({ub | u ∈ Ω∗}).
Then, for every word w ∈ C(Ω) of length maxlen, we use Alg. 2 to check if
subwords w′ of w are m-spurious. If we identify w′ as m-spurious, we remove
ext({uw′v | u, v ∈ Ω∗}) from L. Furthermore, Alg. 2 maintains a set N to avoid
unnecessary checks whether a word w′ is m-spurious. We do not check whether
w′ is m-spurious if w′ is a subword of a word w̃ for which we could not prove
in an earlier iteration (lines 2–7 of Alg. 2) that w̃ is m-spurious (i.e., the used
solver has returned “don’t know” for w̃). We assume here that the solver will
then also return “don’t know” for w′. Note that this is a reasonable assumption
since intuitively it is easier to show that a word is m-spurious than to show that
one of its subwords is m-spurious.

After checking contracted words in L of length at most maxlen , Alg. 1 splits
a region according to some heuristic, extends the alphabet Ω, and updates the
language L and the function γ (lines 14–18). For reflecting a split of a region
named by a ∈ Ω, we need to specify that a fresh symbol behaves exactly like a.

Definition 6. For K ⊆ Ω∗ and symbols a, b, we define Ka∼b as the smallest
set such that if a1 . . . an ∈ K then a′

1 . . . a′
n ∈ Ka∼b, where a′

i = ai if ai 
= a and
a′

i ∈ {a, b} if ai = a, for all i ∈ {1, . . . , n}.
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Fig. 1. Abstraction refinement

The correctness of Alg. 1 follows from the invariant that every trajectory from
Init to Unsafe follows a word in L. Note that we only remove words from L that
are p-spurious, s-spurious, or m-spurious.

Theorem 1. If Alg. 1 terminates then H is safe.

Before we describe how we represent and manipulate the languages L that de-
scribe the abstractions (§4) and how we check if a word is p-spurious, s-spurious,
or m-spurious (§5), we relate our language-based approach to the standard ap-
proach of using finite transition systems in cegar to abstract the concrete sys-
tem. Furthermore, we present optimizations of Alg. 1 (§3.1 and §3.2).

In the standard cegar approach one uses finite transition systems to over-
approximate the behavior of a concrete system. From a finite transition system T
we can obtain a language LT ⊆ S+, where S is the set of states of T . Assume that
we associate to each state s of T a region η(s) of H ’s state space. We define LT

as the language that consists of the words s0 . . . sn ∈ S+, where s0 → · · · → sn

is a path in T with η(s0)∩ Init 
= ∅ and η(sn)∩Unsafe 
= ∅. Note that T and LT

represent the same abstract counterexamples and deleting a transition s → s′ in
T corresponds to removing all words from LT in which ss′ occurs as a subword.

The other direction is as follows. Let L ⊆ Ω+ be a language in our language-
based approach. The set of states of the finite transition system TL is Ω. A
state b ∈ Ω is initial iff γ(b) ∩ Init 
= ∅ and b is an unsafe state in TL iff
γ(b) ∩ Unsafe 
= ∅. We have a transition from state b ∈ Ω to b′ ∈ Ω in TL iff bb′

is a subword of a word in L. Note that the abstraction L can be more accurate
than TL. In the case where maxlen = 2, the words that we check in line 11 of
Alg. 1 are of the form ab, where a, b ∈ Ω and a 
= b. So, the elimination of words
from the language L in line 12 corresponds to the elimination of edges between
states in the transition system TL.

We illustrate that choosing maxlen larger than 2 can be beneficial. Consider
the abstraction in Figure 1(a) and assume that the abstract states 1 and 4 are
reachable from an initial state in the abstraction, and the states 3 and 5 lead to
an unsafe state in the abstraction. Assume further that the sequence 4→2→3
is m-spurious because there is no trajectory from the abstract state 4 over 2 to
3. In our approach, we just remove ext({u423v | u, v ∈ Ω∗}) from the language.
When using finite transition systems, we try to split the abstract state 2 into
two new abstract states, which we name 2 and 2′, in such a way that there is
no trajectory from 4 to 2, no trajectory from 2′ to 3, and no trajectory from
2′ to 2 (see Figure 1(b)). The refined abstraction contains neither the sequence
4→2→3 nor 4→2′→3. However, the splitting might introduce new fragments
of spurious counterexamples, e.g., 1 → 2′ → 5. Moreover, to prove that 4 → 2,
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2′→3, and 2′→2 are m-spurious, it might be necessary to split the region of the
original abstract state 2 into two parts of a very complex form. It might even be
the case that our data structure for representing regions is not flexible enough
to allow a split such that the edges 4→2, 2′→3, and 2′→2 can be removed. In
this case, we have to split the regions 2 and 2′ further. The experimental results
in §6 demonstrate that such situations arise in practice and taking into account
sequences of abstract states with more than two states can pay off.

3.1 Region Pruning

In Alg. 1, we only split regions and remove words from the language L to refine
the abstraction. For instance, we remove a word if we can show that there is no
trajectory that follows this word. In this subsection, we optimize our verification
method by a complementary method: if we can prove that a part of a region
is not reachable then we remove this part of the region, i.e., we prune certain
states from regions. Observe that the regions may not cover the state space Φ
anymore. However, since we only remove unreachable states, the regions still
cover the part of Φ in which there might be a counterexample.

Definition 7. A state y ∈ Φ is reachable from a state x ∈ Φ if there is a
trajectory r0, . . . , rp with r0(0) = x and rp(|rp|) = y. For w ∈ Ω+, y ∈ Φ is w-
reachable from x ∈ Φ if there is a trajectory r1, . . . , rp that follows w, r0(0) = x,
and rp(|rp|) = y.

The following lemma allows us to remove states from regions that are neither
w-reachable from an initial state, for all contracted words w of length less than
maxlen nor w-reachable from some other state, for all contracted words w of
length maxlen. Due to space limitations, we omit its proof.

Lemma 1. Assume that γ covers the reachable states of Φ, i.e., for every y ∈ Φ,
if y is reachable from some initial state then y ∈ γ(b), for some b ∈ Ω. For every
l ≥ 1, if the state y ∈ Φ is reachable from an initial state then there is a word
w ∈ C(Ω) such that
– |w| < l and y is w-reachable from some state x ∈ Init , or
– |w| = l and y is w-reachable from some state x ∈ Φ.

In particular, for l = 2, it holds that if y ∈ γ(b) is reachable from some initial
state then y is either b-reachable from some x ∈ Init or y is ab-reachable from
some x ∈ γ(a), where a 
= b. In [19], we already used the special case l = 2 to
remove unreachable states from regions.

The optimized algorithm is Alg. 3, where reach(H, b1 . . . bn) computes a su-
perset of the states in the region γ(bn) for which there is a trajectory of H that
follows b1 . . . bn, and, analogously, reachInit(H, b1 . . . bn) computes a superset of
the states in the region γ(bn) for which there is a trajectory of H that starts in
Init and follows b1 . . . bn. Details on implementing reach and reachInit are in §5.
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Algorithm 3. Optimized algorithm with region pruning
Input: hybrid system H
1: Ω ← {b}, where b is some symbol
2: L ← Ω+

3: let γ : Ω → 2Φ be the function with γ(b) = Φ
4: while L �= ∅ do
5: for all b ∈ Ω do
6: R ← ∅
7: for all wb ∈ C(Ω) with |wb| < maxlen and L ∩ {wbv | v ∈ Ω∗} �= ∅ do
8: if reachInit(H,wb) �= ∅ then R ← R ∪ reachInit(H,wb)
9: else L←L \ ext({wbv | v ∈ Ω∗}) // wb is p-spurious

10: end for
11: if L ∩ {ub | u ∈ Ω∗} �= ∅ and b is s-spurious then
12: L ← L \ ext({ub | u ∈ Ω∗})
13: end if
14: for all wb ∈ C(Ω) with |wb| = maxlen and L ∩ {uwbv | u, v ∈ Ω∗} �= ∅ do
15: K ← removeMidfixSpurious(H,L, wb)
16: if K = L then R ← R ∪ reach(H,wb)
17: else L ← K
18: end for
19: if R = ∅ then Ω ← Ω \ {b} // no reachable states in region γ(b)
20: update γ, i.e., restrict γ to the domain Ω, γ(b) = R if R �= ∅, and γ(c) is not

altered for c ∈ Ω \ {b}
21: end for
22: split region γ(a) in regions U and V , for some a ∈ Ω
23: Ω ← Ω ∪ {b}, where b is a fresh symbol
24: L ← La∼b

25: update γ, i.e., γ(a) = U , γ(b) = V , and γ(c) is not altered for c ∈ Ω \ {a, b}
26: end while

3.2 Incremental Computation

Our second optimization exploits the following fact: if we split a region then we
only need to re-check the words in which a symbol b occurs such that γ(b) was
involved in this split. We do this by maintaining a set Q ⊆ Ω: We only iterate
the for-loops (lines 5–7, 8–10, and 11–13 of Alg. 1) for b ∈ Ω if it is in Q. After
we have processed a symbol in Q, we remove it from Q. At the beginning of an
iteration of the while-loop (lines 4–18 of Alg. 1) Q consists of the symbols for
the regions that were involved in the split in the previous iteration, and if it is
the first iteration, Q consists of the symbol chosen in line 1 of Alg. 1.

We can improve Alg. 3 in a similar way by iterating the for-loop (lines 5–21)
for only the symbols in Q, and adding symbols b to Q for which the for-loop (lines
5–21) might be successful in changing the region γ(b) or removing words from
the language that contain b. Whenever a region γ(b′) has been changed, we add
a symbol c to Q if there is a word w in which b′ occurs, and either |wc| = maxlen
and L ∩ {uwcv | u, v ∈ Ω∗} 
= ∅, or |wc| < maxlen and L ∩ {wcv | v ∈ Ω∗} 
= ∅.
Note that pruning γ(b′) as well as splitting γ(b′) may add symbols to Q.
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4 Language Representation and Manipulation

In this section, we discuss how we represent and manipulate the languages L ⊆
Ω∗ in the algorithms presented in the previous section. First, observe that the
algorithms satisfy the following invariants:

Lemma 2. Throughout Alg. 1 and Alg. 3, L is regular and L = ext(L).

We use minimal dfas to represent the languages L and our implementation
uses the dfa library from the mona tool [13]. All the dfa operations used in
our algorithms are rather straightforward. For instance, for checking the non-
emptiness of L ∩ {wv | v ∈ Ω∗} for a word w ∈ Ω+ in line 7 of Alg. 3, it
suffices to check whether we reach a non-rejecting sink state in the minimal dfa

that represents L when reading w. For the operation La∼b, we define the dfa

Aa∼b = (Q, Ω ∪ {b}, δ′, q0, F ) with δ′(q, b) = δ(q, a) and δ′(q, x) = δ(q, x), for all
q ∈ Q and x ∈ Ω, where the dfa A = (Q, Ω, δ, q0, F ) accepts L. Obviously, Aa∼b

accepts the language La∼b when b is fresh, i.e., b 
∈ Ω.
Although the used automata operations are all fairly simple, it turned out that

they dominate the running times. To reduce the number of performed automata
operations, we maintain a list in which we store words that we have identified as
m-spurious. We update the dfa and empty the list before we split a region because
otherwise the list would become too long. Moreover, we remove words w from the
list if there is another word w′ in the list such that w′ is a subword of w. Whenever
we have a query about a word, we search in this list before we query the dfa.

5 Counterexample Checking

The presented language-based approach is independent of the method for check-
ing if a word is spurious and for pruning unreachable states from the region of
the last symbol of a word. In this section, we present a method that accom-
plishes these two tasks. It extends a method that is used in the verification tool
hsolver [18, 19, 17] and it has advantages over other methods: pruning is in-
herent to the method and it handles non-linear differential equations so that
the correctness of the results are not interfered with rounding errors due to
floating-point arithmetic.

As in other approaches (e.g. [14]), we use hyper-rectangles (boxes) for de-
composing the state-space. That is, we require that the regions that cover the
reachable states in Φ of the hybrid system H are of the form (s, B), where s ∈ S
is a mode and B ⊆ R

k is a box, i.e. B = [�1, u1] × · · · × [�k, uk]. Recall that
k is the number of the continuous variables of H . In principle, regions can be
represented by more complex geometrical shapes. However, since we utilize a
constraint solver that uses boxes, we restrict ourselves in the following to boxes.

We need the following definitions. Let B be the box [�1, u1]×· · ·× [�k, uk]. The
ith lower face of B is the box [�1, u1]×· · ·×[�i−1, ui−1]×[�i, �i]×[�i+1, ui+1]×· · ·×
[�k, uk] and the ith upper face of B is the box [�1, u1]×· · ·×[�i−1, ui−1]×[ui, ui]×
[�i+1, ui+1]× · · ·× [�k, uk]. Assume that flow (s,B)(x, y) denotes a constraint that
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models the fact that there is a flow from x ∈ R
k to y ∈ R

k in mode s ∈ S
and box B ⊆ R

k. Furthermore, to make the solving of such a constraint easier,
we assume that flow (s,B)(x, y) does not contain differentiation symbols and the
bound variables are existentially quantified. There are various possibilities to
achieve these assumptions, e.g., by using linearization [20]. We use flow (s,B)(x, y)
to define the following constraints. Let s, s′ ∈ S be modes and B, B′ ⊆ R

k boxes.
– The constraint reachJ

(s,B),(s′,B′)(x, y) models the fact that there is a jump
from x ∈ B and mode s to y ∈ B′ and mode s′, i.e.,

x ∈ B ∧ y ∈ B′ ∧ ∃x′ ∈ B′. Jump(s, x, s′, x′) ∧ flow (s′,B′)(x
′, y) .

– The constraint reachF
(s,B),(s′,B′)(x, y) models the fact that there is a contin-

uous flow in mode s from x ∈ B ∩ B′ to y ∈ B′, i.e.,

s = s′ ∧ x ∈ B ∩ B′ ∧ y ∈ B′ ∧ flow (s′,B′)(x, y)∧
∧

F face of B′

[
x ∈ F → incoming(s,B′),F (x)

]
,

where incoming(s,B′),F (x) = ∃ẋ1, . . . , ẋk ∈ R.Flow (s, x, (ẋ1, . . . , ẋk)) ∧ ẋj ≥
0 if F is the jth lower face of B′, and if F is the jth upper face of B′,
incoming(s,B′),F (x) = ∃ẋ1, . . . , ẋk ∈ R.Flow (s, x, (ẋ1, . . . , ẋk)) ∧ ẋj ≤ 0.
Note that we need the conjuncts [x ∈ F → incoming(s,B′),F (x)], for the
faces F of B′ to ensure that a flow starting in x ∈ F stays in box B′, i.e.,
the derivative in x ∈ F does not point out of box B′.

A word w ∈ Ω+ has a self-jump if there are (s, x), (s, x′) ∈ γ(b) such that
(s, x, s, x′) ∈ Jump, for some symbol b in w.

In the following, let w = b0 . . . bn ∈ C(Ω) with γ(bi) = (si, Bi), for i ∈
{0, . . . , n}. The following theorem extends an earlier result [19, 17]. Its proof is
similar and we omit it.

Theorem 2. Assume that w does not have self-jumps. If a state (sn, yn) ∈ γ(bn)
is w-reachable from some state in Φ then the constraint ∃y0 ∈ R

k. reachw(y0, yn)
is satisfiable, where the constraint reachw(y0, yn) is defined as

∃y1, . . . , yn−1 ∈ R
k.

∧

1≤i≤n

[
reachJ

γ(bi−1),γ(bi)(yi−1, yi) ∨ reachF
γ(bi−1),γ(bi)(yi−1, yi)

]
.

So, if we can disprove the constraint ∃y0 ∈ R
k. reachw(y0, yn) and w does not

have self-jumps, then w is m-spurious. We use the solver rsolver [15,16], which
is based on interval-constraint-propagation techniques [8]. Constraints as, e.g.,
the constraint in Thm. 2 can be solved efficiently by rsolver, where the correct-
ness is not affected by rounding errors. We use the following feature of rsolver:
take as input a constraint φ and a box B and output a box B′ such that
B′ ⊆ B, where B′ contains the solutions of φ in B. We denote this algorithm by
Prune(φ, B). Note that if B′ is empty, we know that φ has no solution in B.

If the constraint of Thm. 2 does have a solution, we are interested in a sub-
box of Bn that contains all its solutions. However, rsolver would spend time
to compute such sub-boxes not only for Bn but for the boxes B1, . . . , Bn. To

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Language-Based Abstraction Refinement for Hybrid System Verification 163

Algorithm 4. Counterexample checking without self-jumps
Input: word b0 . . . bn without self-jumps, where γ(bi) = (si, Bi), for i ∈ {0, . . . , n}
Output: sub-box of γ(bn) containing the states in γ(bn) that are reachable via a

trajectory following b0 . . . bn

1: B′ ← B0

2: F ′ ← B0 ∩ B1

3: for 1 ≤ i ≤ n − 1 do
4: B′

F ← proj 2(Prune(reachF
(si−1,F ′),(si,Bi), F

′ × Bi))
5: B′

J ← proj 2(Prune(reachJ
(si−1,B′),(si,Bi), B

′ × Bi))
6: if B′

F = ∅ and B′
J = ∅ then return ∅

7: F ′ ← proj 2(Prune(reachF
(si−1,F ′),(si,B′

F
), F

′ × (B′
F ∩ Bi+1)))∪

proj 2(Prune(reachJ
(si−1,B′),(si,B′

J
), B

′ × (B′
J ∩ Bi+1)))

8: B′ ← B′
F ∪ B′

J

9: end for
10: return proj 2(Prune(reachF

(sn−1,F ′),(sn,Bn), F
′ × Bn)) ∪

proj 2(Prune(reachJ
(sn−1,B′),(sn,Bn), B

′ × Bn))

avoid this superfluous work and to deal later with words that have self-jumps,
we apply rsolver not to the whole constraint but only to constituent pieces.
We compute an over-approximation of the reachable states starting from (s0, B0)
and in each iteration, we propagate the over-approximation to the box of the
next symbol in the word. The details are in Alg. 4, where proj 2 denotes the
function proj 2(B) = {y ∈ R

k | (x, y) ∈ B, for some x ∈ R
k}, for a box B ⊆ R

2k.
Note that in each iteration we first compute an over-approximation B′ of the set
of reachable elements in the box (this is needed for following jumps) and then
an over-approximation F ′ of the set of reachable elements in the intersection of
this box and the next box (this is needed for following flows).

Corollary 1. Assume that w does not have self-jumps. If (sn, yn) ∈ γ(bn) is w-
reachable from an initial state in γ(b0) then the following constraint is satisfiable

∃y, y0 ∈ B0. Init(s0, y) ∧ flowγ(b0)(y, y0) ∧ reachw(y0, yn) .

So, if we can disprove the constraint in Cor. 1 for w and w does not have self-
jumps, then w is p-spurious. Analogously, we can check if w is s-spurious. The
corresponding adaptions of Alg. 4 are straightforward.

Now, we are left with the question of how to deal with self-jumps. The problem
is that such a jump might occur arbitrarily often within a box. Note that splitting
eventually removes all self-jumps that do not occur between the same point.
Hence, we solve the problem by using the whole box to over-approximate the
reachable information in such an abstract state. We adapt the loop in Alg. 4 in
such a way that we check whether there is a jump from Bi to Bi before assigning
new values to F ′ and B′. If such a jump exists, then we use the assignments
B′ ← B and F ′ ← Bi ∩ Bi+1 instead of the current assignments to F ′ and B′.
Similarly, we deal with contracted words that might have self-jumps and where
the region of the first letter contains an initial state.
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Table 1. Experimental results

maxlen = 2 maxlen = 3 maxlen = 4
hybrid system time splits size time splits size time splits size
2-tanks 0.40 34 20 0.08 6 5 0.13 6 5
car 0.31 0 1 0.39 1 0.50 0 1
clock 1.16 44 32 0.68 27 12 3.47 27 15
convoi-1 0.70 0 1 0.69 0 1 0.69 0 1
convoi 281.37 362 357 79.27 89 87 ∞
eco 0.97 45 48 8.45 43 66 127.58 43 71
focus 1.04 66 59 0.15 6 8 0.16 5 7
mixing 31.57 269 145 58.14 59 134 ∞
real-eigen 0.11 2 3 0.15 5 3 0.16 5 3
s-focus 0.07 2 4 0.13 2 4 0.19 2 4
trivial-hard ∞ 0.04 5 6 0.06 5 6
van-der-pole 51.66 687 156 0.77 12 12 1.83 15 10

6 Experimental Results

We used our problem database2 of hybrid systems from the literature as well as
some new hybrid systems to evaluate our approach. Our implementation uses
the following heuristic to split regions (see line 22 of Alg. 3). We choose a box
with maximal side length. We split this box by bisecting one of its sides, where
we use a round-robin strategy to choose the box side.

The experimental results are summarized in Tab. 1 for different values of
maxlen (the running times are in seconds; the symbol ∞ means “more than 600
seconds”; the columns “size” show the peak automata sizes). We used a com-
puter with an Intel Pentium 2.60GHz CPU with 512Mbytes of main memory
running Linux. Four hybrid system in our database (1-flow, circuit, heating,
navigation) could not be verified within the time limit with any of the values
of maxlen . They are not listed in the table.

First, recall that for maxlen =2 the language-based approach is closely related
to the standard approach of using transition systems (see discussion after Thm. 1
in §3). In particular, when applying the same heuristics, the number of splittings
is identical for transition systems and maxlen =2. Second, observe that for almost
all test cases, the number of splittings decreases considerably when choosing
maxlen = 3 instead of maxlen = 2. That means, (i) checking the existence of
trajectories between two and three regions and (ii) exploiting this information
when there are no trajectories is effective in reducing the number of region
splittings. Third, observe that the number of splittings is approx. the same for
maxlen =3 and maxlen =4. This is somewhat surprising. Fourth, observe that a
smaller number of splittings does not necessarily result in better running times.
For instance, for the test case mixing, the version with maxlen =2 is faster than
the version with maxlen = 3 by a factor of nearly 2 although approx. 4.5 times
more splittings are needed. This can be explained as follows: For larger values of
2 See http://hsolver.sourceforge.net/benchmarks for details and references.
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maxlen, significantly more words are analyzed in an iteration of the algorithm.
Profiling of our prototype implementation revealed that the time consumed by
the solver for checking if a word is spurious remains rather small in comparison to
the time consumed by the operations that maintain and refine the abstractions.
Finally, we remark that the sizes of the dfas remain rather small.

In summary, the experimental results suggest that maxlen = 4 is not a good
choice, since the version with maxlen =4 is always outperformed by one of the
versions with maxlen =2 or maxlen =3. For larger values of maxlen, we expect
that the running times increase further. Between maxlen = 2 and maxlen = 3
there is no clear winner. However, the version with maxlen =3 seems to be more
robust: for some test cases, the running times for maxlen = 3 are significantly
faster than for maxlen =2 and in the cases where maxlen =2 is faster, the running
times for maxlen =3 increase only moderately (except the test case eco, where
the number of splittings varies only slightly and the version with maxlen = 2
outperforms the version with maxlen =3 by a factor of approx. 8).

We see mainly two reasons why our algorithm fails on the four examples
1-flow, circuit, heating, and navigation. First, since the used solver wraps
the solutions for a given constraint into boxes, we obtain an over-approximation
when solving a constraint. Sometimes these over-approximations are too coarse
such that many splits are needed before we are able to identify a word as spurious.
Second, some of the examples are not robustly safe, i.e., they become unsafe
under some small perturbation [11]. Sometimes we can succeed by using another
splitting heuristic. For example, our algorithm would verify 1-flow easily (for
all values of maxlen) if we bisect in the first iteration the box on the third side
and not on the first.

7 Conclusion

We presented a language-based approach to represent and refine abstractions
for hybrid system verification. The advantage of using languages as abstractions
instead of finite transition systems is that languages can over-approximate the
behaviors of hybrid systems more accurately. On the one hand, the costs to main-
tain and refine these abstractions increase. On the other hand, our experiments
show that the number of abstract states often reduces significantly. Moreover, we
generalized the method that is used in the verification tool hsolver [18, 19, 17]
to analyze non-empty sequences of abstract states of arbitrary finite length.

Future work includes the design of more sophisticated data structures to main-
tain such language-based abstractions and to investigate termination issues of this
approach. It is also future work to incorporate better heuristics (e.g., for splitting
regions and the words that are analyzed in an iteration). It is open if the tech-
niques in [10] can be used for the language-based approach. Finally, we want to
investigate the use of ω-languages and Büchi automata as abstractions for hybrid
systems for verifying progress properties, like stability of hybrid systems.
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Abstract. We define, for any partition of a state space and for formulas of the
modal μ-calculus, two variants of precision for abstractions that have that parti-
tion set as state space. These variants are defined via satisfaction parity games in
which the Refuter can replace a concrete state with any state in the same partition
before, respectively after, a quantifier move. These games are independent of the
kind of abstraction. Our first variant makes the abstraction games of de Alfaro
et al. model-independent, captures the definition of precision given by Shoham
& Grumberg, and corresponds to generalized Kripke modal transition systems.
Our second variant is then shown, for a fixed abstraction function, to render more
precise abstractions through μ-automata without fairness. We discuss tradeoffs of
both variants in terms of the size of abstractions, the perceived cost of their syn-
thesis via theorem provers, and the preservation of equations that are valid over
concrete models. Finally, we sketch a combination of both abstraction methods.

1 Introduction

Model checking [4,20] provides a framework for verifying properties of systems: a
system is represented by a mathematical model M , a property of interest is coded within
a formal language (in this paper the modal μ-calculus [18]) as some φ, and satisfaction
is a formally defined predicate M |= φ. Since the size of M is often exponential or even
infinite in its description, alternatives to the direct computation of M |= φ are needed.
Predicate abstraction [14] addresses this by constructing an abstract model Mα from a
partition of the state space of M such that certain properties of Mα also hold in M .

Dams [7] develops techniques that produce an abstract model Mα of M , with an
abstraction relation between states of M and states of Mα, that is as precise as possible
with respect to that abstraction relation: no other abstraction of M with the same ab-
straction relation as Mα will satisfy more properties that hold for M . This links “preci-
sion” to “completeness” as used in abstract interpretation [6]. Such notions of precision
have then been studied further in the literature as, e.g., in [5,8,21,23,15]. De Alfaro et al.
[1] define precision for the (alternating-time) μ-calculus for may- and must-transitions
via a parity game in which the Refuter can replace a concrete state with any state in the
same partition. In order to obtain a model-independent definition of precision (which
cannot speak of must- and may-transitions) we transform their games into a satisfaction
game, restricting our attention to the modal μ-calculus and to partition-based abstrac-
tion. We call the resulting approach pre-abstraction.

B. Cook and A. Podelski (Eds.): VMCAI 2007, LNCS 4349, pp. 167–181, 2007.
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Main contribution. In this paper, we present a new variant of precision for abstractions
over an underlying state space partition. It is similar to the definition of pre-abstraction
except that the Refuter can replace a concrete state with any state in the same partition
after a quantifier move (and not before, as is the case for pre-abstraction). We show that
our variant of precision renders more precise abstractions in the form of μ-automata
without fairness, whereas generalized Kripke modal transition systems are obtained
from pre-abstraction. Both notions are incremental and sound for abstraction-based
verification, and so suitable enhancements for algorithms based on counter-example-
guided abstraction-refinement (CEGAR). Our discussion shows that both notions have
their relative merits, so tools may benefit from having both notions at their disposal.
Since we work with state space partitions, e.g. as derived in a predicate abstraction, we
limit our attention to functional abstraction relations throughout.

Further related work. In [10] a kind of model is developed for which precise, finite-
state abstractions can be computed by a generalization of predicate abstraction. Shoham
& Grumberg [22] define precision also independent of the abstract models and in terms
of properties of algebraic operators, instead of coinduction in terms of games. Their
approach coincides with pre-abstraction for partition based abstractions, a fact we show
in this paper, but also considers arbitrary abstraction relations, which render abstract
models with may-hypertransitions. An alternative to studying the precision of abstract
models is the analysis of precision of model checking algorithms: Bruns & Godefroid
develop generalized model checking in [3] as an improvement of the compositional
model checking semantics in [2], and Jagadeesan & Godefroid apply this in the context
of abstraction refinement in [12]. Semantically self-minimizing formulas [13] enjoy the
property that the compositional check of [2] yields the same result as the expensive one
based on the thorough semantics of generalized model checking in [3].

Outline. In Section 2 we review Kripke structures, alternating tree automata, and their
standard satisfaction game. For an abstraction function “pre-abstraction”, and our new
variant “post-abstraction”, are presented in Section 3, shown to be sound approxima-
tions of standard satisfaction games, and our new variant is proved to be more precise
than pre-abstraction. In Sections 4 and 5, these variant games — which operate on
the concrete state space — are proven to have equivalent versions on abstract models:
pre-abstraction corresponds to using generalized Kripke modal transition systems, and
post-abstraction to using μ-automata without fairness. In Section 6 we sketch how both
kinds of abstract models can be (approximatively) synthesized with the help of a theo-
rem prover. Both abstraction methods are compared in Section 7 in terms of abstraction
sizes and the existence of abstract models that witness a property. The incremental na-
ture of both abstraction techniques is established in Section 8. A combination of both
abstraction techniques is discussed in Section 9 and conclusions are stated in Section 10.

2 Preliminaries

Throughout, P(S) denotes the power set of a set S. Functional composition is denoted
by ◦. For a relation ρ ⊆ B × C with subset X ⊆ B we write X.ρ for {c ∈ C | ∃b ∈
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3 ŝ′′′
4 ŝ′′′
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Fig. 1. A Kripke structure. The propositions true (resp. false) at a state are depicted (resp. depicted
in negated form) within state borders. Arrows s → s′ denote (s, s′) ∈ R. State names are
depicted close to the corresponding state.

X : (b, c) ∈ ρ}. For a sequence of tuples Φ we write Φ[i] for the sequence obtained from
Φ through projection into the i-th coordinate. Let map(f, Φ) be the sequence obtained
from Φ by applying function f to all elements of Φ in situ.

Kripke structures. Without loss of generality, we won’t consider action labels on mod-
els in this paper. Thus the concrete models, e.g. discrete dynamical systems or the se-
mantical models of programs, considered here are Kripke structures over a finite set of
propositions AP, the building blocks for properties one wants to model check.

Definition 1 (Kripke structure). A Kripke structure K over AP is a tuple (S, R, L)
such that S is a set of states, R ⊆ S×S its state transition relation, and L : S → P(AP)
its labeling function.

A Kripke structure is illustrated in Figure 1.

Alternating tree automata. We present the modal μ-calculus in its equivalent form of
alternating tree automata [24].

Definition 2 (Tree automata). An alternating tree automaton A = (QA, δA, ΘA) has

– a finite, nonempty set of states (q ∈)QA

– a transition relation δA mapping automaton states to one of the following forms,
where q′, q′′ are automaton states and p propositions from AP: p | ¬p | q′ |
q′∧̃ q′′ | q′∨̃ q′′ | EX q′ | AXq′ and

– an acceptance condition ΘA : QA → IN with finite image, where an infinite se-
quence of automata states is accepted iff the maximal acceptance number of those
that occur infinitely often is even.

An alternating tree automaton is depicted in Figure 2.For any infinite but bounded se-
quence n of elements in IN we write sup(n) for the largest m that occurs in n infinitely
often. The satisfaction relation of Kripke structures is defined via 2-person games over
configurations with players Verifier and Refuter. In such games, only one player may
move in a given configuration and a strategy for a player is a partial function that, given
a finite word of configurations that ends in a configuration of that player, determines the
new configuration whose choice is consistent with the rules of the game.
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Fig. 2. An alternating tree automaton. Accepting values are depicted next to states. At state q̂, it
expresses that, after any transition, (i) there is a transition (to q0) such that no further transition is
possible; and (ii) there is a transition (to q1) such that q̈ holds again.

Definition 3 (Satisfaction game).

– Finite satisfaction plays for Kripke structure K and alternating tree automaton A
have the rules and winning conditions given in Table 1. An infinite play Φ is a win
for Verifier iff sup(map(Θ, Φ[2])) is even; otherwise it is won by Refuter.

– Kripke structure K satisfies automaton A in (s, q) ∈ S × Q, written (K, s) |=
(A, q), iff Verifier has a strategy for the corresponding satisfaction game between
K and A with which he wins all satisfaction plays started at (s, q).

Table 1. Rules for satisfaction game at configuration (s, q) ∈ S × Q, specified through a case
analysis on the value of δ(q). Satisfaction plays are sequences of configurations generated thus.

p: Verifier wins if p ∈ L(s); Refuter wins if p �∈ L(s)
¬p: Verifier wins if p /∈ L(s); Refuter wins if p ∈ L(s)
q′: the next configuration is (s, q′)
q1∧̃q2: Refuter picks a q′ from {q1, q2}; the next configuration is (s, q′)
q1∨̃q2: Verifier picks a q′ from {q1, q2}; the next configuration is (s, q′)
EX q′: Verifier picks s′ ∈ {s}.R; the next configuration is (s′, q′)
AX q′: Refuter picks s′ ∈ {s}.R; the next configuration is (s′, q′).

Example 1. For the Kripke structure K̂ in Figure 1 and the alternating tree automaton Â
in Figure 2 we have (K̂, ŝ) |= (Â, q̂): at the EX -state q0 Verifier chooses the transition
pointing to ŝ′ or ŝ′′, respectively; at the EX -state q1 Verifier chooses the transition along
the lower line of states in K̂.

3 Partition-Induced Satisfaction Games

We introduce two variants of the satisfaction game between a Kripke structure K with
state set S and an alternating tree automaton A: a pre-game and a post-game, referring
to the pre- and post-image of the state transition relation of the Kripke structure, respec-
tively. These games are derived from a surjective abstraction function α : S → I that
maps concrete states s ∈ S into designated abstract ones α(s) ∈ I . States s and s′ are
compatible iff α(s) = α(s′).

Intuitively, the imprecision residing in the state space partition is captured by Re-
futer’s ability to exchange compatible states. If such exchanges happen only prior to
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quantifier moves, Verifier can only verify properties that hold for all compatible states
of the current configuration (which therefore will correspond to must-hypertransitions).
If such exchanges happen only after quantifier moves, Verifier has more freedom and is
expected to be able to verify more properties (captured by transitions in μ-automata).

Technically, configurations of the pre-game are pairs (i, q) ∈ I×QA, but Verifier will
always be forced to move with respect to a concrete configuration (s, q) with α(s) = i
where s is chosen by the Refuter, and these moves for Verifier are as for the ordinary
satisfaction game. Configurations of the post-game are pairs (s, q) ∈ S × QA. The
difference between the pre- and the post-game resides in the capabilities of Refuter.
In the pre-game he can switch between compatible states before a quantifier or literal
move by either player is being made; in the post-game he may switch to a compatible
state after a quantifier move by either player has been made. We formalize this:

Definition 4 (Pre-games and post-games). Let K = (S, R, L) be a Kripke structure
and α : S → I a surjective abstraction function. Pre-games:

– Finite pre-satisfaction plays for K , α, and alternating tree automaton A have the
rules and winning conditions given in Table 2. An infinite play Φ is won by Verifier
iff sup(map(Θ, Φ[2])) is even; otherwise it is won by Refuter.

– Model K pre-satisfies automaton A for α in (s, q) ∈ S × Q, written (K, s) |=α−
(A, q), iff Verifier has a strategy for the corresponding pre-satisfaction game be-
tween K and A such that Verifier wins all pre-satisfaction plays started at (α(s), q)
with that strategy.

Post-games:

– Finite post-satisfaction plays for K , α, and alternating tree automaton A have the
rules and winning conditions given in Table 3. An infinite play Φ is won by Verifier
iff sup(map(Θ, Φ[2])) is even; otherwise it is won by Refuter.

– Model K post-satisfies automaton A for α in (s, q) ∈ S × Q, written (K, s) |=α
+

(A, q), iff Verifier has a strategy for the corresponding post-satisfaction game be-
tween K and A such that Verifier wins all post-satisfaction plays started at (s, q)
with that strategy.

Example 2. Consider the Kripke structure K̂ from Figure 1 and the alternating tree
automaton Â from Figure 2. Let α̂ be the function that maps ŝ to î, ŝ′ to î′, ŝ′′ to
î′′, and ŝ′′′n to î′′′ for n ∈ IN. Then (K̂, ŝ) |=α̂− (Â, q̂): at the EX -state q0 Verifier
chooses ŝ′ or ŝ′′, depending on which one is possible; at the EX -state q1 Verifier chooses
an element from {ŝ′′′n | n ∈ IN}, depending on which one is possible. Furthermore,
(K̂, ŝ) |=α̂

+ (Â, q̂) holds, reasoned similarly as before.

Both pre-satisfaction and post-satisfaction are sound, their satisfaction instances imply
satisfaction instances of the underlying Kripke structure. Moreover, post-satisfaction is
more precise than pre-satisfaction. Formally:

Theorem 1 (Soundness of abstract satisfaction games). Let K = (S, R, L) be a
Kripke structure and α : S → I a surjective function. Then pre-satisfaction implies
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post-satisfaction, which in turn implies satisfaction: for all states s and all rooted al-
ternating tree automata (A, q):

(K, s) |=α
− (A, q) ⇒ (K, s) |=α

+ (A, q)
(K, s) |=α

+ (A, q) ⇒ (K, s) |= (A, q) .

Moreover, the above implications are strict in general.

Table 2. Rules for pre-satisfaction game for α : S → I at configuration (i, q) ∈ I × Q, based on
a case analysis of δ(q). Pre-satisfaction plays are sequences of configurations generated thus.

p: Refuter picks s ∈ S with α(s) = i; Verifier wins if p ∈ L(s); Refuter wins if p �∈ L(s)
¬p: Refuter picks s ∈ S with α(s) = i; Verifier wins if p /∈ L(s); Refuter wins if p ∈ L(s)
q′: the next configuration is (i, q′)
q1∧̃q2: Refuter picks a q′ from {q1, q2}; the next configuration is (i, q′)
q1∨̃q2: Verifier picks a q′ from {q1, q2}; the next configuration is (i, q′)
EX q′: Refuter picks s ∈ S with α(s) = i; Verifier picks s′ ∈ {s}.R; the next configuration is

(α(s′), q′)
AX q′: Refuter picks s ∈ S with α(s) = i and then picks s′ ∈ {s}.R; the next configuration is

(α(s′), q′).

Table 3. Rules for post-satisfaction game at configuration (s, q) ∈ S × Q, specified through a
case analysis of δ(q). Omitted rules are as for the standard satisfaction game in Table 1. Post-
satisfaction plays are sequences of configurations generated thus.

EX q′: Verifier picks s′ ∈ {s}.R; Refuter picks s′′ ∈ S with α(s′) = α(s′′); the next configu-
ration is (s′′, q′)

AX q′: Refuter picks s′ ∈ {s}.R and then some s′′ ∈ S with α(s′) = α(s′′); the next configu-
ration is (s′, q′).

Example 3. The strictness of the inclusions in Theorem 1 can be seen as follows: For
the Kripke structure K̂ from Figure 1 and α̂ from Example 2 we have (K̂, ŝ) |= EX p,
but (K̂, ŝ) 
|=α̂

+ EX p; and (K̂, ŝ) |=α̂
+ EX (p ∨̃EX p), but (K̂, ŝ) 
|=α̂

− EX (p ∨̃EX p).

The notions of pre- and post-satisfaction, and their soundness with respect to satis-
faction, make them suitable for abstraction-based model checking. Their operational
make-up appeals to information that resides only in the concrete model to begin with.
Therefore a method for abstracting concrete models, such that the satisfaction game over
abstract models precisely captures the pre- (resp. post-)game for the concrete model, is
needed. We carry out this programme in the next two sections and show, as perhaps
expected, that the generalized Kripke modal transition systems of [22] and their sat-
isfaction game capture pre-satisfaction. For post-satisfaction, we suggest to work with
μ-automata [16,9] without fairness and show a precise correspondence as well.

4 Precise Abstractions for Pre-satisfaction

Our models for abstraction of pre-satisfaction are taken from [22], and are a variant of
disjunctive modal transition systems [19].
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Fig. 3. A generalized Kripke modal transition system. Propositional labelings and state names
are used as in Figure 1. Dashed arrows model may-transitions and solid arrows model must-
transitions. The self-loop at state î′′′ is a must-transition with {̂i′′′} as target. The must-
hypertransition from î′′′ has set {̂i′, î′′} as target.

Definition 5 (Generalized Kripke modal transition systems). A generalized Kripke
modal transition system M over AP is a tuple (S, R−, R+, L) with S as set of states,
R− ⊆ S × P(S) as set of must-transitions,1 R+ ⊆ S × S as set of may-transitions,
and L : S → P(AP ∪ {¬p | p ∈ AP}) as labeling function. To highlight that a must-
transition (s, D) has a non-singleton target set D we speak of must-hypertransitions.
This generalized Kripke modal transition system M is finite if S is finite.

A generalized Kripke modal transition system is illustrated in Figure 3. We now define
satisfaction over generalized Kripke modal transition systems:

Definition 6 (Satisfaction for generalized Kripke modal transition systems).

– Finite satisfaction plays for a generalized Kripke modal transition system G and
an alternating tree automaton A have the rules and winning conditions as stated
in Table 4. An infinite play Φ is a win for Verifier iff sup(map(Θ, Φ[2])) is even;
otherwise it is won by the Refuter.

– The generalized Kripke modal transition system G satisfies the alternating tree
automaton A in configuration (s, q) ∈ S × Q, written (G, s) |= (A, q), iff Verifier
has a strategy for the corresponding satisfaction game between G and A such that
Verifier wins all satisfaction plays started at (s, q) with that strategy.

The satisfaction game in Table 4 amounts to playing a parity game, so the decidability
of such satisfaction instances is in UP ∩ coUP [17].

Example 4. For the generalized Kripke modal transition system Ĝ from Figure 3 and
the alternating tree automaton Â from Figure 2 we have (Ĝ, î) |= (Â, q̂): at the EX -
state q0 Verifier chooses the must-transition (̂i′′′, {î′, î′′}); at the EX -state q1 Verifier
chooses the self-loop (̂i′′′, {î′′′}). Note that (Ĝ, î) neither satisfies EX (p∨̃EX p) nor its
“negation” AX (¬p∧̃AX¬p).

Every Kripke structure K has a natural representation as a generalized Kripke modal
transition system G[K] where LG[K](s) = LK(s) ∪ {¬p | p 
∈ LK(s)}, R+

G[K] = R,

and R−
G[K] is R embedded from S × S into S × P(S). Since (K, s) |= (A, q) iff

(G[K], s) |= (A, q) the overloading of “satisfaction” and its symbol |= are justified.

1 We adhere to the convention of using − for must-transitions and + for may-transitions and
note that the paper [22] uses + for must-transitions and − for may-transitions.
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Table 4. Rules for satisfaction game between a generalized Kripke modal transition system and
an alternating tree automaton at configuration (s, q) ∈ S × Q, based on a case analysis of δ(q).
Omitted rules are as in Table 1. Satisfaction plays are sequences of configurations generated thus.

¬p: Verifier wins if ¬p ∈ L(s); Refuter wins if ¬p �∈ L(S)
EX q′: Verifier picks D′ ∈ {s}.R−; Refuter picks s′ ∈ D′; the next configuration is (s′, q′)
AX q′: Refuter picks s′ ∈ {s}.R+; the next configuration is (s′, q′)

For a surjective function α : S → I and Kripke structure K = (S, R, L) we follow
[22]: I is the abstract state set, a may-transition between two abstract states exists iff
there is a transition in the Kripke structure such that the source and target are abstracted
to the corresponding abstract states, and a must-transition from i to I ′(⊆ I) exists iff
every Kripke state s abstracted to i has a transition to an element that is abstracted to an
element from I ′. Abstract labelings have a similar interpretation. Formally:

Definition 7 (Pre-abstractions). Let K =(S, R, L) be a Kripke structure and α : S→I
a surjective function. Then the pre-abstraction of K for α is the generalized Kripke modal
transition system GK

α = (I, R−
K,α, R+

K,α, LK,α) where

R−
K,α = {(i, D) | ∀s ∈ S : [α(s) = i ⇒ ∃s′ ∈ {s}.R : α(s′) ∈ D]}

R+
K,α = {(i, i′) | ∃(s, s′) ∈ R : [α(s) = i & α(s′) = i′]}

LK,α(i) = {p | p ∈ AP & ∀s ∈ S : [α(s) = i ⇒ p ∈ L(s)]} ∪
{¬p | p ∈ AP & ∀s ∈ S : [α(s) = i ⇒ p /∈ L(s)]}

The pre-abstraction is finite whenever I is finite.

Example 5. The pre-abstraction of K̂ from Figure 1 for α̂ from Example 3 is the gener-
alized Kripke modal transition system from Figure 3, where must-transitions (s, D) are
omitted if they have a must-transition (s, D′) with D′ ⊆ D — those omissions won’t
impact the satisfaction relation and can speed up the synthesis of abstractions.

Possible occurrences of must-hypertransitions make the complexity of the abstraction ex-
ponential in I in the worst case. Pre-abstraction is precise and sound for pre-satisfaction,
as already illustrated via Examples 2, 3, 4 and 5:

Theorem 2 (Correspondence of pre-game and pre-abstraction). Let K = (S, R, L)
be a Kripke structure, A an alternating tree automaton, q ∈ QA, s ∈ S, and α : S → I
a surjective function. Then

(K, s) |=α
− (A, q) ⇐⇒ (GK

α , α(s)) |= (A, q)

5 Precise Abstractions for Post-satisfaction

The models we propose for post-abstractions are μ-automata [16] without fairness. We
use the notation of [9]. All μ-automata in this paper are without fairness.
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î′′
î′
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Fig. 4. A μ-automaton. OR-states are depicted as unfilled circles and BRANCH-states as filled
circles. Literals (shown in smaller font) that are true at a BRANCH-state are depicted next to it.
The name of a state is also shown close to it.

Definition 8 (μ-automata). A μ-automaton M over AP is a tuple (O, B,⇒, →, L)
such that (o ∈)O is the set of OR-states, (b ∈)B the set of BRANCH-states (disjoint
from O),⇒ ⊆ O×B the OR-transition relation, → ⊆ B ×O the BRANCH-transition
relation, and L : B → P(AP) the labeling function. M is finite if both O and B are.

A μ-automaton is given in Figure 4. We define satisfaction over μ-automata next:

Definition 9 (Satisfaction for μ-automata).

– Finite satisfaction plays for a μ-automaton M and alternating tree automaton A
have the rules and winning conditions stated in Table 5. An infinite play Φ is a win
for Verifier iff sup(map(Θ, Φ[2])) is even; otherwise it is won by Refuter.

– The μ-automaton M satisfies the alternating tree automaton A in (β, q) ∈ (O ∪
B) × Q, written (M, β) |= (A, q), iff Verifier has a strategy for the corresponding
satisfaction game between M and A such that Verifier wins all satisfaction plays
started at (β, q) with her strategy.

Table 5. Rules for satisfaction game between a μ-automaton M and an alternating tree automaton
A at configuration (β, q) ∈ (O ∪ B) × Q, based on the given case analysis. Satisfaction plays
are sequences of configurations generated thus.

β ∈ O: Refuter picks b ∈ {β}.⇒; the next configuration is (b, q)
β ∈ B and q = p: Verifier wins if p ∈ L(β); Refuter wins if p /∈ L(β)
β ∈ B and q = ¬p: Verifier wins if p /∈ L(β); Refuter wins if p ∈ L(β)
β ∈ B and q = q′: the next configuration is (β, q′)
β ∈ B and q = q1∧̃q2: Refuter picks a q′ from {q1, q2}; the next configuration is (β, q′)
β ∈ B and q = q1∨̃q2: Verifier picks a q′ from {q1, q2}; the next configuration is (β, q′)
β ∈ B and q = EX q′: Verifier picks o ∈ {β}.→; the next configuration is (o, q′)
β ∈ B and q = AX q′: Refuter picks o ∈ {β}.→; the next configuration is (o, q′).

Similar to the satisfaction game for generalized Kripke modal transition systems, the
satisfaction game for μ-automata corresponds to a parity game. So deciding such satis-
faction instances is in UP ∩ coUP.

Example 6. For the μ-automaton M̂ in Figure 4 and the alternating tree automaton Â
in Figure 2 we have (M̂, î) |= (Â, q̂): at (b̂3, q1) and at (b̂4, q1) Verifier chooses the
transition to î′′′; at (b̂3, q0) and at (b̂4, q0) he chooses the transition to î′, resp. î′′. Also,
it is easily seen that Ĝ satisfies neither EX p nor its “negation” AX¬p at q̂.
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Given a surjective function α : S → I and a Kripke structure K = (S, R, L) we
now show that μ-automata yield precise abstractions for post-satisfaction. We con-
sider two states of K to be post-equivalent iff (i) they satisfy the same propositions
and (ii) the same elements of the partition induced by α are reachable by their one-
step transitions. The equivalence classes obtained by the post-equivalences, called post-
equivalence classes, are encoded as elements from P(I ∪ AP), where (i) a proposition
p is valid at b ∈ P(I ∪ AP) iff p ∈ b; and (ii) exactly those elements of the partition
induced by α that are contained in b are reachable. The expression BRK

α (s), formally
defined below, determines the post-equivalence class of s. Post-equivalence classes be-
come BRANCH-states. The ability of Refuter to switch to an element compatible with
the target of a transition is modeled in the abstraction by OR-states, elements of I . The
OR-state i ∈ I has a transition to a post-equivalence class E iff a concrete state s exists
that is abstracted to i by α and yields the post-equivalence class E. Formally:

Definition 10 (Post-abstractions). For Kripke structure K = (S, R, L) and surjective
function α : S → I , its post-abstraction is the μ-automaton MK

α over P(I ∪ AP) where

OK
α = I BK

α = P(I ∪ AP)
⇒K

α = {(i, BRK
α (s)) | α(s) = i} with BRK

α (s) = L(s) ∪ α({s}.R)
→K

α = {(b, i) | i ∈ b}
LK

α (b) = b ∩ AP

The post-abstraction is finite whenever I is finite.

Example 7. The five post-equivalence classes of K̂ from Figure 1 for α̂ from Example 3
are {ŝ}, {ŝ′}, {ŝ′′}, {ŝ′′′2n | n ∈ IN}, and {ŝ′′′2n+1 | n ∈ IN}, having the representatives
(via function BRK

α ) b̂0 = {p, î′′′}, b̂1 = {}, b̂2 = {p}, b̂3 = {p, î′, î′′′}, and b̂4 =
{î′′, î′′′}. The post-abstraction of K̂ from Figure 1 for α̂ from Example 3 is the μ-
automaton from Figure 4, where non-reachable BRANCH-states from î are omitted.

The size of this abstraction can be exponential in I and in AP. The post-abstraction is
precise and sound for post-satisfaction, illustrated via Examples 2, 3, 6 and 7:

Theorem 3 (Correspondence of post-game and post-abstraction). Let K=(S, R, L)
be a Kripke structure, A an alternating tree automaton, q ∈ QA, s ∈ S, and α : S → I
a surjective function. Then

(K, s) |=α
+ (A, q) ⇐⇒ (MK

α , BRK
α (s)) |= (A, q)

6 Automated Synthesis of Precise Abstractions

We discuss how the pre- and post-abstraction of a program can be automatically syn-
thesized with the use of theorem provers for a Kripke structure K = (S, R, L) and
surjective abstraction function α : S → I , along the lines of [14,11]. Suppose L is a
logic that contains at least all operators of propositional logic and all p ∈ AP as predi-
cates with a closed interpretation [[p]] ⊆ S such that:
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(i) The interpretation of atomic propositions matches that implicit in the labeling
function; for all p ∈ AP we have [[p]] = {s ∈ S | p ∈ L(s)}.

(ii) Satisfiability and validity of L are decidable.
(iii) The logic L is effectively closed under exact successor and predecessor operations

in Kripke structures; that is, for every formula ψ ∈ L and every R ⊆ S × S we
can compute pre(ψ), post(ψ) ∈ L such that

[[pre(ψ)]] = {s′ ∈ S | ∃s ∈ [[ψ]] : (s′, s) ∈ R}
[[post(ψ)]] = {s′ ∈ S | ∃s ∈ [[ψ]] : (s, s′) ∈ R} .

(iv) The surjective abstraction function α : S → I is representable by a set of formulas
{ψi ∈ L | i ∈ I} such that, for all i ∈ I , we have [[ψi]] = {s ∈ S | α(s) = i}.
(This is, for example, the case in predicate abstraction.)

The first three conditions may be relaxed, as familiar in the judicious over- and under-
approximation of precise abstract models for undecidable logics.

Pre-abstraction. A may-transition from i to i′ exists iff ψi∧pre(ψi′ ) is satisfiable. If sat-
isfiability is undecidable, we ensure soundness but may lose precision by adding such a
may-transition whenever the satisfiability of ψi∧pre(ψi′ ) is unknown. A must-transition
from i to D exists iff ψi ⇒ (

∨
i′∈D pre(ψi′ )) is valid. In case of the undecidability of

validity, we add a must-transition only if the validity of ψi ⇒ (
∨

i′∈D pre(ψi′ )) is
known. A predicate literal l (either some p or some ¬p) is in L(i) iff ψi ⇒ l is valid.
As in the treatment of must-transitions, l is ruled to be a member of L(i) only if the
validity of ψi ⇒ l can be established.

Post-abstraction. The transitions from BRANCH-states and the labeling function rely
on an implementation of set membership, as specified in Definition 10. A transition
from the OR-state i ∈ I to the BRANCH-state b ∈ P(I ∪ AP) exists iff

ψi ∧
∧

i′∈b∩I

pre(ψi′) ∧
∧

i′∈I\b

¬pre(ψi′ ) ∧
∧

p∈b∩AP

p ∧
∧

p∈AP\b

¬p (1)

is satisfiable. If satisfiability is undecidable, we over-approximate by adding a transition
as described above.

7 Expressiveness of Pre- and Post-abstractions

In order to obtain a fair comparison between pre- and post-abstraction, we take into
account the removal of hypertransitions whose targets are supersets of other hypertran-
sition targets, as well as the sharing of identical hypertransition targets for different
hypertransition sources through, what we refer to below as, “division points”. Pre-
abstraction can be less complex than post-abstraction for the same abstraction function:

Example 8. Consider the Kripke structure with state set (P(X) \ {{}}) ∪ X where
X = {x1, ..xn}, transition relation {(X ′, x) | X ′ ∈ P(X) \ {{}} & x ∈ X ′}, and
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arbitrary labeling function. The partition, which determines α, is given by {P(X) \
{{}}, {x1}, ..., {xn}}. Then the post-abstraction yields the μ-automaton with the same
structure as the considered Kripke structure, except that an additional OR-state per par-
tition element is being used. In particular, that μ-automaton has at least 2n BRANCH-
states (depending on the labeling function, up to n − 1 further BRANCH-states can
exist), n + 1 OR-states (of which n are trivial, i.e., have exactly one outgoing tran-
sition), at least 2n transitions leading to OR-states, and n2n−1 transitions leading to
BRANCH-states.

On the other hand, the corresponding pre-abstraction yields the generalized Kripke

modal transition system ��������

��������
��������

��������

•
������ ������

������

������ ������

������ ...
, which has n + 1 states, one division point, and

n + 1 transitions to and from that division point, and n may-transitions.

Post-abstractions, in turn, can be less complex than pre-abstractions.

Example 9. Consider the Kripke structure with state set X∪X ′ with X = {x1, . . . , xn}
and X ′ = {x′

1, . . . , x
′
n}, transition relation {(xi, X

′ \ {x′
i}) | i ∈ {1, ..., n}}, and arbi-

trary labeling function. The partition, determining α, is given by {X, {x′
1}, ..., {x′

n}}.
Then the post-abstraction yields the μ-automaton with the same structure as the consid-
ered Kripke structure, except that an additional OR-state per partition element is being
used. In particular, that μ-automaton has 2n BRANCH-states, n + 1 OR-states (where
n of them are trivial in the sense aforementioned), and n2 + n transitions (of which n
result from trivial OR-states).

On the other hand, the corresponding pre-abstraction yields a generalized Kripke
modal transition system with n + 1 states, (n2 − n)/2 division points (all must-hyper-
transitions having a target set consisting of two elements exist), (3n2−3n)/2 transitions
to and from division points, and n may-transitions.

Examples 8 and 9 illustrate that either pre- or post-abstractions can yield smaller ab-
stractions. Taking the size of such abstractions and cost issues of their synthesis aside,
both notions can verify the same properties of the concrete models they abstract but at
the potential cost of using different abstraction functions.

Theorem 4 (Equal expressiveness). Let K =(S, R, L) be a Kripke structure, α : S→I
a surjective function, and (A, q) a rooted alternating tree automaton with (K, s) |=α

+
(A, q). Then the pre-abstraction of K with respect to α′ satisfies (A, q) where α′ : S →
{BRK

α (s) | s ∈ S} is defined by α′(s) = BRK
α (s).

Note that the converse of the expressiveness stated in Theorem 4 follows from The-
orem 1. Theorem 4 may suggest that post-abstraction is a redundant notion. But in
terms of efficiency, pre-abstractions with respect to the derived abstraction α′ are more
complex than post-abstractions with respect to the original abstraction α, since the
calculation of must-hypertransitions leads to an additional exponential blow up (the
number of configurations for the model-checking game is exponentially larger). Must-
hypertransitions are essential: Theorem 4 won’t hold if only must-transitions that point
to singletons are allowed.
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There is a curious difference between generalized Kripke modal transition systems
and μ-automata with respect to their “equational theories”. We write φ = ψ for for-
mulas φ and ψ of the modal μ-calculus if, for a given notion of model and satisfac-
tion game, all states in all models have the same satisfaction instances for Aφ and for
Aψ — the alternating tree automata encoding the respective formulas.2 For example,
we have p∨̃¬p = true and EX p∨̃AX¬p = true for all μ-automata and p ∈ AP,
but these equations won’t hold in generalized Kripke modal transition systems: nei-
ther p∨̃¬p nor EX p∨̃AX¬p holds in state î′′′ of the generalized Kripke modal tran-
sition system from Figure 3. There are equations familiar from basic modal logic that
hold neither for μ-automata nor for generalized Kripke modal transition systems, e.g.
EX q1∨̃EX q2 = EX (q1∨̃q2) which is valid over Kripke structures. It is of interest to
note that these equations seem to relate to the comparison of the thorough semantics of
[3] and the compositional one of [2] for model checking partial Kripke structures, e.g.
p ∨ ¬p is valid for the thorough but not for the compositional semantics.

8 Abstraction Refinement

The precise abstractions proposed in this paper are suitable for counter-example-guided
abstraction-refinement since already checked properties can be reused. For both pre-
and post-satisfaction, all previously valid satisfaction instances remain to be valid if
abstract states are refined by further splitting:

Theorem 5 (Incremental analysis). Let K = (S, R, L) be a Kripke structure and both
α1 : S → I1, f2 : I1 → I2 surjective functions. Then for all s and all (A, q) we have

(K, s) |=f2◦α1
− (A, q) ⇒ (K, s) |=α1− (A, q)

(K, s) |=f2◦α1
+ (A, q) ⇒ (K, s) |=α1

+ (A, q) .

The above theorem also guarantees confluence of abstractions. Finite-state abstractions,
if they exist, can always be found in principle, regardless of the particular history of
incremental refinements of an initially chosen abstraction:

Theorem 6 (Confluence). Let K = (S, R, L) be a Kripke structure and both α1 : S →
I1, α2 : S → I2 surjective functions. Then there exist surjective functions α3 : S → I3
and f : I3 → I2 such that α2 = f ◦ α3 and, for all s and (A, q), we have

(K, s) |=α1− (A, q) ⇒ (K, s) |=α3− (A, q)
(K, s) |=α1

+ (A, q) ⇒ (K, s) |=α3
+ (A, q) .

9 Discussion

The calculation of pre-abstractions may well be more efficient than the calculation of
post-abstractions, even if the resulting state space is larger as it is, e.g., the case in

2 We did not define true or Atrue but they hold in all states of all (kinds of) models.
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Example 9. The reason being that more complex formulas have to be checked by a
theorem prover in the synthesis of the post-abstraction, as seen in Section 6. Never-
theless, whether pre- or post-abstractions work better heavily depends on the Kripke
structure and the alternating tree automata one wishes to check. We now sketch how a
combination of pre- and post-abstraction may result in a more precise abstraction with-
out increasing the cost of the abstraction synthesis too much. First an approximation
of the pre-abstraction, which computes only must-transitions with singletons as targets,
avoids the expensive calculation of must-hypertransitions. Then, before the abstraction
function is being refined, a post-abstraction on the just computed approximation of a
pre-abstraction is calculated where the information encoded in said approximative pre-
abstraction is being reused. More precisely, the post-abstraction is calculated, locally,
at those abstract states where the currently existing must-transition information is in-
sufficient to verify or falsify the property. This needs only to consider those subsets
of P(I) that are supersets of the local must-transition targets and subsets of the local
may-transition targets, speeding up the synthesis of the abstraction. This on-demand
calculation of structure has already been done in [22] for pre-abstraction.

In order to obtain precise models for this abstraction process, a new kind of model
has to be developed: μ-automata in which there are also may-transitions and must-
transitions between OR-states. In order to reduce the post-abstraction calculation with
respect to predicates in a similar way as described above, there should be a predicate
labeling function, as in generalized Kripke modal transition systems, over OR-states.
Note that this kind of model is really different from that of the modal automata in [9],
where may-transitions are allowed from BRANCH-states to OR-states only, and the
labeling function is over BRANCH-states and not over OR-states.

10 Conclusions

Using parity games and avoiding any appeal to particular kinds of models, we presented
two notions of precision for partition-based abstractions. We proved that our new notion
of post-abstraction is generally more precise than the already established one based on
pre-abstraction, and corresponds to the use of μ-automata as abstractions. For functional
abstractions, pre-abstraction is shown to be an adaptation of the abstraction games of
de Alfaro et al., and to coincide with the algebraic notion of precision given recently by
Shoham & Grumberg. The relative tradeoffs of these two notions have been investigated
along a number of dimensions: model size, cost of synthesis, and equational theories
of abstractions. A combination of both approaches has been discussed informally as
planned future work. For non-functional abstraction functions, subject of future work,
variant games allow Refuter to switch more than once between related states. Precision
then requires more complex models in pre/post-games [22].
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Abstract. Formal verification of safety and liveness properties of sys-
tems with a dynamically changing, unbounded number of interlinked
processes and infinite-domain local data is challenging due to the two
sources of infiniteness. The existing state abstraction-based approaches
Data Type Reduction and Environment Abstraction each address one
aspect, but the former doesn’t support infinite-domain local data and
the latter doesn’t support links and is restricted to particular properties.

The contribution of this paper is a combination of both which is ob-
tained by first stating them in the framework of Canonical Abstraction.
This new use of Canonical Abstraction, originally designed and used
for the analysis of programs with heap-allocated data structures, fur-
thermore unveils a formal connection between the two rather ad-hoc
techniques.

1 Introduction

A good example for the systems we consider is car platooning as studied in the
PATH project [1]. Its objective is to improve highway capacity and fuel consump-
tion by having cars dynamically negotiate, via radio-based communication, the
formation of platoons in which cars drive with reduced safety distance. A platoon
consists of one or more followers and a leader, which is in particular responsible
for notifying its followers in advance about braking manoeuvres. Roadside con-
trollers announce the maximum platoon length for a certain highway segment
and keep track of highway utilisation (cf. Figure 1(a)).

A formal model of the snapshot of car-platooning shown in Figure 1(a) is
depicted in Figure 1(b). There, each car has a local state, like being a follower
(‘flw ’) or leader (‘ldr ’), and a finite-domain variable d indicating the destination,
one of finitely many highway exits. A roadside controller also has a state pc, some
finite-domain highway parameter x, for instance a maximum platoon length, and
some infinite-domain ones, like a real-valued current utilisation of the highway
y. Cars and roadside controllers do not have a global view on the entire highway,

� This work was partly supported by the German Research Council (DFG) as part of
the Transregional Collaborative Research Center SFB/TR 14 AVACS.

B. Cook and A. Podelski (Eds.): VMCAI 2007, LNCS 4349, pp. 182–198, 2007.
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s
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Fig. 1. Car Platooning. A three-car platoon and a roadside controller.

i.e. there is no shared memory, however cars have links to particular other cars.
Followers have a link to their leader, a leader knows a list of followers, and there
are links between roadside controllers and leaders. Links are used like pointers,
that is, a follower can query (or even modify) the state of its leader. In addition,
an inherent requirement on a model of car-platooning is that it provides for cars
dynamically entering and leaving the highway, that is, there is no finite upper
bound on the number of cars present at a certain point in time.

Thus the class of systems we consider is characterised by (i) dynamic creation
and destruction of processes of different kinds, (ii) local state with finite-domain
and other variables, and (iii) local and global links. The considered properties
are general LTL formulae with outermost quantification over processes.

A well-established approach to the formal verification of safety (“two different
cars never consider each other to be leader”) or liveness (“a merge request is
finally answered”) properties of transition systems with large or infinite state-
space are so-called finitary abstractions [2]. A finitary abstraction is defined by a
finite abstract domain and a state abstraction mapping states (like the one shown
in Figure 1(b)) to abstract representations of states. The set of initial abstract
states and the transition relation are then induced by the state abstraction;
abstract states are initial (or in transition relation) if they are the abstraction
of initial states (or states in transition relation).

w w n

w n n

n c n

α�→
w

n

c

Fig. 2. Counter Abstraction

One of the oldest finitary abstractions is
Counter Abstraction [3,4,5,2]. The basic idea
is to map states with many processes, each
in one of finitely many local states, to an ab-
stract state, which only counts how many pro-
cesses are in each local state. Processes are
considered equivalent if they share the same
local state. To obtain a finite abstract domain,
counters are typically cut off at two, i.e. distin-
guish only between 0, 1, and “many” processes. Such a state abstraction function
α maps, for example, the concrete state on the left-hand side of Figure 2 to the
one shown on the right where “many” processes are indicated by double-lines.

Classical Counter Abstraction seems inappropriate to verify car platooning as
it does not support links, only admits finite-domain variables, and suffers from
the problem that processes migrate freely between equivalence classes such that
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we cannot tell whether a particular process has made a particular transition.
For example, if one process changes state from c to n and one from w to c in
Figure 2, then the abstract state remains the same.

w w n

w n n

n c n

α�→ w

n
0 n

1
w0

w
1c

0

c 1

Fig. 3. Environment Abstraction

Recently, Counter Abstraction was
combined with a particular instance of
Predicate Abstraction to a technique
called Environment Abstraction (EA) [6],
admitting infinite-domain local variables,
like unbounded counters. EA derives its
name from the way it addresses the mi-
gration problem: by representing one pro-
cess precisely and preserving information
about the rest from the perspective of this

process in terms of binary so called inter-predicates on the unbounded variables.
In Figure 3, dashed lines indicate whether the single inter-predicate holds be-
tween another and the reference process (indicated by double-line). An abstract
state consists of the reference process’ local state and a vector of bits indicat-
ing whether there is at least one other process in a particular local state and
in inter-predicate relation to the reference process, i.e. counters are already cut
off at 1. For example, in Figure 3 there are no processes in local state n and
in inter-predicate relation to the reference process, thus in the abstract state
the north-east arrow is crossed out. The north-arrow is not crossed out as there
are n-processes not in inter-relation. Not supporting links, EA seems inappropri-
ate for platooning as well. Furthermore, EA cannot verify manoeuvres involving
more than two cars, because it is restricted to two-process safety and one-process
liveness properties.

〈flw, d1〉 〈ldr, d3〉

ld

fl

ctl

Fig. 4. Data-Type Red

The finitary abstraction Data-Type Reduction
(DTR) supports links and the desired properties,
however, it does not admit infinite-domain vari-
ables like counters. DTR was introduced as part of
a compositional verification methodology for pa-
rameterised systems [7]. The underlying idea is to
represent the local state of finitely many processes
exactly, like links between reference processes, re-
member whether there are links into their envi-
ronment, and dismiss any other information about

their environment. For example, the state in Figure 1(b) maps to the abstract
state shown in Figure 4 if the leader and the last follower are reference processes.
One gray summary node represents all other cars and all roadside controllers.

