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Preface

This volume contains the papers presented at the Ninth International Sympo-
sium on Practical Aspects of Declarative Languages (PADL 2007) held on Jan-
uary 14–15, 2007 in Nice, France. Information about the conference can be found
at http://www.informatik.uni-kiel.de/~mh/padl07. Following the tradition
of previous events, PADL 2007 was co-located with the 34th Annual Symposium
on Principles of Programming Languages (POPL 2007) that was held on January
17–19, 2007.

The PADL conference series is a forum for researchers and practioners to
present original work emphasizing novel applications and implementation tech-
niques for all forms of declarative concepts, including functional, logic, con-
straints, etc. Topics of interest include:

– Innovative applications of declarative languages
– Declarative domain-specific languages and applications
– Practical applications of theoretical results
– New language developments and their impact on applications
– Evaluation of implementation techniques on practical applications
– Novel implementation techniques relevant to applications
– Novel uses of declarative languages in the classroom
– Practical experiences

In response to the call for papers, 65 abstracts were initially received. Finally,
58 full papers were submitted. Each submission was reviewed by at least three
Program Committee members. The committee decided to accept 19 papers. In
addition, the program also included two invited talks by John Hughes (Chalmers
University of Technology) and Pedro Barahona (Universidade Nova de Lisboa).

I would like to thank the Program Committee members who worked hard to
produce high-quality reviews for the papers with a tight schedule, as well as all
the external reviewers involved in the paper selection. I also would like to thank
Gopal Gupta for his expert advice in many aspects of the conference and his
publicity efforts. Many thanks also to the organizers of POPL 2007 for hosting
PADL 2007 as an affiliated event and to Andrei Voronkov for his continuous
help with the EasyChair system that automates many of the tasks involved in
chairing a conference. Finally, I thank the University of Kiel, the University of
Texas at Dallas, and Compulog Americas for supporting PADL 2007.

October 2006 Michael Hanus
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QuickCheck Testing for Fun and Profit

John Hughes

Chalmers University of Technology,
S-41296 Gothenburg,

Sweden

1 Introduction

One of the nice things about purely functional languages is that functions often
satisfy simple properties, and enjoy simple algebraic relationships. Indeed, if the
functions of an API satisfy elegant laws, that in itself is a sign of a good design—
the laws not only indicate conceptual simplicity, but are useful in practice for
simplifying programs that use the API, by equational reasoning or otherwise. It
is a comfort to us all, for example, to know that in Haskell the following law
holds:

reverse (xs++ys) == reverse xs++reverse ys

where reverse is the list reversal function, and ++ is list append.
It is productive to formulate such laws about one’s code, but there is always

the risk of formulating them incorrectly. A stated law which is untrue is worse
than no law at all! Ideally, of course, one should prove them, but at the very
least, one should try out the law in a few cases—just to avoid stupid mistakes.
We can ease that task a little bit by defining a function to test the law, given
values for its free variables:

prop_revApp xs ys =
reverse (xs++ys) == reverse xs++reverse ys

Now we can test the law just by applying prop_revApp to suitable pairs of lists.
Inventing suchpairs of lists, and running the tests, is tedious, however.Wouldn’t

it be fun to have a tool that would perform that task for us? Then we could simply
write laws in our programs and automatically check that they are reasonable
hypotheses, at least. In 1999, Koen Claessen and I built just such a tool for
Haskell, called “QuickCheck” [4,5,7,6]. Given the definition above, we need only
pass prop_revApp to quickCheck to test the property in 100 random cases:

> quickCheck prop_revApp
Falsifiable, after 2 tests:
[1,-1]
[0]

Doing so exposes at once that the property is not true! The values printed are a
counter-example to the claim, [1,-1] being the value of xs, and [0] the value of
ys. Indeed, inspecting the property more closely, we see that xs and ys are the

M. Hanus (Ed.): PADL 2007, LNCS 4354, pp. 1–32, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 J. Hughes

wrong way round in the right hand side of the law. After correcting the mistake,
quickChecking the property succeeds:

> quickCheck prop_revApp
OK, passed 100 tests.

While there is no guarantee that the property now holds, we can be very much
more confident that we did not make a stupid mistake. . . particularly after run-
ning another few thousand tests, which is the work of a few more seconds.

We wrote QuickCheck for fun, but it has turned out to be much more useful
and important than we imagined at the time. This paper will describe some of
the uses to which it has since been put.

2 A Simple Example: Skew Heaps

To illustrate the use of QuickCheck in program development, we shall implement
skew heaps (a representation of priority queues), following Chris Okasaki [15]. A
heap is a binary tree with labels in the nodes,

data Tree a = Null | Fork a (Tree a) (Tree a)
deriving (Eq, Show)

empty = Null

such that the value in each node is less than any value in its subtrees:

invariant Null = True
invariant (Fork x l r) = smaller x l && smaller x r
smaller x Null = True
smaller x (Fork y l r) = x <= y && invariant (Fork y l r)

Thanks to the invariant, we can extract the minimum element (i.e. the first
element in the queue) very cheaply:

minElem (Fork x _ _) = x

To make other operations on the heap cheap, we aim to keep it roughly balanced—
thenthe cost of traversing a branch will be logarithmic in the number of elements.
This is achieved in a skew heap by inserting elements into the two subtrees
alternately. No extra information is needed in nodes to keep track of where to
insert next: we always insert into the left subtree, but swap the subtrees after
each insertion—skewing the heap—so that the next insertion chooses the other
subtree.

insert x Null = Fork x Null Null
insert x (Fork y l r) = Fork (min x y) r (insert (max x y) l)

We expect that the two subtrees of a node should be “roughly balanced”, but
what does this mean precisely? A moment’s thought suggests that the left and
right subtrees should contain precisely the same number of elements after an odd
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number of insertions, but the right subtree may be one element larger than the
left one after an even number of insertions. We conjecture that skew heaps are
balanced in the following sense:

balanced Null = True
balanced (Fork _ l r) = (d==0 || d==1) && balanced l && balanced r

where d = weight r - weight l

weight Null = 0
weight (Fork _ l r) = 1 + weight l + weight r

Now we can use QuickCheck to test our conjecture. To do so we need to
generate random skew heaps. Since the only function so far that constructs skew
heaps is insert, we can construct any reachable skew heap by choosing a random
list of elements, and inserting them into the empty heap:

make :: [Integer] -> Tree Integer
make ns = foldl (\h n -> insert n h) empty ns

We can now formulate the two properties we are interested in as follows:

prop_invariant ns = invariant (make ns)
prop_balanced ns = balanced (make ns)

We gave make a specific type to control the generation of test data: QuickCheck
generates property arguments based on the type expected, and constraining
the type of make is a convenient way to constrain the argument types of both
properties at the same time. (If we forget this, then QuickCheck cannot tell what
kind of test data to generate, and an “ambiguous overloading” error is reported).
Now we can invoke QuickCheck to confirm our conjecture:

Skew> quickCheck prop_invariant
OK, passed 100 tests.
Skew> quickCheck prop_balanced
OK, passed 100 tests.

We also need an operation to delete the minimum element from a heap. Al-
though finding the element is easy (it is always at the root), deleting it is not,
because we have to merge the two subtrees into one single heap.

deleteMin (Fork x l r) = merge l r

(In fact, merge is usually presented as part of the interface of skew heaps, even
if its utility for priority queues is less obvious). If either argument is Null, then
merge is easy to define, but how should we merge two non-empty heaps? Clearly,
the root of the merged heap must contain the lesser of the root elements of l
and r, but that leaves us with three heaps to fit into the two subtrees of the new
Fork—l, r and h below—so two must be merged recursively. . . but which two?
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merge l Null = l
merge Null r = r
merge l r | minElem l <= minElem r = join l r

| otherwise = join r l

join (Fork x l r) h = Fork x ...

The trick is to realize that the two subtrees of a node are not created equal: we
ensured during insertion that the left subtree is never larger than the right one.
So any recursion should be on the left subtree, guaranteeing that the size of the
recursive argument at least halves at each call, and that the total number of calls
is logarithmic in the size of the heaps. Thus we should merge l with h above, not
r, and because merging increases the size of the heap, skew the subtrees again,
so that the next merge will choose r instead.

join (Fork x l r) h = Fork x r (merge l h)

Is this really right? Let us test our properties again! Of course, now skew
heaps can be constructed by a combination of insertions and deletions, so our
method of generating random reachable heaps is no longer complete. Now we
must generate heaps from a random sequence of insertions and deletions:

data Op = Insert Integer | DeleteMin
deriving Show

make ops = foldl op Null ops
where op h (Insert n) = insert n h

op Null DeleteMin = Null
op h DeleteMin = deleteMin h

One difficulty is that a random sequence of insertions and deletions may attempt
to delete an element from an empty heap, provoking an error. There are various
ways to avoid this: we could arrange not to generate such sequences in the first
place, we could generate arbitrary sequences but discard the erroneous ones, or
we can simply ignore any deletions that are applied to an empty heap. In the
code above we chose the last alternative, because it is the simplest to implement.

Note that make now has a different type—it expects a list of Ops as its
argument—and thus so do our two properties. To test them, QuickCheck needs
to be able to generate values of the Op type, and to make that possible, we must
specify a generator for this type.

QuickCheck generators are an abstract data type, with a rich collection of
operations for constructing them. Indeed, provision of first-class generators is
one of the main innovations in QuickCheck. We use the Haskell class system to
associate generators with types, by defining instances of

class Arbitrary a where
arbitrary :: Gen a

The Gen type is also a monad, making available the monad operations
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return :: a -> Gen a

to construct a constant generator, and

(>>=) :: Gen a -> (a -> Gen b) -> Gen b

to sequence two generators—although we usually use the latter via Haskell’s
syntactic sugar, the do-notation.

So, we specify how Op values should be generated as follows:

instance Arbitrary Op where
arbitrary =
frequency [(2,do n <- arbitrary; return (Insert n)),

(1,return DeleteMin)]

The frequency function combines weighted alternatives—here we generate an
insertion twice as often as a deletion, since otherwise the resulting heaps would
often be very small. In the first alternative, we choose an arbitrary Integer
and generate an Insert containing it; in the second alternative we generate a
DeleteMin directly.

Now we can check that any sequence of insertions and deletions preserves the
heap invariant

Skew> quickCheck prop_invariant
OK, passed 100 tests.

and that skew heaps remain balanced:

Skew> quickCheck prop_balanced
Falsifiable, after 37 tests:
[DeleteMin,Insert (-9),Insert (-18),Insert (-14),Insert 5,
Insert (-13),Insert (-8),Insert 13,DeleteMin,DeleteMin]

Oh dear! Clearly, deletion does not preserve the balance condition. But maybe
the balance condition is too strong? All we really needed above was that the left
subtree is no larger than the right—so let’s call a node “good” if that is the case.

good (Fork _ l r) = weight l <= weight r

Now, if all the nodes in a heap are good, then insert and merge will still run in
logarithmic time. We can define and test the property that all nodes are good:

Skew> quickCheck prop_AllGood
Falsifiable, after 55 tests:
[Insert (-7),DeleteMin,Insert (-16),Insert (-14),DeleteMin,
DeleteMin,DeleteMin,Insert (-21),Insert (-8),Insert 3,
Insert (-1),Insert 1,DeleteMin,DeleteMin,Insert (-12),
Insert 17,Insert 13]

Oh dear dear! Evidently, skew heaps contain a mixture of good and bad nodes.
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Consulting Okasaki, we find the key insight behind the efficiency of skew
heaps: although bad nodes are more costly to process, they are cheaper to con-
struct! Whenever we construct a bad node with a large left subtree, then at the
same time we recurse to create an unusually small right subtree—so this recur-
sion is cheaper than expected. What we lose on the swings, we regain on the
roundabouts, making for logarithmic amortized complexity.

To formalise this argument, Okasaki introduces the notion of “credits”—each
bad node carries one credit, which must be supplied when it is created, and can
be consumed when it is processed.

credits Null = 0
credits h@(Fork _ l r) =
credits l + credits r + if good h then 0 else 1

Since we cannot directly observe the cost of insertion and deletion, we define a
function cost_insert h that returns the number of recursive calls of insert
made when inserting into h, and cost_deleteMin h, which returns the number
of calls of join made when deleting from h (definitions omitted). Now, we claim
that on average each insertion or deletion in a heap of n nodes traverses only
log2 n nodes, and creates equally many new, possibly bad nodes, so 2*log2 n
credits should suffice for each call. (The first log2 n credits pay for the recursion
in this call, and the second log2 n credits pay for bad nodes in the result).

If we now specify

prop_cost_insert n ops =
cost_insert h <= 2*log2 (weight h) + 1
where h = make ops

then QuickCheck finds a counterexample1, because this property only holds on
average, but when we take credits into account

prop_cost_insert n ops =
cost_insert h + credits (insert n h)
<=
2*log2 (weight h) + 1 + credits h
where h = make ops

then the property passes hundreds of thousands of tests. Likewise, the property

prop_cost_deleteMin ops =
h/=Null ==>
cost_deleteMin h + credits (deleteMin h)
<=
2*log2 (weight h) + credits h

where h = make ops

1 Only one test case in around 3,000 is a counterexample. This is because the method
we use to generate heaps produces rather few bad nodes. Counterexamples can
be found more quickly by generating heaps directly, rather than via insert and
deleteMin, so that the proportion of bad nodes can be increased.
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succeeds (where we have used QuickCheck’s implication operator ==> to state
a precondition that must hold in every test case, to avoid the error that would
result by calling deleteMin on the empty heap).

Each of these properties states that the credits allocated for the operation,
together with the accumulated credits in the heap, suffice both to pay for the
operation itself, and for the credits retained in its result. So any sequence of in-
sertions and deletions, starting with the empty heap, will incur only logarithmic
cost per operation.

Why bother to test these properties, when Okasaki has already proved them?
Well, the proof is informal, and proofs can be wrong. Okasaki’s statements are
in terms of “big O” notation, rather than the precise formulations above—the
“+ 1” in prop_cost_insert came as a surprise, for example. Finally, we might
have transcribed Okasaki’s code incorrectly—or deliberately altered it. Actually,
Okasaki uses a different definition of insert:

insert x h = merge (Fork x Null Null) h

This simplifies the proof, because now both insertion and deletion are defined in
terms of merge, so only merge need be considered in the proof. But this definition
of insert does not preserve balance, even when there are no deletions, which
leads me to prefer my own definition above. Also, a specialised insertion function
is likely to be more efficient than one using merge. But is it safe to replace the
definition of insert with an optimised one with a different result? Okasaki’s
proof no longer applies directly, but the property above shows that it is.

We can take this example further. So far, we have tested the heap invariant
and complexity properties. But apart from these, do insert and delete actu-
ally implement priority queues? To answer that, we need a specification that they
should fulfill. One good way to specify them is via an abstract model of priority
queues—such as ordered lists. Insertion is then modelled by the standard func-
tion to insert into an ordered list, and deletion is modelled by the function tail.
To formalise this, we define a function mapping each skew heap to its model:

model :: Tree Integer -> [Integer]
model h = sort (flatten h)

flatten Null = []
flatten (Fork a l r) = a : flatten l ++ flatten r

Now, given a function f on ordered lists, and a function g on heaps, we can
define a property stating that f correctly models g on a heap h, as follows:

(f ‘models‘ g) h =
f (model h) == model (g h)

and formulate the correctness of insertion and deletion like this:

prop_insert n ops = ((List.insert n) ‘models‘ insert n) h
where h = make ops

prop_deleteMin ops = size h>0 ==> (tail ‘models‘ deleteMin) h
where h = make ops
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Testing these properties succeeds, and after running many thousands of tests we
can be reasonably confident that the stated properties do actually hold.

What this example shows us is that QuickCheck changes the way we test
code. Instead of focussing on the choice of test cases—trying to guess which
cases may reveal errors—we leave that instead to QuickCheck, and focus on
the properties that the code under test should satisfy. Program development
with QuickCheck strongly resembles formal program development, emphasizing
formal models, invariants, and so on—but with labour-intensive proofs replaced
by instant feedback from testing.

This approach has proved very attractive to the Haskell community, and
QuickCheck has become widely used. One of the most impressive applications
is in the development of Data.ByteString, described elsewhere in this volume.
The code contains over 480 QuickCheck properties, all tested every time a new
version of the code is checked in. The various ByteString types are modelled ab-
stractly by lists of characters—just as we modelled skew heaps by ordered lists
above. Many properties test that ByteString operations are accurately mod-
elled by their list equivalents, just like our prop_insert and prop_deleteMin.
Data.ByteString achieves its high performance in part by programming GHC’s
optimiser with custom rewrite rules that perform loop fusion and other optimi-
sations. Of course, it’s vital that such rewrite rules, which are applied silently
to user code by the compiler, preserve the meanings of programs. Around 40
QuickCheck properties are used to test that this is in fact the case.

QuickCheck is also used by Haskell developers in industry. For example, Galois
Connections’ Cryptol compiler uses 175 QuickCheck properties, tested nightly,
to ensure that symbolic functions used by the compiler correspond correctly to
their Haskell equivalents.

3 Software Testing

QuickCheck is a novel approach to software testing. But software testing enjoys
a somewhat patchy reputation among academics. Dijkstra’s influence runs deep:
his famous observation that “Program testing can at best show the presence of
errors, but never their absence” suggests that mere testing is a waste of time.
His comment in the preface to A Discipline of Programming, that “None of the
programs in this monograph, needless to say, has been tested on a machine”,
makes us almost ashamed to admit that we do indeed test our own code! We
know that even after rigorous testing, countless errors remain in production
software—around one every hundred lines on average [13]. Those errors impose
a real cost on software users—according to a Congressional report in 2002, $60
billion annually to the US economy alone. That is a lot of money, even in the
US—$200 a year for every man, woman and child. Isn’t it time to give up on
such an inadequate technique, and adopt formal program verification instead?

Before drawing that conclusion, let us put those figures in perspective. The
US software industry turns over $200–$240 billion per year. Thus the additional
cost imposed by residual errors is around 25–30%. To be economically viable,
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even a development method that guarantees to eliminate all software errors must
cost no more than this—otherwise it is more economical simply to live with the
errors. How does formal program verification measure up?

An impressive recent case study is Xavier Leroy’s construction of the back
end of a certified C compiler using Coq [12]. Leroy wrote around 35,000 lines
of Coq, of which the compiler itself made up around 4,500 lines, and concluded
that the certification was around eight times larger than the code that it applied
to. It is reasonable to infer that certification also increased the cost of the code
by a similar factor. While such a cost is acceptable in the aerospace domain that
Leroy was addressing, it is clearly not acceptable for software development in
general. It is not reasonable to expect formal verification to compete with testing
unless the cost can be cut by an order of magnitude2.

Thus we can expect testing to be the main form of program verification for
a long time to come—it is the only practical technique in most cases. This does
not mean that practitioners are happy with the current state of the art! But
while they are concerned with the problem of residual errors, they are really
rather more concerned about the cost of testing—around half the cost of each
software project. This cost is particularly visible since it is concentrated towards
the end of each project, when the deadline is approaching, sometimes imposing
an uncomfortable choice between skimping on testing and meeting the deadline.
Current best practice is to automate tests as far as possible, so they can be run
nightly, and to derive additional value from automated test cases by interpreting
them as partial specifications, as Extreme Programming advocates [3].

Yet automated testing of this sort has its problems. It is a dilemma to decide,
for each property that the code should satisfy, whether one should write one
test case, or many? Writing a single test case makes for concise test code, with
a clear relationship between test cases and properties—but it may fail to test
the property thoroughly, and it may be hard to infer what the property is from
a single example. Writing many test cases is more thorough, but also more
expensive, imposes future costs when the test code must be maintained, and
may obscure the “partial specification” by its sheer bulk—anyone reading the
testing code may fail to see the wood for the trees. As an example of the code
volumes involved, Ericsson’s AXD301 ATM-switch is controlled by 1.5 million
lines of Erlang code, which is tested by a further 700,000 lines of test cases!

A further problem is that nightly regression testing is really testing for errors
that have already been found—while it protects against the embarrassment of
reintroducing a previously fixed error, it is clear that unless the code under test
is changed, no new errors can be found. Indeed, 85% of errors are found the first
time a test case is run [8], so repeating those tests nightly is only a cheap way to

2 This is also the motivation for “lightweight” formal methods such as Microsoft’s Static
Driver Verifier [2] or ESC/Java [9], which use automated proof techniques to reveal
bugs at a very low cost in programmer time. But these tools offer no guarantees of
correctness—a fact brought home by ESC/Java’s use of an unsound theorem prover!
They can “at best show the presence of errors, but never their absence” just like
testing—although potentially with greater accuracy and at lower cost.
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find the remaining 15%. In other words, it can only play a relatively small part
in the overall testing process.

QuickCheck has the potential to address all of these problems. QuickCheck
properties make much better specifications than automated test cases, because
they cover the general case rather than one or more examples. For the same
reason, there is no need to write more than one QuickCheck property for each
logical property to be tested—a wide variety of cases will be generated anyway.
Thus QuickCheck code can be concise and maintainable, without compromising
the thoroughness of testing. Moreover, each time QuickCheck is run, there is
a chance of new test cases being generated, so if QuickCheck is run nightly
then, as time passes, we can expect more and more errors to be found. We
have demonstrated in practice that the same QuickCheck property can reveal
widely varying errors, depending on the data which is generated. As a bonus,
QuickCheck adds value to formal specifications by interpreting them as testing
code, making it more worthwhile to construct them in the first place.

We conclude that not only is testing here to stay, but that a tool such as
QuickCheck has much to offer software developers in industry today.

4 Shrinking

One of the problems with randomly generated test inputs is that they can con-
tain much that is irrelevant—the “signal”, that causes a test to fail, can be
hidden among a great deal of “noise”, that makes it hard to understand the
failure. We saw an example of this above, where the counter-example found to
prop_balanced was the long sequence of operations

[DeleteMin,Insert (-9),Insert (-18),Insert (-14),Insert 5,
Insert (-13),Insert (-8),Insert 13,DeleteMin,DeleteMin]

Clearly, at the very least the first DeleteMin is irrelevant, since it has no effect
at all—it is ignored by the make function that converts this list to a skew heap!

To address this problem, newer versions of QuickCheck automatically shrink
failing test cases after they are found, reporting a “minimal” one in some sense.
Using one of these new versions instead, testing prop_balanced might yield

Skew> quickCheck prop_balanced
Falsifiable, after 22 successful tests (shrunk failing case 10 times):
[Insert (-9),Insert 12,Insert 8,Delete]

in which the failing case has been reduced to just four operations. Moreover,
we know that removing any of these four would make the test succeed: all four
operations are essential to the failure. (There is no guarantee, though, that there
is no shorter sequence that provokes a failure: just that one cannot be obtained
by removing an element from this particular test case. We do still sometimes
produce longer failing cases for this property.)

Shrinking failing cases dramatically increases QuickCheck’s usefulness. In
practice, much time is devoted either to simplifying a failing case by hand, or
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to debugging and tracing a complex case to understand why it fails. Shrinking
failing cases automates the first stage of diagnosis, and makes the step from
automated testing to locating a fault very short indeed.

5 Quviq QuickCheck

Although QuickCheck proved popular among Haskell users, the industrial Haskell
community is still rather small. However, Erlang supports functional program-
ming, and enjoys a mainly industrial community of users. Moreover, that com-
munity is growing fast: downloads of the Erlang system were running at 50,000
a month in June 2006, and have been growing quite consistently at 80% a year
for the past six years. I therefore decided to develop a version of QuickCheck for
Erlang, now called Quviq QuickCheck.

At first sight, adapting QuickCheck for Erlang appears to be rather diffi-
cult: Erlang lacks lazy evaluation, and many of the functions in QuickCheck’s
interface must be non-strict; Erlang lacks a static type-checker, and Haskell
QuickCheck chooses generators based on the type of argument a property ex-
pects; QuickCheck’s generator type is a monad, and we make extensive use
of Haskell’s do-notation to define generators. In fact, none of these difficulties
proved to be especially problematic.

– QuickCheck functions which must be lazy only use their lazy arguments
once, so instead of call-by-need it is sufficient to use call-by-name—and this
is easily simulated by passing 0-ary functions as parameters instead (for-
tunately, Erlang supports first-class functions). We spare the user the need
to pass such functions explicitly by using Erlang macros (distinguished by
names beginning with a ’?’) to generate them. Thus Quviq QuickCheck sim-
ply provides an interface made up to a large extent of macros which expand
to function calls with functions as parameters.

– While Haskell QuickCheck does choose generators for property arguments
based on their type, it has always provided a way to supply a generator ex-
plicitly as well. In Erlang, we must simply always do this. This is a smaller
cost than it seems, because in more complex situations, the type of an ex-
pected argument is rarely sufficient to determine how it should be generated.

– We can use a monad in Erlang too, in the same way as in Haskell. While
we lack Haskell’s do-notation, we can give a convenient syntax to monadic
sequencing even so, via a macro.

The example in the introduction can be rewritten in Erlang like this:

prop_revApp() ->
?FORALL(Xs,list(int()),
?FORALL(Ys,list(int()),
lists:reverse(Xs++Ys)
==
lists:reverse(Xs)++lists:reverse(Ys))).
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There are trivial differences: Erlang function definitions use an arrow (->), vari-
ables begin with a capital letter (Xs), external function calls name the mod-
ule as well as the function to be called (lists:reverse). The main difference,
though, is the use of the ?FORALL macro, whose arguments are a bound variable,
a generator, and the scope of the ∀—the expansion of FORALL(X,Gen,Prop) is
just eqc:forall(Gen,fun(X)->Prop end). By using generators which look like
types (list(int())), and macro parameters which bind variables, we provide a
very natural-looking notation to the user.

Testing this property yields

13> eqc:quickcheck(example:prop_revApp()).
..........Failed! After 11 tests.
[1]
[-3,1]
Shrinking.....(5 times)
[0]
[1]

in which the counterexample found is displayed both before and after shrinking.
In this case, we can see that QuickCheck not only discarded an unnecessary
element from one of the lists, but shrank the numbers in them towards zero. The
fact that the minimal counterexample consists of [0] and [1] tells us not only
that both lists must be non-empty, but gives us the additional information that
if the 1 were shrunk further to 0, then this would no longer be a counterexample.

Quviq QuickCheck thus offers a very similar “look and feel” to the original.

6 State Machine Specifications

In early 2006 we began to apply QuickCheck to a product then under devel-
opment at Ericsson’s site in Älvsjö (Stockholm). But real Erlang systems use
side-effects extensively, in addition to pure functions. Testing functions with side-
effects using “vanilla QuickCheck” is not easy—any more than specifying such
functions using nothing but predicate calculus is easy—and we found we needed
to develop another library on top of QuickCheck specifically for this kind of test-
ing. That library has gone through four quite different designs: in this section
we shall explain our latest design, and how we arrived at it.

As a simple example, we shall show how to use the new library to test the
Erlang process registry. This is a kind of local name server, which can register
Erlang process identifiers under atomic names, so that other processes can find
them. The three operations we shall test are

– register(Name,Pid) to register Pid under the name Name,
– unregister(Name) to delete the process registered as Name from the registry,

and
– whereis(Name)which returns the Pid registered with that Name, or the atom

undefined if there is no such Pid.
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Although register is supposed to return a boolean, it would clearly be mean-
ingless to test properties such as

prop_silly() ->
?FORALL(Name,name(),
?FORALL(Pid,pid(),
register(Name,Pid) == true)).

The result of register depends on what state it is called in—and so we need to
ensure that each operation is called in a wide variety of states. We can construct
a random state by running a random sequence of operations—so this is what
our test cases will consist of. We also need to ensure that each test case leaves
the process registry in a “clean” state, so that the side-effects of one test do not
affect the outcome of the next. This is a familiar problem to testers.

We made an early decision to represent test cases symbolically, by an Erlang
term, rather than by, for example, a function which performs the test when
called. Thus if a test case should call unregister(a), then this is represented
by the Erlang term {call,erlang,unregister,[a]}—a 4-tuple containing the
atom call, the module name and function to call3, and a list of arguments. The
reason we chose a symbolic representation is that this makes it easy to print out
test cases, store them in files for later use, analyze them to collect statistics or
test properties, or—and this is important—write functions to shrink them.

We can thus think of test cases as small programs, represented as abstract
syntax. A natural question is then: how powerful should the language of test
cases be? Should we allow test cases to contain branching, and multiple execution
paths? Should we allow test cases to do pattern matching? For a researcher in
programming languages, it is tempting to get carried away at this point, and
indeed early versions of our library did all of the above. We found, though, that
it was simply not worth the extra complexity, and have now settled for a simple
list of commands. We do not regard this is a significant loss of power—after all,
when a test fails, we are only interested in the path to the failure, not other paths
that might conceivably have been taken in other circumstances.

We did find it essential to allow later commands access to the results of earlier
commands in the same test case, which presents a slight problem. Remember
that test generation, when the symbolic test case is created, entirely precedes
test execution, when it is interpreted. During test generation, the values re-
turned by commands are unknown, so they cannot be used directly in further
commands—yet we do need to generate commands that refer to them. The
solution, of course, is to let symbolic test cases bind and reuse variables. We
represent variables by Erlang terms of the form {var,N}, and bindings by terms
of the form {set,{var,N},{call,Mod,Fun,Args}}. The test cases we generate
are actually lists of such bindings—for example,

[{set,{var,1},{call,erlang,whereis,[a]}},
{set,{var,2},{call,erlang,register,[b,{var,1}]}}]

3 unregister is a standard function, exported by the module erlang.
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which represents the Erlang code fragment

Var1 = erlang:whereis(a),
Var2 = erlang:register(b,Var1)

We refer to Erlang terms of the form {var,. . .} and {call,. . . } as symbolic
values. They represent values that will be known during test execution, but must
be treated as “black boxes” during test generation—while it is permissible to
embed a symbolic value in a generated command, the actual value it represents
cannot be used until test execution. Of course, this is an application of staged
programming, which we know and love.

Now, in order to generate sensible test cases, we need to know what state the
system under test is in. Thus we base our test generation on a state machine,
modelling enough about the actual state to determine which calls make sense,
and express the desired properties of their outputs. In this case, we need to
know which pids are currently registered. We also need to know which pids are
available to register: to guarantee that the pids we use don’t refer, for example,
to crashed processes, we will generate new process identifiers in each test case—
and these need to be held in the test case state. Thus we can represent our state
using a record with two components:

-record(state,{pids, % list(symbolic(pid()))
regs}). % list({name(),symbolic(pid())})

initial_state() -> #state{pids=[], regs=[]}.

We have indicated the expected type of each field in a comment: pids should
be a list of (symbolic) process identifiers, spawned during test generation, while
regs should be a list of pairs of names and (symbolic) pids.

To define such a state machine, the QuickCheck user writes a module ex-
porting a number of callbacks, such as initial_state() above, which tell
QuickCheck how the state machine is supposed to behave. This idea is quite
familiar to Erlang users, because it is heavily used in the OTP (Open Telecoms
Platform) library.

We define how commands are generated in each state via a callback function
command(State):

command(S) ->
frequency([{1,stop},

{10,oneof(
[{call,?MODULE,spawn,[]}]++
[{call,erlang,register,
[name(),elements(S#state.pids)]}

|| S#state.pids/=[]]++
[{call,erlang,unregister,[name()]},
{call,erlang,whereis,[name()]}

])}]).
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Test cases are generated by starting from the initial state, and generating a
sequence of commands using this generator, until it generates the atom stop.
Thus, on average, the generator above will result in test cases which are 11
commands long. We choose (with equal probability) between generating a call
to spawn (a function defined in the current module ?MODULE to spawn a dummy
process), register, unregister, and whereis. Generating a call to register
chooses one of the elements of the pids field of the state—to guarantee that
such a choice is possible, we include this possibility only if this field is non-empty.
([X || Y] is a degenerate list comprehension with no generator, which returns
either the empty list if Y is false, or [X] if Y is true).

We also separately define a precondition for each command, which returns
true if the command is appropriate in the current state. It may seem unneces-
sary to define both a command generator, which is supposed to generate an ap-
propriate command for the current state, and a precondition, which determines
whether or not it is. There are two reasons to define preconditions separately:

– We may wish to generate a wider class of commands, then exclude some of
them via a more restrictive precondition—for example, after testing reveals
that a tighter precondition is needed than we first supposed!

– Shrinking deletes commands from a test case, which means that the following
commands in a shrunk test case may appear in a different state from the
one they were generated in. We need to be able to determine whether they
are still appropriate in the new state.

In this example, though, we need state no non-trivial preconditions:

precondition(S,{call,_,_,_}) -> true.

Of course, we also have to define how each command changes the state. This is
done by the next_state(S,V,{call,Mod,Fun,Args}) callback, which returns
the state after Mod:Fun(Args) is called in state S, with the result V. In this
example, spawn adds its result to the list of available pids,

next_state(S,V,{call,?MODULE,spawn,_}) ->
S#state{pids=[V | S#state.pids]};

(where [X|Y] means “X cons Y”, and S#state{pids=...} is a record update that
returns a record equal to S except for its pids field). The register operation
records its arguments in the regs component of the state,

next_state(S,V,{call,erlang,register,[Name,Pid]}) ->
S#state{regs=[{Name,Pid} | S#state.regs]};

unregister removes its argument from that component,

next_state(S,V,{call,erlang,unregister,[Name]}) ->
S#state{regs=[{N,P} || {N,P} <- S#state.regs, N/=Name]};

while whereis leaves the state unchanged:

next_state(S,V,{call,erlang,whereis,[Name]}) -> S.
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These clauses make up a simple specification of the intended behaviour of the
operations under test. The only tricky point to note is that the result parameter,
V, is symbolic during test generation—its value will be {var,1}, {var,2} etc.
Thus the states that we build are also partly symbolic—for example, spawn-
ing a new process and registering it under the name a results in the state
{state,[{var,1}],[{a,{var,1}}]}. We also use the next_state callback dur-
ing test execution, when it is applied to real values rather than symbolic ones—
during execution the state after the same two operations will be something like
{state,[<0.51.0>],[{a,<0.51.0>}]}.

Finally, we define a postcondition for each command—if any postcondition
fails, then the test case fails. To begin with, let us define a trivial postcondition,
so that tests fail only if an exception is raised.

postcondition(S,{call,_,_,_},R) -> true.

Now, using the state machine library, we define a property to test:

prop_registration() ->
?FORALL(Cmds,commands(?MODULE),
begin {H,S,Res} = run_commands(?MODULE,Cmds),

[catch unregister(N) || {N,_} <- S#state.regs],
[exit(P,kill) || P <- S#state.pids],
?WHENFAIL(io:format("~p\n~p\n",[H,Res]),

Res==ok)
end).

Here commands(?MODULE) generates test cases using the callbacks in the current
module, and run_commands(?MODULE,Cmds) runs those test cases, returning a
history (list of states and results), final state, and “result”, which is ok if the
test case succeeded. The next two lines clean up after the test case, by unregis-
tering any processes that were left registered, and killing the processes that were
spawned. For convenience, we use the ?WHENFAIL macro to add an action that
is performed only in failing cases—we print out the history and result.

Testing this property immediately reveals a problem:

15> eqc:quickcheck(registration_eqc:prop_registration()).
.Failed! After 2 tests.
[{set,{var,1},{call,registration_eqc,spawn,[]}},
...
{set,{var,41},{call,erlang,register,[a,{var,26}]}}]

...
Shrinking.....(5 times)
[{set,{var,4},{call,erlang,unregister,[a]}}]
[]
{exception,
{’EXIT’,{badarg,[{erlang,unregister,[a]},

{eqc_statem,run_commands,5},...
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We can see immediately how effective shrinking is: a test case of 41 commands
was shrunk to just one! This single call to unregister(a) failed with a badarg
exception, and the rest of the output is an uninteresting stack backtrace.

The problem in this case is that unregister raises an exception if there is no
registered process with the given name—so if a test case begins with unregister,
then it is bound to fail. Our specification does not take this into account. There
are two ways to do so:

– Positive testing—restrict test cases to avoid the exception, by adding a suit-
able precondition to unregister (and optionally modifying the command
generator to avoid generating such commands in the first place), or

– Negative testing—catch the exception in a local version of unregister which
we use in test cases instead, and define a postcondition to check that the
exception is raised in the correct cases.

Whichever approach we choose, QuickCheck quickly reveals another problem:

60> eqc:quickcheck(registration_eqc:prop_registration()).
Failed! After 1 tests.
...
Shrinking.........(9 times)
[{set,{var,5},{call,registration_eqc,spawn,[]}},
{set,{var,6},{call,erlang,register,[a,{var,5}]}},
{set,{var,16},{call,erlang,register,[a,{var,5}]}}]

[{{state,[],[]},<0.869.0>},{{state,[<0.869.0>],[]},true}]
{exception,
{’EXIT’,{badarg,[{erlang,register,[a,<0.869.0>]},

...

Of course! We tried to register process a twice! If we try to register a process with
the same name as an already registered process, we would expect registration to
fail! Indeed, the Erlang documentation confirms that register should raise an
exception if either the name, or the process, is already registered. We define a
function to test for this case

bad_register(S,Name,Pid) ->
lists:keymember(Name,1,S#state.regs) orelse
lists:keymember(Pid,2,S#state.regs)

(lists:keymember(Key,I,L) tests whether a Key occurs as the Ith component
of any tuple in the list L). We define a local version of register which catches
the exception, and add a postcondition to check that the exception is raised
exactly when bad_register returns true.

Testing quickly revealed another error, in the case:

[{set,{var,4},{call,...,spawn,[]}},
{set,{var,5},{call,...,register,[c,{var,4}]}},
{set,{var,12},{call,...,spawn,[]}},
{set,{var,13},{call,...,register,[c,{var,12}]}},
{set,{var,21},{call,...,register,[a,{var,12}]}}]
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The problem here was not that the second call to register raised an exception—
that was expected. The test case failed because the postcondition of the third
call to register was not satisfied—the call succeeded, but was specified to fail.
The reason was an error in our specification—the definition of next_state above
takes no account of whether or not register raises an exception. As a result,
after the first two calls to register then our state contained both processes
{var,4} and {var,12}, registered with the same name c! Then the third call
was expected to raise an exception, because the process being registered was
already registered as c. Correcting the specification, so that next_state returns
an unchanged state if bad_register is true, fixed the problem. In fairness, the
Erlang documentation does not say explicitly that the process is not registered
if register raises an exception, even if that is a fairly obvious interpretation!

A subtlety: note that when we use bad_register in next_state, then it is
applied to a partially symbolic state. So when bad_register tests whether the
pid is already registered, it compares a symbolic pid with those in the state.
Fortunately this works: symbolic pids are always variables bound to the result
of a spawn, and different calls to spawn return different pids—so two symbolic
pids are equal iff the pids they are bound to are equal. Care is required here!

We have now seen all of our state machine testing library: to summarize, the
user defines callback functions

– command and precondition, which are used during test generation to gen-
erate and shrink test cases that “make sense”,

– postcondition, which is used during test execution to check that the result
of each command satisfies the properties that it should,

– initial_state and next_state, which are used during both test generation
and test execution to keep track of the state of the test case.

Given these callbacks, the user can generate test cases using commands(Mod),
and run them using run_commands(Mod,Cmds).

As we saw in the example, the definitions of these callbacks make up a simple
and natural specification of the code under test. We quickly found misconceptions
in our specification, and enhanced our understanding of the process registry.
While most of the information in our specification is also present in the Erlang
documentation, we did discover and resolve at least a slight ambiguity—that a
process is not actually registered when register raises an exception.

As an interesting extension of this example, we decided to test the process
registry in the presence of crashing processes. We could easily model process
crashes at known points by inserting operations to stop processes explicitly into
our test cases4. The Erlang documentation says nothing about a relationship
between process termination and the registry, but we discovered, by refining our
QuickCheck specification, that such a relationship does indeed exist. In brief,
dead processes are removed automatically from the registry; attempts to register
a dead process apparently succeed (return true), but do not change the registry
state. This means that sequences such as
4 This doesn’t test a process crashing during a call to a registry operation.
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register(a,Pid),
register(a,Pid)

can indeed succeed—if Pid refers to a dead process. We discovered that stopping
a process causes it to be removed from the registry—but only after other pro-
cesses have had a chance to run! To obtain predictable behaviour, we stopped
processes using

stop(Pid) -> exit(Pid,kill), erlang:yield().

where the call to yield() gives up control to the scheduler, allowing time for
deregistration. Without such a yield(), a sequence such as

register(a,Pid),
stop(Pid),
unregister(a)

may or may not succeed, depending on whether or not the scheduler preempts
execution after the stop! We were quickly able to develop a formal specifica-
tion covering this aspect too, despite the absence of documentation—and in the
process discovered details that are unknown even to many Erlang experts.

7 Ericsson’s Media Proxy

We developed our state machine library in parallel with a project to test Eric-
sson’s Media Proxy, then approaching release. The Media Proxy is one half of
a media firewall for multimedia IP-telephony—it opens and closes “media pin-
holes” to allow media streams corresponding to calls in progress to pass through
the firewall, thus preventing other IP packets from travelling through the owner’s
network for free, and defending equipment behind the firewall from denial of ser-
vice attacks. The Media Proxy opens and closes media pinholes in response to
commands from a Media Gateway Controller, a physically separate device which
monitors signalling traffic to detect calls being set up and taken down.

This architecture, of a Media Gateway controlled by a Media Gateway Con-
troller, is standardised by the International Telecommunication Union. The ITU
specifies the protocol to be used for communication between the two—the H.248,
or “Megaco” protocol [16]. This specification is quite complex: the current version
is 212 pages long. The Media Proxy only uses a subset of the full protocol though,
which is defined in an internal Ericsson document, the Interwork Description—a
further 183 pages. The Media Proxy is controlled by about 150,000 lines of Erlang
code, of which perhaps 20,000 lines are concerned with the Megaco protocol.

When we began our project, the Media Proxy had already completed Function
Test, and was undergoing System Test in preparation for release. This process
takes 3-4 months, during with the development team focus all their efforts on
finding and fixing errors. The team follow a disciplined approach to testing, with
a high degree of test automation, and have a strong track record for quality and
reliability [18]. We worked with Ulf Wiger and Joakim Johansson at Ericsson to
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test the Megaco interface of the Media Proxy in parallel, by using QuickCheck
to generate sequences of Megaco messages to send to the Proxy, and check that
its replies were valid.

The biggest part of the work lay in writing generators for Megaco messages.
These messages can carry a great deal of information, and the message datatype
is correspondingly complex. It is specified in the ITU standard via an ASN.1
grammar, which specifies both the logical structure of messages, and their bi-
nary representation on a communications channel, both at the same time. This
grammar can be compiled by the Erlang ASN.1 compiler into a collection of Er-
lang record types, together with encoding and decoding functions for the binary
representation. We could thus generate messages as Erlang data structures, and
easily encode them and send them to the Proxy—and this test infrastructure
was already in place when we began our project.

We did try generating purely random messages conforming to the ASN.1
grammar, and sending them to the Proxy. This was not a successful approach:
the messages were all semantic nonsense, and so were simply rejected by the
Proxy. This could be an effective form of negative testing, but in this project
we were more concerned to test the positive behaviour of the Proxy—that it
responds correctly to meaningful messages.

Thus we had to write QuickCheck generators for complex structures, respect-
ing all the constraints stated in the standard and the Interwork Description. To
give a flavour of this, here is a fragment of the ASN.1 grammar in the standard,
specifying the structure of a media descriptor:

MediaDescriptor ::= SEQUENCE
{ termStateDescr TerminationStateDescriptor OPTIONAL,
streams CHOICE
{ oneStream StreamParms,
multiStream SEQUENCE OF StreamDescriptor

} OPTIONAL,
...

}

A media descriptor is a record (sequence), with fields termStateDescr, streams,
etc. Some of the fields can be optional, as in this case, and each field name is
followed by its type. In this case the streams field is of a union type—it can either
be tagged oneStream and contain the parameters of a single media stream, or it
can be tagged multiStream and contain a list (sequence) of stream descriptors.
Clearly the protocol designers expect a single media stream to be a common
case, and so have included an optimised representation for just this case.

The Interwork Description restricts media descriptors a little, as follows:
MediaDescriptor ::= SEQUENCE
{ streams CHOICE
{ oneStream StreamParms,
multiStream SEQUENCE OF StreamDescriptor

}
}
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When generating media descriptors, we must thus choose between the oneStream
form and the multiStream form, depending on how many streams are to be
included. The QuickCheck generator is as follows:

mediadescriptor(Streams) when Streams=/=[] ->
{mediaDescriptor,
#MediaDescriptor{ streams =

case Streams of
[{Id,Mode}] ->
oneof([{oneStream,streamParms(Mode)},

{multiStream,[stream(Id,Mode)]}]);
_ -> {multiStream,

[stream(I,M) || {I,M}<-Streams]}
end}}.

Analysing this code, we can distinguish three distinct parts.

– Datastructure construction—the ’MediaDescriptor’ record paired with a
mediadescriptor tag, containing a streams field that is either a oneStream
or a multiStream. Very similar code appears in conventional test cases.

– We analyse the streams to be included, distinguishing the cases of one stream
and many streams. Here we express part of the logic of the specification.

– At one point, we embed a QuickCheck function—oneof—to express a choice
between alternatives.

Thus the code looks mostly familiar to Ericsson developers—the overhead of
turning it in to a QuickCheck generator is very light.

Another example: the standard specifies stream parameters as follows,

StreamParms ::= SEQUENCE
{ localControlDescriptor LocalControlDescriptor OPTIONAL,
localDescriptor LocalRemoteDescriptor OPTIONAL,
remoteDescriptor LocalRemoteDescriptor OPTIONAL,
...,
statisticsDescriptor StatisticsDescriptor OPTIONAL

}

but the Interwork Description says also that “LocalControl will be included in all
cases except when no media (m-line) is defined in the remote SDP”, the remote
SDP being a part of the remote descriptor appearing among the stream parame-
ters above. Thus we need to know whether or not a remote media will be defined,
at the time we decide whether or not to include a local control descriptor. There
are quite simply two cases for stream parameters: with, and without, a defined
remote media. This is simple enough to express in a QuickCheck generator—we
simply decide which case we are in first:

streamParms(Mode) ->
?LET(RemoteMediaDefined, bool(),
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case RemoteMediaDefined of
true ->
#StreamParms{ localControlDescriptor =

localControl(Mode),
localDescriptor =
localDescriptor(RemoteMediaDefined),
remoteDescriptor =
remoteDescriptor(RemoteMediaDefined)};

false -> ...
end).

Wechoosearandomboolean,RemoteMediaDefined,andifitistrue,webothinclude
a local control descriptor, and pass the boolean inward to remoteDescriptor,
which then ensures that an m-line is indeed generated. ?LET(X,G1,G2) binds the
variable X to the value generated by G1 in the generator G2—it is syntactic sugar
for the ‘bind’ operator of the generator monad, and corresponds to Haskell’s do-
notation. Of course, this code itself is quite trivial—the interesting thing is that
we can only write it thanks to the monadic interface that generators provide.

As soon as our message generators were complete, we began to experience
crashes in the Media Proxy. They turned out to be related to the StreamParms
above. The ASN.1 specification says that all the fields of a StreamParms record
are optional—which means that it is valid to omit them all, which QuickCheck
quickly did. Yet the ITU standard also defines an alternative concrete syntax
for messages, as readable ASCII—and we were actually using the ASCII form
of messages, to ease debugging. The ASCII form of messages is generated and
parsed by a hand-written encoder and decoder—obviously, these cannot be gen-
erated from the ASN.1 grammar, because they use another syntax. That syntax
in turn is defined in the ITU standard by an ABNF grammar. . . and this gram-
mar requires a StreamParms record to contain at least one field! It doesn’t matter
which field it is, but at least one must be there. This story illustrates the dangers
of giving two formal descriptions of the same thing, with no way to enforce con-
sistency! Now, one would expect the ASCII encoder to reject the messages we
generated with empty StreamParms, but it turned out that Ericsson’s encoder
followed the ASN.1 specification and permitted an empty record, while the de-
coder followed the ABNF and required at least one field. Thus we could generate
and encode a message, that when sent to the Media Proxy, caused its decoder
to crash. Clearly, the underlying fault here is in the standard, but Ericsson’s
encode and decoder should at least be consistent.

Our next step was to generate valid command sequences. The Megaco stan-
dard defines twelve different commands that the controller can send to the gate-
way, but we focussed on the three most important, which manipulate the state
of a call, or context as they are known in Megaco-speak.

– The Add command adds a caller (or termination) to a context, creating the
context if it does not already exist. Terminations are added to a context
one-by-one—the Megaco standard permits arbitrarily many callers in a call,
while the Media Proxy is designed to handle a maximum of two.
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– The Modify command modifies the state of a termination, typically activating
media streams once both terminations have been added to a context.

– The Subtract command is used to remove a termination from a context—
when a call is over, both terminations need to be subtracted. When the
last termination is subtracted from a context, the context is automatically
deleted from the Proxy.

The normal case is that two terminations are added to a context, they are both
modified to activate their streams, and then they are both subtracted again.

Contexts and terminations are assigned identifiers when they are first added
to the Proxy, which are returned to the controller in the Proxy’s reply to the
Add message. These identifiers are then used in subsequent messages to refer to
already created contexts and terminations. So it was vital that the test cases we
generated could use the replies to previous messages, to construct later ones.

We used a predecessor of our state machine testing library to generate and
run sequences of Megaco commands. We used a state which just tracked the
identifier and state of each termination created by the test case:

-record(state,
termination=[] % list({symbolic(termid()),termstate()})

).

(The empty list is a default field value). For each termination, we kept track of
which context it belonged to, and the streams that it contained:

-record(termstate,
context, % symbolic(contextid())
streams=[] % list({streamid(),streammode()})

).

Note that since both termination identifiers and context identifiers are allocated
by the Proxy, then they are unknown during test generation, and are represented
by symbolic components of the state. For example, the identifier of the first
termination added might be represented by

{call,?MODULE,get_amms_reply_termid,[{var,1}]}

where get_amms_reply_termid extracts the identifier of a new termination from
the reply to an Add message. As before, since we know where each termination
and context identifier is created, we can refer to them symbolically by unique
expressions, and compare identifiers by comparing their symbolic form.

We generated Add, Modify, and Subtract commands, being careful to modify
and subtract only existing terminations, and to add no more than two termina-
tions at a time to any context. To achieve the latter, we defined functions on
the state to extract a list of singleton contexts (those with only a single termi-
nation), and pair contexts (those with two terminations). We could use these
functions during test generation, thanks to our unique symbolic representation
for context identifiers—we could tell, just from the symbolic state, whether or



24 J. Hughes

not two terminations belonged to the same context. Using these functions, we
could define, for example, a precondition for Add, which ensures that we never
try to add a third termination to any context:

precondition(S,{call,_,send_add,[Cxt,Streams,Req]}) ->
lists:member(Cxt,
[?megaco_choose_context_id
| singletoncontexts(S)]);

(Here ?megaco_choose_context_id is a “wild card” context identifier, which
intructs the Proxy to allocate a new context—so this precondition allows Adds
which both create new contexts and add a termination to an existing one.)

All of the sequences we generated were valid according to the Interwork De-
scription, and so should have been executed successfully by the Proxy. But they
were not—we found a total of four errors by this means. In each case, shrinking
produced a minimal command sequence that provoked the error.

– Firstly, adding one termination to a context, and then modifying it imme-
diately, led to a crash. This turned out to be because the code for Modify
assumed that each media stream would have two “ends”—when only one
termination was present, this was not the case.

– Secondly, adding a termination to a new context, and then subtracting it
immediately, also led to a crash. Interestingly, we found this bug one day, but
could not reproduce it on the next. This was because the main development
team had also found the bug, and issued a patch in the meantime!

– Thirdly, adding two terminations to a context, and then modifying one of
them, led to a crash if the two terminations had differing numbers of streams.
For example, an attempt to connect a caller with audio and video to a caller
with only audio might lead to this failure. The underlying reason was the
same as in the first case: Modify assumed that every stream has two ends.

– Lastly, adding two terminations to a context, removing the second, adding
a third and removing it again, and adding a fourth and removing it again,
provoked a crash when the fourth termination was removed! We found this
case by shrinking a sequence of over 160 commands, which demonstrates
the power of shrinking quite convincingly! It is a test case that a human
tester would be very unlikely to try. Of course, it is also unlikely to occur in
practice—but the particular test case is just a symptom, not a cause. The
underlying cause turned out to be that data-structures were corrupted the
first time a termination was removed. Even if the corruption was survivable
in the normal case, it is obviously undersirable for a system to corrupt its
data. If nothing else, this is a trap lying in wait for any future developer
modifying the code. It is interesting that QuickCheck could reveal this fault,
despite knowing nothing at all about the Proxy’s internal data.

One observation we made was that after each bug was found, virtually every
run of QuickCheck found the same problem! There seems always to be a “most
likely bug”, which is more likely to be reported than any other. This is partly
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because of shrinking: a longer sequence provoking a more subtle bug, such as
the fourth one above, is likely also to provoke the most likely one—at least, once
some commands have been deleted. So shrinking tends to transform any failing
case into one for the most likely bug. We found that, to make progress, we had
to add bug preconditions to our specification to guarantee that the known bugs
would not be provoked. For example, we changed the precondition for Modify to

precondition(S, {call,_,send_modify,[Cxt,...]}) ->
lists:member(Cxt, paircontexts(S));

to avoid the first bug above. Formulating these bug preconditions is useful in
itself: it makes us formulate a hypothesis about when the bug appears, test the
hypothesis by verifying that the precondition does indeed avoid the bug, and
document the bug in the form of this extra precondition.

This entire study took only around 6 days of work (spread over 3 months),
during which we wrote about 500 lines of QuickCheck code (since reduced to
300 by using our latest state machine library). Bearing in mind that the Proxy
was already well tested when we started, finding five errors is a very good result.

In a way, it is rather surprising that such simple sequences as the first three
cases above were not tested earlier! We believe this is because, while it is quite
easy to adapt existing test cases by varying parameters in the messages they
contain, it is much harder to construct a sensible sequence of messages from
scratch. Indeed, a number of “normal case” sequences are contained in the In-
terwork Description, and it is likely that these formed a basis for early testing at
least. By generating any valid message sequence, we could explore a much wider
variety of sequences than could reasonably be tested by manually constructed
cases—and so the bugs were there to be found.

We were curious to know how valuable QuickCheck would have been if it
had been available earlier in the development process. To find out, we recovered
an older version of the Proxy software from Ericsson’s source code repository,
and tested it using the same QuickCheck specification. We found nine errors
in six hours, most of the time being spent on formulating appropriate bug pre-
conditions, so that the next bug could be discovered. Ericsson’s fault reporting
database contained just two reported faults for that version of the software, one
of which was among the nine that QuickCheck found, and the other of which
was in a lower level part of the software not tested by our specification. This
suggests QuickCheck could have helped to find many bugs much earlier. It also
demonstrates that the same properties can be used to find many different errors.

It is true that the bugs we found (with the exception of the Add/Subtract prob-
lem) would not have affected Ericsson’s customers—because the Media Proxy
is initially sold only as part of a larger system, which also contains an Ericsson
media gateway controller. Ericsson’s controller does not send message sequences
of the kind that we discovered provoke bugs. On the other hand, we may wonder
how the Proxy developers know that? After all, the interface between the two
is specified by the Interwork Description, which makes no such restrictions. It
turns out that the documentation does not tell the whole truth—the teams devel-
oping the two products also communicate informally, and indeed, the products
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have been tested together. So if Ericsson’s controller did send sequences of this
sort, then the bugs would probably have been found sooner. Part of the benefit
of QuickCheck testing may thus be to clarify the specification—by making our
“bug preconditions” part of the Interwork Description instead. Clarifying the
specification is important, not least because the Media Proxy will eventually be
used together with controllers from other manufacturers, and at that point it
will be important to specify precisely what the Proxy supports.

This project was both instructive and sufficiently successful to persuade Er-
icsson to invest in a larger trial of QuickCheck. We are now in the process of
training more users, and helping to introduce QuickCheck testing into several
other projects at varying stages of development. We look forward to exciting
developments as a result!

8 Concurrency

Concurrent programs are more difficult to test with QuickCheck, because they
may exhibit non-deterministic behaviour. Finding a test case which sometimes
fails is not nearly as useful as finding a test case which always fails. In particular,
shrinking is difficult to apply when testing is non-deterministic, because the
smaller tests performed while we search for a simplest failing case may succeed
or fail by chance, leading to very unpredictable results. Nevertheless, we have
had some success in applying QuickCheck to concurrent programs.

In one experiment, we tested a distributed version of the process registry,
written by Ulf Wiger to provide a global name server. We constructed an ab-
stract model of the registry, much like that in section 6, and used it to test that
sequences of register, whereis and unregister calls returned the expected re-
sults. Then we wrote a property stating that for all pairs of command sequences,
executed in separate processes, each call gave the expected result.

Unfortunately, the “expected result” depends on how the calls in the two
processes are interleaved. Observing the actual interleaving is difficult, espe-
cially since the registry need not service the calls in the order in which they
are made! Indeed, all we can really require is that the results returned by the
registry calls in each process correspond to some interleaving of the two com-
mand sequences—any interleaving will do. We therefore formalised precisely this
property in QuickCheck. Potentially we might need to explore all possible inter-
leavings of the two sequences, and compare their results to the abstract model,
which would be prohibitively expensive. However, we discovered that a simple
depth-first search, cut off as soon as the interleaving prefix was inconsistent with
the actual results, gave a fast testable property.

Initially, testing succeeded—because the Erlang scheduler allocates quite long
time slices, and so although we spawned two parallel processes, each one ran
to completion within its first time-slice. But then we instrumented the imple-
mentation of the registry with calls to yield() between atomic operations, thus
ensuring that execution of our two processes would indeed be interleaved. As soon
as we did so, we began to find errors. Moreover, they were repeatable, because
by calling yield() so often, we were effectively using cooperative multi-tasking
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instead of the pre-emptive variant, and since the Erlang scheduler is actually a
deterministic algorithm, it schedules cooperatively multi-tasking programs in a
deterministic way. This form of testing proved to be very effective, and ultimately
forced a complete redesign of the distributed process registry.

In another experiment, Hans Svensson applied QuickCheck to fault-tolerant
distributed leader election algorithms [1]. In such algorithms, a group of nodes
elect one to be the “leader”, for example to maintain a global state. If the
current leader crashes, a new one must be elected, and something sensible must
also happen if a crashed leader recovers. Correctness properties include that a
leader is eventually elected, and all nodes informed of its identity, and that there
are never two leaders at the same time.

Svensson used an extension of QuickCheck which records a trace of events,
and—by acknowledging events at random—controls the scheduling in ths system
under test. The recorded traces then revealed whether or not testing succeeded.

Svensson began by testing an open source implementation by Thomas Arts
and Ulf Wiger, already in use in the Erlang community. QuickCheck (and an-
other random testing tool) revealed problems so severe that the code had to
be abandoned. Svensson implemented a different algorithm due to Stoller [17],
whose proof of correctness supplied many lemmata that could be tested by
QuickCheck. Interestingly, QuickCheck revealed an error here too, connected
with the way that node crashes are detected in Erlang, but it was easily fixed.

Both algorithms were proven correct in the literature, but their implementa-
tions did not work. The underlying reason is interesting: theoretical papers quite
rightly make simplifying assumptions about the environment the algorithm will
be used in, but real systems do not fulfill them precisely. Practitioners need
to adapt the algorithms to the real situation, but then the correctness proofs
no longer really apply. In fact, the assumptions are rarely even stated formally,
with the result that we cannot really say whether the bug in the second im-
plementation is also present in Stoller’s paper—it depends on an aspect of the
environment where Stoller’s assumptions are not 100% precise.

Thus another way to use QuickCheck is to gain confidence that a formally
verified algorithm has been correctly transferred to a real situation!

9 Testing Imperative Code

Can QuickCheck testing be applied to code written in imperative languages?
Certainly it can! In fact, we tested the Media Proxy by sending it Megaco com-
mands over TCP/IP—the fact that the Proxy software itself was also written in
Erlang was quite irrelevant. In one of our follow-up projects, the system under
test is actually written in C++, but this requires no changes at all in the ap-
proach. Provided we can conveniently invoke the system under test from Erlang
or Haskell, then we can test it using QuickCheck.

But what if we just want to test a C or C++ API, for example, rather than
a system that obeys commands sent over a network? Koen Claessen has worked
extensively on this. One quite successful approach is just to generate random
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C programs that exercise the API, and compile and run them in each test! C
compilers are fast enough to make this practical. Another method is to generate
an interpreter for API calls from an API specification, link that interpreter with
the code under test, and run it in a separate process. QuickCheck can then be
used to generate sequences of calls which are sent to the interpreter for execution,
and to check the results which are sent back. By using this approach, Claessen
has found (and simplified) many bugs in C++ applications.

Would it make more sense to make a native version of QuickCheck for C or
C++? In fact, Claessen has done this too. The result was certainly fast, but
ultimately, not as satisfactory. Remember that QuickCheck code consists not
only of random generators, but usually also of a formal model of the system
under test. QuickCheck is most effective if these models can be built simply
and easily, and here, declarative programming languages are playing to their
strengths. In comparison, a native imperative version is clumsy to use.

In fact, I believe that testing code is a very promising application area for
declarative languages. It is not performance-critical, and since it does not form
a part of the final system, the constraints on choice of programming language
are much looser than usual. Indeed, it is already quite common to use a separate
test scripting language, different from the implementation language of the code
under test—so why shouldn’t that language be declarative? I believe that the
barriers to adopting declarative languages are much lower in this area than for
programming in general—particularly if that makes a tool such as QuickCheck
more convenient to use. Time will tell if I am correct!

10 Erlang vs. Haskell

It is interesting to compare Erlang and Haskell as host languages for QuickCheck.
We initially expected an Erlang version to be a little clumsier to use than the
Haskell original, because of the lack of lazy evaluation, Haskell’s type system,
and monadic syntax (see section 5). Yet the difficulties these caused turned out
to be minor. On the other hand, Erlang’s lack of a type system turned out to
bring unexpected benefits. For example, the Haskell QuickCheck generator for
times of day, represented as pairs of hours and minutes, is

liftM2 (,) (choose 0 23) (choose 0 59)

(where (,) is the pairing operator, and liftM2 lifts it to operate on monadic
values). The Erlang QuickCheck generator is

{choose(0,23), choose(0,59)}

(where {X,Y} is Erlang’s notation for pairs). The Erlang notation is more con-
cise and intuitive, and definitely easier to sell to customers! In general, Quviq
QuickCheck permits any data-structure containing embedded generators to be
used as a generator for data-structures of that shape—something which is very
convenient for users, but quite impossible in Haskell, where embedding a gener-
ator in a data-structure would normally result in a type error. This technique is
used throughout the generators written at Ericsson.
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Moreover, our approach to state machine testing involved symbolic represen-
tations of programs. In Haskell, we would need to define a datatype to represent
function calls, with one constructor per function under test, and write an inter-
preter for those calls—just as we did in section 2 for insert and deleteMin.
In Erlang, we could represent a call just by two atoms and a (heterogenous)
argument list, and provide a single generic interpreter run_commands, thanks
to Erlang’s ability to call a function given only its name and arguments. This
reduces the programming effort for the library user quite significantly.

Of course, the penalty for using Erlang is that type errors are not found by
a type checker! Instead they must be found by testing. . . but this is easier than
usual thanks to QuickCheck. We made many type errors when constructing the
complex datatype of messages intended for the Media Proxy—but we found
them immediately by testing that all messages we generated could be encoded
to ASCII, and decoded again. Far from being second best, we conclude that
Erlang is actually a very suitable host language for QuickCheck!

11 Discussion

Random testing is an old technique [10], which is attracting renewed interest—
as shown, for example, by the new International Workshop on Random Testing,
first held this year. It has been very successful for so-called fuzz testing, where
nonsense inputs are supplied to try to provoke software to crash [14]—“monkey
testing” of GUIs is an example of this. Random testing is more difficult to apply
for positive testing, where meaningful inputs are supplied to the software under
test, and its correct behaviour is tested. QuickCheck’s flexible control of random
generation makes it particularly suitable for this task.

Shrinking failing test cases is a powerful diagnostic technique, due to Hilde-
brandt and Zeller [11], who used it, for example, to shrink a test case that
crashed Mozilla from 95 user actions on a web page consisting of almost 900
lines of HTML, to three user actions on one line of HTML ! Their delta debug-
ging method starts from two tests, a successful one and a failing one, and uses a
generic algorithm to search the space between them for two most-similar tests,
one successful, and one failing. QuickCheck searches only from a failed test,
towards smaller test cases, but using arbitrary user-defined shrinking methods.

Even though shrinking is powerful, we find it works best when the original
failing test is not too large. New QuickCheck users are often tempted to generate
large test cases, probably because doing so by hand is labour intensive, while
using QuickCheck it is easy. Yet large test cases run slowly—so fewer tests can be
run in a reasonable time—and when they fail, the reason is hard to understand.
Shrinking them is at best time consuming (because many tests must be run), and
at worst, may not result in as small a failing test as possible. In our experience,
it is better to run many, many small tests, rather than a smaller number of
large ones. Most errors can be provoked by a small test case, once the error
is understood—and it is these small test cases which we want QuickCheck to
find.
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There are, of course, errors that no small test can find, such as errors that
occur when a large table overflows. We encountered such an error when testing an
implementation of purely function arrays, represented as binary trees with lists of
up to ten elements in the leaves. An optimised array construction function failed
when constructing a tree more than two levels deep. . . that is, with more than
40 elements. QuickCheck rarely provoked this case, until we explicitly increased
the test size. Yet, in such cases, the software should still work if the table were
smaller, or if the lists in the leaves were up to three elements, rather than ten—so
why not reduce these constants for testing? Doing so makes the boundary cases
much more likely to be exercised, and so increases the probability of revealing
errors. When looking for a needle in a haystack, nothing helps so much as making
the haystack smaller!

We have found that a complete formal specification of the code under test
is often unnecessary. Simple properties are often enough to reveal even subtle
errors, which is good news for testers. A nice example is our discovery of data-
structure corruption in the Media Proxy, using properties which only interact
with it via protocol commands. However, more precise specifications may find
errors with fewer tests, and find smaller failing cases, because the error is revealed
faster. In our example, a single Add and Subtract would have been sufficient to
reveal the corruption, instead of the seven-command sequence we found.

One subtle change that QuickCheck brings about is a change in the economic
value of failing test cases. Developers tend to pounce on the first failing case,
re-run it, turn on debugging and tracing, and generally invest a lot of effort in
understanding that particular case. When test cases are constructed painfully by
hand, or even reported in the field, then this makes sense—test cases are valu-
able, compared to the developer’s time. When a new failing case can be generated
in seconds, then this no longer makes sense. Perhaps the next run of QuickCheck
will find a smaller case, and save much diagnostic effort! It makes sense to gener-
ate several failing cases, and choose the simplest to work with, rather than rush
into debugging as soon as the first failure is found. Or, if the cases found are
overcomplex, it may be worthwhile to improve the shrinking strategy, and see
whether that leads to a simpler case to debug. Improved shrinking may bring
benefits in many future tests as well, so the effort is well invested.

We have found that testing with QuickCheck is perceived as quite difficult
by developers. It is initially hard to see what to test, and the temptation is to
make minor random variation of parameter values, rather than formulate more
general properties. Using QuickCheck successfully is close in spirit to finding a
good way to formalise a problem—which has occupied plenty of researchers over
the years! It is therefore important to develop good “model specifications” that
developers can follow, and to simplify, simplify, simplify the use of QuickCheck
as much as possible. A good example of this is our state machine testing library,
which is built entirely on top of the QuickCheck core. In principle, this could
have been written by any user—but in practice, if it took me four iterations
to get the design right, after seven years experience of QuickCheck, then it is
unreasonable to expect new users to develop such toolkits for themselves.
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Thomas Arts and I have founded a start-up, Quviq AB, to develop and
market Quviq QuickCheck. Interestingly, this is the second implementation of
QuickCheck for Erlang. The first was presented at the Erlang User Conference
in 2003, and made available on the web. Despite enthusiasm at the conference, it
was never adopted in industry. We tried to give away the technology, and it didn’t
work! So now we are selling it, with considerably more success. Of course, Quviq
QuickCheck is no longer the same product that was offered in 2003—it has been
improved in many ways, adapted in the light of customers’ experience, extended
to be simpler to apply to customers’ problems, and is available together with
training courses and consultancy. That is, we are putting a great deal of work
into helping customers adopt the technology. It was naive to expect that simply
putting source code on the web would suffice to make that happen, and it would
also be unreasonable to expect funding agencies to pay for all the work involved.
In that light, starting a company is a natural way for a researcher to make an
impact on industrial practice—and so far, at least, it seems to be succeeding.

Finally, recall that Koen Claessen and I originally developed QuickCheck for
fun. Perhaps for that very reason, using QuickCheck is fun! We see developers
on our courses filled with enthusiasm, raring to test their code. Testing is not
always seen to be so alluring—indeed, it is often regarded as something of a
chore. QuickCheck really makes testing fun—and that, in itself, is a worthwhile
achievement.
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Abstract. In this paper we show how Constraint Programming (CP) techniques 
have been used to handle bioinformatics structural problems, namely in protein 
structure prediction and protein interaction (docking). Solving these problems 
requires innovative modelling of the problem variables and constraints, and the 
application of advanced CP features to handle the problems efficiently, namely 
the exploitation of global constraints and local search, in addition to more 
standard binary constraint propagation. Both applications, respectively PSICO 
(Processing Structural Information with Constraint programming and 
Optimisation), and BiGGER (Bimolecular complex Generation with Global 
Evaluation and Ranking) have been incorporated in a platform, Chemera, that 
aims at supporting (and has effectively supported, namely in protein docking), 
biochemists in their research. 

1   Introduction 

Bioinformatics is an increasingly important discipline where computer science 
methods are used to study biological entities and systems. This is especially important 
as a wealth of biological data have been gathered in recent years, in many cases freely 
accessible over the Web. By taking advantage of this availability, computational 
models may suggest what are the most promising outcomes, possibly decreasing the 
number (and cost) of experiments that are required to study certain biological 
properties. 

Many interesting problems, requiring significant computational resources do arise 
in Bioinformatics. For example, sequencing problems are common, where one aims at 
reconstruct some large polymer (e.g. protein, DNA or RNA molecules) from a 
sequence of partially overlapping fragments of the polymer obtained in some 
experimental setting.  

Other problems are related to the behaviour of biochemical systems, in particular 
metabolic pathways, that study the interaction of molecules along the time. Interesting 
pathways usually regard the processing of some biochemical molecules (for example, 
the citric acid cycle, glycolisis and other chemical reactions that are responsible for 
the metabolism of a cell), and are eventually related to gene expression, i.e. when 
genes become active and produce the corresponding enzymes and other proteins. 

Finally, structural problems, such as the determination of the three-dimensional 
structure of proteins and other molecules, are also very important. Such determination 
is of particular interest in bioinformatics since in addition to other electro-chemical 
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properties (e.g. hidrophobicity, hidrophily, polarity) a key factor that determines 
whether two proteins interact is that proteins have shapes that allow them to spatially 
fit in the contact surface areas (active regions) . 

This wide variety of problems demand for several distinct computational 
techniques, ranging from data mining and machine learning to explore similarities 
between the problem under study and problems already solved (e.g. homology 
studies), or a  variety of simulation techniques to study, with some adequate level of 
abstraction, the dynamic behaviour of biochemical reaction networks [1]. Among 
these techniques, we have been applying, with considerable success, constraint 
programming to structural problems, namely the determination of protein structure 
and the study of protein interaction (“docking”).  

Constraint Programming is usually applied to constraint satisfaction problems 
(CSPs) by providing a declarative and efficient way of modelling such problems, 
through the specification not only of a set of variables and respective domains (often 
finite), but also the constraints that restrict the values that the variables can take (some 
variants to classical CSPs also include the addition of an optimisation function, or a 
partial satisfaction of the constraints). Non trivial problems are NP-complete or 
harder, and so a significant amount of search is required to solve instances of even of 
moderate size.   

Several techniques are exploited in constraint programming to make search more 
efficient. In addition to the inevitable use of heuristics, search is interleaved with 
some kind of “reasoning”, in that whenever a choice is performed, the consequences 
of such choice are analysed to make the subsequent search more informed and 
effective. 

Some problems (typically large optimisation problems) are adequately addressed 
with local search techniques, where search is driven by the optimisation of some 
objective function (even for constraint satisfaction problems where that function may 
simply be a measure of the constraints violation, that is to be minimised). In this case, 
reasoning is largely related with the study of the neighbourhoods of current 
hypotheses, to allow better heuristics in the search for the optima of the objective (e.g. 
COMET[2]).  

In complete methods, relying on backtrack search, reasoning is rather performed 
through various types of “constraint propagation”.  Such propagation, aims at 
decreasing the number of possible values for the variables not yet assigned specific 
values, and hence decrease the search space. Some basic techniques exist to deal with 
binary constraints. In particular, maintaining arc-consistency (usually with an AC-3 
type algorithm [3]) enforces that values in a variable that share a constraint with 
another variable have support in the values of the latter variable, otherwise they can 
be discarded.  

Moreover, constraint programming languages are also quite flexible, in that they 
allow a declarative specification of even quite complex constraints, in contrast with 
other declarative approaches to constraint solving (e.g. SAT or integer programming) 
where all constraints have to be converted into a rigid and expressively poor language 
(e.g. clauses and linear constraints).  Constraint programming languages allow an 
easy combination of primitive constraints, into more complex ones, or even the 
specification of primitive global constraints, for which specific and efficient 
propagation methods exist that are seamlessly integrated into the general constraint 
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propagation mechanisms [4]. The classical example is the global constraint 
all_different, that constrains a set of k variables to take distinct values and for which 
some graph-based algorithms propagate more efficiently than would the set with k(k-
1)/2 difference constraints over all pairs of variables [5]. 

Despite the expressive power of constraint programming languages and systems, 
and the efficient search techniques provided, there is a non-negligible amount of 
ingenuity that is required to obtain the most adequate models to the problem in hand. 
This is particularly so in non-conventional problems, which might be usefully 
addressed by constraint programming only if an appropriate model is adopted, and if 
adequate and advanced constraint programming techniques are applied in the solving 
process. 

In this paper we address the way in which, in our tool, CHEMERA (available in 
the Web [6]) two structural bioinformatics problems are modelled and solved by 
constraint programming techniques. Their models adopted unconventional domains, 
and their solving does apply some main features of CP, namely constraint 
propagation, improved propagation by means of global constraints and some 
complementarity between complete backtrack search methods and incomplete local 
search methods. 

Section 2 introduces the main features of PSICO, the component that addresses the 
problem of structure determination of proteins, taking into account Nuclear Magnetic 
Resonance (NMR) induced constraints. Section 3 reports on BiGGER, and its use of 
constraint programming techniques to handle protein interaction, often referred to as 
protein docking. Section 4 discusses a number of ideas aimed at improving the current 
algorithms, specially for the problem of structure determination. The paper ends with 
a section on concluding remarks. 

2   PSICO: Modelling Protein Structure 

Constraint Programming has been used in protein structure prediction in two distinct 
approaches. In the first, the problem is addressed ab initio: all that is known is the 
primary structure of a protein (i.e. the sequence of its amino acid residues). In this 
case, the models assume that these residues are placed in a three dimensional lattice 
(e.g. cubic or more complex face-centred cubic lattices, as in [7]) and a solution 
should minimize some energy function. In practise, such function takes into account 
either the hydrophobic (H) or the hydrophilic, also known as polar (P), nature of the 
amino acids, and aims at maximizing the number of H-H contacts in the centre of the 
protein. Alternative models allow more sophisticated energy functions to minimise, 
and take into account secondary structures (alpha helices or beta-sheets) that might be 
known, or at least suspected from homology studies [8]. 

Although this H-P model is quite interesting from a computational viewpoint, it 
leads to significantly distorted solutions, since the dihedral angles that are possible 
(e.g. 90º in cubic lattices) are not those that are chemically admissible. Moreover, 
these models do not take into account the availability of biochemical data that should 
be used not only to test, but also to drive the search for a solution, in the spirit of 
constraint programming.  



36 P. Barahona and L. Krippahl 

Hence, we adopted an alternative model for structure prediction that takes into 
account as much information as possible, including available experimental data. There 
are several sources of information that can help model the structure of a protein. First 
of all, the amino acid sequences of the protein chains determines most chemical bonds, 
restricting inter atomic distances in many atom pairs, angles formed by atom triplets, of 
even larger groups of atoms that are effectively rigidly bound together by the chemical 
bonds. NMR data provides distance constraints by showing that two atoms must be 
close enough for the Nuclear Overhauser Effect to be felt, limits the angles of rotation 
around some chemical bonds, or can even suggest limits for relative special 
orientations of groups of atoms with Residual Dipolar Coupling data. Furthermore, 
homology with known structures or modelling secondary structure can provide detailed 
information of the structure of parts of the protein being modelled.  

We can divide this information into three types of constraints: distance constraints 
between two atoms, group constraints that fix the relative positions of a group of 
atoms in a rigid configuration, and torsion angle constraints that restrict the relative 
orientation of two groups joined together by a chemical bond. 

The constraint programming approach that we adopt for protein structure 
determination is composed of two phases: firstly it adopts a backtrack search where 
enumeration of variables is interleaved with constraint propagation until an 
approximate solution is found. Secondly, this structure is improved by means of a 
local search optimisation.  

2.1   Variable Domains and Propagation of Distance Constraints 

The chemical information that is known from the protein sequence provides bond 
length and bond angle constraints. Bond length constraints are also distance 
constraints, and the bond angles can be modelled by sets of distance constraints. In 
fact, the structure and flexibility of an amino acid can be modelled by a conjunction 
of pair wise distance constraints between all the atoms. To model this information we 
consider two types of constraints: In constraints (eq. 1) and Out constraints (eq. 2). 

In constraint kzzyyxx ≤−−− |)||,||,max(| 212121  (1) 

Out constraint kzzkyykxx ααα ≥−∨≥−∨≥− |||||| 212121  
3

1=α  (2) 

These two constraint types are used to model all the chemical structural 
information, whether it is known beforehand or from the NMR spectroscopy 
experiments. Notice that rather then considering Euclidean distances and spherical 
regions, we use an approximation that considers cuboid regions which are much 
easier to propagate, as discussed below. 

The variables we wish to determine are the positions of the geometric centres of 
the atoms, that is, the (x, y, z) coordinates in a single variable with a three 
dimensional domain, and this domain is represented as a set of cuboid regions. One 
cuboid defines the Good region, which is the volume that contains the possible 
positions for the atom. A set of non-overlapping cuboids contained in the Good region 
defines the NoGoods region, which contains the positions from which the atom must 
be excluded (see Figure 1). 
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Fig. 1. The domain for the position of an atom is composed of two regions. The Good region is 
a cuboid that defines the positions for the atom that comply with the set of In constraints. The 
NoGoods region is a set of non-overlapping cuboids that define the volumes within the Good 
region from which the atom is excluded by the Out constraints. 

We distinguished between the two types of distance constraints (In and Out) 
because of the way in which they are propagated (see Figure 2).  

• The In constraints are propagated by simple intersection. The Good region of 
atom A will be the intersection of the current Good region of A with the 
neighbourhood of the Good region of atom B, defined as the Good region of B 
augmented by the distance value of the In constraint between A and B. The 
intersection of two cuboid blocks is very simple to calculate, requiring only Max 
and Min operations on the extremity coordinates, so propagation of In constraints 
is very efficient. 

• For an Out constraint the propagation involves adding the exclusion region 
defined by the constraint to the NoGoods region of the affected atom. The most 
complex operation in this process is insuring that the NoGoods region consists of 
non-overlapping cuboids. This reduces propagation efficiency, but simplifies the 
task of determining the cases of failure when the NoGoods region becomes 
identical to the Good region. 

 

Fig. 2. This figure shows the propagation of both types of constraints. For In constraint 
propagation, the domain of atom A is reduced by intersecting the Good region of A with the 
neighbourhood of B. For Out constraint propagation a NoGood cuboid region is added, by 
intersecting the Good region of A with the exclusion region of B.  
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Arc-consistency is guaranteed by propagating the constraints on each atom that 
suffered a domain restriction until no domain changes. After complete propagation, 
one atom is selected for enumeration, and the propagation step is repeated. 

Enumeration interleaves the arc-consistency enforcement following a first fail 
approach on a round robin system. First, the atom with the smallest domain that was 
not selected in the current enumeration round is selected for enumeration. Exception 
is made if the coordinate domain is smaller than 2.0Å for all three coordinates, in 
which case the atom is considered sufficiently determined and no domain reduction is 
necessary. The domain of this atom is then split into two similarly sized domains by 
‘cutting’ across the longest coordinate axis (x, y or z) of the domain. The domain of 
the atom will be one of these two ‘halves’. 

Enumeration heuristics now come into play. One simple heuristic that was shown 
to be successful [9,10] was to choose for the new domain the half cuboid that is less 
occupied by the domains of all other atoms, but additional considerations such as the 
chemical nature of the amino acid or the prediction of local structures can play a role 
at this stage to inform the choice of which regions of the domain to eliminate. 

Since the domain for the enumerated atom is reduced, constraints are then 
propagated (as discussed above), and then another atom is selected for enumeration 
(the atom with the smallest domain not selected yet). This process of selection and 
domain reduction is repeated until all atoms were selected once, after which a new 
round of enumeration starts. In case of failure it is possible to backtrack and try 
different domain reductions, but backtracking is limited both for practical reasons and 
because it is often the case that the set of constraints is inconsistent due to 
experimental noise, and in these cases the user needs some structure, even if only 
partially correct, to help correct the inconsistencies by reassigning the constraints. 

2.2   Propagation of Global Rigid Group Constraints 

The last section outlined the basic framework for PSICO: the domain representations, 
arc-consistency interleaved with a round-robin enumeration, and limited 
backtracking. The propagation of rigid group constraints extends this framework to 
include the information on the configuration of groups of atoms. These can be 
prosthetic groups, secondary structures like alpha-helices, or more complex domains 
obtained by homology modelling,  for which we can know the relative positions of all 
atoms but which fits within the structure of the protein in an unknown position and 
orientation.  

Since rigid groups include many atoms that may only move together, reasoning 
globally with all these atoms, i.e. maintaining generalised arc-consistency, achieves 
better propagation than simply considering, one at a time, distance constraints 
between all the pairs of the atoms in the group (simple arc-consistency). This 
improvement is typical of reasoning with global constraints in constraint 
programming settings, and close to all-different reasoning [5], although with different 
domains. This section briefly outlines how generalised arc consistency is achieved 
with global rigid-group constraints. 

Given a fixed orientation, it is trivial to reduce the domains of the atoms in a rigid 
group. This requires simply that we determine the limits for the translations of the 
group that do not place any atom outside its domain. Denoting by wc one of the 
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coordinates of the centre of the group (x, y or z), by wj the same coordinate for atom j, 
and by wmax and wmin the upper and lower limits, respectively, for that coordinate of a 
domain (of atom j or of the centre c), such limits are related by the following 
equations (note that the absolute values of wc and wj are irrelevant; only the 
coordinate difference wc-wj is important, and is independent of translation) : 

max 1 max ( )( )n
c j j c jw w w wMin = + −=

 
(3a) 

min 1 min( ( ))n
c j j c jw Max w w w== + −

 
(3b) 

Equations 3 assume a fixed orientation of the group, but we cannot make that 
assumption, since the group is free to rotate. Without loss of generality, we shall 
consider the case of the limits in the x and y coordinates as a function of a rotation 
around the z axis, centred on the centre point of the group.  

To determine the limits for the placement of the group as a function of the rotation 
around one axis, considering the rotation around the other axes fixed, we need but 
intersect the contributions of all atoms to these limits (see details in [11]).  

Now we need to extend this to rotations around all three axes. Dividing the 
rotations into finite intervals, each orientation corresponds to an interval of angles, 
instead of just a single angle, and each coordinate to an interval of values. This way 
each rotation can be divided into a manageable number of orientations. Nevertheless, 
whereas rotating coordinates around an angular value gives a single values for the 
coordinates, rotating around an interval of angles results in intervals of coordinates. 
However, as long as certain conditions are met (more specifically, that the intervals 
for the angles partition the rotation with a step size that is a sub-multiple of 90º) then 
the intervals of the corresponding coordinates are trivial to calculate (more details  
in [11]). 

2.3   More on Global Constraints – Propagation of Torsion Angle Constraints 

In some cases, it is possible for a molecule to change configuration by groups of 
atoms rotating around a chemical bond. It is this process that allows proteins to fold 
into their shapes, and the angle of such a rotation is called the torsion angle. Some 
experimental techniques may provide constraints on torsion angles, and this is useful 
information when modelling a protein structure. 

The propagation of these constraints is an extension to the rigid group constraint 
propagation discussed in the previous section. We can consider that two rigid groups 
connected by a bond allowing rotation is a single rigid group if the torsion angle is 
fixed. If the torsion angle is an interval, we can account for the relative coordinates of 
all atoms in the two groups by using the corresponding intervals, in a way similar to 
that discussed in the previous section.  

This procedure allows us to extend the rigid group constraint propagation to any 
number of rigid groups connected by torsion angles. There is a trade off between total 
group size and number of torsion angles to use, and the right trade off is also a 
function of the constraints on the torsion angles and the size of the atom domains at 
the time of propagation, so currently we are researching the best ways to optimise 
torsion angle constraint propagation taking into account all these factors. 
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2.4   Optimisation 

Once enumeration terminates, each atom has a small cuboid domain, and a more exact 
position of the atom is obtained through an optimisation procedure, due to two main 
reasons. Firstly, enforcing smaller cuboids often leads to an exponential number of 
backtracks, unless a good heuristics is used. Secondly, if the geometric centre of the 
cuboids is considered the value for the atoms, then the resulting molecular structure 
does not respect the distance and angle values for the chemical bonds.  

To address these problems, the Constraint Propagation method described so far, is 
complemented with a local search component that implements a simple torsion angle 
optimisation algorithm. Modelling the protein as a tree of rigid atom groups 
connected by rotatable bonds insures that the fine scale structure of the molecule is 
respected. 

The minimisation proceeds in two steps. In the first step the torsion angle values 
for the torsion angle model are adjusted to minimize the distance between the atomic 
positions in the structure provided by the CP stage and the respective positions in the 
torsion angle model. This fits the torsion angle model to the CP solution, thus 
providing a chemically sound structure close to respecting the distance constraints 
(details can be found in [12]). 

3   BiGGER: The Docking Algorithm 

Another structural bioinformatics application where we have successfully applied 
constraint programming techniques is protein interaction (docking). A common 
trend is to model interactions using only knowledge derived from the structure and 
physicochemical properties of the proteins involved. Some algorithms have been 
developed [13, 14, 15] or adapted [16] to use data on the interaction mechanisms, 
but this approach is still the exception rather than the norm. BiGGER is one of these 
exceptions, as it has been developed from inception to help the researcher bring into 
the modelling process as much data as available, and Constraint Programming 
techniques have much improved the efficiency and expressiveness of earlier 
versions [17]. 

Again, not only simple propagation of constraints is obtained by maintaining arc-
consistency, but also generalised arc consistency is achieved to deal with a special 
global constraint that can be used to enforce specific activity regions in the docking 
proteins. 

At the core of our protein docking algorithm is the representation of the protein 
shapes and the measure of surface contact. The former is a straightforward 
representation using a regular cubic lattice of cells, similar to that commonly used in 
the Fast Fourier Transform (FFT) methods derived from [18]. In BiGGER the cells do 
not correspond to numerical values, but each cell can be either an empty cell, a 
surface cell, or a core cell. The surface cells define the surface of the structure, and 
the overlap of surface cells measures the surface of contact. Figure 3 illustrates these 
concepts, showing on the first two panels a cutaway diagram of the grid representing 
a protein structure, and on the third panel a cutaway diagram of two grids in contact, 
showing the contact region corresponding to a set of overlapping surface cells.  
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This representation has several advantages over the FFT approach, requiring about 
a thousand times less memory (approximately 15Mb in BiGGER vs. 8Gb for FFT in 
large proteins) and being up to ten times faster than FFT [17]. BiGGER also models 
side-chain flexibility implicitly by adjusting the core grid representation [13] and 
allows for hard or soft docking simulations depending on the nature of the interaction 
to model. Furthermore, this representation and the search algorithm can take 
advantage of information about the interaction to simultaneously improve the results 
and speed up the calculations. 

