
Ant Focused Crawling Algorithm�

Piotr Dziwiński and Danuta Rutkowska

Department of Computer Engineering
Czestochowa University of Technology, Poland

dziwinski@kik.pcz.czest.pl,
drutko@kik.pcz.czest.pl

Abstract. This paper presents a new algorithm for hypertext graph
crawling. Using an ant as an agent in a hypertext graph significantly lim-
its amount of irrelevant hypertext documents which must be downloaded
in order to download a given number of relevant documents. Moreover,
during all time of the crawling, artificial ants do not need a queue to cen-
tral control crawling process. The proposed algorithm, called the Focused
Ant Crawling Algorithm, for hypertext graph crawling, is better than the
Shark-Search crawling algorithm and the algorithm with best-first search
strategy utilizing a queue for the central control of the crawling process.

1 Introduction

Enormous growth of the Internet and easy access to the network enable huge
amount of users to access WWW resources through search engines. Changeabil-
ity and large amount of WWW pages is a big challenge for modern crawlers and
search engines. They should reflect WWW resources as accurately as possible
and also hold information about the resources as fresh as possible. Complete
crawling entire Web is impossible in reasonable time, no matter which technol-
ogy is available at the site where the search engines operate. An ideal crawler
should be able to recognize relevance and importance of Web pages. The crawlers
can order new links extracted from downloaded WWW pages by use of different
methods. Some of them are measurements of similarity between pages and a
current query, amount of links to point out WWW pages or the most popular
Page Rank.

Most crawler algorithms use a queue that globally control the process of
crawling. The first crawler algorithm was the Simple-Crawler method mentioned
in [1,2]. In the Simple-Crawler algorithm, a crawler extracts URL addresses from
documents and includes them at the end of the queue without ordering. An-
other type of the crawlers is called selective crawlers [1]. The selective crawlers
select a next download page with respect to some criterions (relevance or im-
portance of the page). Relevance of the documents can be calculated using a
� This work was partly supported by the Foundation for Polish Science (Professorial

Grant 2005-2008) and the Polish State Committee for Scientific Research (Grant
N516 020 31/1977), Special Research Project 2006-2009, Polish-Singapore Research
Project 2008-2010, Research Project 2008-2010.

L. Rutkowski et al. (Eds.): ICAISC 2008, LNAI 5097, pp. 1018–1028, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Ant Focused Crawling Algorithm 1019

classifier. In order to classify WWW documents, different methods can be em-
ployed, such as: k-nearest neighbors algorithm, Naive Bayes, support vector ma-
chines, decision trees, neural networks, fuzzy rules or neuro-fuzzy systems; see
e.g. [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

If a crawler inserts a new URL in the queue, in the order depending on the
relevance, we obtain the best-first search strategy [13, 14, 15]. In many cases,
crawling on entire web is not required. Instead, it can perform crawling only
a relevant part of the web. In this way, the focused crawling algorithm [16, 17]
has been obtained. Relevant areas of the web are small enough for the focused
crawler to operate on such areas in finite time. Locality of the subject in the
web are studied by Davison [18]. Rungsawang et al. [19] proposed the consec-
utive crawling to take advantage of experience from earlier crawling processes.
They built a knowledge-base employed to produce better results for the next
crawling. The first crawling algorithm inspired by the nature – behavior of some
animals or insects – is the Fish-Search algorithm [20]. There is one of the first
dynamic search heuristics based on intuition that relevant documents often have
relevant neighbors [18]. The best version of the Fish-Search algorithm is the
Shark-Search algorithm introduced in [21]. The Shark-Search algorithm bases
on the same intuition but introduces a real measure of relevance of anchors ex-
tracted from new documents. The relevance of the anchors is based on relevance
of a current document, content and context of the anchor. However in this case,
the proposed Shark-Search algorithm exploits a queue for central control of the
crawling process.

How we could dispose the queue for the central control of crawling is a ques-
tion for which the answer we get from the nature – from real ants that solved this
problem long time ago. There is a lot of algorithms developed based on behavior
of real ants. Most of them are known as ant colony optimization (ACO). The
ACO has been applied to the Traveling Salesman Problem (TSP) [22, 23, 24],
graph coloring [25,26], dynamic shortest path problems arising in telecommuni-
cation networks, dynamic cleaning problem [27]. Wagner I. A. et al. [28] adopt
artificial ants to consider the problem of deciding whether graph G(V, E), V – set
of vertices, E – set of edges, is Hamiltonian. This problem is a special case of the
TSP. Moving rules of the artificial ants were employed to control robots in multi
agent systems to solve the distributed covering problem [28]. In [29], artificial
ants are used to network covering in the Vertex Ant Walk (VAW) algorithm.