EA and DTR come close to a good abstraction technique for platooning. They
have complementary strengths: DTR supporting links and manoeuvres with more
than two cars, and EA supporting infinite-domain local state. They share the
common idea of keeping some distinguished processes exact, intuitively putting
a “spotlight” on them, while abstracting from the rest. Therefore, we aim for a
combination of EA and DTR in order to treat systems like the car-platooning
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example. As they are formalised in rather different manners and have some un-
desired restrictions, we use the general and powerful framework of canonical ab-
straction (CA) [8] to re-formulate in a common language and, ultimately, combine
the concepts behind EA and DTR.

n n n

y x
α�→

n

n

n

y x

Fig. 5. Singly Linked List

Canonical abstraction provides a general frame-
work for concise and clear definition of state
abstractions. It is widely used in the context of
heap-manipulating programs. For example, the
simplest instance of CA discussed in [8] maps a
state with the linked list shown in Figure 5 to the
abstract state at the bottom where nodes indis-
tinguishable via links x and y collapse. Links into
and between the summary become indefinite as,
for example, some summarised nodes point to the last one and some do not (cf.
[8] for details). Thus CA provides natural means to handle structures with links,
and, as it turns out, for the principle to represent the environment from the
perspective of reference individuals. We obtain an alternative elegant soundness
proof of EA and DTR via the framework of CA. This has practical relevance
since, in practice, abstractions often need to be refined in order to be precise
enough. As a consequence of the CA framework and contrary to the original for-
malizations of EA and DTR, abstraction refinement becomes a natural process
with guaranteed soundness.

Other Abstractions and Related Work. The static analysis-based approach of
Yahav [9] first demonstrated suitability of the CA framework for the verification
of concurrent Java programs with unbounded creation of processes on the heap.
The idea underlying the employed abstraction is similar to EA and DTR, but
the approach is limited to safety properties (or state invariants). This approach
is refined in [10] by demonstrating that splitting a given task into cases and
treating each case separately with a specially tailored abstraction gains efficiency,
and that keeping neighbours of reference processes precise gains precision.

Yahav, Reps, Sagiv, and Wilhelm [11] address the same class of systems but
use significantly stronger Evolutional Temporal Logic (ETL) properties, which
are basically LTL with arbitrary quantification over processes (not only outer-
most) and transitive closure. Their approach is different to finitary abstraction
in that they construct a set of abstract sequences of abstract states via static
analysis. ETL formulae are then checked on this set of abstract traces, where
consecutive similar states collapse to summary states and where evolution of
processes is explicitly traced between (abstract) states of an abstract trace. Our
method implicitly preserves relevant evolution information since distinguished
processes are singled out by the abstraction, however, in their work, process
evolution is prone to imprecision due to abstraction.

Distefano, Katoen, and Rensink [12] propose automata-based model checking
of evolution properties. Their method is restricted to link-based structures with
single outgoing links, which would disallow follower links, and, further, their
method does not support data such as counters.
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Building on the compositional model checking approach of [7] which intro-
duced DTR, McMillan, Qadeer, and Saxe [13] developed an induction-based
verfication technique that admits counters ranging over the natural numbers.
The underlying abstraction technique can be expressed in our framework. The
proposed induction-based verification scheme is orthogonal to our work. Yet, the
systems considered here do not exhibit totally ordered process identities and are
thus not amenable to their technique.

A thorough discussion why approaches, from instances of Predicate Abstrac-
tion to indexed predicates, are also insufficient appears in [6].

Most closely related to the aspect of our work, that we compare two inde-
pendently developed and described state abstractions in the CA framework is
Manevich et al. [14] who compare particular state abstractions for linked lists
given via CA to equivalent Predicate Abstractions. Thus they compare single
state abstractions in different frameworks.

Outline. We proceed as follows. In Section 2 we formally define the class of
systems and properties we consider. Section 3 introduces state abstractions with
respect to reference processes and briefly provides the Canonical Abstraction
framework. In Section 4, we give native and CA-based definitions of DTR and
EA and propose a combination in Section 5. Section 6 concludes.

2 Computational Model and Property Specification

In order to represent the car-platooning example from the introduction we con-
sider transition systems over signatures. A signature S consists of process types
T (like cars and roadside controllers), global links G and links local to processes
L (like cars’ link to the leader ld), and finite- and infinite-domain variables X and
Y local to processes (like cars’ current destination d and the controllers’ high-
way utilisation y), all five sets disjoint, and a domain D assigning each variable
v ∈ X∪Y a domain D(v), which is finite if v ∈ X . That is, S = (T, G, L, X, Y, D).

A transition system is a triple (S, S0, R) of a set of states S, initial states
S0 ⊆ S, and a transition relation R ⊆ S ×S. It is called transition system over S
iff each state s ∈ S is a structure of S, that is, a pair (U, σ) of a set of individuals
U , called universe, which is partitioned into one (possibly empty) partition per
type in T and σ is a valuation of G, L, X and Y , that is,

– global links g ∈ G are assigned individuals, i.e. σ|G : G → U ,
– local links l ∈ L and variables v ∈ X ∪ Y are assigned functions mapping

individuals to other individuals or values, i.e. σ|L : L → (U → U) and
σ|X∪Y : L → (U → D).

2.1 Parameterised Systems

DTR and EA originally address parameterised systems, that is, systems where
K ∈ N processes execute a single program in parallel, so we also introduce a
rather general notion of parameterised systems over signatures. As we do not
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aim at exploiting a particular description language, we do not specify one but
consider M to be a finite behavioural description over a signature S with n
process types which, given a tuple (K1, . . . , Kn) ∈ Nn, determines a transition
system over S whose state-set consists of all structures (U, σ) of S over a fixed
universe U with Ki individuals of type τi, 1 ≤ i ≤ n.

The set of all such instances of M is called M(N). Note that each instance has
only finitely many processes, the challenge of parameterised system verification
is to verify all instances at once.

In addition to common practice we use M(∞) to denote the set of instances
with countably infinitely many processes of some type because systems with a
dynamically changing number of processes, like car platooning, can be encoded
therein [15]. For the Canonical Abstraction versions of DTR and EA in Section 4,
it is more suitable to consider the single transition system obtained by taking
the union of all instances, denoted by MN etc., instead of a set of transition
systems.

2.2 Properties

As Canonical Abstraction operates on logical structures (cf. Section 3.2), it is
useful to only consider properties in form of formulae over a finite set of pred-
icate symbols P . Given a signature S, we consider the set PS consisting of the
predicate symbols given by Table 1. Note that the predicate symbols in PS dis-
tinguish the complete information about links and processes’ finite variables in a
state, thus together with quantification over processes we do not lose generality
on these aspects by considering only PS .

Table 1. Signature Predicates. Symbol p being of arity k is indicated by p/k.

type[τ ]/1 the given individual is of type τ ∈ T

ref[g]/1 the global link g ∈ G points to the given individual
val[x, d]/1 the local variable x ∈ X has value d ∈ D
ref[l]/2 the local link l ∈ L of the given individual points to the other one
eq/2 the two given individuals are equal

For EA, we in addition need a set of binary predicate symbols that typically
relate the non-finite aspects of two processes. In the car-platooning example it
could compare the real-valued utilisation of two roadside controllers. We assume
that a parameterised system M defines a finite set PM of these inter-predicates.

A structure s = (U, σ) induces an interpretation ιs of the predicate symbols
in PS . For example, ιs(val[x, d]) holds for u ∈ U iff σ(u)(x) = d. For each inter-
predicate p ∈ PM we assume an interpretation ιs(p) : U2 → {0, 1} to be given. In
general, a pair (U, ι) of a universe U and an interpretation ι of a set of predicate
symbols P is called two-valued logical structure of P . The set of all two-valued
logical structures of P is denoted by 2-Struct[P ].
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The language of evolution properties consists of formulae of the form

∀ z1, . . . zn . φ, n ∈ N0 (1)

where z1, . . . , zn are logical variables (without loss of generality denoting different
processes) and φ is an LTL formula with X (Next), U (Until), G (Globally),
and F (Finally) and logical connectives over non-temporal state invariants

ψ ∈ SF ::= z1 = z2 | p(z1, . . . , zn) | ¬ψ1 | ψ1 ∨ ψ2 | ∃ z1 . ψ1 (2)

where p is a predicate symbol from PS ∪ PM. DTR supports all evolution prop-
erties, while EA is restricted to properties of the forms

∀ z1, z2 .G ψ(z1, z2) and ∀ z1 .G (ψ1(z1) → F ψ2(z1)) (3)

over the predicate symbols val[x, d]. The former are called called two-indexed
safety properties, the latter one-indexed properties. The semantics of a state
invariant ψ in a state s, denoted by �ψ�s, and satisfaction of an evolution prop-
erty by a sequence of states π = (Un, σn)n∈N, denoted π |= Φ, is inductively
defined based on the logical structure (U, ιs) ∈ 2-Struct[PS ∪ PM] induced by
state s.

2.3 Augmentation

As outlined in the introduction, both, DTR and EA, depend on a set of desig-
nated reference processes. To provide both uniformly with reference processes,
we’ll employ a simple, technical procedure that has similarly been applied, e.g.
by [2] in the context of safety and liveness properties of parameterised systems
and by [16] in the context of shape analysis for list insertion.

Given a transition system M over a signature S with global links G, let
Ga = {ga1 , . . . , gan} be a set of fresh global augmentation links. Then the Ga-
augmentation of M is a transition system M̂ over Ŝ with global links G ∪ Ga

where the augmentation links consistently trace n different individuals. Consis-
tency means that the valuation of Ga is constant over transitions, i.e.

((U, σ̂1), (U, σ̂2)) ∈ R̂ =⇒ σ̂1|Ga = σ̂1|Ga . (4)

States of M̂ are initial (in transition relation), if the projection onto S is initial
(in transition relation). Among others, Figure 6 illustrates augmentation.

Then, for example, a formula ∀ z1, z2 .G p(z1, z2) holds in M iff

G (∀ z1, z2 . (ref[ga1 ](z1) ∧ ref[ga2 ](z2)) → p(z1, z2)) (5)

holds in M̂ , the {ga1 , ga2}-augmentation of M . The example easily extends into
an inductive definition of the transformation of evolution properties Φ into Φ̂.
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3 Defining and Comparing State Abstractions

A state abstraction of a transition system M = (S, S0, R) consists of an abstract
domain S� and a state abstraction function α mapping concrete to abstract
states, i.e. α : S → S�. It is called finite if S� is finite. The function α induces an
abstract transition system Mα with state-set S� by considering an abstract state
initial iff it is the abstraction of an initial concrete state, and two abstract states
in transition relation if they are the abstractions of two concrete states in tran-
sition relation. This construction is known as finitary abstraction [17]. Together
with α, we always consider its concretisation function γ mapping abstract states
to the concrete states they represent, i.e. γ(s�) = {s ∈ S | α(s) = s�}.

In order to establish properties of the original system on the abstract one, a
state abstraction is complemented by a conservative, three-valued interpretation
of the predicate symbols from PS ∪ PM in each abstract state. An interpreta-
tion is called three-valued iff predicates map to {0, 1, 1/2} instead of {0, 1}; by
3-Struct[P ] we denote the set of all pairs (U, ι) of universes and three-valued
interpretations of the predicate symbols in P .

An interpretation of predicate symbols P is called conservative with respect
to another iff it doesn’t introduce contradictions; in our case this spells out as

∀ p ∈ P ∀ s� ∈ S� ∀ s ∈ γ(s�) : �p�s � �p��
s� (6)

where “�” is the information order on {0, 1, 1/2}, defined as {b � b, b � 1/2 | b ∈
{0, 1, 1/2}}. Thus the third truth-value 1/2 can be read as “don’t know”. Using
the well-established three-valued semantics of state formulae [8] and temporal
formulae [9], a conservative abstract semantics for temporal formulae is obtained.
Thus if a property Φ holds in Mα, then it also holds in M .

3.1 Comparing State Abstractions

Recall that our overall aim is to provide alternative definitions of EA and DTR
in the framework of Canonical Abstraction. In order to prove that the new defi-
nition is equivalent to the original one, we first introduce notions of equivalence
and being coarser for state abstractions. The following Lemma provides more
easily checkable, sufficient criteria that imply equivalence or being coarser.

A state abstractions α1 : S → S�
1 is called coarser than α2 : S → S�

2, denoted
by α1 � α2, iff the induced abstract transition system satisfies fewer evolution
formulae, i.e. iff

Mα1 |= φ =⇒ Mα2 |= φ (7)

for all evolution formulae Φ. Both are called equivalent, denoted α1 ≡ α2, iff
α2 � α1 and α1 � α2, that is, if both satisfy the same properties.

If there is a simulation relation between the induced abstract models, (7)
and thus the coarser-than relation follow. For existence of a simulation relation
it is sufficient to find a relation � between the two abstract domains such that
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related states do not interpret predicates contradictingly1 and the states of the
coarser state abstraction concretise to more concrete states.

Lemma 1 (State Abstraction Comparison). Let α1 : S → S�
1 and α2 : S →

S�
2 be two state abstractions. Let � : S�

1 × S�
2 be a relation such that

1. ∀ s ∈ S : (α1(s), α2(s)) ∈ �

2. ∀ (s�
1, s

�
2) ∈ � ∀ p ∈ P : �p��

s�
2

� �p��

s�
1

3. ∀ (s�
1, s

�
2) ∈ � : γ1(s

�
1) ⊆ γ2(s

�
2)

Then α1 � α2. With “=” instead of “�” and “⊆”, α1 ≡ α2 is obtained.

3.2 Canonical Abstraction

Canonical Abstraction provides a framework for the definition of state abstrac-
tion functions if concrete states are three-valued structures of a finite set of
predicate symbols P . Following the framework, a choice of a set of unary, so-
called abstraction predicates

A = {pa1 , . . . , pan} ⊆ P (8)

determines the abstract domain as the set of three-valued structures (U, ι) where
U comprises only the canonical names with respect to A, thus it is finite.

The canonical name κA(u) of an individual u is simply the valuation of the
abstraction predicates on u, i.e., the vector (pa1(u), . . . , pan(u)). The abstract
domain is finite as there are only finitely many such vectors.

The other predicates from P , which are not used as abstraction predicates, are
principally only required to evaluate conservatively in the abstract state. A best
abstraction with respect to A evaluates them as precisely as possible, that is, to
a definite value from {0, 1} if all summarised individuals agree on the definite
value and to 1/2 only otherwise.

The state abstraction function αA : 3-Struct → 3-Struct is such a best ab-
straction. That is, as it merges individuals indistinguishable by the abstraction
predicates, it preserves information about the abstraction predicates precisely,
all other information may be blurred to 1/2.

If defined by A ⊆ PS ∪ PM, it naturally extends to states that are pairs
s = (U, σ) of a universe and a valuation of signature S by applying it to the in-
duced structure (U, ιs), that is, by setting αA(s) := αA(U, ιs). The concretisation
function is still defined as on page 189.

Formally, Canonical Abstraction is based on the notion of (tight) embedding
of three-valued structures. A surjection h : U → U ′ between two universes is
said to embed the logical structure s = (U, ι) of P into s′ = (U ′, ι′) iff

∀ p ∈ Pk : ι(p)(u1, . . . , uk(p)) � ι′(p)(h(u1), . . . , h(uk(p))). (9)

1 Assuming that the interpretation of formulae is inductively defined as discussed in
the previous paragraph.
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The embedding is called tight, if the stronger condition

∀ p ∈ Pk : ι′(p)(u′
1, . . . , u

′
k(p)) =

⊔

h(ui)=u′
i,1≤i≤k(p)

ι(p)(u1, . . . , uk(p)), (10)

using the least upper bound with respect to information order, holds. A structure
s can (tightly) be embedded into s′ iff a (tight) embedding function exists.

Given the three-valued interpretation �ψ�3s′ of state invariants in abstract
states s′ via the monotone Kleene semantics2 the following theorem holds

Theorem 1 (Embedding Theorem [8]). Let s = (U, ι) and s′ = (U ′, ι′) be
logical structures, let h embed s in s′, and let Z be a complete assignment of the
free variables in ψ. Then �ψ�3s(Z) � �ψ�3s′ (h ◦ Z).

4 The Spotlight Principle

Intuitively, both EA and DTR focus, or put a spotlight, on one or more processes
and abstract from the rest, the ones in the shadows. Information about the latter
is kept from the perspective of the spotlight individuals.

We say that a state abstraction α follows the spotlight principle if it is definable
via Canonical Abstraction and there are abstraction predicates pa in A that
concretise to at most one individual in each abstract state, i.e.

∀ (U, ι) ∈ S� : |{u | ι(pa)(u)}| ≤ 1. (11)

A direct consequence is that all other unary predicates in PS are evaluated to
definite values for a spotlight individual (or reference process); binary predicates
may evaluate to 1/2 if evaluated for non-spotlight individuals.

We call α disjoint, if spotlight predicates pa1 , . . . , pan mutually exclude each
other on individuals. Given a transition system M over a signature, an evolution
formula Φ = ∀ z1, . . . , zn . φ, and a corresponding Ga-augmentation M̂ of M with
Ga = {ga1 , . . . , gan}, each state abstraction

A ⊇ {ref[ga] | ga ∈ Ga} (12)

is a disjoint spotlight abstraction.
In the following, we present the two abstractions EA and DTR in their origi-

nal definition and give an equivalent Canonical Abstraction definition for each.
Thereby, both can be identified as successful applications of the spotlight princi-
ple. In Section 5, we can then use the insights gained in the following sections to
combine both abstractions into one which allows to treat the example from the
introduction, which is neither in the scope of DTR nor in the scope of EA. For
completeness, we additionally compare both to a typical example of the abstrac-
tions that are usually given via Canonical Abstraction, namely Shape Analysis
of programs manipulating linked lists.
2 Comparison of the summary node with itself then yields 1/2 if there is more than one

individual represented by a summary node, which is always the case in Section 4.
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〈flw, d1〉 〈flw, d2〉 〈ldr, d3〉

〈pc, x,w〉

ld
ld

fl fl

ctlplt

ga1 ga2

ŝ

�→
〈flw, d1〉 〈ldr, d3〉

ld

fl

ctl

ga1 ga2

u�
1 u�

2

u�
0αdtr(ŝ)

Fig. 6. Data-Type Reduction

4.1 Data-Type Reduction

Data-Type Reduction [7] (DTR) has been introduced for parameterised systems
over signatures without infinite domain variables, i.e. Y = ∅, thus the considered
systems are only infinite by the number of instantiations in M(N), or the number
of processes in M(∞).

In the following, let M be a parameterised system over signature S with Y = ∅
and, as DTR depends on the property, let Φ = ∀ z1, . . . , zn . φ(z1, . . . , zn) be an
evolution property. Let M ∈ M(∞) be the transition system with infinitely
many processes of each type and M̂ a Ga-augmentation corresponding to Φ.

Native Definition. The finite state abstraction function αdtr : S → S� maps
states (U, σ) ∈ S to abstract states (U �, σ�) where σ� maps global links from Ga

to the corresponding abstract individuals, i.e.

σ�(gai) = u�
i, gai ∈ Ga, (13)

and local and other global links, g /∈ Ga, to the corresponding abstract individual
or the summary individual u�

0, i.e.

σ�(g) =

{
u�

i , σ(gai) = σ(g)
u�

0 , otherwise
σ�(l)(u�

i) =

{
u�

j , σ(l)(σ(gai)) = σ(gaj )
u�

0 , otherwise
(14)

and keeps the values of local variables, i.e. σ�(x)(u�
i) = σ(x)(σ(gai )).

Figure 6 illustrates the effect of αdtr on a state of the car platooning system
from Section 2 (assuming w ∈ X , instead of y ∈ Y ). The abstract state preserves
the state of the last follower and the leader. Links to individuals in the shadows
change to links to the summary individual, links from them are lost.

The interpretation of a predicate p ∈ PS ∪ PM of arity k in s� is defined as

�p��
s�(w

�
1, . . . , w

�
k) = 1/2 (15)

if one of the individuals is the summary individual, i.e. w�
i = u�

0 for some 1 ≤
i ≤ n, and the value obtained using the regular definition from Section 2.2
otherwise. We immediately have �p�s(u1, . . . , un) � �p��

αs(w
�
1, . . . , w

�
n) if ui and

w�
i are indistinguishable on the reference link predicates ref[ga], ga ∈ Ga.
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u1 u2

u3

ld

fl

ctl

ld,fl,rbc,plt ld,fl,rbc,plt

ga1 ga2

ld,fl,rbc,plt

αAdtr (s)

ga1 ga2 car ctl flw . . .

u1 1 0 1 0 1 . . .

u2 0 1 1 0 0 . . .

u3 0 0 1/2 1/2 1/2 1/2

fl u1 u2 u3

0 0 0
0 1/2 0

1/2 1/2 1/2

Fig. 7. DTR via Canonical Abstraction. The tables exemplary show the valuation of
some predicates, the unary reference individual predicates, the type predicates, and
val[st,flw] on the left and the binary predicate ref[fl] on the right.

Data-Type Abstraction Via Canonical Abstraction is obtained by choos-
ing the reference individual predicates as abstraction predicates, i.e.

Adtr = {ref[g] | ga ∈ G} ⊆ PS . (16)

Figure 7 illustrates, following the conventions of [8], the effect of αAdtr on the con-
crete state from Figure 6. Dashed (indefinite) edges indicate the loss of precision
that shows in the original definition only in the evaluation of expressions.

Note that αAdtr is already too precise as it preserves information about the
shadow individuals if predicates happen to agree on all of them. An equivalent
state abstraction can be obtained by explicitly blurring the truth-value of all
predicates, except for the spotlight predicates ref[ga], when evaluated for at least
one non-reference individual, i.e. we set α′

Adtr
:= blur ◦ αAdtr where blur(U, ι) :=

(U, blur(ι)) with

blur(ι)(p)(u1, . . . , un) =

⎧
⎪⎪⎨

⎪⎪⎩

1/2 , if p �= ref[ga], ga ∈ Ga, and
∧

ga∈Ga

1≤i≤n
¬ι(ref[ga])(ui)

ι(p)(u1, . . . , un) , otherwise

(17)

Theorem 2. The native definition of DTR αdtr is equivalent to α′
Adtr

.

Proof. By Lemma 1, letting abstract DTR-states s�
dtr and s�

Adtr
be �-related iff

∀ p ∈ PS ∪ PM : �p��

s�
Adtr

(u1, . . . , un) = �p��

s�
dtr

(u�
1, . . . , u

�
n) (18)

for ui and u�
i indistinguishable under ref[ga], ga ∈ Ga. ��

4.2 Environment Abstraction

Environment Abstraction [6] (EA) has been introduced for parameterised sys-
tems over signatures with exactly one process type and no links. Thus the consid-
ered systems are infinite by the number of instantiations M(N), or the number
of processes in M(∞), and in addition possibly by the domain of variables in Y .

In the following, let M be a parameterised system over signature S without
links and one process type. to simplify the presentation, we follow [6] in assuming
that X comprises only the single, finite-domain variable pc.
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w, 9 w, 5 n, 0

w, 4 n, 0 n, 0

n, 0 c, 2 n, 0

Fig. 8. Bakery State

The car-platooning example from the introduc-
tion is clearly out of scope for EA as it depends on
links between processes. So we employ one (of the
two) examples that have successfully been verified
with EA [6], namely the parameterised system em-
ploying the bakery algorithm [18] for mutual exclu-
sion. Assume, the program counter pc has a domain
of three locations like n (non-critical), w (wait), c

(critical) and there is one (unbounded) integer variable t for the ticket.
Figure 8 shows one state of bakery with K = 9 processes. Oval nodes represent

processes, giving their state (also indicated by different hatch fillings) and ticket
value, assuming idle processes reset the ticket to 0.

In the following, let M ∈ M(∞) be the transition system with infinitely many
processes (of the only type) and M̂ an augmentation with a single link ga.

Native Definition. In [6], a set of predicates env[i, j] is constructed in two
steps. Let PM = {p1, . . . , pn} be the inter-predicates of M. Then firstly there
are 2n formulae Ri with two free variables characterise all (mutually exclusive)
combinations of the inter-predicates holding or not for two individuals, i.e.

Ri(z1, z2) := ±p1(z1, z2) ∧ · · · ∧ ±pn(z1, z2) (19)

The Ri secondly induce T := 2n · |D(pc)| so-called environment formulae holding
in state (U, σ) if at least one individual different from the reference individual
has pc value j and is related to the reference individual as described by Ri, i.e.

env[i, j] := ∃ z, z′ . z �= z′ ∧ ref[ga](z) ∧ Ri(z, z′) ∧ val[pc, j](z′) (20)

The abstract domain S� of the EA of M is the set of vectors

〈d, ε1,1, . . . , ε2n,|D(pc)|〉 ∈ D(pc) × {0, 1}T (21)

comprising a pc-value d ∈ D(pc) and one boolean εi,j for each of the T environ-
ment formulae env[i, j]. It is finite as D(pc) is finite.

The finite state abstraction function αea : Ŝ → S� maps states ŝ = (U, σ) ∈ Ŝ
to the vector 〈σ(pc)(σ(ga)), �env[1, 1]�ŝ, . . . , �env[2n, |D(pc)|]�ŝ〉.

Figure 3 illustrates the effect of αea on an augmented state. Note that the val-
uation of inter-predicates is only shown with respect to the reference individual.
The abstraction function αea keeps the value of pc for the reference process and
one bit for each combination of program counter and inter-predicate being 0 iff
there is no other process with a corresponding pc in the concrete state such that
the inter-predicate holds. In other words, each εi,j encodes presence or absence
of at least one individual that is in env[i, j] relation to the reference individual.

The interpretation of a unary predicate val[pc, d] ∈ PS is defined using a
structure (U, ι) with an arbitrary, two-individual universe {u1, u2} and

ι(val[pc, d]) = {u1 �→ (pc = d), u2 �→
∨

1≤i≤2n

εi,d} (22)
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w w n

w n n

n c n

�→

αAea(ŝ)

w

n, 0

w, 1

c, 1

ga

ga n w c env[p1] sm
u1 1 0 1 0 0 0
u2 0 0 1 0 1 1/2

u3 0 1 0 0 0 1/2

u4 0 0 0 1 1 1/2

Fig. 9. EA via Canonical Abstraction. The table shows the valuation of all predicates
considered in the Bakery example and the summary predicate sm.

for an abstract state s� =〈pc, ε1,1, . . . , ε2n,|Dpc|〉. Then �val[pc, d]��
s� = ι(val[pc, d]).

Intuitively, val[pc, d] holds in s� if either the first component of the vector is
equal to d or at least one εi,d, 1 ≤ i ≤ 2n, is true.

Environment Abstraction Via Canonical Abstraction is based on a
slightly different set of environment predicates. Let env[p], p ∈ PM be unary
predicate symbols that indicate whether an individual is not the reference indi-
vidual and in p-relation to the reference individual, i.e.

�env[p]�(U,σ)(u) := (u �= σ(ga) ∧ �p�(U,σ)(σ(ga), u)) (23)

Then as abstraction predicates we choose the one for the reference individual,
for finite-domain variable valuation, and the new environment predicates, i.e.

Aea = {ref[ga]} ∪ {val[pc, d] | d ∈ Dpc} ∪ {env[p] | p ∈ PM} (24)

Figure 9 illustrates the effect of CA with Aea on the concrete state from
Figure 3. Note that there are no edges between nodes as we do not have binary
predicates in P and as all predicates in P are abstraction predicates. Loss of
precision takes place in the choice of predicates which, in contrast to DTR,
doesn’t preserve all information of concrete states.

Similar to DTR, the more natural choice of abstraction predicates, namely

A′
ea = {ref[ga]} ∪ {val[pc, d] | d ∈ Dpc} (25)

is already more precise than the original definition of EA as it would preserve
information on the relation between the individuals in the shadows.

Theorem 3. The native definition of EA αea is equivalent to αAdtr .

Proof. By Lemma 1, letting abstract states s�
ea = 〈d, ε1,1, . . . , ε2n,|D(pc)|〉 and

s�
Aea

= (U, ι) be �-related iff εi,j = �∃ u′. pi(u, u′) ∧ val[pc, j](u) ∧ ref[g](u)�s�

and
∨

j∈D(d = j ⇔ �∃ u. val[pc, j](u) ∧ val[pc, j](u)�) . ��

4.3 Shape Analysis

A natural question is how EA and DTR relate to the abstractions for which
Canonical Abstraction is typically used (cf. Section 1). The abstraction predi-
cates of the coarsest abstraction for linked lists in [8] are A = {ref[x], ref[y]}. As
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program variables refer to at most one individual at a time, the abstractions for
singly linked lists also follow the spotlight principle (although not disjointly).

This observationdoesn’t contradict the intuition that programvariables change
on update, while augmentation is constant. The abstraction used for linked lists is
on such a high level of abstraction that it concretises as well to topologies of inter-
linked processes where x denotes a fixed process; the expectation that the value of
x necessarily changes, exists only in the eye of the beholder.

5 Combining DTR and EA

As discussed in the introduction, both DTR and EA alone are not sufficient
to establish properties like liveness of the merge procedure of car-platooning as
DTR excludes infinite-domain variables and EA doesn’t handle links between
cars and is restricted to properties over at most two processes.

Furthermore, DTR doesn’t preserve invariants about individuals outside the
spotlight. In practice, this tends to give rise to spurious counter-examples, which
have to be excluded by user-supplied non-interference lemmata [7,15].

Given the formulation of both, DTR and EA, in the Canonical Abstraction
framework a sound abstraction that combines the strengths of both is obtained
by simply taking the union of their abstraction predicates, i.e. A := Adtr ∪ Aea.
As adding abstraction predicates makes abstractions more precise, the state
abstraction defined by A is more precise than both, DTR and EA. From EA it
inherits support of unbounded local state variables and from DTR support for
links and multiple process types in general evolution logic formulae.

Practically, stating a state abstraction is only one aspect, the other one is
finding an implementation, which computes the abstract finite-state transition
system directly without the need to explicitly enumerate the concrete, infinite
state space. Specialised implementations for DTR and EA proposed in [7] and [6].
In contrast, the Canonical Abstraction framework is generally supported by tools
like TVLA [19] and bohne [20] for the verification of state invariants. Due to their
generality, a non-optimised application of, e.g., TVLA to DTR or EA may not
be as efficient as the procedures of [7,6], but they provide for easy prototyping
when refining abstractions. One of the authors successfully implemented the
variant of DTR given in Section 4.1 in TVLA to verify mutual exclusion for
the bakery algorithm [21]. There the unbounded counter domain is modeled and
abstracted by the list-like abstraction described in [9] admitting only increment
and decrement operations. The ability of CA to preserve information about
individuals in the shadow proved crucial to verify mutual exclusion.

6 Conclusion

There is a need for state abstractions suitable to treat systems with dynamic links
between processes and infinite-domain variables and general temporal properties.
From the literature, DTR and EA come closest but neither one is sufficient.
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In order to obtain a combination with the strengths of both, we stated them
uniformly in the Canonical Abstraction framework, which is a new application
of the framework. By comparison of the employed abstraction predicates it turns
out that both DTR and EA share a common principle which we call the spotlight
principle. Individuals in the spotlight are kept precise while information about
the others is represented from the perspective of those in the spotlight.

Stating other abstractions like [9,10] in this framework in order to dissect the
ideas employed there remains for the full version of the paper. Further work
comprises an investigation of the effect of cutting off counters at 2, as it is
done for Shape Analysis, instead of at 1. Another question concerns the other
direction, i.e. whether particular abstractions stated via Canonical Abstraction
may profit from the efficient implementations of DTR or EA. And we would
like to gain a deeper insight into the consequences of the spotlight principle, i.e.
whether a set of preserved properties (possibly along segments of computation
paths) can be characterised.

Acknowledgements. The authors want to express their gratitude to Andreas
Podelski and Reinhard Wilhelm for their valuable comments on early versions
of this work.
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Abstract. Several verification methods involve reasoning about multi-valued sys-
tems, in which an atomic proposition is interpreted at a state as a lattice element,
rather than a Boolean value. The automata-theoretic approach for reasoning about
Boolean-valued systems has proven to be very useful and powerful. We develop
an automata-theoretic framework for reasoning about multi-valued objects, and
describe its application. The basis to our framework are lattice automata on finite
and infinite words, which assign to each input word a lattice element. We study
the expressive power of lattice automata, their closure properties, the blow-up in-
volved in related constructions, and decision problems for them. Our framework
and results are different and stronger then those known for semi-ring and weighted
automata. Lattice automata exhibit interesting features from a theoretical point of
view. In particular, we study the complexity of constructions and decision prob-
lems for lattice automata in terms of the size of both the automaton and the under-
lying lattice. For example, we show that while determinization of lattice automata
involves a blow up that depends on the size of the lattice, such a blow up can be
avoided when we complement lattice automata. Thus, complementation is eas-
ier than determinization. In addition to studying the theoretical aspects of lattice
automata, we describe how they can be used for an efficient reasoning about a
multi-valued extension of LTL.

1 Introduction

Several recent verification methods involve reasoning about multi-valued Kripke struc-
tures in which an atomic proposition is interpreted at a state as a lattice element1,
rather than a Boolean value. The multi-valued setting arises directly in systems in which
the designer can give to the atomic propositions rich values like “uninitialized”, “un-
known”, “high impedance”, “don’t care”, “logic 1”, “logic 0”, and more (c.f., the IEEE
Standard Multivalue Logic System for VHDL Model Interoperability [IEEE93]), and
arise indirectly in applications like abstraction methods, in which it is useful to allow
the abstract system to have unknown assignments to atomic propositions and transi-
tions [GS97, BG99], query checking [Cha00], which can be reduced to model checking
over multi-valued Kripke structures, and verification of systems from inconsistent view-
points [HH04], in which the value of the atomic propositions is the composition of their
values in the different viewpoints. The various applications use various types of lattices
(see Figure 1). For example, in the abstraction application, researchers have used three

1 A lattice 〈A, ≤〉 is a partially ordered set in which every two elements a, b ∈ A have a least
upper bound (a join b) and a greatest lower bound (a meet b).

B. Cook and A. Podelski (Eds.): VMCAI 2007, LNCS 4349, pp. 199–213, 2007.
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values ordered as in L3 [BG99], as well as its generalization to linear orders [CDG01].
In query checking, the lattice elements are sets of formulas, ordered by the inclusion or-
der [BG01]. When reasoning about inconsistent viewpoints, each viewpoint is Boolean,
and their composition gives rise to products of the Boolean lattice, as in L2,2 [EC01].
Finally, in systems with rich values of the atomic propositions, several orders may be
used with respect to the various values, which in fact do not always induce a lattice.

The automata-theoretic approach uses the theory of automata as a unifying para-
digm for system specification, verification, and synthesis [Kur94, VW94, KVW00].
Automata enable the separation of the logical and the algorithmic aspects of reasoning
about systems, yielding clean and asymptotically optimal algorithms. The automata-
theoretic framework for reasoning about Boolean-valued systems has proven to be very
versatile. Automata are the key to techniques such as on-the-fly verification, and they
are useful also for modular verification, partial-order verification, verification of real-
time and hybrid systems, open systems, and infinite-state systems. Many decision and
synthesis problems have automata-based solutions and no other solution for them is
known. Automata-based methods have been implemented in both academic and indus-
trial automated-verification tools (c.f., COSPAN and SPIN).

In this work, we describe an automata-theoretic framework for reasoning about multi-
valued objects. Consider a lattice L. For a set X of elements, an L-set over X is a
function S : X → L assigning to each element of X a value in L. For an alphabet
Σ, an L-language is a function L : Σ∗ → L that gives a value in L to each word
over Σ. A nondeterministic lattice automaton on finite words (LNFW, for short) gets as
input words over Σ and assigns to each word a value in L. Thus, each LNFW defines
an L-language. Technically, in an LNFW A = 〈L, Σ, Q, Q0, δ, F 〉, the sets of initial
and final states are L-sets over Q (i.e., Q0, F ∈ LQ describe the “initial value” and the
“acceptance value” of each state), and δ is an L-set over Q×Σ ×Q (i.e., δ ∈ LQ×Σ×Q

describes the “traversal value” of each labeled transition). Then, the value of a run of A
is the meet of values of the components of the run (that is, the initial value of the first
state, the traversal values of the transitions that have been taken, and the acceptance
value of the last state), and the value that A assigns to a word is the join of the values
of the runs of A on w.

The definition of LNFW is not too surprising, and, as we mention in the sequel, it is
similar to previous definitions of “weighted automata”. Things, however, become very
interesting when one starts to study properties of LNFWs. Essentially, in the Boolean
setting, the only important piece of information about a run is the membership of its
last state in the set of accepting states. In the lattice setting, on the other hand, all the
components of the run are important. To see the computational challenges that the lattice
setting involves, consider for example the simple property of closure under join for
deterministic lattice automata (LDFW, for short, where only a single initial/successor
state is possible (has a value different from ⊥)). Stating that LDFW are closed under
join, one has to construct, given two LDFWs A1 and A2, an LDFW A such that for
every word w, the value of A on w is the join of the values of A1 and A2 on w. In
the traditional Boolean setting, join corresponds to union, and it is easy to construct
A as the product of A1 and A2. In the lattice setting, however, it is not clear how
to define the traversal value of the transitions of A based on the traversal value of
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the transitions of A1 and A2. We show that, indeed, the product construction cannot
work, and the LDFW A must contain in its state space a component that depends on L.
Dependency in L cannot be avoided also when we determinize LNFWs: every LNFW
A has an equivalent LDFW A′. Nevertheless, while in the traditional Boolean case
the construction of A′ involves the subset construction [RS59] and for A with n states
we get A′ with 2n states, here the subset construction looses information such as the
traversal value with which each state in the set has been reached, and we show a tight
mn bound on the size of A′, where m = |L|.

Of special interest is the complementation problem2 for LNFW. In the Boolean set-
ting, it is easy to complement deterministic automata, and complementation of non-
deterministic automata involves determinization. In the lattice setting, determinization
involves an mn blow up, and moreover, complementation involves an nm blow up even
if we start with a deterministic automaton. Interestingly, by adopting ideas from the the-
ory of automata on infinite words [KV01]3, we are able to avoid determinization, avoid
the dependency in m, and complement LNFW with a 2n blow up only. For this purpose
we define universal lattice automata (LUFW, for short), which dualize LNFW, show
that complementation can be done by dualization, and that LUFW can be translated to
LNFW with a 2n blow up4.

Once we prove closure properties, we proceed to study the fundamental decision
problems for the new framework: the emptiness-value and the universality-value prob-
lems, which corresponds to the emptiness and universality problems in the Boolean
setting and decide, given A, how likely it is (formalized by means of values in L) for
A to accept some word or all words; and the implication-value problem, which corre-
sponds to the language-inclusion problem and decides, given two LNFWs A1 and A2,
how likely it is that membership in the language of A1 implies membership in the lan-
guage of A2. We show that, using the tight constructions described earlier, the problems
have the same complexities as the corresponding problems in the Boolean setting.

We then turn to applications of LNFW for reasoning about multi-valued tempo-
ral logics and systems. We define the logic Lattice LTL (LLTL, for short), where the
constants can take lattice values, and whose semantics is defined with respect to multi-
valued Kripke-structures. We extend LNFW to the framework of automata on infi-
nite words, define nondeterministic lattice Büchi word automata (LNBW, for short),
and show that known translations of LTL to nondeterministic Büchi word automata
[VW94] can be lifted to the lattice setting. Then, we use LNBW to solve the satisfiabil-
ity and model-checking problems for LLTL, and show that both problems are PSPACE–
complete — not harder than in the Boolean setting. In addition, we study some basic
theory of lattice automata on infinite words. In particular, we show that the comple-

2 Discussing complementation, we restrict attention to De Morgan lattices, where complemen-
tation inside the lattice is well defined (See Section 2.1).

3 As we discuss in the paper, there are several common computational aspects of LNFW and
automata on infinite words, as reasoning in both theories has to cope with the fact that the
outcome of a run depends on its on-going behavior, rather than its last state only.

4 We note that the latter construction is not trivial; it has the flavor of the construction in [MH84]
for the case of infinite words, but unlike [MH84] (or the much simpler Boolean case), the result
LNFW is nondeterministic; if one seeks an equivalent LDFW, a dependency in m cannot be
avoided.
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mentation construction of [KV01] can be combined with the ideas we use in the case of
LNFW complementation, thus LNBW complementation involves a 2O(n log n) blow up
and is independent of m.

Related Work. We are aware of two previous definitions of automata over lattices and
their applications in verification. Our framework, however, is the first to study the theo-
retical aspects of lattice automata, rather than only use them. Also, the applications we
suggest go beyond these that are known. Below we discuss the two known definitions
and compare them with our contribution. In [BG01], Bruns and Godefroid introduce
Extended Alternating Automata (EAA, for short). EAA extend the automata-theoretic
approach to branching-time model checking [KVW00], they run on trees, and map each
input tree to a lattice value. EAA have been used for query checking [BG01] and model
checking multi-valued μ-calculus [BG04]. EAA are incomparable with the model we
study here. On the one hand, EAA are more general, as they run on trees and are alter-
nating. On the other hand, they are not making full use of the lattice framework, as their
“lattice aspect” is limited to the transition function having lattice values in its range.

Also, the application of reasoning about LLTL properties, which we describe here,
cannot be achieved with EAA, as it involves a doubly-exponential translation of LLTL
to μ-calculus, which we avoid. In [CDG01], Chechik, Devereux, and Gurfinkel define
multiple-valued Büchi automata (XBüchi automata, for short) and use them for model
checking multiple-valued LTL. Like LNFW, each transition in a XBüchi automata has a
traversal value and the automata define L-languages. Unlike LNFW, XBüchi automata
(and the multiple-valued LTL that correspond to them) are restricted to lattices that are
finite linear orders. Thus, the setting and its potential applications is weaker.

In addition to lattice-based multi-valued logics, other related concepts were inves-
tigated. Lattice-based automata (for distributive lattices) can be seen as a special case
of weighted automata [Moh97], which are in turn a special case of semiring automata
[KS86]. Semiring automata is a very general algebraic notion of automata in which com-
putations get values from some semiring. However, the model of semiring automata
is algebraic in nature and is relatively far from the standard notion of finite automata.
Weighted automata is another notion in which computations get values from a semiring,
one that closely resembles the standard model of finite automata. In fact, since a distribu-
tive lattice is a semiring in which ⊕ is a join and ⊗ is a meet, the definitions of lattice
automata are a special case of the definitions of weighted automata. However, while (dis-
tributive) lattices are semirings, lattices share some properties that general semirings do
not. Specifically, the idempotent laws (i.e., a ∨ a = a and a ∧ a = a) as well as the
absorption laws (i.e., a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a), which are very intuitive
in a logical context, do not hold in a general semiring, and do hold for lattices. Further-
more, the complementation operand that is essential for choosing lattices as a framework
for multi-valued reasoning, has no natural interpretation in a general semiring. Finally,
our results here go beyond these that are known for semiring automata. In particular, we
consider also automata on infinite words, both nondeterministic and universal automata,
and we study the computational aspects of constructions and decision problems.

Due to space limitations, proofs are omitted and can be found in the full version at
the authors web pages.
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2 Preliminaries

2.1 Lattices

Let 〈A, ≤〉 be a partially ordered set, and let P be a subset of A. An element a ∈ A is an
upper bound on P if a ≥ b for all b ∈ P . Dually, a is a lower bound on P if a ≤ b for
all b ∈ P . An element a ∈ A is the least element of P if a ∈ P and a is a lower bound
on P . Dually, a ∈ A is the greatest element of P if a ∈ P and a is an upper bound on
P . A partially ordered set 〈A, ≤〉 is a lattice if for every two elements a, b ∈ A both the
least upper bound and the greatest lower bound of {a, b} exist, in which case they are
denoted a ∨ b (a join b) and a ∧ b (a meet b), respectively. A lattice is complete if for
every subset P ⊆ A both the least upper bound and the greatest lower bound of P exist,
in which case they are denoted

∨
P and

∧
P , respectively. In particular,

∨
A and

∧
A

are denoted � (top) and ⊥ (bottom), respectively. A lattice 〈A, ≤〉 is finite if A is finite.
Note that every finite lattice is complete. A lattice is distributive if for every a, b, c ∈ A,
we have a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

The traditional disjunction and conjunction logic operators correspond to the join
and meet lattice operators. In a general lattice, however, there is no natural counterpart
to negation. A De Morgan (or quasi-Boolean) lattice is a lattice in which every element
a has a unique complement element ¬a such that ¬¬a = a, De Morgan rules hold, and
a ≤ b implies ¬b ≤ ¬a. In the rest of the paper we consider only finite5 distributive De
Morgan lattices.

1
2

{b}

1

0

L2

{a, b}

{a} {c}

{b, c}

∅
2{a,b,c}

{a, b, c}

{a, c}

0

1 (1,1)

(0,0)

L3 L2,2

(0,1) (1,0)

Fig. 1. Some lattices

In Figure 1 we describe some (finite distributive De Morgan) lattices. The elements
of the lattice L2 are the usual truth values 1 (true) and 0 (false) with the order 0 ≤ 1.
The lattice L3 contains in addition the value 1

2 , with the order 0 ≤ 1
2 ≤ 1, and with

negation defined by ¬0 = 1 and ¬1
2 = 1

2 . The lattice L2,2 is the Cartesian product
of two L2 lattices, thus (a, b) ≤ (a′, b′) if both a ≤ a′ and b ≤ b′. Also, ¬(a, b) =
(¬a, ¬b). Finally, the lattice 2{a,b,c} is the power set of {a, b, c} with the set-inclusion

5 Note that focusing on finite lattices is not as restrictive as may first seem. Indeed, even when
the lattice is infinite, the problems we consider involve only finite Kripke structures, formulas,
and automata. Therefore, only a finite number of lattice elements appear in a problem, and
since the lattice is distributive, the logical operations closure of these values is still finite.
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order. Complementation is interpreted as set complementation relative to {a, b, c}. In
this lattice, for example, {a} ∨ {b} = {a, b}, {a} ∧ {b} = ⊥, {a, c} ∨ {b} = �, and
{a, c} ∧ {b} = ⊥.

A join irreducible element l ∈ L is a value, other then ⊥, for which if l1 ∨ l2 ≥ l
then either l1 ≥ l or l2 ≥ l. By Birkhoff’s representation theorem for finite distributive
lattices in order to prove that l1 = l2 it is sufficient if to prove that for every join
irreducible element l it holds that l1 ≥ l iff l2 ≥ l. We denote the set of join irreducible
elements of L by JI(L). A meet irreducible element l ∈ L is a value for which if
l1 ∧ l2 ≤ l then either l1 ≤ l or l2 ≤ l. Note that in a De Morgan lattice an element
is meet irreducible iff its complement is join irreducible. We denote the set of meet
irreducible elements of L by MI(L).

Consider a lattice L (we abuse notation and refer to L also as a set of elements, rather
than a pair of a set with an order on it). For a set X of elements, an L-set over X is
a function S : X → L assigning to each element of X a value in L. It is convenient
to think about S(x) as the truth value of the statement “x is in S”. We say that an
L-set S is Boolean if S(x) ∈ {�, ⊥} for all x ∈ X . The usual set operators can
be lifted to L-sets as expected. Given two L-sets S1 and S2 over X , we define join,
meet, and complementation so that for every element x ∈ X , we have 6 S1 ∨ S2(x) =
S1(x) ∨ S2(x), S1 ∧ S2(x) = S1(x) ∧ S2(x), and comp(S1)(x) = ¬S1(x).

2.2 Lattice Automata

Consider a lattice L and an alphabet Σ. An L-language is an L-set over Σ∗. Thus
an L-language L : Σ∗ → L assigns a value in L to each word over Σ. A nonde-
terministic lattice automaton on finite words (LNFW, for short) is a six-tuple A =
〈L, Σ, Q, Q0, δ, F 〉, where L is a lattice, Σ is an alphabet, Q is a finite set of states,
Q0 ∈ LQ is an L-set of initial states, δ ∈ LQ×Σ×Q is an L-transition-relation, and
F ∈ LQ is an L-set of accepting states.

A run of an LNFW on a word w = σ1 ·σ2 · · ·σn is a sequence r = q0, . . . , qn of n+1
states. The value of r on w is val (r, w) = Q0(q0) ∧ ∧n−1

i=0 δ(qi, σi+1, qi+1) ∧ F (qn).
Intuitively, Q0(q0) is the value of q0 being initial, δ((qi, σi+1, qi+1)) is the value of
qi+1 being a successor of qi when σi+1 is the input letter, F (qn) is the value of qn

being accepting, and the value of r is the meet of all these values, with 0 ≤ i ≤ n − 1.
We refer to Q0(q0) ∧ ∧n−1

i=0 δ(qi, σi+1, qi+1) as the traversal value of r and refer to
F (qn) as its acceptance value. For a word w, the value of A on w, denoted A(w) is the
join of the values of all the possible runs of A on w. That is, val(A, w) =

∨
{val(r, w) :

r is a run of A on w}. The L-language of A, denoted L(A), maps each word w to its
value in A. That is, L(A)(w) = val(A, w).

An LNFW is a deterministic lattice automaton on finite words (LDFW, for short) if
there is exactly one state q ∈ Q such that Q0(q) �= ⊥, and for every state q ∈ Q and
letter σ ∈ Σ, there is exactly one state q′ ∈ Q such that δ(q, σ, q′) �= ⊥. An LNFW
is simple if Q0 and δ are Boolean. Note that the traversal value of a run r of a simple
LNFW is either ⊥ or �, thus the value of r is induced by F .

6 If S1 and S2 are over different domains X1 and X2, we can view them as having the same
domain X1 ∪ X2 and let S1(x) = ⊥ for x ∈ X2 \ X1 and S2(x) = ⊥ for x ∈ X1 \ X2.
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Traditional nondeterministic automata over finite words (NFW, for short) correspond
to LNFW over the lattice L2. Indeed, over L2, the value of a run r on a word w is either
�, in case the run uses only transitions with value � and its final state has value �,
or ⊥ otherwise. Also, the value of A on w is � iff the value of some run on it is �.
This reflects the fact that a word w is accepted by an NFW if some legal run on w is
accepting.

Example 1. Figure 2 depicts three LNFWs. When we draw an LNFW, we denote the
fact that δ(q, σ, q′) = l by an edge attributed by (σ, l) from q to q′. For simplicity,
we sometimes label an edge with a set S ⊆ Σ × L. In particular, when Σ = L,
we use (l, �) to denote the set {(l, �) : l ∈ L} and we use (l, l) to denote the set
{(l, l) : l ∈ L}. For states q with Q0(q) = l �= ⊥, we draw into q an edge labeled l, and
for states q with F (q) = l �= ⊥, we draw q as a double circle labeled l. For example,
the LNFW A2 = 〈L, L, {q1, q2}, Q0, δ, F 〉 is such that Q0(q1) = � and Q0(q2) = ⊥.
Also, for every l ∈ L, we have δ(q1, l, q1) = δ(q2, l, q2) = �, and δ(q1, l, q2) = l. All
other triplets 〈q, l, q〉 ∈ Q × L × Q are mapped by δ to ⊥. Finally, F (q1) = ⊥ and
F (q2) = �.

(l, l)
q2

�q3�
A3

(l, l)
q1

(l, l)
�

A2

�q1 q2

(l, �) (l, �) (l, �)

�
A1

�q1

(l, l) (l, �)

Fig. 2. Three LNFWs

Let us consider the L-languages of the LNFWs in Figure 2. The LNFW A1 is de-
terministic. Its single run r a word w = l1 · l2 · · · ln starts in q1 with value � and
whenever the letter li is read, the traversal value so far is met with li. The acceptance
value of r is �, thus the value of r on w is

∧n
i=1 li. Hence, the language L1 of A1 is

such that L1(l1 · l2 · · · ln) =
∧n

i=1 li. The LNFW A2 is nondeterministic. Reading a
word w = l1 · l2 · · · ln, it guesses a letter li with which the transition from q1 to q2 is
made. Since the values of the self loops in q1 and q2 are � and so are the initial and
acceptance values, the value of such a run on w is li. Taking the join on all runs, we get
that the language L2 of A2 is such that L2(l1 · l2 · · · ln) =

∨n
i=1 li. Finally, the LNFW

A3 is also nondeterministic. Here, going from q1 to q3 two successive letters are read,
each contributing its value to the traversal value of the run. Hence the language L3 of
A3 is such that L3(l1 · l2 · · · ln) =

∨n−1
i=1 (li ∧ li+1).

In the traditional Boolean setting, a universal automaton (UFW, for short) accepts a
word w if all its runs on w are accepting. Lifting this definition to the lattice frame-
work, a universal lattice automaton (LUFW, for short) has the same components as an
LNFW, only that the value of a run r = q0 . . . qn on a word w = σ1 · σ2 · · · σn is
val(r, w) = comp(Q0(q0)) ∨

∨n−1
i=0 comp(δ(qi, σi+1, qi+1)) ∨ comp(F (qn)), and the

value of A on w is val(A, w) =
∧

{val(r, w) : r is a run of A on w}. Thus, LUFW
dualize LNFW in the three elements that determine the value of an automaton on a run:
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first, the way we refer to the components of a single run is disjunctive (rather than con-
junctive). Second, the way we refer to the collection of runs is conjunctive (rather than
disjunctive). Finally, the initial values, transition values, and acceptance values are all
complemented.

Example 2. Consider the three LNFWs discussed in Example 1. When we view them as
LUFW, their languages L̃1, L̃2, and L̃3 are such that L̃1(l1 · l2 · · · ln)=

∨n
i=1 comp(li),

L̃2(l1·l2 · · · ln)=
∧n

i=1 comp(li), and L̃3(l1·l2 · · · ln)=
∧n−1

i=1 (comp(li)∨comp(li+1)).

Remark 3. In many applications, the input words to the LNFW are generated by a
graph in which each vertex is labeled by a letter in Σ. In some applications, the transi-
tion relation of the graph is an L-set, thus each edge has a value in L. Accordingly, in a
more general framework, each letter in Σ has a weight — a value in L that corresponds
to the value of the edge between the current and next vertices. Then, the value of a
run of the automaton over a weighted word w = 〈σ1, l1〉 · 〈σ2, l2〉 · · · 〈σn, ln〉 takes the
weights of the letters into account: when we are in state qi, read a letter 〈σi+1, li+1〉, and
move to state qi+1, the contribution to the value of the run is li+1 ∧ δ(qi, σi+1, qi+1)
(rather than δ(qi, σi+1, qi+1) only). Since the lattice is distributive, it is easy to see
that the value of such an LNFW over the word w is equal to the meet of its value on
〈σ1, �〉 · 〈σ2, �〉 · · · 〈σn, �〉 with

∧
1≤i≤n li. Thanks to this decompositionality, it is

easy to adjust our framework to automata that read words with weighted letters. For
technical simplicity, we assume no weights.

Remark 4. It is interesting to compare LNFW’s to EAA’s as defined in [BG04]. (For-
mally, EAA are defined only for infinite trees but it is easy to accommodate them to
finite words). In EAA, there is no explicit concept of transition value. Since, however,
EAA are alternating, it is possible to model a transition into state q with value l by the
formula q ∧ l. By taking the meet of a transition with a lattice value, it is possible to
ensure that in all runs, the value attached to the source vertex of the transition is at most
l. Intuitively, the value of an EAA run flows “upwards” while the value of an LNFW
run flows “downwards”. An interesting outcome of this observation is that while it is
natural to define the value of a prefix of a run of an LNFW, an LNFW run, it does not
seem possible to define the value of a prefix of an EAA run. We find the ability to refer
to this value helpful both in understanding the intuition behind the runs of automata and
in reasoning about them — as we will demonstrate in Section 3.

3 Closure Properties

In this section we study closure properties of LNFW and LDFW. We show that LNFW
and LDFW are closed under join, meet, and complementation, show that LNFW can
be determinized and simplified, and analyze the blow-up that the various constructions
operators involve. In addition to the dependency in the size n of the original automaton
(or automata, in case of the join and meet operators), our analysis refers to the size m
of the lattice over which the automata are defined. The dependence on both n and m is
tight and the proofs in full version provide both upper bounds and lower bounds.
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3.1 Nondeterministic Automata on Finite Words

Theorem 5 [closure under join and meet]. Let A1 and A2 be LNFW over L, with
n1 and n2 states, respectively. There are LNFW A∨ and A∧, with n1 + n2 and n1 · n2
states, respectively, such that L(A∨) = L(A1)∨L(A2) and L(A∧) = L(A1)∧L(A2).

The constructions are slight variants of the standard Boolean case constructions.

Theorem 6 [simplification]. Let A be an LNFW (LDFW) with n states, over a lattice
L with m elements. There is a simple LNFW (resp. LDFW) A′, with n · m states, such
that L(A′) = L(A).

Intuitively, the state space of A′ is Q × L, where 〈q, l〉 stands for state q with value l.
We now turn to consider determinization of LNFW. For simple LNFW, determiniza-

tion can proceed using the subset construction as in the Boolean case [RS59]. If we
start with a general LNFW A with state space Q, this results in an LDFW A′ with state
space 2Q×L. As Theorem 7 below shows, LNFW determinization does depend on L,
but we can do better than maintaining subsets of Q×L. The idea is to maintain, instead,
functions in LQ, where each state q of A is mapped to the join of the values with which
A might have reached q. Note that the resulting automaton is a simple LDFW.

Theorem 7 [determinization]. Let A be an LNFW with n states, over a lattice L with
m elements. There is a simple LDFW A′, with mn states, such that L(A′) = L(A).

We now turn to study complementation on LNFW. As with traditional automata, it is
possible to complement an automaton through determinization. Starting with an LNFW
with n states over a lattice with m elements, we can construct, by Theorem 7, a simple
LDFW which can be easily complemented to LNFW with mn states. We now show that
by using universal automata, it is possible to circumvent determinization and avoid the
dependency on m. We first observe that viewing an LNFW as an LUFW complements
its language. The proof is easy and is based on applying De Morgan rules on val (A, w).

Lemma 1. Let A be an LNFW and let Ã be A when viewed as an LUFW. Then,
L(Ã) = comp(L(A)).

Theorem 8. Let A be an LUFW, with n states. There is an LNFW A′, with 2n states,
such that L(A′) = L(A).

The intuition being the proof of Theorem 8 is as follows. Let A = 〈L, Σ, Q, Q0, δ, F 〉.
Consider a word w = σ1 · · · σn. The runs of A on w can be arranged in a directed
acyclic graph G = 〈Q × {0, . . . , n}, E〉, where E(〈q, i − 1〉, 〈q′, i〉) for all q, q′ ∈
Q and 1 ≤ i ≤ n. Each edge 〈〈q, i − 1〉, 〈q′, i〉〉 in G has a value in L, namely
comp(δ(q, σi, q

′)). Also, vertices in Q × {0} and Q × {n} have an initial and an ac-
ceptance value, respectively, induced by comp(Q0) and comp(F ). The value of A on
w is the meet of the values of the paths of G, where a value of a path is the join of the
values of its components. In order for A′ to map w to this value, we let A′ keep track
of paths that still have to contribute to a component value, and let the traversal value of
the runs of A′ maintain the value contributed so far. Thus, as in the subset construction,
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A′ follows all runs of A (that is, all the paths of G). However, at any time during the
run, A′ may decide nondeterministically to take into account the current component
value of some of the paths. Two things happen in a transition in which A′ decides to
take into account paths that go through a vertex whose state component belongs to a set
P ⊆ Q. First, the traversal value of the transition is the meet of the traversal value of
transitions that enter P . Second, in its subset construction, A′ release the set P , as there
is no further need to follow paths that visit P .

In Section 3.3, we present a general paradigm for decomposing lattice automata to
Boolean automata, each associated with a join-irreducible element of the lattice. The
paradigm can be used for proving Theorem 8 too. In the full version we describe a
direct construction, which applies the paradigm, but hides the intermediate Boolean
automata.

We can now complement an LNFW A by transforming the LUFW with the same
structure as A to an LNFW. Hence, by Lemma 1 and Theorem 8, we have the following:

Theorem 9 [closure under complementation]. Let A be an LNFW with n states.
There is an LNFW A′, with 2n states, such that L(A′) = comp(L(A)).

3.2 Deterministic Automata on Finite Words

Theorem 10 [closure under join and meet]. Let A1 and A2 be LDFW over L. There
are LDFW A∨ and A∧ such that L(A∨) = L(A1) ∨ L(A2) and L(A∧) = L(A1) ∧
L(A2). If A1 has n1 states, A2 has n2 states, and L has m elements, then A∨ has at
most n1 · n2 · m2 and at least n1 · n2 · m states, and A∧ has n1 · n2 states.

The meet construction coincides with the one for LNFW. For the join construction, we
first simplify A1 and A2 using Theorem 6 and only then apply the construction for
LNFW7.

We now turn to study complementation of LDFW. In the Boolean setting, comple-
mentation of deterministic automata is easy, and involves dualization. In the lattice set-
ting dualization does not work, and should be combined with simplification. Therefore,
we have the following.

Theorem 11 [closure under complementation]. Let A be an LDFW, with n states,
over L. There is an LDFW A′, with n · m states, such that L(A′) = comp(L(A)).

3.3 Lattice Automata on Infinite Words

Lattice automata can run on infinite words and define L-languages of words in Σω. A
nondeterministic Büchi lattice automaton on infinite words (LNBW, for short) has the

7 The gap between the upper and the lower bound in Theorem 10 follows from the fact that the
exact dependency in m depends on the type of the lattice L. For all types, the join construction
requires at most an m2 blow-up, and at least an m blow-up. By considering the types individ-
ually, it is possible to tighten the bound. In particular, for a lattice that is a full order, the tight
bound is n1 ·n2 ·m, and for the powerset lattice, the tight bound is n1 ·n2 ·mlog2 3. Essentially,
the different types of lattices induce different ways to partition the m2 pairs of lattice values
between the state space of the joint automaton and the value accumulated by the run in the
form of traversal value.
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same components as an LNFW, thus A = 〈L, Σ, Q, Q0, δ, F 〉, only that it runs on infi-
nite words. A run of A on a word w = σ1·σ2 · · · is an infinite sequence r = q0, q1, . . . of
states. The traversal value of r on w is trval(r, w) = Q0(q0) ∧

∧
i≥0 δ(qi, σi+1, qi+1).

The acceptance value of r on w is acval (r, w) =
∧

i≥0
∨

j≥i F (qj). The value of r on
w is val (r, w) = trval(r, w) ∧ acval (r, w).

Note that the acceptance value of a run corresponds to the Büchi condition in the
Boolean case. There, F should be visited infinitely often, thus all suffixes should visit
F . Accordingly, here, the meet of all suffixes is taken, where each suffix contribute the
join of its members.

Theorem 12 [LNBW closure properties]. Let A1 and A2 be LNBWs with n1 and n2
states, respectively.

1. There is an LNBW A∨ with n1 + n2 states such that L(A∨) = L(A1) ∨ L(A2).
2. There is an LNBW A∧ with 3 · n1 · n2 states such that L(A∧) = L(A1) ∧ L(A2).
3. There is an LNBW Ã1 with 2O(n1 log(n1)) states such that L(Ã1) = comp(L(A1)).

The proof of Theorem 12 follows from a general paradigm for transformation between
lattice automata. The key observation is that a lattice-automaton over lattice L can be
decomposed to a family Boolean automata where each Boolean automaton in the family
corresponds to a join-irreducible (or meet irreducible) element of L. A transformation
on the lattice automaton can then be obtained by applying the transformation on the
underlying Boolean automata, which can then be composed back to a lattice automa-
ton. For the paradigm to work, we need to ensure some consistency requirements that
have to do with maintaining the order of the lattice. In the following NBW stands for
Nondeterministic Büchi automata on Words. We proceed with the details.

For an underlying set of states Q, we introduce an ordering on NBWs whose state
space is Q. For i ∈ {1, 2}, let Ai = 〈Σ, Q, Q0

i , δi, Fi〉 be an NBW. Let A1 ≤ A2 when
Q0

2 ⊆ Q0
1, δ2 ⊆ δ1, and F2 ⊆ F1. Intuitively, “smaller automata have more accepting

runs”. Formally, it is easy to see that A1 ≤ A2 implies L(A2) ⊆ L(A1).
A family {Al}l∈L of NBWs that share a state space and are indexed by lattice ele-

ments is L-consistent if l1 ≤ l2 implies Al1 ≤ Al2 . Similarly, a family is L-reverse-
consistent if l1 ≤ l2 implies Al1 ≥ Al2 .

Lemma 2 [decomposition]. For an LNBW A it is possible to construct, in logarithmic
space, the following L-consistent families:

1. A family {Al}l∈JI(L) of NBWs such that for all w ∈ Σω, we have w ∈ L(Al) iff
A(w) ≥ l.

2. A family {Al}l∈MI(L) of NBWs such that for all w ∈ Σω, we have w �∈ L(Al) iff
A(w) ≤ l.

The proof for the join irreducible case is based on a construction of the NBWs Al

according to criteria like Q0
l = {q ∈ Q | Q0(q) ≥ l}. The proof of the meet irreducible

case is based on a construction according to criteria like Q0
l = {q ∈ Q | Q0(q) �≤ l}.

For tuples of NBWs, we say that 〈A1, . . . , Ak〉 ≤ 〈B1, . . . , Bk〉 iff Ai ≤ Bi for
every i ∈ {1, . . . , k}. We say that a construction ϕ : NBWk → NBW is monotone if
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〈A1, . . . , Ak〉 ≤ 〈B1, . . . , Bk〉 implies ϕ(〈A1, . . . , Ak〉) ≤ ϕ(〈B1, . . . , Bk〉). A con-
struction is antitone if 〈A1, . . . , Ak〉 ≤ 〈B1, . . . , Bk〉 implies ϕ(〈A1, . . . , Ak〉) ≥
ϕ(〈B1, . . . , Bk〉).

Lemma 3. Let k ≥ 0 be an integer. For every i ≤ k, let {Ai
l}l∈L be an L-consistent

family. If ϕ : NBWk → NBW is a monotone construction, then {ϕ(A1
l , . . . Ak

l )}l∈L
is an L-consistent family. Similarly, if ϕ is antitone then {ϕ(A1

l , . . .Ak
l )}l∈L is an L-

reverse-consistent family.

Lemma 4 [composition]. Let {Al}l∈JI(L) be an L-consistent family of NBWs, param-
eterized by the join irreducible elements of L. There is an LNBW A, sharing the state
space of the family, such that for every w ∈ Σω and l ∈ JI(L), it holds that w ∈ L(Al)
iff L(A)(w) ≥ l. Furthermore, the construction of A can be made in logarithmic space.

The proof is based on the construction of A from {Al}l∈JI(L) according to criteria like
Q0(q) =

∨
{l ∈ JI(L) | q ∈ Q0

l }.
We now have the basic building blocks needed to apply the paradigm of reduc-

ing lattice automata constructions to Boolean ones. Below we show how to apply this
paradigm in the case of LNBW complementation. The other cases are simpler and are
left to the reader. As a first step, we need a Boolean construction for NBW complemen-
tation that is an antitone.

Lemma 5. There exists an antitone construction ϕ : NBW → NBW such that for
every NBW A, we have L(ϕ(A)) = comp(L(A)). Furthermore, if A has n states, then
ϕ(A) has at most 2O(n log(n)) states, and the construction can be made using space
polynomial in n.

In the full version, we prove the lemma by proving that (a small variant of) the [KV01]
construction for NBW complementation is antitone. To prove the results for join and
meet of languages, we need similar constructions of monotone (rather than antitone)
constructions of union and intersection. The standard construction for union is already
monotone. For the meet case, a small variant of the usual [Cho74] construction for
intersection is needed, and is discussed in the full version.