  

Fig. 3. The image on the left shows a protein structure overlaid on a cutaway of the respective 
grid, with spheres representing the atoms of the protein. The centre figure shows only the grid 
generated for this protein, cut to show the surface in light blue and the core region in grey. The 
rightmost image shows two grids (red and blue) in contact.  

3.1   Restricting the Search to Surface Overlapping Regions 

A significant proportion of all possible configurations for the two grids results in no 
surface overlap. Much can be gained by restricting the search to those configurations 
where surface cells of one grid overlap surface cells of the other. This is achieved by 
encoding the grids in a convenient way: instead of individual cells, grids are 
composed of lists of intervals specifying the segments of similar cells along the X 
coordinate. These lists are arranged in a two-dimensional array on the Y-Z plane.  

This encoding not only reduces the memory requirements for storing the grids, but 
also leads naturally to searching along the X axis by comparing segments instead of 
by running through all the possible displacements along this coordinate. Given two 
surface segments, one from each structure and aligned in the same Y and Z 
coordinates, we can calculate the displacements where overlap will occur simply from 
the X coordinates of the extremities of the segments.  

Representing by variable X, with domain Dx, the displacement of one structure 
relative to the other along the X direction, this approach of comparing segments 
efficiently enforces the constraint requiring surface overlaps, by reducing the domain 
of this variable to only those values where the constraint is verified. To begin with, 
each such variable is initialised to include all translations that may result in contacts 
by a bounds consistency check: if MaxA/MaxB and MinA/MinB are the 
maximum/minimum coordinate values along the X axis for the surface grid cells of 
the two structures, the domain of X is initialised to the interval [MinA-MaxB , MaxB-
MinA]. This approach can be generalized for the translational search in the other 2 
directions Y and Z. 
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3.2   Eliminating Regions of Core Overlap 

Another important constraint in this problem is that core regions of the grids cannot 
overlap, for that indicates the structures are occupying the same space instead of 
being in contact. By identifying the configurations where such overlaps occur, it is 
possible to eliminate from consideration those surface segments on each structure that 
cannot overlap surface segments on the other structure without violating the core 
overlap constraint. Some surface segments can thus be discarded from each search 
along the X axis. Figure 4 illustrates this procedure. 

One structure, labelled A, is shown in the centre of the image. The other structure, 
labelled B, will be moved along the horizontal direction to scan all possible 
configurations but, from the overlap of core segments, a set of positions along the 
horizontal direction can be eliminated. Structure B is shown in position 1 to the right 
of A and in position 39 to the left of A. Clearly, in this case, B cannot occupy some 
positions in the centre.  

 

 

Fig. 4. Grid B is translated along the horizontal direction relative to grid A. The vertical arrows 
marked 1 indicate the position of B on the lower horizontal bar, which shows the allowed and 
forbidden values for the position of B. The arrows marked 2 and 3 show the allowed 
displacement of B. The group of horizontal arrows indicates segments to be discarded. 

In particular, the domain of variable X, representing the displacement of one 
structure relative to the other along the X direction, can be pruned from the values 5 
to 30. This is a contiguous interval in this example, but the domain of X can be an 
arbitrary set of intervals in the general case. This domain reduction due to the core 
overlap constraint propagates to the surface overlap, since some surface segments of 
A and B will not overlap in valid configurations. Some of these are shown in Figure 2 
by the group of arrows to the left of structure A (Discarded Segments). For the last 
double arrow, for example, the surface cells of structures A and B would only overlap 
for X=7, a value pruned from the domain of X. In contrast, in the line below such 
overlap occurs for X = 3, a value kept in the domain.  Thus the core overlap constraint 
allows us to reduce the number of surface segments to consider when counting 
surface overlaps. 

 

Pruned  Allowed  Allowed  

B B    

AA  

BB  
1   1 

2  

2   3 

3 

Discarded   
Segment s  

1  5 30 39 

L 1  

L 5  
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The BiGGER algorithm imposes bounds consistency on these sets of core grids 
segments, which requires O(k2) operations, where k is the number of intervals defined 
by the core grid segments for each line and for each structure. This reduces the 
possible translation values, Dx, and affects the generation of the surface segments 
lists to take into account Dx, including only those segments that could overlap given 
this domain (again, by imposing bounds consistency on the intervals). Finally, the 
overlap of surface cells is determined for each allowed translation value in Dx. This 
requires testing the bounds of the matching surface segments in a way similar to 
imposing bounds consistency, which is of O(k2) for each line, and then counting the 
contacts along X, which is of O(N). 

The algorithm performs O(N2) steps by looping through the Dz and Dy, and in each 
of these steps it loops through the Z,Y plane twice to find the matching core and 
surface segments and compare the segment bounds. So each step in the z, y loop is 
O(N2k2), where k is the number of segments per line. Except for fractal structures, k is 
a small constant. For convex shapes, for example, k is always two or less, and even for 
complex shapes like proteins k is seldom larger than two. Thus the time complexity of 
the search algorithm when imposing bounds constraints on the overlap of surface and 
core grid cells is O(N4), very close to the O(N3Log(N)) of the FFT method. 
Furthermore, the comparisons done in the BiGGER algorithm are much faster and this 
constant factor makes BiGGER more efficient for values of N up to several hundred 
[17]. Finally, the space complexity of BiGGER is O(N2), significantly better and with a 
lower constant factor than the FFT space complexity of O(N3). 

3.3   Restricting the Lower Bounds on Surface Contact 

Branch and Bound is a common technique that Constraint Programming often uses in 
optimisation problems, to restrict the domains of the variables to where it is still 
possible to obtain a better value for the function to optimise. In this case, we wish to 
optimise the overlap of surface cells, and restrict the search to those regions where 
this overlap can be higher than that of the lowest ranking model to be kept.  

This constraint is applied to the Z and Y coordinate search loops, by counting the 
total surface cells for each grid as a function of the Z coordinate (that is, the sum over 
each X, Y plane) and as a function of each Y, Z pair (that is, the sum of each line in 
the X axis). The determination of the Z translation domain considers the list of total 
surface cells for each X,Y plane along the Z axis. For each Z translation value these 
two lists will align in a different way, as the one structure is displaced in the Z 
direction relative to the other. The minimum of each pair of aligned values gives the 
maximum possible surface overlap for that X,Y plane at this Z translation, and the 
sum of these minima gives the maximum possible surface overlap for this Z 
translation. Since there are O(N) possible Z translations to test and, for each, O(N) 
values to compare and add, this step requires O(N2) operations. 

The same applies to restricting the Y translation domain, but taking into account 
the current value of variable Z. This is also an O(N2) operation identical to the 
pruning of the Z domain, but must be repeated for each value of the z translation 
variable, adding a total time complexity of O(N3) to the algorithm. Since the BiGGER 
algorithm has a time complexity of O(N4), these operations do not result in a 
significant efficiency loss. 
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By setting a minimum value for the surface contact count, or by setting a fixed 
number of best models to retain, this constraint allows the algorithm to prune the 
search space so as to consider only regions where it is possible to find matches good 
enough to include in the set of models to retain. In general, this pruning results in a 
modest efficiency gain of up to 30% in medium-sized grids, but with decreasing 
returns as higher grid sizes lead to thinner surface regions and shift the balance 
between the total surface counts and the size of the grid [17]. However, this can 
benefit some applications like soft docking [13], where the surface and core grids are 
manipulated to model flexibility in the structures to dock, or if the minimum 
acceptable surface contact is high. 

3.4   Constraining the Search Space to Active Regions 

In some cases there is information about distances between points in the structures, 
information that can be used to restrict the search region. If this information is a 
conjunction of distance limits, then it is trivial to restrict the search to the volumes 
allowed by all the distances. However, real applications may be more complex. 

For modelling protein interactions, it is often the case that one can obtain data on 
important residues or atoms from such techniques as site directed mutagenesis or 
NMR titrations, or even from theoretical considerations, but it is rare to be absolutely 
certain of these data. The most common situation is to have a set of likely distance 
constraints of which not all necessarily hold. Typically, we would like to impose a 
constraint of the form: 

  At least K atoms of set A must be within R of at least one atom of set B (4) 

where set A is on one protein and set B on the other, and R a distance value. This 
constraint results in combinatorial problem with a large number of disjunctions, since 
the distances need only hold for at least one of any combination of K elements of A. 

Since the real-space (geometrical) search of BiGGER can be seen as three nested 
cycles spanning the Z, Y, and X coordinates, from the outer to the inner cycle, we can 
decompose the enforcement of constraint (4) by projecting it in each of the three 
directions: 

  At least K atoms of set A must be within Rω of at least one atom of set B (5) 

where Rω replaces the Euclidean distance R and represents the modulus of coordinate 
differences on one axis Z, Y or X. Rω has the same value of R; the different notation 
is to remind us that this is not a Euclidean distance value, but its projection on one 
coordinate axis. This makes the constraint slightly less stringent, by considering the 
distance to be a cube of side 2R instead of a sphere of diameter 2R, but this can be 
easily corrected by testing each candidate configuration to see if it also respects 
Euclidean distance. 

The propagation algorithm is the same for each axis and consists of two steps. The 
first step is to determine the neighbourhood of radius R of atoms in group B, 
projected on the coordinate axis being considered. The next step is to generate a list of 
segments representing the displacements for which at least K atoms of group A are 
inside the segments defining the neighbourhood R of the atoms in group B. 
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Fig. 5. Generating the displacement domain in one dimension. The left panel shows the 
generation of the neighbourhood of radius R of group B. The panel on the right shows the 
allowed displacements for each atom, and the final displacement domain for a K value of 2. 

The calculation of the neighbourhood of B in some coordinate (either X, Y or Z) is 
illustrated in Figure 5. The positions of atoms B1, B2 and B3 in this coordinate are 
respectively 5, 9 and 17. Their neighbourhoods within a distance 3 are (2;8), (6;12) 
and (14;20). Merging the two first intervals, the neighbourhood 3 of the atom set B is 
thus (2;12) and (14;20).  

To calculate the displacement values that place an atom of group A inside the 
neighbourhood of group B we only have to shift the segments defining the 
neighbourhood of B by the coordinate value of the atom. For example, atom A1, with 
coordinate 9, lies inside the neighbourhood 3 of B if its displacement lies in the range 
(-7;3) or (5;11). Similarly, atoms A2 and A3, with coordinate values 13 and 18, 
respectively may be displaced by (-11;-1) or (1;7) and (-16;-6) or (-4;2).  

Once we have the displacement segments for all atoms, we must generate the 
segments describing the region at least K atoms are in the neighbourhood of B, which 
is a simple counting procedure (hence, constraint (5) need not be limited to specifying 
a lower bound for the distances to respect. The value of K can also be an upper bound, 
or a specific value, or even any number of values).  In this case, there are at least two 
atoms of set A within neighbourhood 3 of atom set B if the displacement lies in 
ranges (-11;3) and (5;7). In ranges (-7;-6) and (-4;-1) all 3 A atoms are in the 
neighbourhood 3 of B. 

The propagation of constraints of type (5) thus restrict the translation domains that 
are used in the translation search (see last section). The time complexity of enforcing 
constraint (2) in one axis is O(a+b+N), where a is the number of atoms in group A 
and b the number of atoms in group B, and N is the grid size. Since this must be done 
for the translation dimensions the overall complexity contribution is O(N3), which 
does not change the O(N4) complexity of the geometric search algorithm, and pruning 
the search space speeds up the search considerably [17]. 

4   Results and Further Work 

Previous results show that BiGGER can be a powerful modelling tool when used in 
this manner, even when the experimental data are only applied after the search stage 
to score the models produced [13, 14, 19, 20, 21, 22, 23, 24, 25]. 
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As to PSICO, it still is under development, namely to integrate the propagation of 
global constraints in the general algorithm. Initial tests performed with PSICO with 
real data (the Desulforedoxin dimer, with 520 atoms and  about 8000 constraints where 
over 800 are provided from NMR data and the rest from amino acid knowledge) shown 
acceptable results achieved in 10 minutes, 1 minute for the CP phase, and 9 minutes for 
various runs of the optimisation phase to produce 15 distinct solutions.  

This is significantly faster than the reference system currently used in this area 
(DYANA [26]) that uses a simulated approach to the problem and took 10 hours to 
solve the problem. Nevertheless, the accuracy achieved with DYANA is significantly 
better, achieving RMSD distances of about 1 Å, between the predicted and the actual 
structures, compared with 2.3 Å, achieved by PSICO. Although significant, this error 
does not prevent PSICO to assist biochemists in the interpretation of NMR. In fact, in 
earlier phases, distances are not assigned to the correct atom pairs, and so a fast, if 
only approximate, interpretation is quite useful to alert biochemists that some of the 
distance constraints should be revised. 

Although the integration of global rigid body constraints has not been done yet, we 
expect that PSICO should improve considerably with such integration. Preliminary 
results have shown that the propagation of alpha-helices with 20 atoms or over (i.e. 
with 5 residues or more) typically decreases the union of the domains of the atoms by 
a factor of 10, with no sensible increase in run time [11]. However, run times depend 
significantly on the size of the rigid bodies that are considered and the actual 
propagation policy, i.e. the interplay between propagation of fast binary constraints, 
and heavier global constraints. The tuning of this propagation will be possible with 
Casper, a constraint  propagation system that we started developing recently and that 
will be tested soon with PSICO problems [27].  

Of course, the choice of the rigid bodies to consider is also a key factor for the 
integration of rigid body constraints. Currently, secondary structures such as alpha-
helices and beta-sheets can be predicted quite accurately by homology reasoning, 
taking into account the vast amount of proteins whose structure is already known, and 
maintained in the PDB data bank, publicly accessible via the Web. In fact, this is a 
study we are currently undertaking in the Rewerse European Network of Excellence, 
that aims at developing Semantic Web tools and apply them to Bioinformatics, among 
other domains [28]. 

Regardless of the rigid body global constraints, PSICO should perform better if 
better enumeration heuristics, namely value choice heuristics were used. The 
heuristics that is still used, choose the half domain less occupied by the domains of all 
other atoms, does not take into consideration any biochemical properties of the amino 
acids. If these are taken into consideration, an initial data mining study was performed 
at amino acid level to predict whether the amino acids are buried in the protein 
complex or at its surface, with a success rate of around 80% [29]. This is quite close 
to another study we have performed that indicates a sensible decrease in the overall 
RMSD error of different proteins if this rate of success was achieved (but at an atom 
level). For example, before the optimisation phase, we achieved RMSDs below 4Å if 
the rate of success in the heuristics is 80%, rather than around 7Å when choices are 
correct only 50% of the time [30]. As with global constraints, more data mining and 
homology studies should be performed in the PDB data to improve the quality of the 
heuristics being used. 
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Finally, no heuristic is perfect, and a pure backtrack search will very likely be 
insufficient, given the size of the problems. A possible trade-off between 
completeness of search and efficiency is the use of limited discrepancy search, where 
regions of the search space are visited only if they do not involve overriding the 
heuristic choice more than a limited amount of times (the discrepancy level accepted 
[31]). Nevertheless this discrepancy search might have to be complemented with 
some form of local search in the first choices, which are critical for the performing of 
backtrack search, and which are very badly informed in the early stages of the search, 
where the likely positions of the atoms are still very much undefined. This is also a 
feature of the Casper system that is planned for the near future. 

5   Conclusions 

Constraint Programming is a computational paradigm quite adequate to address 
combinatorial problems given, on the one hand, its declarative nature that allows 
problems to be easily modelled and adapted and, on the other hand, the efficiency of 
the underlying constraint solvers. Of course, many problems are adequately addressed 
with Constraint Programming only if adequate models are used, which might require 
some degree of ingenuity from the users. 

In this paper we have shown that structural bioinformatics problems can be 
handled quite successfully with a constraint programming approach, making it 
possible to incorporate many sources of information, including experimental data (e.g. 
NMR data )  which very likely will be necessary to handle the difficult problems 
arising in this domain.  

Although in the heart of the algorithms being used, constraint programming is 
likely to be complemented with other advanced techniques, namely data mining on 
various databanks, increasingly available in the Web, for the development of 
complete practical applications. This has been shown in the applications described in 
this paper, for which we expect to obtain soon better results with the integration of 
such complementary techniques. 

 
Acknowledgements. We thank Nuno Palma and José Moura for their role in the 
development of BiGGER and Chemera. Developments of Chemera are currently 
being funded by the European Commission and by the Swiss Federal Office for 
Education and Science within the 6th Framework Program project REWERSE 
number 506779 (cf. http://rewerse.net). 

References 

1. N. Chabrier and F. Fages. The biochemical abstract machine BIOCHAM. In C. 
Christophe, H.P. Lenhof, and M. F. Sagot, editors, Proceedings of the European 
Conference on Computational Biology, ECCB'03, pages 597-599, Paris, France. System 
available at http://contraintes.inria.fr/BIOCHAM, September 2003. 

2. Laurent Michel, Pascal Van Hentenryck: Parallel Local Search in Comet, CP'2005 
(Procs.), Peter van Beek (Ed.),  Lecture Notes in Computer Science, vol. 3709, Springer, 
pp. 430-444,  October, 2005. 



48 P. Barahona and L. Krippahl 

3. A.K. Mackworth and E.C. Freuder, The complexity of some polynomial network 
consistency algorithms for constraint satisfaction problems, Artificial Intelligence, 
25(1):65–73, 1985, 

4. N. Beldiceanu, Global Constraint Catalog, http://www.emn.fr/x-info/sdemasse/gccat/. 
5. J.-C. Régin, A Filtering Algorithm for Constraints of Difference in CSPs, Proceedings of 

AAAI-94, pp.362-367, 1994. 
6. http://www.cqfb.fct.unl.pt/bioin/chemera/. 
7. Backhofen R. , Will S. A Constraint-Based Approach to Fast and Exact Structure 

Prediction in Three-Dimensional Protein Models, Constraints, Vol.11, N. 1, Springer, 
January 2006 

8. Dovier A., Burato M. and Fogolari F., Using Secondary Structure Information for Protein 
Folding in CLP(FD), In Procs. Workshop on Functional and Constraint Logic 
Programming, ENTCS, Vol 76, 2002 

9. Krippahl, L., Barahona, P., PSICO: Solving Protein Structures with Constraint 
Programming and Optimisation, Constraints 2002, 7, 317-331 

10. Krippahl, L., Barahona, P., Applying Constraint Programming to Protein Structure 
Determination, Principles and Practice of Constraint Programming, Springer, 1999  
289-302 

11. Krippahl L. and Barahona P., Propagating N-Ary Rigid-Body Constraints, Principles and 
Practice of Constraint Programming, CP'2003 (Procs.), Francesca Rossi (Ed.),  Lecture 
Notes in Computer Science, vol. 2833, Springer, pp. 452-465,  October, 2003. 

12. Krippahl L, Barahona P. PSICO: Solving Protein Structures with Constraint Programming 
and Optimisation, Constraints 2002, 7, 317-331 

13. Palma PN, Krippahl L, Wampler JE, Moura, JJG. 2000. BiGGER: A new (soft) docking 
algorithm for predicting protein interactions. Proteins: Structure, Function, and Genetics 
39:372-84. 

14. Krippahl L, Moura JJ, Palma PN. 2003. Modeling protein complexes with BiGGER. 
Proteins: Structure, Function, and Genetics. V. 52(1):19-23. 

15. Dominguez C, Boelens R, Bonvin AM. HADDOCK: a protein-protein docking approach 
based on biochemical or biophysical information. J Am Chem Soc. 2003 Feb 
19;125(7):1731-7. 

16. Moont G., Gabb H.A., Sternberg M. J. E., Use of Pair Potentials Across Protein Interfaces 
in Screening Predicted Docked Complexes Proteins: Structure, Function, and Genetics, 
V35-3, 364-373, 1999 

17. Krippahl L. and Barahona P., Applying Constraint Programming to Rigid Body Protein 
Docking,  Principles and Practice of Constraint Programming, CP'2005 (Procs.), Peter van 
Beek (Ed.),  Lecture Notes in Computer Science, vol. 3709, Springer, pp. 373-387, 
October, 2005. 

18. Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem AA, Aflalo C, Vakser IA. 1992 
Molecular surface recognition: determination of geometric fit between proteins and their 
ligands by correlation techniques. Proc Natl Acad Sci U S A. 1992 Mar 15;89(6):2195-9. 

19. Pettigrew GW, Goodhew CF, Cooper A, Nutley M, Jumel K, Harding SE. 2003, The 
electron transfer complexes of cytochrome c peroxidase from Paracoccus denitrificans. 
Biochemistry. 2003 Feb 25;42(7):2046-55. 

20. Pettigrew GW, Prazeres S, Costa C, Palma N, Krippahl L, Moura I, Moura JJ. 1999. The 
structure of an electron transfer complex containing a cytochrome c and a peroxidase. J 
Biol Chem. 1999 Apr 16;274(16):11383-9. 

 



 A Constraint Programming Approach to Bioinformatics Structural Problems 49 

21. Pettigrew GW, Pauleta SR, Goodhew CF, Cooper A, Nutley M, Jumel K, Harding SE, 
Costa C, Krippahl L, Moura I, Moura J. 2003. Electron Transfer Complexes of 
Cytochrome c Peroxidase from Paracoccus denitrificans Containing More than One 
Cytochrome. Biochemistry 2003, 42, 11968-81 

22. Morelli X, Dolla A., Czjzek M, Palma PN, Blasco, F, Krippahl L, Moura JJ, Guerlesquin 
F. 2000. Heteronuclear NMR and soft docking: an experimental approach for a structural 
model of the cytochrome c553-ferredoxin complex. Biochemistry 39:2530-2537. 

23. Morelli X, Palma PN, Guerlesquin F, Rigby AC. 2001. A novel approach for assessing 
macromolecular complexes combining soft-docking calculations with NMR data. Protein 
Sci. 10:2131-2137. 

24. Palma PN, Lagoutte B, Krippahl L, Moura JJ, Guerlesquin F. Synechocystis ferredoxin / 
ferredoxin - NADP(+)-reductase/NADP+ complex: Structural model obtained by NMR-
restrained docking. (2005) FEBS Lett. 2005 Aug 29;579(21):4585-90. 

25. Impagliazzo A, Krippahl L and Ubbink M. Pseudoazurin : Nitrite Reductase Interactions 
(2005) ChemBioChem 6, 1648-1653 

26. Güntert, P., Mumenthaler, C. & Wüthrich, K. (1997). Torsion angle dynamics for NMR 
structure calculation with the new program DYANA. J. Mol. Biol. 273, 283-298. 

27. M. Correia, P. Barahona and F. Azevedo, CaSPER: A Programming Environment for 
Development and Integration of Constraint Solvers, in Proceedings of the First 
International Workshop on Constraint Programming Beyond Finite Integer Domains 
(BeyondFD'05), Azevedo et al. (Editors), pages 59-73, 2005. 

28. Krippahl, L. Integrating Web Resources to Model Protein Structure and Function. RW-
SISS-'2006 (Procs.), Pedro Barahona (Ed.), Lecture Notes in Computer Science, vol. 4126, 
Springer, pp. 184-196, September 2006. 

29. J.C. Almeida Santos, Mining Protein Structure Data, M.Sc. Thesis, New University of 
Lisbon, 2006 

30. Correia M. and Barahona P., Machine Learned Heuristics to Improve Constraint 
Satisfaction, 17th Brazilian Symposium on Artificial Intelligence, SBIA’04 (Procs.), 
Ana.L.C. Balzan and Sofiane Labidi (eds.), LNCS, vol. 3171, Springer, pp.103-113, 
Maranhão, Brazil, 2004 

31. W. Harvey and M. Ginsberg, Limited Discrepancy search, in Proceedings of IJCAI, 
International Joint Conference on Artificial Intelligence, C. Mellish (ed.), Montreal, 1995. 



Rewriting Haskell Strings

Duncan Coutts1, Don Stewart2, and Roman Leshchinskiy2

1 Programming Tools Group
Oxford University Computing Laboratory

2 Computer Science & Engineering
University of New South Wales

duncan.coutts@comlab.ox.ac.uk, {dons,rl}@cse.unsw.edu.au

Abstract. The Haskell String type is notoriously inefficient. We intro-
duce a new data type, ByteString, based on lazy lists of byte arrays, com-
bining the speed benefits of strict arrays with lazy evaluation. Equational
transformations based on term rewriting are used to deforest interme-
diate ByteStrings automatically. We describe novel fusion combinators
with improved expressiveness and performance over previous functio-
nal array fusion strategies. A library for ByteStrings is implemented,
providing a purely functional interface, which approaches the speed of
low-level mutable arrays in C.

Keywords: Program fusion, Deforestation, Functional programming.

1 Introduction

Haskell can be beautiful. Here we have a small Haskell program to compute the
hash of the alphabetic characters in a file:

return · foldl ′ hash 5381 · map toLower · filter isAlpha =<< readFile f
where hash h c = h ∗ 33 + ord c

and an equivalent naive C implementation:

int c;
long h = 5381;
FILE *fp = fopen(f, "r");
while ((c = fgetc(fp)) != EOF)
if (isalpha(c))

h = h * 33 + tolower(c);
fclose(fp);
return h;

Although elegant, the naive Haskell program is many times slower than the
naive C version! Sadly it is all too common an experience that idiomatic Haskell
programs dealing with strings and I/O can have poor performance.

With some care, it is possible to produce a reasonable Haskell implementation
a few times slower than the C version, but at the expense of simplicity and ele-
gance. This is unsatisfying, as the benefits of higher abstraction are abandoned.
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Ideally, we would have our cake and eat it too. That is, we would like to program
in a high-level declarative style and also produce fast code that is competitive
with C:

import Data.ByteString .Lazy .Char8 as B
return · B .foldl ′ hash 5381 · B .map toLower · B .filter isAlpha =<< B .readFile f

where hash h c = h ∗ 33 + ord c

By replacing the string type with our ByteString representation, Haskell is
able to approach the speed of C, while still retaining the elegance of the idioma-
tic implementation. With stream fusion enabled, it actually beats the original
C program (Figure 1). Only by sacrificing clarity and explicitly manipulating
mutable blocks is the C program able to outperform Haskell.

Block-IO C

ByteString (fusion)

Naive C

ByteString (no fusion)

Haskell [Char]

 0  1  2  3  4  5  6  7  8

Fig. 1. Relative running times (seconds)

The main contribution of this paper is to introduce a new system for fusion,
based on streams, offering greater expressiveness and generality than has been
possible with previous work on functional array fusion [3,4]. Secondly, we de-
scribe a full scale, successful implementation of stream fusion for byte arrays,
providing a fast ByteString type for Haskell. The implementation utilises exis-
tential types [10], the Haskell foreign function interface [2] and compiler rewrite
rules [11], while presenting the user with a familiar, purely functional interface.
The fusion techniques presented are not restricted to arrays or to Haskell, and
should be generally applicable to sequence-like data structures, including lists.

The use of fusible array combinators dramatically improves both the time
and space performance of I/O and string-based Haskell programs. Indeed, we
are finally able to realise the performance promise of declarative programming
in Haskell. The ByteString library is shipped with the latest Haskell implemen-
tations. The performance results therefore have practical impact, as the library
is already used in performance-critical applications [1].

The remainder of the paper is organised as follows: in Section 2 we describe
briefly the ByteString data types, both strict and lazy versions. Section 3 gives an
overview of related fusion systems before presenting fusion based on streams and
its application to ByteStrings . Section 4 explains the concrete implementation
of the ByteString types. Section 5 presents benchmarks and finally in Section 6
we suggest further work before concluding.
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2 Representing Strings

When the designers of Haskell chose a representation for strings they chose
simplicity and elegance over performance:

type String = [Char ]

The representation is certainly convenient. A wide range of polymorphic list
functions are available, and the recursive structure of the list type makes it
easy to write inductively defined functions. The use of a concrete, rather than
abstract, data type, allows for a very expressive programming style using pattern
matching.

The representation is also undeniably inefficient; for both processing and in-
put/output. A linked list of boxed characters gives poor data density and often
poor locality of reference. With the heap representation used by the Glasgow
Haskell Compiler (GHC) [14] on a 32 bit machine the [Char ] type uses 12 bytes
per character1. This means only 5 characters fit into a 64 byte cache line.

The obvious solution to the performance problems is to use arrays of unboxed
bytes. The first step is to implement an abstract type, ByteString, internally
represented by unboxed byte arrays, along with a suite of operations over this
type similar to those available for the standard String type. Full details of the
representation are deferred to Section 4.1.

The lazy [Char ] representation means that it is not necessary to keep the whole
string resident in memory if it can be generated and consumed incrementally.
Haskell supports this programming style by providing “lazy I/O”: functions that
transparently interleave processing of data with I/O, enabling programs to run
in constant space.

A ByteString representation based on unboxed byte arrays, however, forces the
entire string to be resident at all times – lazy I/O is impossible. When working
with files larger than available memory, a strict ByteString representation can
be simply unusable. Forcing users to explicitly manage data in blocks, as C
programmers typically must do, would be a great shame in a language built on
lazy evaluation. The solution to restore laziness is to define a lazy list structure
containing strict elements:

import qualified Data.ByteString as Strict
newtype ByteString = LBS [Strict .ByteString ]

This representation provides the best of both worlds, enabling both the perfor-
mance benefits of strict ByteStrings and lazy processing of streams. The repre-
sentation is described in more detail in Section 4.2.

3 Fusion

The program presented in the introduction is essentially a pipeline of simple
computations. This is a typical example of high-level Haskell code: the ability to
1 Char boxes are preallocated by GHC as an optimisation, reducing the space from

20 to 12 bytes per character.
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formulate complex algorithms as compositions of primitive combinators is one of
the main strengths of the functional paradigm. However, extensive optimisation
is required to compile programs written in this style to efficient code. In parti-
cular, a naive implementation would create a large number of intermediate data
structures, resulting in suboptimal performance with respect to both space and
time.

Eliminating intermediate results is particularly important in array-based pro-
grams. Consider, for instance, the computation sum (enumFromTo 0 n). With
lists, Haskell’s non-strictness ensures that enumFromTo produces one element
at a time which is then immediately consumed by sum. Thus, although an in-
termediate list is created the computation can still run in constant space. In
the case of arrays, however, the entire intermediate array must be allocated and
filled before sum can be applied to it. In addition to requiring O(n) space, this
evaluation strategy is also ill-suited to modern hardware, especially with respect
to cache behaviour.

If we want to generate efficient code for such computations we have to ensure
that the intermediate data structure is eliminated automatically. In the context
of inductive data structures, in particular lists, this problem is known as defo-
restation [15] and has been studied extensively [9]. Array fusion, on the other
hand, has received comparatively little attention. In the following, we discuss a
number of approaches to fusion for both arrays and lists, before describing the
system used in the ByteString library.

3.1 Fusion Strategies

The Glasgow Haskell Compiler makes implementing fusion particularly easy due
to its support for programmer-defined rewrite rules [11] which are applied by
the compiler during optimisation. This allows us to specify custom equational
transformations as part of the library without changing the compiler, in a manner
similar to the list fusion system currently used by GHC. This flexibility has let
us experiment with a number of fusion systems in the ByteString library. We
review the most important ones below.

foldr/build. The most popular approach to list deforestation, and indeed
the one used by GHC, is foldr/build fusion [7,6,5,8,13]. It requires basic list
operations to be written in terms of two combinators:

foldr :: (a → b → b) → b → [a] → b
build :: (∀b. (a → b → b) → b → b) → [a]

Here, foldr is the list catamorphism, and build is an abstract list constructor.
The fusion rule:

〈foldr/build fusion〉 ∀ g k z . foldr k z (build g) �→ g k z

eliminates intermediate lists by passing the elements constructed by g directly
to the consumer k . Though only a limited range of functions are fusible, this
system works well and, despite initial appearances, is even applicable to non-
inductive sequences such as arrays [7]. However array fusion based on foldr/build
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is currently not efficient enough to be practical. Fused array code requires a
particular form of higher-order function that cannot be compiled to efficient code
by current versions of GHC. For the same reason, GHC cannot produce efficient
code for a fused foldl under this approach, greatly limiting the application of
foldr/build to arrays, where many key functions make use of foldl traversals (for
example, sum).

destroy/unfoldr . Just as with foldr/build fusion, destroy/unfoldr fusion [12]
defines two combinators, one for production and one for consumption:

destroy :: (∀b. (b → Maybe (a, b)) → b → c) → [a] → c
unfoldr :: (b → Maybe (a, b)) → b → [a]

The production of lists is captured by the list anamorphism unfoldr . It pro-
duces a list from the seed b and a stepper function which, given the current seed,
either generates the next element and the new seed, or returns Nothing ending
the list. List consumption is encapsulated by destroy . As before, intermediate
lists are eliminated by a fusion rule which ensures that produced elements are
immediately passed on to the consumer:

〈destroy/unfoldr fusion〉 ∀ g f e . destroy g (unfoldr f e) �→ g f e

A major advantage of destroy/unfoldr is its support for foldl and zip-like
algorithms, which cannot be implemented easily in the foldr/build framework.

One aspect that feels somewhat suboptimal is that defining functions that
both produce and consume lists (such as map) is not totally straightforward
and the full fusion transformation for them requires many steps, including an
additional destroy/destroy rule.

Functional Array Fusion. Chakravarty and Keller [3,4] introduce a fusion
system designed specifically for array code. It is based on a single combinator
which captures left-to-right array traversals:

loop :: (s → a → (s, Maybe a)) → s → Array a → (Array a, s)

The semantics of a traversal is given by a stepper function which, given a state
and an array element, produces a new state and, optionally, a new element. The
main fusion rule combines adjacent loops by suitably composing the stepper
functions:

〈loop/loop fusion〉 ∀ f g s t .
loop f s · fst · loop g t �→ loop (fuse f g) (s, t)

While this system has been shown to work well for standard array algorithms
such as map, filter and scan, it does not readily support more complex compu-
tations, in particular those which process arrays from right to left or consume
multiple arrays. In particular, zips can only be fused in this framework if the
array type is polymorphic in the type of the elements which ByteString is not.
Furthermore, array transformers that produce more elements than they consume
cannot be implemented at all; this rules out a fusible concatMap.
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3.2 Stream Fusion

Of the three fusion systems, our contribution is most closely related to the
destroy/unfoldr system and indeed inherits many of its benefits.

Both foldr/build and destroy/unfoldr reflect the inductive structure of lists,
effectively requiring fusible algorithms to process elements from head to tail. An
array fusion framework, however, should support other access patterns if we are
to effectively make use of O(1) array indexing. Thus, we would like to decouple
the order in which array elements are read or written from the computation
performed for each element. In general, we are interested in a range of single-
pass algorithms which access each element exactly once. Such algorithms can be
split into three phases:

– read the array producing a stream of elements,
– process the elements transforming the stream, and
– write the resulting stream into a new array.

With such a separation, access patterns can be fully captured by the read and
write phases, without affecting the processing phase. Furthermore, in a pipeline
composed of such computations, adjacent write/read phases can be eliminated
provided they access elements in the same order.

Obviously, a crucial question is how streams of elements are represented. Since
they will always be used sequentially, lists seem to be an obvious choice. However,
this would leave us with the problem of eliminating intermediate lists in addition
to fusing the write/read phases. We can do better than that by encapsulating a
list anamorphism:

data Step s =Done
| Yield Word8 s
| Skip s

data Stream = ∃s. Stream (s → Step s) s Int

Here, a Stream is defined by an existentially wrapped seed and a stepper function
which, in each step, can indicate one of three possible results: no more elements
will be produced (Done); a new element is produced together with a new seed
(Yield); or a new seed is returned without producing an element (Skip). The last
alternative, while not strictly necessary, leads to more efficient code. Streams
also store a hint on the number of elements. This helps to reduce the number
of costly array reallocations in the write phase. For the ByteString library we
restrict ourselves to streams of Word8. The above definition, however, can be
easily made polymorphic in the type of elements. For efficiency reasons, we make
extensive use of strictness annotations, omitted here for clarity.

We can now easily convert an array to a stream by reading the elements from
left to right (we defer the discussion of other access patterns to Section 3.6):

readUp :: ByteString → Stream
readUp s = Stream next 0 n

where
n = length s
next i | i < n = Yield (index s i) (i + 1)

| otherwise = Done
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The implementation of writeUp :: Stream → ByteString, which constructs an
array from a stream, is omitted for space reasons but is equally straightforward.

Crucially, converting a stream to an array and then back is just the identity
operation on streams. Hence, the two conversions can be eliminated, avoiding
the creation of the intermediate array. This insight is captured by the following
rewrite rule, which is central to our fusion framework:

〈readUp/writeUp fusion〉 readUp · writeUp �→ id

3.3 Stream Transformers

The reading and writing phases of array algorithms are captured by readUp
and writeUp, respectively, but how do we implement the processing phase? In
general, an array transformer of type ByteString → ByteString will have the form
writeUp · h · readUp where h is a stream transformer of type Stream → Stream.
For instance, we can implement map as follows:

map :: (Word8 → Word8) → ByteString → ByteString
map f = writeUp · mapS f · readUp

The actual computation is performed by mapS , which applies f to each element
of a stream:

mapS :: (Word8 → Word8) → Stream → Stream
mapS f (Stream next s n) = Stream next ′ s n

where
next ′ s = case next s of

Done → Done
Yield x s ′ → Yield (f x) s ′

Skip s ′ → Skip s ′

With these definitions we can already fuse simple map pipelines:

map f · map g
= writeUp · mapS f · readUp · {inline map ×2}

writeUp · mapS g · readUp
= writeUp · mapS f · mapS g · readUp {readUp/writeUp fusion}

Here, eliminating the readUp · writeUp has brought the two stream transformers
together. One might expect that a separate rewrite rule is required for the two
applications of mapS to be fused, however, as the definition of mapS is non-
recursive, the standard optimisations performed by GHC are sufficient2.

Indeed, it is precisely the desire to avoid recursion in stream transformers
which has led us to allow stepper functions to return a new seed without pro-
ducing a new element. Consider the following definition of filter :

filter :: (Word8 → Bool) → ByteString → ByteString
filter p = writeUp · filterS p · readUp

and the corresponding stream transformer:
2 This is quite similar to destroy/unfoldr fusion where the compiler is expected to

automatically eliminate temporary Maybe values.
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filterS :: (Word8 → Bool) → Stream → Stream
filterS p (Stream next s n) = Stream next ′ s n

where
next ′ s = case next s of

Done → Done
Yield x s ′ | p x → Yield x s ′

| otherwise → Skip s ′

Skip s ′ → Skip s ′

Note how next ′ yields Skip s ′ for each deleted element. The alternative — re-
cursively skipping to the next element satisfying the predicate — would prevent
pipelines involving filter from being optimised satisfactorily.

3.4 Folding

Pure consumers, such as folds, are similarly easy to implement in the stream
fusion framework. These algorithms only have a reading and a processing phase,
so, for instance, foldl ′ is implemented as:

foldl ′ :: (a → Word8 → a) → a → ByteString → a
foldl ′ f z = foldlS ′ f z · readUp

where foldlS ′ folds a stream from left to right:
foldlS ′ :: (a → Word8 → a) → a → Stream → a
foldlS ′ f z (Stream next s n) = loop z s

where
loop z s = case next s of

Done → z
Yield x s ′ → loop (f z x) s ′

Skip s ′ → loop z s ′

Some fold-like algorithms can produce a result without necessarily traversing
the entire array. A prime example is find which searches for the first element
satisfying a given predicate. We would like such computations to terminate as
soon as possible while still being fusible. With foldr/build fusion this can only be
done by employing laziness while with streams (and destroy/unfoldr ) it can be
done directly and efficiently. As before, we split the algorithm into two phases:

find :: (Word8 → Bool) → ByteString → Maybe Word8
find p = findS p · readUp

In contrast to the algorithms presented so far, findS does not consume the entire
stream. Instead, it returns as soon as it encounters an element which satisfies
the predicate:

findS :: (Word8 → Bool) → Stream → Maybe Word8
findS p (Stream next s n) = loop s

where
loop s = case next s of

Done → Nothing
Yield x s ′ | p x → Just x

| otherwise → loop s ′

Skip s ′ → loop s ′
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3.5 Fusing Pipelines

We are now in the position to demonstrate how the program presented in Sec-
tion 1 is transformed by GHC using our fusion framework. For simplicity, let us
just consider the inner pipeline, omitting I/O-related functions:

foldl ′ f z · map g · filter h
= foldlS ′ f z · readUp · writeUp · mapS g {inline foldl ′, map

· readUp · writeUp · filterS h · readUp and filter}
= foldlS ′ f z · mapS g · filterS h · readUp {readUp/writeUp fusion}

Note how the original code, which used three loops and two intermediate arrays,
has been automatically transformed into a single array traversal. Moreover, GHC
is able to further optimise the code by inlining and combining the stream trans-
formers and, thus, eliminating intermediate Step values. Overall, stream fusion
improves the performance of this example by a factor of around 2.4.

3.6 Down Loops

Unlike lists, arrays provide O(1) indexing, making left-to-right and right-to-left
traversals equally efficient. Several important functions, most prominently foldr
and its strict version foldr ′, are best implemented as down loops. Fortunately, we
can easily extend our framework with functions for reading and writing arrays
from right to left:

readDn :: ByteString → Stream
writeDn :: Stream → ByteString

Adding a fusion rule for these is straightforward:

〈readDn/writeDn fusion〉 readDn · writeDn �→ id

We are thus able to fuse both up and down loops equally well.

3.7 Bidirectional Loops

Combinations of up and down loops are more problematic. It is clear that it is
not generally possible to directly combine up and down traversals into a single
traversal. However, there are several important special case functions for which
it would be valid to do so. Consider:

foldr ′ f z · map g
= foldrS ′ f z · readDn · writeUp · mapS g · readUp {inline foldr ′ and map}

and we can fuse no further. However, map is able to generate the same result
traversing either up or down, so a valid optimisation would be instead to map
the stream in reverse, enabling fusion:

foldrS ′ f z · readDn · writeDn · mapS g · readDn
= foldrS ′ f z · mapS g · readDn {readDn/writeDn fusion}

We need a way to specially tag functions whose semantics allow them to be
safely applied to either up or down streams. There is a difficulty though, as
any change in stream direction, to fuse one readDn/writeUp pair, will require
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flipping other readUps into readDns. To deal with this we define wrappers over
functions categorised by their direction and result type. We define:

producerDn :: Stream → ByteString
consumerDn :: (Stream → a) → (ByteString → a)
transformerDn :: (Stream → Stream) → (ByteString → ByteString)

producerDn f = writeDn f
consumerDn f = f · readDn
transformerDn f = writeDn · f · readDn

and matching Up versions. From these definitions, and the existing read/write
fusion rules, we can derive:

〈consumerDn/producerDn fusion〉 ∀ f g .
consumerDn f (producerDn g) �→ f g

〈consumerDn/transformerDn fusion〉 ∀ f g .
consumerDn f · transformerDn g �→ consumerDn (f · g)

〈transformerDn/producerDn fusion〉 ∀ f g .
transformerDn f (producerDn g) �→ producerDn (f g)

〈transformerDn/transformerDn fusion〉 ∀ f g .
transformerDn f · transformerDn g �→ transformerDn (f · g)

The rules for up loops follow the same pattern. We can now tag our traversal-
independent functions as bidirectional, with special loop primitives:

producerBi :: Stream → ByteString
consumerBi :: (Stream → a) → (ByteString → a)
transformerBi :: (Stream → Stream) → (ByteString → ByteString)

Their implementation are that of the Up or Down versions; here we will use the
Up definition. Their use however must satisfy these side conditions:

∀ f . producerBi f = reverse · producerBi f
∀ f . consumerBi f = consumerBi f · reverse
∀ f . transformerBi f = reverse · transformerBi f · reverse

Traversals that do satisfy these conditions include:

replicate x n = producerBi (replicateS x n)
sum = consumerBi (foldlS ′ (+) 0)
map f = transformerBi (mapS f )

Using the side conditions we can derive the fusion rules for bidirectional loops.
For the derivations we will make use of a reverse lemma: that readUp · reverse
= readDn and readDn · reverse = readUp. There are many derived fusion ru-
les; as an example, to fuse a foldr ′ with map we would have:

consumerDn f · transformerBi g
= consumerDn f · reverse ·

transformerBi g · reverse {bidirection side condition}
= f · readDn · reverse · {definition of consumerDn and

writeUp · g · readUp · reverse definition of transformerBi}
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= f · readUp · writeUp · g · readDn {reverse lemma ×2}
= f · g · readDn {Up/Up fusion}
= consumerDn (f · g) {definition of consumerDn}

giving us the rule:

〈consumerDn/transformerBi fusion〉 ∀ f g .
consumerDn f · transformerBi g �→ consumerDn (f · g)

and allowing us to fuse our example:

foldr ′ f z · map g
= consumerDn (foldrS ′ f z) · transformerBi (mapS g) {inline foldr ′ and map }
= consumerDn (foldrS ′ f z · mapS g) {fusion}

Being able to fuse bidirectional functions, such as map, filter and length, with
such simplicity, is a great advantage: there is no penalty for using either up
or down loops. The programmer can switch between foldl ′ and foldr ′ as their
program requires. In contrast, foldr/build , and other fusion systems designed for
inductive structures, have much greater difficulty with direction changes.

4 Implementation

4.1 ByteString

We implement a complete list-like interface to the ByteString type. To support
an inductive view of strings we need a representation that supports head and
tail efficiently. The simplest representation would be to use an array of unboxed
bytes. However, such a structure cannot directly support head or tail without
copying. The addition of offset and length fields is required. A zero-copy substring
can then be constructed by simply modifying the length and offset fields.

For pragmatic reasons, instead of using Haskell’s native unboxed arrays, we
use a ForeignPtr to a contiguous block of bytes. The advantage is that this allows
memory for the string to be allocated either on the Haskell GC-managed heap,
or outside of Haskell (with a finaliser function to control deallocation). We can
thus share ByteStrings with libraries written in foreign languages, such as C,
without copying. For example, it is possible to memory-map a file directly to a
ByteString, and to attach a finaliser to unmap the file when the garbage collector
determines it is no longer in use. The concrete representation of ByteStrings is
thus merely the pointer, offset and length:

data ByteString = BS !(ForeignPtr Word8) !Int !Int

GHC is able to optimise this representation by unboxing the ForeignPtr and
the two integers into the ByteString constructor. There is therefore only a single
indirection to access the string data.

4.2 Lazy ByteString

Lazy ByteStrings are represented as a list of strict ByteString chunks. There is
some redundancy in this representation as zero-sized chunks might appear in the
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list, yet have no semantic value. To avoid this redundancy, empty list elements
are disallowed, simplifying the logic required to manipulate lazy ByteStrings.

Profiling was used to find an optimal chunk size: too small, and performance
approaches that of a [Char ] structure, too large (larger than the L2 cache) and
performance also falls away. In practice, a chunk size that allows the working set
to fit comfortably in the L2 cache has been found to be best.

There are some additional advantages to the chunked representation: some
operations requiring copying in the strict ByteString case only need manipulation
of the spine of the lazy ByteString structure. For example, append runs in O(n/c)
time (for chunk size c), versus O(n) for the strict version, with similar results
for concat , cons and snoc. For these gains, we willingly pay a small overhead:
the extra indirection from the list spine and the extra cases to consider when
processing the more-complex representation.

5 Results

Comparing Haskell Lists and ByteStrings. Figure 2 compares standard
[Char ] library functions to their equivalent lazy ByteString implementations,
applied to a 5M input string. Care is taken to explicitly force the evaluation of
lazy lists, ensuring the cost of their construction is measured. As expected the
lazy ByteString type is dramatically faster than [Char ]. Memory usage of the
fused ByteString is also 95% less than that of the [Char ] version.

Comparative Fusion Strategies. In order to quantify the effect of stream
fusion, we implemented the complete functional array fusion described by Chak-
ravarty and Keller [3,4]. The original formulation, based on the loop combinator,
only fuses functions that make “up” traversals of arrays. We extended this sys-
tem to also support fusion of down and bidirectional array traversals. In Figure 3
we compare the running time of a range of fusible strict ByteStrings expressions,
implemented either via streams or loop. Each column represents a fusible expres-
sion, and we test all array traversal combinations. Results are averaged over 10
runs, with the cache dirtied between runs. The stream-based implementation of
ByteStrings runs on average 41% faster than the loop-based implementation,
and up to 88% faster in the best case. We believe this is because the loop sys-
tem needs more glue code to construct the fused versions. It appears that this
glue code cannot always be fully eliminated and this may also interfere with
additional optimisations.

Effect of Fusion. Figure 4 measures the effect fusion has on strict ByteStrings ,
by measuring running time with and without the stream fusion rule enabled.
When stream fusion occurs it greatly improves the running time of array code.
Over the micro benchmark suite the average speed increase due to fusion is 74%,
and 89% in the best case. The memory usage decreases by around 85% when
fusion is enabled, due to the deforestation of intermediate arrays.
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Comparing with C. Performance was measured against a range of standard
Unix tools implemented in C in Figure 5. We measure both ByteString and
[Char ] implementations (one line Haskell programs) against their C equivalent.
Although the C programs use a wide variety of optimisations (such as seek ), the
ByteString implementations are certainly competitive.

6 Further Work

More remains to be done, and this work has highlighted some promising direc-
tions for improving the performance of various aspects of Haskell.

Haskell lists. Adapting the polymorphic Haskell [a] type to use stream fusion,
as a potential solution to the limitations of foldr/build fusion, seems a fruitful
area to pursue.

Code generation. The object code GHC produces from stream combinators is
fast enough that several low level issues become significant. For example, im-
proving GHC’s ability to arrange code blocks to make best use of the branch-
prediction behaviour of modern CPUs is one area we wish to investigate.

Multiple traversals. A range of common functions traverse two or more streams
simultaneously: for example, append or zip. Developing efficient stream fusion
techniques for such functions is ongoing work.

7 Conclusion

By exploiting equational transformations via rewrite rules, it is possible to au-
tomatically fuse a wide range of array-based functions. This work goes beyond
previous functional array fusion techniques by enabling fusion of bidirectional
traversals and short-circuiting loops. Stream fusion is not limited to a single
concrete type, but provides a general fusion mechanism for arbitrary data types
expressible as streams. To demonstrate the application of stream fusion we have
implemented a high-performance string processing library for Haskell, providing
C-like speed, yet retaining idiomatic Haskell brevity and clarity. The source code
for the ByteString library, all examples and a list of applications are available
online [1].
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Abstract. A technique is described that enables purely functional pro-
grammers to write efficient search programs in the same form as simple
and naive but exhaustive search programs. It performs pruning while
retaining a simple program form by exploiting a lazy data structure, an
improving sequence, which is a monotonical sequence of approximation
values that approach the final value. If some approximation value in an
improving sequence has sufficient information to yield the result of some
part of the program, the computations that produce the values remain-
ing after the approximation can be pruned. On the basis of an exhaustive
search program, which can be regarded as the specification of a problem,
three important search algorithms, namely best-first, depth-first branch-
and-bound, and iterative-deepening, can be obtained by using suitable
functions defined on improving sequences. Two specific examples, the
eight puzzle problem and the knapsack problem in Haskell, demonstrate
that the technique is practical.

Keywords: intermediate results, purely functional data structures, im-
proving sequences, lazy evaluation.

1 Introduction

We have developed a technique that enables purely functional programmers to
write efficient search programs in the same form as simple and naive but exhaus-
tive search programs.

It preserves the clarity of the program form by exploiting a lazy data struc-
ture, an improving sequence [9], which is a monotonical sequence of approxima-
tion values that are gradually improved on the basis of some ordering relation
so that they approach the final value. If some approximation value within the
improving sequence has sufficient information to yield the result of some part
of the program, the computations that produce the values remaining after the
approximation value can be pruned. By using improving sequences together with
suitable functions defined on the sequences, we can rewrite naive and exhaus-
tive search programs, which can be regarded as the problem specification, into
efficient search programs.

M. Hanus (Ed.): PADL 2007, LNCS 4354, pp. 65–79, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



66 T. Morimoto, Y. Takano, and H. Iwasaki

We define functions on improving sequences to implement three important
search algorithms [13]: best-first [7], depth-first branch-and-bound [11], and
iterative-deepening [10].

The organization of this paper is as follows. In Section 2, we begin by reviewing
the definition and usage of improving sequences in Haskell [1]. We then show, in
Section 3, the typical form for an exhaustive search program and apply improving
sequences to the program while maintaining its simple form. In the following
three sections, we define functions that enable a simple improving sequence-based
program to implement the three search algorithms. In Section 7, we modularize
the functions into higher-order functions, and in Section 8 we present specific
examples, namely the eight puzzle problem and the knapsack problem. Finally,
we discuss related work in Section 9, and conclude with a brief summary in
Section 10.

The Haskell source code described in this paper is available via the web at
http://ipl.cs.uec.ac.jp/%7Emorimoto/is/bf-dfbb-id/.

2 Improving Sequences

Improving sequences [9] enable exhaustive programs to be rewritten into more
efficient ones with pruning without spoiling the simple forms that are easily
understood. An improving sequence is a lazy monotonical sequence of approxi-
mation values that are gradually improved on the basis of some ordering relation
so that they approach the final value. When sufficient information is provided
by an approximation value, reading the next approximation value in a demand-
driven manner enables unnecessary computations in the improving sequence to
be eliminated.

2.1 Definition in Haskell

Each element of an improving sequence is a lazy data structure consisting of
an approximation value, its remaining computations, and some ordering binary
relation that is totally defined. Each remaining computation is also an improving
sequence. An improving sequence is constructed in such a way that two adjacent
values in the sequence have a binary relation. We can thus use an approximation
value together with the binary relation to judge the necessity of the remaining
computations.

In Haskell, an improving sequence is defined as a particular data type:

data Ord a => IS a = a :? IS a | E deriving Eq

Expression x :? xs denotes an improving sequence consisting of approximation
value x and its remaining computations, xs. Operator < of the Ord type class is
used as the ordering binary relation. Hence, the type of approximation values
must be an instance of Ord. An improving sequence may be finite or infinite. If
a sequence is finite, data constructor E denotes the termination of the sequence; it
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indicates that the current value cannot be further improved. For instance, 0 :?
1 :? 2 :? 3 :? E denotes an improving sequence whose values are gradually
improved from initial value 0 to final value 3 based on relation < defined on Int.

The above definition of improving sequences resembles that of lazy lists. How-
ever, we introduce the new type IS instead of using lists for clarity of exposition.

2.2 Use of Improving Sequences

We illustrate the definition of functions that use improving sequences and the use
of improving sequences to eliminate unnecessary computations by considering
function length, which returns the length of a given list.

length :: [a] -> Int -> Int
length [] n = n
length (x:xs) n = length xs (n+1)

The second argument of length is an accumulative parameter that holds the
number of elements in the list investigated so far; its initial value is 0. Assume
that we want to determine the value of 1 < length [1..100] 0 . Since operator
< is strict in both operands, length [1..100] 0 is evaluated until 100. It is
compared with 1, and True is returned as the final answer.

1 < length [1..100] 0
⇒ 1 < length [2..100] 1
⇒ 1 < length [3..100] 2

:
⇒ 1 < 100
⇒ True

However, because length [1..100] 0 is called in the context of the com-
parison to 1, the final answer could be determined to be True at the point of
the second recursive call, length [3..100] 2 , in which the second argument
guarantees that the length is at least 2. Thus, the remaining recursive calls are
not needed.

We can prune such unnecessary computations by using improving sequences.
First, we rewrite the definition of length so that it returns not an integer but
an improving sequence of integers. The definition of a function that returns
an improving sequence can be obtained by adding expressions that denote the
termination and an approximation during the computation. Function length
terminates its computation and returns value n when the given list is empty.
Otherwise, it is certain that the length is at least n, so length constructs a
structure whose approximation value is n and whose remaining computation is
length xs (n+1) . Therefore, the new definition of length can be obtained by
adding :? E in the former case and adding n :? to denote the approximation
in the latter case.

length :: [a] -> Int -> IS Int
length [] n = n :? E
length (x:xs) n = n :? length xs (n+1)
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For example, length [9,4] 0 returns 0 :? 1 :? 2 :? E . As shown above, a
function that returns an improving sequence retains the same form as that of its
simple and naive original definition.

The following comparison operator is used instead of < to prune unnecessary
computations.

(.<) :: Ord a => a -> IS a -> Bool
n .< E = False
n .< (x :? xs) = if n < x then True else n .< xs

Operator .< judges whether the first argument (an ordinary value) is less than
the final value of the second argument (an improving sequence). The second
clause of the above definition refers to intermediate result x of the second argu-
ment. Pruning using this operator is achieved when .< judges that n is less than
x ; True is immediately returned without investigating the sequence any further.
As a result, we can prune the computation that calculates length [4..100] 3
as follows.

1 .< (length [1..100] 0)
⇒ 1 .< (0 :? length [2..100] 1)
⇒ 1 .< (1 :? length [3..100] 2)
⇒ 1 .< (2 :? length [4..100] 3)
⇒ True

Thus, improving sequences enable us to attain both program efficiency and
clarity.

The functions on improving sequences used in this paper are defined as follows.

approx :: Ord a => IS a -> a
finalize :: Ord a => IS a -> IS a

approx (x :? xs) = x
finalize (x :? E) = x :? E
finalize (x :? xs) = finalize xs

Function approx returns the approximation value of a given sequence, and func-
tion finalize returns a sequence whose first value is the final value of a given
sequence.

2.3 Converting Ordering Relation

Values in an improving sequence of type IS a are improved on the basis of <
defined on type a, which is an instance of Ord. How do we make an improving
sequence whose values are improved based on another ordering relation, e.g.
>, other than < ? The answer is to define a new type and appropriately define
ordering relation <.

newtype Gt a = Gt a deriving Eq
instance Ord a => Ord (Gt a) where

(Gt x) < (Gt y) = y < x
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The values of an improving sequence on Gt a are inversely improved on binary
relation > on type a. For instance, Gt 2 :? Gt 1 :? Gt 0 :? E is a sequence
that decreases on Gt Int . By using operator >?

(>?) :: Ord a => a -> IS (Gt a) -> IS (Gt a)
x >? xs = Gt x :? xs

we can write this sequence as 2 >? 1 >? 0 >? E , which is more readable.
Type Gt a replaces binary relation < of an improving sequence with > on

type a. Similarly, types LtE a and GtE a are defined to describe improving
sequences based on relations <= and >= on type a, respectively.

(LtE x) < (LtE y) = x < y || x .== y
(GtE x) < (GtE y) = y < x || y .== x

Operator .== judges the equality of its operands using operator < on type class
Ord.

(.==) :: Ord a => a -> a -> Bool
x .== y = (x < y) == (y < x)

For instance, both Gt 1 .== Gt 1 and LtE 1 .== LtE 1 return True. Opera-
tors that construct an improving sequence on LtE and GtE are defined as <=? and
>=?, respectively. For consistency with operators >?, <=?, and <=? introduced
here, we use <? as an alias of :?, except for the pattern part of the function
definitions.1

(<?) :: Ord a => a -> IS a -> IS a
(<?) = (:?)

Because the binary relation of an improving sequence on type a depends only
on a, functions and operators defined on improving sequences can be used on any
kind of sequence. It may seem somewhat unusual that the sense of < is reversed
by Gt a . However, by the introduction of Gt a , tedious definitions of similar
comparison operators like .> are not needed. For example, operator .< in the
previous section can be reused to compare an improving sequence based on >
with some value.

3 Search Problem

The search problem is to find the least cost to a goal state reachable from a given
initial state. Generally speaking, the search space for states grows exponentially,
so the choice of search algorithm is critical for search programming. As men-
tioned in Introduction, there are three important search algorithms [13]: best-
first, depth-first branch-and-bound, and iterative-deepening. We implemented
functions for them by using improving sequences.
1 It would be better if we could define <? as a data constructor of IS a . However, it

is impossible to do so because Haskell requires that the name of a data constructor
begins with :.
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An exhaustive search uses a naive algorithm that searches the entire state-
space, so its program is terribly inefficient. However, it is simple enough to regard
as a specification for solving the problem.

The typical form of an exhaustive search program is

search :: s -> c
search state
| isGoal state = cost state
| otherwise =
minimum [search s | s <- children state, legal s]

where isGoal state judges whether state is a goal state, cost state returns
the actual cost of state, children state returns a list of the next states of
state, and legal state judges whether state is legal.

Using this definition, we can write an improving sequence-based program as
follows.

search :: Ord c => s -> IS c
search state
| isGoal state = cost state <? E
| otherwise = eval state <?
minimum’ [search s | s <- children state, legal s]

The additional expressions are <? E for the termination and eval state <?
to indicate the approximation value at the current stage of computation, where
eval state returns a lower bound (evaluated value) of the cost of state.
Function minimum’ :: [IS c] -> IS c is used instead of minimum :: [c]
-> c because this search returns an improving sequence. The need for the
remaining computations can be judged using the approximation value, eval
state . Therefore by defining a suitable minimum’, we can obtain efficient pro-
grams for the three search algorithms. The next three sections describe the three
algorithms.

4 Best-First Search

A best-first search (BFS) is a generic algorithm that expands the most promising
choice by using some evaluation function. Different evaluation functions lead to
different versions of the best-first search. For example, if the evaluation function
returns a depth from the initial state, the best-first search becomes a breadth-
first search. If the function returns the cost of the path from the initial state
to the current state, the search becomes a Dijkstra’s single-source shortest-path
search [3]. If the function returns the sum of the cost from the initial state and
the estimated cost of the path from the current state to the goal, the search
becomes A* search [5].

To obtain a BFS program based on the exhaustive search program described
in the previous section, we simply use function minimumB instead of minimum’.



Instantly Turning a Naive Exhaustive Search 71

searchB, search :: Ord c => s -> IS c
searchB = search
search state
| isGoal state = cost state <? E
| otherwise = eval state <?
minimumB [search s | s <- children state, legal s]

In this program, eval is the evaluation function for the BFS.
Function minimumB is defined in terms of function minB with two arguments,

similar to Burton’s minimum function [2].

minimumB :: Ord a => [IS a] -> IS a
minB :: Ord a => IS a -> IS a -> IS a

minimumB = foldl1 minB
minB E ys = E
minB xs E = E
minB xxs@(x :? xs) yys@(y :? ys)
| x == y = x <? minB xs ys
| x < y = x <? minB xs yys
| otherwise = y <? minB xxs ys

Essentially, minB merges two improving sequences in the order of binary relation
<, but, when one of the sequences terminates, the rest of the other sequence is
discarded. Therefore this means that all computations in the discarded sequence
are eliminated. Function minimumB implements a BFS because it first chooses
the minimum cost (approximation value) among the improving sequences given
in a list and prunes those sequences whose cost is greater than the minimum
cost. For example, consider the following example.

minB (2 <? E) (1 <? minB (3 <? xs) (4 <? ys))
⇒ 1 <? minB (2 <? E) (minB (3 <? xs) (4 <? ys))
⇒ 1 <? minB (2 <? E) (3 <? minB xs (4 <? ys))
⇒ 1 <? 2 <? minB E (3 <? minB xs (4 <? ys))
⇒ 1 <? 2 <? E

The computation whose approximation value is 1 is evaluated first, because it
is the most promising candidate. Next, the computation whose approximation
value is 2 is evaluated. Then, because the minimum cost is determined to be 2,
computations whose approximation value is 3, which is greater than the mini-
mum cost, are eliminated.

For improving sequences of Gt a , minimumB returns an improving sequence
that approaches the minimum value of Gt a , which is the maximum of a. Hence,
the following aliases are useful for readability when using improving sequences
of Gt a or GtE a .

maximumB = minimumB
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5 Depth-First Branch-and-Bound Search

A depth-first branch-and-bound (DFBB) search starts with an upper bound
on the minimum cost and then searches the entire state-space in a depth-first
manner. Whenever a new goal whose cost is lower than the best one found so
far is found, the upper bound is updated with the cost of this new goal. Any
state whose cost equals or exceeds the current bound is eliminated.

To create a DFBB search program, we add upper bound u as an argument to
search and use minimumD u for minimum’. Function minimumD u searches in
a depth-first manner and prunes using upper bound u. This search starts with
an initial upper bound, uinit.

searchD :: Ord c => s -> IS c
search :: Ord c => s -> IS c -> IS c

searchD state = search state (uinit <? E)
search state u
| isGoal state = cost state <? E
| otherwise = eval state <?
minimumD u [search s | s <- children state, legal s]

Note that search state returns a function that takes argument u and returns
an improving sequence.

Function minimumD searches each child in a depth-first manner as long as
the cost of a state is lower than the current upper bound. Whenever a better
new goal is found, the upper bound is updated. Let dfbb u f be a function
that searches child f in a depth-first manner under upper bound u. We define
minimumD as follows.

minimumD :: Ord a => IS a -> [IS a -> IS a] -> IS a
dfbb :: Ord a => IS a -> (IS a -> IS a) -> IS a

minimumD = foldl dfbb
dfbb u f = finalize (minB u (f u))

To understand the behavior of minimumD, consider the case in which the second
argument of minimumD is a list of two elements, [f,g].

minimumD u [f,g] = dfbb (dfbb u f) g

First, minimumD searches first child f under bound u; it then searches the second
child g using the search result for the first child as a new bound. Function dfbb
gives a bound to a child and then searches the child. Function minB u , defined
in the previous section, prunes a child state whose cost equals or exceeds upper
bound u ; finalize implements depth-first behavior.

As shown above, we can construct a DFBB search program by simply adding
argument u to search, applying minimumD, and setting an initial value for u.
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6 Iterative-Deepening Search

An iterative-deepening (ID) search repeats a series of depth-first searches while
updating the cost threshold used for pruning. In each iteration, a branch of the
search tree is pruned if the cost of the path from the root to the branch exceeds
the cost threshold for that iteration. The initial threshold is the cost of the initial
state, and the threshold for each succeeding iteration is the minimum cost that
is greater than the previous threshold. The algorithm terminates when a goal
whose cost does not exceed the current threshold is found. Since no state whose
cost is less than the cost threshold exists, the threshold used in each iteration is
a lower bound of the actual cost. Therefore, the first goal chosen for expansion
has the least cost. Special cases of an ID search include a depth-first iterative-
deepening (DFID) search whose eval returns a depth from the initial state and
an iterative-deepening-A* (IDA*) search whose eval is the same as A*’s.

We construct an ID search program by adding threshold t as an argument
to function search and using function minimumI t for minimum’ to search in
a depth-first manner until the cost of some state exceeds t. Function search
is repeated by function iter, which iterates a search, deepening the threshold
until the goal is reached.

searchI :: Ord c => s -> IS c
search :: Ord c => s -> c -> IS c

searchI = iter . search
search state t
| isGoal state = cost state <? E
| otherwise = eval state <?
minimumI t [search s | s <- children state, legal s]

Function minimumI searches each given child in a depth-first manner until the
cost of a state exceeds the threshold for the current iteration. In a search for
some child, if a goal whose cost is not greater than the threshold is found, the
goal is returned and searches for remaining children are pruned. Otherwise, the
minimum value among the costs of children is selected as the new threshold for
the next iteration.

Let dfs be a function that searches each child and mn be a function that
chooses a minimum result among the children. Function minimumI is defined
as

minimumI :: Ord a => a -> [a -> IS a] -> IS a
minimumI t = foldl1 (mn t) . map (dfs t)

Function dfs t gives threshold t to a child and searches the child until its value
exceeds t or it finds a goal.

dfs :: Ord a => a -> (a -> IS a) -> IS a
dfs’ :: Ord a => a -> IS a -> IS a
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dfs t f = dfs’ t (f t)
dfs’ t s@(x :? xs) = if (x < t || x .== t) && xs /= E

then dfs’ t xs else s

Function mn t first searches the first child. If a goal whose cost equals t is found,
it is returned. Otherwise, mn t searches the second child and returns a better
result.

mn :: Ord a => a -> IS a -> IS a -> IS a
mn t xs ys = if x .== t || x < y || x .== y

then xs else ys
where x = approx xs

y = approx ys

Function iter repeats the search with an initial threshold. Since the argument
of iter is function f, which takes a threshold and searches from an initial state,
the approximation of the initial state, approx (f undefined) , is given as the
initial threshold, where undefined denotes ⊥. Although undefined is used, it
causes no problem because, in the evaluation of the approximation, undefined
is never needed. If a goal is found at some iteration step, the search terminates;
otherwise, it re-searches with a new threshold.

iter :: Ord a => (a -> IS a) -> IS a
iter’ :: Ord a => (a -> IS a) -> a -> IS a

iter f = iter’ f (approx (f undefined))
iter’ f t = let x :? xs = dfs t f in

x <? if xs == E then E else iter’ f x

As shown above, we can construct an ID search program by simply adding
argument t to search and using minimumI and iter.

7 Modularization Using a Higher-Order Function

For clarity and modularity, it might be useful to describe the three search pro-
grams in terms of a common higher-order function.

In the exhaustive search program described in Section 3, we parameterize
minimum’ and recursively call search.

search rec min state
| isGoal state = cost state <? E
| otherwise = eval state <?
min [rec s | s <- children state, legal s]

Programs for BF, DFBB, and ID searches can be defined in terms of higher-order
function search as follows.
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toBF srch = srchB
where srchB = srch srchB minimumB

toDFBB srch uinit = \state -> srchD state uinit
where srchD s u = srch srchD (minimumD u) s

toID srch = iter . srchI
where srchI s t = srch srchI (minimumI t) s

searchB = toBF search
searchD = toDFBB search uinit
searchI = toID search

Note that we define a different higher-order function, namely toBF, toDFBB,
and toID, for the BF, DFBB, and ID searches. By defining an appropriate ex-
haustive search function whose minimum function and recursively-called function
are parameterized and then giving the function to toBF, toDFBB, and toID, we
can easily obtain functions for the three algorithms.

8 Examples

8.1 Eight Puzzle Problem

The eight puzzle problem is a classic search problem. It involves eight square
tiles numbered from 1 to 8 that are placed on a 3×3 board, leaving one position
blank. The task is to reposition the tiles from a given initial configuration by
sliding them one at a time until reaching the goal configuration in Fig. 1.

2 5 1
7 6 3

8 4
−→

1 2
3 4 5
6 7 8

Fig. 1. Initial and goal configurations of eight puzzle problem

We describe programs that search for a path along which the tiles are slid that
minimizes the number of moves, i.e., the cost. The result is a pair consisting of
the cost and the path. Ordering the pairs by cost is done using the CostPath
type.

newtype CostPath c p = CP (c,p) deriving Eq
cost (CP (c,p)) = c
instance (Ord c,Eq p) => Ord (CostPath c p) where

x < y = cost x < cost y

We describe an exhaustive search program without improving sequences.
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pz (CP (cost,path), conf)
| isGoal conf = CP (cost,path)
| otherwise =

minimum [pz (CP (cost+1, mv:path), cf) |
(mv,cf) <- children conf]

Variables path and cost are a path and its cost, respectively, from an initial
configuration to the current configuration conf. If conf is the goal, function pz
returns CP (cost,path) and terminates the computation. Otherwise, because
conf is not the goal, pz searches the next configurations of conf and chooses
the minimum cost from the results. Function isGoal judges whether a given
configuration is the goal, function children returns a list of pairs of move mv
and configuration cf, each of which is obtained by a single sliding of a tile from
the current configuration.

We rewrite the exhaustive program into an improving sequence-based one.
Since different paths may have the same cost, we use improving sequences based
on relation <=. Similar to the case of search in Section 3, expressions that de-
note the termination and approximation of the current computation are added to
the definition of the exhaustive program. In the computation of the approxima-
tion, we use Manhattan distance md, which is the distance between two points
measured along axes:

md (x1, y1) (x2, y2) = |x1 − x2| + |y1 − y2| . (1)

For each tile, the Manhattan distance between the current position and the goal
is the minimum cost of reaching the goal. Thus, the sum of the Manhattan
distances for all tiles from the current configuration to the goal, namely md
conf , can be regarded as a lower bound on cost.

pz rec min (CP (cost,path), conf)
| isGoal conf = CP (cost,path) <=? E
| otherwise = CP (cost + md conf, path) <=?

min [rec (CP (cost+1, mv:path), cf) |
(mv,cf) <- children conf]

The programs for the three algorithms are obtained by giving pz to toBF,
toDFBB, and toID with an appropriate initial upper bound, uinit.

pzB = toBF pz
pzD = toDFBB pz uinit
pzI = toID pz

8.2 Knapsack Problem

The knapsack problem is, given a certain capacity knapsack and items of various
values and sizes, to find the most valuable set of items that fit in the knapsack.
The number of items of each type is unbounded. For simplicity, we assume that
the types of items are sorted in descending order of per-size value.

An exhaustive search program without improving sequences is defined as
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ks (sum,cap,[]) = sum
ks (sum,cap,items@((val,size):rest))

| cap < 0 = 0
| cap == 0 = sum
| cap > 0 = maximum [ks (sum+val, cap-size, items),

ks (sum, cap, rest )]

Variable sum is the accumulative value of the items packed so far, variable cap
is the remaining capacity, and variable items is a list of the items. Each item
consists of a pair of its value (val) and its size (size). If the list of items is
empty, ks returns sum. Otherwise, cap < 0 checks for an illegal situation, and
cap == 0 checks the room for packing. The ks (sum+val,cap-size,items)
corresponds to the case where the first item (val,size) is packed, and ks
(sum,cap,rest) corresponds to the case where the first type of item is not
longer packed.

In this problem, we want to maximize the total value of the items in the knap-
sack, so improving sequences based on >= are used. A program using improving
sequences is

ks rec max (sum,cap,[]) = sum >=? E
ks rec max (sum,cap,items@((val,size):rest))

| cap < 0 = 0 >=? E
| cap == 0 = sum >=? E
| cap > 0 = sum+(val/size)*cap >=?

max [rec (sum+val, cap-size, items),
rec (sum, cap, rest )]

The approximation is an ideal total value, the value that would be attained if
the remaining capacity was completely filled with the most valuable items. Since
items is sorted in descending order of per-size value, the ideal total value is the
product of the (val/size) ratio of the headmost item of items multiplied by
the remaining capacity.

The programs for the three algorithms are constructed by simply giving ks as
arguments of toBF, toDFBB, and toID with an appropriate initial lower bound
linit.

ksB = toBF ks
ksD = toDFBB ks linit
ksI = toID ks

9 Discussion and Related Work

We used a naive exhaustive search program that produces the entire state-space
(search space) as lazy data structures with improving sequences. In this case,
the exhaustive search program specifies the problem. To implement pruning, it is
necessary to restrict the state-space to be searched; improving sequences coupled
with lazy evaluation are the keys to accomplishing this. An important feature of
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improving sequences is the raising of intermediate results generated during the
computation into first-class objects. This enables us to refer to the intermediate
results, determine the need for the remaining computations on the basis of the
intermediate results, and control the computation process. Since each minimum
function (minimumB, minimumD, and minimumI) for improving sequences demands
only parts of the state-space and uses intermediate results in its own way, we can
implement different search algorithms while retaining the clarity of an exhaustive
search program.

Similar to our approach, Hughes and Swierstra [8] implemented parser combi-
nators for ambiguous grammars. They defined a data structure and a function,
which correspond to IS a and minB, respectively, and represented a parse pro-
cess in a breadth-first manner by incorporating the depth into the data structure.
In contrast, we implemented three search algorithms in terms of the general data
structure, improving sequences.

Erwig proposed type class SearchProblem [4] to support functional search
programming. In his approach, users write a program in such a way that it
satisfies the specification of type class SearchProblem. Our approach for the
description of search programs is different; it does not impose any definition form
for search. As long as the user defines an exhaustive search function in terms of
improving sequences with parameterizations of minimum and recursively-called
functions, the user can obtain efficient search programs by giving an exhaustive
search function to toBF, toDFBB, and toID.

Van Hentenryck and Michel [12] separated a search algorithm from a state-
space in a nondeterministic object-oriented language COMET. They defined class
SearchController to abstract search algorithms and used an instance of Search
Controller for each algorithm. The objective of their research is similar to
ours, but the approaches are different; they developed the new language and
implemented the pruning using continuations, which are first-class objects in
COMET, while we defined the new data type IS in an existing functional language
Haskell.

10 Conclusion

We have presented purely functional implementations of three important search
algorithms, best-first, depth-first branch-and-bound (DFBB), and iterative-dee-
pening (ID), that enable us to write efficient search programs with pruning in
the same form as a simple and naive but exhaustive search program. We use
improving sequences that contain intermediate results of computations to judge
the need for the remaining computations. In addition, we defined higher-order
functions that parameterize the minimum (or maximum) function and obtain
three kinds of efficient search programs, while retaining the clarity of an exhaus-
tive search program, by giving suitable minimum functions defined on improving
sequences as actual parameters. Our implementations are more comprehensive
than a previous implementation of only the best-first search algorithm [2] be-
cause DFBB and ID search programs can be constructed in the same fashion
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as a best-first search program. We are going to apply our technique using im-
proving sequences to other interesting search problems like limited discrepancy
search [6].
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Abstract. While declarative programming languages are often consid-
ered to be applicable to “toy problems” only, we present an example
of a real-world programming task realized with a functional program-
ming language. CondorCKD is a novel algebraic knowledge discovery
algorithm completely implemented in Haskell. We give an overview of
CondorCKD and describe our experiences gained during its develop-
ment, including the implementation of a graphical user interface and a
novel approach to compute the cycles of an undirected graph.

1 Introduction

Knowledge discovery and data mining algorithms put high demands on their
implementation languages when it comes to speed and the ability to handle
huge amounts of data. Because of this, mainly imperative languages like C++
or Java have been used for implementing data mining software [15]. To the
best of our knowledge, there are very few examples of data mining algorithms
implemented in functional languages ([3] describes one such example), although
logical languages like Prolog are very popular in the subarea of Inductive Logic
Programming [12].

In [6, 7], a novel approach to knowledge discovery employing algebraic meth-
ods is presented. When evaluating several programming languages for imple-
menting this approach, we were looking for a language which would make it
easy to transfer the mathematical, high-level specification of the algorithm into
program code, and that would allow us to quickly implement a working proto-
type which we could further refine easily. As functional programming languages
have a reputation for higher productivity than their imperative counterparts,
we evaluated several functional languages and finally chose Haskell, for several
reasons. Its clean syntax seemed well suited to express our mathematical speci-
fication, it offered a comprehensive standard library and good development tool
support. We also hoped to turn our prototype into a usable product, without
having to recode the algorithm in another language because of severe perfor-
mance penalties.

M. Hanus (Ed.): PADL 2007, LNCS 4354, pp. 80–93, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In Section 2, we give a short overview of our algebraic knowledge discovery
algorithm, before further elaborating on our choice of Haskell in Section 3. As
an important part of our implementation, a novel algorithm for enumerating the
cycles of an undirected graph is discussed in Section 4. Our general experiences
in using Haskell for implementing quite a demanding algorithm are stated in
Section 5, and Section 6 contains some concluding remarks and points out future
work.

2 Knowledge Discovery by Reversing Inductive
Knowledge Representation

In a very general sense, the aim of knowledge discovery is to reveal structures
of knowledge which can be seen as structural relationships, being represented by
rules, often also called conditionals in this paper. There are two key ideas under-
lying the approach we used for our implementation: First, knowledge discovery is
understood as a process which is inverse to inductive knowledge representation.
So the relevance of discovered information is judged with respect to the chosen
induction method. Second, the link between structural and numerical knowledge
is established by an algebraic theory of conditionals, which makes it possible to
consider complex interactions between rules [6]. By applying this theory, we de-
velop an algorithm that computes sets of probabilistic rules from distributions.
The inductive representation method used here is based on maximizing entropy,
an information theoretical principle (ME-principle [13]), so that the discovered
rules can be considered as being most informative in a strict, formal sense. This
approach is described in detail in [7]; we will give a brief overview in this sec-
tion, also presenting a small running example that will help illustrating both the
method and the implementation.

Example 1. Suppose in our universe are animals (A), fish (F ), aquatic beings
(Q), objects with gills (G) and objects with scales (S). The following table may
reflect our observations:

object freq. prob. object freq. prob.

afqgs 59 0.5463 afqgs 11 0.1019
afqgs 21 0.1944 afqgs 9 0.0833
afqgs 6 0.0556 afqg s 2 0.0185

We are interested in any relationship between these objects, e.g., to what extent
can we expect an animal that is an aquatic being with gills to be a fish? This
relationship is expressed by the conditional (f |aqg), which is read as “f , under the
condition a and q and g”. If P is the probability distribution given by the table
above and x ∈ [0, 1] is a probability value, P satisfies the probabilistic conditional
(f |aqg)[x], written as P |= (f |aqg)[x] iff for the conditional probability, it holds
that P (f |aqg) = x. In our example, it is easily calculated that P |= (f |aqg)[0.8].
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Our method is a bottom-up approach, starting with conditionals with long
premises, and shortening these premises to make the conditionals most expressive
but without losing information, in accordance with the information inherent to
the data. It is able to make use of structural information obtained from the data
due to its algebraic foundations for probabilistic conditionals, which represent
conditionals by group generators and take kernels of group homomorphisms as
structural invariants of probability distributions (for further details, cf. [6, 1]).
An overview of the algorithm in pseudocode (using lists for set representations) is
given in Figure 1 and its data flow is illustrated in Figure 2; both will be explained
in a bit more detail in the following. The algorithm has been implemented as a
component of the Condor system (for an overview, cf. [2])

Algorithm CKD
(Conditional Knowledge Discovery)

Input : A frequency/probability distribution
Output : A set of probabilistic conditionals

calculateRules :: Dist → [Rule]
calculateRules dist

= solveAllEqs dist (equations dist)
(pruneBasicRules dist (allBasicRules dist))

solveAllEqs :: Dist → [Equation] → [Rule] → [Rule]
solveAllEqs [] rules = rules
solveAllEqs dist eqs rules

= case (solveAnyEq dist eqs rules) of
Just (newEqs, newRules) → solveAllEqs dist newEqs newRules
Nothing → rules

equations :: Dist → [Equation]
equations dist = map (cycleToEquation dist) (findEvenCycles dist)

Fig. 1. High-level description of our CKD algorithm [7]. Note that the definitions of
some functions have been left out for clarity of presentation.

data

cycles

basic
rules

ker P

rule
aggregator

rules

Fig. 2. Dataflow of the CondorCKD algorithm
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The frequency distributions calculated from data are mostly sparse, full of
zeros, with only scattered clusters of non-zero probabilities. In our approach,
these zero values are treated as non-knowledge without structure. They play
a prominent role in setting up a set S0 of basic rules of manageable size in
the beginning. In order to represent missing information in a most concise way,
null-conjunctions (i.e. conjunctions of literals, with frequency 0) are calculated
from the basic tree of conjunctions the leaves of which either correspond to
actually occurring data, or to feature combinations not having been recorded at
all. Aggregating the latter ones yields a set NC of most concise conjunctions of
probability 0.

Next, the numerical relationships in P have to be explored to set up the so-
called kernel of P , ker P . We only use conjunctions with non-zero probabilities
for this purpose. It turns out that any such relationship corresponds to a simple
cycle of even length (i.e. involving an even number of vertices) in an associated
graph. Therefore, the search for numerical relationships holding in P amounts to
searching for such cycles in a graph. Finally, as the last step of the initialization,
the kernel of a structure homomorphism, ker g, has to be computed from ker P
with respect to the set S0 of conditionals. In this way, algebraic representations of
numerical probabilistic information are obtained, which are encoded as equations
holding in groups associated with the respective set of conditionals. Solving
these equations successively yields modifications both on the groups and on the
appertaining conditionals.

So, in the main loop of the algorithm CKD, the sets K of group elements
and S of conditionals are subject to change. In the beginning, K = ker g and
S = S0; in the end, S will contain the discovered conditional relationships. Note
that no probabilities are used in this main loop – only structural information
(derived from numerical information) is processed. It is only afterwards, that the
probabilities of the conditionals in the final set S are computed from P , and the
probabilistic conditionals are returned.

Example 2. We continue Example 1. First, the set NC of null-conjunctions has
to be calculated from the data; here, we find NC = {a, q, f g} – no object
matching any one of these partial descriptions occurs in the data base. These
null-conjunctions are crucial to set up a starting set S0 = B of basic rules of
feasible size:

B = {φf,1 = (f |aqgs) φg,1 = (g|afqs) φs,1 = (s|afqg) φa,1 = (a|�)
φf,2 = (f |aqgs) φg,2 = (g|afqs) φs,2 = (s|afqg)
φf,3 = (f |g) φg,3 = (g|f) φs,3 = (s|afqg) φq,1 = (q|�)}

The next step is to analyze numerical relationships in P . In this example, we
find two numerical relationships that hold with near equality:

P (afqgs) ≈ P (afqgs) and P (
afqgs
afqgs

) ≈ P (
afqgs
afqg s

)

These relationships are translated into algebraic group equations and help mod-
ifying the set of rules. For instance, φf,1 and φf,2 are joined to yield (f |aqg), and
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φs,3 is eliminated. As a final output, the CKD algorithm returns the following
set of conditionals:

Conclusion Premise Prob.

A=YES 1.0

F=YES G={NO} 1.0
F=YES A={YES}, Q={YES}, G={YES} 0.8

Q=YES 1.0

G=YES F={NO} 1.0
G=YES A={YES}, F={YES}, Q={YES} 0.91

S=YES A={YES}, F={YES}, Q={YES} 0.74

This result can be interpreted as follows: All objects in our universe are aquatic
animals which are fish or have gills (corresponding to the four rules with proba-
bility 1.0). Aquatic animals with gills are mostly fish (with a probability of 0.8),
aquatic fish usually have gills (with a probability of 0.91) and scales (with a
probability of 0.74).

Note that our system actually has generated the LATEX-code for the table
given above as output. The only modification necessary was to adapt the table
width to the column width.

3 Using Haskell for Data Mining

When beginning with the implementation of the CondorCKD algorithm, we
had to choose a suitable programming language. As we had an abstract, high-
level description of the algorithms and their corresponding data structures, we
were looking for a programming language that would make it easy to transfer
these algorithms from their mathematical description to an executable form.
We also wanted to be able to quickly implement a prototype so to review the
results of the algorithms and further refine them. In order to do this, it should
be possible for people with less a background in programming to look at the
code and get a rough idea of what it would do. This led us to favor functional
programming languages over imperative ones.

As indicated in Section 2, the description of the CondorCKD algorithm was
given in pseudocode with a strong mathematical flavor. This was very conve-
nient during the implementation, as the specification was already decomposed
into many intertwined functions and utilized set-based syntax for describing
collections of data with certain properties and constraints. These mathemati-
cal concepts were easily and rapidly coded in Haskell, whereas Haskell’s concise
syntax allowed us to stay very close to the original specification.

Figure 3 very briefly illustrates the Condor system that is completely im-
plemented in Haskell. It takes data in the form of CSV or ARFF files (these are
widely used formats for exchanging tabular data used in data mining systems,
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Fig. 3. Overview of the Condor system

see e.g. [15]) as input. The parser of the CondorCKD component reads these
input files and makes the data available to functions generating the internal
representations of probability distributions, including meta data about the in-
volved variables. Using a logic representation component, probabilistic rules are
extracted from the probability distribution and are presented both in a simple
text format (ready for further processing) as well as in a polished LATEX version.
The complete user interaction is supported by a graphical user interface which
is also completely implemented in Haskell.

4 Enumerating all Cycles of an Undirected Graph – A
Functional Programming Challenge

As described in Section 2, one of the most important parts of the CondorCKD
algorithm is the computation of the simple cycles of the neighbor-graph. These
depict numerical relationships in the input data, which are used for aggregating
the basic rules.