The goal of this article is to introduce the Ant Focused Crawling Algorithm
which does not require the queue and decreases the number of downloaded irrel-
evant documents. Artificial ants leave pheromone trails on the ground in order
to mark some favorable paths that should be followed by other members of
the colony. The ants, using the pheromone trails, share information about the
problem to be solved. In this way, all members of the colony have access to the
information about relevance of the vertices that can be visited in next steps in
the hypertext graph while progressing the crawling process. This crawling pro-
cess performed by artificial ants can be running simultaneously by many artificial
ants (crawling robots) without central control by the queue.



1020 P. Dziwiński and D. Rutkowska

Section 1 provides background information on the selective crawling, focused
crawling, ant colony optimization, and the proposed algorithm. Section 2 surveys
the Ant Focused Crawling Algorithm. Section 3 highlights experimental results
for the first crawling process compared with the Shark-Search algorithm and
the best-first search strategy. Moreover, the crawling process performed by the
proposed algorithm is analyzed with regard to the number of repetitions. Section
4 concludes the article.

2 Ant Focused Crawling Algorithm

Effective crawling the Internet by crawlers is a main issue concerning search
engines. There are two types of crawling: passive crawling and active crawling.
In the active crawling, crawlers are controlled by utilize a queue to central control
of the crawling process. The passive crawling consists of crawling without any
central control. In this article, new Ant Focused Crawling Algorithm which does
not use the central control in the form of the queue, is proposed. This algorithm
saves system and memory resources of the hardware.

The ant colony optimization (ACO) takes inspiration from the foraging behav-
ior of some ant species. Ants moves from their nests to food and leave pheromone
trails on the ground, in order to mark favorable path that should be followed by
other members of the colony. In this way, individual ants discover the shortest
path between the nest and the source of food using undirected communication
in the form of the pheromone trail. In the similar way, we adopt the ant be-
havior with regard to the focused crawling hypertext graph G. Hypertext graph
G(V,E) is a directed graph in which vertice v ∈ V and edge e ∈ E correspond
to WWW documents and links in documents, respectively. Artificial ants move
in the hypertext graph. The pheromone in vertices contain information about
relevance, number of visits, time of visits. Artificial ants selects next vertice v
according to the rule as follows [30]

v =
{

argmaxω∈J(u)
{
[τ̃ (ω)]α · [η(ω)]β

}
if q ≤ q0

pu→v if q > q0
(1)

where

pu→v =

⎧⎨
⎩

[τ̃(v)]α·[η(v)]β∑
ω∈J(u)

[τ̃(ω)]α·[η(ω)]β if v ∈ J(u)

0 if v /∈ J(u)
(2)

J(u) – set of vertices connected with vertice u by use of edges e ∈ E in the
hypertext graph G,
q0 – parameter, q0 ∈ [0, 1],
q – random number belonging to [0, 1],
pu→v – probability of the movement from vertex u to vertex v,
α – importance of the pheromone trail,
β – importance of the heuristic information,
τ̃ (u) – value of the pheromone smell perceived by artificial ants.



Ant Focused Crawling Algorithm 1021

Equations (1) and (2) are similar to the rule used in the ant colony system
[22,23, 31].

Artificial ants move in the hypertext graph G from vertice u to vertice v,
where u, v ∈ G, using the set of edges E, and leave pheromone trails τl(v),
τr(v), τΔt(v).

Pheromone τl(v) guarantees that the searching process is similar to the Hamil-
tonian cycle in a graph [32]. Pheromone τr(v) directs the ants to move in the
relevant area of the hypertext graph. Pheromone τΔt(v) causes refreshment of
the visited vertices after specific time which depends on the frequency change of
the documents in the hypertext graph or the WWW network.

It is proposed that values of pheromone smell perceived by artificial ants are
calculated as follows

τ̃ (v) = [τr(v)]αr ·
[

1
1 + τl(v))

]αl

· [τΔt(v)]αΔt (3)

where:
αr, αl, αΔt – parameters which weight the relative importance of the pheromones
τr(v), τl(v), τΔt(v), respectively.

