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Abstract. We describe a preliminary implementation of the high-level
modelling language Zinc. This language supports a modelling method-
ology in which the same Zinc model can be automatically mapped into
different design models, thus allowing modellers to easily “plug and play”
with different solving techniques and so choose the most appropriate for
that problem. Currently, mappings to three very different design mod-
els based on constraint programming (CP), mixed integer programming
(MIP) and local search are provided. Zinc is the first modelling language
that we know of that supports such solver and technique-independent
modelling. It does this by using an intermediate language called Flat-
tened Zinc, and rewrite rules for transforming the Flattened Zinc model
into one that is tailored to a particular solving technique.

1 Introduction

Solving combinatorial problems is a remarkably difficult task which requires the
problem to be precisely formulated and efficiently solved. Even formulating the
problem precisely is surprisingly difficult and typically requires many cycles of
formulation and solving, while efficient solving often requires development of
tailored algorithms which exploit the structure of the problem. Reflecting this
discussion, recent approaches to solving combinatorial problems divide the task
into two (hopefully simpler) steps. The first step is to develop the conceptual
model of the problem which gives a declarative specification of the problem
without consideration as to how to actually solve it. The second step is to solve
the problem by mapping the conceptual model into an executable program called
the design model. Ideally, the same conceptual model can be transformed into
different design models, thus allowing modellers to easily “plug and play” with
different solving techniques [86]. Here we describe the implementation of a new
modelling language, Zinc [7], specifically designed to support this methodology.

We had three main aims when designing Zinc. First, we wanted the modelling
language to be solver and technique independent, allowing the same conceptual
model to be mapped to different solving techniques and solvers, i.e., be mapped
to design models that use the most appropriate technique, be it local search,
mathematical programming, constraint programming, or a combination of the
above. Second, we wanted Zinc to provide high-level modelling features but still
ensure that the models are executable. Thus, while Zinc provides sets, structured
types, and user-defined predicates and functions, set domains must be finite and

M. Hanus (Ed.): PADL 2007, LNCS 4354, pp. 215-{229] 2007.
© Springer-Verlag Berlin Heidelberg 2007



216 R. Rafeh et al.

CP Rewriting
Rules
CP
SD-FZM

MIP Rewriting
Rules
MIP
Instance J

Model

Design
Models

Conceptual
Model

Fig. 1. Mapping a Zinc conceptual model to different decision models

recursion is restricted to iteration so as to ensure that evaluation terminates.
And third, we wanted Zinc to have a simple, concise core that can be readily
extended to different application areas by allowing Zinc users to define their own
application specific library predicates, functions and types.

Of course there is considerable tension between these aims, since the higher-
level the modeling language, the greater the gap between the conceptual model
and the design model. The main contribution of this paper is to demonstrate that
it is possible to map conceptual models written in a high-level modeling language,
namely Zinc, into very different design models without introducing unnecessary
overhead. This significantly extends our understanding of modeling language
implementation since previous modelling languages and their implementations
have been closely tied to specific underlying platforms and solving technologies.
Note that, at this stage our objective is merely to minimise overhead, rather
than competing with a directly encoded design model. In the future, we intend
to build up a sufficiently broad range of transformations capable, under user
control, of mapping a Zinc model to the best (known) possible design model.

Integral to the successful solver-independent implementation of Zinc is the use
of an intermediate modelling language, called Flattened Zinc, to bridge the gap
between conceptual and design model. Flattened Zinc is a subset of Zinc which
is designed to be simple and low-level enough to be significantly closer to the
decision model, yet sufficiently high-level to specify suitable intermediate models
for all solvers. Therefore, it allows only simple constraints and data types.

The translation process from the conceptual model consisting of a Zinc model
and instance specific data (optionally given in separate data files), to different de-
sign models is shown in Figure[Il The first step takes a Zinc model and performs
syntax, semantics and type checking (which includes adding explicit coercions).
The second step adds to the compiled Zinc model the information contained in
the associated data file(s) (if any), and generates the Solver-Independent Flat-
tened Zinc Model (SI-FZM) instance. This step is described more fully in Sec-
tionBl The advantage of first producing an SI-FZM model is that many common
aspects of the mapping to the decision model can be performed during the Zinc
to SI-FZM translation, thus reducing the burden when developing mappings to
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new solvers. In the third step rewrite rules are used to translate the SI-FZM into
a Solver-Dependent Flattened Zinc Model (SD-FZM). As the name suggests,
the rewrite rules used in this process depend on the target design model, and
rewriting produces a Flattened Zinc model which is very close to the final design
model. The mapping process is discussed in more detail in Section @l The final
step is to take the SD-FZM model and perform the minor syntactic rewriting
required to generate the design model for a particular solving platform.