We can now complete the construction for LNBW complementation. Given an LNBW
A, we use the decomposition lemma to construct a consistent family {Al}l∈MI(L) of
NBWs such that A(w) ≤ l iff w �∈ L(Al) for all w ∈ Σ. By applying the construction
from Lemma 5, we get a reverse-consistent family {A′

l}l∈MI(L) of NBWs such that
A(w) ≤ l iff w ∈ L(A′

l) for all w ∈ Σ.
Next, we re-index the family by identifying A′

l with A′′
comp(l). Since an element

is meet irreducible iff its complement is join irreducible, the resulting family
{A′′

comp(l)}l∈MI(L) is indexed by the join irreducible elements of L and can be seen as
{A′′

l }l∈JI(L). Furthermore, for l1, l2 ∈ JI(L), if l1 ≤ l2, then comp(l2) ≥ comp(l1).
Therefore, since {A′

l} is a reverse-consistent family, we get that A′
comp(l1) ≤A′

comp(l2);
i.e., A′′

l1
≤ A′′

l2
. Thus, {A′′

l }l∈JI(L) is a consistent family.
Finally, we apply the composition lemma on {A′′

l }l∈JI(L) to get a single LNBW
Ã. To prove that Ã is indeed comp(A) fix a word w ∈ Σω and a join irreducible
element l ∈ JI(L). The following equivalences hold: Ã(w) ≥ l iff w ∈ L(A′′

l ) iff
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w ∈ L(A′
comp(l)) iff w �∈ L(Acomp(l)) iff A(w) ≤ comp(l) iff comp(A(w)) ≥ l. The

result follows from Birkhoff’s representation theorem.

4 Applications

In this section we apply our framework to the satisfiability and model-checking prob-
lems of multi-valued LTL. We first discuss decision problems for LNFW and LNBW.

4.1 Decision Problems

Consider an LNFW (or LNBW) A over a lattice L. The range of A is the set of lattice
values l for which there is a word w that A accepts with value l. Thus, range(A) =⋃

w∈Σ∗ val(A, w). The emptiness value of A, denoted e val(A), is then the join of all
the values in its range; i.e., e val(A) =

∨
range(A). Intuitively, e val(A) describes

how likely it is for A to accept a word. In particular, if e val(A) = ⊥, then A gives
value ⊥ to all the words in Σ∗. Over Boolean lattice, e val (A) = ⊥ if A is empty and
e val (A) = � if A is not empty. Note, however, that for a general (finite distributive De
Morgan) lattice, e val(A) �= ⊥ does not imply that there is a word that is accepted with
value e val (A). The emptiness-value problem is to decide, given an LNFW (or LNBW)
A, a value l ∈ L, and an order relation ∼∈ {<, ≤, =, ≥, >}, whether e val(A) ∼ l.

Theorem 13. The emptiness-value problem for LNFW (or LNBW) is NLOGSPACE-
complete.

In the full version we discuss the universality-value and the implication-value prob-
lems, which corresponds to the universality and the language inclusion problems in the
Boolean setting.

4.2 LLTL Model Checking and Satisfiability

As discussed in Section 1, the multi-valued setting appears in practice either directly,
with multi-valued systems and specifications, or indirectly, as various methods are re-
duced to reasoning in a multi-valued setting. In this section we show how lattice au-
tomata provide a unifying automata-theoretic framework for reasoning about multi-
valued systems and specifications,

A multi-valued Kripke structure is a six-tuple K = 〈AP, L, W, W0, R, L〉, where
AP is a set of atomic propositions, L is a lattice, W is a finite set of states, W0 ∈ LW

is an L-set of initial states, R ∈ LW×W is an L-transitions relation, and L : W → LAP

maps each state to an L-set of atomic propositions. We require R to be total in its first
element, thus for every w ∈ W there is at least one w′ ∈ w such that R(w, w′) �= ⊥.
A path of K is an infinite sequence w1, w2, . . . of states. For technical simplicity, we
assume that W0 and R are Boolean. As discussed in Remark 3, it is easy to adjust
our framework to handle weighted input letters, and hence, weighted initial states and
transitions. In the Boolean setting, a path of K is one that has value �, thus w1 ∈ w0
and R(wi, wi+1) for all i ≥ 1.
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The logic LTL is a linear temporal logic. Formulas of LTL are constructed from
a set AP of atomic propositions using the usual Boolean operators and the temporal
operators X (“next time”) and U (“until”). The semantics of LTL is traditionally defined
with respect to computations of Kripke structures in which each state is labeled by a set
of atomic propositions true in this state and each two states are either connected or
not connected by an edge. Note that traditional Kripke structures correspond to multi-
valued Kripke structures over the lattice L2. We define the logic Latticed-LTL (LLTL,
for short), which is the expected extension of LTL to multi-valued Kripke structures.
The syntax of LLTL is similar to the one of LTL, except that the logic is parameterized
by a lattice L and its constants are elements of L. Let π = w1, w2, . . . be a path of
a multi-valued Kripke structure. The value of an LLTL formula ψ on the path π in
position i, denoted val(π, i, ψ) is inductively defined as follows:

– For a lattice element l ∈ L, we have val(π, i, l) = l for all π and i.
– For an atomic proposition p ∈ AP , we have val(π, i, p) = wi(p) for all π and i.
– val(π, i, ¬ψ) = ¬val (π, i, ψ).
– val(π, i, ψ ∧ θ) = val(π, i, ψ) ∧ val(π, i, θ).
– val(π, i, Xψ) = val(π, i + 1, ψ).
– val(π, i, ψUθ) =

∨
k≥i(val (π, k, θ) ∧

∧
i≤j<k val(π, j, ψ)).

For an LLTL formula ψ, the satisfiability value of ψ, denoted sat(ψ), is∨
{val(π, 1, ψ) : π ∈ (LAP )ω}. Thus, the satisfiability value describes how likely

it is for some path to satisfy ψ. The LLTL satisfiability problem is to determine, given
an LLTL formula ψ, a value l ∈ L, and an order relation ∼∈ {<, ≤, =, ≥, >}, whether
sat(ψ) ∼ l. For a multi-valued Kripke structure K and an LLTL formula ψ, the sat-
isfaction value of ψ in K , denoted sat(K, ψ), is

∧
{val(π, 1, ψ) : π is a path of K}.

Thus, the satisfaction value describes how likely it is for all paths of K to satisfy ψ.
The LLTL model-checking problem is to determine, given a multi-valued Kripke struc-
ture K , an LLTL formula ψ, a value l ∈ L, and an order relation ∼∈ {<, ≤, =, ≥, >},
whether sat(K, ψ) ∼ l.

Theorem 14. Given an LLTL formula ψ, there is an LNBW Aψ such that for every
word w ∈ (LAP )ω , we have Aψ(w) = val(w, 1, ψ).

We can now use the automata-theoretic approach in order to solve the satisfiability and
model checking problems for LLTL.

Theorem 15 [LLTL satisfiability and model checking]. The LLTL satisfiability-
value and satisfaction-value problems are PSPACE-complete.

The proof is similar to the standard automata-theoretic approach to verification proofs.
The full proof can be found in the full version.

Note that Theorem 15 also follows from reduction to several Boolean problems as
presented in [BG04]. The advantage of the approach presented here, is solving LLTL
model checking and satisfiability using direct lattice methods. The advantages of such
direct methods were argued in [BG04], which solved the model checking for μL (the
lattice extension of μ-calculus) directly, using EAA. Theorem 15, however, does not
follow from the latter due to the doubly-exponential blow up of translating LTL formu-
las to mu-calculus.
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Abstract. This tutorial is on applications of computational learning
theory to verification of systems. Computational learning theory deals
with algorithmic models for learning formally representable concepts us-
ing either positive and negative samples or by access to an oracle that
can answer certain queries about the concept.

The problem of learning formal languages has been particularly use-
ful in verification applications. We will introduce Angluin’s algorithm, a
learning algorithm that learns regular languages efficiently using an or-
acle that can answer membership and equivalence queries. We will also
survey results on learning regular languages in other learning models.

We will give an account of how learning has been used to solve a
variety of problems in verification, spanning compositional verification,
parameterized model-checking, synthesis of interfaces, machines with un-
bounded queues, and program testing. In all these examples, a crucial
property that is exploited is the simplicity of certain concepts that under-
lie real-world systems, the learning of which yields a a simple mechanism
to prove the correctness of the system. We will also lay out general argu-
ments on why learning algorithms can play a crucial role in the design of
verification algorithms, and list some open research directions that work
towards this goal.
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Abstract. This paper is concerned with one of the basic problems in abstract in-
terpretation, namely, for a given abstraction and a given set of concrete transform-
ers (that express the concrete semantics of a program), how does one create the
associated abstract transformers? We develop a new methodology for addressing
this problem, based on a syntactically restricted language for expressing concrete
transformers. We use this methodology to produce best abstract transformers for
abstractions of many important data structures.

1 Introduction

Abstraction and abstract interpretation [1] are key tools for automatically verifying both
hardware and software systems. This paper is concerned with one of the basic problems
in abstract interpretation, namely, for a given abstraction and a given set of concrete
transformers (that express the concrete semantics of a program), how does one create
the associated abstract transformers? We develop a new methodology for addressing
this problem, based on a syntactically restricted language for expressing concrete trans-
formers. Of particular interest is that—by employing previous results from dynamic
algorithms and dynamic descriptive complexity [2]—our methods allow precise reach-
ability information to be maintained for abstractions of data structures. We use this
methodology to produce best abstract transformers for abstractions of many important
data structures.

Shape Analysis, Canonical Abstraction, and Dynamic Descriptive Complexity.
While our approach is quite general, the main application is to shape analysis (i.e.,
analysis of linked data structures) and to analyses based on canonical abstraction—
the family of abstractions introduced by Sagiv, Reps, and Wilhelm [3] for analyzing
programs that use dynamic data structures, including allocation and deallocation of
memory cells and destructive updates of pointer-valued fields. In this approach, data
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structures are modeled using (3-valued) logical structures. Each element of the universe
of the structure represents either a single memory cell, or, if the element is a summary
element, it represents a set of memory cells.

The analysis simulates the program step-by-step, updating the structures appropri-
ately, mimicking (i.e., approximating soundly) the semantics of program statements.
When a fixpoint is reached, the resulting set of structures is a finite summary of relevant
properties of the data structures built by the program. Note that any resulting properties
of the set of structures are thus proven to hold: they necessarily hold on all runs of the
program. This analysis framework has been implemented in the TVLA system. (The
acronym stands for Three-Valued Logic Analyzer.)

A key technical difficulty concerns the summary elements. They are needed so that
the unbounded-size set of unbounded-size concrete data structures that can arise are
always abstracted to a finite set of finite-size logical structures, which guarantees that
the analysis always reaches a fixpoint. The problem caused by summary nodes is that
some relations between cells in memory can be true for some elements represented
by a summary node and false for others. Hence a truth value of “ 1

2” is introduced,
and the framework is based on 3-valued logic [3]. As the analysis propagates 3-valued
structures, however, there is a tendency for logical values of 1

2 , i.e., “don’t know”, to
increase, which limits the quality of information that the analysis can provide.

A good way to combat this problem is to maintain extra, auxiliary relations in the
logical structures [3,4]. The same approach is used in dynamic descriptive complexity,
although the motivation is completely different:

– In dynamic descriptive complexity, we work with objects that undergo a series of
inserts, deletes, changes, and queries; with each query, the goal is to return the
answer with respect to the current object. The fundamental issue in dynamic de-
scriptive complexity is one of efficiency: “What auxiliary information should be
maintained to answer the query quickly?” The goal of maintaining extra informa-
tion is to avoid recomputing each answer from scratch.

– In static analysis based on 3-valued logic, the issue is not so much to save com-
putation time, but instead to preserve high-quality information, i.e., definite truth
values—“0”s and “1”s, rather than “ 1

2”s—whenever possible.

A second key technical difficulty concerns reachability information, which is needed
to express connectivity and separation properties of data structures. There has been ex-
tensive work in dynamic descriptive complexity on how to efficiently maintain reach-
ability information. For example, Dong and Su showed that for acyclic graphs reacha-
bility may be maintained by first-order formulas [5]. Of particular interest to us is the
result of Hesse that reachability for (not-necessarily acyclic) functional graphs can be
maintained by quantifier-free formulas [6].

Our New Methodology. As explained above, TVLA maintains abstract (3-valued)
structures, A, that represent sets of concrete (2-valued) structures, γ(A). We say that
an abstract structure, A, is feasible iff γ(A) �= ∅. Let β be the abstraction operator on
individual concrete structures, i.e., β(C) is the abstract representation of C, so β and γ
are (approximate) inverse operations (adjoined functions).
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For each program statement, st, TVLA has an update formula τst so that on any
concrete structure, C, τst(C) is the concrete structure produced by executing statement
st. Furthermore, the update formula is always safe on abstract structures, meaning that
τst(γ(A)) ⊆ γ(τst(A)).

Given an abstraction, the gold standard of abstract transformers is called the best
transformer [1], and satisfies the property, btst(A) =

{
β(τst(C))

∣
∣ C ∈ γ(A)

}
.

However, because γ(A) may be infinite, the equation above does not provide an
algorithm for computing the best transformer.

TVLA employs heuristics to efficiently compute a safe transformer that is not nec-
essarily the best transformer. In this paper, we introduce a syntactic condition called
monadic uniform with the following property (see also Thm. 11):

Main Theorem: If the update formulas for a data structure are monadic uniform and
we have an algorithm that given an abstract structure, A, decides whether A is feasible,
then we can automatically compute the best transformers for the operations on the data
structure.

We then show that our main theorem applies to many important situations:

– We use and modify known results from dynamic descriptive complexity to create
monadic-uniform update formulas for many important classes of data structures,
including linked lists, cyclic linked lists, doubly-linked lists, cyclic doubly-linked
lists, trees, shared trees, directed graphs with no undirected cycles, and also some
of the above data structures when arbitrary unary relations and an ordering relation
are included.

– We also present efficient feasibility algorithms for most of the above. Thus, for
these data structures we can implement best abstract transformers automatically.

Our vision is to build specialized shape analyses for many of the available programs
and observed properties. This paper is an important step in this direction because it
shows that it is possible to build — in a systematic manner — specialized shape analyses
with good theoretical properties for many important data structures.

Predicate Abstraction. Our results are not limited to the TVLA context; in particular,
they provide a way to improve the predicate-abstraction method given by Rakamaric
et al. [7]. Their linked-list abstraction uses the relation between(x, y, z) to capture
whether there is a path from x to z through y. Rakamaric et al. give a complete decision
procedure for checking feasibility of a given abstract state, but left open the question
of how to handle transformers in the most-precise way. Our methodology solves this
problem: we can use the quantifier-free update formulas given by Hesse [6] to build
best transformers for this abstraction. For example, to compute the abstract transformer
for the addition/removal of an edge we would: (1) extend the vocabulary with a con-
stant capturing the current target of the edge; (2) replace each abstract state with the
set of states that provide all possible interpretations to the predicates involving the new
constant; (3) use the Rakamaric et al. decision procedure to remove the infeasible ab-
stract states; (4) for the remaining states, evaluate Hesse’s update formulas to get the
successor states.
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2 Overview

Node reverse(Node x){
[0] Node y = null;
[1] while (x != null){
[2] Node t = x.next;
[3] x.next = y;
[4] y = x; x = t; }
[5] return y; }

Fig. 1. The running example

This section is an informal overview of the
methodology presented in the paper. We use a
simple Java procedure that reverses a singly-
linked list specified in Fig. 1 as a running exam-
ple. We will run reverse on a cyclic singly-linked
list. We use a graphical representation of logical
structures to depict a store as a graph.

Fig. 2(a) is an example of a singly linked list
with a cycle. Memory cells are represented by
the individuals of the structures (the nodes in the
graph). Program variables are represented by constants (the text inside the nodes).
Pointer fields in a memory cell are represented by binary relations (the edges of the
graph, annotated with the relation name). In this case, the next field of the list nodes
is represented by the n relation, which is a total function. We can add to the structure
auxiliary relations defined using FO(TC) (First Order Logic with Transitive Closure)
formulas over the core relations. For example, in Fig. 2(b) we use a unary relation rx,n

(written below the nodes) to indicate the existence of a path from the node pointed to
by x (defined by rx,n(v) def= n∗(x, v)). The unary relation cn states that the node is on a

cycle of next fields (defined by cn(v) def= n+(v, v)).
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Fig. 2. (a) A concrete structure that represents a singly-linked list with a loop, which is pointed
to by x and consists of 6 nodes. (b) The same singly-linked list, this time with auxiliary informa-
tion. (c) Abstraction of singly-linked lists with loops. (d) & (e) The result of computing the best
abstract transformer for the operation t=x.next on (c). Note there is also always a concrete
node, null, with a self-loop (for n) and no other edges. We do not draw this to save space.

In abstract interpretation, we wish to represent a large (possibly infinite) set of stores
using a finite set of structures; here this is done by collapsing nodes together into “sum-
mary nodes” (drawn as double circles). We use three-valued logic with an additional 1

2
truth value (for binary relations, this is depicted as a dotted edge) to capture the case
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in which for some of the nodes represented by the summary node the value is true (1)
while for others the value is false (0).1 Fig. 2(c) shows an abstract structure in which
constants are untouched and all the nodes with the same values for unary relations are
collapsed together. This type of abstraction is called canonical abstraction and is guar-
anteed to result in structures of bounded size for a given vocabulary. The Embedding
Theorem of [3] guarantees that if evaluating formulas (using Kleene semantics) on the
abstract structure results in a definite value (i.e., 1 or 0), evaluating the formula on any
concrete structure it represents will yield the same value. Kleene semantics can be un-
derstood as considering 1

2 to be {0, 1}, 0 to be {0}, and 1 to be {1} and evaluating
pointwise, e.g., 1 ∧ 1

2 = 1
2 , but 0 ∧ 1

2 = 0.
Transformers are given for each operation according to the program’s operational

semantics. Transformers are specified using guarded commands with formulas in
FO(TC) called update formulas. For example, for the operation t=x.next used in
line 2 of Fig. 1, we can use a guard x �= null ∧ n(x, xn) to (a) ensure that there is no
null-dereference, and (b) bind the value of the next field of x to a new (temporary)
constant xn. The update formulas are: t′ := xn, x′ := x, n′(v1, v2) := n(v1, v2),
c′n(v) = cn(v), r′x,n(v) := rx,n(v), r′t,n(v) := n∗(t′, v). The most precise abstract
transformer would return a set of abstract structures that captures as tightly as possible
(for the abstraction in use) the result of applying the transformer on all the concrete
structures represented by the original abstract structure. This kind of abstract trans-
former is called the best abstract transformer [1] and can be theoretically computed by
finding all concrete structures represented by an abstract structure (a.k.a. concretiza-
tion), computing the transformer on each of them, and abstracting the results. However,
because the number of concrete structures represented by an abstract structure is un-
bounded (and potentially infinite), this is not an algorithm. Fig. 2(d) and Fig. 2(e) show
the result for t=x.next on the structure in Fig. 2(c). The structure in Fig. 2(d) rep-
resents the case in which the list before the cycle is of length 2, and the structure in
Fig. 2(e) represents the case it is of length 3 or more. Note that simply evaluating the
update formulas on the structure in Fig. 2(c) would not have given us this precise result.

We seek a way to compute the same result as the best transformer without resorting
to full concretization. One of the key principles of our methodology is to find a partial
concretization that 1) is computable, 2) returns a finite set of abstract structures that
represents the same concrete structures, and 3) for each of these structures the best
abstract transformer can be computed by simply evaluating the update formulas. We
call the operation of finding such a partial concretization Focus after a similar operation
in [3]. Focus replaces each structure with a set of structures, representing the same
concrete structures, in which the partitioning of the concrete nodes into summary nodes
is more fine-grained. This can be achieved by bifurcating summary nodes into two
groups: nodes for which an atomic formula holds, and nodes for which it does not hold.
We call such a formula a focus formula. For example, Fig. 3(a) and (b) show the result
of Focus for the focus formula n(x, v) on the structure in Fig. 2(c). The second and
third nodes in the lists of Fig. 3(a) and (b) are the result of bifurcating the second node
in Fig. 2(c) according to the focus formula. For the second node, the formula holds,

1 For readers familiar with [3], we use tight embedding in this paper. Thus, each summary node
represents at least two nodes.
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and for the third node the formula does not hold. As we can see, this process can result
in multiple structures; Fig. 3(a) corresponds to the case in which the original summary
node represents two concrete nodes and in Fig. 3(b) the case in which the summary
node represents three or more concrete nodes. We can see that in both cases, the second
node has been materialized out of the original summary node.

To automate the Focus operation, we propose an algorithm that can compute the par-
tial concretization for a set of focus formulas: the first phase does not understand the
intended meaning of the relations; the second phase applies a “feasibility check” sup-
plied by the developer of the abstraction. An algorithm for feasibility checking should
return true iff an abstract structure represents at least one concrete structure. Fig. 3(c)
and (d) show structures arising in the Focus process that are infeasible. Structure 3(c) is
infeasible because the second node must represent at least two nodes and the first node
must have a direct edge to both of them, which contradicts that n is a function. Struc-
ture 3(d) is infeasible because the self-loop on the second node means that it must both
have a self-loop and not have a self-loop. In §5, we provide algorithms for checking
feasibility for several abstractions of commonly used data structures. Note that even if
we cannot check feasibility for some abstraction (or have only a sound approximation),
the resulting transformer is a sound approximation of the best transformer.

The problem with finding the right focus formulas and using Focus for the trans-
former given for t=x.next is that for the computation of r′t,n we require that the
evaluation of n∗(t′, v) return precise results — in particular; for any element in the cy-
cle, it should return 1. However, this means that all the edges until the cycle must be 1,
which means we need to consider all possible lengths for the segment of the list before
the cycle. This is not possible. To solve this problem, we need to somehow limit the up-
date formulas. This leads to our second principle, monadic-uniform update formulas.

The update formula for r′t,n can be rewritten as r′t,n(v) := rx,n(v)∧(cn(x)∨x �= v).
If x is on a cycle, t must be on the same cycle; thus, whatever was reachable from x
is now also reachable from t. Otherwise, the only node that was reachable from x and
is not reachable from t is x itself. Evaluating this updated transformer on the structures
in Fig. 3(a) and (b) results in the structures in Fig. 2(d) and Fig. 2(e). Thus, focusing
on n(x, v) was enough. This is not a coincidence. We show that if we limit the update
formulas to a certain syntactic class (which we call monadic-uniform), we can automat-
ically find the focus formulas needed for the Focus operation, and the result of Focus is
guaranteed to be bounded (a function of the size of the original structure).

The process of finding monadic-uniform update formulas is not trivial, especially
when trying to update reachability. Fortunately, we can use existing results from the
dynamic descriptive complexity [2,6] and database [5] communities on maintaining
reachability when edges are added or removed. A key step in finding such monadic-
uniform update formulas is the addition of auxiliary relations, which together with the
other relations can be maintained by monadic-uniform update formulas. In §5, we pro-
vide monadic-uniform transformers for the abstractions used for many of the analyses
done successfully with TVLA.

Our methodology can be summarized as follows:

1. Find an abstraction that captures the properties you want to verify. Describe it
within the framework of parameterized shape analysis of [3].
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2. Insure that all update formulas are monadic-uniform, adding extra auxiliary rela-
tions as needed.

3. Optionally, develop a feasibility check for abstract structures of this (possibly aug-
mented) vocabulary; or, settle for a sound approximation of the best transformer.

The paper presents the necessary algorithms for binding these ingredients together to
compute best abstract transformers.
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Fig. 3. Some of the structures arising in the process of Focus for the operation t=x.next on the
structure in Fig. 2(c)

3 Preliminaries

We represent stores as logical structures. This allows us to use logical formulas to define
the semantics of statements and abstractions of stores. To simplify the presentation, we
describe everything in the context of a specific vocabulary. It should be clear from
the description that the formulas are schematic and can be instantiated to the specific
program fields and variables.

See [8] for a formal definition of the syntax of FO(TC) formulas. We use the short-
hand (when ϕ1 ⇒ ψ1, . . . , when ϕk ⇒ ψk, default ⇒ ψ) for a sequential case split;
i.e., formally it is: . . . ∨ (¬ϕ1 ∧ . . . ∧ ¬ϕi−1 ∧ ϕi ∧ ψi) ∨ . . . ∨ (¬ϕ1 ∧ . . . ∧ ¬ϕk ∧ ψ)

A 2-valued logical structure is a triple S = 〈US , RS, CS〉 of a universe US of
individuals, a map RS of relation symbols to truth-valued functions, and a map CS of
constant symbols to individuals. See [8] for a formal definition.

3.1 Programming-Language Statements

Formulas are used to update the store in a standard way as follows:

Definition 1. (Store Updates) An update formula of a relation r of arity k has the
form: r′(v1, . . . , vk) := ϕr(v1, . . . , vk), where ϕr(v1, . . . , vk) is a formula with free
variables v1, v2, . . . vk. An update formula of a constant c has the form:
c′ := (when ϕ1 ⇒ s1, . . . , when ϕk ⇒ sk, default ⇒ sk+1), where the ϕi are closed
formulas and the si are constant symbols. This is a shorthand for the following formula
with one free variable: ϕc(v) def= (. . . , when ϕi ⇒ v = si, . . . , default ⇒ v = sk+1)
For the special case in which k=0 we simply write c′ := s1.

Every statement st in the programming language is associated with transformer τst,
which consists of a guard formula, guardτst

, and a set of update formulas for each
relation and constant symbol in the vocabulary. If the guard formula has free variables,
the update formulas can refer to them as constants.
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Given a 2-valued logical structure, S = 〈U, R, C〉, the expansion of S for τ is the
set expandτ (S) of all the structures S′ = 〈U, R, C′〉 s.t., C′ is identical to C except it
gives an interpretation to all the free variables of guardτ . We say S′ is expanded for τ .

The application of the transformer τ on a structure S′ ∈ expandτ (S) is the 2-
valued structure τ(S′) def= 〈U, R′′, C′′〉, where for every relation symbol r, R′′(r)(−→u ) =
[[ϕr(−→u )]]S

′
, and for every constant symbol c, let uc ∈ U be the unique element for

which S′, uc |= ϕc, we have C′′(c) = uc. Note that C′′ gives an interpretation only
to the original constants and not to the free variables of guardτ . The meaning of the
transformer τ on S is the set [[τ ]](S) def= {τ(S′) | S′ ∈ expand(S) ∧ S′ |= guardτ}. �
The free variables in the guard formula allow for the introduction of nondeterminism.
These free variables are considered as additional constants by the update formulas. The
syntactic form of the update formulas for constants guarantees that for each constant
symbol c there is only one uc for which S′, uc |= ϕc. Thus, once the free variables have
been assigned, the computation of the transformer is deterministic.

For simplicity, we do not support operations that change the universe. However, be-
cause we allow infinite universes, we can easily model the allocation and deallocation
of individuals using a designated relation that holds only for allocated individuals (or,
if the operational semantics allows, by using a free list).

Table 1. Relation-update formulas that define the seman-
tics of statements that manipulate pointers and pointer-
valued fields

st guardst update formulas
x = null 1 x′ := null
x = t 1 x′ := t
x = t.sel t �= null∧ x′ := tsel

sel(t, tsel)
x.sel = y x �= null sel′(v1, v2) :=

(v1 = x ∧ v2 = y)∨
(v1 �= x ∧ sel(v1, v2))

x == y x = y

Table 1 lists the transformers
that define the operational seman-
tics of the five kinds of Java-
like statements. Here x, t, and
y are constants that denote the
target of pointer variables x, t,
and y, respectively. sel is a binary
relation that models the pointer
field sel. We do not specify
update-formulas for relations and
constants with unchanged values.
The guard formulas for state-
ments that access sel ensure that
no null-dereference has occurred.
In case of a field traversal, the
guard formula also selects the target of the field using the free variable tsel. Note that
program conditions are simply modeled by guard formulas.

Integrity Constraints. We allow restriction of the potential stores that may arise in
the program by a finite set of closed formulas called integrity constraints and denoted
by Σ. We assume that the meaning of every transformer τ maintains the integrity
constraints, i.e., if S |= Σ, S′ ∈ [[τ ]]S a 2-valued structure, then S′ |= Σ.

In the case of pointer fields, we require that every field be a total function. Thus, in
particular, the pointer field(s) of null points to null.

Auxiliary Information. The most interesting integrity constraints occur as a result of
extra relations whose values are derived from other relations. Formally, an auxiliary
relation r of arity k is defined via a defining formula ϕr with k free variables. This
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results in the integrity constraint ∀v1, . . . , vk : r(v1, . . . , vk) ⇐⇒ ϕr. Thus, every
statement must maintain this invariant. Auxiliary information allows us to reduce the
complexity of update formulas. Furthermore, it is often the information maintained by
auxiliary relations that enables us to compute best abstract transformers.

§2 introduced two types of auxiliary relations, rx,n for reachability from a program
variable, and cn for cyclicity. The interaction between them is used to define a monadic-
uniform update formula for traversal of an edge.

3.2 Monadic-Uniform Updates

In this section, we restrict the way the semantics of statements are allowed to be defined
to use only formulas of a certain syntactic class. The new stores can differ from the
original store in many values but the change should be uniform in the sense defined
below. We begin by defining atomic formulas that are essentially unary.

Definition 2. An atomic formula is monadic if it is of the form r(c1, . . . , ci, v, ci+1, . . . ,
ck−1) where r is k-ary relation and c1, . . . , ck−1 are constant symbols. An FO(TC)
formula ϕ is monadic if all of the atomic formulas appearing in ϕ are monadic or
ground. �
The following formulas are monadic: r(v, c), v = c, r(v), ∀v.r(v, c). The following
formulas have variables in more than one position, and thus are not monadic: r(v, v),
r(v1, v2), v1 = v2. Note that although r(v, v) uses a single variable, it is not monadic.

Next, we define monadic update formulas, which are a restricted case of update for-
mulas in which a tuple is classified by monadic formulas, and for each class, the value
of an existing relation is copied.

Definition 3. (Monadic-UniformUpdates)Amonadic-uniformformulaϕ(v1,. . . , vk)
is syntactically equivalent to (. . . , when ϕi ⇒ ψi, . . . , default ⇒ ψl) where the ϕi are
monadic FO(TC) formulas with free variables v1, v2, . . . vk, and the ψi are restricted
to either 1, 0, or a literal with distinct variables.

A monadic-uniform transformer is a transformer in which all the update formulas
and the guard formula are monadic uniform. �
All the transformers of Table 1 are constructed to be monadic-uniform transformers
(see §5). Monadic-uniform formulas disallow direct interaction between non-monadic
relations, e.g., r(v1, v2) ∧ q(v1, v2) is not monadic-uniform. r(v, v) is not monadic-
uniform because it is equivalent to r(v1, v2) ∧ v1 = v2 and captures the interaction
between r and equality.

3.3 Canonical Abstraction

In this section, we use 3-valued logic to conservatively represent sets of stores. Formally,
we define a lattice of static information where lattice elements are sets of 3-valued struc-
tures. A 3-valued structure is similar to a 2-valued structure, except RS maps to 3-valued
truth functions, i.e., whose range is {0, 1, 1

2}. See [8] for a formal definition. We say
that the values 0 and 1 are definite values and that 1

2 is an indefinite value, and define a
partial (information) order on truth values as follows l1 � l2 if l1 = l2 or l2 = 1

2 . The
symbol  denotes the least-upper-bound operation with respect to �.
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Definition 4. A tight embedding function is a surjective function f : US → US′
such

that, for every c ∈ C, CS′
(c) = f(CS(c)) and for every relation r ∈ R of arity k,

RS′
(r)(u′

1, . . . , u
′
k) =

⊔
f(ui)=u′

i,1≤i≤k RS(r)(u1, . . . , uk). We say that S′ = f(S)
and that S′ is a tight embedding of S. 2

When the embedding function maps more than one node to some node u, we say that
u is a summary node. Otherwise, we call the node a concrete node. For summary
nodes, [[u = u]]S

′
= 1

2 . Note that if CS′
(c) = u and u is a summary node, only one of

the nodes mapped to u equals c, not all of them.
Canonical embedding, denoted by β, is the embedding obtained by using unary rela-

tion symbols to distinguish between individuals, i.e., two concrete individuals u1, u2 ∈
US are mapped to the same individual if and only if they agree on the values of unary
relation symbols. For each constant, c, there is an implied unary relation, Pc, true just
of c. �

According to the embedding theorem [3], every formula with a definite value in a
structure has the same value in all of the embedded concrete structures.

Canonical abstraction allows us to define the set of stores represented by a 3-valued
structure.

Definition 5. For a 3-valued structure S, γ(S) denotes the set of 2-valued structures
that S represents, i.e., γ(S) = {S� |= Σ | β(S�) = S}. We say that a structure S is
feasible if γ(S) �= ∅. �

The complexity of checking feasibility of a structure comes from the need to satisfy the
integrity constraints and because of interactions between auxiliary relations and core
relations.

4 Methodology for Developing Computable Transformers

A shape-analysis problem is characterized by a triple of the class of allowed structures,
the initial abstraction, and the set of possible atomic operations.

The running example (see Fig. 1) is an instance of the following shape-analysis prob-
lem: The class of allowed structures is (possibly cyclic) singly-linked lists. The initial
abstraction tracks: pointed to by a program variable (by representing program variables
as logical constants), the next field (by maintaining a binary relation n), reachability
from program variables (by unary relations of the form rx,n(v), which indicate that v
is reachable from program variable x using the next field), and cyclicity (by a unary
relation cn(v), which indicates that v is part of a cycle).

The first step in developing computable best transformers for a shape-analysis prob-
lem is to find monadic-uniform transformers for all the operations required. A key step
in finding such update formulas is the introduction of additional auxiliary relations that,
together with the original relations, can be maintained in a monadic-uniform way.

The main difficulty in maintaining the relations used in the shape-analysis problem
for the running example is the maintenance of reachability. Fortunately, we can use (with

2 From now on, whenever we refer to embedding, we mean tight embedding and use the term
tight embedding only for emphasis.
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a small modification to make it monadic-uniform) the DynQF update formulas for tran-
sitive closure given by Hesse in [6]. We introduce three auxiliary binary relations. The
relation pn(v1, v2) maintains the reflexive transitive closure of the n relation (i.e., exis-
tence of a path between v1 and v2 using the next field). The relation cutn(v1, v2) holds
for exactly one edge in each cycle (enforced using appropriate integrity constraints). The
relation pcn(v1, v2) (called PathCut by Hesse) maintains the reflexive transitive closure
of the un-cut edges.Together, these relations allow us to create monadic-uniform trans-
formers for all the needed operations (see [6] and §5 for more details).

Imperative programs lead to monadic-uniform transformers because they can only
change information directly pointed to by variables. The difficulty comes from relations
such as reachability in which a local update can cause widespread change. We take
advantage of the specific structure of the graphs in each case to build a monadic-uniform
transformer for them.

The final step in our methodology is to develop an algorithm for checking the fea-
sibility of an abstract structure of the chosen vocabulary. Here we need to take into
account the integrity constraints, including the set of allowed structures and the mean-
ing for all the auxiliary relations.

In §5, we show that, to check feasibility of an abstract structure that can arise in the
shape-analysis problem defined above, we can compute a candidate concrete structure
s.t. the abstract structure is feasible iff the concrete structure is consistent (i.e., satisfies
the integrity constraints) and its β is the original structure. The size of the candidate
structure is linear in the size of the original abstract structure. Thus, we can check its
feasibility in time polynomial in the size of the original abstract structure.

The rest of the section describes how to compute best transformers for a given shape-
analysis problem that has monadic-uniform transformers and a decidable feasibility-
checking problem. Proofs can be found in [8].

First, we define the concept of a focused structure for a monadic-uniform trans-
former. For such structures and transformers, the transformer preserves embedding (see
Lem. 7).

Definition 6. We say that S is focused for a τ (denoted by focusedτ (S)) when (1) S
is expanded for τ , (2) all the monadic atomic formulas that appear in any update for-
mula of τ or in guardτ , evaluate to definite truth values in S, and (3) all the constants
interpreted by CS are mapped to concrete nodes.

We define βτ to be a canonical embedding function that honors all new constants
and monadic atomic formulas appearing in transformer τ . γτ is defined analogously to
γ but in relation to βτ . �
The structures in Fig. 3(a) and (b) are focused for t = x.next if we map xn to any
concrete node (only when xn is mapped to the second node of the list will the guard
formula hold). For Fig. 2(c), when trying to interpret xn in a way that will satisfy the
guard formula, the only node worth considering is the second node of the list. There are
two reasons why such a structure is not focused. First, the second node is a summary
node, thus a constant cannot be mapped to it. Second, n(x, xn), which appears in the
guard formula, evaluates to 1

2 . Note that the fact that the structures in Fig. 3(a) and (b)
are focused does not mean that all the update formulas evaluate to definite values for all
the nodes, e.g., the n relation has several indefinite tuples in resulting structure Fig. 2(e).
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For structures that are focused for a transformer τ , we use the canonical embedding
function βτ , and when referring to the feasibility of a focused structure, we mean non-
emptiness of γτ .

Lemma 7. Let τ be a monadic-uniform transformer, S be a structure s.t. focusedτ (S)
holds, C be a concrete structure, and f be an embedding function s.t. f(C) = S. The
following properties hold: (1) f(τ(C)) = τ(S), (2) [[guardτ ]]C = [[guardτ ]]S , (3) for
every unary relation r and node u we have [[r(u)]]τ(C) = [[r(f(u))]]τ(S), and (4) for
every constant c, τ(S) maps c to a concrete node.

When embedding is preserved, all unary relations are definite, and all the constants are
mapped to non-summary nodes, β will return the same value for both updated struc-
tures. Cor. 8 entails that a monadic-uniform transformer is actually the best transformer
for focused abstract structures.

Corollary 8. Let τ be a monadic-uniform transformer. If focusedτ (S) and f(C) = S
then β(τ(C)) = β(τ(S))

Cor. 8 suggests a way to compute the best abstract transformer: Given an abstract struc-
ture, find a set of feasible focused structures that represent the same concrete structures.
Def. 9 makes this notion formal.

Definition 9. focusτ is an operation that given a feasible structure S returns a finite set
of structures FS s.t.

⋃
S′∈γ(S) expandτ (S′) =

⋃
F∈FS γτ (F ) and for every F ∈ FS,

F is feasible and focusedτ (F ). �

We now sketch the algorithm that computes focusτ . The algorithm systematically re-
places each 1

2 value for monadic formulas by 0 or 1, duplicating structures as necessary.
There may be a large but bounded number of such structures. Each candidate structure
is checked for feasibility and discarded if infeasible.

Algorithm 10. Given τ, S, compute focusτ (S).

0. FS = FSorig = expandτ(S) // the current set of structures
MA = the monadic atomic formulas of τ , including the new constants

1. for each A(v) from MA and F from FS do {
2. for each node b ∈ UF s.t. [[A(b)]]F = 1

2 do { // b must be a summary node
3. Remove F from FS and replace by Fu1u2 : uj ∈ {s, c}

s.t. b is split into b0, b1, [[A(bi)]]Fu1u2 = i, and,
bi is a summary node in Fu1u2 iff uj = s. } }

4. for each structure F, new tuple created, t, and relation R s.t. [[R(t)]]F = 1
2 ,

add structures Fi : i ∈ {0, 1} s.t. [[R(t)]]Fi = i and β(Fi) ∈FSorig

5. for each structure F, if γt(F ) = ∅, remove F from FS
6. return(FS)

Focus can yield a double-exponential number of structures. The maximum number
of individuals in a single structure can be exponential in the number of predicates and
the number of possible structures is exponential in the number of nodes. From our ex-
perience with TVLA, the first blowup — the maximal number of individuals — rarely
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happens in practice. However, in contrast to TVLA, the use of tight embedding sug-
gests that the second blowup may indeed occur in practice. We are working on ways to
remedy the situation, e.g., by moving to non-tight embedding (see [3]).

From the correctness of Alg. 10, our main theorem follows:

Theorem 11. If S is feasible then we can automatically compute the best transformer:
btτ (S) ≡

{
β(τ(S′))

∣
∣ S′ ∈ focusτ (S) ∧ [[guardτ ]]S

′
= 1

}

Note that if there is no feasibility check, the methodology still guarantees that we obtain
a best transformer, but with respect to a γ that does not force the concrete structures to
adhere to the integrity constraints. However, when using this γ, the abstraction is not
likely to be strong enough to establish the properties that we desire.

5 Applications

This section describes several applications of the methodology described in §4 for com-
puting transformers for different shape-analysis problems. For each problem, we spec-
ify the class of allowed structures, the relations we maintain, and, when known, an
algorithm for checking feasibility. Further details can be found in [8].

Table 2. Summary of the shape-analysis problems and their feasibility-check status

Structures Vocabulary Feasibility
Acyclic SLL pn, n, PVar Direct
Acyclic SLL rx,n, n, PVar, Colors Direct
Cyclic SLL pn, pcn, n, PVar Direct
Cyclic SLL rx,n, rcx,n, n, PVar, Colors Direct
DLL pf , pb, cf,b, cb,f , PVar, Colors Direct/Open
Ordered SLL rx,n, rcx,n, n, dle, PVar, inOrdn,dle, inROrdn,dle Open
Trees p, l, r, PVar Direct
Trees p, l, r, PVar, Colors MSO
NUC p, l, r, sx,y , PVar Direct
NUC p, l, r, sx,y , PVar, Colors MSO
Shared Trees p, l, r, PVar Open

Table 2 summarizes the different shape-analysis problems described in this sec-
tion and the type of feasibility checks we have for them. For all of these problems,
we show monadic-uniform transformers for field manipulations. SLL/DLL stands for
Singly/Doubly Linked Lists, and NUC for No Undirected Cycles. PVar stands for Pro-
gram Variables. A description of each class of structures and the meaning of each re-
lation is given in the appropriate subsection below. Note that for every vocabulary we
require a new feasibility-checking algorithm.

Dong and Su [5] show how to update reachability in a general acyclic graph using
first-order logic. However, their formulas are not monadic-uniform and it is unclear
whether it is possible to make them monadic-uniform.
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Table 3. Monadic-uniform transformers for acyclic singly-linked lists

Relation Update Formula

x = y.next
guard n(y, yn) ∧ y �= null ∧ (x = null ∨

∨
z �=x rz,n(x))

x′ yn

r′x,n(v) ry,n(v) ∧ y �= v

x.next = null
guard n(x, xn) ∧ x �= null ∧ (xn = null ∨

∨
z(rz,n(xn) ∧ ¬rz,n(x)))

n′(v1, v2) (when v1 = x ⇒ v2 = null, default ⇒ n(v1, v2))
p′n(v1, v2) pn(v1, v2) ∧ ¬(pn(v1, x) ∧ pn(xn, v2))
r′z,n(v) rz,n(v) ∧ ¬(rz,n(x) ∧ rx,n(v) ∧ x �= v)
x.next = y
guard x �= null ∧ ¬ry,n(x) ∧ n(x, null)
n′(v1, v2) (when v1 = x ⇒ v2 = y, default ⇒ n(v1, v2))
p′n(v1, v2) pn(v1, v2) ∨ (pn(v1, x) ∧ pn(y, v2))
r′z,n(v) rz,n(v) ∨ (rz,n(x) ∧ ry,n(v))

Direct means there is a direct algorithm to check feasibility of an abstract structure.
MSO means we can reduce the feasibility check to a satisfiability check of an MSO for-
mula on trees. Open means we are still working on checking feasibility for this problem.
We believe that checking feasibility is decidable for all of these problems.

Singly-Linked Lists. The first class of allowed structures we examine is acyclic singly
linked lists. The vocabulary includes constants that represent program variables, a func-
tional binary relation n that represents the next field, a unary relation rx,n for each pro-
gram variable x that represents reachability from x (a.k.a., unary reachability), and a
binary relation pn (path of n) that represents reachability between any two elements.
The guard formulas are used to detect null dereferences or the formation of garbage
or cycles. Monadic-uniform update formulas can be easily written for all the needed
operations.

Table 3 lists the transformers for the field-manipulating operations. Update formulas
for unchanged relations are omitted. The update formulas for reachability follow the
ones described in [6]. For traversal of a field, we use the free variable yn of the guard
formula to capture the target of the next field for y (xn is used similarly in the removal
of an edge).

To check feasibility of a focused abstract structure, we build a single candidate con-
crete structure s.t. the original structure is feasible iff it is the result of applying β on
the candidate structure and the candidate structure satisfies the integrity constraints.

Algorithm 12. (Checking Feasibility)
Replace every summary node with two concrete nodes connected by an edge, all

incoming edges to the summary node go to the first concrete node, all outgoing edges
from the summary nodes start from the second node. Each edge in the abstract structure
is translated into a single edge in the concrete structure. We then simply compute β on
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this structure and return true if it equals the original structure and satisfies the integrity
constraints (i.e., n is a total function).

Cyclicity. To handle cyclicity, we use the ideas from [6], which allow for quantifier-free
update of reachability in singly-linked lists. The update of [6] is based on the addition of
a binary relation, called PathCut, as an auxiliary relation. For every cycle, we call the last
edge added to the cycle (i.e., the edge that closed the cycle) a cut edge. PathCut indicates
reachability over n minus the cut edges. When the cycle is broken, its cut edge is readded
to PathCut. The update formula suggested by [6] for removal of an edge is not monadic-
uniform. Fortunately, we can easily rewrite that formula to be monadic-uniform.

To analyze programs that manipulate cyclic singly-linked lists, we use a vocabulary
similar to that of acyclic singly-linked lists. The additional relations needed to allow
updates to be monadic-uniform (and ease feasibility checking) are: cutn is a binary re-
lation representing the cut edges, pcn is a binary relation representing PathCut, rcx,n(v)
is a unary relation indicating v is reachable from program variable x using pcn, and
cn(v) is unary relation indicating that v is on a cycle. The resulting abstraction is sim-
ilar in the distinctions it makes to that of [9]. Because cutn is needed only to update
itself, and the feasibility check can recover the cut edges from pcn, we can remove cutn
and still compute the best transformer.

We use the DynQF updates by [6] as a basis for monadic-uniform update formulas.
Feasibility checking can be done using the same ideas as for acyclic lists with the

necessary changes to support the cut edges.

Trees. To analyze trees using monadic-uniform transformers, we use the following vo-
cabulary: constants represent program variables; two functional binary relations l and
r represent the left and right fields respectively; two new constants xl and xr for
each program variable x indicate the target of its left and right fields, respectively; a
binary relation p represents reachability (existence of a path) between any two elements
(using any fields); unary relation rx,sel for each program variable x represents reacha-
bility from the sel field of x. The guard formulas verify that each operation maintains
treeness.

The key to updating reachability in this case is the observation that between every
two nodes there is at most one path. Thus, the paths that should be removed when
removing an edge from x to xl are exactly the ones that would have been added if this
edge had been added.

We can either check feasibility by reduction to satisfiability of an MSO formula
(similar to the γ̂ of [10]) on trees or we can check it directly (with lower complexity)
by building a single candidate concrete structure in a way similar to singly-linked lists.

No Undirected Cycles. In [11], we introduced a class of structures whose underlying
undirected graphs are acyclic (a.k.a. No Undirected Cycles). There we show an abstrac-
tion for handling this class of structures and algorithms for computing best abstract
transformers for this abstraction. Structures with No Undirected Cycles are acyclic and
have the interesting property that each pair of program variables can meet only once
(i.e., there is a single shared node reachable from both variables s.t. none of the nodes
pointing to that node are reachable from both variables). Furthermore, between any two
nodes there is at most one path.
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We now define an abstraction similar to [11] and apply our methodology. The vocab-
ulary used for trees in extended with the following constants: For each pair of distinct
program variables x and y, we add sx,y, which is the unique node in which x and y
meet and create sharing (or null if no such node exists).These are used in the guard
formulas to detect formation of undirected cycles. We also maintain unary reachability
from these constants. We can write a monadic-uniform guard formula using transitive
closure that detects the formation of undirected cycles. We can check feasibility of such
structures using methods similar to the ones using for trees.

Shared Trees. Shared trees are graphs in which between any two nodes there is at most
one (possibly empty) path. A way to visualize shared trees is that from every node
looking down the graph you see a tree. Shared trees arise in applicative data structures
(e.g., see [12,13]) and in operating systems and databases performing shadow paging
(e.g., see [14]).

We use the same vocabulary as in the case of trees. Updating reachability for this
class of structures is done in the same way as in trees, because between any two nodes
there is at most one path. Detecting when the shared-trees property has been violated is
done by a guard formula when adding an edge. Again, the formula is monadic-uniform
but not quantifier-free.

We are working on checking feasibility for shared trees in this vocabulary and believe
it is decidable. Because shared trees have unbounded tree width, a direct translation into
satisfiability of an MSO formula will not yield decidability.

Uninterpreted Unary Relations. Sets and boolean fields can be added to any of the
above shape-analysis problems by introducing uninterpreted unary relations (a.k.a. col-
ors). We allow addition and removal of an element from a set, query for existence of
an element in a set, and selection of an arbitrary element from a set. The additional up-
date formulas needed are trivial. Selection is done by using a guard formula with a free
variable. The difficulty in checking feasibility when adding colors to a vocabulary, in
contrast to the original feasibility-checking problem, comes from the fact that the col-
ors can make distinctions that the original abstraction could not. The binary relations
between the now-separate nodes need to be taken into account.

Checking feasibility for singly-linked lists can be done by first checking feasibility
ignoring the colors, and then reducing the feasibility for each segment of the list to
the Directed Chinese Postman Problem [15], which can be solved in polynomial time.
Checking feasibility for trees and structures with No Undirected Cycles, can be done
by reduction to MSO.

Other cases. The relations required for analyzing doubly linked lists and ordered lists
can also be maintained using monadic-uniform transformers.

We do not have a general feasibility check for any structure over the vocabulary of
doubly-linked lists. However, we do know how to check feasibility for all the struc-
tures arising in most programs that manipulate doubly-linked lists (e.g., all the example
programs of TVLA) because all such structures are only ever small perturbations of
well-formed doubly linked lists.
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6 Related Work

Specialized Shape Analyzers. Developing specialized shape analysis for commonly
used data structures is an active line of research [16,9,11,17]. We are encouraged by
the fact that we are able to express all of the above-cited work using our methodology.
Moreover, our methodology supports shared trees and the addition of arbitrary colors,
which are beyond the scope of existing methods. It should be noted that our current
algorithms are more costly. In particular, the ad-hoc algorithm in [11] runs in time es-
sentially linear in the output, which is hard to beat. In the future, we plan to reduce the
costs of creating the transformers by: (i) focusing only the necessary parts, (ii) develop-
ing more efficient focus algorithms, and (iii) using incrementality to reduce the cost of
feasibility checks.

The TVLA System. The results in this paper are inspired by the TVLA system. The
TVLA system does not require that update formulas be monadic-uniform. It also allows
arbitrary classes of graphs to be used. Also, [18] includes an algorithm for automatically
generating update formulae for auxiliary information, which is fully integrated into the
system. (§5.4.1 of [19] describes the application of that machinery for an abstraction
similar to the one described for cyclic singly-linked lists.) However, the TVLA system
does not guarantee that the transformers are the best. Moreover, the system can issue a
runtime exception in certain cases when an operation may lead to an infinite number of
structures. In this paper, we build specialized shape analyses that can handle many of
cases for which TVLA was used. For most of these cases, we can now compute the best
abstract transformer. In the future, it may be possible to combine methods like the ones
in [18] with our method. For example, there may be a way to generate monadic-uniform
update formulas in certain cases.

The focus operation in TVLA differs from the one in this paper in several key aspects
including: (i) it requires the user to specify which formulas to focus on, and (ii) it may
yield an infinite number of structures. In contrast, in this paper we show that for every
monadic-uniform update, there is a computable set of focused structures that lead to
best transformers. Our results also shed light on the cases when the updates in TVLA
are precise.

Procedures and Libraries. In this paper, we focused on handling programs without
procedures and libraries. It is possible to handle procedures and libraries by tabulation
of input/output relations between abstract values (e.g., see [20,21]). It may be also possi-
ble to handle specific libraries by allowing monadic-uniform specifications of auxiliary
relations that describe an abstraction of the effect on the client module.

Employing Theorem Provers and Decision Procedures. Theorem provers and de-
cision procedures can be employed to prove properties of programs that manipulate
the heap (e.g., see [22,23,24,25,7]). Moreover, they can be used to fully automate the
process of generating transformers (e.g., see [26,27,28,10]).

Results from dynamic descriptive complexity and the methodology of this paper
improve the aforementioned results in various ways. For instance, in contrast to the
method of Lahiri and Qadeer [24], which requires user intervention, our method handles
programs that manipulate cyclic lists in a totally automatic way.
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In essence, the introduction of transformers that use only monadic-uniform update
formulas can be seen as a way to replace a characterization of mutations of data struc-
tures with a characterization in terms of invariants. That is, two-vocabulary structures
(which describe the state before and after the transition) are a natural way to express mu-
tations, whereas standard one-vocabulary structures express invariants. In some cases,
the switch from two-vocabulary to one-vocabulary structures results in an order-of-
magnitude complexity improvement. In other cases, where decision procedures are not
known for—or known not to exist for—two-vocabulary structures, the reduction to one-
vocabulary structures restores the possibility of employing decision procedures:

– With two-vocabulary structures, it is easy to see that monadic second-order logic is
undecidable even on linked lists. (The intuitive reason is that two functions, plus a
few unary relations, can be used to encode a grid.) However, monadic second-order
logic on trees is decidable [29], and thus can be used to perform the feasibility
checks on one-vocabulary structures that are needed when our method is employed.

– Rakamaric et al. [7] gave a complete decision procedure for checking feasibility
of a given (one-vocabulary) abstract state, but left open the question of how to
handle transformers in the most-precise way. Our methodology solves this problem:
the DynQF updates for singly linked lists of Hesse [6] can be used to recast the
problematic transformers using only one-vocabulary formulas, and hence the best
transformer is computable as explained in §1.
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Abstract. This paper presents a novel shape analysis algorithm with local rea-
soning that is designed to analyze heap structures with structural invariants, such
as doubly-linked lists. The algorithm abstracts and analyzes one single heap cell
at a time. In order to maintain the structural invariants, the analysis uses a local
heap abstraction that models the sub-heap consisting of one cell and its immedi-
ate neighbors. The proposed algorithm can successfully analyze standard doubly-
linked list manipulations.

1 Introduction

Shape analyses are aimed at extracting heap invariants that describe the “shape” of
recursive data structures [1]. For instance, heap reference count invariants allow a pro-
gram analyzer to distinguish acyclic and unshared data structures, such as acyclic lists or
trees, from structures with sharing or cycles. Shape information has many potential ap-
plications such as: verification of heap manipulations [2]; automatic parallelization [3];
static detection of memory leaks and other heap errors [4]; and compile-time memory
management [5]. Statically computing reference count invariants is challenging because
destructive heap mutations temporarily break these invariants. A shape analysis must
determine that the invariants are restored as the destructive operations finish.

In recent work, we have developed a novel shape analysis framework that uses lo-
cal reasoning about single heap cells [4]. In this framework, the analysis uses a local
abstraction to describe the state of a single heap cell. Using the local abstraction, the
analysis tracks the state of the single cell through the program, from the point where
the cell is allocated, and up to the point where it becomes unreachable. The single
cell is referred to as the tracked cell. As shown in [4], this approach makes it possible
to build efficient intra-procedural and inter-procedural analysis algorithms. However,
a shortcoming of the current formulation is that it cannot accurately compute shape
information for data structures with local invariants, such as doubly-linked lists.

In this paper we present a shape analysis with local reasoning about single heap
cells that is capable of identifying and maintaining information about doubly-linked list
invariants. We propose a new local abstraction capable of expressing such invariants.
Then, we develop an analysis algorithm that computes shape information using this
abstraction. The local abstraction for a heap cell describes the local heap around the

� This work was supported in part by NSF grants CCF-0541217 and CNS-0406345.

B. Cook and A. Podelski (Eds.): VMCAI 2007, LNCS 4349, pp. 234–250, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Maintaining Doubly-Linked List Invariants 235

cell, consisting of the cell itself and its immediate neighboring cells. Points-to relations
between the cell and its neighbors allow the analysis to express local structural invari-
ants. The paper shows that maintaining structural invariants for the tracked cell requires
knowledge about its neighbors’ reference counts. Our abstraction can also express other
forms of local invariants, in particular the parent-child relationship in trees with parent
pointers. However, this paper mainly focuses on studying doubly-linked lists.

When a distant cell gets closer to the tracked cell and becomes one of its neighbors
(for instance, when removing the element next to the tracked cell), a local analysis has
no knowledge about the reference counts of the new neighbor. To address this issue,
we propose an assume-and-check approach: when the analysis of a single cell reaches
an assumption point in the program, it assumes facts about the neighbors’ reference
counts; at the same time, the analysis checks the reference counts of all tracked cells at
that point, to ensure that the assumptions were correct.

The rest of the paper is organized as follows. Section 2 gives the background. Sec-
tion 3 shows an example and discusses the issues that the analysis must overcome. Next,
Section 4 presents the local abstraction and Section 5 shows the analysis algorithm. Fi-
nally, related work is discussed in Section 6 and we conclude in Section 7.

2 Background: Local Analysis of Single Heap Cells

This section discusses the key concepts behind heap analysis with local reasoning about
single heap cells. The main idea is that the analysis uses a local abstraction to model
one single heap cell at a time. Hence, the analysis has only local information about the
one cell, but knows nothing about the rest of the heap. In contrast, traditional shape
analyses that use shape graphs [6] or 3-valued logic [7] have a global view of the heap.
Recent work has explored formulations using procedure-local sub-heaps [8], or using
separation logic [9, 10]. Although these approaches restrict themselves to sub-heaps,
their abstractions still describe entire structures (e.g., entire lists), not single cells.

Roughly speaking, an analysis that reasons about single cells is concerned with ques-
tions of the form “if property X holds for one heap cell before an operation, does X
hold for that cell afterwards?”. In contrast, global analyses answer questions of the form
“if property X holds for all the cells before an operation, does X hold for all cells after-
wards?”. A local analysis is more efficient due to the finer granularity of the abstraction.
However, it is more restricted because less information is available when analyzing a
single cell.

The local abstraction of a heap cell is referred to as a configuration. The cell de-
scribed by the configuration is referred to as the tracked cell. Each configuration con-
tains reference counts for the tracked cell, plus additional information for accurately
maintaining these reference counts. Reference counts are expressed relative to a region
partitioning of the program’s memory (both stack and heap) into a finite set of disjoint
regions, so that each configuration keeps track of one reference count per region. To
ensure a finite abstraction, reference counts are bound to a fixed value k per region (and
a top value is used for larger counts). Usually, k = 2 suffices. In this paper, we assume
a type-safe Java-like language, where a simple region partitioning can be constructed
by using one region per variable and one region per heap field. In the rest of the paper,
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class DLList {
DLList n, p;
int data;

DLList(int d) {
data = d;

}
}

void insert(DLList x, int d) {
DLList t;
t = x.p;
y = new DLList(d);
y.n = x;
y.p = t;
t.n = y;
x.p = y;

}

Fig. 1. Doubly-linked list insertion

we refer to regions using their variable or field names. The entire heap abstraction at a
program point is the finite set of possible configurations at that point. However, configu-
rations are independent, so they can be analyzed separately. The analysis uses efficient,
fine-grained worklist algorithms to process individual configurations, not entire heap
abstractions (in a fashion similar to attribute-independent analyses).

For a given program, the analysis generates a configuration after each allocation
site, to model a representative cell created at that site. Then, the analysis tracks this
configuration through the program using a dataflow analysis.

In our previous work [4, 5], each local abstraction is a triple (r, h, m), where r indi-
cates the reference counts per region, h is a set of expressions that reference the tracked
cell (or hit expressions); and m is a set of expressions that do not reference the cell
(miss expressions). The h and m sets need not be complete; the richer these sets are, the
more precise the analysis is. In general, redundant information is avoided, i.e., h and m
exclude expressions e for which r already indicates whether e hits or misses.

For example, consider an acyclic singly-linked list, where next fields are named n.
Assume that the first two list elements are pointed by variables x and y, respectively.
This heap can be described using three local abstractions: (x1, ∅, ∅) describes the first
list element; (y1n1, {x.n}, ∅) describes the second list element; and (n1, ∅, {x.n})
describes one list element other than the first two, that is, it describes a representative
among the cells in the tail of the list. Here, reference counts are described using su-
perscripts, and missing regions have zero reference counts by default. The analysis can
analyze each of these pieces separately, reasoning locally about each of them.

However, the triples (r, h, m) cannot express local structural invariants, such as
doubly-linked list invariants. In this paper we propose a new local abstraction for de-
scribing and maintaining structural invariants.

3 Example

Consider the program in Figure 1. The program is written using a Java-like syntax and is
used as a running example. The program inserts a new element y in a doubly-linked list,
right before element x. Each list element has a field n that points to the next element,
and a field p that points to the previous element. A correct manipulation of the list must
maintain the doubly-linked list (DLL) invariant:

∀h . (h.p �= null ⇒ h.p.n = h) ∧ (h.n �= null ⇒ h.n.p = h)
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x x

y

t

a) Before insert(x) b) After insert(x)

Fig. 2. Counterexample: the property rc for the shaded cell holds before insert(x), but not
after. The shaded box denotes the tracked cell. Solid lines are next links n, and dashed lines are
previous links p.

3.1 Reference Counts and DLL Invariants

First, we show that maintaining precise heap reference counts requires knowledge about
the DLL invariant. Consider the two predicates below for a heap cell h in a list:

– rc(h) is true if it has reference counts of at most 1 from each of the fields n and p;
– dll(h) indicates that the DLL invariant holds for h.

We ask the following question: given a cell h such that rc(h) holds, but dll(h) might
not hold before insert, does rc(h) hold after the insertion? The answer is negative:

rc(h) �⇒ rc′(h)

where rc(h) and rc′(h) are the values of the reference counting predicate in the states
before and after insert, respectively. This is shown by the counterexample in Figure 2. A
concrete heap before insert(x) is shown on the left of the figure, and the resulting
heap after the insertion is shown on the right. The cell in question h (i.e., the tracked
cell) is shown using the shaded box. Next links are shown using solid lines, and previous
links are shown using dashed lines. The property rc(h) holds before insert, but not after,
because the cell pointed to by x has two references from n fields in the result heap.

Hence, the analysis must have knowledge about the DLL invariant in order to pre-
serve accurate reference counts during destructive doubly-linked list operations. This is
the case for both local and global analyses.

3.2 Maintaining the DLL Invariant Using Local Reasoning

Next we want to determine the amount of local information needed so that a local
analysis can conclude that the DLL invariant is restored. We ask the following question:
if one cell h is such that both rc(h) and dll(h) hold before insert, is it the case that dll(h)
also holds after insert? Note that nothing is known about the rc and dll properties of
elements other than h. The answer to this question is again negative:

rc(h) ∧ dll(h) �⇒ dll′(h)

This is shown by the counterexample in Figure 3. The cell in question h is the shaded
cell. In the heap before insert both rc(h) and dll(h) hold. However, the neighboring
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x

y

x t

a) Before insert(x) b) After insert(x)

Fig. 3. Counterexample: a) before insert(x), both the rc and dll properties hold for the shaded
cell; b) after insertion, property dll doesn’t hold for the shaded cell

cell to the left of h is malformed because it is referenced by two p fields, one from the
tracked cell and one from x. Inserting a new element before x “steals” a reference from
h and breaks its DLL property: after insertion, h.p.n �= h.

Still, it is possible to determine that insert maintains the DLL invariant using lo-
cal reasoning. The required piece of information is that the neighbors h.n and h.p of
the tracked cell h also satisfy the reference count property rc before insertion 1. The
analysis can then prove that if the tracked cell satisfies rc and dll before insert, and its
neighbors satisfy rc, then rc and dll hold for the tracked cell after insert:

rc(h) ∧ dll(h) ∧ rc(h.p) ∧ rc(h.n) ⇒ rc′(h) ∧ dll′(h)

The goal of our analysis is to build an appropriate local abstraction and prove this
property using that abstraction.

4 The Local Abstraction

Based on the above observations, the local abstraction must capture: a) local invariants,
such as the dll property, and b) reference counts for both the tracked cell and its neigh-
bors. We build the abstraction as follows. The configuration of the tracked cell models
the local heap consisting of itself and its immediate neighbors, i.e., those cells that are
pointed by, or point to the tracked cell. The configuration models the following:

– Points-to relations between the tracked cell and its neighbors;
– Precise reference counts for the tracked cell, from each variable and each field; and
– Partial reference counts for the neighbors, from some variables and fields.

Graphically, a configuration can be thought as being a “circle” whose center is the
tracked cell, and whose heap neighbors at distance 1 lie on this circle.

For instance, the local abstraction shown in Figure 4 arises during the analysis of
insert. The tracked cell is the shaded node in the center. The points-to relations be-
tween the center node and its neighbors allow the analysis to express the local structural
invariants. The reference counts from variables (x, y, or t) and fields (n or p) are shown

1 A slightly weaker condition is actually sufficient: that h.n has only one n reference, and h.p
has only one p reference, each of them from h.
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n1p2t1p1t0y0 n1x1y0

y1

Fig. 4. Example local abstraction

using superscripts, for each node. Reference counts from variables can only be 0 or 1.
For the tracked cell, the reference counts not shown (from x and y) are zero, by default.
For the neighboring cells, the missing reference counts are unknown by default. Hence,
reference counts are fully known for the tracked cell, but partially known for the neigh-
bors. To explain the examples in this paper, we will refer to each local abstraction using
the reference counts of the tracked cell. For instance, the above abstraction is n1p2t1.

Note that the local abstraction does not contain summary nodes. In particular, nothing
is known about the heap beyond the circle. This is the key aspect that distinguishes it
from traditional global abstractions such as shape graphs.

4.1 Analysis of the Example

Figure 5 shows the analysis result for insert using this local abstraction. The possible
local abstractions are shown at each point. In each abstraction, the tracked cell is shown
as the shaded node. For simplicity, we consider only two input configurations at the
entry of the function, n1p1 and n1p1x1. The former describes a list cell that is not
referenced by x; the latter is the cell that x references. Both cases assume that the cell
in question is in the middle of the list. Four other configurations describe cases where
the tracked cell is the first or the last element: n1, n1x1, p1, and p1x1. The analysis of
those cases are similar and we omit them.

Consider the initial abstraction n1p1 and the first assignment t = x.p. The analy-
sis tries to determine whether x.p is the tracked cell. Since there is not enough informa-
tion to figure this out, the analysis bifurcates into two possible cases. These correspond
to the first two columns in the figure. In the first case, x.p is not the tracked cell, so
t will not reference the cell after the assignment. The resulting abstraction is n1p1. In
the second case, x.p is the tracked cell, so t will reference it after the assignment. The
resulting abstraction is n1p1t1.

The analysis of t = x.p also infers that x does not reference the right neighbor
in the first case (otherwise, x.p references the tracked cell); and that x references the
right neighbor in the second case (because the only other cell that has a p field pointing
to the tracked cell is the right neighbor). This information about x is needed later, when
analyzing the assignment x.p = y.

Furthermore, in both cases the analysis of t = x.p infers that t doesn’t reference
the left neighbor, as shown by the reference count t0. This is because the left neighbor
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n1p1p1 n1

n2x1y0p1t0y0

p1t0y0 n2x1y0n1p2t1

p1t0y0 n1p2t1
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n1x0

n1x0y0

n1x0y0

n1x0y0

n1x0y0

n1x0y0

p1t0p1t0

p1t0y0

p1t0y0

p1t0y0

p1t0y0

p1t0y0

n1p1t1

p1t1

p1 n1

n1

n1y0p1t1y0

p1t1y0 n1y0

n1y0p2t1y0

n1y0p2t1y0

n1y0

y = new

t.n = y

x.p = y

y.p = t

y.n = x

t = x.p

Fig. 5. Analysis of the example program

has exactly one p reference, from the tracked cell. If t would point to the left neighbor,
then x would reference the tracked cell, which is known to be false. Hence, the p1

knowledge for the left neighbor allows the analysis to infer that t doesn’t reference that
neighbor. As a result, situations such as the one in Figure 3 are not possible.