Pheromone τr(v) is refreshed by all ants in each step from vertice u to vertice
v in the hypertext graph G, similarly as in the ant system presented in [23],
according to the equation

τr(u) ← (1 − ϕr) · τr(u) + ϕr · Δτk
r (u) (4)

where:
φr – evaporation rate of pheromone τr(v),
Δτk

r (u) – quality of the pheromone τr(v), dependent on the relevance of the
vertices available from vertice v and the next ones – ch[v] (children of v) through
ant k.

Every ant has a small memory that contains a specified number of visited
vertices. This memory is used for local control of the crawling process (but is
functioning differently as the queue), and avoids cycles that occur frequently
in the hypertext graph. Quality of the pheromone Δτk

r (u) is calculated based
on memory of the ants. It is dependent on relevance at further vertices. This
is done with a specified delay and is associated with reinforcement learning. In
this way, each ant contains small path Qk which includes relevance of the visited
vertices. Each ant uses path Qk, and leaves pheromone Δτk

r (u) calculated by
the equation

Δτk
r (u) =

L∑
i=1

δiqk
i (5)

where:
δ – coefficient reducing influence of the relevance of the following vertices; δ ∈
[0, 1],
qk
i – relevance of vertice i remembered for ant k; qk

i ∈ Qk,
L – length of path Qk.



1022 P. Dziwiński and D. Rutkowska

Equation (5) is effective only in the first crawling process performed by the
Ant Focused Crawling Algorithm. We develop another equation for successive
crawling process, in the form:

Δτk
r (u) =

L∑
i=1

δi · qk
i

L∑
j=1

δj

(6)

Pheromone τl(v) is increased by all ants during visiting each vertice. This
strategy warrants convergence of the algorithm to the path approximate to the
Hamiltonian path, like in the VAW algorithm [29].

Pheromone τΔt(u) is calculated as follows

τΔt(u) =
ta(u) − t(u)

tod(u)
(7)

where:
ta(u) – current time in vertice u,
t(u) – visit time in vertice u by an artificial ant,
tod(u) – reference time (referenced to speed of the change in vertice u).

During the crawling process performed by artificial ants, members of the
colony select the next vertice according to the value of the pheromone in the
vertice and heuristic information η(u), see Equations (1),(2). The heuristic in-
formation in ant algorithms evaluates a local solution of the problem. In the case
of the TSP, the heuristic information is calculated as follows:

η(u, v) =
1

d(u, v)
(8)

where d(u, v) – distance measure between cites.
In the hypertext graph, the heuristic information should be related to poten-

tial relevance rp(v) of the following vertices or relevance R(v) of the document
with the context. It is proposed that the heuristic information is calculated as
follows:

η(v) =
{

R(v) if d(v) �= ∅

rp(v) if d(v) = ∅
(9)

where:
rp(v) – potential relevance of the next vertice [20]; see Equation (11),
d(v) – document for vertice v.

The relevance of a downloaded document with a context of the hypertext
graph depends on the relevance of the document for vertice v and the arithmetic
average of the heuristic information about the descendant vertices ch[v], and is
calculated as follows:

R(v) = r(d(v)) +
1

|ch[v]|
∑

ω∈ch[v]

η(ω) (10)



Ant Focused Crawling Algorithm 1023

where:
ch[v] – set of descendant vertices of vertice v (children of v),
|ch[v]| – number of descendant vertices of vertice v.

Equation (10) is similar to that presented by Mark et al. [1,33]; this involves
the context of the graph.

The potential relevance of vertice v depends on the inherited relevance of the
document rd(v) for vertice v, relevance of the content of the anchor ra(u, v) and
relevance of the neighborhood of the anchor rac(u, v). Potential relevance rp(v)
is calculated as follows [20]:

rp(v) = γ · rd(v) + (1 − γ) · rn(v) (11)

where:
γ – coefficient of the inherited relevance of the document rd(v) for vertice v; see
Equation (13),
rn(v) – anchor relevance, given by Equation (15).

Inherited relevance rd(v) for vertice v depends on relevance of vertice u, which
contains document d(u), u ∈ pa[v], is calculated as follows:

rd(v) =
{

r(d(u)) · δ if r(d(u)) > ε; u ∈ pa[v]
rd(u) · δ if r(d(u)) ≤ ε; u ∈ pa[v] (12)

where:
ε – threshold relevance value, like that in the Shark-Search algorithm [21],
δ – coefficient of reduction of the relevance for the inherited relevance of parent
documents pa[u].