In our prototype implementation the Zinc model can be mapped into one
of three design models, all of which are implemented in ECLiPSe. The first
design model uses the standard constraint programming (CP) approach of a
complete tree search with propagation based finite domain and set solvers. The
second model is also complete but uses mathematical programming techniques,
i.e. a Mixed Integer Programming (MIP) solver, while the third design model
performs an incomplete search using local search methods. These are described
and evaluated in Sections [B and [Gl

Modelling languages for specifying constrained optimization problems are one
of the success stories of declarative programming. The first modelling languages,
such as AMPL [], provided little more than the ability to specify linear inequal-
ities. More recent languages are considerably more expressive. Some are based
on specification languages, e.g. ESRA [3] and ESSENCE [5], while others pro-
vide more programming language like features, e.g. OPL [I3] and Localizer [10].
Zinc is somewhat similar to OPL but extends it by allowing constrained types
and user-defined functions and predicates. The main innovation in Zinc is the
ability to map a conceptual model to design models based on very different solv-
ing techniques. Other modelling languages have been designed for a particular
underlying platform and solving technology. For example, AMPL is designed to
interface to MIP solvers, ESSENCE is intended for propagation-based solvers,
and Localizer was designed to map down to a local search engine. Although
OPL models are automatically mapped to an underlying hybrid mathematical
programming (MIP) and constraint programming library, the user cannot con-
trol the mapping to the same conceptual model of different design models. Also
related is the mapping language Conjure [6], which uses rewrite rules to map
ESSENCE models to an OPL-like language called ESSENCE’. The main differ-
ence is that while rewriting in Conjure produces alternative models for the same
underlying solver, in Zinc it produces different models only for different solvers,
tailoring the original model to the specific solver. Furthermore, to the best of
our knowledge, a compiler for ESSENCE’ has not been implemented yet.

2 Background: The Zinc Modelling Language

Zinc is a functional language with simple, declarative semantics. It provides:
mathematical notation-like syntax (including automatic type coercions and op-
erator overloading); expressive constraints (finite domain and integer, set and
linear arithmetic); separation of data from model; high-level data structures and
data encapsulation (including constrained types); user defined functions and
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enum Customers ;
enum Products ;
array[Products] of set of Customers: Ordered ;

type Time = 1..card(Products) ;
array[Time] of var Products: Assign ;
array[Time] of var set of Customers: OpenStacks ;

constraint alldifferent([Assign[T] | T in Timel) ;

constraint forall(T in Time)
(OpenStacks[T] ==
allunion (Ti in 1..T) Ordered[Assign[Ti]]
intersect
allunion ( Ti in T..card(Products) ) Ordered[Assign[Till);

minimize max([ card(OpenStacks[T]) | T in Timel) ;

Fig. 2. Zinc model for the Minimisation of Open Stacks Problem (MOSP)

constraints. We illustrate some of these features by means of a simple example.
For more details the interested reader is referred to our earlier paper [7] which
discusses the modelling capabilities of Zinc more fully.

Ezample 1. A Zinc model for the Minimisation of Open Stacks Problem (MOSP)
is shown in Figure[2l In MOSP, a factory can manufacture a number of products
but only one at a time. Once a product in a customer’s order starts being man-
ufactured, a stack is opened for that customer to store their products. Once all
products for a customer are manufactured, the order is sent and the stack closed.
The MOSP [I5] aims at determining the time sequence in which products should
be manufactured in order to minimise the maximum number of open stacks.

The first three lines of the model define the parameters: two enumerations
Customers and Products, and an array Ordered indexed by Product contain-
ing the set of Customers who ordered that Product. Next, the two arrays of
decision variables are declared where the var keyword is used to distinguish de-
cision variables from parameters. The array Assign which assigns to each Time
in the sequence a given Product to be manufactured, and the array OpenStacks
which is constrained so that OpenStacks [T] is the set of Customers whose stacks
are open at time T. The two following constraints indicate that (1) all products
in array Assign must be different (i.e., each product is manufactured only once),
and (2) the number of open stacks at time T is the intersection of those customers
who ordered products manufactured before or at T and those who ordered prod-
ucts manufactured after or at T.

