Andreas Jedlitschka
Outi Salo (Eds.)

Product-Focused
Software Process
Improvement

9th International Conference, PROFES 2008
Monte Porzio Catone, Italy, June 2008
Proceedings

LNCS 5089

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

5089

Andreas Jedlitschka Outi Salo (Eds.)

Product-Focused
Software Process
Improvement

9th International Conference, PROFES 2008
Monte Porzio Catone, Italy, June 23-25, 2008
Proceedings

@ Springer

Volume Editors

Andreas Jedlitschka

Fraunhofer Institute for Experimental Software Engineering
Fraunhofer Platz 1, 67663 Kaiserslautern, Germany

E-mail: andreas.jedlitschka@iese.fraunhofer.de

Outi Salo

VTT Technical Research Centre of Finland
Kaitoviyld 1, 90570 Oulu, Finland

E-mail: Outi.Salo@vtt.fi

Library of Congress Control Number: 2008929491

CR Subject Classification (1998): D.2, K.6, K.4.2, J.1
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-69564-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69564-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12320066 06/3180 543210

Preface

On behalf of the PROFES Organizing Committee, we are proud to present to you the
proceedings of the 9th International Conference on Product-Focused Software Process
Improvement (PROFES 2008) held in Frascati - Monteporzio Catone, Rome, Italy.

Since 1999, PROFES has established itself as one of the recognized international
process improvement conferences. The main theme of PROFES is professional soft-
ware process improvement (SPI) motivated by product and service quality needs.
Focussing on a product to be developed, PROFES 2008 addressed both quality engi-
neering and management topics including processes, methods, techniques, tools, or-
ganizations, and enabling SPI. Both solutions found in practice and the relevant
research results from academia were presented.

Domains such as the automotive and mobile applications industry are growing rap-
idly, resulting in a strong need for professional development and improvement.
Nowadays, the majority of embedded software is developed in collaboration, and
distribution of embedded software development continues to increase. Thus, PROFES
2008 addressed different development modes, roles in the value chain, stakeholders’
viewpoints, collaborative development, as well as economic and quality aspects. Ag-
ile development was included again as one of the themes.

Since the beginning of the series of PROFES conferences, the purpose has been to
bring to light the most recent findings and novel results in the area of process im-
provement, and to stimulate discussion among researchers, experienced professionals,
and technology providers from around the world.

The technical program was selected by a committee of leading experts in software
process improvement, software process modeling, and empirical software engineering
research. This year, 61 papers from 23 nations were submitted, with each paper re-
ceiving at least three reviewers. After thorough evaluation, the Program Committee
selected 31 technical full papers. The topics addressed in these papers indicate that
SPI is still a vibrant research discipline, but is also of high interest for the industry;
many papers report on case studies or SPI-related experience gained in industry.

The technical program consisted of the tracks quality and measurement, cost esti-
mation, capability and maturity models, lessons learned and best practices, software
process improvement, systems and software quality, and agile software development.

We were proud to have three keynote speakers, Antonia Bertolini, Kurt Schneider,
and Horst Degen-Hientz. Interesting tutorials and workshops were co-located with
PROFES 2008.

We are thankful for the opportunity to have served as Program Co-chairs for this
conference. The Program Committee members and reviewers provided excellent sup-
port in reviewing the papers. We are also grateful to the authors, presenters, and Ses-
sion Chairs for their time and effort in making PROFES 2008 a success. The General
Chair, Frank Bomarius, and the Steering Committee provided excellent guidance. We
wish to thank Fraunhofer IESE, the VTT Technical Research Centre of Finland, and
University of Rome Tor Vergata for supporting the conference. We are also grateful to
the authors for high-quality papers, the Program Committee for their hard work in

VI Preface

reviewing the papers, and the Organizing Committee for making the event possible. In
addition, we sincerely thank Frank Bomarius for his work as a General Chair of PRO-
FES 2008. Last, but not least, many thanks to Giovanni Cantone and his team at Uni-
versity of Rome Tor Vergata for the local organization of this conference and the
maintenance of the PROFES 2008 website, and Sonnhild Namingha and Isabelle
Schlitzer at Fraunhofer IESE for her support in copyediting this volume.

June 2008 Andreas Jedlitschka
Outi Salo

Organization

General Chair

Frank Bomarius, Fraunhofer IESE and University of Applied Sciences Kaiserslautern,
Germany

Program Co-chairs

Andreas Jedlitschka, Fraunhofer IESE, Germany
Outi Salo, VIT Technical Research Centre, Finland

Tutorial and Workshop Chair

Darja Smite, Rigas Informacijas Tecnologijas Instituts, Latvia

Organization Chair

Giovanni Cantone, Universita degli Studi di Roma Tor Vergata, Italy

Local Organization Committee

Universita degli Studi di Roma Tor Vergata, Italy

Anna Lomartire, Centro di Calcolo e Documentazione (CCD)
Gianfranco Pesce, Centro di Calcolo e Documentazione (CCD)
Davide Falessi, Dipartimento di Informatica, Sistemi e Produzione

Maurizio Saltali, Dipartimento di Informatica, Sistemi e Produzione
Alessandro Sarcia, Dipartimento di Informatica, Sistemi e Produzione

PR Chair

S. Alessandro Sarcia, Universita degli Studi di Roma Tor Vergata, Italy

Publicity Co-chairs

Benelux Ko Doorns, Philips
Canada Dietmar Pfahl, University of Calgary
Central Europe Frank Seelisch, Fraunhofer IESE

VIl Organization

Finland Minna Isomursu, VIT

Japan Shuji Morisaki, NAIST

Scandinavia Tore Dybéa, SINTEF

South America Christiane Gresse von Wangenheim, Universidade do Vale do Itajai
USA Raimund L. Feldmann, FC-MD, USA

Program Committee

Zeiad A. Abdelnabi, Garyounis University - IT College, Libya

Silvia Abrahdo, Universidad Politécnica de Valencia, Spain
Muhammad Ali Babar, Lero, University of Limerick, Ireland

Bente Anda, Simula Research Laboratory, Norway

Maria Teresa Baldassarre, University of Bari, Italy

Andreas Birk, SWPM - Software.Process.Management, Germany
Danilo Caivano, University of Bari, Italy

Gerardo Canfora, University of Sannio, Italy

Jeff Carver, Mississippi State, USA

Marcus Ciolkowski, Fraunhofer IESE, Germany

Reidar Conradi, Norwegian University of Science and Technology, Norway
Beniamino Di Martino, Second University of Naples, Italy

Torgeir Dingsgyr , SINTEF, Norway

Tore Dybéa, SINTEF, Norway

Davide Falessi, University of Rome "Tor Vergata", Italy

Raimund Feldmann, Fraunhofer Center Maryland, USA

Jens Heidrich, Fraunhofer Institute for Experimental Software Engineering, Germany
Martin Host, Lund University, Sweden

Frank Houdek, Daimler AG, Germany

Hajimu lida, NAIST, Japan

Katsuro Inoue, Osaka University, Japan

Janne Jarvinen, F-Secure, Finland

Erik Johansson, Ericsson Mobile Platforms, Sweden

Natalia Juristo, Universidad Politécnica de Madrid, Spain

Kari Kansala, NOKIA, Finland

Pasi Kuvaja, University of Oulu, Finland

Marek Leszak, Alcatel-Lucent, Germany

Lech Madeyski, Wroclaw University of Technology, Poland
Annukka Mintyniemi, VTT Technical Research Centre of Finland, Finland
Annukka Méntyniemi, Nokia, Finland

Kenichi Matsumoto, Nara Institute of Science and Technology, Japan
Makoto Matsushita, Osaka University, Japan

Nils Brede Moe, SINTEF ICT, Norway

Maurizio Morisio, Politecnico di Torino, Italy

Mark Mueller, Robert Bosch GmbH, Germany

Jiirgen Miinch, Fraunhofer IESE, Germany

Haruka Nakao, Japan Manned Space Systems Corporation, Japan
Risto Nevalainen , FiSMA ry, Finland

Organization IX

Mahmood Niazi, Keele University, UK

Paolo Panaroni, INTECS, Italy

Dietmar Pfahl, University of Calgary, Canada

Minna Pikkarainen, VTT, Finland

Teade Punter, Embedded Systems Institute (ESI), The Netherlands
Austen Rainer, University of Hertfordshire, UK

Karl Reed, La Trobe University, Australia

Daniel Rodriguez, University of Alcald, Spain

Kurt Schneider, Leibniz Universitit Hannover, Germany

Carolyn Seaman, UMBC and Fraunhofer Center Maryland, USA
Darja Smite, University of Latvia, Latvia

Michael Stupperich, Daimler AG, Germany

Guilherme Travassos, COPPE/UFRJ, Brazil

Markku Tukiainen, University of Joensuu, Finland

Mark van den Brand, Eindhoven University of Technology, The Netherlands
Rini van Solingen, LogicaCMG and Delft University of Technology, The Netherlands
Sira Vegas, Universidad Politecnica de Madrid, Spain

Matias Vierimaa, VTT, Finland

Hironori Washizaki, National Institute of Informatics, Japan

Claes Wohlin, Blekinge Institute of Technology, Sweden

Bernard Wong, University of Technology, Sydney, Australia

External Reviewers

Ramén Garcia-Martinez, Buenos Aires Institute of Technology, Argentina
Anna Grimén Padua, Simén Bolivar University, Venezuela

Martin Solari, ORT University, Uruguay

Adam Trendowicz, Fraunhofer IESE, Germany

Table of Contents

Keynote Addresses

Software Testing Forever: Old and New Processes and Techniques for
Validating Today’s Applications
Antonia Bertolino

Culture of Error Management “Why Admit an Error When No One

Will Find Out?” ...
Horst Degen-Hientz

Supporting Experience and Information Flow in Software Projects
Kurt Schneider

Quality and Measurement I

Goal-Oriented Setup and Usage of Custom-Tailored Software
COCKDIES « v vt
Jens Heidrich and Jirgen Minch

MIS-PyME Software Measurement Maturity Model-Supporting the
Definition of Software Measurement Programs
Maria Diaz-Ley, Féliz Garcia, and Mario Piattini

Predicting Software Metrics at Design Time
Wolfgang Holz, Rahul Premraj, Thomas Zimmermann, and
Andreas Zeller

A Metrics Suite for Measuring Quality Characteristics of JavaBeans
COmPONENES . . . ot e
Hironori Washizaki, Hiroki Hiraguchi, and Yoshiaki Fukazawa

Cost Estimation

Software Cost Estimation Inhibitors - A Case Study
Ana Magazinovic, Joakim Pernstal, and Peter Ohman

Impact of Base Functional Component Types on Software Functional
Size Based Effort Estimation
Luigi Buglione and Cigdem Gencel

Managing Uncertainty in ERP Project Estimation Practice: An
Industrial Case Study
Maya Daneva

XII Table of Contents

The Effect of Entity Generalization on Software Functional Sizing:

A Case Study . ..ot
Oktay Turetken, Onur Demirors, Cigdem Gencel,
Ozden Ozcan Top, and Baris Ozkan

Capability and Maturity Models

Towards a Capability Model for the Software Release Planning
Process—Based on a Multiple Industrial Case Study
Markus Lindgren, Rikard Land, Christer Norstrom, and Anders Wall

From CMMI to SPICE — Experiences on How to Survive a SPICE
Assessment Having Already Implemented CMMI.....................
Fabio Bella, Klaus Hormann, and Bhaskar Vanamali

A Model for Requirements Change Management: Implementation of

CMMI Level 2 Specific Practice........... ... i
Mahmood Niazi, Charles Hickman, Rashid Ahmad, and
Muhammad Ali Babar

Systems and Software Quality

Experience Report on the Effect of Software Development

Characteristics on Change Distribution
Anita Gupta, Reidar Conradi, Forrest Shull, Daniela Cruzes,
Christopher Ackermann, Harald Ronneberg, and Finar Landre

Virtual Prototypes in Developing Mobile Software Applications and
DeVICES « oot
Kari Liukkunen, Matti Eteldperd, Markku Oivo,
Juha-Pekka Soininen, and Mika Pellikka

Comparing Assessment Methodologies for Free/Open Source Software:
OpenBRR and QSOS.
Jean-Christophe Deprez and Simon Alexandre

Quality and Measurement 11

Predicting Software Fault Proneness Model Using Neural Network
Yogesh Singh, Arvinder Kaur, and Ruchika Malhotra

Automating the Measurement of Functional Size of Conceptual Models
in an MDA Environment.
Beatriz Marin, Oscar Pastor, and Giovanni Giachetti

How Does a Measurement Programme Evolve in Software
Organizations?t
Lasse Harjumaa, Jouni Markkula, and Markku Oivo

105

117

133

143

158

174

189

204

215

230

Table of Contents

A Fault Prediction Model with Limited Fault Data to Improve Test
Process . ..o
Cagatay Catal and Banu Diri

Software Process Improvement

Big Improvements with Small Changes: Improving the Processes of a
Small Software Company it
Anu Valtanen and Jarmo J. Ahonen

Software Process Improvement Methodologies for Small and Medium
Enterpriseso
Deepti Mishra and Alok Mishra

An Empirical Study on Software Engineering Knowledge/Experience
Packages
Pasquale Ardimento and Marta Cimitile

Customized Predictive Models for Process Improvement Projects.
Thomas Birkholzer, Christoph Dickmann, Harald Klein,
Jiurgen Vaupel, Stefan Ast, and Ludger Meyer

Lessons Learned and Best Practices 1

Improving Customer Support Processes: A Case Study
Marko Jantti and Niko Pylkkdinen

Influential Factors on Incident Management: Lessons Learned from a
Large Sample of Products in Operation
Jodo Caldeira and Fernando Brito e Abreu

Pitfalls in Remote Team Coordination: Lessons Learned from a Case
Study .o
Darja Smite, Nils Brede Moe, and Richard Torkar

Agile Software Development

A Model to Identify Refactoring Effort during Maintenance by Mining
Source Code Repositories i
Raimund Moser, Witold Pedrycz, Alberto Sillitti, and
Giancarlo Succi

The Application of ISO 9001 to Agile Software Development
Tor Stalhane and Geir Kjetil Hanssen

XIII

X1V Table of Contents

Study of the Evolution of an Agile Project Featuring a Web Application

Using Software Metrics i 386
Giulio Concas, Marco Di Francesco, Michele Marchesi,
Roberta Quaresima, and Sandro Pinna

Lessons Learned and Best Practices 11

Identifying and Understanding Architectural Risks in Software

Evolution: An Empirical Study 400
0dd Petter Nord Slyngstad, Jingyue Li, Reidar Conradi, and
M. Ali Babar

A Hands-On Approach for Teaching Systematic Review............... 415
Maria Teresa Baldassarre, Nicola Boffoli, Danilo Caivano, and
Giuseppe Visaggio

An Empirical Study Identifying High Perceived Value Practices of
CMMI Level 2. . e e e 427
Mahmood Niazi, Muhammad Ali Babar, and Suhaimi Ibrahim

Workshops

274 International Workshop on Measurement-Based Cockpits

for Distributed Software and Systems Engineering Projects

(SOFTPIT 2008) ot vtttt ettt ettt e e e e e e 442
Marcus Ciolkowski, Jens Heidrich, Marco Kuhrmann, and
Jirgen Minch

10th International Workshop on: Learning Software Organizations
-Methods, Tools, and Experiences- i .. 443
Raimund L. Feldmann and Martin Wessner

Implementing Product Line Engineering in Industry: Feedback from
the Field to Research 444
Davide Falessi and Dirk Muthig

What to Learn from Different Standards and Measurement Approaches?
Is a Pragmatic Integrative Approach Possible? 445
Fabio Bella and Horst Degen-Hientz

Author Index 447

Software Testing Forever:
Old and New Processes and Techniques for
Validating Today's Applications

Antonia Bertolino

Istituto di Scienza e Tecnologie dell’ Informazione
Consiglio Nazionale delle Ricerche
via Moruzzi, 1, 56124 Pisa, Italy
antonia.bertolino@isti.cnr.it

Software testing is a very complex activity deserving a first-class role in
software development. Testing related activities encompass the entire
development process and may consume a large part of the effort required for
producing software. In this talk, I will first organize into a coherent framework
the many topics and tasks forming the software testing discipline, pointing at
relevant open issues [1]. Then, among the outlined challenges, I will focus on
some hot ones posed by the testing of modern complex and highly dynamic
systems [2]. What is assured is that software testers do not risk to remain
without their job, and testing researchers are not at short of puzzles. Software
testing is and will forever be a fundamental activity of software engineering:
notwithstanding the revolutionary advances in the way it is built and employed
(or perhaps exactly because of), the software will always need to be eventually
tried and monitored. In the years, software testing has evolved from an “art” to
a discipline, but test practice largely remains a trial-and-error methodology. We
will never find a test approach that is guaranteed to deliver a “perfect” product,
whichever is the effort we employ. However, what we can and must pursue is to
transform testing from “trial-and-error” to a systematic, cost-effective and
predictable engineering practice.

Keywords: Software testing research challenges, Testing and monitoring of
dynamic systems, Testing for functional and non-functional properties.

References

1. Bertolino, A.: Software Testing Research: Achievements, Challenges, Dreams. In: 2007
Future of Software Engineering, at ICSE 2007, Minneapolis, USA, May 20 - 26, pp. 85-103
(2007)

2. The Plastic Consortium, Deliverable D4.1: Test Framework Specification and Architecture,
http://www.ist-plastic.org/

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, p. 1, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Culture of Error Management
“Why Admit an Error When No One Will Find Out?”’

Horst Degen-Hientz"

KUGLER MAAG CIE GmbH Germany
horst.degen-hientz@kuglermaag.com
www . kuglermaag.com

What has a Stradivari and Linux in common? It is the error culture-driven proc-
ess that created it. A culture of restless strives for innovation and quality ena-
bling continuous learning. We systematically get trained by being punished as
child when doing mistakes and often need a life long cumbersome process to
undo this conditioning. In western world many organization behave just like as
that: errors are socially not acceptable. This seems to be universal applicable as
Kaizen and the “zero-defect-culture” can teach us. It is not a society intrinsic at-
titude - as one can observe from the Toyota way - which took years to establish
an organizational error management culture. Studies in Europe show too that
organizational error management are a means to boost companies’ performance
and goals achievement. Hence, what can we learn from Stradivari and Linux? It
is the way to organize error management and innovation. This is key to open
source projects and the raising inner source projects as observable in companies
like Google.

* CTO and Partner at KUGLER MAAG CIE.

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, p. 2, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Supporting Experience and Information Flow in
Software Projects

Kurt Schneider

Leibniz Universitdt Hannover
Institut fiir Praktische Informatik FG Software Engieering
Welfengarten 1, 30167 Hannover, Germany
kurt.schneider@inf.uni-hannover.de

Several large companies have conducted initiatives for systematic learning from
experience in software engineering. In the international Software Experience
Center (SEC), for example, five companies exchanged experiences and collabo-
rated in building experience exchange mechanisms to be used within each com-
pany. Many insights were gained and lessons were learned over the years,
among them: (1) Written and documented experiences are the exception rather
than the rule. (2) Although not documented in detail or controlled by a process,
experience needs guidance and support in order to reach the designated person
or group. The “flow” of experience must be kept in mind. (3) Experience is a
delicate material, and any avoidable effort or threshold to participate in system-
atic experience exploitation may endanger stakeholder participation and suc-
cess. (4) Tools can effectively be built to support orderly flow of experience,
but they must be optimized for cognitive support of their users. These lessons
learned from supporting experience exploitation can be applied to software pro-
jects more generally: Requirements, rationale, and other information flowing
through a software project resemble experience with respect to the above-
mentioned characteristics: They are often communicated orally rather than in a
document. There are diverse processes and practices designed to channel infor-
mation flow. Early and vague requirements must be handled with care, and
tools need to be optimized to reduce cognitive barriers and thresholds, or they
will not be accepted. A focus on information and experience flow takes the
above-mentioned lessons into account. Information flows within one project,
while experience often cuts across several projects. Requirements of one project
are useful only in that same project. Experience in designing a product, how-
ever, may be reused in subsequent projects. Information and experience flows
need to be modelled explicitly. A simple notation is proposed to capture just the
essence of flowing information. What may seem like a subtle shift from proc-
esses to flows offers a new perspective: Based on those models, dedicated tech-
niques and tools can be developed for analysing and for improving the flows. A
wide range of current trends in software engineering can benefit from a better
understanding of — and support for — appropriate information flow: Interfaces to
the subcontractors, distributed and collaborative teams, Wiki webs, and a vari-
ety of new communication channels in global software engineering call for a
focus on information flow.

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, p. 3, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Goal-Oriented Setup and Usage of Custom-Tailored
Software Cockpits

Jens Heidrich and Jiirgen Miinch

Fraunhofer IESE, Fraunhofer Platz 1, 67663 Kaiserslautern, Germany
{jens.heidrich, juergen.muench}@iese.fraunhofer.de

Abstract. Software Cockpits, also known as Software Project Control Centers,
support the management and controlling of software and system development
projects and provide means for quantitative measurement-based project control.
Currently, many companies are developing simple control dashboards that are
mainly based on Spreadsheet applications. Alternatively, they use solutions
providing a fixed set of project control functionality that cannot be sufficiently
customized to their specific needs and goals. Specula is a systematic approach
for defining reusable, customizable control components and instantiate them
according to different organizational goals and characteristics based on the
Quality Improvement Paradigm (QIP) and GQM. This article gives an overview
of the Specula approach, including the basic conceptual model, goal-oriented
measurement, and the composition of control components based on explicitly
stated measurement goals. Related approaches are discussed and the use of
Specula as part of industrial case studies is described.

Keywords: Software Project Control Center, QIP, GQM.

1 Introduction

The complexity of software development projects continues to increase. One major
reason is the ever-increasing complexity of functional as well as non-functional soft-
ware requirements (e.g., reliability or time constraints for safety-critical systems). The
more complex the requirements, the more people are usually involved in meeting
them, which further increases the complexity of controlling and coordinating the
project. This, in turn, makes it even harder to develop the system according to plan
(i.e., matching time and budget constraints). Project control issues are very hard to
handle. Many software development organizations still lack support for obtaining
intellectual control over their software development projects and for determining the
performance of their processes and the quality of the produced products. Systematic
support for detecting and reacting to critical project states in order to achieve planned
goals is often missing [15].

Companies have started to introduce so-called software cockpits, also known as
Software Project Control Centers (SPCC) [15] or Project Management Offices (PMO)
[16], for systematic quality assurance and management support. A software cockpit is
comparable to an aircraft cockpit, which centrally integrates all relevant information

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 42008.
© Springer-Verlag Berlin Heidelberg 2008

Goal-Oriented Setup and Usage of Custom-Tailored Software Cockpits 5

for monitoring and controlling purposes. A project manager can use it to get an over-
view of the project state and a quality assurance manager can use it to check the qual-
ity of the software product. In addition to these primary users of an SPCC, basically
any role of a project may profit from making direct or indirect use of the SPCC func-
tionality. For instance, a developer can use the SPCC to keep track of code quality or
to trace quality issues. The benefit provided by an SPCC for a certain project role
depends on the functionality and services offered. However, the needs with respect to
project control differ between different organizations, projects, and roles. They de-
pend on organizational goals (business goals), process maturity, the experience of the
project team, and many other factors. For instance, for multi-disciplinary, distributed
software development, measurement data has to be collected from different sources
(locations) and formats. In this case, integration of data is crucial for getting a consis-
tent picture of the project state.

In general, an important success factor in the software engineering domain is that
these solutions are customized to the specific goals, organizational characteristics and
needs, as well as the concrete project environment. Specula (lat. watch tower) is an
approach for composing project control functionality out of reusable control compo-
nents [7], [8]. It was mainly developed at the Fraunhofer Institute for Experimental
Software Engineering (IESE) and makes use of the Quality Improvement Paradigm
(QIP) for integrating project control activities into a continuous improvement cycle.
Furthermore, the GQM approach [2] is used for explicitly specifying measurement
goals for project control.

Section 2 of the article presents related work in the field of software project control
centers and key performance indicators for project control. Section 3 introduces the
Specula approach, describes the underlying conceptual model and its relationship to
goal-oriented measurement, and finally presents the basic steps of the methodology
for composing control components (encapsulated, packaged techniques for project
control) based on explicitly defined measurement goals. Section 4 presents first em-
pirical evaluation results based on industrial case studies conducted. The article con-
cludes with a brief summary and discussion of future work.

2 Related Work

An overview of the state of the art in Software Project Control Centers can be found
in [15]. The scope was defined as generic approaches for online data interpretation
and visualization on the basis of past experience. However, project dashboards were
not included in this overview. In practice, many companies develop their own
dashboards (mainly based on Spreadsheet applications) or use dashboard solutions
that provide a fixed set of predefined functions for project control (e.g., deal with
product quality only or solely focus on project costs) and are very specific to
the company for which they were developed. Most of the existing, rather generic,
approaches for control centers offer only partial solutions. Especially purpose- and
role-oriented usages based on a flexible set of techniques and methods are not com-
prehensively supported. For instance, SME (Software Management Environment)
[10] offers a number of role-oriented views on analyzed data, but has a fixed, built-in
set of control indicators and corresponding visualizations. The SME successor

6 J. Heidrich and J. Miinch

WebME (Web Measurement Environment) [19] has a scripting language for custom-
izing the interpretation and visualization process, but does not provide a generic set of
applicable controlling functions. Unlike Provence [13] and PAMPA [18], approaches
like Amadeus [17] and Ginger2 [20] offer a set of purpose-oriented controlling func-
tions with a certain flexibility, but lack a role-oriented approach to data interpretation
and visualization.

The indicators used to control a development project depend on the project’s goals
and the organizational environment. There is no default set of indicators that is always
used in all development projects in the same manner. According to [14], a “good”
indicator has to (a) support analysis of the intended information need, (b) support the
type of analysis needed, (c) provide the appropriate level of detail, (d) indicate a pos-
sible management action, and (e) provide timely information for making decisions
and taking action. The concrete indicators that are chosen should be derived in a sys-
tematic way from the project goals [12], making use of, for instance, the Goal Ques-
tion Metric (GQM) approach. Some examples from indicators used in practice can be
found in [1]. With respect to controlling project cost, the Earned Value approach
provides a set of commonly used indicators and interpretation rules. With respect to
product quality, there exists even an ISO standard [11]. However, the concrete usage
of the proposed measures depends upon the individual organization. Moreover, there
is no unique classification for project control indicators. One quite popular classifica-
tion of general project management areas is given by the Project Management Body
of Knowledge (PMBoK) [16]. The PMBoK distinguishes between nine areas, includ-
ing project time, cost, and quality management.

The ideas behind GQM and the Quality Improvement Paradigm (QIP) [2] are well-
proven concepts that are widely applied in practice today. An approach based on
GQM and QIP to create and maintain enhanced measurement plans, addressing data
interpretatation and visualization informally, is presented in [5]. Moreover, related
work in this field is presented.

3 The Specula Approach

Specula is a state-of-the-art approach for project control. It interprets and visualizes
collected measurement data in a goal-oriented way in order to effectively detect plan
deviations. The control functionality provided by Specula depends on the underlying
goals with respect to project control. If these goals are explicitly defined, the corre-
sponding functionality is composed out of packaged, freely configurable control
components. Specula provides four basic components: (1) a logical architecture for
implementing software cockpits [15], (2) a conceptual model formally describing the
interfaces between data collection, data interpretation, and data visualization [9], (3)
an implementation of the conceptual model, including a construction kit of control
components [4], and (4) a methodology of how to select control components accord-
ing to explicitly stated goals and customize the SPCC functionality [9].

The methodology is based on the Quality Improvement Paradigm (QIP) and makes
use of the GQM approach [2] for specifying measurement goals. QIP is used to im-
plement a project control feedback cycle and make use of experiences and knowledge
gathered in order to reuse and customize control components. GQM is used to drive

Goal-Oriented Setup and Usage of Custom-Tailored Software Cockpits 7

the selection process of finding the right control components according to defined
goals. Large parts of the approach are supported by a corresponding prototype tool,
called Specula Project Support Environment (PSE), which is currently also being used
as part of industrial case studies (see Section 4 and [4]). Specula basically addresses
the following roles that make use of the provided functionality:

e Primary Users: Project manager, quality assurance manager, and controller who
mainly use an SPCC to control different aspects of the software development pro-
ject and initiate countermeasures in case of deviations and risks.

e Secondary Users: Developers and technical staff who use an SPCC to enter meas-
urement data as well as to detect root causes for deviations and risks.

o Administrators: Administrators who have to install and maintain an SPCC.

e Measurement Experts: Experts who define measurement goals, support derivation
of control components, and help to customize and effectively use the SPCC.

Section 3.1 gives a brief overview of the conceptual model upon which Specula is
built. Section 3.2 addresses the connection of the conceptual model to goal-oriented
measurement, and Section 3.3 provides a brief overview of all steps necessary to
apply the Specula approach as a whole.

3.1 Cockpit Concepts

The conceptual model of the Specula approach formalizes the process of collecting,
interpreting, and visualizing measurement data for software project control. The de-
rived structure for operationally controlling a development project is called a Visuali-
zation Catena (VC) [7], which defines components for automatically and manually
collecting measurement data, processing and interpreting these data, and finally visu-
alizing the processed and interpreted data. The processing and interpretation of col-
lected measurement data is usually related to a special measurement purpose, like
analyzing effort deviations, or guiding a project manager. A set of techniques and
methods (from the repository of control components) is used by the VC for covering
the specified measurement purpose. The visualization and presentation of the proc-
essed and collected measurement data is related to roles of the project that profit from
using the data. The VC creates a set of custom-made controlling views, which pre-
sents the data according to the interests of the specified role, such as a high-level
controlling view for a project manager, and a detailed view of found defects for a
quality assurance manager. The whole visualization catena has to be adapted in ac-
cordance with the context characteristics and organizational environment of the soft-
ware development project currently being controlled.

Fig. 1 gives an overview of all VC components and their corresponding types.
Specula distinguishes between the following five components on the type level from
which a concrete VC is instantiated for a certain project:

(T1) Data types describe the structure of incoming data and data that is further
processed by the VC. For instance, a time series (a sequence of time stamp and corre-
sponding value pairs) or a project plan (a hierarchical set of activities having a start
and end date and an effort baseline) could be logical data types that could either be
directly read-in by the system or be the output of a data processing function.

8 J. Heidrich and J. Miinch

(T2) Data access object packages describe the different ways concrete data types
may be accessed. For instance, an XML package contains data access objects for
reading data (having a certain data type) from an XML file, writing data to an XML
file, or changing the contents of an XML file. A special package may be used, for
instance, to automatically connect to an effort tracking system or bug tracking data
base. A data access object contains data type-specific parameters in order to access
the data repositories.

(T3) Web forms describe a concrete way of managing measurement data manually,
involving user interaction. A web form manages a concrete data type. For instance,
new data may be added, existing data may be changed or completely removed. A web
form also refers to other data types that are needed as input. For instance, in order to
enter effort data manually, one needs the concrete activities of the project for which
the effort is tracked. Web forms are needed if the data cannot be automatically re-
trieved from an external data source.

Visualization
Catena
[4 presents ‘ 4 processes ‘ » manages ‘
View Instance results of Function contents of | Data Entries | datafor Web Form
(14) Instance (I3) n) Instance (12)
» comprises » is built upon
~ instance of ~ instance of ~ instance of ~ instance of
View Function Data Type Web Form
(T5) (T4) (T1) (T3)

~ accessed through

DAO Package
(T2)

Fig. 1. Overview of the elements of the conceptual model. A view instance presents the results
of a data processing function, which in turn processes the contents of data entries for which
data is provided by a web form instance.

(T4) Functions represent a packaged control technique or method, which is used to
process incoming data (like Earned Value Analysis, Milestone Trend Analysis, or
Tolerance Range Checking). A function needs different data types as input, produces
data of certain data types as output, and may be adapted to a concrete context through
a set of parameters.

(T5) Views represent a certain way of presenting data, like drawing a two-
dimensional diagram or just a table with a certain number of rows and columns. A
view visualizes different data types and may refer to other views in order to create a
hierarchy of views. The latter may, for instance, be used to create a view for a certain
project role consisting of a set of sub-views.

Goal-Oriented Setup and Usage of Custom-Tailored Software Cockpits 9

In addition, the following components are distinguished on the instances level:

(I1) Data entries instantiate data types and represent the concrete content of meas-
urement data that are processed by the SPCC. We basically distinguish between
external and internal data. External data must be read-in or imported from an exter-
nal location, or manually entered into the system. Each external data object has to be
specified explicitly by a data entry containing, for instance, the start and end time
and the interval at which the data should be collected. In addition, the data access
object package that should be used to access the external data has to be specified.
Internal data are the outcome of functions. They are implicitly specified by the func-
tion producing the corresponding data type as output and therefore need no explicit
specification and representation as data entry. External as well as internal data may
be used as input for instances of functions or views if their corresponding data types
are compatible.

(I2) Web form instances provide web-based forms for manually managing meas-
urement data for data entries. All mandatory input data type slots of the instantiated
web form have to be filled with concrete data entries and all mandatory parameters
have to be set accordingly.

(I3) Function instances apply the instantiated function to a certain set of data en-
tries filling the mandatory input slots of the function. A function instance processes
(external and internal) data and produces output data, which could be further proc-
essed by other function instances or visualized by view instances. All mandatory
function parameters have to be set accordingly.

(I4) Finally, view instances apply the instantiated view to a certain set of data en-
tries filling the corresponding mandatory data type slots of the view. A view instance
may refer to other view instances in order to build up a hierarchy of views.

Each component of a VC and its corresponding type contains explicitly specified
checks that may be used to test whether the specification is complete and consistent,
whether data are read-in correctly, whether function instances can be computed accu-
rately, and whether view instances can be created successfully. A visualization catena
consists of a set of data entries, each having exactly one active data access object for
accessing incoming data, a set of web form instances for managing the defined data
entries, a set of function instances for processing externally collected and internally
processed data, and finally, a set of view instances for visualizing the processing re-
sults. A formal specification of all components may be found in [6].

3.2 Mapping Cockpit Concepts to GQM

For a goal-oriented selection of control components, a structured approach is needed
that describes how to systematically derive control components from project goals
and characteristics. GQM provides a template for defining measurement goals, sys-
tematically derives questions that help to make statements about the goals, and finally
derives metrics in order to help answer the stated questions. In order to complete such
a measurement plan for a concrete project, each metric can be further described by a
data collection specification (DCS) basically making statements on who or which tool
has to collect the measurement data at which point in time of the project from which

10

J. Heidrich and J. Miinch

< visualizes
assessment of

|: View Instance Goal
» comprises
v presents assessed
results of < computes visualizes through ~
assessment for inswers of 4
Function Qu
» is built upon Instance 4« computes » refined by
answers for
v processes < computes answered
contents of values for through ~
Data Entries Metric :l
< collects » refined by
. } data for ,.
v implemente < collects data operationalized A .
through according to through ~ —— Association
—> Inheritance
A]
Web Form Data Collection :Iw C‘;]greganon
Ir < Specification ass

Fig. 2. Mapping the conceptual model to the GQM paradigm. On the left side, one can see the
components of the visualization catena. On the right side, one can see the structure of a GQM
model and a corresponding data collection specification.

data source. In [8], usage scenarios on how to derive a GQM plan from a control goal
and how to define a VC that is consistent with the defined goals are described.

a

Fig. 2 presents an overview of all relationships between a GQM plan, its DCS, and
visualization catena (cf. [9]):

Data entries collect measurement data for GQM metrics according to the DCS. If
the data has to be collected manually, a web form instance is used to implement the
DCS in addition. For instance, if the DCS states that the start and end date of an ac-
tivity shall be collected from an MS Project file, a corresponding data entry is de-
fined and a web form instance implements importing the project plan from the file.
Function instances compute metric values if a metric has to be computed from
other metrics. For instance, if a cost performance index is computed for an Earned
Value Analysis, the budgeted costs of work performed and the actual costs of work
performed are needed. A function instance could also compute answers for GQM
questions by taking into account all metrics assigned to the question and applying
an interpretation model to all metric values. In analogy, a function instance could
assess the attainment of a GQM goal by assessing the answers of all assigned ques-
tions using an interpretation model.

View instances visualize the answers to GQM questions. A chart is produced or
tables are displayed illustrating the metric results of the corresponding questions
and the interpretation model used to answer the question. For instance, the cost
performance and schedule performance index could be visualized as a line chart in
which good and bad index values are marked accordingly. A view instance could
also visualize the assessment of the GQM goal.

3.3 Composing Control Components

Specula is largely based on the Quality Improvement Paradigm (QIP). The basic
phases and steps are as follows:

Goal-Oriented Setup and Usage of Custom-Tailored Software Cockpits 11

Phase I: Characterize Control Environment: First, project stakeholders character-

ize the environment in which project control shall be applied in order to set up a
corresponding measurement program that is able to provide a basis for satisfying all
needs.

Describe the project context. Important characteristics for setting up project control
mechanisms have to be defined.

Discuss the overall organization. Organizational characteristics have to be clari-
fied. This includes roles and responsibilities, potential stakeholders, like managers
of the organization, project managers, quality assurance manager, developers, and
team organization.

Phase 11: Set Control Goals: Then, measurement goals for project control are de-

fined and metrics are derived determining what kind of data to collect.

Elicit control goals. The Specula approach makes use of GQM in order to define
measurement goals in a structured way. GQM already provides a systematic ap-
proach for defining measurement goals, systematically derives questions that help
to make statements about the goals, and finally derives metrics in order to help an-
swer the stated questions.

Clarify relations to higher-level goals. The relation to higher-level goals should be
modeled. For this purpose, all measurement goals are connected to higher-level
software and business goals using the GQM*Strategies® approach [3].

Derive indicators. Based on the measurement goals defined for project control,
questions and metrics have to be derived using GQM.

Define GOM model. A GQM model is created containing the project-specific
measurement goals, corresponding questions that make statements about achieving
goals, and metrics that support answering the questions.

Phase III: Goal-oriented Composition: Next, a visualization catena is composed

based on the defined goals in order to provide online feedback on the basis of the data
collected during project execution. More details about this process can be found in [9].

Derive measurement plan. A comprehensive measurement plan has to be derived
based on the GQM model, including a data collection specification.

Define interpretation models. Interpretation models are used to basically aggregate
measurement data in order to answer a GQM question or make a statement about
achieving a GQM goal.

Derive data entries and web form instances. Next, matching data types are identi-
fied based on the metric definition, the object to be measured and the quality
attribute. For each simple metric (which is not computed from other metrics), in-
stantiate the data type and create a corresponding data entry. The data collection
specification is used to determine the start time, end time, and interval when the
data should be collected. If the metric has to be collected manually, a web form is
identified based on the data source and the instantiated web form is attached to the
data entry.

Derive function instances for complex metrics. For each complex metric (which is
computed from other metrics), a function is identified that is able to compute the
metric based on the metric definition, the object to be measured, and the quality

12

J. Heidrich and J. Miinch

attribute. The identified functions are instantiated by first filling all input data slots
with data entries or results of other function instances. Then, the function instances
are parameterized according to the metric definition.

Derive function instances for GOM questions. If an interpretation model is de-
scribed in the GQM plan that defines how to formally answer a question, a func-
tion implementing this model is identified based on the object and quality attribute
addressed in order to compute the answers to the question. The functions are in-
stantiated by filling all input data slots with data entries or results of other function
instances assigned to the question. The function instances are parameterized ac-
cording to the interpretation model.

Derive view instances for GOM questions. The answers to the question are visual-
ized by identifying a set of views based on the kind of answers to the question and
the data visualization specifications of the measurement plan (if any). The identified
views are instantiated by filling all input data slots with data entries or results of
function instances assigned to the question. The view instances are parameterized
according to the data presented (e.g., title and axis description, size, and color).
Derive function instances for GOM goals. If an interpretation model is described in
the GQM plan that defines how to formally assess goal attainment, a function im-
plementing this model is identified and instantiated based on the object and quality
focus addressed in order to attain the measurement goal.

Derive view instances for GOM goals. Goal attainment is visualized by identifying
and instantiating a set of views based on the kind of assessment of the goal and the
data visualization specifications of the measurement plan (if any).

Check consistency and completeness. After defining the whole visualization catena
for controlling the project, the consistency and completeness of the mapping proc-
ess are checked.

Configure SPCC. If the visualization catena is defined and checked, it has to be
transferred to a corresponding tool (Specula tool prototype).

Provide training. Training is provided for all SPCC users in order to guarantee the
effective usage of the SPCC.

Phase 1V: Execute Project Control Mechanisms: Once the visualization catena is

specified, a set of role-oriented views are generated by the SPCC for controlling the
project based on the specified visualization catena. If a plan deviation or project risk
is detected, its root cause must be determined and the control mechanisms have to be
adapted accordingly.

Perform data collection. The SPCC users have to perform data collection activities
according to the measurement plan defined.

Use control views for GOM questions. The SPCC users have to use the view in-
stances offered to get answers for the GQM questions of their GQM model.

Use control views for GOM goals. The SPCC users have to use the view instances
offered to get a general answer with respect to achieving a certain goal of the GQM
models.

Check SPCC functionality. The SPCC users should check the correct functionality
of the Project Control Center regularly.

Goal-Oriented Setup and Usage of Custom-Tailored Software Cockpits 13

Phase V: Analyze Results: After project completion, the resulting visualization ca-
tena has to be analyzed with respect to plan deviations and project risks detected in-
time, too late, or not detected at all. The causes for plan deviations and risks that have
been detected too late or not all have to be determined.

e Analyze plan deviations and project risks. The complete lists of plan deviations
and project risks have to be analyzed after the end of the project.

e Analyze measurement plan. For all deviations and risks that were not detected at
all, the measurement plan has to be analyzed with respect to missing goals or other
missing parts of the GQM models.

e Analyze interpretation models. For all deviations and risks that were not detected at
all or that were detected too late, the interpretation models have to be checked to
see whether they work as intended or whether metrics or answers to questions need
to be interpreted in a different way.

e Analyze visualization catena. For all deviations and risks that were detected too
late, the components of the visualization catena that helped in detecting them have
to be analyzed to see whether they can be improved to support earlier detection in
future projects.

Phase VI: Package Results: The analysis results of the visualization catena that
was applied may be used as a basis for defining and improving control activities for
future projects (e.g., selecting the right control techniques and data visualizations,
choosing the right parameters for controlling the project).