4.1 Cycles in an Undirected Graph

For an undirected graph G = (V, E) with edges E ⊆ {{u, v} | u, v ∈ V, u 
= v},
a simple cycle (of length k) is a sequence 〈v0, v1, . . . , vk, v0〉 of pairwise distinct
vertices vi ∈ V . We are interested in computing all simple cycles with even
length up to a certain maximum length kmax ∈ {2, 4, 6, . . .}. This cycle length
restriction is necessary, as the number of simple cycles can be exponential in the
number of vertices.

There are several approaches to compute the simple cycles of an undirected
graph [11], of which the vector space approach and search-based algorithms are
the most important ones.

Every spanning tree T of an undirected graph partitions the graph edges into
two disjoint sets, the tree edges and back edges, which close a cyclic path in T .
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Every back edge e ∈ E \ T induces one so-called fundamental cycle when added
to T . All cycles (and edge-disjoint unions of cycles) of an undirected graph can
be expressed as a combination of such fundamental cycles, thus forming a vector
space over the finite field GF (2), with the vector addition corresponding to the
symmetric difference on the edge sets of subgraphs, cf. [11]. A fundamental cycle
set {S1, S2, . . . , S|E|−|V |+1} corresponding to a spanning tree T is a basis of this
vector space. Whereas in principle one could enumerate every possible combi-
nation of fundamental cycles, only a small fraction of these are cycles, the rest
being edge-disjoint unions of cycles. Although several vector space algorithms
have been developed [11], very little has been done regarding pruning these un-
necessary computations, let alone incorporating cycle length restrictions.

Search-based algorithms use a modified depth-first search with backtracking,
during which edges are appended to a path until a cycle is found. Careful pruning
of the search space is necessary to ensure that every cycle is generated exactly
once and that little unnecessary work is done. To this end, most algorithms
impose a certain ordering on the graph vertices and initiate a search only in
certain vertices, see [11].

4.2 A Combined Approach

Although search-based algorithms are the fastest known algorithms for enu-
merating all cycles, even their running times on several of our problems were
prohibitively large. But combining search-based and vector-space algorithms al-
lowed for some further reduction of the search-space.

The key to our new algorithm is the fact that every fundamental cycle has one
special edge that is not a member of any other fundamental cycle – the back edge
closing a path in the corresponding spanning tree, thus yielding this fundamental
cycle. Assume a fixed ordering of the elements of a given fundamental cycle set
{S1, S2, . . . , S|E|−|V |+1}. Recall that every cycle c can be written as a combina-
tion of several fundamental cycles Si1 , Si2 , . . . , Sin , w.l.o.g. i1 < i2 < · · · < in.
At least one edge must have been removed from every Si, otherwise one or more
of the Si would be part of c as a whole, which means c would be a disjoint union
of cycles. Thus, in order to compute all cycles containing the back edge of Si,
1 ≤ i ≤ |E| − |V | + 1, we can restrict the graph to be searched to the subgraph
induced by S1 ∪ · · · ∪ Si. This restriction of the search to an induced subgraph
is what speeds up our algorithm.

Our cycle enumeration algorithm can be described by three steps:

1. Compute a set of fundamental cycles {S1, S2, . . . , S|E|−|V |+1}.
2. For every Si, compute a subgraph Gi. Gi is the union of a subset of the

fundamental cycles S1, . . . , Si, and is defined by the cycles of the equivalence
class of Si with respect to the transitive closure of the relation Ri

∩,

Ri
∩ := {(Sr, St) | Sr, St ∈ {S1, . . . , Si} ∧ Sr ∩ St 
= ∅}.

3. Conduct a search-based cycle enumeration in each of these subgraphs Gi,
starting at one of the vertices incident to the back edge of Si.
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We have compared the running time1 of our algorithm (column “FCs + DFS”)
and that of a standard search-based algorithm (DFS) on three different graphs,
and the preliminary results are encouraging (see Figure 4).

Graph Max. cycle length #Cycles FCs + DFS DFS

A 10 2827 0:00:01 0:00:02
12 16699 0:00:05 0:00:13
14 119734 0:00:45 0:08:13
16 890204 0:05:48 7:23:54

B 10 2929 0:00:04 0:00:06
12 23021 0:00:42 0:01:28
14 222459 0:09:11 0:42:09

C 6 2927 0:00:10 0:01:26
8 18695 0:00:36 0:02:13

10 268097 0:13:51 0:30:27

Fig. 4. Runtime comparison

Although there are several approaches to functional graph algorithms de-
scribed in the literature (cf. [4]), they all need to support the marking of already
processed parts of the graph, either by threading a state parameter through the
function calls, or by hiding the state inside an appropriate graph ADT. As our
novel cycle enumeration algorithm is still part of our research, we have opted for
an initial implementation using an explicit state parameter. Despite leading to
a computational overhead, this allowed us to easily “glue” the functions for the
subgraph generation and the search-based cycle enumeration together, without
having to deal with the additional complexity of a state monad. Having obtained
encouraging results with our current version, we are currently reimplementing
it using the stated-monad based approach described in [8], in order to compare
both variants with respect to memory consumption and runtime behaviour.

5 Lessons Learned

After introducing the CondorCKD algorithm and pointing out some impor-
tant parts of our implementation, we now want to give an overview of our gen-
eral experience in using a functional programming language for implementing a
knowledge discovery algorithm. One thing to note is that some of the program-
mers involved in the implementation of the Condor system only had very little
previous experience with Haskell, consisting mostly of an introductory university
course in functional programming.
1 Using GHC 6.4.1 with optimization turned on and code generation via C. The exe-

cutables were running on an AMD Athlon64-3200+ in 32bit-mode with 1GB RAM,
using Linux.
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5.1 Clean and Concise Syntax

As stated in Section 3, Haskell’s concise syntax allowed us to stay close to the
original specification, thereby making a quick implementation of a prototype
possible, which could be refined afterwards. The often mentioned brevity of func-
tional programs applies to CondorCKD, too. Our functions generally consist
of only a few lines, few have more than a dozen.

In our experience, the brevity results from our extensive use of higher-order
functions (like map, filter and fold) in combination with Haskell’s automatic
memory management. Thus our experiences correspond the well-known obser-
vation that the (functional) programmer generally does not have to deal with
traversal of data structures or memory management, but can focus on the data
manipulation itself.

5.2 Strong Typing

Haskell’s type system is often emphasized as one of the language’s most im-
portant features in helping the user writing correct programs, and we can only
support this claim. When writing a new module function, we have made a habit
of writing its type signature first, then implementing its body. This way, the com-
piler or interpreter would complain about type mismatches, which easily occur
when writing new functions not used by or not using other module functions.
Writing a type signature was hence an additional tool in forcing all Condor
programmers to think about the function once again instead of quickly hacking
it down.

It could be argued that other languages like C++ or Java also feature an
expressive type system, but Haskell’s type system offers additional benefits.
Whereas a C++ or Java compiler will only issue a warning or an error when the
arguments given to a function or its return value don’t match its declaration,
a Haskell compiler can infer the type of a function based on its arguments. By
comparing this type to the type signature of the function, it is often quite easy
to find the bug resulting in the type mismatch.

Algebraic data types are another important part of Haskell’s type system we
heavily relied upon when developing CondorCKD. In conjunction with pattern
matching, algebraic types allow the processing of data based on its structural
properties. Because pattern matching is the only way to extract data from alge-
braic types, incomplete patterns will cause the compiler to issue a warning, thus
forcing the programmer to rethink the boundary conditions of his data types.
Whereas in the beginning, those programmers in our team with only little pre-
vious experience with Haskell complained about too many warnings, in the end
they appreciated these Haskell features.

5.3 A Comprehensive Standard Library

In addition to powerful language features, the number of available libraries is
also an important factor with respect to programmer productivity.
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Fig. 5. The graphical user interface

We extensively used the Haskell Hierarchical Libraries while implementing
the CondorCKD algorithm, especially the collection types Map and Set . They
allow for similar processing as lists, as they also offer the probably most often
used (list) manipulation functions map, filter and fold . This made it easy to
change functions processing lists to utilize a more adequate collection type, which
we did at various places during our system development.

Other libraries that were important during the development of CondorCKD
are Parsec [10], used for reading data from files and parsing user input, and
the GUI-libraries wxHaskell and gtk2hs.

5.4 Implementing a Graphical User Interface

From the start, CondorCKD has been developed with the end user in mind,
whom we wanted to offer a comfortable user interface to make working with Con-
dorCKD as convenient as possible. To this end, we have developed a graphical
user interface, initially using the wxHaskell library [9]. Though we were satis-
fied at first, because wxHaskell allowed us to develop a single GUI for different
platforms, after a while slightly varying behaviour of certain GUI elements sur-
faced, which we could not track down to either wxHaskell, wxWidgets or some
platform-specific library. As the development of wxHaskell seemed to have come
to a halt, we decided to reimplement our GUI, using the gtk2hs2 library. This li-
brary is under active development, and is also supported on Linux and Windows,
our two main development platforms.

Two screenshots of the dialog windows can be seen in Figure 5. The screenshot
on the left shows the main window, from which the user can initiate actions like
2 http://www.haskell.org/gtk2hs/
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loading a probability distribution from a file, or computing probabilistic rules
from the current distribution. After loading a probability distribution, the main
window also gives information about the variables pertaining to the current
distribution, and also enables the user to query the (conditional) probability of
certain logical expressions. The screenshot on the right-hand side of Figure 5
shows the dialog window for calculating rules from the current distribution. The
user can adjust various parameters of the CKD-algorithm and can choose certain
output formats for the rules.

Our experiences show that gtk2hs provides all the functionality needed to
realize the GUI of the Condor system. Although the current GUI was devel-
oped with Linux, it worked out-of-the-box when run on Windows, without the
need for a single platform-adjustment. This is a big plus, but as GTK+ is a
toolkit originally developed for Unix-like systems, some parts of it may alienate
Windows users. Haskell would clearly benefit from a platform-independant GUI
library, like wxHaskell was intended to be.

5.5 A Suitable Development Environment

We used two Haskell implementations during the development of CondorCKD.
Initial development was done with Hugs3, because its interactive interpreter
made the incremental development very convenient. But as the project’s code
size grew and the algorithms needed to be tested on real-world data, better
run-time performance was required and we switched to GHC4, which has an
interactive environment, too, but also the ability to generate executables.

Debugging was mainly done by interactive testing of functions and excessive
printing of intermediate data whenever possible, which we consider unwise in
retrospect. We are planning to use Hood [5] for debugging during further devel-
opment of CondorCKD.

Profilers proved to be another invaluable development tool for us, enabling
the exact location of performance bottlenecks, even more so with lazy evaluation
[14]. Fortunately, GHC includes support for space and time profiling, and this
helped increasing our algorithms’ performance on several occasions, although
how to improve performance was not always obvious, see Section 5.6.

5.6 Dealing with Laziness and Excessive Memory Consumption

When we had a prototypical implementation of CondorCKD at hand and
started testing it on real-world data sets, Haskell’s lazy evaluation caused some
performance problems by delaying many computations. Although lazy evaluation
can be a clear benefit, as it allows for quite elegant solutions, and also Condor-
CKD relies on lazy evaluation in the implementation of several functions, it is
quite a hindrance for high-performance code.

3 http://www.haskell.org/hugs/
4 http://www.haskell.org/ghc/
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Lazy evaluation makes reasoning about run-time performance and memory
consumption much more difficult than eager evaluation, because the evaluation
order of expressions is not easily assessed for all but the most simple programs, and
sometimes a lot of unevaluated expressions fill up the heap. Thus we have made
heavy use of GHC’s profiling capabilities in improving the run-time behaviour
and memory consumption of CondorCKD, although finding the right places
for inserting “seq” and “$!”, two functions used for improving the strictness of
other functions, was not always obvious. It often was a trial-and-error process, and
included the inspection of the core code generated by GHC in order to assess the
strictness of certain functions. If Haskell is to be used for real-world projects, it
clearly needs better ways for improving the strictness of functions, because using
“seq” and “$!” is cumbersome and makes the resulting code much more difficult to
read, loosing some of the conciseness emphasized in Section 5.1. Hopefully this will
be remedied with the introduction of the so-called bang patterns5 proposed for the
upcoming Haskell′ standard. These would offer additional syntax which enables
the programmer to provide function parameters with a strictness annotation, thus
making the implementation of strict functions much easier.

Memory consumption was further reduced by using appropriate data types.
For example, CondorCKD uses a lot of small objects for representing conjunc-
tions – simple logical formulas representing the premises of rules. Initially, these
conjunctions where implemented using nested lists of Ints, causing every list ele-
ment to occupy three words of memory. As the flexibility offered by lists was not
really needed for representing conjunctions, we replaced them by unboxed arrays
of Ints, leading to some serious reduction in memory requirements, and also bet-
ter run-time performance. Another way of reducing the memory needs was using
strictness flags (“!”) to enforce the evaluation of the arguments of data construc-
tors to remove some laziness. In combination with the “UNPACK” pragma, this
also improved the run-time performance of CondorCKD.

6 Conclusions and Further Work

We have introduced our implementation of CondorCKD, a novel algorithm
for knowledge discovery based on the principle of maximum entropy. We used
Haskell for its implementation, where our choice was based on our expectation
to be able to quickly implement the algorithm based on its abstract, high-level
description. Haskell has lived up to our expectations, as a prototype was im-
plemented quite rapidly, though optimizing its run-time behaviour and memory
consumption was a lengthier – and sometimes problematic – process. Nonethe-
less, the resulting code displays the brevity ascribed to functional programs,
as the whole documented codebase involves little more than 9000 lines of code,
including a GUI. An implementation written in C++ or Java can be expected
to be several times larger, and despite being optimized, the Haskell code still
closely resembles its abstract description, a definite advantage over imperative
languages.
5 http://hackage.haskell.org/trac/haskell-prime/ticket/76
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Currently, we are planning to further refine and enhance our algorithm and its
implementation. This includes work to further reduce the memory consumption,
but also trying to utilize external data storage, because when analyzing large and
complex data sets, the intermediate data structures computed by our algorithm,
especially the cycles (see Section 4), will definitely be too large to fit into even
todays computer’s main memory.

Acknowledgements. We’d like to thank the anonymous reviewers for their
helpful comments. The research reported here was partly supported by the DFG
– Deutsche Forschungsgemeinschaft (grant BE 1700/5-3).

References

[1] C. Beierle and G. Kern-Isberner. An alternative view of knowledge discovery.
In Proceedings of the 36th Annual Hawaii International Conference on System
Sciences, HICSS-36, page 68.1. IEEE Computer Society, 2003.

[2] C. Beierle and G. Kern-Isberner. Modelling conditional knowledge discovery and
belief revision by abstract state machines. In E. Boerger, A. Gargantini, and
E. Riccobene, editors, Abstract State Machines 2003 – Advances in Theory and
Applications, Proceedings 10th International Workshop, ASM2003, pages 186–203.
Springer, LNCS 2589, 2003.

[3] A. Clare and R. D. King. Data mining the yeast genome in a lazy functional
language. In V. Dahl and P. Wadler, editors, Practical Aspects of Declarative
Languages, 5th International Symposium, PADL 2003, Proceedings, volume 2562
of Lecture Notes in Computer Science, pages 19–26. Springer, 2003.

[4] M. Erwig. Inductive graphs and functional graph algorithms. Journal of Func-
tional Programming, 11(5):467–492, 2001.

[5] A. Gill. Debugging haskell by observing intermediate data structures. Electronic
Notes in Theoretical Computer Science, 41(1), 2000.

[6] G. Kern-Isberner. Solving the inverse representation problem. In Proceedings
14th European Conference on Artificial Intelligence, ECAI’2000, pages 581–585,
Berlin, 2000. IOS Press.

[7] G. Kern-Isberner and J. Fisseler. Knowledge discovery by reversing inductive
knowledge representation. In Proceedings of the Ninth International Conference
on the Principles of Knowledge Representation and Reasoning, KR-2004, pages
34–44. AAAI Press, 2004.

[8] D. J. King and J. Launchbury. Structuring depth-first search algorithms in
Haskell. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL’95), pages 344–354. ACM Press,
1995.

[9] D. Leijen. wxHaskell – a portable and concise GUI library for Haskell. In ACM
SIGPLAN Haskell Workshop (HW’04). ACM Press, 2004.

[10] D. Leijen and E. Meijer. Parsec: Direct style monadic parser combinators for the
real world. Technical Report UU-CS-2001-27, Department of Computer Science,
Universiteit Utrecht, 2001.

[11] P. Mateti and N. Deo. On algorithms for enumerating all circuits of a graph.
SIAM Journal on Computing, 5(1):90–99, 1976.

[12] S. Muggleton and L. De Raedt. Inductive logic programming: Theory and meth-
ods. Journal of Logic Programming, 19/20:629–679, 1994.



Algebraic Knowledge Discovery Using Haskell 93

[13] J.B. Paris. The uncertain reasoner’s companion – A mathematical perspective.
Cambridge University Press, 1994.

[14] C. Runciman and D. Wakeling. Heap profiling of lazy functional programs. Jour-
nal of Functional Programming, 3(2):217–245, 1993.

[15] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, 2005.



Applications, Implementation and Performance
Evaluation of Bit Stream Programming in Erlang

Per Gustafsson1 and Konstantinos Sagonas2

1 Uppsala University and Ericsson AB, Sweden
2 National Technical University of Athens, Greece

Abstract. Writing code that manipulates bit streams is a painful and error-prone
programming task, often performed via bit twiddling techniques such as explicit
bit shifts and bit masks in programmer-allocated buffers. Still, this kind of pro-
gramming is necessary in many application areas ranging from decoding stream-
ing media files to implementing network protocols. In this paper we employ high-
level constructs from declarative programming, such as pattern matching at the
bit level and bit stream comprehensions, and show how a variety of bit stream
programming applications can be written in a succinct, less error-prone, and to-
tally memory-safe manner. We also describe how these constructs can be imple-
mented efficiently. The resulting performance is superior to that of other (purely)
functional languages and competitive to that of low-level languages such as C.

1 Introduction

Binary data is everywhere. Many applications such as processing network data, en-
coding and decoding streaming media files, file compression and decompression, cryp-
tography etc. need to process such data. Consequently, programmers often find them-
selves wanting to write programs that manipulate bit streams. In imperative languages
such as C, processing of bit streams typically happens using so called bit twiddling
techniques that involve combinations of shifts, bitwise operators and explicit masks on
programmer-allocated buffers. In general, bit twiddling obfuscates the intention of the
programmer, is often error-prone, and leads to code that is unnecessarily verbose, hard
to read and modify. Furthermore, bit twiddling code tends to lose the connection with
the specification of the data format which is to be processed.

Declarative languages can in principle avoid these shortcomings since they allow for
high-level manipulation of data. Unfortunately, the ability to do so comes with a catch.
For example, the pattern matching facilities offered by most functional languages are
tightly coupled to constructor-based datatypes. As a result, programmers who want to
manipulate bit streams have to choose between the lesser of the following two evils:
either pay a significant cost in time and space and convert binary data to a symbolic
representation, or resort to an imperative style of programming using bit twiddling
techniques on byte arrays. In typical applications which require bit stream manipula-
tion, performance considerations are paramount. As a result, in most practical uses,
the imperative style of programming wins although there is no fundamental reason for
declarative languages to lack constructs for efficient bit stream manipulation.

M. Hanus (Ed.): PADL 2007, LNCS 4354, pp. 94–108, 2007.
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Since 2001, the functional language Erlang comes with a byte-oriented datatype
(called binary) and with constructs to do pattern matching on a binary [13]. We have
been heavily involved in this work and implemented a scheme for native code compila-
tion of binaries and designed efficient algorithms for constructing deterministic pattern
matching automata for byte-based binaries [7]. In last year’s Erlang workshop we put
forward a proposal [6] for lifting the restriction that Erlang binaries are sequences of
bytes rather than bits and described the semantics of bit-level pattern matching on a
bit-level binary (called bit stream). We have subsequently realized this proposal and
describe its applications and implementation in this paper.

More specifically, the contributions of this paper are as follows:

– We explain how declarative programming constructs such as pattern matching and
comprehensions brought down to the bit level can simplify bit stream programming
(Sect. 2) and show how these constructs allow us to obtain compact and elegant
solutions to important real-world applications (Sect. 3).

– We describe how these bit-level constructs can be implemented efficiently (Sect. 4).
– Finally, we compare the efficiency and ease of programming of using this approach

to writing bit stream applications, with that of using other languages, both func-
tional and imperative (Sect. 5).

2 Bit Stream Programming in Erlang

We show the features and expressive power of bit stream manipulation in Erlang through
a series of examples. A more detailed and formal treatment can be found in [6].

2.1 Constructing and Matching a Bit Stream

This first example is very simple. It shows how to construct a bit stream and how such
a stream can be deconstructed using bit-level pattern matching.

case <<8:4, 63:6>> of
<<A:7, B/bitstr>> -> {A,B}

end

The expression <<8:4, 63:6>> evaluates to a ten-bit bit stream were its first four bits are
the four low bits of the integer 8 and its last six bits are the six low bits of the integer 63.
This creates the bit stream <<1000111111>>. For succinctness, we will denote such a
bit stream as <<143:8, 3:2>>, which means that the first eight bits of the bit stream
represented as an unsigned integer is 143 and the last two bits are the integer 3.

The case statement binds the variable A1 to an integer constructed from the first
seven bits in the bit stream, namely 39 (1000111). Because of the explicit type specifier
bitstr rather than integer which is the default, B gets bound to the remaining bit
stream <<7:3>>. As a result, the case expression evaluates to {39,<<7:3>>}.

Another useful feature of bit streams is the ability to have arithmetic expressions as
sizes of bit stream segments. This is shown in the next example.

1 All variables in Erlang start with a capital letter.
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0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Version| IHL |Type of Service| Total Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Identification |Flags| Fragment Offset |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Time to Live | Protocol | Header Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Destination Address |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Options | Padding |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

parse IP packet(
<<Version:4, IHL:4, ToS:8, TotalLength:16,
Identification:16, Flags:3, FragOffset:13
TimeToLive:8, Protocol:8, Checksum:16
SourceAddress:32,
DestinationAddress:32,
OptionsAndPadding:((IHL-5)*32)/bitstr,
Data/bitstr>>) when Version =:= 4 ->

...

Fig. 1. Internet Protocol datagram header (from RFC 791) and parsing of an IPv4 packet in Erlang

2.2 Parsing IP Packets

In RFC 791 [14] the IP header is exemplified with the diagram shown in the left part
of Figure 1. Note the close resemblance between this representation and the bit stream
pattern shown in the right part of the figure which parses an IPv4 packet header.

For the most part, this is similar to the previous example except that this pattern is
used in a function head rather than a case statement. Note also that the pattern expresses
the meaning of the IHL field, which contains the IP header length in 32-bit words. Since
the non-optional part of the IP header consists of five 32-bit words, the options and
padding will take up (IHL-5)*32 bits. This is expressed by using an arithmetic expres-
sion as the size of a segment. Because this arithmetic expression can refer to variables
bound earlier in the binary pattern, as in this example, the matching has to respect the
corresponding left-to-right ordering constraints between segments.2

2.3 Iterating and Filtering a Bit Stream

Consider a variation of the drop third program introduced in [17] that requires in-
specting bits besides counting them. The task is to drop from a bit stream of size exactly
divisible by three all 3-bit chunks that begin with a zero. Using pattern matching on bit
streams this task can be performed with the program in Figure 2. The solution is both

drop 0XX(<<1:1, X:2, Rest/bitstr>>) ->
<<1:1, X:2, drop 0XX(Rest)>>;

drop 0XX(<<0:1, :2, Rest/bitstr>>) ->
drop 0XX(Rest);

drop 0XX(<<>>) ->
<<>>.

Fig. 2. drop 0XX using bit stream pattern matching

natural and straightforward. The
first clause describes what should
happen if the first bit in a 3-
bit chunk is one: we keep that
chunk and add it to the resulting
stream. The second clause handles
the case where the first bit is a
zero: we discard that 3-bit chunk.
Finally the last clause handles the
case where there are no more chunks: we return the empty bit stream.

Contrast this with a program written in a language that does not support manipulation
of bit streams at the bit level very well such as C or Java. The programmer would have to

2 Arithmetic expressions as sizes of segments are not allowed in Erlang/OTP R11B-1 (or prior).
Instead, size expressions can only be variables or constants.
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keep track of which bits to extract from the current byte of the incoming bit stream, use
bit masks and shifts to extract each triple, and calculate how much padding is needed
in the output stream. Being able to express pattern matching at the bit level, Erlang
programmers are allowed to write declarative specifications of their intentions without
having to worry about low-level details such as padding.

2.4 Inverting a Bit Stream Using a Comprehension

Another way to write code which iterates over a bit stream is to use a bit stream com-
prehension [6]. This is a construct analogous to a list comprehension [18], which in turn
is an expression that is syntactic sugar for the combination of map, filter and concat
on lists. For a simple example use of a bit stream comprehension consider the task of
inverting all bits in a bit stream. The bsnot function below performs this task.

bsnot(BitStr) ->
<< bnot(X):1 || <<X:1>> <= BitStr >>.

The meaning of this comprehension is: iterate through each bit in the bit stream, invert
it using the built-in bnot operator, and put it into the resulting bit stream.

2.5 Iterating and Filtering a Bit Stream Using Comprehensions

For a slightly more involved example consider the drop 0XX function of Section 2.3.
Using bit stream comprehensions, drop 0XX would be written more succinctly as:

drop 0XX(BitStr) ->
<< <<1:1,X:2>> || <<1:1,X:2>> <= BitStr >>.

This comprehension works as follows. If the first three bits of the bit stream match the
pattern <<1:1,X:2>> then place those bits in the resulting stream; otherwise drop these
bits. Repeat until no bits remain in the bit stream. That is the pattern works as both a fil-
ter and a generator. To make this more explicit we can write a drop 0XX function which
is equivalent with the previous one using an explicit filter in the following manner:3

drop 0XX(BitStr) ->
<< X:3 || <<X:3>> <= BitStr, 2#100 =< X >>.

In bit stream comprehensions, sometimes more complicated, perhaps user-defined,
filtering is needed. In the following example, we are given a string represented as a bit
stream and want to extract all non-digit characters from this string and store each of the
digits in four bits:4

compact_digits(String) ->
<< (X-$0):4 || <<X:8>> <= String, is_digit(X) >>.

is_digit(X) when $0 =< X, X =< $9 -> true;
is_digit(_) -> false.

3 In Erlang, 2#100 represents the number four in base two.
4 In Erlang,’$’ is an operator which given a character returns the ASCII value of that character.
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3 Applications

3.1 UU-Encoding

UU-encoding is an old binary-to-text encoding scheme where groups of three binary
bytes are encoded in four characters. This is done by dividing the three binary bytes
into four groups of six bits. Then 32 is added to each six bit group which turns them
into characters. The cores of these encoding and decoding scheme essentially become
one-liners using Erlang’s bit stream programming facilities.

uuencode(BitStr) ->
<< (X+32):8 || <<X:6>> <= BitStr >>.

uudecode(Text) ->
<< (X-32):6 || <<X:8>> <= Text >>.

3.2 yEnc

The yEnc format is a newer encoding of binary files than UU-encoding where bytes
which cannot be safely transmitted in text mode are escaped. Each byte in the original
stream is encoded by adding 42 to it using 8-bit arithmetic. If the result is a critical
character (i.e., NULL, TAB [ASCII 9], LF [ASCII 10], CR [ASCII 13] which are hard
to transmit over some networks or ’=’ [ASCII 61] which is used as an escape character),
the character is encoded using two bytes: the first byte is ’=’ [ASCII 61] and the second
byte is the critical value plus 64. To encode a binary file in the yEnc format [8], we can
use the bit stream comprehension in the following program:
yenc(Bin) ->

<< yenc_byte(Byte) || <<Byte:8>> <= Bin >>.

yenc_byte(Byte) ->
Enc = (Byte+42 rem 256),
case is critical(Enc) of
true -> <<61:8, (Enc+64):8>>;
false -> <<Enc:8>>

end.

3.3 μ-Law

Audio files are nowadays transmitted over the network using a variety of formats. One
such format, designed to be space efficient, is μ-law compressed files [10]. Such files
are compressed to half the size of the original audio as each 16-bit sample is translated
into an 8-bit representation.

μ-law encoding. The encoding method is non-trivial but still quite simple. First the
Sound sample is transformed from 2’s complement form to a Biased sign magnitude
form where the magnitude is an integer in the range [132..32767]. This can be done
easily with the bit stream comprehension:

<< to_sign_magn(Sample) || <<Sample:16/integer-signed>> <= Sound >>
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which simply takes each 16-bit sample in 2’s complement form. This is achieved by
using the signed specifier in the pattern. The to sign magn function is then applied
to this value. This function is defined as follows:

to_sign_magn(Sample) ->
<<sign(Sample):1, (min(abs(Sample), 32635)+132):15>>.

i.e., it transforms the sample from 2’s complement form into sign magnitude form and
increases the magnitude with 132.

In the next step, this representation is translated to an 8-bit representation where the
first bit represents the sign, the next three bits represent the position of the first 1 in
the magnitude, and the last four bits represent the values of the four bits following the
leading 1. This can also be done with a comprehension of the form:

<< to_byte(S,M) || <<S:1,M:15/bitstr>> <= Biased >>

In this case, S contains the sign bit and M is a bit stream consisting of 15 bits representing
the magnitude of the sample. These are used as arguments to the to byte function
which is defined as follows:

to_byte(Sign, Magn) -> to_byte(Sign, Magn, 7).

to_byte(Sign, <<1:1, Mantissa:4, _/bitstr>>, N) ->
<<Sign:1, N:3, Mantissa:4>>;

to_byte(Sign, <<0:1, Rest/bitstr>>, N) ->
to_byte(Sign, Rest, N-1).

This function searches for the position of the first 1 in the Magn bit stream. Since the
range of the magnitude is 132–32676 there will be at least one 1 in the first 8 bits and
recursion will stop. The position of the first 1 is therefore coded in the following way:

7 6 5 4 3 2 1 0

Thus, if the third bit contains the first 1, its position is 5. The following four bits are
called the mantissa. In the byte created by the to byte function the first bit contains
the sign, the following three bits contain the position, and the last four bits contain the
mantissa.

Finally, we take the 1’s complement of this value using the bsnot operator of Sec-
tion 2.4. The complete code for μ-law encoding is shown in the appendix.

μ-law decoding. To decode these values we start by taking their 1’s complement. We
then translate the bytes to sign magnitude form again with this comprehension:

Biased = << to_short(Sign, Exp, Mantissa) ||
<<Sign:1,Exp:3,Mantissa:4>> <= Encoded >>

where the to short function is defined in the following way:

to_short(Sign, Exp, Mantissa) ->
<<Sign:1, 1:(8-Exp), Mantissa:4, 1:1, 0:(2+Exp)>>.
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That is, put the Sign bit first, then put the leading one in the correct place followed by
the mantissa and an additional 1 and fill the remaining bits with zeroes.

Finally, we must translate the sign magnitude representation into 2’s complement
representation and remove the bias. This is done with the comprehension:

<< unbias(Sign,Magn) || <<Sign:1,Magn:15>> <= Biased >>

where the function unbias is defined as follows:

unbias(0, Magn) -> <<(Magn - 132):16>>;
unbias(1, Magn) -> <<(132 - Magn):16>>.

3.4 PNG

The Portable Network Graphics (PNG) file format [16,11] is a rather recent format for
picture files intended to replace the widely-used but patent-based GIF format. The struc-
ture of the PNG format is quite simple. It consists of an initial signature and then a series
of chunks. Each of the chunks consists of a length field, a type field, the chunk data,
and a checksum. A certain type of chunk contains the raw compressed data whereas the
rest of the chunks contains meta data. Assuming that the PNG variable is bound to a bit
stream where we have removed the signature from the original file, we can recreate the
raw data in order to decompress it using the following bit stream comprehension.

<< RawData || <<Length:32, 73:8,68:8,65:8,84:8,
RawData:(Length*8)/bitstr, _Crc:32>> <= PNG >>

The sequence of numbers 73,68,65,84 is the content of the type field for the chunk
containing raw data. This means that only the chunks that contain raw data match the
generator pattern and only the data from those chunks makes up the resulting bit stream.
We can then decompress this data and use the uncompressed data and the chunks con-
taining meta data to generate the picture.

3.5 Huffman

Huffman encoding is a variable length encoding of characters. The mapping between
the variable length codes and the static codes is described by a Huffman tree. This tree
is a binary tree where the leaves are static codes. The mapping from the dynamic length
codes to the static codes is encoded in the path from the root to a leaf. For example, if
a leaf contains the static code 32 and is reached from the root by taking the left branch,
then the right branch and finally the left branch, this means that 010 maps to 32.

To decode a Huffman encoded bit stream we can use Program 1. The main decoding
function has four clauses. The first is taken if we have reached a leaf in the Huffman
tree. If this is the case we add the value in that leaf to the output and recurse. The second
clause is taken if we are at a branch and the value of the next bit is zero. In that case
we take the left branch. The third clause is taken if the next bit was one and in that case
we choose the right branch. The fourth and final clause is taken when there are no more
bits left to decode which means that we are done.
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Program 1. Function for decoding a Huffman encoded bit stream
huffman_decode(BitStr, Tree) ->

huffman_decode(BitStr, Tree, Tree).

huffman_decode(Rest, Char, Tree) when is_char(Char) ->
[Char | huffman_decode(Rest, Tree, Tree)];

huffman_decode(<<0:1,Rest/bitstr>>, {Left,_}, Tree) ->
huffman_decode(Rest, Left, Tree);

huffman_decode(<<1:1,Rest/bitstr>>, {_,Right}, Tree) ->
huffman_decode(Rest, Right, Tree);

huffman_decode(<<>>, _, _) ->
[].

4 Implementation

Having seen constructs and typical applications of bit stream manipulation, let us now
see how we efficiently implement these constructs.

4.1 Internal Representation of Bit Streams

We have chosen an internal representation of bit streams which has the property that the
space overhead of storing each stream is constant, independent of the size of the stream.
The representation uses two different structures: a base stream and a sub-stream. The
base stream contains a header, a size field expressing the size of the bit stream in bits,
and an array of data which contains the actual bit sequence. For a bit stream with bit
size n, the bit sequence starts with the first bit in the data array and ends at the n-th
bit in the array. The sub-stream structure contains a header field, a size field, an offset
field, and a pointer to a base stream. Let us denote the content of the size field by n, the
content of the offset field by o and the base stream that the sub-stream is pointing to by
BS. Then the bit sequence that the sub-stream represents starts with o-th bit of the data
array of the base stream BS and ends with the (o+n-1)-th bit of the data array of BS.

Header

Size = 31

0 0 1 0 1 1 1 1

0 0 1 0 1 1 1 1

0 1 1 0 0 1 1 1

0 0 0 0 0 0 0 1

Header

S = 5

O = 17

 

Header

S = 16

O = 8

 

A

B

C

Fig. 3. Internal representation of bit
streams

Figure 3 shows the representation of a base
stream and two sub-streams. In our implemen-
tation, the header, size and offset fields are
all word-sized even though they look smaller
in the figure. The header field stores the size
in words of the structure and a runtime tag
which identifies the object as a base stream (or
sub-stream). In the figure, A, B, and C are all
variables bound to binaries. A is bound to the
base stream <<47:8,47:8,101:8,1:7>>, B
is bound to the sub-stream <<25:5>> marked
with a black border in the figure and C is bound
to the sub-stream <<47:8,101:8>> which is
marked with a grey background in the figure.
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4.2 Implementation of Bit Stream Construction

Bit stream construction is aided by two low-level auxiliary functions:

put integer() which given a pointer, an offset in bits, a size in bits, and an integer (a
fixnum or a bignum) and writes size bits of the integer starting at offset bits from
the pointer, and

put bitstr() which given a pointer, an offset in bits, a size in bits, and a bit stream
writes the first size bits of the bit stream starting at offset bits from the pointer.

A bit stream construction expression of the form <<ve1:se1/t1,...,ven:sen/tn>>
is translated using these functions as follows. We start by evaluating all the value and
size expressions and end up with an expression of the form <<v1:s1/t1,...,vn:sn/tn>>
where all the vi:s are values and all the si:s are non-negative integers. If any si is a neg-
ative value, a run-time exception is raised.

Then, we perform the following operations:

1. Calculate the resulting size of the bit stream as
∑n

i=1 si.
2. Allocate a base stream with a large enough data array to hold all the bits of the bit

stream, initialize data ptr to a pointer to the beginning of the data array and set
offset to 0.

3. For each segment, do the following:
(a) If ti is integer we call put integer(data ptr, offset, si, vi)
(b) If ti is bitstr we call put bitstr(data ptr, offset, si, vi)
(c) Set offset to offset+si

4. After all segments are processed, return the base stream.

4.3 Implementation of Bit Stream Pattern Matching

We only describe the case of matching a bit stream against a single binary pattern. For
a thorough treatment of how to efficiently match a (byte-aligned) binary against many
patterns simultaneously refer to our prior work [7] which describes effective algorithms
for constructing deterministic binary pattern matching automata.

The matching is aided by two low-level auxiliary functions:

get integer() which returns an integer given a pointer to some data, an offset in bits
into that data, and the number of bits that should be used to create the integer, and

get bitstr() which creates a sub-stream from an offset, a size and a pointer to a base-
binary.

To match <<X1:e1/t1,...,Xn:en/tn>> against a bit stream BitStr we perform
the matching in the manner described below.

1. Create a matching state from BitStr. The state contains the following information:
data ptr a pointer to the data
offset the present offset into the data
end the offset of the last bit in the stream
orig ptr a pointer to the base stream which contains the data

2. For each segment, perform the following tasks:
(a) Evaluate ei, the size expression of the first segment to the integer si.
(b) Check whether offset+si ≤ end, or else the matching fails.



Applications, Implementation and Performance Evaluation 103

(c) If ti is integer then Xi = get integer(data ptr, offset, si)
(d) If ti is bitstr then Xi = get bitstr(offset, si, orig ptr)
(e) Set offset to offset+si

3. Check whether offset == end. If so, the matching succeeds, otherwise it fails.

A tail segment (i.e., a last segment of the form Xn/bitstr) is handled specially: we
bind Xn to get bitstr(offset, end, orig ptr) and set the value of offset to end.

Also, note that we described the case where all segments are of the form Xi:ei/ti

where Xi is a variable. If some Xi is not a variable but has a value vi we simply add an
equality test that checks that vi is equal to the value returned from either get integer or
get bitstr. If not equal, the matching fails. Otherwise the matching continues with the
next segment.

4.4 Efficient Abstractions and Alternatives

With the contiguous internal representation of Sect. 4.1 bit stream pattern matching is
fast but building bit streams piece by piece is expensive. Still, on top of our representa-
tion we can build two efficient abstractions, segmented bit streams and buffers.

Segmented bit streams. A segmented bit stream consists of a list of (possibly seg-
mented) streams and represents the stream that is formed if the streams in the list are
concatenated. Thus, a segmented bit stream is a (deep) list of bit streams. This abstrac-
tion makes it easy and cheap to concatenate a new bit stream to an existing segmented
bit stream: all we need to do is to put it first in the list. Then, to efficiently turn a seg-
mented bit stream into a regular contiguous bit stream we introduce a built-in called
list to bitstr which simply transforms a (deep) list of bit streams into a single, con-
tiguous one. This way, constructing a bit stream of size n piecemeal from some other
streams can be done in O(n) as opposed to O(n2) if segmented bit streams are not used.
However, note that in the worst case (when each element in the list is a one-bit stream),
the segmented bit streams abstraction has a significant space overhead.

Buffers. The idea of the buffer abstraction is taken from the Lua programming lan-
guage [9]. A buffer is basically a list of bit streams with the following invariant: each
bit stream in the list is strictly smaller than the next bit stream in the list. Note that,
since the representation is a list of bit streams, the list to bitstr built-in can then be
used to turn a buffer into a contiguous bit stream. However, since we need to maintain
the invariant that bit streams in the list are increasing in size, sometimes we need to
concatenate bit streams directly when adding streams to the buffer. This makes con-
struction of a buffer more expensive than constructing a segmented bit stream, but the
invariant keeps the space overhead lower for a buffer than for a segmented bit stream,
since the maximal length of the list is O(

√
n) if the total number of bits is n.

Currently, neither buffers nor segmented bit streams have any support on the language
level. This means that e.g. to use bit stream pattern matching on a buffer, the buffer must
first be explicitly converted to a contiguous representation using list to bitstr.

4.5 Implementation of Bit Stream Comprehensions

The implementation of bit stream comprehensions requires considering the implica-
tions of the chosen underlying representation. If we choose to implement bit stream
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comprehension naı̈vely, constructing a new bit stream in each iteration the cost of the
comprehension would be quadratic in the number of iterations.

Naturally we can do better than this. One possible choice is to use segmented bit
streams, i.e. build a list of bit streams and then use the list to bitstr built-in to convert
the list into a bit stream. Another possibility is to collect all of the bit streams in a list
accumulator and at the same time calculate the sum of the sizes of the streams in the
list. In this way we find out the size of the resulting bit streams and create a list whose
elements are the streams in reverse order. We can then allocate a large enough base
stream and copy the bit streams in the list into the data array of that base stream.

Though both these solutions have linear complexity, we can decrease the constant
factors significantly whenever it is possible to compute an upper bound on the size of
the resulting bit stream. In these cases we allocate a base stream in advance and write
the results to the base stream as the bit stream comprehension is evaluated.

When is it possible to compute an upper bound on the resulting bit stream? Let us
consider the case when we only have one generator, which is by far the most common
situation. In such a case, the bit stream comprehension looks as follows:

<< e:se/t || <<e1:se1/t1, . . . , en:sen/tn>> <= BitStr,ef >>

If all of the size expressions (se, se1, . . . , sen) can be evaluated before the bit stream
comprehension starts being evaluated, then we can calculate how many bits of the input
bit stream are consumed in each iteration (

∑n
i=1 sei) and how many bits might be

produced in each iteration (se). That is, if BitStr has size m the maximal number of
bits in the resulting binary is: (m × se)/

∑n
i=1 sei.

On the other hand, in some cases it is impossible to calculate a tight upper bound on
the size of the resulting binary. One example is this comprehension:

<< 42:N || <<S:8,N:(S*S)>> <= BitStr >>

Luckily, such comprehensions are rather rare in practice. Thus, in our implementation
we chose to stick to a simple implementation of bit stream comprehensions, namely that
which uses segmented binaries flattened by a call to list to bitstr for such uncommon
cases. For cases when a tight upper bound can be calculated we use the method which
preallocates a base stream of suitable size.

5 Performance

From Section 3 it should be clear that bit-level binaries and comprehensions allow for
flexible manipulation of bit streams. Still, these constructs are to be used in applica-
tions where speed of processing is a prime consideration. Thus, it is imperative that the
performance of the underlying implementation is competitive with both imperative lan-
guages using bit shifts and bit masks on byte arrays and with other high-performance
functional languages using bit or byte arrays for representing bit streams.

Notice however that bit streams in Erlang are immutable data structures. The lan-
guage provides no support for destructive updates. Also, notice that memory manage-
ment for bit streams is automatic and a responsibility of the underlying runtime system,
not of the programmer. Thus comparing the performance of functional vs. imperative
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drop 0XX This is the program from Section 2.3. It takes a bit stream and removes all 3-bit
chunks that start with a 0. In the benchmark, the size of the input stream is about 28.5 million
bits; the size of the resulting bit stream is about 8 million bits. We perform 10 iterations.

five11 Implements the IS-683 PRL protocol. Reads a file whose first 16 bits represent an integer
that describes how many PRL packets the file contains. Each packet starts with a 5-bit integer
describing how many channels the packet contains and is followed by that number of 11-bit
channel descriptors. The output is a list of channel descriptors for each packet. The input
data consists of 496 different packets (16 of each possible size) and is decoded 10,000 times.

huffman The input is a file containing the huffman tree and a message encoded using this tree.
The benchmark recreates the original message. The size of the encoded file is 747,647 bytes
and the decoded file consists of 3,568,560 bytes. The file is decoded 10 times.

uudecode This benchmark decodes a file that has been uuencoded. The size of the encoded
input file is 747,647 bytes and the size of the decoded output file is 542,623 bytes. The file
is decoded 100 times.

uuencode This benchmark uuencodes a file. The input file consists of 542,623 bytes and the
encoded output consist of 747,647 bytes. The file is encoded 100 times.

Fig. 4. Description of the benchmarks

languages in applications which manipulate bit streams has a bit of an “apples and or-
anges” flavor, especially since different styles of programming are often employed.

Still, this performance comparison is interesting. We will base it on the programs
described in Figure 4 which spend the bulk of their work in bit stream manipulation.

We have implemented these benchmarks in three different functional languages,
namely Erlang with all the extensions described in this paper, Haskell and O’Caml.
In addition, we wrote C and Java versions of the first three benchmarks and found pub-
licly available uudecode and uuencode C programs on the net which we converted
to appropriate benchmarks and translated to Java. Our intention was to eliminate any
traces of possible favoritism for some language and any inefficiencies due to our pro-
gramming skills. So, we requested the help of Haskell and O’Caml experts to perform
any efficiency improvements they saw fit, provided that the programs remain functional:
i.e., use no mutation in the part of the program for which measurements are taken. On
the other hand, the imperative languages are free to—and indeed do—use destructive
assignments on all benchmarks.

The compilers that we used are the Glasgow Haskell Compiler version 6.4.1, the
O’Caml 3.09.1 native code compiler, and GCC 3.4.2 for C and Java (gcj). For Erlang
we used the HiPE native code compiler in the pre-release of Erlang/OTP R11B-2. The
machine we used is a 2.4 GHz Pentium 4 with 1 GB of memory running Fedora Core 3.

5.1 Runtime Performance

Figure 5 shows performance results. We can see that Erlang enhanced with the con-
structs described in this paper is competitive in speed with other state-of-the-art func-
tional languages in programs that manipulate bit streams. This is not due to Erlang’s
overall performance compared with Haskell and O’Caml. Instead, it is due to having
these constructs in the language and having the compiler generate reasonably efficient
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Runtimes (in secs) Lines of code
Functional Imperative

Benchmark Erlang Haskell O’Caml C Java
drop 0XX 2.09 5.85 2.25 0.96 1.99
five11 4.97 8.65 7.69 9.79 18.41
huffman 2.29 7.38 10.81 0.97 1.75
uudecode 3.21 6.04 2.65 0.86 0.97
uuencode 2.85 7.77 2.82 1.04 0.98

Functional Imperative
Erlang Haskell O’Caml C Java

2 47 45 26 47
9 38 23 64 78

14 30 54 67 81
20 91 65 43 57
25 70 70 54 64

Fig. 5. Time performance and succinctness of programming in different languages

code for them. Also, at least for these programs, the performance of the functional way
of manipulating low-level representations is not so far away from that obtained using C
with destructive assignment and programmer-controlled memory management.

Some runtime numbers stick out and require explanation. The bad performance of
O’Caml on huffman is due to extensive garbage collection; the program spends more
than half of its time doing GC. Also, the bad performance of imperative languages on
five11 is partly due to the nature of the task, which is not tailored to accessing bits in
a multiple-of-eight fashion, and partly due to calling individual malloc:s and free:s
(in C) for each channel description rather than allocating a big memory area once and
partitioning it to each channel using programmer-controlled pointer bumping.

5.2 Succinctness and Ease of Programming

Performance is only part of the story. Ease of programming is equally important. It
is very difficult to quantify this dimension, but the lines of code required to perform
these tasks in different languages provide some rough estimate. As seen in Figure 5,
the Erlang solutions are 2–20 times more compact than solutions in other functional
languages. Once again, this is not due to the functional core part of Erlang; it is due to
the ability to manipulate bit streams declaratively.

We have used the following rules when counting line numbers:

– We only counted lines directly involved in performing the tasks required by the
benchmarks, not lines needed for I/O or for measuring execution times.

– We did not count blank lines, comments, type specifications of functions, strictness
annotations, or lines containing only one keyword.

– No line was allowed to be wider than 80 characters.

We have made all these benchmark programs publicly available and annotated their
source code with line numbers to see exactly which lines we count in the different
benchmarks. Their annotated source code is at http://user.it.uu.se/∼pergu/bitbench.
Input data for running these programs, further information, as well as a pre-release of
the Erlang/OTP system we have used are also accessible from the same site.
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6 Related Work

Currently, very few general purpose languages provide constructs for direct manipula-
tion of binary data down at the bit level, let alone efficient ones. Bit streams are typically
represented as character arrays and their bit-level manipulation is performed by the
programmer using explicit bit shifts and bit masks. Doing so is both exacting and error-
prone. But since this kind of programming is commonplace in domains such as cryptog-
raphy, data communication and multimedia programming, a plethora of domain-specific
languages targeting these areas come with some ability to manipulate bit streams.

Cryptol [12] and SLED [15] are domain specific languages in the field of cryptol-
ogy and machine language manipulation, respectively. They both allow bit-level pattern
matching, but the size of the fields in the patterns are fixed at compile time.

Solar-Lezama et al. have proposed BitStream, a language for manipulating binaries
in the coding and cryptography area [17]. The dataflow programming model used in
BitStream is radically different from ours, as is the methodology to achieve both correct
and efficient programs which requires the programmer to first write a simple reference
implementation and then sketch a more efficient implementation which is rejected by
the compiler if it is not equivalent to the reference implementation. For some applica-
tions, BitStream achieves good performance, on par with hand-optimized C programs.

In the area of data communication Chandra and McCann [2] have proposed a type
system which can be used to describe how network packets are structured at the bit
level. Back has proposed the DataScript [1] language which is both a constraint-based
specification language for specifying binary data formats and a scripting language for
manipulating such formats. DataScript is based on Java and does not support pattern
matching. The PADS [4] language, proposed by Fisher and Gruber, allows description
of any ad hoc data format and comes with the ability to automatically generate tools that
manipulate such formats. In the context of the PADS project, Fisher, Walker, and Man-
delbaum have recently developed a calculus of dependent types [5] which is suitable to
use as a semantic foundation for the whole family of data description languages.

The previous examples of related work are all in one way or another domain-specific.
Diatchki, Jones and Leslie [3], proposed a language extension for general purpose lan-
guages that allows pattern matching on fixed-width bit data types. Their proposal would
make it easier to use a high-level functional language similar to Haskell to perform
low-level tasks like writing device drivers or implementing operating systems. What
distinguishes their work from ours is that 1) they only consider bit data whose repre-
sentation fits in the registers of a machine while we do not have any such constraint,
and 2) that their implementation comes in the form of an interpreter rather than being
fully integrated in a general purpose programming language.

7 Concluding Remarks

The treatment of bit-level data is a neglected area in general-purpose programming lan-
guages and most declarative languages are no exceptions. This is unfortunate since there
are many applications out there craving for language constructs which remove the need
for tedious and error-prone bit-twiddling, while still achieving decent performance.
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Armed with bit stream comprehensions and the ability to perform pattern matching
at the bit level without being hampered by artificial restrictions (e.g., always having to
create bit streams whose length is a multiple of eight) we have shown how a variety of
important “real-world” bit stream applications can be programmed both succinctly and
efficiently. We see very little reason for bit streams not to co-exist with other complex
terms such as lists or tuples, or for Erlang to be an exception in providing such support.
Perhaps this paper paves the way in this direction.
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Abstract. Modern development environments integrate various static analyses
into the build process. Analyses that analyze the whole project whenever the
project changes are impractical in this context. We present an approach to au-
tomatic incrementalization of analyses that are specified as tabled logic programs
and evaluated using incremental tabled evaluation, a technique for efficiently up-
dating memo tables in response to changes in facts and rules. The approach has
been implemented and integrated into the Eclipse IDE. Our measurements show
that this technique is effective for automatically incrementalizing a broad range
of static analyses.

1 Introduction

Static analysis is becoming increasingly important for software developers [2]. For
example, many APIs and frameworks define restrictions that cannot be expressed by
function or method signatures alone. If such restrictions are not statically checked, sub-
tle bugs can arise at runtime.1 Enforcement of style or design guidelines, detection
of bug patterns and security holes are other example areas of applying static analyses
[1,15,19].

In this context, static analyses are most effective when they are integrated into the
build process of integrated development environments (IDEs). This allows analyses to
run “behind the scenes”, ensuring continuous quality inspection during project devel-
opment and providing the developer with immediate feedback.

However, such an integration also puts constraints on the time and space complexity
of static analyses to be integrated; long build times that slow down the code-save-build
cycle are unacceptable. To this end, it is desirable to compute the result of static analyses
in an incremental way, whenever possible.

One option is to design an incremental version of each single static analysis. While
this may be acceptable for standard analyses, it would be very inconvenient for analy-
ses that are specific to a particular domain, framework, or company; in the latter case,
it should be easy to extend the set of applicable analyses with little effort. The obliga-
tion to design an incremental version of each individual new analysis would be a major
burden.

1 For examples cf. Enterprise JavaBeans 3.0 Specification – Core Contracts and Requirements.
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The work presented in this paper proposes automatic incrementalization of static
analyses as a key technique for extensible static analysis platforms that are integrated
into the incremental build process offered by modern IDEs.

We consider an analysis to be incremental if the following holds: Let R be the cur-
rent result of the analysis. Then, in response to the next changes made to the code,
the analysis only reprocesses those parts of the code that are necessary to compute
the new result from R. Determining the set of software elements to reanalyze in an
incremental step is not trivial: A single change might require reanalyzing multiple
classes. Yet, typically this reanalyzed set represents only a small fraction of the whole
project.

In our proposal, analyses are specified as Prolog programs that operate on a logic
database containing a representation of the source code. New analyses can be defined
declaratively, which is important for our goal of an extensible set of analyses. Specifi-
cally, we use tabled logic programs [5,9,31] which employ memoization to cache and
reuse intermediate results. Tabling removes some of the shortcomings of Prolog’s eval-
uation strategy, especially its susceptibility to infinite looping. For example, termination
is guaranteed for Datalog programs (an important subset of Prolog); as such, it is suit-
able for a variety of static analyses.

Our basis of automatic incrementalization of static analysis is incremental tabled
evaluation [26,27,28,29,30] which efficiently updates the memoized information in re-
sponse to the changes in the underlying data. We use the incremental algorithm for
general logic programs presented in [29] that is implemented on top of the tabled Pro-
log system XSB (ver. 2.7.1)2. The advantage of basing the specification and evaluation
of static analyses on incremental tabled evaluation is that analyses become incremen-
tal for free, by simply declaring them as tabled. Hence, results produced by previous
evaluations of analyses are automatically kept up-to-date and invalidated when needed.
Incremental tabled evaluation has been tested for a few exemplary analyses (e.g. pointer
analysis, push-down model checking) for C programs in [27,28]. The work presented
here generalizes and extends these preliminary results.

The contributions of this paper are as follows: FIRST, this is the first proposal to
use automatic incrementalization for analyses (of Java code) that are integrated into
the incremental build process of modern IDEs. To facilitate data-flow dependent anal-
yses, a 3-address based representation in static single assignment form is used as the
foundation. SECOND, we extended the capabilities of the incremental tabled evalu-
ation algorithm. Specifically, we incorporated functionality to abolish incrementally
maintained tables when they are no longer needed. THIRD, we prove the effective-
ness of automatic incrementalization for a broad range of static analyses and for large
changes.

The remainder of this paper is organized as follows. In Section 2, we discuss the
implementation of analyses in Prolog as well as their automatic incrementalization.
The section ends with an overview how the analyses are embedded into the incremental
build process of Eclipse. Section 3 evaluates the proposed approach. The paper ends
with the discussion of related work followed by a short summary and outlook to future
work.

2 http://xsb.sourceforge.net
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1 package bat;
2 public class Node{ void accept(Visitor visitor){visitor.visit(this);} }
3 public class SubNode extends Node{ /∗ empty ∗/ }
4
5 @Visitor(Node.class)
6 public class StructureVisitor{ public void visit(Node node){...} }

Listing 1.1. Sample source code

1 % class(PackageName,ClassName,AccessSpecifier,IsAbstract,IsFinal,SuperClass)
2 % classAnn(Class,Annotation)
3 % method(Id,DeclaringClassName,Name,AccessSpecifier,...,ReturnType,

ListofParam,ListofAnnotations)
4
5 class(’bat’,ref(’bat.Node’),public,false,false,ref(’java.lang.Object’)).
6 method(4,ref(’bat.Node’),’accept’,default,...,void,[parameter(ref(’bat.Visitor’),[])],[]).
7
8 class(’bat’,ref(’bat.StructureVisitor’),public,false,false,ref(’java.lang.Object’)).
9 classAnn(ref(’bat.StructureVisitor’),annotation(type(’Visitor’),value(ref(’bat.Node’)))).

10 method(2,ref(’bat.StructureVisitor’),’visit’,public,...,void,[parameter(ref(’bat.Node’),[])
],[]).

11
12 class(’bat’,ref(’bat.SubNode’),public,false,false,ref(’bat.Node’)).

Listing 1.2. Encoding of sample source code as Prolog database

2 Analyses in Tabled Prolog Integrated into an IDE

2.1 Data Model and Prolog Based Analyses

We use two example analyses to illustrate our approach to specifying static analyses as
tabled Prolog queries.

The first analysis detects violations of a best practice in applying the Visitor pattern
[17]. The best practice states that a visitor is expected to implement a special visit
method for each type in the hierarchy it visits. The second analysis detects methods
which return the self reference this. Such data-flow analyses are often required when
implementing advanced type systems, such as, Confined Types [32].

For illustration of the analysis which detects violations of the Visitor pattern, consider
the Java code in Listing 1.1. The classes Node (Line 2) and StructureVisitor
(Line 6) are defined together at some point in time. Later on, the class SubNode (Line 3)
is added to the code base. This violates the best practice, since StructureVisitor
does not implement a visit method for SubNode. Nevertheless, the compiler will
not generate any warning. A Prolog-based static analysis for detecting such a violation
is shown in the following.

Listing 1.2 shows a Prolog encoding of the source code. A class fact (Line 5, 8, or
12) consists of the package name, the fully-qualified class name, the visibility, boolean
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1 % the subtype relation is computed by invInherits and transInvInherits
2 invInherits(SuperClass,Class):− class( ,Class, , , ,SuperClass).
3 % transitive reflexive hull of invInherits
4 :− table transInvInherits/2.
5 transInvInherits(X,Y) :− invInherits(X,Y).
6 transInvInherits(X,X).
7 transInvInherits(X,Y) :− invInherits(X,Z), transInvInherits(Z,Y).
8
9 :− table visitor/1.

10 visitor(Class):− classAnn(Visitor,annotation(type(’Visitor’),value(Node))),
11 transInvInherits(Node,Class),
12 not(method( ,Visitor,’visit’, , , , , , , ,[parameter(

Class, )], )).

Listing 1.3. Visitor Query

values denoting whether the class is final or abstract, and the name of the superclass.
The first value in method facts (e.g. 4 in Line 6) is a generated unique identifier for
a method; after that, the declaring class is specified, followed by the method’s name,
its visibility (default), an encoding of the method’s modifiers using boolean values
(omitted for brevity), the return type, the parameter types along with parameter annota-
tions and the list of declared exceptions.3

The analysis is specified as the visitor(Class) query in Listing 1.3 Line 10.
The query identifies visitor classes that do not implement a visit method for every sub-
type of the annotation parameter, but which are marked with the @Visitor(Type)
annotation. For doing so, the query first selects classes with the @Visitor annotation
to get the root of the visited hierarchy: Node in our example. Next, it applies the rule
transInvInherits/2 to find all classes which extend Node; for any such class,
the query verifies that the Visitor has a corresponding visit method and if not the
class is bound to the variable Class.

For each answer to the query, i.e., each binding of the variable Class, a warning
message is generated indicating that the class violates the best practice.

The second example analysis, which checks that a method does not return the self
reference (this), illustrates writing analyses using the 3-address based code represen-
tation in static single assignment form. A violation is shown in Line 4 on the left hand
side of the following listing: this is assigned to the variable o which may be returned
later on.
1 public Object violate(){
2 Object o;
3 if (...)
4 o = this;
5 else
6 o = null;
7 return o;
8 }

1 method(4,ref(’C’),’violate’,public,...).
2 if(4,2,4,...,operator,...,1).
3 label(4,3,4).
4 goto(4,4,4,2).
5 label(4,5,1).
6 label(4,7,2).
7 phi(4,8,8,p7,[phiElem(this,4),phiElem(null,1)

]).
8 return(4,9,8,p7).

3 All facts are properly indexed (not shown in the listing) for efficient query response.
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The Prolog encoding of the method is shown on the right hand side. In general,
the first value of each fact (Lines 2–8) is the id of the method and the second one is
the number of the instruction. The third value is the line number of the corresponding
source code — except for labels (Lines 3,5,6) where the third value is a method-
wide unique id. The last values of if and goto statements (Lines 2,4) are the id’s of
labels which are the jump targets. Labels are also defined for each basic block of the
control flow graph. The phi statement is a result of the transformation into static single
assignment form and states that the value of the variable p7 (Line 7) is control flow
dependent: If the id of the basic block of the last executed instruction is 4 the value of
p7 will be this. If the basic block’s id is 1 the value will be null.

The query to detect the violation is shown in the Listing below. The helper predicate
initializedWithThis/2 (Lines 1,2) binds its second argument to a variable di-
rectly initialized with this or this itself. The analysis is defined in Lines 4 – 6. Line
5 binds RetVal to variables that are directly or indirectly initialized with this. Line
6 succeeds for those methods that return such a value.

1 initializedWithThis(MethodID, Variable) :−
2 phi( , , ,Variable,Phis), member(phiElem(this, ),Phis).
3
4 returnsThis(MethodID) :−
5 initializedWithThis(MethodID, Val), propagate(Val, RetVal),
6 return(MethodID, , ,RetVal).

The tabled predicate propagate/2 (Line 2,3) is the reflexive and transitive closure
of all initializations of a variable; dpropagate/2 (Line 1) implements the initializa-
tion relation.

1 dpropagate(V1, V2) :− phi( , , ,V2,Phis), member(phiElem(V1, ), Phis).
2 propagate(V,V).
3 propagate(V1,V2) :− dpropagate(V1,V3), propagate(V3,V2).

As shown by the propagate/2 predicate, analyzing the data-flow is simplified as
each variable is initialized exactly once and the data-flow is explicitly encoded in the
phi facts.

2.2 Tabled Evaluation

Tabled logic programs declare certain predicates as tabled. Recursive predicates (for
ensuring termination) and predicates that are reused multiple times are good candidates
to be declared as tabled. Tabled resolution systems evaluate programs by memoizing
subgoals of tabled predicates (referred to as calls) and their provable instances (referred
to as answers) in a set of tables.

Calls are stored in a call table and all answers corresponding to a call are stored in
a corresponding answer table. During resolution, if a subgoal is present in the call ta-
ble, then it is resolved against the answers recorded in the corresponding answer table
(answer clause resolution); otherwise, the subgoal is entered in the call table, its an-
swers are computed by resolving the subgoal against program clauses (program clause
resolution), and are entered in the answer table.
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classAnn(_,annotation(type(’Visitor’),value(_))) method(_,ref(’bat.StructureVisitor’),’visit’,_,_,_,[parameter(ref(’bat.Node’),[]),_)

method(_,ref(’bat.StructureVisitor’),’visit’,_,_,_,[parameter(ref(’bat.SubNode’),[]),_)

class(_,_,_,_,_,ref(’bat.Node’))
class(_,_,_,_,_,ref(’bat.SubNode’))

transInvInherits(ref(’bat.Node’),_)

transInvInherits(ref(’bat.SubNode’),_)

visitorViolation(_)

Fig. 1. Called-by Graph for Visitor Example

We exemplify the principles of tabling with the visitor example. As shown in Listing
1.3 Line 4, the recursive predicate transInvInherits/2 is declared as tabled.
Also the top level predicate visitor/1 is declared as tabled (Line 9); a query
visitor(Class) can be resolved by looking up the visitor(Class)’s answer
table if the latter is non-empty. When visitor(Class) is executed for the first time,
tabling creates an entry visitor(Class) in the call table and uses the rule for the
visitor predicate to find results.

Resolving the first subgoal of the visitor predicate binds the variables Node and
Visitor to ref(’bat.Node’) and ref(’bat.StructureVisitor’)
respectively. The transInvInherits/2 predicate is evaluated with
the call transInvInherits(ref(’bat.Node’),Class), which is
stored in the call table. The answers Class=ref(’bat.Node’) and
Class=ref(’bat.Subnode’) of this call are obtained by resolu-
tion of the second clause of transInvInherits/2, and by resolution
of the first clause of transInvInherits/2 and invInherits/2,
respectively. These answers are stored in the answer table of the
transInvInherits(ref(’bat.Node’),Class) call. The resolution of
the last subgoal in the body of the visitor predicate generates only the answer
Class=ref(’bat.Subnode’) for the call visitor(Class), as the last
subgoal fails for the substitution Class=ref(’bat.Node’). Since visitor/1
is tabled, any subsequent visitor(X) call will be resolved from its answer table.

2.3 Incremental Evaluation

Any change to a Java program causes the addition and deletion of facts to the Prolog
fact base. Changes in the fact base can, in turn, render already evaluated tables stale:
They may not have all the answers or the answers in the tables may be incorrect. The
non-incremental approach to this problem is to abolish all the call and answer tables,
and reissue the query. This is often wasteful, especially when the effect of the changes
to the fact base is small. On the contrary, the incremental evaluation algorithm, that
we use, tries to identify the calls that are changed and reissues only these calls. The
algorithm is presented in [29] and is shortly described in the following.

A call is deemed changed iff the set of answers corresponding to the call before the
change differs from that after the change. However, it is not possible to identify the set
of changed calls before reevaluating any calls. Thus the incremental algorithm in [29]
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over-approximates the set of changed calls by the set of affected calls, which are calls
that can be potentially changed.

To determine the set of affected calls, the incremental algorithm maintains a data
structure which keeps the dependency between calls and facts that can be changed
(known as volatile facts). The data structure, known as called-by graph, is central to
the incremental algorithm and is described below using our visitor example.

The called-by graph is a directed graph whose nodes consist of calls and subgoals
that unify with the volatile predicates. A path from a node c1 to node c2 indicates that c1
is a tabled subgoal (or a call to a volatile predicate) that was called while resolving the
tabled subgoal c2. Each edge describes the immediate dependency between calls. The
graph captures the dependencies between tabled calls and calls to volatile predicates. It
is first generated in the initial (non-incremental) run, and maintained over subsequent
incremental runs.

The called-by graph for visitor(Class) is given in Figure 1. The edges
from nodes classAnn( ,annotation(type(’Visitor’),value( ))),
transInvInherits(ref(‘bat.Node’), ), and two method nodes to node
visitor( ) correspond to the first, second and two calls to the third subgoal in the
body of clause visitor(Class), respectively.

The incremental algorithm works in two phases: an invalidation phase and a reeval-
uation phase. The invalidation phase finds affected calls by bottom-up traversal of the
called-by graph starting from the vertices that unify with added or deleted facts. Edges
in the called-by graph are directed from callee to caller which enables us to compute
the affected calls by traversing the called-by graph. For an illustration, consider the
addition of a StructureVisitor.visit(bat.SubNode)method. This adds a
fact similar to the one in Line 10 of Listing 1.2, which instead of bat.Node refers
to bat.SubNode. The invalidation phase determines the visitor( ) call as af-
fected, because the added fact unifies with the method node of the called-by graph
that has ref(’bat.SubNode’) as a parameter, which, in turn, has a path to node
visitor( ).

If an added/deleted fact does not unify with any leaf of the called-by graph, none
of the calls are affected, i.e., the change has no effect to the present set of calls and
answers. For example, if we add a class bat.Foo that does not affect the class hierar-
chy of bat.Node, none of the existing leaves will unify with the added class fact for
bat.Foo. Hence, none of the existing calls are affected and reevaluated. Nonetheless,
a non-incremental evaluation will reevaluate all existing calls.

The specific actions taken in the invalidation phase, e.g., whether the affected calls
are deleted or not, depend on the strategy of the reevaluation phase of the algorithm.
However, for brevity we only describe the implemented reevaluation strategy in the
following.

The algorithm approximates the changed set, called the recomputed set which rep-
resents the smallest set of calls that need to be reevaluated. The intuition behind the
recomputed set is based on the following observations:

– Every changed call needs to be reevaluated.
– Every call that immediately depends on a changed call needs to be reevalu-

ated (even if it itself is not changed). Note that the called-by graph contains no
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qualitative information on how the change of a call affects another. Only the pro-
gram has this information embedded in it and, hence, the only way to determine
whether or not such a call changes, is to reevaluate it.

– If a reevaluated call is in a strongly connected component (SCC), then all calls in
that SCC need to be reevaluated.

The algorithm reevaluates only the calls in the recomputed set. Two basic mecha-
nisms are used to accomplish this:

1. Determine whether a reevaluated call is changed by comparing its answer table
before and after update.

2. Evaluate the calls “bottom-up” through the called-by graph: Trigger reevaluations
at higher levels only if the lower-level calls have changed.

For illustration, consider the change of the visibility modifier of bat.SubNode.
It causes the call transInvInherits(ref(’bat.SubNode’),Class) to be
reevaluated but without any changes. Hence, the calls to transInvInherits(
ref(’bat.Node’),Class) and visitor(Class) are not recomputed. Thus,
among the three affected tabled calls the algorithm recomputes only one call.

2.4 Deletion of Incrementally Maintained Tables

The algorithm presented in [29] incrementally maintains tables in response to changes
to volatile predicates. The data structures and tables are maintained as long as the ses-
sion is running. However, in our case a user can always select or deselect analyses and
in case that an analysis is deselected, the maintenance of the tables that are used solely
by the deselected analysis is no longer necessary. Deletion of such tables is important
to reclaim unused resources and to avoid the unnecessary maintenance during incre-
mental builds. In this paper, we therefore extend the functionality of incremental tabled
evaluation to enable reclamation of incremental tables.

We provide a builtin abolish call(C) which takes as the argument an incre-
mental call C which is intended to be abolished and tries to abolish C and all calls that
are directly or indirectly called by C. For example, when the visitor analysis is dese-
lected, abolish call(visitor( )) is executed. Subsequently all table space of
the calls identified by abolish call is reclaimed.

Below we define the set of calls that are deleted when a particular incremental call is
called for deletion.

Definition 1. Given a called-by graph G = (V, E), the set not deleted(C) defines
the set of calls that should not be deleted when abolish call(C) is called. The set
not deleted(C) is the least set satisfying the relation below:
C′ ∈ not deleted(C) if

– C is not reachable (reflexive and transitive) from C′ in called-by graph
– ∃C′′ ∈ not deleted(C) and (C′, C′′) ∈ E (i.e C′′ depends on C′).

The set of deleted calls (denoted by deleted(C)) due to abolishing incremental call
C is the complement of the set not deleted(C) over all incrementally maintained calls
present in the called-by graph.
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We developed a called-by graph based algorithm for determining the set deleted(C).
The algorithm is non-trivial because of cycles in called-by graphs. It has three phases:
marking, checking assumption, and deletion. The marking phase overapproximates the
calls that need to be deleted and subsequent phases prune the overapproximation. Due
to limited space we do not provide the algorithm here, but it can be found in an accom-
panying technical report [16].

2.5 IDE Integration

We have integrated the XSB Prolog engine — extended with the algorithm for incre-
mental tabled evaluation as described in the previous sections — with the Eclipse IDE
using Magellan4. Magellan takes care of translating every source-file of a project into
its corresponding Prolog encoding. More specifically, the BAT bytecode toolkit5 is used
to convert Java class files to a 3-address based representation in static single assignment
form [12] and then to convert this data into its Prolog encoding.

A full build process runs as follows: FIRST, the Prolog database is cleared, the rules
used by the selected analyses are added to the database, and the Prolog facts for all Java
class files are generated and added to the database. SECOND, Magellan executes the
Prolog-based analyses. Each Prolog query is wrapped into a small Java class, which
is responsible for (a) calling the Prolog engine to execute the query, and (b) post-
processing the results, e.g., by retrieving the source code locations and by adding the
error messages to Eclipse’s problem view.

An incremental build maintains the database rather than rebuilding it from scratch:
FIRST, whenever a document is added, changed, or removed Magellan calls the mainte-
nance analysis and passes on the information about the edited documents. Currently, the
units of change are whole classes, i.e., even when a single class’ comment is modified,
the maintenance analysis retracts all facts related to that class from the database and
adds the class again. SECOND, the maintenance analysis then adds/removes the facts
corresponding to the edited classes to/from the database and calls update on the Pro-
log database to propagate the changes to the tables. THIRD, Magellan re-evaluates the
queries by simply reading the values of the corresponding tables and updates dependent
IDE views such as the problems view correspondingly.

3 Evaluation

In this section, we evaluate the performance of our approach. First, the set of analyses
that are used for the evaluation is presented. After that we discuss the evaluation setup
and the performance figures.

3.1 Used Analyses

The analyses used for the evaluation require different kinds of information about the
code and are ordered w.r.t. the extent of the required information.

4 http://www.st.informatik.tu-darmstadt.de/Magellan
5 http://www.st.informatik.tu-darmstadt.de/BAT
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The first analysis detects classes which violate the contract defined in java.lang.
Object stating that subclasses should always implement the equals(...) and
hashCode() methods pairwise. A violation of this contract in a class C can lead
to subtle errors when instances of C are stored in, e.g., HashSets.

The second analysis detects covariant definitions of equals(Object). Such defi-
nitions are error prone, as methods with covariant parameter definitions do not override
methods defined in superclasses.

The two analyses above require only information about method signatures. The third
analysis is the previously discussed analysis that checks the implementation of the Vis-
itor design pattern [17]; hence, it requires type hierarchy information.

Finally, we added a set of 17 analyses for controlling aliasing in object-oriented
systems based on confined types [32]; the basic idea is to confine the creation of aliases
to a certain protection domain, in this case, to a Java package. These analyses require
information about the type hierarchy and the method implementations, e.g., to analyze
that a confined type is not casted to an unconfined type. Four of these analyses also
require (intra-procedural) data-flow information.

3.2 Evaluation Setup and Results

The evaluation was done on a P IV, 3 Ghz with 1024 MB RAM and Sun JDK 5.
The analyzed test project is the BAT bytecode toolkit (cf. Section 2.5). This project

consists of 22 packages, 790 classes, 45 interfaces, 55068 methods and approx. 395.000
facts are required to represent the method implementations. BAT contains an interface
called IStructureElementwhich is implemented by 252 non-abstract classes. The
visitor attached with this interface contains 504 methods. Applied on this project, the
visitor query (Listing 1.3) produced 2 warnings; further, one class was identified that
violated the equals/hashCode contract, and three covariant definitions of equals
were found.

The test set was supplemented by 17 classes from a second project spread over 3
packages which implement a small part of a public key infrastructure. Initially, confined
types were used in two of the packages. When performing the changes described in
Table 1, classes in the third package were also made confined. Initially, 17 different
errors related to confined types were in the code.

In case of a full build, the time to create the Prolog facts takes 3300 msecs. This
includes the transformation of the Java files into the 3-address representation and the
creation of the Prolog facts; to add the generated facts to the database, XSB requires
another 5200 msecs. Since all tables are initally empty, the first evaluation of the queries
takes 328 msecs.

Changes shown in Table 1 were executed in the given order. The first eight changes
affect core classes of the BAT project by modifying a comment, adding a field, adding
a method, renaming a class file, or adding a new class. Changes 9 to 16 simulate the use
of confined types in the project by marking classes as confined or unconfined.

To better assess the effect of a change, the number of affected classes is shown in
the third column of Table 1; further, the number of methods defined by the classes and
the total number of facts that were removed and added is given. In the fourth column,
the results produced by the queries after performing the changes is given: The first is
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Table 1. Change description and timing results

Run Description of the Changes removed /
added Classes,
Methods, Facts

Results msecs.
no incr.
XSB

msecs.
incr.
XSB

1 inserted two empty lines into a class 1, 504, 2779 /
1, 504, 2779

1/3/2/17 673 390

2 deleted a small method and the implemen-
tation of another small method

1, 504, 2779 /
1, 503, 2771

1/3/3/17 627 390

3 created a new field along with the cor-
responding getter method; further a new
empty method is created in a different class

2, 41, 430 /
2, 43, 447

1/3/3/17 468 156

4 ten fields and corresponding getters and set-
ters are created

1, 9, 40 /
1, 29, 141

1/3/3/17 454 78

5 refactored the name of a class which has 6
children; hence 7 classes are affected

7, 112, 2690 /
7, 112, 2690

1/3/3/17 812 578

6 added a blank into the comment of a small
class

1, 9, 41 /
1, 9, 41

1/3/3/17 437 78

7 deleted six small methods as a whole and
also deleted the content of another six meth-
ods

1, 503, 2771 /
1, 497, 2723

1/3/9/17 669 390

8 added a new class which implements an in-
terface

0, 0, 0 /
1, 3, 11

1/3/10/17 406 63

9 added a new method which leads to a viola-
tion of a widening constraint

1, 3, 15 /
1, 4, 19

1/3/10/18 389 48

10 added a new method 1, 3, 15 /
1, 4, 18

1/3/10/18 392 78

11 deleted the method which was added in the
previous change

1, 4, 18 /
1, 3, 15

1/3/10/18 405 78

12 changed the superclass, modified a small
method, added a new field and a another
small method which violates a widening
constraint

1, 3, 15 /
1, 4, 31

1/3/10/25 453 141

13 created a new interface which is imple-
mented by two classes, deleted parts of a
method

3, 9, 72 /
2, 9, 65

1/3/10/25 454 172

14 declared a class as confined 1, 5, 32 /
1, 5, 32

1/3/10/24 454 141

15 changed the implementation of a method 1, 4, 19 /
1, 4, 22

1/3/10/24 469 78

16 a new field is added to three different con-
fined classes

3, 10, 69 /
3, 10, 73

1/3/10/27 500 187

in average ø503,8 ø190,4

the number of violations of the equals/hashCode contract, the second is the num-
ber of covariant equals methods, the third is the number of violations related to the
Visitor design pattern, and the fourth is the number of violations of confinement
rules.
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The last two columns of Table 1 compare the time required to update the database
and to retrieve the new set of results using tabling without incremental evaluation of
XSB and using tabling with incremental evaluation.

The numbers for incremental evaluation (last column in Table 1) result from sum-
ming the time for removing and adding facts with the time for incrementally maintain-
ing the tables. All queries are evaluated in roughly 0 msecs independent of the code
change that triggers the evaluation. This is because query results are tabled and the ex-
traction of the answers from a table only depends on the number of identified errors.
With non-incremental evaluation, the time to execute the queries also remains constant
at roughly 300 msecs. The difference between this 300 msecs and the numbers in the
corresponding column in Table 1 is spent to add/remove facts.

To summarize, we the draw following conclusions: FIRST, the approach is fast
enough to execute a reasonable number of analyses along with the incremental build
process for projects with at least 1000 classes; executing all discussed analyses simul-
taneously is feasible. Even in case of changes that affect large numbers of facts (Runs
1,2,5,7) the execution times are acceptable. SECOND, in comparison to non-incremental
evaluation, our system is between 1.4 and 8 times faster. In case of non-incremental
evaluation, the queries need to be reevaluated from scratch after every change; in par-
ticular it is necessary to explicitly delete all tables, as the tables are not maintained
incrementally. THIRD, most of the time required by the incremental build goes to main-
tain the tables. This time is largely dependent on the number of facts that need to be
removed and added. Hence, if the granularity of a change would be more fine-grained
than an entire class, the overall time could be further improved.

4 Related Work

Writing analyses using a logic language, such as, Prolog is not new. Many classical
program analysis problems can be readily encoded into deductive frameworks [13] and
various practical implementations have been stemmed based on such encodings. E.g.,
Besson and Jensen [3] discuss the implementation of a class analysis using Datalog.

Various approaches use declarative query languages to implement static analyses
[34,14,21]. For example, the Program Query Language (PQL) presented in [23] al-
lows programmers to express queries in application specific context and allows them to
specify actions along with the queries. PQL is then transformed into Datalog which is
evaluated using the BDD based evaluation framework BDDBDDB. Soul [35] is a logic
meta-language implemented in Smalltalk to express and extract structural relationships
(Prolog like) in class-based object-oriented systems. ASTLOG [11] is also a Prolog like
language to identify bug patterns primarily in C/C++ code. ASTLOG directly operates
on top of the source syntactic structures to get a better performance when compared
with using a Prolog database. Spine [4] is a typed first-order logic similar to Prolog for
describing design patterns and their constraints. Given a Spine specification of a design
pattern the Hedgehog proof system [4] is then used to reason about the implementation
of design patterns in Java. However, none of the above techniques supports incremental-
ization, i.e., in case of small changes to the source code, all analyses have to be repeated
for the whole program to get an up-to-date view.
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CodeQuest [18] uses Datalog for querying code. Unlike the above approaches, it re-
alizes the importance of incremental updates. CodeQuest incrementally maintains the
database of facts. When notified by the Eclipse platform about a change to a compila-
tion unit, CodeQuest removes from the database all facts that are directly or indirectly
related to the compilation unit (determined using ad-hoc stored procedures); it then re-
parses the compilation unit and populates the database with the new facts. Compared to
CodeQuest, our approach also employs incremental maintenance of query results.

The problem of incremental evaluation has been addressed in various fields of re-
search, such as view maintenance in databases, model checking, program analysis, logic
programming, functional programming, attribute grammar evaluation, and AI. In the
focus of this discussion is only the problem of incremental evaluation in the area of
program analysis. Most of the existing work addressing incremental evaluation in the
latter area is catered toward particular kinds of static analyses, e.g., pointer analysis,
data-flow analysis, MOD analysis, and verification of safety properties, and cannot be
readily generalized to a wide range of analyses.

An incremental alias analysis is presented in [37] which is based on Landi-Ryders’s
flow- and context-sensitive alias analysis [20]. A variety of incremental algorithms have
been developed for data flow analysis problems. Some of them use the elimination
method [6,8,25]; others are based on restarting iterations [24], while both techniques
are combined in [22]. A comparison of incremental iterative algorithms for data flow
analysis can be found in [7]. The effectiveness of incremental analysis has been shown
for MOD analysis of C programs [36]. Pollock and Soffa [24] presented a precise incre-
mental iterative algorithm using change classification and reinitialization for bitvector
problems. In [10], an algorithm is presented that incrementally analyzes the verifica-
tion of safety properties of a program. In [33], an incremental algorithm is presented
which analyzes part of the program assuming no previous analysis result. This algo-
rithm monitors the analysis results incrementally in each phase to direct the analysis
in those parts of the program which offer the highest expected optimized return. This
work does not consider the problem of updating existing analysis results to reflect the
effect of program changes.

The above approaches to incremental evaluation of static analysis are specific to the
analysis considered and the used techniques are not easy to generalize for incremen-
tal evaluation of other static analyses. The first step toward developing techniques for
automatic incrementalization of a broad range of analysis is the work by Saha and Ra-
makrishnan on incremental evaluation of tabled logic programs [26,28,30]. Tabled logic
programs offer a declarative way of encoding a large variety of program analysis [13].
As discussed in this paper, incremental tabled evaluation offers a generic approach to
incrementalizing static analysis.

5 Summary and Future Work

In this paper, we proposed to use incremental tabled Prolog for the automatic incremen-
talization of static analyses. This enables developers to write static analyses with the
full-build case in mind. The analyses are automatically incrementalized by the Prolog
engine, i.e., in case of changes to the fact-base only the necessary parts of the project are
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reanalyzed. The analyses are implemented on top of a 3-address based representation in
SSA form. This representation proved to be well-suited for intra-procedural data-flow
analyses and enables an efficient implementation of static analyses.

The automatic incrementalization frees the developer from the burden of developing
incremental algorithms for each single analysis and, thus, facilitates the development of
new domain and project specific static analyses. As shown in the evaluation section, the
proposal significantly improves the performance of static analyses compared to their
non-incremental versions and enables to tightly integrate them with the incremental
build process of an IDE.

Further performance improvements will be in the focus of future work. One possibil-
ity to improve performance is by decreasing the change granularity, which is currently
at the class level. By pushing the granularity down, e.g., to the level of instructions,
further overall performance improvements are expected.
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Abstract. State of the art analyzers in the Logic Programming (LP)
paradigm are nowadays mature and sophisticated. They allow inferring
a wide variety of global properties including termination, bounds on re-
source consumption, etc. The aim of this work is to automatically transfer
the power of such analysis tools for LP to the analysis and verification of
Java bytecode (jvml). In order to achieve our goal, we rely on well-known
techniques for meta-programming and program specialization. More pre-
cisely, we propose to partially evaluate a jvml interpreter implemented
in LP together with (an LP representation of) a jvml program and then
analyze the residual program. Interestingly, at least for the examples we
have studied, our approach produces very simple LP representations of
the original jvml programs. This can be seen as a decompilation from
jvml to high-level LP source. By reasoning about such residual programs,
we can automatically prove in the CiaoPP system some non-trivial prop-
erties of jvml programs such as termination, run-time error freeness and
infer bounds on its resource consumption. We are not aware of any other
system which is able to verify such advanced properties of Java bytecode.

1 Introduction

Verifying programs in the (Constraint) Logic Programming paradigm —(C)LP—
offers a good number of advantages, an important one being the maturity and
sophistication of the analysis tools available for it. The work presented in this
paper is motivated by the existence of abstract interpretation-based analyzers [3]
which infer information on programs by interpreting (“running”) them using
abstract values rather than concrete ones, thus, obtaining safe approximations of
programs behavior. These analyzers are parametric w.r.t. the so-called abstract
domain, which provides a finite representation of possibly infinite sets of values.
Different domains capture different properties of the program with different levels
of precision and at different computational costs. This includes error freeness,
data structure shape (like pointer sharing), bounds on data structure sizes, and
other operational variable instantiation properties, as well as procedure-level
properties such as determinacy, termination, non-failure, and bounds on resource
consumption (time or space cost), etc. CiaoPP [9] is the abstract interpretation-
based preprocessor of the Ciao (C)LP system, where analysis results have been
applied to perform high- and low-level optimizations and program verification.
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Fig. 1. Verification of Java Bytecode using Logic Programming Tools

A principal advantage of verifying programs on the (LP) source code level is
that we can infer complex global properties (like the aforementioned ones) for
them. However, in certain applications like within the context of mobile code, one
may only have the object code available. In general, analysis tools for such low-
level languages are unavoidably more complicated than for high-level languages
because they have to cope with complicated and unstructured control flow. Fur-
thermore, as the jvml (Java Virtual Machine Language, i.e., Java bytecode) is
a stack-based language, stacks cells are used to store intermediate values, and
therefore their type can change from one assignment to another, and they can
also be used to store 32 bits of a 64 bit value, which make the inference of stack
information much more difficult. Besides, it is a non trivial task to specify/infer
global properties for the bytecode by using pre- and post-conditions (as it is
usually done in existing tools for high-level languages).

The aim of this work is to provide a practical framework for the verification
of jvml which exploits the expressiveness, automation and genericity of the ad-
vanced analysis tools for LP source. In order to achieve this goal, we will focus on
the techniques of meta-programming, program specialization and static analysis
that together support the use of LP tools to analyze jvml programs. Interpre-
tative approaches which rely on CLP tools have been applied to analyze rather
restricted versions of high-level imperative languages [13] and also assembly code
for PIC [8], an 8-bit microprocessor. However, to the best of our knowledge, this
is the first time the interpretative approach has been successfully applied to a
general purpose, realistic, imperative programming language.

Overview. Fig. 1 presents a general overview of our approach. We depict an
element within a straight box to denote its use as a program and a rounded box
for data. The whole verification process is split in three main parts:

1. Meta-programming. We use LP as a language for representing and manipu-
lating jvml programs. We have implemented an automatic translator, called
class reader, which given a set of .class files {Class 1,. . ., Class n} re-
turns P , an LP representation of them in jvmlr (a representative subset of
jvml presented in Sect. 2). Furthermore, we also describe in Sect. 3 an in-
terpreter in LP, called jvmlr int, which captures the JVM semantics. The
interpreter has been extended in order to compute execution traces, which
will be very useful for reasoning about certain properties.
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2. Partial evaluation. The development of partial evaluation techniques [10] has
allowed the so-called “interpretative approach” to compilation which consists
in specializing an interpreter w.r.t. a fixed object code. We have used an
existing partial evaluator for LP in order to specialize the jvmlr int
w.r.t. P . As a result, we obtain IP , an LP residual program which can be
seen as a decompiled and translated version of P into LP (see Sect. 4).

