Color Image Watermarking and Self-recovery
Based on Independent Component Analysis

Hanane Mirza, Hien Thai, and Zensho Nakao

Department of Electrical and Electronics Engineering, University of the Ryukyus,
Okinawa 903-0213, Japan
{hanane, tdhien, nakao}Q@augusta.eee.u-ryukyu.ac.jp

Abstract. The digital image watermarking field addresses the problem
of digital image authentication and integrity. In this paper we propose a
novel color image watermarking scheme based on image self-embedding
and self-recovery techniques. The main idea of this algorithm is to em-
bed a reduced content of the original image to itself, in order to be able
to partially recover the deleted features from the watermarked image.
Separately, the red and blue color channels are embedded, respectively
in the wavelet domain by a compressed version of the original image,
and in the spatial domain by binary encoded sequences generated from
the original image. This allowed us, in detection stage, to prove the own-
ership, detect the altered blocks, and recover them. The detection and
recovery bits extraction is computed using an ICA algorithm. The ex-
perimental results were satisfactory and show a high robustness against
most common attacks as well as a reassuring rate of image recovery.

Keywords: Digital watermarking, color image, self-recovery, ICA.

1 Introduction

It is important to know that many court rooms around the world are, nowadays,
admitting digital images as legal evidence[4], and many others are seriously con-
sidering the digital images for law enforcement|3]. Therefore, the authentication
and the integrity of digital images become a serious issue[5], as it can be the key
element in a judicial process. On the other hand, the powerful publicly available
image processing softwares make digital forgeries very accessible. It is simple for
anyone to alter the content of a digital image, by adding or deleting features
from the original image without causing detectable edges[9]. In consequence, the
new information marketplace, where the digital data can be a currency with two
sides, addresses the need and the necessity to produce the softwares and tools
necessary to protect the digital images ownership rights, their authentication,
and make it possible to recover their original content in case a cutting/pasting
attack was performed. Thus, we are proposing in this paper, a new content-based
color image self-embedding and self-recovery scheme.

Several algorithms were previously presented regarding this matter, In one
of the first techniques used for image tampering detection, Walton et al [1],

L. Rutkowski et al. (Eds.): ICAISC 2008, LNAI 5097, pp. 839 2008.
© Springer-Verlag Berlin Heidelberg 2008

840 H. Mirza, H. Thai, and Z. Nakao

created the theory of check-sums technique, by modifying the Least Significant
Bits (LSB) of each pixel. This technique presents a high probability of tam-
per detecting but it is vulnerable to the block swap attacks. Fridrich et al [2]
proposed an original fragile watermarking method of image self-embedding that
consists of embedding the reduced bits of a block in a different distant block.
This method could achieve the self-recovery, but if a distinct region of one image
were attacked, the recovery bits would also be corrupted.

In this paper we will try to achieve both objectives, by performing two sep-
arate watermarking schemes in two different color layers of the original RGB
image. As we have discussed in [6], a color RGB image can be watermarked
in its three different color layers (Red,Green and Blue), and the separate wa-
termarking process increases the overall watermarking capacity. In the current
paper, we will watermark the red and blue color channels separately, using in-
dependent techniques, in order to increase security and the green layer we will
keep as original in order not to degrade the quality of the image. In the blue
subimage we will try to insert the necessary data to prove the image ownership
and to detect its tampered regions. This can be done by embedding the robust
bit extracted from a gray level version of the original image, and the embed-
ding process was performed in the spatial domain. As for the red subimage, we
inserted a compressed version of the original image, using a DCT compression
technique, the embedding is performed in the wavelet domain. The objective of
watermarking two color channels with different algorithms is to maximize the
chances of content recovery of the image, especially after cutting/pasting attacks.
The watermarked image is produced by the superposition of the watermarked
red and blue subimage and the unwatermarked green subimage.

As for the extraction stage, the ICA algorithm proved to be an efficient
tool[7][8] to detect and extract the mixed unknown sources. It is largely ap-
plied for the image and signal processing purposes, and we chose to implement
for this experiment the FastICA algorithm for its properties, discussed later.
The paper is organized as follows: the second section will discuss the proposed
algorithm where we will show how we generate the watermarks to be from the
original image separately for both red and blue subimages. Also we will include
the embedding process illustrated by figures. In the third section using the cho-
sen ICA algorithm we will demonstrate the detection/extraction process, and
the tampered image restoration process. The last two sections will be dedicated
to computer simulation results and some of our conclusions.