4 Empirical Evaluation and Usage Example

The evaluation of the Specula approach is currently being conducted in the context of
several industrial case studies as part of the Soft-Pit research project funded by the
German Federal Ministry of Education and Research (http://www.soft-pit.de). The
project focuses on getting experience and methodological support for operationally
introducing control centers into companies and projects. The project includes per-
forming several industrial case studies with German companies from different do-
mains, in which the developed control center and its deployment are evaluated. The
project is mainly organized intro three iterations focusing on different controlling
aspects. An application of Specula in the first iteration showed the principal applica-
bility of the VC concept in an industrial environment. Results can be found in [4]. The
second iteration focused on three aspects: (a) perceived usefulness and ease of use of
the approach, (b) found plan deviations and project risks, and (c) costs for setting up
and applying an SPCC. Those aspects were evaluated in four industrial case studies,
in which the Specula prototype tool was used to control the software development
project. The system was perceived as useful and easy to use. However, the degree of
usefulness depended on the group of users: the benefits for secondary users were
limited. Usefulness also varied across different organizations; this may be related to
the different control mechanisms used before introducing an SPCC. Preliminary re-
sults show that following a structured process for setting up an SPCC also does result
in a significantly improved detection rate of plan deviations and project risks. The

14 J. Heidrich and J. Miinch

costs for setting up and applying an SPCC were around 10% of the overall develop-
ment effort for a medium-sized project (10 team members). In the following, the
basic steps of the method are illustrated using data from a practical course conducted
at the University of Kaiserslautern in which the Specula project control approach was
applied.

Phase I: Characterize Control Environment: The aim was to develop mobile ser-
vices for creating a virtual office of the future. There were 17 team members. The
project manager and quality assurance manager should use an SPCC to control differ-
ent aspects of the project. In addition, an administrator (not part of the project team)
was provided who was familiar with the SPCC tool.

Phase 11: Set Control Goals: A measurement expert conducted structured inter-
views with the project manager and quality assurance manager in order to retrieve the
measurement goals with respect to project control that are to be achieved:

e Analyze the project plan for the purpose of monitoring the consistency of the plan
from the point of view of the project manager.

e Analyze the project plan for the purpose of comparing the actual effort with the
planned effort from the point of view of the project manager.

e Analyze the project plan for the purpose of monitoring schedule adherence from
the point of view of the project manager.

e Analyze the project plan for the purpose of monitoring effort tracking regularity
from the point of view of the project manager.

e Analyze the source code for the purpose of monitoring the quality from the point of
view of the quality assurance manager.

e Analyze the defect detection activities for the purpose of monitoring their effi-
ciency from the point of view of the quality assurance manager.

Phase III: Goal-oriented Composition: A visualization catena was created for the
GQM goals above. For example, if the goal is to evaluate the effort plan with respect
to plan deviation, the corresponding control components can be selected as follows.
Fig. 3 presents the GQM model for this goal on the left side and the corresponding
excerpt of the resulting VC on the right side. The one and only question asked was
about absolute effort deviation per activity. A complex metric defined the deviation as
the amount that an actual effort value is above an effort baseline. Three simple met-
rics were consequently defined and operationalized by corresponding data collection
specifications. The baseline should be extracted from a project plan stored in an MS
project file, so a corresponding web form collecting project plan information and data
types representing the project activities and the effort baseline were instantiated. The
actual effort data should be extracted from the company-wide effort tracking system
including effort per person and activity. A data type was instantiated that accesses the
tracking system using a corresponding data access object. A function was applied to
aggregate the effort data for each activity across all persons. In order to compute the
complex metric “effort plan deviation”, a tolerance range checking function was ap-
plied that computes the deviation accordingly. Finally, a view was instantiated in
order to graphically display the results of the assigned function instances and data
entries. Fig. 4 presents the complete visualization catena that was derived for all goals
defined as outputted by the Specula prototype tool (instantiation of the concepts
shown in Fig. 1). As can be seen, the logical dependency of components is quite high,

Goal-Oriented Setup and Usage of Custom-Tailored Software Cockpits 15

GQM Plan Reused Components Visualization Catena

Object: Effort Plan .7

Purpose: Evaluate Effort Plan
Quality Focus: Plan Deviation Deviation
Viewpoint: Project Manager

Context: Project LAB

. F1: Tolerance
Q1_. Absolute e{fo_n Range Checking
deviation per activity?
Effort
per Activity

M1: Absolute effort
deviation above baseline

DT1: Baseline

Data [~.
M2: Effort baseline | __ - - - {M3: Actual effort per |/ DT2: Project Plan |~
o o =" Structure
per activity activity -
DCS1: Collect weekly DCs2: Collect daily from /,’ Reported
from project plan - | ~éffort accounting data base | - Effort
(stored in MS Project " (as’effortper personand__| [wF1: MS Project
format) activity) Import From Tl

Fig. 3. Composing the VC from reusable components. The left side shows the GQM plan to be
implemented by an SPCC. According to the information specified in the GQM plan, compo-

nents are identified from a reuse repository and instantiated in order to create a visualization
catena.

T
g N — [T TN
Control Hierarchy: Attibutes |- _——
" TosimConmlAtweHermey

e % TTTT
[FXCop Product Issues View Fi1: Effort
\\w—$
Fl2: Aggregate | —\| DE3: Reported
N S
VI1: Effort Va\
Analysis View \

\VA - :ProjeclActies
‘ ’ >

, N =< >
" DE2: Effort Baseline
T ‘ 7 [ooiams e sz | WFI:Upoas
= MS Project File
SN————

] conrol Dstat saes
" " I -
Defect Analysis View { }_7 { ‘
Control 5 {
Activite } [Activii ‘

| [View Instance 3 Function Instance [Data Entry [Web Form Instance —> Data Flow |

Fig. 4. Example visualization catena. One can see all input and output data of all control com-
ponents used for constructing the VC. 13 web form instances provide input for 15 data entries,
which are processed by 8 function instances, and visualized by 8 view instances.

16 J. Heidrich and J. Miinch

even for a limited number of control components. The excerpts of the VC discussed
above are highlighted accordingly.

Phase 1V: Execute Project Control Mechanisms: Fig. 5 presents a visualization of
the effort controlling view generated by the Specula prototype tool. During the execu-
tion of the project, the team members entered their effort data using the corresponding
Specula web form. The project manager regularly updated the project plan using MS
Project and imported the plan into the SPCC. The quality assurance manager used a
static code analysis tool to analyze code quality and imported a corresponding report
into the SPCC.

Phase V: Analyze Results: General deviations from the effort baseline were de-
tected including, but not limited to, that the requirements phase took a lot more effort
than planned. The project manager updated the project plan accordingly. In addition,
if we assume that a negative milestone trend was not detected at all, an important
milestone might have been missed.

Phase VI: Package Results: If we assume that the control component for detecting
milestone trends used a wrong parameter setting, it will have to be adapted for future
use in subsequent projects.

¥ Specula Project Support Environment - Mozilla Firefox

Fle Edt Vew Hstory Bookmarks Took Help

E-D - & {2} B nttp:/ocaihost:2080/speculajs dview doidvc=_11858e37331358idh | v | [| [[Gl+| &)
d’“- 14.12 2007
b mm Specula
Project Support Environment / View Control Data / Master Project Open Source / Diagram Overview
A~
Navigation DefectiinalysisNiew Effort Analysis View .

Home FXCop Product Issues View

Select project activity (that has sub activities):
View Contral Data Effort Analysis View MSProj11 ~

Manage Control Data . The diagram shows the planned and current effort of the project as well as the
plan deviation.

Manage Specula
Instances

£ so00
Manage Specula Types - £ 5000
I < 4000
Administration 3000

2 3
Change User Milestone Trend View L 2000

=
X o S 1.000
About Schedule Analysis View bt 0

. . To To To_To To Yo Yo To_ Yo %
Logout Project Plan Consistency s Aor\ﬁ 4?“:. “ A)_)%oﬁﬂ)
View k3 4 5, o, "% %
Y,y %, %, P4, 2
o, e, 3
s %,
en %
Project Activities
W Baseline Effort ™ Current Effort W Effort Plan Deviation
Zoom In | Zoom Out 3

User: admin (Administrator) s - (c) 2003-2007, UKL and Fraunhofer IESE
Done Proxy: TUKL @

Fig. 5. User interface of the Specula prototype tool. On the left side, one can see the overall
navigation bar. The menu close to the navigation bar displays all available views for controlling
the project. On the right side, one can see the selected view for analyzing effort data.

5 Conclusion and Future Work

The article presented the Specula controlling approach for setting up a project control
mechanism in a systematic and goal-oriented way, profiting from experiences gathered.

Goal-Oriented Setup and Usage of Custom-Tailored Software Cockpits 17

Reusable control components were defined and instantiated to illustrate how to define
measurement-based project control mechanisms and instantiate them for the software
development projects of a concrete organization. A high-level process was shown that
provided guidance on how to select the right control components for data collection,
interpretation, and visualization based on explicitly defined measurement goals. More-
over, a simple example was presented of how to apply generically defined control com-
ponents. The Specula approach implements a dynamic approach for project control; that
is, measures and indicators are not predetermined and fixed for all projects. They are
dynamically derived from measurement goals at the beginning of a development project.
Existing control components can be systematically reused across projects or defined
newly from scratch. Data is provided in a purpose- and role-oriented way; that is, a cer-
tain role sees only measurement data visualizations that are needed to fulfill the specific
purpose. Moreover, all project control activities are defined explicitly, are built upon
reusable components, and are systematically performed throughout the whole project. A
context-specific construction kit is provided, so that elements with a matching interface
may be combined. The qualitative benefits of the approach include: being able to identify
and reduce risks related to introducing software cockpits, being more efficient in setting
up and adapting project controlling mechanisms, allowing for more transparent decision-
making regarding project control, reducing the overhead of data collection, increasing
data quality, and, finally, achieving projects that are easier to plan and to control.

Further development and evaluation of the approach will take place in the context
of the Soft-Pit project. Future work will also concentrate on setting up a holistic con-
trol center that integrates more aspects of engineering-style software development
(e.g., monitoring of process-product dependencies and linking results to higher-level
goals). The starting point for setting up such a control center are usually high-level
business goals, from which measurement programs and controlling instruments can be
derived systematically. Thus, it would be possible to transparently monitor, assess,
and optimize the effects of business strategies performed.

Acknowledgements

This work was supported in part by the German Federal Ministry of Education and
Research (Soft-Pit Project, No. 01ISE07A). We would also like to thank Sonnhild
Namingha from Fraunhofer IESE for reviewing a first version of this article.

References

1. Agresti, W., Card, D., Church, V.: Manager’s Handbook for Software Development. SEL
84-101, NASA Goddard Space Flight Center. Greenbelt, Maryland (November 1990)

2. Basili, V.R., Caldiera, G., Rombach, D.: The Experience Factory. Encyclopaedia of Soft-
ware Engineering 1, 469-476 (1994)

3. Basili, V.R., Heidrich, J., Lindvall, M., Miinch, J., Regardie, M., Rombach, D., Seaman,
C., Trendowicz, A.: GQM+Strategies®: A Comprehensive Methodology for Aligning
Business Strategies with Software Measurement. In: Biiren, G., Bundschuh, M., Dumke,
R. (eds.) MetriKon 2007, DASMA-Software-Metrik-Kongress, Kaiserslautern, Germany,
November 15-16, 2007, pp. 253-266 (2007)

18

11.
12.
13.

14.

17.

19.

20.

J. Heidrich and J. Miinch

Ciolkowski, M., Heidrich, J., Miinch, J., Simon, F., Radicke, M.: Evaluating Software Pro-
ject Control Centers in Industrial Environments. In: International Symposium on Empirical
Software Engineering and Measurement, ESEM, Madrid, pp. 314-323 (2007)

Differding, C.: Adaptive measurement plans for software development. Fraunhofer IRB
Verlag, PhD Theses in Experimental Software Engineering, 6 (2001) ISBN: 3-8167-5908-4
Heidrich, J.: Custom-made Visualization for Software Project Control. Technical Report
06/2003, Sonderforschungsbereich 501, University of Kaiserslautern (2003)

Heidrich, J., Miinch, J.: Goal-oriented Data Visualization with Software Project Control
Centers. In: Biiren, G., Bundschuh, M., Dumke, R. (eds.) MetriKon 2005, DASMA-
Software-Metrik-Kongress, Kaiserslautern, Germany, November 15-16, 2005, pp. 65-75
(2005)

Heidrich, J., Miinch, J., Wickenkamp, A.: Usage Scenarios for Measurement-based Project
Control. In: Dekkers, T. (ed.) Proceedings of the 3rd Software Measurement European Fo-
rum. Smef 2006, Rome, Italy, May 10-12, 2006, pp. 47-60 (2006)

Heidrich, J., Miinch, J.: Cost-Efficient Customisation of Software Cockpits by Reusing
Configurable Control Components. In: Dekkers, T. (ed.) Proceedings of the 4th Software
Measurement European Forum. Smef 2007, Rome, Italy, May 9-11, 2007, pp. 19-32
(2007)

. Hendrick, R., Kistler, D., Valett, J.: Software Management Environment (SME)— Con-

cepts and Architecture (Revision 1). NASA Goddard Space Flight Center Code 551, Soft-
ware Engineering Laboratory Series Report SEL-89-103, Greenbelt, MD, USA (1992)
ISO 9126: Software Engineering — Product Quality. Technical Report. ISO/IEC TR 9126.
Geneva (2003)

Kitchenham, B.A.: Software Metrics. Blackwell, Oxford (1995)

Krishnamurthy, B., Barghouti, N.S.: Provence: A Process Visualization and Enactment
Environment. In: Sommerville, 1., Paul, M. (eds.) ESEC 1993. LNCS, vol. 717, pp. 451-
465. Springer, Heidelberg (1993)

McGarry, J., Card, D., Jones, C., Layman, B., Clark, E., Dean, J., Hall, F.: Practical Soft-
ware Measurement — Objective Information for Decision Makers, 1st edn. Addison-
Wesley Professional, Reading (2001)

. Miinch, J., Heidrich, J.: Software Project Control Centers: Concepts and Approaches. Jour-

nal of Systems and Software 70(1), 3—19 (2003)

. Project Management Institute: A Guide to the Project Management Body of Knowledge

(PMBOK Guide) 2000 Edition. Project Management Institute, Four Campus Boulevard,
Newtown Square, PA 19073-3299 USA (2000)

Selby, R.W., Porter, A.A., Schmidt, D.C., Berney, J.: Metric-Driven Analysis and Feed-
back Systems for Enabling Empirically Guided Software Development. In: Proceedings of
the 13th International Conference on Software Engineering, pp. 288-298 (1991)

. Simmons, D.B., Ellis, N.C., Fujihara, H., Kuo, W.: Software Measurement — A Visualiza-

tion Toolkit for Project Control and Process Improvement. Prentice Hall Inc., New Jersey
(1998)

Tesoriero, R., Zelkowitz, M.V.: The Web Measurement Environment (WebME): A Tool
for Combining and Modeling Distributed Data. In: Proceedings of the 22nd Annual Soft-
ware Engineering Workshop (SEW) (1997)

Torii, K., Matsumoto, K., Nakakoji, K., Takada, Y., Takada, S., Shima, K.: Ginger2: An
Environment for Computer-Aided Empirical Software Engineering. IEEE Transactions on
Software Engineering 25(4), 474—492 (1999)

MIS-PyME Software Measurement Maturity Model-
Supporting the Definition of Software Measurement
Programs

. . 1 psr: .2 .)
Maria Diaz-Ley ', Félix Garcia®, and Mario Piattini

! Sistemas Técnicos de Loterias del Estado (STL)
Gaming Systems Development Department 28234 Madrid, Spain
Maria.diaz@stl.es
2 University of Castilla-La Mancha
Alarcos Research Group — Institute of Information Technologies & Systems
Dep. of Information Technologies & Systems — Escuela Superior de Informatica
13071 Ciudad Real, Spain
{Felix.Garcia, Mario.Piattini}@uclm.es

Abstract. An important reason why measurement program implementation fails
is that the maturity of companies as regards measurement has not been taken
into account at its definition phase. Unfortunately, the major methods and
frameworks supporting measurement programs —such as Goal Question Metric
(GQM), Goal-Driven Software Measurement, GQ(I)M, PSM and ISO/IEC
15939— do not explicitly address, this issue, which is especially important in
small and medium settings, where low measurement maturity level is typical
and there are more measurement implementation constraints. Additionally,
these companies usually have poor measurement knowledge, limited resources
and budget, which prevent measurement integration in the corporate culture.
This restricts measurement support in these companies and increases the
chances of failure. In this paper we will be looking at an adaptation of the soft-
ware measurement maturity method developed by Daskalantonakis. The so-
called “MIS-PyME maturity model” is focused on giving support towards
measurement program definition and is integrated in MIS-PyME, a methodo-
logical framework for measurement suited to small and medium settings.

Keywords: Software measurement maturity model, measurement program
definition, success factor, SMEs, MIS-PyME.

1 Introduction

A software measurement program is the result of an initiative meant to define and
implement the whole process required to obtain and treat certain software information
needs. A successful measurement program is such that becomes a good tool [1], i.e. it
directly contributes to solving a part of the engineering problem at hand and generates
value rather than data [2]. However, software measurement has proved to be a com-
plex and difficult undertaking in the field of software, especially within the context of
small and medium enterprises [3].

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 19«@2008.
© Springer-Verlag Berlin Heidelberg 2008

20 M. Diaz-Ley, F. Garcia, and M. Piattini

In literature one can find that many factors are involved in the successful imple-
mentation of measurement programs. As an example, Gopal et al. [4] identified and
checked some success factors by analyzing their effects on the success of measure-
ment programs. The success of a measurement program was measured using two
variables: use of metrics in decision-making and improved organizational perform-
ance. The success factors selected were divided into two groups: organizational and
technical factors.

Daskalantonakis also developed a good practice guide based on his experience at
Motorola [5, 6]. He gives major importance to the integration of measurement pro-
grams with the rest of the software processes of an organization. In addition, he ar-
gues that the best people to analyse measurement results are the project managers and
engineers involved in the measurement program, since they are experts in that particu-
lar field and understand perfectly the meaning of that data.

Fenton et Hall [7] identified fifteen success factors based on their experience,
which are as follows: incremental implementation, well planned metrics framework,
use of existing metrics materials, involvement of developers during implementation,
measurement process transparent to developers, usefulness of metrics data, feedback
to developers, ensuring that data is seen to have integrity, and that measurement data
is used and seen to be used, securing commitment on the part of project managers, use
of automated data collection tools, constantly improving the measurement program,
internal metrics champions used to manage the program, use of external metrics gurus
and provision of training from practitioners.

In [8] Pfleeger states that it is necessary to link the establishment of a measurement
program to the maturity level of an organization. “Metrics are welcome only when
they are clearly needed and easy to collect and understand.” As an example, a meas-
urement immature organization should not intend to implement a predictive model.
This may lead to results that are unexpectedly negative, positive but spurious, difficult
to interpret, or difficult to build on in subsequent studies [9]. Also, measurement can-
not exceed software process: if the development process does not define the types of
tests, it is not possible to evaluate the efficiency of some tests as regards others.

In this paper we look at how this last success factor is integrated in MIS-PyME, a
methodological framework for defining software measurement programs focused on
small and medium enterprises (SMEs) or settings. We describe an adaptation of
Daskalantonakis’[6] software measurement maturity method and the interface for
integrating this model into MIS-PyME in order to support it for the purpose of defin-
ing measurement programs adapted to the measurement maturity of each company.

This paper is organized as follows: Section 2 brings this work into context by
summarizing existing software measurement maturity models. Section 3 introduces
MIS-PyME. Section 4 describes MIS-PyME measurement maturity module. Section 5
gives an example of a real-life application for this module and underlines its advan-
tages, and Section 6 sums up the content of this paper and outlines future research.

2 Related Work

In this section the major measurement maturity methods and models found in litera-
ture are summarized. We start with Daskalantonakis’ [6] method for assessing an

MIS-PyME Software Measurement Maturity Model 21

organization’s software measurement technology which is consistent with the SEI
Software process assessment methodology [10]. This method is based on a number of
assumptions which determine the focus of the Measurement Technology Assessment.
From these assumptions, ten themes are derived according to which the company is
characterized and evaluated:

1. Formalization of the development process

2. Formalization of the measurement process

3. Scope of measurement within the organization

4. Implementation support for formally capturing and analyzing knowledge
5. Measurement evolution within the organization

6. Measurement support for management control of software projects

7. Project improvement using measurement technology

8. Product improvement using measurement technology

9. Process improvement using measurement technology

10. Predictability of project, product, and process characteristics

For each theme, five evolutionary stages are defined that a software development
organization may follow in order to reach the highest level of maturity for that par-
ticular theme. These five evolutionary stages correspond to the five levels of software
process maturity as defined by SEI: initial, repeatable, defined, managed and opti-
mized. Some questions have been classified by maturity level in order to perform the
assessment.

Niessink and Vliet define a capability maturity model for measurement (M-CMM)
as that which can be used to assess the measurement capability of software organiza-
tions and to identify ways to improve their measurement capability [11].The model
measures the measurement capability on a five ordinal scale which matches Daskalan-
tonakis’ maturity stages. However, Niessink and Vliet define a set of pre-established
processes which are different for each level and have to be in place so that an organi-
zation can reside on that level. On the other hand, following Daskalantonakis’
method, each theme has its own development path.

As regards measurement treatment in software capability maturity models, we
must highlight CMM [10] and its successor, CMMI [12], which both include a key
process called Measurement and Analysis. This process defines good practices to
implement a measurement process in an organization and reach maturity level 2.

In MIS-PyME, the measurement maturity model is used as a support module to
help define measurement programs which are adapted to the measurement maturity of
the organization. It will not be initially used for organization evaluation purposes. The
measurement maturity module will be used as a reference to seek detailed information
about a number of measurement aspects, helping the user to decide whether it is con-
venient or not to implement an indicator for a particular maturity measurement aspect
(e.g., can the organization implement the indicator for evaluation purposes?).

Based on this assumption, we found Daskalantonakis’ [6] method to be the most
suitable for our needs, since the themes defined for assessing maturity mostly match
the measurement aspects we want to assess, and because each measurement aspect
(theme) has an evolution path organized into different levels, thus allowing the user to
adjust its definition depending on what can be achieved.

22 M. Diaz-Ley, F. Garcia, and M. Piattini

CMMI [12] deals with most of the measurement aspects. However, they are dis-
tributed across most of the key process areas: software project planning at level 2,
integrated software management at level 3, quantitative process management at level
4, etc. [13] but it does not deal with this information in a separate module.

Niessink and van Vliet [11] developed their own model to try and evaluate an or-
ganization’s measurement maturity, and we focus on encouraging the user to define a
measurement program which matches the organization’s measurement maturity. The
key processes defined in this model do not look in sufficient detail at some important
measurement capability issues, such as what the company can measure (product,
process, project, etc), to what extent (some projects, the whole organization, etc.),
their analysis capability (characterizing, evaluating, etc.). This model makes a broader
evaluation of measurement processes and does not go into detail as much as would be
necessary for users to define their measurement program.

The major models supporting software measurement program definition include:
Goal Question Metric (GQM) [14], Goal-Driven Software Measurement GQ(I)M
[15], PSM [16] and ISO/IEC 15939 [17]. None of them give explicit support to users
in defining measurement programs suitable for their measurement maturity.

3 MIS-PyME

MIS-PyME (Marco metodolégico para la definicién de Indicadores de Software ori-
entado a PyME) is a methodological framework focused on defining measurement
programs based on software indicators in small and medium settings [18].

MIS-PyME framework is classified in three main modules: the methodology and
roles (MIS-PyME methodology), the workproducts which give support to the meth-
odology (MIS-PyME Measurement Goals Table, MIS-PyME Indicator Template and
MIS-PyME Database) and the third module - the measurement maturity (MIS-PyME
Measurement Maturity Model).

MIS-PyME Methodology is based on GQ(I)M [15, 19], but it is designed to define
basic indicators which are commonly used and required in most small and medium
software development settings. Like GQ(I)M, MIS-PyME is a top-down methodology
since it develops a measurement program with the ultimate goal in mind, but restricts
actual changes to software process improvement, and may be conditioned by the MIS-
PyME table of measurement goals and the indicator templates provided. MIS-PyME
work-products are as follows:

- MIS-PyME table of measurement goals: MIS-PyME framework proposes a set of
structured measurement goals usually required to implement improvement activi-
ties related to software processes.

- MIS-PyME indicator templates: An indicator template is defined for each meas-
urement goal. The indicator template will guide users and help them define indi-
cators and measures for a specific measurement goal. An indicator template
shows, among other things, the possibility of implementing the indicator as
regards the measurement maturity of the company, the conditions required to suc-
cessfully implement the indicator regarding previous indicators required, condi-
tions which must be fulfilled in order to successfully implement the indicator and
how to integrate this indicator into the software process. The typical questions

MIS-PyME Software Measurement Maturity Model 23

which the indicator tries to answer are proposed. Typical outcomes and their re-
lated analysis may also be described and show the user what the potential of an
indicator is, etc.

- MIS-PyME database: Each MIS-PyME indicator template contains a set of ex-
amples of real indicators which have been defined in a successfully implemented
measurement program.

One of the objectives of MIS-PyME is to define and implement measurement pro-
grams which are adapted to the measurement maturity of the setting. Companies
should work in defining and implementing measurement programs which they can
successfully implement, rather than trying to obtain the best measure when there are
several obstacles that make a successful implementation impossible.

This paper aims to describe the third module which contains MIS-PyME measure-
ment maturity model, and how this model is linked to the indicator templates which
are intended as a guide for users.

4 MIS-PyME Measurement Maturity Model

As indicated in the second section, MIS-PyME measurement maturity (MIS-PyME-
MM) model is based on Daskalantonakis’ [6] method, but modified as follows:

- MIS-PyME model does not only take into account the development process, but
also the quality and management processes. Additionally, it deals with the proc-
ess from the point of view of capability, rather than formalization.

- The scope theme has been deeply specified by indicating what the company is
able to measure at each capability level.

- Implementation support does not only take into account measurement support
tools, but also the development and management tools required for the company
to reach each measurement capability level.

- Some themes specified in Daskalantonakis’ [6] method have been unified for the
sake of simplicity: “scope”, “measurement evolution” and “predictability” have
been joined into one, and product, project and process improvement themes have
been included in other themes.

- The theme known as ‘“Formalization of the measurement process” has not been
included in MIS-PyME measurement maturity model since it is mainly used to
evaluate measurement process and not so much to support measurement program
definition.

- An interface between MIS-PyME measurement maturity model and the rest of
the MIS-PyME framework has been defined in order to give support to the meas-
urement analyst.

MIS-PyME measurement maturity model, which is defined in table 2, will be
mainly required during the indicator definition phase. When the measurement analyst
defines the indicators, he will be supported by the corresponding MIS-PyME indica-
tor template. This template will make recommendations for measurement maturity
(amongst others) in terms of indicator implementation. These recommendations come
from the interface of MIS-PyME measurement maturity module.

24 M. Diaz-Ley, F. Garcia, and M. Piattini

The interface of MIS-PyME measurement maturity module, which is shown in ta-
ble 3, 4 and 5, establishes a relationship between the measurement maturity model
and MIS-PyME Indicator templates. This interface helps users decide if their meas-
urement maturity is enough for certain values of the indicator field by posing ques-
tions based on MIS-PyME measurement maturity model. Therefore, some indicator
fields depend on the maturity of the company as regards measurement, especially
these fields are those which determine the goal of the indicator and are the following:

Table 1. Indicator template fields which depend on measurement maturity

Indicator | MIS-PyME- Description
Field MM theme
Purpose Software Measurement process has to fit with the rest of the processes.
management, | Otherwise, the implementation of the measurement program
quality and | will in all probability fail. For example, you cannot measure
development | the effectiveness between test phases if test phases are not well
capability differentiated.
Measurement | There are certain kinds of measures which require a certain
scope degree of measurement maturity and previous experience. As
an example, you cannot make reliable predictions on a particu-
lar aspect when there has not been any previous, frequent and
rigorous measurement of that aspect.
Tools sup- | In order to implement some measurement programs, some
port tools are required such as databases, tools that make it possible
to visualize an indicator control panel, etc.
Measurement | Measurement should be established in order to support process
support for | improvement goals, which also means management goals. If
management | there is not any purpose in analyzing measurement in terms of
issues decision making or corrective actions, the implementation of a
measurement program is not recommended (for example, it is
not advisable to implement a measurement program for project
monitoring purposes).
If the existing measurement data is not used to take simple
corrective actions, it is not recommended to do so for other
purposes such as optimization.
Entity Measurement | If organizational information is needed based on measurement
scope usually it is previously required to measure projects or products
individually.
Projects are the first entities to be measured; products comes
second and processes third
Focus Tool support | There are a number of measurements which cannot be per-
formed if certain management or development tools are not in
place.
Processes The aspect to be measured has to be established by the other
capability development, management or quality processes.

MIS-PyME Software Measurement Maturity Model 25

- Purpose. This field specifies the intention of the indicator. MIS-PyME suggested
values based on [20] which are as follows: characterizing, monitoring, evaluating,
predicting and optimizing.

- Entity: This indicator specifies what is to be measured: the process (PROC), the
project (PRJ) or the product (PROD).

- Focus: It specifies the aspect or attribute to be measured, a quality attribute (reli-
ability, portability, usability, etc.), process performance (compliance, efficiency),
user satisfaction, etc.

Table 1 shows the measurement maturity aspects on which each of the above fields
depends.

5 MIS-PyME Measurement Maturity Model - Case Study

In this section we show how MIS-PyME measurement maturity model was applied in
an experience which consisted in implementing a measurement program in a medium-
sized setting. This experience has given us an idea about the usefulness and benefits
of the proposed MIS-PyME maturity model for SMEs.

The measurement program was defined and implemented in the software develop-
ment and maintenance department of Sistemas Técnicos de Loterias del Estado
(STL), which is formed by 39 employees. This company was created by the Spanish
Government and provides operational and IT development services for the national
lottery.

In 2003, the quality department in STL encouraged an initiative to implement
measurement programs in the development and maintenance department in STLbut it
was not well accepted and implementation was unsuccessful. The director of the de-
velopment and maintenance department was nonetheless aware of the importance of
measurement and was intent on mastering this. Most especially, his objective was to
improve management and quality control through these measures. In July 2006, he
defined two process improvement goals:

- PIG 1: Improving project and process monitoring and control. He particularly
wished to improve the monitoring of the project’s progress in comparison with
the plan, controlling the tests phases and improving project planning.

- PIG 2: Improving development service and product quality. This goal focused on
monitoring and evaluating the development service and product quality.

These process improvement goals comprise five sub-goals, and the indicators
shown in figure 1.

We now show two outstanding indicators that were modified to make them be bet-
ter adapted to the maturity of the company based on MIS-PyME measurement matur-
ity model.

IND-PRJ-FiabImpl indicator aimed to evaluate the reliability of the product devel-
oped in order to take corrective actions if necessary. This indicator was necessary for
the second process improvement goal (improving development service and product
quality). The intention of this indicator is to “evaluate”; the focus is “reliability” and
the entity is the “product”.

26 M. Diaz-Ley, F. Garcia, and M. Piattini

PIG 1

——
__|PIG1.1 Improving project progress
monitoring against the plan

_ L,| PIG1.2Understanding and managing
Ind-prj-effortconformace | deviations from the plan to project closure
—{ Ind-prj-progcod |
] Ind-prj-reqcod | Ind-prj-inexaceffort |

R
— Ind-prj-reqcod | ——— Ind-prj-inexacsize |
— Ind-pri-progverif] —— Ind-prj-inexacduration |
—] Ind-prj-requerif | L——{ Ind-pri-inexaccost |
—{ Ind-prj-incpvgrav |

= - P1G1.3 Evaluating the conformance of
—{ind-pri-durationconformance] projects with the test phases.
Ind-prj-progaccept | \—{ ind-pri-testconformance

—| Ind-prj-reqacept |
—| Ind-prj-incpvgrav |

+——Ind-prj-durationconformance]
L—{ Ind-prj-denfailures |

PlG 2

PIG.2.1 - understanding, monitoring and PIG.2.2 —understanding and monitoring
evaluating the development service provided the quality of the product exploited.
IND-PRJ-QUALITYDEV | —| IND-PRJ-QUALITYDEYV |

———|IND-PRODORG-FIABCRIT]
4{|ND-PRODORG-F|ABSOP0RT1

4{ IND-PRODORG-FIARINF |

Fig. 1. Measurement Program Definition Implemented in STL

IND-PR.J-FIABIMPL |

IND-PRJANEXACDURACION |

Initially, this indicator evaluated the reliability of the company based on a fix
value meant as a threshold (a number of failures registered in production after the
product had been installed). However, even if we had experience and we knew
(more-less) the reliability of the products in production, and thanks to the sugges-
tions included in this indicator template provided by MIS-PyME which are based on
MIS-PyME measurement maturity, we realized that we were not mature enough to
state what the reliability of the product would be based on the characteristics of the
product developed with a fix goal. The measurement maturity model made us

MIS-PyME Software Measurement Maturity Model 27

reflect on this. Focusing on Table 3 and the purpose of “evaluating” the questions
are: “do we rigorously, frequently and in an organized fashion measure the reliabil-
ity of the product and other aspects that may have a relationship with the reliability
of the product?” and “could we set reliable goals based on the available data?”” Both
answers were negative.

We therefore decided to evaluate indicators based on a range of values (good, nor-
mal, not too good, not acceptable). In this case we could answer affirmatively to the
questions posed: we could define in a reliable way the ranges of reliability of the
product developed, which would depend on the type of project: high, medium, low.
As can be observed, we descend from level 4 to level 3 in terms of the measurement
scope theme. Regarding the measurement support for management issues theme, the
top manager was very interested in this indicator, which was included in the project
close reports, and the intention was to monitor these data and take corrective actions
in case of frequent negative results, therefore the answer of “;Is measurement going
to be used to take corrective actions?” is affirmative.

As regards the focus element of the indicator, the quality (see table 4), we ful-
filled maturity measurement requirements. Our management process already pro-
vided a close project activity where project managers analyzed the reliability in
production of the product developed in addition to other project issues. Regarding
“tool support” theme, we had an incident database were failures in production were
registered. Most of the people in the company used it and the process was quite well
established.

The indicator Ind-PRJ-TestConformance was also modified for it to be better
adapted to the maturity of the company. This indicator was defined so as to achieve
the first process improvement goal: monitoring conformance with test phases. Ini-
tially, this indicator assessed conformance with test phases based on the failures de-
tected during each test phase and compared with a threshold. We were not mature
enough to define a threshold for each testing activity, but we were mature enough to
define a percentage ratio threshold between test phases (e.g. more than 70% of the
failures should be detected during integration test). In both cases, we went on with the
fourth measurement maturity level but the second definition was easier and more
reliable for us since we were experienced in analyzing the percentage of defects
found. Project managers agreed to these modifications and stated that the previous
definition of the indicator had not been accurate.

The examples set out in this section illustrate how important it is to define meas-
urement programs which are adapted to the measurement maturity of each company.
Even if it seems evident, it is quite easy to make the mistake of trying to define the
best measures, even if we cannot implement them. In SMEs it is still easier to make
this mistake since resources, budget and measurement culture are limited, and people
who define measurement programs may be from inside the company and not too ex-
perienced. MIS-PyME indicator templates advise users as to what measurement ma-
turity requirements they should fulfill in order to define the indicator. These advise
come from, MIS-PyME measurement maturity model.

M. Diaz-Ley, F. Garcia, and M. Piattini

28

-109 K[[eonewoine

-10 ue st o1y, ‘syonpoid

-S1y SULI0)S 10J 9SEqe)Ep JUSWAIN

Qwos d1e 219y, "S)ool

110ddns At

[OIYM S[00) [BUON pue s109(01d uo pasnooy -SBoUl B SI 910y [, *S[00} Judwain | -oid uo pasnooj sjooy | -o11dxa 03 s[00} 1o0d
-eZIued10 o1e AIoy [, | S[0o} Joddns juowornsed]y | -seow snooj jonpoid pue josford | 1oddns juowoinsedn ouare oYy | -dns sjool
'$59201d 91040 9J1] [[BIOAO
‘paaoid Kjoanyey oY) Jo [opow 2AneIUENb
-nuenb oq ueo Juowr | e syudsardor ey} soInsedw "EJEP [BOLIO}ISIY QWIOS
-oro1duy ‘sjuow | JO 39S B ST 91y, 039 ‘AJI[Iq "pasn a1e sonbruyod) pjoysaIy], pUE SWSIUBYOIW
-0AQIYI. JO YorT) -1} ‘Anfiqeurejurewr ‘A1 ‘syonpoid padojoaap oy} 10A0 UOTJBWINSI QWOS
dooy 03 joued [ony | -[1qesn Ing s30959p Isnfjou P2399[109 aI1e sainseaw Kjijenb dJe QI], ‘UOnINp
-u09 e syudwa[dwr ‘Kyrenb Jo mara 1opeoiq 10959 “oouewtojrad pauued -o01d ur syonpoud jo
uoneziuesio oy, © SIOI0Y], 'SS9001d JUOW | SA [BNJOB SOAJOAUL [[1}S PUE [9AD] Kyrenb oy Sunyoel],
‘s[eo3 juowoAoldur -dojaaap oy ojur pajesd a3eyoed-y10M 18 powiojrad ‘(*939 ‘O[npayds
saneuenb 3un -ojut s1 $s9001d Juowain u2)jo s1 Junjoen) pue Juruue]J 110JJ0 “9ZIS) 9)ew)
-19s jo Ayjiqedes oy -seaw Ay, “douewIofrod ‘JUQISISUOD PuUB J[qRI[AI AIOW | -S3 Jsurese [enjoe ‘Jur
pue sy[nsax1 ssauisng | - ssa001d oy Jo SurpueIsiop aIe sIsA[eue pue pajod[[0d Ble(-yoex 109foxd aseyd
Suraoxdwr ‘quowr -Uun ue SI 9JOY) pue pasno "9lqe[reA. are sask[eue syodfoxd -£g-oseyd uo poseq ‘e
-oaoxdwr ssao01d | -0J ss2001d OS[e d1B S[opOow -sso1) ‘syonpoid pue sposfoxd SIjudwaInsedy | e jou Jo dydoad
[[eI9A0 SULINSBIIA] JUSWRINSBIA “s1onpord Ul POMO[[0J I8 YIIYM S[opoul -o1doad pasuorad paouanadxe
*S[OpOW JUdWIAIN pue s303foxd a3 Jo 3sowr | judwdINSEAW puk $ASS001d piep | -xd yum pue spofoxd | yum Ajeuorsed adoos
-seowt paydepe [jom ur posn ST JUSWUINSEIA -ue)s SOUSI[qeISe uoneziuesiQ 31q UrINo paLe) | -00 N0 POLLIE)) | JUSUIAINSBIIA
*SNo0J
juowdSeuew 33[01g 'SNO0J JudWAde
‘paynuenb are ‘S[euoIs -uew 309(o1g
sjiyouaq ‘yuowaaold -soyo01d poouorodxd ‘sTeuorssojoxd Aiqedes
-wi ssa001d arem 'SNo0J Judwageuewl uo spuadop 300fo1g | poousradxe uo | juswdojorsp
-Jos JuawdAoxdwr | ssado1d oyy Surjjonuod uo | woysks juowdooadp pue 109fo1g gsed oyp ur | puadop spoaford | pue Aenb
$50001d U0 SNO0,] | SN0, “[0NUOD ss2001d pue ‘poojsiapun A[qeuos PRI9JSBW U2q dARY '$9s59 | uowoFeurw
'ssao01d paziundQ $50001d 10A0 SULINSLIJA] -BOI PUEB PIZLI0JOBIEYD S309[01] yorym sysey jeodoy | -ooxd amyeuruuy o1eMOS
G [9AdT ¥ [oA] € [oA] T 1oAY [[9A9] sowady |,

[9]spyeuoiueeyseq Aq pado[oAdp Jey) uo paseq [opow Ajumnjew juawainsed] “JINAJ-SIIA T dlqe L

29

MIS-PyME Software Measurement Maturity Model

{SuOnBWNSd

Sunew jo osodind (A|rewojur
(saSueyo | oy Ioj eyEp o[qer[al {Pasn pue POOISIOPUN | UOAD ‘paINseawlt Ayiqedes
o[qeyns oyew pue swo | opraold pue A[snoio A13001100 K913 o1y (s9ssa001d | oq 01 a1e yorym | juowdo[osdp
-qoid juonroxd 03 19p1o | -3 pawroyred oq 03 Auedwoo ur popnpour uedq | sanqupe Yy | pue Ayenb
ur sonquyye jorpaid 03 | ySnouo ojqeis sosso | (ss9001d oyl Ul POPN[OUI UOK) | PaINSBIW 9q 0} dle YoIym | pouygop Aued | ‘quowoeSeuew
orqissod 31 S[(G [0A97]) | -001d a1y (4 [9A9T) | -enjead anque S| (4 [9A97]) | sonquyye oy oAeH (¢ [0A9T) | -Wod Yy Ssey IBM)OS
Suiziundo Sunorpaid Sunenfeaqg SULIONUOIN Suizivioerey) soway |,
asoding spiesar se ooejIou] AJLIMIBAl JuSWINSBIN HINAL-SIIA °€ dqeL
‘[eo3

JO puny o310 J0 92I139p ‘Suruueld-a1 Jo paou *010 ‘SUOIIRIAQD dIe

Ky1enb urenoo e oAsIyoR AU} JNOYIIM SUONIR DAN)OALI0D | o1y} JI ‘yuowdojorap

‘Juow | 03 Jopio ul sued pue sosso Junyey smofpe sty “1onpoid pue 100foad Surmnp suors

-QINSBAW 0} SUBy) -001d jdepe 03 oqissod st 100foxd ayj 10§ spjoysaryy pue -103p JAI}OBAI Y}

umouy oIe sonfeA | 3 ‘pa[jonuod are swojqoid souel ojew}so 03 pasn SI ele(0) Pasn ST JudWIN
pue spaou [eo130] | [ens[) ‘uononpoid ur sIjon onpoid o) Surpredar suors -SBOAl “JUSWoTeUBW sonssI
-ouyoa], sworqoid | -poid oy 210j0q seynqrje -109p OYeW 0} pasn dIe YoIym JUSU WO Pue samnseow £q | juowoSeuew
juoAdld pue Jo1p | JOY)O pue 9d1AI0s ‘Yonpord SQINSLIW JO SuedwW Aq PI[[0J} | SOUOISI[IA IudWdFe pauoddns jou | 105 11oddns
-o1d 0y oqqissod s13] | oy 3o1paid o3 9[qissod st 3| -u09 st padojoaap jonpoid oy, -uew Jodford o1seqg | s1juowoSeuR]N | JUSWAINSEIA

‘syrodox

d1jeWOINE 9JBIOUIT
os[e Koy ‘sasAjeue
apraoid 0y 1op

-1O UI SI0JeIIpUI JO
[oued [onuo0o © e
-10u93 pue ssaoo1d
pue jonpoid 9o
-o01d oy} uo eyEp 109]