Data for the model can be given in a separate data file as, for example:
enum Customers = {Ci1, C2, C3, C4, C5};
enum Products = {P1, P2, P3, P4};
Ordered = [P1:{C1,C3,C5}, P2:{C2,C4}, P3:{C2,C3,C4}, P4:{C1,C5}];
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List, set and array comprehensions provide the standard iteration constructs
in Zinc. Other iterations such as forall, max, allunion and sum are defined
as Zinc library functions based on the built-in function foldl(F,L,Z), which
applies the binary function F to each element in list L (working left-to-right) with
the initial accumulator value set to Z. For example, the definition of allunion is

function var set of $T:allunion(list of var set of $T:L)=foldl(union(),L,{});

where $T is a type variable. Any constraint or function F (including user-defined
functions or predicates) that takes a single list comprehension as an argument,
can be called using the mathematical-like syntax F(G) E, which is equivalent to
F([E | G]). Thus, for instance, allunion (Ti in 1..T) Ordered[Assign[Ti]] is
syntactic sugar for allunion([Ordered[Assign[Ti]] | Ti in 1..T]).

One of the novel features of Zinc not illustrated in the previous example is
that types can have an associated constraint on elements of that type. This
generalises the idea of constrained objects [9] and allows to the modeller to
specify the common characteristics that a class of items are expected to have.
Two examples are:
type PosInt = (int:x where x>0);
record Activity = (var int: start, end, duration) where end=start+duration;

Zinc provides the standard comparison and equality operators, including the
alldifferent constraint. These are polymorphic since all base types are totally
ordered and overloaded versions of the operators are generated automatically for
each user-defined type (using a lexicographic ordering for compound types).

Zinc allows constraints and variables to be annotated by classes which can
contain attributes. These do not change the semantics of the model but can be
used to guide generation of a decision model for a particular solver or solving
technique. For instance, the annotation penalty(p) on a constraint indicates
that with local search that constraint will be treated as a “soft” constraint with
penalty p for violation.

3 Solver-Independent Flattened Zinc Model (SI-FZM)

As we have seen, Zinc is a very high-level, expressive modeling language. While
this makes it ideal for developing conceptual models, it also introduces a consid-
erable gap between the conceptual Zinc model and an associated design model
targeted to a specific solver and search technique. The first step in bridging
this gap is to translate the conceptual Zinc model into the Solver-Independent
Flattened Zinc Model (SI-FZM). This is an intermediate representation oriented
towards computer implementation, but still as solver-independent as possible.
The SI-FZM is written in a subset of the Zinc language called Flattened Zinc
which omits features of the Zinc model that make it user friendly, while preserv-
ing any features that could be used to support solver or search heuristics.

The first step to generate the SI-FZM instance from a Zinc model and its
associated data file(s) is to insert all assignment statements from the data file(s)
into the model. From then on, one or more of the following steps are performed
to every statement in the problem instance:
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— Evaluate all parameters and check the associated integrity constraints are
satisfied.

— Determine an initial domain or range for all decision variables.

— Simplify record types by (a): replacing all records by tuples, (b) flattening
tuples of tuples into a single tuple, and (c¢) appropriately replacing field
access in the constraints by the contents of the field addressed.

— Replace enumerated types by integer range types, and constraints over enu-
merated types by the appropriate integer constraints.

— Check that predicates and functions are sufficiently instantiated. For exam-
ple, £01d1 requires its second argument to be a list of known length.

— Unfold the user-defined library and built-in predicates and functions such
as foldl. Note that this may introduce new variables due to the formal
parameters and to the existence of local variables in the definitions.

— Insert constraints arising from constrained objects, i.e., from the constraints
associated with types. If these involve only parameters, check that they hold.

— Simplify arrays and lists by rewriting them to be one-dimensional arrays with
an integer index set starting from 1, and appropriately updating computation
of the array index in constraints.