The analysis of the other statements and local abstractions is similar. The configura-
tions at the end of the function indicate that the rc and dll properties hold for all heap
cells at that point.
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mayAlias(S, vi, vj) ⇔ (vi �= vo �= vj ∧
(∀r . ||vi||r = ||vj ||r ∨ ||vi||r = � ∨ ||vj ||r = �))

hit(S, e, v) ⇔

⎧
⎨

⎩

e = x ∧ ||v||x = 1 or
e = x.f ∧ ||v||f �= 0 ∧ (∃v′ . hit(S, x, v′) ∧ v′ →f v) or
e = null ∧ v = vnull

contains(S, e) ⇔ (∃v ∈ V . hit(S, e, v))

miss(S, e, v) ⇔

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

e = x ∧ ||v||x = 0 or
e = x.f ∧ ||v||f = 0 or
e = x ∧ (∃v′ . ||v′||x = 1 ∧ ¬mayAlias(S, v, v′)) or
e = x.f ∧ ||v||f = 1 ∧ (∃v′ . v′ →f v ∧ miss(S, x, v′)) or
e = null ∧ v �= vnull or
e = x.f ∧ hit(S, x, vo) ∧ vo →f vnull ∧ ¬mayAlias(S, v, vnull)

Fig. 6. Queries on configurations

Abstraction Model. The local abstraction is modeled as a star graph S:

S = (V, vo, vnull, O, I, || · ||) where,

vo, vnull ∈ V O ⊆ Field×V I ⊆ V ×Field || · || : V → (Field∪Var) → N�

The set V contains all nodes in the graph, where vo ∈ V is a distinguished center
node representing the tracked cell. The node vnull ∈ V is a special node to represent
null values. The set O contains outgoing edges from vo. A pair (f, v) ∈ O denotes the
edge vo →f v. The special edge vo →f vnull indicates that the field f of the tracked
cell is null. Similarly, an incoming edge v →f vo is denoted by a pair (v, f) ∈ I . The
cardinality function || · || models the reference counts for each node in V , both from
variables (Var) and fields (Field). The set N� extends natural numbers with a special
top value 
, such that 
 + 1 = 
 − 1 = 
. The heap reference count from a field f is
denoted ||v||f . The reference counts from a variable x is denoted as ||v||x. If this value
is not 
, it can only be 1 or 0, indicating whether the cell v is referenced by variable x or
not. The special value 
 represents unknown information. As mentioned in Section 2,
we use an upper bound k (e.g., k = 2) for the number of reference counts per field. In
addition, the analysis uses a top configuration S� to model cases where the analysis has
lost precision about the tracked cell.

Given a configuration S, the analysis can derive the queries presented Figure 6:

– Alias information. Two nodes are unaliased if any of their reference counts is in-
consistent, i.e. they have different numeric values.

– Hit expressions. The function hit(S, e, v) indicates that expression e references the
cell represented by the node v. This is defined recursively using the reference counts
and points-to relations.

– Miss expressions. The function miss(S, e, v) indicates that e doesn’t reference the
cell represented by v.
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V = {vo, vnull} ∪ range(O) ∪ {v | v ∈ dom(I) ∧ ∃x . ||v||x = 1} (1)
vnull /∈ dom(I) (2)
∀r ∈ Var ∪ Field . ||vo||r �= � (3)
∀v ∈ V, f ∈ Field . |{v →f v′ | v′ ∈ V }| = 1 (4)
∀v . ||v||f = 1 ⇒ |{v′ | v′ →f v}| ≤ 1 (5)
∀v1, v2, e . hit(S, e, v1) ∧ hit(S, e, v2) ⇒ v1 = v2 (6)

Fig. 7. Consistency invariants maintained by the algorithm

We will use these queries to formalize the analysis algorithm in the next Section.
Figure 7 presents several invariants that our analysis maintains at all times:

1. All nodes other than vnull must be directly connected to vo. Moreover, a node v
pointing into vo (v →f vo) must also be pointed by vo (vo →g v) or by some
variable (||v||x = 1). This invariant ensures that the number of nodes and edges in
the graph is bounded by the number of variables and fields in the program.

2. Since vnull represents null values, it can’t have outgoing edges.
3. All references to the tracked cell are precisely known.
4. A node can have at most one outgoing edge with the same field.
5. If a node v has a single incoming reference from some field f , a configuration can

only have one node to represent this predecessor.
6. Each expression references at most one node.

5 Analysis Algorithm

We now proceed to present the dataflow algorithm that computes a heap abstraction at
each program point. For each configuration that models the state of the tracked cell
before a statement, the analysis computes a set of configurations that describes the
possible states of the cell after the statement.

We assume a simple program representation consisting of a control-flow graph
whose nodes are simple assignment. Assignments and expressions have the form:

Statements s ::= x = new | x = null | x = y | x = y.f | x.f = y | x.f = null
Expressions e ::= null | x | x.f

where x ∈ Var ranges over variables, and f ∈ Field ranges over fields.

Initialization. As discussed in Section 2, for each allocation site x = new, the analysis
builds a configuration S = ({vo, vnull}, vo, vnull, ∅, {vo →f vnull | f ∈ Field}, || · ||) at
the program point after the allocation, where ||vo||x = 1 and ||vo||r = 0 for any r �= x.
The configuration describes a representative heap cell allocated at this site. Then, the
analysis tracks this configuration through the program.

Alternatively, if a code fragment is to be analyzed separately, the set of all possible
configurations at the beginning of that fragment must be supplied.
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focusH(S, x.f) = (V ′, v′
o, v

′
null, O

′, I ′′, || · ||′) where,

S′ =

⎧
⎪⎪⎨

⎪⎪⎩

unify(addNode(S, vx, x, 1), vx, v) ¬contains(S, x) ∧ ||vo||f = 1 ∧ v →f vo

addNode(S, vx, x, 1) ¬contains(S, x) vx fresh
unify(S, vx, v) ||vo||f = 1 ∧ v →f vo

S otherwise
I ′′ = I ′ ∪ {vx →f vo}

focusM(S, x.f) = (V ′, v′
o, v

′
null, O

′, I ′′, || · ||′) where,

S′ =

⎧
⎨

⎩

unify(addNode(S, v′, x, 0), v′, v) ||vo||f = 1 ∧ v →f vo v′ fresh
addNode(S, v′, x, 0) ||vo||f = 1 v′ fresh
S� otherwise

I ′′ = I ′ ∪ {v′ →f vo}

Fig. 8. Focus operations. The helper functions addNode and unify are defined in Figure 11. We
use S′ as a shorthand notation for (V ′, v′

o, v
′
null, O

′, I ′, || · ||′).

Focus Operations. Given an input configuration describing the state of the tracked
cell before an assignment statement e1 = e2, the analysis tries to determine whether
e1 and e2 reference the tracked cell. Whenever the analysis cannot determine if ei (i ∈
{1, 2}) hits or misses the tracked cell (i.e. ¬hit(S, ei, vo)∧¬miss(S, ei, vo)), the analysis
bifurcates and creates two new configurations that are focused with respect to ei.

Figure 8 shows the focus operations. Since exact reference counts are known for
vo, it is known whether variables hit or miss vo. Therefore, the analysis only focuses
expressions of the form x.f . To make an expression x.f hit vo, the analysis simply
unifies the predecesor of vo via field f (v) and the node referenced by x (vx). The
operation will also add the node vx or the incoming field f if they didn’t exist before
focusing. A similar algorithm is used to make an expression x.f miss vo. Although,
if ||vo||f ≥ 2, it is not possible to express the fact that x.f misses the object. If this
situation occurs, the focus operation returns an imprecise configuration S� indicating
that the analysis no longer tracks the state of the tracked cell.

Transfer Function. The analysis then applies the transfer function to each focused
configuration. Figure 9 presents the transfer function for an assignment e1 = e2. First,
the analysis nullifies e1 using the helper function kill. For store assignments x.f = y,
the analysis also creates the node for y in case it didn’t exist, as this node might become
a neighbor after the store. The reference counts are then updated. The appropriate ref-
erence count of each node v is increased when e2 hits v, it remains unchanged when e2
misses, and it is set to 
 when the analysis cannot determine whether e2 hits or misses.
The points-to edges are added in the case of store statements. Finally, the clean helper
function removes nodes that are not neighbors of the tracked cell.

Merge Operation. At join points, the analysis uses the merge operation from Fig-
ure 10 to combine configurations from different branches. Two configurations are com-
bined only if they have identical reference counts and the same set of self-edges on
the tracked cell. The merge operation defines one node for each pair of nodes in the
input configurations. The reference counts are combined using the join in the flat lattice
(N�, �). Thus, if i �= j: i  i = i, i  j = 
, and i  
 = 
  i = 
. The clean
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transfer(S, e1 = e2) = clean(V ′, v′
o, v

′
null, O

′′, I ′′, || · ||′′) where,

S′ =
{

addNode(kill(S, e1), v′, y, 1) e1 = x.f ∧ e2 = y ∧ ¬contains(S, y)
kill(S, e1) otherwise

||v||′′r =

⎧
⎨

⎩

||v||′r + 1 hit(S, e2, v) ∧ [(e1 = x ∧ r = x) ∨ (e1 = x.f ∧ r = f)], or
||v||′r miss(S, e2, v) ∨ (e1 = x ∧ r �= x) ∨ (r �= f ∧ e1 = x.f), or
� otherwise

O′′ = O′ ∪ {vo →f v | e1 = x.f ∧ hit(S′, x, vo) ∧ hit(S′, e2, v)}
I ′′ = I ′ ∪ {v →f vo | e1 = x.f ∧ hit(S′, x, v) ∧ hit(S′, e2, vo)}

Fig. 9. Transfer function. The helper functions addNode, kill and clean are defined in Figure 11.
We use S′ as a shorthand notation for (V ′, v′

o, v
′
null, O

′, I ′, || · ||′).

merge(S1, S2) = clean(V ′, v′
o, v

′
null, O

′, I ′, || · ||′) where,
V ′ = {vi,j | vi ∈ V 1 ∧ vj ∈ V 2}
v′

o = vo,o

v′
null = vnull,null

O′ = {v′
o →f vi,j | v1

o →1
f vi ∧ v2

o →2
f vj}

I ′ = {vi,j →f v′
o | vi →1

f v1
o ∧ vj →2

f v2
o}

||vi,j ||′r = ||vi||1r � ||vj ||2r

Fig. 10. Merge operation. Precondition: ||v1
o || = ||v2

o || and (v1
o →1

f v1
o ⇔ v2

o →2
f v2

o).

operation guarantess that the number of nodes and edges in the resulting configuration
is bounded by the number of variables and fields in the program.

Auxiliary Functions. The auxiliary operations used by the analysis are fairly straight-
forward. They are shown in Figure 11 and are summarized below:

– The addNode operation adds a neighboring node, without connecting it to vo. The
reference count of the added node from variable x is set according to i ∈ {0, 1}.
This function is used both when focusing and when applying the transfer function.

– The kill operation removes an expression and updates the reference counts accord-
ingly. The operation supports strong updates when field expressions are killed.

– The clean operation removes unnecessary nodes from a configuration. This opera-
tion is used by the end of the transfer functions and merge operation.

– The unify operation combines two nodes that may alias into one single node. This
is done by transferring all information from one node to the other. Moreover, the
result has the most precise reference counts from the input nodes.

5.1 Assume-and-Check Approach

Although the analysis can successfully determine that the reference count property rc
and the doubly-linked list invariant are preserved for the tracked cell during destructive
operations, in many cases it cannot determine that the reference count property of the
neighbors is restored. For instance, in the insert example from Figure 5 the heap
reference counts are not known for the neighboring cell pointed by y, because y “came
from the outside” to join the local heap. A similar situation occurs when removing an
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addNode(S, v′, x, i) = (V ∪ {v′}, vo, vnull, O, I, || · ||′) where,

||v||′r =

⎧
⎨

⎩

i r = x ∧ v = v′

� r �= x ∧ v = v′

||v||r otherwise

kill(S, e) = (V, vo, vnull, O − K, I − K, || · ||′) where,

||v||′r =

⎧
⎨

⎩

0 e = r = x
||v||r − 1 e = x.f ∧ r = f ∧ hit(S, e, v)
||v||r otherwise

K = {v →f v′ | e = x.f ∧ ¬miss(S, x, v)}

clean(S) = (V ′, vo, vnull, O, V ′ � I, V ′ � || · ||) where,
V ′ = {vo, vnull} ∪ range(O) ∪ {v | v ∈ dom(I) ∧ ∃x . ||v||x = 1}

where V ′ � f restricts the domain of f to V ′

unify(S, vi, vj) = (V ′, vo, vnull, O
′, I ′, || · ||′) where,

V ′ = V − {vj}
O′ = O − {vo →f vj} ∪ {vo →′

f vi | vo →f vj ∈ O}
I ′ = I − {vj →f vo} ∪ {vi →′

f vo | vj →f vo ∈ I}

||v||′r =
{

||vi||r � ||vj ||r v = vi

||v||r otherwise

Fig. 11. Helper operations. The function unify assumes mayAlias(S, vi, vj) holds, and vj �= vnull.

element from a list: a cell two levels of indirection away from the tracked cell gets
closer and becomes one of its neighbors. As discussed, the neighbor’s reference count
information is, however, needed before insert.

We address this issue using an assume-and-check approach. This approach is based
on defining assumption points in the program. We consider that such points are man-
ually marked by the user using a special assume-and-check instruction. The as-
sumption points are program points where the analysis can safely restore the reference
count information for the neighbors. As implied by the name, the analysis performs two
tasks when it reaches such points:

– Assume: Whenever the analysis of a tracked cell reaches an assumption point, it
assumes that the reference count property rc holds for all of its neighbors. More
precisely, all neighbors are assumed to have at most one reference from each field.
This enables the analysis to restore their reference counts: if the current configura-
tion is such that the tracked cell points to neighbor v via some field f , i.e., vo →f v,
then the analysis restores v’s reference count from f : ||v||f = 1.

– Check: Whenever the analysis of a tracked cell reaches an assumption point, it
checks if the tracked cell itself satisfies the reference count property rc, i.e., if it
has at most one reference per field. When the assumption is violated, the analysis
reports an error and all of the analysis results are invalidated. Otherwise, if all
checks succeed, then all assumptions were correct.
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Essentially, restoring the reference counts of the neighbors requires knowledge about
all cells. The assume-and-check approach provides a simple mechanism for gathering
such global information without breaking the local analysis methodology.

Standard heap operations typically require one single assumption point, after the
operation finishes. In the example from Section 3, an assume-and-check instruction is
added at the end of the function. This suggests that default assumption at such points
could be used to reduce the amount of annotations. In addition, assume-and-check in-
structions can be refined to indicate the specific field for which the reference count must
be assumed and checked.

The assumptions presented here are specifically formulated for doubly-linked lists.
Other shapes might require different assumptions. For instance, in the case of trees with
parent pointers, the analysis must assume and check that the sum of the reference counts
from left and right fields is at most one, i.e., no cell is pointed by both a left and
a right link.

5.2 Soundness

This section summarizes the formal framework and the soundness result for our anal-
ysis. We refer the reader to a technical report [11] for a detailed presentation of the
formal model and the complete proofs.

Each concrete program state σ = (ϕ, h) ∈ State consists of a variable environment
ϕ that maps variables to values, and a heap h that maps the fields of each location to their
values. Values are either heap locations (Loc) or the constant null. By abuse of notation,
we write l ∈ σ to indicate that l is an allocated heap cell, i.e. in the range or domain
of ϕ or h. The execution of the program is modeled using denotational semantics via
a function [[s]] : State → State that maps the state σ before a statement s, to the state
[[s]](σ) after the statement. An abstraction function ασ(l) maps each heap cell l in a
concrete heap to a local abstraction S = (V, vo, vnull, O, I, || · ||). The relation � is the
partial order over local abstractions. An entire heap abstraction A consists of a finite set
of local abstractions S. The main result is as follows.

Theorem 1. Given a program P , program point p, a concrete state σ that can arise
at point p during the execution of the program, and an abstraction A that the analysis
computes at that program point, then each concrete heap cell in σ is modeled by at least
one local abstraction in A: ∀l ∈ σ . ∃S ∈ A . ασ(l) � S.

The correctness proof is divided into four lemmas regarding the correctness of each
of the following: the generating function at allocation sites; the transfer functions; the
focus operation; and the assume-and-check coercions. The correctness of transfer func-
tions forms the bulk of the proof.

5.3 Evaluation

We have developed a prototype implementation of the local analysis presented in this
paper in Java, and used it to analyze the doubly-linked list programs shown in Ta-
ble 1. Our local analysis has successfully verified that all of these programs maintain the
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Table 1. Analysis Evaluation

Program Local Abs. Global Abs. (TVLA)
Configs. Avg. Nodes Time Avg. Avg. Nodes Time
In Avg. per Config. (sec) Structures per Struct. (sec)

insertBefore 7 6.5 2.2 0.07 2.7 3.9 0.59
appendLast 4 4.5 2.1 0.06 4.6 3.7 0.77
concat 4 4.5 2.3 0.07 4.8 3.7 0.88
copy 4 4.5 2.1 0.09 4.8 3.5 1.24
insertNth 4 6.2 2.3 0.09 7.0 3.2 1.38
removeData 3 8.2 2.3 0.13 10.1 3.0 1.86
filter 3 26.3 2.0 0.37 24.7 2.2 4.19

doubly-linked list shape. All of the experiments were run on a 2GHz Pentium machine
with 1GB of memory, running Linux.

The input to each program is described using at least 3 configurations (one for the
middle, and one for each end of the list). Additional configurations are needed to indi-
cate where the arguments point in the list. Programs that allocate new heap cells also
include one configuration for the allocation site. The number of input configurations is
shown in the first column of the table.

Each program, except filter, has been annotated with one single assume-and-
check instruction, inserted at the end of the program. The filter program uses a loop
to remove several elements from the input list. For this program, and additional assume
annotation has been added at the beginning of the loop body. This ensures that the rc
property holds on the neighboring cells after every removal from the list. The analysis
successfully verifies the checks at all of the assumption points.

The data in Table 1 shows several statistics about our analysis: the average number
of configurations per program point; the average number of nodes per configuration
(excluding the null node); and the analysis running time. These results show that the
analysis is fast, with an average running time of about 0.1 seconds per program.

To compare our implementation to a global analysis, we have also tested an imple-
mentation in TVLA [12]. We have added an instrumentation predicate to describe the
DLL invariant. However, no global predicates, such as reachability, were included in
this implementation. The right part of Table 1 shows the results obtained with TVLA.
We observe that the number of 3-valued structures per program point is roughly equal to
the number of configurations per program point in our analysis, but the number of nodes
in those structures is larger than the number of nodes per configuration. Furthermore,
the running time of the TVLA implementation is about 10 times slower. We attribute
this in part to the fact that TVLA uses of a global abstraction, and in part to the fact that
the TVLA engine is generic, while ours is specialized.

6 Related Work

The work on shape analysis dates back to Jones and Muchnick [13]. They devel-
oped a dataflow analysis for identifying (the lack of) cyclicity and sharing in heap
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structures using k-limited abstract heaps. Since then, many different approaches
based on dataflow analysis and abstract interpretation have been proposed to ad-
dress this problem [14, 15, 16, 17, 18, 6, 7, 19, 20, 8, 9]. Existing techniques include
analyses that use path matrices and or matrices that describe reachability [15, 18],
reference counting analyses [14], analyses that use shape graphs [21, 19, 6], shape
analyses and abstractions expressed using three-valued logic [22, 23, 7, 8]. In addi-
tion, heap verification techniques using model-checking or Hoare logic has also been
explored [24, 25, 26]. Unlike abstract interpretation, logic-based tools rely on theo-
rem provers and typically require heavyweight loop annotations. Alternatively, it is
possible to synthesize loop invariants via predicate abstraction [26, 27, 28, 29, 30].
The common aspect of all of the above techniques is that the analyzer or verifier
requires a global view of the entire heap in order to analyze a particular piece of
computation. In contrast, the analysis in this paper and our earlier analysis [4] are
fundamentally different, as the analysis has knowledge about the local properties of
one single heap cell, but is oblivious to the way the rest of the heap is structured.
This fine-grained abstraction leads to efficient algorithms. This is achieved at the ex-
pense of giving up on global properties (such as reachability) that involve reasoning
about unbounded sets of cells.

This paper follows our initial work on shape analysis with tracked heap cells [4]. The
contribution of this work is a new local heap abstraction that expresses local structural
invariants, and the development of an analysis that uses this abstraction to maintain
these invariants. This algorithm makes shape analysis with local reasoning about single
cells applicable to an important class of heap structures.

A related direction of research is the recent work on separation logic [31, 32]. This
line of research has explored extensions of Hoare logic for reasoning about mutable
heap structures, by providing features such as the separating conjunction and the frame
rule, that makes it easier to write correctness proof for heap-manipulating programs.
Recently, separation logic has also been applied to the shape analysis problem [10, 9].
Although the state transformers modify local portions of the abstract heap, their abstrac-
tions still describe entire linked structures. For instance, operations such as inserting or
removing elements from a list require knowing that the entire list is well-formed, us-
ing a “listness” predicate ls. This predicate behaves similarly to the summary node in
standard shape analyses; it describes a global invariant for the entire list, not a local
property of a single cell.

7 Conclusions

We have presented an abstraction and analysis algorithm that makes it possible to ap-
ply shape analysis with local reasoning to data structures that maintain structural in-
variants, such as doubly-linked lists. The local abstraction of a cell describes the local
heap around that cell, and is therefore able to express local structural invariants. The
algorithm can successfully show that standard operations such as doubly-linked list in-
sertions or removals maintain the doubly-linked list invariant.
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Abstract. Despite their popularity and importance, pointer-based pro-
grams remain a major challenge for program verification. In this pa-
per, we propose an automated verification system that is concise, precise
and expressive for ensuring the safety of pointer-based programs. Our
approach uses user-definable shape predicates to allow programmers to
describe a wide range of data structures with their associated size prop-
erties. To support automatic verification, we design a new entailment
checking procedure that can handle well-founded inductive predicates
using unfold/fold reasoning. We have proven the soundness and termi-
nation of our verification system, and have built a prototype system.

1 Introduction

In recent years, separation logic has emerged as a contender for formal reasoning
about heap-manipulating imperative programs. While the foundations of sepa-
ration logic have been laid in seminal papers by Reynolds [17] and Isthiaq and
O’Hearn [10], new automated reasoning tools based on separation logic, such as
[2,8], are beginning to appear. Several major challenges are faced by the designers
of such reasoning systems, including key issues on automation and expressivity.
This paper’s main goal is to raise the level of expressivity and verifiability that
is possible with an automated verification system based on separation logic. We
make the following technical contributions towards this overall goal :

– We provide a shape predicate specification mechanism that can capture a wide
range of data structures together with size properties, such as various height-
balanced trees, priority heap, sorted list, etc. We provide a mechanism to
soundly approximate each shape predicate by a heap-independent invariant
which plays an important role in entailment checking (Secs 2 and 4.1).

– We design a new procedure to check entailment of separation heap con-
straints. This procedure uses unfold/fold reasoning to deal with shape def-
initions. While the unfold/fold mechanism is not new, we have identified
sufficient conditions for soundness and termination of the procedure in the
presence of recursive user-defined shape predicates. (Secs 3.1, 4 and 5)

– We have implemented a prototype verification system with the above features
and have also proven both its soundness and termination (Secs 6 and 7).

B. Cook and A. Podelski (Eds.): VMCAI 2007, LNCS 4349, pp. 251–266, 2007.
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2 User-Definable Shape Predicates

Separation logic [17,10] extends Hoare logic to support reasoning about shared
mutable data structures. It adds two more connectives to classical logic : sep-
arating conjunction ∗, and separating implication −−∗. h1 ∗ h2 asserts that two
heaps described by h1 and h2 are domain-disjoint. h1−−∗h2 asserts that if the
current heap is extended with a disjoint heap described by h1, then h2 holds in
the extended heap. In this paper we use only separating conjunction.

We propose an intuitive mechanism based on inductive predicates (or rela-
tions) to allow user specification of shapely data structures with size properties.
Our shape specification is based on separation logic with support for disjunctive
heap states. Furthermore, each shape predicate may have pointer or integer pa-
rameters to capture relevant properties of data structures. We use the following
data node declarations for the examples in the paper. They are recursive data
declarations with different number of fields.

data node { int val; node next }
data node2 { int val; node2 prev; node2 next }
data node3 { int val; node3 left; node3 right; node3 parent }

We use p::c〈v∗〉 to denote two things in our system. When c is a data name,
p::c〈v∗〉 stands for singleton heap p �→[(f : v)∗] where f∗ are fields of data decla-
ration c. When c is a predicate name, p::c〈v∗〉 stands for the formula c(p, v∗).
The reason we distinguish the first parameter from the rest is that each predi-
cate has an implicit parameter self as the first one. Effectively, self is a “root”
pointer to the specified data structure that guides data traversal and facilitates
the definition of well-founded predicates (Sec 3.1). As an example, a singly linked
list with length n is described by :

ll〈n〉≡(self=null∧n=0)∨(∃i, m, q ·self::node〈i, q〉∗q::ll〈m〉∧n=m+1) inv n≥0

Note that the parameter n captures a derived value. The above definition
asserts that an ll list can be empty (the base case self=null) or consists of a
head data node (specified by self::node〈i, q〉) and a separate tail data structure
which is also an ll list (q::ll〈m〉). The ∗ connector ensures that the head node
and the tail reside in disjoint heaps. We also specify a default invariant n≥0 that
holds for all ll lists. Our predicate uses existential quantifiers for local values
and pointers, such as i, m, q.

A more complex shape, doubly linked-list with length n, is described by :

dll〈p, n〉≡(self=null∧n=0)∨(self::node2〈 , p, q〉∗q::dll〈self, n−1〉) inv n≥0

The dll shape predicate has a parameter p that represents the prev field of
the first node of the doubly linked-list. It captures a chain of nodes that are to
be traversed via the next field starting from the current node self. The nodes
accessible via the prev field of the self node are not part of the dll list. This
example also highlights some shortcuts we may use to make shape specification

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Automated Verification of Shape and Size Properties Via Separation Logic 253

shorter. We use underscore to denote an anonymous variable. Non-parameter
variables in the RHS of the shape definition, such as q, are considered existen-
tially quantified. Furthermore, terms may be directly written as arguments of
shape predicate or data node.

User-definable shape predicates provide us with more flexibility than some re-
cent automated reasoning systems [1,3] that are designed to work with only a small
set of fixed predicates. Furthermore, our shape predicates can describe not only
the shape of data structures, but also their size properties. This capability enables
many applications, especially to support data structures with sophisticated invari-
ants. For example, we may define a non-empty sorted list as below. The predicate
also tracks the length, the minimum and maximum elements of the list.

sortl〈n, min, max〉 ≡ (self::node〈min, null〉 ∧ min=max ∧ n=1)
∨ (self::node〈min, q〉 ∗ q::sortl〈n−1, k, max〉 ∧ min≤k) inv min≤max ∧ n≥1

The constraint min≤k guarantees that sortedness property is adhered between
any two adjacent nodes in the list. We may now specify (and then verify) the
following insertion sort algorithm :

node insert(node x, node vn) where
x::sortl〈n, sm, lg〉 ∗ vn::node〈v, 〉 ∗→ res::sortl〈n+1, min(v, sm), max(v, lg)〉

{ if (vn.val≤x.val) then { vn.next:=x; vn }
else if (x.next=null) then { x.next:=vn; vn.next:=null; x }
else { x.next:=insert(x.next, vn); x }}

node insertion sort(node y) where y::ll〈n〉 ∧ n>0 ∗→ res::sortl〈n, , 〉
{ if (y.next=null) then y

else { y.next:=insertion sort(y.next); insert(y.next, y) }}

We use the notation Φpr ∗→Φpo to capture a precondition Φpr and a post-
condition Φpo of a method. We also use an expression-oriented language where
the last subexpression (e.g. e2 from e1;e2) denotes the result of an expression.
A special identifier res is also used in the postcondition to denote the result of
a method. The postcondition of insertion sort shows that the output list is
sorted and has the same number of nodes as the input list.

3 Automated Verification

In this section, we first introduce a core object-based imperative language and
then propose a set of forward verification rules to systematically check that
preconditions are satisfied at call sites, and that the declared postcondition is
successfully verified (assuming the precondition) for each method definition.

3.1 Language

We provide a simple imperative language in Figure 1. Our language is strongly
typed and we assume programs and constraints are well-typed. The language
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supports data type declaration via datat, and shape predicate definition via spred.
For each shape definition spred, we also declare a heap-independent invariant π0
over the parameters {self, v∗} that holds for each instance of the predicate.

P ::= tdecl∗ meth∗ tdecl ::= datat | spred
datat ::= data c { field∗ } field ::= t v t ::= c | τ
τ ::= int | bool | float | void
spred ::= c〈v∗〉 ≡ Φ inv π0

meth ::= t mn ((t v)∗) where Φpr ∗→ Φpo {e}
e ::= null | kτ | v | v.f | v:=e | v1.f :=v2 | new c(v∗)

| e1; e2 | t v; e | mn(v∗) | if v then e1 else e2

| while v where Φpr ∗→ Φpo do e
Φ ::= (∃v∗·κ∧π)∗ π ::= γ∧φ
γ ::= v1=v2 | v=null | v1 	=v2 | v 	=null | γ1∧γ2

κ ::= emp | v::c〈v∗〉 | κ1 ∗ κ2

Δ ::= Φ | Δ1∨Δ2 | Δ∧π | Δ1∗Δ2 | ∃v·Δ
φ ::= b | a | φ1∧φ2 | φ1∨φ2 | ¬φ | ∃v · φ | ∀v · φ
b ::=true | false | v | b1 =b2 a ::=s1=s2 | s1≤s2

s ::= kint | v | kint×s | s1+s2 | −s | max(s1,s2) | min(s1,s2)

Fig. 1. A Core Imperative Language

Each method meth and while loop is declared with pre- and post-conditions
of the form Φpr ∗→ Φpo. For simplicity, we assume that variable names declared
in each method are all distinct and that parameters are passed by-value. Primed
notation is used to denote the latest value of variables and may appear in the
postcondition of loops. For example, a simple loop with pre/post conditions is
shown below :

while x<0 where true∗→ (x>0∧x′=x) ∨ (x≤0∧x′=0) do { x:=x+1 }
Here x and x′ denote the values of variable x at the entry and exit of the loop,
respectively.

The separation constraints we use are in a disjunctive normal form Φ. Each
disjunct consists of a ∗-separated heap constraint κ, referred to as heap part, and
a heap-independent formula π, referred to as pure part. The pure part does not
contain any heap nodes and is presently restricted to pointer equality/inequality
γ and Presburger arithmetic φ. Furthermore, Δ denotes a composite formula
that could always be normalised into the Φ form (see Figure 3). The semantic
model for the separation constraints is left in the technical report [15].

Separation constraints are used in pre/post conditions and shape definitions.
In order to handle them correctly without running into unmatched residual heap
nodes, we require each separation constraint to be well-formed, as given by the
following definitions:

Definition 3.1 (Accessible). A variable is said to be accessible w.r.t. a shape
predicate if it is a parameter or it is a special variable, either self or res.
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Definition 3.2 (Reachable). Given a heap constraint κ = p::c〈v∗〉 ∗ κ1, node
p::c〈v∗〉 is reachable from a variable q if and only if the following relation holds:

reach(κ, q, p::c〈v∗〉) =df (p=q)∨(κ1=q::cq〈.., r, ..〉∗κ2 ∧ reach(κ2, r, p::c〈v∗〉))

Definition 3.3 (Well-Formed Constraint). A separation constraint Φ is well-
formed if (i) every data node and shape predicate are reachable from their accessible
variables, (ii) it is in a disjunctive normal form

∨
(∃v∗·κ∧γ∧φ)∗ where κ is for heap

nodes, γ is for pointer constraint, and φ is for arithmetic formula.

The primary significance of the well-formed condition is that all heap nodes
of a heap constraint are reachable from accessible variables. This allows the
entailment checking procedure to correctly match nodes from the consequent
with nodes from the antecedent of an entailment relation.

Arbitrary recursive shape relation can lead to non-termination in unfold/fold
reasoning. To avoid that problem, we propose to use only well-founded shape
predicates in our framework.

Definition 3.4 (Well-Founded Predicate). A shape predicate is said to be
well-founded if it satisfies four conditions, namely: (i) it is a well-formed con-
straint, (ii) the parameter self may only be bound to a data node and not a
predicate, (iii) only self is allowed to be bound to a data node and (iv) every
predicate is reachable from self.

Note that the definitions above are syntactic and can easily be enforced. Two
examples of well-founded shape predicates are treep – binary tree with parent
pointer, and avl – binary tree with near balanced heights, as follows :

treep〈p〉 ≡ (self=null) ∨ (self::node3〈 , l, r, p〉 ∗ l::treep〈self〉
∗r::treep〈self〉) inv true

avl〈n, h〉 ≡ (self=null∧ n=0 ∧ h=0) ∨ (self::node2〈 , p, q〉 ∗ p::avl〈n1, h1〉
∗q::avl〈n2, h2〉 ∧ n=1+n1+n2∧ h=1+max(h1, h2) ∧ −1≤h1−h2≤1) inv n, h≥0

In contrast, the following three shape definitions are not well-founded.

foo〈n〉 ≡ self::foo〈m〉 ∧ n=m+1
goo〈〉 ≡ self::node〈 , 〉 ∗ q::goo〈〉
too〈〉 ≡ self::node〈 , q〉 ∗ q::node〈 , 〉

For foo, the self identifier is bound to a shape predicate. For goo, the heap node
pointed by q is not reachable from variable self. For too, an extra data node is
bound to a non-self variable. The first example may cause infinite unfolding,
while the second example captures an unreachable (junk) heap that cannot be
located by our entailment procedure. The last example is just a syntactic re-
striction to facilitate termination proof reasoning, and can be easily overcome
by introducing intermediate predicates.
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[FV−PRED]
XPure0(Φ) =⇒ [0/null]π0

� c〈v∗〉 ≡ Φ inv π0

[FV−VAR]
Δ1=(Δ∧res=v′)

� {Δ} v {Δ1}

[FV−NEW]
Δ1=(Δ ∗ res::c〈v′

1, .., v
′
n〉)

� {Δ} new c(v1, .., vn) {Δ1}

[FV−ASSIGN]
� {Δ} e {Δ1}

Δ2=∃res·(Δ1∧{v}v′=res)
� {Δ} v:=e {Δ2}

[FV−CALL]
t mn((ti vi)n

i=1) where Φpr ∗→ Φpo {..} ∈ P
ρ=[v′

i/vi] Δ�ρΦpr ∗ Δ1 Δ2=(Δ1 ∗ Φpo)
� {Δ} mn(v1..vn) {Δ2}

[FV−METH]
V ={v1..vn} W=prime(V ) Δ=Φpr∧nochange(V ) � {Δ} e {Δ1} (∃W·Δ1) �Φpo ∗ Δ2

� t0 mn(t1 v1, .., tn vn) where Φpr ∗→ Φpo {e}

Fig. 2. Some Forward Verification Rules

3.2 Forward Verification

We use P to denote the program being checked. With pre/post conditions de-
clared for each method in P , we can now apply modular verification to its body
using Hoare-style triples  {Δ1} e {Δ2}. These are forward verification rules as
we expect Δ1 to be given before computing Δ2. Some rules are given in Fig 2
while others are left in the technical report [15]. They are used to track heap
states as accurately as possible with path-, flow-, and context-sensitivity. For
each call site, [FV−CALL] ensures that its method’s precondition is satisfied. For
each method definition, [FV−METH] checks that its postcondition holds for the
method body assuming its precondition. A method postcondition may capture
only part of the heap at the end of the method, leaving the residue heap nodes
in Δ2. For each shape definition, [FV−PRED] checks that its given invariant is
a consequence of the well-founded heap formula. The soundness of the forward
verification is also left in the technical report.

We now explain the operators/functions used in our verification rules. The
operator ∧{v} in assignment rule is an instance of composition with update oper-
ators. Given a state Δ1, a state change Δ2, and a set of variables to be updated
X={x1, . . . , xn}, the composition operator ⊕X is defined as :

Δ1 ⊕X Δ2 =df ∃ r1..rn · ρ1 Δ1 ⊕ ρ2 Δ2
where r1, . . . , rn are fresh variables; ρ1 = [ri/x′

i]
n
i=1 ; ρ2 = [ri/xi]ni=1

Note that ρ1 and ρ2 are substitutions that link each latest value of x′
i in Δ1

with the corresponding initial value xi in Δ2 via a fresh variable ri. The binary
operator ⊕ is either ∧ or ∗. Function nochange(V ) returns a formula asserting
that the unprimed and primed versions of each variable in V are equal; prime(V )
returns the primed form of all variables in V . [e∗/v∗] represents substitutions
of v∗ by e∗. A special case is [0/null], which denotes replacement of null by 0.
Normalization rules for separation constraints are given in Figure 3. XPure is
described in the next section.
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(Δ1 ∨ Δ2) ∧ π � (Δ1 ∧ π) ∨ (Δ2 ∧ π)
(Δ1 ∨ Δ2) ∗ Δ � (Δ1 ∗ Δ) ∨ (Δ2 ∗ Δ)
(κ1∧π1) ∗ (κ2∧π2) � (κ1∗κ2)∧(π1∧π2)
(κ1∧π1) ∧ (π2) � κ1∧(π1∧π2)

(γ1∧φ1) ∧ (γ2∧φ2) � (γ1∧γ2) ∧ (φ1∧φ2)
(∃x · Δ) ∧ π � ∃y · ([y/x]Δ ∧ π)
(∃x · Δ1) ∗ Δ2 � ∃y · ([y/x]Δ1 ∗ Δ2)

Fig. 3. Normalization Rules

3.3 Forward Verification Example

We present the detailed verification of the first branch of the insert function
from Sec 2. Note that program variables appear primed in formulae whereas
logical variables unprimed. The proof is straightforward, except for the last step
where a disjunctive heap state is folded to form a shape predicate. The procedure
to perform the folding step is presented in Sec 4.

{x′::sortl〈n, mi, ma〉 ∗ vn′::node〈v, 〉} // precondition
if (vn.val ≤ x.val) then {

{(x′::node〈mi, null〉 ∗ vn′::node〈v, 〉 ∧ mi=ma ∧ n=1 ∧ v≤mi)
∨ (∃q, k · x′::node〈mi, q〉 ∗ q::sortl〈n−1, k, ma〉 ∗ vn′::node〈v, 〉
∧ mi≤k ∧ mi≤ma ∧ n≥2 ∧ v≤mi)} // unfold and conditional

vn.next := x;
{(x′::node〈mi, null〉 ∗ vn′::node〈v, x′〉 ∧ mi=ma ∧ n=1 ∧ v≤mi)
∨ (∃q, k · x′::node〈mi, q〉 ∗ q::sortl〈n−1, k, ma〉 ∗ vn′::node〈v, x′〉
∧ mi≤k ∧ mi≤ma ∧ n≥2 ∧ v≤mi)} // field update

vn
{(x′::node〈mi, null〉 ∗ vn′::node〈v, x′〉 ∧ mi=ma ∧ n=1 ∧ v≤mi ∧ res=vn′)
∨ (∃q, k · x′::node〈mi, q〉 ∗ q::sortl〈n−1, k, ma〉 ∗ vn′::node〈v, x′〉
∧ mi≤k ∧ mi≤ma ∧ n≥2 ∧ v≤mi ∧ res=vn′)} // returned value

}
{res::sortl〈n+1, min(v, mi), max(v, ma)〉} // fold to postcondition

4 Entailment

We present in this section the entailment checking rules for the class of con-
straints used by our verification system.

4.1 Separation Constraint Approximation

Entailment between separation formulae (detailed in section 4.2) is reduced to
entailment between pure formulae by successively removing heap nodes from the
consequent until only a pure formula remains. When the consequent is pure, the
heap formula in the antecedent is soundly approximated by function XPuren.
The function XPuren(Φ), whose definition is given in Fig 4, returns a sound
approximation of Φ as formula ex i∗·

∨
(∃v∗·π)∗ where i∗ are (non-null) distinct

symbolic addresses of heap nodes of Φ. The function IsData(c) returns true if c
is a data node, while IsPred(c) returns true if c is a shape predicate.
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We illustrate how this function works by the following example :

XPuren(p1::node〈 , 〉 ∗ p2::node〈 , 〉)
= (ex i1·(p1=i1 ∧ i1>0)) ∧ (ex i2·(p2=i2 ∧ i2>0))
= ex i1, i2·(p1=i1 ∧ i1>0 ∧ p2=i2 ∧ i2>0 ∧ i1 �=i2)

The following normalization rules are also used :

(ex I · φ1)∨(ex J · φ2)� ex I∪J · (φ1 ∨ φ2)
∃ v · (ex I · φ) � ex I · (∃ v · φ)
(ex I · φ1)∧(ex J · φ2)� ex I∪J · φ1∧φ2∧

∧
i∈I,j∈J i �=j

The ex i∗ construct is converted to ∃ i∗ when the formula is used as a pure
formula. The soundness of XPuren is formalized by :

Lemma 4.1 (Sound Invariant). Given a shape predicate c〈v∗〉≡Φ inv π0, we
have Φ |= Invn(self::c〈v∗〉) if XPure0(Φ) =⇒ [0/null]π0. π0 is said to be sound.

Proof: By structural induction on Φ.

Lemma 4.2 (Sound Abstraction). Given a separation constraint Φ where the
invariants of the predicates appearing in Φ are sound, we have Φ |= XPuren(Φ).

Proof: By structural induction on Φ.

(c〈v∗〉 ≡ Φ inv π0) ∈ P
Inv0(p::c〈v∗〉) = [p/self, 0/null]π0

(c〈v∗〉 ≡ Φ inv π0) ∈ P
Invn(p::c〈v∗〉) = [p/self, 0/null]XPuren−1(Φ)

XPuren(
∨

(∃v∗·κ∧π)∗)=df

∨
(∃v∗·XPuren(κ)∧[0/null]π)∗

XPuren(emp) =df true

IsData(c) fresh i

XPuren(p::c〈v∗〉) =df ex i·(p=i∧i>0)

IsPred(c) fresh i∗ Invn(p::c〈v∗〉) = ex j∗ ·
∨

(∃u∗·π)∗

XPuren(p::c〈v∗〉) =df ex i∗ · [i∗/j∗]
∨

(∃u∗·π)∗

XPuren(κ1 ∗ κ2) =df XPuren(κ1) ∧ XPuren(κ2)

Fig. 4. XPure : Translating to Pure Form

Lemma 4.1 ensures
that a supplied in-
variant that passes
[FV−PRED] is a se-
mantic consequence
of the predicate.
Lemma 4.2 asserts
that it is safe to
approximate an an-
tecedent by using
XPure if all the
predicate invariants
are sound. They
also allow the pos-
sibility of obtain-
ing a more precise
invariant by apply-
ing XPure one or
more times. For ex-
ample, when given
a pure invariant n≥0 for the predicate ll〈n〉, a single application returns
ex i·(self=0∧n=0 ∨ self=i∧i>0∧n>0) which is sound and more precise, as
it relates the nullness of the self pointer with the size n of the list.
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The invariants associated with shape predicates play an important role in our
system. Without the knowledge m≥0, the entailment x::node〈 , y〉 ∗ y::ll〈m〉 
x::ll〈n〉 ∧ n≥1 would not have succeeded due to n≥1. Without the more precise
derived invariant using XPure for predicate ll, the entailment x::ll〈n〉 ∧ n>0 
x �=null would not have succeeded either.

4.2 Separation Constraint Entailment

We express the main procedure for heap entailment by the relation

ΔAκ
V ΔC ∗ΔR

which denotes κ ∗ ΔA∃V ·(κ ∗ ΔC) ∗ΔR.

[ENT−EMP]
ρ=[0/null]

XPuren(κ1∗κ)∧ρπ1=⇒ρ∃V·π2

κ1∧π1�κ
V π2 ∗ (κ1∧π1)

[ENT−MATCH]
XPuren(p1::c〈v∗

1〉∗κ1∗π1)=⇒p1=p2 ρ=[v∗
1/v∗

2 ]
κ1∧π1∧freeEqn(ρ, V )�κ∗p1::c〈v∗

1 〉
V −{v∗

2} ρ(κ2∧π2) ∗ Δ

p1::c〈v∗
1〉∗κ1∧π1�κ

V (p2::c〈v∗
2〉∗κ2∧π2) ∗ Δ

[ENT−FOLD]
IsPred(c2)∧IsData(c1) (Δr, κr, πr)∈foldκ(p1::c1〈v∗

1〉∗κ1∧π1, p2::c2〈v∗
2〉)

XPuren(p1::c1〈v∗
1〉∗κ1∗π1)=⇒p1=p2 (πa, πc)=split{v∗

2}
V (πr) Δr∧πa�κr

V (κ2∧π2∧πc) ∗ Δ

p1::c1〈v∗
1〉∗κ1∧π1�κ

V (p2::c2〈v∗
2〉∗κ2∧π2) ∗ Δ

[ENT−UNFOLD]
XPuren(p1::c1〈v∗

1〉∗κ1∗π1)=⇒p1=p2 IsPred(c1)∧IsData(c2)
unfold(p1::c1〈v∗

1〉)∗κ1∧π1�κ
V (p2::c2〈v∗

2〉∗κ2∧π2) ∗ Δ

p1::c1〈v∗
1〉∗κ1∧π1�κ

V (p2::c2〈v∗
2〉∗κ2∧π2) ∗ Δ

[ENT−LHS−OR]
Δ1�κ

V Δ3 ∗ Δ4

Δ2�κ
V Δ3 ∗ Δ5

Δ1∨Δ2�κ
V Δ3 ∗ (Δ4∨Δ5)

[ENT−RHS−OR]
Δ1�κ

V Δi ∗ ΔR
i

Δ1�κ
V (Δ2∨Δ3) ∗ ΔR

i

i∈{2, 3}

[ENT−RHS−EX]
Δ1�κ

V ∪{w}([w/v]Δ2) ∗ Δ3

fresh w Δ=∃ w · Δ3

Δ1�κ
V (∃ v · Δ2) ∗ Δ3

[ENT−LHS−EX]
[w/v]Δ1�κ

V Δ2 ∗ Δ
fresh w

∃v · Δ1�κ
V Δ2 ∗ Δ

Fig. 5. Separation Constraint Entailment

The purpose of heap entailment is to check that heap nodes in the antecedent
ΔA are sufficiently precise to cover all nodes from the consequent ΔC , and to
compute a residual heap state ΔR. κ is the history of nodes from the antecedent
that have been used to match nodes from the consequent, V is the list of existen-
tially quantified variables from the consequent. Note that k and V are derived.
The entailment checking procedure is invoked with κ = emp and V = ∅. The en-
tailment checking rules are given in Fig 5. We discuss the matching rule in what
follows, and leave unfold/fold rules to Sec 5.

The procedure works by successively matching up heap nodes that can be
proven aliased. As the matching process is incremental, we keep the successfully
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matched nodes from antecedent in κ for better precision. For example, consider
the following (valid) proof:

(((p=null ∧ n=0) ∨ (p �=null ∧ n>0)) ∧ n>0 ∧ m=n) =⇒ p �=null
ΔR = (n>0 ∧ m=n)

n>0 ∧ m=n p::ll〈n〉 p �=null ∗ ΔR
p::ll〈n〉 ∧ n>0  p::ll〈m〉 ∧ p �=null ∗ ΔR

Had the predicate p::ll〈n〉 not been kept and used, the proof would not have
succeeded. Such an entailment would be useful when, for example, a list with
positive length n is used as input for a function that requires a non-empty list.

Another feature of the entailment procedure is exemplified by the transfer of
m=n to the antecedent (and subsequently to the residue). In general, when a
match occurs (rule [ENT−MATCH]) and an argument of the heap node coming
from the consequent is free, the entailment procedure binds the argument to
the corresponding variable from the antecedent and moves the equality to the
antecedent. In our system, free variables in consequent are variables from method
preconditions. Hence these bindings act as substitutions that have to be kept in
antecedent to allow subsequent program state (from residual heap) to be aware
of their values. This process is formalized by the function freeEqn below, where
V is the set of existentially quantified variables :

freeEqn([ui/vi]ni=1, V ) =df let πi = (if vi∈V then true else vi=ui) in
∧n

i=1 πi

For soundness, we perform a preprocessing step to ensure that variables appear-
ing as arguments of heap nodes and predicates are i) distinct and ii) if they are
free, they do not appear in the antecedent by adding (existentially quantified)
fresh variables and equalities. This guarantees that the generated substitutions
are well-defined. It also guarantees that the formula generated by freeEqn does
not introduce any additional constraints over existing variables in the antecedent,
as one side of each equation does not appear anywhere else in the antecedent.
An additional outcome is that the order of picking nodes from the consequent
for matching does not matter.

5 Unfold/Fold Mechanism

Unfold/fold operations can be used to handle well-founded inductive predicates
in a deductive manner. In particular, we can unfold a predicate that appears in
the antecedent that matches with a data node in the consequent. Correspond-
ingly, we fold a predicate that appears in the consequent if it matches with a
data node in the antecedent. The well-founded condition is sufficient to ensure
termination.

5.1 Unfolding a Shape Predicate in the Antecedent

We apply an unfold operation on a predicate in the antecedent that matches
with a data node in the consequent. Consider :
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x::ll〈n〉∧n>3  (∃r·x::node〈 , r〉∗r::node〈 , y〉∧y �=null) ∗ ΔR
where ΔR captures the residual of entailment. For the entailment to succeed, we
would unfold the ll〈n〉 predicate in the antecedent twice to allow the two data
nodes on the consequent to be matched up. This would result in the following
reduction towards a residual state :

∃q1·x::node〈 , q1〉∗q1::ll〈n−1〉∧n>3  (∃r·x::node〈 , r〉∗r::node〈 , y〉∧y �=null) ∗ ΔR
q1::ll〈n−1〉∧n>3  (q1::node〈 , y〉 ∧ y �=null) ∗ ΔR
∃q2·q1::node〈 , q2〉∗q2::ll〈n−2〉∧n>3  q1::node〈 , y〉∧y �=null ∗ ΔR
q2::ll〈n−2〉∧n>3∧q2=y  y �=null ∗ ΔR

[UNFOLDING]
c〈v∗〉≡Φ ∈ P

unfold(p::c〈v∗〉) =df [p/self]Φ

Note that due to the well-founded condi-
tion, each unfolding exposes a data node that
matches the data node in the consequent.
Thus a reduction of the consequent imme-
diately follows, which contributes to the termination of the entailment check. A
formal definition of unfolding is given by the rule [UNFOLDING].

5.2 Folding a Shape Predicate in the Consequent

We apply a fold operation when a data node in the antecedent matches with a
predicate in the consequent. An example is :

x::node〈1, q1〉∗q1::node〈2, null〉∗y::node〈3, null〉  x::ll〈n〉∧n>1 ∗ ΔR

The fold step may be recursively applied but is guaranteed to terminate for
well-founded predicate as it will reduce a data node in the antecedent for each
recursive invocation. This reduction in the antecedent cannot go on forever.
Furthermore, the fold operation may introduce bindings for the parameters of
the folded predicate. In the above, we obtain n=2 which may be transferred to
the antecedent if n is free, but kept in the consequent otherwise. Since n is indeed
free, our folding step would finally derive :

y::node〈3, null〉 ∧ n=2  n>1 ∗ ΔR

The effects of folding may seem similar to unfolding the predicate in the conse-
quent. However, there is a subtle difference in their handling of bindings for free
derived variables. If we choose to use unfolding on the consequent instead, these
bindings may not be transferred to the antecedent. Consider the example below
where n is free :

z=null  z::ll〈n〉 ∧ n>−1 ∗ ΔR
By unfolding the predicate ll〈n〉 in the consequent, we obtain :
z=null  (z=null∧n=0∧n>−1)∨(∃q·z::node〈 , q〉∗q::ll〈n−1〉∧n>−1) ∗ ΔR

There are now two disjuncts in the consequent. The second one fails because it
mismatches. The first one matches but still fails as the derived binding n=0 was
not transferred to the antecedent.
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When a fold to a predicate p2::c2〈v∗2〉 is performed, the constraints related to
variables v∗2 are important. The split function projects these constraints out and
differentiates those constraints based on free variables.

split{v∗
2}

V (
∧n

i=1 πr
i ) =

let πa
i , πc

i = if FV(πr
i ) ∩ v∗2 = ∅ then (true, true)

else if FV(πr
i ) ∩ V = ∅ then (πr

i , true) else (true, πr
i )

in (
∧n

i=1 πa
i ,

∧n
i=1 πc

i )

[FOLDING]
c〈v∗〉≡Φ ∈ P Wi=Vi−{v∗, p}

κ∧πκ′

{p,v∗}[p/self]Φ ∗ {(Δi, κi, Vi, πi)}n
i=1

foldκ′
(κ∧π, p::c〈v∗〉) =df {(Δi, κi, ∃ Wi·πi)}n

i=1

A formal definition of
folding is specified by rule
[FOLDING]. Some heap
nodes from κ are removed by
the entailment procedure so
as to match with the heap
formula of predicate p::c〈v∗〉. This requires a special version of entailment that
returns three extra things: (i) consumed heap nodes, (ii) existential variables
used, and (iii) final consequent. The final consequent is used to return a con-
straint for {v∗} via ∃ Wi·πi. A set of answers is returned by the fold step as we
allow it to explore multiple ways of matching up with its disjunctive heap state.
Our entailment also handles empty predicates correctly.

6 Soundness of Entailment

The following theorems state that our entailment check procedure(given in Fig. 5)
is sound and terminating. Proofs are given in the technical report [15].

Theorem 6.1 (Soundness). If entailment check Δ1Δ2 ∗Δ succeeds, we have:
for all s, h, if s, h |= Δ1 then s, h |= Δ2 ∗ Δ.

Theorem 6.2 (Termination). The entailment check Δ1Δ2 ∗ Δ always ter-
minates.

7 Implementation

We have built a prototype system using Objective Caml. The proof obligations
generated by our verification are discharged by our entailment checking proce-
dure with the help of Omega Calculator [16].

Fig 6 summarizes a suite of programs tested. These examples use complicated
recursion and data structures with sophisticated shape and size properties. They
help show that our approach is general enough to handle interesting data struc-
tures such as sorted lists, sorted trees, priority queues, various balanced trees,
etc. in a uniform way. Verification time of a function includes time to verify
all functions that it calls. The time required for shape and size verification is
mostly within a couple of seconds. The average annotation cost (number of an-
notations/LOC ratio) for our examples is around 7%.
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Programs Verification
Time (sec)

Linked List (size/length)
delete 0.09
reverse 0.07

Circular List (size, cyclic structure)
delete 0.09
count 0.16

Doubly Linked List (size, double links)
append 0.16
flatten (from tree) 0.30

Sorted List (size, min, max, sortedness)
delete 0.13
insertion sort 0.27
selection sort 0.41
bubble sort 0.64
merge sort 0.61
quick sort 0.59

Programs Verification
Time (sec)

Binary Search Tree (min, max, sortedness)
insert 0.20
delete 0.38

Priority Queue (size, height, max-heap)
insert 0.45
delete max 7.17

AVL Tree (size, height-balanced)
insert 5.06

Red-Black Tree (size, black-height-balanced)
insert 1.53

2-3 Tree (height-balanced)
insert 24.41

Perfect Tree (perfectness)
insert 0.26

Complete Tree (completeness)
insert 1.50

Fig. 6. Verifying Data Structures with Arithmetic Properties

We have also investigated the precision/cost tradeoff of using XPuren and
settled on n = 1 as the default. XPure0 fails for many examples, while XPure2
incurs substantial overheads without increasing precision for our examples.

8 Related Work

Separation Logic. The general framework of separation logic [17,10] is highly
expressive but undecidable. Likewise, [13] formalised the proof rules for handling
abstract predicates (with scopes on visibility of predicates) but provided no au-
tomated procedure for checking the user supplied specifications. In the search for
a decidable fragment of separation logic for automated verification, Berdine et al.
[1] supports only a limited set of predicates without size properties, disjunctions
and existential quantifiers. Similarly, Jia and Walker [11] postponed the handling
of recursive predicates in their recent work on automated reasoning of pointer
programs. Our approach is more pragmatic as we aim for a sound and terminat-
ing formulation of automated verification via separation logic but do not aim for
completeness in the expressive fragment that we handle. On the inference front,
Lee et al. [12] has conducted an intraprocedural analysis for loop invariants us-
ing grammar approximation under separation logic. Their analysis can handle a
wide range of shape predicates with local sharing but is restricted to predicates
with two parameters and without size properties. A recent work [8] has also for-
mulated interprocedural shape inference but is restricted to just the list segment
shape predicate. Sims [20] extends separation logic with fixpoint connectives and
postponed substitution to express recursively defined formulae to model the anal-
ysis of while-loops. However, it is unclear how to check for entailment in their ex-
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tended separation logic. While our work does not address the inference/analysis
challenge, we have succeeded in providing direct support for automated verifica-
tion via an expressive shape and size specification mechanism.

Shape Checking/Analysis. Many formalisms for shape analysis have been pro-
posed for checking user programs’ intricate manipulations of shapely data struc-
tures. One well-known work is Pointer Assertion Logic [14] by Moeller and
Schwartzbach where shape specifications in monadic second-order logic are given
by programmers for loop invariants and method pre/post conditions, and checked
by their MONA tool. For shape inference, Sagiv et al. [19] presented a parame-
terised framework, called TVLA, using 3-valued logic formulae and abstract inter-
pretation. Based on the properties expected of data structures, programmersmust
supply a set of predicates to the framework which are then used to analyse that
certain shape invariants are maintained. However, most of these techniques were
focused on analysing shape invariants, and did not attempt to track the size prop-
erties of complex data structures. An exception is the quantitative shape analysis
of Rugina [18] where a data flow analysis was proposed to compute quantitative
information for programs with destructive updates. By tracking unique points-to
reference and its height property, their algorithm is able to handle AVL-like tree
structures. Even then, the author acknowledged the lack of a general specification
mechanism for handling arbitrary shape/size properties.

Size Properties. In another direction of research, size properties have been
most explored for declarative languages [9,22,6] as the immutability property
makes their data structures easier to analyse statically. Size analysis was later
extended to object-based programs [7] but was restricted to tracking either size-
immutable objects that can be aliased and size-mutable objects that are una-
liased, with no support for complex shapes. The Applied Type System (ATS) [5]
was proposed for combining programs with proofs. In ATS, dependent types for
capturing program invariants are extremely expressive and can capture many
program properties with the help of accompanying proofs. Using linear logic,
ATS may also handle mutable data structures with sharing. However, users must
supply all expected properties, and precisely state where they are to be applied,
with ATS playing the role of a proof-checker. Comparatively, we use a more
limited class of constraint for shape and size analysis but supports automated
modular verification.

Unfold/Fold Mechanism. Unfold/fold techniques were originally used for pro-
gram transformation [4] on purely functional programs. A similar technique called
unroll/roll was later used in alias types [21] to manually witness the isomorphism
between a recursive type and its unfolding.Here, eachunroll/roll stepmust beman-
ually specified by programmer, in contrast to our approach which applies these
steps automatically during entailment checking. In [1], an automated procedure
that uses unroll/rollwas given but it was hardwired to work for only lseg and tree
predicates. Furthermore, it performs rolling by unfolding a predicate in the conse-
quent which would miss bindings on free variables. Our unfold/fold mechanism is
general, automatic and terminates for heap entailment checking.
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9 Conclusion

We have presented a new approach to verifying pointer-based programs that can
precisely track shape and size properties. Our approach is built on well-founded
shape relations and well-formed separation constraints from which we have de-
signed a sound procedure for heap entailment. We have implemented a verification
system that is both precise and expressive. Our automated deduction mechanism
is based on the unfold/fold reasoning of user-definable predicates that has been
proven to be sound and terminating.
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Abstract. Shape analysis algorithms statically infer deep properties of
the runtime heap, such as whether a variable points to a cyclic or acyclic
linked list. Unfortunately, there are unsolved problems that make it
difficult for shape analyses being to be used for real-world programs.
The problems include: performance of the analysis; dealing with low-
level language features; and supporting complex data-structures used in
real-world programs, without sacrificing precision or performance of the
analysis.

In this talk, I will present work on shape analysis for Windows de-
vice drivers based on separation logic formulae. Device drivers basically
use linked lists, but complex varieties of linked list unlike those usually
studied in shape analysis. I will explain the nature of those structures,
which open problems matter most for our analysis, and how we approach
some of those problems. In particular, I will describe how higher-order
predicates let us succinctly describe a variety of data structures, and how
discovery of parameters to higher-order predicates allows an analysis that
is not tied to specific structures.
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Abstract. Knowing that two numerical variables always hold different
values, at some point of a program, can be very useful, especially for
analyzing aliases: if i �= j, then A[i] and A[j] are not aliased, and this
knowledge is of great help for many other program analyses. Surprisingly,
disequalities are seldom considered in abstract interpretation, most of the
proposed numerical domains being restricted to convex sets. In this pa-
per, we propose to combine simple ordering properties with disequalities.
“Difference-bound matrices” (or DBMs) is a domain proposed by David
Dill, for expressing relations of the form “x − y ≤ c” or “c1 ≤ x ≤ c2”.
We define dDBMs (“disequalities DBMs”) as conjunctions of DBMs with
simple disequalities of the form “x �= y” or “x �= 0”. We give algorithms
on dDBMs, for deciding the emptiness, computing a normal form, and
performing the usual operations of an abstract domain. These algorithms
have the same complexity (O(n3), where n is the number of variables)
than those for classical DBMs, if the variables are considered to be valued
in a dense set (R or Q). In the arithmetic case, the emptiness decision is
NP-complete, and other operations run in O(n5).

Keywords: abstract domains, alias analysis, difference-bound matrices,
disequalities, static analysis.

1 Introduction

In many situations, integer variables are used to address objects: it is the case
with array indexes, memory addresses and pointers in languages like C, and —
this last case being the initial motivation of this work — with the addressing of
devices (memories, processors, sensors,. . . ) in systems-on-chips.

It is well-known that this kind of addressing mechanism raises aliasing phe-
nomena: these aliasing problems are error-prone, can make the programs ob-
scure, and tremendously complicate their analysis: if i = j, then A[i] and A[j]
are aliased, meaning that any change to A[i] implicitly changes A[j]. Knowing
� This work has been partially supported by the APRON project of the “ACI Sécurité

et Informatique” of the French Ministry of Research.
�� Verimag is a joint laboratory of Université Joseph Fourier, CNRS and INPG associ-

ated with IMAG.

B. Cook and A. Podelski (Eds.): VMCAI 2007, LNCS 4349, pp. 268–282, 2007.
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that i = j allows this fact to be precisely captured; knowing that i �= j allows to
keep A[j] unaffected by the changes to A[i]; ignoring whether i = j or not forces
any change to A[i] or A[j] to potentially affect (i.e., lose information about)
the other. So, determining whether two addresses may or must be equal is an
important goal.

Most abstract domains classically used to analyze the behavior of numerical
variables (like affine equations [Kar76], intervals [CC76], octagons [Min01], oc-
tahedra [CC04], polyhedra [CH78]), take equalities into account, but cannot be
used for determining disequalities, because they are convex . On the other hand,
equality and disequality relations, considered alone, are too poor to permit an in-
teresting analysis: the only new relations that one can deduce from a set of equal-
ities/disequalities come from the transitivity of ’=’ ((x = y ∧ y = z) ⇒ x = z)
and the obvious rule (x = y ∧ x �= z) ⇒ y �= z. This is why it is interesting to
combine this kind of relations with other properties, which enrich the deduction
power: in this paper, we intend to combine equalities/disequalities with ordering
relations. For instance the obvious rule (x ≤ y ≤ z ∧ x �= y) ⇒ x �= z may allow
non completely trivial deductions.

Our goal is to extend an existing domain with disequalities, without increasing
the complexity of the representation and operations. In this paper, we study such
an extension of the domain of difference-bound matrices [Dil89, ACD93], used
for expressing relations of the form (c1 ≤ x ≤ c2) and (c1 ≤ x − y ≤ c2). The
simplest kind of disequalities that we can add to these inequalities, are of the form
(x − y �= 0). It is enough for our initial goal, and, coupled with difference-bound
matrices, they allow strict inequalities to be expressed. Now, if we consider also
disequalities of the form (x − y �= c), we get systems of constraints of arbitrary
size (e.g., x− y �= 0∧x− y �= 2∧x− y �= 4 . . .) which contradicts our goal of not
increasing the complexity. So, we will limit ourselves to inequalities of the form
(x − y �= 0) or (x �= 0).

The content of the paper is the following: Section 2 is a rapid review of the
related works. In Section 3, we recall the definition of difference-bound matrices
and the main algorithms used for their manipulation, in particular the use of
potential graphs. In Section 4 we define “disequalities DBMs” (or dDBMs),
which are a simple extension of DBMs with simple disequality relations of the
form (x �= y). The notion of potential graph is extended into “disequal potential
graph”. Section 5 is devoted to the central problem of deciding emptiness of
the domain of solutions of a dDBM, and of normalizing dDBMs. Two cases
are distinguished, according to whether the solutions are searched in a dense
numerical set (like R or Q) or in the set of integers. In the dense case, we exhibit
algorithms for emptiness check and normal form computation, with the same
theoretical complexity as in the case of classical DBMs. In the arithmetic case,
unfortunately, the emptiness problem is NP-complete, and the complexity of the
computation of a normal form increases from n3 to n5 (n being the number of
variables). However, notice that the dense domain is a correct approximation of
the discrete one. Section 6 describes other classical operators on dDBMs, and
Section 7 gives some simple examples of application to program analysis.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.
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2 Related Works

Several structures for representing finite unions of convex sets have been pro-
posed in the model-checking community. In particular, “difference decision dia-
grams” [MLAH99] and “clock difference diagrams” [LPWY99] are more general
than the domain we consider, but with an exponential complexity.

Another way of dealing with finite unions of convex set is by using “dynamic
partitioning” in abstract interpretation [Bou93, JHR99, MR05, SISG06]. This
could be used, for our problem, by separating the cases i < j and i > j. However,
here also, this can involve an exponential partitioning.

Of course, some non convex abstract domains have also been proposed, like
congruences [Gra91, Mas93], but their expressiveness is not comparable to our
present proposal. The weakly relational domains proposed by [Min02] are a fam-
ily of numerical domains, not necessarily convex, based on representation and
algorithmic similar to those of DBMs. However, strict conditions on expressible
constraints do not allow disequations.

In constraint logic programming, algorithms were proposed to deal with con-
straints on finite domains. Constraints propagation is expensive, in particular
because of representation problems [HS03]. [HS97] considers a restricted class
of constraints (±x ± y ≤ c), corresponding to octagons [Min01], for which they
propose a polynomial solver. Disequalities are not considered, because of the
NP-completeness of the satisfiability problem. However, [Pug98] notices that, if
all variables are pairwise different, the satisfiability can be checked in O(n log n).

In dependence analysis (which concerns alias analysis among array elements),
many approaches are based on the resolution of linear constraints (e.g., [PW98]
use the Omega library). Among these works, [SW02] addresses constraints of the
form (±x ± y ≤ c) and disequalities. However, they use algorithmic devoted to
more general constraints (Omega Test), and they don’t have the same concerns,
since they don’t need to compute a normal form.

About normal forms of systems of linear inequalities and disequalities, we will
use Lassez’s works [LM92]. Imbert [Imb93] addresses the problem of eliminating
variables from such systems. All these results are too general with respect to the
constraints we consider, and only apply when solutions belong to dense sets.

3 Difference-Bound Matrices [Dil89]

Difference-Bound Matrices (DBMs) are a practical representation of potential
constraints (x − y ≤ c) introduced by D. Dill [Dil89].

Let Var = {v1, ..., vn−1} be a finite set of variables, V (= Z, Q or R) be the
numerical set in which variables and constants take their values, and V be the
extension of V with +∞, ordered as usual. Let C be a set of potential constraints
(vi − vj ≤ c) where c ∈ V and vi, vj ∈Var. The DBM representing C is a n × n
matrix M defined by (cf. Figure 2(a)):

Mij = inf{c | (vj − vi ≤ c) ∈ C}
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where inf(∅) = +∞. In other words, if there is some constraint vj − vi ≤ c in C,
then Mij equals (the tightest) c, otherwise it is +∞.

A special variable v0 ∈ Var, always valued to zero is used to express bounds
on variables: (vi ≤ c) is written (vi − v0 ≤ c). The set of all possible valuations
of the variables represented by a DBM M will be called its domain, and will be
noted D(M).