"sainseaw Jonpoxd
sopiaoid A[jeonewoine
[OTYM Pasn ST JUOUIUOIIA
-U9 pasueape ue jo juowdo
-1oA2(“eyep Au1p Surpiod
-a1juasaxd 0} suonoe

QIe 010} PUE J[QRI[OI AIOW
oIe oseqejep dy ur ejeq
"paIoIs

SI B)Ep [BOLIO)SIY IOUM
aseqejep Jeuoneziues

'0310 ‘sisAjeue

10J S[opour quawaImbar yoes 103
[003 JuswSeURW UOIIBINS U0
919K 9J1] © SI Q1A "BIBP [BOLIO)

'S]00} JuduwdFeur
Suruuerd pue 1500
JUOPIOUT dIB I,
"SUOTJBWIIISO
yoddns yorym sjooy

JUAWIAIN
-seowr ssa00.1d

(ponuiuo9) g Aqe,

M. Diaz-Ley, F. Garcia, and M. Piattini

30

papuaur 31 S| (ssaoord
juowaSeuew pue Ajjenb
‘uowdopaadp oty jdepe
pue swo[qoid proae
0} IOpIO Ul SUOISIOOp
OIWEBUAP dyew 0} pasn
9q 0} JuedW I S| (JUSW
-0INSeOW JO dsn pIpuo}
-ur ayy StIRYM (§ [9A9T)

0} Jop1o ur guruuerd
oy jdepe o3 pasn
9q 0} Surod uon
-o1paxd ST (030 ‘S|
-qoid omnj proae
‘Guruuerd 309foxd
oroxdwr 0} pasn
9q 0} Suro3 uon
-otpaxd s (4 10A9T)

;3uruuerd

-0I JO Podu oy} INOYIM
Q0UBAPE UI SUONJER QAI}OAI
-100 9y[e) 0) pasn 2q 03 3ur03
JjuowdInsedw S| (¢ [9A97)
({803 ® 0AQIYOE

0) panmbar se syusworold
-wr oyew o} asodind s uon
-ez1ues10 oY) 31 S| (§ [9A9T])

uo paseq jonpoid padojoaap
oY) Surpredal SUOISIOIP e
0} papuajul 31 S| — (¢ [9A27)

Luononp
-oxd ur syonpoid pue sjoofoxd
Suipiedal sIsA[eue juowIdIn
-Seoul 9y} JO S)NSAI Y} UO
PIseq SUOISIOOP JAIJOBAI deul
0] popudjul JI S| (g [9A97)

-onoxdwr o3e
-INOOUd 0} pue
Sunyew uors
-109p 0} 2InqLy
-uod 0} jueowW
NS JudwaIn
-seow Jo asn
popuojur oy} ST
reym (1 10ae7)

sonsst
Juowddeuru
10} 1oddns
JUSWIDINSBIA]

(sosATeue pajeon
-s1ydos oyew 03 19pIo ur
suonewnsd pue suodor
‘s10jeOIpUI UTR)qO A[[BD
-JeWOINE pue A[[eorueu
-Ap 0} 00} JuowoTeUB
e oy SI (3 [eA9])

({5100} pue
SWISIURYOJW UONBW
-11SO puy /eiep [ed
-110]SI] 9103S 0} dseq
-ejep uonezIuesIo
ue 2101} ST (§ [9A9])

({BIep [BOLIO)
-SIY 910)S 0} 9seqejep uoljez
-1ues1o ue 210y} S| ({ [9A9T)

{uUoneZIue3I10 A} Ul
100} JuowoSeuLW JUIPIOUT AUB
210y} SI ‘saInjie} 10 S}OIP
uo paseq painseaut s1 jonpoid
amnquype Aue Jp ;ssordoxd
1oofoxd moys 03 si0jedIpUT
paxmbar oy opraoxd yorym
S[00} Aue 219y o1y (7 [9A9T)

‘uonsagd
-3ns Aunmew
ON — (I [2a9)

110d
-dns sjoor

(uerd juowroaoxdw o[qe
-1]o1 & duyap 03 d[qissod
JI S[(POAQIYOE UdOq
sey [e0S B JI QUIULIdOP
0} 9[qe A[oAne)fenb uon
-ezIuedIo oy) S| (S[eod
juowoAoIdwl pue Sosso
-ooid [euoneziuesio jo
Joued Jonuoo 9oUBWIOY
-1od ® oaey uoneziued
-10 9y} seo(q (S [oA9T)

4BIBp J[qe

-[leAB 9U) UO paseq
SUOIIBWI)SI Jqe
-1[o1 urejqo 0} 9[qIs
-sod 31 sy ¢/ 3o1paxd
03 o1qrssod 1 saxew
[OIYM JUSWIQINSEIW
pazierouad pue
snojo3u ‘quanboyy
o31opun (31 0} pje|
-1 SIOY)0 Aue pue)
anquye SIy) S0
(AlTeuoneziuesio
PAYSI[qRISO U9dq SSO
-o01d juswoINseEIW
o) seH (y [0A97])

Juonez
-1UB3I0 9y} JO SONSLIAIORIRYD
oY) pue nque sy} Surpred
-0I 019 ‘peq ‘[ewIOU ‘pOO3T
Jo so3uer oumgep o0} 93po
-[mouy ssoulsnq pue ejep
Ju2IINs 213y} S| (€ [9A7])

Juoneziued
-10 9y} JO SONSLIdIORIBYD JY)
0) pojdepe [eo3 uonenead
dlqerpr B ouyep 01 9Iq
-1ssod 1 soyew yoIym judw
-QINSBAW PAZI[BIOUdS pue
snorogur ‘yuonbayy oFiopun
(31 03 parela1 s1ayjo Aue pue)
anque siy saoq (f [9A9T)

;seFexoed-yrom

Suuojiuowr Juniels 10§
-2q aseyd-Aq-aseyd pazojiuowr
u29q 100fo1d oy sey (¢ [9Ad7)
({SONIATIOR JUSWINSLIW
opnpour 0} ysnous JqeIs
sso001d JuowoFeuew 2IEMJOS
Ay S[(RIqerreae syoofoxd
IOUJO WO BIEP S| (J[qe[IBAR
31 S ¢pouueld sA [enjoe 10}
-luow 0} parmnbal wsiueydW
Sunewnse Aue S| (g [0A97)

‘uonsag
-3ns Aunmew
ON — (I 10497)

adoos
JUSWIDINSBIA

(ponuiuo9) ¢ AqeL,

31

MIS-PyME Software Measurement Maturity Model

(uoneuwiojur 3oofoxd (sogeyoed (930 “oourLIoyUI ‘Burjdnoo onpow

J[oAd 9y 10J 100} | -yiom AQq ssaid ‘Axodwod o1ewOOAd sk yons

juowogeuew Aue puy | -oxd jo09ford [onuoo paurelqo oq ued sonquye Ajenb

{S9In[TeJ pue S10J3P | (SAIN[IB} PuB S1OYAP | 0} [00) JuoWAFe {399[| opoo a1oym [003 juswidojodp Aue

uo paseq ejep urejqo o) | uo paseq ejep ureqo | -uewr 3odfoid Aue | -oxd yoed ur posn | a1y} S| (4 [9A9T) (][00} JuowOTe
orqrssod 1 saxewr yorym | o3 9[qrssod 31 soyewr | 919y S[(€ [9AdT) | 9 UBO YIIYM | -UBW UONBINSHUOd Aue Q1Y) S|

100} juowoFeuew jsonb

yoIym [00} JuouwdSe

(Suruuerd joofoad

[00} JuoweSeuRW

(S9IN[Ie] PUE S]OQJOp UO paseq ejep

-01 23ueyd pue juoproul | -uew judproul Aue | poddns 01 j001 Aue | Yse}AI0e Aue | UIBIQO O} JOPIO Ul [00} JUSWSBUBW y0d
Kue o1oyy S| (g 10A9T) | 2103 SI (g [0A9T) | 210y) S[(T [0A97) | 210y} ST (T [9A97) | juoprour Aue a1oy} S| (g [0a97]) | -dns sjool,
$Isel sty
dojoaop 03 oououadxd
puB S90INOSAI Y3nouo (OATOAUI [[IM ST}
ARy A3 o (Jud JeY} 1I0JJ0 oY) I0f
-119 9y} JO M3IA Jo jurod powojrad sajew (yonpoad oy
oy woy 309foxd oyy jo -s9 Aue o1y | Jo sjoodse osoyy spie3ar se 1osn oy
juowdo[oAdp dy) noqe ;ssaidoxd | gssoooad juowr | yum juowodiSe 9[qeynuenb Aue Annqeded
10931 s1oeuew jo9foxd (PrenUAIONIP (oM | 100foxd 10j sonian | -oSeuew 309foxd | Q10y) ST (S9$$9901d 9SAY) UI JUNOIOE juowdofoa
aroym Ayanoe 10ofoxd | seseyd juowdojoadp | -oe Suuoyiuowr Aue | oy Suunp yse} | ojur uoyel Aypjiqepod pue Aiiqe | -op pue Ay
oy} 10} UONRIOQE[[0D | oIy ;paulap [[om | AJioads sassedoxd | B 10 AjApoe ue | -sn ‘Ajijiqeurejurews A1y (4 [9A97) | -[enb ‘juow
osopd ' ouydp ssaooid | ssoooxd juowdoroa | o (;pouueld s100[| pouSisse siodiom | juoniuydp sseooid Ul Junoodoe -o8euewr
oy 0@ (T 9A9T) | -0p Ayl ST (¢ [9A9T) | -0ud a1y (T [9A9T) | 21V (T [eAT) | ot udxey Aijiqerjal S| (g [9A9T) aTeMJOS
(SSOU2AIIOAYYO Iepuoled (jouuos (Ligesn ‘Apiqerrod
uonoejspes ual) | ‘@ouerdwos) ssadord | ‘ssaaSord j09forg | -19d 10339) 350D | ‘Ajjiqerjer ‘Kjjiqeureiurewr) Ayjenc) SQWIAY [,

SNO0, SpIESaI St Q0BJINU] AJLIMBIA JUSWIAINSLI]N HINAd-STIN b IqeL

({S[e0T ssauisnq pue sso
-001d 2Ad1YOR 0} suonoe
Pa[[o1u0d Jo juawar0xd
-wi oy} d8eInodud 0}

(1eo3

ureled B OAJIYOR

{SINSAI JUSWAINSBAUL

;esodind
S ST UM ‘OSIM
SR Juow

(ponuiuo9) *¢ dqe,

32 M. Diaz-Ley, F. Garcia, and M. Piattini

Table 5. MIS-PyME Measurement Maturity Interface as regards Entity and depending on
Measurement Scope theme

Project Product Process
(Level 3) Before | (Level 2-3) Measuring products attributes in | (Level 4)
monitoring work | production is usually easier, more reliable and | Usually, ma-
packages it is better to | important than measuring attributes in develop- | turity and
start with (Level 2) | ment, such as the reliability of products. some experi-
phgse-by-phase MON= 1 evel 3) Usually it is more urgent to proceed | "¢ with
toring. with the measurement of projects than with that projects and
(Level 3) It is not | of products in development, which are used for prod}lcts are
possible to make | quality control. Therefore our suggestion is to required to
cross-project analysis | start measuring projects first and then products | Measure the
if a measurement | in development. (Level 3-4) Usually it is easier aspects of a
model has not been | and more important to measure products based Process.
established for the | on defects or failures than to measure effective-
whole organization. ness, reliability, and afterwards other attributes

such as friendliness, complexity, maintainabil-

ity, etc.

6 Conclusions and Further Research

This paper highlights a factor which must be taken into account in order to success-
fully implement measurement programs, which is defining measurement programs
adapted to the measurement maturity of each company.

The paper gives an outline of MIS-PyME measurement maturity model, which is
an adaptation of the measurement maturity method developed by Daskalantonakis [6]
and the interface defined to integrate this model into MIS-PyME framework. For
illustration purposes, two examples are provided and a case study (software meas-
urement program definition in a medium setting) gives an idea of the advantages
MIS-PyME measurement maturity model brings with it.

This support module, a measurement maturity framework integrated in the meas-
urement program model for the purpose of defining measurement programs adapted
to the measurement maturity of each company, is especially important for SMEs,
since usually these companies have poor measurement knowledge and limited re-
sources and budget and people from inside the company, not too experienced in the
field, may be those who define the measurement program.

Our future work will revolve around testing and improving MIS-PyME measure-
ment maturity module.

Acknowledgment. We would like to thank the staff of Sistemas Técnicos de Loterias
del Estado (STL) for their collaboration. This research has been sponsored by the
COMPETISOFT (CYTED, 506AC0287), ESFINGE (Direccién General de Investiga-
ci6én del Ministerio de Educacién y Ciencia, TIN2006-15175-C05-05) and INGENIO
(Junta de Comunidades de Castilla-La Mancha, PAC08-0154-9262) projects.

MIS-PyME Software Measurement Maturity Model 33

References

14.

15.

17.

18.

20.

. Hughes, R.T.: Expert Judgment as an Estimating Method. Information and Software Tech-

nology, 67-75 (1996)

Niessink, F., Vliet, H.v.: Measurements Should Generate Value, Rather Than Data. In:
Proceedings of the Sixth International Software Metrics Symposium (METRICS 1999),
Boca Raton (1999)

. Gresse, C., Punter, T., Anacleto, A.: Software measurement for small and medium enter-

prises. In: 7th International Conference on Empirical Assessment in Software Engineering
(EASE), Keele, UK (2003)

Gopal, A., et al.: Measurement Programs in Software Development: Determinants of Suc-
cess. IEEE Transactions on Software Engineering 28(9), 863-875 (2002)

Daskalantonakis, M.K.: A Practical View of Software Measurement and Implementation
Experiences Within Motorola. IEEE Transactions on Software Engineering 18(11), 998—
1010 (1992)

Daskalantonakis, M.K., Yacobellis, R.H., Basili, V.R.: A Method for Assessing Software
Measurement Technology. Quality Engineering, 27-40 (1990)

Hall, T., Fenton, N.: Implementing Effective Software Metrics Programs. IEEE soft-
ware 14(2), 55-65 (1997)

Pfleeger, S.L.: Understanding and Improving Technology Transfer in Software Engineer-
ing. Systems ans Software 47 (1999)

Briand, L.C., Morasca, S., Basili, V.R.: An Operational Process for Goal-Driven Defini-
tion of Meassures. IEEE Transactions on Software Engineering 28, 1106—1125 (2002)

. SEI, The Capability Maturity Model: Guidelines for Improving the Software Process, Soft-

ware Engineering Institute (1995)

. Niessink, F., Vliet, H.V.: Towards Mature Measurement Programs. Software Maintenance

and Reengineering (1998)

. CMMI Product Team: CMMI for Systems Engineering/Software Engineering, Version 1.1 -

Staged Representation (CMU/SEI-2002-TR-002, ADA339224), Software Engineering In-
stitute, Carnegie Mellon University: Pittsburgh, PA (2002)

. Weber, C., Layman, B.: Measurement Maturity and the CMM: How measurement Prac-

tices Evolve as Processes Mature. Software Quality Parctitioner 4(3) (2002)

Solingen, R.v., Berghout, E.: The Goal/Quesiton/Metric Method - A practical guide for
Quality Improvement of Software Development. Mc Graw Hill (1999)

Park, R.E., Goethert, W.B., Florac, W.A.: Goal-Driven Software Measurement-A Guide-
book. Carnegie Mellon University Pittsburgh: Software Engineering Institute (1996)

. PSM: Practical Software and Systems Measurement - A Foundation for Objective Project

Management Version 4.0c. Deptartment of Defense and US Army (November 2000)
ISO/IEC 15939, Software Engineering-Software Measurement Process, ISO and IEC, Edi-
tors (2002)

Diaz-Ley, M., Garcfia, F., Piattini, M.: Software Measurement Programs in SMEs - Defin-
ing Software Indicators: A methodological framework. In: PROFES 2007 (2007)

. Goethert, W., Siviy, J.: Applications of the Indicator Template for Measurement and

Analysis. Software Engineering Measurement and Analysis Initiative (September 2004)
Basili, V.R., Weiss, D.: A Methodology for Collecting Valid Software Engineering Data.
IEEE Transactions on Software Engineering 10(11), 758-773 (1984)

Predicting Software Metrics at Design Time

Wolfgang Holz', Rahul Premrajl, Thomas Zimmermann?, and Andreas Zeller!

! Saarland University, Germany
{holz, premraj, zeller}@st.cs.uni-sb.de
% University of Calgary, Canada
tz@acm

Abstract. How do problem domains impact software features? We mine soft-
ware code bases to relate problem domains (characterized by imports) to code
features such as complexity, size, or quality. The resulting predictors take the
specific imports of a component and predict its size, complexity, and quality
metrics. In an experiment involving 89 plug-ins of the ECLIPSE project, we
found good prediction accuracy for most metrics. Since the predictors rely only
on import relationships, and since these are available at design time, our ap-
proach allows for early estimation of crucial software metrics.

1 Introduction

Estimating the cost (or size) for a software project is still a huge challenge for project
managers—in particular because the estimation typically is done at a stage where
only few features of the final product are known. To date, several models have been
proposed to improve estimation accuracy [1], but none have performed consistently
well. Moreover, although a lot of emphasis is laid upon early estimation of develop-
ment costs, the parameters used by many models are not known until much later in
the development cycle [2]—that is, at a stage when prediction is both trivial and
worthless.

In this work, we show how to reliably predict code metrics that serve as inputs (in-
cluding software size) to prediction models very early on in the project by learning
from existing code. We leverage the problem domain of the software to predict these
metrics. The problem domain manifests itself in import relationships—that is, how
individual components rely on each other’s services. In earlier work, it has been
shown that a problem domain, as characterized by imports, impacts the likelihood of
software defects [3] or vulnerabilities [4].

Our approach is sketched in Figure 1. We train a learner from pairs of imports and
code metrics, as found in existing software. The resulting predictor takes the set of
imports for a component (as available in the design phase) and predicts metrics for the
component. Managers can then use the predicted metrics as a basis to make other
decisions, such as: What will this product cost to develop? How many people should I
allocate to the project? Will this product have several defects to be fixed?

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 34 2008.
© Springer-Verlag Berlin Heidelberg 2008

Predicting Software Metrics at Design Time 35

This paper makes the following contributions:

1. We present a novel software size estimation method during the design phase of
development.

2. Using the ECLIPSE code base, we show how imports can be used to predict soft-
ware size, given as source lines of code (SLOC) [5].

3. Using the ECLIPSE code base, we show how to predict software complexity, as
defined by the widely used object-oriented ckjm software metrics [6].

We expect that advance reliable knowledge of such product-specific metrics can be a
boon to solving several management issues that constantly loom over all types of
development projects at an early stage.

This paper is organized as follows. In Section 2, we discuss features and shortcom-
ings of contemporary cost estimation models. The data used for our experimentation
is elaborated upon in Section 3. Thereafter, we present our experimental setup in
Section 4, which is followed by results and discussions in Section 5. Threats to valid-
ity are addressed in Section 6 and lastly, we conclude our work in Section 7.

Existing code as New design
'—'//' E imports with software metrics as imports A f
L]

produces

Learner Predictor

Predicted metric

Fig. 1. Approach overview. By learning from the relationship between imports and metrics in
existing code, we can predict metrics based on imports alone.

2 Background

As discussed above, cost estimation is vital to a successful outcome of a software
project. But most contemporary estimation models depend upon characteristics of the
software that are typically unknown at start. For example, many models take into
account the relationship between software size and cost. Examples include algo-
rithmic models such as COCOMO [7] and Putnam [8], regression models [9] and
analogy-based models [10-13]. To use these models, first an estimate of the size of
the project is needed. Again, size is unknown at start of the project and can only be
estimated based on other characteristics of the software. Hence, basing cost estimates
on an estimate of size adds to uncertainty of the estimates and fate of the project. This
challenges the value of such models.

We propose a novel approach that, in contrast to others, focusses on estimating the
size of a component with as little knowledge as its design. This places managers at a
unique position from where they can choose between several alternatives to optimize
not only size, but also other metrics of the software that serve as its quality indicators.
We present these metrics in more detail in the following section.

36 W. Holz et al.

3 Data Collection

We used 89 core plug-ins from the ECLIPSE project as data source for our study.
Core plug-ins are those that are installed by default in ECLIPSE. We used both source
code and binaries to extract the data necessary to build prediction models. In this
section, we describe the metrics extracted and the methods employed for their extrac-
tion. The metrics or features can be grouped into two categories; first, input
features, i.e., the features that are already known to us, and second, output features,
which we wish to predict.

3.1 Input Features

As mentioned above, we hypothesize that the domain of the software determines
many of its metrics, for instance, defects—a quality indicator. Similar to Schroter et
al. [3], we assume that the import directives in source code indicate the domain of the
software.

Naturally, our first task is to establish the domains of the 89 ECLIPSE plug-ins, i.e.,
extract all import directives from the relevant code. At first, this task seems trivial
because one can quickly glance through JAVA source code to find the import direc-
tives at the top of the file.

However, this task becomes very complex when one encounters a situation as illus-
trated in Figure 2. Here, the import directive in Label 1 contains reference to package
import java.sqgl.* instead of classes. Later, in Label 2, objects of classes
Connection and Statement belonging to the java.sql package have been
instantiated.

It is crucial that such references to packages are resolved to class levels; else we
run the risk of leading statistical learning models astray. To accomplish this, we used
the Eclipse ASTParser [14] that transforms JAVA code into a tree form, where the
code is represented as AST nodes (subclasses of ASTNode). Each element in JAVA
code has an associated, specialised AST node that stores relevant information items.
For example, a node SimpleType contains the name, return type, parameters, and like.
Further information to examine the program structure more deeply is allowed by
bindings, a provision in ASTParser. It is these bindings that resolve import packages
into the relevant classes. Figure 2 demonstrates this where the two classes referred to
in Label 2 get resolved by the ASTParser as java.sql.Connection (Label 3)
and java.sql.Statement (Label 4) respectively.

Using the above method, we extracted 14,185 unique and resolved import state-
ments from the 89 ECLIPSE plug-ins used in this study.

3.2 Output Features

As mentioned earlier, the knowledge of as many product-specific metrics early in the
project’s life cycle has several advantages. We demonstrate our model’s capacity to
predict such metrics on a set of commonly known and used in the software develop-
ment community.

Predicting Software Metrics at Design Time 37

& Java - Example/src/Examplel.java - Eclipse SDK

File Edit Source Refactor Navigate Search Project Run Window Help
r3~ FrO QU BEC- @5 o SR R e

)| Examplel.java &2 1J] RandMain.java

I ‘
% "
A (import java.sql,w;) 1

1

dauthnor NOlIgang nolz

public olags Fyamplel
N private Connection con = null;
] private Statement stmt = null; 2
public boolean connect2DB() {
try {
Class. forName("org.postgresql.Driver");

} catch (Exception e) {
System.err.println("\n\t No Postgress JDBC-Driver found/loaded: " +

(2. Problems | @ Javadoc || Declaration | & Console | & ASTView £3
Examplel.java (AST Level 3). Creation time: 16 ms. Size: 77 nodes, 8.338 bytes (AST nodes only).
SUPERCLASS_TYPE: null
SUPER_INTERFACE_TYPES (0)
4 BODY_DECLARATIONS (4)
4 FieldDeclaration [103, 30]
JAVADOC: null
MODIFIERS (1)
4 TYPE
4 SimpleTvpe [111 101
(> type blndlng:Java.sqI.Connectlon) 3
NAME
FRAGMENTS (1)
4 FieldDeclaration [137, 30]
JAVADOC: null
MODIFIERS (1)
4 TYPE
4 SimpleTvpe [145 0]

(> type binding: java.sql.Statement) 4
NAME

Fig. 2. An illustration of the use of the ASTParser to resolve import directives

Source Lines of Code (SLOC). The count of lines of code is the simplest measure of
the system size. Early estimate of SLOC or a similar size measure can substantially
influence management and execution of the project: development costs and duration
of the project can be estimated, system requirements can be inferred, required team
size can be appropriated, and like.

Many definitions for counting SLOC have been proposed. We implemented a tool
to count SLOC abiding the guidelines laid by Wheeler [5]. As Wheeler recommends,
we count the physical lines of code, which is defined as follows:

38 W. Holz et al.

A physical SLOC is a line ending in a new line or end-of-file marker, and which
contains at least one non-whitespace non-comment character.

Object-Oriented (O0) Metrics. Our second output feature is a set of OO metrics,
referred to as ckjm metrics defined by Chidamber and Kemerer [6]. The ckjm tool
computes six different metrics, summarised in Table 1. These metrics have previously
been used to predict fault-proneness of classes [15], changes in short-cycled devel-
opment projects using agile processes [16], system size [17, 18], and as software
quality indicators [19-21].

Table 1. List of ckjm Metrics

Abbreviation Metric

CA Afferent Couplings

CBO Coupling between Class Objects
CBOJDK* Java specific CBO

DIT Depth of Inheritance Tree

NOC Number of Children

NPM Number of Public Methods
LCOM Lack of Cohesion in Methods
RFC Response for a Class

WMC Weighted Methods per Class

* In this metric, Java JDK classes (java.*, javax.*, and others) are in-
cluded. We created a new metric because the use of JDK classes does
not count toward a class’s coupling because the classes are relatively
stable in comparison to the rest of the project.

While the ckjm metrics have been shown to be useful predictors of a variety of
software characteristics, a downside of their usage is that substantial parts of the code
have to be written to reliably compute them. At this juncture, when code is reasonably
mature, the value of such predictions is diminished, i.e., the new knowledge arrives
too late in the product’s life cycle. Our research alleviates this problem by predicting
the ckjm metrics for classes at a very early stage of the life cycle. Endowed with pre-
dicted values of the ckjm metrics, project managers can make further predictions of
software characteristics based on these values.

In Table 2, we present some summary statistics of the output features. The values
suggest that most metrics are highly skewed. DIT is somewhat flat and most classes
have no children (NOC), similar to the finding by Chidamber and Kemerer [6]. In
fact, almost 84% of the classes had no children. Particularly noticeable is the fact that
many metrics have extreme outliers, for example maximum value of LCOM is
329,563.

3.3 Data Format

After the data has been extracted, we have to shape it as feature vectors to be fed into
statistical learning models. Each file is represented as a single row. The input features,
that is, the imported classes are represented as dummies. This is illustrated in Figure 3

Predicting Software Metrics at Design Time 39

Table 2. Summary Statistics of Output Features

Metric Min Max Median Mean Std. Dev
CA 0 588 2 5.40 5.23
CBO 0 212 9 13.86 16.15
CBOJDK 2 223 15 20.40 18.56
DIT 1 8 1 1.67 1.05
NOC 0 82 0 0.47 2.03
NPM 0 834 4 7.13 13.26
LCOM 0 329,563 9 164.10 3200.28
RFC 0 848 24 39.46 48.96
SLOC 3 7645 72 146.70 273.64
WMC 0 835 7 12.02 18.06

org.eclipse.swt.events.ControlEvent org.eclipse.pde.build

org.eclipse.swt.SWT

!

el 11111010 |1]..]0 [soc|wc| . |n«ewu

A
\
A
\/

Input features (14,185 import directives) Output features

Fig. 3. Data format for experimentation

where each of the 14,185 import directives is represented as one column. To indicate
that a file imports a class, the value of the respective cell is set to 1, while otherwise it
is set to zero. The eleven output features (SLOC and ckjm metrics) are represented as
columns too alongside the input features. As a result, we have a large matrix with
11,958 rows (files) and 14,196 columns (filename + input features + output features).

4 Experimental Setup

This section elaborates upon the experiments we performed. We begin with describ-
ing the prediction model, our training and test sets and lastly, the evaluation for the
model performance.

4.1 Support Vector Machine

Support vector machine (SVM) is primarily a supervised classification algorithm that
can learn to separate data into two classes by drawing a hyper-plane in-between them.
The coordinates of the hyper-plane are determined by ensuring maximum distance
between select boundary points of the two classes and the center of the margin. The

40 W. Holz et al.

boundary points are called support vectors. The algorithm uses an implicit mapping of
the input data to a high-dimensional feature space where the data points become line-
arly separable. This mapping is defined by a kernel function, i.e., a function returning
the inner product between two points in the suitable feature space.

Recently, SVM has been upgraded to even perform regression. This is done by us-
ing a different kernel function—the e-insensitive loss function. Basically, this func-
tion determines the regression coefficients by ensuring that the estimation errors lie
below or equal to a threshold value, €. For more information, we refer the reader to a
tutorial on the topic [22].

Besides the kernel function, it is also possible to choose the SVM’s kernel. In a pi-
lot study (predicting SLOC), we found that the linear kernel overwhelmingly outper-
forms other kernels including polynomial, radial bias, and sigmoid when using the
evaluation criteria presented in Section 4.3. Hence, we chose to use the same kernel
across all our experiments.

4.2 Procedure

The SVM regression model learns using training data instances. For this, we ran-
domly sample 66.67% of the data described in Section 3 to create the training set,
while the remaining instances of the data (33.33%) that comprise the test set. Once
the model is trained on the training data, it is tested on the test data using only the
input features. The output features for the test data are predicted by the model, which
are then evaluated using the measures described in Section 4.3.

Additionally, to minimise sample bias, we generate 30 independent samples of
training and testing sets, and perform our experiments on each of the 30 pairs.

4.3 Evaluation

We evaluate the results from the prediction model using PredX, a popular perform-
ance metric used in software engineering. We chose not to use other performance
metrics such as MMRE because they have been shown to be biased [23]. PredX meas-
ures the percentage of predictions made that lie within +x% of the actual value. The
larger the value of PredX, the higher is the prediction accuracy. Typically, x takes the
values 25 and 50. We use the same values for our evaluation.

5 Results and Discussion

Figure 4 presents the results from our experiments. All metrics are presented in al-
phabetical order on the y-axis, while the PredX values are plotted on the x-axis. For
each metric, we have plotted both, Pred25 (as circles) and Pred50 values (as trian-
gles) from each of the thirty experimental runs. The plots are jittered [24], i.e., a small
random variation has been introduced to ease observation of overlapping values on
the x-axis.

We observe from the figure that SLOC is predicted with reasonable accuracy.
Pred25 values hover around 42% while Pred50 values hover around 71%. Whereas,
prediction results for CBO and CBOJDK are outstandingly good. The Pred25 values

Predicting Software Metrics at Design Time 41

who- . w
8
SLOC-
& [
o A A
B #
% ¥
NOC-
OC @ Legend
A Pred50
o Pred25
LCOM- % ﬁ
. #
CBOJDK- @ %
o
cBO- &0 m
O Y

Metric

PredX Value

Fig. 4. Prediction accuracy for output metrics

for CBO hover around 72% and even higher for CBOJDK at 86%. Their Pred50
values hover around 88% and 97% respectively. The model also predicts RFC and
DIT values with reasonable accuracy. The values of Pred25 for both these metrics
hover around 51-54%. Pred50 for DIT hover around 77%, while the same for RFC
hovers around 83%.

The prediction accuracy for other metrics, i.e., CA, LCOM, NOC, and NPM is
relatively lower. Nearly all Pred25 and Pred50 values for most of these metrics are
lower than 50%. One metric that markedly stands out is number of children (NOC).
This is primarily because of the distribution of the metric. Recall from Table 2 that
the median value of NOC is zero and nearly 84% files have no children. This explains
the poor results for NOC.

Overall, the prediction accuracy derived from our approach is good for most met-
rics. It is obvious that early and reliable estimation of SLOC places projects at a van-
tage point by contributing substantially to their likelihood of success. Our results for

42 W. Holz et al.

SLOC demonstrate the value of our approach. Perhaps, these can be even topped by
using more varied data and other prediction models.

Equally worthy is the approach’s capability of predicting code-related metrics as
early as during the design phase. Values of many of the metrics could be predicted
with high accuracy, up to Pred50 = 97%. The results warrant the use of our approach
to facilitate many decisions pertaining to complexity, quality, and maintainability, and
allow assessment of alternatives designs. If our results can be replicated in different
environments, we anticipate the approach to be valuable support tool for practitioners.

6 Threats to Validity

Although we examined 89 ECLIPSE plug-ins that covered a wide spectrum of do-
mains, from compilers to user-interfaces, we cannot claim with certainty that these
plug-ins are representative of all kinds of software projects.

We also approximated the design of plug-ins by its import directives at release
time. These relations may have undergone a series of changes from the initial design.

Lastly, we did not filter outliers from our data set. While doing so may improve the
prediction accuracy of the models, we chose to preserve the outliers in the data since
they make interesting cases to examine and realistically assess the power of our
prediction models.

7 Conclusions and Consequences

When it comes to components, you are what you import. As soon as you know which
components you will interact with, one can already predict the future size of the com-
ponent or its complexity. This allows for early estimation and allocation of resources,
reducing the risk of low quality or late delivery. Even if the present study limits itself
to just one platform (i.e., ECLIPSE plug-ins), the technique can easily be replicated
and evaluated on other code bases.

Our approach is easily generalisable to other metrics. Most interesting in this as-
pect is cost: If we know the actual development cost of a component, we can again
relate this cost to its domain—and come up with a predictor that directly predicts
development cost based on a given set of imports. Instead of development cost, we
could also learn from and predict maintenance costs or risk. We are currently working
to acquire appropriate data and look forward to apply our technique on it.

What is it that makes a specific domain impact software metrics? Obviously, the
imports we are looking at are just a symptom of some underlying complexity—a
complexity we can describe from experience, but which is hard to specify or measure
a priori. Why is it that some domains require more code to achieve a particular goal?
Is there a way to characterize the features that impact effort? Why do some domain
result in more complex code? How do characteristics of imported components impact
the features of the importers?

All these questions indicate that there is a lot of potential to not only come up with
better predictors, but also to increase our general understanding of what makes soft-
ware development easy, and what makes it hard. With the present work, we have

Predicting Software Metrics at Design Time 43

shown how to infer such knowledge for specific projects—and hopefully provided a
starting point for further, more general, investigations.

In addition, we have made the data set used for this study publicly available for ex-
perimentation. The data set can be accessed from the PROMISE repository at

http://promisedata.org/

For more information about our research on the prediction of code features visit

http://www.st.cs.uni-sb.de/softevo/

Acknowledgments

Many thanks are due to the anonymous PROFES reviewers for their helpful sugges-
tions on an earlier revision of this paper.

References

(1]
(2]
(3]

(4]

(5]
[6]

[7]
(8]
[9]

[10]

[11]

[12]

[13]

Jorgensen, M., Shepperd, M.J.: A systematic review of software development cost esti-
mation studies. IEEE Transactions on Software Engineering 33(1), 33-53 (2007)

Delany, S.J.: The design of a case representation for early software development cost es-
timation. Master’s thesis, Stafford University, U.K. (1998)

Schréter, A., Zimmermann, T., Zeller, A.: Predicting component failures at design time.
In: Proceedings of the 5th International Symposium on Empirical Software Engineering,
September 2006, pp. 18-27 (2006)

Neuhaus, S., Zimmermann, T., Holler, C., Zeller, A.: Predicting vulnerable software com-
ponents. In: Proceedings of the 14th ACM Conference on Computer and Communica-
tions Security (October 2007)

Wheeler, D.A.: SLOCCount user’s guide (Last accessed 23-11-2007),
http://www.dwheeler.com/sloccount/sloccount.html

Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans-
actions on Software Engineering 20(6), 476493 (1994)

Boehm, B.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)
Putnam, L.H., Myers, W.: Measures for excellence: reliable software on time, within
budget. Yourdon Press, Englewood Cliffs (1991)

Mendes, E., Kitchenham, B.A.: Further comparison of cross-company and within-
company effort estimation models for web applications. In: IEEE METRICS, pp. 348—
357. IEEE Computer Society, Los Alamitos (2004)

Shepperd, M.J., Schofield, C.: Estimating software project effort using analogies. IEEE
Transactions on Software Engineering 23(11), 736-743 (1997)

Kirsopp, C., Mendes, E., Premraj, R., Shepperd, M.J.: An empirical analysis of linear ad-
aptation techniques for case-based prediction. In: Ashley, K.D., Bridge, D.G. (eds.)
ICCBR 2003. LNCS, vol. 2689, pp. 231-245. Springer, Heidelberg (2003)

Mendes, E., Mosley, N., Counsell, S.: Exploring case-based reasoning for web hyperme-
dia project cost estimation. International Journal of Web Engineering and Technol-
ogy 2(1), 117-143 (2005)

Mendes, E.: A comparison of techniques for web effort estimation. In: ESEM, pp. 334—
343. IEEE Computer Society, Los Alamitos (2007)

44

[14]
[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

W. Holz et al.

Marques, M.: Eclipse AST Parser (Last accessed 14-01-2008),
http://www.ibm.com/developerworks/opensource/library/os-ast/
Basili, V., Briand, L., Melo, W.: A validation of object-oriented design metrics as quality
indicators. IEEE Transactions on Software Engineering 22(10), 751-761 (1996)
Alshayeb, M., Li, W.: An empirical validation of object-oriented metrics in two different
iterative software processes. IEEE Transations of Software Engineering 29(11), 1043—
1049 (2003)

Ronchetti, M., Succi, G., Pedrycz, W., Russo, B.: Early estimation of software size in ob-
ject-oriented environments: a case study in a CMM level 3 software firm. Technical re-
port, Informatica e Telecomunicazioni, University of Trento (2004)

Aggarwal, K.K., Singh, Y., Kaur, A., Malhotra, R.: Empirical study of object-oriented
metrics. Journal of Object Technology 5(8) (2006)

Subramanyam, R., Krishnan, M.: Empirical analysis of ck metrics for object-oriented de-
sign complexity: Implications for software defects. IEEE Transactions on Software Engi-
neering 29(4), 297-310 (2003)

Andersson, M., Vestergren, P.: Object-oriented design quality metrics. Master’s thesis,
Uppsala University, Uppsala, Sweden (June 2004)

Thwin, M.M.T., Quah, T.S.: Application of neural networks for software quality predic-
tion using object-oriented metrics. Journal of Systems and Software 76(2), 147-156
(2005)

Smola, A.J., Scholkopf, B.: A tutorial on support vector regression. Statistics and Com-
puting 14, 199-222 (2004)

Foss, T., Stensrud, E., Kitchenham, B., Myrveit, I.: A simulation study of the model
evaluation criterion MMRE. IEEE Transactions on Software Engineering 29(11), 985-
995 (2003)

Chambers, J.M., Cleveland, W.S., Kleiner, B., Tukey, P.A.: Graphical Methods for Data
Analysis. Wadsworth (1983)

A Metrics Suite for Measuring Quality
Characteristics of JavaBeans Components

Hironori Washizaki, Hiroki Hiraguchi, and Yoshiaki Fukazawa

Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, Japan
{washi, h hira, fukazawa}@fuka.info.waseda.ac.jp

Abstract. In component-based software development, it is necessary to
measure the quality of components before they are built into the sys-
tem in order to ensure the high quality of the entire system. However,
in application development with component reuse, it is difficult to use
conventional metrics because the source codes of components cannot be
obtained, and these metrics require analysis of source codes. Moreover,
conventional techniques do not cover the whole of quality characteristics.
In this paper, we propose a suite of metrics for measuring quality of Jav-
aBeans components based on limited information that can be obtained
from the outside of components without any source codes. Our suite con-
sists of 21 metrics, which are associated with quality characteristics based
on the ISO9126 quality model. Our suite utilizes the qualitative evalu-
ation data available on WWW to empirically identify effective metrics,
and to derive a reference value (threshold) for each metric. As a result
of evaluation experiments, it is found our suite can be used to effectively
identify black-box components with high quality. Moreover we confirmed
that our suite can form a systematic framework for component quality
metrics that includes conventional metrics and newly defined metrics.

1 Introduction

Component-based software development (CBD) has become widely accepted as a
cost-effective approach to software development, as it emphasizes the design and
construction of software systems using reusable components[I]. In this paper,
we use object-oriented (OO) programming language for the implementation of
components. CBD does not always have to be object-oriented; however, it has
been indicated that using OO paradigm/language is a natural way to model and
implement components[2].

Low-quality individual components will result in an overall software package
of low quality. It is therefore important to have product metrics for measuring
the quality of component units. A variety of product metrics have been proposed
for components[3I4516]; however, nobody has so far reported on the results of a
comprehensive investigation of quality characteristics.

In this paper we propose a suite of metrics that provide a comprehensive
mechanism for judging the quality characteristics of high-quality black-box com-
ponents, chiefly from the viewpoint of users.

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 45{60] 2008.
© Springer-Verlag Berlin Heidelberg 2008

46 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

2 Component-Based Development and JavaBeans

A component is a replaceable/reusable software unit that provides a certain func-
tion. Components are generally implemented in an object-oriented programming
language. Component-based development is a method for determining the software
architecture (component architecture) that forms a development platform, reusing
executable components or developing new components according to the architec-
ture standard, and combining the resulting components to develop new software.

With the appearance of comprehensive development environments based on
a visual component assembly metaphor and the popularization of environments
for implementing web applications (JSP, ASP, etc.), client components have
already become popular way of implementing items such as GUI components
and general-purpose logic components|[8]. Therefore this paper is concerned with
JavaBeans components[1(] as the subject of quality measurements.

2.1 JavaBeans Technology

JavaBeans is a component architecture for developing and using local compo-
nents in the Java language. A JavaBeans component ("bean”) is defined as a
single class in the Java language that satisfies the two conditions listed below.
Accordingly, a bean has constructors, fields and methods, which are the con-
stituent elements of ordinary classes.

— It has an externally accessible default constructor that does not take any
arguments, and can be instantiated simply by specifying the class name.

— It includes a java.io.Serializable interface and is capable of being
serialized.

Figure [M shows the UML class diagram of an example of a bean. In this
example, the Chart class is a bean according to this definition. In JavaBeans, in
addition to the above mentioned definition, it is recommended that the target
class and associated classes conform to the following mechanism to make it easier
for them to be handled by development environments and other beans:

— Properties: A property is a named characteristic whose value can be set
and/or got (read) from outside the bean. In target classes that are handled
as beans, a property is defined by implementing a setting method that al-
lows the value of a characteristic to be externally set, and a getting method
that allows the value of a characteristic to be externally read. Methods of
both types are called property access methods. Property access methods are
chiefly implemented according to the naming rules and the method typing.
When the target class has a getXyz () method that returns a value of type
A (or a setXyz() method that requires a argument value of type 4), then
it can be inferred that the class has a writable (or readable) property xyz.
Most of a bean’s properties tend to have a one-to-one correspondence to
the fields implemented in the bean class[5]). In the example shown in Fig/[I]
the Chart class has the methods setTitle and getTitle() for setting and

A Metrics Suite for Measuring Quality Characteristics 47

Y

|updatedListener] [Grid] [Border]

""""" UpdatedEvent

<<interface>>
java: :beans: :BeanInfo
<<interface>> :
java::io::Serializabldg
JAY

[ttt i ---------------:
i Chart i
i - title: String i
i [+ Chart() :
||+ getTitle() : String ;
||+ setTitle(String): void E
'+ plot(): void i
E + addUpdatedListener (UpdatedListener): void |
i + removeUpdatedListener (UpdatedListener) : void i
! i
! i
! i
! i
! i
! i
! i
! i

‘ Packaged in the same JAR Q’ej

Fig. 1. Example of a bean and its associated classes (UML class diagram)

getting the value of a title field. Accordingly, the Chart bean has a title
property whose value can be set and got.