— Translate variable sets of structured types into variable sets over integers
and add a constraint mapping the structured type elements to integers. This
is also used to flatten sets of sets into linked sets of integers. For instance:

var set of {{2,5},{1,3,6},{1,2}}: Si1;
var set of {{2,5},{1,2},{3,4}}: S2;
constraint S1 intersect S2 == {1,2};

is translated to (assuming the encoding starts from 1):

var set of {1,2,3}: S1; var set of {1,3,4}: S2;
constraint S1 intersect S2 == 3;

— Separate the logical combination of constraints from the constraints them-
selves, using reification, i.e., substituting ¢ by reify(c,T) which constrains
Boolean variable T to be true iff ¢ holds. For example, the constraint
c=(zr<yVe<z)A(z>w)is substituted by:

constraint reify(x <y , T1); constraint reify(x < z ,T2);
constraint reify(x > w , T3); constraint T4 = T1 \/ T2 ;
constraint T4 /\ T3 ;

Note that reification is performed after unfolding predicates and functions,
leaving only constraints defined by the underlying solvers. For constraints
whose reification - and more specifically negation - is not supported by the
solver, e.g. linear constraints in continuous variables, the reification is imple-
mented using a specific transformation (in this case adding an € so =X > Y
is transformed to X <Y —¢)

Termination of the Zinc flattening is guaranteed as long as the unfolding
of predicates, functions and iterators terminates, and only finitely many new
variables are introduced. These conditions are guaranteed by the Zinc syntax.
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We will illustrate some of these operations using the Zinc MOSP model given
in Figure 2l with the data file of Example 1. The arrays Assign and OpenStacks
which mapped Time to Products and to set of Customers, respectively, are
translated into the FZM code:

array[{1, 2, 3, 4}] of var 1..4 : Assign ;
array[{1, 2, 3, 4}] of var set of 1..5 : OpenStacks ;

where the index type Time has been replaced by its range value 1. .4 (represented
using the more general set {1,2,3,4}), and the enumerated types Products and
Customers have been replaced by ranges 1..4 and 1..5, respectively. Next, the
alldifferent ([Assign[T] | T in Time]) constraint is translated as:

constraint alldifferent([Assign[1], Assign[2], Assign[3], Assign[4]1]);
and the forall constraint is unfolded to give the four OpenStacks elements:

constraint

OpenStacks[1]==(T_1) intersect (T_1 union T_2 union T_3 union T_4)
/\ OpenStacks[2]==(T_1 union T_2) intersect (T_2 union T_3 union T_4)
/\ OpenStacks[3]==(T_1 union T_2 union T_3) intersect (T_3 union T_4)
/\ OpenStacks[4]==(T_1 union T_2 union T_3 union T_4) intersect (T_4);

where each temporary variable T i is equated to the result of the expression
Ordered[Assign[i]]. ThusifAssign[i]l =1thenT i={1,3,5},andif Assign[i]
= 2 then T i = {2,4}, etc. This is expressed using the standard constraint pro-
gramming global constraint element (I,L,X) which holds if X is the Ith element
inL, i.e. X = L[I]. The specific SI-FZM constraint is:

constraint element(Assign[il, [{1,3,5}, {2,4}, {2,3,4},{1,5}],T_i);

The flattened Zinc element constraint allows lists of complex types, rather than
only the usual lists of integers.
Some of the optimisations used to improve the generated SI-FZM model are:

1. Substitution: If we can determine that a decision variable must take a unique
value, then we can effectively treat it as a parameter and replace it by its
value. For example, if we know that X == 2, constraint X x Y > 10 can be
simplified to 2 x Y > 10.

2. Omitting unnecessary element constraints: While Zinc supports arrays with
arbitrary index sets, the element constraint supported by most solvers re-
quires a range of the form 1..n as its index set. Thus, when we model an
array access we use an extra element constraint to map the index set vari-
able to a range of the required form. For example, the constraint in the Zinc
code:

array[{2,5,7,8}] of var int:A;

var {2,5,7,8}:1;

constraint A[I]==3;
generates the Flattened Zinc code:

var 1..4:T_1; var int:T_2;

constraint element(T_1,[2,5,7,8],1I);

constraint element(T_1,[A[2],A[5],A[7]1,A[8]1]1,T_2);
constraint T_2==3 ;
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However, if the index set of the initial Zinc array is in fact a range, then we
can replace the extra element constraint by an offset to the index variable.
For instance, if we have array[4,5,6,7] of var int:B we can substitute
B[J] by a new variable T which is constrained by a single element constraint:

constraint element(J-3,[B[4],B[5],B[6]1,B[7]1]1,T);

3. Simplifying reifications and omitting unnecessary reification: While the naive
translation of compound constraints of the form constraint C1 A C2is

var bool: B1, B2; constraint reify(C1,B1);
constraint reify(C2,B2); constraint Bl /\ B2;

it is better to produce the simpler code
constraint Ci1; constraint C2;

which removes the potential overhead of reification and is more efficient,
especially for MIP techniques.