If we have more than one vertice u ∈ pa[v], the inherited relevance is given
by:

rd(v) =
1

|pa[v]|
∑

u∈pa[v]

{
r(d(u)) · δ if r(d(u)) > ε
rd(u) · δ if r(d(u)) ≤ ε

(13)

where |pa[v]| – number of parent vertices of vertice v.
The relevance of the anchor in vertice v consists of relevance of the anchor

text ra(u, v) of document in vertice u and relevance of the context of the anchor
rac(u, v) of document in vertice u, and is calculated similarly as in [20]:

rn(v) = β · ra(u, v) + (1 − β) · rac(u, v) (14)

where β – coefficient of the influence of the content relevance of the anchor
ra(u, v) and the context of the anchor rac(u, v).

If we have more than one parent vertice u ∈ pa[v], the relevance of the anchor
is given by:

rn(v) = β · 1
|pa[v]|

∑
u∈pa[v]

ra(u, v) + (1 − β) · 1
|pa[v]|

∑
u∈pa[v]

rac(u, v) (15)

The relevance of the anchor text ra(u, v) is defined as [20]:

ra(u, v) = sim(q, anchor(u, v)) (16)



1024 P. Dziwiński and D. Rutkowska

The relevance of the anchor context is calculated by [20]:

rac(u, v) =
{

sim(q, ConAn(u, v)) if ra(u, v) ≤ 0
1 if ra(u, v) > 0 (17)

where:
anchor(u,v) – anchor text for edge u → v,
ConAn(u, v) – text in the specified neighborhood of the anchor, for the edge
u → v.

3 Experiments and Results

The experiments were performed for JAVA documentation [34], initially parsed,
and indexed. The parsed documentation was saved as a compressed XML file,
which after reading and decompressing becomes the indexed hypertext graph G.
All experiments were performed for the same simple query q and for the same
starting address. The experiments for a specified parameter are repeated some
number of times.

In the experiments, we obtained satisfied results which overcome comparable
algorithms. Figure 1a shows the number of relevant documents as a function of
the number of all downloaded documents during entire crawling process. Fig-
ure 1b illustrates total amount of relevant information as a function of the num-
ber of all downloaded documents. The total amount of relevant information is
calculated as follows [20, 21]:

Sum_Inf(Dr, q) =
∑

d(u)∈Dr

d(d(u), q) (18)

where Dr – set of downloaded relevant documents.
The proposed new Ant Focused Crawling Algorithm, for hypertext graph

crawling, overcomes compared algorithm – achieves results 33% better those ob-
tained from the Schark-Search algorithm. Moreover, it skip an irrelevant area
of the graph G and is focused only on relevant areas. In addition better stabi-
lization over period of the crawling process is observed. The proposed algorithm
does not use the queue to central control of the crawling process. Effectiveness
of the algorithm [1] is calculated as follows:

e =
rt

t
(19)

where:
t – number of downloaded documents in specific period of time;
rt – number of relevant downloaded documents for which the relevance is better
than ε, where ε – threshold of the relevance.

An ideal crawling algorithm should obtain effectiveness equal to 1. The pro-
posed algorithm achieves effectiveness better than two compared algorithms.
The efficiency of co-operation of the artificial ants in the process of crawling



Ant Focused Crawling Algorithm 1025

0 2000 4000 6000 8000 10000 12000
0

200

400

600

800

1000

1200

1400

1600

N
um

be
r o

f r
el

ev
an

t d
oc

um
en

ts

Number of all downloaded documents
0 2000 4000 6000 8000 10000 12000

0

50

100

150

200

250

Number of all downloaded documents

A
m

ou
nt

 o
f r

el
ev

an
t i

nf
or

m
at

io
n

Alg1
Alg2
AntAlg

Alg1
Alg2
AntAlg

a) b)

Fig. 1. Compared crawling algorithm with respect to (a) – number of relevant doc-
uments as a function of the number of all downloaded documents; (b) – amount of
relevant information as a function of the number of all downloaded documents; Alg1
– focused crawling algorithm with the best-first search strategy; Alg2 – Shark-Search
crawling algorithm; AntAlg – Ant Focused Crawling Algorithm

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Number of relevant documents

E
ffe

ct
iv

en
es

s 
of

 th
e 

al
go

rit
hm

s

Alg1
Alg2
AntAlg

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Number of relevant documents

E
ffe

ct
iv

en
es

s 
of

 th
e 

al
go

rit
hm

s

Alg1
Alg2
AntAlg

a) b)

Fig. 2. Compared crawling algorithm with respect to effectiveness (a) – for number
of relevant documents; (b) – for first 200 relevant documents; Alg1 – focused crawling
algorithm with the best-first search strategy; Alg2 – Shark-Search crawling algorithm;
AntAlg – Ant Focused Crawling Algorithm

is shown in Fig. 3. For more ants, the proposed algorithm obtains the same or
better results. This feature of the proposed algorithm can be useful for crawling
the web by many agents without using the queue for central control.