3. Verification of Java bytecode. The final goal is that the jvml program can be
verified by analyzing the residual program IP obtained in Step 2) above by
using state-of-the-art analyzers developed for LP, as we will see in Sect. 5.

The resulting scheme has been implemented and incorporated in the CiaoPP pre-
processor. Our preliminary experiments show that it is possible to infer global
properties of the computation of the residual LP programs. We believe our pro-
posed approach is very promising in order to bring the analysis power of declar-
ative languages to low-level, imperative code such as Java bytecode.

2 The Class Reader (jvml to jvmlr in LP)

As notation, we use Prog to denote LP programs and Class to denote .class
files (i.e., jvml classes). The input of our verification process is a set of .class
files, denoted as C1 . . . Cn ∈ Class, as specified by the Java Virtual Machine
Specification [12]. Then, the class reader takes C1 . . . Cn and returns an LP
file which contains all the information in C1 . . . Cn represented in our jvmlr

language. jvmlr is a representative subset of the jvml language which is able to
handle: classes, interfaces, arrays, objects, constructors, exceptions, method call
to class and instance methods, etc. For simplicity, some other features such as
packages, concurrency and types as float, double, long and string are left out of
the chosen subset. For conciseness, we use jvmlr Prog to make it explicit that
an LP program contains a jvmlr representation. The differences between jvml
and jvmlr are essentially the following:

1. Bytecode factorization. Some instructions in jvml have a similar behavior
and have been factorized in jvmlr in order to have fewer instructions1.
This makes the jvmlr code easier to read (as well as the traces which will
be discussed in Sect. 3) and the jvmlr int easier to program and main-
tain.

2. References resolution. The original jvml instructions contain indexes onto
the constant-pool table [12], a structure present in the .class file which
stores different kinds of data (constants, field and method names, descrip-
tors, class names, etc.) and which is used in order to make bytecode pro-
grams as compact as possible. The class reader removes all references to
the constant-pool table in the bytecode instructions by replacing them with
the complete information to facilitate the task of the tools which need to
handle the bytecode later.

1 This allows covering over 200 instructions of jvml in 54 instructions in jvmlr.



Verification of Java Bytecode Using Analysis and Transformation 127

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
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24
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26
27
28
29
30
31
32
33
34
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36
37
38

class(
className(packageName(’’),shortClassName(’Rational’)),final(false),public(true),
abstract(false),className(packageName(’java/lang/’),shortClassName(’Object’)),[],
[field(

fieldSignature(
fieldName(

className(packageName(’’),shortClassName(’Rational’)),shortFieldName(num)),
primitiveType(int)),

final(false),static(false),public,initialValue(undef)),
field(

fieldSignature(
fieldName(

className(packageName(’’),shortClassName(’Rational’)),shortFieldName(den)),
primitiveType(int)),

final(false),static(false),public,initialValue(undef))],
[method(

methodSignature(
methodName(

className(packageName(’’),shortClassName(’Rational’)),shortMethodName(’<init>’)),
[primitiveType(int),primitiveType(int)],none),

bytecodeMethod(3,2,0,methodId(’Rational_class’,1),[]),
final(false),static(false),public),

method(
methodSignature(

methodName(
className(packageName(’’),shortClassName(’Rational’)),shortMethodName(exp)),

[primitiveType(int)],
refType(classType(className(packageName(’’),shortClassName(’Rational’))))),

bytecodeMethod(4,4,0,methodId(’Rational_class’,2),[]),
final(false),static(false),public),

method(
methodSignature(

methodName(
className(packageName(’’),shortClassName(’Rational’)),shortMethodName(expMain)),

[primitiveType(int),primitiveType(int),primitiveType(int)],
refType(classType(className(packageName(’’),shortClassName(’Rational’))))),

bytecodeMethod(3,4,0,methodId(’Rational_class’,3),[]),
final(false),static(true),public)]).

Fig. 2. Extract of the Program Fact Describing the Rational Class of Running Example

The Ciao file generated by the class reader contains the bytecode instructions
for all methods in C1 . . . Cn, represented as a set of facts; and also, a single fact
obtained by putting together all the other information available in the .class
files (class name, methods and fields signatures, etc.).

Example 1 (running example). Our running example considers a main Java class
named Rational which represents rational numbers using two attributes: num
and den. The class has a constructor, an instance method exp for computing
the exponential of rational numbers w.r.t. a given exponent (the result is re-
turned on a new rational object), and a static method expMain which given
three integers, creates a new rational object using the first two ones as numer-
ator and denominator, respectively, and invokes its exp method using the third
argument as parameter. Finally, it returns the corresponding rational object.
This example features arithmetic operations, object creation, field access, and
invocation of both class and instance methods. It also shows that our approach
is not restricted to intra-procedural analysis.

In Fig. 2, we show the extract of the program fact corresponding to class Ra-
tional. Line numbers are provided for convenience but they are not part of the
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class(
className(packageName(’’),shortClassName(’Rational’)),final(false),public(true),
abstract(false),className(packageName(’java/lang/’),shortClassName(’Object’)),[],
[field(

fieldSignature(
fieldName(

className(packageName(’’),shortClassName(’Rational’)),shortFieldName(num)),
primitiveType(int)),

final(false),static(false),public,initialValue(undef)),
field(

fieldSignature(
fieldName(

className(packageName(’’),shortClassName(’Rational’)),shortFieldName(den)),
primitiveType(int)),

final(false),static(false),public,initialValue(undef))],
[method(

methodSignature(
methodName(

className(packageName(’’),shortClassName(’Rational’)),shortMethodName(’<init>’)),
[primitiveType(int),primitiveType(int)],none),

bytecodeMethod(3,2,0,methodId(’Rational_class’,1),[]),
final(false),static(false),public),

method(
methodSignature(

methodName(
className(packageName(’’),shortClassName(’Rational’)),shortMethodName(exp)),

[primitiveType(int)],
refType(classType(className(packageName(’’),shortClassName(’Rational’))))),

bytecodeMethod(4,4,0,methodId(’Rational_class’,2),[]),
final(false),static(false),public),

method(
methodSignature(

methodName(
className(packageName(’’),shortClassName(’Rational’)),shortMethodName(expMain)),

[primitiveType(int),primitiveType(int),primitiveType(int)],
refType(classType(className(packageName(’’),shortClassName(’Rational’))))),

bytecodeMethod(3,4,0,methodId(’Rational_class’,3),[]),
final(false),static(true),public)]).

Fig. 3. Extract of the Bytecode facts of our Running Example

code. The description of the field num appears in Lines 4-9, den in L.10-15 and
the methods in L.16-38. For conciseness, only methods actually used are shown.
The first method (L.16-22) is a constructor that takes two integers (L.20) as
arguments. The second method (L.23-30) is named exp (L.26), it is an instance
method (cf. static(false) L.30)) and takes an integer (L.27) as a parameter
and returns an instance of Rational (L.28). Finally, the last method (L.31-38),
expMain, is a class method (cf. static(true) L.38), that takes as parameters
three integers (L.35) and returns an instance of Rational (L.36).

Fig. 3 presents the bytecode facts corresponding to the methods exp and
expMain. Each fact is of the form bytecode(PC,MethodID,Class,Inst,Size),
where Class and MethodID, respectively, identify the class and the method to
which the instruction Inst belongs. PC corresponds to the program counter and
Size to the number of bytes of the instruction in order to be able to compute the
next value of the program counter. The class method number 3 (i.e., expMain)
creates first an instance of Rational (Instructions 0-6) and then invokes the
instance method exp (I.9-10). The bytecode of the method number 2 (i.e., exp),
can be divided in 3 parts. First, the initialization (I.0-3) of two local variables,
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say x2 and x3, to 1. Then, the loop body (I.4-25) first compares the exponent
to 0 and, if it is less or equal to 0, exits the loop by jumping 23 bytes ahead
(I.4-5). Then, the current value of x2 (iload) and the denominator (aload and
getfield) are retrieved (I.8-10), multiplied and stored in x2 (I.13-14). The same
is done for x3 with the numerator in I.15-21. Finally, the value of the exponent
is decreased by one (I.22) and PC is decreased by 21 (I.25) i.e., we jump back
to the beginning of the loop. After the loop, the method creates an instance of
Rational, stores the result (I.28-34), and returns this object (I.37).

3 Specification of the Dynamic Semantics

(C)LP programs have been used traditionally for expressing the semantics of
both high- and low-level languages [13,17]. In our approach, we express the
jvml semantics in Ciao. The formal jvml specification chosen for our work is
Bicolano [14], which is written with the Coq Proof Assistant [1]. This allows
checking that the specification is consistent and also proving properties on the
behavior of some programs.

In the specification, a state is modeled by a 3-tuple2 〈 Heap, Frame, Stack-
Frame 〉 which represents the machine’s state where Heap represents the con-
tents of the heap, Frame represents the execution state of the current Method
and, StackFrame is a list of frames corresponding to the call stack. Each frame
is of the form 〈 Method, PC, OperandStack, LocalV ar 〉 and contains the stack
of operands OperandStack and the values of the local variables LocalV ar at
the program point PC of the method Method. The definition of the dynamic
semantics is based on the notion of step.

Definition 1 (step L−→P ). The dynamic semantics of each instruction is speci-
fied as a partial function step : jvmlr Prog×StateJV M → StateJV M ×Step Na-
me that, given a program P ∈ jvmlr Prog and a state S ∈ StateJV M , computes
the next state S′ ∈ StateJV M and returns the name of the step L ∈ Step Name.
For convenience, we write S

L−→P S′ to denote step(P, S) = (S′, L).

In order to formally define our interpreter, we need to define the following func-
tion which iterates over the steps of the program until obtaining a final state.

Definition 2 ( T−→
∗
P ). Let T−→

∗
P be a relation on StateJV M with S

T−→
∗
P S′ iff:

– there exists a sequence of steps L1 to Ln such that S
L1−−→P . . .

Ln−−→P S′,
– there is no state S′′ ∈ StateJV M such that S′ L−→P S′′, and
– T ∈ Traces such that T = [L1, . . . , Ln] is the list of the names of the steps.

We can now define a general interpreter which takes as parameters a program
and a method invocation specification (mis in the following) that indicates: 1)
2 Both in Bicolano and in our implementation there is another kind of state for ex-

ceptions, but we have omitted it from this formalization for the sake of simplicity.
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the method the execution should start from, 2) the corresponding effective pa-
rameters of the method which will often contain logical variables or partially
instantiated terms (and should be interpreted as the set of all their instances)
and 3) an initial heap. The interpreter relies on an execute function that takes
as parameters a program P ∈ jvmlr Prog and a state S ∈ StateJV M and returns
(S′, T ) where S

T−→
∗
P S′.

The following definition of jvmlr int computes, in addition to the return
value of the method called, also the trace which captures the computation his-
tory. Traces represent the semantic steps used and therefore do not only represent
instructions, as the context has also some importance. They allow us to distin-
guish, for example, for a same instruction, the step that throws an exception from
the normal behavior. E.g., invokevirtual step ok and invokevirtual step -
NullPointerException represent, respectively, a normal method call and a
method call on a null reference that throws an exception.

Definition 3 (jvmlr int). Let M be a mis that contains a method signature,
the parameters for the method and a heap, written as M ∈ mis. We define a
general interpreter jvmlr int(P, M) = (R, T ) with

– S = initialState(P, M), where function initialState builds, from the program
P and the mis M , a state S ∈ StateJV M ,

– execute(P, S) = (S′, T ) and
– R = result of (S′) is the result of the execution of the method specified by M

(the value on top of the stack of the current frame of S′).

This definition of jvmlr int returns the trace and the result of the method but it
is straightforward to modify the definitions of jvmlr int and execute to return
less information or to add more. This gives more flexibility to our interpretative
approach when compared to direct compilation: for example, if needed, we can
return in an additional argument a list containing the information about each
state which we would like to observe in order to prove properties which may
require a deeper inspection of execution states.

4 Automatic Generation of Residual Programs

Partial evaluation (PE) [10] is a semantics-based program optimization technique
which has been deeply investigated within different programming paradigms.
The main purpose of PE is to specialize a given program w.r.t. the static data,
i.e., the part of its input data which is known—hence it is also known as program
specialization. The partially evaluated (or residual) program will be (hopefully)
executed more efficiently since those computations that depend only on the static
data are performed once and for all at PE time. We use the partial evaluator for
LP programs of [15] which is part of CiaoPP. Here, we represent it as a function
partial evaluator: Prog×Data → Prog which, for a given program P ∈ Prog
and static data S ∈ Data, returns a residual program PS ∈ Prog which is a
specialization [10] of P w.r.t. S.
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The development of PE, program specialization and related techniques [6,10,7]
has led to an alternative approach to compilation (known as the first Futamura
projection) based on specializing an interpreter with respect to a fixed object
program. The success of the application of the technique involves eliminating
the overhead of parsing the program, fetching instructions, etc., and leading to a
residual program whose operations mimic those of the object program. This can
also be seen as a translation of the object program into another programming
language, in our case Ciao. The residual program is ready now to be, for instance,
efficiently executed in such language or, as in our case, accurately analyzed by
tools for the language in which it has been translated. The application of this
interpretative approach to compilation within our framework consists in partially
evaluating the jvmlr int w.r.t. P = class reader(C1, . . . , Cn) and a mis.

Definition 4 (LP residual program). Let jvmlr int ∈ Prog be a jvmlr

interpreter, M ∈ mis and C1, . . . , Cn ∈ Class be a set of classes. The LP
residual program, IP , for jvmlr int w.r.t. C1, . . . , Cn and M is defined as
IP =partial evaluator(jvmlr int, (class reader(C1, . . . , Cn), M)).

Note that, instead of using the interpretative approach, we could have imple-
mented a compiler from Java bytecode to LP. However, we believe that the
interpretative approach has at least the following advantages: 1) more flexible,
in the sense that it is easy to modify the interpreter in order to observe new
properties of interest, see Sect. 3, 2) easier to trust, in the sense that it is rather
difficult to prove (or trust) that the compiler preserves the program semantics
and, it is also complicated to explicitly specify what the semantics used is, 3)
easier to maintain, new changes in the JVM semantics can be easily reflected
in the interpreter by modifying (or adding) a proper “step” definition, and 4)
easier to implement, provided a powerful partial evaluator for LP is available.

Example 2 (residual programs). We now want to partially evaluate our imple-
mentation of the interpreter which does not output the trace (see Sect. 3) w.r.t.
the bytecode method expMain in Ex. 1, an empty heap and three free variables as
parameters. The size of the program to be partially evaluated (i.e., interpreter)
is 86,326 bytes (2,240 lines) while the size of the data (i.e., bytecode represen-
tation) is 16,677 bytes (101 lines) of jvmlr. The partial evaluator has different
options for tuning the level of specialization. For this example, we have used local
and global control strategies based on homeomorphic embedding (see [11]).

We show in Fig. 4 the residual program resulting of such automatic PE. The
parameters A, B and C of expMain/5 represent the numerator, denominator and
exponent, respectively. The fourth and fifth parameters represent, respectively,
the top of the stack and the heap where the method result (i.e., an object of
type Rational in the bytecode) will be returned. In particular, the result corre-
sponds to the second element, ref(loc(2)), in the heap. Note that this object
is represented in our LP program as a list of two atoms, the first one corresponds
to attribute num and the second one to den. The first two rules for expMain/5
are the base cases for exponents C = 0 and C = 1, respectively. The third rule,
for C > 1, uses an auxiliary recursive predicate execute/6 which computes AC+1
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expMain(A,B,C,ref(loc(2)),heap([[num(int(A)),num(int(B))],
[num(int(1)),num(int(1))]])) :- C=<0 .

expMain(A,B,C,ref(loc(2)),heap([[num(int(A)),num(int(B))],
[num(int(A)),num(int(B))]])) :- C>0, F is C-1, F=<0 .

expMain(A,B,C,D,E) :- C>0, H is C-1, H>0, I is A*A,
J is B*B, K is H-1, execute(A,B,K,I,J,E,D) .

execute(A,B,C,D,E,heap([[num(int(A)),num(int(B))],
[num(int(D)),num(int(E))]]),ref(loc(2))) :- C=<0 .

execute(A,B,C,D,E,G,L) :- C>0, N is D*A, O is E*B, P is C-1,
execute(A,B,P,N,O,G,L) .

Fig. 4. Residual Exponential Program without Trace

and BC+1 and returns the result in the second element of the heap. It should be
noted that our PE tool has done a very good job by transforming a rather large
interpreter into a small residual program (where all the interpretation overhead
has been removed). The most relevant point to notice about the residual pro-
gram is that we have converted low level jumps into a recursive behavior and
achieved a very satisfactory translation from the Java bytecode method expMain.
Indeed, it is not very different from the Ciao version one could have written by
hand, provided that we need to store the result in the fifth argument of predicate
expMain/5 as an object in the heap, using the corresponding syntax.

While the above LP program can be of a lot of interest when reasoning about
functional properties of the code, it is also of great importance to augment the
interpreter with an additional argument which computes a trace (see Def. 3) in
order to capture the computation history. The residual program which computes
execution traces is expMain/4, which on success contains in the fourth argument
the execution trace at the level of Java bytecode (rather than the top of the
stack and the heap). Below, we show the recursive rule of predicate execute/8
whose last argument represents the trace (and corresponds to the second rule of
execute/7 without trace in Fig. 4):

execute(B,C,D,E,F,G,I,[goto_step_ok,iload_step,if0_step_continue,
iload_step,aload_step_ok,getfield_step_ok,ibinop_step_ok,
istore_step_ok,iload_step,aload_step_ok,getfield_step_ok,
ibinop_step_ok,istore_step_ok,iinc_step|H]) :-

D>0, I is E*B, J is F*C, K is D-1, execute(B,C,K,I,J,G,I,H) .

As we will see in the next section, this trace will allow observing a good number
of interesting properties about the program.

5 Verification of Java Bytecode Using LP Analysis Tools

Having obtained an LP representation of a Java bytecode program, the next
task is to use existing analysis tools for LP in order to infer and verify prop-
erties about the original bytecode program. We now recall some basic notions
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on abstract interpretation [3]. Abstract interpretation provides a general for-
mal framework for computing safe approximations of program behaviour. In
this framework, programs are interpreted using abstract values instead of con-
crete values. An abstract value is a finite representation of a, possibly infinite,
set of concrete values in the concrete domain D. The set of all possible ab-
stract values constitutes the abstract domain, denoted Dα, which is usually a
complete lattice or cpo which is ascending chain finite. Abstract values and
sets of concrete values are related by an abstraction function α : 2D → Dα,
and a concretization function γ : Dα → 2D. The concrete and abstract do-
mains must be related in such a way that the following condition holds [3]:
∀x ∈ 2D : γ(α(x)) ⊇ x and ∀y ∈ Dα : α(γ(y)) = y. In general, the compari-
son in Dα, written �, is induced by ⊆ and α.

We rely on a generic analysis algorithm (in the style of [9]) defined as a
function analyzer: Prog×AAtom ×ADom → AApprox which takes a program
P ∈ Prog, an abstract domain Dα ∈ ADom and a set of abstract atoms Sα ∈
AAtom which are descriptions of the entries (or calling modes) into the program
and returns Approxα ∈ AApprox . Correctness of analysis ensures that Approxα

safely approximates the semantics of P . We denote that Sα and Approxα are
abstract semantic values in Dα by using the same subscript α.

In order to verify the program, the user has to provide the intended se-
mantics Assertα (or specification) as a semantic value in Dα in terms of as-
sertions (these are linguistic constructions which allow expressing properties
of programs) [16]. This intended semantics embodies the requirements as an
expression of the user’s expectations. The verifier has to compare the (ac-
tual) inferred semantics Approxα w.r.t. Assertα. We use the abstract inter-
pretation-based verifier integrated in CiaoPP. It is dealt here as a function
ai verifier: Prog × AAtom × ADom × AAssert → boolean which for a given
program P ∈ Prog, a set of abstract atoms Sα ∈ AAtom, an abstract domain
Dα ∈ ADom and an intended semantics Assertα in Dα succeeds if the approx-
imation computed by analyzer(P, Sα, Dα)=Approxα entails that P satisfies
Assertα, i.e., Approxα � Assertα.

Definition 5 (verified bytecode). Let IP ∈ Prog be an LP residual pro-
gram for jvmlr int w.r.t. C1, . . . , Cn ∈ Class and M ∈ mis (see Def. 3).
Let Dα ∈ ADom be an abstract domain, Sα ∈ AAtom be a set of abstract
atoms and Assertα ∈ Dα be the abstract intended semantics of IP . We say
that (C1, . . . , Cn, M) is verified w.r.t. Assertα in ADom if ai verifier(IP ,
Sα, Dα, Assertα) succeeds.

In principle, any of the considerable number of abstract domains developed for
abstract interpretation of logic programs can be applied to residual programs, as
well as to any other program. In addition, arguably, analysis of logic programs
is inherently simpler than that of Java bytecode since the bytecode programs
decompiled into logic programs no longer contain an operand stack for arithmetic
and execution flow is transformed from jumps (since loops in the Java program
are compiled into conditional and unconditional jumps) into recursion.



134 E. Albert et al.

5.1 Run-Time Error Freeness Analysis

The use of objects in Ex. 1 could in principle issue exceptions of type NullPoin-
terException. Clearly, the execution of the expMain method will not produce
any exception, as the unique object used is created within the method. However,
the JVM is unaware of this and has to perform the corresponding run-time test.
We illustrate that by using our approach we can statically verify that the previous
code cannot issue such an exception (nor any other kind of run-time error).

First, we proceed to specify in Ciao the property “goodtrace” which encodes
the fact that a bytecode program is run-time error free in the sense that its
execution does not issue NullPointerException nor any other kind of run-time
error (e.g., ArrayIndexOutOfBoundsException, etc). As this property is not
predefined in Ciao, we declare it as a regular type using the regtype declarations
in CiaoPP. Formally, we define this property as a regular unary logic program,
see [5]. The following regular type goodtrace defines this notion of safety for
our example (for conciseness, we omit the bytecode instructions which do not
appear in our program):

:- regtype goodtrace/1.
goodtrace(T) :- list(T,goodstep).

:- regtype goodstep/1.
goodstep(iinc_step). goodstep(aload_step_ok). goodstep(invokevirtual_step_ok).
goodstep(iload_step). goodstep(if0_step_jump). goodstep(invokestatic_step_ok).
goodstep(normal_end). goodstep(const_step_ok). goodstep(if0_step_continue).
goodstep(new_step_ok). goodstep(return_step_ok). goodstep(if_icmp_step_jump).
goodstep(pop_step_ok). goodstep(astore_step_ok). goodstep(putfield_step_ok).
goodstep(dup_step_ok). goodstep(istore_step_ok). goodstep(getfield_step_ok).
goodstep(goto_step_ok). goodstep(ibinop_step_ok). goodstep(if_icmp_step_continue).
goodstep(areturn_step_ok). goodstep(invokespecial_step_here_ok).

Next, the version with traces of the residual program in Fig. 4 is extended with
the following assertions:

:-entryexpMain(Num,Den,Exp,Trace):(num(Num),num(Den),num(Exp),var(Trace)).
:- check success expMain(Num,Den,Exp,Trace) => goodtrace(Trace).

The entry assertion describes the valid external queries to predicate expMain/4,
where the first three parameters are of type num and the fourth one is a variable.
We use the “success” assertion as a way to provide a partial specification of
the program. It should be interpreted as: for all calls to expMain(Num,Den,Exp,
Trace), if the call succeeds, then Trace must be a goodtrace.

Finally, we use CiaoPP to perform regular type analysis using the eterms
domain [18]. This allows computing safe approximations of the success states of
all predicates. After this, CiaoPP performs compile-time checking of the success
assertion above, comparing it with the assertions inferred by the analysis, and
produces as output the following assertion:

:- checked success expMain(Num,Den,Exp,Trace) => goodtrace(Trace).

Thus, the provided assertion has been validated (marked as checked).
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5.2 Cost Analysis and Termination

As mentioned before, abstract interpretation-based program analysis techniques
allow inferring very rich information including also resource-related issues. For
example, CiaoPP can compute upper and lower bounds on the number of exe-
cution steps required by the computation [9,4]. Such bounds are expressed as
functions on the sizes of the input arguments. Various metrics are used for the
“size” of an input, such as list-length, term-size, term-depth, integer-value, etc.
Types, modes, and size measures are first automatically inferred by the analyzers
and then used in the size and cost analysis.

Let us illustrate the cost analysis in CiaoPP on our running example. We
consider a slightly modified version of the residual program in Fig. 4 in which
we have eliminated the accumulating parameter due to a current limitation of the
cost analysis in CiaoPP. The cost analysis can then infer the following property
of the recursive predicate execute/5 (and a similar one of expMain/4) using the
same entry assertion as in Sect. 5.1:

:- true pred execute(A,B,C,D,E): (num(A),num(B),num(C),var(D),var(E))
=> ( num(A), num(B), num(C), num(D), num(E),

size_ub(A,int(A)), size_ub(B,int(B)), size_ub(C,int(C)),
size_ub(D,expMain(int(A),int(C)+1)+int(A)),
size_ub(E,expMain(int(B),int(C)+1)+int(B)) )

+ steps_ub(int(C)+1).

which states that execute/5 is called in this program with the first three pa-
rameters being of type num (i.e., bound to numbers) and two variables. The part
of the assertion after the => symbol indicates that on success of the predicate all
five parameters are bound to numbers. This is used by the cost analysis in order
to set the integer-value as size-metric for all five arguments. The first three argu-
ments are input to the procedure and thus their size (value) is fixed. The last two
arguments are output and their size (value) is a function on the value of (some
of) the first three arguments. The upper bound computed by the analysis for D
(i.e., the fourth argument) is AC+1 +A. Note that this is a correct upper bound,
though the most accurate one is indeed AC+1. A similar situation occurs with
the upper bound for the fifth argument (E). Finally, the part of the assertion
after the + symbol indicates that an upper bound on the number of execution
steps is C + 1, which corresponds to a linear algorithmic complexity. This is
indeed the most accurate upper bound possible, since predicate execute/5 is
called C +1 times until C becomes zero. Note that, in this case, we do not mean
the number of JVM steps in Def. 1, but the number of computational steps.

CiaoPP’s termination analysis relies on the cost analysis described in the pre-
vious section. In particular, it is able to prove termination of a program pro-
vided it obtains a non-infinite upper bound of its cost. Following the example
of Sect. 5.2, CiaoPP is able to turn into checked status the following assertion
(and the similar one for expMain/4): “:- check comp execute(A,B,C,D,E) +
terminates”. which ensures that the execution of the recursive predicate always
terminates w.r.t. the previous entry.
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6 Experiments and Discussion

We have implemented and performed a preliminary experimental evaluation of our
framework within the CiaoPP preprocessor [9], where we have available a partial
evaluator and a generic analysis engine with a good number of abstract domains,
including the ones illustrated in the previous section. Our interpretative approach
has required the implementation in Ciao of two new packages: the class reader
(1141 lines of code) which parses the .class files into Ciao and the jvmlr int
interpreter for the jvmlr (3216 lines). These tools, together with a collection of
examples, are available at: http://cliplab.org/Systems/jvm-by-pe.

Table 1 studies two crucial points for the practicality of our proposal: the
size of the residual program and the relative efficiency of the full transforma-
tion+analysis process. As mentioned before, the algorithms are parametric w.r.t.
the abstract domain. In our experiments we use eterms, an abstract domain
based on regular types, that is very useful for reasoning about functional prop-
erties of the code, run-time errors, etc., which are crucial aspects for the safety of
the Java bytecode. The system is implemented in Ciao 1.13 [2] with compilation
to WAM bytecode. The experiments have been performed on an Intel P4 Xeon
2 GHz with 4 GB of RAM, running GNU Linux FC-2, 2.6.9.

The input “program” to be partially evaluated is the jvmlr int interpreter in
all the examples. Then, the first group of columns Bytecode shows information
about the input “data” to the partial evaluator, i.e., about the .class files. The
columns Class and Size show the names of the classes used for the experiments
and their sizes in bytes, respectively. The second column Method refers to the
name of the method within each class which is going to form the mis, i.e., to be
the starting point for PE and context-sensitive program analysis. We use a set
of classical algorithms as benchmarks. The first 9 methods belong to programs
with iterations and static methods but without object-oriented features, where
mod, fact, gcd and lcm, compute respectively the modulo, factorial, greatest-
common-divisor and least-common-multiple (two versions); the Combinatory
class has different methods for computing the number of selections of subsets
given a set of elements for every ordering/repetition combination. The next two
benchmarks, LinearSearch and BinarySearch, deal with arrays and corre-
spond to the classic linear and binary search algorithms. Finally, the last four
benchmarks correspond to programs which make extensive use of object-oriented
features such as instance method invocation, field accessing and setting, object
creation and initialization, etc.

The information about the “output” of the PE process appears in the second
group of columns, Residual. The columns Size and NUnfs show the size in
bytes of each residual program and the number of unfolding steps performed
by the partial evaluator to generate it, respectively. We can observe that the
partial evaluator has done a good job in all examples by transforming a rather
large interpreter (86,326 bytes) in relatively small residual programs. The sizes
range from 317 bytes for m2 (99.4% reduction) to 4.911 for Lcm2 (83.6 %). The
number of required unfolding steps explains the high PE times, as we discuss
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Table 1. Sizes of residual programs and transformation and analysis times

Bytecode Residual Times (ms)
Class Size Method Size NUnfs Trans PE Ana Total

Mod 314 mod 956 1645 18 1244 59 1322
Fact 324 fact 1007 1537 19 1432 74 1525
Gcd 265 gcd 940 1273 18 1160 125 1303
Lcm 299 lcm 2260 4025 21 5832 817 6670
Lcm2 547 lcm2 4911 3724 26 3963 1185 5174
Combinatory 703 varNoRep 1314 1503 32 1837 87 1955
Combinatory 703 combNoRep 2177 2491 34 3676 150 3860
Combinatory 703 combRep 2151 3033 29 5331 950 6310
Combinatory 703 perm 1022 1256 29 1234 65 1328
LinearSearch 318 search 3114 8832 22 45228 296 45546
BinarySearch 412 search 3670 14117 23 72945 313 73282
Np 387 m2 317 527 20 502 12 534
ExpFact 890 main 2266 8353 35 23773 95 23903
Rational 559 expMain 3131 6613 31 13692 16 13739
Date 602 forward 11046 26982 36 80960 218 81213

below. A relevant point to note is that, for most programs, the size of the LP
translation is larger than the original bytecode. This can be justified by the fact
that the resulting program does not only represent the bytecode program but
it also makes explicit some internal machinery of the JVM. This is the case,
for instance, of the exception handling. As there are no Ciao exceptions in the
residual program, the implicit exceptions in jvml have been made explicit in LP.
Furthermore, the Java bytecode has been designed to be really compact, while
the LP version has been designed to be easier to read by human beings and
contains type information that must be inferred on the jvml. It should not be
difficult to reduce the size of the residual bytecode if so required by, for example,
simply using short identifiers.

The final part of the table provides the times for performing the transfor-
mations and the analysis process. Execution times are given in milliseconds
and measure runtime. They are computed as the arithmetic mean of five runs.
For each benchmark, Trans, PE and Ana are the times for executing the
class reader, the partial evaluator and the analyzer, respectively. The col-
umn Total accumulates all the previous times. We can observe that most of
the time is due to the partial evaluation phase (and this time is directly related
to the number of unfolding steps performed). This is to be expected because
the specialization of a large program (i.e., the interpreter) requires to perform
many unfolding steps in all the examples (ranging from 14.117 steps for search
in BinarySearch to 527 for m2), plus many additional generalization steps
which are not shown in the table. The analysis time is then relatively low, as
the residual programs to be analyzed are significantly smaller than the program
to be partially evaluated.
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As for future work, we plan to obtain accurate bounds on resource consump-
tion by considering the traces that the residual program contains and the con-
crete cost of each bytecode instruction. Also, we are in the process of studying
the scalability of our approach to the verification of larger Java bytecode pro-
grams. We also plan to exploit the advanced features of the partial evaluator
which integrates abstract interpretation [15] in order to handle recursion.
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5. T. Früwirth, E. Shapiro, M.Y. Vardi, and E. Yardeni. Logic programs as types for
logic programs. In Proc. LICS’91, pages 300–309, 1991.

6. Yoshihiko Futamura. Partial evaluation of computation process - an approach to
a compiler-compiler. Systems, Computers, Controls, 2(5):45–50, 1971.

7. J. Gallagher. Transforming logic programs by specializing interpreters. In Proc. of
the 7th. European Conference on Artificial Intelligence, 1986.

8. Kim S. Henriksen and John P. Gallagher. Analysis and specialisation of a pic
processor. In SMC (2), pages 1131–1135. IEEE, 2004.

9. M. Hermenegildo, G. Puebla, F. Bueno, and P. López. Integrated Program De-
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Abstract. Effective static analyses have been proposed which infer
bounds on the number of resolutions. These have the advantage of being
independent from the platform on which the programs are executed and
have been shown to be useful in a number of applications, such as gran-
ularity control in parallel execution. On the other hand, in distributed
computation scenarios where platforms with different capabilities come
into play, it is necessary to express costs in metrics that include the char-
acteristics of the platform. In particular, it is specially interesting to be
able to infer upper and lower bounds on actual execution times. With this
objective in mind, we propose an approach which combines compile-time
analysis for cost bounds with a one-time profiling of a given platform in
order to determine the values of certain parameters for that platform.
These parameters calibrate a cost model which, from then on, is able to
compute statically time bound functions for procedures and to predict
with a significant degree of accuracy the execution times of such pro-
cedures in that concrete platform. The approach has been implemented
and integrated in the CiaoPP system.

Keywords: Execution Time Estimation, Cost Analysis, Profiling, Re-
source Awareness, Cost Models, Mobile Computing.

1 Introduction

Predicting statically the running time of programs has many applications rang-
ing from task scheduling in parallel execution to proving the ability of a pro-
gram to meet strict time constraints in real-time systems. A starting point in
order to attack this problem is to infer the computational complexity of such
programs. This is one of the reasons why the development of static analysis
techniques for inferring cost-related properties of programs has received con-
siderable attention. However, in most cases such cost properties are expressed
using platform-independent metrics. For example, [5,4] present a method for au-
tomatically inferring functions which capture an upper bound on the number
of resolution steps or reductions that a procedure will execute as a function of
the size of its input data. In [12,11] the method of [5,11] was fully automated in
the context of a practical compiler and in [6,11] a similar approach was applied
in order to also obtain lower bounds, which are specially relevant in parallel

M. Hanus (Ed.): PADL 2007, LNCS 4354, pp. 140–154, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Combining Static Analysis and Profiling for Estimating Execution Times 141

execution. Such platform-independent cost information (bounds on number of
reductions) has been shown to be quite useful in various applications. This in-
cludes, for example, scheduling parallel tasks [11,12,8]. In a typical scenario,
these tasks will be executed in a single parallel machine, where all processors are
typically identical. Therefore, the deduced number of reductions can actually be
used as a relative measure in order to compare to a first degree of approximation
the amount of work under the tasks.

However, in distributed execution and other mobile/pervasive computation
scenarios, where different platforms come into play with each platform having
different computing power, it becomes necessary to express costs in metrics that
can be later instantiated to different architectures so that actual running time
can be compared using the same units. This applies also to heterogeneous par-
allel computing platforms. With this objective in mind, we present a framework
which combines cost analysis with profiling techniques in order to infer func-
tions which yield bounds on platform-dependent execution times of procedures.
Platform-independent cost functions are first inferred which are parametrized
by certain constants. These constants aim at capturing the execution time of
certain low-level operations on each platform. For each execution platform, the
value of such constants is determined experimentally once and for all by running
a set of synthetic benchmarks and measuring their running times with a profiling
toolkit that we have also developed. Once these constants are determined, they
are fed into the model with the objective of predicting with a certain accuracy
execution times. We have studied a relatively large number of cost models, in-
volving different sets of constants in order to explore experimentally which of the
models produces the most precise results, i.e., which parameters model and pre-
dict best the actual execution times of procedures. In doing this we have taken
into account the trade-off between simplicity of the cost models (which implies
efficiency of the cost analysis and also simpler profiling) and the precision of
their results. With this aim, we have started with a simple model and explored
several possible refinements.

In addition to cost analysis, the implementation of profilers in declarative lan-
guages has also been considered by various authors, with the aim of helping to
discover why a part of a program does not exhibit the expected performance. De-
bray [3] showed the basic considerations to have in mind when profiling Prolog
programs: handling backtracking and failure. Ducassé [7] designed and imple-
mented a trace analyzer for Prolog which can be applied to profiling. Sansom
and Peyton Jones [14] focused on profiling of functional languages using a seman-
tic approach and highlighted the difficulty in profiling such kind of languages.
Jarvis and Morgan [13] showed how to profile lazy functional programs. Brassel
et al. [1] solved part of the difficulty in profiling when considering special features
in functional logic programs, like sharing, laziness and non-determinism. We will
use also profiling but, since our aim is to predict performance, profiling will in
our case be aimed at calibrating the values for some constants that appear in
the cost functions, and which will be instrumental to forecast execution times
for a given platform and cost model. Therefore we will not use profiling with just
some fixed input arguments, but with a set of programs and input arguments
which we hope will be representative enough to derive meaningful characteristics
of an execution platform.
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2 Static Platform-Dependent Cost Analysis

In this Section we present the compile-time cost bounds analysis component of
our combined framework. This analysis has been implemented and integrated
in CiaoPP [9] by extending previous implementations of reduction-counting cost
analyses. The inferred (upper or lower) bounds on cost are expressed as func-
tions on the sizes of the input arguments and use several platform-dependent
parameters. Once these parameters are instantiated with values for a given
platform, such functions yield bounds on the execution times required by the
computation on such platform. The analyzer can use several metrics for com-
puting the “size” of an input, such as list length, term size, term depth, integer
value, etc. Types, modes, and size measures are first automatically inferred by
other analyzers which are part of CiaoPP and then used in the size and cost
analysis.

2.1 Platform-Independent Static Cost Analysis

As mentioned before, our static cost analysis approach is based on that developed
in [5,4] (for estimation of upper bounds on resolution steps) and further extended
in [6] (for lower bounds). In these approaches the time complexity of a clause can
be bounded by the time complexity of head unification together with the time
complexity of each of its body literals. For simplicity, the discussion that follows
is focused on the estimation of upper bounds. We refer the reader to [6] for
details on lower-bounds analysis. Consider a clause C defined as “H : −L1, ..., Lm”.
Because of backtracking, the number of times a literal will be executed depends
on the number of solutions that the literals preceding it can generate. Assume
that n is a vector such that each element corresponds to the size of an input
argument to clause C and that each ni, i = 1 . . .m, is a vector such that each
element corresponds to the size of an input argument to literal Li , τ is the cost
needed to resolve the head H of the clause with the literal being solved, and
SolsLj is the number of solutions literal Lj can generate. Then, an upper bound
on the cost of clause C (assuming all solutions are required), CostC(n), can be
expressed as:

CostC(n) ≤ τ +
m∑

i=1

(
∏
j≺i

SolsLj (nj))CostLi (ni), (1)

Here we use j ≺ i to denote that Lj precedes Li in the literal dependency graph
for the clause.

Our current implementation also considers the cost of term creation for the
literals in the body of clauses, which can affect the cost expression significantly.
To further simplify the discussion that follows, we restrict ourselves to the simple
case where each literal is determinate, i.e., produces at most one solution. In this
case, equation (1) simplifies to:

CostC(n) ≤ τ +
m∑

i=1

CostLi (ni). (2)
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However, it should be pointed out that our implementation is not limited to de-
terministic programs: our cost analysis system indeed handles non determinism,
i.e., the presence of several solutions for a given call.

A difference equation is set up for each recursive clause, whose solution (using
as boundary conditions the cost of non-recursive clauses) is a function that yields
the cost of a clause. The cost of a predicate is then computed from the cost of
its defining clauses. Since the number of solutions generated by a predicate that
will be demanded is generally not known in advance, a conservative upper bound
on the computational cost of a predicate can be obtained by assuming that all
solutions are needed, and that all clauses are executed (thus the cost of the
predicate is assumed to be the sum of the costs of its defining clauses). If we
take mutual exclusion among clauses into account, we can obtain a more precise
estimate of the cost of a predicate: the complexity for deterministic predicates
can be approximated by the maximum of the costs of mutually exclusive groups
of clauses.

The analysis in [5,4] was primarily aimed at estimating resolution steps. How-
ever, the basic metric is open and can be tailored to alternative scenarios: more
sophisticated and accurate measures can be used in place of the initially pro-
posed ones (by, e.g., decomposing arbitrary unifications into simpler steps). In
the rest of this section we explore this open issue more deeply and study how
the original cost analysis can be extended in order to infer cost functions using
more refined (and parametric) cost models. These will in turn make it possible
to generate expressions which capture execution time (or, typically, a bound
thereof) more accurately.

2.2 Proposed Platform-Dependent Cost Analysis Models

Since the cost metric which we want to use in our approach is execution time, we
take τ (in expression 2) to include the time needed to resolve a literal G against
the corresponding clause head H, but also the cost associated with selecting
alternatives, the cost coming from setting up the body literals for execution,
allocating activation records, etc. In the following, we will still refer to τ as
the clause head cost function (but understanding that it now includes all these
costs), and we will consider different definitions for τ , each of them yielding
a different cost model. These cost models make use of a vector of platform-
dependent constants, together with a vector of platform-independent metrics,
each one corresponding to a particular low-level operation related to program
execution. Examples of such low-level operations considered by the cost models
are unifications where one of the terms being unified is a variable and thus behave
as an “assignment”, or full unifications, i.e., when both terms being unified are
not variables, and thus unification performs a “test” or produces new terms, etc.
Thus, we generalize τ to be a function parametrized by the cost model so that:

τ(Ω) = time(Ω) (3)

time(Ω) returns the time associated to a resolution step, including the afore-
mentioned additional overheads. The parameter Ω = (ω1, . . . , ωv) is a vector
denoting which characteristics we want to take into account: every ωi looks at
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a different indicator of the execution time. The family of cost models we will
study assumes that time(Ω) is defined as follows:

time(Ω) = time(ω1) + · · · + time(ωv), v > 0 (4)

where each time(ωi) contributes with the part of the execution time which de-
pends on the feature ωi. We also assume that:

time(ωi) = Kωi × I(ωi) (5)

where Kωi is a platform-dependent constant and I(ωi) is a platform-independent
cost function. I.e., Kωi expresses the cost of each unit of I(ωi) in terms of time.
Equation (4) can be written in vector notation as

time(Ω) = KΩ • I(Ω) (6)

where KΩ = (Kω1 , . . . , Kωv) and I(Ω) = (I(ω1), . . . , I(ωv)) are vectors of
platform-dependent constants and of platform-independent cost functions, re-
spectively. Accordingly, we generalize equation (2) by introducing the clause
head cost function τ as a parameter:

CostC(Ω, n) ≤ τ(Ω) +
m∑

i=1

CostLi (Ω, ni). (7)

A cost model, of which we have tested several, is given by a particular defini-
tion of the parameter Ω. Every cost model is defined by the program character-
istics taken into account by it. While a large number of indicators can be used,
we have identified some of them as specially interesting. We list them below,
giving a mnemonic to every ωi and explaining the meaning of each I(ωi).

In what follows we will say that an argument of a literal is an output argument
if the term being passed by the calling literal is known to be a variable at run-
time, and an input argument if it is not a variable. Run-time arguments can
be classified as either input or output using well-known techniques for mode
analyses (in our case, those provided by CiaoPP).

I(step) = 1 Every successful head traversal has a constant weight in the execu-
tion. I.e., in equation (5), we have:

time(step) = Kstep

I(vounif) = the number of variables in the clause head which correspond to
“output” argument positions. This describes a component of the execution
time that is directly proportional to the number of cases where both a goal
argument and the corresponding head argument are variables. This should
boil down to assignment (maybe with trailing).

time(vounif) = Kvounif × I(vounif)

I(viunif) = the number of variables in the clause head which correspond to
“input” argument positions. This component corresponds to the number of
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non-variable goal arguments which are unified with a variable in the head.
The unification for such arguments is also similar to an assignment with a
small, constant cost. We assume that the cost of creating the input argument
is constant. Given these assumptions:

time(viunif) = Kviunif × I(viunif)

I(gounif) = The number of function symbols and constants in the clause head
which appear in output arguments. We are capturing here the size of the
terms that are created when a variable in a goal is unified with a non-variable
in the clause head.

time(gounif) = Kgounif × I(gounif)

I(giunif) = The number of function symbols and constants in the clause head
which appear in input arguments. We assume that there is a component of
the execution time which depends on the number of arguments in which
neither the goal nor the clause head arguments are variables. For each of
these arguments, we take into account the number of symbols in the clause
head.

time(giunif) = Kgiunif × I(giunif)

I(nargs) = arity(H) we are assuming that there is a component of the execution
time that depends on the number of arguments in the clause head:

time(nargs) = Knargs × I(nargs) (8)

This component is obviously redundant with respect to the previous ones,
but we have included it as a statistical control: the experiments should show
(and do show) that it is irrelevant when the others are used.

Clearly, other components can be included (such as whether activation records
are created or not) but our objective is to see how far we can go with the
components outlined above.

We adopt the same approach as [4,6] for computing bounds on cost of predi-
cates from the computed values for the cost of the clauses defining it. However,
we introduce the cost model τ as a parameter of these cost functions.

Let Costp(Ω, n) be a function which gives the cost of the computation of a
call to predicate p for an input of size n (recall that the cost units depend on the
definition of Ω). Given a predicate p, and a clause head cost function time(Ω)
as defined in equation (6), we have that:

Costp(Ω, n) = KΩ • Costp(Ω, n) (9)

where
Costp(Ω, n) = (Costp(I(ω1), n), . . . , Costp(I(ωv), n))

Equation (9) gives the basis for computing values for constants Kωi via pro-
filing (as explained in Section 3). Also, it provides a way to obtain the cost of
a procedure expressed in a platform-dependent cost metric from another cost
expressed in a platform-independent cost metric.
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2.3 Dealing with Builtins

In this section we present our approach to the cost analysis of programs which
call builtins, or more generally, predicates whose code is not available to the
analyzer (external predicates). We will refer to all of them as builtins for brevity.
We assume that a cost function is available (expressed via trust assertions [9])
for each such predicate. This cost function can be a constant in simple cases
but more generally it will be a function that depends on sizes of the (input)
arguments of the predicate. As an example, the cost of arithmetic predicates
(such as =:=/2, =\=/2, or >/2) is approximated by a function that depends on
the size (and types) of the arithmetic expressions that will appear as arguments.

Note that this is a significant change with respect to the cost analysis pro-
posed in [4] since one of the simplifying assumptions made in that analysis was
to not count calls to certain builtin as resolution steps (which meant that they
were simply ignored in the cost analysis). While such an assumption made sense
for inferring number of resolution steps, the assumption is not realistic for esti-
mating execution times, since the time involved in executing such builtins is not
negligible in general and thus has to be taken into account.

We have modeled this by assuming that each builtin contributes with a new
component of the cost model to the execution time as expressed in Equation (4).
Then, a new time(ωi) is added for each builtin predicate b/n as follows:

time(b/n) = Kb/n × I(b/n)
We now consider in more detail the case of arithmetic operators and discuss

several possibilities. For the sake of accuracy, every arithmetic operator can be
dealt with separately: let �/n be an arithmetic operator. As usual, the execution
time due to the total number of times that this operator is evaluated is given by:

time(�/n) = K�/n × I(�/n)

where K�/n approximates the time taken by the evaluation of the arithmetic
operator �/n. I(�/n) could be the number of times that the arithmetic operator
is evaluated. With these assumptions, equation (9) (in Section 2.2) also holds
for programs that perform calls to builtin predicates, say, for example, a builtin
b/n, by introducing b/n and �/n as new cost components of Ω.

Alternatively, I(�/n) can be a cost function defined as:

I(�/n) =
∑
a∈S

EvCost(�/n, a)

where S is the set of arithmetic expressions appearing in the clause body which
will be evaluated; and EvCost(�/n, a) represents the cost corresponding to the
operator �/n in the evaluation of the arithmetic term a, i.e.:

EvCost(�/n, A) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if atomic(A) ∨ var(A)

1 +
n∑

i=1
EvCost(�/n, Ai) if A = �(A1, ..., An)

m∑
i=1

EvCost(�/n, Ai) if A = �̂(A1, ..., Am) ∧ �̂ 
= �

For simplicity we can make the assumption that the cost of evaluating the
arithmetic term t to which a variable appearing in A will be bound at execution



Combining Static Analysis and Profiling for Estimating Execution Times 147

time is zero (i.e., to ignore the cost of evaluating t). This can be a good ap-
proximation if in most cases t is a number and thus no evaluation of a complex
expression is needed for it. This is the case in our simple benchmarks and our
experimental results show good time predictions for arithmetic builtin predicates
using just the simple cost model. On the other hand, a more refined cost model
which assumes that cost is a function on the size of t will be needed for programs
which evaluate symbolic arithmetic expressions.

Note that the simple models that we have discussed ignore the possible opti-
mizations that the compiler might perform. We can take into account those per-
formed by source-to-source transformationby placing our analyses in the last stage
of the front-end, but at some point the language the compiler works with would
be different enough as to require different considerations in the cost model.

3 Calibrating Constants Via Profiling

In order to compute values for the platform-dependent constants which appear
in the different cost models proposed in Section 2.2, our calibration schema takes
advantage of the relationship between the platform-dependent and -independent
cost metrics expressed in Equation (9). In this sense, the calibration of the
constants appearing in KΩ is performed by solving systems of linear equations
(in which such constants are treated as variables).

Based on this expression, the calibration procedure consists of:

1. Using a selected set of calibration programs which aim at isolating specific
aspects that affect execution time in general cases. For these calibration
programs it holds that Costp(I(ωi), n) is known for all 1 ≤ i ≤ v. This can
be done by using any of the following methods:
– The analyzers integrated in the CiaoPP system infer the exact cost func-

tion, i.e., both upper an lower bounds are the same: Costpl(I(ωi), n) =
Costpu(I(ωi), n) = Costp(I(ωi), n) ,

– Costp(I(ωi), n) is computed by a profiler tool, or
– Costp(I(ωi), n) is supplied by the user together with the code of program

p (i.e., the cost function is not the result from any automatic analysis
but rather p is well known and its cost function can be supplied in a
trust assertion).

2. For each benchmark p in this set, automatically generating a significant
amount m of input data for it. This can be achieved by associating with
each calibration program a data generation rule.

3. For each generated input data dj , computing a pair (Cpj , Tpj), 1 ≤ j ≤ m,
where:
– Tpj is the j-th observed execution time of program p with this generated

input data.
– Cpj = Costp(Ω, nj), where nj is the size of the j-th input data dj .

4. Using the set of pairs (Cpj , Tpj ) to set up the equation:

Cpj • KΩ = Tpj (10)

where KΩ is considered a vector of variables.
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5. Setting up the (overdetermined) system of equations resulting from putting
together all the equations (10) corresponding to all the calibration programs.

6. Solving the above system of equations using the least squares method (see,
e.g., [15]). A solution to this system gives values to the vector KΩ and hence,
to the constants Kωi which are the elements composing it.

7. Calculating the constants for builtins and arithmetic operators by performing
repeated tests in which only the builtin being tested is called, accumulating
the time, and dividing the accumulated time by the number of times the
repeated test has been performed.

4 Assessment of the Calibration of Constants

We have assessed both the constant calibration process and the prediction of
execution times using the previously proposed cost models in two different plat-
forms:

– “Intel” platform: Dell Optiplex, Pentium 4 (Hyper threading), 2GHz, 512MB
RAM memory, Fedora Core 4 operating System with Kernel 2.6.

– “PPC” platform: Apple iMac, PowerPC G4 (1.1) 1.5GHz, 1GB RAM mem-
ory, with Mac OS X 10.4.5 Tiger.

Equation (10) is, in general, overdetermined, and we plan to find an approx-
imation which is “best” in some sense, by using the least squares method. We
used the Householder transformation [10], which decomposes the m × n matrix
C = {Cpj } into the product of two matrices Q and U such that C = Q•U , where
Q is an orthonormal matrix (i.e., QT •Q = I, the m×m identity matrix) and U
an upper triangular m×n matrix. Then, multiplying both sides of equation (10)
by QT and simplifying we can get:

U • K = QT • T = B

where, for clarity, we denote K = KΩ, T = Tpj and QT • T = B. We can take
advantage of the structure of U and define V as the first n rows of U , n being
the number of columns of C and b the first n rows of B, then K can be estimated
solving the following upper triangular system, where K̂ stands for the estimate
for K:

V • K̂ = QT • T = b

Since this method is being used to find an approximate solution, we define
the residual of the system as the value R = T − CK̂.

Let RSS = R • R be the residual square sum, and let MRSS = RSS
m−n be the

mean of residual square sum, where m and n are the number of rows and columns
of the matrix C respectively, and finally let S =

√
MRSS be the estimation of

the standard error of the model, S. In order to evaluate experimentally which
models generate the best approximation of the observed time, we have compared
the values of MRSS (or S) for several proposed models.

Table 1 shows the considered models. Table 2 shows the estimated values for
the vector K using the calibration programs in Table 3, as well as the standard
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Table 1. List of cost models being applied

No. Model
1 step nargs giunif gounif viunif vounif
2 step giunif gounif viunif vounif
3 step giunif gounif vounif
4 step

Table 2. Values (in nanoseconds) for vector constants in several cost models, sorted
by standard error

Plat. Model S (μs) KΩ

Intel 1 6.2475 (21.27, 9.96, 10.30, 8.23, 6.46, 5.69)
2 9.3715 (26.56, 10.81, 8.60, 6.17, 6.39)
3 13.7277 (27.95, 11.09, 8.77, 7.40)
4 68.3088 108.90

PPC 1 4.7167 (41.06, 5.21, 16.85, 15.14, 9.58, 9.92)
2 5.9676 (43.83, 17.12, 15.33, 9.43, 10.29)
3 16.4511 (45.95, 17.55, 15.59, 11.82)
4 116.0289 183.83

error of the model, sorted from the best to the worst model. Note that the
estimation of K only needs to be done once per platform. This took 15.62 seconds
for the Intel platform and 17.84 seconds for the PPC, repeating the experiment
250 times for each calibration program. Our approach has been tested on the
programs used in the calibration process itself for the considered models. Table 3
shows the error incurred in when an observed value is compared against an
estimated value using the models in Table 1. It can be observed that the simpler
models incur in significant errors while the more complex ones are more accurate

Table 3. Calibration programs used to estimate the constants and the estimation error

Program Error (%)
Model 1 2 3 4
Environment creation 20 16 12 73
Predicates with no arguments 10 6 2 85
Traverse a list without last call optimization 20 20 11 80
Traverse a list with last call optimization 53 50 32 88
Program (unifying deep terms) for which I(giunif) is known 16 18 18 474
Program (unifying deep terms) for which I(gounif) is known 0 4 2 409
Program (unifying flat terms) for which I(giunif) is known 16 18 18 472
Program (unifying flat terms) for which I(gounif) is known 5 10 8 386
Program for which I(viunif) is known 9 11 36 735
Program for which I(vounif) is known 1 2 11 227
Unify two list element by element 34 29 20 26
Predicate with many arguments 17 16 9 159



150 E. Mera et al.

(understandable since these calibrators exercise just particular implementation
aspects and are thus expected to deviate from any “normal” behaviour).

5 Assessment of the Prediction of Execution Times

We have tested the proposed cost models in a set programs not used in the
calibration process in order to assess how well their execution time is predicted,
without performing any runtime profiling on them. We have performed experi-
ments with the 63 possible cost models resulting from selecting one or more of
the components described in Section 2.2. For space reasons we only show the
three most accurate cost models (according to a global accuracy comparison
that will be presented later) plus the step model (number 4), which, despite
its simplicity, has a special interest, as we will also see later. Experimental re-
sults are shown in Table 4, where the analyzers integrated in the CiaoPP sys-
tem infer the exact platform-independent cost function for all the programs in
that table, which means that the upper and lower bound are the same, i.e.,
Costpl(I(ωi), n) = Costpu(I(ωi), n) = Costp(I(ωi), n). The first three rows for
each test program show the three more accurate predictions along with the
model used. The fourth row shows the prediction obtained by the cost model
step, which assumes that the execution time is directly proportional to the num-
ber of resolution steps performed. Note that CostC(I(step), n) gives the number
of resolution steps performed by clause C. The row tagged as Observed cor-
responds to the actual measured timings, and the last row details the analysis
time (roughly the same in all benchmarks, and which includes mode, type, and
cost analysis).

The first column is the program name, the second is the cost model Ω (=
vector of characteristics taken into account) and the third and fourth are the
timing estimations corresponding to the “Intel” and “PPC” platforms. These
are computed by using the average value of the constant KΩ as estimated in
Table 2 with the formula:

EstimateP = KΩ • Costp(Ω, n)

Deviations respect to the measured values are also shown between parenthesis
in the column EstimateP.

The observed execution times have been measured by running the programs
with input data of a fixed size. We generated randomly 10 input data sets of
fixed size, and for each data set we run 5 times every program. The observed
execution time for the (fixed) input size was computed as the average of all
runs.

Table 5 compares the overall accuracy of the four cost models already shown
in Table 4, for the two considered platforms. The last column shows the global
error and it is an indicator of the amount of deviation of the execution times
estimated by each cost model with respect to the observed values. As global
error we take the square mean of the errors in each example being considered in
Table 4. By considering both platforms in combination we can conclude that the
more accurate cost model is Ω = (steps, giunif, gounif, viunif, vounif). This
cost model has an overall error of 14.66 % in the PPC platform and 31.06 % in
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Table 4. Evaluation of execution time predictions

EstimateP

Program Model Intel PPC
(μs) (%) (μs) (%)

1 step nargs giunif gounif viunif vounif 89.72 (44) 77.4 (23)
2 step giunif gounif viunif vounif 85.06 (38) 74.96 (26)

evpol 3 step giunif gounif vounif 82 (35) 70.28 (33)
4 step 90.12 (45) 85.07 (13)
Observed 58.43 97.08
Analysis time Tca (s) 2.002 4.461
1 step nargs giunif gounif viunif vounif 319 (31) 398.5 (4)
2 step giunif gounif viunif vounif 243.3 (3) 358.8 (7)

hanoi 3 step giunif gounif vounif 205.6 (14) 301.3 (25)
4 step 340.7 (38) 538.6 (34)
Observed 235.3 384.2
Analysis time Tca (s) 2.145 4.903
1 step nargs giunif gounif viunif vounif 131.3 (68) 179.4 (26)
2 step giunif gounif viunif vounif 101.1 (39) 163.6 (16)

nrev 3 step giunif gounif vounif 82.51 (18) 135.2 (3)
4 step 144.4 (80) 243.8 (59)
Observed 69.25 139.2
Analysis time Tca (s) 2.022 4.691
1 step nargs giunif gounif viunif vounif 131.8 (18) 179.8 (5)
2 step giunif gounif viunif vounif 101 (9) 163.7 (5)

palind 3 step giunif gounif vounif 86.91 (24) 142.1 (19)
4 step 167.2 (43) 282.2 (52)
Observed 110 171.6
Analysis time Tca (s) 2 4.7
1 step nargs giunif gounif viunif vounif 537.5 (59) 727.9 (17)
2 step giunif gounif viunif vounif 404.5 (28) 658.3 (7)

powset 3 step giunif gounif vounif 323.8 (5) 534.9 (14)
4 step 448.7 (38) 757.4 (21)
Observed 308.2 615
Analysis time Tca (s) 2.07 4.636
1 step nargs giunif gounif viunif vounif 50.29 (75) 68.72 (24)
2 step giunif gounif viunif vounif 38.69 (44) 62.65 (15)

append 3 step giunif gounif vounif 31.36 (22) 51.45 (5)
4 step 54.56 (85) 92.1 (56)
Observed 25.16 53.92
Analysis time Tca (s) 1.932 4.441

Table 5. Global comparison of the accuracy of cost models

Platform Intel PPC
Model 1 2 3 4 1 2 3 4
Error (%) 53.17 31.06 21.48 58.45 18.72 14.66 19.44 43.04
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the Intel platform. In the latter (obviously more challenging) architecture the
model Ω = (steps, giunif, gounif, vounif) appears to be the best.

This is in line with the intuition that taking into account a comparatively
large number of lower-level operations should improve accuracy. However, such
components should contribute significantly to the model in order to avoid noise
introduction. It is also interesting to see that including nargs in the cost model
does not further improve accuracy, as expected, since nargs is not independent
from the four components giunif, gounif, viunif, vounif. In fact, including this
component results in a less precise model in both platforms, due to the noise
introduced in the model. Also, the cost model step deserves special mention,
since it is the simplest one and, at least for the given examples, the error is
smaller than we expected and better than more complex cost models not shown
in the tables.

The disparity in the accuracy for both platforms can be attributed to a number
of reasons, among them the difference in the internal architectures (number of
registers, orthogonality in their usage, etc.), which make predicting execution
characteristics in Intel processors harder. The weight of some constants can also
differ from the calibration programs to the benchmarks due to, e.g., the state
of the internal processor pipelines and state of registers. In our experience, the
PPC architecture offers a more homogeneous behavior performance-wise.

Overall we believe that the results are encouraging in the sense that our com-
bined framework predicts with an acceptable degree of accuracy the execution
times of programs and paves the way for even more accurate analyses by includ-
ing additional parameters.

6 Applications

The experimental results presented in Section 5 show that the proposed frame-
work can be relevant in practice for estimating platform dependent cost metrics
such as execution time. We believe that execution time estimates can be very use-
ful in several contexts. As already mentioned, in certain mobile/pervasive com-
putation scenarios different platforms come into play, with each platform having
different capabilities. More concretely, the execution time estimates could be
useful for performing resource/granularity control in parallel/distributed com-
puting. This belief is based on previous experimental results, where it appeared
from the sensitivity of the results observed in such experiments, that while it is
not essential to be absolutely precise in inferring the best time estimates for a
query, the number of reductions by itself was too rough a measure and the cur-
rent time estimation approach could presumably improve on previous results.

One of the good features of our approach is that we can translate platform-
independent cost functions (which are the result of the analyzer) into platform-
dependent cost functions (using the relationship in expression (9)). A possible
application for taking advantage of this feature is mobile code safety and in
particular Proof-Carrying Code (PCC), a general approach in which the code
supplier augments the program with a certificate (or proof). Consider a scenario
where the producer sends a certificate with a platform-independent cost function
(i.e., where the cost is expressed in a platform-independent metric) together with
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a calibration program. The calibration program includes a fixed set of calibration
benchmarks. Then, the consumer runs (only once) the calibration program and
computes the values for the constants appearing in the cost functions. Using
these constants, the consumer can obtain platform-dependent cost functions [8].

Another application of the proposed approach is resource-oriented specializa-
tion. The proposed cost models, which include low-level factors for CLP pro-
grams, are more refined cost models than previously proposed ones and thus can
be used to better guide the specialization process. The inferred cost functions
can be used to develop automatic program transformation techniques which take
into account the size of the resulting program, its run time and memory usage,
and other low-level implementation factors. In particular, they can be used for
performing self-tuning specialization in order to compare different specialized
version according to their costs [2].

The use of a source-level characterization of the execution profile, which un-
doubtedly carries some lack of accuracy with it, can be applied not only to
different architectures, but also to different compilation / execution schemes. By
identifying a rich enough cost model, and using the calibration programs un-
der a given execution model (and architecture), predictions about this execution
model / architecture can be made. The advantage lies in that instrumenting
the low-level representation used by the execution algorithm (e.g., WAM code
& emulator, C code / assembler, or interpreters or virtual machines for other
bytecode representations) is not needed: KΩ should get instantiated to the cost
(or an approximation thereof) of every identified basic feature in the execution
model under study.

7 Conclusions

We have developed a framework which allows estimating execution times of pro-
cedures of a program in a given execution platform. The method proposed com-
bines compile-time (static) cost analysis with a one-time profiling of the platform
in order to determine the values of certain constants. These constants calibrate a
cost model from which time cost functions for a given platform can be computed
statically. The approach has been implemented and integrated in the CiaoPP
system. To the best of our knowledge, this is the first combined framework for
estimating statically and accurately execution time bounds based on static auto-
matic inference of upper and lower bound complexity functions plus experimen-
tal adjustment of constants. We have performed an experimental assessment of
this implementation for a wide range of different candidate cost models and two
execution platforms. The results achieved show that the combined framework
predicts the execution times of programs with a reasonable degree of accuracy.
We believe this is an encouraging result, since using a one-time profiling for esti-
mating execution times of other, unrelated programs is clearly a challenging goal.

Also, we argue that the work presented in this paper presents an interesting
trade-off between accuracy and simplicity of the approach. At the same time,
there is clearly room for improving precision by using more refined cost models
which take into account additional (lower level) factors. Of course, these models
would also be more difficult to handle since on one hand they would require
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computing more constants and on the other hand they may require taking into
account factors which are not observable at source level. This is in any case the
subject of possibly interesting future work.
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Abstract. Most of the recent proposals in tabling technology were de-
signed as a means to improve some practical deficiencies of current
tabling execution models that reduce their applicability in particular
applications. The discussion we address in this paper was also motivated
by practical deficiencies we encountered, in particular, on the table stor-
age mechanisms used for tabling support. To improve such mechanisms,
we propose two new implementation techniques that make tabling mod-
els more efficient when dealing with incomplete tables and more robust
when recovering memory from the table space. To validate our proposals,
we have implemented them in the YapTab tabling system as an elegant
extension of the original design.

1 Introduction

Tabling [1,2] is a technique of resolution that overcomes some limitations of tradi-
tional Prolog models in dealing with recursion and redundant sub-computations.
As a result, in the past years several alternative tabling models have been pro-
posed [3,4,5,6,7,8] and implemented in systems like XSB, Yap, B-Prolog, ALS-
Prolog and Mercury.

More recently, the increasing interest in tabling technology led to further de-
velopments and proposals that improve some practical deficiencies of current
tabling execution models. In [9], Sagonas and Stuckey proposed a mechanism,
named just enough tabling, that offers the capability to arbitrarily suspend and
resume a tabled evaluation without requiring full re-computation. In [10], Saha
and Ramakrishnan proposed an incremental evaluation algorithm for maintain-
ing the freshness of tables that avoids recomputing the full set of answers when
the program changes upon addition or deletion of facts/rules. In [11], Rocha et
al. proposed the ability to support dynamic mixed-strategy evaluation of the
two most successful tabling scheduling strategies, batched and local scheduling.

All these recent proposals were designed as a means to improve the per-
formance of particular applications in key aspects of tabled evaluation like re-
computation and scheduling. The discussion we address in this work was also
motivated by our recent attempt of applying tabling to Inductive Logic Pro-
gramming (ILP) [12]. ILP applications are very interesting for tabling because
they have huge search spaces and do a lot of re-computation. In [13] we showed
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that tabling is indeed a promising approach to minimize re-computation in ILP
systems and that one can have impressive gains through tabling. However, we
found that current tabling execution models suffer from significant limitations
that reduce their applicability in many ILP applications. Analysis showed two
major issues with the table storage mechanisms used for tabling support.

A first problem is incomplete tabling. Tabling is about storing answers for
subgoals so that they can be reused when a repeated call appears. On the other
hand, most ILP algorithms are interested in example satisfiability, not in the
answers: query evaluation stops as soon as an answer is found. This is usually
implemented by pruning at the Prolog level. Unfortunately, pruning over tabled
computations results in incomplete tables : we may have found several answers
but not the complete set. Thus, usually, when a repeated call appears we cannot
simply trust the answers from an incomplete table because we may lose part of
the computation. The simplest approach, and the one that has been implemented
in most tabling systems, is to throw away incomplete tables, and restart the
evaluation from scratch. In this work, we propose a more aggressive approach
where, by default, we keep incomplete tables around. Whenever a call for an
incomplete table appears, we first consume the answers from the table. If the
table is exhausted, then we will restart the evaluation from the beginning. The
main goal of this proposal is to avoid re-computation when the already stored
answers are enough to evaluate a repeated call.

A second problem is memory recovery. When we use tabling for applications
that build very many queries or that store a huge number of answers, we can
build arbitrarily many or very large tables, quickly running out of memory space.
In general, we will have no choice but to throw away some of the tables (ideally,
the least likely to be used next). Tabling systems have not really addressed this
problem. At most, they have a set of tabling primitives that the programmer
can use to dynamically abolish some of the tables. However, this can be hard
to use and very difficult to decide what are the potentially useless tables that
should be deleted. In this work, we propose a more suitable approach for large
dynamic searches, a memory management strategy based on a least recently used
algorithm, that dynamically recovers space from the least recently used tables
when the system runs out of memory.

Both proposals have been implemented in the YapTab tabling system [14]
with minor changes to the original design. Preliminaries results using the April
ILP system [15] showed very substantial performance gains and a substantial
increase of the size of the problems that can be solved by combining ILP with
tabling. Despite the fact that we used ILP as the motivation for this work,
our proposals are not restricted to ILP applications and can be generalised and
applied to most other applications.

The remainder of the paper is organized as follows. First, we briefly introduce
some background concepts and discuss the motivation for our work. Next, we
present our proposals and describe the issues involved in providing engine sup-
port for integrating them in the YapTab tabling system. We then present some
experimental results and outline some conclusions.
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2 Background and Motivation

To discuss the motivation for our work, we start by introducing some basic
concepts about tabling and ILP and then we address the practical deficiencies
encountered when combining them.

2.1 Basic Tabling Definitions

The basic idea behind tabling is straightforward: programs are evaluated by
storing answers for current subgoals in a proper data space, called the table
space. Whenever a repeated call is found, the subgoal’s answers are recalled from
the table instead of being re-evaluated against the program clauses. The nodes
in a tabled evaluation are classified as either: generator nodes, corresponding to
first calls to tabled subgoals; consumer nodes, corresponding to repeated calls to
tabled subgoals; or interior nodes, corresponding to non-tabled subgoals. Tabling
based models have four main types of operations for definite programs:

1. The tabled subgoal call operation is a call to a tabled subgoal. It checks if
the subgoal is in the table. If so, it allocates a consumer node and starts
consuming the available answers. If not, it adds a new entry to the table,
and allocates a new generator node.

2. The new answer operation checks whether a newly found answer is already
in the table, and if not, inserts the answer. Otherwise, the operation fails.

3. The answer resolution operation checks whether extra answers are available
for a particular consumer node and, if so, consumes the next one. If no
unconsumed answers are available, it suspends the current computation and
schedules a backtracking node to continue the execution.

4. The completion operation determines whether a tabled subgoal is completely
evaluated. A table is said to be complete when its set of stored answers rep-
resent all the conclusions that can be inferred from the set of facts and rules
in the program for the subgoal call associated with the table. Otherwise, it
is said to be incomplete. A table for a tabled subgoal is thus marked as com-
plete when, during evaluation, it is determined that all possible resolutions
have been made and, therefore, no more answers can be found.

We could delay completion until the very end of the execution. Unfortunately,
doing so would also mean that we could only recover space for consumers (sus-
pended subgoals) at the very end of the execution. Instead we shall try to achieve
incremental completion [16] to detect whether a generator node has been fully
exploited and, if so, to recover space for all its consumers. Moreover, if we call a
repeated subgoal that is already completed, then we can avoid consumer node
allocation and perform instead what is called a completed table optimization [17].
This optimization allocates a node, similar to an interior node, that will consume
the set of found answers executing compiled code directly from the table data
structures associated with the completed subgoal.
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2.2 Inductive Logic Programming

The fundamental goal of an ILP system is to find a consistent and complete the-
ory (logic program), from a set of examples and prior knowledge, the background
knowledge, that explains all given positive examples, while being consistent with
the given negative examples. Since it is not usually obvious which set of hypothe-
ses should be picked as the theory, an ILP system must traverse the hypotheses
space searching for a set of hypotheses (clauses) with the desired properties.

Computing the coverage of a hypothesis requires, in general, running positive
and negative examples against the clause. For instance, to evaluate if the hy-
pothesis ‘theory(X):- a1(X),a2(X,Y).’ covers the example theory(p1), the
system executes the goal once(a1(p1),a2(p1,Y)). The once/1 predicate is a
primitive that prunes over the search space preventing the unnecessary search
for further answers. It is defined in Prolog as ‘once(Goal):- call(Goal),!.’.
Note that the ILP system is only interested in evaluating the coverage of the
hypothesis, and not in finding answers for the goal.

Now assume that the previous hypothesis obtains a good coverage, that is, the
number of positive examples covered by it is high and the number of negative
examples is low. Then, it is quite possible that the system will use it to generate
more specific hypotheses such as ‘theory(X):- a1(X),a2(X,Y),a3(Y).’. If the
same example, theory(p1), is then evaluated against this new hypothesis, goal
once(a1(p1),a2(p1,Y),a3(Y)), part of the computation will be repeated. For
data-sets with a large number of examples, we can do an arbitrarily large amount
of re-computation.

2.3 Tabling and Inductive Logic Programming

In previous work, we have already proposed two approaches of using tabling to
minimize re-computation in ILP systems [13]. The first approach is simply to
table subgoals. This approach requires minimal changes to the ILP system and
comes for free if using a Prolog engine with tabling support. A second approach
is to table prefixes, that is, replace the conjunction of subgoals in the hypotheses
with proper tabled predicates inferred during execution. If we are able to table
these conjunction of subgoals, we only need to compute them once. This strategy
can be recursively applied as the system generates more specific hypotheses. This
idea is similar to the query packs technique proposed by Blockeel et al. [18].

However, we have found two major problems with the table storage mecha-
nisms currently used for tabling support that reduce their applicability in many
ILP applications. One of these problems is memory recovery. To recursively table
conjunction of subgoals, we need to store a large number of tables, and thus, we
may increase the table memory usage arbitrarily and quickly run out of mem-
ory [13]. Therefore, at some point, we need to compromise efficiency and throw
away some of the tables in order to recover space. A first approach is to let the
programmer dynamically control the deletion of the tables. However, this puts
the burden on the ILP designer, and in the worst case may result in removing
useful tables. In order to allow useful deletion without compromising efficiency,
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we propose in this work a more robust approach, a memory management strategy
based on a least recently used replacement algorithm that dynamically recovers
space from the tables when the system runs out of memory.

The other problem is incomplete tabling. Consider again the evaluation of
once(a1(p1),a2(p1,Y),a3(Y)) but now with a2/2 declared as tabled. Cov-
erage computation with tabled evaluation works fine when examples are not
covered by hypotheses. In such cases, all tabled subgoals in a clause are com-
pleted. For instance, when evaluating the goal once(a1(p1),a2(p1,Y),a3(Y)),
if the subgoal a3(Y) never succeeds then, by backtracking, a2(p1,Y) will be
completely evaluated. On the other hand, tabled evaluation can be a prob-
lem when examples are successfully covered by hypotheses. For example, if
once(a1(p1),a2(p1,Y),a3(Y)) eventually succeeds, then the once/1 primitive
will reclaim space by pruning the goal at hand. However, as a2(p1,Y) may still
succeed with other answers for Y, its table entry cannot be marked as complete.
Thus, when a repeated call to a2(p1,Y) appears, we cannot simply load answers
from its incomplete table, because we may lose part of the computation. A ques-
tion then arises: how can we make tabling worthwhile in an environment that
potentially generates so many incomplete tables?

We first tackled this problem by taking advantage of YapTab’s functionality
that allows to combine different scheduling strategies within the same tabled eval-
uation [11]. Our results showed that best performance can be achieved when we
evaluate some subgoals using batched scheduling and others using local schedul-
ing. Batched scheduling is the default strategy, it schedules the program clauses
in a depth-first manner as does the WAM. This strategy favors forward execu-
tion, when a new answer is found the evaluation automatically propagates the
answer to solve the goal at hand. Local scheduling is an alternative strategy
that tries to force completion before returning answers. The key idea is that
whenever new answers are found, they are added to the table space, as usual,
but execution fails. Answers are only returned when all program clauses for the
subgoal at hand were resolved.

At first, local scheduling seems more attractive because it avoids incomplete
tabling. When the once/1 primitive prunes the search space, the tables are
already completed. On the other hand, if the cost of fully generating the complete
set of answers is very expensive, then the ILP system may not always benefit from
it. It can happen that, after completing a subgoal, the subgoal always succeeds
just by using the initial answers, making it useless to compute beforehand the
full set of answers. We believe that it is very difficult to define the best strategy
to evaluate each subgoal. The approach we propose in this work can be seen as a
compromise between the efficiency of batched scheduling and the effectiveness of
local scheduling. We want to favor forward execution in order to quickly succeed
with the coverage evaluation of the hypotheses, but we also want to be able to
reuse the answers already found in order to avoid re-computation.

We next describe how we extended the YapTab tabling system to be more
efficient when dealing with incomplete tables and more robust when recovering
memory from the table space.
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3 Incomplete Tabling

This section describes how we extended YapTab to support incomplete tabling.
The main goal of our proposal is to avoid re-computation when the answers in
an incomplete table are enough to evaluate a repeated call. To support that,
we thus keep incomplete tables for pruned subgoals. Then, when a repeated call
to a pruned subgoal appears, we start by consuming the available answers from
its incomplete table, and only if we exhaust all such answers, we restart the
evaluation from the beginning. Later, if the subgoal is pruned again, then the
same process is repeated until eventually the subgoal is completely evaluated.

3.1 Implementation Details

In YapTab, tables are implemented using tries as proposed in [17]. An impor-
tant data structure in the table space is the subgoal frame. For each different
tabled subgoal call, a different subgoal frame is used to store information about
the subgoal. In particular, part of that information includes a pointer to where
answers are stored, the SgFr answers field, and a flag indicating the state of the
subgoal, the SgFr state field (see Fig. 1 for details).

Choice Point Stack Table Space

generator
choice point

CP_SgFr SgFr_state

answer
trie

structure

subgoal frame

SgFr_answers

SgFr_try_answer

ready
evaluating
complete
incomplete

Fig. 1. Generator choice points and subgoal frames in YapTab

During evaluation, a subgoal frame can be in one of the following states: ready,
i.e., without a corresponding generator in the choice point stack; evaluating, i.e.,
with a generator being evaluated; or complete, i.e., with the generator no longer
present but with the subgoal fully evaluated. At the engine level, generator nodes
are implemented as WAM choice points extended with two extra fields [11]. One
of these fields, the CP SgFr field, points to the associated subgoal frame in the
table space.

To support incomplete tabling, we have introduced two minor changes to the
subgoal frame data structure. First, a new incomplete state, marks the subgoals
whose corresponding generators were pruned from the execution stacks. Second,
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when we are consuming answers from an incomplete table as a result of a re-
peated call to a previously pruned subgoal, a new SgFr try answer field marks
the currently loaded answer (similarly to what consumer nodes have).

Handling incomplete tables also required minor changes to the tabled subgoal
call operation. Figure 2 shows how we extended the tabled subgoal call()
instruction to deal with incomplete tables.

tabled_subgoal_call(subgoal SG) {
sg_fr = search_table_space(SG) // sg_fr is the subgoal frame for SG
if (SgFr_state(sg_fr) == ready) {

gen_cp = store_generator_node(sg_fr)
SgFr_state(sg_fr) = evaluating
CP_AP(gen_cp) = failure_continuation_instruction() // second clause
goto next_instruction()

} else if (SgFr_state(sg_fr) == evaluating) {
cons_cp = store_consumer_node(sg_fr)
goto answer_resolution(cons_cp) // start consuming answers

} else if (SgFr_state(sg_fr) == complete) {
goto SgFr_answers(sg_fr) // execute compiled code from the trie

} else if (SgFr_state(sg_fr) == incomplete) { // new block of code
gen_cp = store_generator_node(sg_fr)
SgFr_state(sg_fr) = evaluating
first = get_first_answer(sg_fr)
load_answer_from_trie(first)
SgFr_try_answer(sg_fr) = first // mark the current loaded answer
CP_AP(gen_cp) = table_try_answer // new instruction
goto continuation_instruction()

}
}

Fig. 2. Pseudo-code for tabled subgoal call()

The new block of code that deals with incomplete tables is similar to the
block of code that deals with first calls to tabled subgoals (ready state flag).
It also stores a generator node, but instead of using the program clauses to
evaluate the subgoal call, as usual, it starts by loading the first available an-
swer from the incomplete table. The subgoal’s SgFr try answer field is made
to point to this first answer. A second difference is that the failure continuation
pointer of the generator choice point, the CP AP field, is now updated to a special
table try answer instruction.

When backtracking occurs, the table try answer instruction implements a
variant of the answer resolution operation (see section 2.1). Figure 3 shows the
pseudo-code for it. Initially, the table try answer instruction checks if there
are more answers to be consumed, and if so, it loads the next one and updates
the SgFr try answer field. When this is not the case, all available answers have
been already consumed. Thus, we need to restart the computation from the be-
ginning. The program counter is made to point to the first clause corresponding
to the subgoal call at hand and the failure continuation pointer of the generator
is updated to the second clause. At this point, the evaluation is in the same
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table_try_answer(generator GEN) {
sg_fr = CP_SgFr(GEN)
last = SgFr_try_answer(sg_fr) // get the last loaded answer
next = get_next_answer(last)
if (next) { // answers still available

load_answer_from_trie(next)
SgFr_try_answer(sg_fr) = next // update the current loaded answer
goto continuation_instruction()

} else { // restart the evaluation from the first clause
load_compiled_code(sg_fr) // adjust the program counter
CP_AP(GEN) = failure_continuation_instruction() // second clause
goto next_instruction()

}
}

Fig. 3. Pseudo-code for table try answer()

computational state as if we had executed a first call to the tabled subgoal call
operation. The difference is that the table space for our subgoal already stores
some answers.

We should remark that the use of generator nodes to implement the calls
to incomplete tables is strictly necessary to keep unchanged all the remaining
data structures and algorithms of the tabling engine. Note that, at the engine
level, these calls are again the first representation of the subgoal in the execution
stacks because the previous representation has been pruned.

3.2 Discussion

Let us consider again the previous ILP example and the evaluation of the goal
once(a1(p1),a2(p1,Y),a3(Y)) with predicate a2/2 declared as tabled. Con-
sider also that, after a long computation for a2(p1,Y), we have found three
answers: Y=y1, Y=y2, and Y=y3, and that a3(Y) only succeeds for Y=y3. Primi-
tive once/1 then prunes the goal at hand and a2(p1,Y) is marked as incomplete.
Now assume that, later, the ILP system calls again a2(p1,Y) when evaluating a
different goal, for example, once(a2(p1,Y),a4(Y)). If a4(Y) succeeds with one
of the previously found answers, then no evaluation will be required for subgoal
a2(p1,Y). This is the typical case where we can profit from having incomplete
tables. The gain in the execution time is proportional to the cost of evaluating
the subgoal from the beginning until generating the proper answer.

On the other hand, if a4(Y) does not succeed with any of the previously
found answers, then a2(p1,Y) will be reevaluated as a first call. This means
that the answers Y=y1, Y=y2 and Y=y3 will be generated again. However, as
these answers are repeated, the evaluation will fail and a4(Y) will not be called
again for them. The evaluation will fail until a non-repeated answer is eventually
found. Thus, the computation time required to evaluate once(a2(p1,Y),a4(Y)),
either with or without the incomplete table, is then equivalent. Therefore, we
may not benefit from having maintained the incomplete table, but we do not
pay any cost either.
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Our proposal is close to the spirit of the just enough tabling (JET) proposal
of Sagonas and Stuckey [9]. In a nutshell, the JET proposal offers the capabil-
ity to arbitrarily suspend and resume a tabled evaluation without requiring any
re-computation. The basic idea is that JET copies the execution stacks corre-
sponding to pruned subgoals to an auxiliary area in order to be able to resume
them later when a repeated call appears. The authors argue that the cost of JET
is linear in the number of choice points which are pruned. However, to the best
of our knowledge, no practical implementation of JET was yet been done.

Compared to JET, our approach does not require an auxiliary data space, does
not require any complex dependencies to maintain information about pruned
subgoals, and does not introduce any overhead in the pruning process. We thus
believe that the simplicity of our approach can produce comparable results to
JET when applied to real applications like ILP applications.

4 Memory Recovery

This section describes our proposal to handle tables when the system runs out
of memory. We propose a memory management strategy that automatically re-
covers space from the least recently used tables. Note that this proposal is com-
pletely orthogonal to the previous one, that is, we can support either or both
simultaneously. In what follows, we will thus consider the case where YapTab
also includes support for incomplete tabling as described in the previous section.

4.1 Implementation Details

In YapTab, each tabled subgoal call is represented by a different subgoal frame in
the table space. Besides this representation, a subgoal can also be represented in
the execution stacks. First calls to tabled subgoals or calls to previously pruned
subgoals are represented by generator nodes; repeated calls to tabled subgoals
are represented by consumer nodes; and calls to completed subgoals are repre-
sented by interior nodes that execute compiled code directly from the answer trie
structure associated with the completed subgoal. A subgoal is said to be active
if it is represented in the execution stacks. Otherwise, it is said to be inactive.
Inactive subgoals are thus only represented in the table space.

A subgoal can also be in one of the following states: ready, evaluating, com-
plete or incomplete. The ready and incomplete states correspond to situations
where the subgoal is inactive, while the evaluating state corresponds to a situa-
tion where the subgoal is active. The complete state is a special case because it
can correspond to both active and inactive situations. In order to be able to dis-
tinguish these two situations, we introduced a new state named complete-active.
We use the complete-active state to mark the completed subgoals that are also
active in the execution stacks, while the previous complete state is used to mark
the completed subgoals that are only represented in the table space. With this
simple extension, we can now use the SgFr state field of the subgoal frames to
decide if a subgoal is currently active or inactive.



164 R. Rocha

answer
trie

structure

answer
trie

structure

Table Space

SgFr_previous

subgoal frame

SgFr_answers

SgFr_next

SgFr_previous

subgoal frame

SgFr_answers

SgFr_next

SgFr_previous

subgoal frame

SgFr_answers

SgFr_next

SgFr_previous

subgoal frame

SgFr_answers

SgFr_next

space that can be potentially recovered

Inact_recover

Inact_most

ready complete incomplete complete

empty trie yes/no answer

space recovered

Fig. 4. Inactive subgoals in YapTab

Knowing what subgoals are active or inactive is important when the system
runs out of memory. Obviously, active subgoals cannot be removed from the
table space because otherwise we may lose part of the computation or produce
errors. Therefore, when the system runs out of memory, we should try to re-
cover space from the inactive subgoals. Figure 4 shows how we handle inactive
subgoals in YapTab.

Subgoal frames corresponding to inactive subgoals are kept in a double linked
list that is accessible by two new global registers. The Inact most register points
to the most recently inactive subgoal frame and the Inact recover register

recover_space(structure data type STR_TYPE) {
// STR_TYPE is the data type that we failed to allocate space for
sg_fr = Inact_recover
do {

if (sg_fr == NULL) // end of list
return

if (get_first_answer(sg_fr)) { // subgoal frame with answers
free_answer_trie_structure(sg_fr) // recover space
SgFr_state(sg_fr) = ready // reset the frame state

}
sg_fr = SgFr_next(sg_fr)

} while (no_space_available_for(STR_TYPE))
Inact_recover = sg_fr // update recover field

}

Fig. 5. Pseudo-code for recover space()
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points to the least recently inactive subgoal frame from where space can be
potentially recovered. Two subgoal frame fields, SgFr next and SgFr previous,
link the list. Space from inactive subgoals is recovered as presented next in Fig. 5.

The recover space() procedure is called when the system fails to allocate
memory space for a specific data type, the STR TYPE argument. It starts from
the subgoal frame pointed by the Inact recover register and then uses the
SgFr next field to navigate in the list of inactive subgoals until at least a page
of memory is recovered. YapTab uses a page-based memory allocation scheme
where each page only stores data structures of the same type, and thus, to start
using a memory page to allocate a different data structure, we first need to
completely deallocate all the previous data structures from the page.