2 Proposed Algorithm

In the present embedding algorithm (fig.1), we first, separate the original color
image I(N x N) to three color RGB channels, respectively, R(N x N), G(N x N)
and B(N x N). For a high embedding capacity[10]we separately watermark the
red and blue color channels with two different sets of watermark data that we
call Ry, By. In the first step we need to generate the watermark data which is

Color Image Watermarking and Self-recovery Based on ICA 841

JPEG

—»| compression [*] Binary encoder |_, Embedding IDWT

4] I ¢ e
Original RGB image I(NxN) Watermarked |
B(NxN) y RGB image { (NxN)
ﬂ Embedding
Robust Bit T_ k
— extraction 2

Gray scale version
M (NxN)

Fig. 1. Embedding process of color layers

content related to the original image, and we leave the green layer untouched,
so as not to degrade the invisibility of the final watermarked image.

2.1 Recovery Bits Generation and Embedding

Since the main objective of this proposal is to recover the tampered or deleted
areas of the image, we need to generate original image’s content related data
sets: R,, and B,,. The procedure is as follows:

First, we convert the copy of I(N x N) to gray-scale level, and we call it
M(N x N).

R,, generation: As for the Red layer R(N x N) we tried to generate the R,
and perform the embedding in the wavelet domain following the next steps:

1. The Gray-scale image M (N x N) is divided into 8x8 blocks.

2. Apply 2D DC'T for each block, and divide the entire image by 8 to normalize
the DCT coefficients.

3. Quantize the resulting values using the quantization matrix equivalent to the
standard 50 % quality JPEG.

4. The quantized values are further binary encoded using 64 bits only.

5. The resulting binary sequences generated in the previous step can be written
as Ry, = {Ruw1,..., Rwm}, where m is the number of the selected blocks to be
compressed.

R,, embedding: On one hand, the red layer R(N x N) is decomposed into
three levels by wavelet transform and the binary sequences R,, are inserted
into midfrequency subbands by modifying wavelet coefficients belonging to two
details bands at third level (RYH, REL). The choice of the embedded wavelet

842 H. Mirza, H. Thai, and Z. Nakao

frequencies is made based on an optimal compromise among robustness, invisi-
bility and attack. The embedding equations are :

R (1, 5) = RET + 0. Ry (i, §) + Boka

/7 1
RE(i,j) = RIT + a;. Ry (i,) + Bk S

where « is a strength factor adapted to each subband depending on the smooth-
ness and invisibility level, and k; is the secret key, containing the block references
from which the the binary sequence R, was generated and the subband host or-
der. The watermarked Red layer R/(N x N) is obtained by applying the inverse
DWT.

The main advantage is that we could insert a good amount of image content
secretly without changing its perceptual quality, and the the embedded data can
be used to recover most of the possible feature deletion.

To apply ICA for watermark extraction algorithm for R’ (N x N), the em-
bedding process needs to create an ICA initialization parameters that we call a
demixz key, and we denote D ki, calculated by the following equations:

D ky = Ry (i, §) + RV (i, §) + vk (4,) (2)

where R5EH and R5HML are the subbands coefficient where the key is inserted
and « is a mixture strength coefficient, set to 0.5.

B, generation: The watermark used here is designed in a way to extract a
bit sequence of length L containing the robust bits of selected pixels. We divide
the image M (N x N) to (m x m) block size, using the robust bit extraction
algorithm detailed in [11] and illustrated in (fig.2), we extract, from each block,
a binary string B,, of fixed length L; B,, = ZiL:l Buyi.

B, embedding: In the other hand, we divide the blue color subimage B(N x
N) into 8x8 blocks.

1. For each block b, we denote the 64 pixels as Pie{ Py, P5...Ps4} and we define in
a secret key, ko, the information about each pixel’s location in the block b and
the block number (b#).