Potential Graph. DBMs enjoy a useful graphical representation, called potential
graphs, interpreting a DBM M as the adjacency matrix of a weighted directed
graph (Figure 2(b)). In the potential graph, the variable v0 corresponds to the
node labelled by 0.

Emptiness Test and Closure. Using the potential graph representation, we un-
derstand that unfeasible sets of constrains are only those which form a circuit
with a strictly negative weight in the graph. As a consequence, in order to test
whether the domain of a DBM is empty, we simply have to check for the exis-
tence of such a circuit: this could be achieved in polynomial time (O(n3), e.g.,
with Bellman-Ford algorithm).

Because any potential graph including a strictly negative cycle is one possible
representation of an empty domain, we are interested in finding a normal form
for non-empty DBMs. Then, the shortest-path closure of their potential graph
is well-defined and can be computed by the Floyd-Warshall algorithm that runs
in O(n3) time (Figure 1).

for i ← 0 to n − 1 do
Mii ← 0

for k ← 0 to n − 1 do
for i ← 0 to n − 1 do

for j ← 0 to n − 1 do
Mij ← min(Mij , Mik + Mkj) ;

Fig. 1. The Floyd Warshall algorithm [CLRS90] computes the shortest-path closure
of a weighted digraph represented by a matrix M

Through the potential graph, the algorithm computes, for each pair of vari-
ables, the implicit constraints obtained by summation over paths of the graph,
and uses the tightest one for replacement. The resulting graph represents a DBM
with the same domain as the initial one, and minimal bounds for representing
this domain: it is indeed a normal form. Figure 2 is an illustration of the execu-
tion of the closure algorithm of DBMs.

Notice that, after applying the shortest-path closure, testing for strictly neg-
ative cycles can be reduced to check if there is a variable i such that M≤

ii < 0,
an emptiness test running in linear time.

Classical DBMs can be ordered according to the pointwise extension of the ≤
order on V : M � M ′ ⇐⇒ ∀i, j Mij ≤ M ′

ij . This order has the nice property to
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Fig. 2. Application of the closure algorithm on the DBM (a): (b) its potential graph
where dashed edges are the implicit constraints computed (null-loops on each variable
have been omitted) and (c) the resulting closed DBM

imply inclusion on domains: M �M ′ ⇒ D(M) ⊆ D(M ′). Moreover, the normal
form M of a non-empty DBM M is the minimal DBM, with respect to �, with
the same domain as M : M = inf� {M ′ | D(M ′) = D(M)}.

4 Extending DBMs

Let C be a set of constraints obeying the following grammar, where c ∈ V and
vi, vj ∈Var.

constraint ::= vi ≤ c | vi − vj ≤ c | vi �= 0 | vi − vj �= 0

We propose to represent C by means of a pair of matrices (M≤, M �=) , called a
dDBM (for disequalities DBM): A dDBM is made of a classical DBM M≤ with
values in V , together with a symmetric boolean matrix M �= where M �=

ij = true
iff (vi �= vj) ∈ C. We use the special variable v0 ∈ Var in order to represent also
non-nullity constraints (vi �= 0).

Representing disequality constraints by a matrix may seem costly in space,
M �= being a symmetric matrix and mostly sparse. However this representation
has a trivial map with M≤ allowing easier reasoning later.

Domain and Order. All the possible valuations of the variables of a dDBM M
will be called its domain, denoted by D(M). Its definition is straightforward:

D(M) = {(s1, ..., sn−1) ∈ Vn−1 | ∃s0 such that ∀i, j ∈ [0..n − 1]
sj − si ≤ M≤

ij ∧ M �=
ij ⇒ sj − si �= 0 ∧ s0 = 0}

Similarly to DBMs, dDBMs can be provided with an order �:

M � M ′ ⇐⇒ ∀i, j M≤
ij ≤ M ′≤

ij ∧ M ′ �=
ij ⇒ M �=

ij

which enjoys the same connection with domain inclusion: M � M ′ ⇒ D(M) ⊆
D(M ′). Of course, as for DBMs, the converse implication is not true, because of
possible redundant constraints.
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Disequal Potential Graph. The disequal potential graph of a dDBM (M≤, M �=) is
obtained by juxtaposing to the potential graph of M≤, the non-directed graph
obtained by interpreting M �= as an adjacency matrix (Figure 3). This mixed
graph G(M) = (Var ,E≤,E �=, w) is defined by:

E≤ ⊆ Var × Var E �= ⊆ Var × Var
E≤ = {(vi, vj) | M≤

ij < +∞} E �= = {(vi, vj) | M �=
ij }

w ∈ E≤ → V ∀e = (vi, vj) ∈ E≤ w(e) = M≤
ij

⎧
⎪⎪⎨

⎪⎪⎩

1 ≤ x, y, z ≤ 2
x �= y
x �= z
y �= z

0 x y z
⎛
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Fig. 3. (a) A set of constraints, (b) its associated dDBM and (c) its disequal potential
graph

5 Emptiness Test and Normal Form

As for DBMs, we need to define a normal form, which will work for non-empty
dDBMs, in order to decide equivalence of domains by a simple syntactic check,
and to easily get all the consequences of given set of constraints. In this sec-
tion, we provide closure algorithms to compute the normal form of a dDBM,
separating the dense case (V = Q or R) and the arithmetic case (V = Z).

By analogy with classical DBMs, we define the normal form M of a dDBM
M by:

M = inf� {M ′ | D(M) = D(M ′)}
In the arithmetic case, such normalization will narrow some bounds for arith-

metic reasons: for instance the set of constraints {x �= 0, x ≤ 0} must be replaced
by {x �= 0, x ≤ −1}. Unfortunately, this is not the only difficulties brought by
arithmetic: the emptiness test problem will be in the NP-complete class [RH80].

5.1 The Dense Case

Testing Emptiness. dDBMs are extensions of DBMs by disequality constraints.
Of course, the domain of a dDBM (M≤, M �=) can be empty because of the
emptiness of the domain of M≤ (which we know how to check), but it can also
be empty because of the disequalities.
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In the case where variables take values in a dense set, the following result due
to Lassez and McAloon [LM92] solves the problem, thanks to the independence
of disequalities. The constraints concerned by the theorem are more general than
ours, but in our special case, the result is the following:

Theorem 1 (independence of disequalities (Lassez et al., 1992)). Let I be
a system of linear inequalities, and D be a finite set of linear disequalities. Then
the conjunction of I and D is feasible if and only if, for each single disequality
d ∈ D, the conjunction of I and {d} is feasible.

In other words, for a dDBM (M≤, M �=), if no single disequality eliminates all the
solutions of M≤, there is no way for a finite number of disequalities constraints
to make together the system unsatisfiable.

As a consequence, in dDBMs, the only way for a disequality constraint to make
the system unsatisfiable is to contradict an equality between the corresponding
variables. Thus the emptiness test boils down to check, for each disequality
constraint between variables, that these variables are not forced equal by the
DBM component of the dDBM (Figure 4).

empty ← false ;
for i ← 0 to n − 2 as long as ¬empty do

for j ← i + 1 to n − 1 as long as ¬empty do
if M �=

ij then
empty ← M≤

ij = 0 ∧ M≤
ji = 0

Fig. 4. The algorithm testing dDBM emptiness in the dense case. Runs in O(n2) time.

This test is correct when M≤ is in normal form: all equalities must have been
expressed to perform this syntactic check.

Normal Form and Closure Algorithm. In order to compute the normal form
of a dDBM (M≤, M �=), we can first apply the closure of DBMs to M≤. This
makes sense because, in the dense case, disequality constraints will not involve
any narrowing of the bounds in M≤.

Now, M �= must be completed with all the disequalities resulting from the
conjunction of M≤ and M �=. These inequalities are deduced according to 3 rules:

1. vi − vj ≤ c, c < 0 ⇒ vi �= vj

2. vi = vj ∧ vj �= vk ⇒ vi �= vk

3. vi ≤ vj ≤ vk ∧ vj �= vk ⇒ vi �= vk

Rules (1) and (2) can easily be applied, in O(n3), using the disequal potential
graph: rule (1) says that any arc with negative weight must be doubled by a dis-
equality edge, rule (2) says that two equal variables are concerned with the same
disequalities. The following algorithm (Figure 5) takes these rules into account
(M �=

i∗ and M �=
∗j respectively denote the ith row and the jth column of M �=):
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for i ← 0 to n − 2 do
for j ← i + 1 to n − 1 do

if M≤
ij < 0 ∨ M≤

ji < 0 then
M �=

ij ←true ; M �=
ji ←true

if M≤
ij = 0 ∧ M≤

ji = 0 then
v ← M �=

i∗ ∨ M �=
j∗ ;

M �=
i∗ ← v ; M �=

∗i ← v ; M �=
j∗ ← v ; M �=

∗j ← v

Fig. 5. Algorithm applying rules (1) and (2) for deducing disequality constraints. Runs
in O(n3) time.

Concerning rule (3), let’s first notice that this rule only concerns inequalities of
the form x ≤ y, that it, zero-weighted arcs in the disequal potential graph. Thus,
the propagation of rule (3) can be done on a restriction of the disequal potential
graph to zero-weighted arcs, and where nodes corresponding to equal variables
are merged: let us note G• = (V •, A•, E•) this reduced graph, where (V •, A•) is
the directed acyclic graph of zero-weighted arcs, and (V •, E•) is the non-directed
graph of disequalities. Let n• be its number of nodes. Now, taking rule (3) into
account boils down to propagating an irreflexive and symmetric relation along
an order relation. This propagation can be written on G• as follows:

(v1, v2) ∈ A•, (v2, v3) ∈ A•

(v1, v2) ∈ E• ∨ (v2, v3) ∈ E•

}

=⇒ (v1, v3) ∈ E•

and is a kind of transitive closure. Among the numerous algorithms for transitive
closure, Koubeck’s algorithm [GK79] is particularly interesting, since its worst-
case complexity is O((n•)2n•

r) (where n•
r is the number of arcs of the transitive

reduction of the graph) and its average complexity is O((n•)2 log n•) [Sim88]. A
more recent paper evaluate it to O((n•)2) [SCC93].

Figure 6(a) shows an example of mixed graph, and Figure 7 gives our version
of Koubeck’s algorithm, adapted to solve our closure problem. The only change
is that the result Φ(v) of the algorithm is no longer the set of nodes reachable
from v, but its partitioning into 2 sets: the set Φ1(v) of nodes which are reachable
from v by some path traversing an arc doubled by a disequality edge, and the set
Φ2(v) of other reachable nodes. The application of the algorithm is illustrated in
Figure 6(b). Notice the importance of considering successors of v in increasing
topological order: if, when dealing with node 0, we start with node 3 instead of
node 1, node 3 and 4 would finally belong to both Φ1(0) and Φ2(0).

Finally, the new disequalities resulting from rule (3) are all the pairs (v, w)
with w ∈ Φ1(v) and must be symmetrically reported in the initial dDBM. Notice
that these new disequalities are not subject to rule (1) and take into account
rule (2). The phases of complete algorithm for computing the normal form of a
dDBM are given in Figure 8.
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0

1 2 4

3

5

6

(a)

v ∈ V • Φ(v) = Φ1(v), Φ2(v)
6 (∅ , {6})
5 (∅ , {5})
4 ({5} , {4})
3 ({5, 6} , {3, 4})
2 ({5, 6} , {2, 3, 4})
1 ({2, 3, 4, 5, 6} , {1})
0 ({2, 3, 4, 5, 6} , {0, 1})

(b)

Fig. 6. (a) A mixed graph G• = (V •, A•, E•), labelled in topological order, and (b)
the edges to propagate with respect to the order described by arcs, for each node v in
Φ1(v)

for each v ∈ V • in decreasing topological order do
Φ(v) ← (∅, {v}) ;
for each successor w of v in increasing topological order do

if w �∈ Φ(v) then
if (M•) �=

vw then
Φ1(v) ← Φ1(v) ∪ Φ1(w) ∪ Φ2(w)

else
Φ1(v) ← Φ1(v) ∪ Φ1(w) ; Φ2(v) ← Φ2(v) ∪ Φ2(w)

Fig. 7. Algorithm computing the propagation of disequality constraints, derived from
Koubeck’s transitive closure algorithm. Worst-case complexity is O((n•)3) time and
expected complexity is O((n•)2 log n•) time [Sim88].

5.2 The Arithmetic Case

Testing Emptiness. Checking constraints satisfiability in Z
n is classically more

difficult than in dense sets. Arithmetic satisfiability of DBMs and octagons is
polynomial, but it is no longer the case when combined with disequalities. The
dDBM of Figure 3 illustrates the problem: it has solutions in R

3 or Q
3, but not

in Z
3, since we can’t find three distinct integers between 1 and 2. The complexity

of the emptiness problem in arithmetic was studied by [RH80], who showed its
NP-completeness by a reduction of the 3-coloration of graphs problem.

A brute force technique consists in considering separately, for each disequality
x − y �= 0, the cases x − y ≤ −1 and x − y ≥ 1. This leads, for d disequalities, to
2d problems of emptiness for classical DBMs.

[SW02] suggests an improvement, allowing to decrease the number d of consid-
ered disequalities: they define an “inert” disequality, as a disequality which either
eliminates alone all solutions of the system of inequalities or cannot participate
in the absence of such solutions. Lassez theorem states that, in the dense case, all
disequalities are inert. For our restricted disequalities, some inert disequalities can
be easily detected in the arithmetic case: if some variable vi involved in a disequal-
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Apply the shortest-path closure on M≤ (Figure 1) ;1

Add implicit disequality constraints (rules (1) and (2)) to M �= (Figure 5) ;2

Consider G the disequal potential graph of M where the set of arcs is3

restricted to those with null weight ;
Compute SCC, the set of strongly connected components of the directed4

graph of G ;
Consider G• the mixed reduced graph of G constructed on SCC ;5

Compute O, a topological order on the directed acyclic graph of G• ;6

Apply the disequality propagation algorithm (rule (3)) on G• with respect to7

O (Figure 7) ;
Add induced disequality constraints into M �=8

Fig. 8. Abstract algorithm of the closure of a dDBM M in the dense case. Runs in
O(n3) time.

ity is not bounded by the system of inequalities (which can be checked in constant
time, by checking if either M

≤
i0 or M

≤
0i is +∞), then the disequality is inert: either

it contradicts an equation, or it can be discarded in the emptiness check.

Normal Form. The key novelty, in the arithmetic case, is that disequalities may
involve a narrowing of the bounds in inequalities: (x − y ≤ 0 ∧ x �= y) ⇒
(x − y ≤ −1). Since narrowed inequalities may in turn involve new narrowings,
making explicit all the consequences of a dDBM is clearly an iterative process.
Figure 9 shows an example of such an iterative computation: each rewriting
consists of a narrowing followed by an update of weights by Floyd-Warshall; the
first rewriting corresponds to the narrowing (y−x ≤ 0 ∧ x �= y) ⇒ (y−x ≤ −1),
which involves an update of z − x ≤ 1 into z − x ≤ 0; this new inequality is
narrowed in turn into z − x ≤ −1, which involves an update of y − x ≤ −1 into
y − x ≤ −2 (2nd rewriting).

y

x z

0
y

x z

y

x z

1
1−1

0
−11 1−1

−1

−2−1

Fig. 9. Propagation of disequality constraints in the arithmetic case

A brute force algorithm, shown in Figure 10 performs the computation in
O(n5). In this algorithm, Dense-Closure stands for the computation of the nor-
mal form in the dense case, or, more efficiently, only steps 1 (Floyd-Warshall
on inequality matrix) and 2 (propagation of rules (1) and (2)) of the algorithm
of Figure 8. As a matter of fact, in the arithmetic case, rule (3) is taken into
account by iterative applications of narrowing of inequalities and application of
Floyd-Warshall.
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repeat
M ← Dense-Closure(M) ;
to narrow ← {(i, j) | M≤

ij = 0 ∧ M �=
ij } ;

forall (i, j) ∈ to narrow do
M≤

ij ← −1

until to narrow = ∅ ;

Fig. 10. Closure algorithm of a dDBM M in the arithmetic case. Runs in O(n5) time.

Nevertheless, this algorithm can be improved by performing weight changes
from 0 to −1 on the fly, during the application of Floyd-Warshall.

Remark. The opposite disequal potential graph is
the closure of the one of Figure 3(c). Although it
does not contain any negative cycle, it represents
an empty domain in arithmetic. It shows that
testing the emptiness of the domain described by
a dDBM defined in Z is harder than computing
its normal form.
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−1

2

−1

1

1

1

1

1

1

z

x

y
0

6 Operators on dDBMs

6.1 The Lattice of dDBMs

We note M the set of dDBMs, with a least element ⊥ added (representing the
empty set, D(⊥) = ∅). M is partially ordered as follows:

M � M ′ ⇔
{

either M = ⊥
or M, M ′ �= ⊥, M � M ′

The greatest dDBM, denoted � is such that, ∀i, j = 0 . . . n−1, �≤
ij = if i =

j then 0 else + ∞, and � �=
ij = false.

Lattice Operators. Let M, M ′ be two dDBMs in normal form. Let us note:

M̌ =

[
M̌≤

ij = max(M≤
ij , M ′≤

ij)
M̌ �=

ij = M �=
ij ∨ M ′ �=

ij

]

, M̂ =

[
M̂≤

ij = min(M≤
ij , M ′≤

ij)
M̂ �=

ij = M �=
ij ∧ M ′ �=

ij

]

Then the least upper bound M � M ′ and the greatest lower bound M � M ′ are
defined by:

M � M ′ =

⎧
⎨

⎩

M if M ′=⊥
M ′ if M =⊥
M̌ otherwise

, M � M ′ =
{

⊥ if M =⊥ or M ′=⊥ or D(M̂)=∅
M̂ otherwise
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6.2 Other Operators

Existential quantification and projection. Both operations consist in losing all
information, in a dDBM M , about a variable x, while keeping the remaining
information about other variables. In the quantification ∃x, M , the variable x is
eliminated, while in the projection M ↓x, x is left as a non-constrained variable.
Both operations need first a normalization of M , to gather all the consequences
on other variables, then ∃x, M is obtained by suppressing in M

≤
and M

�=
all

the rows and columns corresponding to x, while for M ↓x, the rows and columns
corresponding to x in M

≤
(resp., in M

�=
) must be filled with ’+∞’ (resp., with

’false’).

Post-condition of an assignment. As usual, the abstract post-condition of an
assignment x ← e can be computed using existential quantification (z is a fresh
variable) and projection:

[x ← e](M) = ∃z ((M ∧ (z = e))↓x ∧ (x = z))

It will be precise when the expression e is of the form y + c or c; otherwise,
the term (z = e) cannot be expressed in a dDBM, and all information about
x is lost, unless some ad-hoc treatment is applied: for instance, if M includes
the constraints (x = y), (w �= 0) then the precision of [x ← x + w](M) can be
improved with (y �= x).

Conditions. In order to propagate dDBMs over conditional statements, we must
define the abstraction of conditions. Obviously, only conditions expressible in
dDBMs can be precisely taken into account, i.e., conjunctions of conditions of
the form x − y ≤ c, ±x ≤ c, x �= y, x �= 0. The lattice operator � can be used
to approximate disjunctions of such conditions. Ad-hoc interpretations can be
defined for some other kinds of conditions, but otherwise the abstraction will
be �.

Widening operator. The lattice of classical DBMs being of infinite depth, so is
the lattice of dDBMs; so we must define a widening operator. However, there is
no infinite chain of disequality matrices.

Consider M, M ′ ∈ M, with M � M ′ and M ′ in normal form (this always
improves the precision of the operator). The widening M∇M ′ will remove, as
usual, the inequalities of M which are not satisfied in M ′, but all the disequalities
in M ′ can be kept in the result. In fact, our exact definition depends of V :
of course, we want to specialize the bounds 0 and −1 in the arithmetic case
in order to preserve the constraint (x ≤ y) when we widen (x < y) by this
constraint. When V = Z, without this specialization, the inequality (x − y ≤ 0)
would get lost in (x − y ≤ −1, x − y �= 0) ∇ (x − y ≤ 0).

As usual, M∇M ′ is M ′, if M = ⊥. Otherwise, M∇M ′ = (M∇≤, M ′�=), where
∀i, j = 0 . . . n−1,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.
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M∇≤
ij =

⎧
⎪⎨

⎪⎩

M≤
ij if M ′≤

ij ≤ M≤
ij

M ′≤
ij if M≤

ij = −1, M ′≤
ij = 0 and V = Z

+∞ otherwise

7 Application to Program Analysis

A prototype analyzer has been implemented, using the general fixpoint compu-
tation engine developed by Bertrand Jeannet for NBAC [Jea].

Figure 11 gives the results of the analysis of a very simple, ad-hoc program.
The goal was to show that (x �= y) at point (3).

(1) read(x) ; read(y) ;
if (x = y) then (2) OK
else

while true do
(3) if (x = y) then ERR ;
read(z) ;
(4) if (x <= y) then

(5) if (y <= z) then y ← z; (6)

else
(7) if (x <= z) then x ← z; (8)

Results
(1) �
(2) x = y

(3) x �= y

(4) x �= y

(5) x < y

(6) y = z, x < y, x < z

(7) x > y

(8) x = z, x > y, z > y

ERR ⊥

Fig. 11. Example of a toy program and the obtained results

Other simple programs have been successfully analyzed, e.g.: a circular buffer,
where we show that, when the buffer is neither full nor empty, the indexes of
the first and last elements are always different; the bakery algorithm, which is
proved, by means of invariants of the form pi �= 0, to properly synchronize two
processes p1 and p2.

Beyond these simple examples, our abstract domain of dDBMs can be used
in other kinds of analyzes: for instance, in Deutsch’s pointer analysis [Deu94],
dDBMs could be used instead of other classical abstract domains, to represent
the possible aliases between two linked lists.

8 Conclusion

We have proposed a new numerical domain dealing with both potential con-
straints and disequalities between variables. The complexity is O(n3) when
variables take their values in a dense set. In the arithmetic case, apart from
the emptiness problem which is well-known to be exponential, other operations
are in O(n5).
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Our very rough prototype did not allow large examples to be dealt with, so
our next task will be to integrate the new domain in an existing analyzer, in
particular to check its effectiveness for alias analysis.

Another short-term perspective is to extend this work to octagons [Min01],
where disequalities of the form (x �= −y) could also be expressed. Moreover, in
this paper, we wanted, as far as possible, not to increase the complexity of the
DBM domain, but if this constraint is released, we could consider more general
disequalities.
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Abstract. We introduce Cibai a generic static analyzer based on ab-
stract interpretation for the modular analysis and verification of Java
classes. We present the abstract semantics and the underlying abstract
domain, a combination of an aliasing analysis and octagons. We discuss
some implementation issues, and we compare Cibai with similar tools,
showing how Cibai achieves a higher level of automation and precision
while having comparable performances.

1 Introduction

Object-oriented programming emphasizes the development by components.
Components are written once and used in many, different contexts. Component
reliability is a main issue in object-oriented development.

Testing has been for long time the main approach for assuring component’s
reliability. A popular approach is that of unit testing, e.g. JUnit [1], which allows
to write test cases for single components, and then to “validate” the tests through
the use of assertions. The problems of the approach are that: (i) it requires the
programmers to write test cases (ii) it is not sound as just finitely many execution
paths and inputs can be considered; and (iii) it does not scale up very well as,
if one wants full code coverage, the complexity of the test cases grows up very
quickly with the size of the program. As a consequence, the need for formal
methods arises.

Most of the verification tools that have been developed so far heavily relies on
program annotations, e.g. [5,17,3]. Following the Design by Contract approach
[18], such tools allow the programmer to express class invariants, pre-condition,
post-conditions for the class. From the annotated program they derive the ver-
ification conditions, which are passed to a theorem prover. This approach has
two main problems: (i) it has an inherent exponential behavior, as the check-
ing of verification conditions by the theorem prover roughly corresponds to the
exploration of all the possible paths in the program; and (ii) it requires the de-
veloper to provide inductive arguments, e.g. loop invariants, either as further
annotations to the source code, or during the interactive proof.

B. Cook and A. Podelski (Eds.): VMCAI 2007, LNCS 4349, pp. 283–298, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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We believe that in order to have a practical interest, a tool for the verification
of object-oriented programs must be automatic, or it must require the least
possible amount of interaction with the user. We have developed a tool, Cibai,
based on abstract interpretation [6], for the analysis of Java classes. The tool
analyzes “pure” Java classes, i.e. it does not require any annotation. It infers class
invariants, loop invariants and method postconditions. The inferred properties
are then used for verifying the absence of run-time errors in the class. Currently
we can verify (i) the absence of divisions by zero; (ii) the absence of accesses out
of the bounds of arrays; (iii) the absence of null dereferences; and (iv) simple
user-provided assertions.

As an example consider the class MiniBag in Fig. 1. Cibai can discover in few
milliseconds the class invariant 0 ≤ top ≤ elements.length. It discovers that
the array creation at line (∗) may launch an exception when initial is negative.
It uses the inferred class invariant to prove that all the array accesses in the body
of the methods are correct, i.e. no exception is thrown. Unlike existing tools, as
ESC/Java or Spec#, it does require no annotation nor interaction with the user.

Paper organization. Section 2 recalls some notation and results from [15].
Section 3 describes the abstract domains designed for and implemented in Cibai.
Section 4 presents the structure of the analyzer and the description of the most
interesting transfer functions. Section 5 reports some experience with the tool.
Section 6 compares Cibai with related tools and Section 7 conclude the paper.

2 Preliminaries

Syntax. In order to simplify the presentation, we perform some simplifying
assumptions on the syntax of programs. We assume that a class has a unique
constructor and that all the fields are protected. We also omit access modifiers
in the definition of fields and methods. Nevertheless, in our implementation we
handle those cases. We assume that all the fields are typed (as it is the case
in mainstream object-oriented languages as Java or C#) and we also assume
the basic types to be just int and boolean. We omit here the details of the
statements that constitute the body of the class constructor and of the methods,
too.

A class C is a tuple 〈init, F, M〉 where init is the class constructor, F is a set
of field declarations and M is a set of methods.

Concrete Semantic Domains. We model an execution state of a Java pro-
gram with a pair made up of an environment and a state An environment is
a map from variables to memory addresses. A store is a map from addresses
to values. Values are either basic values (ints, booleans), the void value � or
references. A reference is a pair made up of a type and an environment.

The internal environment of an object is stored at a given memory location.
The address corresponding to such a location is the identity of the object. In the
following, we will denote the set of all the concrete states by Σ.
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class BoundError extends Throwable { }
class MiniBag {

private int[] elements;
private int top;

MiniBag(int initial) {
(*) top = 0; elements = new int[initial]; }

int remove() throws BoundError {
int r;
if(top > 0 ) {
top--; r = elements[top];

} else throw new BoundError();
return r; }

void add(int i) {
if(top < elements.length) {

elements[top] = i; top++;
} else throw new BoundError(); }

void removeMinimum() {
if(top > 0) {

int min = 0, i;
for(i = 1; i < top; i++)
if(elements[min] > elements[i])

min = i;
elements[min] = elements[i-1]; top--; } } }

Fig. 1. A bag of int. Cibai emits a warning at (∗) as initial may be negative. It
proves correct all the other array accesses. Unlike ESC/Java 2 or Spec# it does not
require the user to provide annotations for the class invariant and for the loop invariant
of removeMinimum.

Abstract Semantics. Let D̄ be an abstract domain D̄ related to P(Σ) by a
monotonic concretization function γ such that 〈P(Σ), ⊆, ∅, Σ, ∪, ∩〉 γ←− 〈D̄, �̄,
⊥̄, ̄, �̄, �̄〉. As a consequence, we drop the need for the best possible abstrac-
tion of concrete elements, putting ourselves in a relaxed abstract interpretation
framework, [7].

We recall from [15, §5] the fixpoint formulation of class invariants:

Proposition 1 (Abstract class invariant). Let C be a class. Let ��init� ∈
P(Σ) be the collecting semantics of the constructor, let ��·� ∈ [M → P(Σ) →
P(Σ)] be the collecting semantics of the methods, and let Context(C) ∈ P(Σ) be
the collecting semantics for the behavior of the context, [15].

Let �̄�init� ∈ D̄ be a sound approximation for the constructor’s semantics:
��init� ⊆ γ(�̄�init�). For each m ∈ M let �̄�m� ∈ [D̄ → D̄] be a sound approxi-
mation of its semantics:
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∀S ∈ P(Σ). ∀S̄ ∈ D̄. S ⊆ γ(S̄) =⇒ ��m�(S) ⊆ γ(�̄�m�(S̄)).

Finally, let Context ∈ [D̄ → D̄] be a sound approximation of the context behavior:
∀S ∈ P(Σ). ∀S̄ ∈ D̄. S ⊆ γ(S̄) =⇒ Context(S) ⊆ γ(Context(S̄)). Then

�̄�C� = lfp�̄
⊥̄λX. �̄�init��̄

⊔̄

m∈M�̄�m�(X)�̄Context(X) (1)

is such that ��C� ⊆ γ(�̄�C�).

Please note that, as we do not restrict ourselves to abstract domains that respect
the ascending chain condition (ACC) we need of a widening operator to upper
approximate the fixpoint in (1).

3 Abstract Domains

In Cibai we chose D̄ to be the abstract domain Env × Store × P(Addr). Env is
a map between variables and sets of abstract addresses. Store is the (reduced)
Cartesian product of the abstraction for integers, basic values and references.
Finally, P(Addr) is the set of the abstract addresses, corresponding to class fields,
which may escape from the class context.

3.1 Abstract Environment

Intuitively, an abstract address stands for one of the two: a single address or a
possibly infinite set of addresses. We require that it exists a partition of Addr
into two disjoint sets such that in the concrete the elements of one does not
overlap with those of the other set. More formally:

Definition 1 (Abstract addresses, Addr). Let P(Addr) be a set of addresses.
Let Addr be a set, and γa ∈ [P(Addr) → P(Addr)] a monotonic concretization
function. Then, we say that P(Addr) is a set of abstract addresses if it can be
partitioned into two disjoint subsets P(Addre) (exact addresses) and P(Addrs)
(summary addresses) such that:

– ∀ā ∈ P(Addre). ∃a ∈ P(Addr). γa(ā) = {a}
– ∀ā ∈ P(Addrs). γa(ā) = A =⇒ ∀A′.A �= A′ ∧ (∃ā′ ∈ P(Addrs). γa(ā′) =

A′) =⇒ A ∩ A′ = ∅.

Please note that we do not require to have the best approximation for a set of
concrete addresses, so that once again we use a relaxed abstraction interpretation
framework.

An abstract environment tracks, for each variable the set of addresses it may
point to. We define it as a map from variables to sets of abstract addresses. The
abstract operations on such an abstract domain are defined as the point-wise
and functional extension of those on P(Addr).
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Definition 2 (Abstract environment, Env). The domain of abstract envi-
ronments is 〈[Vars → P(Addr)], �̄e, ⊥̄e, ̄e, �̄e, �̄e〉. The relation with the con-
crete is given by a monotonic map γe ∈ [Env → P(Env)] defined as

γe = λē. {e ∈ P(Env) | ∀x. e(x) ∈ γa(ē(x))}.

3.2 Abstract Store

The abstract store must approximate (i) basic values as booleans or integers;
and (ii) reference values.

Abstraction of basic values. We approximate all the basic values but integers
using a non-relational abstraction.

We chose booleans as representative for the abstraction of non-integer ba-
sic values. Booleans are approximated by an abstract domain B̄ = [Addr →
{̄, true, false, ⊥̄}]. The abstract operations (join, meet, widening, etc.) are
defined point-wise. The concretization function, γb ∈ [B̄ → P(Store)] is straight-
forward.

For integers, we have implemented two different abstract domains. The first
one is that of Intervals [6], in which we abstract each location corresponding to an
integer value (int-location) with the lower and the upper bounds for the values
that can be stored in such location. This one gives excellent performances, but
in practice we found it to be too imprecise for the purposes of our analysis. The
second one is the abstract domain of octagons [19]. We recall that the Octagon
abstract domain captures relations in the form of ±x±y ≤ k, where x and y are
identifiers and k is a numeric constant. As a consequence, the Octagon abstract
domain allow us to keep relations between different int-locations, so to achieve
a greater precision yet keeping good performances. We do not recall here the
order, the join, the meet and the widening on octagons. However, as we use it
later, we recall the concretization function:

Definition 3 (Octagon concretization, γo). Let Id be a set of identifiers. We
denote by OctagonId the set of octagons constraints built on the top of Id. Then
γo ∈ [OctagonId → (Id → N)] is defined as

γo = λoct. {σ | ∀id1, id2 ∈ Id.∀s1, s2 ∈ {0, +, −}.

s1 ∗ id1 + s2 ∗ id2 ≤ k ∈ oct =⇒ s1 · σ(id1) + s2 · σ(id2) ≤ k}.

In the following, we will often write Octagonn to denote an octagon with n dis-
tinct identifiers or simply Octagon when neither the identifiers nor the dimensions
of the octagon are relevant to the context.

In the context of our analyzer we have to pay attention to (i) the fact that not
all the addresses correspond to a dimension in the octagon; and (ii) the size of
the octagons may dynamically change, because of dynamic memory allocation.
As a consequence, we map each address corresponding to an int-location to a
dimension in the octagon. We lift the usual operations on octagons so to handle,
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e.g. the join of two octagons of different sizes. We postpone the detailed descrip-
tion of such operations to the Section 4.2, as they involve several implementation
details. The concretization of a dynamic octagon is the set of all the concrete
stores where the octagon constraints are satisfied by the int-locations.

Definition 4 (Dynamic octagons, DynOctagon). Let Id be a set of identifiers.
The abstract domain of dynamic octagons is

DynOctagonId = 〈[Addr → Id] × OctagonId, �̄do, ⊥̄do, ̄do, �̄do, �̄do〉.

The meaning of a dynamic octagon is given by the monotonic function γdo ∈
[DynOctagonId → P(Store)] defined as

γ̃ = λ〈f, oct〉. {σ ∈ [Addr → N] | σ′ ∈ γo(oct), σ = σ′ ◦ f},

γdo = λ〈f, oct〉. {s ∈ Store | ∀ā ∈ dom(f). σ ∈ γ̃(〈f, oct〉)
=⇒ ∃a ∈ γa(ā). s(a) = σ(ā)}.

Abstraction of reference values. We chose to approximate reference values
with a pair made up of a set of reference types, i.e. the possible dynamic types
of the reference, and an abstract environment. We “squeeze” together all the
references that can be stored at a given address. In particular if we have oB

instance of a class Base and oS instance of a class Sub, with Sub subclass of Base,
and both oB and oS may be stored at the same address, then (i) the dynamic
type of the abstract reference is {Base, Sub}; and (ii) the abstract environment
is an over-approximation of the union of the two environments.

The domain of abstract references is defined below, where the domain op-
erations are the functional and point-wise extension on operations on sets and
abstract environments.

Definition 5 (Abstract references, Ref). Let RType be the set of reference
types. The abstract domain of abstract references is

Ref = 〈[Addr → (P(RType) × Env)], �̄r, ⊥̄r, ̄r, �̄r, �̄r〉.

The meaning is given by the monotonic function γr ∈ [Ref → P(Store)] defined
as

γr = λf. {s ∈ Store | ∀ā ∈ dom(f). f(ā) = 〈T, ē〉 ∧ a ∈ γa(ā) ∧ s(a) = 〈t, ē〉
=⇒ t ∈ T ∧ e ∈ γe(ē)}.

Abstract Store. To recapitulate, an abstract store is a non-relational abstrac-
tion of basic values and references. We use a relational abstraction for inte-
gers, and a non-relation for all the other basic values. Furthermore as Java is
a strongly typed language, we can partition the (abstract) addresses depending
to the type of the locations they refer to. So if 〈b̄, 〈fo, oct〉, r̄〉 is an element of
B̄ × DynOctagon × Ref, then

dom(b̄) ∩ dom(fo) = ∅ ∧ dom(b̄) ∩ dom(̄r) = ∅ ∧ dom(fo) ∩ dom(̄r) = ∅. (2)
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The definition of the operations on the domain of abstract stores are as usual
the point-wise extension of the operations of the components.

Definition 6 (Abstrace store, Store). The domain of abstract stores is

Store = 〈B̄ × DynOctagon × Ref, �̄s, ⊥̄s, ̄s, �̄s, �̄s〉

whose elements satisfy (2). The concretization γs ∈ [Store → P(Store)] is defined
as γs = λ〈b̄, d̄, r̄〉. γb(b̄) ∩ γdo(d̄) ∩ γr (̄r).

3.3 Abstract State

An abstract state is a non-relational abstraction of a set of interaction states.
It is a triple made up of an abstract environment, and abstract store and an
abstraction of the addresses which escapes from a class. We refer the interested
reader to [16] for an extensive description of escaping addresses.

Proposition 2 (Abstract state, Σ̄). The domain of abstract states is

Σ̄ = 〈Env × Store × P(Addr), �̄Σ̄ , ⊥̄Σ̄, ̄Σ̄ , �̄Σ̄ , �̄Σ̄〉.

The concretization function is the monotonic function γΣ̄ ∈ [Σ̄ → (P(Σ) ×
P(Addr))] defined as

γΣ̄ = λ〈ē, s̄, Ēsc〉. 〈{〈e, s〉 | e ∈ γe(ē), s ∈ γs(̄s)}, ∪ā∈Ēsc γa(ā)〉 .

As a consequence, Σ̄ is a sound abstraction of P(Σ).

4 The Analyzer

4.1 Overall Structure

Our analyzer takes as input a Java compilation unit, [10]. A compilation unit is
a bunch of interface and class definitions.

First, Cibai parses the compilation unit, determines the dependencies be-
tween the different classes and interfaces. A class/interface A depends on a
class/interface B if it extends (or implements) B or it has a field, a local dec-
laration, a parameter of type B or it contains a cast expression to B or it depends
on a class/interface C which depends on B.

Second, Cibai performs some syntactic transformations on the abstract syntax
tree. We can divide those transformations into two classes. The first one rewrites
some constructs so to reduce the number of syntactic constructs the analysis
must handle. For instance in this phase Cibai rewrites for loops and do . . .while
loops in terms of while loops. The second syntactic transformation instruments
the code with assertions. For instance, for each array access a[E] we emit the two
assertions assert 0 ≤ E and assert E < a.length.

Third, it analyzes the compilation unit according to such dependencies: if a
class A depends on a class B, then B is analyzed before A. It may be the case
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that two or more classes are mutually dependent. In its current version, Cibai
breaks the dependencies by assuming the worst case. For instance, suppose that
A depends on B and B depends on A. Then, when analyzing A we assume B to be
unknown (i.e. we assume its semantics to be “top”) and vice versa. This is quite
a rough approximation. We may solve it by using a global fixpoint computation
involving both A and B. Nevertheless, we plan to do it another way, namely by
using the technique that we introduced in [14], which allows to split the analyses
of both A and B yet preserving a good precision.

Finally, the analysis of a class boils down to the computation of (1), when
instantiated with the abstract domain of Proposition 2. More precisely, as the
abstract domain Σ̄ does not respect the ACC, we use a widening operator to en-
sure the convergence of the analysis, so that we actually compute a post-fixpoint
of (1). In order to improve the precision, we also use a narrowing operator. To
sum up, first we apply the iteration schema

I0 = �̄�init�

Ik+1 = Ik�̄
⊔̄

m∈M
�̄�m�(Ik) �̄ Context(Ik) 0 ≤ k ≤ w

Ik+1 = Ik∇̄
(

⊔̄

m∈M
�̄�m�(Ik) �̄ Context(Ik)

)

w < k,

to get a post-fixpoint I∇̄. Finite convergence to I∇̄ follows by the properties of
the widening ∇̄, [6]. Next, we refine I∇̄ by a downward iteration:

Iω = I0�̄
(

I∇̄�̄
(

⊔̄

m∈M
�̄�m�(I∇̄)�̄ Context(I∇̄)

))

. (3)

Proposition 3 (Soundness of Cibai). Under the hypotheses of Proposition
1, let I lfp be the solution of (1) and Iω be as in (3). Then I lfp�̄Σ̄Iω.

4.2 Dynamic Octagon Operations

We were left by previous sections to the definition of the abstract operations on
dynamic octagons.

Without loss of generality from now on we assume that for all the dynamic
octagons, the same address corresponds to the same identifier in the octagon.
Formally, we assume that

∀〈f1, o1〉, 〈f2, o2〉 ∈ DynOctagon. ∀ā ∈ dom(f1) ∩ dom(f2). f1(ā) = f2(ā).

Our implementation satisfies the such an assumption.

Join. The join of the dynamic octagons, as well as the other operations, must
take into account the fact that the dynamic octagons to join may have different
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dimensions. This is the case when we have the allocation of an object containing
integer fields in one of the branches of a conditional.

Let 〈f1, o1〉 and 〈f2, o2〉 be in DynOctagon. The kernel is defined as dom(f1)∩
dom(f2). Let d̄1 and d̄2 be two dynamic octagons of size n and m. If n == m,
then we can apply the standard join on octagons. If n < m, we construct the
dynamic octagon d̄1�̄dod̄2 by first joining the octagon constraints corresponding
to their kernel. Then we add the constraints involving the abstract addresses not
in the kernel, i.e. the addresses that correspond to fresh allocated memory. In
fact, if an address is in the dynamic octagon d̄1 but not in the kernel, it means
that its value in d̄2 is bottom. As a consequence joining a constraint with the
bottom value is equivalent to the constraint itself. In our case, this is equivalent
to just adding the constraint to the result.

Example 1. Let 〈f1, o1〉 and 〈f2, o2〉 be two dynamic octagons such that f1 =
〈ā1 �→ d1, ā2 �→ d2, ā3 �→ d3〉, o1 = {d1 = 5, d1 − d2 ≤ 0, d3 = 99}, f2 = 〈ā1 �→
d1, ā2 �→ d2〉 and o2 = {d1 = −6}.

The kernel is {ā1, ā2}. The address ā2, corresponding to the dimension d2 is
unconstrained in o2. As a consequence it can assume any value, so that the join
of the octagons projected on the kernel is −6 ≤ d1 ≤ 5.

On the other hand, the address ā3 is not in the kernel, i.e. it is not defined
for the first octagon. Intuitively, it is as its value is ⊥, so that the join is simply
the constraint d3 = 99.

Finally, the join of the two dynamic octagons is 〈{ā1 �→ d1, ā2 �→ d2, ā3 �→
d3}, {−6 ≤ d1 ≤ 5, d3 = 99}〉. ��

Definition 7 (Join of dynamic octagons, �̄do). Let d̄1 ∈ DynOctagonn and
d̄2 ∈ DynOctagonm be dynamic octagons different from ⊥̄do and ̄do. Let k be
the size of the kernel of d̄1 and d̄2. Then their join �̄do ∈ [DynOctagonn ×
DynOctagonm → DynOctagonn+m−k] is defined as in Fig. 2.

Please note that in the definition of �̄do we pay attention that for the constraints
involving addresses not in the kernel we apply a renaming so to avoid (potential
erroneous) overlapping of identifiers.

Meet. The meet of dynamic octagon is similar in spirit to the join. We identify
the common constraints to both the dynamic octagons, and we “meet” them
by using the standard meet operation on octagons, �̄o. We discard all the ad-
dresses (and the corresponding constraints) not in the kernel. This is equivalent
to setting the value of the addresses not in the kernel to bottom.

Definition 8 (Meet of dynamic octagons, �̄do). Let d̄1 ∈ DynOctagonn

and d̄2 ∈ DynOctagonm be two dynamic octagons different from top and bottom.
Let r the size of the kernel of d̄1 and d̄2. Their meet �̄do ∈ [DynOctagonn ×
DynOctagonm → DynOctagonr] is defined in Fig. 3.

Please note that the result of the meet of two dynamic octagons is, in general,
a dynamic octagon with fewer dimensions than the operands.
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d̄1�̄dod̄2 = let d̄1 = 〈f1, o1〉, d̄2 = 〈f2, o2〉
in let ι = dom(f1) ∩ dom(f2)

in let κ1 = πf1(ι)(o1), κ2 = πf2(ι)(o2)

in let η1 = dom(f1) − ι, η2 = dom(f2) − ι

in let θ be a renaming from f1(η1) ∪ f2(η2) to fresh identifiers

in let ρ1 = θ(πf1(η1)(o1)), ρ2 = θ(πf2(η2)(o2))

in let g = {ā �→ i | ā ∈ ι, i = f1(ā)} ∪ {ā �→ i | ā ∈ η1, i = θ(f1(ā))}
∪ {ā �→ i | ā ∈ η2, i = θ(f2(ā))}

in〈(κ1�̄oκ2) ∪ ρ1 ∪ ρ2, g〉

Fig. 2. The definition of the join of dynamic octagons. πId(o) is the projection of the
octagon o on the identifiers Id . With an abuse of notation we lift function application
to sets.

d̄1�̄dod̄2 = let d̄1 = 〈f1, o1〉, d̄2 = 〈f2, o2〉
in let ι = dom(f1) ∩ dom(f2)

in let κ1 = πf1(ι)(o1), κ2 = πf2(ι)(o2)

in〈κ1�̄oκ2, f1 ∩ f2〉.

Fig. 3. The definition of the meet of two dynamic octagons. πId(o) is the projection
of the octagon o on the identifiers Id . The intersection of functions is defined as the
intersection of the domains and the co-domains.

Widening. When performing the widening of two dynamic octagons, we iden-
tify the addresses that are common to the two. Then we perform the widening
of just the constraints involving addresses in the kernel. For all the addresses
not in the kernel, we keep them in the resulting dynamic octagon unconstrained.
This is equivalent to setting their value to top.

Proposition 4 (Widening of dynamic octagons, ∇̄do). Let d̄1 ∈
DynOctagonn and d̄2 ∈ DynOctagonm be two dynamic octagons different from top
and bottom. Let k be the size of the kernel of d̄1 and d̄2. Let us consider the opera-
tor ∇̄do in Fig. 4. If the set of abstract addresses is bounded, then ∇̄do is a widen-
ing operator such that [DynOctagonn × DynOctagonm → DynOctagonn+m−k].

The proposition above requires that the set of abstract addresses to be bounded
in order to have a widening operator on dynamic octagons. In our implementa-
tion we pay attention to generate finitely many abstract addresses during the
analysis.
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d̄1∇̄dod̄2 = let d̄1 = 〈f1, o1〉, d̄2 = 〈f2, o2〉
in let ι = dom(f1) ∩ dom(f2)

in let κ1 = πf1(ι)(o1), κ2 = πf2(ι)(o2)

in〈κ1∇̄oκ2, f1 ∪ f2〉.

Fig. 4. The definition of the widening of two dynamic octagons. πId(o) is the projection
of the octagon o on the identifiers Id . The union of functions is defined as the union
of the domains and of the co-domains.

4.3 Transfer Functions

The analysis of the bodies of the constructors and the methods is by induction
on the syntax of the program. The analyzer provides transfer functions for most
of the constructors of sequential Java. It does not support reflection. Here we
describe the implementation of the most interesting transfer functions, the others
being quite standard.

Parameters. Before analyzing the body of a constructor or of a method we
have to set up the initial state considering the input parameters. We describe the
parameter initialization just for methods, the constructor’s case being easier. We
distinguish two cases, whether the parameters are of basic type or of a reference
type.

If the method input parameters are of a basic type, we know that no aliasing
may be created thanks to the semantics of parameter passing in Java. We extend
the abstract environment with the new variable and assume the value to be
unknown.

Example 2. Let 〈ē, 〈b̄, 〈f, o〉, r̄〉, S〉 be an abstract state. Let void m(bool b, int i)
{. . . } be a public method. Let ā1 and ā2 be fresh addresses, id be a fresh identifier,
and o′ be the octagon o extended with a new dimension corresponding to the
identifier id. Then the initial abstract state for the analysis of the body of m is
〈ē[b �→ {ā1}, i �→ {ā2}], 〈b̄[ā2 �→ ̄], 〈f [ā1 �→ id], o′〉, r̄〉, S〉. ��

If the parameters are of reference type we have to pay attention to possible
aliasing. We assume that parameters of the same type (or subtype) may alias.
For instance if we have

class A { B bRef; }
class B { int i; }
class ToAnalyze {
//...
public void m(A a, B b) { ... } }

Then a.bRef and b may alias. Our choice is to use summary locations for objects
of a type that appears at least twice in the method’s parameters.
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Example 3. Referring to the classes A, B and ToAnalyze above, let us consider
an input abstract state 〈ē, 〈b̄, 〈f, o〉, r̄〉, S〉 for the analysis of m. Let ā1, be an
abstract address, ā∗2, ā∗3 be summary abstract addresses, id a fresh identifier and
o′ the octagon o extended with the new identifier id. Furthermore let ē′ = ē[a �→
{ā1}, b �→ {ā∗2}], f ′ = f [ā∗2 �→ id], r̄′ = r̄[ā �→ 〈{A}, [bRef �→ ā∗1]〉, ā∗1 �→ 〈{B}, [i �→
ā∗2]〉], then the initial state for the analysis of the body of m is 〈ē[a �→ {ā1}, b �→
{ā∗1}], 〈b̄, 〈f ′, o′〉, r̄′〉, S〉. ��

Assignments. When performing an assignment e1 = e2 we distinguish between
two cases depending whether the static type of e1 is a basic type or a reference
type. Furthermore, there is the orthogonal issue of considering if we are assigning
to a location corresponding to a summary address. We skip here the technical
details of our implementation, but the intuition behind is that (i) the update of a
location corresponding to an exact abstract address is destructive, in that the old
value is replaced by the new one; and (ii) the update of a location corresponding
to a summary abstract address is weak, in that the new value is joined with the
old one.

The assignment to a boolean consists in (i) the evaluation of e2; and (ii) the
update of the abstract location corresponding to e1.

The assignment to an integer is more complicated as e1 and e2 may evaluate
to several addresses, and we want to keep a relational information between the
int-locations.

Example 4. Suppose to have the assignment a.x = b.c.y+2 in an abstract state
〈ē, 〈b̄, 〈f, o〉, r̄〉, S〉 where, for some classes C, D, E:

ē =[a �→ {ā1, ā2}, b �→ {ā3}]
f =[ā4 �→ id0, ā5 �→ id1, ā7 �→ id2]
r̄ =[ā1 �→ 〈{C}, x �→ {ā4}〉, ā2 �→ 〈{C}, x �→ {ā5}〉,

ā3 �→ 〈{D}, c �→ {ā6}〉, ā6 �→ 〈{E}, y �→ {ā7}〉].

Resolving the variable addresses using this abstract state, we get the possible
assignments ā4 = ā7 +2 and ā5 = ā7 +2. The corresponding octagon constraints
are id0 = id2 + 2 and id1 = id2 + 2. We use the assignment on octagons to get
two new octagons o1 = o.assign(id0 = id2 + 2) and o2 = o.assign(id1 = id2 + 2).
The octagon after the assignment is the join of the two cases : o′ = o1�̄oo1. ��

To sum up, when analyzing an assignment to an int-location, we first consider
all the octagons constraints that are enabled by the incoming abstract state,
then we create enough copies of the incoming octagon, perform the assignments
independently, i.e. a constraint for each duplicated octagon, and we join all the
octagons together.

Finally, if in the assignment e1 = e2 the static type of e1 is of a reference
type, then the effect of the assignment is to create an alias for e2. Therefore,
we update the abstract environment (and the abstract store if needed) to reflect
the fact that e1 points to the same abstract addresses e2 points to.
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Assertions. We have two kinds of assertions: (i) those explicitly written by the
programmer; and (ii) those generated by the program-transformation phase. The
last ones include array access bounds-checking and division by zero. Our choice is
to handle the two kind of assertions in the same way: During the analysis, when
we reach an assertion (i) we check whether the assertion does hold, does not
hold, or “we do not know” in the incoming abstract state; and (ii) we meet the
incoming state with the asserted expression so to produce the outgoing abstract
state.

Object Instantiations. Objects are created through the new statement. In the
concrete, the invocation of new returns an address to a freshly allocated memory
location where to store the object. Such an address is the identity of the object.
In the abstract, in order to guarantee the convergence of the analysis we limit,
for each new statement in the source code, the allocation of just k fresh objects.
k is a command line parameter of the analyzer. After k exact instantiations, we
create a summary location that collects the behavior of all the other objects that
can be instantiated in such particular statement.

Return statements. We join together all the abstract states that reach a
return statement in the body of a method. Let 〈ē, 〈b̄, 〈f, o〉, r̄〉, S〉 the abstract
state at the method’s exit point. We assume that the returned value is stored
into a special variable #ret.

If #ret is of a basic type, then no address reachable from one of the fields of
the class we are analyzing is exposed to the context, [15]. Then we do not need
to add any new address to S, the set of exposed abstract addresses. Please note
that the statements that constitute the body of the method do not affect either
S, too.

If #ret is of a reference type, then it is possible that the returned object
may contain, in its fields, references to memory locations that are reachable also
from the fields of the class we are analyzing. Therefore, we determine the sets
of abstract addresses reachable from the fields of the class under analysis, F ,
and then of addresses reachable from the returned reference, R. The abstract
addresses in F ∩ R may be exposed to the context, so we update S to be S ∪
(F ∩ R). In Cibai, we perform a similar reasoning also for parameters.

Abstract context. The abstract context over-approximate the behavior of a
worst-context, i.e. a context that once is aware of an address it changes its value
arbitrarily. The input to the Context is an abstract state 〈ē, 〈b̄, 〈f, o〉, r̄〉, S〉.
Then, for each abstract address in S, it sets the corresponding value to top.

5 Experiments

We have compared Cibai and ESC/Java 2 on a class library consisting of 2800
lines of sequential Java code. We did not annotated nor modified the code.
The library is quite representative in that its code contains dynamic memory
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allocation, non-trivial loops, method calls and aliasing issues. Because of its
nature, it also allows the testing of the modular aspects of the tools.

The testing platform is a 1.40 GHz Pentium M laptop, with 632MB of RAM,
running Windows XP Service Pack 2 and the Sun JVM version 1.6 beta 2. Cibai
analyzed the 40 files of the library in 28.6 seconds, whereas ESC/Java took 50.2
seconds. Cibai was able to verify the library except for two assertions involving
non-octogonal arithmetic relations. ESC/Java 2 emitted 107 warnings, mainly
about null dereferences and out of bound array accesses.

In order to understand the reasons of the difference in precision, let us consider
the initial example (cf. Fig. 1). ESC/Java is not able to infer that (i) the field
elements is always non-null, as it is allocated in the constructor and never
modified; (ii) the field top is always positive and smaller or equal to the length of
the array. As a consequence, it cannot check the array accesses and dereferences
in the body of the methods of BagOfInts, so it emits the warnings. To overcome
this problem, the tool requires the user to modify the code by adding annotations.
On the other hand, Cibai can infer the right class invariants for BagOfInts, so
that without any user interaction it can verify the class to be correct.

We have tuned the performances by using a profiler to find the bottlenecks.
For instance, in one of the test cases, written on purpose to stress the allocation
of many objects containing integer fields, we experienced very bad performances.
The profiler showed that the problem was because of the closure operation on
octagons. Closure is used everywhere: for emptiness checks, for the order, etc. In
a first version, octagons were represented as a square matrix of IExtendedInt.
IExtendedInt is an interface implemented by three classes AnInt, PlusInf and
MinusInf. We replaced the representation of octagons with a square matrix
of int, maxint and minint standing respectively for +∞ and −∞. We also
implemented a form of sharing of octagons. With the optimized representation,
we obtained an improvement of the 900% of the performances in the stress test.
We conjecture that such a dramatic speedup is obtained because the matrix of
integers can be stored inside the processor cache, so that each access is internal
to the processor.

6 Related Work

There are several tools for the static analysis and verification of object-oriented
languages. Most of them are based on the Java Modeling Language (JML), [13].
JML is a Hoare-like logic for the specification of Java program.

ESC/Java 2 tries to check that a JML-annotated program satisfies its spec-
ification. It is neither sound nor complete, [5]. Other tools as Jack [23], LOOP
[12], Krakatoa [17] are sound, but they present a low level of automation. In fact,
they need the programmer to supply, among the other others, loop invariants.
Furthermore, as they are based on interactive theorem provers, they also need
the user assistance for conducting the proof.

Spec# adds the support for design-by-contract to C#, [3]. Contracts are
checked either dynamically or statically. The Spec# static program verifier,
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Boogie, integrates an inference engine for reduce the burden of program annota-
tions when dealing with loops. Nevertheless, the inference engine inside Boogie
is quite limited and it is not able to infer class invariants.

Daikon is a tool for discovering class invariants-like in Java, [8]. It monitors
the execution of a program trying to determine if some simple properties hold
or not. Being based on testing, it is inherently unsound. Axiom Meister is a step
forward w.r.t. Daikon as it tries to infer preconditions in .net programs using
symbolic execution, [24]. The discover of algebraic specifications for Java classes
is also the goal of the tool introduced in [11].

Julia is generic static analyzer that works on the bytecode level, [22], and
it focuses mainly on non-numeric and non-relational properties. Jail is a static
analyzer specialized for the verification of applet isolation in JavaCard, [9]. Other
static analyses for object-oriented languages infer particular properties as escape
analysis [4], shape analysis [20], data structures cyclicity [21] or the inference of
very simple properties on class fields [2].

7 Conclusions and Future Work

We described Cibai, an automatic tool for the analysis of Java programs. The
tool can analyze classes in isolation, can infer class invariants and method post-
conditions. It uses such information to prove the absence of some runtime errors,
as the violation of user-defined assertions, the access out of the bounds of ar-
rays or the dereference of null objects. The abstract domain underlying Cibai
is a composition of an alias analysis, so to precisely track the identity of ob-
jects, and several other domains to approximate the values of Java values, as
ints, booleans or references. The structure of the analyzer is modular, so that
is possible to change the approximation for one class of values, without having
to modify the others.

The next step in the development of Cibai is the generation of method sum-
maries: we plan to apply Cibai on the Java API so to generate stubs, and then
to reuse these stubs when analyzing large programs. We want also to improve
the handling of mutually recursive classes, using the technique we introduced in
[14]; and we want to provide a translation of the inferred invariants in JML, so
to automatically produce code annotations.
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17. C. Marché, C. Paulin-Mohring, and X. Urbain. The Krakatoa tool for certificationof
Java/Javacard programs annotated in JML. J. Log. Algebr. Program, 58(1–2),
2004.

18. B. Meyer. Object-Oriented Software Construction (2nd Edition). Professional Tech-
nical Reference. Prentice Hall, 1997.
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Abstract. It is shown that the cutoff method—which summarizes a
parameterized system by a finite set of its instances—is complete for
proving safety properties. This implies completeness of other, less strin-
gent, proof methods for parameterized verification. It is shown that the
cutoff method is equivalent to determining a (parameterized) inductive
invariant. The second part of the paper describes a new algorithm to con-
struct universally quantified, parameterized inductive invariants. This al-
gorithm is shown to compute the strongest invariant of a given shape, and
is complete under certain conditions. A key observation is a previously
unnoticed connection between inductiveness, small model theorems, and
compositional analysis.

1 Introduction

Parameterization is ubiquitous in programming: most programs are parameter-
ized in some manner (e.g., the size of buffers, or the number of threads). A
particularly fascinating case is that of network protocols which are composed of
a variable number of finite-state, isomorphic processes. Any particular instance
of this parameterized system is finite-state, and its correctness can be determined
automatically through model checking. But the real goal is to verify all—i.e., an
infinite number of—instances.

In this regard, a common experience is that the correctness argument for small
instances includes all the case analysis required for full correctness. It is tempting
to conjecture that there is a small bound such that the correctness of instances
up to that bound suffices to establish correctness in general. Unfortunately, this
conjecture is incorrect. Apt and Kozen [2] showed that the parameterized ver-
ification question—showing correctness of all instances—is undecidable, even if
the component processes are finite-state and isomorphic (cf. [42]). This nega-
tive result has led naturally to two forms of analyses: (i) showing decidability
for restricted classes of protocols (cf. [21,17,15]), and (ii) generally applicable,
semi-automated proof principles based on induction and abstraction.

This article focuses on the general, type (ii) methods, which exploit the sym-
metry of the problem to reduce or to simplify proof obligations. Let Pn represent
the parameterized system P0||P1||...||Pn−1, produced by asynchronous composi-
tion of n isomorphic copies of a process P . A central concept is that the behavior

B. Cook and A. Podelski (Eds.): VMCAI 2007, LNCS 4349, pp. 299–313, 2007.
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of arbitrary instances of a protocol can be summarized by a finite-state process.
The closure process, introduced in [9,7], is precisely such a summary. The process
invariant method, introduced in [32,43], requires that the summarizing process,
I, is also invariant, in the sense that the behavior of both P and P ||I is simulated
by I — the stronger requirement makes it easier to show that I is a closure. The
cutoff method, implicit in [32,21] and made explicit in [17], goes further and re-
quires that the process invariant be a union of instances up to a (typically small)
cutoff bound K. (i.e., I = P 1+P 2+ . . .+PK). The cutoff method formalizes the
verifier’s intuition that all interesting patterns of behavior are already present
in instances of a small size.

These proof methods have been applied successfully to several protocols, but
it is not immediately apparent whether they are universally applicable. Does
every correct protocol have a cutoff proof? If so, is the cutoff proportional to the
individual process size?

1.1 Contributions

The first part of the paper analyzes completeness for safety (invariance) prop-
erties. It shows that an invariance property (e.g., “the protocol ensures mutual
exclusion”) which holds of the protocol can always be shown using a cutoff of
1 — I.e., by showing that the smallest instance simulates instances of arbitrary
size, and is itself correct. This implies completeness for the two other methods.
Known bounds for cutoffs1 are either property-dependent (cf. [32,17,15]), or are
exponentially large in the process description [21,16]. The cutoff of 1 holds also
for arbitrary linear-time properties, and for multi-parameter systems. These re-
sults provide formal justification to the intuition regarding small instances. The
proof also shows that a cutoff-based proof is equivalent to the construction of
an inductive parameterized invariant.

The second part of the paper, therefore, focuses on automatic methods of
computing inductive parameterized invariants. The starting point is a method
of “invisible invariants”, proposed by Pnueli, Ruah, and Zuck in [39]. The central
idea is to generalize from the reachable states of small instances into an assertion
of the shape (∀i : ϕ(i)). Remarkably, this simple heuristic suffices to construct
inductive assertion proofs of safety for several protocols. On the other hand, it
is known to be incomplete: for some protocols, it fails to construct a quantified
inductive invariant, even though one is known to exist.

This paper demonstrates a previously unnoticed connection between the in-
ductiveness of quantified assertions and compositional reasoning. The key obser-
vation is that the only assertions of the shape (∀i : ϕ(i)) which are inductive are
those where actions of process P (j) do not “interfere” with the inductiveness
of ϕ(i). This connection gives rise to an algorithm, called the “split-invariant
method”, for the generation of quantified inductive invariants. The algorithm
constructs the strongest assertion ϕ (in a restricted logic) such that (∀i : ϕ(i))

1 These are cutoffs for decidability, so they apply also to showing that a protocol
incorrect, whereas the cutoff of 1 applies only to a correctness proof.
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is inductive for all instances. This fact, combined with a small model theorem
from [39], ensures completeness. As pleasing side-effects, non-interference ex-
plains the incompleteness of the inductive invariant method (reachable states do
not always form non-interfering assertions), and also explains the occasional need
to introduce auxiliary variables—it is known from work by Owicki and Gries [38]
and Lamport [35] that this is necessary for non-interference. The method has
been implemented with TLV [40]. Initial results show that completeness is not
achieved at the cost of efficiency.

2 Completeness of the Cutoff Method

Programs are given meaning through transition systems. A transition system
over a set of atomic propositions AP is a tuple (I, S, R, L), where S is a set
of states, I is a subset of S, the initial states, R is a subset of S × S, the
transition relation, and L : S × 2AP is a labeling function that assigns a subset
of propositions to each state. If (s, s′) is a tuple in R, s′ is a successor of s, and
there is a transition from s to s′. A state s is reachable if there is a finite sequence
s0, s1, . . . sk where s0 is in I, si+1 (where defined) is a successor of si for each i,
and sk = s. Transition systems are assumed to be left-total, i.e., every state has
a successor. A state predicate is a Boolean combination of atomic propositions.
The satisfaction of a predicate p at a state, written s |= p or p(s), is defined in
the usual way by induction on formula structure. A state predicate ϕ is invariant
of M if it holds at all reachable states of M .

Definition 0. For transition systems M and N , and a set of state predicates
SP , a relation X : X ⊆ SM × SN is a simulation respecting SP if:

– (initiality) for every initial state s of M , there is an initial state t of N such
that (s, t) is in X,

– (step) for every (s, t) in X, and every successor s′ of s, there is a successor
t′ of t such that (s′, t′) is in X,

– (label) for every pair (s, t) in X, and every predicate p in SP , pM (s) ≡ pN (t)

Definition 1. For transition systems M and N , and state predicates SP , a
relation X : SM × SN is a bisimulation respecting SP if both X and its inverse
are simulations respecting SP .

Two transition systems are “(bi)simular upto SP” if there exists a (bi)simulation
relation respecting SP between the transition systems. The usual definition of
bisimulation between Kripke structures can be recovered by setting SP = AP .

Inductiveness, Invariance, and Fixpoints. A state assertion ξ is inductive for
M if it is implied by the initial condition for M and it is preserved by every
transition of M . This is formalized by the conditions (1) (initiality) and (2)
(inductiveness) below. Here, wlp is the weakest liberal precondition transformer
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introduced by Dijkstra [13]. The notation [ψ], from Dijkstra and Scholten [14],
indicates that ψ is valid.

[IM ⇒ ξ] (1)
[ξ ⇒ wlp(M, ξ)] (2)

An inductive assertion is adequate to show the invariance of a state property ϕ
if it implies ϕ (condition (3)).

[ξ ⇒ ϕ] (3)

Applying the duality (the Galois connection) between wlp and the strongest
post-condition operator, sp, condition (2) is equivalent to

[sp(M, ξ) ⇒ ξ] (4)

Theorem 0. (Knaster-Tarski) A monotonic function f on a complete lattice
has a least fixpoint, which is also the strongest solution to X : [f(X) ⇒ X ],
and a greatest fixpoint, which is the weakest solution to X : [X ⇒ f(X)].

For finite lattices, the least fixpoint can be computed as the limit of the sequence
X0 = ⊥; Xi+1 = f(Xi). The greatest fixpoint can be computed as the limit of
the sequence X0 = �; Xi+1 = f(Xi), where � and ⊥ are, respectively, the top
and bottom elements of the lattice.

Taken together, conditions (1) and (4) give [(IM ∨ sp(M, ξ)) ⇒ ξ]. As
function f(ξ) = IM ∨ sp(M, ξ) is monotonic, by the Knaster-Tarski theorem, it
has a least fixpoint, which is the set of reachable states of M . Taken together,
conditions (2) and (3) give [ξ ⇒ (ϕ ∧ wlp(M, ξ))]. The function g(ξ) = ϕ ∧
wlp(M, ξ) is monotonic, hence there is a greatest solution in ξ. This is expressed
in CTL as AG(ϕ). If ϕ is invariant for M , the reachable states of M additionally
satisfies (3), and AG(ϕ) additionally satisfies (1).

2.1 Completeness

Lemma 0. Any pair of transition systems M, N which satisfy the invariance
property AG(ϕ) are bisimular upto {ϕ}.

Proof. Define the relation X between states of M and N by (s, t) ∈ X iff
M, s |= AG(ϕ) and N, t |= AG(ϕ). We have to show that X and its inverse are
simulation relations respecting {ϕ}.

(initiality) consider initial states s and t of M and N respectively. By the
assumption, both s and t satisfy AG(ϕ), and are therefore related by X .

(step) Let s, t be such that (s, t) ∈ X , and let s′ be a successor of s. As
s satisfies AG(ϕ), by the fixpoint formulation, all of its successors also satisfy
AG(ϕ). For the same reason, all successors of t satisfy AG(ϕ), and t has at least
one successor, say t′, as N is left-total. Thus, (s′, t′) is a pair in X . A symmetric
argument establishes the step property for the inverse of X .
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(label) Let s, t be such that (s, t) ∈ X . As s and t satisfy AG(ϕ), by the
fixpoint formulation, they satisfy ϕ. As ϕ is a state predicate, ϕM (s) ≡ ϕN (t).