When recovering space, we only consider the subgoals that store at least one
answer (completed subgoals with a yes/no answer are kept unchanged) and for
these we only recover space from their answer trie structures. Through experi-
mentation we found that, for a large number of applications, the space required
by all the other table data structures is insignificant when compared with the
space required by the answer trie structures (usually more than 99% of the total
table space). Therefore, only sporadically, we are able to recover space from the
non-answer related data structures. We thus argue that the potential benefit of
recovering space from these structures does not compensate its cost.

During evaluation, an inactive subgoal can be made active again. This occurs
when we execute a repeated call to an inactive subgoal. For such cases, we thus
need to remove the corresponding subgoal frame from the list. On the other
hand, when a subgoal turns inactive, its subgoal frame is inserted in the list
as the most recently inactive frame. A subgoal turns inactive when it executes
completion, it is pruned or it fails from an interior node that was executing
compiled code from the answer trie structure.

tabled_subgoal_call(subgoal SG) {
sg_fr = search_table_space(SG) // sg_fr is the subgoal frame for SG
if (SgFr_state(sg_fr) == ready) {

remove_from_inactive_list(sg_fr) // new
...

} else if (SgFr_state(sg_fr) == evaluating) {
...

} else if (SgFr_state(sg_fr) == complete) {
remove_from_inactive_list(sg_fr) // new
SgFr_state(sg_fr) = complete-active // new
trail(sg_fr) // new
goto SgFr_answers(sg_fr) // execute compiled code from the trie

} else if (SgFr_state(sg_fr) == complete-active) { // new state
goto SgFr_answers(sg_fr) // execute compiled code from the trie

} else if (SgFr_state(sg_fr) == incomplete) {
remove_from_inactive_list(sg_fr) // new
...

}
}

Fig. 6. Extended pseudo-code for tabled subgoal call()
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This latter case can be complicated because we can have several interior nodes
executing compiled code from the same answer trie. Only when the computa-
tion fails from the last (oldest) interior node should the corresponding subgoal
be made inactive. To correctly implement that we use the trail stack. The call
that first executes code for a completed subgoal changes the subgoal’s state
to complete-active and stores in the trail stack the reference to the subgoal
frame. Further calls to the same subgoal (cases where the subgoal’s state is now
complete-active) are handled as before. Figure 6 shows how we extended the
tabled subgoal call() instruction to support this.

When later backtracking occurs, we use the reference in the trail stack to
correctly insert the subgoal in the list of inactive subgoals. This use of the trail
stack does not introduce any overhead because the YapTab engine already uses
the trail to store information beyond the normal variable trailing (to control
dynamic predicates, multi-assignment variables and frozen segments).

4.2 Discussion

With this dynamic recovery mechanism, the programmer can now rely on the
effectiveness of the memory management algorithm to completely avoid the prob-
lem of deciding what potentially useless tables should be deleted. Note, however,
that we can still increase the table memory space arbitrarily. This can happen
if the space required by the set of active subgoals exceeds the available mem-
ory space and we are not able to recover any space from the set of inactive
subgoals. A possible solution for this problem is to store data externally using,
for example, a database management system. We are already studying how this
can be done, that is, how we can partially move tables to database storage and
efficiently load them back to the tabling engine. This idea can also be applied to
inactive subgoals and, in particular, we can eventually use our memory manage-
ment algorithm, not to decide what tables to delete but, to decide what tables
to move to the database.

5 Experimental Results

To evaluate the impact of our proposals, we ran the April ILP system [15] with
YapTab. The environment for our experiments was a Pentium M 1600MHz pro-
cessor with 1 GByte of main memory and running the Linux kernel 2.6.11.

We first experimented our support to incomplete tabling and, for that, we used
a well-known ILP data-set, the Mutagenesis data-set, with two different config-
urations that we named Mutagen1 and Mutagen2. The main difference between
the configurations is that the hypotheses space is searched differently. Table 1
shows the running times, in seconds, for Mutagen1 and Mutagen2 using four
different approaches to evaluate the predicates in the background knowledge:
(i) without tabling; (ii) using local scheduling; (iii) using batched scheduling;
and (iv) using batched scheduling with support for incomplete tabling. The
running times include the time to run the whole ILP system. During evaluation,
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Table 1. Running times, in seconds, with and without support for incomplete tabling

Tabling Mode Mutagen1 Mutagen2
Without tabling > 1 day > 1 day
Local scheduling 153.9 143.3
Batched scheduling 278.2 137.9
Batched scheduling with incomplete tabling 122.9 117.6

Mutagen1 and Mutagen2 call respectively 1479 and 1461 different tabled sub-
goals and, for batched scheduling, both end with 76 incomplete tables.

Our results show that, by combining batched scheduling with incomplete
tabling, we can further speed up the execution for these kind of problems. Batched
scheduling allows us to favor forward execution and incomplete tabling allows us
to avoid re-computation. However, for some subgoals, local scheduling can be bet-
ter than batched scheduling with incomplete tabling. We can benefit from local
scheduling when the cost of fully generating the complete set of answers is less
than the cost of evaluating the subgoal several times as a result of several prun-
ing operations. Better results are thus still possible if we use YapTab’s flexibility
that allows to intermix batched with local scheduling within the same evaluation.
However, from the programmer point of view, it is very difficult to define the sub-
goals to table using one or another strategy. We thus argue that our combination
of batched scheduling with incomplete tabling is an excellent (and perhaps the
best) compromise between simplicity and good performance.

We next show how we used another well-known ILP data-set, the Carcino-
genesis data-set, to experiment with our second proposal. From our previous
work on tabling conjunctions of subgoals, we selected one of the hypotheses that
allocates more memory when computing its coverage against the set of examples
in the Carcinogenesis data-set. That hypothesis is defined by a prefix that repre-
sents the conjunction of 5 tabled subgoals with a total of 20 arguments. Table 2
shows the running times in seconds (or m.o. for memory overflow) for computing
its coverage with four different table limit sizes: 576, 384, 192 and 128 MBytes
(the table limit size is defined statically when the system starts). In parentheses,
it shows the number of executions of the recover space() procedure.

Through experimentation, we found that this computation requires a total
table space of 576 MBytes if not recovering any space, and a minimum of
160 MBytes if using our recovery mechanism (for Pentium-based architectures,
YapTab allocates memory in segments of 32 MBytes). The results obtained with

Table 2. Running times, in seconds, with different table limit sizes

Tabling Mode 576MB 384MB 192MB 128MB
Local scheduling 15.2 15.9(95) 16.9(902) m.o.(893)
Batched scheduling 11.4 12.6(62) 14.1(523) m.o.(557)
Batched scheduling with incomplete tabling 11.1 12.3(91) 13.9(833) m.o.(833)
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this particular example show that batched scheduling with incomplete tabling is
again the best approach. The results also suggest that our recovery mechanism
is quite effective in performing its task (for a memory reduction of 66% in table
space it introduces an average overhead between 10% and 20% in the execution
time). The impact of our proposal in the execution time depends, in general,
on the size of the table space and on the specificity of the application being
evaluated, i.e., on the number of times it may call subgoals whose tables were
previously deleted by the recovery procedure.

6 Conclusions

In this paper, we have discussed some practical deficiencies of current tabling
systems when dealing with incomplete tabling and memory recovery. Incomplete
tabling became a problem when, as a result of a pruning operation, the compu-
tational state of a tabled subgoal is removed from the execution stacks before
being completed. On the other hand, memory recovery became a problem when
we use tabling for applications that build very many queries or that store a huge
number of answers, quickly running out of memory space.

To support incomplete tabling, we have proposed the ability to avoid re-
computation by keeping incomplete tables for pruned subgoals. The typical case
where we can profit from having incomplete tables is, thus, when the already
stored answers are enough to evaluate repeated calls. When this is not the case,
we cannot benefit from it but, on the other hand, we do not pay any cost either.
To recover memory, we have proposed a memory management strategy that
automatically recovers space from inactive tables when the system runs out of
memory. Both proposals have been implemented in the YapTab tabling system
with minor changes to the original design. To the best of our knowledge, YapTab
is the first tabling system that implements support to incomplete tabling and
memory recovery as discussed above. Preliminary results using the April ILP
system showed very substantial performance gains and a substantial increase of
the size of the problems that can be solved by combining ILP with tabling.

Acknowledgments

We are very thankful to Nuno Fonseca for his support with the April ILP System.
This work has been partially supported by Myddas (POSC/EIA/59154/2004)
and by funds granted to LIACC through the Programa de Financiamento Pluri-
anual, Fundação para a Ciência e Tecnologia and Programa POSC.

References

1. Tamaki, H., Sato, T.: OLDT Resolution with Tabulation. In: International Confer-
ence on Logic Programming. Number 225 in LNCS, Springer-Verlag (1986) 84–98

2. Chen, W., Warren, D.S.: Tabled Evaluation with Delaying for General Logic Pro-
grams. Journal of the ACM 43 (1996) 20–74



On Improving the Efficiency and Robustness of Table Storage Mechanisms 169

3. Sagonas, K., Swift, T.: An Abstract Machine for Tabled Execution of Fixed-Order
Stratified Logic Programs. ACM Transactions on Programming Languages and
Systems 20 (1998) 586–634

4. Rocha, R., Silva, F., Santos Costa, V.: YapTab: A Tabling Engine Designed to
Support Parallelism. In: Conference on Tabulation in Parsing and Deduction.
(2000) 77–87

5. Demoen, B., Sagonas, K.: CHAT: The Copy-Hybrid Approach to Tabling. Future
Generation Computer Systems 16 (2000) 809–830

6. Guo, H.F., Gupta, G.: A Simple Scheme for Implementing Tabled Logic Program-
ming Systems Based on Dynamic Reordering of Alternatives. In: International
Conference on Logic Programming. Number 2237 in LNCS, Springer-Verlag (2001)
181–196

7. Zhou, N.F., Shen, Y.D., Yuan, L.Y., You, J.H.: Implementation of a Linear Tabling
Mechanism. Journal of Functional and Logic Programming 2001 (2001)

8. Somogyi, Z., Sagonas, K.: Tabling in Mercury: Design and Implementation. In:
International Symposium on Practical Aspects of Declarative Languages. Number
3819 in LNCS, Springer-Verlag (2006) 150–167

9. Sagonas, K., Stuckey, P.: Just Enough Tabling. In: ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming, ACM (2004)
78–89

10. Saha, D., Ramakrishnan, C.R.: Incremental Evaluation of Tabled Logic Pro-
grams. In: International Conference on Logic Programming. Number 3668 in
LNCS, Springer-Verlag (2005) 235–249

11. Rocha, R., Silva, F., Santos Costa, V.: Dynamic Mixed-Strategy Evaluation of
Tabled Logic Programs. In: International Conference on Logic Programming. Num-
ber 3668 in LNCS, Springer-Verlag (2005) 250–264

12. Muggleton, S.: Inductive Logic Programming. In: Conference on Algorithmic
Learning Theory, Ohmsma (1990) 43–62

13. Rocha, R., Fonseca, N., Santos Costa, V.: On Applying Tabling to Inductive Logic
Programming. In: European Conference on Machine Learning. Number 3720 in
LNAI, Springer-Verlag (2005) 707–714

14. Rocha, R., Silva, F., Santos Costa, V.: On applying or-parallelism and tabling to
logic programs. Journal of Theory and Practice of Logic Programming 5 (2005)
161–205

15. Fonseca, N.A., Silva, F., Camacho, R.: April - An Inductive Logic Programming
System. In: European Conference on Logics in Artificial Intelligence. Number 4160
in LNAI, Springer-Verlag (2006) 481–484

16. Chen, W., Swift, T., Warren, D.S.: Efficient Top-Down Computation of Queries
under the Well-Founded Semantics. Journal of Logic Programming 24 (1995) 161–
199

17. Ramakrishnan, I.V., Rao, P., Sagonas, K., Swift, T., Warren, D.S.: Efficient Access
Mechanisms for Tabled Logic Programs. Journal of Logic Programming 38 (1999)
31–54

18. Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., Vandecasteele,
H.: Improving the Efficiency of Inductive Logic Programming Through the Use of
Query Packs. Journal of Artificial Intelligence Research 16 (2002) 135–166



Compiling Constraint Handling Rules for
Efficient Tabled Evaluation�

Beata Sarna-Starosta1 and C.R. Ramakrishnan2

1 Dept. of Comp. Sci. & Engg., Michigan State University, East Lansing, MI 48824
bss@cse.msu.edu

2 Dept. of Computer Science, University at Stony Brook, Stony Brook, NY 11794
cram@cs.sunysb.edu

Abstract. Tabled resolution, which alleviates some of Prolog’s termination prob-
lems, makes it possible to create practical applications from high-level declarative
specifications. Constraint Handling Rules (CHR) is an elegant framework for im-
plementing constraint solvers from high-level specifications, and is available in
many Prolog systems. However, applications combining the power of these two
declarative paradigms have been impractical since traditional CHR implemen-
tations interact poorly with tabling. In this paper we present a new (set-based)
semantics for CHR which enables efficient integration with tabling. The new se-
mantics coincides with the traditional (multi-set-based) semantics for a large class
of CHR programs. We describe CHRd, an implementation based on the new se-
mantics. CHRd uses a distributed constraint store that can be directly represented
in tables. Although motivated by tabling, CHRd works well also on non-tabled
platforms. We present experimental results which show that, relative to traditional
implementations, CHRd performs significantly better on tabled programs, and yet
shows comparable results on non-tabled benchmarks.

1 Introduction

Constraint Logic Programming (CLP) is an elegant framework for encoding a wide va-
riety of problems ranging from infinite-state system verification [7,6] to specification
and analysis of security policies [3,15]. However, traditional CLP systems are unsuit-
able for directly evaluating these formulations since they use Prolog-style resolution
strategy, and, consequently, inherit Prolog’s weak termination (infinite looping) and
efficiency (repeated subcomputations) problems. Tabled resolution [28,4] overcomes
these problems by memoizing subgoals and computed answers during resolution, and
reusing them. Prolog systems enhanced with tabling (e.g. XSB [19]) have supported
the construction of efficient tools for program analysis and the verification of finite
state systems [5,18] based on high-level logical specifications. Combining constraint
processing with tabled resolution will enable evaluating complex applications, such as
the analysis of infinite state systems, directly from high-level specifications.

Constraint Handling Rules (CHR) is a rule-based committed-choice language that
is particularly well-suited for specifying constraint solvers at a high level [10]. CHR
has been implemented in a variety of Prolog systems including SICStus [27], and hPro-
log [8]. The lack of tabled CLP systems was addressed by the recent port of hProlog’s
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CHR to XSB [24] (called XSB-CHR in the remainder of this paper). However, as ex-
plained below, the data structures and algorithms used in traditional CHR systems are
unsuitable for use with tabled resolution, leading to severe performance problems in
XSB-CHR. This paper describes CHRd, an alternative implementation of CHR, that in
addition to working with traditional Prolog systems, seamlessly integrates CHR with
tabling. The efficiency of CHRd permits high-level implementations of applications
combining constraint solving and tabling.

Background. Operationally, CHR programs can be viewed as rewriting rules. The con-
straint store is a multi-set of constraints, and the rules specify how the store should
evolve. For instance, consider the CHR program for the partial order constraint:

Example 1 reflexivity @ leq(X,X) <=> true.
idempotence @ leq(X,Y) \ leq(X,Y) <=> true.
antisymmetry @ leq(X,Y), leq(Y,X) <=> X=Y.
transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

Above, reflexivity and antisymmetry are simplification rules. The latter
states that every pair of constraints in the store that match leq(X,Y) and leq(Y,X)
should be replaced by the equality constraint X=Y (a built-in constraint solved by uni-
fying X and Y). transitivity is a propagation rule. It states that for every pair of
constraints that match the left hand side, the corresponding right hand side constraint
should be added to the store. Since the constraint store is a multi-set, it may contain
more than one instance of the same constraint. The simpagation rule idempotence
(which combines simplification and propagation) ensures that the store is a set. It states
that in the presence of one instance of leq(X,Y) (to the left of ‘\’) another instance
of leq(X,Y) should be replaced by true (i.e. removed from the store).

A rule becomes applicable when the store contains the constraints that match its left
hand side. CHR evaluation proceeds by repeatedly selecting and firing an applicable
rule (i.e. forward chaining) until no rule is applicable (i.e. a fixed point is reached).

Note that a propagation rule remains applicable even after it has been fired. Since the
constraint store is a multi-set, re-firing a propagation rule will change the store, adding
new copies of constraints. To avoid trivial nontermination due to firing the same prop-
agation rule over and over again, the CHR operational semantics (and, subsequently,
its implementations) maintain propagation history, a record of all instances of propa-
gation rules that have been fired so far. A rule is applicable only if its instance is not in
the propagation history.

Traditional CHR and Tabling. The idea of tabling is to record subgoals (calls) and
their provable instances (answers) so that the results of a computation done in one
context can be re-used in another. When tabling is integrated with constraint processing,
we need to associate a constraint store with each call and answer to properly record
the context of a computation. This leads to several efficiency problems. First, the CHR
constraint store as well as its propagation history needs to be copied in and out of tables;
traditional CHR representation of constraints (with their cyclic terms) are not well-
suited for storage in tables. Second, as shown in [24], storing the propagation history
imposes a heavy space burden, but not storing it leads to very high time overheads for
re-propagating the constraints when they are retrieved from tables. Thus a port of a
traditional CHR implementation to a tabled environment (represented by XSB-CHR)
imposes significant performance penalties on tabled applications.
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Our Solution. We combine CHR evaluation and tabling by taking a fundamentally
different approach to CHR. We give CHR a set-based semantics that addresses the triv-
ial nontermination problem without the use of propagation history. The new semantics
is formulated so as to coincide with CHR’s well-accepted semantics [9] for a large
class of programs (see Section 3). In our implementation, called CHRd, we consider a
syntactically restricted class called direct-indexed CHR, where all constraint terms in
every rule head are connected by common variables. This class covers a large number
of CHR-based constraint solvers. The restriction permits the constraint store to be rep-
resented in a distributed fashion, as a network of constraints on the individual variables
(see Section 4). The distributed store and the absence of propagation history enables
direct representation of constraint stores in tables, significantly reducing the time taken
to switch between constraint stores in tabled evaluation. Our implementation has been
integrated into XSB v3.0.1, and the latest version can be obtained from XSB’s CVS
repository at http://xsb.sourceforge.net.

CHRd enables us to efficiently evaluate applications that combine tabled evaluation
and constraint processing, and to scale up to problem sizes of practical importance.
A case in point is an application for the analysis of concurrent object-oriented systems
based on a high-level formulation in terms of CHR rules and tabled logic programs [21].
The relatively good performance of CHRd is crucial to the success of this application.
Moreover, CHRd itself is independent of tabling; its performance is comparable to that
of existing CHR implementations on non-tabled platforms1. A detailed description of
the experimental results appears in Section 5.

It should also be noted that ground CHR, a class that is of significant interest to the
CHR community, is not direct-indexed. Nevertheless, ground CHR programs can be
readily converted into programs that can be evaluated by CHRd (Section 4). Moreover,
many of the recently developed CHR optimizations (e.g. selection of indexing struc-
tures) are valid for CHRd. We discuss the relationship between this paper and previous
work on CHR and its implementations in Section 6.

2 Preliminaries

We use standard notions of variables, terms and substitutions [16]. We use t to refer to
terms in general, c for constraint terms which have a constraint symbol as root, and b for
built-in constraint terms which have a built-in constraint symbol as root. We use vars(t)
to refer to the set of variables in the term t. We write � to represent disjoint union, and
++ to denote concatenation of ordered sequences. Sets and multi-sets are occasionally
considered as sequences with non-deterministically chosen order of elements. Substitu-
tions are denoted by θ, and a term t under θ is written as tθ. We use upper-case letters
such as G, S, etc. to denote collections (sets, multi-sets or sequences) and lower-case
letters for elements of these collections.

CHR Syntax. A CHR program is a finite set of rules that specify how user-defined
constraints are solved based on the host language’s built-in constraints (e.g. Prolog
predicates). CHR rules are of the form:

1 The CHRd system for other platforms including hProlog and SWI-Prolog is available at
http://www.cse.msu.edu/∼bss/chrd.
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label @ Head

{
<=>
==>

}
Guard | Body

Simpagation rules are the most general. They are of the form H1 \ H2 <=> G | B
where H1 and H2 are sequences of user-defined constraint terms (the heads of the rule),
G (the guard) is a sequence of built-in constraints and B (the body) is a sequence of
built-in and user-defined constraint terms. A rule specifies that when constraints in the
store match H1 and H2 and the guard G holds, the constraints that match H2 can be
replaced by the corresponding constraints in B. The literal true represents an empty
sequence of constraint terms. The guard part, G |, may be omitted when G is empty.

A simplification rule, which has the form H2 <=> G | B can be represented by a
simpagation rule true \ H2 <=> G | B. Similarly, a propagation rule, which has the
form H1 ==> G | B, can be represented by a simpagation rule H1 \ true <=> G | B.

CHR Semantics. CHR has a well-defined declarative as well as operational seman-
tics [10,1]. The declarative interpretation of a CHR program P is given by the set of
universally quantified formulas corresponding to the CHR rules, and an underlying con-
sistent constraint theory CT . The constraint theory defines the meaning of host language
constraints, the equality constraint ‘=’, and the boolean atoms true and false.

The original operational semantics [1] is given in terms of a non-deterministic tran-
sition system. The evaluation of a program P is a path through the transition system.
The transitions are made when a constraint is added from the goal to the store, or by
firing any applicable program rule. The refined semantics ωr [9] defines a more deter-
ministic transition system, specifying, among others, the order in which rules are tried.
Most CHR implementations are based on ωr.

3 The Set-Based Operational Semantics

Our set-based operational semantics, called ωset , is given in terms of a transition rela-
tion. The formulation of ωset closely follows that of the refined operational semantics
ωr [9]. A state in the system is represented by a triple 〈E, CU , CB〉V,P where E, called
the execution stack, is an ordered sequence of constraint activation events; CU , the
user-defined constraint store, is a set of user-defined constraints, and CB , the built-in
constraint store, is a conjunction of built-in constraints; V is a sequence of variables;
and P is the given CHR program. We omit either one or both the subscripts V , P when-
ever clear from the context. In contrast, states in ωr are quadruples 〈E, CU , CB, T 〉V,P

where T is the propagation history and CU , the user-defined store, is a multi-set.
As in the refined operational semantics ωr, different occurrences of constraint terms

with the same symbol in the heads of rules are marked with an occurrence number
corresponding to the order in which they appear in the CHR program (starting from
1). This numbering indicates the order in which the rules are tried, thus reducing non-
determinism of program evaluation. Three kinds of activation events can appear in the
execution stack:

– Inactive constraint: c is a user-defined or built-in constraint term;
– Active constraint: c : j where c is a user-defined constraint term and j is a number,

meaning that this term can match only with the j-th occurrence of the constraint
symbol in the program; and
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– Conditional activation: (H1\H2), G 	 B where H1 and H2 are sets of user-defined
constraint terms, G is a set of built-in constraint terms, and B is a sequence of
user-defined and built-in constraint terms.

A CHR program is evaluated by forward chaining, and the evaluation stack is used to
control this computation. The event at the top of the execution stack is the one currently
scheduled for evaluation. The first two events above are also in ωr; the conditional
activation event is unique to ωset

2. An inactive constraint (the first event) corresponds
to constraints that we have not yet begun processing; an active constraint corresponds
to one that is being processed. The conditional activation event marks constraints that
we will begin processing only when the conditions hold.

The initial state of the system is 〈E, ∅, true〉V,P where E is the sequence of con-
straints posed to the system, V is the set of variables in E, P is the CHR program. A
successful terminating state of the system is of the form 〈�, CU , CB〉, where � is an
empty execution stack and CB 
= false. A failed state is one where CB = false. The
logical reading of a state 〈E, CU , CB〉V,P is ∃x̄ E ∧CU ∧CB where E and CU denote
conjunctions of their respective contents and x̄ is the set of variables in the state that are
not in V .

Note that a rule that was not applicable when a constraint was initially activated may
become applicable when variables in that constraint are bound. We determine which
constraints need to be reprocessed using the wakeup function defined below. We say
that a built-in constraint b affects a user-defined constraint c in store CU (denoted by
c ∈ affects(b, CU )) if the evaluation of b adds bindings to any variable in c. A variable
x is fixed in the built-in store CB (denoted by x ∈ fixed(CB)) if there is only one
value for x that makes CB true. A constraint c in CU is fixed in CB (denoted by c ∈
fixed(CB , CU )) if vars(c) ⊆ fixed(CB). We need to reprocess the set of all constraints
in CU that are affected by b but are not fixed by CB . Since these constraints have been
activated before, we define the wakeup function to directly generate active constraints.
Formally, wakeup(b, CU , CB) = {c :1 | c ∈ affects(b, CU ) ∧ c 
∈ fixed(CU , CB)}.

3.1 Derivation Rules for ωset

Derivations of ωset are given by the relation �→set which defines transitions of the form
σsrc �→set σdst according to the following rules. An example ωset derivation for the
leq program from Example 1 is shown in Fig. 1. We illustrate application of rules of
�→set with appropriate transitions in this derivation.

Activate: Let σsrc = 〈[c|E], CU , CB〉 and c 
∈ CU . That is, c is an inactive user-
defined constraint that is not already in the store. Then c is added to the CHR store and
annotated to match its first occurrence in P . That is, σdst = 〈[c :1|E], {c} ∪ CU , CB〉.

For example, the Activate transition in Fig. 1, lines (1–2), sets the currently sched-
uled constraint leq(A, B) to match the first occurrence of leq in the program, and adds
it to the constraint store.

Default: If no other transition can be fired in a state σsrc = 〈[c :j|E], CU , CB〉, then
the currently scheduled constraint c :j is assigned the next occurrence number. That is,
σdst = 〈[c :j+1|E], CU , CB〉.

2 It should be noted that while formal definition of ωr does not have conditional activation, most
CHR implementations use this notion implicitly [12,22].
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〈[leq(A, B), leq(B, C), leq(A, C), leq(C, A)], ∅, true〉 (1)

Activate �→set 〈[leq(A, B) :1, leq(B, C), leq(A, C), leq(C, A)], {leq(A, B)}, true〉 (2)

7∗Default �→set 〈[leq(A, B) :8, leq(B, C), leq(A, C), leq(C, A)], {leq(A, B)}, true〉 (3)

Drop> �→set 〈[leq(B, C), leq(A, C), leq(C, A)], {leq(A, B)}, true〉 (4)
Activate
6∗Default �→set 〈[leq(B, C) :7, leq(A, C), leq(C, A)], {leq(A,B), leq(B, C)}, true〉 (5)

PropMatch �→set 〈[(leq(A, B), leq(B, C)\∅), true � leq(A, C), leq(B, C) :8,
leq(A, C), leq(C, A)], {leq(A, B), leq(B, C)}, true〉 (6)

PropFire �→set 〈[leq(A, C), leq(B, C) :8, leq(A, C), leq(C, A)],
{leq(A, B), leq(B, C)}, true〉 (7)

Activate
7∗Default
Drop>

�→set 〈[leq(B, C) :8, leq(A, C), leq(C, A)],

{leq(A, B), leq(B, C), leq(A, C)}, true〉 (8)

Drop> �→set 〈[leq(A, C), leq(C, A)], {leq(A, B), leq(B, C), leq(A, C)}, true〉 (9)

Drop< �→set 〈[leq(C, A)], {leq(A, B), leq(B, C), leq(A, C)}, true〉 (10)
Activate
3∗Default �→set 〈[leq(C, A) :4], {leq(A, B), leq(B, C), leq(A,C)}, true〉 (11)

Simplify �→set 〈[C = A], {leq(A, B), leq(B, C)}, true〉 (12)

Solve �→set 〈[leq(A, B) :1, leq(B, C) :1], {leq(A, B), leq(B, C)}, C = A〉 (13)
3∗Default
Simplify �→set 〈[C = B, leq(B, C) :1], {leq(A, B)}, C = A〉 (14)

Solve �→set 〈[leq(A, B) :1, leq(B, C) :1], {leq(A, B)}, C = A ∧ C = B〉 (15)

Simplify �→set 〈[leq(B, C) :1], ∅, C = A ∧ C = B〉 (16)
7∗Default
Drop> �→set 〈[ ], ∅, C = A ∧ C = B〉 (17)

Fig. 1. Derivation for the leq program under ωset

For example, each of the seven Default transitions in Fig. 1, lines (2–3), increments
the occurrence index j of the currently scheduled constraint leq(A, B) : j until the
occurrence number is 8. Since there are only seven occurrences of leq in the program,
this enables the Drop>rule.

Drop>: Let σsrc = 〈[c :j|E], CU , CB〉 where c does not have a j-th occurrence in P
(i.e., all occurrences of c have been tried with the Default rule; see below). Then c :j is
popped from the execution stack. That is, σdst = 〈E, CU , CB〉.

For example, the Drop>transition in Fig. 1, lines (3–4), pops leq(A, B) :8 from the
execution stack as there are only seven occurrences of leq in the program.

PropMatch: Let σsrc = 〈[c :j|E], CU , CB〉, the program P contain rule R = c′ :
j, H ′

1\H ′
2 <=> G |B. Also let θ be a substitution s.t. c′θ = c, H ′

1θ, H ′
2θ and {c′θ}

are all mutually disjoint subsets of CU , and CT |= CB → ∃x̄(Gθ) where x̄ are vari-
ables that occur in G but not in CB . That is, there is a substitution under which the
constraint store matches the heads of rule R and satisfies its guard. Then the currently
scheduled constraint is assigned the next occurrence number. Moreover, all matching
substitutions are computed iteratively, and the body constraints of R under these sub-
stitutions are pushed onto the stack. Note, however, that before a body constraint thus
pushed on the stack is taken up for evaluation, some of the constraints used in the
match may be removed from the store. Hence we create conditional activations for the
body constraints. Formally, let {θ1, . . . , θn} be the set of all most general substitutions
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such that c′θi = c, H ′
1θi, H ′

2θi and {c′θi} are all mutually disjoint subsets of CU ,
and CT |= CB → ∃x̄(Gθi). Let Γi = (H ′

1θi\H ′
2θi), Gθi � Bθi. Then, σdst =

〈[Γ1, . . . , Γn]++[c :j+1|E], CU , CB〉.
For example, the PropMatch transition in Fig. 1, lines (5–6), matches the stored

constraint leq(A, B) and the currently scheduled constraint leq(B, C) : 7 with the head
of the transitivity rule in the program. The occurrence index of the currently sched-
uled constraint is incremented by 1, and the corresponding body constraint leq(A, C),
annotated with the matched head constraints, is pushed onto the execution stack.

PropFire: Let σsrc = 〈[(H1\H2), G � B|E], H1 �H2 �CU , CB〉, such that CT |=
CB → ∃x̄(G) where x̄ are variables that occur in G but not in CB . That is, a conditional
activation event is on top of the stack such that the constraints in H1 �H2 exist in the
user-defined store, and the guard G is satisfied by the built-in store. Then the constraints
in H2 are removed from the user-defined store, and all constraints in B are pushed onto
the evaluation stack. Formally, σdst = 〈B++E, H1 � CU , CB〉.

For example, the PropFire transition in Fig. 1, lines (6–7), verifies that the con-
straints leq(A, B) and leq(B, C), which matched the head of the transitivity rule
and caused pushing leq(A, C) onto the execution stack, are present in the constraint
store CU , and schedules leq(A, C) for evaluation.

PropDrop: Let σsrc = 〈[(H1\H2), G � B|E], CU , CB〉 such that either (H1 �H2) �⊆
CU or CT �|= CB → ∃x̄(G) where x̄ are variables that occur in G but not in CB . That
is, a conditional activation event is on top of the stack, and its condition is not satisfied.
Then the currently scheduled event is popped from the stack: σdst = 〈E, CU , CB〉.
Drop<: Let σsrc = 〈[c|E], CU , CB〉 and c ∈ CU . That is, c is an inactive constraint that
is already in the store. Then c is popped from the execution stack: σdst = 〈E, CU , CB〉.

For example, the Drop<transition in lines (9–10) of Fig. 1 pops leq(A, C) from the
execution stack since it is already in the constraint store.

Simplify: Let σsrc = 〈[c :j|E], {c} �H1 �H2 � CU , CB〉 and the program P contain
a matching rule R. I.e., R = H ′

1\c′ : j, H ′
2 <=> G |B and there is a substitution

θ s.t. H ′
1θ = H1, H ′

2θ = H2, c′θ = c, and CT |= CB → ∃x̄(Gθ) where x̄ are
variables that occur in G but not in CB . Then c : j is popped from the execution stack,
all constraints matching H ′

2 are removed from the store, and R’s body constraints under
the substitution θ are pushed onto the stack. Formally, σdst = 〈Bθ++E, H1 � CU , CB〉

For example, the Simplify transition in Fig. 1 lines (11–12), matches the active con-
straint with 4th occurrence of leq (i.e. the antisymmetry rule), removes leq(A, C),
and adds the rule body C = A to the stack.

Solve: Let σsrc = 〈[b|E], CU , CB〉 and b be a built-in constraint. Then b is added to
the built-in store and all constraints affected by b but not fixed by CB are pushed onto
the execution stack. Formally, σdst = 〈wakeup(b, CU , CB)++E, CU , b ∧ CB〉.

For example, the Solve transition in Fig. 1, lines (14–15), processes the scheduled
constraint C = B, by first adding C = B to the built-in store. The affected constraint
leq(A, B) is re-activated, and made the new scheduled constraint.

The transitions PropMatch, PropFire and PropDrop directly correspond to the
way constraint propagation is implemented. The universal search eliminates the prob-
lem of trivial nontermination due to repeated firing of a propagation rule for the same
active constraint. Note that the propagation history used in ωr serves to avoid the
non-termination problem. In ωset, PropFire performs actual propagation for the given
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matching to a propagation rule’s head constraints, provided that matching conditions
still hold. If the matching conditions do not hold, PropDrop prevents firing the rule’s
body constraints. The Drop<transition ensures that the constraint store is a set, and the
same constraint is not activated over and over again.

3.2 Properties of ωset

It is easy to show that ωset is sound with respect to CHR’s declarative semantics:

Theorem 1 (Soundness). Let P be a CHR program, CT be the consistent theory un-
derlying the built-in constraints in P , G be a goal, 〈G, ∅, true〉 ∗�→set 〈E, CU , CB〉 be a
derivation, and C be the logical reading of the final state. Then P, CT |= C ↔ G.

This theorem is established by induction on the length of a derivation.

Relationship between ωset and ωr. Since ωset treats the constraint store as a set,
programs for which ωr places multiple occurrences of the same constraint in its store
will have a different behavior under ωset compared to ωr. However, there are CHR
programs for which the constraint store, even under ωr, turns out to be a set. We call
such programs set-CHR programs. Clearly, it is useful to compare the two semantics
only for set-CHR programs.

r1 @ p(X, Y) ==> q(X, Y).
r2 @ q(X, X) <=> X = a.
r3 @ q(X, Y) <=> X = Y.

Fig. 2. CHR program with different
fixed points in ωr and ωset

In general, ωset is not equivalent to ωr. For in-
stance, consider the evaluation of the CHR program
in Fig. 2 in ωset for the goal p(A, B). Starting from
the empty constraint store, activation of p(A, B) will
lead to store {p(A, B)} (for brevity, we combine
the user-defined and built-in stores in this example).
Firing rule r1 takes us to {p(A, B), q(A, B)}. Note
that the simplification rule r2 is not applicable in this store, but r3 is, leading to the
store {p(A, B), A = B}. Since variables A and B have new bindings in the store,
the constraint p(A, B) will be woken up by the Solve transition. Rule r1 will be fired
again, leading to the store {p(A, B), q(A, B), A = B}. Rule r2 is applicable in this
store, yielding {p(a, a)}. The evaluation terminates after one more round of Solve and
firing of r1 and r2.

The evaluation in ωr leads to a different derivation. In ωr, each constraint is given
an identifier to distinguish between different occurrences of the same constraint in the
multi-set store. Propagation history is maintained in terms of the identifiers of matching
constraints. When the variables in a constraint get bound, the constraint’s identifier is
not changed. This means that if a propagation rule was fired once for a set of matching
constraints, it will not be fired again even when the variables in its matching constraints
are bound further. Thus evaluation of p(A, B) in ωr for the above example will proceed
as in ωset until we reach the store {p(A, B), A = B}. Solve will wake up p(A, B), but
rule r1 will not be applicable since it was fired before for the same constraint. Hence,
ωr terminates with the store {p(A, B), A = B}!

It appears that the state with which ωr terminates is not a fixed point, and the prop-
agation history makes ωr terminate the fixed point computation early. For instance, the
evaluation of p(A, B) terminates with a store equivalent to p(A, A). But evaluation of
p(A, A) will terminate with a different store: p(a, a)! In contrast, ωset’s termination
condition (presence of a constraint in the store) distinguishes between a constraint term
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under different substitutions, and hence does not abandon the fixed point computation
early. In general, there are set-CHR programs and goals that terminate with ωr but not
with ωset due to this difference in identifying fixed points.

Datalog-CHR is a class of CHR programs such that (i) there are no function symbols
of arity ≥ 1, and (ii) every variable in a rule occurs on the rule’s left hand side. For
instance, the program in Fig. 2 is a Datalog-CHR program. For programs in this class,
evaluation using ωset will terminate whenever ωr terminates.

4 Compiling CHR with Distributed Constraint Store

Direct-Indexed CHR. We now define a subclass of CHR programs for which we can
use a simple and efficient constraint store representation. Note that in ωset Simplify and
PropMatch select a matching substitution in order to determine whether the rule is ap-
plicable for a given active constraint. This operation significantly affects the efficiency
of a CHR implementation, and a considerable amount of work has gone into devising
index structures to optimize it [13,23]. The matching procedure has two distinct parts:
selecting from the store constraints that match the rule’s head, and checking whether the
guard is satisfiable under the matching substitution. The class of direct-indexed CHR
programs, defined below, has a structure that simplifies the first part.

Each user-defined constraint in a direct-indexed program has a mode declaration that
specifies the set of possible instances of the constraint that may appear in the store. Each
argument of a constraint may have one of three modes: “v” if that argument remains
free in any instance of the constraint in the store, “g” if that argument is a ground term
all instances, and “?” if that argument is a variable or a constant in all instances3.

Given a constraint term c, we use avars(c) to denote the set of variables that appear
at positions with mode “v”. We assume that the mode declarations are consistent with
the use of constraints in the rules and queries; and that all user-defined constraints have
at least one position with mode “v”.

The matching graph for a (multi-)set of constraints is a graph in which there is a
vertex representing each constraint in the set, and there is an edge between every pair
of constraints that share a “v”-moded variable. Formally,

Definition 1. The matching graph of a set C of user-defined and built-in constraints is
a labeled undirected graph G = (V, E) where V = C, and E is the smallest set such
that ∀c1, c2 ∈ V, avars(c1) ∩ avars(c2) �= ∅ → (c1, c2, l) ∈ E where l = avars(c1) ∩
avars(c2).

We can use the matching graph for a head of a CHR rule to drive the matching pro-
cess. Given the vertex in the graph that matches the active constraint, we first can check
whether its neighbors match any constraints in the store. Since a neighbor constraint
shares unbound variables with the active constraint, we can index into the constraint
store using this information, thereby speeding up matching. When the neighbors them-
selves are matched, we can traverse the graph further. Clearly, this process will not
apply when there is a subset of head constraints that do not share variables with the
remaining constraints in the head. The direct-indexed CHR is defined to disallow this
condition. Formally:

3 Similar declarations have been used in other CHR systems [23,13].
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Definition 2. A rule R in a CHR program is said to be direct-indexed if the matching
graph for its head constraints is connected. A CHR program is direct-indexed if all its
rules are direct-indexed. A CHR goal is direct-indexed if its matching graph is con-
nected. A CHR derivation is direct-indexed if it evaluates a direct-indexed goal over a
direct-indexed program.

All valid CHRd derivations are direct-indexed. Many CHR specifications, e.g., leq
from Example 1, are naturally direct-indexed, and all CHR specifications can be triv-
ially translated to direct-indexed CHR programs. We describe the issues surrounding
such a translation at the end of this section.

The Distributed Constraint Store Representation. Following other CHR implemen-
tations, we use attributed variables [11] to represent constraints. Attributed variables
are associated with mutable data, and an user-defined unification handler is invoked
whenever an attributed variable is unified. In our implementation, a variable’s attribute
represents the set of all the constraints the variable participates in, that is, the variable’s
local constraint store. The attribute is encapsulated in a constraint attribute term (CAT).
The CAT is different from a suspension term, which in other Prolog implementations
of CHR represents a single stored constraint. The CAT of a variable is a vector whose
size is determined at compile time based on the number and arity of the user-defined
constraint symbols. For instance, if a/2 and b/1 are the only two user-defined con-
straint symbols, and a(X,Y) is the lone constraint in the store, then X’s CAT will be
v([attr(Y)],[],[]), and Y’s CAT will be v([],[attr(X)],[]).

The constraint store is a collection of constraint variables and their CATs. It should
be noted that, although each argument of a CAT is represented as a list, it is manip-
ulated as though it is a set. When two constrained variables are unified, their CATs
will be merged. Again, we treat the arguments of the CATs as sets and compute their
pair-wise union. When a variable changes due to unification, all constraints in its CAT
are considered to be in the wakeup set, and rules involving the constraints are
re-fired.

The CHRd Compiler. Our compiler generates the code that faithfully implements the
semantics ωset, following the well-developed CHR-to-Prolog compilation schema [14].
In its current version, the compiler supports simple variants of the join-order, con-
tinuation, and late storage optimizations, standard in most of the traditional CHR
systems.

Matching. CHRd’s representation of the constraint store helps in quickly checking
whether a matching constraint exists in the store. For instance, to select constraints of
the form a(U,Y) for a particular variable Y, we need to simply inspect the second
argument of Y’s CAT. This structure builds a single-level index on all arguments of a
constraint. Although it is possible to build nested index structures within each argument
of the CAT, this is not done in the current implementation of our system.

During an application of a propagation rule, first the PropMatch transition retrieves
all constraints of a desired form (by accessing appropriate arguments in the CATs
of the constrained variables) into a temporary data structure. After all matchings for
therule’s head have been collected, the PropFire transition evaluates each matching in
turn against the corresponding substitution of the rule’s guard and, when the guard is
satisfied, fires the rule’s body constraints under the same substitution.
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gcd(0) <=> true.
gcd(N) \ gcd(M) <=>

N=<M | L is M-N, gcd(L).

:- mode gcd(v,g).
gcd(X,0) <=> true.
gcd(X,N) \ gcd(X,M) <=>

N=<M | L is M-N, gcd(X,L).
(a) (b)

Fig. 3. (a) A ground CHR program; and (b) its translation into direct-indexed CHR

Evaluation of Ground CHR Programs. Consider the CHR program for evaluating the
greatest common divisor of a set of integers given in Figure 3(a). When we pose two
ground constraints, say gcd(12), and gcd(8), the program terminates with gcd(4)
as the lone constraint in the store. The program is not direct-indexed since the matching
graph for its second rule has two vertices and no edges (i.e. no shared variables).

Such programs can be trivially translated to direct-indexed CHR by adding an extra
variable to each constraint. The direct-indexed CHR program equivalent to that in Fig-
ure 3(a) is given in Figure 3(b). The extra variable can be thought of as representing the
constraint store itself. One salient point of the translation is that we now have a handle
on a constraint store, and we can simultaneously create and manipulate multiple, pos-
sibly independent, stores. For instance, using the translated program, we can pose con-
straints gcd(A,12), gcd(A,9), and in the same computation pose gcd(B,45),
gcd(B,30), and the two queries will be evaluated independently. Thus, we can con-
sider the translated CHR program as operating over local constraint stores. The capacity
for generating new constraint stores and manipulating them locally makes CHRd a good
fit in a tabling system where each answer and call has an associated store.

5 Experimental Results

We now present the results of the experiments evaluating the performance of CHRd in
tabled as well as non-tabled settings. All measurements were taken on a PC with 1.4
GHz Pentium-M processor and 512 MB RAM running Linux. The run time, given in
milliseconds, is averaged over multiple tests. We have compared the performance of
CHR and CHRd on XSB 3.0.1 (CHRd’s native platform) and hProlog 2.4.35-32. We
chose hProlog since it is the host for K.U.Leuven’s CHR (KUL-CHR), currently the
most representative of systems that efficiently implement Constraint Handling Rules.

Examples Using Tabled Evaluation. We evaluate the performance of CHRd for tabled
programs using four examples: (1) truckload, a problem used in [24] to measure the
performance of XSB-CHR;(2) buffer, the constraint-based verification of “in-order”
message delivery property of a FIFO buffer; (3) dining ph, deadlock analysis of a
dining philosophers specification using synchronization contracts; and (4) fischer, a
CHR-based implementation of reachability analysis for real-time systems.
Truckload is a variant of knapsack, the classical dynamic programming prob-

lem, for scheduling the delivery of packages using finite-capacity trucks to different
destinations. Tabling ensures polynomial-time behavior. The base data for the problem,
e.g. the attributes of packages were taken from [24].
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Table 1. Run time (in ms.) for evaluation of
tabled CHR programs

Benchmark XSB-CHR CHRd
truckload(300) 1870 243 (13%)
truckload(500) 2530 380 (15%)

fifo(240) — 1580
fifo(320) — 3730

dining ph(6) — 120
dining ph(8) — 980

The time taken to run truckload in
XSB-CHR and CHRd for two truck capac-
ities is given in Table 1. The percentage of
time taken by CHRd w.r.t. XSB-CHR, given
in parentheses, shows that CHRd is four
times faster than XSB-CHR. The memory
usage is similar on both systems.

The truckload problem is relatively
small, and CHRd significantly outper-
formed XSB-CHR. The other tabled prob-
lems, taken from verification examples, are

relatively large. As can be seen from the table, due to the more complex constraints and
large number of table operations, XSB-CHR failed to work on these examples.

In [20] we presented a constraint-based algorithm for verifying a class of infinite-
state systems called data independent systems. The rows labeled fifo(N) of Table 1
show the run time of a CHRd-based implementation of this algorithm for verifying
the “in-order” message delivery property of an N -place FIFO buffer. The solver uses
a reachability-based algorithm and hence needs tabling for termination. The original
implementation for this problem (which used a meta-interpreter for constraint handling)
is 2.5 times slower that the one based on CHRd.

Our deadlock detection framework [21] uses CHR to enforce correct synchronization
of threads based on locally defined concurrency constraints, and reachability analysis
to detect deadlocked states. Table 1 shows run time results for the evaluation of two
configurations of N dining philosophers in which no deadlock was found.

Finally, we used CHRd to analyze Fischer’s protocol, a mutual-exclusion protocol
that is often used to benchmark real-time verification tools. We used CHR to specify a
solver for the clock constraints. While CHRd was able to solve the verification problems
for various instances of the protocol, XSB-CHR was unable to solve even a 2-process
instance. However, the CHRd-based verifier is 2-5 times slower than a verifier that uses
a hand-built (Prolog-based) clock constraint solver [17]. This example indicates that
CHRd needs to be further optimized before it can compete with custom-built solvers
for well-known constraint domains.

Non-tabled Examples. Table 2 compares CHRd running on XSB and hProlog, with
each platform’s original CHR system: XSB-CHR and KUL-CHR. The table shows the
results for direct-indexed programs: cycle, a cycle of leq constraints on N variables;
queens and zebra, two classical problems solved using finite-domain CHR; bool,
N -digit binary addition; bool chain, a cycle of “∧” constraints over N variables;
alias, an encoding of Anderson’s may-points-to analysis for C programs [2]; and ta,
an evaluation of clock bounds on finite automata.

The table also shows results for ground CHR benchmarks: gcd described in Sec-
tion 4; primes, a computation of prime numbers up to N ; fib, a computation of first
N Fibonacci numbers; and ram simul, a simulator of a RAM machine. The ground
CHR programs were evaluated directly by the native CHR systems on each platform.
For CHRd, they were first translated as described in Section 4 and then ran.

Clearly, CHRd outperforms XSB-CHR for all tests. On hProlog, the performance of
CHRd is close to, or better than, that of KUL-CHR for the direct-indexed programs.
It should be noted that KUL-CHR is built to handle a more general class of CHR
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Table 2. Runtime (in ms.) for evaluation of non-tabled CHR programs

XSB hProlog
Benchmark XSB-CHR CHRd KUL-CHR CHRd
cycle(60) 11015 1500 (14%) 940 554 (59%)
queens(16) 9693 2520 (26%) 1250 820 (65%)
zebra(10) 45220 690 (2%) 1130 320 (28%)
bool(50000) 255810 1470 (1%) 770 1050 (136%)

bool chain(400) 207420 16970 (8%) 680 610 (90%)
alias(m88ksim) – 189 140 120 (86%)
alias(parser) – 1134 3650 728 (20%)

ta(200) 5860 2090 (35%) 690 560 (75%)

gcd([3,106]) 1010 945 (94%) 126 360 (300%)
primes(2000) 6871 2753 (40%) 500 1065 (213%)

fib(500) 3260 1250 (38%) 240 475 (198%)
ram simul(40000) – 2740 330 1170 (355%)

programs, and does not exploit the indexing available in direct-indexed programs. On
the other hand, CHRd does not (currently) optimize the compilation based on the mode
information, nor does it support the alternative index structures (e.g. hash tables) used in
KUL-CHR. The significantly slower run times of our system for the ground benchmarks
is due to the absence of such optimizations. We believe that adding these optimizations
to CHRd will bring its performance closer to that of KUL-CHR.

6 Related Work and Discussion

Although the CHR framework was initially proposed for specifying constraint solvers,
there is a growing body of work for using it as a full-fledged programming language.
The semantics of the language and its implementation have evolved hand-in-hand. For
instance, while the initial papers refer to the constraint store as a conjunction of con-
straints [10], the implementations represented the store using multi-set of terms. Sub-
sequently, the formalization of its semantics in terms of multi-set rewriting have been
widely accepted. The original operational semantics [10,1] has been refined [9] to re-
duce non-determinism and extend the class of programs amenable for evaluation. One
of the stated motivations for the refined semantics was to bring the formalism closer to
the popular implementations.

It was observed that the propagation history, a key structure of CHR semantics, con-
tributed to significant performance issues when an existing CHR implementation was
ported to a tabling environment [24]. When working with multi-set-based constraint
store, it appears that propagation history is essential to provide a reasonable semantics.
Our work can be viewed as an investigation into the effect of making the constraint
store set-based. Note that bottom-up techniques for evaluating definite logic programs
compute fixed points (minimal models) without maintaining something analogous to
propagation history [16]. Our semantics ωset extends this basic idea to work in the
presence of simplification rules (i.e. non-monotonic changes to the store) and bindings
on variables. As a result, we obtain a simpler semantics that is easier to implement
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in a tabled setting. We ensure that the new semantics is as close as possible to exist-
ing implementations by basing its formulation on refined semantics ωr [9]. Although
our semantics ωset coincides with ωr for a large class of constraint handlers written in
CHR, the two semantics do not coincide in general. One problem of current interest is
to identify the class of CHR programs for which the two semantics coincide.

Although traditional CHR implementations rely on central storage of constraints, di-
rect indexing (storing constraints as variable attributes) has been recognized as more
efficient. Therefore, many existing systems [14,23,13] store constraints both ways, us-
ing the central data structures only to access constraints when direct indexing is not
available. Our work extends this approach by entirely eliminating central storage, and
transforming programs that are not direct-indexed to simulate a store using another at-
tributed variable. All CHR implementations we are aware of maintain a propagation
history, which is eliminated in CHRd, thanks to its set-based semantics. Consequently,
we have reduced the overheads of storing and manipulating constraint stores, leading to
a scalable integration of CHR-based constraint solvers with tabled evaluation.

As mentioned before, CHR is being treated as a full-fledged programming language,
and not just for writing constraint solvers. It has been shown that algorithms can be
encoded in CHR and evaluated with no loss in their asymptotic-time complexity [25].
Recent works have addressed the space complexity of CHR programs [26]. In order to
support the growing number of applications (most of them are ground CHR programs),
a lot of effort has gone to optimizing central storage structures critical to performance
of such programs. Works such as [13] propose analyses to determine the best index
depending on the properties of the constraints specified in the program. Additionally,
structures that guarantee efficient lookup (234-trees in [13] or hash tables in [23]) have
replaced simple unordered lists that was used in early implementations [14]. In CHRd,
the constraint set associated with each variable is defined as an unordered list, similar
to that in [14]. Incorporating the results of indexing research will improve the CHRd
implementation. Furthermore, for non-tabled programs, CHRd replaces the check on
propagation history by a check on the constraint store. Our experience with CHRd in-
dicates that constraint store checks can be done as efficiently as propagation history
checks. There has also been analyses that determine whether propagation history can
be eliminated [22]. Whether similar analyses can be used to eliminate explicit checks
on the constraint store remains to be seen.
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Abstract. Declarative systems, such as logic programming, should be
ideal to process large data sets efficiently. Unfortunately, the high-level
nature of logic-based representations can cause inefficiencies, and may
lead in some cases to unacceptable performance. We discuss how logic
programming systems can accommodate large amounts of data in main
memory. We use a number of real datasets to evaluate performance and
discuss how a number of techniques can be used to improve memory
scalabality for such datasets.

1 Introduction

Computing systems are designed to process data. Technology has provided us
with more and more sources of data, generating more and more data for analy-
sis. The challenge is to be able to process such large amounts of data effectively.
Declarative programming systems, such as logic programming, should be some
of the most successful approaches toward such a goal, as they use a high-level
representation of data (as a subset of First-Order Logic). This representation
is widely understood and easy to reason on, and therefore to manipulate. Un-
fortunately, the high-level nature of logic-based representations can cause inef-
ficiencies, leading to much worse performance than, say, data-base management
systems.

Two approaches have been pursued to address this question. One is to use
high-level programming as an interface to data-base technology [23,14]. Such an
approach benefits from the extensive amount of work done in data-base man-
agement, but must address some difficulties. First, interfacing a data-base with
a reasoning system is often expensive. Second, current data-base design is often
tuned for specific types of queries. Tuning to different types of queries can be a
difficult task. The limitations of these approaches suggest that one should also
consider how to improve the design of logic programming systems so that they
can cope with larger datasets. We discuss some of these challenges here.

Differently from data-bases, there is little motivation to implement logic pro-
gramming systems that efficiently manage secondary storage. Thus, our inter-
est is in how to accommodate large amounts of data in main memory. If, and
only if, we can do so, the second consideration would be how to process such
data effectively. To our knowledge most of the work so far has been on im-
proving query execution. We believe this is because time scalability issues can
arise even for smallish datasets. Fortunately, recent progress on techniques such
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as tabling [9,27,33,16,26] or indexing [34,28] has shown that we can do useful
work on larger datasets with Prolog, thus making space scalability an important
consideration.

Space scalability issues reduce to how much data we can fit in main memory. We
show that traditional WAM-based Prolog technology is not very effective towards
this goal. Indeed, results on the YAP Prolog implementation demonstrate that
incremental improvements can more than halve memory usage with relatively lit-
tle effort. We further show that there is room for more aggressive improvements.
This confirms our own experience in that Prolog systems can be used to effective
process datasets with tens of millions of facts on standard 32-bit machines.

Our analysis is based on our experience with the YAP Prolog system. We
compare YAP against other systems, mostly toward better understanding of
what YAP does badly, and of how it can be improved. This work is therefore not
intended as a comparison between Prolog systems, as several other parameters
should be taken in consideration for a fair analysis. We do believe that our
research will be of interest to logic programming implementers, and in general
to the declarative programming community.

The paper is organised as follows. We briefly give an overview of the main
players in Prolog implementation. Next, we discuss a number of datasets that
we shall use as the basis for this work. We experiment these sets on a number
of Prolog systems, and discuss some optimisations used to improve performance
on the YAP system. Last, we discuss the results, and present some conclusions.

2 Prolog Data-Structures

Most Prolog systems use the Warren Abstract Machine (WAM) [32,1]. The WAM
compiles a predicate to indexing code and as clause code. Often, each clause is
compiled independently. The standard structure of the resulting code is shown in
Figure 2. Indexing code is represented by the tall block to the left. Indexing code
will always start by a switch on type instructions. Indexing code may also include
a hash table that allows one to find all clauses matching the first argument. Last,
it may have a sequence of choice-point manipulation instructions, linking every
clause that matches the first argument. Usually, but not always, indexing code is
stored as a single block. On the other hand, most WAM implementations compile
clauses independently. Each clause always start with a choice-point manipulation
instructions, followed by the actual clause code.

The actual structure of the clause code generated by a WAM compiler would
be thus:

– A clause header, including a variety of information such as flags on clause sta-
tus, the procedure we belong to, the next clause for this predicate, clause size, a
source pointer. Dynamic clauses may have extra data such as timestamps [18].

– a choice-point manipulation instruction. Figure 2 shows how these instruc-
tions link the clause in a chain. Notice that this code is generated even if the
code is always called deterministically.

– The actual clause-specific WAM code.
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Clause 1

Clause 2

Clause 3

Clause 4

Clause 5

TYPE

Fig. 1. Predicate Code

We will not describe WAM code here, but on average each symbol in the source
code corresponds to a different clause. As an example, the clause-specific code
for:

words_after_target_args( pos(1),train,fold5,0).

would be:

get_structure A1,pos/1
unify_integer 1
get_atom A2,train
get_atom A3,fold5
get_structure A4,0
proceed

Notice that there is one instruction for token (excepting the separators, “,” and
brackets). We shall not discuss the WAM compilation process here. Instead, we
focus on the building blocks we use for code: instructions, atoms, integers, and
floating-points. In more details:

– An instruction is an opcode followed by a sequence of operands. WAM im-
plementations may dispatch on the numeric opcode, or use a threaded em-
ulator [5]. In the latter case, the opcode field would store a label. Operands
would have at least 16 bits, and in some implementations such as YAP a
word per operand [30]. Operands may also be constants, discussed next.
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– A Prolog atom is usually represented as a pointer to a symbol table. This
means one has a fixed overhead for every new atom. Afterwards, atom rep-
resentation just requires a label. The symbol table may be implemented as
a tree or as a hash table.

– Integers are usually represented in two ways:
• Small integers can be made to fit a word (a word is usually label sized).
• Large integers cannot fit a word, and thus need specialised processing.

To our knowledge, processing of large integers differs across systems. As
an example, YAP considers such objects as blobs, which are compiled
at the end of the clause code. One alternative is to have all blobs for
compiled code in a table.

– Floating-Point numbers can be processed in much the same way as large
integers.

– Strings are a common data-structure. They can be processed as a list of
numbers, or can have a specialised representation.

The actual amount of data-base spent by a Prolog system can thus be decom-
posed as follows:

(Clauses + Ind) + AtomTable + Extra + MM

Where Extra concerns extra data spent on predicate management and other
data-base functionality, such as the Internal Data-Base, and MM corresponds
to fields concerned with the Data-Base itself.

Our interest in this work are larger data-bases. Typically, such a data-base
consists of a large number of very similar facts. We therefore expect Extra and
MM to have little impact. Questions we try to address are: how to minimise
Clauses? What is the relative value of AtomTable, and is it worth minimising?
We will not discuss Ind much, as it depends hugely on the specific indexing
algorithm.

3 Datasets

The motivation for this work is to support “large” datasets in Prolog. Our first
step would be to agree on what does it mean for a Prolog dataset to be large?
And, the second question would be: do such datasets exist?

As a starting point, we propose that a dataset is large if it includes over 1
MB of data (note that this is a Prolog point-of-view, such data sets would not
be considered large in data-base technology). We consider eight such datasets in
our experiments:

– BC : This dataset was developed at UW-Madison [10]. It contains data on
65000 thousand mammograms performed during three years at a Wisconsin
hospital. The data follows the National Mammography Database (NMD)
standard established by the American College of Radiology.
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– Cora: The dataset was originally constructed by McCallum et al. [19]. We
used the same version of the data as Kok and Domingos [17], but adapted
to Prolog. Cora includes data on 1295 citations to 112 Computer Science
papers.

– EachMovie: The EachMovie dataset was original developed at DECwrl
labs [20]. It includes three tables. There is data on 1628 movies, includ-
ing movie type, store-info, and a link to the IMDB data-base. There is data
on 72000 people who voted on the movies. Input was voluntary, and may
include age, gender and ZIP code. From ZIP code it is possible to estimate
geographical location and to a good approximation average income. Last,
there are 2.8 million votes. Votes can be organised by class and range from
0 to 5.

– Gash: The Gasch dataset consists of discretised gene expression data for
DNA damage experiments on yeast from Gasch et al. [3,2]. The original
continuous micro-array data was binarised by Ong [24].

– IE: This dataset was originally used by the Machine Learning System Gleaner
[15] for the task of information extraction for a Protein Localization task [25].

– Tea: This dataset was is a Prolog representation of the Java SPEC bench-
marks for program analysis [6].

– Thrombin: This dataset consists of structural information for a sequence of
molecules that are associated with Thrombin, a coagulation protein that
has many effects in the coagulation cascade. Each molecule may have a large
number of different conformers. The dataset was used for the KDD cup 2001.

– WNet: this the Prolog version of the well-known of the lexical database for
English WordNet [13].

These datasets reflect the author’s personal experience, and are not meant
to be a discussion of all larger Prolog applications. The BC, Cora, EachMovie
applications were ported to Prolog by the author. Arguably, the datasets reflect
a machine-learning bias, as all but Tea and WNet were developed for this style
of tasks.

We used the Unix sort and uniq commands to remove duplicates, and the
Unix command grep to remove comments. This introduced some syntax errors,
we manually edited the resulting files to correct these bugs.

Table 1 shows dataset size. Application size ranges from 17MB and 366 thou-
sand lines of code for Thrombin and 30MB and 260 thousand lines for Cora up
to half almost half a of data GB and 8 million lines for IE. All datasets are
structured, that is, data items use a single format throughout.

Datasets differ in a number of ways:

– First Form: Most datasets are in first normal form (only use constants), but
not all of them. IE uses compound terms to represent example numbers.
Tea has the richer structure: it uses compound-terms heavily to represent
the Java code.

– Predicates Distribution: This property varies heavily across datasets. The
two extremes are BC which includes over 50 predicates, all of the same
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Table 1. Application

Size in Lines Size in MBytes
BC 2752 87
Cora 260 30
EachMovie 2857 70
Gasch 817 39
IE 7465 443
Tea 402 60
Thrombin 366 17
WNet 553 23

size, and EachMovie which includes 2 predicates, but where space is totally
dominated by one of them (vote).

– Constants: Most datasets use atoms heavily. In some cases, such as BC,
names correspond to labels: we thus have very few names that appear over
and over again. In IE it is quite frequent to have atoms with long names,
usually a concatenation of some properties.

Small integers are used across all datasets. Floating-point numbers are
used heavily in Thrombin, and to a lesser extent in IE. Strings are used in
Tea to represent Java strings.

4 Prolog Performance

It is enlightening to just try to compile the datasets on different Prologs. We
used in our experiments YAP-5.1.2, SWI Prolog 5.6.17, SICSTus Prolog 3.12.0,
XSB 3.0.1 and ciao Prolog 1.10-p7. Note that our major goal in this experiment
is to try to understand what different Prolog systems do well. We used stable
versions of all systems except for YAP, development releases may have better
performance. All experiments were performed on a 32-bit Linux machine, an
AMD64 3.5+ running Ubuntu Linux x86 with kernel 2.6.15. The machine has
1GB of main memory.

We had difficulties in loading the datasets across the different Prolog systems.
The major difference was in how the different Prologs scan strings. YAP and SWI
would allow line breaks in strings, which is disallowed in other systems. Also,
quotes are process differently across systems. The time in second to load the
different datasets is shown in Table 2.

Surprisingly, only YAP and SWI could load all the datasets. We knew before-
hand that YAP would be able to do so. SWI did well across the datasets. SICStus
had difficulties in two datasets: IE and WNet. In both cases the problem was a
limitation on the maximum number of atoms the system can accommodate in
its atom table. XSB had problems on the larger two datasets: loading EachMovie
and IEeventually resulted in a segmentation violation. ciao inherits some of the
difficulties with SICStus. It also would complain of memory allocation failure.
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Table 2. Dataset Loading Time

YAP SWI SICStus XSB ciao
BC 18.3 13.9 296 460 N/A
Cora 2.4 2.2 30 52 109
EachMovie 18.2 14.7 79 N/A N/A
Gasch 5.9 5.1 101 201 N/A
IE 59.2 52.9 N/A N/A N/A
Tea 4.8 4.8 64.6 192 N/A
Thrombin 3.7 2.7 66.9 184 485
WNet 4.3 3.7 N/A 50 N/A

There is a huge difference in running-time between YAP and SWI on the other
hand, and the other systems. The explanation is that most of the parsing and
compilation code in YAP and SWI is written in C. This pays off well for large
files. Note that SICStus, ciao and XSB generate compiled files which can load
very quickly, so this problem would arise only once in the development process.

Table 3 shows database size in MB after loading each dataset. Note that
there several important difference between YAP and the other systems. Usu-
ally, Prolog systems will generate the indexing code at the same time that they
generate the clause code. YAP delays generating the indexing code until query
execution. Also, YAP does not compile a choice-point manipulation instruction.
These instructions will only be generated on demand. For both reasons, arguably
numbers are biased to favour YAP.

Table 3. Application Size

YAP SWI SICStus XSB ciao
BC 133 183 241 89 N/A
Cora 12 17 19 10.3 12.7
EachMovie 156 234 248 N/A N/A
Gasch 45 60 64 39 N/A
IE 556 592 N/A N/A N/A
Tea 47 49 50 38 N/A
Thrombin 43 38 47 28 17.5
WNet 66 62 N/A 50 N/A

Usually, the systems tend to spend similar amounts of space. The exception
is XSB, which tends to have better memory performance across the board. XSB
does extremely well for BC. It also does very well for Thrombin and Tea. The
results for ciao are also quite good. One reason is that YAP spends a single
byte per WAM argument, whereas other systems spend a full word. YAP does
quite well on Cora, and EachMovie, but does poorly on Thrombin and WNet.
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4.1 Atom Space

The difficulties that SICStus and ciao had with IE and WNet suggest that the
number of atoms and the size of the atom table, may also have a significant
impact on system performance. To verify this, we instrumented YAP to report
how many atoms were allocated, and how much space they occupied. The results
on atom space are similar to the “string space” reported by XSB.

Table 4. Atom Space

Number Size in KBytes
BC 123 28
Cora 2444 111
EachMovie 6423 240
Gasch 6268 121
IE 391732 11777
Tea 164745 8479
Thrombin 12610 240
WNet 260775 12284

The results show that the text processing datasets, IE, WNet, and Tea have
many more atoms than the others. IE has almost 400,000 atoms. WNet is a much
smaller dataset, but has almost two thirds of the number of atoms. Last, Tea
also has a large large number of atoms. In contrast, BC makes do with less than
200 new atoms. This is because atoms are used to specify discrete attributes,
there is no free running text.

YAP uses a hash chain to store atoms. Collisions are resolved by keeping the
atoms in a linked list. YAP uses an extra field to point at properties, which
basically is a linked list anything associated the atom: procedures, internal data-
base entries, global variables, operators, and so on. The total amount of space
YAP needs per atom is thus:

2 ∗ SIZE(CELL) + strlen(atom → Name)

This representation seems close to what is used in other Prolog systems. Both
XSB, SWI and ciao use hash tables to represent the atom table.

In most cases, the atom table has little impact on dataset memory usage. But
there are significant exceptions. For YAP, costs can rise up to 23% of total space
in Tea, and up to 20% of total usage in WNet. XSB reports even worse results for
“string” plus “atom” usage, which together take up to almost half of the total
data-base in WNet.

4.2 Indexing

Table 5 shows YAP performance after indexing. Because indices are generated on
demand, we used a first call with all arguments unbound, and a second all with
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Table 5. YAP Performance After Indexing

YAP YAP-2
BC 133 79
Cora 12 8
EachMovie 156 102
Gasch 45 52
IE 556 410
Tea 47 44
Thrombin 43 40
WNet 66 60

the first argument bound. The results show that, except for Gasch, memory usage
actually decreases across datasets, and in several cases YAP now outperforms
XSB Prolog (but not in all). This is due to the mega-clause optimisation, that
we discuss in the next section.

5 Optimisations

Next, we focus on some optimisations included in the YAP Prolog system. The
goal was to improve memory performance with least changes to the system.
The two most obvious opportunities are improving the instruction set and in
improving clause representation.

5.1 Instruction Merging

An effective approach to improve emulator performance is to combine often re-
peated sequences of instructions [30,12,22]. In these datasets, the most commonly
used instruction is get constant. We combined get constant as follows:

– We combine contiguous sequences of up to 5 get constant instructions.
– We assume the combined instruction is contiguous and starts from the first

argument.

Therefore, the instruction format is very compact: we have an opcode and N
operands. An example compressed instruction is shown in Figure 2. For longer
sequences of constants, the space overhead per instruction gets close to just
one cell. The impact of performing this optimisation is shown in Table 6: the
column to the left show the optimised code and the column to the left shows the
non-optimised results.

The results show significant benefits for a number of applications, but not
for all of them. EachMovie benefits the most, this is because the vote table
has a very large number of tuples of integers. Compressing them could be taken
further: if we would also compress proceed then we would only need an opcode
and four cells per clause, versus the original 4 ∗ (OPCODE + OPERAND +
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OPCODE CONS1 CONS2 CONS3 CONS4 CONS5

Fig. 2. Get NCONS

Table 6. YAP GetConstant compression

merged original
BC 133 176
Cora 12 16
EachMovie 156 245
Gasch 45 57
IE 556 600
Tea 47 49
Thrombin 43 49
WNet 66 66

CELL) + OPCODE. Assuming they all take the same space we reduce clause
space from 13 to 5 cells. The current implementation does not optimise proceed,
so the cost if of 6 cells per clause.

The optimisation fails on a number of benchmarks, including IE. There are
two reasons for that:

– The first argument to IE is often a compound term, compound terms are
also common in Tea;

– Thrombin includes floating-points, WNet includes very large numbers which
are processed as blobs by YAP.

The results show a weakness of instruction merging: it is hard to adapt to
every situation. It also shows that YAP’s representation of blobs is clearly less
efficient than other system’, such as XSB.

5.2 MegaClauses

The second optimisation follows from the observation that if the compiled code
for a clause only has 5 cells, than the overhead of compiling clauses separately
can be significant. In the case of YAP, the overhead is at least 4 cells for the
header, plus 1 cell for the tail. If one includes fragmentation and extra overheads
from the memory collector, than more than half of total memory usage may be
spent just in maintaining separate clauses.

XSB has a simple solution to this problem: clauses are compiled to a single
structure (the xwam file). The compiled code is then loaded as a single block. This
is very effective, and just by itself explains why XSB tends to use less memory
than the other Prolog systems. It does impose restrictions on how to include
clauses for a predicate: clauses must belong to a single module.
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YAP uses an on-line approach in order not to impose such restrictions. The
idea is to take advantage of the dynamic indexing mechanism: the compression
algorithm is called just before the first time indexing is attempted. As a result,
indexing often ends up being allocated in the code freed by the clause merging
algorithm.

Clause merging is implemented by checking if all the clauses have the same
size. If they do, they are copied into a new mega-clause, and their space is
released. In order to achieve maximal compression, this optimisation is only
performed if all clauses take the same space. This restriction makes it very easy
to access individual clauses, which is necessary in order to generate indexing
code and for other tasks, such as debugging. In fact, we have found it quite
useful that this optimisation makes accessing individual clause extremely fast:
we just need to add the clause number times clause size, so mega-clauses take
constant time to access individual clauses, instead of the linear time one would
have to take for the standard linked list of clauses.

Table 7. YAP MegaClauses

Saved (MB) Predicates Av Size (KB)
BC 43 54 1072
Cora 4 26 199
EachMovie 44 2 38826
Gasch 0 0 0
IE 109 124 2734
Tea 4 25 334
Thrombin 5.3 9 4150
WNet 8 18 2164

Table 7 show the actual results. The leftmost column shows how much space
is reclaimed, with a maximum of 109MB for IE. The two other columns show
the number of predicates that benefit (often all of them), and the average size
of a mega-clause per application, in KB.

The BC dataset is where we gain the most: about half of the space is recovered.
Thrombin and WNet have significant benefits, even though clauses are larger.
The results for Gasch were surprising, we would expect some benefit here. Mega-
clauses do make an effort to deserve their name: average size is often over a Mega
byte, in one case taking almost 40MB for a single clause.

6 Discussion

Our analysis show that Prolog systems can load files with sizes up to 10M lines
in main memory, but that future work is still needed to improve performance.
Unfortunately, there is very little published work on these issues. There is com-
mon knowledge that space usage is a problem with native code generation [31],
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but otherwise space considerations have most often been reserved for dynamic
allocation, and namely for garbage collection [4,8,11]. We hope that the near
future will see more work in this direction, and briefly discuss possible research
directions.

Clause Representation. We have observed that clause representation overhead is
dominant for current implementations. XSB performs better than other systems
largely because it packs clauses together into a single structure. Alternatively,
YAP uses “mega-clauses” to achieve much the same effect.

Assuming we have implemented this optimisation, the space spent on a simple
clause with k constants would be, assuming one cell for opcode and operand:

ClSize = 3k + 1

In Yap, instruction merging can further reduce ClSize to k + 1. For appli-
cations such as EachMovie the main table has arity 4 and size 2811662. This
means that table space is reduced from 2811662× (4 + 3 ∗ 4 + 1 + 1) ≈ 50MB
to 2811662× (2 + 4)) ≈ 17MB.

Further improvements can be achieved in a number of ways:

1. Items may have small domains, and it may be possible to compact the rep-
resentation further by taking advantage of this.

2. YAP currently only optimises atoms and small numbers: it has difficulties for
larger numbers and for floats. Further, several datasets store structured data.
Unfortunately, having merged instructions for every case is cumbersome.

These two points suggest that it would be beneficial to first do compile-time
analysis, before loading, in order to have the domains, and second, to generated
instructions specialised for the dataset. There has been recent work on doing so,
such as Java superinstructions [7] and Morales’ emulator refinement work for
Prolog [21].

Atom Table. We were surprised by the large size of the atom table on some
applications. This seems to be typical of text processing applications (although
Tea uses an object file, the original program is a text file). A more detailed
analysis shows that strings tend to have similar prefixes: class names in Tea,
structured reports in WNet.

We believe that the problem might be significant for applications such as text
mining, and semantic web. It seems that the best idea would be to follow XSB:
separate strings from atom data, and try to manipulate strings as efficiently as
possible, possibly by using tries instead of an hash table to take advantage of
similarity between prefixes.

Complex Data. A last point one should make is that users will take advantage
of every Prolog feature. Namely, they will store compound terms, they will use
very large integers, and they will use floats. Some observations:
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1. If a dataset uses compound terms in a structured way, we can transform
these terms into first normal form (1NF), which will always be more space
effective. This again argues for a pre-compilation step.

2. Representing floats well is very important, but unfortunately it is not yet
clear (to the author) how best to represent them in an Prolog environment.

We believe having the ability to represent complex data easily is a major advan-
tage of Prolog: it is up to the implementers to make it as effective as possible.

7 Conclusions and Future Work

Recent progress in tabling and in indexing has made it be possible to process
larger datasets effectively. But to do so one needs to be able to represent large
datasets in Prolog. Our results show that relatively small transformations to the
original WAM design, instruction merging and mega-clauses, can very signifi-
cantly improve space efficiency. We also show that there is much open work to
do. As discussed, incremental improvements are possible, and maybe it is time
to consider alternative approaches to the traditional compilation style used in
Prolog.

We have applied the optimisations we discuss here in the YAP system. We
have obtained good performance in tasks related to several of these datasets.
Indeed, these optimisations were originally motivated by even larger datasets.

Ultimately, the goal is to make logic programming an useful language for
large datasets. We believe four tasks must be addressed for this to be true: data
representation, discussed here; indexing, that we believe is key for data-base
performance; reuse, where tabling has worked well; and query optimisation [29].
We believe all four tasks deserve further work, although we plan to focus on
query optimisation and data representation in the near future.
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Abstract. We describe a declarative language, called BAD (brain ar-
chitecture description language), which we have developed for describing
and then running brain models. Models are at the system-level of de-
scription, so that modules correspond to brain areas. Each module has
a process and the set of modules runs in parallel and communicates
via channels corresponding to observed brain connectivity. Processes are
described using a parallel set of left-to-right first-order logical rules in
clause form, but with additional activity in a rule body described by
Prolog code. Data items are represented by logical literals. Both data
and rules use certainty values. The overall system described by the user
consists of more than one agent each controlled by a brain model, and be-
having in a 3D virtual environment, which is described by logical literals.
Interaction with this environment is described by Prolog code represent-
ing sensors and actuators. Brain models have been developed for social
interaction, problem-solving, and episodic memory, routine memory and
spatial working memory.

1 Introduction

We have developed BAD, Brain Architecture Description language, as a formal
description language for specifying the anatomical structure and the information
processing functionality of brains at the architectural level. This is the first
published description of the detailed mechanisms of the BAD system. With BAD,
the user can specify a particular set of processing modules corresponding to brain
areas. For each module a parallel set of rules is given describing processing within
that module, and the set of modules is organized as an architecture by defining
communication channels among them.

2 Motivation from Neuroscience

We analyzed the neuroanatomy of the cortex, which is divided into neural areas
with connections among areas [5]. We reviewed experiments which indicated the
functions each neural area was involved in, and we construed these results as each
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neural area’s action being to construct data items of data types characteristic of
that area. We also defined neural regions made up of small numbers of contiguous
neural areas. Our analysis is summarized in Figure 1.
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Fig. 1. (a) Lateral view of the cortex showing neural regions and their functional
involvements, and (b) connectivity of regions showing perception-action hierarchy, note
that the hierarchy is on its side with the top to the left

In order to design a model of the cortex, we abstracted from our review some
biological information-processing principles:

1. Each neural area stores and processes data items of given types characteristic
of that neural area; data items are of bounded size.
2. To form systems, neural areas are connected in a fixed network with dedicated
point-to-point channels.
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3. The set of neural areas is organized as a perception-action hierarchy.
4. Neural areas process data received and/or stored locally by them. There is no
central manager or controller.
5. All neural areas have a common execution process, the “uniform process”,
which constructs data items.
6. All neural areas do similar amounts of processing and run at about the same
speed.
7. There is data parallelism in communication, storage and processing. Process-
ing within a neural area is highly parallel. Parallel coded data is transmitted,
stored, and triggers processing. Processing acts on parallel data to produce par-
allel data.
8. The data items being transmitted, stored and processed can involve a lot of
information; they can be complex.
9. The set of neural areas acts continuously and in parallel.

From these and other considerations which we will explain, we designed and
implemented a simple abstract model of the cortex [1] [4]. Figure 2(a) diagrams
our initial model, and Figure 2(b) shows an example scenario which determines
the external input and output descriptions used by the model. This example has
two modeled brains, one for each primate. The inputs to the brains are produced
by sensor processes which sense the 3D environment, and outputs from the brains
cause changes to the environment mainly by causing movements of the modeled
primates.

In the last few years, we have conducted a series of studies and models con-
cerning the human brain, including problem solving [3], episodic memory [7],
natural language processing [6], routinization [10], spatial working memory [9],
and social relationships [2]. Ours is the only work on a complete system level
model of the brain and behavior; the closest other work uses collections of neural
nets, without planning or complex behaviors. Detailed references justifying the
neuroanatomical and neurophysiological basis of our model can be found in [5],
as well as in each of our subsequent papers.

We used SICstus Prolog as a basic implementation language and added an-
other layer which we called BAD, and which represented the parallel execution of
modules and communication channels between modules. We used Prolog mainly
for its powerful high level descriptive power, for unification matching, and for
the ability to write a new language layer. We rarely used its nondeterminism.

3 Overview of Our Modeling Approach

A system-level brain model is a set of parallel modules with fixed interconnec-
tivity similar to the cortex, and where each module corresponds to a brain area
and processes only certain kinds of data specific to that module.

We represented each neural region by a module. A module has an associative
store which is a Prolog store, and a set of left-to-right rules. The store can
only store data of given data types, and these are made to correspond to the
biological properties of the corresponding brain areas. In general the store is
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Fig. 2. (a) Outline diagram of an implemented brain model and (b) Snapshots from
grooming sequence obtained by running this brain model

unbounded in size. Modules are connected by channels which again correspond
to the connections observed for the brain.

Figure 3 shows the components and data flow within a module.
In a typical application, each primate or human is represented as a brain

model, and in addition there is a 3D spatial environment within which they
behave and interact. The environment includes the bodies of each primate or
human. Each brain model is represented as a set of BAD files, one per module
and also a connectivity information module. Each brain model is loaded into
a separate Prolog session and the 3D environment into another session. A run
command given to each session then causes the system to execute all the brain
models for one cycle. During a cycle, each brain model requests sensory informa-
tion from the environment, executes all of its modules, transmits all data among
modules, and then sends motor commands to the environment.



204 A.H. Bond

updating associative storeinput
channels

output channels

data values

output filters

rule filters
update
filters

brain module

to other brain modules

from
other
brain
modules

rules

Fig. 3. The structure of a module, showing data flow and data storage

The model is executed in discrete temporal steps, which are fairly fine-grained.
The intention is that a time step of one unit corresponds to 20 milliseconds of
real time. This is the observed time taken for signals to be passed from one
neural area to another in the primate cortex. During one time step, all the rules
in all the modules are executed until data stability, without communication
among modules, or with the environment. Thus the model is truly parallel and
distributed.

Our approach is intended to be complementary to neural network approaches,
and it should be possible, for a given abstract model, to construct corresponding
neural network models.

4 Data Types and Storage Within Modules

Data items. Data items are represented by ground literals which we call de-
scriptions. To indicate what data types can be stored in a given module, for
each data type we give a description pattern, which defines the set of descrip-
tions consisting of all of its instances. A description pattern is a literal of the
form: predicate(Weights,Context,[List of values])
(using identifiers with initial capitals to indicate variables). The first argument
of each description is a list of weights [Wsi] which can be processed by the user
as they wish. For the models we have developed, all our description patterns are
of the form:
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predicate([C,W1,W2,Time stamp,Rstate],Context,[List of values])

Only C, W1 and W2 are weights, Time stamp is used for housekeeping and
is the last cycle that the item was updated, and Rstate is to keep track of
the description’s refractory state. The Context term is intended to be used for
grouping descriptions into sets, i.e., all those descriptions with the same value
of Context form a set. C is a certainty factor and W1 and W2 are weights; all of
these are reals. In List of values, all values are ground terms, and preferably
atomic. An example of a description pattern is position(W,C,[Agent,X,Y,Z]),
which might be a data type whose instances represent the position X,Y,Z of a
perceived Agent, with certain weights. An example of a description, i.e. data
item, is a substitution instance of this data type:

position([1.0,1.0,1.0,1,[]],any,[adam,300.0,200.0,0.000])

At any one time, the module store has a set of stored descriptions of given
types. A specification of a data type also includes its updating properties, its
competition characteristics and its rates of update and attenuation, which will
be explained below.

Storage of data, uniqueness, similarity and novelty. When we imple-
mented and ran our model we soon realized that the store was updated from
inputs every cycle and these updates were often very similar to those of the
previous cycles. In order to update the store, we had to test if the input literal
was the same as an existing stored literal. In fact there were four cases: (1) input
literal identical to a stored one, including all the weights, (2) the input literal
is the “same” as a stored one, i.e. only differing in the values of the weights,
(3) “similar”, which is given by equivalence expressions so that a data item may
overwrite a “similar” one already in the store, for example if the action is walking
and then the next input has it standing, we update the stored one, even though
it is not the “same” as defined above, (4) the input literal is “novel” meaning it
is not identical, same or similar, in which case it is simply stored. We also have
sometimes used “corresponding”, allowing overwriting based on X,Y,Z nearness.

In addition, we found we had to specify update characteristics for each data
type; we used memory item update characteristic patterns, which we call item
types. Items matching these patterns replace existing items, thus, for:

item type(Person,Module,Type,[Input pattern,Stored pattern]).

an incoming description is matched to the Input pattern, if it matches, then
the Stored pattern is matched to the store. If this matches then the incom-
ing description updates the matching stored description. If no Input pattern
matches, or if the Stored pattern does not match to the store then the descrip-
tion is simply stored, as it is a novel item.
So, e.g., item type(Person,Module,data,[goal(G),goal(G)]).
any incoming goal description updates only an identical one. Thus there can be
an indefinite number of goal descriptions, with different goals G.
And, e.g.,item type(Person,Module,data,[action(M1,A1),action(M1,A2)]).
an incoming action description for a given person M1 updates any other action
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description for the same person. Thus, only one action description can exist for
a given person, however there can be an indefinite number of different action
descriptions each for a different person.

The updating of weights of memory items from incoming weights of matching
item uses a multiplicative linear increment to the excitation of the item:
update weights increment(Person,Module,Incw1,Incw2):−
(((W1 input >= W1 old),W1 new is (W1 old*(1.0 + Incw1))) |
((W1 input < W1 old),W1 new is (W1 old*(1.0 - Incw2)))).

Attenuation. All stored data items are subject to an exponential attenuation
process each cycle. Attenuation reduces the weight by a standard fraction each
cycle. This fraction can be set to zero so there is no attenuation, and it can also
be set to one, which erases the data item after one cycle (not before it contributes
to rule matching in the cycle). Thus, attenuation factors are specified:

attenuation factor input(Person,Module,Type,AF,Description pattern).

AF is a list of real factors, one for each weight in the list of weights. e.g. for data
to attenuate to noise level in about 20 cycles

attenuation factors(Person,Module,data,[0.1,0.1,0.1],C)

Noise level can be set and is the value at which a description is removed from
the store: noise level(Person,Module,Type,Noise level).

As a result of continuous linear updating and exponential attenuation, with
a constant input stream of data items, the stored value will settle to a steady
value. Initially, there will be a build up of the weight taking a few cycles, starting
from noise level, and when the input ceases or changes to some other data items,
the weight will take a few cycles to attenuate to noise level, where it will then
be deleted.

5 Processing Within Modules by Rules

The form of rules. Computation in modules is represented by a set of descrip-
tion transformation rules of the form:

rule(agent,rule_name,context,
if((sequence of description patterns)),
then ([list of description patterns]),
provided((clause_body)),
weights(weights)).

It is executed by matching the left hand side, the “if” term, to bind variables
and then constructing and possibly storing the descriptions given by the right
hand side, the “then” term.

For example:

rule(M,macroaction_2,context(all),
if((position(W,C,[M,X,Y,Z]),
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position(W_p,C,[MP,XP,YP,ZP]))),
then([near(W_1,any,[M,MP])],Wa),
provided((MP \== M,
distance(X,Y,Z,XP,YP,ZP,D),D<25.0)),
weights(1.0,[1.0,1.0],[1.0])
).

The meaning of this rule is that if the primate perceives that another is near
to it, then it notes this fact.

We prefer a style in which there is no branching in a rule, just conditionals,
so for branching we use several different rules.

The set of rules in a module is executed in parallel, and the set of modules is
executed in parallel.

The execution cycle first inputs all incoming data from other modules, then
executes all rules and then outputs any output data to other modules.

In general, a rule is executed by matching all the left hand side description
patterns to the store, executing all possible rule instances. The right hand side is
executed, for a particular instance, by constructing from each description pattern
on the right hand side a description obtained by substituting terms for variables.
These constructed descriptions may then be stored in the module or output to
other modules.

Processing of weights. Rules also have lists of weights:
weights(Wo,[Wli],[Wrj]), one for each of the left hand side patterns [Wli], one
for each of the right hand side patterns [Wrj] and also an overall rule weight, Wo,
for the rule as a whole. These weights are usually fixed at the moment, but also
can be variables and can be computed within the body of the rule.