2. The relation between the pixels contained in the block b from the original
B(N x N) and the binary sequences B,,; extracted from M (N x N) is developed
according to the following equation:

where C'(F;) is the blue color intensity level of the pixel P;.
3. We encrypt the binary form of the relation R; and we embed it in the least
significant bit of the pixel P; . We can describe the embedding formula as:

P =P, + Re; + k2 (4)

where R.; is the binary and encrypted form of R; and P'is the watermarked
pixel if we denote a watermarked block by b (i, 7), the watermarked blue layer
is retrieved by the union of the watermarked blocks:

Color Image Watermarking and Self-recovery Based on ICA 843

Robust bit
extraction

k N Synthe:sizing
Gaussian
sequence

Fig. 2. Robust bits extraction

B'(N x N) [JOH@ﬂ (5)

The advantage of creating a relation between the extracted sequences and
embedded pixels is to make alteration tamper easily detectable and the change
in the quality of the image is not noticeable. The relation R, is block dependent
to avoid the loss of embedded data in case the block was removed, as it contains
the block # and pixel’s location information. Furthermore it is impossible, with
this technique, to duplicate an entire block without making undetected damage.
The main advantage of this embedding method is that the imperceptibility of
the original image is not degraded as we are modifying only the LSB of selected
pixels.

Similarly with the red channel, we need to create a demix key for detection
and extraction purposes of this algorithm. The demix key can be written as:

D ko =P} +ky (6)

where P denote the pixels that contain the key ko.

The watermarked color image I (N x N) is obtained by the superposition of
the three resulting color layers, R (N x N), B (N x N) and the green G(N x N)
non-watermarked layer.

844 H. Mirza, H. Thai, and Z. Nakao

— Extracted R(NxN)
Fast » Binary
DWTT>|Mi —> —> [Extracted
Mixture >l ica RW Decoder
Tested red > | » Extracted Compressed
R (NxN) K M(N,N)
B |y Extracted B(NxN) D
w . o
LSBs | detection > Fast R N Robust %
Mixture » PCA ICA ”| Extracted B bits 3
» Whitening 55 o
Tested blue —» Extracted k 7|3 73
B (NxN) 2
o
A4
presence of No Tampered Restoration
R in all blocks —>
¢ blocks process

Recovered image
Proof of ownership

Fig. 3. Proposed detection/extraction process

2.2 Recovery Bits Extraction

Fast ICA

Independent Component Analysis (ICA) is a computing tool to extract indepen-
dent sources from given mixtures of unknown sources, and this intelligent com-
puting tool is widely applied in signal and image processing field. We consider
here that the embedded recovery bits and the original image layers are unknown
sources and the watermarked color layers are mixtures of those unknown sources.
By creating different mixture the ICA algorithm detects and extracts the embed-
ded recovery bits. Among the presented fixed-point algorithms, we chose in this
paper to apply the FastICA [12] because it presents a certain amount of good
properties mainly the fast convergence and its easy and suitable implementation
for watermarking schemes.

The FastICA is based on two stages: the first is a PCA whitening of the input
mixtures and the second is the FastICA by using fourth-order statistics of the
signal. The extraction of the recovery bit in the red and blue color channels does
not require any knowledge of original embedded recovery bits, or original image,
or strength factors. We follow the next steps for extraction process(fig.3):

Stepl: The watermarked color image I’ (N x N) is divided to the three color
layers R'(N x N),G(N x N) and B'(N x N), We separately apply the FastICA
algorithm to both channels R (N x N) and B (N x N). respectively in step 2
and step 3.

Step2: The extraction process from the red color channel R (N x N), using the
ICA algorithm is described in the following tasks:

Color Image Watermarking and Self-recovery Based on ICA 845

1. The watermarked red layerR/ is decomposed through DWT by three levels to
obtain wavelet coefficients at RfLH and RfHL subbands.

2. In order to input the initialization parameter of the FastICA algorithm we
create mixture signals X, Xo, X3, X4 from R?LH and RfHL subbands:

X, =RI"™ 4+ Dk

X2 = REC 4Dy ™)
Xy = RV 4 REVH
Xe=Dki+k

3. The mixture signals X7, Xs, X3, X4 are also mixtures of the original wavelet
transform coefficients of the original red layer (RE#, RIL), and the binary se-
quences R,, and the secret key k; which can be written as:

X, = auR?%H + a12R§L + a13 Ry + a1k
Xy = ag RY? + ago REF + ags Ry, + asaky (8)
X3 = agleH + a32R§1L + ags Ry + asaky
X, = a41R§H + a42R§L + as3 Ry + agaky

where a(i, j)e{ai1, ..., aga} is an arbitrary real number.
4. Using the above described mixtures we can extract, using the fastICA algo-
rithm, from the red layer the embedded binary sequence R, .