— Methods: A method is a function that is provided for external interaction
with a bean. In target classes that are handled as beans, they are defined by
implementing public methods that can be called externally. In the example
of Fig[ll the Chart bean has a plot () method.

— Events: An event is a mechanism for externally announcing that certain
circumstances have arisen inside a bean. The constituent elements of an
event are an event source, and event listener, and an event object. In the
example of Fig.[Il the Chart bean has an Updated event.

The above mentioned definitions and mechanisms do not guarantee that it will
exist in an environment where the other classes and/or interfaces on which the
bean depends are present when the bean is independently distributed. Therefore,
in JavaBeans it is recommended that a JAR archive file is used to store all the
Java classes and interfaces on which the bean depends in the same archive file
for distribution and reuse. In the example of Fig[Il the Grid and Border classes
and event-related classes and interfaces on which the Chart bean depends must
be distributed by storing them all together in a single JAR file.

2.2 JavaBeans Public Information

Components are not only reused within organizations to which the components’
developers belong, but are also distributed in the form of an object code via
the Internet and reused in other environments[9]. Therefore, users who want to

48 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

reuse components often cannot obtain source codes of the components except
for object codes. To allow a bean to be reused as a black-box component while
keeping all its internal details hidden, the following information can be obtained
externally without having to analyze the source code.

— Basic bean information: An introspection mechanism[I0] can be used to ob-
tain information about the properties, events and methods of the above men-
tioned mechanism. This information is obtained either based on the naming
rules, or by analyzing a BeanInfo object provided by the bean developer.

— Class constituent information: Information relating to the constructors, fields
and methods of the bean as a class can be obtained by using a reflection
mechanism.

— Archive file structure information: Information about the structure of the
archive file containing the bean (information on the presence or absence
of various resource files such as icons, and the constituent elements of other
classes/interfaces on which the bean depends) can also be obtained externally
without analyzing the source code.

This externally accessible public information is an essential judgment resource
for measuring the quality characteristics of a bean.

3 Component Quality Metrics

To evaluate a component when it is reused, the component is assessed from
a variety of viewpoints (e.g., maintainability, reusability, and so on)[II]. This
necessitates the use of metrics that consistently deal with the overall quality
provided by a component rather than a single metric that deals with a single
quality characteristic of a component.

Since beans are implemented in Java, it is possible to apply the quality
measurements of conventional object-oriented product metrics. However, most
conventional metrics perform measurements on entire object-oriented systems
consisting of class sets. On the other hand, since components are highly inde-
pendent entities, it is difficult for these metrics to reflect the component charac-
teristics even when applied to individual component units.

Also, conventional metrics often require analysis of the target source code.
Components are sometimes distributed to and reused by third parties across
a network, and since in this case they are black-box components whose source
code cannot be seen by the user, it is impossible to use conventional white-box
metrics[5]. Accordingly, for components whose source code is not exposed, we
need measurements that can be applied in a black-box fashion.

In this paper, based on these issues, we use the following procedure to con-
struct a suite of metrics that provide a component’s user with useful materials
for making judgments when a component is reused.

1. Comprehensive investigation of basic metrics
2. Selection of basic metrics based on qualitative assessment information
3. Construction of a suite of metrics

A Metrics Suite for Measuring Quality Characteristics 49

3.1 Comprehensive Investigation of Basic Metrics

All the information that can be measured from outside a bean is comprehensively
investigated as basic metrics. The investigation results are shown in Table [
Tables Mi(a), (b) and (c¢) show the metrics relating to the bean’s information,
class structure information, and archive file structure information resepectively.

In Table[](a), ” Default event present” expresses whether an initially selected
event is pre-specified when a bean that provides multiple events is used in a de-
velopment environment. Similarly, ” Default property present” expresses whether
an initially selected property is pre-specified.

In Table[[(b), RCO and RCS are the ratios of property getting methods and
setting methods out of all the bean fields, and are used as metrics expressing the
extent to which the properties of fields can be publicly got and set[5]. SCCp and
SCCr are the ratios of methods that have no arguments or return values, and are
used as metrics expressing the independence of the methods[p]. PAD and PAP
are the ratios of public/protected methods and fields, and are used as metrics
expressing the degree to which the methods and fields are encapsulated|12].

In Table [lc), the notation ”Overall M” represents the results of applying
metric M under conditions where the constituent elements of all the classes
contained in the archive file that includes the bean are assumed to exist within
a single class. The number of root classes expresses the number of classes that
are direct descendents of java.lang.0Object. Also, ”Overall bean field (method)
ratio” expresses the ratio of fields and methods that a bean has in the sum total
of fields (methods) in the entire classes.

3.2 Selection of Basic Metrics

Out of all the resulting basic metrics, we select those that are useful for judging
the level of quality of the component. For this selection we use manually obtained
component evaluation information published at jars.com[I3]. The evaluation in-
formation at jars.com has already been used to set the evaluation standard values
of a number of metrics[5l6]. At jars.com, in-house or independent group of Java
capable and experienced individuals review each bean from the viewpoints of pre-
sentation, functionality and originality. Finally beans are rated into 8 levels as total
of those different viewpoints. These 8 evaluation levels are normalized to the in-
terval [0, 1] (where 1 is best), and the resulting value is defined as the JARS score.

As our evaluation sample, we used all of the 164 beans that had been evaluated
at jars.com as of March 2004. The publication of beans at jars.com means that
they are reused in unspecified large numbers, so the JARS score is thought to
reflect the height of the overall quality of the component taking the fact that
the bean is reused into account. We therefore verified the correlation between
the measured values of each bean’s basic metrics and its JARS score.

As the verification method, we divided the components into a group with a
JARS score of 1 (group A: 117 components) and a group with a JARS score
of less than 1 (group B: 47 components), and we applied the basic metrics to
all the beans belonging to each group. In cases where testing revealed a differ-
ence between the measured value distributions of each group, this basic metric

50 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

Table 1. Possible basic metrics relating to: (A: normality test result of ”"good” com-
ponents group, B: that of ”poor” group, T': difference test result of both distributions)

(c) archive file constituent

(a) bean itself

. Metric M ABT
Metric M ABT Number of files nny
BeanInfo present nnn Class file ratio nY n
Number of events nnyY Eum‘ger Og ICIOHS non 2{(

umber of classes n n
Number of methods (of bean)|n n Y Number of oot classes honon
Number of properties nnn Average depth of class hierarchy (DIT) |[Y Y Y
Default event present nnon Abstract class ratio Y nn
final class ratio nnyY
Default property present nonn Interface ratio nonon
private class ratio nnyY
protected class ratio nnY
. public class ratio nnn
(b) class constituent static member class ratio nnn

- synchronized class ratio nnn
Metric M ABT Overall number of fields nnY
Number of fields nnY Average number of fields per class nnn
RCO nnY Overall RCO nnyY

Overall RCS nnyY
RCS nnyY Overall abstract field ratio nnn
abstract field ratio nnn Overall final field ratio nYn
final field ratio ann Overall private field ratio YYn

Overall protected field ratio nnn
private field ratio nnn Overall public field ratio nYn
protected field ratio nnyY Overall static field ratio nYn

. . Overall transient field ratio nnn
public field ratio nnn Overall volatile field ratio nnn
static field ratio nYn Overall PAD nonon
transient field ratio nnn Overall number of constructors nnyY

. A Average number of constructors per class|n Y n
volatile field ratio nnn Overall constructor without arguments |n Y n
PAD nnY O(defalllllt constructmlr)) ratfio vy

verall average number o n

Number of cor{structors nnyY arguments per constructor
Constructor without arguments|n n Y Overall private constructor ratio nnn
(default Constructor) ratio Overall protected constructor 'ratio nnyY
Overall public constructor ratio nnn
Average number of nnYy Overall number of methods nYn
arguments per constructor Average number of methods per class nnn
. : Overall SCCp nnyY
private constructor ratlol nnn Overall SCCr nnon
protected constructor ratio nnn Overall average number of nY n

public constructor ratio nnn arguments per method

Total b £ thod. Overall abstract method ratio nnn
Sgg number of methods ;1/ g 2 Overall final method ratio nnn

P Overall native method ratio nnn
SCCr nnn Overall private method ratio Y nn
A Overall protected method ratio nYn

verage number of arguments Ynn Overall public method ratio YYn
per method Overall static method ratio nY n
: Overall strictfp method ratio nnn
abstract method ratio nnn
. R Overall synchronized method ratio nnn
final method ratio N NN QOverall PAP YY n
native method ratio nonn Overall bean field ratio nnyY
. . Overall bean method ratio nnY
private method ratio nnn
protected method ratio nnY
public method ratio nyYn
static method ratio nnyY
strictfp method ratio nnn
synchronized method ratio nnyY
PAP nYn

A Metrics Suite for Measuring Quality Characteristics 51

was judged to affect the JARS score and was selected as a metric constituting
the suite of metrics. Tests were performed for each metric M according to the
following procedure.

1. With regard to the distribution of the measured value of M in each group,
we tested for normality at a critical probability of 5%. The test results
of group A and group B are respectively shown in columns A and B of
Table [l Y indicates that the results were normal, and n indicates that the
results were not normal.

2. We tested the differences in the distributions of the measured values in both
groups. When both groups were found to be normal, we used Welch’s t-
test[I4] to check whether or not both groups had the same population mean.
In other cases, we used the Mann-Whitney U-test[I4] to check whether or not
the median values of both population distributions were the same. These test
results are shown in the T column of Table[Il Y indicates that the distributions
were found to be different; i.e. there is a possibility to classify each bean into
two groups by using the target metric.

3.3 Construction of Quality Metrics Suite

As a result of these tests, we found differences in the distributions of the mea-
sured values between the two groups for 29 metrics. Below, we will consider the
association of these measurement test results with quality characteristics in the
1S09126 quality model 7.

- Number of events: Figure [J(a) shows a box-and-whisker plot of the measure-
ment results. This box-and-whisker plot shows the range of the measured values
together with the 25%/75% quantiles and the median value for group A (JARS
score = 1; left side) and group B (JARS score < 1; right side). The measured
values tended to be higher in group A. It seems that beans with a large number
of events have sufficient necessary functions and a higher level of suitability.

- Number of methods: According to Fig.Bl(a), there tended to be more methods
in group A. Beans with a greater number of methods are able to fully perform
the required operations and have a greater level of suitability.

- Number of fields: According to Fig. Bi(b), the number of fields tends to be
smaller in group A. This is thought to be because when using a bean in which
the number of fields has been suppressed, the user is unaware of the unnecessary
fields, resulting n greater understandability.

- Ratio of protected fields: No differences were observed in the distributions of
measured values relating to fields with other types of visibility (private/public),
so it appears that field visibility does not affect a bean’s quality. This metric
was therefore excluded from the suite.

- Ratio of protected methods: No differences were observed in the distribu-
tions of measured values relating to methods with other types of visibility (pri-
vate/public), so it appears that method visibility does not affect a bean’s quality.
This metric was therefore excluded from the suite.

1 Although several problems such as ambiguity have been indicated for the 1S09126
model[I5] it can be a good starting point to explore related quality characteristics.

52 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

20.00

15.00

10.00

JARS = 1 JARS <1

Fig. 2. Number of events (p-value of the null hypothesis=0.0007)

0.
100.00
350.00
300.00
350.00
300.00
450.00 —_—
400.00
350.00
300.00
50.00
00.00
150.00
100.00 %
50.00
0.00 P I — — 0.00

50.00 JARS =1 JARS <1 aRS PJARS < 1

(a) (b)

Fig. 3. (a) Number of methods (0.0068) (a) Number of fields (0.0008)

150.00

100.00

50.00

- RCO and RCS: According to Fig. f(a) and (b), both of these measured values
tended to be smaller in group A. By suppressing the number of properties that
can be got/set, it is possible to reduce access as properties to more fields than are
necessary, which is thought to result in a high level of maturity. Also, since the
user is not bothered with unnecessary fields when using the bean, it is though
that the understandability is high.

- Overall RCO and overall RCS: According to Fig. Bla) and (b), both of these
measured values tended to be smaller in group A. Unlike the bean RCO/RCS
values, the overall RCO/RCS values are thought to represent the internal ma-
turity and stability of a bean.

- PAD: According to Fig.[fl(a), this measured value tended to be smaller in group
A. In a bean where this measured value is small, there are few fields that can
be operated on without using property access methods, so it is thought that the
maturity and changeability are high.

- Number of constructors: According to Fig. Bl(b), this measured value tended to
be larger in group A. When there is a large number of constructors, it is possible
to select a suitable constructor when the class is instantiated, so it is thought
that the suitability and testability are high.

- Default constructor ratio: This measured value tended to be smaller in group
A. However, since all beans must by definition have a default constructor, this

A Metrics Suite for Measuring Quality Characteristics 53

0.80
0.75
0.70
0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05 0.05
0.00 0.00

[1
-0.05 JARS <1 005

(a)

0.80
0.75
0.7
0.85
0.80
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10

Fig. 5. (a) Overall RCO (0.0061) (b) Overall RCS (0.0071)

.60
.00
760
.00
.50
.00
.50

250
.00
.60
.00
.50
.00
1.50

1.00

[}
.0

JARS =1 JARS < 1

(b)

Fig. 6. (a) PAD (0.0042) (b) Number of constructors (0.0031)

metric exhibited the same tendency as the number of constructors. Accordingly,
this metric is redundant and is excluded from the suite.

- Average number of arguments per constructor: This measured value tended
to be larger in group A. However, since all beans must by definition have a
void constructor, this metric exhibited the same tendency as the number of
constructors. Accordingly, this metric is excluded from the suite.

54 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

JARS =1 JARS <1

(b)
Fig. 7. (a) SCCp (0.0049) (b) Overall SCCp (0.0004)

0.45
0.55
0.40
0.50
0.35 0.45

0.30 0.40

0.75 0.35
0.30
0.20 0.25

0.15 0.20

0.10 0.15
0.10
0.05
0.05

0.00 0.00

0.0 JARS <1

(a) (b)

Fig. 8. (a) Static method ratio (0.0857) (b) Synchronized method ratio (0.0083)

- SCCp and overall SCCp: According to Fig. [[a) and (b), the measured values
for both of these metrics tended to be smaller in group A (where there is a higher
proportion of methods with no arguments). It is thought that the understand-
ability and analyzability are high because less information has to be prepared
at the user side when the methods are used. Here, the overall SCCp differs from
the SCCp of individual beans in that there is no redundancy because it relates
to the handling of methods inside the bean.

- static method ratio: According to Fig.[Bl(a), the measured values tended to be
smaller in group A. When there are few static methods, the possibility of being
operated from various locations without instantiating a bean is reduced, so it is
thought that that the analyzability is high.

- Synchronized method ratio: According to Fig.B(b), this measured value tended
to be smaller in group A. When there are few synchronized methods, it is thought
that the target bean is set up so that it can be used either in multi-thread or
single-thread environments, thus resulting in high analyzability.

- Number of files: According to Fig.[@(a), this measured value tended to be larger
in group A. However, since the measured value of the number of files is more or
less proportionally related to the number of classes, it is thought that the number

A Metrics Suite for Measuring Quality Characteristics 55

4.00
3.50
150.00
3.00
2.50
100.00
2.00
1.50
50.00 1.00
0.50

0.00

JARS <1

(a)

Fig. 9. (a) Number of files (0.0005) (b) Number of icons (0.0641)

450
4.00
150.00 350
3.00
2.50
100.00
2.00
150
50.00

0.50

0.00

JARS <1

(b)

Fig.10. (a) Number of classes (0.0009) (b) Average depth of class hierarchy (0.0009)

of classes is a more suitable indicator of the scale of a bean. Accordingly, the
number of files is excluded from the suite.

- Number of icons: According to Fig. [@(b), this measured value tended to be
larger in group A. Icons are information used to represent beans when they are
selected in the development environment, and the magnitude of this measured
value is thought to reflect the degree of operability.

- Number of classes: According to Fig.[I0(a), the number of classes tended to be
larger in group A. Looking at the results for other metrics, there is no difference
between the distributions of group A and group B in terms of the average number
of fields per class and the average number of methods per class, so it is thought
that beans with a large number of classes in the archive are not dependent on
class sets that are fragmented any more than is necessary, but that they purely
express more functions. Therefore, it is thought that beans with more classes
have higher suitability.

- Average depth of class hierarchy (DIT[L6]): According to Fig. [0(b), this mea-
sured value tended to be larger in group A. In object-oriented design, the reuse of
fields/methods and the embodiment of variable parts are realized by differential
definitions based on inheritance. Therefore, it is thought that the analyzability

56 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

0.60
0.55
0.50
0.45
0.40
0.35
0.30

0.60
0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20

0.25
0.20
0.15 0.15
0.10 0.10
0.05 0.05
0.00 [] 0.00
-0.05 -0.05

(a)

Fig. 11. (a) Final class ratio (0.0585) (b) Private class ratio (0.0074)

300.00
150.00
100.00
i50.00
i00.00
350.00
300.00
450.00
400.00
50.00
300.00
50.00
00.00
150.00
100.00
50.00
0.00

5000 JARS <1
(a) (b)
Fig. 12. (a) Protected class ratio (0.2509) (b) Overall number of fields (0.0016)

and changeability both increase with increasing depth of the inheritance hierar-
chy in the class set that constitutes the archive.

- final /private/protected class ratio: According to Fig. [I(a) and (b) and
Fig.[M2(a), all three of these metrics tended to be smaller in group A. Since these
measured values are not encapsulated in a bean any more than is necessary, it
is thought that the testability is high.

- Overall number of fields: According to Fig. 12(b), this measured value tended
to be larger in group A. Since there is no difference between the two groups in
terms of the distribution of the average number of fields per class, it is thought
that this measured value increases as the number of classes increases, regardless
of how high the quality is. Therefore, this metric is excluded from the suite
because it represents the same characteristic as the number of classes.

- Overall number of constructors: This measured value tended to be larger in
group A. Since there was no difference between the two groups in terms of the
distribution of the average number of constructors per class, it is thought that
this measured value increases as the number of classes increases, regardless of
how high the quality is. Therefore, this metric is excluded from the suite because
it represents the same characteristic as the number of classes.

- Overall protected constructor ratio: No differences were observed in the distri-
butions of measured values relating to constructors with other types of visibility
(private/public), so it appears that the visibility of constructors in the class set

A Metrics Suite for Measuring Quality Characteristics 57

JARS =1 JARS <1 JARS =1 JARS <1

(a) (b)
Fig. 13. (a) Overall bean field ratio (0.0000) (b) Overall bean method ratio (0.0000)

constituting an archive does not affect a bean’s quality. This metric is therefore
excluded from the suite.

- Overall bean field ratio/bean method ratio: According to Fig. [3(a) and (b),
this measured value tended to be smaller in group A for both of these metrics. In
beans where these measured values are small, the realization of required functions
is transferred to (fields/method in) other dependent class sets while suppressing
information that is published externally, so it is thought that the maturity and
analyzability are high.

Based on these findings, we selected 21 metrics to be incorporated in the qual-
ity metrics suite. According to our consideration of the results, Figure [[4l shows
a framework for component quality metrics (i.e. the suite of quality metrics) in
which these metrics are associated with the quality characteristics mentioned in
the I1SO9126 quality model. In Fig. [[4] metrics that are thought to be effective
for measuring the quality of beans are connected by lines to the quality sub-
characteristics that are closely related to these metrics in order to show their
linked relationships. Of the 21 metrics, 14 metrics obtained results relating to
maintainability.

Using this framework, it is possible to make detailed quality measurements
focused on beans, and to select metrics that efficiently and comprehensively take
account of the overall bean quality.

4 Verifying the Validity of the Metrics Suite

4.1 Standard Assessment Criteria

As a threshold value for deciding whether a target bean belongs in either group
A or group B of the previous section, we obtained standard assessment crite-
ria for each basic metric. Using these standard assessment criteria, we verified
whether or not it is possible to judge the quality of a bean. If X, and Xasyp
are the average values of metric M in group A and group B respectively, then
the standard assessment criterion E); is defined as follows:

58 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

Quality characteristic ~ Sub characteristic Metric

l Functionality H Suitability | Number of classes

— Number of events

— Number of methods

FL Number of constructors
Maintainability }4——| Testability I final class ratio

— private class ratio

] protected class ratio

% Analysability l static method ratio

— synchronized method ratio

Average depth of class hierarchy

Overall bean field ratio

Overall bean method ratio

SCCp
Overall SCCp
% Changeability 7‘ PAD
L] Stability Overall RCO
Overall RCS
| Reliability |« Maturity RCO
RCS
l Usability nderstandability] Number of fields |
Operability |<—| Number of icons |

Fig. 14. A framework of component quality metrics

More than or equals to XM"’;XM”’ (if Xara > Xarp)

Ey =
Less than or equals to XM'“;FXM*’ (Otherwise)

When a measured value corresponds to a standard assessment criterion, the
corresponding quality characteristics and/or sub-characteristics of the bean are
high. For each of the 21 metrics constituting the proposed metrics suite,
Table[2 lists the proportion of beans in group A that correspond to the standard
assessment criterion (conformity R4) and the proportion of beans in group B
that do NOT correspond to the standard assessment criterion (conformity Rp).
If both of R4 and Rp are close to 100%, the target standard assessment criterion
is almost perfectly useful to classify each bean into two groups.

As both degrees of conformity become higher, it shows that the metric is more
effective at correctly measuring the quality of the target bean and classifying it
into the correct group. According to Table[], the conformity values are both 50%
or more for nine metrics such as SCCp, which shows that these nine metrics are
particularly effective at quality measurements. Also, since the overall average

A Metrics Suite for Measuring Quality Characteristics 59

Table 2. Standard assessment criteria and conformity

Metric M Ewn Ra Rp
Number of events >11 7% 57%
Number of methods > 248 60% 61%
Number of icons >4 99% 26%
Number of classes >31 45% 83%
Average depth of class hierarchy > 2.6 69% 57%
Final class ratio <3% 96% 26%
Private class ratio <6% T79% 30%
Protected class ratio <0.8% 98% 17%
Overall RCO <4% 78% 48%
Overall RCS <5% T78% 39%
Overall SCCp < 42% 91% 52%
Number of fields <18 76% 48%
RCO < 9% 80% 39%
RCS <9% T76% 43%
PAD < 25% T4% 52%
Number of constructors >2% 63% 78%
SCCp > 66% 51% 61%
Static method ratio < 1.5% 84% 35%
Synchronized method ratio <4% 93% 35%
Overall bean field ratio < 22% 91% 57%
Overall bean method ratio < 27% 87% 52%
Average - 74% 50%

values for both types of conformity are equal to or over 50%, it is highly likely
that the quality of a bean can be suitably assessed by using the combination of
multiple metrics constituting the proposed metrics suite.

4.2 Comparison with Conventional Metrics

Metrics suitable for beans in situations where the source code is unavailable
include the usability metrics of Hirayama et al.[6], the testability metrics sum-
marized by R. Binder[I2], and the object-oriented metrics of Chidamber and
Kemerer[16]. Of these conventional metrics, our proposed metrics suite includes
all the metrics that can be applied to beans. The contribution of this paper
is that it proposes a systematic framework for component quality metrics that
includes these existing metrics and newly defined metrics, and that it has been
verified using qualitative assessment information.

Metrics for measuring the complexity and reusability of beans have been pro-
posed by Cho et al.[3], but these metrics included the need for analysis of the
bean source code. Wang also proposes metrics for measuring the reusability of
JavaBeans components[4]; however the metrics indicate the actual reuse rates of
the reused component in a component library and cannot be used in a situation
where sufficient time has not passed since the target component was developed.

60 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

In contrast, our metrics suite can be used in two situations where the source
codes are unavailable and where the components were newly developed.

5 Conclusion and Future Work

We have proposed metrics for evaluating the overall quality of individual Jav-
aBeans components in a black-box fashion, and we have empirically confirmed
that they are effective based on a correlation with the resulting qualitative as-
sessment information.

In the future, by carrying out manual verification trials, we plan to make a
detailed verification of the effectiveness of these proposed metrics, and of the
validity of the association between each metric and the quality characteristics.
Several metrics that constitute the proposed metrics suite can also be applied
to ordinary Java classes that are not beans. We also plan to investigate the
possibility of applying them to other classes besides beans.

References

1. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, Reading (1999)

2. Hopkins, J.: Component Primer. Communications of the ACM 43(10) (2000)

3. Cho, E., Kim, M., Kim, S.: Component Metrics to Measure Component Quality.
In: Proc. 8th Asia-Pacific Software Engineering Conference (2001)

4. Wand, A.J.A.: Reuse Metrics and Assessment in Component-Based Development.
In: Proc. 6th TASTED International Conference on Software Engineering and Ap-
plications (2002)

5. Washizaki, H., et al.: A Metrics Suite for Measuring Reusability of Software Com-
ponents. In: Proc. 9th IEEE International Symposium on Software Metrics (2003)

6. Hirayama, M., Sato, M.: Usability evaluation of software components. IPSJ Jour-
nal 45(6) (2004)

7. ISO/IEC 9126 International Standard: Quality Characteristics and Guidelines for
Their Use (1991)

8. Suzuki, M., Maruyama, K., Aoki, T., Washizaki, H., Aoyama, M.: A Research
Study on Realization of Componentware Technology, Research Institute of Software
Engineering (2003)

9. Aoyama, M., et al.: Software Commerce Broker over the Internet. In: Proc. 22nd
IEEE Annual International Computer Software and Applications Conference (1998)

10. Hamilton, G.: JavaBeans 1.01 Specification, Sun Microsystems (1997)

11. Sedigh-Ali, S., et al.: Software Engineering Metrics for COTS-Based Systems, Com-
puter, vol. 34(5) (2001)

12. Binder, R.: Design for Testability in Object-Oriented Systems. Communications of
the ACM 37(9) (1994)

13. JARS.COM: Java Applet Rating Service, http://www.jars.com/

14. Glass, G.V., Hopkins, K.D.: Statistical Methods in Education and Psychology.
Allyn & Bacon, MA (1996)

15. Al-Kilidar, H., et al.: The use and usefulness of the ISO/IEC 9126 quality standard.
In: Proc. 4th International Symposium on Empirical Software Engineering (2005)

16. Chidamber, S., Kemerer, C.: A Metrics Suite for Object Oriented Design. IEEE
Transactions on Software Engineering 20(6) (1994)

http://www.jars.com/

Software Cost Estimation Inhibitors - A Case Study

Ana Magazinovic, Joakim Pernstél, and Peter Ohman

Chalmers, Computer Science and Engineering
SE —421 96 Gothenburg, Sweden
{ana.magazinovic, pernstal, peter.ohman}@chalmers.se

Abstract. Software cost estimation errors are increasing in the automotive in-
dustry along with the number of software components in modern vehicles. As
the software cost estimation is an important and problematic part of project
planning there is a need of process improvement to decrease estimation errors.
However, to improve the process of cost estimation there is a need to explore
whether the perceived cost estimation problem is an estimation problem or if it
is a management problem. This paper focuses on inhibitors in the process of
software cost estimation in system development projects and reports the results
of a study carried out at a Swedish automotive company in order to gain an un-
derstanding for the factors that affect the cost estimation process.

Keywords: Cost Estimation, Case Study, Empirical Software Engineering,
Automotive Systems.

1 Introduction and Related Work

Cost estimation is an important part of the project planning process. The issue was
addressed by Lederer and Prasad [1] who found that the average importance rating
among the software managers and other professionals participating in their study was
highly important. Most software organizations find the cost estimation activity to be a
necessary part of project planning. According to Heemstra [2] 65% of the organiza-
tions estimate projects as a rule, and Lederer and Prasad [1] wrote that 87% of organi-
zations’ large projects are estimated.

Just as cost estimation is an important part of project planning, it is also considered
a problem. In their paper [3] Moores and Edwards report that 91% of the companies
in their study see cost estimation as a problem.

While the figures above are taken from studies concentrating on software industry
the amount of software in embedded vehicle systems is increasing and the automotive
industry is facing the same problems as the software industry. For the last 30 years the
share of electronics and software has grown exponentially in vehicles since the major
part of new innovations is realized with software and electronics. According to Grimm
[4] and Broy [5] up to 40% of production costs are spent on electronic components and
software in premium cars. Today's premium cars contain approximately 70 Electronic
Control Units (ECU) controlling infotainment, climate and speed, and new communica-
tion networks are added continuously. Further, the new software based systems tend to
become more complex which makes cost estimation even more difficult.

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 612008.
© Springer-Verlag Berlin Heidelberg 2008

62 A. Magazinovic, J. Pernstal, and P. Ohman

With small profit margins in the automotive industry on the one hand and cost
overruns in the software industry [1, 6] on the other improved cost estimation process
in software development projects is needed to increase cost control. The factors that
affect the process of cost estimation need to be explored and understood before a cost
estimation method can be proposed and adjusted to the company.

From a research point of view [7], over 50% of the efforts made in the area of
Software Cost Estimation research is concentrated on examining the different meth-
ods used to estimate effort and cost of software development, such as expert judgment
[8, 9], algorithmic models [10] and estimation by analogy [11]. Much of the work has
been spent on developing own methods and on history based evolution. However,
there are exceptions that point to the need of research concerning organizational is-
sues such as problems created by management and politics. In Laderer and Prasad
paper [6] one of the conclusions is that political and management control issues
should be given more attention in cost estimation research, and Kitchenham writes in
her book [12] that before improving the estimation process, there is a need to explore
whether the problem is really an estimation problem and not a management problem.

The studies investigating the causes of cost estimation errors, such as the Phan et
al. study involving software professionals from 191 organizations [13], the van
Genuchten study involving project managers responsible for cost estimation in six
different projects [14], the Lederer and Prasad study with 112 software professionals
in different organizations [1, 6] and the Subramanian and Breslawski [15] study in-
volving project managers representing 45 different projects, are mainly based on a set
of predefined questions and are regretfully suffering from low response rates.

The purpose of this paper is to revisit the research question in order to explore
whether responses would be consistent using qualitative methodology. The results
will be compared to the results of the Lederer and Prasad study [1, 6], thus the re-
search question is designed to respond to the second part of the research question
presented in the Lederer and Prasad study [1, 6]: “What causes do actually predict
inaccurate cost estimates?””:

RQO: What underlying factors affect the process of software cost
estimation in system development projects?

To answer the research question an exploratory case study was designed and car-
ried out at Volvo Car Corporation (VCC). Eleven interviews were conducted involv-
ing both functional and project managers and other professionals in the Electrical and
Electronic Systems Engineering Unit at VCC.

2 Methodology

The qualitative study underlying this paper was conducted as an exploratory single
case study as the research question is of exploratory nature and the study focuses on
contemporary events, without any possibility to manipulate behavior directly, pre-
cisely and systematically.

According to Yin [16], six sources of evidence are most commonly used in case
studies, namely documentation, archival records, interviews, direct observations,
participant observations and physical events. The interviews were chosen as the pri-
mary source of evidence. Direct observation was provided by one of the researchers

Software Cost Estimation Inhibitors - A Case Study 63

who spent a one-week field trip at the company, and participant observation was
added by the other researcher working at the company. However, the archival records
and documentation (time spent on projects, costs etc) were found to be insufficient for
triangulation of results due to unreliable time reports.

To increase the reliability of the results the investigator triangulation was per-
formed. The study was performed by a team of two researchers, present during data
collection and data analysis.

2.1 Case Selection

This study took place at the Electrical and Electronics Systems Engineering Unit at
Volvo Car Corporation (VCC). Volvo Car Corporation was sold to the Ford Motor
Company (FMC) by the Volvo Group in 1999 with FMC as a sole owner. Since then,
VCC has produced 450 000 units per year, where safety has been made their
trademark.

The selection of interviewees was made with the help of senior researchers with
knowledge of the VCC organization and of industry partners working at the company.
The selection criteria consisted of work experience, experience of the company, posi-
tion at the company, and familiarity with external factors affecting the process of cost
estimation such as contact with suppliers and the owner of VCC, FMC.

The matrix organization [17] of VCC needed to be considered due to budget divi-
sion between the functional and the project parts of the organization. The budget for
the functional part of the organization includes component costs; development costs
are included in the project budget.

The interviews were conducted during the late spring of 2007. Ten of the inter-
viewees had eight to 28 years of experience at VCC; one had worked at the company
for 13 months. The majority of the interviewees had been working at the company
since the time before FMC took over ownership. All had more than eight years of
work experience.

The interviewees were chosen such that they would reflect the organization. Nine
were part of the project organization, ranging from concept phase managers to devel-
opment managers and managers on high and low levels. Two of the interviewees were
chosen to represent the functional part of the organization.

2.2 Data Collection

Data were collected using semi-structured interviews as the main source of evidence.
Some observational and participatory input was provided by the research team con-
ducting the study. Both of the researchers were present during the interviews. One of
the researchers had the role of interviewer and listener, the other wrote down the
interview.

2.2.1 Collecting the Background Information

One of the researchers spent one week at the company in order to increase the under-
standing of the company structure, development processes, jargon and product. The
second researcher had eight years of experience in the company, working in the
manufacturing department.

64 A. Magazinovic, J. Pernstal, and P. Ohman

2.2.2 Interviews
The interviews held were semi-structured to allow the two-way communication
needed to perform this exploratory study. An interview guide was created and adapted
to the jargon at the company. It was reviewed by senior researchers to assure the qual-
ity of the contents of the questions and by industry representatives in order to assure
the understandability of the questions.

The interviewees received an introduction to the study in advance. Sample ques-
tions were included.

Six focus areas were developed and used during the interviews to answer the re-
search question:

1. Cost and time estimation process deals with the purpose of finding out how the
estimation work is done, whether any kind of methodology is used with any tem-
plates and process descriptions to be followed, whether the people involved in
producing estimates find the methodology, the templates and process descriptions
helpful, how the estimates are reported and to whom.

2. Factors affecting the individual estimates focuses on the work done by the indi-
vidual and factors that affect this work. The focus was on finding out whether
those who work with estimates discuss their estimates with anyone, how those
people affect the estimators’ decisions and whether there are other factors in-
volved than calculations made by interviewees or others.

3. People who have an influence on the estimates focuses on the groups dealing
with the estimates (if such groups exist). The purpose was to find out how the or-
ganizational structure affects the estimates, whether there are groups that pro-
duce/review the estimates or whether it is one-man job. If such groups exist the
focus was to be on exploring the group culture, communication and the priority
the estimates were given during their group meetings.

4. Usage of the estimates focuses on if and how the estimates are used, and if they
are considered to be useful.

5. Modification of the estimates focuses on understanding whether and how the
estimates are updated, whether there are formal occasions for doing this and, if
s0, how the estimators perceived those meetings.

6. Efficiency of the estimation work focuses on the time that the estimation work
takes versus the usefulness of the final estimates, including their correctness.

The interviews were conducted by two researchers to increase the amount of data
collected as suggested by Anda and Hove [18]. One had the role of interviewer and
listener, and the other wrote down the interview. As issues related to economy are
considered to be sensitive [18], the interviews were not recorded. The most sensitive
questions were asked late in the interview. The focus was not on the exact figures,
taking the edge off the most sensitive questions.

Directly after the interviews, the data collected were reviewed and the interviews
were summarized in order to gain as much useful data as possible.

2.3 Data Analysis

To increase the validity of the results the data were analyzed separately by the two
researchers. Each researcher made an independent analysis of the data collected. The

Software Cost Estimation Inhibitors - A Case Study 65

independent results were compared to inspect the validity of the results. The validity
was found to be sufficient. A list was agreed upon that contained 14 issues.

The results were discussed and reviewed by senior researchers to verify the quality
of the work done and its results. A group of industry representatives reviewed the list
to verify that the issues were not misunderstood. All the steps were documented to
ensure traceability.

3 Analysis

This chapter is outlined as follows. First the results of the underlying case study are
presented. The issue abstraction level was chosen to correspond to the abstraction
level of the issues reported in the compared study in order to make the second part of
the analysis possible, namely the validation of the results found in the Lederer and
Prasad study [6].

The issues found in the study underlying this paper not present in the Lederer and
Prasad study [6] are also compared to other literature in the last part of the analysis.

3.1 Analysis of the VCC Results

The interviewees, who all belong to the Electrical and Electronics Systems Engineer-
ing Unit, state that the understanding of how software is developed is inadequate in
the other parts of the company, leading to many of the issues mentioned below. Volvo
Car Corporation (VCC) is a company that has, like the rest of automotive industry,
relied mainly on mechanical components for many years. The development process at
the company has not yet been fully adapted to the increasing development of software
and electronic components.

The interviewees stated that they use expert judgment approach and to some extent
also analogy to past projects. Both fop-down and bottom-up [19] estimates are made
in order to get the most realistic cost estimate possible when making estimates for
new products.

The price per hour for a developer is fixed, regardless of which developer does the
work. The price includes overhead costs and is calculated annually for all of VCC.
The estimated costs are calculated by multiplying estimated effort (in hours) and the
developer cost (per hour).

The list of issues identified contains 14 issues:

1. There is an error in tracking the actual project costs leading to difficulties when
comparing them to the estimated costs. All the development time spent on a pro-
ject is not reported by the developers, and is sometimes reported as being done on
another project.

2. The project organization does not exclusively own the relationship to the suppli-
ers leading to conflict of interest. The interviewees state that, because the project
and functional parts of organization have separate budgets including development
costs in the project budget and component costs in the functional budget, there is
a lack of cooperation between them, making estimation work more difficult.

3. The satisfaction with time spent on estimates is low among the interviewees.
Some of them find the time spent on estimates to be too low, and wish that more

66

10.

11.

12.

13.

14.

A. Magazinovic, J. Pernstal, and P. Ohman

time could be spent on estimates in order to make them more accurate and de-
tailed. Others believe that the estimates are a waste of time, time that should be
spent on technical tasks instead.

Management estimation goals are not taken seriously. The estimation errors that
the interviewees state are considered acceptable do not correspond to manage-
ment estimation accuracy goals.

Dependences of other projects are not taken into account when estimating costs.
The staff resources might be moved to other, more critical projects to meet the
deadlines.

Unclear requirements make it difficult to know what is to be developed and es-
timated. Especially producing early estimates for new technology is found to be
difficult.

Changes in requirements are allowed late in the development process. These are
difficult to foresee, making estimation work more difficult.

The padding is removed from the estimates when detected by management. This
is compensated by padding added at a higher level in the organization hierarchy.
Unrealistic estimates are presented at the project milestones in order for the
project to continue. There is a belief that the development work must be done in
any case and the estimates presented are sometimes too optimistic.

The estimates are affected by the budget and management goals, such as cost
savings and efficiency demands, leading sometimes to too optimistic estimates.
Different company cultures and estimation techniques lead to difficulties when
communicating estimates to FMC representatives. The cooperation between the
companies is aggravated by different cultures in terms of development, estima-
tion methodology, management and politics.

There is a lack of competence in estimating costs for development done by sup-
pliers. The interviewees also express frustration over lack of competence when
reviewing prices proposed by suppliers, as well as when estimating suppliers’
abilities to finalize the project successfully. The company has a team that revises
cost estimates for hardware components developed by suppliers. However, no
such service is provided for software development, making it difficult to estimate
the future costs of development work done by the suppliers as well as understand
whether prices suggested by suppliers are reasonable or not.

There is no common template for estimates. Opinions about what template there
is for the purpose of cost estimation differ, from no template at all to different
kinds of documents that could be used to provide support while making esti-
mates.

There is a lack of estimation competence and the existing estimation competence
is not used properly. The interviewees state that there is in-house development of
software components and that it would be preferable to use this competence when
making estimates.

3.2 Validation of Lederer and Prasad Top Issues [6]

The Lederer and Prasad study [6] was conducted in the form of a questionnaire, sent
out to 400 software professionals and answered by 112, resulting in 16 top factors
correlated to estimation inaccuracy.

Software Cost Estimation Inhibitors - A Case Study 67

The issues found in the study underlying this paper were categorized in the same
manner as in the Lederer and Prasad paper [6], focusing on four categories: Method-
ology issues that affect the tuning of the estimate, management issues dealing with
project control, user communication issues and politic issues.

Table 1. User communication issues compared to issues found buy Lederer and Prasad [6]

VCC issues Lederer and Prasad issues [6]
- L&P 17. Users’ lack of understanding of their own|
requirements.
VCC 7. Changes in requirementslL&P 14. Frequent request for changes by users
are allowed late in the development]

rocess.

- L&P 16. Users’ lack of data processing
understanding

IVCC 6. Unclear requirements. IL&P 10. Poor or imprecise problem definition

Two of the Lederer and Prasad user communication issues [6], found in table 1,
were validated by the issues found in this study, two could not be validated.

The interviewees participating in this study mention problems in estimation proc-
ess due to requests for change late in the development process (VCC 7) and unclear
requirements (VCC 7) increasing the uncertainty of the estimate.

Table 2. Methodology issues compared to issues found by Lederer and Prasad [6]

VCC issues Lederer and Prasad issues [6]
'VCC 13. There is no common template for L&P 3. Lack of adequate methodology or
estimates. guidelines for estimating
IVCC 1. There is an error in tracking the pro- L&P 12. Inability to tell where past estimates

ject costs leading to difficulties while compar-{failed
ing them to the estimated costs.
- IL&P 5. Lack of setting and review of standard
durations for use in estimating

VCC 14. There is a lack of estimation compe- |[L&P 13. Insufficient analysis when developing
tence and the existing estimation competence [the estimate

is not used properly.
IVCC 2. The project organization does not L&P 4. Lack of coordination of systems devel-
exclusively own the relationship to the sup- jopment, technical services, operations, data
pliers leading to conflict of interest. administration etc. functions during the devel-
opment.

Among the methodology issues found by Lederer and Prasad [6] (table 2) four are
validated by the issues found in this study. One of the issues could not be validated,
namely L&P 5 Lack of setting and review of standard durations for use in estimating.

VCCI, There is an error in tracking the project costs leading to difficulties while
comparing them to the estimated costs, leads to inability to learn from past mistakes.
L&P 12, Inability to tell where past estimates failed, addresses this issue as well.

68 A. Magazinovic, J. Pernstal, and P. Ohman

VCC 13, There is no common template for estimates, is compared to L&P 3, Lack
of adequate methodology or guidelines for estimating [6]. The problem, as perceived
by the interviewees in the study underlying this paper, is usage of different, more or
less official templates, if any. There seems to be no common template, or if there is
such a template, there are difficulties with communicating it to the employees.