�
The cutoff method is defined below for arbitrary parameterized programs—not
just those arising from a composition of processes. A parameterized program is a
family of transition systems {M(n)}, indexed by a parameter n. The property is
also parameterized by n; for instance, mutual exclusion between critical sections,
identified by C, can be specified by ϕ(n) = (∀i, j : i, j ∈ [0..n − 1] ∧ i �= j :
¬(Ci ∧ Cj)).

Definition 2. [Cutoff Method] To show that a parameterized program M(n)
satisfies a similarly parameterized invariance property AG(ϕ(n)) for all n, find
a cutoff bound K such that:

– For every n : n > K, there is j : j ≤ K such that M(n) is simulated upto ϕ
by M(j), and

– For every j : j ≤ K, M(j) satisfies AG(ϕ(j)).

Theorem 1. The cutoff method is complete for invariance properties: i.e., if
M(n) satisfies AG(ϕ(n)) for all n, there is a cutoff bound K such that the con-
ditions are met. In particular, K = 1 suffices.

Proof. Let K = 1. As M(n) satisfies AG(ϕ(n)) for all n, the second condition
is met: M(1) satisfies AG(ϕ(1)).

Consider M(n), for any n : n > 1. As M(n) satisfies AG(ϕ(n)), and M(1)
satisfies AG(ϕ(1)), a proof on the lines of that for Lemma 0 shows that M(1)
and M(n) are bisimular upto ϕ. The only modification to the previous proof is
in the definition of X . A pair (s, t) is in X (where s is a state of M(1) and t
is a state of M(n)) if M(1), s satisfies AG(ϕ(1)) and M(n), t satisfies AG(ϕ(n)).
This proves the first condition. �

To illustrate the workings of this theorem by an example, consider the simple
mutual exclusion protocol2 described in Figure 1. The desired invariant predicate
ϕ(n) is (∀i, j : i, j ∈ [n] ∧ i �= j : ¬(Ci ∧ Cj)), where Ci is shorthand for (st(i) =
C). It is easily checked that this predicate is not inductive. The completeness
proof works with any predicate that is inductive and is stronger than ϕ. One such
predicate is ξ(n) = (∀i, j : i, j ∈ [n] ∧ i �= j : (Ci ∨ Ei) ⇒ (x ∧ ¬(Cj ∨ Ej))).
The bisimulation relation defined in the completeness proof relates state s of Pn

with t of P 1 if they agree on ξ. As ξ(1) = true, every state of Pn is bisimular
(in the new sense) to any state of P 1!

The completeness proof constructs a bisimulation from AG(ϕ(n)). In fact, any
inductive invariant stronger than ϕ will do: AG(ϕ) is simply the weakest such
assertion. Determining an appropriate simulation relation, and finding a proof
of a candidate relation, are both difficult questions, which are undecidable in
general. Similarly, determining whether a protocol has a particular cutoff bound
is also undecidable, in general. The following theorem establishes the converse.
2 This protocol is taken from [39] but with a change of notation.
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var x: boolean /* semaphore */
initially x=true

process P(i) ::
var st: {I,T,C,E}
initially st=I
do
| (st=I) -> st := T
| (st=T) and x -> st,x := C,false
| (st=C) -> st := E
| (st=E) -> st,x := I,true
od

Fig. 1. Mutual Exclusion Protocol

Theorem 2. A cutoff proof of invariance for program M(n) and property ϕ(n)
induces an assertion ξ(n) that is inductive for M(n), and implies ϕ(n).

3 Parameterized Invariants and Non-interference

The discussion in Section 2 showed that the existence of cutoffs for invariance
properties is equivalent to the existence of parameterized inductive invariants.
The “invisible invariant” method of [39] computes inductive predicates of the
shape (∀i : θ(i)), where θ is a limited assertion. It consists of two steps: in the
first step, a candidate for θ is constructed by generalizing the set of reachable
states of small instances up to a cutoff size N0; in the second step, the generated
candidate, (∀i : θ(i)), is checked for inductiveness and adequacy for arbitrary
N . The second step can be automated based on a small model theorem, which
shows that these properties need to be checked only up to a second cutoff N1.

In a series of papers [3,4] the authors showed that this simple heuristic suffices
to show correctness of a number of parameterized protocols. On the other hand,
the authors also point out that this method is not guaranteed to succeed—even
if a suitable invariant exists, generalization from the reachable states may fail
for some protocols [4].

To understand the source of incompleteness, it is helpful to reason in reverse
from the goal: how does an assumption of inductive invariance for (∀i : θ(i))
constrain θ? A first consequence is that θ(0) must be inductive for process 0 in
an instance of size 1. Thus, it suffices to enumerate every inductive invariant
for process 0 in M(1), and check inductiveness for all N by applying the small
model theorem. (The set of inductive assertions forms a lattice with top element
AG(ϕ(1)) and bottom element the reachable states.) While complete, the pro-
cedure is extremely inefficient, as there could be exponentially many inductive
invariants for process 0. (If a process state is described by k Boolean variables,
there are 22k

distinct Boolean expressions to consider.) While this line of rea-
soning does not lead to a useful algorithm, it does suggest that generalizing the
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set of reachable states — just one out of many candidates — need not give rise
to a parameterized invariant.

Let us continue by analyzing the case N = 2. Parameterized inductiveness
of (∀i : θ(i)) implies the following inductiveness conditions for N = 2. (The
notation P0(2) represents process 0 in a 2-process composition M(2) = P0||P1.
The symmetric condition for P1(2) is not shown.)

[IM(2) ⇒ (θ(0) ∧ θ(1))] (5)
[(θ(0) ∧ θ(1)) ⇒ wlp(P0(2), θ(0) ∧ θ(1))] (6)

As wlp distributes over conjunction, (6) is equivalent to

[(θ(0) ∧ θ(1)) ⇒ wlp(P0(2), θ(0))] (7)
[(θ(0) ∧ θ(1)) ⇒ wlp(P0(2), θ(1))] (8)

The first is expected: it says (roughly) that θ(0) is preserved by transitions of
process P0. The second is quite different in nature: it says that θ(1) is also
preserved by transitions of process P0—i.e., process P0 does not interfere with
the invariance of θ(1). The notion of non-interference was introduced by Owicki
and Gries in their seminal work on compositional reasoning [38]. The rest of this
section explores this connection in detail.

3.1 Background

The class of parameterized programs to which the invisible invariant method is
applied is called bounded-data discrete systems (BDS’s) [39,3]. Program variables
can be Boolean and finite-domain variables (type T0), variables with ranges
[0..Ni − 1], for a parameter Ni (types Ti), and arrays with domain Ti and
elements from Tj for some i, j (types Ti → Tj).

Atomic formulas can only compare for inequality basic expressions of the same
type. Basic expressions are limited to variables x, or 1-level indexed entries Z[x]
(not Z[Z[x]]). Formulas are built up from atomic formulas by Boolean combi-
nation, and quantification. The transition relation of a parameterized system
is constrained to the shape (∃h1, h2, . . . , hk : (∀t1, t2, . . . , tm : R(h, t))), where
hi, ti are vectors of variables of Ti, for all i. Intuitively, the h-variables iden-
tify the process that makes a transition, the t-variables are used to express the
constraint that a transition by one process leaves the local state of all other
processes unchanged. The expression defining the initial condition is assumed
to be symmetric (i.e., left unchanged by permutations of indices). For example,
the protocol from Figure 1 has types x : T0 and state : T1 → T0; its initial
condition is x ∧ (∀i : state(i) = I).

Candidate invariance assertions have the shape (∀i1,i2,. . . ,ik :θ(i1, i2, . . . , ik)),
where im is a vector of variables of type Tm, for each m, and the variables of
any given type are given distinct values. An example is the mutual exclusion
property: (∀i, j : i �= j : ¬(Ci ∧ Cj)), where i, j : T1.
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3.2 Non-interference and Split Invariants

Consider a program, A||B, formed by the asynchronous composition of processes
A and B, and a correctness property ϕ. Let A (B) have state defined by sets of
variables VA (VB). A local assertion (for A; symmetrically for B) is an assertion
formed from VA. Variables local to A are denoted by LA = VA \ VB, while the
global (shared) variables are those in VA ∩ VB .

A pair of assertions (θA, θB), which are local over A and B, respectively, is
called a split assertion. A split assertion (θA, θB) is a split invariant if θA ∧ θB

is an inductive invariant for A||B. For asynchronous composition, the invariance
conditions obtained from (1)-(3) simplify to the following.

[IA||B ⇒ (θA ∧ θB)] (9)
[(θA ∧ θB) ⇒ wlp(A, (θA ∧ θB))] (10)
[(θA ∧ θB) ⇒ wlp(B, (θA ∧ θB))] (11)

A split invariant satisfies a property ϕ if

[(θA ∧ θB) ⇒ ϕ] (12)

A k-split assertion over k processes P0||P1 . . . ||Pk−1 (these are not necessarily
isomorphic) is a k-vector of the form (θ0, . . . , θk−1) where each θi is defined over
the variables of Pi. It is a k-split invariant if (∀i : θi) is an inductive invariant of
the k-process system.

Computing the strongest split invariant. Applying the Galois connection between
wlp and sp to (10) and (11), combining with (9), and re-arranging results in the
following equivalent formulation. The existential quantification encodes locality:
e.g., variables quantified out in (13) are irrelevant to θA by locality.

[(∃LB : sp(A, θA ∧ θB) ∨ sp(B, θA ∧ θB) ∨ I) ⇒ θA] (13)
[(∃LA : sp(A, θA ∧ θB) ∨ sp(B, θA ∧ θB) ∨ I) ⇒ θB] (14)

Implications (13) and (14), in turn, can be written as the pre-fixpoint for-
mulation: [F(θA, θB) � (θA, θB)], where F is the pair function formed by the
left-hand expressions in the implication, and � denotes pair-wise implication.
Since F is monotone over (θA, θB) according to � (sp is a monotone function),
by the Knaster-Tarski theorem, F has a least fixpoint, which, by construction,
is also the least solution to conditions (9)-(11).

The Knaster-Tarski algorithm applied to F results in the least fixpoint
(θ∗A, θ∗B), which is the strongest inductive split assertion. The operations required
to evaluate F (the computation of sp, existential quantification) can be carried
out with BDD’s for finite variable domains.

Theorem 3. (Completeness of the procedure) There exists an inductive split-
invariant that is adequate for ϕ if, and only if, [(θ∗A ∧ θ∗B) ⇒ ϕ].
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This method is easily extended to compute the strongest k-split invariant over
a k-process instance. The general form of F is represented as Fk, which is a
vector of functions over a k-split assertion θ = (θ0, . . . , θk−1). For each i ∈ [k],
the ith component of Fk(θ) is given below, where L = (∪ i : Li) is the set of
local variables.

Fk
i (θ) = (∃L \ Li : init(k) ∨ (∃j : sp(Pj(k), (∀m : θm)))) (15)

For a parameterized system, the symmetry in its definition ensures that, dur-
ing the fixpoint calculation, it is necessary only to compute the new value for
a single component, say θ(0); θ(i) is constructed by applying the substitution
0 → i.

Theorem 4. (Symmetric split invariant) For a parameterized instance, P k,
with a symmetric initial condition, there is an assertion θ∗(Vi) such that the
least fixpoint of Fk is given by (∀i : θ∗(Vi)).

3.3 Quantified Inductive Invariants

The previous discussion showed that, for a parameterized system, (i) for any
inductive quantified assertion (∀i : θ(i)), the vector (θ(0), . . . , θ(k −1)) is a sym-
metric k-split invariant for all k; and (ii) for any k, the strongest k-split invariant
can be computed through a least fixpoint procedure, and this is symmetric. In
this section, we close the loop by showing that, given a small model property
for an assertion logic L with bound K, the assertion (∀i : θ∗(i)) induced by the
strongest K-split invariant is an inductive parameterized invariant.

Definition 3. (“Near-inductive” invariant) A quantified assertion (e.g., (∀i :
θ(i))) is K-inductive if it is inductive for all instances of size at least K. An
assertion is near-inductive if it is K-inductive for some K.

Definition 4. (Small Model Property) For any θ in L, checks of the form (9)-
(12) for an assertion (∀i : θ(i)) are valid for all N if, and only if, there exists
K such that they are valid for all instances of size up to K. The bound K may
depend on the quantification over i, but should be independent of θ.

A strong small model property holds if validity need be checked only for the
instance of size K. In [3], the small model property is shown for BDS’s with
variables of type T0,T1, and T1 → T2. The proof can be strengthened to show
the stronger form of this property.

Let Vi be the set of variables accessed by process i (local as well as global).
The computation of K-split invariants on general BDS’s does not necessarily
produce assertions that are expressible in the logic L. In order to ensure this,
let αi be the closure operator, defined as follows: αK

i (S), for an index i ∈ [K]
and a set of states S in M(K), is the smallest superset of S that is expressible
in the logic L together with the assertion y = i for each T1 variable y (this is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



308 K.S. Namjoshi

well-defined if L is closed under arbitrary intersection). The closure operator can
be computed using BDD’s if L is based on a finite set of predicates3.

The condition [αK
i (θ(Vi)) ⇒ θ(Vi)] is added to the fixpoint formulation for

F . This defines a new monotonic operator, written FK
α,i(θ) = αK

i (θ(Vi)) ∨ FK
i (θ).

Not only is any pre-fixpoint θ(Vi) of this operator a pre-fixpoint of FK
i (which

is desired for inductiveness), it is also a pre-fixpoint of αK
i , which ensures that

(as α is a closure) [αK
i (θ(Vi)) ≡ θ(Vi)]; i.e., θ(Vi) is expressible in L.

Theorem 5. (Completeness) For a BDS with a strong small model property
and bound K, and assertions of the type (∀i : θ(Vi)), let θ∗(Vi) describe the
symmetric K-split invariant computed as the strongest fixpoint of FK

α . Then,
(∀i : θ∗(Vi)) is K-inductive, and this is the strongest such assertion.

Proof. By the preceding discussion, any fixpoint of FK
α is expressible in the

logic L and is a K-split invariant.
We need to show K-inductiveness, i.e., that (∀i : θ∗(Vi)) is inductive for all

N : N ≥ K. The proof is by contradiction. If the assertion is non-inductive for
some N , the strong form of the small model property implies that it is non-
inductive for the instance of size K, which contradicts the assumption that it is
a K-split invariant. Note that it is important that the bound K is independent
of the particular θ∗.

Any K-inductive assertion of the shape (∀i : θ(Vi)) that is expressible in L
is a K-split invariant. This implies that θ is a pre-fixpoint of FK

α . As θ∗ is the
strongest pre-fixpoint, [θ∗(Vi) ⇒ θ(Vi)]; hence, [(∀i : θ∗(Vi)) ⇒ (∀i : θ(Vi))].

�

The strong form of the small model property can be dispensed with, at the cost of
computing a weaker inductive assertion. For a simpler notation, this is explained
for FK , not FK

α . The computation of θ∗ is set up so that it is a k-split invariant,
for every k : k ≤ K. Recall, from the discussion following Theorem 4, that the
computation of a k-split invariant can be carried out by computing θ(V0) using
Fk

0 (θ), deriving the others by substitution. Thus, consider the assertion that
[(Fk

0 (θ))(V0) ⇒ θ(V0)] for all k : k ≤ K. This is equivalent to

[(∃k : k ≤ K : (Fk
0 (θ))(V0)) ⇒ θ(V0)] (16)

The left-hand side of the implication defines a new monotonic operator:
GK

0 (θ) = (∃k : k ≤ K : Fk
0 (θ)). This is used in place of FK

α in Theorem 5. While
this substitution ensures inductiveness for all N , the additional F computations
that are required could cause computational difficulty in practice. Moreover, as
GK is weaker than FK , the fixpoint that is produced is also a weaker assertion.
This makes it less likely to satisfy the correctness condition. From these consid-
erations, it appears that the weaker K-inductiveness requirement is preferable
to inductiveness for all N .

3 For a set of predicates {Pi}, α(S)(x) = (∃y : (
∧

i : Pi(x) ≡ Pi(y)) ∧ S(y)).
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3.4 Simple BDS’s

The simplest case of a BDS is one where all global variables are of type T0, and
the local variables are expressed by an array of type T1 → T0. This simple case
is important, as it describes, for instance, the mutual exclusion protocol from
Figure 1, and many multi-threaded programs, where the data structures that
the threads operate on have a structure that is independent of the number of
threads. For a simple BDS, the small model bounds are very small: 2 processes for
a singly-quantified assertion (∀i : θ(i)), and 3 processes for a doubly-quantified
assertion (∀i, j : i < j : θ(i, j)).

4 Experiments

This method has been implemented with TLV [40]. This implementation succeeds
on several of the examples from [4]. Preliminary results are shown in Figure 2;
details are at http://www.cs.bell-labs.com/who/kedar/split-invariance .
The implementation generates quantified inductive assertions of the shape (∀i :
θ(i)) and (∀i, j : i �= j : θ(i, j)), denoted by 1-∀ and 2-∀, respectively.

The completeness of the split invariant calculation, especially the fact that it
computes the strongest assertion, can be used to advantage. If the strongest split
invariant θ∗K calculated for an instance of size K fails the adequacy test, there
can be no other θ′ for which (∀i : θ′(i)) is inductive for all N . Thus, a failure
indicates that there is no inductive invariant of the particular shape.

It is possible to dualize the theory presented here to compute “best” existential
invariants, i.e., assertions of the form (∃i : θ(i)) where θ is the weakest formula
for which the assertion is inductive and implies the correctness property. (This
corresponds to the least/greatest fixpoint duality in the computation of the
reachable states and AG(φ).)

Some of the more difficult properties proved by the IIV tool require inductive
assertions that are combinations of universal and existential properties. (The fact
that something more than pure universal or existential invariants are required
can be inferred by the failure to compute such a split invariant, as discussed
above.) IIV uses a heuristic method (which may fail) to construct a Boolean
combination of universal and existential assertions. It is not clear whether there
is a complete and efficient method to construct such mixed invariants—our cur-
rent implementation fails to prove these properties automatically. It is possi-
ble to replace (Skolemize) the existential quantifications with auxiliary program

Program Invariant Type Time(sec) Bound BDD size θ(1) or θ(1, 2) Max. BDD
mutex 2-∀ 0.01 4 9 1327

mutex+ 1-∀ 0.01 3 8 1007
szymanski 2-∀ 0.03 4 18 9956
token-ring 2-∀ 0.01 4 177 18341

Fig. 2. Results on the IIV examples (+ indicates introduction of auxiliary variables)
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variables, leaving purely universal quantification that can be handled by the
split-invariant method, but this requires a guess at the definition of the auxil-
iary variable. Devising a systematic procedure for introducing such variables is
an important open question; ideas from the “environment abstraction” work [10]
might be of help.

5 Related Work

There is a large body of work on parameterized verification and compositional
analysis, the two subjects most closely connected with the topic of this paper.

The parameterized verification question is decidable for some classes:
[21,17,15] are representative. These results are based on small model theorems
for temporal properties. General methods for parameterized verification include
those discussed in the introduction and others based on process summaries (cf.
[36,31,41]) and acceleration methods based on automata-theory (cf. [30,1]). This
earlier work does not consider completeness: the results on cutoffs, and the con-
nection to inductive invariance are new contributions.

Compositional reasoning about concurrency goes back to the seminal work
on non-interference by Owicki and Gries [38], extended to assume-guarantee
reasoning by Chandy and Misra, and Jones [8,27,28]. (The book [12] has the
history and technical relationships.) Flanagan and Qadeer apply the assume-
guarantee approach to the verification of fixed instances of multi-threaded pro-
grams [20,18]. Assume-guarantee reasoning is combined with program abstrac-
tion in the BLAST tool [24]. These verification procedures are formulated for
fixed-size instances, and do not, in general, lead to a correctness proof of a
full parameterized system. The relationship between parameterized invariance,
small model theorems, and compositional reasoning that forms the basis of the
split-invariant method is also a new contribution.

Predicate abstraction [22] has been quite successful in deriving inductive
invariants for non-parameterized programs [5,23]. Predicate abstraction is ex-
tended to derive quantified indexed predicates (typically for parameterized data
structures) in [19,33]. This method is analyzed, and shown to be complete in
[34], provided an appropriate indexed predicate set is given. The papers [19,33]
give heuristics to determine this set, but the heuristics are not known to be
complete.

It is worthwhile to compare the approaches based on predicate abstraction
with indexed predicates and invisible/split invariants in a little more detail.
Both have a common goal: to construct universally quantified invariants for pa-
rameterized programs. The indexed predicate method approaches this problem
from “above”, exploring a succession of abstract transition systems, all of which
over-approximate the entire parameterized system. On the other hand, the invis-
ible/split invariant method approaches this from “below”, exploring successively
larger instances of the parameterized system. Thus, split invariants always define
states that are necessarily part of any inductive invariant, while indexed pred-
icate exploration requires removal of non-inductive states. It is unclear which
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method performs better in practice; but there may be fruitful ways of combin-
ing these different approximation approaches — this is the subject of ongoing
work. Another interesting question for future work is whether the small model
theorems in the BDS framework can be extended to apply to two examples
identified in [33] that are outside the current class of BDS’s; new results in [6]
on array properties, and completeness results for (non-parameterized) predicate
abstraction from [37,25,26] may apply here.
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Abstract. Abstraction frameworks use under-approximating transitions in order
to prove existential properties of concrete systems. Under-approximating transi-
tions refer to the concrete states that correspond to a particular abstract state in a
universal manner. For example, there is a must transition from abstract state a to
abstract state a′ only if all the concrete states in a have successors in a′.

The universal nature of under-approximating transitions makes them closed
under transitivity. Consequently, reachability queries about the concrete system,
which have applications in falsification and testing, can be answered by reason-
ing about its abstraction. On the negative side, the universal nature of under-
approximating transitions makes them dependent on all the variables of the pro-
gram. The abstraction, on the other hand, often hides some of the variables. Since
the universal quantification in must transitions ranges over all variables, this often
prevents the abstraction from associating a must transition with statements that
refer to hidden variables.

We introduce and study partitioned-must transitions. The idea is to partition
the program variables to relevant and irrelevant ones, and restrict the universal
quantification inside must transitions to the relevant variables. Usual must tran-
sitions are a special case of partitioned-must transitions in which all variables
are relevant. Partitioned-must transitions exist in many realistic settings in which
usual must transitions do not exist. As we show, they retain the advantages of must
transitions: they are closed under transitivity, their calculation can be automated,
and the three-valued semantics induced by usual must transitions is refined to a
multi-valued semantics that takes into an account the set of relevant variables.

1 Introduction

Abstraction frameworks [CC77] generally use over-approximation to check safety
properties. If a safety property holds in the abstract (over-approximate) system then
it holds in the concrete system that it abstracts. However, if the safety property does not
hold in the abstract system, we do not know if the concrete system violates the safety
property.

Since the ideal goal of proving a system correct involves many obstacles, the primary
use of formal methods nowadays is falsification. There, as in testing, the goal is to de-
tect errors, rather than to prove correctness. In the falsification setting, we are interested
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in using abstractions based on under-approximation. This allows us to prove that if a
safety property does not hold in the abstract system then it does not hold in the con-
crete system. Our investigations are based on modal transition systems (MTS) [LT88],
which combine both overapproximation and under-approximation. Traditional MTSs
have two types of transitions: may (over-approximating transitions) and must (under-
approximating transitions).

A must transition from an abstract state a to an abstract state a′ implies that for all
concrete states c that correspond to a there is a successor concrete state c′ that corre-
sponds to a′. The importance of must transitions comes from the fact they are closed
under transitivity: if there is a sequence of must transitions from a to a′, we can con-
clude that all concrete states c that correspond to a can reach some concrete state c′ that
corresponds to a′.

Unfortunately, must transitions are very fragile with respect to updates of irrelevant
variables. To see this, consider, for example, two abstract states (x > 6) and (x >
8). Assume that the statement if y=0 then {x:=x+4;read(y)} is executed at
(x > 6). Since the abstraction ignores the variable y, and not all the concrete states
in (x > 6) have y = 0, there is no must transition from (x > 6) to (x > 8). For
example, the concrete state 〈7, 1〉 has no successor state in (x > 8). Current abstraction
frameworks would therefore include a may transition from (x > 6) to (x > 8), and are
likely to end up refining these states with predicates that refer to y.

This is needlessly too weak. A may transition only guarantees reachability for exis-
tentially quantified values of x and y: there exist values of x and y satisfying (x > 6)
for which there exist successor values satisfying (x > 8). The actual situation, however,
has a richer type of reachability, in which we can quantify the value of x universally
and quantify only the value of y existentially. In this work we introduce and study par-
titioned must transitions, which enable us to capture situations as above.

In order to understand our partitioned-must transitions, let us first recall earlier efforts
to extend the usefulness of must transitions. Consider again the abstract states (x > 8)
and (x > 6), and assume that the statement x:=x-4 is executed at (x > 8). Since
there are concrete states satisfying x > 8 (namely x = 9 and x = 10) for which
the assignment statement results in a successor state that does not satisfy x > 6, the
abstract transition from (x > 8) to (x > 6) is not a must transition. Augmenting MTSs
with hyper-must transitions [LX90, SG04] does not help in this setting either (and is
orthogonal to the contribution we describe here).

Such cases motivated the introduction of must− transitions [Bal04]. A must− tran-
sition from a to a′ implies that for all concrete states c′ that correspond to a′ there is
a concrete predecessor state c that corresponds to a. In the above example, there is a
must− transition from (x > 8) to (x > 6). Like must transitions (let us refer to them in
the sequel as must+ transitions), must− transitions are closed under transitivity, and as
argued in [Bal04, BKY05], they are often useful in cases must+ transitions do not exist.

While must− transitions are helpful in scenarios as above, they do not address the
fragility of must transitions with respect to updates of irrelevant variables. In particular,
in our earlier example, of (x > 6) if y=0 then {x:=x+4;read(y)} (x > 8),
there is no must− transition from (x > 6) to (x > 8), as there are concrete states
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x>8

x:=x-4;y:=0

x>6

(ii) a must -{x}  transition:

x>6

If y=0 then {x:=x+4;read(y)}

x>8

(i) a must +{x}  transition:

Fig. 1. Partitioned-must transitions

satisfying x > 8 (namely 〈9, 0〉 and 〈10, 0〉) that are not reachable from any concrete state
satisfying x > 6. Moreover, while must− transitions came to the rescue in the (x > 8)
x:=x-4 (x > 6) example, they are no longer useful when we add irrelevant variables.
Assume, for example, that the statement executed in (x > 8) is x:=x-4;y:=0. Since
the abstraction ignores the variable y and not all the concrete states in (x > 6) have
y = 0, there are concrete states in (x > 6), say 〈10, 1〉, that do not have a predecessor
in (x > 8). Accordingly, there is no must− transition in the new setting.

As hinted earlier, the idea behind our partitioned-must transitions is to restrict the
universal nature of must transitions to a subset of the variables. Given a set X of relevant
variables, we can partition the state space of the concrete system to equivalence classes
such that states in the same class agree on the values of the variables in X . Consider
again the (x > 6) if y=0 then {x:=x+4;read(y)} (x > 8) example (see
Figure 1 (i)). We argue that if we restrict attention to the set X = {x} of relevant
variables, then there is a partitioned must+ transition from (x > 6) to (x > 8) in the
following sense. For every concrete state 〈x, y〉 in (x > 6), there is a concrete state
〈x′, y′〉 in (x > 8) such that all the states in the equivalence class of 〈x′, y′〉 have a
predecessor in the equivalence class of 〈x, y〉. Indeed, x′ = x + 4 is such that all the
states in {x + 4} × IN are reachable from the state 〈x, 0〉, which is in the equivalence
class of 〈x, y〉.

In general, we say that there is a pmust+X transition from a to a′ only if for every
concrete state c that corresponds to a there is a concrete state c′ that corresponds to a′

such that there is a must− transition from the restriction of a to the equivalence class
of c to the restriction of a′ to the equivalence class of c′. Dually, there is a pmust−X
transition from a to a′ only if for every concrete state c′ that corresponds to a′ there is
a concrete state c that corresponds to a such that there is a must+ transition from the
restriction of a to the equivalence class of c to the restriction of a′ to the equivalence
class of c′. For example (see Figure 1 (ii)), in the (x > 8) x:=x-4;y:=0 (x > 6)
setting, there is a pmust−{x} transition from (x > 8) to (x > 6).

In the paper, we define partitioned-must transitions, characterize settings in which
they are useful, and study their theoretical properties. As we show, while partitioned-
must transitions exist in many realistic settings in which usual must transitions do not
exist, they retain the advantages of must transitions: they are closed under transitivity,
their calculation can be automated, and the three-valued semantics induced by usual
must transitions is refined to a multi-valued semantics that takes into an account the set
of relevant variables.
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2 Preliminaries

Programs and Concrete Transition Systems. Consider a program P . Let V be the set
of variables appearing in the program and variables that encode the program counter
(pc), and let D be the domain of all variables (for technical simplicity, we assume that
all variables are over the same domain). We model P by a concrete transition system in
which each state is labeled by a valuation in D|V |.

A concrete transition system (CTS) is a tuple C = 〈SC , IC , −→C〉, where SC is a
(possibly infinite) set of states, IC ⊆ SC is a set of initial states, −→C⊆ SC × SC is a
total transition relation. Let c−→C

∗c′ denote that state c′ is reachable from state c via a
path of transitions.

Predicate Abstraction. Let Φ = {φ1, φ2, . . . , φn} be a set of predicates (quantifier-free
formulas of first-order logic) over the program variables V . In the CTS of the program,
each concrete state c corresponds to a valuation of V . Given a program state c and
formula φ, let c |= φ indicate that formula φ is true in state c (c is a model of φ). For a
set a ⊆ Φ and an assignment c ∈ DV , we say that c satisfies a iff c |=

∧
φi∈a φi.

In predicate abstraction, we merge a set of concrete states into a single abstract state,
which is defined by means of a subset of the predicates. Thus, an abstract state is given
by a set of predicates a ⊆ Φ.1 We sometimes represent a by a formula, namely the
conjunction of predicates in a. For example, if a = {(x ≥ y), (0 ≤ x < n)} then
we also represent a by the formula (x ≥ y) ∧ (0 ≤ x < n). We define the set of
concrete states corresponding to a, denoted γ(a), as all the states c that satisfy a; that
is, γ(a) = {c | c |= a}.

May and Must Transitions. Given a CTS and its (predicate) abstraction via a set of
predicates Φ, a modal transition system (MTS) contains three kinds of abstract transi-
tions between abstracts states a and a′ (a, a′ ⊆ Φ, and we assume that Φ is clear from
the context):

– may(a, a′) if there is c ∈ γ(a) and a c′ ∈ γ(a′), such that c −→C c′.
– must+(a, a′) only if for every c ∈ γ(a), there is c′ ∈ γ(a′) such that c −→C c′.
– must−(a, a′) only if for every c′ ∈ γ(a′), there is c ∈ γ(a) such that c −→C c′.

While may transitions over-approximate the transitions of the CTS, both types of
must transitions under-approximate it. It is not hard to see that must transitions are
closed under transitivity, and can therefore be used to prove reachability in the concrete
system. Formally, if there is a sequence of must+ transitions from a to a′, denoted
must+

∗(a, a′), then for all c ∈ γ(a), there is c′ ∈ γ(a′) such that c−→C
∗c′. The same

holds for must−. Formally, if there is a sequence of must− transitions from a to a′,
denoted must−∗(a, a′), then for all c′ ∈ γ(a′), there is c ∈ γ(a) such that c−→C

∗c′.
On the other hand, may transitions are not transitive. Indeed, it may be the case that

may(a, a′), may(a′, a′′) and still for all c ∈ a and c′′ ∈ a′′, we have c 
−→C
∗c′.

1 In the full generality of predicate abstraction, an abstract state is represented by a set of set of
predicates (that is a, disjunction of conjunction of predicates). All our results hold for the more
general setting.
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Weakest Preconditions and Strongest Postconditions. In many applications of pred-
icate abstraction, Ψ includes a predicate for the program counter. Accordingly, each
abstract state is associated with a location of the program, and thus it is also associated
with a statement. For a statement s and a predicate e over V , the weakest precondition
WP(s, e) and the strongest postcondition SP(s, e) are defined as follows [Dij76]:

– The execution of s from every state that satisfies WP(s, e) results in a state that
satisfies e, and WP(s, e) is the weakest predicate for which the above holds.

– The execution of s from a state that satisfies e results in a state that satisfies SP(s,e),
and SP(s, e) is the strongest predicate for which the above holds.

Must transitions can be computed automatically using weakest preconditions and
strongest postconditions. Indeed, statement s induces the transition must+(a, a′) iff
a ⇒ WP(s, a′), and induces the transition must−(a, a′) iff a′ ⇒ SP(s, a).

3 Partitioned-Must Transitions

Recall that we consider programs with variables V over the domain D. For a set X ⊆ V ,
we define a relation ∼X⊆ DV × DV between concrete states such that c ∼X c′ iff c
and c′ agree on the values of the variables in X . For a concrete state c, let [c]X = {c′ :
c ∼X c′}; that is, [c]X is the set of concrete states that agree with c on the values of the
variables in X .

We are now ready to introduce partitioned-must transitions. The idea is to partition
the variables of the program to relevant (X) and irrelevant (V \X) variables and restrict
the universal quantification in must transitions to range over the equivalence classes of
∼X . Formally, we have the following.

Definition 1. Consider two abstract states a and a′, and a set X ⊆ V .

1. There is a pmust+X transition from a to a′, denoted pmust+X(a, a′), only if for all
c ∈ γ(a) there is c′ ∈ γ(a′) such that must−([c]X ∧ a, [c′]X ∧ a′).

2. There is a pmust−X transition from a to a′, denoted pmust−X(a, a′), only if for all
c′ ∈ γ(a′) there is c ∈ γ(a) such that must+([c]X ∧ a, [c′]X ∧ a′).

Example 1. Let us go back to the examples discussed in Section 1 and review them
formally. Consider the transition (x > 6) if y=0 then {x:=x+4;read(y)}
(x > 8). Assume that V = {x, y}, and let the domain of both variables be IN. There
is a pmust+{x} transition from (x > 6) to (x > 8). Indeed, for all concrete states
〈x, y〉 ∈ γ(x > 6), there exists the concrete state 〈x + 4, y〉 ∈ γ(x > 8) for which
must−([〈x, y〉]{x}, [〈x + 4, y〉]{x}). To see the latter, note that [〈x + 4, y〉]{x} = {x +
4}× IN, and each state in {x+ 4}× IN is reachable from 〈x, 0〉, which is in [〈x, y〉]{x}.
Thus, the partition to {x} and {y} circumvents the need to refer to the value of y in the
destination state.

Consider the transition (x > 8) x:=x-4; y:=0 (x > 6). There is a pmust−{x}
transition from (x > 8) to (x > 6). Indeed, for all concrete states 〈x, y〉 ∈ γ(x > 6),
there exists the concrete state 〈x + 4, y〉 ∈ γ(x > 8) for which must+

([〈x+ 4, y〉]{x}, [〈x, y〉]{x}). To see the latter, note that [〈x+ 4, y〉]{x} = {x+ 4} × IN.
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Executing the statement x:=x-4;y:=0 from a state in {x+4}× IN results in the state
〈x, 0〉, which is in [〈x, y〉]{x} = {x} × IN. Thus, also here, the partition to {x} and {y}
circumvents the need to refer to the value of y in the destination state.

Example 1 demonstrates cases in which must+ and must− transitions do not exist but
partitioned-must transitions do exist. Below we characterize such cases in general:

– The abstraction refers to variables in X only, and the statement involves an as-
signment to variables in V \ X . Here, there is no must− transition, but there is a
pmust−X transition. The example (x > 8) x:=x-4;y:=0 (x > 6) is emblematic
of this case.

– The abstraction refers to variables in X only, and the statement involves guards on
the variables in V \ X . The range of the guarded variables in the post state is not
restricted to these that satisfy the guard (due to nondeterminism or the infiniteness
of the domain). Here, there is no must+ transitions, but there is a pmust+X transi-
tion. The example (x > 6) if y=0 then {x:=x+4; read(y)} (x > 8) is
emblematic of this case. An example of a similar nature but with more restricted
nondeterminism is

(x > 6) if y is odd then {x:=x+4;(skip|y:=y-1)} (x > 8).

Here, not all concrete states 〈x, y〉 ∈ γ(x > 6) have a successor in γ(x > 8),
but for all concrete states 〈x, y〉 ∈ γ(x > 6), there exists the concrete state
〈x + 4, y〉 ∈ γ(x > 8) for which must−([〈x, y〉]{x}, [〈x + 4, y〉]{x}). Indeed, the
nondeterministic assignment guarantees that all values of y have a pre-state with an
odd value. As a last example for this case, consider

(x > 6) if y>=10 then {x:=x+4; y:=y-10} (x > 8).

Here, the program is deterministic, and still, the fact IN is infinite, thus y can take
any value that is greater than or equal to 0, implies that all values of y in the post-
state are covered by values greater than or equal to 10 in the pre-state.

– The abstraction refers to all variables, but for these in X , it over-approximates the
value in the post-state and for these in V \ X it over-approximates the value in the
pre-state. While there are no must+ or must− transitions, there are pmust+X and
pmust−V \X transitions. A typical example for this case is

(x > 6, y > 8) x:=x+4;y:=y-4 (x > 8, y > 6).

We now show that partitioned-must transitions are closed under transitivity. For two
abstract states a and a′ and a set of variables X ⊆ V , we use pmust+X

∗
(a, a′) to

indicate that there is a (possibly empty) sequence of pmust+X transitions from a to a′.
Formally, there are a1, a2, . . . , an such that a = a1, an = a′, and for all 1 ≤ i < n, we
have that pmust+X(ai, ai+1). The notation pmust−X

∗
(a, a′) is defined similarly as the

transitive closure of pmust−X transitions.
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Proposition 1. [transitive closure] Consider two abstract states a and a′, and a set
X ⊆ V .

1. If pmust+X
∗
(a, a′), then for all c ∈ γ(a) there exists c′ ∈ γ(a′) such that

must−∗([c]X ∧ a, [c′]X ∧ a′).
2. If pmust−X

∗
(a, a′), then for all c′ ∈ γ(a′) there exists c ∈ γ(a) such that

must+
∗([c]X ∧ a, [c′]X ∧ a′).

Proof: We prove the forward case, the backwards case is dual. Assume that
pmust+X

∗(a, a′). Let a1, a2, . . . , an be such that a = a1, a′ = an, and for all 1 ≤ i <
n, we have pmust+X(ai, ai+1). We prove that for all c1 ∈ γ(a1) there is cn ∈ γ(an)
such that must−∗([c1]X ∧ a1, [cn]X ∧ an). The proof proceeds by induction on the
length of the sequence of transitions (i.e., n − 1). If n = 1, the sequence is empty
and the requirement follows from the definition of ∗. Assume that the claim holds for
sequences of length n, and consider a sequence of length n+1. By the induction hypoth-
esis, for all c1 ∈ γ(a1) there is cn ∈ γ(an) such that must−∗([c1]X ∧ a1, [cn]X ∧ an).
Since pmust+X

∗
(an, an+1), then for all cn ∈ γ(an) there is cn+1 ∈ γ(an+1) such that

must−([cn]X ∧ an, [cn+1]X ∧ an+1). By the transitivity of must−, we can conclude
that must−∗([c1]X ∧ a1, [cn+1]X ∧ an+1).

Traditional must+ and must− transitions can be viewed as the two polar cases of
partitioned must transitions. Formally, we have the following:

Proposition 2. For all abstract states a and a′, the following hold.

1. must+(a, a′) iff pmust+V (a, a′) iff pmust−∅ (a, a′).
2. must−(a, a′) iff pmust+∅ (a, a′) iff pmust−V (a, a′).

Proof: We prove the forward case, the backwards case is dual. When X = V , the
relation ∼X relates each state only with itself. Thus, pmust+V (a, a′) iff for all c ∈ γ(a)
there is c′ ∈ γ(a′) such that must−(c, c′). Since for concrete states, we have that
must−(c, c′) coincides with c −→C c′, it follows that must+(a, a′) iff pmust+V (a, a′).

When X = ∅, the relation ∼X relates all states in DV . Thus, the condition
must+([c]X ∧a, [c′]X∧a′) is independent of c and c′ and is equivalent to must+(a, a′).

Remark 1. There are abstract states a and a′ such that must+(a, a′) and must−(a, a′)
and the only sets X for which pmust+X(a, a′) or pmust−X(a, a′) are the polar ones.

To see this, consider Boolean variables x and y and let a = a′ = true. The transition
if x=y then skip else swap(x,y) induces a must+ as well as a must−

transition from a to a′. The four possible partitions of {x, y} and the partitioned transi-
tions they induce are described in Figure 2. As described there, there is no pmust+{x},

pmust−{x}, pmust+{y}, or pmust−{y} transition from a to a′.

Example 2. We demonstrate the usefulness of partitioned-must transitions with a vari-
ant of the well-known algorithm for calculating the greatest-common-divisor of two
positive integers. Consider the function gcd described in Figure 3.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Better Under-Approximation of Programs by Hiding Variables 321

00      01      10       11

00      01      10       11

X={}

00      01      10       11

00      01      10       11

X={x}

00      01      10       11

00      01      10       11

X={x,y}

00      01      10       11

00      01      10       11

X={y}

Fig. 2. Existence and nonexistence of a partitioned-must transition

gcd(x,y) {
(1) assume(x>0);
(2) assume(y>0);
(3) int t:=0;
(4) while (x!=y) do if (x>y) then x:=x-y;t:=t+1

else y:=y-x
}

Fig. 3. The function gcd

In addition to the variables x and y whose gcd is calculated, the function maintains a
variable t that counts the number of iterations in which x > y. Consider an abstraction
that refers to x, y, and the program counter pc. Consider the abstract state a = (pc =
4 ∧ x > 0 ∧ y > 0 ∧ x 
= y). We would like to show that all values of x, y, and pc
that satisfy a are successors of other values that satisfy a. Thus, whenever we are in the
loop with x 
= y, we have a predecessor in the loop with x 
= y. An attempt to prove the
above with must− transitions fails: since the abstraction ignores the value of t, concrete
states that satisfy a and in which t = 0 may not have a predecessor that satisfy a (as
they may be reachable only from states visited before the execution of the loop, and in
which pc 
= 4). Hiding the variable t, however, we can prove the above by showing that
pmust−{x,y,pc}(a, a). To see the latter, observe that for all 〈x, y, t, pc〉 ∈ γ(a), we have

that must+([〈x + y, y, t, pc〉]{x,y}, [〈x, y, t, pc〉]{x,y}). Indeed, satisfying a guarantees
that pc = 4, and the execution of the statement in pc = 4 from the values 〈x+y, y, t, 4〉,
which satisfy a, results in values 〈x, y, t, 4〉.

Now, consider the abstract state b = (pc = 4 ∧ x > 0 ∧ y > 0 ∧ x = y), for
which all corresponding concrete states cause the while loop to terminate. We would
like to show that all values of x, y, and pc that satisfy b are successors of other val-
ues that satisfy a. Thus, whenever we are in the loop with x = y, we have a pre-
decessor in the loop with x 
= y. Again, an attempt to prove the above with must−

transitions fails: since the abstraction ignores the value of t, concrete states that sat-
isfy b and in which t = 0 may not have a predecessor that satisfies the pc = 4
conjunct in a. Hiding the variable t, however, we can prove the above by showing
that pmust−{x,y,pc}(a, b). To see the latter, observe that for all 〈x, y, t, pc〉 ∈ γ(b), we

have that must+([〈x, 2x, t, pc〉]{x,y}, [〈x, y, t, pc〉]{x,y}). Finally, by the transitivity of
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pmust−X transitions, we can conclude that whenever we are about to leave the loop with
x = y, and for any desired iteration count i, we can go back i transitions and stay in the
loop with x 
= y.

4 Calculation of Partitioned-Must Transitions

As Example 2 shows, the calculation of partitioned-must transitions may not be easy.
In this section we show that this calculation can be automated. We start with pmust+X
transitions.

Theorem 3. Consider two abstract states a and a′ and a set X ⊆ V . Let s be the
statement executed in a. The following are equivalent.

1. pmust+X(a, a′).
2. For all c ∈ γ(a) there is c′ ∈ γ(a′) such that ([c′]X ∧ a′) ⇒ SP(s, [c]X ∧ a).
3. For all c ∈ γ(a), there is an equivalence class θ of ∼X such that θ∧a′ is satisfiable

and (θ ∧ a′) ⇒ SP(s, [c]X ∧ a).

Proof: We prove that both (1) and (3) are equivalent to (2). We start by proving that
(1) ↔ (2). By Definition 1, pmust+X(a, a′) iff for all c ∈ γ(a) there is c′ ∈ γ(a′) such
that must−([c]X ∧a, [c′]X ∧a′). By the definition of must− transitions, the latter holds
iff ([c′]X ∧ a′) ⇒ SP(s, [c]X ∧ a), and we are done.

It is left to prove that (2) ↔ (3). Assume first that (2) holds. Thus, for all c ∈ γ(a)
there is c′ ∈ γ(a′) such that ([c′]X ∧ a′) ⇒ SP(s, [c]X ∧ a). Then, given c ∈ γ(a), the
set θ = [c′]X is an equivalence class of ∼X such that θ∧a′ is satisfiable (say, by c′), and
(θ∧a′) ⇒ SP(s, [c]X ∧a). Assume now that (3) holds. Thus, for all c ∈ γ(a) there is an
equivalence class θ of ∼X such that θ ∧a′ is satisfiable and (θ ∧a′) ⇒ SP(s, [c]X ∧a).
Let c′ be such that c′ satisfies θ ∧ a′. Since θ is an equivalence class of ∼X , we have
that [c′]X ⇒ θ. Hence, c′ is such that c′ ∈ γ(a′) and ([c′]X ∧a′) ⇒ SP(s, [c]X ∧a).

We can now use Theorem 3 to describe a first-order logic formula that is valid iff the
conditions for the existence of a pmust−X transition are satisfied. Describing the for-
mula, we use x and y (possibly primed) to denote the variables in X and V \ X ,
respectively. For a predicate a over V , we use a(x, y) to indicate that the assignment of
the variables in V (described in x and y together) satisfy a. Finally, when we use x as
a predicate, it is satisfied by assignments to V that agree with x on the variables in X .

Proposition 3. There is a pmust+X transition from a to a′ only if the following formula
is valid.

∀x∀y[a(x, y) → ∃x′((∃y′.a′(x′, y′)) ∧ (∀y′.(a′(x′, y′) → SP(s, x ∧ a)))].

Proof: The formula states that for all states c ∈ γ(a) (these are the universally quan-
tified variables in x and y, when they satisfy the left-hand side of the a(x, y) → . . .
implication), there is an equivalence class of ∼X (these are the existentially quantified
variables in x′) that satisfies the condition in item (3) of Theorem 3: the intersection of
the equivalence class with a′ is not empty (there is an assignment y′ to the variables in
V \ X such that a′(x′, y′)), and every assignment in the intersection (that is, every y′

that is combined with x′ and for which a′(x′, y′)) satisfies SP(s, x ∧ a).
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We now describe a similar reasoning for pmust−X transitions. The proof is similar to
the one detailed in the proofs of Theorem 3 and Proposition 3.

Theorem 4. Consider two abstract states a and a′ and a set X ⊆ V . Let s be the
statement executed in a. The following are equivalent.

1. pmust−X(a, a′).
2. For all c′ ∈ γ(a′) there is c ∈ γ(a) such that ([c]X ∧ a) ⇒ WP(s, [c′]X ∧ a′).
3. For all c′ ∈ γ(a′) there is an equivalence class θ of ∼X such that θ∧a is satisfiable

and (θ ∧ a) ⇒ WP(s, [c′]X ∧ a′).

Proposition 4. There is a pmust−X transition from a to a′ only if the following formula
is valid.

∀x′∀y′[a′(x′, y′) → ∃x((∃y.a(x, y)) ∧ (∀y.(a(x, y) → WP(s, x′ ∧ a′))))].

When the predicates of the abstraction contain only variables appearing in X , reasoning
is simplified. We discuss this case in Section 6, where we also show the simplified ver-
sion of the formulas described in Propositions 3 and 4 for the general case. In particular,
in Example 6 there, we describe the automation of the reasoning required for the gcd
function discussed in Example 2.

5 Applications

In this section we discuss applications of partitioned-must transitions. Essentially, our
applications are these in which one is interested in weak reachability in the abstract
system. For two abstract states a and a′, we say that a′ is weakly reachable from a iff
there are concrete state c ∈ γ(a) and c′ ∈ γ(a′) such that c′ is reachable from c. While
weak reachability quantifies the states in γ(a) and γ(a′) existentially, we cannot use
may transitions in order to detect it, as may transitions are not closed under transitivity.
Thus, the way to go is to check whether must+

∗(a, a′) or must−∗(a, a′). The fragility
of must transitions with respect to irrelevant variables can then prevent the detection of
weak reachability, and we suggest to use partitioned-must transition instead. Below we
detail the applications in falsification and verification of temporal-logic specifications.

5.1 Linear-Time Falsification

In linear-time model checking, we check whether all the computations of a given pro-
gram P satisfy a specification ψ, say an LTL formula. In the automata-theoretic ap-
proach to model checking [Kur94, VW94], one constructs an automaton A¬ψ for the
negation of ψ. The automaton A¬ψ is usually a nondeterministic Büchi automaton,
where a run is accepting iff it visits a set of designated states infinitely often. The pro-
gram P is faulty with respect to ψ if the product of A¬ψ with the program contains a
fair path – one that visits the set of designated states infinitely often.

The product of A¬ψ with an MTS MP that abstracts P is an MTS that retains the
type of transitions in MP . We assume that each atomic proposition in the LTL formula
is a predicates over the variables, e.g., x > 4, x = y, etc. The alphabet of A¬ψ is then
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subsets of these predicates. The transitions in the product of A¬ψ and MP are then such
that for two abstract states a and a′ of MP and two states q and q′ of A¬ψ, we have that
there is a transition of type β (say, β is pmust+X) from the state 〈a, q〉 of the product
to the state 〈a′, q′〉 of the product iff there is a β-transition from a to a′ and there is a
transition 〈q, σ, q′〉 of A¬ψ such that a ⇒ p, for all p ∈ σ.

Since the product retains the type of transitions of the MTS, the less under-
approximating the abstraction is, the more we are likely to detect errors. When ψ is
a safety property, A¬ψ can be replaced by an automaton accepting finite bad prefixes
[KL06], and detection can be reduced to weak reachability in the product. In the general
case, we have to find a concrete state that is reachable from itself. The latter cannot be
reduced to two weak reachability queries (indeed, the same concrete state has to “glue”
the prefix of the lasso with its repeated part, and the same concrete state has to “glue”
the repeated parts), but can be reduced to the type of reachability implied by the closure
of partitioned-must transitions. Formally, we have the following.

Theorem 5. Consider the MTS M obtained by taking the product of A¬ψ and MP . Let
ainit and aacc be states of M such that ainit is initial and aacc is accepting. Consider a
set X ⊆ V . If pmust+X

∗
(ainit ,aacc) and pmust+X

∗
(aacc,aacc), or pmust−X

∗
(ainit ,aacc)

and pmust−X
∗
(aacc, aacc), then P violates ψ.

In Section 5.2, we describe a multi-valued semantics for μ-calculus that is based on
partitioned-must transitions and show, for example, that if pmust+X

∗
(ainit , aacc) and

pmust+X
∗
(aacc, aacc), then we can strengthen the conclusion in Theorem 5 to “for ev-

ery concrete state c that corresponds to ainit , at least one state in [c]X violates ψ”.
Nevertheless, the main contribution of partitioned-must transition is not the ability to
strengthen the conclusion, but the fact they are applicable in cases usual must transitions
fail.

5.2 A Multi-valued Semantics

Since abstraction hides information, the truth value of temporal-logic formulas with
respect to states of a MTS may not be definite. According to the three-valued semantics
for MTS [GJ02], the value of a formula θ in abstract state a is T, denoted [a |= θ] = T,
only if all the concrete states in γ(a) satisfy θ. Likewise, [a |= θ] = F, only if all the
concrete states in γ(a) do not satisfy θ. Sometimes, neither case holds, or our reasoning
is not sufficiently strong to infer that one of the cases hold [BG00], in which case the
value of θ in a is unknown, denoted [a |= θ] = ⊥. Since must transitions under-
approximate the transitions of the concrete system, they are used in the three-valued
semantics for proving existential properties. Formally, [a |= ∃ �θ] = T iff there is
a′ such that must+(a, a′) and [a′ |= θ] = T. For logics with backwards modalities,
reasoning is the same, with must− transitions.

By partitioning the variables to relevant (X) and irrelevant ones, we can refine the
three-valued semantics to one that takes the partition into an account. We say that an
abstract state a X-satisfies a formula θ, denoted [a |= θ] � TX , only if for each state
c ∈ γ(a), at least one state in [c]X ∧ a satisfies θ. Likewise, a does not X-satisfy
a formula θ, denoted [a |= θ] � FX , if for each state c ∈ γ(a), at least one state
in [c]X ∧ a does not satisfy θ. Note that the conditions for values TX1 and TX2 , for
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X1 
= X2, are not mutually exclusive, and so are the conditions for the values TX and
FX . This is why we use the � notation in the definition of the semantics. Formally, the
values are taken from the domain 2V × 2V , where a pair 〈P, N〉 ⊆ 2V × 2V consists of
a positive set: all maximal sets X ⊆ V for which [a |= θ] � TX and a negative set: all
maximal sets X ⊆ V for which [a |= θ] � FX . Saying that [a |= θ] � TX means that
at least one of the sets in P contains X , and similarly for FX and N . Note that when
P = ∅, the positive set is unknown, and similarly for N .

When X = V , we have that [c]X = {c}. Accordingly, the values TV and FV co-
incide with the standard T and F values from the three-valued semantics. Also, when
X = ∅, we have that [c]X = DV . Accordingly, the values T∅ and F∅ coincide with
the existential T∃ and F∃ values from the six-valued semantics studied in [BKY05].
Finally, it is interesting to note that the semantics is monotonic, in the sense that if
[a |= θ] � TX and X ′ ⊆ X , then [a |= θ] � TX′ . Thus, our semantics is a natural
refinement of the existential semantics in [BKY05].

As with the existential semantics, however, the weakness of the TX and FX values
is the fact that their conjunction does not correspond to meet in the (2V , ⊆) lattice, and
results in ⊥. An exception is the TV value, where TV ∧TX = TX , for all X ⊆ V . Since
our main motivation for partitioned-must transitions is reachability, and reachability
corresponds to a least fixed point in which the main Boolean operator is a disjunction,
the above weakness is not too discouraging. Still, the significance of the semantics here
is mainly theoretical, and its goal is to give a logical counterpart of partitioned-must
transitions.

Formally, the value of a μ-calculus formula θ in a state a of a MTS is defined by
induction on the structure of θ as follows. We describe the semantics for full μ-calculus,
which has both forward (∃ �) and backwards (∃ �- ) modalities. We assume a μ-calculus
in which each atomic proposition is a predicate over the variables, e.g., x > 4, x = y,
etc. We refer to the set of variables appearing in the atomic proposition p by var (p).

[a |= p] �

⎧
⎪⎪⎨

⎪⎪⎩

TX if (var(p) ⊆ X and a |= p) or
(var(p) 
⊆ X and [c]X ∧ a ∧ p is satisfiable for all c ∈ γ(a)),

FX if (var(p) ∈ X and a |= ¬p) or
(var(p) 
∈ X and [c]X ∧ a ∧ ¬p is satisfiable for all c ∈ γ(a)).

[a |= ¬θ] �
{

TX if [a |= θ] � FX ,
FX if [a |= θ] � TX .

[a |= θ ∧ θ′] �
{

TX if [a |= θ] � TV and [a |= θ′] � TX .
FX if [a |= θ] � FV and [a |= θ′] � FX .

[a |= θ ∨ θ′] �
{

TX if [a |= θ] � TX or [a |= θ′] � TX .
FX if [a |= θ] � FX or [a |= θ′] � FX .

[a |= ∃ �θ] �
{

TX if there is a′ such that pmust+X(a, a′) and [a′ |=X θ] � TX ,
FV if for all a′ such that may(a, a′), we have that [a′ |=X θ] � FV .

[a |= ∃ �- θ] �
{

TX if there is a′ such that pmust−X(a′, a) and [a′ |=X θ] � TX ,
FV if there is a′ such that may(a′, a) and [a′ |=X θ] � TV .

Note that when var (p) ⊆ X , we have that [c]X ∧ a ∧ p is satisfiable for all c ∈
γ(a) iff a |= p. Thus, the partition to two cases in the base case does not suggest
a different semantics for each case and only suggests a simplified check for the case
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var(p) ⊆ X . Note also that for refuting existential properties (equivalently, verifying
universal properties) we proceed with usual may transitions, which corresponds to the
case X = V . For the fixed-point operators, the closure of partitioned-must transitions
under transitivity guarantees we can iterate the local ∃ �and ∃ �- modalities, as in the
usual three-valued semantics to μ-calculus [BG04]. Note that in the special case of
CTL and CTL� formulas, this amounts to letting existential path formulas range over
pmust+X and pmust−X paths [SG03].

6 Choosing the Relevant Variables

In this section we discuss the choice of the relevant variables. We first show that some
of our previous results can be simplified in case the abstraction refers only to variables
in X . Then, we show that the choice of the relevant variables need not be global, and
extend the transitive closure of partitioned-must transitions to cases in which different
transitions along the computation require different relevant variables.

6.1 An Abstraction Based on X

For a set X ⊆ V , we say that an abstraction is based on X if all the predicates in Φ refer
only to variables in X . When our abstraction is based on X , then for all abstract states a
and for all c ∈ γ(a), we have [c]X ⊆ γ(a). Accordingly, in the definition of partitioned-
must transitions, we can replace [c]X ∧ a and [c′]X ∧ a′ by [c]X and [c′]X , respectively.
Consequently, the characterization in Propositions 3 and 4 can be simplified as follows:

Proposition 5. Let a and a′ be abstract states in an abstraction that is based on X .
Then,

– pmust+X(a, a′) only if ∀x[a(x) → ∃x′.a′(x′) ∧ (x′ → SP(s, x))].
– pmust−X(a, a′) only if ∀x′[a′(x′) → ∃x.a(x′) ∧ (x → WP(s, x′))].

Example 6. The function gcd described in Example 2 is based in {x, y, pc}. Hence, the
existence of the pmust−{x,y,pc} transitions demonstrated there follows from the validity
of the following formulas (since a and b fix pc to 4, we ignore it in the formulas).

– pmust−{x,y,pc}(a, a) iff
∀x′, y′[a(x′, y′) → ∃x, y.(a(x, y) ∧ [(x > y ∧ x 
= 2y) ∨ (x < y ∧ y 
= 2x)])].

– pmust−{x,y,pc}(a, b) iff
∀x′, y′[b(x′, y′) → ∃x, y.(a(x, y) ∧ [(x > y ∧ x = 2y) ∨ (x < y ∧ y = 2x)])].

When the specification we want to check involves only predicates that appear in the
abstraction, then var (p) ⊆ X for all atomic propositions. Accordingly, for sets X such
that the abstraction is based on X , the base case of the multi-valued semantics described
in Section 5.2 can be simplified, as [a |= p] � TX if a |= p and [a |= p] � FX if
a |= ¬p.
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Fig. 4. Existence and nonexistence of dynamic transitive closure

6.2 Choosing X

Recall that our motivation is to detect weak reachability in the concrete system. Propo-
sition 1 shows that partitioned-must transitions are closed under transitivity and can
therefore be used for showing weak reachability. The theorem, however, assumes one
set X with respect to which we partition all the transitions along the path. Below we
generalize the proposition to a dynamic choice of sets according to which the transitions
are partitioned.

Proposition 6. [dynamic transitive closure] Let a1, a2, . . . , an be a sequence of ab-
stract states.

1. If there is a sequence X1 ⊆ X2 ⊆ · · · ⊆ Xn−1 ⊆ V such that for all 1 ≤ i < n,
we have that pmust+Xi

(ai, ai+1), then for every concrete state c1 ∈ γ(a1), there is
a concrete state cn ∈ γ(an), such that must−∗([c1]X1 ∧ a1, [cn]Xn−1 ∧ an).

2. If there is a sequence V ⊇ X1 ⊇ X2 · · · ⊆ Xn−1 such that for all 1 ≤ i < n, we
have that pmust−Xi

(ai, ai+1), then for every concrete state cn ∈ γ(an), there is a
concrete state c1 ∈ γ(a1), such that must−∗([c1]X1 ∧ a1, [cn]Xn−1 ∧ an).

The proof of the proposition proceeds by an induction on n and is similar to the proof
of Proposition 1.

Remark 2. It is shown in [Bal04] that weak reachability in a framework with no
partitioned-must transitions follows from a sequence of must− transitions followed
by a sequence of must+ transitions. By Proposition 2, must+(a, a′) iff pmust+V (a, a′)
and must−(a, a′) iff pmust+∅ (a, a′). Likewise, since must+(a, a′) iff pmust−∅ (a, a′)
and must−(a, a′) iff pmust−V (a, a′), it is also a special case of the dynamic transitive
closure of pmust− transitions.

Example 7. Consider the program P1 appearing in Figure 4. Since pmust−{x,y}(a, a′)
and pmust−{y}(a

′, a′′), we can conclude that for every concrete state c′ satisfying y > 6
there is a concrete state c satisfying x > 4 such that all the states satisfying x > 4 and
that agree with c on the values of x and y can reach states that satisfy y > 6 and agree
with c′ on the value of y. Indeed, if c′ = 〈x, y, z〉, then we can take c = 〈y − 1, 0, 0〉.
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Note that nor pmust−{y}(a, a′) neither pmust−{x,y}(a
′, a′′). Thus, the dynamic choice

of relevant variables is essential.
Consider now the program P2 in the figure. It requires a dynamic choice of relevant

variables that does not satisfy the conditions of Proposition 6, as {z, y} 
⊆ {x, y}.
This is unfortunate, as it is true that for every concrete state c′ satisfying y > 4 there
is a concrete state c satisfying x > 6 such that must+([c]{x}, [c′]{y}). The cause of
this inapplicability of Proposition 6 is the fact that the assignments in the program
correspond to renaming of the variables. To see this, consider a program P ′

2 in which
the only variables are x and y, the abstract states are (x > 6), (x > 5), and (x > 4),
and statements are obtained from these of P2 by renaming z to x in the first and second
transitions and renaming y to x and x to y in the second transition. Then, we can use
pmust−{x}-transitions in order to prove that for every concrete state c′ ∈ γ(a′′), there is

concrete state c ∈ γ(a) such that must+([c]{x}, [c′]{x}).
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Abstract. Based on constraint database techniques, we present a new
approach to software verification. This new approach has some simi-
larity to abstract interpretation that uses various widening operators;
therefore, we call the new approach l-u widening. We show that our l-u
widening leads to a more precise over-approximation of the invariants in a
program than comparable previously proposed widening operators based
on difference-bound matrices, although l-u widening can be computed
as efficiently as the other widening operators. We show that constraint
database techniques can compute non-convex program invariants too.
Finally, we give a compact representation of addition-bound matrices,
which generalize difference-bound matrices.

1 Introduction

Software verification is a basic concern of computer science, hence many different
approaches were proposed for it, including data flow analysis, abstract interpre-
tation [5,13,19], model checking [1,3,8,22], predicate abstraction [12], and math-
ematical induction. Today there are many examples of successful applications of
these approaches to the verification of digital circuits and programs.

Software verification would be easy if we could compute the precise semantics
of programs. For a procedural program, the semantics means that we find for each
line of the program an invariant, which is the set of possible values of the vari-
ables that may be used at that line. While a precise computation is not possible
in general, an over-approximation or under-approximation is possible. Abstract
interpretation relies on a kind of over-approximation. More recently, constraint
database researchers proposed for constraint query languages [17,18,20,21,28],
which simplify constraint logic programs [15,4,9,16], alternative methods to over-
approximate or under-approximate the semantics [26,27]. Via well-known trans-
lations among the various programming languages, the approximation results
in constraint databases imply approximation results for the semantics of the
more traditional procedural programs. The idea of translating from procedural
programs to constraint query languages or constraint logic programs occurs in
� This research was supported in part by a Humboldt Research Fellowship from the
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Delzanno and Podelski [8], Fribourg and Richardson [11], and Fribourg and Ol-
son [10]. However, these papers did not use the latest approximation results.
For example, [11] relied on the result that the least fixpoint semantics of Dat-
alog (Prolog without function symbols and negation) with integer gap-order
constraint programs can be precisely evaluated [25].1

In this paper we present a general approach of applying the constraint
database approximation to software verification, extending earlier work in [2].
The constraint database approximations are different from abstract interpre-
tation methods, which seem closest to them among the well-known software
verification approaches. To further clarify their relationships, we introduce a
new method between the constraint database approximations in [26,27] and
abstract interpretation. We call this new method l-u-widening. We show that
l-u widening is more precise than other widening operators proposed for ab-
stract interpretation. On the other hand, program semantics approximations
based on l-u widening can be more efficiently computed than program semantics
approximations based on the constraint database techniques in [26,27] can be
computed.

The rest of this paper is organized as follows. Section 2 gives a brief review of
constraints, abstract interpretation, and difference bound matrices. It also de-
scribes addition-bound matrices which are similar to difference-bound matrices.
Section 3 presents our new l-u widening operator and its use in approximat-
ing the semantics of programs. Section 4 reviews the earlier constraint database
approximation methods and applies them to some sample programs. Section 5
presents an outline of the constraint database approach to software verification.
Section 6 describes a novel compact representation of addition-bound matri-
ces. This representation can be efficient for computer implementations. Finally,
Section 7 discusses some related and future work.

2 Basic Concepts

2.1 Constraints

We use the following basic or atomic constraints:

Lower Bound : x ≥ b
Upper Bound : −x ≥ b
Difference : x − y ≥ b
Addition : ±x ± y ≥ b
Linear : c1x1 + . . . + cnxn ≥ b

where x, y and the xis are integer or rational variables and b, called the bound,
and the cis are integer constants.

1 A gap-order is a constraint of the form x − y ≥ c or ±x ≥ c where x and y are
integer or rational variables and c is a non-negative integer constant.
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Note: For uniformity, we prefer to always use constraints that end with ”≥ b.”
We make some exceptions when other forms are clearer. For example, we use
equalities of the form x = b as a shorthand for (x ≥ b)∧(−x ≥ −b). Some authors
use the terms potential constraint and sum constraint. A potential constraint of
the form x − y ≤ b translates to the difference constraint y − x ≥ −b, and a
sum constraint of the form ±x ± y ≤ b translates to the addition constraint
±x ± y ≥ −b with changed signs for x and y. Therefore, any result on potential
constraints and sum constraints can be trivially translated to results on difference
or addition constraints and vice versa.

2.2 Abstract Interpretation

Abstract interpretation finds invariants associated with specific program loca-
tions, such that each invariant is an over-approximation of the set of possible
values of the program variables at that location, and that the invariants cannot
be extended further by additional abstract execution of the program. Each invari-
ant can be compactly described as some constraint on the program variables,
for example, conjunctions of linear equations and inequalities, if the program
variables are all rational numbers.

Abstract interpretation methods typically use a widening operator. Common
widening operators use the domains of intervals [6] or polyhedra [7,19]. During
an abstract execution of the program, the widening operator repeatedly updates
a constraint M that describes the current value of the invariant associated with
a program location with a new constraint N that describes an additional set of
possible values of the program variables at that location. This happens when
due to some program loop we reenter the same location again.

To keep things computationally feasible, the widening operator cannot just
take M ∪ N as the new value of the invariant. Instead, it calculates a convex
region, that is, a conjunction of linear inequality constraints that includes both
M and N . In addition, when we use widening operators, we need to avoid an
infinite number of repeated applications of the widening operators. The following
clever idea guarantees that: Preserve those constraints of M that are implied by
N . This looks attractive, because if M contains k linear inequalities, then at
most k widening operators can be performed on M .