Step 3: We proceed to extract the embedded recovery bit from the B’ (N x
N),proceeding as follows:
1. The checking process is similar to embedding process: it consists of comparing
for each block the value of Re*, determined by the pixels of tested images with
the original Re embedded in the LSB, by verifying the pixels locations and the
block b#.
2. This correlation process is enough to detect the altered blocks and also to
claim the ownership of the original color image.
3. To extract the embedded bits from the watermarked blue layer we create the
mixtures, similarly to the red layer :

X1 =P+ D ke
Xo =P, +e.ko (9)
X3 =D ko+ ks
where e = 0.5 is the mixture strength factor. The same mixtures are included in
the original watermarked image as:
X1 = a11P + algRe + a13k2
Xo = a1 P + aRe + azsks (10)
X3 = a3 P +anR. + aszk:

4. The above mixtures are used as input data for the fastICA algorithm and the
the embedded sequence B,, is extracted.

846 H. Mirza, H. Thai, and Z. Nakao

The detected tampered blocks are first restored using the robust bits extracted
at this stage, and we recall the extracted content from the red layer to recover
each block separately.

3 Computer Simulation

The proposed algorithm was tested on three RGB color images(fig.4(a-c)) of size
(512 x 512) (Cathedral, Airplane and Liberty). The first two images are taken by
digital camera while the third one is taken by satellite. The watermarked images
are shown in (fig.4(d-f)). No noticeable difference between the original and the
watermarked images are detectable for the human eye, and the PSNR values are
shown in table (1).

Table(1) shows the PSNR, values computed between the original and the wa-
termarked images and the recovery bits detector response in the blue and red
channels. The higher is the PSNR, the better is the invisibility of the watermark,
and the higher is the detection rate, the better is the robustness.

In order to test the robustness of our algorithm, the watermarked images were
subjected to some common image processing attacks, including: Surrounding

: Bt N 4
(d)Watermarked (e)Watermarked Airplane (f)Watermarked Liberty
Cathedral

Fig. 4. Original images (a-c) and Watermarked images(d-f)

Table 1. PSNR values and recovery detector response before the attacks

images (a) (b) (c)
PSNR values 42.9 47.0 35.3
B.,detection rate 0.95 0.90 0.91
R.,detection rate 0.93 0.91 0.92

Color Image Watermarking and Self-recovery Based on ICA 847

Table 2. Applied attacks and the resulting PSNR values and watermark detector
response

Attacks image(a) image(b) image(c)
PSNR XB,, XR.,, PSNR XB,, XR, PSNR XB,, XR.,
Surrounding Crop (94%) 52.2 0.63 0.68 274 0.62 0.58 59.0 0.60 0.54
Resize (448x448) 33.5 087 0.79 33.3 093 0.89 252 0.75 0.72
Adding Noise (power 5000) 17.3 0.81 0.78 15.7 0.87 0.73 152 0.76 0.71
Lowpass filtering (3x3) 29.2 0.71 0.63 31.0 0.78 0.67 22.7 0.58 0.63
Median filtering (3x3) 342 0.58 0.63 33.7 0.66 0.58 23.1 0.680 0.63
Jpeg (Quality=85%) 334 076 0.72 34.0 0.73 0.70 27.0 0.71 0.68
Jpeg2000 (bpp = 0.25) 32.7 0.86 0.77 33.3 0.81 0.79 23.9 0.76 0.68

Crop, Resize, Adding Noise, Lowpass filtering, Median filtering, Jpeg, and
Jpeg2000. The results are shown in table(2).

After performing the attacks on the watermarked images the PSNR was re-
calculated and so was the the Recovery bits extraction: we indicated the amount

\

(c1)PSNR =21.1 (c2)PSNR =22.1 (c3)PSNR = 20.5

Fig. 5. Sample results of the proposed tamper detection and recovery algorithm

848 H. Mirza, H. Thai, and Z. Nakao

of the recovery bits detected in the watermarked tested blue channel as X B,
and the one in the red channel as X R,,.

The system showed good results for the robustness as shown in table (2). The
embedded watermark was detectable enough in most tests, to prove ownership
of the file at least, if not to also recover partially some of the attacked features.