The interviewees also state that there is a lack of estimation competence and the
existing competence is not used properly (VCC 14) which corresponds to L&P 13,
Insufficient analysis when developing the estimate.

VCC 2, The project organization does not exclusively own the relationship to the
suppliers leading to conflict of interest corresponds to some extent to issue 4, found
by Lederer and Prasad [6], Lack of coordination of systems development, technical
services, operations, data administration etc. functions during the development.

Table 3. Politic issues compared to issues found by Lederer and Prasad [6]

VCC issues Lederer and Prasad issues [6]
VCC 10. The estimates are affected by thelL&P 22. Pressures from managers, users orf
budget and management goals. others to increase or reduce the estimate

(VCC 9. Unrealistic estimates are presented af
the project milestones, in order for the project
to continue.)

- L&P 21. Reduction of project scope or quality to
stay within estimate, resulting in extra work later
IVCC 8. The padding is removed from thelL&P 20. Removal of padding from estimate by
estimates when detected by management. manager

- L&P 19. Red tape (paperwork)

VCC 11. Different company cultures and-
estimation techniques lead to difficulties
when communicating estimates to the FMC|
representatives.

IVCC 12. There is a lack of competence in-
estimating costs for development done byj
suppliers.

Three of the politic issues (table 3) found by Lederer and Prasad [6] were validated
by the issues found in this study, L&P 19, Red tape, could not be validated.

VCC 10, The estimates are affected by the budget and management goals corre-
sponds to L&P 22, Pressures from managers, users or others to increase or reduce
the estimate. This, together with removal of padding (VCC 8, L&P 20) leaves less
room for risk management.

Two new issues emerged in this study that were not mentioned by Lederer and
Prasad [6], namely VCC 11, Different company cultures and estimation techniques
lead to difficulties when communicating estimates to the FMC representatives and
VCC 12, There is a lack of competence in estimating costs for development done by
suppliers.

Software Cost Estimation Inhibitors - A Case Study 69

Table 4. Management issues compared to issues found by Lederer and Prasad [6]

VCC issues Lederer and Prasad issues [6]
IVCC 1. There is an error in tracking thelL&P 18.Performance reviews don’t consider whether|
project costs leading to difficultieslestimates were met
while comparing them to the estimated[L&P 8. Lack of project control comparing estimates|
costs. and actual performance

- IL&P 24. Lack of careful examination of the estimate
by Information Systems Department management
VCC 3. The satisfaction with time spent| -

on estimates is low.
IVCC 4. Management estimation goals -
lare not taken seriously.
IVCC 5. Dependences of other projects| -
are not taken into account when esti-
mating costs.

Among the Lederer and Prasad issues [6] in the management category presented in
table 4, two are validated by the results of this study, L&P 24, Lack of careful exami-
nation of the estimate by Information Systems Department management, could not be
validated.

VCC 1, There is an error in tracking the project costs leading to difficulties while
comparing them to the estimated costs, mentioned also among the issues in table 2,
leads to L&P 8, Lack of project control comparing estimates and actual performance
as well as the inability to consider whether estimates were met (L&P 18).

Three new issues emerged in this study that did not correspond to the issues found
by Lederer and Prasad [6], namely VCC 3, The satisfaction with time spent on esti-
mates is low, and VCC 4, Management estimation goals are not taken seriously,
VCC 5, Dependences of other projects are not taken into account when estimating
costs.

3.3 Comparison to Other Literature

Five of the issues found in this study are not confirmed by the issues found by
Lederer and Prasad [6], se table 5. In order to investigate the validity of those issues,
the comparison to other literature was made.

VCC 3, The satisfaction with time spent on estimates is low, VCC 4, Management
estimation goals are not taken seriously, and VCC 5, Dependences of other projects
are not taken into account when estimating costs addresses the problems described in
Van Genuchten paper [14]: No commitment by personnel to the plan and Priority
shifts.

The problematic relationship between vendor and supplier, mentioned in VCC 12,
There is a lack of competence in assessing suppliers’ estimates and resources, has
been discussed by many researchers, Bruce et al [20] describe in their paper both risks
and negative experiences associated with such collaborations. They mention more
costly and complicated development, loss of control ownership and differing aims and
objectives leading to conflicts.

70 A. Magazinovic, J. Pernstal, and P. Ohman

VCC 11, Different company cultures and estimation techniques lead to difficulties
when communicating estimates to the FMC representatives, could not be confirmed
by other software engineering literature.

Table 5. VCC issues not reported in the Lederer and Prasad paper [6]

VCC 3: The satisfaction with time spent on estimates is low.

VCC 4: Management estimation goals are not taken seriously.

VCC 5: Dependences of other projects are not taken into account when estimating
costs.

VCC 11: Different company cultures and estimation techniques lead to difficulties
when communicating estimates to the FMC representatives.

VCC 12: There is a lack of competence in assessing suppliers’ estimates and re-
sources.

4 Discussion of Results and Validity

The objective of the study reported here was to elicit the factors that affect the process
of software cost estimation in system development projects. The study was performed
at Volvo Car Corporation.

The paper focuses on the factors that affect the process of cost estimation
negatively. The analysis was divided in tree parts, analysis of the results of the study
underlying this paper, validation of the results of a quantitative study [1, 6] with a
similar purpose and comparison of the issues found in this study that were not present
among the issues in the comparing study [1, 6] to other software engineering
literature.

4.1 Discussion of Results

The results of this study were used for validation of top 16 issues reported in the
Lederer and Prasad paper [6] . 62,5% of the Lederer and Prasad issues [6] were vali-
dated by the results of the study underlying this paper.

Five issues were found in this study were nor reported by Lederer and Prasad [6].
A comparison of those issues to other software engineering literature was made.

Looking at the methodology issues it can be seen that the prerequisites for success-
fully using the methodologies mentioned by the interviewees in the study underlying
this paper are insufficient. Experts should be used to make successful expert judg-
ment. This is contradicted by the VCC 14, There is a lack of estimation competence
and the existing estimation competence is not used properly. To make analogies to
earlier projects, those projects must be documented, both as concerns the results and
estimates. However, VCC 1 states that There is an error in tracking the project costs
leading to difficulties when comparing them to the estimated costs. Not being able to
compare estimates with the results makes it impossible to understand which (if any)
parts of the estimates were too optimistic or pessimistic. Inadequate time reports by
the developers and not reporting which projects they spend time on make it impossi-
ble to know how much each project actually costs.

Software Cost Estimation Inhibitors - A Case Study 71

Delays in a certain project might lead to changes in plans for other ongoing or
forthcoming projects (VCC 5, Dependences of other projects are not taken into ac-
count when estimating costs). The delays can be more or less permanent, making the
comparison of early estimates and results even harder.

The interviewees state that the development work must be done properly, no matter
what the situation, and that the start of production must not be delayed. This attitude,
together with management goals for cost savings and greater efficiency, could lead to
producing optimistic estimates in order to be able to continue the project. The man-
agement goals for increased effectiveness and savings are also believed to lead to
unrealistic estimates (se VCC 4, Management estimation goals are not taken seriously
and VCC 10, The estimates are affected by the budget and management goals)

To make estimates as accurate as possible including suppliers’ prices, the func-
tional and project parts of the organization must be able to cooperate. However,
cooperation is complicated by their budgets being separated which might lead to
competition instead of cooperation (VCC 2, The project organization does not exclu-
sively own the relationship to the suppliers leading to conflict of interest).

Among the politic issues (table 3) there is a connection that points toward a sense
of frustration over the way the estimates are handled. The management and budget
goals (VCC 10, The estimates are affected by the budget and management goals) lead
to reducing the estimates and removing padding (VCC 8, The padding is removed
from the estimates when detected by management). There also seems to be frustration
over unsatisfactory communication with suppliers and FMC representatives.

VCC 5, Unclear requirements, (user communication issues, table 1) is an impor-
tant issue in terms of estimates. Not knowing at an early stage what is to be developed
is tantamount to not knowing what is to be estimated and paid for. Allowing changes
in requirements late in the development process (VCC 7) adds to the uncertainty in
early estimates.

The differences between the results reported by Lederer and Prasad [6] and the re-
sults reported in this paper could depend on several reasons. VCC is a company with
a long history of primarily mechanical development with development processes not
fully adapted to increasing amount of software components. The participants in the
Lederer and Prasad are spread in several different industries.

Also, issues VCC 5, Dependences of other projects are not taken into account
when estimating costs, VCC 11, Different company cultures and estimation tech-
niques lead to difficulties when communicating estimates to the FMC representatives
and VCC 12, There is a lack of competence in assessing suppliers’ estimates and
resources point at the fact that estimation of effort in a project can not be viewed as
an isolated event in a multi project environment with stakeholders outside the organi-
zation in question.

4.2 Validity Discussion

To increase construct validity investigator triangulation (two evaluators) was per-
formed. A team of two researchers was present during the data collection and data
analysis. During data analysis each of the researchers performed the analysis inde-
pendently. The independent results were compared and merged to a list of 14 issues.

72 A. Magazinovic, J. Pernstal, and P. Ohman

One of the researchers has been working at the VCC’s unit of Manufacturing En-
gineering for 8 years. However, the unit of Manufacturing Engineering has not been a
part of the study; the study was performed at the Electronics development department.

The chain of evidence was established and maintained from the case study
questions and protocol to summarized interviews and the study report. The key infor-
mants, in this case both senior researchers and representatives from the industry fol-
lowed the study and were invited to review the results before publication. The reports
were written in a way that did not disclose the identity of the participants in the study.

According to Yin [16], the infernal validity is an important issue mainly in ex-
planatory studies. Internal validity is increased by establishing a causal relationship
where certain conditions lead to other conditions. In the study presented here the
problem of interviewee not feeling comfortable in talking about the sensitive issues
such as presenting unrealistic estimates could be discussed. To increase interviewees’
trust the interviews were not recorded and interviewees were guarantied anonymity.

To increase the external validity of this case study the results of the similar studies
were used to triangulate the results. Only one of the issues found in this study was not
confirmed by other software engineering literature. Similarities found lead to believe
that the generalization might be possible.

To increase reliability it must be ensured that the study can be repeated, with the
same results, according to Yin [16]. This case study was carefully documented in
order to make it possible for it to be replicated later on. All the data have been stored,
linking the case study protocol with interview summaries, citations and the results
database.

5 Summary

The purpose of the study that this paper is based on was to explore whether there are
any underlying factors that affect the process of software cost estimation in systems
development projects. The case study was conducted at Volvo Car Corporation. 14
inhibitors were reported in this paper and used to validate the results of a quantitative
study with a similar objective [6]. 62,5% of the issues found in the qualitative study
were validated by this study, the rest could not be confirmed.

The findings of the study underlying this paper were compared to other existing
software engineering literature in order to triangulate the results. Only one of the
issues could not be confirmed.

Future Work

To improve the process of cost and effort estimation, the organizational issues should
be explored further. In this study the organizational issues were divided among the
management, politic and to some extent user communication and methodological
issues in order to mirror the Lederer and Prasad study [6], however, many of these
issues are interdependent and we suggest a classification in to organizational and
methodological issues instead to simplify further studies.

Observing the results of this and similar studies there seems to be a lack of deeper
analysis, such as root cause analysis, and usage of external theory that could explain
the issues found. This issue should be addressed in forthcoming studies.

Software Cost Estimation Inhibitors - A Case Study 73

Acknowledgements

This research has been conducted within the COSY project which is funded by the
Swedish industry and government joint research program IVSS — Intelligent Vehicle
Safety Systems.

We would like to thank the Volvo Car Corporation for giving us the opportunity to
conduct this study, and the interviewees that participated in the study for taking time
from their busy schedules in order to help us.

Also, we would like to thank associated professor Sofia Borjesson at Technology,
Management and Economics department at Chalmers University of Technology for
valuable input during the phases of preparation, analysis and reporting.

References

1. Lederer, A.L., Prasad, J.: Informations systems software cost estimating: a current assess-
ment. Journal of information technology 8(1), 22-33 (1993)

2. Heemstra, F.J.: Software cost estimation. Information and Software Technology 34(10),
627-639 (1992)

3. Moores, T.T., Edwards, J.S.: Could Large UK Corporations and Computing Companies
Use Software Cost Estimating Tools?-A Survey. European Journal of Information Sys-
tems 1(5), 311-319 (1992)

4. Grimm, K.: Software technology in an automotive company - major challenges. In: Pro-
ceedings of 25th International Conference on Software Engineering, pp. 498-503 (2003)

5. Broy, M.: Challenges in automotive software engineering. In: Proceeding of the 28th in-
ternational conference on Software engineering, pp. 33—42 (2006)

6. Lederer, A.L., Prasad, J.: Causes of inaccurate software development cost estimates. Jour-
nal of Systems and Software 31(2), 125-134 (1995)

7. Jgrgensen, M., Sheppard, M.: A Systematic Review of Software Development Cost Esti-
mation Studies. IEEE Transactions on Software Engineering 33(1), 33-53 (2007)

8. Hill, J., Thomas, L.C., Allenb, D.E.: Experts’ estimates of task durations in software de-
velopment projects. International Journal of Project Management 18(1), 13-21 (2000)

9. Hughes, R.T.: Expert judgement as an estimating method. Information and Software Tech-
nology 38(2), 67-75 (1996)

10. Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., Selby, R.: Cost models
for future software life cycle processes: COCOMO 2.0. Annals of Software Engineer-
ing 1(1), 57-94 (1995)

11. Shepperd, M., Schofield, C.: Estimating software project effort using analogies. IEEE
Transactions on Software Engineering 32(11), 736-743 (1997)

12. Kitchenham, B.: Software Metrics: Measurement for Software Process Improvement.
Blackwell Publishers, Malden (1996)

13. Phan, D., Vogel, D., Nunamaker, J.: The Search for Perfect Project Management. Com-
puterworld, 97-100 (1988)

14. van Genuchten, M.: Why is software late? An empirical study of reasons for delay insoft-
ware development. IEEE Transactions on Software Engineering 17(6), 582-590 (1991)

15. Subramanian, G.H., Breslawski, S.: An empirical analysis of software effort estimate al-
terations. Journal of Systems and Software 31(2), 135-141 (1995)

16. Yin, R.: Case study research: design and methods, 3rd edn. (2003)

74

19.

20.

A. Magazinovic, J. Pernstal, and P. Ohman

. Buchanan, D.A., Huczynski, A.: Organizational Behaviour: An Introductory Text. Pren-

tice-Hall, Englewood Cliffs (1997)

. Anda, B., Hove, S.E.: Experiences from Conducting Semi-structured Interviews in Em-

pirical Software Engineering Research. In: Proceedings of the 11th IEEE International
Software Metrics Symposium (METRICS 2005) (2005)

Jgrgensen, M.: Top-down and bottom-up expert estimation of software development ef-
fort. Information and Software Technology 46(1), 3-16 (2004)

Bruce, M., Leverick, F., Littler, D., Wilson, D.: Success factors for collaborative product
development: a study of suppliers of information and communication technology. R&D
Management 25(1), 33—44 (1995)

Impact of Base Functional Component Types on Software
Functional Size Based Effort Estimation

Luigi Buglione' and Cigdem Gencel®

"Ecole de Technologie Supérieure (ETS) / Engineering.it
Luigi.Buglione@computer.org
? Blekinge Institute of Technology, Department of Systems and Software Engineering
cigdem.gencel@bth.se

Abstract. Software effort estimation is still a significant challenge for software
management. Although Functional Size Measurement (FSM) methods have
been standardized and have become widely used by the software organizations,
the relationship between functional size and development effort still needs fur-
ther investigation. Most of the studies focus on the project cost drivers and con-
sider total software functional size as the primary input to estimation models. In
this study, we investigate whether using the functional sizes of different func-
tionality types, represented by the Base Functional Component (BFC) types; in-
stead of using the total single size figure have a significant impact on estimation
reliability. For the empirical study, we used the projects data in the International
Software Benchmarking Standards Group (ISBSG) Release 10 dataset, which
were sized by the COSMIC FSM method.

Keywords: Functional Size Measurement, Effort Estimation, COSMIC, Base
Functional Component, International Software Benchmarking Standards Group
(ISBSG).

1 Introduction

Forty years after the term ‘“‘software engineering” was coined [28] great effort has
been put forth to identify and fine tune the “software process” and its proper man-
agement. Unique tools and techniques have been developed for software size, effort,
and cost estimation to address challenges facing the management of software devel-
opment projects [16][42][45].

A considerable amount of these efforts have been put on software size measure-
ment based on the fact that software size is the key measure. Function Point Analysis
(FPA) was designed initially in 1979 [1] by Albrecht. This method was aimed at
overcoming some of the shortcomings of measures based on Source Lines of Code
(SLOC) for estimation purposes and productivity analysis, such as their availability
only fairly late in the development process and their technology dependence.

FPA method was based on the idea of determining size based on capturing the
amount of functionality laid out on software functional requirements. They take into
account only those elements in the application layer that are logically ‘visible’ to the

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 75 2008.
© Springer-Verlag Berlin Heidelberg 2008

76 L. Buglione and C. Gencel

user and not the technology or the software development methodology used. Since the
introduction of the concept, the topic of FPA evolved quite a bit. Many variations and
improvements on the original idea were suggested [11], some of which proved to be
milestones in the development of Functional Size Measurement (FSM).

FPA was designed in a business application environment and has become a de
facto standard for this community. During the following years, a large number of
variants for both business application software and for other application domains
(such as real-time, Web, Object Oriented, and data warehouse systems)1 were devel-
oped. In the "90s, work was initiated at the International Organization for Standardi-
zation (ISO) level to lay the common principles and foundations for regulating de jure
standards in FSM. Between 1998 and 2005, the 14143 standard family was developed
[31]% [33]-[37] with four instantiations matching with those requirements; the Com-
mon Software Measurement International Consortium Full Function Points (COSMIC
FFP) [38][46] the International Function Point Users Group (IFPUG) FPA [39][43],
MarkIl FPA [40][44] and the Netherlands Software Metrics Association (NESMA)
FSM [41] methods. A fifth FSM method, the Finnish one by FISMA [48], will be
standardized in a while. The evolution of current FSM methods is shown in Figure 1.

COSMIC-FFP w21 | |COSMIC-FFP v2.2 COSMIC w30
2001 2007

COSMIC-FFP 2.0
1959
NESMA v1.0 NESMA v2.0 NESMAw21| .
e Pt 1880 1986 2002
| Albrecht ! Albracht Albrecht | IFPUG v3.4 IFPUG v4.0 IFPUG v 1 | IFPUG w42
Lo1ars 1979 1984 1990 1994 1993 | 2004
.
" Markil vi0 Markil w131
1988 1902

Fig. 1. Evolution of the main Functional Size Measurement (FSM) methods

Among those, COosSMIC? [46] adopted in 2003 as ISO 19761 [38], has been defined
as a 2™ generation FSM method as a result of a series of innovations, such as a better fit
with both real-time and business application environments, identification and measure-
ment of multiple software layers, different perspectives of functional users from which
the software can be observed and measured, and the absence of a weighting system.

Due to these constructive progresses, FSM has begun to be widely used for soft-
ware size measurement. The number of benchmarking data on the projects which
were measured by FSM methods has significantly increased in well-known and rec-
ognized benchmarks such as the one by ISBSG [13] with more than 4,100 projects.
On the other hand, one of the major uses of software size measurement is its use in
software effort estimation for software management purposes. However, effort esti-
mation still remains a challenge for software practitioners and researchers.

!Please refer to [42] and [11] for a detailed list and a history of FSM-like methods.

2 Part 1 (14143-1) has recently been updated (February 2007) [32] from its first release [31]
(1998).

3 From version 3.0, the old name of this method (COSMIC-FFP) is become simply ‘COSMIC’.

Impact of Base Functional Component Types on Software Functional Size 77

Effort estimation based on the functional size figures have just begun to emerge as
more empirical data are collected in benchmarking datasets as in ISBSG dataset. The
nature of the relationship between functional size and effort has been explored in
many studies (see Section 2). The project related attributes such as ‘“Team Size’, ‘Pro-
gramming Language Type’, ‘Organization Type’, ‘Business Area Type’ and ‘Appli-
cation Type’ were considered in the estimation models. However, the common
conclusion of these studies was that although different models are successfully used
by different groups and for particular domains, none of them has gained general ac-
ceptance by the software community due to the fact that no model is considered to
perform well enough to fully meet market needs and expectations.

The general approach of the existing studies is the functional size of a software
system is expressed as a single value obtained by a specific FSM method. This single
value is derived from a measurement function in all ISO-certified FSM methods, and
it is the result of adding together the functional sizes of different Base Functional
Component (BEC)* Types to obtain a total functional size. Each BFC Type represents
different type of functionality to be provided to the users.

In our previous study [47], we made an analysis on the ISBSG dataset to test our
hypothesis which states that the effort required to develop the unit size of each of the
BFC Types, which provide different user functionalities is different and hence con-
tributes to total effort at different levels. The results showed that using the functional
sizes of each BFC Type as inputs to effort estimation improve the estimation reliabil-
ity. In that study, we considered ‘Application Type’ to form the homogenous sub-
groups of projects for the statistical analysis.

In the study presented here, we further investigate the contribution of different
functionality types represented by BFC Types to total development effort. We again
utilized the project data, which were measured by COSMIC-FFP [46] in the ISBSG
dataset Release 10 [13]. In this case, we formed the sub-groups of projects with re-
spect to ‘Development Type’. Then, we made Pareto analysis to further investigate
the effect of the size of the projects on the estimation reliability. We also analyzed the
distribution of different BFC Types in different Application Types.

The paper is organized as follows: Section 2 presents some background on functional
size measurement and related work on its relationship to project effort. Section 3
presents the data preparation process. Section 4 presents the data analysis and Section 5,
the conclusions of this study.

2 Related Work

There is a large body of literature on software effort estimation models and techniques
in which a discussion on the relationship between software size and effort as a pri-
mary predictor has been included, such as [2][5][6][14][15][17][18].

Other factors related to non-functional characteristics of software projects are also
included in many estimation models. Significant variations on the impact of other
project cost drivers have been observed. Therefore a number of experimental studies
were performed to investigate their impact on the size-effort relationship. Among the

* BEC Type: A defined category of BECs. A BEC is an elementary unit of an FUR defined by
and used by an FSM method for measurement purposes [31].

78 L. Buglione and C. Gencel

cost drivers investigated, ‘Team Size’, ‘Programming Language Type’, ‘Organization
Type’, ‘Business Area Type’, ‘Application Type’ and ‘Development Platform’ have
been found to affect the size-effort relationship at different levels of significance
[23][24]1[25][26][27][29]. Among these, the most significant are reported in [23][24]
to be ‘Team Size’, ‘Business Area Type’ and ‘Application Type’.

Constructive Cost Model (COCOMO) II [6], the revised version of the original
COCOMO [5] takes into account the cost drivers in the estimation models and pro-
vide for measuring functional size and converting this result to SLOC. However,
‘backfiring’” of SLOC from functional size still can not account for the extra uncer-
tainty introduced by adding another level of estimation [7][8][9].

In [22], Leung and Fan discuss both the strengths and weaknesses of effort estima-
tion models. They evaluated the performance of existing models as well as of newer
approaches to software estimation and found them as unsatisfactory. Similarly, in a
number of studies, such as [2][19][20][21], related work on effort and cost estimation
models is assessed and compared. They concluded that the models, which are being
used by different groups and in different domains, still have not gained universal
acceptance.

Most of the above approaches use functional size as the primary predictor and con-
sider other project parameters in effort estimation. Abran et al. [3] used the 2003
version of the ISBSG repository to build estimation models for projects sized by the
FPA method. They defined the concept of a software functional profile as the distri-
bution of function types within the software. They investigated whether or not the
size-effort relationship was stronger if a project was close to the average functional
profile of the sample studied. For each sample, it was noted that there was one func-
tion type that had a stronger relationship with project effort. Moreover, the sets of
projects located within a certain range of the average profile led to estimation models
similar to those for the average functional profile, whereas projects located outside the
range gave different regression models, these being specific to each of the corre-
sponding subsets of projects.

In [4], the impact of the functional profile on project effort was investigated using
the ISBSG repository. The ISBSG projects included in this analysis were sized by
COSMIC method. In COSMIC, a functional profile corresponds to the relative distri-
bution of its four BFC Types for any particular project. It was observed that the iden-
tification of the functional profile of a project and its comparison with the profiles of
their own samples can help in selecting the best estimation models relevant to its own
functional profile.

In [10], the types of functionalities a software system can provide to its users are
identified, and a multidimensional measure which involves measuring the functional
size of each functionality type is defined. It was suggested that experimental studies
should be conducted to find the relationship between the functional size of each func-
tionality type and the effort needed to develop the type of functionality that can pio-
neer new effort estimation methods.

In [47], Gencel and Buglione explored whether effort estimation models based on
the BFC types, rather than those based on a single total value would improve estima-
tion models. They observed a significant improvement in the strength of the size-
effort relationship.

Impact of Base Functional Component Types on Software Functional Size 79

3 Data Preparation

In this study, the projects data in the ISBSG 2007 Repository CD Release 10 [13]
were used for the statistical analysis. The ISBSG Repository includes more than 4,106
projects data on a very wide range of projects. Among those, 117 projects were sized
using COSMIC-FFP. The projects cover a wide range of applications, development
techniques and tools, implementation languages, and platforms. Table 1 shows the
filtration process with respect to the project attributes defined in the ISBSG dataset.

Table 1. Filtration of ISBSG 2007 Dataset Release10

Projects [Remaining

Step | Attribute Filter Excluded [Projects
Count Approach’ = COSMIC-FFP 3,989 117
2 |Data Quality Rating (DQR) ={A B} 5 112

Quality Rating for Unadjusted

3 IFunction Points (UFP) = (A1B] 21 9
= {New Development} 34
4 |Development Type = {Enhancement} 22 30
= {Re-development} 5

In the first step, we filtered the dataset with respect to the ‘Count Approach’ attrib-
ute to obtain the projects measured by COSMIC. This step provided 117 projects.

In the second step, we analyzed these 117 projects with respect to ‘Data Quality
Rating (DQR)’ to keep only the highest quality data for statistical analysis. In the
ISBSG dataset, each project has a Quality Tag6 (A, B, Cor D) assigned by the ISBSG
reviewers based on whether or not the data fully meet ISBSG data collection quality
requirements. Considering this ISBSG recommendation, 5 of the projects with a C
and D rating were ignored, leaving 112 projects following this filtration step.

In the third step, we verified the availability of fields of size by functional type (or
BFC) in the data set, for each of the 112 projects from step 2, since these fields are
necessary for this study. The verification indicates that this information is not avail-
able for 21 of the projects, leaving 91 projects for the next step.

Since many factors vary simultaneously, the statistical effects may be harder to
identify in a more varied dataset than in a more homogeneous one. Therefore, in
Step 4, we built a series of homogeneous subsets considering the ‘Development Type’
attribute. We built homogeneous subsets for ‘New Development’, ‘Enhancement’ and
‘Re-development’ projects out of the 91 remaining projects. While forming the

3 No further filter has been considered with respect to the COSMIC versions.

® A: The data submitted were assessed as sound, with nothing identified that might affect their
integrity; B: The submission appears fundamentally sound, but there are some factors which
could affect the integrity of the submitted data; C: Due to significant data not being provided,
it was not possible to assess the integrity of the submitted data; D: Due to one factor or a
combination of factors, little credibility should be given to the submitted data.

80 L. Buglione and C. Gencel

subsets, we removed the outlier projects which have very low productivity values.
Since the data points for the Re-development projects were too few for statistical
analysis (5 projects), we removed them from further analysis.

While exploring the nature of the relationship, we did not consider the impact of
‘Application Type’. In our previous study [47] we observed that the strength of rela-
tionship between functional size and effort are much lower when we formed homoge-
nous subsets with respect to Application type (0.23 for Subset 1; 0.56 for Subset 2 and
0.39 for Subset 3). But, we observed increases in R” values (0.23 to 0.41 for Subset 1;
0.56 to 0.60 for Subset 2 and 0.39 to 0.54 for Subset 3) when the functional sizes of
each of the BFC Types are taken into account for effort estimation purposes instead of
total functional size which motivated us to further investigate the effects of BFC
Types on the strength of the relationship.

4 Statistical Data Analysis and Results

The primary aim of this study is to explore whether or not an effort estimation model
based on the components of functional size rather than on only a total single value of
functional size would improve estimation models and if so formulating the estimation
model.

In this study, the two sub-datasets are first analyzed to determine the strength of
the relationship between the total functional size and the development effort by apply-
ing a Linear Regression Analysis method. Then, the strength of the relationship
between the functional sizes of the COSMIC BFC Types used to determine total func-
tional size and development effort is analyzed by applying a Multiple Regression
Analysis method. These findings are compared to the models representing the rela-
tionship between total functional size and effort. All the statistical data analyses in
this study were performed with the GiveWin 2.10 [12] commercial tool and its sub
modules and the Microsoft-Excel ‘Data Analysis ToolPak’’.

4.1 Total Functional Size - Effort Relationship

For the Linear Regression Analysis [30], we have the independent variable as Func-
tional Size and the dependent variable as the Normalized Work Effort (NW_Effort) as
given by the following formula;

NW _ Effort = B, + B, FunctionalSize (1)

where B and B, are the coefficients to be estimated from a generic data sample. Nor-
malized Work Effort variable is used so that the effort data among the projects which
do not include all the phases of the development life cycle are comparable.

Figure 2 shows the relationship between Normalized Work Effort and COSMIC
Function Points (CFP). For the New Development Projects dataset, the R? statistic is
better than that for the Enhancement Project datasests.

7 http://office.microsoft.com/en-gb/excel/HP052038731033.aspx

Impact of Base Functional Component Types on Software Functional Size 81

a) Sub-dataset 1: New Development Projects (n=34)

COSMIC New Dev projects (n=34) = 0,5888x - 49,788
R =0,7838
1400,0
*
1200,0
1000,0
T 800,0
E
£ 6000
ﬁ 4000 +
*
2000
-
0.0 R T : ; . .
200 400 (s ali] 800 1000 1200 1400 1600 1800

-200,0
CFP

b) Sub-dataset 2: Enhancement Projects (n=30)

COSMIC Enh projects (n=30) y = 3,139 - 198,25
R2 = 0,7086
25000
20000 n
L
15000
= L]
i L]
« 10000
H
E L
L] L
s00p 5
..
op gl I [} =
100 200 a0 400 500 00

-5000

CFP

Fig. 2. The Relationship between Normalized Work Effort and COSMIC Functional Size

A significance test is also carried out in building a linear regression model. This is
based on a 5% level of significance. An F-test is performed for the overall model. A
(Pr > F) value of less than 0.05 indicates that the overall model is useful. That is, there
is sufficient evidence that at least one of the coefficients is non-zero at a 5% level of
significance. Furthermore, a t-test is conducted on each B; (0 <j <k). If all the values
of (Pr > Itl) are less than 0.05, then there is sufficient evidence of a linear relationship
between y and each x; (1 <j < k) at the 5% level of significance. The results of the
linear regression analysis are given in Table 2.

For subsets 1 and 2, the Total Functional Size is found to explain about 76% and
71% of the NW_Effort respectively. See [50] for an exhaustive discussion and detailed
explanation about the meaning of the statistical variables. Because two subsets ob-
tained proper R values against a quite high number of data points, they were not split
by size ranges® or by application types. In this case a further split, the too reduced
number of data points would not assure a statistical significance of the obtained results.

8 See [51] for a size range classification applying Pareto Analysis, applied on ISBSG 19 data
repository.

82 L. Buglione and C. Gencel

Table 2. Regression Analysis Results (Normalized Work Effort — Total Functional Size)

Subset 1: New Development Projects

Coeff StdError t-value t-prob Splitl Split2 reliable
Constant -49.78763 24.48831 -2.033 0.0504 0.0363 0.4419 0.7000
Functional Size 0.58882 0.05787 10.174 0.0000 0.0000 0.0000 1.0000
R’= 0.7639

value prob
normality test ~ 28.5832 0.0000

Subset 2: Enhancement Projects

Coeff StdError t-value t-prob Splitl Split2 reliable
Constant -196.24813 83.73519 -2.344 0.0264 0.2963 0.0081 0.7000
Functional Size 3.13900 0.38040 8.252 0.0000 0.0004 0.0000 1.0000
R’ = 0.7086

value prob
normality test 4.3408 0.1141

4.2 Functional Sizes of BFC Types - Size-Effort Relationship

The COSMIC method [38][46] is designed to measure the software functional size
based on its Functional User Requirements (FURs). Each FUR is decomposed into its
elementary components, called Functional Processes’. The BECs of this method are
assumed to be Data Movement Types, which are of four types; Entry (E), Exit (X),
Read (R) and Write (W). The functional size of each Functional Process is determined
by counting the Entries, Exits, Reads and Writes in each Functional Process, and the
Total Functional Size is the sum of the functional sizes of the Functional Processes.

In this study, the Multiple Regression Analysis method [30] was used to analyze
the relationship between the dependent variable Normalized Work Effort and the
functional sizes of each BFC Type as the dependent variables. The following multiple
linear regression model [30] that expresses the estimated value of a dependent vari-
able y as a functions of k independent variables, X;,X,, , X, is used:

y=B,+Bx +B,x,+...+BX, ()

where B, B, B,, By are the coefficients to be estimated from a generic data sample.
Thus, the effort estimation model can then be expressed as:

NW _ Effort = B, + B,(E)+ B,(X)+ B,(R)+ B, (W) 3)

where, NW_Effort (Normalized Work Effort) is the dependent variable and E, X, R
and W are the independent variables representing the number of Entries, Exits, Reads
and Writes respectively. In building a multiple linear regression model, the same
significance tests as discussed in the previous section are carried out. Table 3 shows
the multiple regression analysis results.

® Functional Process: “an elementary component of a set of FURs comprising a unique, cohe-
sive and independently executable set of data movements” [38].

Impact of Base Functional Component Types on Software Functional Size 83

Table 3. Multiple Regression Analysis Results (Normalized Work Effort — Functional Sizes of
BFC Types)

Sub-dataset 1: New Development Projects dataset
Observations: 34

Coeff StdError t-value t-prob
Constant -31.83818 18.46448 -1.724 0.0953
E 0.72694 0.38916 1.868 0.0719
X 0.01875 0.25507 0.073 0.9419
R -0.03702 0.24675 -0.150 0.8818
W 221199 0.42239 5.237 0.0000
R’= 0.8919

value prob
normality test ~ 13.2388 0.0013

After F presearch testing,
Coeff StdError t-value t-prob Splitl Split2 reliable
Constant -32.10285 17.75256 -1.808 0.0803 0.1592 0.0360 0.7000

E 0.74298 0.23129 3.212 0.0031 0.0004 0.0000 1.0000
W 2.17018 0.30448 7.128 0.0000 0.0000 0.4214 0.7000
R>= (.8918

Sub-dataset 2: Enhancement Projects Dataset
Observations: 30

Coeff StdError ~ t-value t-prob
Constant -46.26395 67.37480 -0.687 0.4986
E -0.47787 191093 -0.250 0.8046
X 7.37899 1.40681 5.245 0.0000
R -1.76768 135114 -1.308 0.2027
W 8.08448 259471 3.116 0.0046
R’= 0.8755

value prob
normality test ~ 3.3048 0.1916

After F presearch testing, specific model of WE;

Coeff StdError t-value t-prob Splitl Split2 reliable
X 7.61616 131971 5.771 0.0000 0.0000 0.0000 1.0000
R -2.51783 0.99965 -2.519 0.0180 0.1747 0.0129 0.7000
W 7.55544 247507 3.053 0.0050 0.1043 0.0058 1.0000
R’= 0.8713

In Table 4, the results from the two approaches are summarized. The results show
that the R” is higher using the four BEC Types rather than the single total COSMIC
FPs (+16.7% for new development; +23.6% for enhancement projects).

Another observation from the regression analysis results is that the functional sizes
of not all BFC Types are found to be significant in estimating the effort. Two of the
BFC Types, i.e. Entry and Write for New Development projects and Exit, Read and
Write for Enhancement projects were found to model Normalized Work Effort.

84 L. Buglione and C. Gencel

Table 4. Comparison of the Results

Sub-datasets # of Data R’ (Using Total Func- R?* (Using Increase"
Points tional Size (CFP)) BFC Types) (%)
- 1:
Sub-dataset 34 0.76 0.89 +16.7%
New Development
- 2:
Sub-dataset 30 0.71 0.88 +23.6%

Enhancement

So, the next two questions were; 1) What about the prediction capability of an esti-
mation model using only the BFC Types found to be significant in estimating the ef-
fort, not necessarily all the four ones at a time? 2) Is there a correlation between the
contribution of BFC Types to total functional size and the BFC Types which are found
to be significant in estimating the effort? Table 5 shows the results for Question 1.

Table 5. Comparison of the Results

R? ORMULA
Sub-dataset 1: Total functional
New Developmentjsize (CFP) 07639 \y_0.5888+CFP-49.788
\Projects (n=34)
HE/X/W/R 0.8919 Y=0.72694*E+0.011875%X-
0.03702%R+2.21199%W-31.83818
E/X 0.8918 Y=0.74298*E+2.17018*W-32.10285
Sub-dataset 2: Total functional
Enhancement |size (CFP) 07086 |y_3 139+CFP-196.25
Projects(n=30)
[E/X/W/R Y=-0.47787%E+7.37899%X-
08755 |1 76768*R+8.08448*W-46.26395
X/R/W 0.8713 Y=7.61616%X-2.51783*R+7.55544*W

Thus, for New Development projects, the functional sizes of only E and W types of
BFCs and for Enhancement Projects, X, R and W types can as better estimate the
effort as when the functional sizes of all four types are used. In order to answer Ques-
tion 2, we analyzed the distribution of the BFC Types with respect to the Develop-
ment Type (see Figure 3).

The contribution to total functional size to Enhancement projects by R type BFC is
the greatest, while X and E types contribute more for New Development projects. In
terms of BFC Types, E, X and W types are predominant in New Development pro-
jects, while R in Enhancement ones.

Thus, we could not find a correlation between the level of contribution of BFC
Types to total functional size and the ones which are found to be significant in estima-
tion capability of an estimation model.

10Tt was calculated as the relative increment: [(RA(BFC)-R*(CFP)/R*(CFP)).

Impact of Base Functional Component Types on Software Functional Size 85

BFC profile by Development type

All Enh e

Dev
E H =4 WY
O All 28,6% 29.8% 27 5% 13.7%
mEnh 28,1% 23.8% 37 1% 11.0%
O Mewy Dy 33,4% 343% 18,3% 13 4%

Fig. 3. The distribution of BFC Types by Development Type

S Conclusions and Prospects

This study has explored whether an effort estimation model based on the functional
sizes of BFC Types rather than the total functional size value would provide better
results. Our hypothesis was that the development effort for each of the BFC Types,
which provide different user functionalities, might be different.

The R? statistics were derived from Linear Regression Analysis to analyze the
strength of the relationship between total functional size and normalized work effort.
The results were compared to the R” statistics derived from the Multiple Regression
Analysis performed on the Functional Sizes of the BFC Types and Normalized Work
Effort. We observed increases in R? values (0.76 to 0.89 for New Development pro-
jects and 0.71 to 0.88 for Enhancement projects) when the functional sizes of each of
the BFC Types are taken into account for effort estimation purposes instead of the
total functional size. The results showed a significant improvement, i.e. +16.7 % for
new development projects and +23.6% for enhancement projects, in the effort estima-
tion predictability.

Another interesting observation in this study is that the functional sizes of all BFC
Types are not found to be significant in estimating the effort. Two of the BFC
Types, i.e. Entry and Write for New Development projects and Exit, Read and Write
for Enhancement projects were found to better model Normalized Work Effort.

We also analyzed the dominating BFC types in each of the datasets analyzing the
frequency distribution. For New Development projects, it is the Entry (33.4%) and
Exit (34.3%) that are dominant among the four BFC types. For Enhancement projects
Entry (28.1%), Exit (23.8%) and Read (37.1%) that are all dominant. The results of
these analysis showed that there is no correlation between the dominating BFC Types

86 L. Buglione and C. Gencel

in the dataset and the BFC Types which are found to be significant in estimating the
effort.

Our hypothesis in this study was developing different functionality types requires
different amounts of work effort and contributes to effort estimation in different levels
of significance. The results of this study confirmed our hypothesis. Although we built
some estimation formulas based on the data in ISBSG dataset, our aim in this study
was not to arrive at a generic formula but rather compare the conventional approach
to effort estimation and our approach discussed in this paper. Further research is re-
quired to analyze which BFC Types are significant in estimating effort and to con-
clude the ones to be used for establishing reliable estimation models. Further work
should also include comparisons with related work performed with the IFPUG FPA
method.

Because of the improvements in the estimation results just using four proxies in-
stead of the solely functional size unit value, the organizational consideration would
be the data gathering process. Usually, only the total functional size values are stored,
not the whole detail derived from the measurement. However, with a low additional
cost in terms of time in the data insertion it would be possible to obtain better estima-
tion premises. In process improvement terms, using the terminology of a well known
and proven maturity model as Capability Maturity Models Integration (CMMI) [49],
this action would have a positive impact on:

e PP (Project Planning, Specific Practice (SP)1.4 about the estimation model used
for deriving estimates comparing estimated and actual values;

o MA (Measurement & Analysis, SP2.3) about the storage of project data;

e OPD (Organizational Process Definition) about the definition of the measure-
ment repository (SP1.4);

oGP (General Practice) 3.2 (Collect Improvement Information), that is the generic
practice crossing all the PA (Process Areas) about the capability of collecting
info to be used for improving the organizational unit’s results.

Thus, starting to consider which BFC Types are significant in estimation instead of
using total size figures and using establishing estimation models considering different
functionality types is promising. In order to verify these conclusions and find other
eventual useful relationships, further studies will also be conducted on the ISBSG
dataset for the projects measured by IFPUG FPA.