2.3 Addition-Bound Matrices

Miné [23] represents a conjunction of lower bound, upper bound, and sum con-
straints over variables V = {x1, . . . , xn} by a conjunction of potential constraints
over variables V + = {x+

1 , x−
1 , . . . , x+

n , x−
n }, that is, every variable has a positive

form x+
i equivalent to xi and a negative form x−

i equivalent to −xi.
Rephrasing Miné’s idea, a conjunction of lower bound, upper bound and ad-

dition constraints C over variables V = {x1, . . . , xn} can be represented by a
conjunction of difference constraints over variables V + = {x+

1 , x−
1 , . . . , x+

n , x−
n },

as follows:
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x ≥ b ≡ x+ − x− ≥ 2b
−x ≥ b ≡ x− − x+ ≥ 2b

x + y ≥ b ≡ x+ − y− ≥ b
x − y ≥ b ≡ x+ − y+ ≥ b

−x + y ≥ b ≡ x− − y− ≥ b
−x − y ≥ b ≡ x− − y+ ≥ b

Now a conjunction of difference constraints can be simplified as follows. If
the conjunction contains two difference constraints of the form x − y ≥ b and
x − y ≥ c where b > c, then we can delete the second constraint, because it is
already implied by the first constraint. By this simplification, there is at most
one constraint with the left hand hide x−y, for any pair of variables x and y. We
apply this simplification to the conjunction of difference constraints that result
after our translation.

The conjunction of difference constraints C over variables {x1, . . . , xn} can be
represented by an n × n Addition-Bound Matrix M , which is defined as follows:

M [i, j] =
{

b if (xi − xj ≥ b) ∈ C
−∞ otherwise

}

Note: Rather confusingly, it is common to call Difference-Bound Matrices
(DBMs) those matrices that represent conjunctions of potential constraints C
and are actually defined as having entry b if xi − xj ≤ b is in C and +∞ oth-
erwise. We use the term Addition-Bound Matrix (ABM) because we ultimately
represent by ABMs conjunctions of addition, lower bound, and upper bound
constraints over V , although not directly as we first translate these constraints
to conjunctions of difference constraints over V +.

Example 1. Consider the following conjunction of lower bound, upper bound,
and addition constraints over the variables x and y:

−x ≥ −25, y ≥ 3, x − y ≥ 4, x + y ≥ 10, − x − y ≥ −40

These can be translated into the following difference constraints over the vari-
ables x+, x−, y+, y−:

x− −x+ ≥ −50, y+ −y− ≥ 6, x+ −y+ ≥ 4, x+ −y− ≥ 10, x− −y+ ≥ −40

This set of difference constraints can be represented by the following ABM:

x+ x− y+ y−

x+ −∞ −∞ 4 10
x− −50 −∞ −40 −∞
y+ −∞ −∞ −∞ 6
y− −∞ −∞ −∞ −∞
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This simple representation of ABMs will suffice to describe the main theorems
of the paper. Later in Section 6, we outline a more compact ABM representation
that may lead to a more efficient computer implementation.

2.4 Operations on ABMs

Next we define some basic operators on ABMs.

Definition 1. Let M and N be two ABMs. Then the min of M and N , written
as M ∨ N , is defined as follows.

[M ∨ N ] [i, j] = min(M [i, j], N [i, j])

Alternatively, we can write the above as:

[M ∨ N ] [i, j] =
{

M [i, j] if M [i, j] ≤ N [i, j]
N [i, j] if N [i, j] ≤ M [i, j]

}

Miné’s widening operator on DBMs [23] can be rephrased on ABMs as follows.

Definition 2. Let M and N be two ABMs. Then the widening of M by N ,
written as M�N , is defined as follows.

[M�N ] [i, j] =
{

M [i, j] if M [i, j] ≤ N [i, j]
−∞ if N [i, j] < M [i, j]

}

Example 2. Let M be as in Example 1, and let N be the following ABM:

x+ x− y+ y−

x+ −∞ −∞ 15 10
x− −60 −∞ −∞ −∞
y+ −∞ 7 −∞ 2
y− −∞ −∞ −∞ −∞

In this case M ∨ N is:

x+ x− y+ y−

x+ −∞ −∞ 4 10
x− −60 −∞ −∞ −∞
y+ −∞ −∞ −∞ 2
y− −∞ −∞ −∞ −∞

while M�N is:

x+ x− y+ y−

x+ −∞ −∞ 4 10
x− −∞ −∞ −∞ −∞
y+ −∞ −∞ −∞ −∞
y− −∞ −∞ −∞ −∞
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3 The l-u-Widening Operator

We say matrix M has domain D if all entries of M are in D. If all entries of
M are ≥ l and ≤ u or −∞, where l and u are some integer constants, then
the domain of M is {−∞} ∪ {l, l + 1, . . . , u − 1, u}. (The domain of M should
not be confused with the domain of the variables which are integer or rational
numbers.)

We now introduce the l-u-widening operator.

Definition 3. Let l < 0 and u > 0 be two integer numbers. Let M and N be
two ABMs such that the domain of M is {−∞} ∪ {l, l + 1, . . . , u − 1, u}. Then
the l-u-widening of M by N , written as M♦l,uN , is defined as follows.

[M♦l,uN ] [i, j] =

⎧
⎨

⎩

M [i, j] if M [i, j] ≤ N [i, j]
N [i, j] if l ≤ N [i, j] < M [i, j]
−∞ if N [i, j] < l ≤ M [i, j]

⎫
⎬

⎭

Example 3. Let us continue Example 2 and find M♦−50,50N , the l-u-widening
of M and N with l = −50 and u = 50.

x+ x− y+ y−

x+ −∞ −∞ 4 10
x− −∞ −∞ −∞ −∞
y+ −∞ −∞ −∞ 2
y− −∞ −∞ −∞ −∞

3.1 Properties of l-u-Widening

In this section we compare the precision of the widening and l-u-widening oper-
ators. Let S be the solution space of an ABM or union of ABMs. We have the
following.

Theorem 1. For any l < 0 and u > 0, the following holds:

S(M ∪ N) ⊆ S(M ∨ N) ⊆ S(M♦l,uN) ⊆ S(M�N).

Proof. By Definition 1, each entry of M ∨ N is smaller than the corresponding
entry in either M or N . Hence S(M) ⊆ S(M ∨N) and S(N) ⊆ S(M ∨N) hold.
Therefore, S(M ∪ N) ⊆ S(M ∨ N) also must hold.

By Definition 3, the minimum, widening and l-u-widening operators behave
the same when M [i, j] ≤ N [i, j]. When N [i, j] < M [i, j] then there are two cases.
In the first case, when l ≤ N [i, j], then the �l-u-widening operator behaves like
the minimum operator and returns N [i, j], and if N [i, j] < l, then it behaves like
the widening operator and returns −∞. Therefore, S(M ∨ N) ⊆ S(M♦l,uN) ⊆
S(M�N) must hold. ��

Definition 4. Given a program P , and values l < 0 and u > 0, the result of
evaluating its least fixed point using l-u-widening is written as P l,u.
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The following is the main l-u-approximation theorem.

Theorem 2. Let l < 0 and u > 0 be integer constants. For any program P with
m lines and n variables the following holds.

lfp(P ) ⊆ W l,u

where lfp(P ) is the least fixed point of P . Further, W l,u can be computed using
O(|u − l|mn2) time.

Proof. We start evaluating P . For each new line Li of P , when we find the first
ABM for it, we change all entries greater than u to u and call the resulting ABM
Mi. Then whenever a new ABM N is found for line Li, we update Mi to be the
result of Mi♦l,uN . This ensures that the domain of each Mi is {−∞} ∪ {l, l +
1, . . . , u−1, u} throughout the approximate evaluation. In each iteration at least
one entry in at least one of the Mis must decrease. Moreover, each entry can
decrease at most |u − l| times and each Mi has n2 entries. Since there are m
number of Mis, the total number of iterations is at most |u−l|mn2. It is also clear
that the approximate evaluation is always computing an upper approximation
of the actual least fixed point. ��

The computational complexity of the l-u-widening operator is similar to that
of Miné’s widening operator, which needs O(mn2) iterations. If the values of u
and l are fixed constants, then the use of the two widening operators will have
the same complexity. However, there are reasons to vary the values of l and u,
because we can also get tighter approximations using increasingly smaller values
of l or larger values of u. That is, we can show the following.

Theorem 3. For each program P and constants l1, l2, u1, and u2 such that
l1 ≤ l2 < 0 < u2 ≤ u1, the following condition holds:

W l1,u1 ⊆ W l2,u2

3.2 A Simple Program with Goto Statements

Consider the following simple program fragment.

1 a = 0
2 a = a + 1
3 if a > 2 then goto 6
4 if a = 2 then goto 7
5 goto 2
6
7

Let us see how this widening operator works on this program. Let Li,j be
the invariant at the beginning of line i at the jth entry of that line. Initially all
Li,0 are empty. L2,1 = {a = 0} (which, like all equalities, is just a shorthand
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for a conjunction of two inequalities, namely in this case {0 ≤ a ≤ 0}), and
L3,1 = {a = 1}. Lines 3 and 4 have false if conditions and do not change the
value of a, hence L4,1 = L5,1 = {a = 1}. The execution of line 5 takes us back
to the beginning of line 2 with no change in a. This is the second entry to line
2, hence L2,2 = L2,1�L5,1 = {a = 0}�{a = 1} = {a ≥ 0}. When a = a + 1 is
executed, this yields a ≥ 1. We enter line 3 for the second time. By widening
we get L3,2 = L3,1�{a ≥ 1} = {a = 1}�{a ≥ 1} = {a ≥ 1}. We enter the if
statement and find that L3,2 ∧ (a > 2) = (a ≥ 1) ∧ (a > 2) = a > 2. That
is, our invariant (or rather our current best estimate of the possible values of
the program variable a at the beginning of line 3) and the condition of the if
statement overlap on a > 2, which clearly is a nonempty set. Hence we enter line
6 with L6,1 = {a > 2}. This example can be summarized in the table below.

Invariants Obtained by Widening

Line 1st Entry 2nd Entry

2 0 ≤ a ≤ 0 0 ≤ a
1 ≤ a

3 1 ≤ a ≤ 1 if condition a > 2 true
goto 6

4 1 ≤ a ≤ 1
5 1 ≤ a ≤ 1

However, the above program analysis is wrong. Actually, the program can
never enter line 6. When we first get to line 5, a = 1. Hence when we get back
to line 2 and execute a = a + 1, then a = 2. Therefore the if condition of line
3 will fail, and the program goes on to line 4. The if condition of line 4 will be
true, hence we go to line 7 and never enter line 6.

Clearly, the invariant analysis is not precise enough. The inductive general-
ization that the widening operator applies (for example, in the above program
from a = 0 and a = 1 to a ≥ 0) is often very useful and powerful, but it has to
be applied more judiciously. At the present, there are only some limited tech-
niques in the abstract interpretation area to get around the above problem. For
example, we may establish a priori a set of constraints K and widen M up-to
K only, but finding a suitable K is easier said than done. For example, if K
contains {a ≤ 3}, then we may widen a = 0 and a = 1 to 0 ≤ a ≤ 3, but then
the program analysis would be still incorrect.

Now let us see how the l-u widening works on the same program with l = −5
and u = 5. The crucial difference is that on the second entry to line 2, we obtain
L2,2 = L2,1♦−5,5L5,1 = {a = 0}♦−5,5{a = 1} = {0 ≤ a ≤ 1}. When a = a + 1
is executed, this yields 1 ≤ a ≤ 2. We enter line 3 for the second time and get
L3,2 = L3,1♦−5,5{1 ≤ a ≤ 2} = {1 ≤ a ≤ 2}. We enter the if statement but find
that L3,2 ∧(a > 2) is unsatisfiable. Therefore. we continue to line 4 and find that
L4,2 = L4,1♦−5,5{1 ≤ a ≤ 2} = {1 ≤ a ≤ 2}. W enter the if statement and find
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that L4,2 ∧ a = 2 is satisfiable. Hence we go to line 7. The invariants found by
the l-u widening are summarized in the table below.

Invariants Obtained by l-u Widening

Line 1st Entry 2nd Entry

2 0 ≤ a ≤ 0 0 ≤ a ≤ 1
3 1 ≤ a ≤ 1 1 ≤ a ≤ 2

if condition a > 2 false
1 ≤ a ≤ 2

4 1 ≤ a ≤ 1 if condition a = 2 true
goto 7

5 1 ≤ a ≤ 1

3.3 The Subway Train Example

Let us consider the following subway train speed regulation system described by
Halbwachs [13]. Each train detects beacons that are placed along the track and
receives a “second” signal from a central clock.

Let b and s be counter variables for the number of beacons and second signals
received. Further, let d be a counter variable that describes how long the train
is applying its brake. The goal of the speed regulation system is to keep | b − s |
small while the train is running.

The speed of the train is adjusted as follows. When s+ 10 ≤ b, then the train
notices it is early and applies the brake as long as b > s. Continuously braking
causes the train to stop before encountering 10 beacons.

When b + 10 ≤ s the train is late and will be considered late as long as b < s.
As long as any train is late, the central clock will not emit the second signal.

The following program implements the subway train regulation using parallel
case statements. In a parallel case statement one of the cases is selected randomly.
If the condition of the selected case statement is false, then another is selected
and executed. This repeats until one of the cases succeeds.

Train(b,s,d)
1 ONTIME

begin parallel
2 if b − s > −9 then s = s + 1 goto ONTIME
3 if b − s = −9 then s = s + 1 goto LATE
4 if b − s < 9 then b = b + 1 goto ONTIME
5 if b − s = 9 then b = b + 1 goto BRAKE

end parallel
6 LATE

begin parallel
7 if b − s < −1 then b = b + 1 goto LATE
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8 if b − s = −1 then b = b + 1 goto ONTIME
end parallel

9 STOPPED
begin parallel

10 if b − s > 1 then s = s + 1 goto STOPPED
11 if b − s = 1 then s = s + 1 goto ONTIME

end parallel
12 BRAKE

begin parallel
13 if b − s > 1 then s = s + 1 goto BRAKE
14 if b − s = 1 then s = s + 1, d = 0 goto ONTIME
15 if d < 9 then b = b + 1, d = d + 1 goto BRAKE
16 if d ≤ 9 then b = b + 1, d = 0 goto STOPPED

end parallel

Suppose we know that the subroutine Train can be called with any values
where b = s and d = 0. We need to find all the possible values of the variables
b, s and d in all lines of the program.

Note that variable d is changed only in the parallel case statement after
BRAKE. When we exit the BRAKE region and go to either ONTIME or
STOPPED, then d is reset to 0. Hence d always remains 0 outside of the BRAKE
region. This simplifies the analysis for the other three cases. With only variables
b and s, each conjunction of difference constraints can be represented in the
form:

c1 ≤ b ≤ c2, c3 ≤ s ≤ c4, c5 ≤ b − s ≤ c6

where c1, c2, c3, c4, c5, c6 are constants that may be omitted.

L1,1 = {0 ≤ b − s ≤ 0}
line 2 causes return to ONTIME with {−1 ≤ b − s ≤ −1}
line 3 fails
line 4 causes return to ONTIME with {1 ≤ b − s ≤ 1}
line 5 fails
L1,2 = L1,1�({−1 ≤ b − s ≤ −1} � {1 ≤ b − s ≤ 1}) = {−1 ≤ b − s ≤ 1}

...L1,9 = {−9 ≤ b − s ≤ 9}
line 2 causes return to ONTIME with {−9 ≤ b − s ≤ 8}
line 3 causes entry to LATE with {−10 ≤ b − s ≤ −10}
line 4 causes return to ONTIME with {−8 ≤ b − s ≤ 9}
line 5 causes entry to BRAKE with {10 ≤ b − s ≤ 10}
L1,10 = L1,9

L6,1 = {−10 ≤ b − s ≤ −10}
line 7 causes return to LATE with {−9 ≤ b − s ≤ −9}
line 8 fails
L6,2 = L6,1�{−9 ≤ b − s ≤ −9} = {−10 ≤ b − s ≤ −9}
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...L6,10 = {−10 ≤ b − s ≤ −1}
line 7 causes return to LATE with {−10 ≤ b − s ≤ −2}
line 8 causes return to ONTIME with {−1 ≤ b − s ≤ −1}
L6,11 = L6,10
L1,11 = L1,10

L12,1 = {10 ≤ b − s ≤ 10, d = 0}
line 13 causes return to BRAKE with {9 ≤ b − s ≤ 9, d = 0}
line 14 fails
line 15 causes return to BRAKE with {11 ≤ b − s ≤ 11, d = 1}
line 16 causes entry to STOPPED with {11 ≤ b − s ≤ 11, d = 0}
L12,2 = L12,1�({9 ≤ b−s ≤ 9, d = 0}�{11 ≤ b−s ≤ 11, d = 1} = {9 ≤ b−s ≤
11, 0 ≤ d ≤ 1}

...line 16 causes entry to STOPPED with {2 ≤ b − s ≤ 20, d = 0}
L12,10 = {1 ≤ b − s ≤ 19, 0 ≤ d ≤ 9}

L9,1 = {2 ≤ b − s ≤ 20, d = 0}
line 10 causes return to STOPPED with {1 ≤ b − s ≤ 19, d = 0}
line 11 fails
L9,2 = L9,1�{1 ≤ b − s ≤ 19, d = 0} = {1 ≤ b − s ≤ 20, d = 0}
line 10 causes return to STOPPED with {1 ≤ b − s ≤ 19, d = 0}
line 11 causes return to ONTIME with {0 ≤ b − s ≤ 0, d = 0}
L9,3 = L9,2
L1,11 = L1,10

The table below shows the result of the invariants that can be found using
l = −20 and u = 20.

Invariants Obtained by l-u Widening

Brake Late Ontime Stopped
1 ≤ b − s ≤ 19 −10 ≤ b − s ≤ −1 −9 ≤ b − s ≤ 9 1 ≤ b − s ≤ 20

0 ≤ d ≤ 9 0 ≤ d ≤ 0 0 ≤ d ≤ 0 0 ≤ d ≤ 0

It is possible to prove that these values match the actual semantics of the
program.

4 Non-convex Invariants

In the constraint database area, researchers have founds methods for finding
over-approximations and under-approximations of the least fixpoint semantics of
Datalog programs. The over-approximation yields for each relation a disjunction
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of conjunctions of atomic constraints. In this sense the approximation is different
from widening operators that always yield a conjunction of atomic constraints.

Definition 5. Given any conjunction C of addition constraints and integer l <
0, let C′ be the result of deleting from C any constraint where the bound is less
than l. Further, let C′′ be the result of replacing in C any bound with less than
l with l.

It is easy to see that C′ is an over-approximation and C′′ is an under-approximation
of C. Further, this leads to the following evaluation idea.

Definition 6. Given a program P and value l < 0, the result of evaluating its
least fixed point by always rewriting after each rule application any conjunction
of constraints C into a C′ (or C′′) as in Definition 5 is written as P l,u (respectively,
Pl,u).

The following is the main theorem that we can adopt.

Theorem 4. Let l < 0 be any integer constant. For any program P the following
holds.

Pl,u ⊆ lfp(P ) ⊆ P l,u

Further, Pl,u and P l,u can be computed in finite time.

The bottom up evaluation in Theorem 4 is slower than the l-u widening ap-
proach. However, it can lead to a more precise over-approximation or under-
approximation than the l-u widening approach.

Example 4. Consider the following program.

1 x = 1, y = 1
2 x = x + 1, y = y + 2x - 1
3 goto 2

For the above program, it is easy to see that for each entry i of line 2, we
have:

L2,i = {x = i, y = i2}.

Recall that each equality is the conjunction of a lower and an upper bound
atomic constraint. That is,

L2,i = {x ≥ i, − x ≥ −i, y ≥ i2, − y ≥ −i2}.

Hence when we evaluate the semantics of this program using l = −10, we obtain
the following over-approximation:

L2.i ={x= i, y= i2 : 1 ≤ i≤3} ∪ {x = i, y ≥ i2 : 4 ≤ i≤ 10} ∪ {x ≥ 11, y≥121}

This formula is the union of three parts. Clearly, the first part corresponds to
the actual semantics for 1 ≤ i ≤ 3. The second part is an over-approximation
needed because for 4 ≤ i ≤ 10 we can only express the upper bounds y ≥ i2 but
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cannot express the lower bounds −y ≥ −i2 needed to have a precise evaluation
matching the actual semantics. The third part is needed because for any i = 11
we can express neither the lower bound −x ≥ i nor the lower bound −y ≥ −i2.
Finally, note that for any i ≥ 12, the conjunction of the constraints x ≥ i and
y ≥ i2 are more restrictive than the third part.

5 Verification

Suppose that we need to check that certain error states never occur during
any execution of a program. The error states are expressed as a quantifier-free
formula of the variables used in the program. Each satisfying assignment of
values to the variables is an error that needs to be avoided. Next we outline a
general constraint database approach to the verification of programs.

1. Translate the program P into a transition system T .
2. Translate T into a Datalog program that always derives conjunctions of

addition constraints.
3. Find an over-approximation of the least fixed point semantics of the Datalog

program.
4. Check that the over-approximation and the error states do not intersect.
5. If the answer is ”yes”, then return ”‘safe”’, else goto 1 and try a smaller l.

Step (1) is well-known in the software verification area. Step (2) is explained
in Chapter 5 of [28], to which we refer for the details. Step (3) follows Theorems 2
and 4 with more details in [28]. The over-approximation algorithm is imple-
mented within the MLPQ constraint database system [29], which is available
from the website: cse.unl.edu/~revesz. Step (4) requires to test the satisfia-
bility of the over-approximation and the error states. Finally, Step (5) is just a
repetition of the previous steps in case the check is inconclusive. In the MLPQ
system the user can specify any negative l value.

In the above outline, the translations to transition system and to Datalog are
required only to take a direct advantage of the already implemented constraint
database systems such as MLPQ. Those who are familiar with abstract interpre-
tations with widening operators may skip the translations steps and consider an
invariant analysis similar to abstract interpretation with the widening operator
replaced by l-u widening or the non-convex approximation.

Example 5. Consider again the subway train example. The Datalog with addi-
tion constraint program that is equivalent to the subway train control program
is described in [2]. Let E , the error states, be as follows:

E = {b, s : |b − s| > 20}.

It can be checked that the over-approximation found for the subway train and
E have no common solution. Hence the subway train program is safe to use.
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Example 6. Consider again the program in Example 4. This program can be
translated into the following constraint Datalog program.

Line2(x, y) : −− x = 1, y = 1.
Line2(x′, y′) : −− Line2(x, y), x′ = x + 1, y′ = y + 2x′ − 1.
Line3(x, y) : −− Line2(x, y), x′ = x + 1, y′ = y + 2x′ − 1.

We can calculate the over-approximation of the above Datalog program similar
to Example 4. It is interesting to see how the bottom up evaluation terminates.
In the 11th application of the second rule (which corresponds to the 12th entry
of line 2 in the original program), the bottom up evaluation finds that ∃x, y x′ =
x + 1, y′ = y + 2x′ − 1, x ≥ 11, y ≥ 121 = x′ ≥ 12, y′ ≥ 144. Before adding
this to the set of already existing ABMs for Line2, we need to replace x′ by x
and y′ by y. The replacement yields x ≥ 12, y ≥ 144, which is more restrictive
than x ≥ 11, y ≥ 121, the previously added ABM. Hence it is not added to the
set of ABMs for Line2 and the evaluation terminates.2

Let the error states E be as follows:

E = {y : y ≥ 10, − y ≥ −15}.

This is a region where y is between 10 and 15 inclusively. It can be easily checked
that the over-approximation of L2,1 in Example 4 and E have no common solu-
tion. Hence the program can never enter the error states.

6 An Efficient Representation of ABMs

Without loss of generality we can fix an order of the variables and assume that
in all addition constraints of the form x − y ≥ b or −x + y ≥ b, x is earlier than
y, and in all addition constraints of the form x + y ≥ b and −x − y ≥ b x is
earlier than y or x = y. We can represent lower bound constraints of the form
x ≥ b by x + x ≥ 2b and and upper bound constraints of the form −x ≥ b by
−x − x ≥ 2b.

Then we can represent x − y ≥ b and x + y ≥ b constraints by a matrix L as
follows:

L[i, j] =

⎧
⎨

⎩

b if (xi − xj ≥ b) ∈ C and i < j
b if (xj + xi ≥ b) ∈ C and j ≤ i
−∞ otherwise

⎫
⎬

⎭

Similarly, we can represent −x+y ≥ b and −x−y ≥ b constraints by a matrix
U as follows:

U [i, j] =

⎧
⎨

⎩

b if (−xi + xj ≥ b) ∈ C and i < j
b if (−xj − xi ≥ b) ∈ C and j ≤ i
−∞ otherwise

⎫
⎬

⎭

2 This is a simplification of the bottom up evaluation, because within the ABMs
constraints of the form x ≥ b are represented by x+ − x− ≥ 2b as described in
Section 2.3.
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Note that the above is equivalent to the following:

U [i, j] =

⎧
⎨

⎩

b if (xi − xj ≤ −b) ∈ C and i < j
b if (xj + xi ≤ −b) ∈ C and j ≤ i
−∞ otherwise

⎫
⎬

⎭

For example, the ABM in Example 1 can be represented by the following ma-
trices. L is:

x y
x −∞ 4
y 10 6

and U is:

x y
x −50 −∞
y −40 −∞

The above representation with matrices L and U requires only 2n2 matrix
entries, while Miné’s representation requires 4n2 matrix entries. Moreover, since
the corresponding entries in L and U are lower and upper bounds of the same
xi − xj or xj + xi, they can be put together as follows:

x y
x [−∞, 50] [4, +∞]
y [10, 40] [6, +∞]

Therefore, each ABM can be represented using a matrix with only n2 entries
that are intervals.

7 Related and Future Work

Pratt [24] gave efficient algorithms for testing the satisfiability and the implica-
tion problem for conjunctions of potential constraints. Harvey and Stuckey [14]
gave a polynomial algorithm for the implication problem in the case of conjunc-
tions of sum constraints with integer variables. An open problem is to improve
the complexity of the algorithm in [14]. Currently, we are working on updating
the MLPQ system to the more efficient ABM representation described in Sec-
tion 6. Another open problem is to find conditions when the over-approximation
and the under-approximation of the program semantics are the same, resulting
in a precise evaluation.
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Abstract. Interpolation is an important component of recent methods
for program verification. It provides a natural and effective means for
computing separation between the sets of ‘good’ and ‘bad’ states. The ex-
isting algorithms for interpolant generation are proof-based: They require
explicit construction of proofs, from which interpolants can be computed.
Construction of such proofs is a difficult task. We propose an algorithm
for the generation of interpolants for the combined theory of linear arith-
metic and uninterpreted function symbols that does not require a priori
constructed proofs to derive interpolants. It uses a reduction of the prob-
lem to constraint solving in linear arithmetic, which allows application
of existing highly optimized Linear Programming solvers in black-box
fashion. We provide experimental evidence of the practical applicability
of our algorithm.

1 Introduction

Interpolation [5] is an important component of recent methods for program ver-
ification. It provides a natural and effective means for computing separation
between the sets of ‘good’ and ‘bad’ states. Such separations provide a basis
for powerful heuristics for the discovery of relevant predicates for predicate ab-
straction with refinement and for the over-approximation in model checking, see
e.g. [6,10,11,12,16,17,18,26].

The applicability of interpolation-based verification methods crucially de-
pends on the employed procedure for interpolant generation. The existing al-
gorithms for interpolant generation are proof-based: They require explicit con-
struction of proofs, from which interpolants can be computed (resolution proofs
in propositional logic, proofs for linear inequalities over the reals, or in the com-
bined theory of linear arithmetic with uninterpreted function symbols [14,21,17]).
Explicit construction of such proofs is a difficult task, which hinders the practi-
cal applicability of interpolants for verification. In fact, the existing tools for the
generation of interpolants over linear arithmetic and uninterpreted function sym-
bols only handle the difference bound-fragment of arithmetic constraints [11,17].
One of the consequences of this limitation is that no program whose correct-
ness depends on a predicate over three or more variables can be handled by the
method described in [7].

We propose an algorithm for the generation of interpolants for the combined
theory of linear arithmetic and uninterpreted function symbols that does not

B. Cook and A. Podelski (Eds.): VMCAI 2007, LNCS 4349, pp. 346–362, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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require a priori constructed proofs to derive interpolants. It uses a reduction
of the problem to constraint solving in linear arithmetic. Thus, the algorithm
allows application of existing highly optimized Linear Programming solvers in
black-box fashion, which leads to a practical implementation.

The main contributions of the paper are the following.

– First, we describe an algorithm LI for the generation of interpolants for
linear arithmetic only, which is based on a reduction to constraint solving.
The algorithm LI has the following advantages:

• it allows to handle directly strict and non-strict inequalities,
• it can be implemented using a Linear Programming solver as a black

box.
– Second, we present an algorithm LIUIF for generating interpolants in com-

bination of linear arithmetic with uninterpreted function symbols, following
the hierarchical style of [23,24]. It applies the algorithm LI as a subroutine.

– We provide experimental evidence of the applicability of this constraint based
interpolant generation.

Our implementation is integrated into the predicate discovery procedure of the
software verification tools Blast [7] and ARMC [20]. Our experiments with
Blast on Windows device drivers provide a direct comparison with the existing
tool FOCI [17], and show promising running times in favour of the constraint
based approach. Our method can handle systems which pose problems to other
interpolation-based provers: It allowed us, for instance, to apply ARMC to verify
safety properties of train controller systems [19], which required inference of
predicates with both strict and nonstrict inequalities, and it allows us to verify
examples that require predicates over up to four variables.

Related work. Our algorithm differs from the existing methods for the in-
terpolant generation [11,12,17,26] in the following key points. Being constraint
based, our algorithm does not require a priori constructed resolution proof to
derive an interpolant. However, it is possible to construct such a proof using
non-negative linear combinations of inequalities computed by our algorithm.

Our method for the synthesis of interpolants for the combined theory of lin-
ear arithmetic and uninterpreted function symbols follows the hierarchical style
of [23,24] and uses the interpolant construction method for linear arithmetic as a
black-box. The algorithm presented in this paper, on which our implementation
is based, differs from that in [24], being tuned to our constrained based approach.

In fact, our method for generating interpolants for linear arithmetic can be
used as a black box procedure also in other contexts, e.g. for the method for
constructing interpolants in combinations of theories over disjoint signatures
proposed in [26] or for the interpolant generation method for the combinations
of linear arithmetic, uninterpreted function symbols, lists, and sets with cardi-
nality constraints, which uses a reduction to the invariant generation in linear
arithmetic and uninterpreted function symbols [12]. Conversely, our method for
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the synthesis of interpolants for the combined theory of linear arithmetic and
uninterpreted function symbols can use any method for interpolant construction
for linear arithmetic.

The “split” prover [11] applies a sequent calculus for the synthesis of inter-
polants whose linear arithmetic part is restricted to difference bounds constraints
with a user-defined constraint on the bound. In contrast, our implementation is
constraint-based and handles full linear arithmetic. Its extension to accommo-
date user-defined constraints is a subject of ongoing work.

Our algorithm constructs linear arithmetic interpolants in a way similar to
constraint-based invariant and ranking function generation methods based on
Farkas’ lemma and linear programming, see e.g. [2,3,4]. We use its extension
(Motzkin’s transposition theorem) to handle strict inequalities. In the terminol-
ogy of linear programming, interpolants are hyperplanes that separate strictly
disjoined convex hulls and contain only common variables of the hulls.

Structure of the paper. We introduce the necessary preliminaries in Section 2.
We describe the algorithm LI for the synthesis of constrained interpolants in
linear arithmetic in Section 3, and its extension LIUIF for the handling of unin-
terpreted function symbols in Section 4. We briefly describe our implementation
and experimental results in Section 5.

2 Preliminaries

In what follows we will use the following notations:

Linear constraints over rational and real spaces. We write Ax < a and
Ax ≤ a for systems (conjunctions) of strict and non-strict inequalities, respec-
tively. We write Ax � a for a system that may contain inequalities of both kinds.
We refer to such systems as mixed ones. Given Ax � a, we write Altx < alt and
Alex ≤ ale for the systems that contain strict and non-strict inequalities from
Ax � a, respectively. A row vector λ with mA elements defines a linear com-
bination of inequalities from Ax � a. The vector λ has sub-vectors λlt and λle

that correspond to strict and non-strict inequalities from Ax � a, respectively.
We have λA = λltAlt + λleAle and λa = λltalt + λleale. We write A|k for the k-th
column of a matrix A. We write Akx � ak to refer to a system of inequalities
with index k. Given a vector i we write iT to denote its transposition.

We note that precise handling of strict inequalites is required for interpolation
problems over rationals/reals, which occur in the verification of real time and
hybrid systems. Consider the unsatisfiable conjunction x < 0 and x ≥ 0, where
x ranges over rationals/reals. The relaxation of x < 0 to non-strict inequality
x ≤ 0 leads to the loss of unsatisfiability. The strengthening of x < 0 to x ≤ −1
may result in the interpolant x ≤ −1 which is not an interpolant for the original
problem, since x < 0 does not imply x ≤ −1.

Extensions with uninterpreted functions. Let Σ be a set of (new) function
symbols. Let T0 be one of the theories LI(Q) (linear rational arithmetic) or LI(R)
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(linear real arithmetic). with signature Π0 = (Σ0, Pred). We denote by LI(Q)Σ

the extension of Q with the uninterpreted function symbols in Σ. LI(R)Σ is
defined similarily. In what follows, the definitions are given for the case of linear
rational arithmetic. Similar definitions can also be given for LI(R)Σ . A model
M of LI(Q)Σ is a model of LI(Q) with universe M and with a function fM :
Mn → M for each f ∈ Σ with arity n. No additional constraints are imposed
on the properties of these functions (i.e. they are free).

Truth, satisfiability and entailment w.r.t. a theory. Let T be a theory
(that is, a set of models in a given signature Σ). Truth and satisfiability of a
first-order formula in a given model are defined in the standard way. Let φ and
ψ be formulae over the signature Σ. We say that φ is true w.r.t. T (denoted
|=T φ) if φ is true in all models of T ; φ entails (or implies) ψ w.r.t. T (denoted
φ |=T ψ) if ψ is true in all models of T in which φ is true; φ is satisfiable w.r.t.
T if there exists a model of T in which φ is true. If φ is false in all models of T ,
we say that φ is unsatisfiable. Note that φ is unsatisfiable iff φ |=T ⊥, where ⊥
stands for false.

Interpolants. A theory T has interpolation if, for all formulae φ and ψ in the
signature of T , if φ |=T ψ then there exists a formula I containing only symbols
which occur in both φ and ψ such that φ |=T I and I |=T ψ. An alternative
formulation in the model-checking literature is:

If φ ∧ ψ |=T ⊥ then there exists a formula I containing only symbols
which occur in both φ and ψ such that φ |=T I and ψ ∧ I |=T ⊥.

First order logic has interpolation [5]. However, even if φ and ψ are very sim-
ple (e.g. quantifier-free or conjunctions of atoms), I may still be an arbitrary
formula. In many applications it is important to find simple interpolants: for
instance, if φ and ψ are quantifier-free formulae, we are often interested in the
existence of quantifier-free interpolants. We say that a theory T has quantifier-
free interpolants if for all quantifier-free formulae A and B:

If A ∧ B |=T ⊥ there exists a quantifier-free formula I over the common
variables of A and B such that A |=T I and I ∧ B |=T ⊥.

3 Linear Interpolants

In this section we present an algorithm LI (Linear Interpolation) for the inter-
polant generation for linear arithmetic (with both strict and non-strict inequal-
ities). We show the algorithm in Figure 1.

The input of LI consists of two mixed systems of inequalities Ax � a and
Bx � b that are mutually disjoint, i.e. the conjunction Ax � a ∧ Bx � b is
not satisfiable. The output of the algorithm is a linear interpolant ix � δ, where
� ∈ {≤, <}.

The algorithm proceeds by constructing linear programming problems and
solving these problems using an off-the-shelf linear programming solver. The
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input
Ax � a and Bx � b : systems of strict and non-strict inequalities,

where Ax � a ∧ Bx � b is unsatisfiable
output

ix � δ: interpolant, where � ∈ {≤, <}
vars

Φ: auxiliary constraint
λ: vector defining linear combination of inequalities in Ax � a
λlt, λle: sub-vectors of λ defining linear combination of

strict and non-strict inequalities in Ax � a, respectively
(in particular, λA = λltAlt + λleAle and λa = λltalt + λleale)

μ, μlt, μle: analogous to λ, λlt, and λle

begin
Φ := λ ≥ 0 ∧ μ ≥ 0 ∧ i = λA ∧ δ = λa ∧ λA + μB = 0
if exist λ, μ, i, δ satisfying Φ ∧ λa + μb ≤ −1 then

(∗ 1st branch ∗)
return ix ≤ δ

else if exist λ,μ, i, δ satisfying Φ ∧ λa + μb ≤ 0 ∧ λlt �= 0 then
(∗ 2nd branch ∗)
return ix < δ

else if exist λ,μ, i, δ satisfying Φ ∧ λa + μb ≤ 0 ∧ μlt �= 0 then
(∗ 3rd branch ∗)
return ix ≤ δ

end.

x A a λ Alt Ale alt ale λlt λle

n × 1 mA × n mA × 1 1 × mA mAlt × n mAle × n mAlt × 1 mAle × 1 1 × mAlt 1 × mAle

Fig. 1. Algorithm LI for the synthesis of linear interpolants. The table shows dimen-
sions of matrices and vectors used in the algorithm. The dimensions for Bx � b, μ, μlt,
and μle are fixed in a similar fashion.

solver is treated as a black box. The structure of the problems reflects the dif-
ferent cases why the conjunction Ax � a ∧ Bx � b is unsatisfiable, following
Motzkin’s transposition theorem [22]. The proofs of Theorems 2 and 3 provide
a formal explanation of the correspondence.

Theorem 1 ((Motzkin’s) transposition theorem [22]). Let A and B be
matrices and let a and b be column vectors. Then there exists a vector x with
Ax < a and Bx ≤ b, if and only if for all row vectors y, z ≥ 0:

– if yA + zB = 0 then ya + zb ≥ 0; and
– if yA + zB = 0 and y �= 0 then ya + zb > 0.

Example 1. We simulate the algorithm LI on the following unsatisfiable con-
junction of mixed systems of inequalities

z < 0 ∧ x ≤ z ∧ y ≤ x and y ≤ 0 ∧ x + y ≥ 0.
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We assume an additional constraint that the resulting interpolant must not con-
tain the variable y. We translate the inequalities into the matrix representation.

⎛

⎝
0 0 1
1 0 −1

−1 1 0

⎞

⎠

︸ ︷︷ ︸
A

⎛

⎝
x
y
z

⎞

⎠ �

⎛

⎝
0
0
0

⎞

⎠

︸ ︷︷ ︸
a

(
0 1 0

−1 −1 0

)

︸ ︷︷ ︸
B

⎛

⎝
x
y
z

⎞

⎠ �
(

0
0

)

︸︷︷︸
b

We split the mixed system Ax � a into the strict part Altx < alt and the
non-strict part Alex ≤ ale.

(
0 0 1

)

︸ ︷︷ ︸
Alt

⎛

⎝
x
y
z

⎞

⎠ <
(
0
)

︸︷︷︸
alt

(
1 0 −1

−1 1 0

)

︸ ︷︷ ︸
Ale

⎛

⎝
x
y
z

⎞

⎠ ≤
(
0
)

︸︷︷︸
ale

The system Bx � b is equal to its non-strict part Blex ≤ ble. The strict part of
Bx � b is empty.

Let i = (ix iy iz) and δ be the unknown coefficients that define the interpolant
i
( x

y
z

)
� δ, where � is either the strict < or non-strict ≤ inequality relation

symbol. The algorithm computes the values for the unknown coefficients and
determines the relation �.

Let λ = (λ1 λ2 λ3) and μ = (μ1 μ2) be the linear combinations of the
inequalities of the first and the second system, respectively. We have λlt = (λ1)
and λle = (λ2 λ3). The values of λ and μ determine the interpolant.

The guard of the first branch of LI is unsatisfiable. The guard of the second
branch is satisfiable; we compute the valuations λ = (1 1 0) and μ = (1 1)
together with the interpolant’s coefficients i = (1 0 0) and δ = 0. Since λlt = (1),
we have that � is the strict inequality relation symbol. The resulting interpolant
is x < 0. �

For the completeness of the exposition, we show that two mutually unsatisfiable
systems of mixed inequalities have an interpolant that is a single inequality. This
inequality may be strict or non-strict.

Theorem 2 (Linear interpolants for mixed linear inequalities). Given
mutually unsatisfiable systems Ax � a and Bx � b of strict and non-strict
inequalities, there exists a linear inequality interpolant ix � δ, where � ∈ {≤, <}.
The correctness of the algorithm LI is stated in the following theorem.

Theorem 3 (Algorithm LI: Soundness and completeness). The algo-
rithm LI is sound and complete: It always produces a linear interpolant, by
taking the 1st, 2nd or 3rd branch.

3.1 Interpolants for Disjunctions

We obtain an algorithm for the synthesis of constrained interpolants for disjunc-
tions of mixed systems
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∨

k

Akx � ak and
∨

l

Blx � bl

by taking the disjunction of convex hulls
∨

k

∧

l

iklx � δkl

that consists of interpolants iklx � δkl for each pair of disjuncts Akx � ak

and Blx � bl. The constraints above are in disjunctive normal form: both for-
mulae for which the interpolant is computed are disjunctions of conjunctions.
In applications we sometimes need to compute constrained interpolants for con-
junctions of non-unit clauses, i.e. for formulae in conjunctive normal form. For
this we can use standard methods discussed e.g. in [17] or [26]: in a DPLL-style
procedure partial interpolants are generated for the unsatisfiable branches and
then recombined using ideas of Pudlák [21].

4 Extension with Uninterpreted Function Symbols

So far, we have presented an algorithm for the generation of interpolants in the
theory of linear arithmetic. Our application domains mentioned in the intro-
duction include software model checking and verification of timed and hybrid
systems. They naturally motivate an extension of the interpolant-generation al-
gorithm to combination of linear arithmetic with additional theories.

In this section we consider the extension with free functions, which is useful
for conservative approximation of non-arithmetic expressions. The algorithm we
propose is based on a hierarchical calculus for reasoning in certain extensions of
theories (which we called local extensions) [23]. This calculus makes it possible
to reduce checking satisfiability of quantifier-free formulae w.r.t. the extension,
to checking satisfiability of formulae in the ’base theory’. Any extension of a
theory with uninterpreted function symbols falls into this class. As the notion of
local theory extension is not needed in the present context, all relevant results
will be presented for the special case of extensions of linear rational and real
arithmetic with free function symbols. For the sake of simplicity, we will use
as running example LI(Q). All results can be used as well for LI(R). However,
many of the results presented here also hold for more general extensions. Such
generalizations were presented in [24].

We begin by giving the main idea of the hierarchical calculus for extensions
with free function symbols in [23] (Section 4.1). Based on this, in Section 4.2 we
present a hierarchical method for generating interpolants in such extensions.

Notation. Everywhere in what follows let Σ be a set of (new) function sym-
bols. We denote by LI(Q)Σ the extension of Q with the uninterpreted function
symbols in Σ. We refer to the function symbols in Σ as extension functions. To
distinguish them from constraints in linear arithmetic, we denote conjunctions
of (unit) literals over this extended signature using a special font (A ∧ B).
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4.1 A Hierarchical Calculus

Let Σ be a set of uninterpreted function symbols, let LI(Q)Σ be the extension
of linear rational arithmetic LI(Q) with the uninterpreted function symbols in
Σ. Given a disjunction φ(x1, . . . , xn) of conjunctions of atomic formulae over the
signature of LI(Q)Σ, we want to check whether

LI(Q)Σ |= ∀x1 . . .∀xnφ(x1, . . . , xn),

i.e., whether φ holds in each model of LI(Q)Σ and for all possible assignments of
values in this model to the variables x1, . . . , xn. Equivalently, we can test whether
there exists a model and a possible assignment to the variables x1, . . . , xn in it
for which ¬φ becomes true, i.e. checking whether ¬φ(x1, . . . , xn) is satisfiable.
Thus, proving truth w.r.t. all models and valuations can be reduced to proving
satisfiability of sets of clauses w.r.t. LI(Q)Σ .

Let G(c1, . . . , cn) be a set of quantifier-free clauses with variables c1, . . . , cn
1

in the signature of LI(Q)Σ . To check the satisfiability of G(c1, . . . , cn) w.r.t.
LI(Q)Σ we can proceed as follows:

Step 1: Flattening and purification. G is purified and flattened by introducing
fresh variables for the arguments of the extension functions as well as for the
subterms t = f(g1, . . . , gn) starting with extension functions f ∈ Σ, together
with corresponding definitions ct = t. We obtain a set of clauses G0 ∧ D, where
D consists of unit clauses of the form f(c1, . . . , cn) = c, where c1, . . . , cn, c are
variables and f ∈ Σ, and G0 contains clauses without function symbols in Σ.

Step 2: Reduction to testing satisfiability in LI(Q). By the locality of any exten-
sion with free function symbols [23], we know that we can reduce the problem of
testing satisfiability of G w.r.t. LI(Q)Σ to a satisfiability test in LI(Q) as shown
in Theorem 4.

Theorem 4 ([23]). With the notations above, the following are equivalent:
(1) G |=LI(Q)Σ⊥,
(2) G0 ∧ D |=LI(Q)Σ⊥,
(3) G0 ∧ N0 |=LI(Q) ⊥, where

N0 =
∧

{
∧n

i=1 ci = di → c = d | f(c1, . . . , cn) = c ∈ D, f(d1, . . . , dn)=d ∈ D}.

is the set of functionality axioms corresponding to the terms occurring in D.

Problem (3) in Theorem 4 is a satisfiability problem for quantifier-free clauses in
linear rational arithmetic. We thus reduced, hierarchically, the problem of testing

1 In what follows we are concerned with satisfiability of such clauses; the variables
in G(c1, . . . , cn) are implicitly existentially quantified. In the automated reasoning
literature, existential variables are replaced by constants, using skolemization; thus
one can replace the variables in G(c1, . . . , cn) by (Skolem) constants. In what follows
we refer to them as variables. However, the notation we chose reminds that these
existentially quantified variables can, in fact, be regarded as “constants”.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



354 A. Rybalchenko and V. Sofronie-Stokkermans

the satisfiability of the set of quantifier-free clauses G in LI(Q)Σ to the problem
of testing the satisfiability of a set of quantifier-free constraints in LI(Q).

Complexity. Flattening and purification can be done in linear time; the growth
of the formulae is linear. The size of the satisfiability problem in LI(Q) obtained
by the translation above is quadratic in the number of extension terms in the
input formula. Hence, the complexity of the procedure is of order k(n2), where
n is the size of the input formula and k(m) is the complexity of the problem of
testing the satisfiability of sets of ground clauses in LI(Q) for an input of size m.

Remark. If G is a set of unit clauses then the procedure mimics the Nelson-
Oppen procedure for combination of LI(Q) with the theory of free function
symbols in Σ within the prover for linear arithmetic. (Due to the convexity of
linear arithmetic, we can always find a clause in N0 whose premises are implied
by G. The clause is replaced with its conclusion and the procedure is repeated
until a set of unit clauses is obtained.) Thus, exchange of equalities between
shared variables needs not be done explicitly. The complexity of the method is
similar to that of the Nelson-Oppen combination of convex theories.

The following example illustrates the method.

Example 2. Let G = A ∧ B, where

A : g(a) = c + 5 ∧ f(g(a)) ≥ c + 1,

B : h(b) = d + 4 ∧ d = c + 1 ∧ f(h(b)) < c + 1.

We show that A ∧ B is unsatisfiable in LI(Q){f,g,h} as follows:

Step 1: Flattening and purification. We purify and flatten the formulae A and
B by replacing the terms starting with f with new variables. We obtain the
following purified form:

A0 : a1 = c + 5 ∧ a2 ≥ c + 1, DA : a1 = g(a) ∧ a2 = f(a1),
B0 : b1 = d + 4 ∧ d = c + 1 ∧ b2 < c + 1, DB : b1 = h(b) ∧ b2 = f(b1).

Step 2: Hierarchical reasoning. By Theorem 4 we have that A∧B is unsatisfiable
in LI(Q){f,g,h} iff A0∧B0∧N0 is unsatisfiable in LI(Q), where N0 corresponds to
the consequences of the congruence axioms for those ground terms which occur
in the definitions DA ∧ DB for the newly introduced variables.

Def G0 N0

DA : a1=g(a) ∧ a2=f(a1) A0 : a1 = c + 5 ∧ a2 ≥ c + 1 N0 : b1=a1 → b2=a2

DB : b1=h(b) ∧ b2=f(b1) B0 : b1 = d + 4 ∧ d = c + 1 ∧ b2 < c + 1

To prove that A0 ∧ B0 ∧ N0 is unsatisfiable, note that A0 ∧ B0 |= a1 = b1. Hence,
A0 ∧ B0 ∧ N0 entails a2 = b2 ∧ a2 ≥ c + 1 ∧ b2 < c + 1, which is inconsistent.
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4.2 Hierarchical Interpolation in LI(Q)Σ

We show how this hierarchical calculus can be used to generate interpolants for
extensions with free function symbols.

Assume that A ∧ B |=LI(Q)Σ⊥, where A and B are two sets of ground clauses.
Our goal is to find an interpolant, that is a quantifier-free formula I, containing
only variables and uninterpreted function symbols which are common to A and
B such that

A |=LI(Q)Σ I and I ∧ B |=LI(Q)Σ⊥ .

For the sake of simplicity we first restrict to sets A and B of unit clauses, i.e. to
conjunctions of ground literals. Our goal is to reduce the search for the inter-
polant of A ∧ B in LI(Q)Σ to:

(i) constructing an interpolant I0 in LI(Q),
(ii) using I0 to construct an interpolant for A∧B (by appropriate substitutions).

Flattening and purification do not influence the existence of interpolants [24]: If
I0 is an interpolant of the flattened forms (A0∧DA)∧(B0∧DB) of A0 and B0, then
the formula I0, obtained from I0 by replacing, recursively, all newly introduced
variables with the terms in the original signature which they represent, is an
interpolant for A ∧ B. Therefore we can restrict w.l.o.g. to finding interpolants
for the purified and flattened set of formulae (A0 ∧ DA) ∧ (B0 ∧ DB).

By Theorem 4, A0 ∧DA∧B0 ∧DB |=LI(Q)Σ⊥ if and only if A0 ∧B0 ∧N0 |=LI(Q)⊥,
where N0 =

∧
{
∧n

i=1 ci=di → c=d | f(c1, . . . , cn) = c, f(d1, . . . , dn) = d ∈ D}.
By definition, N0 = NA ∧ NB ∧ Nmix, where NA only contains variables from
A0 (it is A-pure), NB only contains variables from B0 (it is B-pure), and Nmix =∧

{
∧n

i=1 ai=bi → a=b | f(a1, . . . , an) = a ∈ (DA\DB), f(b1, . . . , bn) = b ∈
(DB\DA)}. The clauses in Nmix are mixed, i.e. contain combinations of A-local
and B-local variables. Thus, the equivalence in Theorem 4 cannot be used directly
for generating a ground interpolant.

Example 3. Consider the reduction to the base theory in the previous example.
The clause a1 = b1 → a2 = b2 of N0 contains both A-local and B-local variables.

Idea. The idea of our approach is to separate mixed instances Nmix of congruence
axioms in N0, into an A-part and a B-part. We show that if A∧B |=LI(Q)Σ⊥ then
we find a set T of terms in the signature of LI(Q)Σ containing only variables
and extension functions common to A and B, which allows us to separate the
instances of functionality axioms in Nmix into a part NA

sep consisting of instances
of functionality axioms for extension terms occurring in A and T , and a part
NB

sep consisting of instances with terms occurring in B and T . We show that such
a separation does not lead to the loss of unsatisfiability, i.e. that the conjunction

(A0 ∧ NA ∧ NA
sep) ∧ (B0 ∧ NB ∧ NB

sep)

has no model where the extension functions may be partial, but in which all
terms in DA, DB, and T are defined.
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Example 4. Consider the reduction to the base theory in the example given in
Section 4.1. The clause a1 = b1 → a2 = b2 of Nmix can be replaced with a
conjunction of A-pure and B-pure clauses as follows:

Note that A0 ∧ B0 |= a1 = b1. It is easy to see that there exists a term t
(namely t = c + 5) containing only variables common to A0 and B0 such that
A0 |=LI(Q) a1 = t and B0 |=LI(Q) t = b1. Let T = {t} = {c + 5}. We show
that instead of using the mixed clause a1 = b1 → a2 = b2, we can use, without
loss of unsatisfiability, the flattened and purified instances NA

sep and NB
sep of the

functionality axioms corresponding to terms in A and T , resp. B and T :

NA
sep = {a1 = c + 5 → a2 = cf(c+5)}, NB

sep = {c + 5 = b1 → cf(c+5) = b2}.

(We introduced a new constant cf(c+5) for f(c + 5), together with its definition
DT : cf(c+5) = f(c + 5).) We can thus replace N0 with the instances of the
congruence axioms NA

sep and NB
sep, now separated into an A-part and a B-part.

It is now sufficient to compute an interpolant in LI(Q) for

(A0 ∧ NA
sep) ∧ (B0 ∧ NB

sep).

To compute the interpolant, note that A0 ∧ NA
sep is logically equivalent to A0 ∧

a2=cf(c+5), and B0 ∧ NB
sep is logically equivalent to B0 ∧ b2=cf(c+5). The con-

junction (A0 ∧ a2=cf(c+5)) ∧ (B0 ∧ b2=cf(c+5)) is unsatisfiable. An interpolant is
I0 : cf(c+5) ≥ c + 1. Thus, A0 ∧ a2=cf(c+5) |= I0 and B0 ∧ b2=cf(c+5) ∧ I0 |=⊥.

Let I = (f(c+5) ≥ c+1) be obtained by replacing the newly introduced constant
cf(c+5) with the term it denotes (namely f(c + 5)). It is easy to see that:

A0 ∧ DA |=LI(Q){f,g,h} A0 ∧ (a2=f(c + 5)) |=LI(Q){f,g,h} I,

B0 ∧ DB |=LI(Q){f,g,h} B0 ∧ (b2=f(c + 5)) |=LI(Q){f,g,h} ¬I.

Thus, I is an interpolant for (A0 ∧ DA) ∧ (B0 ∧ DB), hence also for A ∧ B.

The method. Assume that A0 ∧ DA ∧ B0 ∧ DB |=LI(Q)Σ⊥. Then A0 ∧ B0 ∧
N0 |=LI(Q)⊥, where N0 = NA ∧ NB ∧ Nmix, the clauses in NA are A-pure, those
in NB are B-pure, and those in Nmix =

∧
{
∧n

i=1 ai = bi → a = b | f(a1, . . . , an) =
a ∈ (DA\DB), f(b1, . . . , bn) = b ∈ (DB\DA)} contain combinations of A-local
and B-local variables.

Our goal is to replace Nmix with the conjunction of an A-pure and a B-pure
part, NA

sep ∧NB
sep, of instances of the functionality axioms. The correctness of the

method relies on the following properties of linear arithmetic: convexity with
respect to equality atoms (Lemma 1) and separability of entailed inequalities
(Lemma 2).

Lemma 1. Linear arithmetic over R or over Q is convex w.r.t. equality atoms,
i.e. for each conjunction Γ of literals and for every set of equalities si = ti,
i ∈ {1, . . . , n}, if Γ |=

∨n
i=1 si = ti then Γ |= sj = tj for some j ∈ {1, . . . , n}.
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Lemma 2. Let Ax ≤ a and Bx ≤ b be two conjunctions of constraints in linear
arithmetic, and let xi and xj, where i, j ∈ {1, . . . , n}, appear in Ax ≤ a and
Bx ≤ b, respectively.

(1) If Ax ≤ a ∧ Bx ≤ b implies xi ≤ xj then there exists a linear expression t
over variables that are common to Ax ≤ a and Bx ≤ b such that Ax ≤ a
implies xi ≤ t and Bx ≤ b implies t ≤ xj [26].

(2) If Ax ≤ a∧Bx ≤ b implies xi = xj then there exists a linear expression t over
variables that are common to Ax ≤ a and Bx ≤ b such that Ax ≤ a∧Bx ≤ b
implies xi = t and t = xj.

We show that Nmix can be replaced with the conjunction of an A-pure and a
B-pure part, NA

sep ∧NB
sep, of instances of the functionality axioms, at the price of

having to take into account additional terms over the shared signature of A and
B not occurring in A ∧ B.

Theorem 5 ([24]). Let A0 and B0 be conjunctions of literals in the signature of
LI(Q) such that A0 ∧ B0 ∧ N |=T0⊥, for a set N = NA ∪ NB ∪ Nmix of flattened
instances of congruence axioms. There exists a set T of ΣLI(Q)-terms containing
only variables common to A0 and B0, and possibly common newly introduced
variables in a set Σc such that

A0 ∧ B0 ∧ (NA ∧ NB) ∧ Nsep |=T0⊥,

where Nsep =
∧

{(
∧n

i=1 ci=ti → c=cf(t1,...,tn)) ∧ (
∧n

i=1 ti=di → cf(t1,...,tn)=d) |∧n
i=1 ci = di → c = d ∈ Nmix} = NA

sep ∧ NB
sep

and cf(t1,...,tn) are new variables in Σc (considered to be common) introduced for
the terms f(t1, . . . , tn).

A direct consequence of Theorem 5 is the possibility of hierarchically generating
interpolants in LI(Q)Σ .

Corollary 1 ([24]). Assume that (A0 ∧ DA) ∧ (B0 ∧ DB) |=LI(Q)Σ ⊥, and let
N0, N

A, NB, Nmix, N
A
sep, N

B
sep be as before. Then:

(1) There exists a formula I0 containing only variables which occur both in A0

and B0 such that (A0∧NA∧NA
sep)|=LI(Q)I0 and (B0∧NB∧NB

sep)∧I0|=LI(Q) ⊥.
(2) The ground formula I obtained from I0 by recursively replacing every variable

ct introduced in the separation process with the term t is an interpolant for
(A0 ∧ DA) ∧ (B0 ∧ DB), i.e.:
(i) I contains only variables and extension functions common to A and B;
(ii) A0 ∧ DA |=LI(Q)Σ I and B0 ∧ DB ∧ I |=LI(Q)Σ⊥.

By Theorem 5 and Corollary 1 we know that if A and B are conjunctions of
literals in linear arithmetic and uninterpreted function symbols such that A ∧ B
is unsatisfiable then there exists an interpolant; its existence is not influenced
by the choice of the separating terms in the set T . The method terminates; its
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complexity is discussed in [24], and depends on the complexity of computing
separating terms in linear arithmetic, and on the complexity of computing in-
terpolants for conjunctions of clauses in LI. In order to compute an interpolant
for (A0 ∧ NA ∧ NA

sep) ∧ (B0 ∧ NB ∧ NB
sep) one can use, for instance, the method

discussed in Section 3.1.
We now present an alternative approach, in which the computation of the

interpolant is interleaved with the separation process. The idea is described in
the algorithm in Figure 2. The algorithm is based on Theorem 5 and Corollary 1,
but contains several optimizations, which allow performing simultaneously the
separation into an A-pure and a B-pure part and the interpolant construction.
Termination and correctness of the algorithm are proved in what follows.

Theorem 6. The algorithm in Figure 2 terminates and returns an interpolant
I of A ∧ B.

In spite of the fact that the procedure for computing interpolants for linear
arithmetic is called as a “black box”, and that our method does not require the
existence of an a priori constructed resolution proof for building the interpolant,
the complexity of the algorithm described in Figure 2 is comparable to that
of other methods for interpolant generation which construct interpolants from
proofs [11,12,17,26]. The complexity depends linearly on the length of the proof
(which in this case is built ’online’). In addition, the complexity of the procedure
used for “separating” equalities needs to be taken into account.

Theorem 7. Assume that we start from an implementation such that in LI(Q)
for a formula of length m:

(a) interpolants can be computed in time g(m),
(b) P -interpolating terms can be computed in time h(m),
(c) entailment can be checked in time k(m).

Then the method described above allows to compute an interpolant in time of
order n2 · (k(n2)+h(n2))+g(n2)+l.

Problems (a)–(c) can be solved in polynomial time for sets of unit clauses [22]
and in NP for sets of clauses [25]. Due to the specific form of the axioms in N0
which need to be taken into account (Horn, with all premises being equalities),
the sets of clauses which occur in the problems we consider may fall into tractable
classes [13], for which satisfiability can be tested in polynomial time.

5 Experiments

We implemented the presented algorithms in a tool called CLP-Prover.2 Al-
though the presented algorithms are correct for both rational and real spaces,
our implementation handles only rationals, which is due to the applied constraint
solver [8]. CLP-Prover is built in SICStus Prolog [15], which is a Constraint

2
CLP-Prover homepage: http://mtc.epfl.ch/~rybalche/clp-prover/.
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input
Ax ≤ a and Bx ≤ b : constraints in matrix form (obtained from flattening and

purifying conjunctions A and B of (unit) literals in linear
arithmetic and uninterpreted function symbols such that
A ∧ B is unsatisfiable)

D : definitions for fresh variables created by flattening and purification of A and B
N0 : instances of functionality axioms for functions from D

output
I : the resulting interpolant

local vars
I0, I1, I2 : partial interpolants; t−

i , t+i : separating terms
begin

if N0 �= ∅ then
choose C :

∧n
i=1 ci = di → c = d from N0

such that Ax ≤ a ∧ Bx ≤ b |=LI(Q)
∧n

i=1 ci = di

(assume C is an instance of the functionality axiom for f ∈ Σ)
for each i ∈ {1, . . . , n} do

compute t+i and t−
i over A-B-common variables such that

Ax ≤ a |=LI(Q) ci ≤ t+i and Bx ≤ b |=LI(Q) t+i ≤ di and
Ax ≤ a |=LI(Q) ci ≥ t−

i and Bx ≤ b |=LI(Q) t−
i ≥ di

done
I0 := false
I1 := true
for each k := index within {1, . . . , n} such that t+k �= t−

k do
I0 := I0 ∨ t+k > t−

k

I1 := I1 ∧ t+k = t−
k

Ax ≤ a := Ax ≤ a ∧ t+k = t−
k

Bx ≤ b := Bx ≤ b ∧ t−
k = t+k

done
t := fresh variable; D := D ∪ {t = f(t+1 , . . . , t+n )}
Ax ≤ a := Ax ≤ a ∧ c = t
Bx ≤ b := Bx ≤ b ∧ t = d
I2 := result of recursively applying the procedure

for the new Ax ≤ a, Bx ≤ b and D, and N0\{C}
I := I0 ∨ (I1 ∧ I2) where each definition from D is applied

else
ix ≤ δ := result of applying LI on Ax ≤ a and Bx ≤ b
I := ix ≤ δ where each definition from D is applied

endif
return “interpolant I”

end.

Fig. 2. Algorithm LIUIF for the synthesis of constrained interpolants for linear
arithmetic and uninterpreted function symbols. LIUIF uses the algorithm LI as a
subroutine.
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Table 1. Experimental evaluation on examples from Blast distribution. (Memory
consumption was not an issue.) ‘Solving LI-part’ is the time spent on solving the system
of constraints that defines an interpolant in linear arithmetic. ‘Applying axioms’ is the
time spent on testing entailment of premises of functionality axiom instances. ‘Total
solving’ is the total time spent on constraint solving. ‘Total’ is the total time spent in
CLP-Prover, which includes parsing, computation of constraint systems, constraint
solving, etc.

Number CLP-Prover time (s) FOCI

Example of queries Solving Applying Total Total time (s)
LI part axioms solving

ntdrivers/kbfiltr.i 139 0.13 0.02 0.15 0.46 0.55
ntdrivers/diskperf.i 747 0.38 0.21 0.59 2.68 3.72
ntdrivers/floppy.i 1082 0.61 0.36 0.97 3.97 4.91
ntdrivers/cdaudio.i 1060 2.23 0.20 2.43 4.92 4.80

Logic Programming (CLP) system [9]. In particular, the CLP scheme requires
that the constraint solver infers all equalities that are implied by the constraint
store. This allows for an efficient implementation of the instantiation of function-
ality axioms, see the “choose C” step in Figure 2. We integrated CLP-Prover

into the predicate discovery procedure of the software verification tools Blast [7]
and ARMC [20]. The integration with ARMC is two-way, namely, interpolants
generated by CLP-Prover are used by ARMC to compute abstraction. The
interface to Blast is only used for comparing with the existing interpolating
theorem prover FOCI [17].

Our experiments with Blast on Windows device drivers provide a direct
comparison with the FOCI tool, which is also integrated into Blast. We used a
3 GHz Linux PC, Blast 2.0 and applied CLP-Prover on 3,000 interpolation
problems that are also passed to FOCI. The table shows that a constraint-based
implementation can provide support for full linear arithmetic with competitive
running time.

We applied ARMC to verify safety properties of train controller systems [19].
These examples depend crucially on the ability of our algorithm to handle strict
inequalities directly. The running times were similar to the experiments with
Blast. Additionally, we applied ARMC to verify absence of array bounds vi-
olations (90 checks) for a compact (200 LOC) but intricate C program that
performs singular value decomposition. CLP-Prover spends 190 ms on con-
straint solving for 457 interpolation problems, and computes interpolants over
up to four variables. Unfortunately, we could not compare the running times for
these experiments with FOCI since the latter does not support strict inequalities
(whose relaxation immediately leads to unacceptable loss of precision), and is
restricted to the difference bounds fragment of linear arithmetic (i.e. predicates
containing four variables cannot be discovered).
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6 Conclusion and Ongoing Work

We presented a constraint-based algorithm for the synthesis of interpolants in
linear arithmetic and interpreted function symbols. Our algorithm does not re-
quire a priori constructed proofs to derive interpolants, which is a difficult task.
The algorithm uses a reduction to constraint solving problem in linear arith-
metic, which can be efficiently solved by using a Linear Programming tools in a
black-box fashion. Our experiments provide evidence for the practical applica-
bility of the algorithm.

In ongoing work, we are exploring the constraint based setup to accommodate
user-defined constraints on the form of the generated interpolant, which has
promising applications in software verification. In particular, we would like to
compute interpolants that are elements of a predefined abstract domain relevant
for static analysis, see e.g. [1].

Acknowledgements. We thank Friedrich Eisenbrand for valuable discussions.
This work is supported in part by the German Research Foundation (DFG) as

a part of the Transregional Collaborative Research Center “Automatic Verifica-
tion and Analysis of Complex Systems” (SFB/TR 14 AVACS), by the German
Federal Ministry of Education and Research (BMBF) in the framework of the
Verisoft project under grant 01 IS C38.

References

1. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
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Abstract. We revisit the connection between equality assertion check-
ing in programs and unification that was recently described in [7]. Using
a general formalization of this connection, we establish interesting con-
nections between the complexity of assertion checking in programs and
unification theory of the underlying program expressions. In particular,
we show that assertion checking is: (a) PTIME for programs with nonde-
terministic conditionals that use expressions from a strict unitary theory,
(b) coNP-hard for programs with nondeterministic conditionals that use
expressions from a bitary theory, and (c) decidable for programs with
disequality guards that use expressions from a convex finitary theory.
These results generalize several recently published results and also es-
tablish several new results. In essence, they provide new techniques for
backward analysis of programs based on novel integration of theorem
proving technology in program analysis.

1 Introduction

We use the term equality assertion, or simply assertion, to refer to an equality
between two program expressions. The assertion checking problem is to decide
whether a given assertion always holds at a given program point. In general,
assertion checking is an undecidable problem. Hence, assertion checking is typi-
cally performed over some sound abstraction of the program. In this paper, we
give algorithms as well as hardness results for the assertion checking over classes
of useful program abstractions.

Consider, for example, the program shown in Figure 1. All assertions shown
in the program are valid (assuming that all variables are integer variables and
that there is no overflow). Observe that to prove the validity of the assertions
a = b and y = 2x, we need to reason about the multiplication operator. Since
full reasoning about the multiplication operator is in general undecidable, we
can use some sound abstraction of the multiplication operator. One option is to
model the multiplication operator as a binary uninterpreted function.1 Such a
� The second author was supported in part by the National Science Foundation under

grant ITR-CCR-0326540.
1 An uninterpreted function f of arity n satisfies only one axiom: If ei = e′

i for 1 ≤
i ≤ n, then f(e1, . . . , en) = f(e′

1, . . . , e
′
n).
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model is sufficient to prove the validity of the assertion a = b. In Section 4, we
show how to use unification algorithm for uninterpreted functions to obtain a
polynomial time algorithm for verifying the validity of such assertions.