One source of inefficiency in Zinc is the current lack of common sub-expression
elimination for constraints which appear several times in our models. As a result,
multiple element and/or reify constraints are created, instead of reusing the
associated variables. We are currently resolving this issue.

4 Model to Model Transformation

Although the SI-FZM model is much closer to a design model than the original
Zinc model, it may still contain constraints and data structures not supported by
the intended solver. For example, Zinc supports variable sets of any type. Since
current set solvers can support only sets over integer values, variable sets in a
Zinc model are transformed to variable sets over integers in the generated SI-
FZM. For the many solvers, including most MIP solvers, that do not support sets
of integers, integer sets must in turn be converted to some other representation
they can handle, such as Boolean arrays. To facilitate this kind of transformation
the Zinc implementation supports solver specific rewrite rules that can be used
to rewrite the SI-FZM model to a Flattened Zinc model that is much closer to
the desired design model. Rewrite rules have the following syntax:

if A then substitute B with C in D where E;

where A is a conditional statement, B and C are two Zinc expressions, D is a
subsection of a Zinc model (declarations, constraints or model) and F is a set
of Zinc statements. Whenever A holds, all instances of B are substituted by C
in scope D and the statements in E are added to the model. The if and where
parts are optional.

The formal semantics of our rewrite rules is not yet fully worked out. A key
issue is the specification of what can be tested in a conditional statement. In the
rules used to date, the conditions have been restricted to tests on Zinc types.

Ezxample 2. Consider the following four rules, which are among those used in
our implementation to map a set S to an array of Boolean variables B, such
that Blz] — z € S.
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(1) substitute var set of $T:X with array[domain(X)] of var bool:X
in declarations;

(2) if typeof (X)==array[$T] of var bool then
substitute (I in X) with
(if I in indexset(X,1) then X[I] else false)
in constraints;

(3) if typeof(X)==set of $T then
substitute X with Z in constraints
where
array[$T] of bool:Z=[I:true| I in X];

(4) if typeof(L)==1list of array[$T] of var bool then
substitute element(I,L,X)
with element(I, [extend(L[K],U)|K in 1..length(L)], extend(X,U))
in constraints
where U = unionall({indexset(L[H],1) | H in 1..length(L)})
union indexset(X,1);
and function extend is defined as:

function array[$T] of var bool: extend(array[$T] of var bool:B, set of $T:U)
= [ if J in indexset(B,1) then B[J] else false | J in U]

Rule (1) substitutes in every declaration, any variable set X of some type $T
by a Boolean array, assuming all set constraints can be mapped to equivalent
constraints on Boolean arrays. Rule (2) rewrites the set membership expression
(I in X) for any X known to be a Boolean array as a result from previous
rule, into the expression X[I] [ Zinc keeps track of which expressions have been
newly introduced as a result of the mapping. Rule (3) maps the set of values
X of some type $T into a Boolean array Z in which every element I in X is
assigned value true. Rule (4) is used for an element (I,L,X) constraint in which
L was a list of set values that has been transformed by Rule (3) into a Boolean
array. It transforms the constraint into another element constraint whose second
argument is a list of Boolean arrays, each defined over the same index set, U.
Function extend extends an array of Booleans to a larger index set U, by adding
the Boolean value false for each new index. It returns an array of Booleans over
the extended index set U. The extend function has been used for readability
reasons; in the implementation of Rule (4), the function is already unfolded. If
we apply the above rules to the following code from the generated SI-FZM for
the Open Stack Problem discussed in Section [

var set of {1,2,3,4,5} : T_3;
constraint element(Assign[1],[{1,3,5}, {2,4}, {2,3,4}, {1,5}], T_3);

the SD-FZM would be generated as follows (t stands for true and £ for false):

array[{1,2,3,4,5}] of var bool : T_3;
constraint element(Assign[1],[[t,f,t,f,t],[f,t,f,t,f],
[f,t,t,t,f],[t,f,f,£,t],T_3);

! indexset(A, I) returns the index set of the I*" dimension of array A.
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First, Rule (1) changes the definition of T' 3 in the declaration section. Then,
Rule (3) maps all sets in the constraint into Boolean arrays. Finally, Rule (4)
makes the length of all Boolean arrays equivalent by adding false for each
missing member from set 1..5.