As for the image restoration testing, the three watermarked images were tested
by being subjected to cutting/pasting attacks, and we tried to recover the deleted
feature from the extracted recovery bits. Fig.5(a; —a3) shows the modified water-
marked images, the modification purpose was to delete some of the features of the
watermarked images: In the Cathedral image (a1) the middle gate was ’cut’ and
colored in similar color to the main color of the rest of Cathedral; in the Airplane
image (ag) the tail of the Airplane that carried all the references was deleted; in
the Liberty image (a3) the liberty statue was cut off its original stand and pasted
to three different locations in same image (right, left and below the original stand).
The PSNR between the tampered images and the original images was computed
as well and it is shown in fig.5(a; — ag). As figure(5)(by — bs) shows, the altered
blocks of each image were detected by the algorithm. The partially recovered fea-
tures are shown in fig.5 (¢ — ¢3). The tampered images are not perfectly recovered
but enough to have an idea about the original features, which guarantee the image
authentication, and make it reliable as a legal evidence.

4 Conclusions

The main contribution of this paper is to demonstrate that it is possible, through
the theory and computer simulation (more results and comparisons to come),
to recover the original content of a tampered color image. Watermarking two
color layers is done to double the chances of recovering the embedded data and
two different independent algorithms are performed to increase the security and
robustness of the algorithm. The ICA extraction algorithm makes it possible to
extract the embedded data after all the attacks are performed. The experimental
results shows that the watermark survived all the common attacks, and the em-
bedded content-based watermarked were still detectable, extractable and useful
for tampered regions recovery.

Acknowledgments

This research was supported in part by Ministry of Internal Affairs and Com-
munications (Japan) under Grant: SCOPE 072311002, for which the authors are
grateful.

References

1. Walton, S.: Information authentication for a slippery new age. Dr. Dobbs Jour-
nal 20, 18-26 (1995)

2. Fridrich, J., Goljan, M.: Protection of digital images using self embedding. In:
Symposium on Content Security and Data Hiding in Digital Media, New Jersey
Institute of Technology, USA (1999)

11.

12.

Color Image Watermarking and Self-recovery Based on ICA 849

. Craiger, P.J., Pollitt, M., Swauger, J.: Law enforcement and digital evidence. Hand-

book of Information Security, New York, USA (2005)

. Staggs, S.B.: The Admissibility of Digital Photographs in Court (2005),

http://www.crime-scene-investigator.net/admissibilityofdigital.html

. Mason, S.: Authentication of electronic evidence. Information Age, Australia (2006)
. Miyara, K., Thai, H., Harrak, H., Nakao, Z., Nagata, Y.: Multichannel color image

watermarking using PCA eigenimages. In: Advances in Soft Computing, vol. 5, pp.
287-296. Springer, Heidelberg (2006)

. Yu, D., Sattar, F., Ma, K.-k.: Watermark Detection and Extraction Using In-

dependent Component Analysis Method. Journal on Applied Signal Processing,
EURASIP 5, 92-104 (2002)

. Shen, M., Zhang, X., Sun, L., Beadle, P.J., Chan, F.H.Y.: A method for digital

image watermarking using ICA. In: 4th International Symposium on Independent
Componenet Analysis and Blind Signal Separation (ICA 2003), Japan (2003)

. Rehmeyer, J.: Computing Photographic Forgeries. Science News, vol. 171 (2007)
. Barni, M., Bartolini, F., De Rosa, A., Piva, A.: Color image watermarking in the

KLT domain. In: SPIE, Electronic Imaging, pp. 87-95 (2002)

Fridrich, J.: Robust Bit Extraction from Images. In: IEEE International Conference
on Multimedia Computing and Systems (ICMCS 1999), vol. 2 (1999)

Bingham, E., Hyvarinen, A.: A fast fixed-point algorithm for independent com-
ponent analysis of complex-valued signals. Int. Journal of Neural Systems 10, 1-8
(2000)

http://www.crime-scene-investigator.net/admissibilityofdigital.html

	Color Image Watermarking and Self-recovery Based on Independent Component Analysis
	Introduction
	Proposed Algorithm
	Recovery Bits Generation and Embedding
	Rw generation:
	Rw embedding:
	Bw generation:
	Bw embedding:

	Recovery Bits Extraction

	Computer Simulation
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