Modeling the multiplication opera-

True False*

x := 0; y := 0; flag := w;

a := 1; b := 1; z := flag + flag ;

a := a × c; b := b × c;
x := x+ (a × c);
y := y + (c × a) + (a × c);
flag := flag - 1; z := z - 2;
Assert (y = 2x);

flag w
False

True

Assert (a = b);
Assert (z = 2w);

Fig. 1. An example program

tor as an uninterpreted function is not
sufficient to prove the validity of the
assertion y = 2x, which requires rea-
soning about the commutative nature
of the multiplication operator. Hence,
if we abstract the multiplication opera-
tor as a commutative function, we can
prove validity of the second assertion
(as well as the first assertion). How-
ever, this requires us to work with
program expressions that involve a
combination of linear arithmetic and a
commutative operator. In Section 5, we
show that in general, assertion check-
ing on programs with such program ex-
pressions is coNP-hard. However, the
good news is that this problem is
still decidable, as we show in Section 6.
Also observe that the validity of the as-
sertion y = 2x requires the knowledge
of the loop guard flag �= w inside the
loop. Our algorithm in Section 6 can

also reason about disequality guards and can hence prove the validity of such
assertions.

The assertion z = 2w involves discovering the loop invariant z = 2 × flag
and reasoning about the equality guard flag = w. Reasoning about such lin-
ear arithmetic expressions in presence of equality guards has been shown to be
undecidable in general [13]. This indicates that the decidability results in this
paper are tight and that one would need incomplete heuristics, such as the one
described in Section 7, to reason about arbitrary conditionals. We formalize
the notion of reasoning about disequality guards as opposed to reasoning about
equality guards by making all conditionals non-deterministic, and introducing
Assume nodes, as described in Section 2.1.

The main appeal of this work is that all technical results are derived using the
basic link between assertion checking for programs whose expressions are from
some theory T and unification in the theory T (Section 3). An assertion holds at
a program point if it evaluates to true in every run of the program. Every run of
a program returns a valuation of the program variables. This valuation can be
seen as a substitution. If every such substitution makes an assertion true, then
each substitution would also validate some maximally general T-unifier of the
assertion. Using this basic principle, we show that unification algorithms can be
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Unification type of theory Complexity of Examples Generalizes
of program expressions assertion checking

Strict Unitary PTIME �a, uf [6,12,13]
Bitary coNP-hard �a+uf, c [7]

Finitary-Convex Decidable �a+uf +c+ac [12,7]

Fig. 2. Summary of results in this paper. If the program model consists of nodes (a)-
(d) from Figure 3 and the theory underlying the program expressions belongs to the
class given in Col 2, then its assertion checking problem has time complexity given in
Col 3. Row 1 requires some additional minor technical assumptions. Row 4 holds even
for disequality guards. Col 4 contains examples of theories for which the corresponding
result holds:- �a: Linear Arithmetic, uf : Uninterpreted Functions, c: Commutative
Functions, ac: Associative-Commutative Functions, The symbol + denotes combination
of theories. Last column gives references whose results are generalized by our result.

used to strengthen assertions during assertion checking using backward analysis.
Quite interestingly, the same basic principle also helps us show hardness results
in some cases. While this basic principle was presented in an earlier paper [7], its
fundamental role in uniformly deriving PTIME , coNP-hardness, and decidability
results for assertion checking has been explicated in only this paper.

In particular, the main contributions of this paper are the following general
results that relate the complexity of assertion checking in programs with the
unification type of the theory of program expressions. These results are also
summarized in Figure 2.

(1) We describe a generic PTIME algorithm for assertion checking in programs
when the program expressions are from a strict unitary theory (Section 4).
(2) We introduce the notion of a bitary theory, and prove that several interesting
theories (e.g., commutative functions) are bitary. Intuitively, a bitary theory is
one that can encode disjunction. We prove that assertion checking in programs
whose program expressions are from a bitary theory is coNP-hard (Section 5).
(3) We describe a generic algorithm for assertion checking in programs when
the program expressions are from a finitary convex theory, thereby proving de-
cidability. We prove that the (rich) theory of combination of linear arithmetic
with functions that are uninterpreted, commutative, or associative-commutative
(AC) is finitary and convex (Section 6). The significance of such functions lie in
the fact that they can be used to model important properties of otherwise hard
to reason about program operators. For example, commutative functions can be
used to model floating-point operators (which do not obey associativity), and
AC functions can be used to model bit-wise operators.

The above results uniformly generalize several known results [6,7,13,12], and
also provide several new results. All prior results on the complexity of assertion
checking have been for specific abstractions. For example, in an earlier paper [7]
we showed that intraprocedural assertion checking in the combination of linear
arithmetic and uninterpreted functions was coNP-hard, but decidable, using a
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(a) Assignment
Node

x := e

0

(d) Join Node

21

(c) Non-deterministic
Conditional Node

*True False

1 2

(b) Non-deterministic
Assignment Node

x := ?

0

(e) Assume Node

Assume (e1 e2)

0

Fig. 3. Flowchart nodes in our abstracted program model

unification based approach. The results in this paper go much beyond one or two
specific program abstractions and apply to intra- and inter-procedural analysis
of wide classes of program abstractions. They can be used to quickly classify the
hardness of these analyses for new abstractions.

The results in this paper establish closer connections between program anal-
ysis and theorem proving. The traditional way of using theorem proving in pro-
gram analysis has been via decision procedures. In this usage scenario, decision
procedures are used to discharge verification conditions generated from programs
annotated with loop invariants. In this paper, theorem proving technology is
more tightly integrated in program analysis to make it more precise and effi-
cient, even in the absence of loop-invariant annotations.

The results in this paper should also be viewed in the context of developing
new algorithmic techniques for performing backward analysis of programs. This
paper shows that standard unification algorithms can be used during backward
analyses of programs. Finally, although this paper focuses solely on backward
analysis, we believe that our observations enable new ways of combining both
forward and backward analyses using theorem proving technology to improve
overall efficiency and precision [5].

2 Preliminaries

2.1 Program Model

We assume that each procedure in a program is abstracted using the flowchart
nodes shown in Figure 3. In the assignment node, x refers to a program variable
while e denotes some expression in the underlying abstraction. We refer to the
language of such expressions as the expression language of the program. Following
are examples of the expression languages for some abstractions that we refer to
in this paper:

– Linear arithmetic: e ::= y | c | e1 ± e2 | c × e
Here y denotes some variable while c denotes some arithmetic constant.

– Uninterpreted functions: e ::= y | f(e1, . . . , en)
Here f denotes some uninterpreted function of arity n.
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– Commutative Functions e ::= y | f(e1, e2)
Here f denotes a commutative function.

– Combination of linear arithmetic and uninterpreted functions:
e ::= y | c | e1 ± e2 | c × e | f(e1, . . . , en)

A non-deterministic assignment x :=? denotes that the variable x can be
assigned any value. Such non-deterministic assignments are used as a safe ab-
straction of statements (in the original source program) that our abstraction
cannot handle precisely.

A join node has two incoming edges. Note that a join node with more than
two incoming edges can be reduced to join nodes each with two incoming edges.

Non-deterministic conditionals, represented by ∗, denote that the control can
flow to either branch irrespective of the program state before the conditional.
They are used as a safe abstraction of guarded conditionals, which our abstrac-
tion cannot handle precisely. We abstract away the guards in conditionals be-
cause otherwise the problem of assertion checking can be easily shown to be
undecidable even when the program expressions involves operators from simple
theories like linear arithmetic [13] or uninterpreted functions [12] (in which case
our result in Section 4 would not be possible, and the result in Section 5 would
become trivial). This is a very common restriction for a program model while
proving preciseness of a program analysis for that model.

However, (for our result in Section 6) we do allow for assume statements of
the form Assume(e1 �= e2), which we also refer to as disequality guards. Note that
a program conditional of the form e1 = e2 can be reduced to a non-deterministic
conditional and assume statements Assume(e1 = e2) (on the true side of the
conditional) and Assume(e1 �= e2) on the false side of the conditional. Hence, the
presence of disequality guards in our program model allows for partial reasoning
of program conditionals.

2.2 Unification Terminology

A substitution σ is a mapping that maps variables to expressions such that
for every variable x, the expression σ(x) contains variables only from the set
{y | σ(y) = y}. A substitution mapping σ can be (homomorphically) lifted to
expressions such that for every expression e, we define σ(e) to be the expres-
sion obtained from e by replacing every variable x by its mapping σ(x). Often,
we denote the application of a substitution σ to an expression e using postfix
notation as eσ. We sometimes treat a substitution mapping σ as the following
formula, which is a conjunction of non-trivial equalities between variables and
their mappings, i.e.,

∧

x
x = xσ.

A substitution σ is a unifier for an equality e1 = e2 (in theory T) if e1σ = e2σ
(in theory T). A substitution σ is a unifier for a set of equalities E if σ is a unifier
for each equality in E. A substitution σ1 is more-general than a substitution σ2
if there exists a substitution σ such that xσ2 = (xσ1)σ for all variables x.2 A
2 The more-general relation is reflexive, i.e., a substitution is more-general than itself.

All equalities are interpreted modulo theory T.
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set C of unifiers for E is complete when for any unifier σ for E, there exists a
unifier σ′ ∈ C that is more-general than σ. The reader is referred to [1] for an
introduction to unification theory.

We use the notation Unif(E), where E is some conjunction of equalities E,
to denote the formula that is a disjunction of all unifiers in some complete set
of unifiers for E. (If E is unsatisfiable, then E does not have any unifier and
Unif(E) is simply false.)

Example 1. Consider the equality f(x)+f(y) = f(a)+f(b) over theory of combi-
nation of linear arithmetic and unary uninterpreted function f . The substitution
{x �→ a, y �→ b} is a unifier for it. A complete set of unifiers, however, contains
two unifiers, viz. {x �→ a, y �→ b} and {x �→ b, y �→ a}. Hence,

Unif(f(x) + f(y) = f(a) + f(b)) = (x = a ∧ y = b) ∨ (x = b ∧ y = a)

Theories can be classified based on the cardinality of complete set of unifiers for
its equalities as follows.

Unitary Theory. A theory T is said to be unitary if for all equalities e = e′ in
theory T, there exists a complete set of unifiers of cardinality at most 1, that is,
there is a unique most-general unifier. We define a unitary theory to be strict if
for any sequence of equations e1 = e′1, e2 = e′2, . . ., the sequence of most-general
unifiers Unif(e1 = e′1), Unif(e1 = e′1 ∧ e2 = e′2), . . . contains at most n distinct
unifiers where n is the number of variables in the given equations.3 The theory of
linear arithmetic and the theory of uninterpreted functions are both strict unitary.

Bitary Theory. We define a theory T to be bitary if there exists an equality
e = e′ in theory T such that y �→ z1 and y �→ z2 form a complete set of unifiers
for e = e′, where y, z1 and z2 are some variables. In other words, Unif(e = e′)
is y = z1 ∨ y = z2. In addition, we require a technical side condition that
for new variables y′ and z′1, it is the case that Unif(e = e[y′/y, z′1/z1]) and
Unif(e′ = e′[y′/y, z′1/z1]) are both y = y′ ∧ z1 = z′1.

The theories of a commutative function, combination of linear arithmetic
and a unary uninterpreted function, and combination of two associative-
commutative functions are all bitary (as proved in Section 5.2). Intuitively, bitary
theories are theories that can encode disjunction.

Finitary Theory. A theory T is said to be finitary if for all equalities e = e′

in theory T, there exists a complete set of unifiers of finite cardinality. Note
that every unitary theory is, by definition, finitary. Hence, the theories of linear
arithmetic and uninterpreted functions are both finitary. The theory of com-
bination of linear arithmetic and uninterpreted functions is also finitary (as
proved in [7]). In this paper, we show that the more general theory of com-
bination of linear arithmetic, uninterpreted functions, commutative functions,
and associative-commutative functions is also finitary (Section 6.2).

3 This is an ascending (unifier) chain condition.
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1 if (*) { x := a; y := b; }
2 else { x := b; y := a; }
3 endif
4 while (*) {
5 x := fx; y := fy;
6 a := fa; b := fb;
7 }
8 assert(x + y = a + b);

(a) Program

pc Assertion at pc
w/o unification w/ unification

7 x + y = a + b x = a + b − y

4 x + y = a + b ∧ (x = a ∧ y = b)∨
fx + fy = fa + fb ∧ · · · (x = b ∧ y = a)

1 non-termination true
(b) Backward Analysis

1 true
3 (x = a ∧ y = b) � (x = b ∧ y = a)

= (x + y = a + b)
7 true

(c) Forward Analysis

Fig. 4. This figure illustrates the advantage of using unification in backward analysis.
The assertion on line 7 of program in Figure (a) is true. Standard backward analy-
sis based procedure, illustrated in Figure (b) Column 1, fails to prove the assertion
because it fails to terminate across the loop. Forward analysis in Figure (c) requires
join computation. Unless we unreasonably assume that the join operator returns the
infinite set of facts [9],

∧
i f ix + f iy = f ia + f ib, it also fails. When using unification

to strengthen assertions in backward analysis, as in Figure (b) Column 2, the fixpoint
terminates and we can prove the assertion.

A theory is said to be convex if whenever e1 = e′1 ∨ e2 = e′2 is valid in the
theory, then either e1 = e′1 is valid in the theory or e2 = e′2 is valid in the theory.
The above-mentioned finitary theories are also convex.

3 Connection Between Unification and Assertion
Checking

A backward analysis based on weakest precondition computation involves com-
puting assertions at intermediate and initial program points that guarantee that
a given assertion holds at a given program point. A unification procedure can be
used to strengthen and simplify such assertions. The formula Unif(E) logically
implies E, but it is, in general, not equivalent to E. Since it is often “simpler”
than E, we may wish to replace assert(E) by assert(Unif(E)) at intermediate
points during backward analysis. This process is sound, that is, if Unif(E) is an
invariant, then clearly E will also be an invariant. (See Figure 4 for an exam-
ple.) But this process is not complete in general, that is, if we fail to prove that
Unif(E) is an invariant, then we can not conclude anything about E. The basic
result formally stated in Lemma 1 and Lemma 2 is that, in many useful abstrac-
tions, we do not lose completeness by this replacement. For instance, unification
preserves completeness and helps prove the assertion in the example of Figure 4.

Lemma 1 ([7]). Let π be any location in a program that is specified using nodes
(a)-(d) of Figure 3 and expressions from a theory T. An equality e = e′ holds at
π iff UnifT(e = e′) holds at π (assuming UnifT(e = e′) is a finite disjunction).
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The proof of this lemma is fairly simple and is given in full version of the paper [8].
The key insight is that runs of a program are just substitutions and if every

run validates an assertion, then every run should also validate some maximally
general unifier of that assertion.

We use this soundness and completeness preserving strengthening of assertions
in Section 4 as part of a generic PTIME backward analysis procedure for assertion
checking in a certain class of programs. Surprisingly, we use this same result
to also show hardness of assertion checking for another class of programs in
Section 5. This simplifies, and simultaneously generalizes, the proof of hardness
of assertion checking for a specific theory [7].

We can generalize Lemma 1 as follows to also work in the presence of dise-
quality guards.4

Lemma 2. Let π be a location in a program specified using nodes (a)-(e) of
Figure 3 with expressions from a convex finitary theory T. Let φi be some con-
junction of equalities. Then,

∨

i

φi holds at π iff
∨

i

Unif(φi) holds at π.

The proof of Lemma 2 is given in full version of the paper [8]. In Section 6, we
argue that the standard backward analysis procedure for assertion checking, if
enhanced by unification based assertion strengthening, yields a decision procedure
for a large class of programs.

4 PTIME Decidability for Strict Unitary Theories

In this section, we prove PTIME complexity (by describing a polynomial-time
algorithm) for the problem of assertion checking when the expression language of
the program comes from a strict unitary theory, and the flowchart representation
of the program is abstracted using nodes (a)-(d) shown in Figure 3.

This PTIME complexity result generalizes two earlier known results for theo-
ries of linear arithmetic and uninterpreted functions (both of which are unitary
theories). Gulwani and Necula gave a polynomial-time algorithm for discovering
all assertions of bounded size when the program model consists of nodes (a)-(d)
and the expression language consists of uninterpreted functions, thereby prov-
ing PTIME complexity of assertion-checking for such programs [6]. Müller-Olm,
Rüthing, and Seidl [12] have also pointed out that assertion checking on pro-
gram with nodes (a)-(d) using the uninterpreted symbols’ abstraction (Herbrand
equalities) is in PTIME. Muller-Olm and Seidl [13] proved PTIME complexity
for assertion checking of programs with nodes (a)-(d) and expression language
of linear arithmetic by simplifying Karr’s algorithm [11].

4.1 Algorithm

Our algorithm for assertion checking is based on weakest precondition compu-
tation. It represents invariants (that need to be satisfied for the assertion to
4 We remark here that the program nodes for which unification does not preserve com-

pleteness, viz. positive guards, are exactly responsible for undecidability of assertion
checking for many abstractions.
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be true) at each program point by a formula that is either false, true, or a
conjunction of equalities of the form e = e′.

Suppose the goal is to check whether an assertion e1 = e2 is an invariant at
program point π. The algorithm performs a backward analysis of the program
computing a formula ψ at each program point such that ψ must hold at that
program point for the assertion e1 = e2 to be true at program point π. This
formula is computed at each program point from the formulas at the successor
program points in an iterative manner. The algorithm uses the transfer functions
described below to compute these formulas across the flowchart nodes shown in
Figure 3. The algorithm declares e1 = e2 to be an invariant at π iff the formula
computed at the beginning of the program after fixed-point computation is valid.

Initialization: The formula at all program points except π is initialized to true.
The formula at program point π is initialized to be e1 = e2.

Assignment Node: See Figure 3 (a). The formula ψ′ before an assignment node
x := e is obtained from the formula ψ after the assignment node by substituting
x by e in ψ, i.e. ψ′ = ψ[e/x].

Non-deterministic Assignment Node: See Figure 3 (b). The formula ψ′ before a
non-deterministic assignment node x :=? is obtained from the formula ψ after
the non-deterministic assignment node by substituting program variable x by
some fresh variable (which does not occur in the program and substitution ψ),
i.e. ψ′ = ψ[y/x].

Join Node: See Figure 3 (c). The formulas ψ1 and ψ2 on the two predecessors of a
join node are same as the formula ψ after the join node, i.e. ψ1 = ψ and ψ2 = ψ.

Non-deterministic Conditional Node: See Figure 3 (d). The formula ψ before a
non-deterministic conditional node is obtained by taking the conjunction of the
formulas ψ1 and ψ2 on the two branches of the conditional, and then pruning
away the redundant equations using the Unif procedure.

ψ = UPrune(ψ1 ∧ ψ2)

We say an equation e = e′ is redundant with respect to a formula ψ if Unif(ψ) is
a unifier for e = e′. The function UPrune(ψ) sequentially checks if each equation
e = e′ in ψ is redundant with respect to ψ−{e = e′} and removes the redundant
ones. Thus, Unif(ψ) and Unif(UPrune(ψ)) are equivalent.

Fixed-point Computation: In the presence of loops in procedures, the algorithm
goes around each loop until the formulas computed at each program point in two
successive iterations of a loop have equivalent unifiers, or if any formula becomes
unsatisfiable.

Correctness. The correctness of the algorithm follows from the interesting
connection between program analysis and unification theory stated in Lemma 1.
Specifically, Lemma 1 implies the correctness of pruning and the fixpoint de-
tection steps. It shows that the formula computed by our algorithm before a
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flowchart node is the weakest precondition of the formula after that node. The
correctness of the algorithm now follows from the fact that the algorithm starts
with the correct assertion at π and iteratively computes the correct weakest
precondition at each program point in a backward analysis.

Complexity. Termination of the fixed-point computation in polynomial time
relies on the unitary theory being strict. The following theorem states the com-
plexity of the algorithm.

Theorem 1. Let T be a strict unitary theory. Suppose that TUnif(n) is the time
complexity for computing the most-general T-unifier of equations given in a
shared representation.5 Then the assertion checking problem for programs of size
n that are specified using nodes (a)-(d) and whose expressions are from theory
T, can be solved in time O(n4TUnif(n2)).

Proof. Since the program is of size n, the number of variables is bounded by n.
Due to the strictness condition, each node in the flowchart changes at most n
times. Since there are at most n nodes, there are at most n2 changes. For each
change, we may have to visit all n nodes once. Hence, there are n3 node visits.
In any such visit, UPrune is the most complex operation we could perform. In
this operation, there are at most 2n equations to check for redundancy. The
size of each equation, in shared representation, is bounded by n. This is because
some path in the program itself contains a representation for the expression in
an equation. Thus, pruning takes at most 2n(TUnif(n2)) time. Hence the overall
time complexity is O(n4(TUnif(n2) + TValid(n2))). �

The above complexity result is conservative because it is based on a generic
argument. It can be improved for specific theories, but that is not the focus of
this paper.

4.2 Examples of Strict Unitary Theories

If the most-general T-unifiers do not contain any new variables, then clearly
any chain of increasingly less general substitutions, σ1, σ1σ2, σ1σ2σ3, . . ., will
have at most n distinct elements since each new distinct element will necessarily
instantiate one uninstantiated variable. This is the case for the theory of linear
arithmetic and uninterpreted symbols. The theory of Abelian Groups is unitary,
but the most-general unifiers contain new variables. However, using a different
argument it can be checked that this theory also satisfies the strictness condition.

5 coNP-Hardness for Bitary Theories

In this section, we first show that the problem of assertion checking, when the ex-
pression language of the program comes from a bitary theory, is coNP-hard, even
5 We assume that the T-unification procedure returns true when presented with an

equation that is valid (true) in T.
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CheckT(α1, . . . , αm, x)
% Let e = e′ be an equality in theory T s.t. Unif(e = e′) is y = z1 ∨ y = z2.
e1 := e[x�y, α1�z1 , α2�z2 ]; e′

1 := e′[x�y, α1�z1 , α2�z2 ];
for j = 1 to m − 2 do

ej+1 := e[ej�y, e′
j�z1 , ej [αj+2/x]

�z2 ]; e′
j+1 := e′[ej�y, e′

j�z1 , ej [αj+2/x]
�z2 ];

Assert(em−1 = e′
m−1);

Fig. 5. A procedure that checks whether (x = α1) ∨ . . . ∨ (x = αm)

when the program is loop-free and the flowchart representation of the program
only involves nodes (a)-(d). In the second part of this section, we show that several
interesting theories are bitary, thereby establishing that the problem of assertion
checking when program expressions are from any of those theories is coNP-hard.

Gulwani and Tiwari [7] showed that the assertion checking problem is coNP-
hard when the expression language involves combination of linear arithmetic and
uninterpreted functions and when the program model consists of nodes (a)-(d).
This section nontrivially generalizes the core idea of the proof of [7], by combining
it with the unification connection (Lemma 1), to give a simple characterization
of programs for which assertion checking is coNP-hard. This is used to obtain
hardness results for several new and unrelated theories.

5.1 Reduction from 3-SAT

Let e = e′ be the equality in theory T that has y �→ z1 and y �→ z2 as its com-
plete set of unifiers. The key observation in proving the coNP-hardness result
is that a disjunctive assertion of the form x = α1 ∨ x = α2 can be encoded
as the non-disjunctive assertion e1 = e′1, where e1 = e[x�y, α1�z1 , α2�z2 ] and
e′1 = e[x�y, α1�z1 , α2�z2 ]. The procedure CheckT(α1, . . . , αm, x) in Figure 5 gen-
eralizes this encoding to the disjunctive assertion x = α1 ∨ . . . ∨ x = αn. The
unsatisfiability problem can be easily reduced to the problem of checking a dis-
junctive assertion of the form x = y1 ∨ . . . ∨ x = yn (where x, y1, . . . , yn are
variables). This implies the following theorem (detailed proof in full version of
the paper [8]).

Theorem 2. Assertion checking is coNP-hard for (even loop-free) programs spec-
ified using nodes (a)-(d) with expressions from the language of a bitary theory.

5.2 Examples of Bitary Theories

We present a few examples of bitary theories, by presenting a witness equation
e = e′ for each theory. It is easily verified that y �→ z1 and y �→ z2 form a
complete set of unifiers for e = e′ in each theory. Moreover, e and e′ can also be
verified to satisfy the technical side condition in each case.

The theory of a commutative function f can be shown to be bitary using the
following equality:

f(f(y, y), f(z1, z2)) = f(f(y, z1), f(y, z2)) (1)
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The theory of combination of linear arithmetic and a unary uninterpreted
function f is also bitary. The following equality is a witness:

f(f(y) + f(y)) + f(f(z1) + f(z2)) = f(f(y) + f(z1)) + f(f(y) + f(z2)) (2)

The theory of combination of an AC function g and a unary uninterpreted
function f is also bitary. The following equality shows this.

g(f(g(y, y)), f(g(z1, z2))) = g(f(g(y, z1)), f(g(y, z2))) (3)

The theory of combination of two AC functions f and g is also bitary as shown
by the following equality, where c is some constant or a fresh variable distinct
from y, z1 and z2.

g(f(g(y, y), c), f(g(z1, z2), c)) = g(f(g(y, z1), c), f(g(y, z2), c)) (4)

6 Decidability for Finitary Convex Theories

In this section, we first describe a generic algorithm (thereby proving decidabil-
ity) for assertion checking when the expression language of the program comes
from a finitary theory that is convex, and the flowchart representation of the
program consists of nodes (a)–(e) shown in Figure 3. In the second part of this
section, we show that the (rich) theory of combination of linear arithmetic, unin-
terpreted functions, commutative functions, associative-commutative functions
is finitary and convex. This establishes the decidability of assertion checking over
this theory.

Our result here generalizes, using a uniform framework, the result of Müller-
Olm, Rüthing, and Seidl [12] about decidability of checking validity of Herbrand
equalities in the presence of disequality guards. It also subsumes our earlier
result [7] of decidability of assertion checking for programs whose nodes are re-
stricted to Nodes (a)–(d) and whose expression language involves combination
of linear arithmetic and uninterpreted functions. Our new general decidability
result is nontrivial since the abstract lattice (underlying the abstractions based
on convex finitary theories) often has infinite height, which implies that a stan-
dard forward propagation algorithm without widening [3] cannot terminate in a
finite number of steps.

6.1 Algorithm

The algorithm is based on weakest precondition computation and is similar to
the one described in Section 4. It computes (in a backward analysis) a formula
ψ at each program point π such that the formula ψ must hold at π for the given
assertion to be true. The formula ψ computed at each program point is either
false or a disjunction of conjunction of equalities of the form x = e such that
each disjunct represents a valid substitution. Müller-Olm, Rüthing, and Seidl [12]
have used a similar representation.

The initialization and the transfer functions for assignment and join nodes are
exactly same as the one for the algorithm described in Section 4. We describe
the transfer functions for the remaining nodes below.
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Non-deterministic Conditional Node: See Figure 3 (d).
The formula ψ before a non-deterministic conditional node is obtained by taking
the conjunction of the formulas ψ1 and ψ2 on the two branches of the conditional,
and invoking Unif on each resulting disjunct.

ψ =
∨

i,j

Unif(ψi
1 ∧ ψj

2), where ψ1 =
∨

i

ψi
1 and ψ2 =

∨

j

ψj
2

Assume Node: See Figure 3 (e).
The formula ψ′ before an assume node e1 �= e2 is obtained from the formula ψ
after the assume node as: ψ′ = ψ ∨ Unif(e1 = e2)

Correctness and Termination. The correctness of the algorithm is an easy
consequence of Lemma 2, which shows that unification can be used to strengthen
assertions without any loss in soundness or precision. The proof of termination
of the algorithm is similar to the proof of termination for the special case of
the combined theory of linear arithmetic and uninterpreted functions [7], and is
described in full version of the paper [8]. Hence, the following theorem holds.

Theorem 3. Let T be a convex finitary theory. Then, assertion checking is de-
cidable for programs specified using nodes (a)-(e) with expressions from the lan-
guage of T.

6.2 Examples of Finitary Convex Theory

In this section, we prove that the (rich) theory of combination of linear arith-
metic, uninterpreted functions, commutative functions, associative-commutative
functions is finitary and convex. Let TLA, TUF , TC , TAC denote respectively
the theories of linear arithmetic, uninterpreted functions, commutative func-
tions, and associative-commutative functions over disjoint signatures. Let TAll =
TLA ∪ TUF ∪ TC ∪ TAC . The theory TAll is convex because it is equational. We
now use the following well-known result [1] to show that TAll is finitary.

Proposition 1 ([1]). Let T1, . . . , Tn be non-trivial equational theories over dis-
joint signatures that are finitary for Ti-unification with linear constant restric-
tions. Then T1 ∪ · · · ∪ Tn is finitary for elementary unification.

For a theory T, if unification with constants is finitary, then unification with
linear constant restriction, which is more restrictive, is also finitary. Unification
with constants is unitary for TUF and TLA, whereas it is finitary for TC and
TAC . Therefore, it follows from Proposition 1 that TAll is finitary for elementary
unification. Since TUF is included in TAll, it follows that TAll is finitary for
general unification as well. In fact, an algorithm to generate the complete set
of unifiers in TAll can be obtained using the generic methodology for combining
unification algorithms [1].
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7 Discussion

Handling Positive Guards. The results in this paper have uniformly assumed
that there are no assume nodes with positive equalities. In the presence of pos-
itive assume nodes, we lose precision if we use unification to replace a weaker
assertion by a stronger assertion. This loss in precision is not surprising since the
presence of positive guards can cause assertion checking to become undecidable
for several abstractions [13,12].

In practice, heuristics can be used to deal with positive guards. For instance,
the precondition ψ′ before a program node Assume(x=y) can be obtained from
the formula ψ after the assume node as follows: ψ′ ≡ ψ ∨ ψ[x/y] ∨ ψ[y/x]. This
simple heuristic allows us to prove the assertion z = 2w in the example given in
Figure 1. This suggests that the unification based backward analysis procedure
proposed in this paper can be effective in practice.

Backward vs. Forward Analysis. Our algorithms for assertion checking are
based on backward analysis of programs. Cousot [4] formalized the semantics
of sound backward analyses as computing an over-approximation of the set of
program states obtained by pushing the negation of the goal backwards, which
is equivalent to under-approximation of the set of program states obtained by
pushing the goal backwards assuming that the abstract domain is closed under
negation. However, abstract domains are, in general, not closed under negation,
as is the case for all the equality based abstract domains that we consider in this
paper. Also, most of these domains do not have precise transfer functions for
forward analysis. Hence, there is no automatic recipe to construct algorithms for
performing forward or backward analysis of arbitrary abstract domains. This pa-
per shows how to perform precise backward analysis over a large class of abstract
domains by using unification algorithms from corresponding logical theories.

For problems considered in this paper, it may be argued that backward analy-
ses are better than forward analyses over corresponding program abstractions in
terms of efficiency. This is because performing precise assertion checking requires
forward analysis to discover all facts at each program point, since it is a-priori
not clear which facts would be useful to prove the assertion that occurs later
in the code. For some of the program abstractions described in this paper (in
Section 6), the underlying abstract lattices have infinite height. Hence, forward
analyses over those abstractions would not terminate unless widening techniques
are used, which would lead to imprecision. However (as surprising as it may be)
the backward analyses that we describe in Section 6 terminate over the same
abstractions since they only attempts to decide the validity of given assertions
(which are finite in number). Figure 4 presents one such example.

Connections Between Program Analysis and Theorem Proving. This
paper contributes to the broader goal of transferring results from the theorem
proving community to the world of program analysis. We had earlier shown that
forward program analysis can be made more precise and efficient by a tighter
coupling with theorem proving technology [9]. In particular, we showed how to
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use results from Nelson-Oppen combination of decision procedures to generate
a more powerful forward analysis by combination of different forward analyses.
This paper demonstrates that unification procedures are useful in improving the
efficiency of backward analysis. Unification algorithms have earlier been used in
type inferencing [10]. Type inferencing itself can be seen as an abstract inter-
preter [2]. The results of this paper can be seen as generalizing this basic use of
unification in type checking to program analysis over richer abstract domains.
Using backward analysis enhanced with unification, we showed here that the uni-
fication type of a theory determines the complexity of the assertion checking
problem for the corresponding abstraction.

8 Conclusion

Unification theory plays a significant role in assertion checking. The unifica-
tion type of a theory–unitary, bitary, or finitary–is critical in determining the
complexity of the assertion checking problem–PTIME, coNP-hard, or decidable–
modulo some minor assumptions on the theories and certain restrictions on the
program models. These results uniformly generalize several known results and
also yield several new ones (see Figure 2). We believe the connections between
theorem proving and program analysis developed in this paper can lead to sig-
nificant new research in both the communities and increase cross-fertilization.
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Abstract. We present a constraint-based algorithm for the synthesis
of invariants expressed in the combined theory of linear arithmetic and
uninterpreted function symbols. Given a set of programmer-specified in-
variant templates, our algorithm reduces the invariant synthesis problem
to a sequence of arithmetic constraint satisfaction queries. Since the com-
bination of linear arithmetic and uninterpreted functions is a widely ap-
plied predicate domain for program verification, our algorithm provides
a powerful tool to statically and automatically reason about program
correctness. The algorithm can also be used for the synthesis of invari-
ants over arrays and set data structures, because satisfiability questions
for the theories of sets and arrays can be reduced to the theory of lin-
ear arithmetic with uninterpreted functions. We have implemented our
algorithm and used it to find invariants for a low-level memory allocator
written in C.

1 Introduction

The classical approach to the verification of temporal safety properties of pro-
grams requires the construction of inductive invariants [9, 16] at each program
point, that is, assertions that are true on every program execution reaching that
point, and moreover, that are closed under the strongest postcondition operator.
Automation of this construction is the main challenge in program verification.

One promising approach for automated invariant computation is template-
based, where the user specifies a parameterized form of the invariant, and a
constraint-based analysis generates relationships on the parameters such that
every instantiation of the parameters satisfying the relationships guarantees that
the resulting assertions are indeed inductive invariants. This approach has been
successfully applied to numerical invariants [5, 6, 13, 19, 20, 21], using constraint
solving in linear or nonlinear arithmetic. Unlike dataflow analysis techniques,
which achieve low running time and convergence at the cost of lost precision
(e.g., by widening [7]), the template-based techniques are sound and complete
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modulo the templates used: if there is an inductive invariant expressible using
the template, then the methods guarantee to synthesize such an invariant.

Unfortunately, the application of these techniques have been confined so far
to numerical domains, where linear-programming based techniques, or decision
procedures for the theories of rationals/reals, provide natural constraint solvers.
In practice, program verification uses more general predicate domains, for ex-
ample, combinations of linear arithmetic and equality with uninterpreted func-
tions [1, 8, 11, 18, 10]. Uninterpreted functions are especially useful for modeling
memory (for example, dereference operations and field accesses can be modeled
as uninterpreted functions).

We present a constraint-based invariant synthesis algorithm for the com-
bined domain of linear arithmetic and uninterpreted functions. Given invariant
templates in the language of parameterized linear arithmetic and uninterpreted
functions, our algorithm instantiates the parameters such that the resulting as-
sertions are inductive invariants. Moreover, if such an instantiation exists, then
the algorithm will find it. The key technical idea of our approach is hierarchic
theory combination [23], whereby the uninterpreted function terms are compiled
away to produce arithmetic constraints. The compilation instantiates “enough”
functionality axioms to ensure that functions produce equal outputs for equal
inputs. In the worst case, a factorial number of constraint-satisfaction problems
in linear arithmetic with parametric coefficients needs to be solved.

Our technique enables us to construct invariants for programs that manip-
ulate pointers. Furthermore, using recent results that reduce theories of data
structures such as arrays and sets to the combined theory of linear arithmetic
and uninterpreted functions [2,14], we obtain an invariant-generation technique
for templates that involve arrays and set data structures.

We have implemented our algorithm for invariant synthesis and applied it to
generate invariants for a simplified low-level memory allocator used in an OS
kernel. Our tools infer invariants that contain both arithmetic operations and
memory operations (address-of and pointer dereferencing), which are approxi-
mated by uninterpreted function symbols. Heuristics for automatically searching
through the space of candidate templates are left for future work.

2 Example

We illustrate our approach with the small example shown in Fig. 1. We want
to prove the assertion at the end of the while loop. One way to prove an asser-
tion φ in a program is to find an inductive assertion map, that is, a function
η that maps every program location to a set of states such that (I0) the initial
location of the program is marked true, (I1) for each edge � → �′ of the control
flow graph marked with operation op, we have SP(η.�, op) |=LI+UIF η.�′, and (I2)
η.�φ |=LI+UIF φ for the location �φ of the assertion. Here |=LI+UIF denotes the
implication in the theory used to write invariants and program statements, which
is linear arithmetic combined with uninterpreted function symbols in our case.
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main() {
int d1, d2;

d1 = 3;
d2 = f(4);

while ( nondet() ) {
d1 = f(d1+1);
d2 = f(d2+1);

}

assert( d2=f(d1+1) );
}

�1

�2

�3

d1 = 3;
d2 = f(4);

d1=f(d1+1);
d2=f(d2+1);

assert( d2=f(d1+1) );

Fig. 1. Example program [10] and its control-flow graph. The invariant to prove is
asserted at the location �3.

SP denotes the strongest postcondition operation. For ease of exposition, we
shall concentrate on the loop invariant at the location �2 in the example.

We shall use a template-based technique to infer inductive invariant maps,
that is, the user provides a parameterized expression denoting the shape of the
invariant, and our inference technique finds instantiations of the parameters
that result in an inductive invariant map. For the example, we assume that the
template ψ for the loop invariant is

ψ : cd1d1+ cd2d2 + cff(cfd1d1 + cfd2d2+ cfd) = cd,

where c∗ are parameters to be instantiated. This fixes the form of the invariant
to a linear equality between a constant and a linear term where the function
f occurs once with a linear argument. We use ψ′ to denote the primed version
of the template, where the program variables d1 and d2 are replaced by their
primed versions d1′ and d2′. The primed variables denote the updated values of
variables.

Given a template, our algorithm generates a set of constraints between the
parameters that must be satisfied for any parameter instantiation to be an invari-
ant. Condition (I1) requires that the template is true when the loop is entered
for the first time

d1′ = 3 ∧ d2′ = f(4) |=LI+UIF ψ′, (1)

and that it must be preserved under the loop iteration

ψ ∧ d1′ = f(d1 + 1) ∧ d2′ = f(d2 + 1) |=LI+UIF ψ′. (2)

Condition (I2) requires that the invariant implies the desired assertion

ψ |=LI+UIF d2 = f(d1+ 1). (3)

We now translate each implication into a constraint over the template param-
eters. This translation is the crucial part of our algorithm, and it computes a
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Table 1. Purified terms and corresponding definitions for the program in Fig. 1

Fresh Definition
v f(cfd1d1 + cfd2d2 + cfd)
w f(cfd1d1′ + cfd2d2

′ + cfd)
x f(d1 + 1)
y f(d2 + 1)
z f(4)

constraint system that has a solution if and only if there exist a valuation of the
parameters that yields a desired inductive invariant.

The first step in the translation process is purification, which introduces fresh
variables for non-arithmetic subterms and stores their definitions. We purify the
template and the assertions that describe the program, which produces linear
arithmetic assertions together with a set of definitions for the fresh variables.
For our template, purification produces the new template

cd1d1+ cd2d2 + cfv = cd,

where v is a new variable whose definition is

v = f(cfd1d1+ cfd2d2 + cfd).

We show the definition of fresh variables that are created by purification in
Table 1.

Now, each implication (1), (2), and (3) is passed to a function Consec, which
translates the implications into constraints in linear arithmetic. We informally
describe how Consec transforms the implication (2). The other cases are similar.

We observe that reasoning about implication (2) requires handling of func-
tionality axioms, that is, the proof of the implication may rely on the fact that
the function f produces the same outputs for the same inputs. Since some as-
sertions in (2) are parameterized, we do not know a priori which instances of
the functionality axioms may appear in the proof. The function Consec finds
such instances automatically, which are in this case

if d1+ 1 = cfd1d1 + cfd2d2+ cfd then x = v,

if d2 + 1 = cfd1d1
′ + cfd2d2

′ + cfd then y = w.

Given these axiom instances, we can focus on the following version of the impli-
cation (2) that now holds in linear arithmetic:

cd1d1 + cd2d2+ cfv = cd ∧ d1′ = x ∧ d2′ = y ∧ x = v ∧ y = w

|=LI

cd1d1
′ + cd2d2

′ + cfw = cd.

(4)

Note that (4) is equivalent to (2) under the assumption that the latter is prov-
able by using the above axiom instances, but (4) does not require any reason-
ing about uninterpreted function symbols. Consec translates (4) by applying
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Farkas’ lemma of linear programming, which states that (4) holds if the conse-
quent of the implication can be obtained from the antecedents by taking a linear
combination thereof.

Additionally, Consec needs to justify that its choice of the above axiom
instances is valid. Let ϕ denote the (purified) left-hand side of (4) without
the conjuncts x = v and y = w that arise from the axiom instances, that is,
ϕ ≡ cd1d1 + cd2d2 + cfv = cd ∧ d1′ = x ∧ d2′ = y. To justify the choice of
the above axiom instances, Consec includes constraints that the premise of the
first instance follows from ϕ, and that the premise of the second instance follows
from ϕ conjoined with x = v:

ϕ |=LI d1 + 1 = cfd1d1 + cfd2d2 + cfd

ϕ ∧ x = v |=LI d2 + 1 = cfd1d1
′ + cfd2d2

′ + cfd.
(5)

The justification of both facts translates to arithmetic constraints on template
coefficients, again by applying Farkas’ lemma.

We solve the conjunction of the constraints that encode the validity of implica-
tions (4) and (5) together with the constraints for similar implications obtained
by translating (1) and (3) into linear arithmetic under particular choice of axiom
instances. The resulting parameter instantiation below defines the loop invariant
d2− f(d1+ 1) = 0.

cd1 cd2 cf cfd1 cfd2 cfd cd
0 1 −1 1 0 1 0

3 Preliminaries

Constraints. Let x be a set of variables, and let a state be a valuation of the
variables from x. We shall represent sets of states using (quantifier-free) first
order formulas with free variables from x.

A signature Σ = (F, P ) for a first order theory consists of a set of function
symbols F and a set of predicate symbols P . We assume that the arity of function
and predicate symbols are encoded in their names. A constant is a function of
arity zero. For a signature Σ = (F, P ), the set of Σ-terms over x is the smallest
set such that (1) each free variable is a Σ-term, (2) each constant symbol u ∈ F
is a Σ-term, and (3) f(t1, . . . , tn) is a Σ-term, given f ∈ F is a function symbol
of arity n, and each ti is a Σ-term, for i = 1, . . . , n. The set of Σ-atoms is
the smallest set such that (1) s = t is a Σ-atom if s and t are Σ-terms, and
(2) p(t1, . . . , tn) is a Σ-atom for a predicate symbol p ∈ P of arity n and each
ti is a Σ-term, for i = 1, . . . , n. The set of Σ-constraints is the smallest set
such that each Σ-atom is a Σ-constraint, and ¬ϕ and ϕ ∧ ψ are Σ-constraints
whenever ϕ and ψ are Σ-constraints. Finally, the set of Σ-formulas is the smallest
set containing the Σ-atoms that is closed under conjunction, disjunction, and
negation. Semantics of formulas is given using Σ-models in the usual way [3].

In this paper, we assume a constraint language of linear arithmetic and unin-
terpreted functions. That is, in addition to the usual arithmetic operations, we
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assume that the language has a set of uninterpreted function symbols that can be
used as primitive operations. Formally, our signature consists of the constant c
for each c ∈ Q, the functions + and −, together with a set of uninterpreted
function symbols, and the predicate ≤.

A Σ-theory is a set of Σ-formulas that is closed under logical consequences.
The satisfiability problem for a Σ-theory T asks, given a Σ-formula ϕ, whether
some model of the theory T satisfies ϕ. The theory of linear arithmetic (LI) is
the theory of the structure of the rationals 〈Q, 0, 1, +, ≤〉. The theory of equality
with uninterpreted functions (UIF) is the theory of equality together with the
axiom

∀c1, . . . , cn, d1, . . . , dn :
n∧

i=1

ci = di → f(c1, . . . , cn) = f(d1, . . . , dn),

for each uninterpreted function symbol f of arity n. We refer to the right-
hand side of the above implication as the head of the axiom. Given two terms
f(c1, . . . , cn) and f(d1, . . . , dn) we write c ≈ d to denote the premise

∧n
i=1 ci = di

of the corresponding axiom. We write |=LI and |=LI+UIF to denote implication
in the theory of linear arithmetic and in its combination with uninterpreted
function symbols, respectively.

In the following, we work in the combined theory of linear arithmetic and
equality with uninterpreted functions, denoted LI+UIF. We reason about
LI+UIF using the hierarchic approach [23]. This approach allows one to re-
duce the reasoning about certain combinations of base and extension theories
to the reasoning in the base theory. The reduction is performed by introducing
instantiations of the axioms of the extension theory to the base theory. In par-
ticular, the combination of linear arithmetic and uninterpreted function symbols
admits hierarchic combination [23].

Theorem 1. [18,23] The satisfiability problem for LI+UIF is decidable.

Control Flow Graphs. We assume an abstract representation of programs by
transition systems [16]. A program P = (x, locs, �0, T , Good) consists of a set x
of variables, a set locs of control locations, an initial location �0 ∈ locs, a set T
of transitions, and a constraint Good over the variables from x that describes
the ‘good’ states. Each transition τ ∈ T is a tuple (�, ρ, �′) where �, �′ ∈ locs are
control flow locations, and ρ is a constraint over free variables from x∪x′, where
the variables from x′ denote the values of the variables from x in the next state.

A state of the program P is a valuation of the variables from x. The set of
all states is written val.x. We shall represent sets of states using constraints.
A computation of the program P is a sequence 〈m0, s0〉〈m1, s1〉 . . . 〈mk, sk〉 ∈
(locs×val.x)∗ where m0 = �0 is the initial location and for each i ∈ {0, . . . , k−1},
there is a transition (mi, ρ, mi+1) ∈ T such that (si, si+1) |=LI+UIF ρ. A state s
is reachable at � if 〈�, s〉 appears in some computation. A program is unsafe if
some state s �∈ Good is reachable.
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Invariants. An invariant at a location � ∈ locs of P is a set of states containing
the states reachable at �. An invariant map is a mapping η from locs to LI+UIF
constraints such that the following conditions hold:

(I0: Initiation) for the entry location �0, we have η.�0 = true.
(I1: Inductiveness) for each �, �′ ∈ locs such that (�, ρ, �′) ∈ T , we

have η.� ∧ ρ |=LI+UIF η.�′. Here, η.�′ is the constraint obtained by
substituting variables from x′ for the variables from x in η.�.

(I2: Safety) for each � ∈ locs we have η.� |=LI+UIF Good.

The invariant synthesis problem is to construct an invariant map for a given
program. For ease of exposition, we assume that an invariant map assigns an
invariant to each program location. For efficiency, one can require invariants to
be defined only over a program cutset, i.e., a set of program locations such that
every syntactic cycle in the control flow graph passes through some location in
the cutset.

4 Invariant Synthesis for LI+UIF

We now describe our algorithm for invariant synthesis for linear arithmetic and
uninterpreted function symbols. Our algorithm follows the constraint-based ap-
proach [6, 20, 19, 21, 13], which has already provided successful algorithms for
the synthesis of linear and non-linear invariants and ranking functions. Our al-
gorithm extends the applicability of invariant generation to the combination of
linear arithmetic and uninterpreted function symbols. First, we briefly describe
the constraint-based approach, and outline our method of handling uninterpreted
function symbols. Then, we provide a formal description of our algorithm.

Constraint-based Invariant Synthesis. The constraint-based approach to
invariant generation reduces the computation of an invariant to a constraint
solving problem. The approach consists of three steps. First, a template asser-
tion that represents an invariant is fixed in an a priori chosen language. The
parameters in the template are the unknown coefficients that determine the
invariant. Second, a set of constraints over these parameters is defined which
encodes the definition of the invariant. This means that every solution to the
constraint system yields an inductive invariant. Third, an invariant is obtained
by solving the resulting constraint system.

4.1 Invariant Templates

An invariant template is an a priori fixed parameterized assertion over the pro-
gram variables. It identifies the unknown parameters, and restricts the “dimen-
sions” of the invariant, e.g., the number of conjuncts and the number of function
applications. This means that the form of the template determines the form of
the resulting invariant.

We provide the formal definition of the invariant template for a given set
of program variables and functions symbols. Let c range over the set of integer

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Invariant Synthesis for Combined Theories 385

constants, v over the set of program variables, f over a fixed set of uninterpreted
functions symbols, and α over a fixed set of template parameters. The following
grammar defines the set of constraint templates:

Terms t ::= v | f(e1, . . . , en)
Expressions e ::= c | c × t | α × t | e1 + e2 | e1 − e2
Constraints i ::= e ≤ c | e1 = e2
Templates ξ ::= i | i ∧ ξ

An invariant template is a finite conjunction of inequalities. An invariant is
expressible by the invariant template if there exists a valuation of the template
parameters that yields the invariant. Our algorithm computes invariants that
are expressible by a given template.

4.2 Algorithm

The invariant synthesis algorithm Inv(LI+UIF) takes as input a program and a
template map that assigns an invariant template to each program location. The
algorithm computes an invariant map that assigns an invariant to each program
location, if there exists an invariant that is expressible by the given invariant
template. The algorithm is shown in Fig. 2. It applies an auxiliary function
Consec shown in Fig. 3. The function Consec generates constraints between
the parameters in the invariant template that ensure the conditions (I0), (I1),
and (I2). (We assume that the template map assigns true to the initial location
�0, thus (I0) is satisfied.) Any satisfying assignment to these constraints gives
an instantiation of the invariant template that is an invariant. Next, we describe
each step of the algorithm.

Purification. We first purify all (sub-) terms that appear in the invariant tem-
plates, and in the program representation. A formula (or constraint) is purified
if the only atom with an uninterpreted function is of the form x = f(t1, . . . , tn)
where x is a variable and t1, . . . , tn are linear terms. A purified formula may be
obtained by replacing each subterm of the form f(e1, . . . , en) by a fresh vari-
able, and recording the corresponding definition. This step creates a map pur
that records the correspondence between terms and their purified versions, and
a map def that keeps the definitions for fresh variables.

Constraint Generation. We create the constraints by applying the func-
tion Consec. The function Consec computes a constraint on the parameters
of the templates ϕpre and ϕpost over program variables and primed program
variables, respectively, for a transition relation ρ. Let Params be the set of pa-
rameters that appear in the templates ϕpre and ϕpost. The output of Consec is
the constraint over Params such that the implication

ϕpre ∧ ρ |=LI+UIF ϕpost (6)

is valid for some valuation of Params if and only if such a valuation satisfies the
constraint.
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function Inv(LI+UIF)
input

Program P = (x, locs, �0, T , Good)
tmpl: invariant template map

local
Params: set of parameters that appear in the invariant templates
pur: purification map that assigns purified LI-terms to LI+UIF-terms
def: set of definitions for fresh variables created by purification
Φ := constraint over parameters of invariant templates

output
inv: invariant map from locs to invariants, which is an instantiation of tmpl

begin
Params := parameters that appear in invariant templates
pur, def := purification of {tmpl(�) | � ∈ locs} ∪ {Good} ∪ T
Φ := 0 ≤ 1
foreach (�, ρ, �′) ∈ T do

Φ := Φ ∧ Consec(pur(tmpl(�)), pur(ρ), pur(tmpl(�′)), def)
done
foreach � ∈ locs do

Φ := Φ ∧ Consec(pur(tmpl(�)), 0 ≤ 1, pur(Good), def)
done
if ∃Params : Φ then

let μ : Params → Q be a satisfying assignment of Φ
foreach � ∈ locs do

inv(�) := tmpl(�) where parameters are instantiated by μ
and fresh variables replaced by definitions in def

done
return “Invariant map: inv.”

else
return “No invariant expressible by template tmpl exists.”

end.

Fig. 2. Algorithm Inv(LI+UIF) for the synthesis of invariants in linear arithmetic and
uninterpreted function symbols. The auxiliary function Consec is shown in Fig. 3.

Consec takes as inputs three linear arithmetic assertions and a set of defini-
tions for fresh variables. The first assertion

(PPpre) ( x
xpre ) ≤ p

represents the purified version of ϕpre, and is given over the program variables x
and a vector of the corresponding fresh variables xpre. The second assertion

(RR′Rrel)
( x

x′
xrel

)
≤ r
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function Consec

input
(PPpre)

( x
xpre

)
≤ p: purified template for pre-location with fresh variables xpre

(RR′Rrel)
( x

x′
xrel

)
≤ r: purified transition relation with fresh variables xrel

(QQpost)
(

x′
xpost

)
≤ q: purified template for post-location with fresh variables xpost

Def: set of definitions for fresh variables xpre, xrel, and xpost

local
Φ: auxiliary constraint over the template parameters P, Ppre, p and Q, Qpost, q that

encodes an implication induced by a particular sequence of axiom instances
fresh : fresh variables defined by Def

output
Ψ : consecution constraint over the template parameters P, Ppre, p and Q,Qpost, q

begin
Ψ := 1 ≤ 0
fresh := xpre ∪ xrel ∪ xpost

Inst := {c ≈ d → c = d | c, d ∈ fresh and c = f(c1, . . . , cn) ∈ Def and
d = f(d1, . . . , dn) ∈ Def}

foreach n ∈ {0, . . . , |Inst|} do

{ci ≈ di → ci = di}n
i=1 := select sequence of n axiom instances from Inst

(EpreErelEpost)
( xpre

xrel
xpost

)
≤ e := inequality representation of

∧n
i=1 ci = di

Φ := ∃Λ ∈ Q
|q|×(|p|+|r|+|e|)
≥0 :

Λ

⎛

⎜
⎝

P 0 Ppre 0 0
R R′ 0 Rrel 0
0 0 Epre Erel Epost

⎞

⎟
⎠ =

(
0 Q 0 0 Qpost

)
∧ Λ

(
p
r
e

)
≤ q

foreach k ∈ {1, . . . , n} do

(FpreFrelFpost)
( xpre

xrel
xpost

)
≤ f := inequality representation of

∧k−1
i=1 ci = di

(GGpreGrelGpost)
( x

xpre
xrel

xpost

)

≤ g := purified representation of ck ≈ dk

Φ := Φ ∧ ∃Λ ∈ Q
|g|×(|p|+|r|+|f |)
≥0 :

Λ

⎛

⎜
⎝

P 0 Ppre 0 0
R R′ 0 Rrel 0
0 0 Fpre Frel Fpost

⎞

⎟
⎠ =

(
G 0 Gpre Grel Gpost

)
∧ Λ

( p
r
f

)
≤ g

done
Ψ := Ψ ∨ Φ

done
return Ψ

end.

Fig. 3. Function Consec computes a constraint over the template parameters which
encodes the consecution condition for a given transition relation and invariant tem-
plates for the pre- and post-locations
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represents the purified version of the transition relation ρ, and is given over the
program variables x, their primed versions x′, and a vector of the corresponding
fresh variables xrel. The third assertion

(QQpost)
(

x′

xpost

)
≤ q

is similar to the first one, where the program variables x are substituted by their
primed versions x′. The resulting constraint Ψ over the parameters P, Ppre, p and
Q, Qpost, q is satisfiable if and only if implication (6) is valid for some valuation
of the parameters.

The constraint computed by the function Consec captures all sequences of
instantiations of functionality axioms that may potentially appear in a proof of
implication (6). For each such a sequence, which can be empty, we introduce a
disjunct that encodes two conditions. The first condition says that the implica-
tion holds in the theory of linear arithmetic once all axioms from the sequence
are applied. The second condition justifies the application of each axiom in the
sequence. We take the disjunction of constraints computed for each sequence,
which encodes the choice of an arbitrary sequence.

In algorithm Inv(LI+UIF), we call Consec to capture the constraints (I1),
and (I2). First, for each transition we compute the consecution constraint that
ensures the closure under the application of the transition relation. Then, we
encode the condition that the resulting invariant is sufficiently strong, i.e., it
only contains ‘good’ states.

Correctness. We state the correctness of the algorithm Inv(LI+UIF) in the
following theorems.

Theorem 2 (Soundness of Inv(LI+UIF)). The algorithm Inv(LI+UIF)
computes an invariant map that is expressible by a given invariant template.

Proof. We show that the resulting map inv satisfies the consecution condition.
The proof that inv also satisfies the initiation and strength conditions is similar.

Let ϕpre and ϕpost be invariant templates instantiated by the algorithm. We
show that the implication (6) holds. Let Ψ be the constraint that is computed
by applying Consec on the input that corresponds to the transition relation ρ.
The valuation of template parameters that defines inv satisfies Ψ . Let Φ be a
disjunct of Ψ that is satisfied. We assume that Φ corresponds to the following
sequence of instances of the functionality axioms:

c1 ≈ d1 → c1 = d1, . . . , cn ≈ dn → cn = dn.

Let (PPpre) ( x
xpre ) ≤ p, (RR′Rrel)

( x
x′
xrel

)
≤ r, and (QQpost)

(
x′

xpost

)
≤ q be the

purified version of ϕpre, ρ, and ϕpost, respectively.
The first conjunct of Φ ensures that the following implication holds, by Farkas’

lemma [22]:

(PPpre) ( x
xpre ) ≤ p ∧ (RR′Rrel)

( x
x′

xrel

)
≤ r ∧

n∧

i=1

ci =di |=LI (QQpost)
(

x′

xpost

)
≤ q.
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This implication means that the above sequence of instances of functionality
axioms is sufficient to prove the implication. The remaining conjuncts of Φ ensure
that the axiom instances are applicable, because their premises are satisfied.
This follows from the implications below, which are encoded by the remaining
conjuncts of Φ. For each k ∈ {1, . . . , n} we have

(PPpre) ( x
xpre ) ≤ p ∧ (RR′Rrel)

( x
x′
xrel

)
≤ r ∧

k−1∧

i=1

ci = di |=LI ck ≈ dk.

Since purification preserves satisfiability, we conclude that the invariant ϕpre is
closed under the transition relation ρ by the invariant ϕpre. �

Theorem 3 (Completeness of Inv(LI+UIF)). The algorithm Inv(LI+UIF)
computes an invariant map if it is expressible by a given invariant template.

Proof. Let inv be an invariant map that satisfies the invariant template. We show
that the consecution constraint computed by the function Consec is satisfiable.
The proof that it is also satisfiable in conjunction with initiation and strength
constraints is similar.

Let ϕpre and ϕpost be assertions such that for a transition relation ρ the im-
plication (6) holds. By Theorem 5 in [23] we have that the following implication
is valid in the theory of linear arithmetic for some sequence of instances of func-
tionality axioms. Furthermore, these instances are only created for the terms
that appear in the assertions ϕpre, ϕpost, and ρ. Let

c1 ≈ d1 → c1 = d1, . . . , cn ≈ dn → cn = dn

be such a sequence. Since purification preserve the satisfiability, we conclude
that the conjuncts of Φ encode that (i) the purified version of the assertion
ϕpost is implied by the purified version of ϕpre ∧ ρ in conjunction with heads∧n

i=1 ci = di of functionality axiom instances from the sequence, and (ii) for
each k ∈ {1, . . . , n} the premise ck ≈ dk of each axiom instance is implied
by ϕpre ∧ ρ in conjunction with the axiom heads

∧k−1
i=1 ci = di applied so far.

All implications hold in the theory of linear arithmetic. Hence, the constraint
computed by Consec is satisfiable. �

We obtain the following corollary of Theorems 2 and 3.

Corollary 1. The existence of a LI+UIF-invariant map that is expressible by a
given template is decidable.

Complexity and Optimizations. Let n be the number of applications of
function symbols in the template and in the program description. The algorithm
Inv(LI+UIF) needs to solve at most n! quantifier elimination problems for ra-
tional/real arithmetic constraints of the second degree, where the size of each
problem is linear in program description and quadratic in n. The time complexity
of each problem is exponential in its size [4].
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int alloc() {
assume (kfreelist != 0 && *(kfreelist + 4) == RESERVED);

// First page is always reserved.
prev = kfreelist; curr = *kfreelist; permission = curr + 4;
while(curr!=0 && *permission == RESERVED) {

prev = curr; curr = *curr;
permission = curr + 4;

}
L1: assert( *(prev + 4) == RESERVED );
L2: assert( *prev == curr );
if (curr!=0) *prev = *curr;
return curr;

}

Fig. 4. A kernel allocator. Our algorithm automatically constructs the loop invariant
*(prev+4)-curr+perm-RESERVED==4 && perm==curr+4, which implies the first asser-
tion, and the invariant *prev==curr, which implies the second assertion.

We observe that the construction of the constraint that considers all possible
axiom sequences can be done lazily, i.e., we consider new sequences only if the
previously discovered ones do not yield a desired invariant map. Such a lazy
construction is crucial for practical applicability of Inv(LI+UIF), since in many
cases only short sequences consisting of at most a pair of axioms suffice.

5 Experiences

We have implemented algorithm Inv(LI+UIF) in Sicstus Prolog [15] with linear
programming solver [12] and applied it to the verification of low level memory
allocators in an operating system. We apply a heuristics that prefers shorter
candidate sequences of axiom instances to longer ones while lazily constructing
constraints. The invariant templates need to be supplied manually. Solving of
non-linear constraints was done by heuristic instantiation of the values for Λ,
cf. Fig. 3, and subsequent solving of the resulting linear constraint.

Figure 4 shows a simplified low level memory allocator used in an OS kernel.
The variable kfreelist is the head of a free list of memory pages. Each memory
block contains a pointer to the next free block and also a permission bit that
says whether the block can be given to a user process. The permission bit is
accessed using address arithmetic by adding 4 bytes to the base address of the
memory block. For simplicity, we have removed the type casts from the example
code and also ignore overflow issues. We assume that the free list has at least
one block and the first block is reserved by the kernel.

The while loop iterates over the free list, looking for the first unreserved free
block. This block is returned. The iteration uses two pointers, curr pointing to
the current block, and prev pointing to the previous block. We want to prove
the assertion L1, which states that pointer prev points to a reserved block, and
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assertion L2, which states that the next block from pointer prev is the block
pointed to by curr (or null). The invariant requires both linear arithmetic (for
the address arithmetic) and uninterpreted functions (for the dereferences).

Assertion L1: Our invariant synthesis for proving the first assertion required
3.25 s on a 1.7GHz Linux laptop. The tool tried 105 axiom sequences. Consid-
ering sequences of length at most one was sufficient. We used a template that
is a conjunction of two equalities1 (where ref (·) denotes the address-of operator
and der (·) is the dereference operator):

c1
prevprev + c1

currcurr + c1
permperm + c1

RESERVEDRESERVED+

c1
refref (c1

refprevprev + c1
refcurrcurr + c1

refpermperm + c1
refRESERVEDRESERVED + c1

ref)+

c1
derder(c1

derprevprev + c1
dercurrcurr + c1

derpermperm + c1
derRESERVEDRESERVED + c1

der) = c1

∧

c2
prevprev + c2

currcurr + c2
permperm + c2

RESERVEDRESERVED = c2.

This template leads to the loop invariant

−curr + perm − RESERVED + der(prev + 4) = 4 ∧ −curr + perm = 4.

Assertion L2: For the second assertion we used a template that contains only
the first conjunct from the template above, and we obtained the loop invariant

−curr + der(prev) = 0.

Our implementation computed an invariant that implies the second assertion in
1.28 s, which required enumeration of 44 axiom sequences.

We are working on scaling our algorithm to larger programs. The main com-
plexity arises because invariants can be Boolean combinations of atomic facts.

6 Applications to Data Structures

We now present applications of algorithm Inv(LI+UIF) to the synthesis of in-
variants in programs that use abstract data structures. The key technical idea is
that of a reduction function. Let Σ and Ω be signatures with Ω ⊆ Σ. Let T be
a Σ-theory and R an Ω-theory, such that R ⊆ T . We say T reduces to R if there
is a computable map from Σ-formulas to Ω-formulas such that when applied to
a Σ-formula ϕ, we get an Ω-formula ϕ∗ such that ϕ and ϕ∗ are T -equivalent,
that is, |=T ϕ ↔ ϕ∗, and ϕ∗ is R-satisfiable iff ϕ is T -satisfiable.

Given a theory T and a reduction function from T to LI+UIF, we can extend
the algorithm Inv(LI+UIF) to generate invariants over T from templates that
contain symbols from the theory T in the following way. The intuitive idea is
that we first apply the reduction function to reduce templates in the theory T

1 The implementation supports direct handling of equality and inequality constraints.
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to templates in the theory LI+UIF and then apply the invariant generation algo-
rithm for LI+UIF. The resulting invariant is an invariant also for the theory T .
Technically, the purification step is identical, while in Consec, we apply the
reduction function to each definition and then generate the constraints for the
resulting formula using the theory LI+UIF. We omit the technical details.

We now show that reduction functions to LI+UIF exist for two interesting
theories: the array property fragment and the theory of sets.

Arrays. The theory of arrays has a signature Σarray with the function symbols
read and write together with the axiom [17]:

read(write(a, i, e), i) = e ,

i �= j ⇒ read(write(a, i, e), j) = read(a, j) ,

(∀ i)(read(a, i) = read(b, i)) ⇒ a = b .

The variables in the second position of read and write are the index variables.
Let I be a set of index variables, which we assume are distinct from the

program variables. An array property [2] is a universally quantified formula

∀I : ϕ(I) → ψ(I),

where the formula ϕ(I) is a constraint on the index variables and ψ(I) may
contain array operations indexed by variables from I. Both ϕ(I) and ψ(I) are
syntactically restricted. The index guard ϕ(I) is a Boolean expression over linear
arithmetic inequalities over I and the program variables such that each inequality
is one of the following:

– a comparison i ≤ j between two index variables i, j ∈ I,
– a comparison i ≤ e or e ≤ i between an index variable i ∈ I and a linear

expression e over program variables.

The value guard ψ(I) is restricted in the following way w.r.t. the usage of the
universally quantified index variables I. Every occurrence of such a variable i
must be in the index position of a read operation read(a, i) for some array a.
Additionally, no nested read operations that are allowed in ψ(I). The array
property fragment is the combination of linear arithmetic, uninterpreted function
symbols, and array property formulas.

Sets. The theory of sets (with finite cardinality constraints) has a signature
Σset containing the constant symbols ∅ (empty set) and � (full set), the bi-
nary function symbols ∪ (union), ∩ (intersection), and \ (difference), the unary
function symbol {·} (singleton), and the binary predicate symbol ∈ with the
standard semantics. In addition it has, for each natural number k, the unary
predicate symbols | · | ≥ k and | · | = k. The element domain is assumed to be
finite. The theory Tset is the set of all Σset-sentences that are true in all standard
set-structures.

We use the following results on reductions, proved in [2, 14].
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Theorem 4 (Reductions to LI+UIF).

1. [2] The set of formulas in the array property fragment reduces to LI+UIF.
2. [14] The quantifier-free theories of arrays and sets reduce to LI+UIF.

From the theorem, and the discussion on invariant generation, we get the fol-
lowing corollary.

Corollary 2. The existence of a T -invariant map that is expressible by a given
template is decidable, where T is the theory of arrays, sets, or formulas in the
array property fragment.

7 Conclusion

We presented an algorithm for the synthesis of invariants in the theory of linear
arithmetic and uninterpreted function symbols. While expressive, in that many
interesting aspects of program behavior can be modeled in (or reduced to) this
logic, our technique is ultimately limited by the large space of possible tem-
plates that the user must search to provide good templates. In particular, the
search space usually becomes too big in the presence of disjunctions in invari-
ant templates. We leave the identification of heuristics for the property-guided
construction of invariant templates for future work.

Acknowledgments. We thank Viorica Sofronie-Stokkermans for valuable discus-
sions on hierarchic theory combination.
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