We usually use just one weight, W1, in calculations, at the moment. When the
rule is evoked, the weight for the rule instance is the bilinear combination of
these weights: Wa = Wo *

∑
i (Wli * Wsi). Wsi are of course the weights of the

stored data items which matched to the left hand side patterns. It is Wa that
is used in rule competition, the strongest rule activation usually being taken in
preference.

The computed weight Wa of the rule instance is multiplied by the Wrj to give
the weights for the right hand descriptions. These weights are used in update
and output competition.

A brief discussion of the several uses of weights and uncertainty in this system
can be found in [8].

Computation within rules. In addition, we can have computations in a rule.
This is specified by the Landinesque provided part of the rule. Its argument is
an arbitrary Prolog code “block”, which can refer to any of the variables in
the if and then parts of the rule. Computations are usually simple and used as
filtering tests. However, for some purposes, it may be necessary to define complex
predicates in Prolog and to use them in rules. The basic idea is that computations
should be conceivably done by a neural area, and of course they can only use
information present in the module. Ideally, all variable values should be obtained
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from the left hand side pattern match, but sometimes this ideal may need to be
violated and a match made during the course of computation, for example, “not-
exists” tests. For example:
((position(W,C,[Agent,X,Y,Z]),Z > 100.0,!,fail) | true), which, if the
variable Agent does not occur in the left hand side of the rule, means there does
not exist any agent with Z > 100.0. If Agent does occur in the left hand side of the
rule then this is equivalent to having a pattern position(W,C,[Agent,X,Y,Z])
in the left hand side and a test Z > 100.0 in the body of the rule.

Competition. All descriptions and all rule activations have a weight which is
a number representing their strength. The simplest form of competition is just
to compare the weights of all the rule instances and to select just the strongest
one. The products of this one rule are then stored and/or transmitted.

However, we have found it useful, and necessary, to develop other forms of
competition, as follows. First rule instances compete and then literals compete.
This is necessary or else it would be possible for one literal from one rule and
one from another to succeed, but other literals from the same rules to fail.

Rule instance competition is specified by the user in list of rule number sets:

list of rule number sets(M,Mod,[list of lists of rule numbers]).

Results from all the rule instances from rule numbers in each set compete against
each other using the Wa values. For example,

list of rule number sets(M,Mod,[[R1,R2],[R3,R5]]))).

which defines a list of rule number sets e.g. [R1,R2],[R3,R5]. Then all the
results from rules R1 and R2 have their Wa values compared and only the one
with the largest Wa is used. The same for R3 and R5. Results from any other
rules all go through and are used.

After rule competition, all the surviving updates and outputs from the rule
instances are made into two overall lists. These lists, of updates and outputs
respectively, are then, if desired, subjected to individual competition among de-
scriptions in the list. The user specifies update patterns and output patterns. For
each pattern in a specified list of update patterns, all the generated descriptions
which match to that pattern are compared and only the one with the largest
W1 weight is allowed to actually update the store. In addition, the winning W1
weight must be greater than a specified threshold. Any generated updates which
do not match any update pattern are allowed to update the store. The analogous
method is used for outputs also.

In general, for rule competition, we are thinking of changing to using rule
priority ordering, that is, each rule having a place in a, possibly partial, order-
ing which determines its dominance in competition, independently of computed
strengths. Such an ordering could be dynamic. This would give a more stable
method, with better expressive discrimination, than using rule instance weights.

Execution of rules until data coherence. The set of rules in a given module
is executed repeatedly until data coherence, that is, until no more changes to the
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updates and outputs occur. The purpose of this is to ensure logical coherence
of the store and coherence of the outputs to be sent to other modules. During
these iterations, updates are performed but not outputs. Iteration continues until
there are no more novel literals created. It does not continue until the weights
have settled.

This process is very similar to finding the fixed point of the logic program
defined by the set of rules, as in the treatment of logic programming semantics
by VanEmden and Kowalski [11]. If there are no function letters involved, this
process will be finite. Also, simple rule sets are similar to Datalog. At the mo-
ment, we are still using some recursion in rules and the computations within rule
bodies are more general than allowed by Datalog.

6 Communication Among Modules and Updating Within
a Module

Communication is specified by the user using output data item and
update data item declarations. Connections will be given, for each module, by a
set of statements each of which gives a description pattern and the name of a
destination module.
output data item(Person,Mod name,Descr pattern, Target module name),
e.g.,
output data item(M,person motion,action(Name,Action),person action).

What a connection statement means is that all output descriptions matching
the given description pattern will be transmitted to the given destination module.
They will actually be located in the channel until stored by the module at the
beginning of the next cycle.

Updates into the module’s own store are specified and treated similarly.
update data item(Agent name,Mod name,Literal,Mod name).
e.g., update data item(M,plan,working goal(W,C,[WG])).

7 The Environment

Brain models operate in a 3D spatial environment which is defined by a set
of logical literals which describe all the objects and agents and their spatial
properties. A brain has a set of sensors for perceiving the environment and
these create data items which are input to certain modules. A brain has a set
of effectors, and certain modules send motor commands, represented as ground
literals, to the effectors, which change the environment.

A complete model consists of a set of agents each controlled by a brain model.
Agents interact via the environment, so their positions and movements are per-
ceived, and gestures can also be explicitly used. Language communication uses
a physical channel corresponding to acoustics. The environment resolves any
conflicts among the set of motor commands it receives from the set of agents.
The environment includes the agent’s body, including muscles, blood, glands and
so on.
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8 Agent Architecture

As we indicated above, we have in our own work usually arranged the modules in
a perception-action hierarchy. A schematic diagram of our concept of perception-
action hierarchy is given in Figure 4.
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Fig. 4. The mechanisms of a perception-action hierarchy

Modules are arranged in a hierarchy of abstraction. The system elaborates a
selected goal into a plan and then into a succession of more detailed plans until
finally a concrete action for the next cycle is sent to effectors which act on the
environment. We made the effector actually output a low-level motor goal which
was renewed every cycle. We made the top level of plan description correspond to
social plans, which specified, in each plan step, not only the action of the agent
but also the expected perceived action(s) of the other interacting agent(s). In
executing a social plan, the perceived behavior of the other interacting agents
was first checked to ensure it was in agreement with the currently executed
social plan, and also to extract matched variable values for use in constructing
the agent’s own actions. An example of a social plan is approaching and shaking
the hand of another person.

At each level the currently selected plan element is computed, so all levels con-
tinuously compute in parallel every cycle. The interaction of the perception and
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action hierarchies results in conditional elaboration and attention mechanisms.
By conditional elaboration, we mean that the current percept can modify the
elaborated plan step, so for example the agent can track and act upon a chang-
ing environment. By attention, we mean that information from plan elaboration
is passed to the perception hierarchy and can modify the use of perceptual re-
sources to process in more detail the objects or other agents that the agent is
interacting with.

9 Confirmation and Viable Dynamic States of Agents

In order to select rules which were successful in producing useful behavior, we
developed a mechanism which we call confirmation. If a rule fires in one “source”
module and sends a description to another “target” module, then if this causes
some rule in the target module to fire then a confirmation message is sent back
to the source module. This message is specific to the exact description originally
sent. For this, there is no need for global evaluation, and the test is purely
local to the target module. The rule instance in the source module then has its
value boosted by the confirmatory message. This will tend to keep it in control
and keep things stable, avoiding “jitter”, i.e., rapid oscillations between two
competing states. If on the other hand no rule in the target module is caused
to fire, then the rule instance is disconfirmed which results in it being placed in
a “refractory” state for a certain period of time. This allows other competing
rule instances to be tried. The general idea is that the system will then try all
the different rule instances until it finds one that makes something happen, so
this is a little like backtracking but with a simpler mechanism. This is also our
attempt to provide a simple form of logical completeness, i.e., that all rules will
be tried at all levels, so a solution will be found if one exists.

The way this is actually implemented is to not send any message in the dis-
confirmation case, so the source module simply waits a certain number of cycles
before timing out and disconfirming the currently active rule instance.

Thus, we keep time stamps stored in each literal which give its waiting state
and its refractory state, and the attenuation mechanism updates these each cycle.
Thus data items are actually time-dependent literals.

Confirm factors specify the impact of confirmation values on weights:

confirm factors(Person,Module,Type,[CFNEG,CFPOS],
[Confirm threshold,CSNEG,CSPOS])

where: (i) Confirm threshold determines where the computed confirmation value
is a positive or negative confirmation (ii) CFNEG is subtracted from W1 for neg-
ative, i.e. dis-, confirmation and (iii) CFPOS is used to multiply the confirmation
value that is added to W1 for positive confirmation. Typical values are
e.g. confirm factors(M,goal,data,[0.4,0.05],[0.2,1.0,1.0]).

Viable states. A system will tend to transition into what we call a viable state,
in which the perceived environment tends to support the selected plan and the
plan is selected by and supports the currently selected goal. Thus, in a viable



212 A.H. Bond

affiliation goal

planperson_disposition

plan_person

plan_person_action

plan_self_action

motor_system

person_action

sensor_system

person_motion

environment

Fig. 5. The idea of a viable state

state, the agent carries out a planned action which is relevant to its current goals,
and which can be successfully carried out in the current external environment.
The idea of a viable state is depicted in Figure 5. In each module, there is a
dominant rule, depicted as a solid line, which fires and wins the competition with
other rule instances. The other rule instances, depicted as dashed lines, continue
to be computed each cycle. This latter is necessary to provide for wellformed
changes in the dynamic state.

Once in a viable state the system will tend to stay in it for several cycles, a few
tens of cycles, up to thousands of cycles, before it has to select a new plan step
at some level and to transition into another viable state. During a transition
period, modules try different rules until they find one that is confirmed, and
then until all the modules are selecting rules which are confirmed. It usually
takes about 10 to 15 cycles to establish the next viable state, which corresponds
to the experimentally observed time of 300 milliseconds to establish a conscious
state.

Multiple interacting agents will also find mutually viable states, where the
perceived behaviors of the other agents are compatible with the social plans
being executed by each agent.
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10 Using BAD

There is a BAD manual and also a document giving a complete BAD example of
a working BAD program for a simple agent moving in a 3D world. A BAD system
is actually set up as a set of directories, namely, (i) a directory for each agent
type, (ii) world, which specifies the environment and visualization to be used,
and (iii) exp, which has details of the experiment to be run. These are accessed by
directory declarations in SICstus Prolog. An agent directory has a set of module
specifications written in BAD, and in addition files giving the connectivity of
modules. Sensors and effectors are specified in BAD and a Prolog file provided
for each. An arrangement we have found most convenient and efficient is to have
one agent, i.e., one complete brain model, per machine on a TCP/IP network
and the world on another machine. The distribution of agents over machines
is specified in Prolog. Socket communication between agents and the world is
provided by BAD. The world receives sensing literals and motor commands from
each agent in turn and replies to them in turn. There is at the moment no other
support for managing the running of programs, so the user usually sits at the
world machine and opens a window on each remote machine. Prolog sessions are
started and the socket linkages started up, then calling a run(M) predicate in
each session will run each agent and the world for M cycles. One can also use a file
with a sequence of Prolog predicate calls to represent an experimental protocol.
Consulting this file runs the experiment, it also helps clear garbage by taking
the Prolog system back to the prompt each time. Typical cpu times for one
cycle with an agent with 20 modules with 20 rules in each module are about 100
milliseconds on a 1 GHz Linux machine. The system provides support for VRML
2 graphical output for visualizations of the world and of agents’ system states,
as well as the terminal traces of the Prolog sessions. Geoffrey Irving, a Caltech
undergraduate, managed to use BAD to program a predator-prey system with
multiple predators and multiple prey, inspired by the arctic wolf and musk ox
relationship. His project report is available from my website.

11 Summary and Conclusion

We have developed BAD, a declarative language in which to specify and execute
agents inspired by the brain. The design is based on logic programming; data are
literals, processes are parallel sets of rules and unification is the basic operation.
Agents are modular and distributed based on distribution of storage and pro-
cessing according to data type. The execution regime uses a discrete time step
during which all rules are executed and all intermodule communication takes
place before moving to the next time step. The time step is intended to be small
relative to the rate of change of the external environment. Real-valued weights
on data and rules can be used for many different purposes. BAD provides for
updating and attenuation properties of data, and for defining modules by giving
their data types and rules. Different connectivities among modules can be spec-
ified. A common agent architecture uses perception-action architecture, which
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has real time control properties. Rule execution proceeds until data coherence.
BAD also provides a confirmation mechanism by which distributed processes
over the architecture may be stabilized.
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Abstract. We describe a preliminary implementation of the high-level
modelling language Zinc. This language supports a modelling method-
ology in which the same Zinc model can be automatically mapped into
different design models, thus allowing modellers to easily “plug and play”
with different solving techniques and so choose the most appropriate for
that problem. Currently, mappings to three very different design mod-
els based on constraint programming (CP), mixed integer programming
(MIP) and local search are provided. Zinc is the first modelling language
that we know of that supports such solver and technique-independent
modelling. It does this by using an intermediate language called Flat-
tened Zinc, and rewrite rules for transforming the Flattened Zinc model
into one that is tailored to a particular solving technique.

1 Introduction

Solving combinatorial problems is a remarkably difficult task which requires the
problem to be precisely formulated and efficiently solved. Even formulating the
problem precisely is surprisingly difficult and typically requires many cycles of
formulation and solving, while efficient solving often requires development of
tailored algorithms which exploit the structure of the problem. Reflecting this
discussion, recent approaches to solving combinatorial problems divide the task
into two (hopefully simpler) steps. The first step is to develop the conceptual
model of the problem which gives a declarative specification of the problem
without consideration as to how to actually solve it. The second step is to solve
the problem by mapping the conceptual model into an executable program called
the design model. Ideally, the same conceptual model can be transformed into
different design models, thus allowing modellers to easily “plug and play” with
different solving techniques [8,6]. Here we describe the implementation of a new
modelling language, Zinc [7], specifically designed to support this methodology.

We had three main aims when designing Zinc. First, we wanted the modelling
language to be solver and technique independent, allowing the same conceptual
model to be mapped to different solving techniques and solvers, i.e., be mapped
to design models that use the most appropriate technique, be it local search,
mathematical programming, constraint programming, or a combination of the
above. Second, we wanted Zinc to provide high-level modelling features but still
ensure that the models are executable. Thus, while Zinc provides sets, structured
types, and user-defined predicates and functions, set domains must be finite and
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Fig. 1. Mapping a Zinc conceptual model to different decision models

recursion is restricted to iteration so as to ensure that evaluation terminates.
And third, we wanted Zinc to have a simple, concise core that can be readily
extended to different application areas by allowing Zinc users to define their own
application specific library predicates, functions and types.

Of course there is considerable tension between these aims, since the higher-
level the modeling language, the greater the gap between the conceptual model
and the design model. The main contribution of this paper is to demonstrate that
it is possible to map conceptual models written in a high-level modeling language,
namely Zinc, into very different design models without introducing unnecessary
overhead. This significantly extends our understanding of modeling language
implementation since previous modelling languages and their implementations
have been closely tied to specific underlying platforms and solving technologies.
Note that, at this stage our objective is merely to minimise overhead, rather
than competing with a directly encoded design model. In the future, we intend
to build up a sufficiently broad range of transformations capable, under user
control, of mapping a Zinc model to the best (known) possible design model.

Integral to the successful solver-independent implementation of Zinc is the use
of an intermediate modelling language, called Flattened Zinc, to bridge the gap
between conceptual and design model. Flattened Zinc is a subset of Zinc which
is designed to be simple and low-level enough to be significantly closer to the
decision model, yet sufficiently high-level to specify suitable intermediate models
for all solvers. Therefore, it allows only simple constraints and data types.

The translation process from the conceptual model consisting of a Zinc model
and instance specific data (optionally given in separate data files), to different de-
sign models is shown in Figure 1. The first step takes a Zinc model and performs
syntax, semantics and type checking (which includes adding explicit coercions).
The second step adds to the compiled Zinc model the information contained in
the associated data file(s) (if any), and generates the Solver-Independent Flat-
tened Zinc Model (SI-FZM) instance. This step is described more fully in Sec-
tion 3. The advantage of first producing an SI-FZM model is that many common
aspects of the mapping to the decision model can be performed during the Zinc
to SI-FZM translation, thus reducing the burden when developing mappings to
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new solvers. In the third step rewrite rules are used to translate the SI-FZM into
a Solver-Dependent Flattened Zinc Model (SD-FZM). As the name suggests,
the rewrite rules used in this process depend on the target design model, and
rewriting produces a Flattened Zinc model which is very close to the final design
model. The mapping process is discussed in more detail in Section 4. The final
step is to take the SD-FZM model and perform the minor syntactic rewriting
required to generate the design model for a particular solving platform.

In our prototype implementation the Zinc model can be mapped into one
of three design models, all of which are implemented in ECLiPSe. The first
design model uses the standard constraint programming (CP) approach of a
complete tree search with propagation based finite domain and set solvers. The
second model is also complete but uses mathematical programming techniques,
i.e. a Mixed Integer Programming (MIP) solver, while the third design model
performs an incomplete search using local search methods. These are described
and evaluated in Sections 5 and 6.

Modelling languages for specifying constrained optimization problems are one
of the success stories of declarative programming. The first modelling languages,
such as AMPL [4], provided little more than the ability to specify linear inequal-
ities. More recent languages are considerably more expressive. Some are based
on specification languages, e.g. ESRA [3] and ESSENCE [5], while others pro-
vide more programming language like features, e.g. OPL [13] and Localizer [10].
Zinc is somewhat similar to OPL but extends it by allowing constrained types
and user-defined functions and predicates. The main innovation in Zinc is the
ability to map a conceptual model to design models based on very different solv-
ing techniques. Other modelling languages have been designed for a particular
underlying platform and solving technology. For example, AMPL is designed to
interface to MIP solvers, ESSENCE is intended for propagation-based solvers,
and Localizer was designed to map down to a local search engine. Although
OPL models are automatically mapped to an underlying hybrid mathematical
programming (MIP) and constraint programming library, the user cannot con-
trol the mapping to the same conceptual model of different design models. Also
related is the mapping language Conjure [6], which uses rewrite rules to map
ESSENCE models to an OPL-like language called ESSENCE’. The main differ-
ence is that while rewriting in Conjure produces alternative models for the same
underlying solver, in Zinc it produces different models only for different solvers,
tailoring the original model to the specific solver. Furthermore, to the best of
our knowledge, a compiler for ESSENCE’ has not been implemented yet.

2 Background: The Zinc Modelling Language

Zinc is a functional language with simple, declarative semantics. It provides:
mathematical notation-like syntax (including automatic type coercions and op-
erator overloading); expressive constraints (finite domain and integer, set and
linear arithmetic); separation of data from model; high-level data structures and
data encapsulation (including constrained types); user defined functions and
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enum Customers ;
enum Products ;
array[Products] of set of Customers: Ordered ;

type Time = 1..card(Products) ;
array[Time] of var Products: Assign ;
array[Time] of var set of Customers: OpenStacks ;

constraint alldifferent([Assign[T] | T in Time]) ;

constraint forall(T in Time)
(OpenStacks[T] ==

allunion (Ti in 1..T) Ordered[Assign[Ti]]
intersect
allunion ( Ti in T..card(Products) ) Ordered[Assign[Ti]]);

minimize max([ card(OpenStacks[T]) | T in Time]) ;

Fig. 2. Zinc model for the Minimisation of Open Stacks Problem (MOSP)

constraints. We illustrate some of these features by means of a simple example.
For more details the interested reader is referred to our earlier paper [7] which
discusses the modelling capabilities of Zinc more fully.

Example 1. A Zinc model for the Minimisation of Open Stacks Problem (MOSP)
is shown in Figure 2. In MOSP, a factory can manufacture a number of products
but only one at a time. Once a product in a customer’s order starts being man-
ufactured, a stack is opened for that customer to store their products. Once all
products for a customer are manufactured, the order is sent and the stack closed.
The MOSP [15] aims at determining the time sequence in which products should
be manufactured in order to minimise the maximum number of open stacks.

The first three lines of the model define the parameters: two enumerations
Customers and Products, and an array Ordered indexed by Product contain-
ing the set of Customers who ordered that Product. Next, the two arrays of
decision variables are declared where the var keyword is used to distinguish de-
cision variables from parameters. The array Assign which assigns to each Time
in the sequence a given Product to be manufactured, and the array OpenStacks
which is constrained so that OpenStacks[T] is the set of Customerswhose stacks
are open at time T. The two following constraints indicate that (1) all products
in array Assign must be different (i.e., each product is manufactured only once),
and (2) the number of open stacks at time T is the intersection of those customers
who ordered products manufactured before or at T and those who ordered prod-
ucts manufactured after or at T.

Data for the model can be given in a separate data file as, for example:
enum Customers = {C1, C2, C3, C4, C5};
enum Products = {P1, P2, P3, P4};
Ordered = [P1:{C1,C3,C5}, P2:{C2,C4}, P3:{C2,C3,C4}, P4:{C1,C5}];
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List, set and array comprehensions provide the standard iteration constructs
in Zinc. Other iterations such as forall, max, allunion and sum are defined
as Zinc library functions based on the built-in function foldl(F,L,Z), which
applies the binary function F to each element in list L (working left-to-right) with
the initial accumulator value set to Z. For example, the definition of allunion is
function var set of $T:allunion(list of var set of $T:L)=foldl(union(),L,{});

where $T is a type variable. Any constraint or function F (including user-defined
functions or predicates) that takes a single list comprehension as an argument,
can be called using the mathematical-like syntax F(G) E, which is equivalent to
F([E | G]). Thus, for instance, allunion (Ti in 1..T) Ordered[Assign[Ti]] is
syntactic sugar for allunion([Ordered[Assign[Ti]] | Ti in 1..T]).

One of the novel features of Zinc not illustrated in the previous example is
that types can have an associated constraint on elements of that type. This
generalises the idea of constrained objects [9] and allows to the modeller to
specify the common characteristics that a class of items are expected to have.
Two examples are:
type PosInt = (int:x where x>0);
record Activity = (var int: start, end, duration) where end=start+duration;

Zinc provides the standard comparison and equality operators, including the
alldifferent constraint. These are polymorphic since all base types are totally
ordered and overloaded versions of the operators are generated automatically for
each user-defined type (using a lexicographic ordering for compound types).

Zinc allows constraints and variables to be annotated by classes which can
contain attributes. These do not change the semantics of the model but can be
used to guide generation of a decision model for a particular solver or solving
technique. For instance, the annotation penalty(p) on a constraint indicates
that with local search that constraint will be treated as a “soft” constraint with
penalty p for violation.

3 Solver-Independent Flattened Zinc Model (SI-FZM)

As we have seen, Zinc is a very high-level, expressive modeling language. While
this makes it ideal for developing conceptual models, it also introduces a consid-
erable gap between the conceptual Zinc model and an associated design model
targeted to a specific solver and search technique. The first step in bridging
this gap is to translate the conceptual Zinc model into the Solver-Independent
Flattened Zinc Model (SI-FZM). This is an intermediate representation oriented
towards computer implementation, but still as solver-independent as possible.
The SI-FZM is written in a subset of the Zinc language called Flattened Zinc
which omits features of the Zinc model that make it user friendly, while preserv-
ing any features that could be used to support solver or search heuristics.

The first step to generate the SI-FZM instance from a Zinc model and its
associated data file(s) is to insert all assignment statements from the data file(s)
into the model. From then on, one or more of the following steps are performed
to every statement in the problem instance:
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– Evaluate all parameters and check the associated integrity constraints are
satisfied.

– Determine an initial domain or range for all decision variables.
– Simplify record types by (a): replacing all records by tuples, (b) flattening

tuples of tuples into a single tuple, and (c) appropriately replacing field
access in the constraints by the contents of the field addressed.

– Replace enumerated types by integer range types, and constraints over enu-
merated types by the appropriate integer constraints.

– Check that predicates and functions are sufficiently instantiated. For exam-
ple, foldl requires its second argument to be a list of known length.

– Unfold the user-defined library and built-in predicates and functions such
as foldl. Note that this may introduce new variables due to the formal
parameters and to the existence of local variables in the definitions.

– Insert constraints arising from constrained objects, i.e., from the constraints
associated with types. If these involve only parameters, check that they hold.

– Simplify arrays and lists by rewriting them to be one-dimensional arrays with
an integer index set starting from 1, and appropriately updating computation
of the array index in constraints.

– Translate variable sets of structured types into variable sets over integers
and add a constraint mapping the structured type elements to integers. This
is also used to flatten sets of sets into linked sets of integers. For instance:

var set of {{2,5},{1,3,6},{1,2}}: S1;
var set of {{2,5},{1,2},{3,4}}: S2;
constraint S1 intersect S2 == {1,2};

is translated to (assuming the encoding starts from 1):

var set of {1,2,3}: S1; var set of {1,3,4}: S2;
constraint S1 intersect S2 == 3;

– Separate the logical combination of constraints from the constraints them-
selves, using reification, i.e., substituting c by reify(c, T ) which constrains
Boolean variable T to be true iff c holds. For example, the constraint
c ≡ (x < y ∨ x < z) ∧ (x > w) is substituted by:

constraint reify(x < y , T1); constraint reify(x < z ,T2);
constraint reify(x > w , T3); constraint T4 = T1 \/ T2 ;
constraint T4 /\ T3 ;

Note that reification is performed after unfolding predicates and functions,
leaving only constraints defined by the underlying solvers. For constraints
whose reification - and more specifically negation - is not supported by the
solver, e.g. linear constraints in continuous variables, the reification is imple-
mented using a specific transformation (in this case adding an ε so ¬X ≥ Y
is transformed to X ≤ Y − ε)

Termination of the Zinc flattening is guaranteed as long as the unfolding
of predicates, functions and iterators terminates, and only finitely many new
variables are introduced. These conditions are guaranteed by the Zinc syntax.
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We will illustrate some of these operations using the Zinc MOSP model given
in Figure 2 with the data file of Example 1. The arrays Assign and OpenStacks
which mapped Time to Products and to set of Customers, respectively, are
translated into the FZM code:

array[{1, 2, 3, 4}] of var 1..4 : Assign ;
array[{1, 2, 3, 4}] of var set of 1..5 : OpenStacks ;

where the index type Time has been replaced by its range value 1..4 (represented
using the more general set {1,2,3,4}), and the enumerated types Products and
Customers have been replaced by ranges 1..4 and 1..5, respectively. Next, the
alldifferent([Assign[T] | T in Time]) constraint is translated as:
constraint alldifferent([Assign[1], Assign[2], Assign[3], Assign[4]]);

and the forall constraint is unfolded to give the four OpenStacks elements:

constraint
OpenStacks[1]==(T_1) intersect (T_1 union T_2 union T_3 union T_4)

/\ OpenStacks[2]==(T_1 union T_2) intersect (T_2 union T_3 union T_4)
/\ OpenStacks[3]==(T_1 union T_2 union T_3) intersect (T_3 union T_4)
/\ OpenStacks[4]==(T_1 union T_2 union T_3 union T_4) intersect (T_4);

where each temporary variable T i is equated to the result of the expression
Ordered[Assign[i]]. Thus if Assign[i]= 1 then T i= {1,3,5}, and if Assign[i]
= 2 then T i = {2,4}, etc. This is expressed using the standard constraint pro-
gramming global constraint element(I,L,X) which holds if X is the Ith element
in L, i.e. X = L[I]. The specific SI-FZM constraint is:

constraint element(Assign[i], [{1,3,5}, {2,4}, {2,3,4},{1,5}],T_i);

The flattened Zinc element constraint allows lists of complex types, rather than
only the usual lists of integers.

Some of the optimisations used to improve the generated SI-FZM model are:

1. Substitution: If we can determine that a decision variable must take a unique
value, then we can effectively treat it as a parameter and replace it by its
value. For example, if we know that X == 2, constraint X ×Y ≥ 10 can be
simplified to 2× Y ≥ 10.

2. Omitting unnecessary element constraints: While Zinc supports arrays with
arbitrary index sets, the element constraint supported by most solvers re-
quires a range of the form 1..n as its index set. Thus, when we model an
array access we use an extra element constraint to map the index set vari-
able to a range of the required form. For example, the constraint in the Zinc
code:
array[{2,5,7,8}] of var int:A;
var {2,5,7,8}:I;
constraint A[I]==3;

generates the Flattened Zinc code:
var 1..4:T_1; var int:T_2;
constraint element(T_1,[2,5,7,8],I);
constraint element(T_1,[A[2],A[5],A[7],A[8]],T_2);
constraint T_2==3 ;
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However, if the index set of the initial Zinc array is in fact a range, then we
can replace the extra element constraint by an offset to the index variable.
For instance, if we have array[4,5,6,7] of var int:B we can substitute
B[J] by a new variable T which is constrained by a single element constraint:

constraint element(J-3,[B[4],B[5],B[6],B[7]],T);

3. Simplifying reifications and omitting unnecessary reification: While the naive
translation of compound constraints of the form constraint C1 ∧ C2 is
var bool: B1, B2; constraint reify(C1,B1);
constraint reify(C2,B2); constraint B1 /\ B2;

it is better to produce the simpler code
constraint C1; constraint C2;

which removes the potential overhead of reification and is more efficient,
especially for MIP techniques.

One source of inefficiency in Zinc is the current lack of common sub-expression
elimination for constraints which appear several times in our models. As a result,
multiple element and/or reify constraints are created, instead of reusing the
associated variables. We are currently resolving this issue.

4 Model to Model Transformation

Although the SI-FZM model is much closer to a design model than the original
Zinc model, it may still contain constraints and data structures not supported by
the intended solver. For example, Zinc supports variable sets of any type. Since
current set solvers can support only sets over integer values, variable sets in a
Zinc model are transformed to variable sets over integers in the generated SI-
FZM. For the many solvers, including most MIP solvers, that do not support sets
of integers, integer sets must in turn be converted to some other representation
they can handle, such as Boolean arrays. To facilitate this kind of transformation
the Zinc implementation supports solver specific rewrite rules that can be used
to rewrite the SI-FZM model to a Flattened Zinc model that is much closer to
the desired design model. Rewrite rules have the following syntax:

if A then substitute B with C in D where E;

where A is a conditional statement, B and C are two Zinc expressions, D is a
subsection of a Zinc model (declarations, constraints or model) and E is a set
of Zinc statements. Whenever A holds, all instances of B are substituted by C
in scope D and the statements in E are added to the model. The if and where
parts are optional.

The formal semantics of our rewrite rules is not yet fully worked out. A key
issue is the specification of what can be tested in a conditional statement. In the
rules used to date, the conditions have been restricted to tests on Zinc types.

Example 2. Consider the following four rules, which are among those used in
our implementation to map a set S to an array of Boolean variables B, such
that B[x] ↔ x ∈ S.
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(1) substitute var set of $T:X with array[domain(X)] of var bool:X
in declarations;

(2) if typeof(X)==array[$T] of var bool then
substitute (I in X) with
(if I in indexset(X,1) then X[I] else false)
in constraints;

(3) if typeof(X)==set of $T then
substitute X with Z in constraints
where

array[$T] of bool:Z=[I:true| I in X];

(4) if typeof(L)==list of array[$T] of var bool then
substitute element(I,L,X)
with element(I, [extend(L[K],U)|K in 1..length(L)], extend(X,U))
in constraints
where U = unionall({indexset(L[H],1) | H in 1..length(L)})

union indexset(X,1);

and function extend is defined as:

function array[$T] of var bool: extend(array[$T] of var bool:B, set of $T:U)
= [ if J in indexset(B,1) then B[J] else false | J in U]

Rule (1) substitutes in every declaration, any variable set X of some type $T
by a Boolean array, assuming all set constraints can be mapped to equivalent
constraints on Boolean arrays. Rule (2) rewrites the set membership expression
(I in X) for any X known to be a Boolean array as a result from previous
rule, into the expression X[I].1 Zinc keeps track of which expressions have been
newly introduced as a result of the mapping. Rule (3) maps the set of values
X of some type $T into a Boolean array Z in which every element I in X is
assigned value true. Rule (4) is used for an element(I,L,X) constraint in which
L was a list of set values that has been transformed by Rule (3) into a Boolean
array. It transforms the constraint into another element constraint whose second
argument is a list of Boolean arrays, each defined over the same index set, U .
Function extend extends an array of Booleans to a larger index set U , by adding
the Boolean value false for each new index. It returns an array of Booleans over
the extended index set U . The extend function has been used for readability
reasons; in the implementation of Rule (4), the function is already unfolded. If
we apply the above rules to the following code from the generated SI-FZM for
the Open Stack Problem discussed in Section 3:

var set of {1,2,3,4,5} : T_3;
constraint element(Assign[1],[{1,3,5}, {2,4}, {2,3,4}, {1,5}], T_3);

the SD-FZM would be generated as follows (t stands for true and f for false):

array[{1,2,3,4,5}] of var bool : T_3;
constraint element(Assign[1],[[t,f,t,f,t],[f,t,f,t,f],

[f,t,t,t,f],[t,f,f,f,t],T_3);

1 indexset(A,I) returns the index set of the Ith dimension of array A.
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First, Rule (1) changes the definition of T 3 in the declaration section. Then,
Rule (3) maps all sets in the constraint into Boolean arrays. Finally, Rule (4)
makes the length of all Boolean arrays equivalent by adding false for each
missing member from set 1..5.

Our current implementation uses 20 rewriting rules of which 16 are used for
transforming set constraints to constraints over Boolean arrays, and the re-
mainder are used for implementing suitable versions of max, min, maxlist and
minlist constraints in MIP techniques.

5 Mapping to Design Models

The primary focus of this paper is to investigate whether the high-level modelling
language Zinc can provide solver and technique independent modelling. To do
so, we must demonstrate that it is possible to map SI-FZM to design models
using different solving techniques, and that the resulting design models do not
suffer substantial overhead as compared to equivalent design models written by
hand. To investigate this we have implemented mappings from SI-FZM to three
very different design models.

For practical reasons all three design models were implemented using the
ECLiPSe system [1]. We see no apparent reason why the choice of system should
impact our experiments concerning the mapping overhead.

Mapping to CP: The SI-FZM constraints are mapped to finite domain propa-
gation constraints. A simple complete tree search using variable labeling is added,
and the CP system solves the problem using search and propagation. Stan-
dard CP propagation solvers typically support the SI-FZM constraints such as
reify, >=, =\= etc. Specifically, we have used the ECLiPSe solvers ic, ic sets,
ic global and, to support search and optimisation, the ECLiPSE
branch and bound library.

We extended these libraries to provide comparison operators on compound
data objects by generating a new constraint for each comparison operator and
type. For example, the constraint [a1,a2] =< [b1,b2] effectively generates

(a1 < b1) \/ ((a1=b1) /\ (a2 =< b2))

We also implemented a more general element constraint since, like most CP
systems, ECLiPSe provides only a restricted form of element constraint which
requires the list argument to be a ground list of integers. This more general
version of element delays evaluation until two of its arguments are fixed.

Mapping to MIP: The SI-FZM constraints are mapped to integer and linear
numeric constraints, and the problem is solved using standard MIP branch and
bound search. This mapping is considerably more complex because the class of
constraints handled by MIP is much more restricted.

Set constraints are mapped to Boolean constraints, which are in turn mapped
to constraints over binary integer variables as detailed in Section 4. The remain-
ing SI-FZM constraints are handled by specific translations.
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Reified constraints are translated using the Big M technique [14]. For instance,
if we assume X and Y are numeric variables and B is a binary integer variable,
we model reify(X ≤ Y, B) by the inequalities

X + B ×M ≤ Y + M ∧X + M ≥ Y + (1−B)×M + ε

where M is a big number and ε a small number. If B becomes 0, the first
constraint is relaxed while the second constraint forces X to be greater than Y .
Otherwise, if B becomes 1, the first constraint forces X to be less than or equal
to Y while the second constraint is relaxed.

Some global constraints, such as alldifferent have a standard mapping to
MIP, as introduced in [11]. More novel and interesting is the mapping of the
element constraint. For efficiency the translation depends on how the arguments
of the constraint element(I, L, X) are instantiated.

– I is instantiated to the value i: the translator impose an equality constraint
between X and the ith element of L.

– L and X are ground: the translator finds the set of positions S = {i : L[i] =
X}. The constraint is then translated as var S : I.

– Only L is ground: We associate a binary integer variable with each member
of L. For each member Y , if X = Y , its associated binary variable becomes
1, otherwise 0. Assuming L = [a1, a2, ..., an], the constraint element(I,L,X)
is converted to the following constraints:
b1, b2, ..., bn :: 0..1, integers([b1, b2, ..., bn]),

∑n
i=1 bi = 1,

I =
∑n

i=1 i× bi, X =
∑n

i=1 ai × bi

The first constraint restricts the range of each variable bi to 0..1, the second
enforces integrality, so bi ∈ 0, 1, and the third checks that only one of the n
binary variables is non-zero. On the next line, the fourth and fifth constraints
establish the relationship between binary variables and I and X , respectively.

– Otherwise, in the case that L is not completely ground we use the above
translation except that for each non-ground ai, instead of generating the
constraint X =

∑n
i=1 ai × bi we generate the two constraints: X − M ≤

ai−M.bi, X +M ≥ ai +M.bi, where M is a sufficiently large number. These
behave like the Big M technique used for handling reification.

Mapping to local search solver: The final mapping uses a form of local
search. Annotations on the constraints in the original Zinc model guide which
constraints are enforced, i.e. hard, and which are handled by using a penalty in
an automatically generated objective function, i.e. treated as soft.

The local search algorithm used for the experiments described in the next
section is a hill-climber, with a tabu facility to prevent cycling on a plateau. The
algorithm selects a variable in conflict, if there is one, and otherwise any variable.
The value of the variable is changed and the algorithm then completes the move
by changing any other variable values that are required by the hard constraints.
The completion is greedy in the sense that each choice of variable and new
value generates only one move. The neighbourhood search first considers integer
variables generated from Zinc model variables, and then set variables, generated
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Table 1. Zinc Mapping Statistics

Problem Name Model Size Generated Model Size Mapping Time (sec)
Zinc ECLiPSe SI-FZM SD-FZM ECLiPSe SI-FZM SD-FZM ECLiPSe

Golfers (sets) 273/5 - 1082 10706 65720/2492 20.119 31.262 34.143
Golfers (arrays) 269/5 1111/5 67451 43684 17178/485 0.1 0.475 0.55
Job-Shop 514/3 1021/5 9980 9980 16634/574 1.564 1.589 1.673
Knapsack 326/1 564/3 896 589 1181/2 0.2060 0.2220 0.2250
Stable-Marriage 527/4 955/4 16064 16064 24604/672 0.4770 2.3280 2.4330
Queens 88/3 308/3 81 81 245/3 0.047 0.047 0.047
Open-stacks 264/2 723/5 5240 29649 5104/981 0.1530 1.1070 1.4250
Perfect-squares 322/3 630/6 23446 23368 43289/231 1.578 1.644 1.933
Production 173/2 367/3 173 173 173/6 0.4190 0.4250 0.4480

from Zinc set variables. Auxiliary variables, introduced during the mapping, are
automatically updated by the local search, via the introduced hard constraints
that relate them to the original variables.

6 Evaluation

Our primary motivation for developing Zinc was to validate the idea of a high-
level modelling language which is solver and technique independent. Therefore,
our evaluation aims at demonstrating two things. First, that it is possible to map
Zinc models to design models using different solving techniques. And second, that
the resulting design model does not suffer substantial overhead when compared
to an equivalent design model written by hand To achieve this, we used as
benchmarks the Zinc model for the MOSP problem (9 customers, 7 products)
given in Figure 1, and models for the following well known problems:

– Perfect Squares (7x7, 14 squares) - because of its use of disjunction
– Queens (18 queenss) - it spawns a large number of constraints.
– Knapsack (30 objects, 50%fit) - it has sets with multiple constraints on them.
– Stable Marriage (8 pairs) - it uses arrays with variable indices.
– Social Golfers (6 players, 3 groups, 3 weeks) - it uses sets of sets.
– Social Golfers (flat sets) - to reveal the cost of supporting sets of sets.
– Job Shop (4 jobs, 3 machines) - it uses many modelling features of Zinc.
– Production (3 products, 2 resources) - it involves continuous variables.

Our prototype implements the full syntax of Zinc. It is written in Mercury with
a Yacc generated parser and flex generated lexical analyser. It is about twelve
thousand lines of Mercury code, and five thousand lines of C. Experiments were
performed on a 3GHz Pentium 4 with 1Gb memory on Fedora.

Table 1 gives statistics on the mapping using MIP techniques. The results
for the other two mappings are similar, just a little bit smaller because MIP
techniques cannot support high-level constraints and must be mapped to simpler
ones. The first five columns give the size of the models as number of “tokens” /
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number of constraints for the original Zinc model (in addition to the data file),
the direct ECLiPSe program, and the generated SI-FZM, SD-FZM and ECLiPSe
model, respectively. The last three give the time in seconds taken to generate the
SI-FZM, SD-FZM and ECLiPSe model, respectively. Note that we do not give
a model written directly in ECLiPSe for Golfers (sets), since it is not naturally
expressible in ECLiPSe.

The Zinc model is consistently substantially smaller than the model written
directly in ECLiPSe. The SI-FZM and generated ECLiPSe code is orders of
magnitude larger than both the Zinc model and the direct ECLiPSe model. This
is to be expected and reflects the flattening of high-level iteration constraints.
Thus, the size is proportional to the number of constraints sent to the solver
rather than to the number of constraints in the original model. The time to
generate the ECLiPSe design model from the Zinc model is small, no more than
a few seconds, for all mappings and examples, except for Golfers (sets), due to
the number of set-related constraints generated, which grows exponentially. We
are currently studying how to tackle this issue.

Our second experiment aimed at determining if the ECLiPSe code generated
from the Zinc model had a substantial overhead as compared to an equivalent
model written directly in ECLiPSe. Thus, we compared their execution times
for all three design models: Constraint Programming (CP), Local Search (LS)
and MIP. Table 2 shows the execution time in seconds for all programs when
finding the first solution.

One possible confounding factor is the choice of search strategy. Clearly, this
can greatly effect the performance of the design model. Since we are only in-
terested on the relative performance of the two models, we ensured (as far as
possible) that the direct ECLiPSe model used the same search strategy as that
in the generated model. This is the reason behind the differences in the execu-
tion time for the two MIP models for Queens and Perfect Squares which, despite
our efforts, perform different searches and return different solutions. Note that
there were three problems whose structure was too complex to be solved with
reasonable efficiency with our generic “blind” local search algorithm. These are
indicated as “-” in the table.

Table 2. Comparing the execution times for the direct and mapped programs

Problem Name CP Model MIP Model LS Model
(cpu secs) Direct Generated Direct Generated Direct Generated
Golfers (sets) - 0.343 - 1.34 - 0.156
Golfers (arrays) 0.031 0.0 0.172 0.266 0.0 0.0
Job-Shop 0.094 0.109 4.125 3.218 0.375 0.39
Knapsack 22.828 22.675 0.00 0.00 0.797 0.828
Stable-Marriage 0.031 0.031 3.391 3.047 - -
Queens 4.125 4.109 8.64 24.094 11.61 11.641
Open-stacks 1.547 1.843 1890.797 1971.688 0.94 0.95
Perfect-squares 0.031 0.031 3.469 1.5 - -
Production 33.328 33.188 0.00 0.00 - -
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Table 2 shows no significant difference in execution time between the design
model written directly in ECLiPSe and that generated from the Zinc model.
This is true for all the design models: CP, LS and MIP. This preliminary
evidence encourages our pursuit of a high level, solver independent modelling
language.

7 Conclusion

We have presented the implementation of the first prototype of the modelling
language Zinc. Unlike virtually all other modelling languages, a Zinc model can
be mapped into design models that utilize different solving techniques such as
local search, tree-search with propagation based solvers, or MIP techniques. A
core feature of the Zinc implementation supporting such solver and technique-
independent modelling is the use of an intermediate language called Flattened
Zinc. Furthermore, the Zinc implementation provides a rewrite rule based model
to model transformation facility to allow the implementers to map the Flattened
Zinc model into one that is closer to the desired technique/solver.

We have compared a number of standard benchmarks written in Zinc and
written in ECLiPSe. The Zinc models are considerably more concise and ar-
guably more high-level and easier to understand. The ECLiPSe model automat-
ically generated from Zinc (via FZM) has similar performance to an equivalent
program written in ECLiPSe, assuming the same search method is used for
all three mappings. This provides strong support for the hypothesis that it is
possible to generate reasonably efficient design models from Zinc, and so allow
Zinc modellers to readily experiment with different solving techniques. For in-
stance, it is clear from our experiments that for the Knapsack and Production
benchmarks MIP is the better technique, while for the others the CP prop-
agation solver is the best. In the future, we plan to experiment with hybrid
techniques.

Zinc has been developed as part of the G12 project and is intended to be its
modelling language. Currently, mappings from Zinc to the three different design
models have been crafted in Mercury with some transformations using rewrite
rules. Besides the ECLiPSe platform, Zinc models will also be mapped down to
Mercury itself [12]. In the longer term, we plan to use a specialised term rewriting
language (Cadmium [2]) to implement the mappings from Zinc to Flattened Zinc
along with model-transformations.

An important component of the mapping from conceptual to decision model
is specification of the search. Currently, our implementation uses a naive search
procedure, but user-controlled search is vital for scalable performance on real
problems. Specification of search is deliberately not part of the Zinc language,
since we believe this should not be part of the conceptual model. However,
search is often naturally specified in terms of the variables and entities occurring
in the decision model, so it seems sensible to allow the search component to
be written in a Zinc-like language annotating the Zinc model. The inability to
specify problem specific search is almost certainly the reason that the local search
mapping was not competitive. We are currently exploring this.
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Abstract. Effectiveness and efficiency are two most important proper-
ties of ILP approaches. For both top-down and bottom-up search-based
approaches, greater efficiency is usually gained at the expense of effec-
tiveness. In this paper, we propose a bottom-up approach, called ILP by
instance patterns, for the problem of concept learning in ILP. This ap-
proach is based on the observation that each example has its own pieces
of description in the background knowledge, and the example together
with these descriptions constitute a instance of the concept subject to
learn. Our approach first captures the instance structures by patterns,
then constructs the final theory purely from the patterns. On the ef-
fectiveness aspect, this approach does not assume determinacy of the
learned concept. On the efficiency aspect, this approach is more efficient
than existing ones due to its constructive nature, the fact that after the
patterns are obtained, both the background and examples are not needed
anymore, and the fact that it does not perform coverage test and needs
no theorem prover.

Keywords: Inductive Logic Programming, Concept Instance, Patterns.

1 Introduction

Inductive logic programming(ILP) [4,7,3,2,1,9] is a technology combining princi-
ples of inductive machine learning with the representation of logic programming.
The goal of ILP is the inductive construction of logic programs (called theories)
from (positive and negative) examples and some incomplete background knowl-
edge. Effectiveness and efficiency are the two most important properties of any
ILP approaches [8]. Most of the existing ILP approaches are search-based, and
they are commonly classified as “top-down” and “bottom-up” methods. How-
ever, as pointed out in [8], “the problems related to search hamper both top-
down and bottom-up methods”. Top-down systems, such as Shapiro’s MIS [11]
and Quinlan’s FOIL [10] search the hypothesis space of clauses from the most
general towards the most specific (MIS employs a (slow) breadth-first search
while FOIL makes use of a greedy search driven by an information gain mea-
sure). Both approaches sacrifice effectiveness of the solution to gain better perfor-
mance. Bottom-up approaches based on inverse resolution, such as CIGOL [6],
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also need to search a large clause space, since there may be many inverse resol-
vents at any stage. Greedy search strategies gain efficiency but degrade effec-
tiveness, due to the existence of local maxima.

To avoid the problems incurred by searching through a predefined but large
clause space, the bottom-up system GOLEM [8] constructs a unique clause as
the generalization of a given set of examples, by computing the relative least gen-
eralization (rlgg) of them. We refer to this method as non-search-based because
it just tries a very limited number of generalization candidates. To generate a
single clause, GOLEM first randomly picks several pairs of positive examples,
computes their consistent rlgg’s and chooses one with greatest coverage over the
positive examples. The clause is further generalized by randomly choosing new
positive examples and computing the rlgg’s of the clause and each of the exam-
ples. This step is repeated until the coverage of the best clause stops increasing.
After one clause is learned, the positive examples covered by the clause are re-
moved, and another clause is learned from the remaining positive examples and
the negative examples. Although the efficiency of GOLEM is better than the
search-based approaches, there is a loss of effectiveness due to the restriction
placed on the hypothesis clauses—GOLEM requires them to be determinate.

The ILP approaches mentioned above are all based on θ-subsumption since
the search space is ordered by θ-subsumption rather than by implication. Since
θ-subsumption is incomplete (i.e., C ← D does not mean C subsumes D nec-
essarily), the Progol system [5] (and its Prolog version ALEPH [12]) are based
on inverse entailment, and serves as a generalization and enhancement of the
previous approaches. It is both bottom-up and top-down. For a given example,
it first computes a most specific bottom clause from the example and the back-
ground knowledge in a bottom-up way. This clause bounds the search space from
below. It then searches for a best clause in a top-down fashion, starting from the
most general clause, i.e., the one without a body. Because the space is bounded
from both above and below, the search is efficient. But we notice that the bot-
tom clause is still too big and further efficiency may be gained by bounding the
search space using a smaller one.

We also notice that the efficiency of existing ILP systems is hampered by
the cost of the coverage tests for the hypotheses, that are performed very often
during learning, even though they have only an auxiliary role in the induction
process. In addition, the background knowledge and negative examples need to
reside in memory, and the positive examples need to stay in memory as long as
they are not covered by any learned clause (assuming a covering scheme [3]).

Various efforts have been devoted to improve effectiveness and efficiency of ILP
systems. Nevertheless, we believe that there is room for further improvement.
In this paper, we present a new approach, called inductive logic programming by
instance patterns (ILP-IP). This approach follows the general lines of inductive
concept learning [3], and it is motivated by the following observations. Given a
universe of objects U , a concept C can be formalized as a subset of objects of U .
Learning a concept C means to learn a set of rules which answers the question
of whether x ∈ C for each x ∈ U .
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In inductive concept learning, each example e is a ground atom of the target
predicate p, and it represents a statement about an object obj. If the example is
positive, then obj is in the concept, otherwise, it is not. Each example is supposed
to have a corresponding set of ground facts in the background knowledge base,
that directly or indirectly describes the object obj (or its sub-objects) in the
example. For a given example, we also consider other examples as descriptions
if they are related to the example under consideration. The example and the
description facts, together, are called an instance of the concept. An instance
can be naturally represented by a ground Horn clause. Each instance exhibits
a certain structure, in terms of the description facts and the correspondence
between obj (or its sub-objects) and the description facts. The structure of an
instance is extremely important, because the rules for a concept are learned from
the structural characteristics of the concrete instances. In order to represent the
structure of an instance, general clauses with variables are quite appropriate.
They can be obtained from the instances by consistently replacing the constants
with variables. We call these rules instance patterns. Although both the instance
and their patterns are entities that normally are present in the input of a learning
problem, we have found no formal description of them or of their uses. Due to
the fact that both instances and patterns have larger granularity than individual
facts, making full use of the instances and patterns during learning may lead to
temporal and spatial efficiency, and improve effectiveness.

The key idea of the approach we describe is to first capture the structural
information of all the instances for positive and negative examples, by creating
instance patterns, and then construct a correct theory for the target concept,
by analyzing the differences and similarities between the patterns. Thus, the
approach includes two stages—pattern construction and theory construction.

The advantages of our approach over existing ILP systems include both effec-
tiveness and efficiency. This approach learns Horn programs allowing recursion
and function symbols, but does not assume determinacy of the learned clauses.
The efficiency of our approach stems from its constructive nature, from the fact
that after the patterns are obtained, both the background and examples are not
needed anymore, and the fact that it does not perform coverage test and needs
no theorem prover.

Since this paper only represents our preliminary results, we assume a simple
problem setting. We are given a target predicate p (to be learned), a background
knowledge B of ground facts (not containing the target predicate), and a set of
ground positive and negative examples E+ and E− for p s.t.

B �|= e+ for all e+ ∈ E+ (1)
B �|= e− for all e− ∈ E− (2)

The objective is to find a Horn logic program Σ satisfying

B ∪Σ |= e+ for all e+ ∈ E+ (3)
B ∪Σ �|= e− for all e− ∈ E− (4)
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We assume batch learning mode in this article, i.e., all the examples are fed to
our learner at one time before the learning process starts. A learned program Σ
is said to cover example e, w.r.t. background knowledge B, if Σ ∪ B |= e. Σ is
said to be complete w.r.t. E+ if (3) is satisfied, and consistent w.r.t. E− if (4)
is satisfied. Σ is said to be correct if both (3) and (4) are satisfied.

2 Concept Instances

2.1 Connectedness and Constant Types

Definition 1 (Connectedness). Let constants(A) denote the set of distinct
constants in ground atom A, and let φ(A, B) = constants(A) ∩ constants(B).
Distinct ground atoms A and C are connected (A 
 C) if φ(A, C) �= ∅, or there
exists a ground atom B such that A �= B, C �= B, A 
 B and B 
 C. Ground
atom A and itself are connected at depth 0 (denoted A 
0 A). Distinct ground
atoms A and B are connected at depth 1 (denoted A 
1 B) if φ(A, B) �= ∅.
For distinct ground atoms A and C, A 
d+1 C if there is a ground atom B s.t.
B �= A, B �= C, constant(B) �= ∅, A 
d B, B 
1 C and φ(A, B)∩φ(C, B) = ∅.

If ground atoms A and B are connected (at depth d), we say that A connects to
B (at depth d). The connectedness is not sufficient for determining which facts
in our background knowledge describe the example in a way we intend.

Example 1 (Unintended Connectedness). Let us consider E= {daughter(mary,
ann), daughter(eve,tom)}, and a background knowledge B as follows:

parent(ann,mary). parent(tom,eve).
female(ann). female(mary). female(eve). male(tom).
age(mary,young). age(ann,old). age(eve,young). age(tom,middle).
family_rank(ann,2). family_rank(tom,2).

In B, we intend to describe two pairs of people, i.e., 〈mary, ann〉 in the left half ,
and 〈eve, tom〉 in the right half. However, if the connectedness defined in Def. 1
is applied, then all the facts will be included for describing each example, since
all the facts are connected to each example.

However, it is easy to observe that the constants “young” and “2” are the only
constants that establish connectedness between the atoms in the left half and
those in the right half. If these two constants are not considered as connecting,
then the problem disappears. Thus, to use the connectedness for collecting the
facts that describe a given example, we should predefine a set of constants that
do not establish connectedness at all and a set of constants that do establish
connectedness. We call these two sets of constants non-object type constants
and object type constants, respectively. Informally, a constant is of object type
if it is intentionally used to represent some object (e.g., mary, ann), and is of
non-object type otherwise. Non-object constants include those used to represent
quantitative properties, or categories to which an object belongs (e.g., young,
middle and 2). Thus, connectedness is established only by object type constants.
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Constants basically fall into two categories, non-numerical and numerical. By
default, we consider non-numerical constants as of object type and consider nu-
merical constants as of non-object type. Exceptions to the default rule (e.g.,
non-numerical constants to be treated as non-object) are expressed using decla-
rations, based on two reserved predicates non object and object. The declara-
tion object(c) specifies that the constant c is of object type. The declaration
object(q,i) specifies that all constants occurring at the argument position i of
predicate q are of object type. Similarly, the declaration non object(c) specifies
that the constant c is of non-object type, and the declaration non object(q,i)
specifies that all the constants occurring in the argument position i of predicate
q are of non-object type.

Example 2 (Constant Types). Suppose the following constant type declarations
are with the background knowledge B in Example 1:

non_object(young). non_object(middle). non_object(old).

The non-numerical constants ann, mary, tom and eve are, by default, of object
type, while the non-numerical constants young, middle and old are of non-object
type by declaration. The numerical constant 2, representing the family rank of
a people, is of non-object type, by default.

2.2 Relative Connectedness and Instance

Let us define connectedness relative to a set of constant type declarations D.

Definition 2 (Relative Connectedness). Given a set of constant type decla-
rations D and ground atom A, let obj constants(A) be the set of distinct object
constants in A according to D. For ground atom A and B, we let φ′(A, B) =
obj constants(A) ∩ obj constants(B). Distinct ground atoms A and C are con-
nected relative to D (denoted A 
D C), if φ′(A, C) �= ∅, or there exists an
ground atom B such that A �= B, C �= B, A 
D B, and B 
D C. The ground
atoms A and B are connected at depth 1 relative to D (A 
1

D B) if φ′(A, B) �= ∅.
We have that A 
d+1

D C if there exists some ground atom B such that A �= B,
C �= B, obj constant(B) �= ∅, A 
d

D B, B 
1
D C and φ′(A, B) ∩ φ′(C, B) = ∅.

If the atoms A and B are connected (at depth d) relative to D, A is said to
connect to B (at depth d) relative to D.

Definition 3 (Description Facts). Given an example e ∈ E, a background
knowledge B, a set of constant type declaration D, an atom A ∈ B ∪ E is called
a description fact of e relative to D if A �= e and e 
D A.

However, even with the unintended facts eliminated, the number of collected
description facts may still be large. We differentiate them by the depth at
which they are connected to the example, and drop all the description facts
connected to the example at a depth greater than some predefined threshold.
Let us call this value maximum connected depth (mcd). We use the predicate
max connected depth/1 to declare mcd. The dropped description facts are con-
sidered as less important, as they less directly describe the example.
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Example 3 (Maximum Connected Depth). Let us continue Example 1, but as-
sume the constant type declarations of Example 2. Also, we assume that a new
atom, parent(eve,mary), is added to the background knowledge. The connect-
edness between example daughter(mary,ann) and the description facts is shown
in Fig. 1. The root represents the example, each node represents a group of facts,
and each edge stands for the connectedness established by the constants labeling
the edge. The description facts of example daughter(mary,ann) are connected
to the example at depth 1, 2, and 3, respectively. Note that the other example
daughter(eve,tom) is connected to example daughter(mary,ann) at depth 2.
If mcd is chosen as 1, then all the lower six facts are excluded.

daughter(m, a)

m,a
���������

�����������
m

��

a
���������

�����������

parent(a, m), femal(m), female(a) parent(e, m), age(m, young)

e�
��������

������������ e

��

e
���������

�����������

age(a, old), family rank(a, 2)

female(e) parent(t, e), daughter(e, t)

t
���������

������������� t
���������

�����������

age(e, young)

male(t) age(t, middle)

Fig. 1. Example of Connectedness (m=mary, e=eve, a=ann, t=tom)

We define the instance for an example as itself plus the set of description
facts that connect to the example within some given depth and relative to some
constant type declarations. We represent an instance as a ground Horn clause.

Definition 4 (Concept Instance). Given a background knowledge B, a set of
examples E = E+ ∪ E−, a set of constant declarations D, and a value for mcd,
the instance of the target concept regarding example e ∈ X (X = E+ or E−),
denoted by I = instancemcd

D (e,X ,B), is defined by a partially ordered ground
definite program clause1 e ← b1, . . . , bm. where each bi (1 ≤ i ≤ m) is a ground
atom, bi ∈ B ∪ X , bi 
di

D e, di ≤ mcd, and bi is left of bj if di < dj. I is
called positive if e is a positive example, and negative if e is a negative example.
Concept instances are also called instances for short.

The object constant set of a concept instance I, denoted by object constant set(I),
is defined as the set of object constants that occur in I. It is easy to see that
instancemcd

D (e,X ,B) |= e.

2.3 Data Localization

We call the process of creating instances data localization, because each of the
resulting instances entails the corresponding example locally, without using any
other data. Fig. 2 describes an algorithm for creating the instance for a given
1 If m = 0, there is no description facts in B ∪ X for e and no instance is defined.



236 C. Liu and E. Pontelli

example e from a set of examples X (X = E+ or E−) and a background knowledge
B, given the set of constant type declarations D and a value of mcd. After
initializing the instance I as a bodyless rule e ←, this algorithm I grows I by
adding to the body all the ground facts in B ∪X connected to e at depth depth
relative to D in order, i.e., depth = 1, 2, . . . , mcd. A set F keeps all the atoms
to which e is connected at depth depth− 1, and a set F ′ stores all the atoms to
which e is connected at depth depth. If no new fact is found to be connected to
e at depth depth, i.e., F ′ = ∅, then the process will stop.

Input : e,X , B, D and mcd
Output: instancemcd

D (e, X , B)
Algorithm: CreateInstance(e,X ,B, D, mcd)
1 B′ = B ∪ X
2 I = e ← .
3 F = {e} //all atoms connected to e at depth 0
4 depth = 1 // start by atoms connected to e at depth 1
5 do
6 F ′ = ∅ // no atoms connected to e at depth depth + 1 yet
7 for each A ∈ F // A �depth

D e
8 for each B ∈ B′ \ F ′ (in order) s.t. A �1

D B // B �depth+1
D e

9 if B �∈ I
10 append B to the end of the body of I
11 F ′ = F ′ ∪ {B}
12 B′ = B′ \ {B}
13 if F ′ = ∅ // no atoms connected to e at depth depth + 1
14 break
15 F = F ′ // all atoms connected to e at depth depth + 1
16 depth = depth + 1 // next depth
17 while depth ≤ mcd
18 output I

Fig. 2. Data Localization Algorithm

Example 4 (Data Localization). Consider learning predicate daughter/2 [3].
% positive examples: % negative examples:

daughter(mary,ann). daughter(tom,ann).
daughter(eve,tom). daughter(eve,ann).

% knowledge base :
max_connected_depth(1).
parent(ann,mary). female(ann). parent(ann,tom). female(mary).
parent(tom,eve). female(eve). parent(tom,ian).

% positive instances
daughter(mary,ann) :- parent(ann,mary), female(ann), parent(ann,tom), female(mary).
daughter(eve,tom) :- parent(ann,tom), parent(tom,eve), female(eve), parent(tom,ian).

% negative instances
daughter(tom,ann) :- parent(ann,mary), female(ann), parent(ann,tom),

parent(tom,eve), parent(tom,ian), daughter(eve,ann).
daughter(eve,ann) :- parent(ann,mary), female(ann), parent(ann,tom),

parent(tom,eve), female(eve), daughter(tom,ann).

For a given example e, a set of examples X with the same sign as e, a background
knowledge base B, a set of constant type declarations D, and a value for mcd,



Inductive Logic Programming by Instance Patterns 237

the data localization algorithm in Fig. 2 collects in instancemcd
D (e,X ,B) all the

description facts B ∈ X ∪ B which satisfy e 
depth
D B for depth = 1, 2, . . . , mcd.

There are some consequences that can be proved from the above definitions.
Given an example e, the concept instance for e generated by the data localization
algorithm is unique. Moreover, for a concept instance I = instancemcd

D (e,X ,B)
created by the algorithm, there is no ground atom q(x1, . . . , xk) ∈ B ∪ X s.t.

1. q(x1, . . . , xk) �∈ body(I),
2. e 
depth

D q(x1, . . . , xk), depth ≤ mcd, and
3. {x1, . . . , xk} ∩ object constant set(I) �= ∅.

If |B ∪ X | = n, all the predicates have arity less than k, and the output
instance has m atoms in the body, then we can prove that the complexity of the
algorithm in Fig. 2 is O(n) if m � n and k � n.

3 Instance Patterns

Instance patterns are devised to capture the structure of the concept instances.
In this section we provide definitions regarding instance patterns, present an
algorithm for constructing patterns for a given set of examples and a given
background knowledge, and discuss their properties.

Definition 5 (Instance Pattern). The instance pattern of I with respect to a set
D of constant type declarations, denoted by pattern(I,D), is defined as an ordered
definite program clause, pattern(I,D) = Iθ0 where θ0 = {c1/X1, . . . , cn/Xn} is
an inverse substitution such that

1. {c1, . . . , cn} = object constant set(I) according to D,
2. ci always first occurs in I before cj for all i < j, and
3. X1, . . . , Xn are distinct variables.

A pattern is a positive (negative) pattern if it is obtained from a positive (neg-
ative) instance. Instance patterns are also called patterns for short.

In the rest of the discussion, given an instance I, we say that I matches a
pattern P if I and P have the same number of literals and there is a variable
substitution θ such that I = Pθ. This leads us to the definition of a super-pattern
(sup-pattern). A sup-pattern S of pattern P = A ← B1, . . . , Bn is defined as
S = A ← C1, . . . , Cm where m > 0, {C1, . . . , Cm} ⊂ {B1, . . . , Bn}, and S is an
allowed clause2 with a finite variable-depth (see Def. 7). S subsumes P and is
thus more general than P .

A positive pattern P is consistent if there is no negative pattern N s.t. P is
identical to or more general than N . Given a set I of concept instances and a
pattern P obtained from an instance I ∈ I, the strength of a positive (negative)
pattern P is the number of positive (negative) instances in I that match P .

2 A clause is allowed if all variables in the head appear also in the body.
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Definition 6 (Local Knowledge Base and Cover Set). Let us assume that
the instance pattern P covers a set I of instance I = instancemcd

D (e,X ,B). The
local knowledge base of P , denoted by KBlocal(P ), is the set of all ground atoms
in the bodies of I ∈ I. The cover set of P , denoted by cover set(P ), is the set
of all e in I ∈ I.

Definition 7 (Variable Depth [2]). The variable-depth of a variable X in
a pattern A ← B1, . . . , Bn is defined as follows. If X occurs in A, then its
variable-depth is 0. Suppose X first occurs in Bi. If none of the other variables
in Bi occurs in A← B1, . . . , Bi−1, then X has variable-depth ∞. Otherwise, the
variable-depth of X is 1 plus the variable-depth of the variable in Bi with the
greatest variable-depth occurring in A← B1, . . . , Bi−1. The variable-depth of an
ordered definite program clause is the largest variable-depth of its variables.

Input : X , B, D and mcd
Output: a set of patterns P
Algorithm: PatternConstruction(X ,B, D, mcd)
1 P = ∅
2 for each e ∈ X
3 I = CreateInstance(e,X , B, D, mcd)
4 P = pattern(I,D)
5 P = P ∪ {P}
6 increment strength(P ) by 1
7 output P

Fig. 3. Algorithm for construction of instance patterns

An algorithm for obtaining instance patterns from a set of examples X and a
background knowledge B is presented in Fig. 3. Note that none of the instances
is stored, and if there are more than one instances that match a same pattern,
only one pattern is stored for them. In other words, the set of facts in background
knowledge B and the set of examples X are transformed to a potentially much
smaller set of patterns. It is easy to see that the complexity of this algorithm is
O((|B|+ |X |) · |X |).
Example 5 (Instance Pattern). The patterns obtained from the instances in Ex-
ample 4 are as follows.

% positive patterns
daughter(A,B) :- parent(B,A), female(B), parent(B,C), female(A).
daughter(A,B) :- parent(C,B), parent(B,A), female(A), parent(B,D).

% negative patterns
daughter(A,B) :- parent(B,A), female(B), parent(B,C), parent(A,D),

parent(A,E), daughter(D,B).
daughter(A,B) :- parent(B,C), female(B), parent(B,D), parent(D,A),

female(A), daughter(D,B).

It is possible to prove that instance patterns have the following properties.
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1. A pattern obtained from instance I = instancemcd
D (e,X ,B) is an allowed

definite program clause which has variable-depth d ≤ mcd.
2. For any pattern P , P ∪ KBlocal(P ) |= cover set(P ).
3. If pattern P is a sup-pattern of Q, then P ∪ KBlocal(Q) |= cover set(Q).
4. For a Horn clause C, if {C} ∪ B ∪ X |= e, e ∈ cover set(P ), then C = P or

there is a variable substitution θ s.t. Cθ = P or Cθ is a sup-pattern of P .
We can also prove that the set of all positive patterns P+ forms a correct theory.

Theorem 1 (Correctness of the Set of Positive Patterns). For a given
B and E = E+ ∪ E−, if there exists a Horn solution Σ for the learning problem
such that Σ �= E+, then a theory Σ0 consisting of the set of positive patterns P+

generated by the algorithm in Figure 3 is correct.

4 Theory Construction

We have already obtained a correct theory Σ0 for the problem of concept learn-
ing, according to Theorem 1. This theory consists of all the positive patterns.
However, Σ0 may contain too many clauses, and the clauses may contain re-
dundant literals. For example, there are two lengthy positive patterns in Ex-
ample 5, while a much more efficient theory is one containing the single clause
daughter(A, B) ← parent(B, A), female(A). The second stage of our approach
is to construct a satisfactory theory of the target concept by reducing the ob-
tained positive patterns while preserving completeness and consistency. While
the acquisition of patterns constitutes one step of generalization during the learn-
ing, this stage acts as a further generalization step.

The goal of this stage is to remove both the redundant patterns and redundant
body atoms from P+, and thus obtain a smallest set of smallest consistent Horn
clauses. Our algorithm for theory construction is presented in Figure 4. The
construction is done by considering the set of positive patterns as a whole, rather
than one at a time. As the first sub-step, we first eliminate the obvious redundant
patterns. A pattern P ∈ P+ is obvious redundant if there exists a pattern
Q ∈ P+ such that Q is more general than P .

In our second sub-step, we eliminate those not so obvious redundant patterns
and redundant atoms in the bodies by making use of the notation of sup-pattern
introduced earlier. We first construct a set Super(Pi) of best valid and consistent
sup-patterns for each Pi ∈ P+. Each sup-pattern in Super(Pi) has the small-
est number of body atoms. The set Super(Pi) is determined by first trying the
sup-patterns formed out from body atoms of Pi with smaller variable-depths.
Once we find the set of smallest consistent sup-patterns formed from body atoms
with variable-depth ≤ d, there is no need to try sup-patterns with atoms whose
variable-depths are greater than d. Then we start with the first pattern Pi ∈ P+

and compute the intersection of Super(Pi) and each Super(Pj)(i �= j) in the
following iterative way. If Super(Pi) ∩ Super(Pj) = ∅, no reduction can be
made between Pi and Pj . Otherwise, two patterns Pi and Pj are reduced to
one pattern by updating Super(Pi) with Super(Pi) ∩ Super(Pj) and dropping
Pj from P+ (since at least one sup-pattern of Pj is already in Super(Pi)). We
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Input : P+, P−

Output: a Horn theory Σ
Algorithm: TheoryConstruction(P+,P−)

// sub-step 1: remove obvious redundant patterns
1 remove from P+ all Q for which there exists P ∈ P+

s.t. P is more general than Q
// sub-step 2: remove not so obvious redundant patterns
// and redundant body atoms

2 let Super(Pi) = set of best valid and consistent
sup-pattern of Pi ∈ P+

3 Σ = ∅
4 while P+ �= ∅
5 let Pi be the first pattern in P+

6 for each Pj ∈ P+ s.t. Pj �= Pj

7 if Super(Pi) ∩ Super(Pj) �= ∅
8 Super(Pi) = Super(Pi) ∩ Super(Pj)
9 remove Pj from P+

10 Σ = Σ ∪ {Q} where Q is any one in Super(Pi)
11 remove Pi from P+

// sub-step 3: further simplification using non-ground clauses
12 for each P ∈ Σ
13 while there exists a non-ground clause C ∈ B

s.t. body(C) ⊆ body(P ) after variable renaming
replace body(C) in body(P ) with head(C)

14 return Σ

Fig. 4. Theory Construction Algorithm

iterate on another Pj using the updated Super(Pi). When all Pj ’s are considered,
Super(Pi) contains the set of sup-patterns to which Pi and all Pj ’s satisfying
Super(Pi) ∩ Super(Pj) �= ∅ are reduced. Since we are currently only interested
in finding one correct theory but not all the correct theories, it suffices to take
only one sup-pattern of Pi in Super(Pi) and add it to the final theory Σ.

From the patterns in Example 5, a theory Σ containing only the following
rule is constructed by the algorithm:

daughter(A,B) :- parent(B,A), female(A).
The following example shows the capability of our approach for learning recur-

sive programs, where predicate g(A, B) means A is greater than B and s(A, B)
means that B is the successor of A.

Example 6 (Theory Construction).

%background knowledge % E=E+ %constructed theory
max_connected_depth(2). g(4,3). % r1: covers {g(2,1),g(3,2),g(4,3)}
object(s,1). g(4,2). g(A,B) :- s(B,A).
object(s,2). g(4,1).
object(g,1). g(3,2). % r2: covers {g(3,1),g(4,1),g(4,2)}
object(g,2). g(3,1). g(A,B) :- g(A,C), g(C,B).
s(3,4). s(2,3). s(1,2). g(2,1).
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It is easy to prove that the theory Σ constructed by the algorithm in Fig. 4 is
correct. Assume all the predicates in the background knowledge B have arity
less than k, and m be the maximum number of body atoms in the patterns. Let
P+ and P− be the set of positive and negative patterns respectively. Then the
complexity of the algorithm in Fig. 4 is O( |P+| m2k2(|P+|+ |P−| · 2m) ).

5 Discussion

5.1 General Characteristics

We outline our approach as a general algorithm (the ILP-IP algorithm) in Fig-
ure 5. Our approach has the following characteristics.

1. It is bottom-up, and learns a theory for the target concept in a purely
constructive way—the instance patterns are constructed from data local-
ization and the final theory is constructed directly from the fixed set of
patterns.

2. It is not search-based. Although it performs a “search” for smallest consistent
sup-patterns, it searches only through a definite set of possible sup-patterns
of a given pattern, but not (part of) the large hypothesis space (e.g., formed
by variabilization).

3. No coverage test of the sup-patterns against the examples is performed. The
only test needed is whether a positive pattern is a super-pattern of some
negative patterns or not.

4. After the patterns are obtained, we do not need the background knowledge
and the examples anymore while constructing the theory.

5. It learns in batch mode, but does not use the covering technique.
6. No theorem prover is needed.

Input : B, E ,D, mcd
Output: a theory Σ
Algorithm: ILP -IP (E ,B, D, mcd)
1: Let E = E+ ∪ E−

2: P+ = PatternConstruction(E+, B, D, mcd)
3: P− = PatternConstruction(E−, B, D, mcd)
4: Σ = TheoryConstruction(P+, P−)
5: output Σ

Fig. 5. ILP-IP Algorithm

5.2 Comparisons

We compare our approach with two existing most successful bottom-up ap-
proaches, GOLEM and Progol. GOLEM [8] is based on the notation of rlgg.
This notation replaces search by the process of cautiously constructing a unique
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clause which covers a given set of examples. The rlgg of two example e1 and e2
w.r.t. background knowledge B3 is defined as

rlggB(e1, e2) = lgg(e1 ← B, e2 ← B) (5)

Since the generated rlgg’s are usually very long, the computation of rlgg’s is
immediately followed by a post-processing phase, called reduction, where the
irrelevant literals are removed. Our approach is similar to GOLEM, in that
both GOLEM and our approach are constructive, start learning from ground
clauses and basically go through two steps of generalization. But they differ as
follows:

• The ground clauses in our approach are concept instances, where the body
contains only a subset of B, and the subset for one example is usually different
from those for other examples. We achieve this by eliminating unintended
descriptions. With rlgg, however, the body of each ground clause (e.g., e1 ←
B in (5)) constantly contains the whole set B for any example.

• GOLEM has to restrict the hypothesis clauses to be only determinate, to
keep the rlgg length small. The determinacy is checked semantically during
the post-processing. Our approach does not have this restriction.

• To construct a compressed theory, GOLEM randomly picks up more than
one pair of (positive) examples and computes their rlgg’s, but only takes
the one with the best coverage. This means that most of the computation
of rlgg’s are discarded, and GOLEM relies on coverage test. The theory
construction stage of our approach does not incur this waste and does not
need coverage tests.

Our approach is also similar to Progol [5]. Progol first bottom-up computes
the bottom clause for the first positive example. Then it searches top-down the
bounded hypothesis space for a clause with the best coverage. The two stages of
our approach roughly correspond to these two steps of Progol. However, signifi-
cant differences exist:

• For each selected positive example, Progol computes one bottom clause and
induces one best clause. Our approach first computes patterns of all exam-
ples, and then constructs the final theory as a whole.

• In general, the bottom clause can have arbitrarily large cardinality. Progol
uses mode declarations to constrain the search for clauses which θ-subsume
the bottom clause. Even with the help of mode declarations, the cardinality
of the bottom clause is still much larger than that of the patterns generated
by our approach. The obvious reason is that the computation of the bottom
clause is based on constant matching, treating all the constants equally. In
our approach, in contrast, we classify constants and treat them differently.
Since the size of search space grows exponentially with the cardinality of the
bottom clause, significant efficiency gains can be obtained if Progol adopts
our constant declarations instead of mode declarations.

3 GOLEM requires an extensional background knowledge base.
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• The “search” occurring in the theory construction stage of our approach
is totally different than the top-down search of Progol. Top-down search is
essentially generate-and-test. We do not try any sup-patterns obtained by
variabilizing the given pattern. We do not test any generated sup-patterns
against the examples either. What we test is only the sup-pattern validity
of the very limited set of possible clauses formed using the same set of body
literals in the given pattern. In other words, the “search” degenerates to
construction in our approach.

• If viewing our approach as “searching”, the search space we need to go
through is bounded simultaneously by as many clauses as the positive pat-
terns rather than one single bottom clause.

5.3 Efficiency and Effectiveness

By combining the complexities of the two stages, and assuming that both m and
k are constants, we obtain a total complexity of

T ime(ILP -IP ) = O((|B|+ |E|) · |E|) + O( |P+| · (|P+|+ |P−|) ). (6)

It is reasonable, in practice, to assume that the number of patterns is much
smaller than the number of instances. Thus, the second term in (6) can be ne-
glected. We also assume |E| ≤ |B|. The resulting complexity is T ime(ILP -IP ) =
O(|B|2).

As for GOLEM [8], its main algorithm uses a covering technique. The main
loop terminates after |E| iterations. Within each iteration, a random sample of
size s is taken from the positive examples. The number of rlgg’s computed is |E|·s
and the coverage test is performed for each rlgg. It takes O(|B|2) to compute one
rlgg, and it takes |E| · |B| to perform a coverage test. The resulting complexity
is T ime(GOLEM) = O(s|E| (|B|2 + |E| · |B| ) ) = O(|B|3).

Progol [5] also uses the covering technique. The main loop is executed |E|
iterations. Within each iteration, it first computes the most specific bottom
clause ⊥ for the first example, taking d·r·|M |·|B|, where r and d are the recalling
and depth parameters of the algorithm, |M | is the number of mode declarations,
and |B| denotes the number of facts4 in B. Searching the bounded clause space
of size |ρ| for a best clause takes |ρ| · |E| · |B|. Note that |ρ| is exponential in |⊥| in
general. The complexity of Progol is at least T ime(ALEPH) = O(|E| (rd|B|+
|ρ| · |E| · |B| ) ) = O(|B|3).

As can be seen above, the complexity of our approach is one order lower
than GOLEM and Progol. This is obtained by using the notation of instance
patterns, but not at the sacrification of effectiveness as other approaches do.
Potentially, this efficiency improvement can enable us to avoid any restrictions
placed on the hypotheses due to the magnitude of the search space. In principle,
our approach learns Horn programs allowing recursion and function symbols
without restricting them to contain only determinate clauses.

4 Progol and ALEPH do not require background knowledge to be only facts.
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6 Conclusion

The ILP problem has long been thought of and solved as a search problem.
GOLEM was the first attempt to avoid this by exploiting the notation of rlgg.
Existing ILP systems are still searching an improved balance between learnability
(effectiveness) in a large search space and efficiency. The approach presented
in this paper represents a step towards a new solution to the ILP problem. Its
novelty lies in the more direct use of concept instance and instance pattern during
the learning process. These two entities are actually present in all the learning
problems, but we propose a more formal and direct use. Our discovery that these
entities might be very useful in ILP is based on the observation that the constants
appearing in logic programs either represent some objects or some properties
of the objects, and they can be distinguished by some declaration mechanism.
A set of basic algorithms related to these entities have been developed, and
used to establish a process to construct a theory, with significant advantages.
Implementation of the approach is still in progress.

Future work includes handling classification errors if the consistency condi-
tion can not be strictly satisfied, incorporating non-extensional background in-
formation (including non-ground facts and non-ground program clauses), and
comparing the performance of our approach with existing approaches. Because
our approach is both time and space efficient, parallelization may also lead to
excellent speedups for very large problems. New learning approaches can be also
developed on top of what we presented here—e.g., a method for non-monotonic
inductive learning can be designed on the proposed foundations.
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Abstract. Software model checking with abstraction refinement is
emerging as a practical approach to verify industrial software systems. Its
distinguishing characteristics lie in the way it applies logical reasoning to
deal with abstraction. It is therefore natural to investigate whether and
how the use of a constraint-based programming language may lead to an
elegant and concise implementation of a practical tool. In this paper we
describe the outcome of our investigation. Using a Prolog system together
with Constraint Logic Programming extensions as the implementation
platform of our choice we have built such a tool, called ARMC (for Ab-
straction Refinement Model Checking), which has already been used for
practical verification.

1 Introduction

Software model checking with (counterexample-guided) abstraction refine-
ment is emerging as a practical approach to verify industrial software
systems [2,4,5,13,16]. Its distinguishing characteristics lie in the way it applies
logical reasoning to deal with abstraction. In particular, it implements the auto-
matic construction of abstract domains based on logical formulas. This construc-
tion requires intricate operations on logical formulas, operations which involve
both syntax-based manipulations and semantics-based logical operations such
as entailment tests between constraints. It is therefore natural to investigate
whether and how the use of a constraint-based logic programming language may
lead to an elegant and concise implementation of a practical tool. In this paper
we describe the outcome of our investigation.

Using a Prolog system together with extensions [15,17] as the implementation
platform of our choice we have built such a tool, called ARMC (for Abstrac-
tion Refinement Model Checking). The tool has already been used for practical
verification [20].

Our work builds upon, and also crucially differs from previous efforts to
exploit constraint based programming languages for the implementation of
model checkers (see e.g. [1,8,9,10,11,18,19,21]). Those efforts relate the fixpoint
definitions of runtime properties of programs with the fixpoint semantics of
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constraint logic programs. We also take advantage of this connection, but our
implementation may best be understood by its operational reading. We exploit
the logical reading of programming language constructs for the implementation
of operations that are specific to abstraction and abstraction refinement. As far
as we know, none of the existing CLP/logic-based implementations of model
checkers performs abstraction refinement.

We structure the paper as follows. First, we describe the representation of
the program to be verified by Prolog facts trans(...) that are stored in the
Prolog database. We then define the procedure post that implements the one-
step-reachability operator over sets of states, each set being represented by a
constraint. The abstraction procedure abstract takes a set of predicates (which
are atomic constraints stored in the Prolog database in a single fact preds(...))
and maps a set of states to the corresponding over-approximation. We define
abstract, concretize and abstract_post. We are then ready to define the
abstract reachability procedure abstract_fixpoint.

If the abstraction is too coarse then the call to abstract_fixpoint may lead
to the call of a refinement procedure refine, which updates the Prolog fact
preds(...) stored in the Prolog database. The subsequent iteration calls the
abstract reachability procedure again, but now the procedure abstract refers
to the new set of predicates. The refinement procedure is based on the pro-
cedure feasible that performs an intricate analysis of counterexamples that
are possible in the abstract, but may be absent in the concrete. The insights
that are gained during this analysis guide the discovery of new predicates which
are added in order to refine abstraction (for a detailed account on the underly-
ing algorithm we refer to [3]). We first define the procedure feasible and then
refine, and are then finally ready to define the ‘main’ procedure ARMC, which
is abstract_check_refine.

2 From Program Statements to Prolog Facts trans(...)

We illustrate the translation of the program to be verified into the representation
by Prolog facts in Figure 1. We translate each statement of the corresponding
goto program by a trans(...)-fact (all trans(...)-facts together represent the
transition relation of the program to be verified). In the next section, we will use
calls of the form trans(FromState, ToState, Rho, StmtId) where the first
two arguments represent the states (control location and data variables) before
and after the execution of the statement. The third argument will be bound to a
term that stands for a transition constraint, e.g. Rho = (Xp=X+1, Yp=Y). Here
the logical variables X and Xp (read “x-prime”) refer to the before- and after-
values of the C program variable x. Transition constraints relate the values of
program variables before and after the transition. We use the expression language
of the applied CLP system to form transition constraints. The fourth argument
will be bound to the label that identifies the statement. We encode the initial
and error conditions of the program with the help of the distinguished locations
start(...) and error(...).
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0: int x=0, y=0;
1: while ( x =< 10 ) {
2: x=x+1;
3: y=y+1;

}
4: assert( x==y );

�0 �1

�2 �3

�4

�err

stmt0

stmt1

stmt2

stmt3

stmt4

stmt5

start(ctrl(loc_0)).

error(ctrl(loc_err)).

trans(s(ctrl(loc_0), data(X, Y)), s(ctrl(loc_1), data(Xp, Yp)), (Xp=0, Yp=0), stmt_0).

trans(s(ctrl(loc_1), data(X, Y)), s(ctrl(loc_2), data(Xp, Yp)), (X=<10, Xp=X, Yp=Y), stmt_1).

trans(s(ctrl(loc_2), data(X, Y)), s(ctrl(loc_3), data(Xp, Yp)), (Xp=X+1, Yp=Y), stmt_2).

trans(s(ctrl(loc_3), data(X, Y)), s(ctrl(loc_1), data(Xp, Yp)), (Xp=X, Yp=Y+1), stmt_3).

trans(s(ctrl(loc_1), data(X, Y)), s(ctrl(loc_4), data(Xp, Yp)), (X>10, Xp=X, Yp=Y), stmt_4).

trans(s(ctrl(loc_4), data(X, Y)), s(ctrl(loc_err), data(Xp, Yp)), (X=\=Y, Xp=X, Yp=Y), stmt_5).

Fig. 1. Example program in C syntax and its representation by Prolog facts. The
correctness of the program is defined by the validity of the assertion in line 4. In terms
of the corresponding goto program depicted by the control-flow graph this means the
non-reachability of the error location �err from the start location �0. It is always possible
to encode the initial and the error condition of the program with the help of special
locations �0 and �err.

3 One-Step-Reachability Operator post

Figure 2 shows the procedure post that implements the one-step-reachability
operator over sets of states.

We “symbolically” represent a set of states by a constraint. For example, the
constraint Y>=5, X=Y represents the set of all valuations of the program variables
(see Figure 1) where the program variable y is not less than 5 and is equal
to the value of the program variable x. A program state is determined by the
valuation of the program variables and the control location. Assume the bindings
Phi = (Y>=5, X=Y), and FromState = s(ctrl(loc_2), data(X, Y)). Then
Phi and FromState together represent the set of program states at the location �2
with the valuations of the program variables constrained as described above. We
explain the use of the data(...) term later.

We consider the set of successor states under the execution of a particular
program statement in the goto program. The forth parameter of post is used
to identify this statement. In our example, the identifiers of statements, i.e. the
possible values of StmtId, range from stmt 0 to stmt 5.

We use our example to illustrate how post is executed. Assume the above
bindings for Phi and FromState. The call {Phi} injects the constraint Y>=5,
X=Y into the constraint store. The next call non-deterministically selects a
trans(...) fact from the database, say the fact identified by stmt 2. This cre-
ates the bindings
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ToState = s(ctrl(loc_3), data(Xp, Yp)),
Rho = (Xp=X+1, Yp=Y),
StmtId = stmt_2.

We observe that the variables in the term bound to FromState are unified with
the from-variables of the transition. In the example, for legibility, we have already
chosen the same variables, i.e., X and Y both for the variables in FromState and
for the from-variables.

The call {Rho} injects the transition constraint Xp=X+1, Yp=Y into the con-
straint store. This means that the constraint store now contains the constraint
Y>=5, X=Y, Xp=X+1, Yp=Y. The projection of this constraint on the variables
Xp and Yp represents the set of valuations of the program variables after the ap-
plication of the statement identified by StmtId. This projection yields Xp=1+Yp,
Yp>=5. It is instructive to reflect that this constraints indeed represents the suc-
cessor values of x and y after the increment operation for x.