Our current implementation uses 20 rewriting rules of which 16 are used for
transforming set constraints to constraints over Boolean arrays, and the re-
mainder are used for implementing suitable versions of max, min, maxlist and
minlist constraints in MIP techniques.

5 Mapping to Design Models

The primary focus of this paper is to investigate whether the high-level modelling
language Zinc can provide solver and technique independent modelling. To do
so, we must demonstrate that it is possible to map SI-FZM to design models
using different solving techniques, and that the resulting design models do not
suffer substantial overhead as compared to equivalent design models written by
hand. To investigate this we have implemented mappings from SI-FZM to three
very different design models.

For practical reasons all three design models were implemented using the
ECLiPSe system [1]. We see no apparent reason why the choice of system should
impact our experiments concerning the mapping overhead.

Mapping to CP: The SI-FZM constraints are mapped to finite domain propa-
gation constraints. A simple complete tree search using variable labeling is added,
and the CP system solves the problem using search and propagation. Stan-
dard CP propagation solvers typically support the SI-FZM constraints such as
reify, >=, =\= etc. Specifically, we have used the ECLiPSe solvers ic, ic sets,
ic global and, to support search and optimisation, the ECLiPSE
branch and bound library.

We extended these libraries to provide comparison operators on compound
data objects by generating a new constraint for each comparison operator and
type. For example, the constraint [al,a2] =< [b1,b2] effectively generates

(a1l < b1) \/ ((al=b1) /\ (a2 =< b2))

We also implemented a more general element constraint since, like most CP
systems, ECLiPSe provides only a restricted form of element constraint which
requires the list argument to be a ground list of integers. This more general
version of element delays evaluation until two of its arguments are fixed.

Mapping to MIP: The SI-FZM constraints are mapped to integer and linear
numeric constraints, and the problem is solved using standard MIP branch and
bound search. This mapping is considerably more complex because the class of
constraints handled by MIP is much more restricted.

Set constraints are mapped to Boolean constraints, which are in turn mapped
to constraints over binary integer variables as detailed in Section @l The remain-
ing SI-FZM constraints are handled by specific translations.
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Reified constraints are translated using the Big M technique [14]. For instance,
if we assume X and Y are numeric variables and B is a binary integer variable,
we model reify(X <Y, B) by the inequalities

X4+BxM<Y+MAX+M>Y+(1-B)xM+e

where M is a big number and € a small number. If B becomes 0, the first
constraint is relaxed while the second constraint forces X to be greater than Y.
Otherwise, if B becomes 1, the first constraint forces X to be less than or equal
to Y while the second constraint is relaxed.

Some global constraints, such as alldifferent have a standard mapping to
MIP, as introduced in [II]. More novel and interesting is the mapping of the
element constraint. For efficiency the translation depends on how the arguments
of the constraint element(I, L, X) are instantiated.

— [ is instantiated to the value i: the translator impose an equality constraint
between X and the i*" element of L.

— L and X are ground: the translator finds the set of positions S = {i : L[i] =
X}. The constraint is then translated as var S : I.

— Only L is ground: We associate a binary integer variable with each member
of L. For each member Y, if X =Y its associated binary variable becomes
1, otherwise 0. Assuming L = [a1, ag, ..., a,], the constraint element (I,L,X)
is converted to the following constraints:
b1, b, ..., by :: 0.1, integers([bi, ba, ..., bn]), Doy by =1,
122?212. X bi, X = Z?:lai X bz
The first constraint restricts the range of each variable b; to 0..1, the second
enforces integrality, so b; € 0,1, and the third checks that only one of the n
binary variables is non-zero. On the next line, the fourth and fifth constraints
establish the relationship between binary variables and I and X, respectively.

— Otherwise, in the case that L is not completely ground we use the above
translation except that for each non-ground a;, instead of generating the
constraint X = Z?:l a; X b; we generate the two constraints: X — M <
a;—M.b;, X+ M > a;+ M.b;, where M is a sufficiently large number. These
behave like the Big M technique used for handling reification.

Mapping to local search solver: The final mapping uses a form of local
search. Annotations on the constraints in the original Zinc model guide which
constraints are enforced, i.e. hard, and which are handled by using a penalty in
an automatically generated objective function, i.e. treated as soft.