References

[1] Albrecht, A.J.: Measuring Application Development Productivity. In: Proc. Joint
SHARE/GUIDE/IBM Application Development Symposium, pp. 83-92 (1979)

[2] Abran, A., Ndiaye, 1., Bourque, P.: Contribution of Software Size in Effort Estimation.
Research Lab in Software Engineering, Ecole de Technologie Supérieure, Canada (2003)

[3] Abran, A., Gil, B., Lefebvre, E.: Estimation Models Based on Functional Profiles. In: In-
ternational Workshop on Software Measurement — IWSM/MetriKon, Kronisburg (Ger-
many), pp. 195-211. Shaker Verlag (2004)

(4]

(5]
(6]

[7]
(8]

[9]
[10]
[11]
[12]

[13]
[14]

[15]

[16]
(7]

(18]

[19]

(20]

(21]
(22]

(23]

[24]

Impact of Base Functional Component Types on Software Functional Size 87

Abran, A., Panteliuc, A.: Estimation Models Based on Functional Profiles. III Taller In-
ternacional de Calidad en Technologias de Information et de Communications, Cuba,
February 15-16 (2007)

Boehm, B.W.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)
Boehm, B.W., Horowitz, E., Madachy, R., Reifer, D., Bradford, K.C., Steece, B., Brown,
A.W., Chulani, S., Abts, C.: Software Cost Estimation with COCOMO II. Prentice Hall,
New Jersey (2000)

Neumann, R., Santillo, L.: Experiences with the usage of COCOMOII. In: Proc. of Soft-
ware Measurement European Forum 2006, pp. 269-280 (2006)

De Rore, L., Snoeck, M., Dedene, G.: COCOMO 1II Applied In A Banking And Insur-
ance Environment: Experience Report. In: Proc. of Software Measurement European Fo-
rum 2006, pp. 247-257 (2006)

Rollo, A.: Functional Size measurement and COCOMO - A synergistic Approach. In:
Proc. of Software Measurement European Forum 2006, pp. 259-267 (2006)

Gencel, C.: An Architectural Dimensions Based Software Functional Size Measurement
Method, PhD Thesis, Dept. of Information Systems, Informatics Institute, Middle East
Technical University, Ankara, Turkey (2005)

Gencel, C., Demirors, O.: Functional Size Measurement Revisited. Scheduled for publi-
cation in ACM Transactions on Software Engineering and Methodology (July 2008)
GiveWin 2.10, http://www.tspintl.com/

ISBSG Dataset 10 (2007), http://www. isbsg.org

Hastings, T.E., Sajeev, A.S.M.: A Vector-Based Approach to Software Size Measurement
and Effort Estimation. IEEE Transactions on Software Engineering 27(4), 337-350
(2001)

Jeffery, R., Ruhe, M., Wieczorek, I.: A Comparative Study of Two Software Develop-
ment Cost Modeling Techniques using Multi-organizational and Company-specific Data.
Information and Software Technology 42, 1009-1016 (2000)

Jones, T.C.: Estimating Software Costs. McGraw-Hill, New York (1998)

Jgrgensen, M., Molokken-Ostvold, K.: Reasons for Software Effort Estimation Error: Im-
pact of Respondent Role, Information Collection Approach, and Data Analysis Method.
IEEE Transactions on Software Engineering 30(12), 993—-1007 (2004)

Kitchenham, B., Mendes, E.: Software Productivity Measurement Using Multiple Size
Measures. IEEE Transactions on Software Engineering 30(12), 1023-1035 (2004)
Briand, L.C., El Emam, K., Maxwell, K., Surmann, D., Wieczorek, I.: An Assessment
and Comparison of Common Software Cost Estimation Models. In: Proc. of the 21st In-
tern. Conference on Software Engineering, ICSE 1999, Los Angeles, CA, USA, pp. 313—
322 (1998)

Briand, L.C., Langley, T., Wieczorek, I.: A Replicated Assessment and Comparison of
Software Cost Modeling Techniques. In: Proc. of the 22nd Intern. Conf. on Software en-
gineering, ICSE 2000, Limerick, Ireland, pp. 377-386 (2000)

Menzies, T., Chen, Z., Hihn, J., Lum, K.: Selecting Best Practices for Effort Estimation.
IEEE Transactions on Software Engineering 32(11), 883-895 (2006)

Leung, H., Fan, Z.: Software Cost Estimation. Handbook of Software Engineering, Hong
Kong Polytechnic University (2002)

Angelis, L., Stamelos, I., Morisio, M.: Building a Cost Estimation Model Based on Cate-
gorical Data. In: 7th IEEE Int. Software Metrics Symposium (METRICS 2001), London
(April 2001)

Forselius, P.: Benchmarking Software-Development Productivity. IEEE Software 17(1),
80-88 (2000)

88

[25]
[26]

[27]

(28]
[29]
(30]
(31]
(32]

(33]

[34]
[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

L. Buglione and C. Gencel

Lokan, C., Wright, T., Hill, P.R., Stringer, M.: Organizational Benchmarking Using the
ISBSG Data Repository. IEEE Software 18(5), 26-32 (2001)

Maxwell, K.D.: Collecting Data for Comparability: Benchmarking Software Develop-
ment Productivity. IEEE Software 18(5), 22-25 (2001)

Morasca, S., Russo, G.: An Empirical Study of Software Productivity. In: Proc. of the
25th Intern. Computer Software and Applications Conf. on Invigorating Software Devel-
opment, pp. 317-322 (2001)

Naur, P., Randell, B. (eds.): Software Engineering, Conference Report, NATO Science
Committee, Garmisch (Germany), 7-11 October (1968)

Premraj, R., Shepperd, M.J., Kitchenham, B., Forselius, P.: An Empirical Analysis of
Software Productivity over Time. In: 11th IEEE International Symposium on Software
Metrics (Metrics 2005). IEEE Computer Society Press, Los Alamitos (2005)

Neter, J., Wasserman, W., Whitmore, G.A.: Applied Statistics. Allyn & Bacon (1992)
ISO/IEC 14143-1: Information Technology — Software Measurement — Functional Size
Measurement — Part 1: Definition of Concepts (1998)

ISO/IEC 14143-1: Information Technology — Software Measurement — Functional Size
Measurement — Part 1: Definition of Concepts (February 2007)

ISO/IEC 14143-2: Information Technology — Software Measurement — Functional Size
Measurement - Part 2: Conformity Evaluation of Software Size Measurement Methods to
ISO/IEC 14143-1:1998 (2002)

ISO/IEC TR 14143-3: Information Technology — Software Measurement — Functional
Size Measurement — Part 3: Verification of Functional Size Measurement Methods (2003)
ISO/IEC TR 14143-4: Information Technology — Software Measurement — Functional
Size Measurement - Part 4: Reference Model (2002)

ISO/IEC TR 14143-5: Information Technology — Software Measurement — Functional
Size Measurement — Part 5: Determination of Functional Domains for Use with Func-
tional Size Measurement (2004)

ISO/IEC FCD 14143-6: Guide for the Use of ISO/IEC 14143 and related International
Standards (2005)

ISO/IEC 19761:2003, Software Engineering — COSMIC-FFP: A Functional Size Meas-
urement Method, International Organization for Standardization(2003)

ISO/IEC IS 20926:2003, Software Engineering-IFPUG 4.1 Unadjusted Functional Size
Measurement Method - Counting Practices Manual, International Organization for Stan-
dardization (2003)

ISO/IEC IS 20968:2002, Software Engineering — MK II Function Point Analysis —
Counting Practices Manual, International Organization for Standardization (2002)
ISO/IEC IS 24570:2005, Software Engineering — NESMA functional size measurement
method version 2.1 — Definitions and counting guidelines for the application of Function
Point Analysis, International Organization for Standardization (2005)

Symons, C.: Come Back Function Point Analysis (Modernized) — All is Forgiven! In:
Proc. of the 4th European Conf. on Software Measurement and ICT Control (FESMA-
DASMA 2001), Germany, pp. 413-426 (2001)

The International Function Point Users Group (IFPUG). Function Points Counting Prac-
tices Manual (release 4.2), International Function Point Users Group, Westerville, Ohio
(January 2004)

United Kingdom Software Metrics Association (UKSMA). MkII Function Point Analysis
Counting Practices Manual, v 1.3.1 (1998)

Thayer, H.R.: Software Engineering Project Management, 2nd edn. IEEE Computer So-
ciety Press, Los Alamitos (2001)

[46]

[47]

[48]

[49]

[50]

[51]

Impact of Base Functional Component Types on Software Functional Size 89

The Common Software Measurement International Consortium (COSMIC). COSMIC-
FFP v.3.0, Measurement Manual (2007)

Gencel, C., Buglione, L.: Do Different Functionality Types Affect the Relationship be-
tween Software Functional Size and Effort? In: Proceedings of the Intern. Conf. on Soft-
ware Process and Product Measurement (IWSM-MENSURA 2007), Palma de Mallorca,
Spain, November 5-8, 2007, pp. 235-246 (2007)

FISMA, PAS Submission to ISO/IEC JTC1/SC7 — Information Technology — Software
and Systems Engineering — FISMA v1.1 Functional Size Measurement Method, Finnish
Software Metrics Association (2006), http://www.fisma.fi/wp-
content/uploads/2007/02/fisma_fsmm 11 iso-final-1.pdf

CMMI Product Team, CMMI for Development, Version 1.2, CMMI-DEV v1.2, Continu-
ous Representation, CMU/SEI-2006-TR-008, Technical Report, Software Engineering
Institute (August 20006),
http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tr008.pdf

Maxwell, K.: Applied Statistics for Software Managers. Prentice Hall, Englewood Cliffs
(2002)

Santillo, L., Lombardi, S., Natale, D.: Advances in statistical analysis from the ISBSG
benchmarking database. In: Proceedings of SMEF (2nd Software Measurement European
Forum), Rome (Italy), March 16-18, 2005, pp. 39-48 (2005),
http://www.dpo.it/smef2005

Managing Uncertainty in ERP Project Estimation
Practice: An Industrial Case Study

Maya Daneva

University of Twente
m.daneva@utwente.nl

Abstract. Uncertainty is a crucial element in managing projects. This paper’s
aim is to shed some light into the issue of uncertain context factors when esti-
mating the effort needed for implementing enterprise resource planning (ERP)
projects. We outline a solution approach to this issue. It complementarily de-
ploys three techniques to allow a tradeoff between ERP projects requiring more
effort than expected and those requiring less. We present the results of a case
study carried out in a telecommunication company site.

1 Introduction

ERP effort estimation is a key consideration when ERP consultants prepare a bid in a
request-for-proposal process and when an ERP adopter compares alternative bids to
make a choice on their ERP implementation consulting partner. Those involved in bid
preparation or bid comparison are well aware of the fact that ERP projects very often
suffer from unexpected rework and delays [1,10,14,21,26] caused by factors going
beyond their control. While this situation might sound like a common symptom for
many types of software projects (including ERP), researchers [8,14,17,24,25,27,28]
indicate that commonplace effort/duration estimation techniques don’t fit as solution
vehicles in ERP project context, thus leaving both consultants and adopters with little
or no support in their effort estimation efforts. For example, [5,9,10,14,17,18,20,
21,24,26,27,28], indicate that a typical ERP project contains multiple sources of un-
certainty, and that historical data don’t exist for some significant sources of volatility.
Examples of such context characteristics are the degree of adjusting the vendor’s off-
the-shelf package to the specific ERP-adopter’s requirements [10,14,17,20], the com-
plex interaction between software engineering and business (re)engineering activities
within the project [1,5,10,21], the strength of the coupling among the modules making
up the package [14,18,27].

In this article, we start a systematic study of balancing uncertainties in ERP project
estimation from the perspective of the ERP-adopting organization and as part of the
ERP requirements engineering (RE) process. Our objective is to provide adopters
with a vehicle to help them reason about cost and schedule implications of their ERP
implementation decisions which they may need to make at the stage of early require-
ments. We show how an integrated approach, which complements a traditional ef-
fort/duration model (namely COCOMO II) with the concepts of portfolio

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 90 2008.
© Springer-Verlag Berlin Heidelberg 2008

Managing Uncertainty in ERP Project Estimation Practice 91

management and Monte Carlo simulation, allows a tradeoff between ERP projects
requiring more effort than expected and those requiring less. Two ideas are key to our
approach to uncertainty: (i) the use of probability distribution definitions to character-
ize project context factors [19], and (ii) the use of portfolios of projects [12], instead
of treating projects separately, as traditional models do (e.g. COCOMO 1I).

We structure the presentation as follows. Section 2 discusses how ERP projects
and custom software projects are different from efforts estimation perspective. In
Section 3 we provide some background, including a discussion of effort estimation
techniques, which bear some similarity to our approach Therein, we also construct our
multi-concept-based solution approach and, in Section 4, we present the case study in
which we applied it. Some possible validity threats are analyzed in Section 5. Early
conclusions about how our approach needs to be improved are presented in Section 6.

2 Thinking of ERP Systems from Effort Estimation Perspective

We mean this section a sidebar for readers who are less familiar with cross-
organizational ERP systems and ERP projects. Our motivation for including a discus-
sion on ERP systems from effort estimation perspective is to help the readers
understand the rest of the paper and to avoid misunderstandings.

ERP systems are packaged software solutions, the key function of which is to co-
ordinate work in a business. They are the vehicles modern organizations use to
achieve true business connectivity, a state in which everyone knows what everyone
else is doing in the business all over the world and at the same time. In the past
decade, the importance of ERP systems to companies has dramatically increased as
companies have begun to realize how decisive the impact of ERP is on their future:
organizations and their business partners and customers have started developing
‘value webs’, and ERP systems have become the tool of choice for obtaining the co-
ordination support that companies need and for staying interconnected [7,10,21]. By
‘value web’, we mean a set of different, independent (or nearly independent) busi-
nesses forming a business network — for example, the business value web of Cisco
Systems, a company who collaborates with a large number of its big customers
worldwide. Cisco simplified and standardized its customer-facing processes through
an Oracle 11i Everest ERP solution which linked its 30000 customers and partners
involved in Cisco’s so-called Quote-to-Cash chain [4]. A value web can also be any
large company which has restructured as a set of nearly independent business units,
each responsible for its own profit and loss. For example, Monsanto, a chemical engi-
neering business, including dozens of business units most of which use an SAP solu-
tion as their collaboration support platform [10].

An ERP implementation project is the customization and introduction of a cross-
organizational ERP system in a value web. Our research effort is focused on investi-
gating measurement models which can be used for ERP project cost estimation at the
requirements engineering stage of ERP implementation projects; for example, esti-
mating effort at the ERP bidding stage, at which point requirements are not yet fully
known. Following [16], we consider a project quote to consist of three components:
estimated cost, profit, and contingency. Here, however, we focus on the models used

92 M. Daneva

to estimate cost in particular, and, for this reason, we leave aside profit and
contingency.

Literature sources [9,10,14,17,18,20,21,23,24,25,27,28] comparing ERP projects to
other projects indicate that, unlike business information systems projects (e.g. data
warehousing or workflow management systems) or custom software projects, ERP
projects:

1. are broad in terms of functionality, covering thousands of business activities;
treat the cross-organizational business processes in a value web as the fun-
damental building blocks of the system;

3. deliver a shared system which lets the business activities of one company be-
come an integral part of the business of its partners;

4. create system capabilities far beyond the sum of the ERP components’ indi-
vidual capabilities, which, allows the resulting system to qualitatively ac-
quire new properties as result of its configuration;

5. may well include diverse configurations, each of which matches the needs of
a unique stakeholder group, which, in turn, implies the presence of cost driv-
ers unique to each configuration;

6. deliver a system which is incomplete once the ERP project is over, because
an ERP solution must mirror rapidly-changing business requirements, and so
be adjusted regularly to accommodate current business needs;

7. don’t have an identified owner at cross-organizational system level, as the
system is shared;

8. may well have a low level of organizational awareness of what new project
activities (e.g. identifying and analyzing capability gaps, investigation and
mapping of configuration options [20]) are to be added in order to plan and
manage the ERP project, and what the factors are that drive effort for these
new activities.

9. are not “built” in the sense that a master architect envisions the parts and
their relationships; rather they evolve into existence and change through their
life cycles as new shared pieces of functionality are built, existing intra-
organizational systems connect to become shared, and shared parts of the
system are disintegrated as soon as needs of sharing processes and data
disappear.

The analyses by the above authors suggest that these characteristics pose effort es-
timation challenges which are well beyond those encountered in ordinary business
information systems or custom projects. Clearly, existing models account for drivers,
which model a subset only of the phenomena essential for ERP effort estimation. For
example, the models to date would - hopefully with some adaptation, handle a single
ERP system instance, a single version or a single configuration, but would leave esti-
mators with very little guidance on how to estimate effort/time for those implementa-
tion projects targeting multiple ERP configurations, or co-existing ERP instances of
the same package [21]. Traditional models are also inflexible in that they take as in-
puts pre-defined parameters [14,17,24], that is, they consider size to be a one-
dimensional concept (e.g. function points or lines of code). This is not enough in the
ERP project realities which prompt the use of a multi-dimensional size measure [24].
For example, the preliminary empirical research [9] done by the author on how ERP

Managing Uncertainty in ERP Project Estimation Practice 93

adopters and consultants define ‘size’, yielded three categories of definitions: ‘size’
was referred to as an attribute of the implementation tasks (e.g. ‘size’ is defined as the
number of ERP transactions to be configured), as an attribute of the ERP user com-
munity (e.g. the number of users), or as an attribute of the ERP functionality (e.g.
function points). (Within each definition category, there also were different opinions
on what ‘size’ means.) We found, that among these definitions, FPs — as a characteris-
tic of functionality, is the only one which has been used as input in the models of the
COCOMO II family. Furthermore, traditional models rest on an accumulated body of
software measurement knowledge from the past 25-30 years, while effort estimation
for ERP could not take advantage of such a body of knowledge merely because soft-
ware engineering and business (re)engineering processes are inseparable in ERP pro-
jects. This, in turn, poses a unique challenge to effort estimation analysts because the
growing complexity of the cross-organizational business processes means growing
complexity in the ERP solution that embeds these processes [21]; suppose, we apply
Glas’ estimation [13] that for every 25% increase in complexity of the task to be
automated, the increase in complexity of the solution is 100%, one could imagine the
magnitude of complexity ERP-adopters face.

The literature we reviewed in this section provides evidence that the nine charac-
teristics above (labeled 1-9) make it almost impossible for ERP-adopters to determine
a level of trust in any estimate. Examples of some specific barriers to trust, which
researchers [1,10,23,24,25] have found to be traceable to the above ERP project char-
acteristics, include: lack of consensus on the objectives of the estimates, no known
steps to ensure the integrity of the estimation process, no historical evidence at the
ERP adopter's site supporting a reliable estimate, or the inability to clearly see
whether or not estimates are consistent with consultants’ demonstrated accomplish-
ments on other projects in comparable organizations in the same sector.

3 Sources, Approach and Related Work

Our solution rests on four types of sources: (i) the COCOMO II reference model [2]
that lets us account for ERP adopter’s specific cost drivers, (ii) the Monte Carlo simu-
lation [19] which lets us approach the cost drivers’ degrees of uncertainty, (iii) the
effort-and-deadline-probability-based portfolio management concept [12] which lets
us quantify the chance for success with proposed interdependent deadlines for a set of
related ERP projects, and (iv) our own experience in ERP RE [4,5,6]. We chose the
combination of (i), (ii) and (iii), because other researchers already experimented with
it [15] and found it encouraging. Unlike [15], where the three methods were used
complementarily for the purpose of custom software contract bidding, we adapt each
of the methods to the context of ERP projects and we adopt their joint use therein.

3.1 CcocoMo 11

COCOMO 1I [2] is one of the best-known algorithmic model for setting budgets and
schedules as a basis for planning and control. It comprises (i) five scale factors, which
reflect economies and diseconomies of scale observable in projects of various sizes,
and (ii) 17 cost drivers, which serve to adjust initial effort estimations. In ERP project

94 M. Daneva

settings, at least three of the scale factors are directly related to the joint RE and archi-
tecture design activities, and thus raises the role of architects in reducing project costs.
COCOMO I allows ERP teams to include in their estimates (i) the maturity level of
the ERP adopting organization, (ii) the extent to which requirements’ and system
architecture’s volatility is reduced before ERP configuration, and (iii) the level of
team cohesion and stakeholders’ participation. In COCOMO 11, the degrees of both
the scale factors and the cost drivers vary from extra low, very low, low and nominal
to high, very high and extra high. Suppose ERP project stakeholders assign a degree
to each scale factor and cost driver, the estimation of project effort and duration will
result from the two equations below:

17
Effort = A x (Size)F x H EM ; (D

i=1

and Time = C x (Effort) F ()

where E and F are calculated via the following two expressions, respectively:

5
E=B+0.01x ZSFJ and

j=1

F=D+02x(E-B)
In (1) and (2), SF stands for the scale factors, and EM means cost drivers.

3.2 The Monte Carlo Simulations

To obtain more realistic estimates, we approached the inherent uncertainty of the cost
drivers by applying NOSTROMO [19], a Monte Carlo simulation technique used at
the THAAD Project Office (USA). This is a problem-solving technique used to ap-
proximate the probability of certain outcomes by running multiple trial runs, called
simulations, using random variables. When used in combination with COCOMO 11,
repeatedly running the model many times and collecting samples of the output vari-
ables for each run helps the estimation analysts produce an overall picture of the
combined effect of different input variables distribution on the output of the model.

3.3 The Portfolio Management Concept

We couple the above techniques with a portfolio management concept [12] based on
an effort-and-deadline-probability model that allows us to quantify the uncertainty
associated with a project estimate. We chose it because (i) it is applicable at the stage
of requirements or project bidding [12], (ii) its only input requirement is a record of
previous projects; although it does require an effort estimate for every project, it need
be nothing more sophisticated than a subjective opinion [12]; and (iii) it fits with the
ERP adopters’ project realities suggesting that an ERP project is implemented as a
portfolio of interdependent subprojects [5,6]. Each subproject is a piece of functional-
ity (or an ERP module) linked to other pieces (or modules). For example, the Sales
and Distribution module in a package is tightly linked with the Accounts Receivable

Managing Uncertainty in ERP Project Estimation Practice 95

and Profits Center Reporting functionality of the Financial Accounting and Control-
ling modules [22]. Suppose we have a set of interdependent subprojects, the effort-
and-deadline-probability model [12] will yield (i) the probability of portfolio’s
success with the proposed deadlines for each subproject in this portfolio, and (ii) a set
of new deadlines which will result in a required probability of success. The portfolio
success is judged by two conditions applied to any two subprojects @ and b for which
deadline, is earlier than deadline,. The conditions are that: (i) subproject a is to be
over by deadline, and (ii) subproject @ and subproject b are to be over by deadline,,. In
other words, the conditions require all subprojects planned with a deadline before
deadline, to be completed by deadline,, , rather than just project b. This is the key to
the portfolio approach, because uncertainty about completion of project b incorpo-
rated uncertainty from all previous projects.

Suppose the ERP adopter engages in total £ people in the project and let d be the
number of work days it takes from start date to deadline, then the total available re-
sources is Exd. So, suppose an ERP portfolio Y is made up by n subprojects, the suc-
cess conditions are represented as follows:

Y d

1 1
Y +Y d

| 5 <E 5 3)
Y +Y +.Y d

1 2 n n

where Y; is the estimated effort for subproject i to succeed. We check if, for any j, (j=
1..n), the sum of Y,,..,Y; is greater of Exd,. If this is true, then deadline d; has failed.
Success probabilities result from simulations in which Y,...,Y, are generated from a
predetermined probability distribution. If we deem Y, ...,Y, is satisfying all condi-
tions, then we say that the portfolio Y succeeds. The portfolio’s probability of success
is equal to the ratio of the number of successes in the set Y to the number of trials in
the simulation.

3.4 How It Fits Together?

Our solution approach consists of eight steps which are presented in Figure 1. Be-
cause we designed our approach with the RE stage in mind, we suggest Unadjusted
Function Points (FP) [5] be used as a size estimate. This is consistent with the posi-
tion of the COCOMO 1I authors [2, page 17]. We chose this measure of functional
size because (i) it is applicable to any ERP package and not to a specific package’s
context [5] and (ii) it’s the only measure of size that fits the project stage of early
requirements. Furthermore, to account for uncertainty of the ERP project context, we
suggest the COCOMO II model take as inputs the probability distributions of the five
COCOMO scale factors and 17 cost drivers, instead of using as inputs single values
(as in [2]). This design choice has been recommended by the THAAD Project Office
[19] and by the JLP NASA researchers as well. Deploying the Monte Carlo simula-
tion manes to ascribe a particular distribution type to an input variable in a model, get
randomly-selected values, feed them into the COCOMO II model and, then, see how
likely each resulting outcome is. In other words, for each uncertain factor, our

96 M. Daneva

approach yields possible effort and duration estimation values. In contrast to CO-
COMO I, our output is the probability distributions of effort and duration and not the
most likely effort and duration (which COCOMO II creates).

The probability distributions are, then, fed into the portfolio management method
[12]. To run it, we first formulate a condition for success, as in (3), then we bunch
projects into portfolios and we obtain the probability of successfully delivering the
projects under time constraints as well under effort constraints.

Step 1: Step 5:
Formulate
Estimate size — condition for
Step 3: portfilo
s Step 4: management
Run 10000 - Step 7: Step 8:
trials using Obta'.n. Adiust cost
probabiliy propabl!lty Just cos Obtain ratio
Pl e —> distribution — drivers to fi
distribution of X of increase
> of effort & increase >
cost factor N " of success
values duration portfilo probability
Step 2: Step 6: success
Ascribe
distribiution | | L, Construct
types to cost portfolios
drivers

Fig. 1. The solution approach: a high-level view

4 The Case Study

The research methodologist R. Yin [31] makes the note that a case study has a distinct
advantage when a ‘how’ or ‘why’ question is being interrogated about a contempo-
rary set of events over which the researcher has little or no control. In software engi-
neering, case studies are also useful in answering a “which is better” question [30] and,
here, this is what we are after. Below, we describe the application of our approach and
state our expectation of it (Section 4.1) and the results we obtained (Section 4.2)

4.1 Application of the Method

The solution approach was applied in a setting of a large organization-wide ERP roll-
out that included eight functional modules of one ERP package (namely SAP) and
covered three locations of a North American telecommunication company [5]. The
modules were: Material Management, Sales and Distribution, Service Management,
Accounts Payable, Accounts Receivable, Plant Maintenance, Project System, and
Asset Management. Our data came from 13 SAP projects implemented in the case
study company. The projects were carried out between November, 1997 and October,
2003. In this period, the author was employed by the case company as a SAP process
analyst and was actively involved in the projects. The ERP implementation process
model adopted in the context of the projects was the AcceleratedSAP (ASAP) RE
process [22]. It is a project-specific process, engineered and standardized by SAP, and

Managing Uncertainty in ERP Project Estimation Practice 97

provided to clients by ASAP-certified consulting partners. The ASAP process has
been extensively elaborated in [22]. The practical settings for our 13 projects have
been described in detail in [5]. They included the following: to manage implementa-
tion complexity, each of our projects was broken down in a number of subprojects
reflecting the number of components to be configured. For example, the first project
had to implement six components and was broken down in six subprojects. The total
number of our subprojects in which the standard ASAP process was instantiated was
67. For each subproject, there was a dedicated RE team. This is a group of individuals
who are assigned to a specific subproject, contribute time to and run the RE cycle for
this subproject, and deliver the business requirements document for a specific SAP
component. Each RE team consisted of one or two SAP consultants who provided in-
depth knowledge in both the ASAP implementation process and the SAP components,
and a number of business representatives, the so-called process owners. They were
department managers and subject matter experts who contributed the necessary line
know-how, designed new processes and operational procedures to be supported by the
SAP modules, and provided the project with the appropriate authority and resources.
All process owners had above average level of experience with IT-projects in their
departments and, before starting the projects, attended a three-hour training session on
the ASAP process. Next, we considered our consultants as an even mix of experts,
new hires and novices. Each expert had at least 5 years of configuration and integra-
tion experience with a specific SAP functional module. Most experts had ASAP RE
experience. Our consulting partners provided evidence that their less experienced
staff-members completed the standard training courses on both the ASAP process and
the corresponding SAP modules. However, none of the consultants had any experi-
ence in the telecommunication sector; they were unaware of the requirements princi-
ples in this domain and were supposed to carry out RE activities under novel and
challenging conditions. All the teams were supported by a process architect responsi-
ble for architecting the solution, sharing process knowledge and consulting on ongo-
ing basis with the teams on SAP reuse, process methods, and RE tools. The architect
was the only resource the teams shared. The 67 teams worked separately and with
relatively little communication among them. This allowed us to initially consider and
include 67 subprojects in our case study.

For each of the 13 projects, we got (i) project size data, (ii) reuse levels, (iii) start
and end dates, and (iv) scale factor and cost driver ratings. Size was measured in
terms of unadjusted IFPUG FP [6]. Reuse levels were formed by using a reuse indica-
tor that included reused requirements as a percentage of total requirements delivered
[5]. Next, the effort multipliers A, B, and EM in equation (1) and (2) and the scale
factors SF were calibrated by using ERP effort data collected between 1997 and 2004
in the case study company.

Because we had the ratings of the cost drivers and scale factors only and no
knowledge about the uncertainty of the ratings, we assigned to each factor its distribu-
tion type and its parameters of probability distribution (namely center, min and max)

98 M. Daneva

based on previously published experiences and recommendations by other authors
[15,19]. For example, this case study used McDonnald’s [19] default ‘high’ levels of
uncertainty associated to the ratings of the RESL, DATA, ACAP and PCAP cost
drivers [2]. (Because of space limitation, we refer readers to reference [2] which gives
detailed definitions of these cost drivers). The level of uncertainty determines - in
turn, the distribution type to be assigned to each cost driver: normal, triangular, and
uniform for low, medium and high uncertainty, respectively.

We also opted to use a lognormal distribution for functional size, which was moti-
vated by the observations of Chulani et al [3]. These researchers investigated the size
distribution and indicate that its skew is positive and that log(size) is likely to be a
normal distribution.

With this input data (namely, the COCOMO II factors and uncertainty values), we
run Monte Carlo simulations which gave us samples of (i) effort, expressed in person-
month, and (ii) time, expressed in months. Generally, a Monte Carlo simulation con-
sists of many - often thousands of, trials, each of which is an experiment where we
supply numerical values for input variables, evaluate the model to compute numerical
values for outcomes of interest, and collect these values for later analysis. In this case
study, we used 10000 trials and generated the samples of effort and time, as presented
in Figure 2 and Figure 3, respectively. In these histograms, the Y-dimension shows
the frequency with which a value was observed in the sample of 10000 trials. The
X-dimension shows the value range. Because the average subproject involved four
professionals (two business users, one external consultant and one internal IS team
members), we adopted the assumption for E to be 4.

Effort: Frequency Chart

200 -

100

0 ~—4—'Jr'f jL""ﬂ—

17,9 18,9 19,9 20,9 21,9 229

Fig. 2. The Monte Carlo histogram of the probability distribution of effort (in person/months)

Managing Uncertainty in ERP Project Estimation Practice 99

Time: Frequency Chart

Sy
- ; b
o ki N
S e

38 4.8 58 6,8 78 8,8 9,8

Fig. 3. The Monte Carlo histogram of the probability distribution of time (in months)

Based on the observation that COCOMO II provides time estimation as in (2), we
formulated the following condition for portfolio management in terms of time con-
straints:

T m

1 1
T +T m

12 | 72 @
T +T7T +..T m

1 2 n n

where T; is the ERP implementation time in months for subproject i. In this condition,
we did not include the number of people E, because COCOMO II assumed an average
number of project staff [2] which was accounted in (2). Furthermore, as recommended
in [15], we attempted to improve the chances for portfolio success by adjusting the cost
drivers and scale factors. Hence, we adopted the assumption that for
projects with two different ratings for the same factor, the probability of success for
each project will be different too. Finally, our case study plan included assessment of
how much the probability of success increased when treating ERP projects as a portfo-
lio. We expected that the suprojects with high uncertainty ratings would benefit more
from portfolio management, than the projects with low uncertainty ratings would do.

4.2 Results

This sections reports on the results with respect to: (i) what we observe when adjust-
ing COCOMO II cost drivers, and (ii) what we learnt from the probability of success
of highly-uncertain projects when managing them as a portfolio.

100 M. Daneva

To understand how cost drivers and scale factors make a difference in terms of pro-
ject success, for each one of them we constructed two portfolios: the first one had this
driver/cost factor rated ‘very high’ for all projects and the second portfolio had it
rated ‘very low’ for all projects. For example, we found that when selective reuse [6]
was practiced in ERP projects, the probability of success was higher under both time
and effort constraints. For the purpose of illustrating this point, we report on the re-
sults (see Table 1) yielded when constructing two portfolios of subprojects, namely
the first one with the factor of REUSE rated as very high for all subprojects and the
second one with REUSE rated very low for all subprojects. We make two notes: First,
that low level of reuse in an ERP project indicates massive customization of the stan-
dard components and that a high level of reuse indicates limited customization [5].
Second, we ruled out the rating ‘extremely high’ as it’s relatively rarely to be ob-
served in a ERP project context [6,10]. Table 1 suggests that when a project is com-
posed of subprojects all of which have REUSE rated very high, the probability of
success is greater under both time and effort constraints.

Table 1. Analysis of the probability of success for the factor REUSE under effort constraints
and time constraints

REUSE rating Probability of success

Under effort constraints Under time constraints
Very low 68.78% 76.52%
Very high 96.87% 98.88%

We observed that 13 out of the 17 factors from the COCOMO II model can be ad-
justed in a way that maximizes the probability of success. These 13 factors are: data-
base size (DATA), product complexity (CPLX), REUSE, documentation (DOCU),
platform volatility (PVOL), analyst capability (ACAP), programmer capability
(PCAP), personnel continuity (PCON), applications experience (APEX), language
and tool experience (LTEX), use of software tools (TOOL), multi-site implementation
(SITE), required implementation schedule (SCED).

Regarding our second group of results, our observations suggest that bundling ERP
projects as a portfolio had the advantage over managing projects separately in terms
of ability to explicitly and systematically approach uncertainty. We compared the
probability of success for projects under effort constraints and for projects under time
constraints, respectively (Table 2 and Table 3). They indicate that the probabilities of
success for projects with high uncertainty ratings are greater when those projects are
managed as a portfolio.

Table 2. Increase in probability of success for low and high uncertain projects under effort
constraints

Uncertainty level Probability of success Ratio of increase
Individual projects Portfolio (a)/(b)
(a) (b)
Low uncertainty 93.78% 98.81% 1.05
High uncertainty 84.31% 97.76% 1.16

Managing Uncertainty in ERP Project Estimation Practice 101

Table 3. Increase in probability of success for low and high uncertain projects under time
constraints

Uncertainty level Probability of success Ratio of increase
Individual projects Portfolio (a)/(b)
(a) ()
Low uncertainty 15.76% 87.52% 5.55
High uncertainty 8.31% 75.91% 9.13

5 Evaluation of Validity Concerns

We did obviously a preliminary step only towards a better understanding of the major
phenomena that cause uncertainty in ERP effort estimation. To this end, we could
only say that we need to carry out a few replication studies so that the findings of this
study can be consolidated and transformed into recommendations to ERP project
managers. As per the recommendation of research methodologists [30,31], we did an
early assessment of the following validity [30] threats:

First, the major threat to external validity arises from the fact that the company’s
projects might not be representative for the entire population of ERP adopters. We
however, believe that our project context is typical for the telecommunication compa-
nies in North America: we judge these settings typical because they seemed common
for all SAP adopting organizations who were members of the American SAP Tele-
communications User Group (ASUG). The ASUG meets on regular basis to discuss
project issues and suggest service sector-specific functionality features to the vendor
for inclusion in future releases. The SAP components our case company implemented
are the ones which other ASUG companies have in place to automate their non-core
processes (accounting, inventory, sales & distribution, cell site maintenance).

Second, when constructing the portfolio, the author based her choice of ‘very low/
very high’ ratings on her own experience in implementing ERP. While for some driv-
ers, as reuse, the author did research on what reuse levels are achievable in an ERP
project [6], for others the author set up the ratings in a way that - clearly, could be
subjective. However, this design choice was the only possible way to go, given the
fact that, to the best of our knowledge, there is no published research on the CO-
COMO I factor ratings which are more common in ERP context. We plan, in the
future, to research the topic of economies and diseconomies of scale in ERP projects,
hoping that new knowledge will help refine our approach.

Next, we deployed complementary three models of three types. However, we are
aware that there are other promising effort estimation modeling techniques by each
type. For example, there is a number of approaches using portfolio concepts [29]
which might be good candidates for the ERP settings. In the future, we are interested
in investigating whether different modeling choices sustain our results or limit the
validity of our findings to the subset of the analyzed models.

6 Conclusions

In this case study we have demonstrated that the complementary use of Monte Carlo
simulation, a portfolio management method and a parametric empirical model

102 M. Daneva

(COCOMO 1II) can help counterpart the uncertainty in early ERP effort estimation
based on business requirements. The ultimate objective of the approach is to ensure
that setbacks in some ERP implementations are balanced by gain in others. Our ap-
proach is positioned to leverage off the current body of knowledge in both software
economics and ERP RE. The targeted effect was to systematically cope with two
aspects inherent to ERP project contexts: (i) lack of ERP-adopter’s specific historical
information about the context and (ii) strong bias by outsourcing partners and ERP
consultants in cost estimation. We found this approach to be one good alternative to
ERP-adopters as they no longer have to live with whatever estimates are given to
them by ERP consultants.
The case study provided evidence that led us to conclude the following:

(i) when managed as a portfolio, highly-uncertain ERP projects have a greater
chance to succeed under time and under effort constraints,

(i1) subprojects with high uncertainty ratings would have greater advantages from
portfolio management than projects with low uncertainty ratings would do.

(iii) it’s possible to adjust cost drivers so that one increases the probability of suc-
cess for highly uncertain ERP projects, a company might have to implement. We have
also shown that 13 out of the 17 COCOMO II cost drivers can be adjusted to increase
the chances for success.

With respects to (1) and (2), our results agree with the observation by Jiamthub-
thugsin and Sutivong [15] who experimented with the portfolio management method
in the context of custom projects. Though, we must acknowledge (i) that we have
preliminary results only and (ii) that related validity concerns [30] remain our most
important issue. In the next six months, we will work in collaboration with three
European companies to carry out a series of experiments and case studies to test our
approach. The results will serve to properly evaluate its validity and come up with an
improved version of our method.

Acknowledgements

The author thanks the anonymous reviewers for their comments and suggestions,
which greatly improved the clarity and value of this work. The author also thanks the
following organizations without whose support this research program would not have
become a reality: the Netherlands Science Organization (NWO) for supporting the
CARES project and the QuadREAD project, CTIT for supporting the COSMOS pro-
ject, IFPUG, NESMA and ISBSG, for making their resources available to me, and the
QuadREAD industry partners for the stimulating discussions that helped make sure
this research remained industry-relevant.

References

[1] Arnesen, S., Thompson, J.: How to Budget for Enterprise Software, Strategic Finance,
January 2005, pp. 43—47 (2005)

[2] Boehm, B.: Software Cost Estimation with COCOMO II. Prentice Hall, Upper Saddle
River (2000)

(3]
(4]
(5]
[6]
[7]
[8]

[9]

[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]

(18]
[19]
(20]
(21]
[22]
(23]
[24]

[25]

Managing Uncertainty in ERP Project Estimation Practice 103

Chulani, S., Boehm, B., Steece, B.: Bayesian Analysis of Empirical Software Engineering
Cost Models. IEEE Trans on SE 25(4), 573-583

Cisco Systems, How Cisco Upgraded Their Purchasing,
http://www.cisco.com/web/about/ciscoitatwork/business_of_it/erp_purchasing.html
Daneva, M.: ERP Requirements Engineering Practice: Lessons Learnt. IEEE Soft-
ware 21(2), 26-33 (2004)

Daneva, M.: Measuring Reuse of SAP Requirements: a Model-based Approach. In: Proc.
of Symposium on Software Reuse. ACM Press, New York (1999)

Daneva, M., Wieringa, R.J.: A Requirements Engineering Framework for Cross-
organizational ERP Systems. Requirements Engineering Journal 11, 194-204 (2006)
Daneva, M.: Approaching the ERP Project Cost Estimation Problem: an Experiment. In:
Int’. Symposium on Empirical Software Engineering and Measurement (ESEM), p. 500.
IEEE Computer Society Press, Los Alamitos (2007)

Daneva, M.: Preliminary Results in a Multi-site Empirical Study on Cross-organizational
ERP Size and Effort Estimation. In: Proc of the Int. Conf. on Software Process and Prod-
uct Measurement (MENSURA), Palma, Spain, pp. 182—-193. UIB Press (2007)
Davenport, T.: Mission Critical: Realizing the Promise of Enterprise Systems. HBS Press
(2000)

Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach, 2nd
edn. PWS Publishing (1998)

Fewster, R.M., Mendes, E.: Portfolio Management Method for Deadline Planning. In:
Proc. of METRICS 2003, pp. 325-336. IEEE, Los Alamitos (2003)

Glas, R.L.: Facts and Falacies of Software Engineering, p. 58. Perason Education, Boston
Hansen, T.: Multidimensional Effort Prediction for ERP System Implementation. In:
Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4278, pp.
1402-1408. Springer, Heidelberg (2006)

Jiamthubthugsin, W., Sutivong, D.: Protfolio Management of Software Development Pro-
jects Using COCOMO ILI. In: Proc. of ICSE 2006, pp. 889-892 (2006)

Kitchenham, B.A., Pickard, L., Linkman, S., Jones, P.: Modelling Software Bidding
Risks. IEEE Transactions on Software Engineering 29(6), 542-554 (2003)

Koch, S.: ERP Implementation Effort Estimation Using Data Envelopment Analysis. In:
Abramowicz, W., Mayr, H.C. (eds.) Technologies for Business Information Systems, pp.
121-132. Springer, Dordrecht (2007)

Luo, W., Strong, D.M.: A Framework for Evaluating ERP Implementation Choices. IEEE
Transactions on Engineering Management 5(3), 322-333 (2004)

McDonald, P., Giles, S., Strickland, D.: Extensions of Auto-Generated Code and NOS-
TROMO Methodologies. In: Proc. of 19th Int. Forum on COCOMO, Los Angeles, CA
Parthasarathy, S., Anbazhagan, N., Evaluation, E.R.P.: Implementation Choices Using
AHP. International Journal of Enterprise Information Systems 3(3), 52-65 (2007)

Rettig, C.: The Trouble with Enterprise Systems, Sloan Management Review. Fall 49(1),
21-27 (2007)

SAP AG, ASAP Methodology for Rapid R/3 Implementation: User Manual, Walldorf
(1999)

Stamelos, I., Angelis, L., Morosio, M., Sakellaris, E., Bleris, G.: Estimating the Devel-
opment Cost of Custom Software. Information & Management 40, 729-741 (2003)
Stensrud, E.: Alternative Approaches to Effort Prediction of ERP Projects. Inf.&Soft
Techn. 43(7), 413-423 (2001)

Stensrud, E., Myrtveit, 1.: Identifying High Performance ERP Projects. IEEE Trans.
Software Engineering 29(5), 398—416 (2003)

104

[26]

[27]

[28]
[29]

[30]
(31]

M. Daneva

Summer, M.: Risk Factors in Enterprise Wide Information Systems Projects. In: Special
Interest Group on Computer Personnel Research Annual Conference Chicago, Illinois,
pp. 180-187

Vogelesang, F.: Using COSMIC FFP for Sizing, Estimating and Planning in an ERP En-
vironment. In: Int’l Workshop on Software Measurement, Potsdam, pp. 327-342. Shaker
Publ. (2006)

Vogelezang, F.: Application Portfolio Management: How much Software Do I Have? In:
Proc. of the Software Measurement Forum (SMEF), Italy (2007)

Verhoef, C.: Quantitative IT Portfolio Management. Science of Computer Programming,
vol. 45(1), pp. 1-96 (2002)

Wohlin, C.: Experimentation in Software Engineering. Springer, Heidelberg (2000)

Yin, R.: Case Study Research, Design and Methods, 3rd edn. Sage Publications, Newbury
Park (2002)

The Effect of Entity Generalization on Software
Functional Sizing: A Case Study

Oktay Turetken"*, Onur Demirors !, Cigdem Gencelz, Ozden Ozcan Top',
and Baris Ozkan'

! Informatics Institute, Middle East Technical University, 06531, Ankara, Turkey
{oktay, demirors, ozden, bozkan}@ii.metu.edu.tr
2 Blekinge Institute of Technology, Department of Systems and Software Engineering
cigdem.gencel@bth.se

Abstract. In this paper we discuss a specific result derived from a multiple case
study. The case study involved implementation of IFPUG Function Point
Analysis and COSMIC Functional Size Measurement methods in an innovative
military software development project by different groups of experts.
Application of these methods in a case that provides a number of size
measurement challenges enabled us to observe significant improvement
opportunities for the methodologies. In this paper, we depict the utilization of
the entity generalization concept in two FSM methods and based on our
observations we discuss the effects of different interpretations of the concept for
measuring the software functional size.