The choice of the variables for the projection is determined by the term bound
to ToState, which is s(ctrl(loc 3), data(Xp, Yp)) in our example. The pro-
jection is performed by the elimination of existentially quantified variables, in
the example X and Y. We do not explicitly perform this elimination (neither
the renaming of primed by unprimed variables, which is usually required by
implementations of successor operators).

post(Phi, FromState, ToState, StmtId) :-
{Phi},
trans(FromState, ToState, Rho, StmtId),
{Rho}.

Fig. 2. The procedure post

4 Abstract One-Step Reachability Operator abstract post

The procedure abstract post implements a function that is defined by the
functional composition of three functions for which the notation α, post and γ
is customary in the abstract interpretation framework [7]: the abstraction, the
one-step-reachability operator, and the concretization. As we will show below,
the procedure abstract post is implemented in terms of the three procedures
abstract, post and concretize.

Procedure abstract. We define the procedure abstract in Figure 3. This
procedure computes a constraint that is an over-approximation of the cur-
rent content of the constraint store. The first argument of abstract deter-
mines the approximation function. For example, Xp=1+Yp, Yp>=5 is approx-
imated by the constraint Yp>=0, Xp>=Yp if the list of the four constraints
Xp=<0, Yp>=0, Xp=<Yp, Xp>=Yp appears in the first parameter of abstract.
It is customary to refer to the given set of constraints (which together determine
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abstract([Pred-Id|PredIdPairs], Ids) :-
( entailed(Pred) ->

abstract(PredIdPairs, TmpIds),
Ids = [Id|TmpIds]

;
abstract(PredIdPairs, Ids)

).
abstract([], []).
concretize([Id|Ids], [Pred-PId|PredIdPairs], Phi) :-

( Id = PId ->
concretize(Ids, PredIdPairs, TmpPhi),
Phi = (Pred, TmpPhi)

;
concretize([Id|Ids], PredIdPairs, Phi)

).
concretize([], _, 1=1).
abstract_post(FromCtrl, FromIds, ToCtrl, ToIds, StmtId) :-

FromState = s(FromCtrl, _),
preds(FromState, FromPredIdPairs),
concretize(FromIds, FromPredIdPairs, Phi),
post(Phi, FromState, ToState, StmtId),
ToState = s(ToCtrl, _),
preds(ToState, ToPredIdPairs),
abstract(ToPredIdPairs, ToIds).

Fig. 3. The procedures abstract, concretize, and abstract post

the approximation function) as predicates. In our running example, we refer to
the four predicates given above.

We give each predicate a unique identifier. This is its position in a given list
of predicates. The call abstract(PredIdPairs, Ids) computes a list of identi-
fiers that is bound to Ids. This list consists of the identifiers of the predicates
that appear in the approximation of the constraint in the constraint store. For
technical reasons, the first parameter of abstract is not a list of predicates, but
a list of pairs containing a predicate and its identifier (which we write using -
in Prolog).

We continue our example. If PredIdPairs is bound to
[(Xp=<0)-1, (Yp>=0)-2, (Xp=<Yp)-3, (Xp>=Yp)-4] and the constraint
store contains Xp=1+Yp, Yp>=5 then abstract creates the binding Ids =
[2,4].

Note that we have used an implicit assumption. Namely, the variables
that appear in the constraint to be approximated are literally the variables
that appear in the list of predicates (from predicate-identifier pairs). This as-
sumption is justified by the context in which abstract is called. Namely,
the call abstract(PredIdPairs, Ids) is preceded by the call preds(State,
PredIdPairs) and State is bound to a term of the form s(..., data(Xp,Yp)).
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We assume that the Prolog database contains a fact of the form preds(...).
In our example, this fact is

preds(s(ctrl(_), data(X, Y)), [(X=<0)-1, (Y>=0)-2, (X=<Y)-3, (X>=Y)-4]).

The call preds(State, PredIdPairs) now succeeds and realizes the appropri-
ate α-renaming in the predicates, namely by unifying the variable X and Y with
Xp and Yp respectively. Therefore it computes the binding of PredIdPairs shown
above.

Procedure concretize. The procedure concretize is defined in Figure 3. It
takes a list of identifiers and computes a constraint that is the conjunction of
predicates whose identifiers are in the input list. As abstract, the procedure
concretize takes a list of predicate-identifier pairs as a parameter. Continuing
our example, we call concretize(Ids, PredIdPairs, Phi) given the bind-
ing of Ids to the list of predicate identifiers [2, 4] and the above binding of
PredIdPairs. The resulting binding to Phi is Yp>=0, Xp>=Yp, 1=1.

Procedure abstract post. The procedure abstract post is given in Figure 3.
It is the composition of the procedures concretize, post, and abstract.

We may view the procedure abstract post as a function that maps an ab-
stract state to a successor abstract state (for a fixed statement). We define an
abstract state as the pair given by a control location and a list of identifiers of
predicates. For example, under the binding of FromCtrl to ctrl(loc 2) and the
binding of FromIds to the list of identifiers [2, 4], an abstract state is given
by FromCtrl and FromIds.

The application of abstract post on FromCtrl and FromIds under the
above binding computes a successor abstract state as follows. The execution
of the first line binds FromState to the term s(ctrl(loc 2), FromData) where
FromData is a fresh variable. The call preds(FromState, FromPredIdPairs)
binds the list of predicate-identifier pairs that is stored in the Prolog database
to FromPredIdPairs. These predicates are over fresh variables, say X and Y. The
variable FromData gets bound to the term data(X, Y).

Now, the call to concretize translates the list of predicate identifiers [2, 4]
to the constraint Y>=0, X>=Y, 1=1, which is bound to Phi (and represents the
set of states whose successors will be computed and abstracted).

The call of the procedure post proceeds as described in Section 3. We as-
sume that the statement stmt 2 is selected for application. This statement goes
from location �2 to location �3. The call to post binds ToState to the term
s(ctrl(loc 3), data(Xp, Yp)), where Xp and Yp are fresh variables. Now, the
constraint store contains the constraint Y>=0, X>=Y, 1=1, Xp=X+1, Yp=Y. Its
projection to the variables Xp and Yp that are referenced by ToState is a new
constraint, namely, Xp>=1+Yp, Yp>=0. It represents the set of states that are
reachable by applying the statement stmt 2 to the set of states denoted by the
constraint Y>=0, X>=Y, 1=1 (which is the previously computed concretization
of the abstract state given by FromState and FromIds).
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assert_abst_reach_state(_, Ctrl, Ids, _, _, _) :-
abst_reach_state(_, Ctrl, ReachedIds, _),
ord_subset(ReachedIds, Ids),
!.

assert_abst_reach_state(Iter, Ctrl, Ids,
AbstStateId, StmtId, NextAbstStateId) :-

bb_get(abst_reach_state_count, LastAbstStateId),
NextAbstStateId is LastAbstStateId+1,
bb_put(abst_reach_state_count, NextAbstStateId),
assert(abst_reach_state(iter(Iter),Ctrl,Ids,NextAbstStateId)),
assert(abst_parent(NextAbstStateId, from(state(AbstStateId),

trans(StmtId)))).
abstract_fixpoint_step(Iter, NextIter) :-

abst_reach_state(iter(Iter), FromCtrl, FromIds, AbstStateId),
abstract_post(FromCtrl, FromIds, ToCtrl, ToIds, StmtId),
assert_abst_reach_state(NextIter, ToCtrl, ToIds,

AbstStateId, StmtId, NextAbstStateId),
( error(ToCtrl) ->

throw(abst_error_state(NextAbstStateId))
;

true
).

abstract_fixpoint(Iter) :-
NextIter is Iter+1,
( bagof(_, abstract_fixpoint_step(Iter, NextIter), _) ->

abstract_fixpoint(NextIter)
;

true
).

Fig. 4. The procedures assert abst reach state, abstract fixpoint step, and
abstract fixpoint. bb get/bb put store/read facts from the mutable repository.

The execution of ToState = s(ToCtrl, ) binds ToCtrl to the term
ctrl(loc 3), which represents the to-location. The call to abstract assumes
that it is applied to the predicates over the variables Xp and Yp. We create such
predicates by calling preds with the first parameter bound to s(ctrl(loc 3),
data(Xp, Yp)). Finally, the outcome of the call to abstract is a list of predicate
identifiers [2, 4] that is bound to ToIds.

5 Abstract Reachability Procedure abstract fixpoint

We define the procedure abstract fixpoint together with the auxiliary
procedures assert abst reach state, abstract fixpoint step in Figure 4.
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Figure 8 (shown in the appendix) presents the execution of abstract fixpoint
on our example program, which is shown in Figure 1. The procedure
abstract fixpoint computes an approximation of the set of reachable states of
the program to be verified. It also checks whether the error location is contained
in the approximation, i.e., if an abstract state at location loc err is created. If
this check succeeds then the iteration halts and throws an exception. We discuss
the exception handling in Section 6.

The procedure abstract fixpoint implements a fixpoint computation that
iteratively builds up a set of facts abst reach state(...) stored in the
Prolog database. Each such fact represents an abstract state that is deter-
mined to be reachable by the abstract fixpoint computation. For example, the
fact abst_reach_state(iter(2), ctrl(loc_2), [2,3], 3) represents an ab-
stract state at the control location ctrl(loc 2) and the list of predicate iden-
tifiers [2, 3]. The first argument of abst reach state(...), here iter(2),
shows at which iteration the abstract state is created and inserted into the
database. The last argument shows the identifier of the abstract state, which is
3 in our example. Since the list [2, 3] refers to the predicates X-Y=<0, X-Y>=0
(from the list of predicates as fixed by the fact preds(...) currently in the
Prolog database, see Figure 8), the abstract state represents the set of program
state at the location �3 with equal values of the variables x and y. Figure 8 also
shows facts abst parent(...). We do not discuss them in this section. They
will play a role in Section 6.

The procedure assert abst reach state first checks whether a given ab-
stract state, which is represented by Ctrl and Ids, is already present in the
database. This is the case if there exists a reachable abstract state whose
list of identifiers ReachedIds is contained in the list Ids. In this case the
given abstract state represents a smaller set of program states at the same
control location. For example, an abstract state with predicate identifiers
[2, 3, 4] represents a smaller set of program states than an abstract state
with predicate identifiers [3, 4]. A longer list of identifiers corresponds to
a larger conjunction of predicates, i.e. to a stronger constraint. We imple-
ment the comparison between lists of identifiers by a call to the library pro-
cedure ord subset because our implementation guarantees that these lists are
ordered.

The procedure assert abst reach state inserts the given abstract state
into the database if it is not already present. It computes the value for
NextAbstStateId, which is used to label the given abstract state.

The procedure abstract fixpoint calls abstract fixpoint step by using
the bagof procedure of Prolog. It iterates over all abstract states that are created
at the iteration with number Iter (and stored as abst reach state(...) facts
in the Prolog database) and over all program statements (which are stored as
trans(...) facts). The call to abstract fixpoint step fails if no new abstract
state is created (and hence a fixpoint is reached).
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6 Abstraction Refinement Procedure
abstract check refine

Given a set of predicates, the procedure abstract fixpoint computes an over-
approximation of the reachable state space of the program, as we described
in the previous section. If this over-approximation does not contain the error
location then the program is proven correct. Otherwise, there exists a sequence
of abstract states that begins at the start location and ends at the error location.
Each step in this sequence corresponds to the application of a program statement
to an abstract state. We call this sequence of statements a counterexample path,
or counterexample for short. Now, the procedure feasible determines which of
the following two cases applies.

In the first case, the error location is indeed reachable (from the initial loca-
tion) by executing the sequence of statements. We say that the counterexample
is feasible. We report that the program is not correct and return the coun-
terexample. In the second case, the sequence is not feasible. We say that the
counterexample is spurious. The abstraction was too coarse. This means that
the set of predicates does not yet contain the “right” predicates. The procedure
refine discovers new predicates and adds them to the set of existing ones.

The procedure abstract check refine repeatedly executes abstract
fixpoint, feasible, and refine. It terminates in one of two cases. Either a
feasible counterexample is computed, or it discovers the right set of predicates.
The latter case means that the procedure abstract fixpoint computes a suffi-
ciently precise over-approximation of the set of reachable states of the program,
one which does not contain the error location. In this section, we define the
procedures feasible, refine, and abstract check refine.

Counterexample checking procedure feasible. We check the feasibility
of the path between the initial and error location in the abstract reachability
tree by applying the procedure feasible. It is defined in Figure 5. If the proce-
dure succeeds for the abstract state identifier SId that is given in the exception
abst_error_state(ErrorStateId), see Figure 4, then we report that the pro-
gram is incorrect and print the error path.

feasible(AbstStateId, ToState, AccPath, ErrorPath) :-
( abst_parent(AbstStateId, from(state(PrevAbstStateId),

trans(StmtId))) ->
trans(FromState, ToState, Rho, StmtId),
{Rho},
feasible(PrevAbstStateId,FromState,[StmtId|AccPath],ErrorPath)

;
ErrorPath = AccPath

).

Fig. 5. The procedure feasible
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Continuing our example, we will follow the execution of the call feasible(9,
, [], ErrorPath). We assume the context of Figure 8. That is, the call of
abstract fixpoint has inserted the shown abst parent(...) facts. These facts
form a tree whose root is the start abstract state 0. Each path in the tree
corresponds to a sequence of statements, according to the abst parent(...)
facts. The call feasible(9, , [], ErrorPath) determines whether the path
is feasible or whether it is a spurious counterexample.

The first execution step of the call feasible(9, , [], ErrorPath) re-
trieves the fact abst_parent(9, from(state(8), trans(stmt_5))) and binds
StmtId to stmt 5. Then, it retrieves the fact

trans(s(ctrl(loc_4), data(X1, Y1)), s(ctrl(loc_err), data(X0, Y0)),
(X1=\=Y1, X0=X1, Y0=Y1), stmt_5)

and binds Rho to the transition constraint X1=\=Y1, X0=X1, Y0=Y1. The next
line injects this constraint into the constraint store.

The effect of the recursive call to feasible is that the line {Rho} in that
recursive call injects the transition constraint X2>10, X1=X2, Y1=Y2, which be-
longs to the statement stmt 4. This statement precedes the statement stmt 5
on the path that ends in the abstract state 9.

The recursion in the procedure feasible terminates, and upon termination
we distinguish two cases. In the first case, the conjunction of transition con-
straints that are injected into the constraint store is not satisfiable. This means
that the corresponding sequence of statements is not feasible. In the second case,
we have explored the path from the given abstract state to the start abstract
state. Since the start abstract state does not have a corresponding abst parent
fact, the call abst parent(1, ...) fails. Hence, feasible terminates and binds
ErrorTrace to the list of identifiers of the statements along the path.

In our example, the call feasible(9, ...) fails. The transition constraint
for the statement stmt 0 is inconsistent with the conjunction of the transition
constraints for other statements on the path leading to the error abstract state 9.
This means that the call {Rho} fails in the recursive call feasible(2, ...).

We have already discussed the handling of fresh variables in terms FromState
and ToState in Section 3. The situation here is analogous. We need to cre-
ate instances of constraints over the appropriate variables. We observe that
the term bound to FromState gets passed to the formal parameter ToState
in the recursive call to feasible. Hence, we obtain the sequence of transition
constraints such that the from-variables of each constraint are equal to the to-
variables of its successor constraint. In our example, the constraint store contains
X1=\=Y1, X0=X1, Y0=Y1, X2>10, X1=X2, Y1=Y2 after the first recursive call
to feasible.

Predicate discovery procedure refine. The procedure refine is defined in
Figure 6. We assume that each transition constraint can be partitioned into two
lists. The first list consists of constraints over from-variables, and is called list of
guards. The second list consists of a list of update expressions of the form Xp =
Exp where Xp is a to-variable and Exp is an expression over the from-variables.
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wp(Updates, Guards, Formula, WP) :-
( Updates = [U|Us] ->

U,
wp(Us, Guards, Formula, WP)

;
append(Guards, Formula, WP)

).
refine(AbstStateId, ToState, Formula) :-

( abstract_parent(AbstStateId, from(state(PrevAbstStateId),
trans(StmtId))) ->

stmt(FromState, ToState, Guards, Updates, StmtId),
wp(Updates, Guards, Formula, WP),
insert_preds(FromState, WP),
refine(PrevAbstStateId, FromState, WP)

;
true

).

Fig. 6. The procedures wp and refine

abstract_check_refine :-
start(StartCtrl),
bb_put(abst_reach_state_count, 1),
assert(abst_reach_state(iter(0), StartCtrl, [], 1)),
catch( abstract_fixpoint(0),

abst_error_state(AbstErrorStateId),
( feasible(AbstErrorStateId, _, [], Path) ->

format(’counterexample ~p\n’, [Path]),
fail

;
refine(AbstErrorStateId, _, []),
retractall(abst_reach_state(_, _, _, _)),
retractall(abst_parent(_, _)),
abstract_check_refine

)
).

Fig. 7. The procedure abstract check refine

For each fact trans(FromState, ToState, Rho, StmtId) we assume that the
Prolog database contains a fact stmt(...) of the form

stmt(FromState, ToState, Guards, Updates, StmtId)

where Guards and Updates form a partition of Rho. For example,
given the bindings FromState = s(ctrl(loc 4), data(X, Y)), ToState =
s(ctrl(loc err), data(Xp, Yp), and StmtId = stmt 5 we obtain the list of
guards [X=\=Y] and the list of updates [Xp=X, Yp=Y].
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abst reach state(iter(0), ctrl(loc 0), [], 1)

abst reach state(iter(1), ctrl(loc 1), [2,3], 2)

abst reach state(iter(2), ctrl(loc 2), [2,3], 3) abst reach state(iter(2), ctrl(loc 4), [2,3], 4)

abst reach state(iter(3), ctrl(loc 3), [1,3], 5)

abst reach state(iter(4), ctrl(loc 1), [3], 6)

abst reach state(iter(5), ctrl(loc 2), [3], 7) abst reach state(iter(5), ctrl(loc 4), [3], 8)

abst reach state(iter(6), ctrl(loc err), [3], 9)

stmt0

stmt1 stmt4

stmt2

stmt3

stmt1

stmt4

stmt5

preds(s(ctrl(_), data(X,Y)), [(X-Y>=1)-1, (X-Y=<0)-2, (X-Y>=0)-3]).

abst_reach_state(iter(0), ctrl(loc_0), [], 1).
abst_reach_state(iter(1), ctrl(loc_1), [2,3], 2).
abst_reach_state(iter(2), ctrl(loc_2), [2,3], 3).
abst_reach_state(iter(2), ctrl(loc_4), [2,3], 4).
abst_reach_state(iter(3), ctrl(loc_3), [1,3], 5).
abst_reach_state(iter(4), ctrl(loc_1), [3], 6).
abst_reach_state(iter(5), ctrl(loc_2), [3], 7).
abst_reach_state(iter(5), ctrl(loc_4), [3], 8).
abst_reach_state(iter(6), ctrl(loc_err), [3], 9).

abst_parent(2, from(state(1), trans(stmt_0))).
abst_parent(3, from(state(2), trans(stmt_1))).
abst_parent(4, from(state(2), trans(stmt_4))).
abst_parent(5, from(state(3), trans(stmt_2))).
abst_parent(6, from(state(5), trans(stmt_3))).
abst_parent(7, from(state(6), trans(stmt_1))).
abst_parent(8, from(state(6), trans(stmt_4))).
abst_parent(9, from(state(8), trans(stmt_5))).

Fig. 8. The facts abst reach state(...) and abst parent(...) computed and as-
serted by the call of abstract fixpoint. We assume the context of the Prolog database
with the given fact preds(...) (fixing the set of predicates) and the trans(...)-
facts given in Figure 1 (representing the program to be verified). The pictorial rep-
resentation relates the facts abst reach state(...) by edges according to the facts
abst parent(...).

We continue our example. We follow the execution of the call refine(9,
, []). This call is performed after the call feasible(9, ...) fails. The call
to abstract parent binds PrevAbstStateId to 8 and StmtId to stmt 5. The
next line retrieves the guards and updates for stmt 5. These are passed to the
procedure wp, which computes the weakest precondition of Formula with respect
to the guards and updates.

The call wp([Xp=X, Yp=Y], [X=\=Y], [], WP) binds WP to [X=\=Y].
The call to insert_preds(s(ctrl(loc_4), data(X, Y)), [X=\=Y]) adds the
predicates to the list of predicates that is stored in the Prolog database
as preds(...). The recursive call to refine continues the discovery of
predicates, which is guided by the remaining statements from the counter-
example.

We continue to follow the execution of refine and show the execution of
the call to wp after the second recursive step. For simplicity of presentation
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abst reach state(iter(0), ctrl(loc 0), [], 1)

abst reach state(iter(1), ctrl(loc 1), [2,3,4], 2)

abst reach state(iter(2), ctrl(loc 2), [2,3,4], 3) abst reach state(iter(2), ctrl(loc 4), [2,3,4], 4)

abst reach state(iter(3), ctrl(loc 3), [1,3,4], 5)

stmt0

stmt1 stmt4

stmt2

preds(s(ctrl(_), data(X,Y)), [(X-Y>=1)-1, (X-Y=<0)-2, (X-Y>=0)-3, (X-Y=<1)-4]).

Fig. 9. Sufficiently precise reachable abstract states computed by abstract check
refine for the program in Figure 1. None of abstract states visits the error location
ctrl(loc err).

we assume the from-variables X and Y together with to-variables Xp and Yp.
Then, the call wp([Xp=X, Yp=Y+1], [], [Xp=\=Yp], WP) binds WP to the list
[X=\=Y+1].

The presented implementation of WP exploits the particular syntactic form of
update expressions, and can be generalized to arbitrary updates by resorting to
the projection of the constraint store, e.g. using techniques from [12].

Abstraction refinement procedure abstract check refine. The proce-
dure abstract check refine is defined in Figure 7. It calls the procedures
abstract fixpoint, feasible, and refine as described above.

We continue the illustration based on the example in Figure 1. See Figure 8.
First, abstract check refine creates the root of the tree. It binds StartCtrl
to the start location. For our program it is loc 0. Then, it initializes the counter
for reachable abstract states. The creation of the start abstract state completes
the setup required to compute the reachable abstract states. Now, the abstract
reachability tree is computed by abstract fixpoint. The control location of
the abstract state 9 is the error location. Hence, after this abstract is cre-
ated the procedure abstract fixpoint throws an exception given by the term
abst error state(9). This exception triggers the analysis of the corresponding
counterexample by the procedure feasible. The analysis is described above in
this section. Its outcome is negative, i.e., feasible fails. The call to refine re-
fines the abstraction. Now, the previously created facts abst reach state and
abst parent are pruned from the Prolog database. This finishes the current
iteration of abstract check refine.

We continue with the recursive call to abstract check refine. See Fig-
ure 9. It shows the new set of predicates computed by the refinement proce-
dure. Again, the root of the tree is created and the tree is computed by a call
to abstract fixpoint. Observe that the error location loc err is not reached.
ARMC proves the program correct.
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7 Conclusion and Future Work

By presenting the procedures above, we have demonstrated how the use of a
constraint-based logic programming language may lead to an elegant and concise
implementation of a practical tool for software model checking with abstraction
refinement.

We believe that our work may trigger further activities of research in two
directions, corresponding to two groups of researchers. The first group consists
of expert logic programmers who can optimize the presented implementation
by using the programming constructs we have found suitable, but doing so in
more sophisticated ways than we have been able to. The second group consists of
expert developers of software verification tools who want to evaluate new algo-
rithms (e.g. for abstraction refinement) and use the implementation techniques
that we present in this paper.

Acknowledgements. We thank Jan-Georg Smaus for his comments on the paper.
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Abstract. Cω extended C# 1.x with a simple, declarative and powerful
model of concurrency - join patterns - applicable both to multithreaded
applications and to the orchestration of asynchronous, event-based dis-
tributed applications. With Generics available in C# 2.0, we can now
provide join patterns as a library rather than a language feature. The
Joins library extends its clients with an embedded, type-safe and mostly
declarative language for expressing synchronization patterns. The library
has some advantages over Cω: it is language neutral, supporting other
languages like Visual Basic; its join patterns are more dynamic, allowing
solutions difficult to express with Cω; its code is easy to modify, fostering
experimentation. Although presenting fewer optimization opportunities,
the implementation is efficient and its interface makes it trivial to trans-
late Cω programs to C#. We describe the interface and implementation
of Joins which (ab)uses almost every feature of Generics.

1 Introduction

Cω [1] promised C# 1.x users a more pleasant world of concurrent programming.
Cω presents a simple, declarative and powerful model of concurrency - join
patterns - applicable both to multithreaded applications and to the orchestration
of asynchronous, event-based distributed applications. Using Generics in C#

2.0 (and the .NET runtime in general), we can now provide join patterns as
a .NET library – called Joins – rather than a language extension. Encoding
language features in a library has some obvious drawbacks, restricting the scope
for both optimization and static checking – but it also has some advantages.
The Joins library is language neutral; it can be used by C# but also by Visual
Basic and other .NET languages. A library can be more dynamic: the Joins
library already supports solutions that are more difficult to express with the
declarative join patterns of Cω (Section 3.1). A library is easier to modify than
a compiler, promoting experimentation. The Joins implementation is reasonably
efficient and takes advantage of the same basic optimizations performed by the
Cω compiler. Its interface makes it particularly easy to translate Cω programs
to C#, but it can also be used to write concurrent code from scratch.

Section 2 presents join patterns as found in Cω. Section 3 introduces the Joins
library by example, showing how to re-express the Cω programs of Section 2 as
C# 2.0 code that references the library. Section 4 provides a concise, yet pre-
cise, description of the Joins library as it appears to the user. Section 5 gives

M. Hanus (Ed.): PADL 2007, LNCS 4354, pp. 260–274, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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an overview of the implementation which exercises most features of Generics.
Section 6 concludes, discussing related work. The Joins download and tuto-
rial [2] presents many more examples including encodings of active objects or
actors, bounded buffers, reader/writer locks, futures, dining philosophers, a lift
controller and simple, distributed applications using web services and Remoting.

2 Background: Cω’s Concurrency Constructs

Cω extends the C# 1.2 programming language with new asynchronous concur-
rency abstractions. The new constructs are a mild syntactic variant of those
previously described under the name ‘Polyphonic C#’ [3]. Similar extensions to
Java were independently proposed by von Itzstein and Kearney [4].

In Cω, methods can be defined as either synchronous or asynchronous. When
a synchronous method is called, the caller is blocked until the method returns,
as is normal in C#. However, when an asynchronous method is called, there is no
result and the caller proceeds immediately without being blocked. Thus from the
caller’s point of view, an asynchronous method is like a void one, but with the
useful extra guarantee of returning immediately. We often refer to asynchronous
methods as messages, as they are one-way communications.

By themselves, asynchronous method declarations are not particularly novel:
the innovation of Cω is the way method bodies are defined. In most languages,
including C#, methods in the signature of a class are in bijective correspon-
dence with the code of their implementations. In Cω, however, a body may be
associated with a set of synchronous and/or asynchronous methods, including
at most one synchronous method. Such definitions are called chords and a par-
ticular method may appear in the header of several chords. The body of a chord
can only execute once all the methods in its header have been called. Calling a
chorded method may thus enable zero, one or more chords:

– If no chord is enabled then the method invocation is queued up. If the method
is asynchronous, then this simply involves adding the arguments (the con-
tents of the message) to a queue. If the method is synchronous, then the
calling thread is blocked.

– If there is a single enabled chord, then the arguments of the calls involved
in the match are de-queued, and any blocked thread involved in the match
is awakened to run the chord’s body in that thread. The body of a chord
involving only asynchronous methods runs in a new thread.

– If several chords are enabled, an unspecified one is selected to run.
– If multiple calls to one method are queued up, which call will be de-queued

by a match is left unspecified.

Here is the simplest interesting example of a Cω class:

public class Buffer {
public async Put(string s);
public string Get() & Put(string s) { return s; }

}
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This class contains two methods: a synchronous one, Get(), which takes no
arguments and returns a string, and an asynchronous one, Put(s), which takes a
string argument and (like all asynchronous methods) returns no result. The class
definition contains two things: a declaration (with no body) for the asynchronous
method, and a chord. The chord declares the synchronous method and defines
a body (the return statement) which can run when both the Get() and Put(s)
methods have been called.

Now assume that producer and consumer threads wish to communicate via an
instance b of the class Buffer. Producers make calls to b.Put(s), which, since
the method is asynchronous, never block. Consumers make calls to b.Get(),
which, since the method is synchronous, will block until or unless there is a
matching call to Put(s). Once b has received both a Put(s) and a Get(), the
body runs and the actual argument to Put(s) is returned as the result of the call
to Get(). Multiple calls to Get() may be pending before a Put(s) is received to
reawaken one of them, and multiple calls to Put(s) may be made before their
arguments are consumed by subsequent Get()s. Note that:

1. The body of the chord runs in the (reawakened) thread corresponding to the
matched call to Get(). Hence no new threads are spawned in this example.

2. The code which is generated by the class definition above is completely
thread safe. The compiler generates the necessary locking. Furthermore, the
locking is fine-grained and brief - chorded methods do not lock the whole
object and are not executed with “monitor semantics”.

3. The return value of a chord is returned to its synchronous method, of which
there can be at most one.

In general, the definition of a synchronous method in Cω consists of more
than one chord, each of which defines a body that can run when the method
has been called and a particular set of asynchronous messages are present. For
example, we could modify the example above to allow Get() to synchronize with
calls to either of two different Put1(s) and Put2(n) methods:

public class BufferTwo {
public async Put1(string s); public async Put2(int n);
public string Get() & Put1(string s) { return s;}

& Put2(int n) { return n;} // ie. n.ToString()
}

Now we have two asynchronous methods and a synchronous method which
can synchronize with either one, with a different body in each case.

A chord may involve more than one message; this synchronous chord waits
for messages on both Put1 and Put2:

public string Both() & Put1(string s) & Put2(int n) { return s + n;}

In Cω, a purely asynchronous chord is written as a class member, like this:

when Put1(string s) & Put2(int n) { Console.WriteLine(s + n);}
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This chord spawns a new thread when messages arrive on Put1 and Put2.
The previous Buffer class is unbounded: any number of calls to Put(s) could

be queued up before matching a Get(). We now define a variant in which only
a single data value may be held in the buffer at any one time:

public class OnePlaceBuffer {
private async Empty();
private async Contains(string s);
public void Put(string s) & Empty() { Contains(s); }
public string Get() & Contains(string s) { Empty(); return s;}
public OnePlaceBuffer() { Empty(); }

}

The public interface of OnePlaceBuffer is similar to that of Buffer, but the
Put(s) method is now synchronous and will block if there is already an uncon-
sumed value in the buffer.

The implementation of OnePlaceBuffer makes use of two private asynchron-
ous messages: Empty() and Contains(s). These are used to carry the state of
the buffer and illustrate a very common programming pattern in Cω. The class
is best understood by reading its code declaratively:

– When a new buffer is created, it is initially Empty().
– If you call Put(s) on an Empty() buffer then it subsequently Contains(s)

and the call to Put(s) returns.
– If you call Get() on a buffer which Contains(s) then the buffer is subse-

quently Empty() and s is returned to the caller of Get().
– Implicitly, in all other cases, calls to Put(s) and Get() block.

The constructor establishes and the chords maintain the invariant that there is
always exactly one Empty() or Contains(s)message pending on the buffer. The
chords can easily be read as the specification of a finite state machine.

3 The Joins Library

In Cω, classes that declare (a)synchronous methods joined in chords implicitly
declare a set of communication channels. An asynchronous method has a backing
queue of pending method calls. A synchronous method has a backing queue of
waiting threads. The state of the queues is protected by a hidden lock. Invoking
an (a)synchronous method executes some specialized scheduling code that de-
cides, given the current queues and the declared chords, which, if any, chord gets
to fire, either on the current or any waiting thread. Thus each object (or, for
purely static methods, class) includes its own scheduling logic. Instead of relying
on a central scheduling thread, threads that invoke chorded methods each spend
a little time helping to schedule each other. To optimize the detection of enabled
chords, the implementation maintains some additional state: a bit vector rep-
resenting the set of non-empty queues. Pattern matching is compiled to subset
tests against this state, implemented using one bitmask operation per chord.
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In the Joins library, the scheduling logic that would be compiled into the cor-
responding Cω class receives a separate, first-class representation as an object
of the special Join class. The Join class provides a mostly declarative, type-safe
mechanism for defining thread-safe synchronous and asynchronous communi-
cation channels and patterns. Instead of (a)synchronous methods, as in Cω,
the communication channels are special delegate values (first-class methods)
obtained from a common Join object. Communication and/or synchronization
takes place by invoking these delegates, passing arguments and optionally wait-
ing for return values. The allowable communication patterns as well as their ef-
fects are defined using join patterns : bodies of code whose execution is guarded
by linear combinations of channels. The body, or continuation, of a join pattern
is provided by the user as a (typically anonymous) delegate that can manipulate
external resources protected by the Join object.

Using the Joins library, we can implement the Cω Buffer in C# as follows:

using Microsoft.Research.Joins;
public class Buffer {
// Declare the (a)synchronous channels
public readonly Asynchronous.Channel<string> Put;
public readonly Synchronous<string>.Channel Get;
public Buffer() {
// Create a Join object
Join join = Join.Create();
// Use it to initialize the channels
join.Initialize(out Put); join.Initialize(out Get);
// Finally, declare the patterns(s)
join.When(Get).And(Put).Do(delegate(string s) { return s;});

}}

The code declares a buffer class with two fields of special delegate types. The
Put field contains an asynchronous channel that, when invoked, returns void
(immediately) and takes one string argument. The Get field contains a syn-
chronous channel that, when invoked, returns a string but takes no argument.
Both fields are initially null. The constructor allocates a new Join object, join,
using the factory method Join.Create. The join object is a private scheduler
for the buffer. The constructor then calls Initialize on join, passing the lo-
cations of each of the channels: this assigns two new delegate values into the
fields, each obtained from and owned by join. Finally we declare the Cω chord
by constructing a pattern on the join object, passing the synchronous channel
Get to When and Anding it with the asynchronous channel Put. The pattern is
completed by invoking Do, passing the continuation for this pattern, expressed
here as an anonymous delegate. The continuation expects exactly one argument
(the argument to Put); the continuation’s return value is returned to the caller
of Get. Notice that the bodies of the continuation and Cω chord are identical.

If we ignore the boilerplate calls to Initialize then what remains retains the
declarative flavour of the original Cω code. Moreover, client code of the Cω and
C# buffers is syntactically identical. Given a buffer b, clients invoke b.Put(s);
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to send a string s and b.Get() to receive one. Of course, these calls are compiled
slightly differently, just invoking a method in the Cω client, but reading a field
and then invoking its delegate value in the C# client.

A synchronous method with several chords translates to several patterns con-
structed on the same initial channel. In general, calls to And may be iterated,
and a continuation may bind zero or more parameters and return zero or one
values, depending on the pattern. An asynchronous chord translates to a pattern
with an initial asynchronous channel whose continuation returns void.

Here is Cω’s OnePlaceBuffer, made generic in C# for good measure:

public class OnePlaceBuffer<S> {
private readonly Asynchronous.Channel Empty;
private readonly Asynchronous.Channel<S> Contains;
public readonly Synchronous.Channel<S> Put;
public readonly Synchronous<S>.Channel Get;
public OnePlaceBuffer() {
Join j = Join.Create();
j.Initialize(out Empty); j.Initialize(out Contains);
j.Initialize(out Put); j.Initialize(out Get);
j.When(Put).And(Empty).Do(delegate(S s) { Contains(s);});
j.When(Get).And(Contains).Do(delegate(S s) { Empty(); return s;});
Empty();

}}

Empty and Put introduce two more channel types. An Asynchronous.Channel
delegate takes zero arguments and returns void. As in Cω, nullary channels use
a more efficient counter instead of a queue of argument values to record pending
invocations. A Synchronous.Channel<S> delegate returns void and takes one
argument of type S. To protect the buffer’s invariant, we translate the private Cω
Empty and Contains messages to private fields, accessible from the continuations
but not externally. The constructor establishes the invariant by calling Empty(),
after initializing the channels and constructing the patterns.

3.1 Beyond Cω: Dynamic Joins

What if we need to declare, and synchronize, a dynamic set of channels? A Cω
class can only declare a static set of channels and chords so a dynamic set has to
be encoded by resorting to multiplexing. Although possible, this is inconvenient.
Inspired by a similar feature in the CCR [5], the Joins library lets you initialize,
and join arrays of asynchronous channels. Since the size of an array is determined
at runtime, this supports dynamic synchronization patterns.

For example, the JoinMany<R> class below declares and supports waiting on
n channels of type R, which is awkward to express in Cω. The class declares
an array, Responses, of response channels, each carrying a value of type R. An
object o = new JoinMany<R>(n) requires n + 1 channels: n asynchronous re-
sponse channels, o.Responses[i] (0 ≤ i < n), and one synchronous channel,
o.Wait. The constructor Creates a Join object supporting n + 1 channels; it
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then Initializes the response channels field with an array of n distinct chan-
nels and declares a pattern that waits on all the channels in this array. The
continuation of the pattern receives all of the responses as a separate array (also
of size n) of correlated values of type R. The consumer calls o.Wait(), blocking
until/unless all responses have arrived; producer i just posts her response r on
o.Response(i)(r), asynchronously. Here, we have taken the precaution of hid-
ing the array in a private field to prevent external updates – we could avoid this
if C# supported immutable arrays or we bothered to roll our own.

public class JoinMany<R> {
private readonly Asynchronous.Channel<R>[] Responses;
public readonly Synchronous<R[]>.Channel Wait;
public Asynchronous.Channel<R> Response(int i) { return Responses[i]; }
public JoinMany(int n) {
Join j = Join.Create(n + 1);
j.Initialize(out Responses, n); j.Initialize(out Wait);
j.When(Wait).And(Responses).Do(delegate(R[] r) { return r; });

}}

4 Joins Library Reference

Users of Joins reference the assembly Microsoft.Research.Joins.dll and
import the namespace Microsoft.Research.Joins.

A new Join instance j is allocated by calling an overload of factory method
Join.Create([size]). The optional integer size bounds the number of channels
supported by j and defaults to 32; it also sets the constant property j.Size.

A Join object notionally owns a set of asynchronous and synchronous chan-
nels, each obtained by calling an overload of method Initialize, passing the
location of a channel or array of channels using an out argument:

j.Initialize(out channel); or j.Initialize(out channels, length);

The second form assigns to location channels an array of length distinct, asyn-
chronous channels. It is possible to initialize the same location twice.

Channels are instances of the following delegate types, summarized by a simple
grammar of type expressions:

(Asynchronous | Synchronous[〈R〉]).Channel[〈A〉]

The outer class of a channel, Asynchronous, Synchronous or Synchronous<R>,
should be read as a modifier that specifies its blocking behaviour and optional
return type R. Type A, if present, determines the channel’s optional argument
type. The six channel flavours support zero or one arguments of type A and zero
or one results of type R. Multiple arguments or results must be passed in tuples,
either using the provided generic Pair<A, B> struct or by other means.

Apart from its channels, a Join object notionally owns a set of join patterns.
A join pattern is constructed by invoking an overload of the instance method
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When followed by zero or more invocations of instance method And (or AndPair),
followed by a final invocation of instance method Do. A constructed join pattern
typically takes the form:

j.When(a1).And(a2) · · · .And(an).Do(d);

Alternatively, using an anonymous delegate for d:

j.When(a1).And(a2) · · · .And(an).Do(delegate(P1 p1, . . . , Pm pm){. . .});

Argument a1 of When(a1) may be a synchronous or asynchronous channel or
an array of asynchronous channels. Each subsequent argument ai to And(ai) (for
i > 1) must be an asynchronous channel or an array of asynchronous channels;
it cannot be a synchronous channel. The argument d to Do(d) is a continuation
delegate that defines the body of the pattern. Although its precise type varies
with the pattern, the continuation always has a delegate type of the form:

delegate [void | R] Continuation(P1 p1, . . . , Pm pm);

The precise type of the continuation d, including its arity or number of ar-
guments m, is determined by the sequence of channels guarding it. If the first
argument a1 in the pattern is a synchronous channel with return type R, then
the continuation’s return type is R; otherwise the return type is void.

The continuation receives the arguments of the joined channel invocations as
delegate parameters P1 p1, . . . , Pm pm, for m ≤ n. The presence and types of
any additional parameters P1 p1, . . . , Pm pm varies according to the type of each
argument ai joined with invocation When(ai)/And(ai) (for 1 ≤ i ≤ n):

– If ai is of type Channel or Channel[], then When(ai)/And(ai) adds no param-
eter to delegate d.

– If ai is of type Channel<P> or Channel<P>[] then When(ai)/And(ai) adds
one parameter pj of type Pj = P or Pj = P [] (respectively) to delegate d.

Parameters are added to d from left to right, in increasing order of i. A con-
tinuation can receive at most m ≤ max parameters (max = 8 in the current
implementation). If necessary, it is possible to join more than max generic chan-
nels by calling method AndPair(ai) instead of And(ai). AndPair(ai) modifies
the last argument of the new continuation to be a pair consisting of the last
argument of the previous continuation and the new argument contributed by ai.

Readonly property j.Count is the current number of channels initialized on
j; it is bounded by j.Size. Any invocation of j.Initialize that would cause
j.Count to exceed j.Size throws JoinException. Join patterns must be well-
formed, both individually and collectively. Executing Do(d) to complete a join
pattern will throw JoinException if d is null, the pattern repeats an asyn-
chronous channel (i.e. is non-linear), an (a)synchronous channel is null or for-
eign to this pattern’s Join instance, the join pattern is redundant, or the join
pattern is empty. A channel is foreign to a Join instance j if it was not allocated
by some call to j.Initialize. A pattern is redundant when the set of channels
joined by the pattern subsets or supersets the channels joined by another pattern
on this Join instance. A pattern is empty when its set of channels is empty.
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5 Implementation

The implementation avoids using Reflection and only uses checked casts to ex-
tract the underlying queue from a channel when constructing a pattern. These
casts could have been avoided by defining the channel delegates to contain
queue fields (possible in bytecode, but not C#), or by representing channels
as classes. We preferred to retain the convenient delegate invocation syntax
for sending messages and to provide a pure C# implementation. To be use-
ful in practice, we provide 6 flavours of channel rather than two basic ones
(Asynchronous.Channel<A> and Synchronous<R>.Channel<A>) because pass-
ing or returning ML-like unit values is just unnatural in C# and VB. We favour
n-ary continuations, despite the (soft) limit on n, because uniform currying is
awkward in C# and unsupported in VB; similarly, without pattern matching,
using uniformly nested pairs to bind continuation arguments requires unwieldy
projections. Compare the first void-returning, 3-argument continuation with its
uglier, but more “uniform” alternatives:

1. delegate(int i,bool b,float f){ Console.Write("{0},{1},{2}",i,b,f);}
2. delegate(int i){return delegate(bool b){return delegate(float f){

Console.Write("{0},{1},{2}", i, b, f); return new Unit();};};}
3. delegate(Pair<Pair<int, bool>,float> p){

Console.Write("{0},{1},{2}", p.Fst.Fst, p.Fst.Snd, p.Snd); }

5.1 Join and Channel Object Representations

The Join class is abstract. Each Join object j has runtime type Join<IntSet>,
a specific instantiation of a private, overloaded generic class Join<S> that sub-
classes Join. IntSet is a struct type that implements a set of j.Size-bounded
integers as a packed sequence of bits. A Join<IntSet> object looks like this:

It contains the following fields:

Size: an immutable bound on the number of channels that may be owned.
Count: the mutable, current number of channels owned by the instance and the

ID of the next channel, incremented by calls to Initialize.
State: a mutable IntSet with a capacity of at least Size elements. State

encodes the current set of non-empty channels as a set of channel IDs. Since
IntSet is a struct, State is inlined in the object, not stored on the heap.

Actions: a mutable, IntSet-indexed list of pattern match actions : each action
either wakes up one thread waiting on a synchronous channel’s WaitQ or
spawns the continuation of an asynchronous pattern on a new thread.
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The regular object lock on a Join instance protects both its own state and the
states of its channels. Actions is extended (under the Join’s lock) whenever a
legal pattern is completed by calling a Do method. Registering a pattern pre-
computes its IntSet for faster matching and early error detection.

Channels are delegates and thus contain a target object and a target method,
comparable to the environment and code pointer of a closure in functional lan-
guages. All channel target objects contain the following immutable fields.

Owner: a reference to the Join<IntSet> instance that initialized the channel.
ID: an identifier for the channel, unique for the channels of Owner.
SetID: a pre-computed IntSet corresponding to the singleton set {ID}.
A Synchronous<R> channel, for example, looks like this:

Its target object additionally contains these fields:

WaitQ: a notional queue of waiting threads, itself implemented using the implicit
waitset of a privately allocated lock as in [3]. The ThreadQ.WakeUp method
efficiently targets at most one waiting thread, avoiding Monitor.PulseAll().

Patterns: an IntSet-indexed list of all R-returning patterns containing ID.

When invoked, the channel’s target method acquires the Owner’s lock , scans
Patterns for matches with the Owner’s State and either:

If there is no matching pattern: enqueues its thread, updates State, re-
leases the Owner lock and blocks awaiting notification on the WaitQ lock.

If there is some matching pattern: dequeues the asynchronous channels in-
volved in the pattern, updating State, scans for any enabled actions1, re-
leases the Owner’s lock and returns the value of invoking the pattern’s con-
tinuation with the dequeued values in the current thread. Since the channel
and continuation both return a value of type R, this involves no casting.

When it wakes up, the waiting thread re-acquires the Owner’s lock, and re-
attempts to find a match amongst its patterns. If it fails, because some inter-
vening thread has consumed some channel values available when the thread was
awoken, the thread blocks, resuming its wait for a match.

The target object of a Asynchronous channel contains just one additional
field, a queue Q of pending calls, so a Channel[<A>] looks like this:

1 The additional scan is used to avoid deadlock – see [3] for a discussion.



270 C. Russo

The representation of Q depends on the channel’s arity. A Channel<A> contains
a proper FIF0 queue of type Queue<A>, implemented as a circular list of A-values
with constant time access to both ends of the queue. A nullary and thus data-less
Channel contains an optimized Queue struct, implemented in constant space by
just recording the current count of notional queue entries.

When invoked, the channel’s target method acquires its Owner’s lock and
enqueues its argument or bumps its counter; if Q was empty, it updates Owner’s
State and performs some action enabled by its new State (if any); finally, the
method releases its Owner’s lock and returns. Assuming no malicious third party
has grabbed the Owner’s lock, which is easily prevented by keeping all Join
objects private, executing the action and the channel invocation is guaranteed
to return since the lock is only held briefly by other channels.

5.2 Exploiting Generics

The Joins library makes extensive use of C# language features to present an
API that we hope is relatively simple to use: a user only has to know a handful of
identifiers and understand a simple grammar of channel types and join patterns.
We rely on overloading and type argument inference to implicitly resolve method
calls, that, were they explicit, would obscure the user’s intentions.

The various channel flavours of Section 3 are implemented as (generic) dele-
gate types, nested within (generic) static classes:

static class Asynchronous { delegate void Channel ();
delegate void Channel <A>(A a);}

static class Synchronous { delegate void Channel ();
delegate void Channel <A>(A a);}

static class Synchronous <R> { delegate R Channel ();
delegate R Channel <A>(A a);}

Using both nesting and generic arity to overload the Channel identifier makes
it easy for a user to independently change the blocking behaviour, argument and
return type a channel.

The Join class provides essentially three methods: Create, Initialize and
When and two integer properties Count and Size which are rarely needed:

abstract class Join {
static Join Create([int size]);
void Initialize[<A>](out Asynchronous.Channel[<A>] c);
void Initialize[<A>](out Synchronous.Channel[<A>] c);
void Initialize<R[, A]>(out Synchronous<R>.Channel[<A>] c);
void Initialize[<A>](out Asynchronous.Channel[<A>][] cs, int length);
JoinPattern.OpenPattern[<P>] When[<P>](Asynchronous.Channel[<P>] c);
JoinPattern.OpenPattern[<A>] When[<A>](Synchronous.Channel[<A>] c);
JoinPattern<R>.OpenPattern[<A>] When<R[,A]>(

Synchronous<R>.Channel[<A>] c);
JoinPattern.OpenPattern[<P[]>] When[<P>](

Asynchronous.Channel[<P>][] cs);
int Count { get; } int Size { get; }}
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Create(int size) is a factory method that, internally, uses polymorphic re-
cursion to construct, at runtime, an IntSet struct with a capacity of size (or
more) elements. The library defines primitive 32- and 64-element sets, IntSet32
and IntSet64, represented as one field structs of unsigned integers or longs.
Each implements a simple interface IIntSet<S> providing imperative opera-
tions on the integer set type S: i.e. IntSet32 implements IIntSet<IntSet32>,
IntSet64 implements IIntSet<IntSet64>. A generic struct PairSet<S> with
type parameter constraint where S:IIntSet<S> is used to construct a double-
capacity set from a smaller set representation. Notice that PairSet<S> uses a
recursive type constraint (a.k.a F-bounded polymorphism) to parameterize over
a representation S supporting a set of operations on S. The concrete, generic
class Join<S> also declares this constraint on S so it can access set operations
to manipulate its otherwise parametric State field. In C#, calls to an interface
method on a struct actually pass the this pointer by reference, not value, and
can therefore mutate the original value. We exploit this feature, updating State
fields in-place.

The Initialize method assigns the location of a channel or array of chan-
nels with a new (set of) channel(s) allocated and owned by this Join instance.
The method has eight overloads (summarized above), some generic, some not,
with one overload per channel flavour and two additional overloads for arrays
of asynchronous channels. We resort to an out parameter simply to simulate
overloading on return type, which is, unfortunately, illegal in C#. Although dis-
tasteful, overloading in this way means that boilerplate calls to Initialize(out
channel) do not have to be altered when changing the flavour of channel.

The When method begins the construction of a new join pattern and like
Initialize, has eight overloads, one per channel flavour and two more for arrays
of asynchronous channels. The return type of When is invariably some instance
of the class scheme:

JoinPattern[〈R〉].OpenPattern[〈A|A[]〉]

Here R is the optional return type of a synchronous pattern and A is the optional
argument type of the channel or channel array.

There are two flavours of JoinPattern. The non-generic JoinPattern class
contains nested OpenPattern classes whose continuations all return void. The
generic JoinPattern<R> family of classes contains nested OpenPattern classes
whose continuations all return R. More precisely, each JoinPattern family con-
tains max + 1 nested subclasses, OpenPattern〈P1, . . . , Pn〉 (0 ≤ n ≤ max),
each overloaded on generic arity n:

abstract class JoinPattern[<R>] {
class OpenPattern: JoinPattern[<R>] { . . .}
class OpenPattern<P1>: JoinPattern[<R>] { . . .}
...
class OpenPattern<P1, . . ., Pmax>: JoinPattern[<R>] { . . .} }
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In turn, each OpenPattern〈P1, . . . , Pn〉 class has the schematic form:

class OpenPattern<P1,. . .,Pn> : JoinPattern[<R>] {
delegate [void | R] Continuation(P1 p1,. . .,Pn pn);
void Do(Continuation continuation);
OpenPattern<P1,. . .,Pn> And(Asynchronous.Channel c);
OpenPattern<P1,. . .,Pn> And(Asynchronous.Channel[] cs);
OpenPattern<P1,. . .,Pn,Pn+1> And<Pn+1>(

Asynchronous.Channel<Pn+1> c); (n < max )
OpenPattern<P1,. . .,Pn,Pn+1[]> And<Pn+1>(

Asynchronous.Channel<Pn+1>[] cs); (n < max )
OpenPattern<P1,. . .,Pair<Pn, Pn+1>> AndPair<Pn+1>(

Asynchronous.Channel<Pn+1> c); (n > 0)
OpenPattern<P1,. . .,Pair<Pn,Pn+1[]>> AndPair<Pn+1>(

Asynchronous.Channel<Pn+1>[] cs); (n > 0)
}

Class OpenPattern〈P1, . . . , Pn〉 declares its own nested Continuation
delegate type taking invocation arguments p1, . . . , pn of types P1, . . . , Pn and
returning void or R, as appropriate. The And and AndPair methods with side
conditions on n are only included for satisfying n. The class declares up to four
overloads of method And, two generic, two non-generic, one for each flavour of
asynchronous channel and one for each array thereof. A non-generic And method
constructs a new open pattern of the same type (and thus expecting the same
type of Continuation) as this, that synchronizes with an additional (data-less)
channel or set thereof. A generic And<Pn+1> method on OpenPattern〈P1, . . . , Pn〉
constructs a new successor pattern of type OpenPattern〈P1, . . . , Pn, P 〉, thus
binding one additional continuation type and argument. Type P is Pn+1 or
Pn+1[], if the argument is a single channel, c, or array of channels, cs. The
AndPair<Pn+1> methods use pairing to avoid introducing another continuation
argument: in particular, for n = max, calling AndPair is the only way to extend
the pattern to wait for additional data-carrying channels.

Every JoinPattern contains an instance of an internal class Pattern, which
represents a conjunction of atomic patterns (channels or channel arrays), as
a tree. Pattern’s GetIntSet method computes the summary IntSet used for
scheduling which is all the Join scheduler needs to know to select a pattern
for execution; it also does some error checking. Pattern has these subclasses
(omitting similar ones for synchronous channels and channel arrays):

abstract class Pattern { S GetIntSet<S>(...) where S: IIntSet<S>; }
abstract class Pattern<P> : Pattern { abstract P Get(); }
class Atom: Pattern<Unit> { Atom(Asynchronous.Channel c); ... }
class Atom<A>: Pattern<A> { Atom(Asynchronous.Channel<A> c); ... }
class And<Q,R>: Pattern<Pair<Q,R>>
{ And(Pattern<Q> fst, Pattern<R> snd); ... }
class And<Q>: Pattern<Q> { And(Pattern<Q> fst, Pattern<Unit> snd); ... }

Subclass Pattern<P> of Pattern hides an existential type P, the return type of
its abstract method P Get(). Method Get is used to dequeue all of a
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pattern’s channels, returning a single, composite value of their queue heads. Get
is interesting because, due to base class specialization, its return type actually
varies with each concrete subclass: new Atom(c).Get() returns P=Unit (Unit
is an empty struct with one value); new Atom<A>(c).Get() returns P=A; new
And<Q,R>(fst,snd).Get() returns P=Pair<Q,R> (a struct with two fields) and
new And<Q>(fst,snd).Get() returns P=Q, absorbing the data-less Unit-pattern
snd. Technically, the hierarchy rooted at Pattern is a simple instance of a Gen-
eralized Algebraic Datatype (GADT) [6]. When a JoinPattern is selected for
execution, a virtual method Fire() or Spawn(), declared on JoinPattern, but
overridden in each OpenPattern〈P1, . . . , Pn〉 subclass, calls pattern.Get() on
a private field, pattern, of specialized type And〈Pair〈. . . Pair〈P1, . . .〉, . . .〉, Pn〉.
This yields a nested pair of n-components of the appropriate type to pass on,
component-wise, to its n-ary Continuation. This is quite elegant since no box-
ing, heap allocation or casting is required to implement the dequeuing and trans-
fer of multiple values. The And method of an OpenPattern extends its current
pattern by conjoining it with a new atomic pattern; AndPair extends its current
pattern - a conjunction - by conjoining its first component with the conjunction
of its second component and a new atomic pattern.

Calling When allocates a new OpenPattern with an atomic pattern field
and null continuation. The OpenPattern contains another field storing a call-
back to invoke with a JoinPattern when the OpenPattern is supplied with
a continuation. Calling And/AndPair returns a new OpenPattern with an ex-
tended pattern, same callback and null continuation. Calling Do creates a new
OpenPattern with the same pattern, null callback and non-null continuation
and passes it, as a JoinPattern, to the original callback. The callback finally
grabs the Join lock, calls GetIntSet and either detects an illegal pattern or
inserts an entry into the appropriate lists (Actions and perhaps Patterns).

6 Conclusion and Related Work

Compared with Joins, Cω offers more static checking, e.g. rejecting non-linear
patterns, and much better error messages. It also has more opportunities for op-
timization: Cω could use static analysis to determine whether an asynchronous
continuation can safely be run in the enabling thread, rather than a new one.
Cω knows the methods and patterns belonging to a class and can thus com-
pile pattern matching as a cascading test of the state against pre-computed
bitmask constants, with the scheduling code shared between all instances of
the class; Joins must instead perform a linear search through a heap-allocated,
unshared list of patterns, (re-)constructed for each Join instance. Cω can also
inline all the continuations of a synchronous method into its compiled body, in-
stead of indirecting through delegates. On one micro-benchmark, pitting a Cω
OnePlaceBuffer against a Joins implementation, we found that allocating 1000
buffers in a tight loop is roughly 60x slower with Joins, due to the overhead of
reconstructing the patterns for each buffer; executing 1000 Put then Get calls in
the same thread is 2x slower, reflecting the cost of indirecting through a chan-
nel delegate and consulting the heap-allocated patterns; but the time needed
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to run a producer and consumer thread exchanging 1000 messages is roughly
comparable, with any differences dominated by the cost of context switching.

The join calculus [7] provides the foundation for join patterns. JoCaml [8]
and Funnel [9] are functional languages supporting declarative join patterns.
The CCR [5] is an asynchronous concurrency library for C# that uses custom
scheduling rather than integrating with the host’s thread API as Joins does.
The CCR supports join patterns, but not synchronous ones; programs must
be written in an awkward continuation passing style, alleviated sometimes by
the use of C# iterators. Singh [10] builds an experimental combinator library
for joins patterns using software transactional memory in STM Haskell but the
implementation is more expository than practical due to performance issues.

Future avenues to explore include supporting Ada-style synchronous ren-
dezvous, allowing more than one synchronous channel to occur in a pattern.
Executing asynchronous patterns in a new thread is expensive and not always
required: if the continuation is non-blocking and guaranteed to return quickly, it
can be executed immediately in the thread that enabled the pattern. Adapting
Joins to support such user-controlled scheduling of asynchronous patterns is
straightforward and has other applications, for instance to queue continuations
in a thread pool or in the event loop of a GUI thread. A library makes such
experimentation much easier.
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Abstract. HPorter is a DSL embedded in Haskell for composing pro-
cesses running on a parallel computer. Using arrows (a generalization
of monads), one can “wire together” processes in a manner analogous
to a signal-processing application. The processes themselves are typi-
cally existing C or C++ programs, but may also be programs written
in a first-order sub-language in Haskell that supports basic arithmetic,
trigonometric functions, and other related operations. In both cases, once
the processes are wired together, the supporting Haskell implementation
is out of the loop – imported C programs run unimpeded, the Haskell
sub-language is compiled into C code, and all data paths run directly
between C processes. But in addition, HPorter’s event-driven reactivity
permits reconfiguration of these tightly-coupled processes at any time,
thus providing a degree of dynamism that is critical in many applica-
tions.

The advantages of our approach over conventional scripting languages
include a higher degree of type safety, a declarative style, dynamic recon-
figuration of processes, having the full power of Haskell, and portability
across operating systems. We have implemented HPorter both on the
QNX operating system and using conventional TCP/IP sockets, and are
using it in a practical application in Yale’s Humanoid Robotics Labo-
ratory, where the processes correspond to soft-real-time tasks such as
computer vision, motor control, planning, and limb kinematics.

1 Introduction

A humanoid robot has many time-critical tasks, including vision processing,
motor control, limb kinematics, high-level planning, and so on. State-of-the-art
applications place heavy demands on these tasks, and require parallel computers
to deal with them effectively. In addition, the “modes” of a robot vary – if it is
moving, it might need to focus on its kinematics, but if it is trying to pick up
an object, it might need to focus on vision processing and planning. Scripting
these processes efficiently and in the correct manner is thus an important task
for the robotics programmer.
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In this paper we describe HPorter,1 a DSL embedded in Haskell for composing
processes running on a parallel computer. HPorter is based on arrows, a gener-
alization of monads. One way to think of the generalization afforded by arrows
is that they permit functions (processes) to be composed “in parallel,” rather
than in the linear, sequential style dictated by monads. This makes arrows a
good choice for composing parallel processes in a rigorous, robust, and type-safe
manner.

Although the processes themselves could in the abstract be any arbitrary
computations, including ordinary Haskell programs, our primary interest is in
scripting existing processes written in C (or compiled into C), for the sake of
efficiency. On the other hand, any extra processing needed to glue a couple of
processes together (for example, incrementing each value in a stream, or taking
the sine of each value) is something easily expressed in Haskell, and it would be
inconvenient to insist that the user write a new C program for each new piece
of glue code. Therefore, we also have designed a small first-order Haskell sub-
language called GLUE, based on previous work on Pan and Pan# [2,14], that is
easily compiled into C.

Once the C processes are wired together, the supporting Haskell implemen-
tation is completely out of the loop – the imported C programs run unimpeded,
the Haskell sub-language is compiled into C code, and all data paths run directly
between C processes.

But in addition, a key aspect of HPorter is that it is reactive, since, as men-
tioned earlier, there are times when the process configuration needs to change,
often in drastic ways. We achieve this by using switch combinators borrowed
from our work on FRP and Yampa [16,12]. This provides event-driven reactivity
that permits dynamic reconfiguration of the otherwise tightly-coupled processes.

In contrast to existing approaches to scripting parallel processes, our approach
offers the following advantages:

1. HPorter is type-safe. All input and output ports are strongly typed, thus
providing a robust interface not typically found in the C world.

2. HPorter is declarative, resulting in more concise and easier to understand
code. Rather than saying “how” things are wired together as in a conven-
tional approach, HPorter describe “what” the process interconnections are
in an arrow-based style.

3. HPorter is reactive, permitting reconfiguration of the processes in an event-
driven manner.

4. HPorter is embedded in Haskell, thus affording the user the full expressive
power of a modern functional language. Process-wiring code can be reused,
recursion can replicate networks, higher-order functions can capture repeat-
ing patterns, and so on.

In our robotics application these advantages are even greater because some
of the processes are actually Dance [6,5] programs that have been compiled into

1 The name “HPorter” comes from the name of the QNX scripting language Porter,
and our use of H askell.
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C. Dance is a DSL embedded in Haskell for controlling humanoid robots, and
uses principles similar to those in HPorter and Yampa – this similarity is an
advantage to the user.

We originally implemented HPorter two years ago on the QNX real-time op-
erating system running on a tightly-coupled network of four multiprocessors,
each of which has four processors (thus 16 processors in all).2 Recently, however,
the hardware was upgraded to more powerful nodes (although only 8 instead of
16), and we decided to explore the use of conventional TCP/IP sockets to in-
terconnect processes, rather than using the specialized QNX machinery. We felt
that this would result in a more robust design and would allow the system to be
more portable, since TCP/IP sockets are ubiquitous in Unix-based systems. In
porting HPorter to this new platform, all we had to do was change the back-end
interface and process-specific code – none of the arrow-based source code had to
be changed. Thus we point out the final advantage of our approach:

5. HPorter is portable.

We are currently using HPorter to program a real humanoid robot in the Yale
Robotics Laboratory. Our robot consists of a torso, two arms, a head, and shoul-
ders (which move). It has twenty-one degrees of freedom, each corresponding to
a separate motor, and each of those in turn requiring a separate motor controller.
In addition, the robot’s two eyes provide stereo vision, with two cameras for each
eye – one for wide-angle viewing, and the other to simulate foveal vision. The
vision processing is in fact the most demanding computational task.

The performance of HPorter is excellent. Once the processes are running, no
performance degradation is apparent. Although reactive processing (for event
processing and process reconfiguration) requires Haskell intervention, for our
applications the response time of the reactive component is more than accept-
able. Just as important, users of HPorter find the system easier to use than a
conventional scripting approach.

The remainder of this paper is organized as follows. We start with a brief
introduction to arrows in Section 2, following by an example of HPorter in Sec-
tion 3. In Section 4 we discuss the notions of processes, ports, and connections
in HPorter, as well as other implementation details. In Section 5 we discuss
performance, and related work is summarized in Section 6.

2 A Brief Introduction to Arrows

We assume that the reader is familiar with Haskell. In this section we give a
brief introduction to arrows; more detail can be found in [8,7].

Arrows are a generalization of monads that relax the stringent linearity im-
posed by monads, while retaining a disciplined style of composition. This dis-
cipline is enforced by requiring that composition be done in a “point-free”

2 On the other hamd, hard real-time constraints are not something we address in this
work, nor is it a requirement of our robotics application.
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style – i.e. combinators are used to compose functions without making direct
reference to the functions’ values. These combinators are captured in the Arrow
type class:

> class Arrow a where
> arr :: (b -> c) -> a b c
> (>>>) :: a b c -> a c d -> a b d
> first :: a b c -> a (b,d) (c,d)

arr lifts a function to a “pure” arrow computation; i.e., the output entirely
depends on the input (it is analogous to return in the Monad class). (>>>)
composes two arrow computations by connecting the output of the first to the
input of the second (and is analogous to bind ((>>=)) in the Monad class). But
in addition to composing arrows linearly, it is desirable to compose them in
parallel – i.e. to allow “branching” and “merging” of inputs and outputs. There
are several ways to do this, but by simply defining the first combinator in
the Arrow class, all other combinators can be defined. first converts an arrow
computation taking one input and one result, into an arrow computation taking
two inputs and two results. The original arrow is applied to the first part of the
input, and the result becomes the first part of the output. The second part of
the input is fed directly to the second part of the output.

Other combinators can be defined using these three primitives. For example,
the dual of first can be defined as:

> second :: (Arrow a) => a b c -> a (d,b) (d,c)
> second f = let swapA = arr (\(a,b) -> (b,a))
> in swapA >>> first f >>> swapA

Finally, it is sometimes desirable to write arrows that “loop”, such as in a sig-
nal processing application with feedback. For this purpose, an extra combinator
(not derivable from the three base combinators) is needed, and is captured in
the ArrowLoop class:

> class ArrowLoop a where
> loop :: a (b,d) (c,d) -> a b c

We find that arrows are best viewed pictorially, especially for the application
at hand: composing parallel processes. Figure 1 shows the basic combinators in
this manner, including loop.

3 HPorter by Example

In this section we present some examples that highlight the three key features
of HPorter: the use of arrows to wire together parallel processes, the ability to
reconfigure processes dynamically, and the ability to write glue code without
leaving Haskell.



HPorter: Using Arrows to Compose Parallel Processes 279

arr :: Arrow a => (b -> c) -> a b c
(>>>) :: Arrow a => a b c -> a c d -> a b d
(<<<) :: Arrow a => a c d -> a b c -> a b d
first :: Arrow a => a b c -> a (b,d) (c,d)
second :: Arrow a => a b c -> a (d,b) (d,c)
(***) :: Arrow a => a b c -> a b’ c’ -> a (b,b’) (c,c’)
(&&&) :: Arrow a => a b c -> a b c’ -> a b (c,c’)
loop :: Arrow a => a (b,d) (c,d) -> a b c

f

(a) arr f (b) sf1 >>> sf2 (c) first sf

(d) sf1 &&& sf2 (e) loop sf

Fig. 1. Commonly Used Arrow Combinators

Fig. 2. Structure of a Robot System

3.1 Processes as Arrows

In HPorter, a process is represented as an arrow of type Proc T1 T2. In other
words, a process takes as input a stream of values of type T1, and yields as
output a stream of values of type T2. If a stream of values were represented as
an infinite list, we would have the following correspondence:
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Proc T1 T2 = [T1] -> [T2]

In fact it is easy to make this representation an instance of class Arrow, and an
(overly) abstract semantics for HPorter can be devised. In practice, the repre-
sentation is much more involved, since these processes are actually imperative
C programs running as QNX processes. We defer discussion of these implemen-
tation details until a later section.

As a realistic example, suppose we want our robot to perform a vision-guided
reaching task, for which we need eight processes: two video image grabbers, two
color processors, a scene depth calculator, two motor controllers, and a reaching
trajectory planner.3 Our only concern here is how to wire them together: the
streams of images captured from the grabbers are processed by the color filters
to generate “boxes” that identify objects of interest. Then the boxes along with
the images from the color filters are passed to the depth calculator to generate
the 3D coordinates of the objects. These coordinates are sent to the reaching
trajectory planner, which computes the arm trajectory and passes that to the
motor controller to move the arm. Besides this main information flow, there is
inter-process communication for auxiliary functionality, like recording requests
for the image grabber. Figure 2 shows the detailed information flow graphically
for the overall system – note that the graph is circular.

This information flow can be captured in HPorter as follows:

> vision :: Proc ((Rec,CClip),(Rec,CClip)) ((Image,Image),Coord3D)
> vision = (grabR >>> (first colorR)) *** (grabL >>> (first colorL))
> >>> (arr (\ (((imR,bR),cR),((imL,bL),cL))->
> (((imR,imL),(bR,bL)),(cR,cL)))) >>> ndepth
>
> reach :: Proc () ()
> reach = loop ((motorHead *** motorArm) *** (vision >>> (arr snd))
> >>> trajGen >>> (arr (\ ((a,b),c) -> (a,(b,c)))))

From this example the reader can see how cumbersome it can be to write in a
point-free style – in particular, the pairing and merging of inputs and outputs
becomes quite tedious. To alleviate this problem, Paterson has proposed a special
syntax for arrows [13], much in the spirit of the “do” syntax for monads. Using
arrow syntax, the above program can be written:

> reach :: Proc () ()
> reach = proc x -> do
> rec
> (cGR,imgR) <- grabR -< (cpR,rcR)
> (cGL,imgL) <- grabL -< (cpL,rcL)
> (imgCR,boxR) <- colorR -< imgR
> (imgCL,boxL) <- colorL -< imgL

3 The trajectory planner is actually a Dance (i.e. Haskell) program compiled into C
using GHC.
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> ((imgDR,imgDL), depD)
> <- ndepth -<
> (((imgCR,imgCL),(boxR,boxL)),(cGR,cGL))
> (((cmd0,cmd1),(cpR,rcR)),(cpL,rcL))
> <- headarm’ -<
> (((bz0,hm),(bz1,am)),depD)
> (bz0,hm) <- motorHead -< cmd0
> (bz1,am) <- motorArm -< cmd1
> returnA -< ()

Unlike the “do” syntax for monads, the arrow syntax requires both an input
and an output for each process. As with monad syntax, the inputs and outputs
“strip off” the arrow constructor. For example, in the above, colorR has type
Proc Image (Image, Boxes), and thus imgR has type Image and (imgCR,boxR)
has type (Image,Boxes).

Although more verbose than the original point-free style, this is arguably a
very natural and easy to understand way of wiring processes together. Indeed,
it is isomorphic to the diagram in Figure 2. Its constrained style permits us to
guarantee, eventually, that the processes run stand-alone, without the help of
the Haskell subsystem.

Continuing with this example, the processes we use are generated from ex-
isting C programs in the following way. Suppose the C program for the color
filter is located at "/home/user/bin/color". Suppose further that the TCP/IP
ports for this process have identifiers "inputa" and "inputb" for input, and
"outputc" for output. Suppose finally that we wish to map this process to pro-
cessor id 5. We can do this as follows:

> colorR :: Proc Image (Image, Boxes)
> colorR = makeProc progColor "-b -N 1 -s 0 -o /colorR" 5 5

where progColor is defined as:

> progColor = defProg { procName = "/color",
> progName = "/home/user/bin/color",
> input = image "inputa"
> output = lift2 (image "inputa") (box "inputb"),
> param = colorP}

The details of image and box, and of the string argument to makeProc, are not
important. Each of the other processes can be defined in a similar way.

3.2 Reactivity

In order to add reactivity to HPorter, we adopt the ideas of functional reactive
programming [16,12,1,3], in particular as they are embodied in Yampa, which
also uses arrows [7].

One key idea in Yampa is a signal function, whose type is SF a b, and is
analogous to HPorter’s Proc a b. Another fundamental concept is that of an
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event, which occurs at discrete points in time. This idea is captured in Yampa
through an option type called Event:

> data Event a = NoEvent | Event a

Event is isomorphic to Maybe, but it is an abstract type whose constructors are
not exposed. Yampa provides a rich set of functions for generating event sources
and for operating point-wise on events.

In HPorter we treat a reactive process as a signal function that generates
non-reactive processes. In other words:

> type (HasPort a, HasPort b) =>
> ReactProc a b c = SF a (Proc b c)

Here, type a represents the signal type that our process reacts to. Now Yampa’s
facilities for reactivity – i.e. its “switching” combinators – can be used to switch
to a new signal function when an event occurs. The most commonly used switch-
ing combinator is:

> switch :: SF (a, (b,Event c)) -> (c -> SF a b) -> SF a b

For example, the expression (sf1 &&& es) ‘switch‘ \e -> sf2 behaves as
sf1 until the first event in the event stream es occurs, at which point the event’s
value is bound to e and the behavior switches over to sf2.

With this background we can now give an example of reactivity that high-
lights our application domain. The robot’s vision system has a variety of image
processing capabilities, such as a color filter and a motion detector:

> color :: Proc Image Image
> motion :: Proc Image Image

For input and output, suppose we also have an image grabber and a video player:

> grabber :: Proc () Image
> video :: Proc Image ()

Now suppose we want the vision system to switch between looking for objects
of a certain color (signaled by Event 1), objects that are moving (Event 2), or
no objects at all (Event 0). This behavior can be achieved as follows:

> colorOrMotion :: ReactProc (Event Int) () ()
> colorOrMotion = filterSelect noFilter
>
> colorFilter = grabber >>> color >>> video
> motionFilter = grabber >>> motion >>> video
> noFilter = grabber >>> video
>
> filterSelect :: Proc () () -> ReactProc (Event Int) () ()
> filterSelect p = switch (proc e do
> returnA -< (p,e))
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> (\a -> case a of
> 0 -> filterSelect noFilter
> 1 -> filterSelect colorFilter
> 2 -> filterSelect motionFilter

filterSelect is a recursive switch function that starts with a process of type
Proc () (), and watches the input signal for an event. When an event happens,
filterSelect is called recursively, but possibly with a new process, depending
on the value of the integer event. It is important to understand that the switching
process is not the same as a conditional – a switch may imply the reconfiguration
of parallel processes.

3.3 GLUE’ing Processes Together

In this section we give an example of the third and final key feature of HPorter,
namely the ability to write simple glue code without resorting to C or C++.

As mentioned in the introduction, sometimes simple glue code is needed to
interconnect processes – for example, we might want to increment each value in
a stream, or take the sine of each value. It would be inconvenient to insist that
the user write a new C or C++ program for each new piece of glue code. Our
solution is to introduce a small first-order imperative language called GLUE that
allows the user to write the glue code directly within her HPorter program, but
which is simple enough that it can be compiled into efficient C++ code.

In our original design we simply defined an AST data type in Haskell and
wrote our glue code using values of that type. With the overloading afforded
by Haskell’s type classes, this was a reasonable approach, and it worked quite
well. More recently, however, we have defined a simple lexical syntax for this
language, which makes writing GLUE code even easier. As an example, here is
a program that takes two streams of integers and adds them pairwise:

name glueplus
input Int a;

Int b;
output Int c;
c := a + b

This program is compiled into our AST data type, where it is type-checked and
compiled into C++, borrowing ideas from Pan and Pan#, which are DSLs for
graphics that are embedded in Haskell. Since that compilation process is well-
documented elsewhere (see [2,14]), we omit a detailed discussion in this paper.

Since GLUE is an imperative language, one might ask why we don’t just write
the glue code in C or C++. But in addition to the small piece of straight-line
code that, in the example above, adds two numbers together, there is a plethora
of additional “boilerplate code” that needs to be written as well, such as the
inclusion of header files, and establishing the linkages between this process and
the ones that we are scripting. Indeed, our compilation process turns the above
five-line program into a ninety-five line C++ program.
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4 Processes, Ports, and Connections

In this section we describe in detail how the underlying processes, ports, and
connections are implemented in HPorter. All of this is hidden from the user.

Running Processes. As mentioned in Section 3.1, a process can abstractly be
thought of as a stream transformer. But concretely, it is a C or C++ process
running stand-alone on an individual node of a parallel computer with a unique
TCP/IP address. Each process has a pathname, a unique id, and both an input
and output port. Finally, processes are wired together via connections between
pairs of ports.

In order to achieve this in Haskell, we need to represent all of these gory details
within the abstraction for processes in HPorter. We begin with the simple notion
of a running process, or RProc:

> type RProc = (ID, ProgPath, Parameter, Address, Node)

> type ProgPath = String; type Parameter = String;
> type Address = String; type ID = Int;
> type Node = Int; type PIDMap = [(ID,Address)]

An RProc thus contains a unique ID, a program pathname, a parameter (i.e.
an argument), the number of the node on which it is running, and the TCP/IP
address of the node. We also introduce the concept of PID map, which maps the
ID of each process to the TCP/IP address of the node on which it is running.

Ports and Connections. Next, we define the types needed for process commu-
nication. The connection of a server/client pair is built upon the notion of a
port:

> type Port = (ID, PortName)
> type PortName = String

which contains the ID of the process that it is defined within and a unique local
name. Then a server port:

> type ServerPort = (Port, PortNum)
> type PortNum = Int

is a pair of port and port number, and a connection:

> type Connection = (Port,Port)

is a pair of ports, whose order matters: data flows from the first to the second.
Process State and Arrow Instances. Finally, as we compose processes together

(using the arrow framework), we need to generate a new ID for each composite
process and a free port number for each pair of communication ports, and we
need to keep track of all live socket port servers, the internal connections, and
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the internal process ids. This information is contained in the PState data type,
which is then used to define the Proc data type as follows:4

> data Proc a b = Proc ((PState, a) -> (PState, b))
>
> data PState = PState { nextID :: ID,
> nextPort :: PortNum,
> serverPort :: [ServerPort],
> conns :: [Connection],
> procs :: [RProc],
> pidMap :: PIDMap}
> emptyPState = PState { nextID = 0, nextPort = 5000, serverPort = [],
> conns = [], procs = []}

Now we can declare Proc to be an instance of Arrow and ArrowLoop:

> instance Arrow Proc where
> arr f = Proc (\(s, x) -> (s, f x))
> Proc f1 >>> Proc f2 = Proc (f2 . f1)
> first (Proc f) = Proc (\ (s, (a,c)) ->
> let (s’, b) = f (s, a) in (s’, (b, c)))
>
> instance ArrowLoop Proc where
> loop (Proc f) = Proc (\ (s, a) ->
> let (s’, (b, c)) = f (s, (a, c)) in (s’, b))

Running a Composite Process. At the outermost level of an HPorter program,
there is one value of type Proc () () that needs to be executed, just as in
monadic IO there is one value of type IO () to be executed. Indeed, to execute
the Proc () () value in Haskell, it must be converted into a value of type IO
(). The function runProc achieves this for us:

> runProc :: Proc () () -> IO ()
> runProc (Proc p) =
> let (s, output) = p (emptyPState, ())
> obs = procs s
> cs = conns s
> sv = serverPort s
> adList = pidMap s
> in do sequence_ (map (run sv cs adList) obs)

(sequence_ is a standard Haskell library functions that takes a list of monadic
actions and “runs” them in sequence.)

4 Note that if Proc could be defined as Proc (a -> (PState, b)) then it would be
a Kleisli arrow, and thus a monad. But it cannot, and thus the more general arrow
class must be used.



286 L. Huang, P. Hudak, and J. Peterson

The initial PState, emptyPState, contains no server port, no connections, no
process, an initial id value and an initial port number (which is set to 5000
to avoid possible conflict with the system processes). By applying p to the
initPState, we get a final PState named s that contains all of the connec-
tions, processes, PID-IP address mapping and server port number assignment
for the whole program. run generates the appropriate QNX commands to begin
execution of each process with the proper port number initialization parameters
for each.

Fig. 3. Process Controller and Processes

Adding Reactivity. The presentation we have given so far has actually been
oversimplified. In particular, we have not taken into account how HPorter dy-
namically reconfigures processes, including stopping them and restarting them if
necessary. We need a new execution model to enable dynamic process re-wiring,
in which we:

– Add an input port in all the source programs for process control command.
– Add an output port in all the source programs for control command feedback.
– Adjust the programs to allow process control interruption during execution.
– Add a command line option for switching between online and offline process

control.

These new ports are exclusively for process control purposes, and connect only
to what we call the process controller. They are not user-controllable and do
not appear in the program or process abstractions. Through these new ports the
process controller acts as a central controller for all of them.
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The relationship between the process controller and each process is that of
a standard client/server model, as shown pictorially in Figure 3. The controller
(server) sends commands to each process (client) through a “control” port, and
receives responses through a “feedback” port. The process control commands
are captured in:

> data ProcCmd = StartServer ID PortName PortNum
> | ConnectTo ID PortName Address PortNum
> | Stop ID PortName
> | Quit ID
> | Suspend PID
> | Continue PID

The command StartServer pid pn i asks process pid to start a TCP/IP
socket server pn at port i. Command ConnectTo pid1 pn addr i asks pro-
cess pid1 to connect port pn to the port number i at address addr. Stop pid
pn tells the process pid to close the port named pn, and Quit pid is used to
kill process pid. The Suspend and Continue commands allow interrupting and
resuming a process, for situations where a batch of commands needs to be ad-
dressed before the process can proceed safely.

Although the details are too numerous to include in this paper, reactivity
works as follows: The state that is accumulated by the running system includes
all of the running processes and how they are interconnected. When an event
occurs that triggers a switch, a computation is performed to determine the best
way to achieve the reconfiguration (some processes may need to be killed; others
suspended, rewired, and restarted; and others created from scratch). The above
commands are then issued to the processes to effect this reconfiguration, and the
computation continues. All of this stateful computation is “hidden” within the
arrow and the switching combinators.

5 Performance

We have implemented HPorter on two different networks of parallel processors
running under the QNX real-time operating system, one having 8 processors,
and the other having 16. The current system is running under QNX Version 6.3,
and we use TCP/IP sockets for inter-process communication.

GHC Version 6.4 is used to compile any Haskell processes that are being
scripted (for example the Dance program for the trajectory planner discussed in
Section 3.1), as well as the GLUE code and the process controller.

We have compared our implementation of HPorter to the QNX Porter script-
ing language, and find them to be comparable in performance for our application.

– For non-reactive processes, Haskell is only needed for starting and intercon-
necting the processes. The extra overhead at start-up time is not noticeable,
because the start-up time for most processes is much longer.

– For processes that contain GLUE code, some overhead is incurred to compile
the glue code. Once compiled and interconnected, however, Haskell once
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again is out of the loop. And because the glue code is usually very small, the
overhead of compilation is not significant. Also, our implementation works
hard to ensure that GLUE code is not recompiled every time it is invoked –
thus the overhead is only incurred the first time around.

– For processes with reactivity, we have found that for our applications, where
the mode switches do not happen frequently, the response time is more than
adequate. In vision-based robotics, vision processing is the computationally
limiting factor, and rates of 10-20 hertz are considered good. At that rate
HPorter’s impact on the system is negligible. For applications requiring more
rapid response, we expect that pre-compilation of the glue code may be
necessary. This would be straightforward using our approach, but thus far
we have not needed to do so.

6 Related Work

There are many “architectural description languages,” or ADLs, such as Dar-
win/regis [11], ACME [4], and Rapide [10], designed for specifying the architec-
tures of a software system. HPorter shares with these language the ability to
specify a software architecture, but there are several important differences:

– Most ADLs represent the architecture as a collection of components and
connections, whereas we treat it as a transition function and cast it into an
arrow framework.

– ADLs are meant primarily for the design of software systems, whereas HPorter
is targeted at composing and executing a real distributed application.

– HPorter supports reactivity – i.e., the expression of dynamic, reconfigurable
architectures – which is seldom found in ADLs.

– New processes can be defined and created dynamically in HPorter.
– Programs in HPorter are more concise than ADLs, which express components

and their interconnections separately.

Our work is probably most similar to Ptolemy [9], which serves both as an
ADL and as a language for composing real-time processes. Ptolemy is much richer
than HPorter, although its notion of process interconnection is more complex
than that of HPorter.

HaskellScript [15] is a scripting language embedded in Haskell that inter-
connects COM objects dynamically. Like HPorter, it also has strong typing.
However, the focus is on uniprocessor applications, whereas HPorter allows true
parallelism. Furthermore, HaskellScript uses monads to structure programs, and
thus does not have the generality afforded by arrows.

7 Conclusion

In this paper we present an embedded DSL, HPorter, for composing parallel
processes. HPorter has a concise and declarative syntax, via the employment of
the arrow framework. The host language Haskell makes it more robust in the
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sense of type safety, compared to conventional scripting techniques. Reactivity in
HPorter allows system reconfiguration through the use of switching combinators
derived from Yampa. We have also presented a sub-language, GLUE, for spec-
ifying the glue code that is sometimes needed when interconnecting processes.
An efficient implantation of HPorter is achieved by compiling glue code into C,
and by interpreting process interconnections as QNX system calls.
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Abstract. A two-level data transformation consists of a type-level trans-
formation of a data format coupled with value-level transformations of
data instances corresponding to that format. We have implemented a sys-
tem for performing two-level transformations on XML schemas and their
corresponding documents, and on SQL schemas and the databases that
they describe. The core of the system consists of a combinator library for
composing type-changing rewrite rules that preserve structural informa-
tion and referential constraints. We discuss the implementation of the sys-
tem’s core library, and of its SQL and XML front-ends in the functional
language Haskell. We show how the system can be used to tackle various
two-level transformation scenarios, such as XML schema evolution cou-
pled with document migration, and hierarchical-relational data mappings
that convert between XML documents and SQL databases.
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1 Introduction

Coupled software transformation involves the modification of multiple software
artifacts such that they remain consistent with each other [12,8]. Two-level data
transformation is a particular instance of coupled transformation, where the
coupled artifacts are a data format on the one hand, and the data instances
that conform to that format on the other hand [7]. In this paper we will focus
on the transformation of data formats described in the XML Schema or in the
SQL language, coupled with the conversion of the corresponding data captured
in XML documents or stored in SQL databases.

The phenomenon of two-level data transformation occurs in a variety of con-
texts. For example, software maintenance commonly involves enhancement of
the data formats employed for storing or exporting an application’s data. Typi-
cally such enhancements are fairly conservative, such as adding new fields to the
format. When the enhanced format only serves internal data storage, a one-off
conversion of old data into new data may be sufficient to restore conformance.
When the format concerns data exported to other applications, or shared with
older versions of the same application, old-to-new as well as new-to-old data
conversions may be needed on a repetitive or continuous basis.
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Two-level data transformation also encompasses less conservative format
changes, such as data mappings between programming paradigms. For exam-
ple, the logic of an application may be programmed against an XML schema,
while for efficient storage of its persistent data a relational database is employed.
The required data mapping involves a format transformation from an XML
schema to an SQL schema, as well as forward and backward data conversions
between XML documents and an SQL database. Unlike format enhancements in
the maintenance context, data mappings typically involve profound structural
modifications.

Other contexts in which two-level data transformations may play a role in-
clude: system integration, where data needs to be exchanged between inde-
pendently developed applications; evolution of programming languages, where
grammar modifications between versions spark the need for migration of source
programs; and model-driven engineering where high-level (meta-)model trans-
formations give rise to conversion of their instances.

Previously, we have shown how data refinement theory can be employed to
formalize two-level data transformation, and how the functional programming
language Haskell can be employed to capture this formalization in a type-safe
manner [7]. We also provided suites of rule combinators as well as basic rules for
format evolution and hierarchical-relational data mappings from which two-level
data transformation pipelines are built in compositional fashion.

In the present paper, we discuss practical application of our Haskell-based
two-level transformation support. In particular, we make these contributions:

1. We elaborate the rule combinators and basic rules to take into account not
only structural information, but also constraint information, such as primary
keys and foreign keys (Section 4).

2. We embed the general transformation kernel into a language-specific trans-
formation framework, including front-ends for SQL (schemas and data) and
for XML Schema and XML documents (Section 5).

3. We illustrate by example how the XML/SQL transformation framework is
used to handle various two-level transformation scenarios, including XML-
to-SQL data mappings, XML schema evolution, and SQL database migration
(Section 6).