The local search algorithm used for the experiments described in the next
section is a hill-climber, with a tabu facility to prevent cycling on a plateau. The
algorithm selects a variable in conflict, if there is one, and otherwise any variable.
The value of the variable is changed and the algorithm then completes the move
by changing any other variable values that are required by the hard constraints.
The completion is greedy in the sense that each choice of variable and new
value generates only one move. The neighbourhood search first considers integer
variables generated from Zinc model variables, and then set variables, generated
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Table 1. Zinc Mapping Statistics

Problem Name | Model Size Generated Model Size Mapping Time (sec)
Zinc ECLiPSe|SI-FZM SD-FZM ECLiPSe|SI-FZM SD-FZM ECLiPSe

Golfers (sets) |273/5 - 1082 | 10706 | 65720/2492(20.119 |31.262 34.143
Golfers (arrays)|269/5| 1111/5 |67451 |43684 | 17178/485 | 0.1 0.475 0.55

Job-Shop 514/3|1021/5| 9980 | 9980 | 16634/574 | 1.564 | 1.589 1.673
Knapsack 326/1| 564/3 | 896 589 1181/2 0.2060 | 0.2220 | 0.2250
Stable-Marriage|527/4| 955/4 | 16064 | 16064 | 24604/672 | 0.4770 | 2.3280 | 2.4330
Queens 88/3 | 308/3 | 81 81 245/3 0.047 | 0.047 0.047
Open-stacks 264/2| 723/5 | 5240 | 29649 | 5104/981 | 0.1530 | 1.1070 | 1.4250
Perfect-squares |322/3| 630/6 | 23446 | 23368 | 43289/231 | 1.578 | 1.644 1.933
Production 173/2| 367/3 | 173 173 173/6 0.4190 | 0.4250 | 0.4480

from Zinc set variables. Auxiliary variables, introduced during the mapping, are
automatically updated by the local search, via the introduced hard constraints
that relate them to the original variables.

6 Evaluation

Our primary motivation for developing Zinc was to validate the idea of a high-
level modelling language which is solver and technique independent. Therefore,
our evaluation aims at demonstrating two things. First, that it is possible to map
Zinc models to design models using different solving techniques. And second, that
the resulting design model does not suffer substantial overhead when compared
to an equivalent design model written by hand To achieve this, we used as
benchmarks the Zinc model for the MOSP problem (9 customers, 7 products)
given in Figure[ll and models for the following well known problems:

Perfect Squares (7x7, 14 squares) - because of its use of disjunction
Queens (18 queenss) - it spawns a large number of constraints.

— Knapsack (30 objects, 50%fit) - it has sets with multiple constraints on them.
Stable Marriage (8 pairs) - it uses arrays with variable indices.

Social Golfers (6 players, 3 groups, 3 weeks) - it uses sets of sets.

— Social Golfers (flat sets) - to reveal the cost of supporting sets of sets.

Job Shop (4 jobs, 3 machines) - it uses many modelling features of Zinc.
Production (3 products, 2 resources) - it involves continuous variables.

Our prototype implements the full syntax of Zinc. It is written in Mercury with
a Yacc generated parser and flex generated lexical analyser. It is about twelve
thousand lines of Mercury code, and five thousand lines of C. Experiments were
performed on a 3GHz Pentium 4 with 1Gb memory on Fedora.

Table [ gives statistics on the mapping using MIP techniques. The results
for the other two mappings are similar, just a little bit smaller because MIP
techniques cannot support high-level constraints and must be mapped to simpler
ones. The first five columns give the size of the models as number of “tokens” /
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number of constraints for the original Zinc model (in addition to the data file),
the direct ECLiPSe program, and the generated SI-FZM, SD-FZM and ECLiPSe
model, respectively. The last three give the time in seconds taken to generate the
SI-FZM, SD-FZM and ECLiPSe model, respectively. Note that we do not give
a model written directly in ECLiPSe for Golfers (sets), since it is not naturally
expressible in ECLiPSe.

The Zinc model is consistently substantially smaller than the model written
directly in ECLiPSe. The SI-FZM and generated ECLiPSe code is orders of
magnitude larger than both the Zinc model and the direct ECLiPSe model. This
is to be expected and reflects the flattening of high-level iteration constraints.
Thus, the size is proportional to the number of constraints sent to the solver
rather than to the number of constraints in the original model. The time to
generate the ECLiPSe design model from the Zinc model is small, no more than
a few seconds, for all mappings and examples, except for Golfers (sets), due to
the number of set-related constraints generated, which grows exponentially. We
are currently studying how to tackle this issue.