Keywords: Functional size measurement, COSMIC FSM, IFPUG FPA, entity
generalization.

1 Introduction

Poor estimation remains to be one of the main reasons for software project failures.
Functional Size Measurement (FSM) methods are advocate for providing necessary
input for estimation models. FSM methods are intended to measure the size of
software by quantifying the functionality delivered to the user. Since the introduction
of the concept [2], a variety of FSM methods have been formulated and many
improvements have been made on these methods [11].

FSM methods have their own definition of functionality, utilize different counting
rules for the different functional components of functional user requirements and have
their own units and scales for their measures. In spite of these differences, they are
expected to produce similar results as they are based on a set of shared principles. A
number of research studies have been performed in order to clarify their conceptual
basis and establish the common principles of FSM methods [8], [10], [13].

" This study is supported by The Scientific and Technological Research Council of Turkey
(TUBITAK), Project 107E010.

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 105 2008.
© Springer-Verlag Berlin Heidelberg 2008

106 O. Turetken et al.

The objectives of this paper are to discuss how the concept of entity generalization
is considered in commonly used FSM methods; the International Function Point Users
Group Function Point Analysis (IFPUG FPA) [17] and the Common Software
Measurement International Consortium FSM (COSMIC FSM) [18] and to investigate
how different interpretations of this concept affect the functional size of the software
measured by these methods. Findings are based on the case study we conducted on an
innovative military software development project. Specifically, we observe how entity
abstractions - in the form of inheritance or generalization/specialization between
entities or classes - may lead to different assumptions when identifying elementary
components for the measurement and the effects of these different assumptions on the
functional size. We evaluate the methods based on our findings and discuss the
difficulties we faced during the implementation of the methods.

The paper is organized as follows: Section 2 briefly summarizes the FSM methods
and related research. In section 3, we describe the case study. Section 4 presents our
findings and conclusions.

2 Related Work

Measuring the software size with the ‘functionality’ attribute was first introduced by
Albrecht [2] in his Function Point Analysis (FPA) method. With the refinements of
the technique, FPA has evolved into the IFPUG FPA [12] method. During the
following years, several new measurement methods ([1], [5], [22], [29]) or extending
the applicability of FSM methods to different functional domains in addition to
business application software ([21], [28], [30]) have been developed. Studies by
Symons’ [26] and Gencel et al. [11] provide detailed discussions on FSM methods.

The publication of the first ISO/EIC’s 14143-1 standard [14] in 1998 aimed at
clarifying the fundamental concepts of FSM. It defined concepts such as ‘Functional
User Requirements (FUR)", ‘Functional Size®’, Base Functional Component (BFC)®”,
‘BFC Type" and the FSM requirements that should be met by a candidate method.
Currently, Mark II FPA (MKII FPA) [16], IFPUG FPA [17], COSMIC FSM [18] and
Netherlands Software Metrics Association FSM (NESMA FSM) [19] are certified by
ISO as being international standards.

Earlier FSM methods have been criticized of lacking support for concepts such as
inheritance and aggregation [1], [7], [24], which are generally associated with object-
oriented methodologies. This creates ambiguities and difficulties in determining the
functional components and measuring the functional size.

In order to better reflect the needs of object-oriented (OO) software development
methodologies, several approaches have been proposed. Some of these works that

" FURs: A sub-set of the user requirements. The FURs represent the user practices and
procedures that the software must perform to fulfill the users’ needs.

? Functional Size: A size of the software derived by quantifying the FUR.

3 BFC: An elementary unit of FUR defined by and used by an FSM Method for measurement
purposes.

* BFC Type: A defined category of BFCs. A BFC is classified as one and only one BFC Type.

The Effect of Entity Generalization on Software Functional Sizing 107

adapt FPA method to OO concepts yield results that are similar to what would have
been obtained by directly applying IFPUG FPA. Whitmire [31] considered each
general class as a logical file and methods sent across the application boundary as
transactional functions. For classes that are part of an inheritance hierarchy, “if the
generalization is truly part of the application domain, it is counted as a separate
logical file”. If the generalization was build for the ease of modeling, general class is
counted with each specialized class. In IFPUG FPA, a logical file is a user identifiable
group of logically related data or control information. Internal Logical Files (ILFs) are
maintained within the boundary of the application, whereas External Logical Files
(EIFs) are maintained within the boundary of another application.

Fetcke et al. [7] defined rules for mapping OO-Jacobson method to concepts from
IFPUG FPA and verified the rules by applying them in three case studies. For
inheritance relationships, they defined two rules. First; an abstract class is not visible
to the user and does not relate logical files itself. It is rather a candidate for a record
element type (RET) for each class that inherits its properties. RETs are optional or
mandatory subgroup of data elements within an ILF or EIF. They influence the
degree of functional complexity (low, average, high) of logical files. Second;
specialized classes of a concrete general class are candidates for a logical file or a
RET of that class. With these presumptions, however, the work does not elucidate
whether specialized classes are logical files of their own or RETs for the general
class.

To overcome these difficulties Abrahao et al. [1] proposed OO-Method Function
Points (OOmFP) for measuring the functional size of OO systems which is compliant
with the IFPUG FPA rules.

Similarly, Caldiera et al. [3] adapted IFPUG FPA rules for measuring object
oriented analysis and design specifications. They proposed alternative ways for
identifying logical files and handling entity abstractions, but did not propose clear
rules or recommendations of when and under what conditions each can be applied. In
an inheritance hierarchy, a logical file may comprise all the entities in the hierarchy or
every entity can be mapped to a logical file.

Mapping of object oriented modeling concepts onto the measurement constructs
has also been studied for COSMIC FSM. Jenner [20] proposed a mapping for the
concepts used in UML diagrams onto the abstract COSMIC FSM model. It is argued
that UML sequence diagrams have a more appropriate level of granularity to measure
functional size. Diab et al. [6] proposed a set of formal rules for applying COSMIC
FSM to object-oriented specifications. The work proposes a formalization of the
COSMIC FSM measure for the real-time object oriented modeling language.

3 The Case Study

We conducted a multiple-case study in order to evaluate and explore the similarities
and differences between FSM methods. By implementing IFPUG FPA [12] and
COSMIC FSM [28] methods, different measurers measured the functional size of a
case project.

108 O. Turetken et al.

In the scope of this paper, we deal only with the differences among methods in
handling the entity generalization and how these affect the measurement results
between the functional size figures obtained by different measurers. Therefore,
although the description of the whole case study is presented; in this paper, the results
which are related to these specific questions on entity generalization are discussed. It
should be noted that our aim here is not to find out which of the methods is better, but
to shed light into the improvement opportunities of each of these methods.

3.1 FSM Methods Utilized

In general, FSM methods first requires the functional user requirements (FUR) to be
decomposed into ‘Transactions’, which involve inputting, outputting and processing
of items or groups of data, triggered by events outside the software [15]. From
transactions, BFCs are identified and then each of these is categorized to BFC Types
and the attributes relevant for obtaining the base counts are identified. The next step is
the actual measurement where the functional size of each BFC is measured by
applying a measurement function to the BFC Types and the related attributes. The
overall functional size of the software system is computed by summing up the results.

In IFPUG FPA, the BFCs are classified as the Transactional Function (TF) Types
and Data Function (DF) Types. DF may be an Internal Logical File (ILF) or an
External Interface File (EIF), whereas a TF can be of the type; External Input (EI),
External Output (EO), or External Inquiry (EQ). These components are weighted
according to their complexity and their weights are summed. The functional
complexity of each logical file is based on the number of record element types (RETSs)
(subgroup within a logical file) and the number of data element types (DETSs) within a
logical file. A DET is a unique user recognizable, non-repeated field which is
equivalent to the ‘entity attribute’. The functional complexity of a logical file can be
low, average or high, each corresponding to an IFPUG function point value.

In COSMIC FSM each FUR is decomposed into ‘Functional Processes’ (FP) and
each of these FPs is assumed to comprise a set of sub-processes, called Data
Movement Types. Data movement types are the BFCs of this method. A data
movement moves one or more data attribute belonging to a single ‘data group’, where
each included data attribute describes a complementary aspect of the same ‘object of
interest’. An object of interest is any ‘thing’ or a conceptual object that is identified
from the point of view of the Functional User Requirements. It is equivalent to
‘entity-type’ in entity relationship (ER) analysis or ‘class’ in UML [23]. There are
four kinds of Data Movement Types: Entry (E), Exit (X), Read (R), and Write (W).
Each of these is defined as a BFC Type [18]. The value in COSMIC FP is the total
number of data movements performed in the software system.

A detailed discussion on the differences and similarities between these two
methods can be found in [10].

3.2 Description of the Case Project and the Software Application

The case project involved the development of a conceptual modeling tool (KAMA)
that provides a common notation and a method for the conceptual model developers

The Effect of Entity Generalization on Software Functional Sizing 109

in different modeling and simulation development projects particularly in the military
domain. The project was started in June 2005 and completed in July 2007.

The total number of project staff worked consisted of 21 people; 1 project
manager, 1 assistant project manager, 2 steering committee members, 1 project
coordinator, 8 researchers, 1 software development team leader, 1 quality assurance
team leader, 4 software engineers (1 part-time), 1 part-time test engineer and 2 quality
engineers (1 part-time). The efforts utilized for the project totaled up to 1,832 person-
days. Table 1 gives the details of the efforts utilized for the tool development part of
the project.

Table 1. The development effort for the case project

Software Development Effort
Life Cycle Phase (person-days)
Development Processes 1,287
Software Requirements Analysis 227
Software Design 185
Software Coding & Unit Testing 670
Testing 205
Management 135
Supporting Processes 410
Total 1,832

The types of software tools and programming languages used in the development
phases were as follows: Rational Software Architect as the software analysis and
design tool, Requisite Pro as the requirements management tool, and C# as the
programming language. Unified Modeling Language (UML) [23] was used for
representing analysis and design. Related IEEE standards were utilized for the project
work products, which were kept under configuration control by the Subversion tool.

With respect to CHAR Method defined in [15], the functional domain of the
KAMA is determined as ‘Information System’.

KAMA is a graphical modeling tool that supports a specific notation based on
UML. It supports the development of conceptual models with a set of diagrams,
model elements and their relationships. Each diagram simply consists of a set of
model elements and the relationships between them. The type of model elements in a
diagram and the type of the relationships that can exist between them is determined
by the diagram type. The notation comprises 8 diagram types, 10 model element types
and 15 relationship types. The diagram entity has a common set of attributes
maintained for all types. For the model elements, on the other hand, together with the
common attributes that are maintained by all, there exist attributes specific to types.
Similar situation also holds for relationship types. Fig. 1 depicts the model element,
relationship and diagram entities and partial data model for the entity abstractions
with an extended entity-relationship (EER) model.

The characteristics of the data entities to be maintained by the tool make it a good
candidate for generalization/specialization practices to be applied for model element,
diagram and relationship entities.

110 O. Turetken et al.

Model
Element

I

I [I I
a) Entity Mission State Goal

Relationship

r

[[I I

b) Performs Has Controls Inherits

Diagram

I

[| I I
Mission Entity Command Work
Space Ontology Hierarchy Flow

c)

Fig. 1. Entity generalizations for diagrams, model elements and relationships

3.3 Case Study Conduct

The functional size measurement of the KAMA was performed by IFPUG FPA and
COSMIC FSM based on the software requirements specification (SRS) document.
Together with the requirements statements, the document included UML use case
diagrams, activity diagrams describing the details of the use cases and a data model in
the form of a simple class diagram.

The measurements were performed independently by two groups of measurers,
each of which involved two measurement experts. The measurements were performed
by different groups to better understand potential measurement variances caused by
assumptions and interpretations of the different measurers. The results were verified
according to the measurement rules of each method by the measurer who himself did
not involved in that measurement process. In the group of measurers, one of them
holds a PhD. degree in the related subjects; two are PhD. students and one is an MSc.
student working on related subjects, in particular on software functional size
measurement. All the measurers received training for at least one of the FSM methods
and they all measured at least one project previously.

The measurement results are given in Table 2 and Table 3. Since ISO view takes
the adjustment of the functional size via quality and technical requirements outside
the scope of the FSM [13], we do not take into account the adjustment phase of the
IFPUG FPA for the purpose of this case study.

It took 105 person-hours of effort to measure the functional size of KAMA
implementing COSMIC FSM. The measurement with IFPUG FPA took 102 person-
hours. Although the functional size for each of the method differs significantly, the
effort values utilized for the measurement were quite similar.

The Effect of Entity Generalization on Software Functional Sizing 111

Table 2. Case Project - [IFPUG FPA Size Measurement Details

No. of No.of No.of No.of No.of No.of Functional Size
Elementary Processes ILFs EIFs Els EOs EQs (IFPUG FP)
(Unadjusted)
45 11 0 26 1 18 306

Table 3. Case Project - COSMIC FSM Size Measurement Details

No. of No. of No. of No. of No. of Functional Size
Functional Processes Entries Exits Reads Writes (COSMIC FP)
55 61 154 314 160 697

4 Findings and Conclusions

Although the rules for identifying the BFCs and BFC types differ for each method,
using similar concepts and comparable attributes, decomposition of the functional
user requirements into ‘transactions’ is expected to yield the same set of transactions.
While this is not explicitly asserted by any of the FSM methods, it is one of the
underlying assumptions of research related with the conversion of the sizes or
unification of these methods [8], [4], [10], [25]. When the same groups of measurers
involve in the measurement process, they usually identify similar or identical
transactions for measurements performed by different FSM methods [10], [11].

However, in this case study, the differences in the interpretation of the rules by
different measurers cause significant differences in the measurement results. During
the case study conduct, the measurers faced some difficulties in identifying the
entities and transactions. This was mainly due to the structure of the data to be
maintained by the application and the way the FSM methods handles entity
generalization.

IFPUG Implementation Results. Although IFPUG FPA measurement process does
not give any precedence rule for identifying the data and transactional functions, in
our case study we started with the data functions. Because, we utilized ILFs to better
identify the transactional functions and valuing their complexity. The complexity of a
transactional function is dependent on the number of ILFs/EIFs maintained during the
transactions as well as the total number of input and output DETs.

IFPUG FPA takes the complete inheritance hierarchy as a single logical file, with a
RET for each subclass [12]. For example, the complete inheritance hierarchy of
‘model elements’ is considered as one ILF with a number of RETs for each special
type (Fig. 2). Thus, with respect to the counting rules, the functional complexity of
the model element ILF is high and so the contribution on the total functional size is 15
IFPUG function points (FP). The affect of number of RETs on functional size were
limited in the sense that, with 10 RETs for each of the special model element type
having attributes of their own, the contribution of the ILF is increased from 7 to 15
function points (complexity level from low to high).

112 O. Turetken et al.

Model
Element ILF: Model Element
A RETs:
[[[[[[\ S f\n:ity
) o o ctor ,
Entity Mission 110 State Goal Criteria Note . Role ,
— Mission ,
4 A Task,
> 10,
Actor Task State ,
Goal ,
4 Criteria ,
Role Note

Fig. 2. A mapping from entities to an ILF in IFPUG FPA

Identifying the data functions (ILF & EIF) was useful in determining the
transactional functions, because the primary intend of the transactional functions
(elementary processes in IFPUG FPA) is to maintain one or more logical files (create,
update, read, delete, etc.). Besides, the functional complexity of a transactional
function depends on the number of logical files referenced and the total number of
input and output DET to and from the transaction.

Unifying all special entities in the inheritance hierarchy into an ILF also combined
many of the transactions performed on each of the special entity. For example, a
transaction of creating an ‘actor’ model element was combined with creating a ‘state’
model element, even though system may need to behave in a different way for each of
them. It can be argued that those two entities are separate in the user domain and
whether the application handles both entities in the same way or not can be a design
choice rather than a decision to be given in the requirements phase.

The difference for those two cases can be significant for applications similar to
KAMA, where entity abstractions (aggregation, generalization, etc) are applied
extensively. For example, for the elementary process of creating a model element, the
size is 6 FP (complexity level being high). On the other hand, having separate element
creation process for each special type would result significantly larger values in total.
For 10 specific types, the result would be 60 FP (each having 6 FP with functional
complexity level high). Applying the same principle for other generalized entities
(relationship and diagram types) and related elementary processes (update, deletion,
read, etc.), the difference would be more substantial.

Based on these assumptions, where we consider each special type as a separate
ILF, we re-measured the size and the resulting value turned out to be 1789 FP, as
opposed to 306 FP in the first measurement performed in the case study. The number
of elementary processes increased from 45 to 260 and the number of ILFs increased
from 11 to 41. 485% difference in the functional size is significant.

Another notable difficulty about IFPUG FPA is related to the counting rules for
transactional functions. One of the rules to be applied in order for an elementary
process to be counted as a unique occurrence of an elementary process (external
input-EI, external output-EO or external inquiry-EQ) is the following [12]:

“The set of data elements identified is different from the sets identified for
other external inputs/outputs/inquiries for the application.”

The Effect of Entity Generalization on Software Functional Sizing 113

In the context of entity generalization/specialization, this can be interpreted in a
way which is different than the practices applied in the counting manual and other
guiding sources [9]. For example, with respect to the practices applied regarding the
rules in the counting manual, creating an ‘actor’ and ‘state’ model elements is
considered as a unique external input maintaining the ‘model element’ ILF. However,
with respect to the rule given above, we can argue that, if the ‘actor’ and ‘state” model
elements have different attributes other than the ones they have in common, creating
each of them can be considered as different elementary processes. Because, creating
an ‘actor’ model element will maintain a different set of DETs than creating the
‘state’ model element. This interpretation yet again may result considerable
differences in the result. In order to observe the affect of such an interpretation on our
case project, we recalculated the functional size. The resulting size value was 512 FP,
which is 67% more than the original 306 FP value. The number of ILFs remained the
same but the number of elementary processes increased from 45 to 82. Hence,
different interpretations and assumptions regarding the counting rules and the
structure of the data leaded to differences in functional size, which was significant for
our case.

COSMIC Implementation Results. For the COSMIC FSM measurement case, the
measurement group had some difficulties particularly in identifying the functional
processes and measuring their functional size. One of the main reasons for that was
the lack of clear assistance in the measurement manual [28] for distinguishing
processes that maintain a set of ‘objects of interests’ that can be abstracted to a
general entity. The group’s tendency was to treat all special entities as separate object
of interests, and consider each transaction performed on them as separate functional
processes. For example, two functional processes; creating a ‘mission space’ diagram
and creating ‘entity ontology’ diagram are considered as separate since they maintain
two different object of interests and they are triggered by different triggering events
perceived by the functional user (triggering event 1 - the user wants to create an
‘entity ontology’ diagram; triggering event 2 - the user wants to create ‘mission
space’ diagram). Accordingly, we obtained totally 270 functional processes.
However, the processing logic of the functional processes which maintain sub-entities
is the same. Therefore, we considered those as the same and measured only one.
Based on this assumption, we obtained 55 functional processes in total, which was
only 20% of the value obtained in first measurement.

Another difficulty was the measurement of each functional process which
maintains sub-entities. The measurement group needed to refer to COSMIC FSM
guideline for sizing business applications software [27]. The COSMIC FSM
measurement manual [28] recommends the reader to refer to this guideline for the
details on determining object of interests and separate data groups. To better handle
generalization, the guideline introduces a new term; ‘sub-type object of interest’.

According to the guideline, sub-types are the specialized entities (classes) that are
in the lowest level in the inheritance hierarchy. The general principle is that where
there is a need to distinguish more than one sub-type in the same functional process,
each sub-type is treated as a separate object of interest. Hence, according to the rules
in the guideline, instead of having separate functional processes for each special

114 O. Turetken et al.

entity, their contribution on the functional size was taken into account by including
additional data movements for each of the special entity (sub-type object of interest)
in the functional processes. However, if the functional process did not need to
distinguish special entities, only the general entity is referred. For example, creating a
model element is a functional process that requires distinguishing each type of model
element. For 10 special entities, there were 10 Entry and 10 Write data movements in
the functional process.

COSMIC FSM guideline for sizing business applications software defines
specific rules to handle entity generalizations in measuring the functional size of a
functional process and provides examples demonstrating how generalizations can
be reflected to the measurement practice. We still faced difficulties in identifying
the functional processes maintaining sub-entities. Identifying functional processes
are derived by the set of triggering events sensed by each of the functional user. In
our case study, although their processing logics are similar, we arrived at separate
functional processes each maintaining different sub-entities. Therefore, it is
necessary to extend COSMIC FSM measurement manual with specific rules in
order to clarify the procedure to be followed when identifying and combining
similar functional processes which maintain sub-entities that are generalized. In
addition, it is still arguable whether generalization or specialization practices can be
performed in the user domain or they belong to the solution domain and are design
issues.

In our study, we observed that, with different interpretations and assumptions,
significantly different set of base functional components (BFCs) for the same
software can be identified and this can occur not only among different FSM methods
but also for the same method. We observed that there is an improvement opportunity
for both methods regarding the rules to better accommodate entity generalizations,
since current rules are subject to ambiguity and interpretation.

References

1. Abrahao, S., Poels, P., Pastor, O.: A Functional Size Measurement Method for Object-
Oriented Conceptual Schemas: Design and Evaluation Issues. Software & System
Modeling 5(1), 48-71 (2006)

2. Albrecht, A.J.: Measuring Application Development Productivity. In: Proc. of the IBM
Applications Development Symposium, Monterey, California, pp. 83-92 (1979)

3. Caldiera, G., Antoniol, G., Fiutem, R., Lokan, C.: Definition and Experimental Evaluation
of Function Points for Object Oriented Systems. In: Proceedings of the 5th International
Symposium on Software Metrics, Bethesda (1998)

4. Cuadrado-Gallego, J.J., Rodriguez, D., Machado, F., Abran, A.: Convertibility Between
IFPUG and COSMIC Functional Size Measurements. In: Miinch, J., Abrahamsson, P.
(eds.) PROFES 2007. LNCS, vol. 4589, pp. 273-283. Springer, Heidelberg (2007)

5. DeMarco, T.: Controlling Software Projects. Yourdon press, New York (1982)

6. Diab, H., Frappier, M., St. Denis, R.: Formalizing COSMIC-FFP using ROOM. In:
ACS/IEEE Inter. Conf. on Computer Systems and Applications, pp. 312-318 (2001)

11.

12.

16.

17.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

The Effect of Entity Generalization on Software Functional Sizing 115

Fetcke, T., Abran, A., Nguyen, T.H.: Mapping the OO-Jacobson Approach into Function
Point Analysis. In: Proceedings of TOOL 1997, Santa Barbara, CA (1998)

Fetcke, T., Abran, A., Dumke, R.: A Generalized Representation for Selected Functional
Size Measurement Methods. In: International Workshop on Software Measurement (2001)
Garmus, D., Herron, D.: Measuring the Software Process: A Practical Guide to Functional
Requirements. Prentice Hall, New Jersey (1996)

. Gencel, C., Demirors, O.: Conceptual Differences Among Functional Size Measurement

Methods. In: Proc. of the First International Symposium on Empirical Software
Engineering and Measurement - ESEM 2007, Madrid, Spain, pp. 305-313 (2007)

Gencel, C., Demirors, O.: Functional Size Measurement Revisited. ACM Transactions on
Software Engineering and Methodology (to be published, 2008)

International Function Point Users Group (IFPUG), Function Point Counting Practices
Manual, Release 4.2.1 (2005)

. IEEE Std. 14143.1: Implementation Note for IEEE Adoption of ISO/IEC 14143-1:1998 -

Information Technology- Software Measurement- Functional Size Measurement -Part 1:
Definition of Concepts (2000)

. ISO/IEC 14143-1: Information Technology - Software Measurement - Functional Size

Measurement - Part 1: Definition of Concepts (1998, revised in 2007)

. ISO/IEC TR 14143-5: Information Technology - Software Measurement - Functional Size

Measurement - Part 5: Determination of Functional Domains for Use with Functional Size
Measurement (2004)

ISO/IEC IS 20968:2002: Software Engineering - MK II Function Point Analysis -
Counting Practices Manual (2002)

ISO/IEC IS 20926:2003: Software Engineering - IFPUG 4.1 Unadjusted Functional Size
Measurement Method - Counting Practices Manual (2003)

. ISO/IEC 19761:2003: Software Engineering - COSMIC-FFP: A Functional Size

Measurement Method (2003)

ISO/IEC IS 24570:2005: Software Engineering - NESMA functional size measurement
method Ver.2.1 - Definitions and counting guidelines for the application of FPA (2005)
Jenner, M.S.: COSMIC-FFP and UML: Estimation of the Size of a System Specified in
UML - Problems of Granularity. In: Proc. the Fourth European Conference on Software
Measurement and ICT Control, pp. 173—184 (2001)

Jones, T.C.: A Short History of Function Points and Feature Points. Software Productivity
Research Inc., USA (1987)

NESMA, Definitions and Counting Guidelines for the Application of Function Point
Analysis, Version 2.0 (1997)

OMG, Unified Modeling Language: Superstructure, Ver.2.0, Formal/05-07-04, Object
Management Group (2005)

Rains, E.: Function points in an Ada object-oriented design? OOPS Messenger 2(4), 23—
25 (1991)

Symons, C.: Software Sizing and Estimating: MkII Function Point Analysis. John Wiley,
Chichester (1993)

Symons, C.: Come Back Function Point Analysis (Modernized) — All is Forgiven!). In:
Proc. of the 4th European Conf. on Software Measurement and ICT Control (FESMA-
DASMA 2001), Germany, pp. 413-426 (2001)

The Common Software Measurement International Consortium (COSMIC): Guideline for
Sizing Business Applications Software Using COSMIC-FFP, Version 1.0 (2005)

The Common Software Measurement International Consortium (COSMIC): COSMIC
Method, Version 3.0, Measurement Manual (2007)

116 O. Turetken et al.

29. The United Kingdom Software Metrics Association: MKII Function Point Analysis
Counting Practices Manual, V.1.3.1 (1998)

30. Whitmire, S.A.: 3D Function Points: Scientific and Real-time Extensions to Function
Points. In: Proceedings of the 1992 Pacific Northwest Software Quality Conference (1992)

31. Whitmire, S.A.: Applying function points to object-oriented software models. In: Keyes, J.
(ed.) Software Engineering Productivity Handbook, pp. 229-244. McGraw-Hill, New
York (1992)

Towards a Capability Model for the Software
Release Planning Process — Based on a Multiple
Industrial Case Study

Markus Lindgren!, Rikard Land?, Christer Norstrom?, and Anders Wall?

1 ABB Force Measurement, Visteras, Sweden
markus.lindgren@mdh.se
2 School of Innovation, Design, and Engineering
Mélardalen University, Véasteras, Sweden
rikard.land@mdh.se, christer.norstrom@mdh.se
3 ABB Corporate Research, Visteras, Sweden
anders.wall@se.abb.com

Abstract. Software release planning is an important activity for effec-
tively identifying the customer needs generating best business, especially
for incremental software development. In this paper we propose a capa-
bility model for improving the release planning process of an organiza-
tion. Using this model it is possible to 1) determine the capabilities of an
organization’s release planning process, and 2) identify areas for improve-
ment. The model is based on empirical data from a multiple case study
involving 7 industrial companies, all being producers of software inten-
sive systems. We also provide examples of how the proposed capability
model can be applied using the companies from the study.

1 Introduction

Release planning can be seen as a company-wide optimization problem involving
many stakeholders where the goal is to maximize utilization of the often limited
resources of a company and turn them into business benefit [1]. As input to
release planning is a set of needs that, when implemented as part of a product,
provides some business/customer value. Release planning results in a decision of
what to include in future release(s) of a product, and consequently, a decision
of what not to include; normally the cost of implementing all proposed needs
exceeds the budget allocated to a release. Thus, the set of needs needs to be
prioritized in order to maximize the business value of the included needs. In ad-
dition, there are constraints that must be considered during release planning [1],
such as, time-to-market and dependencies between needs. An overview of some
relevant aspects of release planning is illustrated in Fig. 1.

Poorly performed release planning can result in “wrong” features being re-
leased to the market and/or being released at the “wrong” point in time. An-
other possible impact of poor release planning is inefficient use of the resources
available to an organization. Ultimately, release planning impacts how successful
and profitable an organization can become.

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 117 2008.
(© Springer-Verlag Berlin Heidelberg 2008

118 M. Lindgren et al.

I Project constraints:

I
Competitors I -Budget }
: -Time-to-market |
New needs - Resources
New technology ! Developers !
I I

e ~--- Product changes/
' New features

- Release - Development i
Plan project(s)

Release/ Product
Planning

Product

‘ Internal QA ‘ and ‘ Quality in Use ‘é

"Quality”
needs

(Sub-set of Stakeholders)

Fig. 1. Overview of relevant aspects of release planning

In this paper we propose a capability model for improving the release planning
process of an organization, which is based on empirical data from a multiple case
study on software release planning in industry [2,3,4]. Using this capability model
it is possible to:

— Determine the capabilities of an organizations release planning process.
— Identify areas for improvement.

We also illustrate how this capability model can be applied to determine the
capabilities of a company’s release planning process, using the companies from
our multiple case study as examples.

The outline of this paper is as follows: Section 2 presents a selection of re-
lated work, Section 3 describes the research method, Section 4 presents the re-
lease planning capability model, Section 5 presents examples of using the release
planning model, Section 6 provides a more extensive release planning example
from industry, putting things into context, and Section 7 discusses future work.
Finally, in Section 8 we summarize the paper.

2 Related Work

Release planning research is mainly focused on formalizing the release planning
problem, typically by formulating the problem as an optimization problem, where
customer value should be optimized while subject to a set of constraints [1,5].
In addition, there are a number of tools being developed implementing these
algorithms [6]. However, there is also work indicating that the release planning
problem in itself is “wicked” and therefore hard, and possibly unsuitable, to
formulate as an optimization problem [7].

In [8,1] two different approaches to release planning research are discussed,
referred to as the art and science of release planning. The approaches formulating
release planning as an optimization problem belong to the science approach,
while we in this paper are more focused on the art of release planning. We discuss
how a company can perform release planning from a more practical point of

Towards a Capability Model 119

view. Furthermore, it is rare to consider how the existing system impacts release
planning, exception being [8,6], which again are science approaches.

Requirements engineering is related to release planning, e.g., prioritization of
needs is a common problem. However, release planning is a more general problem,
since it, e.g., considers resource constraints [6]. Focal Point is one example of a
requirements prioritization tool based on the work presented in [9].

Research within the area of process improvement is active, where the perhaps
most well-known model and most used in practice is the CMMI [10]. CMMI
is focussed on an organization’s capabilities and maturity of running product
development project(s). It specifies practices that must be adhered to in order to
reach a specific CMMI level, where CMMI level 1 represents an organization with
lowest maturity and CMMI level 5 represents the highest maturity. However,
CMMI provides little detail on how to perform release planning. The CMMI
process areas being related to release planning are project planning, requirement
development, and requirement management. Within these process areas there are
practices for capturing and managing requirements, but when it comes to how
to select which features to include in the next release of a product there is no
information or practice; CMMI in several cases merely states “resolve conflicts”.
This paper can be seen as an extension of CMMI that addresses some areas
where CMMI provides little or no information.

There are also a number of standards which have parts related to release plan-
ning, for example, IEEE Std. 830:1998, 1220:2005, 12207:1996, and 15288:2002.
IEEE Std. 830 specifies how a complete, correct, and non-ambiguous software
requirement specification should be written. IEEE Std. 1220 specifies the tasks
required throughout a system’s life cycle to transform stakeholder needs, re-
quirements, and constraints into a system solution. IEEE Std. 12207 specifies a
common framework for software life cycle processes, similarly IEEE Std. 15288
defines a framework for systems engineering life cycle processes. As these are
standards, they rarely state how to perform a specified required task, instead
they state that the task must be performed (somehow). In this paper we provide
more “hands-on” approaches to release planning; surprisingly little is concerned
with release planning in these standards.

To conclude, existing research provide little information concerning how to
improve an organizations release planning process, and there is little work on
how to consider the quality of the existing system during release planning.

3 Research Method

In this paper we investigate the effectiveness of performing software release plan-
ning. We do this by proposing an initial model expressing the capabilities of an
organizations release planning process, which aid in identifying areas for im-
provement. The model is a first attempt in this direction which we expect to be
refined and become more detailed over a period of time. This work is based on
empirical data collected during a multiple case study involving 7 industrial com-
panies [4]. For confidentiality reasons there are no company names, no names of

120 M. Lindgren et al.

interviewed people, and no absolute numbers on, e.g., budget, in this paper nor
in [4], but where possible we present relative figures.

In our study we have used semi-structured interviews as the primary data
collection method (with a common line of questions/topics), sometimes com-
plemented by documents received from the interviewees. The main alternative,
direct observations, has not been used due to the topic being studied containing
company sensitive information and partly due to practical limitations.

In conducting the study we have followed the recommendations by Yin [11]
for multiple case studies. We have addressed construct validity in multiple ways.
First, there have always been two researchers present during each interview in
order to reduce possibilities of misunderstandings. Second, interview notes have
been taken during each interview, which have been sent to interviewees for ap-
proval [4]. Third, we have had two test interviews to improve our interview setup.
In total we have interviewed 16 people (excluding test interviews), typically 2—4
persons per company to achieve data triangulation.

To strengthen the internal validity of our study we have used multiple re-
searchers when performing analysis and made use of pattern-matching tech-
niques, and we have considered rival explanations. To increase reliability of our
study, all collected data, and derivations thereof, are stored in a database ac-
cessible only to the researchers in the study, e.g., interview notes and merged
notes per company. In addition, the study design is documented, which includes
the interview questions. Using this material it is possible to trace conclusions to
collected data, and vice verse. To counter researcher bias multiple researchers
have been involved in most of the steps of this study. Furthermore, companies
that the researchers in the study are affiliated with are excluded from the study.

Thanks to industrial contacts we have been able to find a relatively large num-
ber of companies and persons willing to participate in our study, which aids in
increasing the exzternal validity of our results. However, there is risk that the se-
lection is not fully generalizable to other domains and/or nationalities/cultures.
In selecting people to interview we have asked our contact person(s) at each
company for references to people working with release planning. Our interviews
have mainly been with product managers, managers, and project leaders.

All companies in the study develop software intensive embedded systems with
a typical life cycle of 10-20 years. However, the companies are in different product
domains, e.g., automation, telecommunication, and automotive. Table 1 presents
some relative data concerning the characteristics of products developed, pro-
duced, and sold by the studied companies in order to provide a feel for their
main characteristics. In Table 1 Volume refers to the produced product volume,
while the rows % Software, % FElectronics, and % Mechanical is our subjective
judgment of the products’ software, electrical, and mechanical content, which
in turn reflect the amount of resources these companies invest in these areas.
Case 3 is excluded from the table since it is a management consulting company
that has no products. The case numbering in Table 1 is consistent with [4,2].

We are partly using a grounded theory approach [12] in this research, since
we define a model based on observed data. The model we present in this paper

Towards a Capability Model 121

Table 1. Charachteristics of companies in the study, where VH = Very high, H =
High, M = Medium, L. = Low, and VL = Very low

Case 1 2 14| 5 |6 7
Volume VH| H |[VH| L |M|L-M
% Software |L-M|L-M| H |[L-M|M | H
% Electronics| M | M |H| M [M| M
% Mechanicall H | H |L | H [M| L
Employees H | H |[VH|L-M|VL|VL-L
% in R&D |VL|VL| H |L-M|VL| VL

has partially been validated in a workshop with participants from our study.
However, since we created the model based on collected data, the same data
cannot be used to validate the model. Nevertheless, it can be used to motivate
and illustrate the model until further studies validate it.

Proper validation of the model requires a baseline with which to compare, for
example, the state before changing the release planning process in an organiza-
tion, and then collect data after introducing the change; as has been done for
CMMI [13]. We have not yet reached such a state in this research.

4 Improving the Release Planning Process

In its generalized form, release planning can be considered to consist of three
different process activities, as illustrated in Fig. 2:

Elicit Needs. Collect stated, and unstated, needs from the different stakehold-
ers. Other literature, e.g. [8], refers to this activity as requirements elicitation,
which typically refers to a phase within a development project. We mainly
refer to need collection occurring prior to forming the development project.

Make Release Decision. Prioritize the needs such that the cost and schedule
for realization fits within the constraints of the release, and decide the con-
tents of the release. Again, this is an activity that primarily occurs prior to
the development project.

Realize Needs. Typically performed as product development project(s) within
the research and development (R&D) part of the organization, where the
prioritized needs are implemented as part of a product(s).

These process activities can, but need not, be performed in sequence; typically
these are continuous activities with data flow between them.

.. Make Release .
[Elicit Needs H Decision H ReallzeNeeds]

Fig. 2. Overview of the release planning process

122 M. Lindgren et al.

In this section we present a capability model for improving an organization’s
release planning process, inspired by the Test Process Improvement (TPI) [14]
framework, and partly by the CMMI [10], therefore there are some similarities.
Our focus is placed on need elicitation and making the release planning decision,
while we are aware of there being other important areas within release planning
as well, such as, choice of time horizon and resolving need dependencies.

Each of the following sub-sections describe key-areas within the three process
activities from Fig. 2. For each key-area a capability scale is presented, with
levels from A-D, where A represents lowest capability and D represents highest
capability. Using these descriptions it is possible to pinpoint the capability for
an organization within each key-area. While describing the key-areas we also
present some examples of how the key-area can be applied in practice, using
examples from our multiple case study [4]. However, it should be noted that we
do not suggest that it is always economical for an individual organization to
strive for level D in each key-area.

We have derived the set of key-areas based on what we have observed as being
important activities in our study; the set we present is in no way guaranteed to
be complete. Within each key-area we have ranked observed data from the cases
within each area to form the capability levels. The ranking has partly been
validated in a workshop with participants from our study. However, we expect
our proposed capability model to be refined and detailed in the future; this is
only a first attempt at building a capability model for release planning. For
example, in this model there are capability levels from A to D, however, it is
not necessary for there being four levels within each key-area. Furthermore, the
model has been devised with a focus on software, although it may be possible
to apply the model in other domains as well.

In TPI [14] there are also key-areas with levels A-D. In addition, there is a test
maturity matriz relating the level within each key-area to a test maturity scale,
from 0 to 13. For example, for an organization to have rating 3 it is required to
have level A in the key-area Estimation and planning, level B in Test specification
techniques, etc. In our work we currently haven’t reached a state where we can
present a similar maturity matrix for release planning. Yet, the key-areas will
allow an organization to identify possible improvement key-areas.

4.1 Elicit Needs

We have identified the following key-areas within the process activity elicit needs:
need Elicitation and need documentation.

Need elicitation: Refers to how and from which stakeholders needs are elicited.
Elicited needs are prioritized, in other key-areas, and a decision is made of what
to include in a release. The capability scale is as follows:

Level A. Adhoc. Needs are collected when opportunities arise, for example,
during meetings with customers or other stakeholders. Typically this activity
is unstructured and performed by product management.

Towards a Capability Model 123

Level B. Formal Path. Each (important) stakeholder group has a formal path
for passing need requests to product management. Typically these needs are
collected prior to upcoming release planning decisions. This formal path
should be described in the process description for the organization.

A stakeholder group refers to a specific “type” of stakeholders, e.g., the
end-customer can be one such type. Other such possible types are developers,
testers, and commissioners. What differentiate these are that they each use
the product in different ways, and therefore also have different needs.

Level C. Stakeholders Prioritize Needs. Needs are collected using both A
and B, but with the addition of each stakeholder group also assigning prior-
ities to the needs. Product management, which makes the release decision,
receives a set of prioritized need lists, one from each group, and is required
to make the release plan decision and to be able to motivate this decision.

Level D. Stakeholders Rate Needs Based on Product Strategy. An ex-
tension of C where the internal stakeholders of the company assign priori-
ties based on the product and/or company strategy; external stakeholders
prioritize needs according to level C.

Example 1. Case 1 fulfils level B by having three parts within the organization,
which each focus on a separate area of the product [4]. These areas are product
features, product quality, and cost-cut (mainly related to production cost), which
each propose needs to product management; illustrated in left part of Fig. 3. In
a similar way Case 4 has a formal path for collection of feature needs and quality
needs; illustrated in right part of Fig. 3.

Example 2. Case 4 develops a product platform used by two other parts of their
organization, O; and Oz [4]. One way in which Case 4 fulfils level B for need
elicitation is that product management for O, and O, propose needs to product
management for Case 4. In addition, system responsibles from Oy, Os, and from
Case 4 propose needs to product management for Case 4, as is illustrated in
Fig. 4. Furthermore, they apply a principle, called “one-voice”, where each group
(i.e., each line to product management in Fig. 4) prioritize the set of needs before
passing them to product management for Case 4, thereby fulfulling level C.

Case 1 Case 4
e N
Collect Needs Collect Needs
Identify Product Feature Needs Identify Product Feature Needs Identify Quality Needs
Identify Quality Needs Prioritize Product Feature Needs Prioritize Quality Needs
Identify Cost-Cut Opportunities

- J

Fig. 3. Two examples of a formal path existing for need elicitation

124 M. Lindgren et al.

o

- product management

- system responsibles —— Product Platform

0, management > release plan

- product managemen/ for Platform l

- system responsibles Ordert
rder to

Platform R&D

- system responsibles

Fig. 4. Example of having a formal path for need elicitation

Documentation: For a need to become eligible for prioritization into a release
there typically needs to be some documentation, e.g., a short description of what
business benefit the need aims to fulfil. The capability scale is as follows:

Level A. Adhoc. Only a short description of the need, if any.