For successive crawling, an ant colony possesses experience about location of
relevant information in the hypertext graph, saved in the form of pheromone.
In successive crawling process, individual ants use information from earlier pro-
cesses, and the Ant Focused Crawling Algorithm obtains better results, what is
shown in Fig. 4. The proposed algorithm is useful in order to maintain freshness



1026 P. Dziwiński and D. Rutkowska

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Number of relevant documents

E
ffe

ct
iv

en
es

s 
of

 th
e 

al
go

rit
hm

NAnt = 1
NAnt = 2
NAnt = 5

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Number of relevant documents

E
ffe

ct
iv

en
es

s 
of

 th
e 

al
go

rit
hm

NAnt = 10
NAnt = 20
NAnt = 40

a) b)

Fig. 3. Effectiveness of the Ant Focused Crawling Algorithm as a function of the num-
ber of relevant documents, depending on the number of ants; (a) – for the number of
ants: 1,3,5; (b) – for the number of ants: 10,20,40

0 2000 4000 6000 8000 10000
0

200

400

600

800

1000

1200

1400

1600

Number of all downloaded documents

N
um

be
r o

f r
el

ev
an

t d
oc

um
en

ts

lp = 1
lp = 4
lp = 15

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of all downloaded documents

E
ffe

ct
iv

en
es

s 
of

 th
e 

al
go

rit
hm

lp = 1
lp = 4
lp = 15

a) b)

Fig. 4. Evaluation of the Ant Focused Crawling Algorithm depending on the number of
repetitions: lp = 1, 4, 15 of the crawling process ; (a) – number of relevant documents
as a function of the number of all downloaded documents ; (b) – effectiveness as a
function of the number of all downloaded documents

of information in a local database about a part of the web. Moreover, the use
of pheromone τΔt(v) makes possible focusing the ants in the changeable area of
the hypertext graph.

4 Conclusion

The proposed new Ant Focused Crawling Algorithm, by applying indirected
communication similar to that observed in some ant species, enables a crawling
process performed by many agents (artificial ants) without any central control.



Ant Focused Crawling Algorithm 1027

In this way, the proposed algorithm saves memory and hardware requirements.
Moreover, it produces better results than two other compared algorithms.

References

1. Baldi, P., Frasconi, P., Smyth, P.: Modeling the Internet and the Web, Probabilistic
Methods and Algorithms. Wiley, Chichester (2003)

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press, Cambridge (2001)

3. Cortez, C., Vapnik, V.N.: The hybrid application of an inductive learning method
and a neural network for intelligent information retrieval. Machine Learning 20,
1–25 (1995)

4. Kłopotek, A.M.: Intelligent Search Engines. EXIT (in polish) (2001)
5. Duch, W., Adamczak, R., Diercksen, G.H.F.: Classification, association and pattern

completion using neural similarity based methods. International Journal of Applied
Mathematic and Computer Science 10(4), 101–120 (2000)

6. Bilski, J.: The UD RLS algorithm for training feedforward neural networks. In-
ternational Journal of Applied Mathematic and Computer Science 15(1), 115–123
(2005)

7. Łȩski, J., Henzel, N.: A neuro-fuzzy system based on logical interpretation of if-then
rules. International Journal of Applied Mathematic and Computer Science 10(4),
703–722 (2000)

8. Łȩski, J.: A fuzzy if-then rule-based nonlinear classifier. International Journal of
Applied Mathematic and Computer Science 13(2), 215–223 (2003)

9. Piegat, A.: Fuzzy Modeling and Control. Physica-Verlag (2001)
10. Rutkowska, D., Nowicki, R.: Implication-based neuro-fuzzy architectures. Inter-

national Journal of Applied Mathematic and Computer Science 10(4), 675–701
(2000)