Our second experiment aimed at determining if the ECLiPSe code generated
from the Zinc model had a substantial overhead as compared to an equivalent
model written directly in ECLiPSe. Thus, we compared their execution times
for all three design models: Constraint Programming (CP), Local Search (LS)
and MIP. Table ] shows the execution time in seconds for all programs when
finding the first solution.

One possible confounding factor is the choice of search strategy. Clearly, this
can greatly effect the performance of the design model. Since we are only in-
terested on the relative performance of the two models, we ensured (as far as
possible) that the direct ECLiPSe model used the same search strategy as that
in the generated model. This is the reason behind the differences in the execu-
tion time for the two MIP models for Queens and Perfect Squares which, despite
our efforts, perform different searches and return different solutions. Note that
there were three problems whose structure was too complex to be solved with
reasonable efficiency with our generic “blind” local search algorithm. These are
indicated as “-” in the table.

Table 2. Comparing the execution times for the direct and mapped programs

Problem Name CP Model MIP Model LS Model
(cpu secs) Direct Generated Direct Generated Direct Generated
Golfers (sets) - 0.343 - 1.34 - 0.156
Golfers (arrays) 0.031 0.0 0.172 0.266 0.0 0.0
Job-Shop 0.094 0.109 4.125 3.218 0.375 0.39
Knapsack 22.828 22.675 0.00 0.00 0.797 0.828
Stable-Marriage 0.031 0.031 3.391 3.047 - -
Queens 4.125 4.109 8.64 24.094 11.61 11.641
Open-stacks 1.547 1.843 1890.797 1971.688 0.94 0.95

Perfect-squares  0.031 0.031 3.469 1.5 - -
Production 33.328 33.188 0.00 0.00 - -
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Table [2] shows no significant difference in execution time between the design
model written directly in ECLiPSe and that generated from the Zinc model.
This is true for all the design models: CP, LS and MIP. This preliminary
evidence encourages our pursuit of a high level, solver independent modelling
language.

7 Conclusion

We have presented the implementation of the first prototype of the modelling
language Zinc. Unlike virtually all other modelling languages, a Zinc model can
be mapped into design models that utilize different solving techniques such as
local search, tree-search with propagation based solvers, or MIP techniques. A
core feature of the Zinc implementation supporting such solver and technique-
independent modelling is the use of an intermediate language called Flattened
Zinc. Furthermore, the Zinc implementation provides a rewrite rule based model
to model transformation facility to allow the implementers to map the Flattened
Zinc model into one that is closer to the desired technique/solver.

We have compared a number of standard benchmarks written in Zinc and
written in ECLiPSe. The Zinc models are considerably more concise and ar-
guably more high-level and easier to understand. The ECLiPSe model automat-
ically generated from Zinc (via FZM) has similar performance to an equivalent
program written in ECLiPSe, assuming the same search method is used for
all three mappings. This provides strong support for the hypothesis that it is
possible to generate reasonably efficient design models from Zinc, and so allow
Zinc modellers to readily experiment with different solving techniques. For in-
stance, it is clear from our experiments that for the Knapsack and Production
benchmarks MIP is the better technique, while for the others the CP prop-
agation solver is the best. In the future, we plan to experiment with hybrid
techniques.

Zinc has been developed as part of the G12 project and is intended to be its
modelling language. Currently, mappings from Zinc to the three different design
models have been crafted in Mercury with some transformations using rewrite
rules. Besides the ECLiPSe platform, Zinc models will also be mapped down to
Mercury itself [12]. In the longer term, we plan to use a specialised term rewriting
language (Cadmium [2]) to implement the mappings from Zinc to Flattened Zinc
along with model-transformations.

An important component of the mapping from conceptual to decision model
is specification of the search. Currently, our implementation uses a naive search
procedure, but user-controlled search is vital for scalable performance on real
problems. Specification of search is deliberately not part of the Zinc language,
since we believe this should not be part of the conceptual model. However,
search is often naturally specified in terms of the variables and entities occurring
in the decision model, so it seems sensible to allow the search component to
be written in a Zinc-like language annotating the Zinc model. The inability to
specify problem specific search is almost certainly the reason that the local search
mapping was not competitive. We are currently exploring this.
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