Before discussing these contributions, we will present a motivating example (Sec-
tion 2) and briefly recapitulate our previous work on two-level data transfor-
mation (Section 3). We end with a discussion of related work (Section 7) and
concluding remarks (Section 8).

2 Motivating Example

The tree in Figure 1 represents an XML movie database schema, before and
after evolution. Before evolution, the database holds information for movies and
actors only. The evolution steps aims to add information for TV series to the
database. This is done through the following changes:
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imdb

movie   show

review
*

box office

*

country value

*
actor

*

name played

year title role award

*

*
+

movie series

season

yr episode

nm director

?

*

*
director

year title

Fig. 1. Evolution of a movie database schema, inspired by IMDb
(http://www.imdb.com/). The circled area points out the introduced structure.

1. The movie element is renamed to show.
2. Some information specific to movies is factored out into a new movie element.
3. An element series with information specific to TV series is introduced as

an alternative to the movie element.

In the original schema, the following constraints should hold:

1. A movie is identified by its year and title.
2. An actor is identified by his/her name.
3. The year and title of a played element refers to the year and title of a

movie.

The evolution step introduces the following additional constraint:

4. A season is identified by its yr.

When an XML-to-SQL data mapping is applied to the original and the evolved
schema, different SQL databases with different constraints will result. For ex-
ample, the original schema is mapped to the following database (this example
will be revisted and continued in Section 6):

movies(year,title,director)
reviews(id,year,title,review)

foreign key (year,title) references movies(year,title)
boxoffices(id,year,title,country,value)

foreign key (year,title) references movies(year,title)
actors(name)
playeds(id,name,year,title,role)

foreign key (year,title) references movies(year,title)
foreign key (name) references actors(name)

awards(id,name,playedid,award)
foreign key (playedid,name) references playeds(id,name)
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In the sequel we will show how both evolution and mapping can be specified
by composing library combinators. The backward and forward data conversions
induced by these schema transformations will come for free. The properties of the
combinators guarantee that the conversions are invertible, i.e. that no data gets
lost. The propagation and generation of constraints support the preservation of
not only structural, but also semantic information.

3 Two-Level Data Transformation

Two-level data transformation can be formalized in terms of data refinement the-
ory, and can be modeled in Haskell as systems of type-changing rewrite rules [7].
These rewrite rules operate on Haskell types. In Section 5, we will discuss how
XML and SQL schemas are represented by such types.

Data Refinements. A datatype A can be refined to a datatype B, usually denoted
by the inequation A � B, if there is an injective, total function to : A → B (the
representation function) and a surjective, possibly partial function from : B → A
(the abstraction function) such that from · to = idA, where idA is the identity
function on datatype A.

The inequations of data refinement theory can be used as rewrite rules that
replace one datatype by another. When applied left-to-right, an inequation A �
B will preserve or enrich information content, while applied right-to-left it will
preserve or restrict information content. The (potential) partiality of the from
function implies that left-to-right application is only valid if the invariant to ·
from = idB can be shown to hold.

In fact, when used as a left-to-right rewrite rule, a data refinement inequation
A � B, witnessed by functions to and from, can be interpreted as a two-level data
transformation step that takes its input datatype A into the triple (B, to, from).

Representation of Types and Rules. The core of the model of two-level data
transformations in Haskell are the following declarations:

type Rule = ∀a . Type a → Maybe (View (Type a))
data Type a where

Int :: Type Int
Prod :: Type a → Type b → Type (a, b)
Either :: Type a → Type b → Type (Either a b)
Map :: Type a → Type b → Type (Map a b)
...

data View a where View :: Rep a b → Type b → View (Type a)
data Rep a b = Rep{to :: a → b, from :: b → a }

Note that Type and View are generalized algebraic data types (GADTs) [19],
an extension to the Haskell type system that allows (partially) instantiated type
parameters in the result type of data constructors.

The Rule type expresses that a two-level transformation step is a partial
function that takes a type into a view of that type. Here we use a value-level
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representation of datatypes [11], where a value of Type a is the representation
of type a. For instance, the value Prod Int Int represents type (Int , Int).

The View constructor expresses that a type a can be transformed into a
type b, if there are functions to :: a → b and from :: b → a, bundled in the
Rep constructor, that allow data conversion between a and b. Note that only
the source type a escapes from the View constructor, while the target type b
remains encapsulated — it is implicitly existentially quantified.

Two-Level Transformation Combinators. To construct complex two-level trans-
formations from basic ones, combinators are defined for identity, sequential com-
position, left-biased choice, repetition, and generic traversal:

nop :: Rule
nop x = Just (View (Rep id id) x )
(�) :: Rule → Rule → Rule
(f � g) a = do View (Rep t1 f1 ) b ← f a

View (Rep t2 f2 ) c ← g b
return (View (Rep (t2 · t1 ) (f1 · f2 )) c)

(�) :: Rule → Rule → Rule everywhere :: Rule → Rule
many :: Rule → Rule somewhere :: Rule → Rule

These combinators are common for typed strategic rewriting libraries [16,15]. For
conciseness, we show definitions of the first two only. These combinators allow us
to combine local, single-step transformations into a single global transformation.

Several local, single-step transformation rules are shown in Figure 2. These
rules are implemented in Haskell in a straightforward way. For example, the rule
for adding alternatives is implemented as follows:

addalt :: Type b → Rule
addalt b a = Just (View (Rep Left (λ(Left x )→ x )) (Either a b))

Using these basic rules and the rule combinators, we can compose sophisticated
strategies for two-level transformation. For example, a hierarchical-relational
mapping can be defined along the following lines (details in [7]):

toRDB :: Rule
toRDB = many (somewhere (listelim � setelim � ...� flatmap))

Such compositions are guaranteed to be refinements again, i.e. they induce in-
vertible data conversion function. The combinators give full control over the
order and conditions under which rules are applied.

4 Constraint Preserving Transformation

The type representation and the two-level transformation rules from [7], reca-
pitulated above, fail to take into account constraint information. In particular,
foreign key relationships play an important role in relational database modeling
and querying. A similar concept is present in XML Schema, though its usage is
limited [13]. In this section we discuss how the type representation and trans-
formation rules can be augmented to take constraint information into account.



Coupled Schema Transformation and Data Conversion for XML and SQL 295

Hierarchical-to-relational data mapping
[A] � IN ⇀ A List elimination
2A ∼= A ⇀ 1 Set elimination
A? ∼= 1 ⇀ A Optional elimination

A + B � A? × B? Sum elimination
A × (B + C) ∼= (A × B) + (A × C) Distribute product over sum

A ⇀ (B + C) � (A ⇀ B) × (A ⇀ C) Distribute map over sum (range)
(B + C) ⇀ A ∼= (B ⇀ A) × (C ⇀ A) Distribute map over sum (domain)

A ⇀ (B × (C ⇀ D)) � (A ⇀ B) × (A × C ⇀ D) Flatten nested map
Format evolution

A � A × B Add field A+ � [A] Allow empty list
A � A + B Add alternative A? � [A] Allow repetition

A � A? Make optional A � A+ Allow non-empty repetition

Fig. 2. One-step rules for two-level transformation systems. More details can be found
elsewhere [7].

Representation of Field Names and Referential Constraints. To represent field
names and references, we introduce an annotation mechanism on data types. We
will write kAn

r to denote a datatype A with name n, key k, and key references r.

– The name annotation n is either empty, or contains a single name.
– The key annotation k is either empty, or contains a globally unique identifier.
– The key references annotation r is a list of zero or more identifiers.

With such annotations, we can represent the first two tables of our example as:

(1(Intyear × Strtitle) ⇀ Strdirector)movies ×
((Intid × (Intyear × Strtitle)1) ⇀ Strreview)reviews

Note that we represent tables with finite maps, where the map’s domain is the
primary key of the table. The compound foreign key relationship is represented
by the annotation 1 on the year-title pair inside each map.

Constraint-Preserving Transformation Rules. Using our datatype annotation
mechanism, we can enhance some of our two-level transformation rules to ma-
nipulate constraint and name information in addition to structural information.
Concatenation of reference lists is denoted by juxtaposition.

For example, the introduction of a new key reference when flattening nested
maps is captured by the following:

(kAr ⇀ (B × (C ⇀ D)o))m ∼= (kAr ⇀ B)m × (∅Akr × C ⇀ D)o

Here we use ∅ to denote absence of keys. Where annotations on types are omit-
ted, we assume that the annotations get copied over from left to right without
modifications. The first map on the right-hand side inherits its key k from the
outer map on the left-hand side. If no key is present on A, a new key is gen-
erated. The second map on the right-hand side contains a datatype A that is
annotated with a reference to that key k . Note also that the rule is no longer an
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xsd2type

value2xml
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Fig. 3. Overview of the XML and SQL front ends

inequation, but an isomorphism, because the referential constraint ensures that
the flat maps can always be nested again.

The presence of annotations may also invalidate the applicability of a rule.
For example, the distribution of a map over a sum may only be performed when
the domain of the map is not a key (name annotations omitted for brevity):

∅A ⇀ B + C � ∅A ⇀ B × ∅A ⇀ C

The ∅ indicates that the key annotation of A is required to be empty. This
prevents that the target of a reference gets distributed over two different tables,
which would break referential integrity. Our system of rules handles types of the
form kA ⇀ B + C, where k is not empty by first applying the sum elimination
rule, followed by the optional elimination rule (name annotations omitted again):

kA ⇀ B + C � kA ⇀ B?× C? ∼= kA ⇀ (1 ⇀ B)× (1 ⇀ C)

After this, the rule for flattening nested maps, given above, can be applied twice
to obtain a relational representation.

We have adapted the datatype Type to accomodate annotations on type rep-
resentations, and we have augmented all implementations of two-level rewrite
rules with appropriate annotation handling.

5 XML and SQL Front-Ends

In order to embed the general transformation kernel presented above into a
language-specific transformation framework, we developed front ends for the
relational database language SQL, and the document markup language XML.
The essential operations offered by these front ends are shown in Figure 3.

Both front-ends perform their work in two phases (first schema conversion,
then value conversion) and in two directions (from external to internal repre-
sentation and vice versa). In the case of XML, schema information and values
are stored separately, using separate languages (XML Schema and XML itself),
while in the case of SQL type and value information are stored together (CREATE
and INSERT statements).

The functions for the first phase of the XML front end have the following type
signatures:

type2xsd :: Type a → Maybe XSD
xsd2type :: XSD → Maybe DynType
data DynType where DynType :: Type a → DynType
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The type2xsd function converts a type representation into the abstract syntax
of an XML Schema file, if possible. The xsd2type function performs the oppo-
site conversion, but it returns the computed type representation wrapped in the
DynType constructor. Note that the type variable a does not escape from the
DynType, which means that it is implicitly existentially quantified. This is es-
sential since the xsd2type function is to be applied without knowing the type it
will produce. The Maybe monad indicates the partiality of the conversions.

The second-phase functions of the XML front end have the following type
signatures:

xml2value :: Type a → XML→ Maybe a
value2xml :: Type a → a → Maybe XML

The first argument of both functions is the type representation from the first
phase. Using this type representation, a string representation of an XML doc-
ument gets converted into a value of the represented type, or vice versa. These
functions are partial, since parsing may fail (xml2value) or the type may not
have the appropriate form (value2xml).

These four XML front-end functions are combined with parsers and pretty-
printers for the XSD and XML abstract syntax trees. For XML we use the
HaXml parser and printer [22]. For XSD we use XML Schema support from the
XsdMetz tool [21] which in turn again uses HaXml (schemas in XML Schema
are themselves XML files).

The functions of the SQL front end have very similar signatures:

create2type :: DDL→ Maybe DynType
type2create :: Type a → Maybe DDL
insert2value :: Type a → DML→ Maybe a
value2insert :: Type a → a → Maybe DML

Here, DDL is an abstract syntax for the data definition sublanguage of SQL
(CREATE statements), and DML is an abstract syntax for the data manipulation
sublanguage (INSERT statments). These functions are combined with an SQL
parser that we generated with the Happy parser generator [17], and a hand-
crafted pretty-printer.

The pattern shared by the two front ends is captured in the following class
and corresponding instances:

class FrontEnd t v | t → v , v → t where
parsetype :: t → Maybe DynType
printtype :: Type a → Maybe t
parsevalue :: Type a → v → Maybe a
printvalue :: Type a → a → Maybe v

instance FrontEnd XSD XML where ...
instance FrontEnd DDL DML where ...

For brevity, the straightforward instance bodies are not shown. Against the in-
terface of the FrontEnd class, we can program an overloaded function that lifts
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Fig. 4. Overview of the application scenarios

a Rule on our internal type representation to a two-level transformation on
external abstract syntaxes:

transform :: (FrontEnd t v ,FrontEnd t ′ v ′)
⇒ Rule → t → Maybe (t ′, v → Maybe v ′, v ′ → Maybe v)

transform r t = do
DynT a ← parsetype t
View (Rep to from) a′ ← r a
t ′ ← printtype a′

let to′ v = do {x ← parsevalue a v ; printvalue a′ (to x )}
let from ′ v ′ = do {x ← parsevalue a′ v ′; printvalue a (from x )}
return (t ′, to′, from ′)

Note that the result type is a triple, where t ′ is the transformed type, and the
partial functions convert v to v ′ and vice versa. In the upcoming sections, we
resolve the overloading of the transform function in different ways to obtain
various concrete two-level transformations for XML and SQL.

6 Application Scenarios

We now illustrate by example how the two-level transformation rules can be
combined with the XML and SQL front ends to handle various two-level trans-
formation scenarios. See Figure 4 for an overview.

XML Evolution. The evolution of Section 2, where TV series are added as an
alternative to movies, can be encoded as follows:

evolve :: Rule
evolve = somewhere (changeName "movie" "show") �

somewhere (when isMovie (putName "movie" � addalt series))
where

isMovie :: Type a → Bool
isMovie (Prod (List a) b) = getName a ≡ Just "boxoffice" ∧

getName b ≡ Just "director"
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isMovie = False
series = setName "series" (Map year episodes)
year = setName "yr" Int
episodes = ...

when :: (∀a . Type a → Bool ) → Rule → Rule
getName :: Type a → Maybe String changeName :: String→String→Rule
putName :: String → Rule setName :: String → Type a → Type a

Thus, the moviename is changed into show in a single traversal, using somewhere.
Then, in a second traversal, the schema fragment to be factored out is located
with the isMovie predicate. This predicate tests for the presence of boxofficeand
director. If the predicate is satisfied, at that point in the schema the movie name
is reintroduced, and the addalt rule is triggered to insert the series fragment.
Note that this latter fragment is defined by a Map, which encodes that a season
is uniquely identified by its year.

We can now feed the evolve rule to our transform function to perform a data
mapping:

> xsd ← parseXsdFile "imdb.xsd"
> let Just (xsd ′, to, from) = transform evolve xsd
> xml ← parseXmlFile "imdb.xml"
> let Just xml ′ = to xml
> show xml ′

<imdb>
<show><title>Pulp Fiction</title><year>1994</year>

<movie><director>Quentin Tarantino</director></movie>
</show>
<actor><name>John Travolta</name>

<played><title>Pulp Fiction</title><year>1994</year>
<character>Vincent Vega</character>

</played>
</actor>

</imdb>

Thus, we use the resulting to function and apply it to an input document, to
obtain a converted document. Note that the show tag appears in the original
place of the movie tag, which now tags nested information specific to movies.

XML to SQL Data Mapping. We map the original schema to SQL as follows:
> xsd ← parseXsdFile "imdb.xsd"
> let Just (ddl , tosql , fromsql) = transform toRDB xsd
> xml ← parseXmlFile "imdb.xml"
> let Just dml = tosql xml
> show dml
insert into movies (year,title,director)
values (1994,’Pulp Fiction’,’Quentin Tarantino’);

insert into actors (name)
values (’John Travolta’);
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insert into playeds (id,name,year,title,role)
values (0,’John Travolta’,1994,’Pulp Fiction’,’Vincent Vega’);

Here we have supplied the toRDB strategy to the transform function. The re-
sulting ddl corresponds to the pseudo-SQL that we showed in Section 2. Note
that the tosql function would return Nothing if this document does not conform
to the original XML schema. Multiple documents can be converted into SQL
insert statements and loaded into a relational database:

> createDB "imdb" ddl
> loadDB "imdb" dml
> xml ← parseXmlFile "imdb2.xml"
> let Just dml = tosql xml
> loadDB "imdb" dml

With createDB and loadDB we connect to an external DBMS. If the combination
of documents violates the propagated constraints, the DBMS will refuse to load
the data. An XML view of the complete database can be obtained as follows:

> (ddl , dml)← dumpDB "imdb"
> let (Just xml) = fromsql dml
> show xml
<imdb>
<movie><title>Pulp Fiction</title><year>1994</year>

<director>Quentin Tarantino</director>
</movie>
<movie><title>Videodrome</title><year>1983</year>

<director>David Cronenberg</director>
</movie>
<actor><name>John Travolta</name>

...
</actor>
...

</imdb>

Note that we use the fromsql function to do backward conversion.

Data Mapping After Evolution. Like the original XML schema, the evolved
schema can be mapped to a relational database:

> let Just (ddl ′, tosql ′, fromsql ′) = transform toRDB xsd ′

In the pseudo-SQL notation, the relational schema ddl ′ looks as follows:

shows(year,title)
reviews(id,year,title,review)

foreign key (year,title) references shows(year,title)
movies(year,title,director)

foreign key (year,title) references shows(year,title)
boxoffices(id,year,title,country,value)

foreign key (year,title) references movies(year,title)
seriess(year,title)

foreign key (year,title) references shows(year,title)
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seasons(year,title,yr)
foreign key (year,title) references seriess(year,title)

episodes(id,year,title,yr,nm,director?)
foreign key (year,title,yr) references seasons(year,title,yr)

actors(name)
playeds(id,name,year,title,role)

foreign key (year,title) references shows(year,title)
foreign key (name) references actors(name)

awards(id,name,playedid,award)
foreign key (playedid,name) references playeds(id,name)

Note that the shows table was called movies before, and that the director field
has moved to the new movies table. New tables for series, seasons, and episodes
have appeared. The generated referential constraints enforce that all movies and
series also appear in the shows table.

Database Migration. With the composition tosql ′ · to · fromsql of various con-
version functions, we can migrate the relational database imdb to an evolved
relational database. However, this pipeline performs various superflous pretty-
print and parse steps, since the intermediate types are XML ASTs. To avoid
this, we can use a dedicated function for migrations:

migrate :: Rule → XSD→Maybe (DML→Maybe DML,DML→Maybe DML)
migrate r t = do

DynT a ← parsetype t
View (Rep to from) b ← toRDB a
View (Rep to′ from ′) b′ ← (r � toRDB) a
let to′ v = do {x ← parsevalue b v ; printvalue b′ (to′ (from x ))}
let from ′ v ′ = do {x ← parsevalue b′ v ′; printvalue b (to (from ′ x ))}
return (to′, from ′)

The migrate function takes an evolution rule and an initial XML schema, and
produces forward and backward conversion functions between the relational
databases corresponding to the initial and the evolved schema. For example:

> let Just (migrateto,migratefrom) = migrate evolve xsd
> let Just dml ′ = migrateto dml
> createDB "evolvedimdb" ddl ′

> loadDB "evolvedimdb" dml ′

After this, a second movie database has been created and filled with the data
from the old database.

7 Related Work

XML-to-Relational Mappings. A large number of approaches has been proposed
for mapping XML to relational databases [1]. Most approaches offer a fixed
mapping strategy, but some allow manual intervention [3] or automatic cost-
based selection of an optimal target schema [4]. Many approaches only offer
forward data conversion, though some offer backward conversion as well [2]. Our
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approach is fully compositional, and allows various mappings known from the
literature to be recomposed in a purely declarative way from basic rules.

XML-to-relational mappings are expected to be information-preserving in
some sense, but few approaches come with a precise definition or formal guar-
antees of such preservation properties. An exception is the use of the notion of
invertibility by Barbosa et al [2], which in turn is based on the classic notion
of relative information capacity in the database context. The same property of
invertibility is satisfied by our two-level data transformation rules, as expressed
by the law from · to = idA. Data refinement theory shows that structural and
sequential composition of our rules maintain invertibility.

Constraint Preservation. Few XML-to-relational mapping approaches take con-
straint information into account. A notion of XML Functional Dependency (XFD)
is introduced by Chen et al [5,6], based on path expression, and mapping algo-
rithms are provided that propagate XFDs to the target relational schema, and
exploit XFDs to arrive at a schema with less redundancy. Davidson et al [9] and
Barbosa et al [2] present alternative constraint-preserving approaches, also involv-
ing constraints based on path expressions.

Our approach, by contrast, employs a type annotation mechanism to capture
constraints, rather than path expressions. As a result, we capture a smaller class
of possible XML constraints. The advantage, however, is that our annotation
mechanism allows a compositional treatment of constraints, which fits better
with our rule-based mapping approach.

XML Format Evolution. Lämmel et al [14] propose a systematic approach to
evolution of XML-based formats, where DTDs are transformed in a well-defined,
step-wise fashion, and migration of corresponding documents can largely be in-
duced from the DTD-level transformations. They discuss properties of trans-
formations and identify categories of transformation steps, such as renaming,
introduction and elimination, folding and unfolding, generalization and restric-
tion, enrichment and removal, taking into account many XML-specific issues,
but they stop short of formalization and implementation of two-level transforma-
tions. In fact, they identify the following ‘challenge’: “We have examined typeful
functional XML transformation languages, term rewriting systems, combinator
libraries, and logic programming. However, the coupled treatment of DTD trans-
formations and induced XML transformations in a typeful and generic manner,
poses a challenge for formal reasoning, type systems, and language design.” We
have now met this challenge, albeit for XML Schema rather than DTDs.

Bi-directional Programming. Foster et al tackle the classical view-update problem
for databases with lenses : combinators for bi-directional programming [10]. Each
lens connects a concrete representation C with an abstract view A on it by means
of two functions get : C→A and put : A×C→C. Thus, get and put are similar
to our from and to, except for put ’s additional argument of type C. Also, an
additional law on these functions guarantees that put can be used to reconstruct
an updated C from an updated A. Hu et al take a smilar approach [20].



Coupled Schema Transformation and Data Conversion for XML and SQL 303

We believe that our techniques for coupled transformations can equally be
beneficial for bi-directional programming with lenses. In particular, we are
currently designing an embedding of bi-directional programs in Haskell that
provides strong, inferable types, as well as strategic rewrite systems for lens
composition.

8 Concluding Remarks

We have shown how XML format evolution, XML-to-SQL mappings, and SQL
migrations can be given a unified declarative treatment as instances of two-level
data transformations. Schema-level transformations produce new schemas, as
well as bi-directional conversion functions between old and new. Name informa-
tion and constraint information can be preserved through transformation steps.
The approach is compositional, in the sense that full transformations are com-
posed from basic transformation rules and rule combinators, and properties such
as invertibility are preserved under composition. The approach can be extended
to cover other hierarchical and relational data languages, by providing more im-
plementations of the FrontEnd class. Source code and examples are available
from the homepages of the authors under the name 2LT.

Future Work. Though already useful in practise, our approach suffers from var-
ious limitations that we intend to overcome.

In [8] we have shown that two-level data transformation systems can be sup-
plemented with type-directed program transformation systems to perform opti-
mization of the induced conversion functions. Moreover, such combined rewrit-
ing systems can be used to perform migration of queries through evolution. We
would like to extend our XML and SQL front-ends to leverage such program
transformations for corresponding query languages.

So far, all our transformations on the type level are performed in the refine-
ment direction, i.e. from abstract to more concrete types. Constraint handling
opens the door to performing these steps in the opposite direction, i.e. to perform
reverse engineering from low-level data schemas to higher-level ones [18].

Our annotation mechanism is sufficient to capture a large class of common
XML and SQL constraints. We would like to enlarge this class further.

Acknowledgements. We thank Flávio Ferreira and Diogo Lapa for their work
on the front ends, and José Nuno Oliveira for inspiring discussions.
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Abstract. Essential elements of aspect-oriented programming can be
formulated as forms of logic programming. Extensions of Horn Clause
Prolog provide richer abstraction and control mechanisms. Definite cla-
uses that pertain to a common aspect, and which crosscut other program
components, can be encapsulated using the connectives of higher-order
intuitionistic logic. The integration or weaving of program fragments can
be formulated using normalized forms of proof search in linear logic.

1 Introduction

Aspect-oriented programming [7] is emerging as an important advancement in
software development. Its attraction lies in a new approach to modularity in
the structuring of programs. Multiple concerns in the construction of software,
such as security and optimization, crosscut each other and cannot be easily sep-
arated by traditional approaches to modular programming. AOP concerns pro-
gram specifications as well as programming language characteristics. This paper
focuses on the realization of AOP in a class of logic programming languages.

There is currently no widely accepted formal theory for AOP, unlike with
the case of functional programming. However, much work already exist on the
paradigm, including several formal specifications [2,15,16]. Logic programming
has also been used [14] as a meta-programming device for AOP, generating code
for conventional target languages (Java). Although the languages discussed here
can also be used for this purpose, we are interested in writing aspect-oriented
logic programs directly. One possible approach to this effect would be to extend
Prolog by imitating the constructs of existing AOP languages such as AspectJ [6].
We offer a different approach here. We show the extent to which AOP concepts
are already embodied in logics that are sufficiently expressive.

Using the terminology of AOP, one can consider a definite clause of a logic
program as a piece of advice on how to proceed when certain conditions are
encountered. These advice clauses are triggered at what are called join points in
a program. The organization of a logic program also does not need to mimic the
style of functionally or procedurally oriented programs. They can be grouped
according to the aspect that they aim to address. For example, one may wish to
consider all clauses concerned with error checking as a separate unit, regardless of
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what predicate is at the head of a clause. In general, we can envision the following
style of programming. Let p1 . . . pn be the predicates of a logic program. Let
aspects (such as error checking) be represented by the symbols t1 . . . tm. Instead
of a singleton atom at the head of each definite clause we can qualify the atom
using a new operator @, to indicate the aspect that the clause pertains to. The
program will have the general form:

p1(. . .) @ t1 :− A1
1

...
pn(. . .) @ t1 :− A1

n
...

p1(. . .) @ tm :− Am
1

...
pn(. . .) @ tm :− Am

n

Formula Aj
i represents the “advice code” for predicate pi pertaining to aspect

tj . Goal formulas indicate the aspects it should be solved with respect to, and
have the form

G @ tj @ . . . @ tk.

Any subset of t1 . . . tm can be used in a query. It will be shown in Section 3
that the operator @ can be modeled with multiplicative disjunction in linear
logic. Each set of clauses pertaining to the same aspect constitute an aspect-
oriented program fragment. Each such fragment may include clauses for any of
the predicates p1 . . . pn, thus crosscutting the organization of the base predicates.

To fully realize this form of separation of concern in programming, however, at
least two important issues must be addressed. First, we wish to construct each
aspect-oriented fragment not just as a loose collection of clauses but as a modular
unit of abstraction, with the desired characteristics of locality and information
hiding. Secondly and most delicately, mechanisms must be available to integrate
or weave the various fragments into a coherent program. These issues are the
focus of this paper and are addressed respectively in the following sections.
Because of the lack of formal definitions for AOP concepts, our presentation
relies significantly on examples. The paper culminates in the formulation of
AOP as linear logic programming in Section 3.

2 Abstractions in Logic Programming

The first-order theory of Horn clauses that traditionally forms the foundation of
logic programming is limited in its ability to provide mechanisms for abstraction.
A formulation and classification of logic programming as deterministic proof
search was given in [11]. Under such a generalized context, logics richer than
Horn clauses can be considered as basis for logic programming. Higher-order,
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intuitionistic and linear logics offer more complex mechanisms for expressing
abstraction.

To provide a framework for discussion, we consider the Java language exten-
sion AspectJ [6], which seeks to support AOP in a general-purpose programming
language. It is now the most popular manifestation of the paradigm. Several lan-
guages based on AspectJ have also been developed, including Aspectual CAML
[13]. In AspectJ, program fragments that address a common concern can be en-
capsulated in modules called aspects. Such a structure may contain declarations
or modifications of data structures that are specific to the aspect in question.
For example, if the aspect concerns security, then a new field such as encryp-
tion key may be added to an existing class. Join points are identified using a
language (pointcuts) of regular expression-like patterns as well as primitives for
determining more meaningful computational context. Aspects define advice code
fragments that are executed at specified join points.

2.1 AOP in λProlog

λProlog, based on the theory of higher-order intuitionistic logic, extends tra-
ditional Prolog. Simply typed lambda terms and the associated unification al-
gorithm are used in place of first-order terms and unification. Universal quan-
tification, including quantification over predicates, can be used in goal clauses.
The operational meaning of a goal of the form ∀x.G is to prove G using a fresh
constant for x. The intuitionistic connective for implication, unlike its classi-
cal counterpart, provides a stronger notion of scope, and can be used without
restriction in λProlog. A goal A ⇒ B is provable if and only if B is provable
under the local assumption of A. These extensions provide a basis for expressing
abstraction in programming. There is now a high-performance, compiler-based
implementation [12] of λProlog.

Intuitionistic implication augments an existing program with a temporary
clause, and can also be thought of as adding a piece of advice to the existing pro-
gram. Likewise, higher-order universal quantification introduces a new constant,
which can be a predicate or function symbol, to the existing signature. As early
as in [9], it was demonstrated how these capabilities can be used to dynamically
define new data structures in a program.

To demonstrate how AOP can be manifested in this setting, we use a predicate
of the form

advice Aspect name Goal

as the head of λProlog clauses. Here, Aspect name identifies the aspect or con-
cern that the body of the clause gives advice to. Goal is a λProlog goal to which
the advice is to be applied. We present in Figures 1 and 2 a simplified exam-
ple to provide a comparison between a λProlog program and the corresponding
AspectJ program. The purpose of this comparison is not to argue about the
superiority of this or that language. We only wish to show how aspect-oriented
concepts can be realized in entirely different contexts.

The syntax of λProlog follows Prolog conventions except that applications
are written in Curried form ((f x) instead of f(x)). For readability we use the
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class aopbase
{

static boolean divisible(int A, int B)
{ return (A % B == 0); }

static int factorial(int N, int Accum)
{ if (N==0) return Accum; else return factorial(N-1,N*Accum); }

} // class aopbase

aspect parameters
{

// advice to check that B is non-zero:
boolean around(int B) :

call(static boolean aopbase.divisible(..)) && args(..,B)
{

if (B==0)
{

System.out.println(”warning: B is zero, returning false”);
return false;

}
else return proceed(B);

}

// advice to check that x is non-negative
before(int x) : call(int aopbase.factorial(..)) && args(x,int)
{

if (x<0) throw new Error(”invalid parameter”);
}

// enforce that the initial value of the accumulator is 1
int around(int N, int A) :

call(int aopbase.factorial(..)) &&
!withincode(int aopbase.factorial(..)) && args(N,A)

{
return proceed(N,1);

}
} // aspect to check parameters

aspect trace
{

before() : call(int aopbase.*(..))
{ System.out.println(thisJoinPoint); }

declare precedence : trace, parameters; // trace has higher precedence
} // aspect to trace calls

Fig. 1. Sample AspectJ Program
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module aopexample.

%% type declarations

type divisible int → int → o.
type fact int → int → int → o.
type advice string → o → o.
type useaspects (list string) → o → o.

%% base program

divisible A B :- 0 is (A mod B).
fact 0 A A.
fact N A B :- N1 is (N - 1), A1 is (N * A), fact N1 A1 B.

%% aspects

% clauses pertaining to aspect “parameters”
advice ”parameters” G :-

(∀A∀B (divisible A 0 :- print ”warning...”, !, fail))
⇒
∀ withinfact (

(∀A∀B∀C (fact A B C :- A < 0, print ”warning...”, stop))
⇒
(∀A∀B∀C (fact A B C :- not (withinfact), !,

withinfact ⇒ fact A 1 C))
⇒ G).

% clauses pertaining to aspect “trace”
advice ”trace” G :-

(∀A∀B (divisible A B :- printterm std out (divisible A B), fail))
⇒
(∀A∀B∀C (fact A B C :- printterm std out (fact A B C), fail))
⇒ G.

%% integrating multiple aspects:

useaspects [] G :- G.
useaspects [A|As] G :- useaspects As (advice A G).

Fig. 2. Separation of Concerns in λProlog

symbol ∀ for explicit universal quantification in goals. Other upper-case letters
are implicitly quantified over the entire clause, as usual.

The “base program” for our example consists of two simple operations: that of
checking for divisibility and the familiar tail-recursive factorial relation. We have
deliberately left out the checking for invalid parameters in the base program. In
the case of the factorial predicate, we have also not constrained that the initial
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value of the second parameter should be 1. We leave these separate concerns
to an aspect module called “parameters”. The second, “trace” aspect, which
traces procedure calls, is perhaps the most popular example of AOP. These
small programs may not be best-suited to illustrate the advantages of AOP over
conventional methods, but it suffices to demonstrate the principle of separation-
of-concerns and the kind of programming devices that can realize the aspect-
oriented paradigm.

The use of the control primitive ! is required in these examples. Also required
is that in solving a goal of the form A ⇒ B the new clause A is consulted first.
These extra-logical characteristics are required to ensure that the advice clauses
must be applied, as well as to specify the precedence ordering among advice. In
other words, they control the weaving of the aspect-oriented fragments into the
program. We shall use linear logic in Section 3 to achieve this purpose declar-
atively. However, λProlog currently provides a more practical implementation.
The withinfact predicate, being quantified inside the body of the first clause, is
local to the clause and represents another instrument for weaving. It serves to
identify recursive calls to fact, for which the advice should not be applied, and
is comparable to the cflowbelow pointcuts of AspectJ. Integration of multiple
aspects is achieved with the useaspects clauses. The order of the aspect names in
the list argument determines the precedence of the aspects. For example, calling

?- useaspects [”trace”,”parameters”] G

will apply the trace aspect first while solving G. Critically, however, the use of
either aspect with the base program is optional.

Since λProlog was not implemented with AOP in mind, one cannot reasonably
expect features such as thisJoinPoint, even as extra-logical additions. However,
the essential aim of the separation of concerns is achieved. The advice clauses
clearly crosscut the base program procedures.

In addition to declaring advice, we can use second-order quantification to
introduce a new construct to a program. The purpose of the following clause is
to implement a password-checking aspect for some arbitrary predicate q A:

advice ”password protection” G :- ∀ pw ∀ passed (
(∀A∀X (q A :- not(passed), !, print ”enter password:”,

read X, pw X, passed ⇒ q A))
⇒
(print ”set password:”, read W, pw W ⇒ G)).

The predicate pw is introduced to assert the password, and passed is used to
signify that a valid password has been given. The scoping rules of the logical
connectives are crucial to the validity of this clause. In particular, pw is a pred-
icate symbol that is unique and local to the advice clause. It cannot appear free
in G, and thus cannot be circumvented. Likewise, the passed predicate cannot
be asserted arbitrarily except by the advice clause. The scope of ⇒ restricts its
assertion to individual goals. That is, multiple calls to q, excluding recursive
calls, which are within the scope of ⇒, will all require password checks.
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Using logical abstraction mechanisms to reflect the aspect-oriented approach
to program organization has obvious benefits. One of the criticisms of the As-
pectJ manifestation of AOP has been that it conflicts with the conventional
notions of abstraction and information hiding found in Java-like languages. By
formulating advice in light of lambda abstraction, universal quantification and
implication, we can reconcile aspect orientation with well-understood notions
of abstraction. This observation suggests that the perceived conflict between
AOP and traditional abstraction principles are due to ad-hoc characteristics of
non-declarative systems such as Java and AspectJ.

2.2 Join Points in the Continuation Passing Style

There are certainly features of Java and AspectJ that cannot be emulated easily
in a logic programming language. On the other hand, there are also examples
where an enriched logic programming language can offer AOP-related capabili-
ties that are not found in conventional settings. Higher-order languages of both
the functional and logic-programming varieties support the continuation passing
style of programming. CPS introduces the sequential ordering of execution to
a logic program. CPS in λProlog, given its ability to inspect the structure of
λ-terms via higher-order unification, gives rise to interesting possibilities.

The following example is partially motivated by the image processing exam-
ple described in [7]. Compared to the examples of the previous section, it better
illustrates why one may wish to consider the AOP approach to program orga-
nization. The λProlog clauses of Figure 3 implement the typical higher order
predicates, map, fold and filter, using a form of CPS. The last parameter of
each predicate is a λ-term that relates the result of the current computation to
a continuation goal.

The base program clauses are relatively elegant but lack refinement. When
boolean operators are folded over lists, short-circuiting can be applied. Similarly,
when an operation such as filter is immediately followed by one such as map, it is
often possible to combine the operations, avoiding the generation of an interme-
diate list and improving efficiency. Adding such special-case clauses to the base
program directly would compromise its elegance. The conventional, procedurally
oriented approach would be to declare new procedures that encapsulate these
cases for special treatment. Problems occur, however, when multiple features are
required in combination. That is, combining the short circuit and merge traver-
sals features would require yet another procedure. There are also situations, such
as when no lists of booleans are present, when some refinements are not desired.
For n distinct refinements, it is unlikely that one can foresee which of the 2n

possible subsets should be encapsulated. These problems are avoided by encap-
sulating the refinements not as ordinary procedures but as aspects of separate
concern. They can be decoupled from a program as the situation demands.

Critical to this program is the use of higher-order unification, which identifies
the join points where the advice clauses are applicable. We note that the pointcut
language of AspectJ has no facility to identify situations when one function is
called immediately after another, (such as in f(); g(); or even just g(f()). The
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%% base program

type map (A → B) → (list A) → ((list B) → o) → o.
type fold (A → A → A) → A → (list A) → (A → o) → o.
type filter (A → o) → (list A) → ((list A) → o) → o.

map M [] G :- (G []).
map M [H|T] G :- map M T λx(G [(M H) | x]).

fold Op Id [] G :- (G Id).
fold Op Id [A|T] G :- fold Op Id T λx(G (Op A x)).

filter P [] G :- (G []).
filter P [H|T] G :- (P H), !, filter P T λx(G [H|x]).
filter P [H|T] G :- filter P T G.

%% aspects

advice ”short circuit” G :-
(∀L∀C ( fold and true [false|L] C :- !, (C false)))
⇒
(∀L∀C ( fold or false [true|L] C :- !, (C true)))
⇒ G.

advice ”merge traversals” G :-
(∀P∀L∀Op∀Id∀Cg (

map P L λx(fold Op Id x Cg) :- !, fold λaλb(Op (P a) (P b)) Id L Cg))
⇒
(∀P∀L∀M∀Cg (

filter P L λx(map M x Cg) :- !,
(∀H∀T (map M [H|T] Cg :- not (P H), !, map M T Cg))
⇒ map M L Cg))

⇒ G.

Fig. 3. Optimization Aspects in Continuation Passing Style

higher-order patterns of the merge traversals aspect not only identify such cases
but also the condition that the result of the first operation is not used elsewhere
in the continuation goal (i.e, x is not free in Cg).

A further implication of CPS is that it becomes possible to logically distinguish
between advice that should be applied before and after a join point.

3 Weaving in Linear Logic

Logic programming languages have also been devised for linear logic [3], among
them Forum [10], Lolli [5] (an executable fragment of Forum), LinLog [1] and
Lygon [4]. Linear logic have been used to declaratively express computational
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properties such as side effects and concurrency. Forum in particular is complete
with respect to linear logic, although formulas must be converted to a certain
form. We have seen how the primitives of λProlog can provide a basis for aspect-
oriented abstraction, although extra-logical features were needed to precisely
control the weaving of aspects. Linear logic encompasses intuitionistic logic and
the abstraction mechanisms described in the forgoing. In this section we describe
how weaving can be formulated as proof search in linear logic. We shall write
abstract program clauses in the form Head ◦− Body where ◦− is the reverse
linear implication symbol. For sake of illustrations we assume the availability of
arithmetic operations and the IO primitives read and print . That is, we assume
that goals such as read W are provable from the empty linear context.

Linear logic requires the accounting of resources during proofs. This sensitivity
can be used to formulate mechanisms for controlling the synthesis or weaving of
program fragments.

We formulate AOP in linear logic as follows. Every aspect is associated with a
unique predicate symbol or token, such as trace. Intuitively, each token identifies
an aspect and represents an obligation to apply some advice. An advice clause
that pertains to an aspect token tk will have the general form

Head
.................................................

............
.................................. tk

.................................................
............
.................................. . . . ◦− Body

and goals will have the general form

G
.................................................

............
.................................. t1

.................................................
............
.................................. t2

.................................................
............
.................................. . . .

.................................................
............
.................................. tn

where t1 . . . tn represent aspects that must be weaved into the solution of G. Since
all such tokens must be accounted for in solving G, their assertion entails the
application of the corresponding advice clauses. In other words, it is possible to
associate with any goal a multiset of aspects, and we shall refer to t1 . . . tn as
an aspect multiset . An equivalent scheme would be to have advice clauses of the
form H ◦− tk ⊗ . . . ⊗ Body and goals of the form t1 −◦ . . . −◦ tn −◦ G.
We prefer the form using .................................................

............
.................................. since it names the aspect at the head of the clause.

For the aspect tokens to be distributed to the subgoals of G, G should be
composed from connectives such as & and ⊕, which copy the linear context upon
right-introduction (applied bottom-up). For goals formed from multiplicative
connectives, multiple occurrences of the tokens may be required.

At first glance, the mechanism used here may seem little different from adding
parameters to predicates. The role of aspect tokens, however, is to specify syn-
chronization points during proof search. The tokens are associated not just with
predicates but also with goal formulas.

As a simplified example, an advice to trace calls to the divisible predicate of
Section 2 can be written as

!∀A∀B. divisible A B
.................................................

............
.................................. trace ◦− print ”calling . . . ” ⊗ divisible A B.

The modal operator ! is intended to scope over the entire ∀-quantified clause 1.
1 The examples suggest that goals separated by ⊗ are called from left to right. The

ordering of goals technically requires the continuation passing style. However, we
forgo this refinement for sake of clarity.
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The need for finer means for controlling weaving are illustrated by recursive
predicates. We may wish some advice to be applied to each recursive call, and
others to be applied only once and “as soon as possible.” Specific to the fact
example, one advice checks for an invariance on the first parameter and should
be applied for each recursive call. In contrast, the other advice ensures that the
initial value of the accumulator is one, and must be used only at the outset. For
recursive advice, we employ predicate tokens that are parameterized by the same
inductive measure as the base predicate. This ensures synchronization with the
corresponding advice clause each time the inductive measure is decreased:

!∀A∀B∀C. fact A B C
.................................................

............
.................................. check A ◦−A > 0 ⊗ (fact A B C

.................................................
............
.................................. check A−1)

!∀B∀C. fact 0 B C
..................................................

...........
.................................. check 0 ◦− fact 0 B C

In goal clauses, we complement this device by allowing for existential quantifi-
cation over parameterized aspect tokens. Solving goals of the form G

.................................................
............
.................................. ∃x.tk,

where G is composed from additive connectives, may use multiple instantiations
for x should they be required.

The problem of ensuring that an advice is only applied at the outset is handled
in AspectJ by specially designed pointcuts such as !withincode(. . . ). Such fine-
grained control over weaving can also be achieved by imposing a precedence
ordering on advice clauses. We first observe that the “base” program fragment
can be considered as just another aspect. We therefore introduce a base token
and uniformly write all program clauses as advice clauses2. Precedence relations
among advice can then determine the exact manner of weaving.

3.1 Proof Search, Modalities and Advice Precedence

Much of the non-determinism in linear logic proof search can be brought under
control using normalized forms of proofs, such as the focused proofs of Andreoli
[1] and the uniform proofs of Forum and Lolli. In such systems, the manner of
proof search can be finely controlled. It is important to point out the following.
Let Γ represent the multiset {A..................................................

............
................................. C ◦−1, B◦−C}. Consider:

" 1
A " A

C " C B " B
B◦−C, C " B

−◦L

B◦−C, A
.................................................

............
.................................. C " A, B

.................................................
............
.................................. L

Γ " A, B
−◦L

B " B

" 1
A " A C " C
A

.................................................
............
.................................. C " A, C

.................................................
............
.................................. L

A
.................................................

............
.................................. C ◦−1 " A, C

−◦L

Γ " A, B
−◦L

While both proofs are valid, only the right-hand one represents a focused proof
(assuming atoms of negative polarity). all atoms at the head of the clause is found
in the goal multiset. Thus the second clause in Γ must be applied first (from
the bottom). Andreoli used the focusing property to define backchaining for
clauses with multiple atoms at the head, thus providing a basis for linear logic

2 Implicitly there is a base token for each predicate, although it should also be possible
for multiple predicates to form a common base aspect.
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programming. Uniform proofs behave similarly. The characteristic of ordered
backchaining is the basis of our general scheme for weaving.

We define for each token tk a unique predicate symbol t̂k. If aspect tj is to have
lower precedence than tk . . . tl with respect to H , then their respective advice
clauses will have the forms

H
.................................................

............
.................................. tj

.................................................
............
.................................. t̂k . . .

.................................................
............
.................................. t̂l ◦− [advice code . . .], and

H
.................................................

............
.................................. tk . . . ◦− [advice code . . .]⊗ (H .................................................

............
.................................. ?t̂k).

That is, the head of a tj clause should contain t̂k . . . t̂l and the body of each clause
for tk asserts ?t̂k. The modal operator allows for the use of partial orderings, since
multiple clauses may require the token. In the context of focused or uniform
proofs, the assertion of ?t̂k grants permission to advice with lower precedence
than tk to become applicable. The presence of ?t̂k in a goal multiset also signifies
that the goal is no longer dependent on aspect tk.

Given aspects t1 . . . tn, a goal of the form

G
.................................................

............
.................................. t1

.................................................
............
.................................. . . .

.................................................
............
.................................. tm

.................................................
............
.................................. ?t̂m+1

.................................................
............
.................................. . . .

.................................................
............
.................................. ?t̂n

thus represents a computation that is dependent on aspects t1 . . . tm and inde-
pendent of aspects tm+1 . . . tn.

To allow maximum flexibility in combining aspects with goals, we also use
clauses of the form H

..................................................
............
................................. tk ◦− H , to explicitly declare that aspect tk is indepen-

dent of goals H .

To illustrate the usage of this paradigm, we present in Figure 4 a full set of
clauses based on the examples of Section 2. Assume it is desired that no advice
should be executed before those of the param aspect and that trace is to have
precedence over check.

Note that tokens such as ? ̂param need not be re-asserted by the clauses that
depend on it, since the ?-formulas are reusable The last clause of Figure 4 spec-
ifies that divisible goals are independent of check. It is possible to generate such
independence clauses between known atoms and aspects automatically.

Given the above logic program, a goal such as

∃M(divisible 6 2 & fact 5 3 M) ..................................................
............
................................. param

..................................................
............
................................. ∃N.(check N) ..................................................

............
................................. trace

..................................................
............
................................. base

would be solved as follows by a uniform-proof interpreter. The aspect multiset
of the goal would be copied for both atomic subgoals upon &Right. The inde-
pendence clause for divisible eliminates the check obligation for the left subgoal.
Since no precedence relation was defined between the param and trace clauses
for divisible, either is applicable first. However, base is only applicable after
? ̂param is asserted. For the fact subgoal, the order of advice execution is nec-
essarily param, trace and check. Each advice rewrites the aspect multiset to a
new state. For example, after trace, the multiset becomes

∃N.(check N) .................................................
............
.................................. ? ̂param

.................................................
............
.................................. ? ̂trace

.................................................
............
.................................. base
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!∀A∀B. divisible A B
..................................................

............
................................. base

..................................................
............
................................. ̂param ◦− A mod B = 0

!∀A∀B∀C. (fact A B C)
.................................................

............
.................................. base

.................................................
............
.................................. ̂param ◦− fact (A−1) (A∗B) C

.................................................
............
.................................. base

!∀B. fact 0 B B
.................................................

............
.................................. base

.................................................
............
.................................. ̂param

!∀A∀B∀C. fact A B C
.................................................

............
.................................. param ◦− (fact A 1 C)

.................................................
............
.................................. ? ̂param

!∀A∀B. divisible A B
.................................................

............
.................................. param ◦− B �= 0 ⊗ (divisible A B

.................................................
............
.................................. ? ̂param)

!∀A∀B∀C. fact A B C
..................................................

...........
.................................. trace

..................................................
...........
.................................. ̂param ◦−

print ” . . . ” ⊗ (fact A B C
.................................................

............
.................................. ? ̂trace)

!∀A∀B divisible A B
..................................................

............
................................. trace ◦− print ” . . . ” ⊗ divisible A B

!∀A∀B∀C. (fact A B C)
.................................................

............
.................................. check A

.................................................
............
.................................. ̂trace

.................................................
............
.................................. ̂param ◦−

A > 0 ⊗ (fact A B C
..................................................

............
................................. check A−1).

!∀B∀C. (fact 0 B C)
..................................................

...........
.................................. check 0

..................................................
...........
.................................. ̂trace

..................................................
...........
.................................. ̂param ◦− fact 0 B C

!∀A∀B∀N. divisible A B
.................................................

............
.................................. check N ◦− divisible A B

Fig. 4. Weaving of Aspects in Linear Logic

The parameter of check can only be instantiated with 5. Every recursive call to
fact will invoke the check advice.

As a variation, suppose we desired that tracing is not to be included in the
computation. In that case trace should be replaced by ? ̂trace in the initial goal.

The above scheme is not the only means for specifying precedence among
advice. To enforce that tk has precedence over tm . . . tn, the advice clauses for
tk can also be of the form

Goal
..................................................

............
................................. tk

..................................................
............
................................. tm

..................................................
............
................................. . . .

..................................................
............
................................. tn ◦− Body

..................................................
............
................................. tm

..................................................
............
................................. . . .

..................................................
............
................................. tn

That is, the head of the tk advice clause should include the tokens for all aspects
that tk is to have precedence over. Backchaining over such a clause would be
necessary before the tokens tm . . . tn are consumed. In this scheme, the body of
advice clauses for aspect tk must reassert the tokens tm . . . tn. Suppose we wish
to add an advice that takes user input for divisible goals. This advice should
have precedence over param. Suppose further that we wish to add the advice
without modifying the existing clauses (a desirable, though not always possible
benefit of AOP). This io advice can be written as:

!∀A∀B. divisible A B
.................................................

............
.................................. io

.................................................
............
.................................. param ◦−

read A ⊗ read B ⊗ (divisible A B
.................................................

............
.................................. param).

The new clause is consistent with those of Figure 4: no modification of the
existing program was necessary. However, here the io aspect must always be
used together with param. The scheme described above, using ?t̂k formulas, will
allow arbitrary aspects to be coupled with goals.

Additional control mechanisms for weaving can also be encoded. For example,
control flow information, which in the context of proof search amounts to the
subproof relation, can be captured using a pair of special tokens inq and outq for
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each predicate q. An advice that is only applicable outside of the flow control of
q will include outq at the head and assert inq. An advice that is only applicable
under the flow control of q can then check for the presence of the inq token.

As a final example, we reformulate the password-protection aspect of Section 2
as a linear logic specification. Taking advantage of linear logic, we also add the
ability to change passwords. The formulation again critically relies on second-
order quantification:

∃ pw ∀ W ∀ W ′ [
(read W ) −◦
( pw W ⊗ (pw W ′−◦ 1) ⊗
!∀X∀Y ∀G(changepasswd G ◦−

read X ⊗ pw X ⊗ read Y ⊗ (pw Y −◦ G)) ⊗
!∀X(checkpasswd ◦− read X ⊗ pw X ⊗ (pw X −◦ ⊥)) ) ]

The specification can be used alongside any set of clauses as a password-pro-
tection aspect. Since the specification is to be kept on the left side of sequents,
the existential quantification of pw ensures its locality (see [8] for thorough dis-
cussion on such uses of ∃-quantification). The read W clause sets the initial
password. Since each clause rewrites the pw clause, the inclusion of (pw W ′−◦ 1)
prevents the clause from becoming an unaccounted-for resource at the comple-
tion of proofs, as can be seen from the following derivation:

A " A
A, 1 " A

1L
P " P

A, P, (P−◦1) " A
−◦L

Existing linear logic programs commonly use # to abort programs, even in the
presence of unclaimed resources. Such a usage could neutralize the obligations
imposed by the aspect tokens. In particular, an advice could even be activated
after the completion of the base program. Finer means are therefore preferable
for the maintenance of resources.

Unlike previous examples, we have chosen not to synchronize the checkpasswd
advice with any specific predicate. This allows the advice to be weaved into any
goal of the form G

..................................................
............
................................. checkpasswd. Furthermore, the solution of G can potentially

proceed in parallel to the reading and checking of the password3.

In terms of usage, several existing linear logic programming languages, such as
LO and LinLog, allow for clauses whose heads are multisets of atomic formulas.
However, these languages lack the abstraction mechanisms described in Sec-
tion 2. Forum can of course be used for these specifications, but is too general

3 A subtle point here is the use of pwX−◦⊥ (equivalently pwX⊥..................................................
............
................................. ⊥) instead of simply

pwX⊥ or using checkpasswd
.................................................

............
.................................. pwX at the head of the clause. By hiding the atom

pwX under a right-asynchronous connective, we cause proof search to “loose focus”
on the atom, delaying its use until needed. Without this device, the checkpasswd
clause cannot be applied before solving G.
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to be interpreted efficiently. The simplified language Lolli also provides λProlog-
style abstraction, and can be implemented effectively. However, clauses and goals
must be rewritten with −◦ and ! in place of .................................................

............
.................................. and ?. All but the last of our

examples can be converted to Lolli. With Lolli, clauses and constructs pertaining
to a common aspect can again be encapsulated with intuitionistic implication
and quantification. The abstraction scheme for the separation of concerns can
thus be merged with the weaving mechanisms of linear logic.

4 Future Work

Another approach to weaving logic program fragments is through meta program-
ming. We can use a specification language that allows us to declare aspects and
weaving relations in a more natural manner, such as:

aspect trace, param o.
aspect check int→ o.
precedence trace check.
precedence param trace. etc ...

A meta-program can be devised to check for circularity among the precedence
declarations, then transform a given logic program by adding the required t̂k and
?t̂k tokens. The meta-program can also automatically generate the independence
clauses for unrelated aspects and goals (such as between check and divisible
in Figure 4). The task of writing advice clauses would become more intuitive.
Such a device also improves the ability to incorporate new aspects and advice
while minimally altering existing code. Furthermore, as Miller has noted, linear
logic programs behave like ordinary Prolog programs most of the time. We can
envision extending ordinary Prolog in a minimal way, by adding the “@” operator
alluded to in the introduction. Together with a specification such as above, a
meta program can then compile a Prolog program into a linear logic program.
Thus the mechanisms described here can also be used as a basis for adopting
AOP to Prolog.
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Abstract. In aspect-oriented programming, pointcuts are usually com-
piled by identifying a set of shadows — that is, places in the code whose
execution is potentially relevant for a pointcut — and inserting dynamic
checks at these places for those parts of the pointcut that cannot be
evaluated statically. Today, the algorithms for shadow and check com-
putation are specific for every pointcut designator. This makes it very
tedious to extend the pointcut language.

We propose the use of declarative languages, together with associ-
ated analysis and specialisation tools, to implement powerful and ex-
tensible pointcut languages. More specifically, we propose to synthesize
(rather than program manually) the shadow and dynamic check algo-
rithms. With this approach, it becomes easier to implement powerful
pointcut languages efficiently and to keep pointcut languages open for
extension.

1 Introduction

Aspect-oriented programming (AOP) eases the modularization of crosscutting
concerns in a single module called an aspect. Pointcuts are used to describe at
which point in the execution an aspect affects the execution of the basic program.
The points that can be selected by a pointcut are called joinpoints. Pointcuts can
be thought of as defining a set of joinpoints and a pointcut is said to be triggered
at a joinpoint, if the joinpoint is in that set. Pointcuts are often used to control
the execution of advice. An advice is executed at every point in the execution
which triggers the associated pointcut. Although this is currently the primary
usage of pointcuts, they can be used for a wide range of purposes, such as reverse
engineering [6], detection of application errors [14], or flexible instrumentation
of applications [7].

The first pointcut languages such as those in early versions of AspectJ [10]
were static in that pointcuts could be mapped directly to locations in the source
code of the underlying program. Recently, there is a trend towards more dynamic
pointcut languages which can quantify over dynamic information such as the
callstack [20,17], dynamic argument values [8], the full execution trace of the
application [1,16], the structure of the dynamic heap [16], or even the future of
the execution [11]. Such complex dynamic pointcuts cannot easily be mapped to
places in the source code.

M. Hanus (Ed.): PADL 2007, LNCS 4354, pp. 320–334, 2007.
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The most common approach to implement dynamic pointcuts is to identify a
set of pointcut shadows - places in the code, where the pointcut is potentially
triggered - and to insert dynamic checks at these places. However, the algorithms
for computing the set of shadows and computing the right dynamic checks are
highly non-trivial. Worse yet, these algorithms are specific to the constructs of a
particular pointcut language. Hence, if the pointcut language is to be extended,
the algorithm has to be revisited and extended as well. This is not only very elab-
orate. It is also a major obstacle to keeping the pointcut language extensible.
Extensible pointcut languages have been recognized as a way to make pointcuts
more robust, precise, and high-level, to enable domain-specific libraries of point-
cuts, and to put the pointcut language design into the hand of the programmers
[8,4,16,5].

The contributions of this paper are as follows: We propose a generic approach
to finding shadows and generating dynamic checks, where the algorithms for find-
ing shadows and computing dynamic checks are synthesized from the pointcut
specification rather than programmed manually. To this end, we propose the use
of declarative languages, together with associated analysis and specialisation
tools—in particular partial evaluation—to implement powerful and extensible
pointcut languages. This is the first work to embed the shadow search and dy-
namic check generation problem into the framework of partial evaluation. Our
measurements show that our approach scales to reasonably large programs and
we describe different options to weave the remaining dynamic checks into the
program.

The remainder of this paper is structured as follows: Sec. 2 gives an overview
of our approach by means of small examples and describes the encoding of source
code in Prolog and the design of the pointcut language. The use of partial eval-
uation and the approximation of runtime entities in our framework is explained
in Sec. 3. Different possibilities to weave residual pointcuts into a program are
described in Sec. 4. Sec. 5 discusses related work and Sec. 6 concludes.

2 Overview

In this section we give a quick overview of our approach without going into
the details of the partial evaluation process itself. We limit our elaborations to
pointcut queries over Java programs in this work, but other languages can be
handled in a similar manner, with appropriate changes to the encoding of the
program and the type system related predicates.

2.1 Prolog Representation of the Bytecode

Pointcut queries in our language are Prolog predicates. To enable these Prolog
predicates to reason about the program’s static structure and execution, these
must be represented in the Prolog database.

We have built a converter which transforms Java bytecode into a Prolog rep-
resentation of the bytecode. Fig. 2 illustrates how the converted example from
Fig. 1 looks like.
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1 package shapes;
2

3 interface Shape {
4 public void moveBy(int dx, int dy);
5 }
6 class Point implements Shape {
7 private int x, y;
8 public int getX() { return x; }
9 public int getY() { return y; }
10 public void setX(int x) { this.x = x; }
11 public void setY(int y) { this.y = y; }
12 public void moveBy(int dx, int dy) {
13 x += dx; y += dy;
14 }
15 }
16 class Line implements Shape {
17 private Point p1, p2;
18 public Point getP1() { return p1; }
19 public Point getP2() { return p2; }
20 public void moveBy(int dx, int dy) {
21 p1.setX(p1.getX()+dx);
22 p1.setY(p1.getY()+dy);
23 p2.setX(p2.getX()+dx);
24 p2.setY(p2.getY()+dy);
25 }
26 }
27 class GraphicApp {
28 public void test(Shape s, Line l,
29 int dx, int dy){
30 s.moveBy(dx,dy)
31 l.moveBy(dx,dy);
32 l.getP1().setX(42);
33 }
34 }

Fig. 1. The shape example

1 class(’shapes’,ref(’shapes.Line’),
2 default,false,false,false,
3 ref(’java.lang.Object’)).
4 interfaces(ref(’shapes.Line’),
5 ref(’shapes.Shape’)).
6 field(ref(’shapes.Line’),’p1’,
7 private,false,false,
8 false,false, false,
9 ref(’shapes.Point’)).
10 field(ref(’shapes.Line’),’p2’,
11 private,false,false,false,false,
12 false,ref(’shapes.Point’)).
13 method(6,ref(’shapes.Line’),
14 ’moveBy’,public,false,
15 false,false,false,false,false,
16 [prim(int),prim(int)],void).
17 ...
18 def(6,2,21,ref(’shapes.Point’),p4,
19 get(ref(’shapes.Point’),’p1’,
20 ref(’shapes.Line’),thisValue)).
21 def(6,3,21,ref(’shapes.Point’),p6,
22 get(ref(’shapes.Point’),’p1’,
23 ref(’shapes.Line’),thisValue)).
24 def(6,4,21,prim(int),p7,
25 invokeFunc(’getX’,ref(’shapes.Point’),
26 p6,[],[],prim(int))).
27 def(6,5,21,prim(int),p9,
28 add(p7,param(1))).
29 invokeProc(6,6,21,’setX’,
30 ref(’shapes.Point’),p4,
31 [prim(int)],[p9]).
32 ...
33 return(6,22,25).

Fig. 2. Prolog encoding

The Prolog representation contains the declarations and definitions of all
classes in one database file. There a two kinds of facts in this database: infor-
mation about classes, interfaces, methods and fields and their relationships and
facts describing the bytecode instructions which form the body of the methods.

For each class there is a fact called class, which includes (in the order of
appearance) the package and class name, the modifiers (public, abstract, etc.),
the super class and the implemented interfaces. The class name is wrapped in a
ref term to indicate that it denotes a reference type (in contrast to a primitive
type) and can be used to access the methods defined in that class.

Methods are represented by method facts. Each method is identified by a
unique number (as its first argument) and the name of its enclosing class. The
remaining arguments are the method name, flags for the method modifiers, the
return type and the list of argument types, in that order.

The remaining facts in the representation encode the different types of byte-
code instructions: get and put for field access instructions, returns, and invoke
for method returns and calls, respectively. Assignments to local variables (which
are used to represent intermediate results) are encoded as def facts. A local
variable declaration includes an initializing instruction, which may be either
method calls which return a value (invokeFunc), reading field access (get) or
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object creation via new. Each bytecode instruction starts with a number iden-
tifying the method which contains the instruction and a number denoting the
position of this instruction in the method body. The third argument identifies
the line number in the source code1.

2.2 Programming Model

Pointcut queries in our language can refer to the static structure of the program
and a well-defined subset of the dynamic runtime properties. Based on this
information, arbitrary calculations can be used to decide whether or not the
pointcut matches the current state of execution (and thus decide whether an
aspect is applicable or not).

The runtime information that can be used in pointcut queries is not limited to
the current joinpoint (or event), but comprises the whole callstack. The callstack
is represented as a list containing all calls to methods that are currently in
execution, i.e. have not yet finished.

In order to describe the matched joinpoints, pointcuts need to refer to the
context in which they are evaluated. This context comprises — in our model —
the current callstack, the current lexical position and the program. This context
information can be kept implicitly available, as it is the case in AspectJ’s pointcut
language, or given as parameters to the pointcut query. In our case, we decided
to make the callstack and the lexical position explicit parameters of the pointcut
queries, whereas the program is implicitly available as a global set of facts in the
Prolog database.

We use the variable names Stack for callstacks and Loc for lexical positions.
A location is a pair loc(MethodNumber,InstrNumber) which represents the
method- and instruction number as given in the bytecode. A callstack is repre-
sented by a list of stack frames, where each but the top frame must be a method
call, represented by terms using the functor calls. The current instruction is at
the top of the stack.

The following listing gives an example callstack as it may look like when mod-
ifying the field x in the method Point.setX, which was called by Line.moveBy:

[set(loc(10,2), value(ref(’shapes.Point’),ι2), x, 42),
calls(loc(6,6), value(ref(’shapes.Point’),ι2), setX, [value(prim(int),42)]),
calls(loc(2,2), value(ref(’shapes.Line’),ι1), moveBy, [value(prim(int),1),
value(prim(int),1)]) ]

The location loc(6,6) in the call to Point.setX corresponds to source code
line 21 (Figure 1) and to the bytecode instruction at line 29 in Figure 2.

The first parameter in each stack frame denotes the location of the corre-
sponding instruction in the program - it is hence a pointer into the Prolog
representation of the bytecode. Values are encoded as pairs which consists of
a type and an address or primitive value like boolean or integer. The ιn expres-
sions are object references in the runtime environment. The representation of
values is hidden from the pointcut programmer, however; the static type, dy-
namic type and the value (address for reference values like objects, otherwise the
1 Please note that there can be multiple bytecode instructions for a line of sourcecode.
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int, bool etc.) must instead be retrieved with the getter predicates stype(V,T),
dtype(V,T) and value(V,A), respectively. The reason is that the static repre-
sentation of values during specialisation is different from the representation of
runtime values, and hiding the representation by means of getters is an easy way
to hide details of the specialisation process from the pointcut programmer (as
well as leading to cleaner code).

Depending on the weaving strategy, such callstacks may never be explicitly
reified as physical data, but should mainly be seen as the data model upon which
pointcuts are expressed.

2.3 The Pointcut Library

looseness 1So far, we have seen how pointcuts can be formulated using the rep-
resentation of the bytecode and of the callstack directly. The real power of the
approach lies in the fact that we can easily extend the pointcut language by
means of Prolog predicates on top of the raw representation of the callstack and
the byte code.

calls( Stack, Location, Receiver, MethodName, Arguments ) :-
Stack = [calls( Location, Receiver, MethodName, Arguments ) | _ ].

% cflow/2: succeeds if the callstack contains a given event
cflow(Stack, Ev) :- member(Ev,Stack), !.
% cflowbelow/2: Like cflow/2, but excludes the current jointpoint(event)
cflowbelow([_|Cs], Ev) :- cflow(Cs, Ev).
% directSubtype/2: A is a direct subtype of B
directSubtype( A, B ) :- class(_, A, _, _, _, _, B) ; interfaces(A,B).
% subtype/2: transitive closure of directSubtype/2
subtype(A,B):-directSubtype(A,B) ; (directSubtype(A,C),subtype(C,B)).
% subtypeeq/2: reflexive closure of subtype/2
subtypeeq(A,B) :- A=B ; subtype(A,B).
% instanceof relations use subtype relation
instance_of(Val, Type) :- dtype(Val,T), subtypeeq(T,Type).
withinMethod( Location, MethID ) :- Location = loc(MethID,_),
method(MethID,_,_,_,_,_,_,_,_,_,_,_),
methodInvokation(Location,_,_,_,_,_,_).

Fig. 3. Excerpt from the pointcut library

The predicates which form the pointcut language are defined as Prolog pred-
icates themselves, which use the Prolog encoding of the program. The imple-
mentation of these predicates defines the connection between the semantics of
the pointcut language and that of the bytecode language. An excerpt is given
in Fig. 3. For instance, in the definition of instance_of the subtype relation is
used, which is directly extracted from the inheritance relation exposed by the
bytecode representation. Similar to the corresponding AspectJ pointcut desig-
nators, the cflow predicate checks whether a particular entry can be found in
the callstack; cflowbelow checks all but the first stack frame.

The pointcut library is the extension point of the pointcut language: new
pointcut predicates can be introduced by defining them in the pointcut library in
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terms of existing predicates and the bytecode representation. Furthermore it can
be of interest to add new descriptions of the program – for example, the complete
trace of the application or profiling information – and to use these descriptions
in the definition of new pointcut predicates, thus providing the programmer with
access to the new model. If the added descriptions are static (e.g., representations
of configuration files), the specialiser will automatically compile all references to
the static data away. If the added descriptions are dynamic, a corresponding
static approximation of the dynamic data has to be provided. We will discuss
this point later.

2.4 Example Pointcuts

Fig. 4 shows an aspect in the language AspectJ for keeping a display showing
graphical shapes up to date. The base program defining the shapes hierarchy
is given in Fig. 1. The pointcut change in line 1 describes the points in the
execution, where the display should be updated and the advice in line 8 specifies
that a call to display.update should be executed after such a modification
(specified by change).

1 pointcut change():
2 (call(void Point.setX(int))
3 || call(void Point.setY(int))
4 || call(void Shape+.moveBy(int, int)) )
5 && !cflowbelow(
6 call(void Shape+.moveBy(int, int)));
7

8 after() returning: change() {
9 display.update();
10 }

Fig. 4. Display updating in AspectJ

1 (calls(Stack,Loc,Target,setX,_),
2 stype(Target,’shapes.Point’) );
3 (calls(Stack,Loc,Target,setY,_),
4 stype(Target,’shapes.Point’) );
5 (calls(Stack,Loc,Target,moveBy,_),
6 instance_of(Target,’shapes.Shape’) ),
7 \+ cflowbelow(Stack,calls(_,_,moveBy,_))

Fig. 5. Pointcut in Prolog

The first two conditions (Lines 2 and 3) of the pointcut select calls to a
method called setX resp. setY of an object of static type Point with exactly
one parameter of type int. The condition in line 4 selects calls to the moveBy
method with two integer arguments defined in the type Shape or any of its
subtypes. This is expressed by the + sign appended to Shape. These conditions
are combined by || meaning or, which selects any point that satisfies one of
these conditions.

The last condition excludes (this is expressed by the negation operator ! in
front of the pointcut) any joinpoint which is in the control flow of a call to
Shape+.moveBy(int,int) but not such a call itself. The control flow of a call
(expressed by cflow) comprises all joinpoints which appear while executing this
call, including the call joinpoint itself. The pointcut cflowbelow excludes this
call joinpoint from the set, selecting only joinpoints below the call joinpoint
in the control flow. This pointcut is combined with the other three by the &&
operator meaning and (or intersection). Fig. 5 shows how the same pointcut can
be expressed in our pointcut language.
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In order to illustrate the effect of specialisation, we will now consider a few
pointcuts and the result of their specialisation, without talking yet about how
the specialisation actually works.

– calls(Stack,Loc,_,setX,_),withinMethod(Loc,MethID),method(MethID,_,_,public,_,_,_,_,_,_)

Shadows: (21,true), (23, true)
– calls(Stack,Loc,R,moveBy,_), instance_of(R, ’shapes.Line’)

Shadows: (30, dtype(R,T), subtypeeq(T,’shapes.Line’)), (31 true)
– calls(Stack,Loc,_, setX, _), cflow(Stack, calls(_,_,moveBy,_))

Shadows: (21, true), (23, true), (32, cflow(Stack,calls(_,_,moveBy,_)))

Fig. 6. Example pointcuts and their shadows and dynamic checks

Fig. 6 shows a few sample pointcuts and the result of specialising them with
the example program from Fig. 1. Shadows are given as pairs (line number from
Fig. 12, residual check).

The first pointcut selects all calls of a setX method within a public method.
The relation between the method and the call is expressed in terms of the location
(Loc) of the instruction and the identifier of the method (MethID). The predicate
withinMethod binds Loc to all locations in the code which are lexically contained
in the method identified by MethID.

The second pointcut (all calls of moveBy where the receiver object is an in-
stance of class Line at runtime) illustrates how static type information is in-
corporated into the specialisation. At the first shadow, the static type of the
receiver is Shape, hence a dynamic check is required whether the receiver is ac-
tually a Line. At the second shadow, however, the statically known receiver type
is already Line, hence no dynamic check is necessary.

The third pointcut (all calls of a setX method in the control flow of a moveBy
method) illustrates the effectiveness of the static approximation of the callstack
during specialisation. Whereas the first shadow requires a dynamic check, the
second (and third) shadow has no dynamic check because it is known statically
that the setX calls in lines 21 and 23 are in the control flow of a moveBy call.
We will see that the design of the static approximation of the callstack is an
important parameter for the specialisation in computing residual pointcuts.

3 The Specialisation Framework

Our specialisation framework performs the task of computing shadows and the
respective residual programs for pointcut queries. This is achieved by partially
evaluating the pointcut query w.r.t. the static part of the input. This static part
is given by the representation of the program, which determines the possible
static contexts in which the pointcut may be evaluated. Specialisation is then

2 In the actual implementation, the method/instruction indexes from the bytecode are
used for this purpose.
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performed by a partial evaluator for Prolog. The behavior of this tool is con-
trolled by a description of the pointcut primitives and predicates in the pointcut
library which marks certain parts of the pointcut program as callable, i.e. they
can be (safely) evaluated at specialisation time.

In this section we present the partial evaluation of pointcut queries with re-
spect to the program source.

3.1 The Specialiser

Program specialisation is a technique to specialise a given general purpose
program for certain specific application area. Partial evaluation [9] is a well-
established technique that obtains a specialised program by pre-computing parts
of the original source program that only depend on some given part of the in-
put (called the static data) and leaving a residual program that only contains
the dynamic checks. The partial evaluation (or specialiser) tool used through-
out this work is based on the core of the offline specialiser presented in [12]
and is thus similar to the core of logen [13]3. To control the behavior of the
specialiser, an annotated form of the program has to be provided. We use the
following three annotations of those described in [12]: call evaluates the goal
using the prolog interpreter, rescall leaves the goal in the residual program
and unfold replaces the goal by the residual program obtained from specialising
the (annotated) body of the predicate.

There are basically two alternatives to obtain the annotations for a clause:
online specialisers generate the annotations on the fly while offline specialisers
use annotations provided by the user or a generator.

Although being based on an offline specialiser, our system does not require the
programmer to annotate most of her pointcuts manually, but we rather use a set
of rules for the standard predicates of the pointcut library. These rules are used
to perform the annotation automatically before specialisation. For predicates
that do not have a corresponding rule in the database the rescall annotation is
used by default. Only in the case where these annotations are not optimal from
the programmer’s view, should he annotate the program himself, for example,
when introducing user-defined predicates.

3.2 Approximation of Runtime Entities

In the scenario of pointcut specialisation, only the static part of the program
is available, i.e., the class, interface and field declarations and a set of bytecode
instructions. However, our pointcut language allows to quantify over runtime
conditions. The easiest way to handle runtime values like the actual types of val-
ues is to generate all possible instantiations and explore them by backtracking.
Because this approach does not scale well for large programs, we use approxi-
mations of dynamic entities instead. We will now describe the approximation of
the actual type of a value and the elements of the callstack and how they are
used in the specialisation process.
3 Albeit being an offline partial evaluator rather than a compiler generator.
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The values of variables are not accessible at specialisation time. Nevertheless
specialisation should be able to benefit from the static information about the
variables that can be retrieved from the programs bytecode. We use an approach
based on the idea to associate with each variable the set of all classes whose
instances the variable can possibly hold. In the context of Java single inheritance,
we can describe the set of all possible types of a variable by the most general
(class) type of this set. To make this abstraction compatible with unification, we
encode this most general type of the variable as an open list containing all its
super classes4. In this form, two encodings can be unified if one is the prefix of
the other list, which means that it encodes a super type of the other list.

For example, the list presentation of the class shapes.Line
from our example is [’ java . lang.Object’,’shapes.Line’|_]. A class
shapes.Arrow which is a subtype of shapes.Line would be encoded as
[’ java . lang.Object’,’shapes.Line’,’shapes.Arrow’|_] and the unification of
both would yield the latter list as required.

To associate the abstract type with the variable for the dy-
namic type and argument, type variables are bound to a term
value(AbsType,DynType,DynValue), where AbsType is the encoding of
the possible types of this variable and DynType and DynValue denote the
dynamic type and value and are variables in the specialisation phase. The
predicate abstractValue(V,Class) is used to bind a variable V to an abstract
value of type Class.

For the approximation of the callstack, we use the notion of static events for
approximations of the real runtime events which have the same structure as
dynamic events, but contain variables or approximations for the runtime infor-
mation. Using the static event, we approximate the callstack at a given location
by a list containing the static event as first element. Furthermore, the second
element of the callstack must be a call to the method containing that location.
For the example callstack in the last section we can thus give the following
approximation:

[set(loc(10,5),value([’java.lang.Object’,’shapes.Point’|_],_,_),x,value([prim(int)],_,_)),
calls(_,value([’java.lang.Object’,’shapes.Point’|_],_,_),setX,[value([prim(int)],_,_)]),
_ ]

Better approximations that contain more elements or more precise type infor-
mation can be generated by using the call and control flow graph of the program.
As the construction of the application’s callgraph can be very costly, it is desir-
able to be able to control the amount of approximation. In our framework this
can easily be accomplished by modifying the predicate which produces the stack
approximation.

3.3 Description of Pointcut Predicates

To take advantage from the approximation of runtime values and the callstack,
we provide descriptions of the pointcut predicates defined in the pointcut library:
4 The approximation of interfaces is simply a variable as they lack a common base

interface.
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a description of a pointcut library predicate does not only provide the necessary
annotations for the partial evaluator, but also includes additional calls to handle
the approximations of dynamic entities.

The following code listing shows the description of the instance_of and the
cflow predicate:

instance_of(Var,Cls) :- abstractValue(Var, Cls)︸ ︷︷ ︸
call

,dtype(Var, DT)︸ ︷︷ ︸
call

,subtypeeq(DT, Cls)︸ ︷︷ ︸
rescall

.

cflow(S,Ev) :- S = [Ev|Cs]︸ ︷︷ ︸
call

, (\+ var(Ev)︸ ︷︷ ︸
call

, Ev = calls(L, R, M, A)︸ ︷︷ ︸
call

,calls(S, L, R, M, A), !︸ ︷︷ ︸
call

;cflow(Cs, Ev)︸ ︷︷ ︸
rescall

).

The first subgoal of instance_of is evaluated at specialisation time and
checks if the variable can be unified with the abstract type of Cls; otherwise
the instance check can be refuted at specialisation time. The second subgoal
binds DT to the variable for the dynamic type of Var to be used in the subtype
check which is left as residual program by the third subgoal.

The first clause of the cflow description checks (at specialisation), if the
event Ev is at the top of the stack. In this case, no residual program is necessary.
Otherwise, for example, if the head of the list is a variable, a call to the cflow
predicate is left as residual program by the second clause.

3.4 Example Specialisations

After introducing the specialisation and approximation techniques, we demon-
strate the specialisation process using example pointcuts. We use the program
given in Fig. 1 in Sec. 2.

We will discuss three pointcuts (pc1-pc3), accessible via pointcut/2 and
the result of their specialisation. These examples show a statically determinable
shadow, a pointcut leaving a residual type check and an example for the results
of specialising the cflow predicate.

The first pointcut we want to discuss is pc1 = calls(S,L,Rec,moveBy,_),
selecting all method call joinpoints to a method called moveBy. The following
two interpreter invocations show the access to the pointcut predicates and the
result of specialisation:

3 ?- specialisePointcut(pc1,Result).
Result = pointcut([ [calls(loc(2, 2), _G394, moveBy, [prim(int), prim(int)]),

calls(loc(_G608, _G609), _G604, test, _G606)|_G529], loc(2, 2) ], true ) ;

Result = pointcut([ [calls(loc(2, 3),
value([ref(’java.lang.Object’), ref(’shapes.Line’)|_G644], _G620, _G621),
moveBy, [prim(int), prim(int)]), calls(loc(_G608, _G609), _G604, test, _G606)|_G529],

loc(2, 3) ], true )

The lengthy output is a result of the partial instantiation of the callstack
parameter and the binding of values to type abstractions. The shadows loca-
tion and the residual pointcut are marked with a frame in both results. Both
residual pointcuts are true, meaning that there is no dynamic check required at
the shadow. The locations (2,2) and (2,3) refer to lines 29 and 30 in Fig. 1,
respectively.
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In the next example we show the effect of constraining the set of possible types
of a variable. In the pointcut pc2, only calls to a moveBy method are selected
that go to an instance of ’shapes.Point’ at runtime. Calculating the shadows
gives
5 ?- pointcut(pc2,P).
P = pointcut([_G338, _G341], (calls(_G338, _G341, _G349, moveBy, _G351),

instance_of(_G349, ’shapes.Point’)))
6 ?- shadows(pc2,S).
S = [ (loc(2, 2), subtypeeq(_G383, ref(’shapes.Point’)))]

The call at location (2,2) requires a runtime check (via subtypeeq) to de-
termine, if the receiver is an instance of shapes.Point.

The location (2,3) is not a shadow of this modified pointcut, as the static
type of the receiver is shapes.Line and its abstract type thus cannot be unified
with the abstract type of shapes.Point used in the pointcut.

In our last example, calls to setX in the control flow of a call to the method
test are selected.
7 ?- pointcut(pc3,P).
P = pointcut([_G335, _G338], (calls(_G335, _G338, _G346, setX, _G348),

cflow(_G335, calls(_G353, _G354, test, _G356)))) ;
8 ?- shadows(pc3,S).
S = [ (loc(2, 5), true),
(loc(6, 6), cflow([calls(loc(_G427, _G428), _G423, moveBy, _G425)|_G420],

calls(_G430, _G431, test, _G433))),
(loc(6, 16), cflow([calls(loc(_G396, _G397), _G392, moveBy, _G394)|_G389],

calls(_G399, _G400, test, _G402))) ]

The location (2,5) corresponds to line 31 of Fig. 1, (6,6) and (6,16) to line
21 and 22, respectively.

The specialisation of the three example pointcuts is quite fast (about 0.1 ms),
which is no surprise given the size of the program. To demonstrate the feasibility
of our approach for larger programs, we tested specialisation of pointcuts on a
bytecode toolkit project called BAT with about 800 types (classes+interfaces)
and a bytecode size of about 2,25 MB. We used some quite general point-
cuts which return a large number of shadows to test the performance of
our specialisation tool: callStringMethod matches each call to a method of
the class java.lang.String, ctor matches all invocations of a constructor,
ctorRec matches all invocations of a constructor inside another constructor,
and ctorNotRec matches all invocations of a constructor not inside another
constructor. Fig. 7 shows the results of specialising these pointcuts5.

Pointcut Shadows Time
callStringMethod 6,655 0.30 sec
ctor 3,187 0.32 sec
ctorRec 1,313 0.55 sec
ctorNotRec 1,874 0.50 sec

Fig. 7. Specialisation runtime

5 Tests performed with SWI-Prolog on a 2.8GHz Windows XP machine.



Partial Evaluation of Pointcuts 331

3.5 Language Extension

An important feature of our framework is the extensibility of the pointcut lan-
guage. This is a necessary property to write aspects on an abstract level, as
stated in [16]. Extensions to the language can be written by the programmer
to adapt the language to a single program or implemented as domain-specific
pointcut library to be used within a whole class of applications.

Extending the pointcut language requires the follow steps: 1) its implemen-
tation must be added to the pointcut library to make it available to predicates
that call it at runtime, 2) the annotation of its body has to be provided as a rule
for unfolding and 3) an unfold-annotation for the predicate has to be added to
the annotation database, which is used by the rule generator.

As an example, we extend our pointcut language with a predicate to detect
loops in the callstack. A loop is the re-occurence of a method call to the same
method on the same object and with the same argument values. Below is the
annotated implementation of this predicate.

loop_detect(S,L) :- calls(S, L, Rec, Method, Args)︸ ︷︷ ︸
call

, cflowbelow(S, calls( , Rec, Method, Args))︸ ︷︷ ︸
unfold

.

To integrate this predicate, the predicate definition without the annotations
has to be added to the pointcut library and the annotated form has to be stored
into the annotation database (we omit the technical details for brevity).

4 Weaving Residual Programs

Hitherto we have only tackled the problems of finding shadows and computing
efficient residual pointcut programs. However, this is only one part of the weaving
process. What remains is to insert the residual pointcut checks into the bytecode.
We identified the following possibilities to process the residual Prolog programs:

Under the assumption that a Prolog interpreter is part of the runtime envi-
ronment, Java code can be inserted which calls this interpreter for the residual
pointcut query, checks the solutions and possibly calls the advice. Although this
approach is quite simple, the overhead of keeping a Prolog interpreter and the
libraries available for the virtual machine may not be tolerable in practice. Still,
there are many tools for embedding Prolog within Java (e.g., [3], [22]), so this is
a definitely a feasible solution. In order to produce efficient Java code, there are
in principle several possible avenues. A first approach is to produce code in a
special subset of Prolog that can be efficiently translated to Java. For example,
one could try and ensure that all the residual code is in a form similar to Mercury
[18] which can be compiled into efficient imperative code. Another solution is to
ensure that the specialized code is close to abstract machine code or assembly
code. This can be achieved by threading the environment of the interpreter via
definite clause grammars; see [21] for more details and a worked out case study.

Certain parts of the residual program, for example predicates that refer to
entities which are present in the Java virtual machine, like the callstack, or
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argument values, could be treated in a special way. It is a promising idea to
include a way to make this information directly accessible from the Java virtual
machine. Calls to those predicates could then be translated directly into special
bytecode instructions for an augmented virtual machine. The analysis of such
techniques and their efficient implementation is part of ongoing research.

5 Related Work

Masuhara et al. have proposed a model where an aspect-oriented compiler is
generated from a Scheme interpreter of the AO language using partial evalua-
tion of Scheme programs [15]. Hence this work assumes that an interpreter for
the whole base language is available. Also, the execution speed of a partially
evaluated interpreter cannot keep up with today’s optimizing compilers and vir-
tual machines. Our work takes a different approach which does not require an
interpreter for the language and with which programs can still be executed on
optimizing virtual machines.

Ostermann, Mezini and Bockisch [16] present Alpha, a prototype language
with a very expressive logic-based pointcut language. Alpha’s pointcut language
served as the base of our pointcut language. An implementation approach based
on abstract interpretation of pointcut queries is presented, which aims primarily
at the reduction of space usage. Our work goes beyond [16] in that we give a re-
alistic approach to implement (a subset) of such an expressive pointcut language
in the context of Java, a non-toy programming language.

Walker and Viggers [19] discuss temporal pointcuts, called tracecuts, to enrich
the AspectJ [2] pointcut language with the ability to reason about former calls
and their temporal relations. Moreover, data that has been passed as an argu-
ment can be accessed by the advice as it could be done via variable binding in
our language. Although more information about the computation history is avail-
able, the expressiveness of the pointcut language is very limited in comparison
to our approach.

In [1], Allan et al. discuss the extension of the AspectJ language to be able to
express sequences of ”classic” AspectJ pointcuts. The extended language allows
a sequencing pattern of ordinary AspectJ pointcuts to be considered as a point-
cut and to bind values to variables which are unified on later occurrence. The
implementation of shadow computation and optimization remains hand-coded,
which is the main difference to the approach we presented.

Goldsmith et al. [7] present PARTIQLE, a framework to automatize the in-
strumentation of source code to find static and dynamic pattern in programs.
The language PQTL they introduce is basically a subset of SQL which operates
on a database representing the program trace. In the database, each type of
event is represented as a table, include timing information for each event. The
relations between events are expressed using JOIN s and SQL logical connectives.
The difference between PARTIQLE and our approach lies in the expressiveness
and extensibility of the pointcut language: PQTL can recognize patterns formu-
lated in a very limited and fixed language, whereas in our language arbitrary
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predicates over the callstack can be expressed and user-defined pointcuts can be
added to the pointcut language.

Another work targeting at detection of statically or dynamically wrong behav-
ior, is discussed in [14] by Martin et al. The PQL language has a Java-like syntax
which allows to define named queries and to use them to build more complex
and even recursive queries. PQL queries are composed of the primitives method
call, field access, object creation and the end of the program as well as nega-
tion, matching another query and partial-order matching of events. Although
the language can match context-sensitive patterns over the execution trace, the
pattern language is fixed and is - in comparison to our language - limited in its
expressiveness.

6 Conclusions

We have presented a generic and extensible framework for finding pointcut shad-
ows in Java programs using logic programming together with associated analysis
and specialisation tools.

The framework is extensible at different points: the joinpoint model can be
extended by adding new events or modifying existing ones, new program models
and pointcut predicates can be added to provide the programmer with a more
domain specific language and the level of abstraction used in the approximation
of the runtime behavior can be varied to switch between fast compile-test cy-
cles and more accurate — but slower — compilation. Furthermore, as we have
demonstrated, the performance of our framework scales reasonable with program
size.
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