11. Dziwiński, P., Rutkowska, D.: Algorithm for generating fuzzy rules for WWW docu-
ment classification. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M.
(eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1111–1119. Springer, Heidelberg
(2006)

12. Dziwiński, P., Rutkowska, D.: Hybrid algorithm for constructing DR-FIS to classi-
fication www documents. In: Some Aspects of Computer Science, EXIT Academic
Publishing House, Warsaw (2007)

13. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs (1995)

14. Cho, J., Garcia-Molina, H., Page, L.: Efficient crawling through URL ordering.
Computer Networks and ISDN Systems 30, 161–172 (1998)

15. Baeza-Yates, R., Castillo, C., Marin, M., Rodriguez, A.: Crawling a country: Better
strategies than breadth-first for web page ordering. In: International Word Wide
Web Conference (2005)

16. Chakrabarti, S., van den Berg, M., Dom, B.: Focused crawling: a new approach to
topic-specific web resource discovery. Computer Networks (31), 1623–1640 (1999)

17. Diligenti, M., Coetzee, F.M., Lawrence, S., Giles, C.L., Gori, M.: Focused crawling
using context graphs. In: 26th International Conference on Very Large Data Bases,
pp. 527–534 (2000)

18. Davison, B.D.: Topical locality in the web. In: 23rd Ann. Int. ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, pp. 272–279 (2000)



1028 P. Dziwiński and D. Rutkowska

19. Rungsawang, A., Angkawattanawit, N.: Learnable topic-specific web crawler. Com-
puter Applications 28, 97–114 (2005)

20. Hersovici, M., Jacovi, M., Maarek, Y., Pelleg, D., Shtalhaim, M., Ur, S.: The shark-
search algorithm – an application: tailored web site mapping. In: 7th International
World-Wide-Web Conference on Computer Networks, pp. 317–326 (1998)

21. De Bra, P., Post, R.: Information retrieval in the world wide web: making client-
based searching feasible. Computer Networks and ISDN Systems 27(2), 183–192
(1994)

22. Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning ap-
proach to the traveling salesman problem. IEEE Transactions on Evolutionary
Computation 1(1), 53–66 (1997)

23. Dorigo, M., Birattari, M., Stützle, T.: Ant colony optimization, artificial ants as a
computational intelligence technique. IEEE Computational Intelligence Magazine,
28–39 (November 2006)

24. Pintea, C.M., Pop, P.C., Dumitrescu, D.: An ant-based technique for the dynamic
generalized traveling salesman problem. In: 7th WSEAS International Conference
on Systems Theory and Scientific Computation, vol. 7 (2007)

25. Vesel, A., Zerovnik, J.: How good can ants color graphs? Journal of Computing
and Information Technology - CIT 8, 131–136 (2000)

26. Dowsland, K.A., Thompson, J.M.: An improved ant colony optimisation heuristic
for graph coloring, vol. 156, pp. 313–324. Elsevier Science Publishers B. V (2008)

27. Altshuler, Y., Bruckstein, A., Wagner, I.: Swarm robotics for a dynamic cleaning
problem. In: Swarm Intelligence Symposium, SIS 2005, pp. 209–216 (2005)

28. Wagner, I.A., Lindenbaum, M., Bruckstein, A.M.: Distributed covering by ant-
robots using evaporating traces. IEEE Transactions on Robotics and Automa-
tion 15(5) (1999)

29. Wagner, I.A., Lindenbaum, M., Bruckstein, A.M.: Efficiently searching a graph by a
smell-oriented vertex process. Annals of Mathematics and Artificial Intelligence 24,
211–223 (1998)

30. Birattari, M., Pellegrini, P., Dorigo, M.: On the invariance of ant colony optimiza-
tion. IEEE Transactions on Evolutionary Computation 11(6) (2007)

31. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: Optimization by a colony
of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics –
Part B 26(1), 29–41 (1996)

32. Yanowski, V., Wagner, I.A., Lindenbaum, M., Bruckstein, A.: A distributed ant
algorithm for efficiently patrolling a network. Algorithmica 37, 165–186 (2003)

33. Mark, E.: Searching for information in a hypertext medical handbook. Communi-
cations of the ACM (31), 880–886 (1988)

34. Documentation for the Java Platform, Standard Edition (2008),
http://java.sun.com/javase/reference/index.jsp

http://java.sun.com/javase/reference/index.jsp

	Ant Focused Crawling Algorithm
	Introduction
	Ant Focused Crawling Algorithm
	Experiments and Results
	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