Level B. Template. A common template for need documentation consisting
of at least: a short description of the need, an initial cost estimate for re-
alizing the need, an initial return-of-investment calculus, and a statement
concerning the consequences on the existing system of introducing the need.
Typically, this documentation should be at most one page.

Level C. Tool Support. The information from Level B are stored in a tool/
database, which can be accessed by all people involved in need elicitation.

Level D. Type of Need. An extension of Level C where the needs are classi-
fied according to at least the following types: new feature, quality improve-
ment, cost-cut.

Example 3. In our study [4] all the companies use some form of template for
the proposed needs. However, its form range from a short statement, a one page
statement (as in level B), to templates with 3 PowerPoint slides.

4.2 Make Release Decision

These are the key-areas we have identified belonging to making the release de-
cision: decision Material, product strategy, and release plan decision.

Decision material: In addition to the need documentation described in Sec-
tion 4.1 there can be different types of studies that refine the needs and produce
decision material, which complement the mentioned need documentation. The
purpose of the decision material, produced via studies, is both for increasing
confidence of data and risk reduction. Typically this is related to, e.g., refining
cost-estimates, determine consequences for the existing system, refining return-
of-investment calculus. The capability scale is as follows:

Level A. Adhoc. No formal decision material is used, instead the decision ma-
terial is formed by the “gut-feeling” [2| of the individuals involved in making
the release plan decision.

Towards a Capability Model 125

Level B. Unstructured Pre-study. A pre-study is performed with purpose
of refining a need proposal. The results produced by the pre-study partly
depend on which individual(s) perform the pre-study, and partly on the
people ordering the pre-study.

Level C. Structured Pre-study. A structured pre-study [2], compared to an
unstructured (level B), has a standardized set of issues which should be
investigated in the pre-study. It considers alternatives, as is described in the
process area Technical Solution in CMMI [10].

Level D. Feasibility Study. This is more oriented towards the solution for
how to realize the proposed need(s) into the existing system, and investigat-
ing different alternatives. In addition to performing a structured pre-study,
as in level C, a feasibility study is performed with the goal determining how
the proposed need(s) can be realized into the existing system, the resources
required to complete the task, refine cost-estimates, and address market is-
sues; see feasibility study on Wikipedia.

Example 4. The development projects in Case 1 are to large degrees concerned
with production issues, since their products have large mechanical content (see
Table 1) and the production is both complicated and costly. Therefore, before
any decisions are made they need to know the consequences for production (as
far as possible). These consequences are investigated via structured pre-studies,
illustrated in left part of Fig. 5.

Case 4 on the other hand delivers a product platform to O, and Os (previously
mentioned in Example 2), which in turn use the platform to develop products. In
case the platform is delivered at the wrong point in time or with too poor quality,
this will have consequences on the efficiency for O;’s and Os’s development
projects. To reduce this risk, and to improve confidence in the decisions being
made are the correct ones, Case 4 use both pre-studies and feasibility studies;
before and after each study it is possible to re-prioritize the proposed needs,
illustrated in Fig. 5.

Case 1 Case 4
Elicit Needs Elicit Needs

1st Prioritization 1st Prioritization

Perform Pre-Study

Perform Pre-Study '
’ 2nd Prioritization

2nd Prioritization '

Perform Feasibility Study

A

3rd Prioritization

Fig. 5. Two examples of using studies to refine need proposals

126 M. Lindgren et al.

Product strategy: Having a well-defined and clearly communicated product
strategy often helps employees within an organization to know what to strive
for; also an aid in daily prioritization of tasks. So far we have not yet reached a
state where we can present a capability scale. Still, we present some examples
from our industrial cases [4]:

Adhoc. Each release basically has its own focus and is not directly related to
any product/business strategy.

Release Profile. Case 7 uses a release profile, which sets the top-level priorities
for the next release. For example, the profile can be aimed at improving
usability and/or extending the set of supported communication protocols.

Product Strategy. Each product produced by Case 1 has an attribute profile,
consisting of more than 20 attributes, defining the target properties of the
product. Furthermore, the attribute profile is clearly linked to the company
strategy. Case 2 also has a clearly defined product strategy, with 8 core values
and 3 premium values; these values are used when determining the business
value of proposed development projects.

Another possibility expressing the product strategy is by using the measure
of effectiveness (MOE) defined in IEEE Std. 1220:2005, which is an explicit
mathematical expression “...by which an acquirer will measure satisfaction with
products produced by the technical effort.” The expression should capture the
top-level goals, i.e., should not contain too many details. The difference compared
to the previous strategy, is that it is measurable.

Release plan decision: The needs elicited in Section 4.1, including its docu-
mentation and decision material, is used as a basis for prioritization and followed
by a decision of what needs to be included in the next release. We have not yet
reached a state where we can present a full capability scale, the first two levels
are presented, while the following two are proposals which might fit into the
capability scale (these have not been observed in the industrial cases):

Level A. Adhoc. Needs are prioritized based on the “gut-feeling” [2] of product
management.

Level B. Tool Support. A decision support tool, such as Focal Point, is used
to aid in making the decision. The prioritization should make use of the
product/company strategy.

Metrics (not based on observed data). Use metrics, e.g., production cost,
maintenance costs, used product options, sold product volume, quality-in-
use, and prediction of these variables, as support when making decisions. We
have not yet defined a specific set of metrics, but to reduce the number of
decisions based on “gut-feeling” [2] more objective data must be used.

Optimizing (not based on observed data). Once proper metrics are in place
it might be possible to introduce optimization. For example, by adapting cur-
rent “science” approaches [1,6] to consider these metrics when computing re-
lease plans. Further research is required to reach such a position.

Towards a Capability Model 127

4.3 Realize Needs

How to realize needs in development projects is not within the scope of this
paper; refer to, e.g., CMMI [10] for a description of practices/key-areas. However,
one related issue is given an organization with certain capabilities of its release
planning process and a certain maturity for performing development projects,
e.g., determined using CMMI, which of these two areas should be improved in
order to have best effect?

The maturity and capabilities of performing development projects controls
the efficiency with which needs can be implemented, while release planning is
more focused on effectiveness, i.e., making sure that the correct features and
quality improvements are released to customers. Consequently, it is not certain
that a company with 100% efficiency in its development projects is the most
successful one. This indicates there being a need for being at least as good at
release planning as performing development projects.

5 Application of the Capability Model

In this section we evaluate the release planning key-areas presented in Section 4
for the companies in our multiple case study [4]. This evaluation is based on
qualitative reasoning of the empirical data from our study, which is the same
data used in developing the release planning capability model. Based on the
results from the evaluation we also present suggestions for how to improve the
release planning processes for the companies. We lack data for making explicit
conclusions in some cases due to using a grounded theory approach in building
our capability model, i.e., the model was constructed after collecting the data.

The results of our analysis is summarized in Table 5; case numbering is con-
sistent with [4,2]. Below we comment on each key-area requiring further analysis
to reach a conclusion concerning the capability level.

Need Elicitation: Case 1 fulfils level B since it has a formal path for product
features, quality improvements, and cost-cut; as discussed in Example 1. Case 4
fulfils level C by having a formal path, for product features and quality needs,
and by the stakeholders prioritizing the needs; as discussed in Example 2.

Table 2. Capability levels for each release planning key-area and company

Key- Need Need Decision Product Release Plan
Area | Elicitation | Documentation | Material Strategy Decision

Case 1 | LevelB Level A Level C Product strategy | Level A

Case 2 | LevelB-D Level A? Level C Product strategy | Level A?

Case 4 | LevelC Level B Level D Adhoc Level A/B

Case 5 | Level A Level B Level A-B? Adhoc Level A

Case 6 | Level A Level B Level B Adhoc Level A

Case 7 | Level A Level A-B Level B Release profile | Level B

128 M. Lindgren et al.

We have insufficient data for clearly determining the capability level for Case 2,
but it is somewhere between level B-D on the capability scale. Development
projects are rated using the product strategy, indicating part support for level
D, but we lack data concerning the existance of a proper formal path (level B) for
need elicitation and if stakeholders prioritize needs (level C).

For Case 5 our interviews cover release planning with a planning horizon of
5-10 years, and therefore we lack data for the more near time planning. Still,
the data we have indicate level A.

Case 6 and Case 7 are rather similar, both having level A. This judgement
is made since they do not have any formal path for needs from R&D. Though,
there are formal paths from sales and marketing.

Need Documentation: Almost all companies in the study have some form of
template for documenting proposed needs. For example, Case 5 and Case 6 doc-
ument needs using up to three PowerPoint slides, with cost estimates, business
impact, and a time plan. Case 4 uses a “one-pager” containing a slogan, business
benefit, estimated cost, and impact on other parts of the system. Case 7 has an
Excel template but seems to lack cost-estimate, but there may be other templates
not covered during the interviews. Case 1 seems to use only a short-description,
but which is refined in pre-studies and later stored as a change request in a
database. For Case 2 we have no exact data.

Decision Material: Case 1 fulfils level C, as discussed in Example 4, and Case 4
fulfils level D, as also discussed in Example 4. Case 2 performs structured pre-
studies and projects are also required to rate their impact on the 8 core values
defined in their product strategy. The data we have from Case 6 and Case 7
indicate that they perform pre-studies, but the format for these pre-studies is not
strictly defined (level B). We lack data for Case 5, but based on our impression
from our interviews we suspect they are between level A-B.

Product Strategy: Case 1 and Case 2 have clearly defined product strategies
as discussed in Section 4.2. Case 7 uses a release profile defining the top-level
goals for the next release. Case 4, Case 5, and Case 6 did not seem to have a
defined product strategy that had impact of how needs where prioritized, instead
these companies based their decisions making “good business”.

Release Plan Decision: The release plan decision is usually made in a group
discussion, where typically stakeholders need to “lobby” for their own case. In
case there is data support the proposed need, e.g., a customer survey, then such
data often has strong impact beneficial. Case 1, Case 4, Case 5 seem to handle
in the decision making in similar ways. Case 7 uses the tool Focal Point [9] as
an aid in decision making. Case 6 has tried using Focal Point, but considers to
be a bit awkward when comparing needs with very different costs.

5.1 Improvement Proposals

Here we discuss some possible ways in which the companies in our study can
improve their release planning processes.

Towards a Capability Model 129

Case 4 has highest capability level, among the companies in the study, for need
elicitation, decision material, and need documentation; see Table 5. We have data
from other sources indicating that Case 4 also has highest CMMI level among
the investigated companies. We have not looked further into this issue. Areas
where Case 4 possibly can improve is by defining a more clear product strategy
and by employing decision support tools to a greater extent.

Case 7 can improve their need elicitation by having a formal path for R&D
and possibly other important stakeholders. Probably they will benefit of using
R&D for performing structured pre-studies, which in turn should result in better
time and cost-estimates for development.

Case 6 is in a similar position as Case 7; improvement areas being need elicita-
tion and decision material. Possibly they can improve by using a release profile.
Case 1 has a very large product volume compared to most of the other cases
(see Table 1) and make use of many metrics and customer surveys to track their
performance. Possibly they can improve their need documentation.

For Case 2 and Case 5 we lack data for making good improvement suggestions.
Still, it should be noted that Case 2, compared to the other companies, seems
to take more decisions on lower organizational levels.

6 The Problem into Context

The different process activities and key-areas described in Section 4 can be im-
plemented in many different ways. For example, it is possible to use them in a
staged /waterfall manner or in an iterative way. What suits an organization usu-
ally depends on the business context, and therefore it is not necessarily related
to release planning capabilities. However, to provide a better understanding for
how the key-areas can be combined we provide one example from our study.

Example 5. One basic understanding concerning release planning for Case 4 [4]
is that there will be changes during a release project, e.g., there will always be
needs which aren’t thought of during the initial planning of a release and there
will be changes to proposed needs. To cope with this they do not assign more
than 50% of the release budget to the initial release plan, the remaining 50% is
planned to be used for needs and changes during the release project.

During the initial phases of release planning there is usually 4 times as many
needs as can fit within the budget of a release. In order to identify the needs
that provide best return-of-investment/customer benefit they iteratively refine
needs using pre-studies and feasibility studies. These investigations explore more
needs than can fit within the budget allocated to a release. The needs for which
pre-studies are performed requires, if developed, roughly 130% of the release
budget. Needs are prioritized after the pre-studies such that feasibility studies
are performed for needs requiring roughly 110% of the release budget. Prioriti-
zation is also performed after the feasibility studies, which in the end result in
a release plan requiring 100% of the release budget, as is illustrated in Fig. 6.
Furthermore, the people capable of performing pre-/feasibility studies are often

130 M. Lindgren et al.

Main Requirement Specification (MRS)

50% unassigned 130% of budget
Pre-study MRS O

T 110% of budget
Feasibility study MRS 1
= T 100% of budget
Project Execution MRS 2

Fig. 6. Overview of iterative need refinement

50% assigned | —

a scarce resource, therefore these studies are performed throughout the release
project; the vertical lines in Fig. 6 indicate start of study.
The of goals of Case 4’s release planning process are:

Efficiency. Obtain efficient use of the resources available to the organization,
including, e.g., R&D, local sales offices, and marketing.

ROI. The goal of basically all companies is to generate profit, therefore invest-
ments should be made such that return of investment is maximized.

Flexibility. For most organizations it is desirable to have a flexibility that al-
lows late detected needs, e.g., new customer needs, to be included into the
current release, thereby enabling a short time-to-market.

Risk reduction. In all product development, and within most organizations,
there are different kinds of risk. For product development one such potential
risk is underestimating cost and/or time for development.

7 Future Work

Here we discuss some possibilities for future work resulting from this paper.
There are possibly other “key-areas” for release planning processes, which remain
to be identified. Work needs to be performed to develop a maturity matrix for
release planning, as exists for TPI [14]. Improve the release planning process
capability model, such that it relies less on subjective judgements, and rather use
more objective data, e.g., measured directly on the quality and costs associated
with a product. Further validation and refinement of the model is also required.

8 Conclusion

Software release planning is an important activity for selecting the needs that
best fulfil customer needs and at the same time provide a sound return-of-
investment to the organization developing the software. Ultimately, release plan-
ning impacts how successful an organization can become.

In this paper we present a capability model for improving the release planning
process of an organization. Using this model it is possible to:

Towards a Capability Model 131

1. Determine the capabilities of an organization’s release planning process.
2. Identify areas for improvement.

The model is based on empirical data obtained from a multiple case study on
release planning in industry involving 7 different companies. All companies in the
study are producers of software intensive embedded systems, where the products
have a relatively long life cycle; typically in the range of 10-20 years. In the
paper we also apply our proposed capability model on the companies in our
study, and illustrate how the capabilities of their release planning processes can
be determined and discuss opportunities for improvement.

Acknowledgements

This work was partially supported by the Knowledge Foundation (KKS) via
the graduate school Intelligent Systems for Robotics, Automation, and Process
Control (RAP), and partially supported by the Swedish Foundation for Strategic
Research (SSF) via the strategic research centre PROGRESS.

References

1. Ruhe, G., Saliu, O.: Art and Science of Software Release Planning. IEEE Soft-
ware 22(6), 47-53 (2005)

2. Lindgren, M., Norstrom, C., Wall, A., Land, R.: Importance of Software Architec-
ture during Release Planning. In: Proc. Working IEEE/IFIP Conference on Soft-
ware Architecture (WICSA) 2008. IEEE Computer Society, Los Alamitos (2008)

3. Lindgren, M., Land, R., Norstrom, C., Wall, A.: Key Aspects of Software Release
Planning in Industry. In: Proc. 19th Australian Software Engineering Conference,
IEEE Computer Society, Los Alamitos (2008)

4. Lindgren, M.: Release Planning in Industry: Interview Data. Technical Report
MDH-MRTC-219/2007-1-SE, Méilardalen Real-Time Research Centre (2007)

5. Jung, H.W.: Optimizing Value and Cost in Requirements Analysis. IEEE Soft-
ware 15(4), 74-78 (1998)

6. Saliu, M.O., Ruhe, G.: Supporting Software Release Planning Decisions for Evolv-
ing Systems. In: 29th Annual IEEE/NASA Software Engineering Workshop, pp.
14-26. IEEE Computer Society, Los Alamitos (2005)

7. Carlshamre, P.: Release Planning in Market-Driven Software Product Develop-
ment: Provoking an Understanding. Requirements Engineering 7(3) (2004)

8. Saliu, O., Ruhe, G.: Software release planning for evolving systems. Innovations in
Systems and Software Engineering 1(2) (2005)

9. Karlsson, J., Ryan, K.: A Cost-Value Approach for Prioritizing Requirements.
IEEE Software 14(5) (1997)

10. CMMI Product Team: CMMI for Development, Version 1.2. Technical Report
CMU /SEI-2006-TR-008, Carnegie Mellon — Software Engineering Institute (2006)

11. Yin, R.K.: Case Study Research: Design and Methods (Applied Social Research
Methods), 3rd edn. Sage Publications Inc., Thousand Oaks (2003)

12. Strauss, M., Corbin, J.M.: Basics of Qualitative Research: Techniques and Pro-
cedures for Developing Grounded Theory, 2nd edn. Sage Publications, Thousand
Oaks (1998)

132 M. Lindgren et al.

13. Gibson, D.L., Goldenson, D.R., Kost, K.: Performance Results of CMMI-Based
Process Improvement. Technical Report CMU/SEI-2006-TR~004, Carnigie Mellon
— Software Engineering Institute (2006)

14. Andersin, J.: TPI — a model for Test Process Improvement. Technical report,
University of Helsinki, Department of Computer Science (2004)

From CMMI to SPICE - Experiences on How to
Survive a SPICE Assessment Having Already
Implemented CMMI

Fabio Bella’, Klaus Hormann, and Bhaskar Vanamali”

KUGLER MAAG CIE GmbH, Leibnizstr. 11
70806, Kornwestheim, Germany
{Fabio.Bella, Klaus.Hoermann, Bhaskar.Vanamali}@kuglermaag.com
www . kuglermaag.com

Abstract. Dealing with multiple models for process assessment and improve-
ment is a challenging, time-consuming task. In the automotive sector, for ex-
ample, several suppliers drive their process improvement on the basis of
CMMI®. However, many car manufacturers require process capability ratings
determined on the basis of Automotive SPICE™. The approach presented aims
at preparing organizations already working according to CMMI for Automotive
SPICE assessments. The approach was already successfully applied in indus-
trial settings and lessons learned are discussed. The approach helps to avoid
misunderstandings during assessments due to different model taxonomy,
achieve appropriate process ratings, and save both effort and costs.

Keywords: Systems and Software Process Improvement, SPI Methods and
Tools, Industrial Experiences and Case Studies, Process Assessment, Lessons
Learned, Automotive and Transportation Systems.

1 Introduction

Whenever different customer groups ask for compliance with different models, a need
for dealing with multiple models typically arises. An example of this situation is the
Automobile Industry where some customers ask for ISO/IEC 15504 (SPICE) compli-
ance, some for Automotive SPICE™ compliance, whereas many companies already
started using the Capability Maturity Model® Integration (CMMI®) to drive their
internal process improvement.

In the automotive industry, particularly in Europe, SPICE has become a mandatory
standard and ticket-to-trade. Car manufacturers (OEMs) such as Audi, BMW, Daim-
ler, Porsche and Volkswagen (the so called HIS group) but also Ford, Volvo, and
FIAT are assessing their electronic/software suppliers based on Automotive SPICE.
Additionally, the German Association of the Automotive Industry (VDA) has adopted
Automotive SPICE as its reference standard for assessing the capability of companies
supplying software-determined systems for the automotive industry.

* All authors are iNTACS ISO 15504 assessors, one is also an iNTACS ISO 15504 trainer, SEI
SCAMPI Lead Appraiser, and CMMI Instructor.

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 133 2008.
© Springer-Verlag Berlin Heidelberg 2008

134 F. Bella, K. Hormann, and B. Vanamali

Some big tier-one suppliers estimate their annual additional costs due to misalign-
ment between the internally available CMMI-compliant processes and the expected
Automotive SPICE-compliant processes to be greater than 1 Million Euro per year.

One important question arises: Do assessed organizations need to have knowledge
about ISO/IEC 15504 / Automotive SPICE to successfully pass an assessment based
on these standards? Yes. There are too many differences between these models that
one could expect to pass an Assessment according to model A successfully if the
previous process work has been concentrating on model B. In addition, it may become
very difficult if not impossible to adhere to the tight assessment time schedules: mis-
understandings may occur and, in the worst case, this may lead to an inappropriate
capability determination. Our experience shows that applying Automotive SPICE in a
CMMI environment has to be prepared. Process improvement and project staff needs
to be trained on the basics of Automotive SPICE and relevant gaps need to be identi-
fied to allow process documentation to be revised where necessary.

In this paper, we present an approach that enables companies performing internal
process improvement on the basis of CMMI to survive SPICE assessments through a
systematic preparation process. In particular, this approach aims at avoiding redun-
dant or even conflicting process-related activities. In the first case, process-related
activities are performed twice: once for CMMI and again for SPICE. In the second
case, process changes introduced to achieve better SPICE results can lead to process
deterioration with respect to CMMI rating. The core of the approach relies on map-
pings between CMMI and Automotive SPICE.

Similar mappings have been provided for older versions of CMMI and Automotive
SPICE, e.g. [10]. [3] provides a mapping between an older version of CMMI and the
ISO/IEC 15504-2:1998. Numerous proprietary mappings have been performed but are
not publicly available.

The AKI13, the working group within the German VDA in charge of process
assessments, is currently developing a detailed mapping between CMMI and Automo-
tive SPICE and plans to provide a delta-list to support the evaluation of CMMI
appraisals in comparison with Automotive SPICE. The list would also support com-
panies implementing Automotive SPICE. We are supporting the VDA in performing
this task.

The remainder of this paper is structured as follows. Section 2 presents an excursus
on methodologies for process assessment and improvement. Section 3 presents the
approach. Section 4 subsumes the differences between CMMI and Automotive
SPICE. Section 5 introduces lessons learned when developing and applying it. Fi-
nally, section 6 summarizes the paper.

2 Excursus: CMMI, ISO/IEC 15504, Automotive SPICE

In an assessment/appraisal, the processes applied by an organization are examined
and compared with the good practices included in a reference model by interviewing
project staff and investigating documents from projects or other organizational func-
tions. The objective is to determine to which degree these practices have been imple-
mented within the organization which is commonly referred to as a capability level or
maturity level.

From CMMI to SPICE - Experiences on How to Survive a SPICE Assessment 135

The Capability Maturity Model (CMM) [4] was developed by the Software Engi-
neering Institute (SEI). CMM is the first model defined to identify process-related
risks by means of appraisals. The model is no longer maintained and has been re-
placed by the Capability Maturity Model Integration® (CMMI®). CMMI offers dif-
ferent models (called “constellations”), each of which addresses a different area of
interest. Models for development [12] and acquisition [11] processes are available. A
model for services is currently under development. A large number of companies
apply CMMI for their improvement programs. Although the model is proprietary, it is
a de-facto standard.

The international standard ISO/IEC 15504 addresses process assessments and the
determination of process capability. The publishing process of the first five parts was
concluded 2006. ISO/IEC 15504 Part 2 [7] defines the minimum requirements to
perform an ISO/IEC 15504 compliant assessment. The standard allows the specifica-
tion of a specific Process Assessment Model (PAM) based on a suitable Process Ref-
erence Model (PRM). The PRM contains high level definitions of processes in terms
of process purpose and expected outcomes. Compliant PRMs are ISO/IEC 12207 [5]
for software life cycle process, ISO/IEC 15288 [6] for Systems engineering life cycle
process, and the Automotive SPICE PRM [2]. Conformant PAMs are the ISO/IEC
15504 Part 5 [8] and the Automotive SPICE PAM [1].

In 2001, an Automotive SPICE Initiative was founded to define a PAM for the
automotive sector. The core team of this initiative are representatives of Audi AG,
BMW AG, Fiat Auto S.p.A., Daimler AG, Dr. Ing. h.c. F. Porsche AG, Procurement
Forum, Volkswagen AG and Volvo Car Corporation (representing Ford Europe,
Jaguar and Land Rover).

The members of HIS (“Hersteller Initiative Software” - Car manufacturer Initiative
Software), i.e., Audi, BMW, Daimler, Porsche, and Volkswagen together with other
OEMs such as Ford, Volvo and FIAT are assessing their software suppliers on the
basis of Automotive SPICE. Based on the findings of Automotive SPICE Assess-
ments the OEMs will rate their suppliers in A, B, or C category, thus defining the
contractual implications for future work. A C-supplier will not be considered for fu-
ture quotations while a B-supplier will have to launch an improvement program.

Therefore, it is a ticket-to-trade to reach the required process capability. By the
HIS members only, more than 250 ISO/IEC 15504 Assessments have been performed
up to now. The total number is expected to increase steadily.

In the reminder of this paper, the term CMMI means CMMI for Development ver-
sion 1.2 and the term Automotive SPICE means the PAM version 2.3.

3 An Approach for Surviving Automotive SPICE Assessment
Having Already Implemented CMMI

The approach described in this section consists of the elements training, mappings
process of the organization/CMMI/Automotive SPICE, a gap analysis, and a work-
shop for planning the necessary steps to prepare the Automotive SPICE assessment.
All phases are conducted by an experienced Automotive SPICE assessor also skilled
in CMMI.

136 F. Bella, K. Hormann, and B. Vanamali

Automotive SPICE Training. A basic Automotive SPICE training is provided to
key roles. The training covers the principles and structure of Automotive SPICE, the
capability dimension and the requirements regarding the most important processes
(i.e., the processes in scope, typically the HIS Scope). The generic SPICE assessment
approach and possibly some particularities of the assessment approach of the OEM
requesting the assessment are introduced. For inexperienced organizations, a typical
duration is two days for the improvement team and one day for the development team.
For experienced organizations, shorter training may be enough.

Mapping 1: CMMI/Automotive SPICE. Even a mature organization working for
many years according to CMMI can have substantial gaps with respect to Automotive
SPICE'. A list of the corresponding differences needs to be determined through a
mapping. The mapping can be applied further on in future assessment preparations.
Due to its importance, the mapping is discussed in more detail in this section.

Mapping 2: Processes of the Organization/CMMI/Automotive SPICE. A ge-
neric mapping between the models alone is not sufficient. There is a huge number of
detailed differences between the models which may or may not be relevant, depend-
ing on how the organization has shaped its processes. It is therefore very important to
have mappings available between model requirements and their implementation in
terms of the processes and work products of the organization. In other words, if one
wants to know if and where a particular model practice has been implemented, map-
ping 2 will identify the precise process elements and work products. At least one
mapping for Automotive SPICE is required, a second mapping for CMMI is useful to
evaluate if changes to processes might corrupt the CMMI compliance.

Gap Analysis. Even with mapping 2 some uncertainties remain: It is not clear to
which degree the project(s) or organizational functions follow their own processes.
This may be due to tailoring options chosen or simply due to low process adherence.
Another reason is that often gaps cannot be judged purely on the basis of a process
mapping but need the evaluation of practices actually being performed and of actual
work products. This is why in all cases a concrete gap analysis has to be performed on
the projects and organizational functions in scope. This gap analysis can be guided by
the previous mappings. The assessor conducts meetings with the key roles, perform-
ing interviews and inspecting documents to determine the actual gaps and documents
the results. The gap analysis can be usually conducted within two or three days.

Improvement Workshop. During the improvement workshop, the results of the
gap analysis are discussed between the assessor and the key roles. The purpose of the
workshop is to prioritize the actual gaps and determine a strategy for closing them
before the assessment.

In the following, more details concerning the mapping are presented. CMMI and
Automotive SPICE can be compared from at least three different perspectives: with
respect to their structure, to their content, and the methods applied to analyze proc-
esses. In the following, the respective structures are compared and essential differ-
ences regarding the content are sketched.

A first important difference between CMMI and Automotive SPICE is that CMMI
uses two representations, the “Staged Representation” and the “Continuous Represen-
tation”. However, only the Continuous Representation has the required structure that
allows a comparison with Automotive SPICE.

! Which holds also true vice versa.

From CMMI to SPICE - Experiences on How to Survive a SPICE Assessment 137

Table 1. Mapping main CMMI and Automotive SPICE concepts

CMMI Automotive SPICE

Process Area Process

Purpose Process Purpose

Specific Goals Process Outcomes

Specific Practices Base Practices

Subpractices -

Typical Work Products Output Work Products

- Work Product Characteristics
Generic Goals Process Attributes

Generic Practices Generic Practices

Generic Practice Elaborations -

- Generic Resources
Examples -

Amplifications -

Capability Levels Capability Levels

Table 1 shows a mapping of the main concepts applied in the two models. For most
of the concepts a proper translation can be found. For CMMI’s Subpractices, Exam-
ples, and Amplifications exist no corresponding concepts in Automotive SPICE.
CMMLI, on the other side, does not include Generic Resources. Furthermore, only a
weak correspondence exists between Specific Goals and Process Outcomes.

With respect to the granularity of the models, Automotive SPICE is subdivided
into more processes (31 processes or 48, if additional processes from ISO/IEC 15504
Part 5 are considered) than CMMI (22 Process Areas).

With respect to the content, Fig. 1 depicts the relationships between CMMI process
areas and the Automotive SPICE processes included in the HIS scope. As shown in
the figure, CMMI covers most of the processes from the HIS scope. The process
SUP.9 Problem Solution Management is not addressed by CMMI.

In the following, a list of differences between CMMI and Automotive SPICE is in-
troduced.

RD, REQM Compared with ENG.2, ENG.4

¢ Communication mechanisms for disseminating requirements are not required
in CMML.

e Traceability requirements are much more explicit in Automotive SPICE

e In general, Automotive SPICE requires three different levels of require-
ments: customer, system, and software level. CMMI requires only two lev-
els: customer and product level. The product level in CMMI can include as
many sub-levels as necessary.

SAM Compared with ACQ.4

Automotive SPICE requires more details than CMMI with respect to the cooperation
between customer and supplier:
e common processes and interfaces (e.g. regarding PP, PMC, QA, Testing, etc)
e regular exchange of information
* joint reviews

138 F. Bella, K. Hormann, and B. Vanamali

[RD Rzquirerizats D2 zbprent | [4.2 System requirements analysis

-— »
[REOE] Requirerents Rlanazerent | -— [£16.4 Software requirements analysis
—_—

I £H4 2 Syslem architectural design

I T4 Taxchaecal Solutssn | I 355 Software design

|
|

| S, [E16.5 Software construction

|

— » l £ 7 Sofhware integrahon fest
I FlPromduect Inte gradean l

L | €n5.2 System integration test

[~EP » arificaben -— [E16. Software testing

|
[AL 5 alidaban | — [€14 13 System testing
.

I PP ProtertPlommene ! ‘__‘_. l L1 2 Project managenment |
l PEIC Progect Elonkonng and Control l -—

— » l sup.; Configuration managemsant
I kI Configurabon Llanagerent l -—

. | sup Lo Change request management

|
|
— [sup.L Quality assurance |
|
I

FPOA Processand Produck Ouabt.
ASANINCE

-------------- » [suf = Prablemn resolution management
SARISuppler Azresrent — | AC0 .4 Supplier monitoning

Fig. 1. Mapping CMMI / Automotive SPICE (HIS Scope)

e tracking of open issues and corrective actions
e change request management

PPQA Compared with SUP.1

e CMMI requires quality assurance strategy and plan on Level 2. Automotive
SPICE requires them already on Level 1.

e Automotive SPICE requires explicitly that the organizational structure for
quality assurance is independent from project management. CMMI claims
just objectivity in this regard.

e CMMI does not require any escalation mechanism.

CM Compared with SUP.8, SUP.10

e CMMI requires configuration management on Level 2. Automotive SPICE
requires it already on Level 1.
e CMMI does not require a branch management strategy

From CMMI to SPICE — Experiences on How to Survive a SPICE Assessment 139

CMMI does not require managing backup, storage, archiving, handling and
delivery

e The practices to be implemented for the process SUP.10 (Change Manage-
ment) are only partially addressed by CMMI within informative text.

TS Compared with ENG.3, ENG.5, ENG.6

e Verification of design and code is not addressed by TS but by the process ar-
eas VER/VAL. VER/VAL do not specify which products need to be verified
an validated. This decision is up to the user.

¢ Communication mechanisms for disseminating the design are required by
Automotive SPICE on Level 1. CMMI requires such mechanisms only indi-
rectly through the generic practice “Stakeholder Involvement” on Level 2.

e Traceability requirements are addressed by CMMI within REQM not TS.
Automotive SPICE presents much more explicit requirements with respect to
traceability.

e CMMI does not require any description of dynamic behaviour.

e CMMI does not require any description of the objectives regarding resource
consumption.

e Test criteria (ENG.5) and unit verification strategy (ENG.6) are addressed by
CMMI in VER/VAL.

e In general, Automotive SPICE covers three different abstraction levels, i.e.,
system architectural design, software design, and software construction.
CMMI covers only two levels explicitly, i.e., design and implementation.
The different levels within design are described in informative text.

PI Compared with ENG.7, ENG.9

e Automotive SPICE requirements for planning, performing and documenting
integration testing are more detailed.

e Traceability is explicitly required by Automotive SPICE. REQM not PI cov-
ers traceability issues.

4 Discussion of Differences between the Models

Both CMMI and Automotive SPICE aim at assessing and improving processes. The
two models present, therefore, a great overlap in terms of concepts and content.

Process improvement is an expensive and time-consuming task. Therefore, if a
company driving process improvement based on CMMI shall be assessed on the basis
of Automotive SPICE, the CMMI-based processes must be utilized to the highest
degree possible to demonstrate Automotive SPICE compliance. However, this is not
an easy task, since the content of the two models is structured differently and their
focus is placed on different subjects in some cases. The engineering processes, for
instance, are addressed in Automotive SPICE by ten different processes, i.e., ENG.1-
ENG.10. The same scope is addressed in CMMI by only six process areas (REQM,
RD, TS, PI, VER, and VAL). As a further example, the process SUP.9 Problem reso-
lution management is not addressed at all by CMMI.

140 F. Bella, K. Hormann, and B. Vanamali

As a consequence, there is quite a number of model differences to be resolved be-
fore an organization can achieve good results in an Automotive SPICE assessment.
This is typically true even if the organization has already achieved good results (e.g.,
Maturity Level 3 and up) in previous CMMI appraisals.

5 Lessons Learned

The approach presented here is a combination of service elements which — each
alone — have been developed over many years in a large number of customer projects.
These customers were in different industries, most of them in the automotive industry.
Because of the obvious benefits of each of the service elements it was a logical con-
sequence to combine them into one service offering. We started offering this combi-
nation in 2006. Our lessons learned with the individual service elements are:

1. Training: Model training of some form is used in every improvement project,
it is an integral part of it. How should one understand what is required by a
model without being appropriately trained? So far we have performed many
hundreds of such trainings. Regarding Automotive SPICE our experience is
that usually a two days training for the improvement team is appropriate and
a one day training for the staff members which are going to be interviewed. In
case of a long-term improvement effort these trainings are performed long be-
fore any assessment activities start. In case of a pure assessment preparation
(typically preparation for a supplier assessment) it can be rather short before
the assessment due to schedule reasons.

2. Mapping between models: As soon as a new model version appears on the
market we do usually have customer requests for advising them if these
changes are relevant and what they should change. This is mostly relevant to
those of our customers in the automotive industry who work according to
CMMI and need to be compliant to Automotive SPICE. This was the case for
recent changes from CMMI v1.1 to v1.2 and from Automotive SPICE PAM
v2.3 to v2.3. Our experience with these mappings is that their benefit is lim-
ited. The reason for this is that these mappings can never tell you what ex-
actly you have to change, they can only help you focus your attention for a
more detailed analysis of your processes. Only this detailed analysis will un-
veil what precisely has to be changed.

3. Mappings between the organization’s processes and the model(s): This is a
standard recommendation we gave to most of our customers because it has so
many advantages: it helps tracking progress when implementing the model,
identifying risks and gaps still to be closed etc. It also helps later during proc-
ess maintenance to prevent loosing compliance to a model. There were cer-
tainly more than ten customers who followed this advice. Typically these
were those customers who took it really seriously and also had the resources
and budget for such activities. We believe that this type of mapping saves a
tremendous amount of effort in case of a preparation for an assessment using
a different model. The reason is that it allows, together with the previous
mapping outlined in item 2 above, the very fast identification of candidates

From CMMI to SPICE - Experiences on How to Survive a SPICE Assessment 141

for process enhancements to accommodate to the new model or to changes of
a model.

4. Gap Analysis: We have performed certainly more than 100 gap analyses for
CMMLI, SPICE and Automotive SPICE. Most of them have been internally
within a process improvement initiative to track progress and verify readiness
for the final (external) assessments. Others have been for other purposes such
as supplier assessments or the external validation that an improvement initia-
tive was successful. Within the context of this paper the gap analysis is
strongly recommended for a serious assessment preparation because it checks
upon the differences between theory (how the processes should be, from their
definition) and practice (how the processes are performed in reality). There
are good reasons why there can be differences as outlined before.

5. Improvement Workshop: We have done this more than fifty times after
performing assessments and appraisals. It allows explaining the gaps to the
process improvement team and is especially necessary for less experienced
organizations.

As mentioned before, there is little experience so far with organizations having
adopted all five service element. However, our experience is that the more of these
service elements are adopted, the higher is the probability to perform well in an
Automotive SPICE assessment. We have seen this in at least six assessments of
automotive companies being on CMMI Maturity Level 3 how smooth it went in a
preparation phase of two to four months to pass Automotive SPICE supplier assess-
ments with Capability Level three in all processes of the HIS scope.

6 Conclusions

In this paper, we addressed the problem of multiple models for process improvement
to be applied within one single organization. The problem arises in all those cases in
which different customer groups ask for compliance with different models. This is,
for instance, the case in the automotive sector where many car manufacturers require
process capability ratings determined on the basis of Automotive SPICE whereas
several suppliers improve their processes on the basis of CMMI.

Automotive SPICE and CMMI address process assessment and improvement in a
similar way and present a great overlap in terms of concepts and content. Neverthe-
less, they also show many differences that need to be addressed appropriately when
preparing Automotive SPICE assessments.

In this paper, a brief overview of approaches for process assessment and improve-
ment was given and the challenges were introduced that arise when implementing
Automotive SPICE on top of CMMI. An approach was described which combines
several good practices in preparing for Automotive SPICE assessments. Also, some
lessons learned from applying this approach in different customer projects were
presented.

In our experience, each of the individual elements of this approach increases the
probability to pass an Automotive SPICE assessment successfully.

142 F. Bella, K. Hormann, and B. Vanamali

Acknowledgments. The authors would like to thank the following KUGLER MAAG
CIE consultant colleagues for their experience reports and valuable comments: Dr.
Karl-Heinz Augenstein, Dr. Michael Faeustle, Dr. Kurt Flad, Dr. Ewin Petry, and Mr.
Dieter Wachendorf.

References

1. Automotive SIG: Automotive SPICE™ Process Assessment Model (PAM), RELEASE
v2.3 (May 5, 2007)

2. Automotive SIG: Automotive SPICE™ Process Reference Model (PRM), RELEASE v4.3
(May 5, 2007)

3. Dorling, A.: CMMi Mapping to ISO/IEC TR 15504-2:1998 (last visited February 3, 2008),
http://www.isospice.com/articles/33/1/CMMi-Mapping-to-
ISOIEC-TR-15504-21998/Pagel.html

4. Paulk, M., Weber, C., Garcia, S., Chrissis, M., Bush, M.: Key practices of the Capability
Maturity Model, Version 1.1, Technical Report CMU/SEI-93-TR-025, Software Engineer-
ing Institute, Carnegie Mellon University (1993)

5. International Organization for Standardization (ISO): ISO/IEC
12207:1995/Amd.2:2004(E): Information technology - Software life cycle processes.
Amendment 2. Genf (2004)

6. International Organization for Standardization (ISO): ISO/IEC 15288:2002(E): Systems
engineering - System life cycle processes. Genf (2002)

7. International Organization for Standardization (ISO): ISO/IEC 15504-2:2003(E): Informa-
tion Technology - Process assessment - Part 2: Performing an assessment. Geneve (2003)

8. International Organization for Standardization (ISO): ISO/IEC 15504-5:2006(E): Informa-
tion technology - Process assessment - Part 5: An exemplar process assessment model.
Genf (2006)

9. Rout, T.P., El Emam, K., Fusani, M., Goldenson, D., Jung, H.: SPICE in retrospect: De-
veloping a standard for process assessment. J. Syst. Softw. 80(9), 1483-1493 (2007),
http://dx.doi.org/10.1016/3j.Jss.2007.01.045

10. Sassenburg, H., Kitson, D.: A Comparative Analysis of CMMI and Automotive SPICE.
European SEPG, Amsterdam/Netherlands (June 2006)

11. Software Engineering Institute: CMMI for Acquisition, Version 1.2 (November 2007)

12. Software Engineering Institute: CMMI for Development, Version 1.2 (August 2006)

A Model for Requirements Change Management:
Implementation of CMMI Level 2 Specific Practice

Mahmood Niazil, Charles Hickman', Rashid Ahmadz, and Muhammad Ali Babar®

! School of Computing and Mathematics, Keele University, ST5 5SBG, UK
mkniazi@cs.keele.ac.uk, u2i42@ugi.keele.ac.uk
% College of EME, National University of Science & Technology, Rawalpindi, Pakistan
rashid@ceme.edu.pk
3 Lero, University of Limerick, Ireland
muhammad.alibabar@ul.ie

Abstract. OBJECTIVE — The objective of this research is to implement CMMI
Level 2 specific practice — SP 1.3-1 manage requirements changes. In this paper
we have proposed a model for requirements change management and also dis-
cussed initial validation of this model. This model is based on both an empirical
study that we have carried out and our extensive literature review of software
process improvement (SPI) and requirements engineering (RE).

METHOD - For data collection we have interviewed SPI experts from re-
puted organisations. Further work includes analysing research articles, pub-
lished experience reports and case studies. The initial evaluation of the model
was performed via an expert review process.

RESULTS — Our model is based on five core elements identified from litera-
ture and interviews: request, validate, implement, verify and update. Within
each of these elements we have identified specific activities that need to take
place during requirements change management process.

CONCLUSIONS - The initial evaluation of the model shows that the re-
quirements change management model is clear, easy to use and can effectively
manage the requirements change process. However, more case studies are
needed to evaluate this model in order to further evaluate its effectiveness in the
domain of RE process.

1 Introduction

Software Process Improvement (SPI) has been a long-standing approach promoted by
software engineering researchers, intended to help organisations develop higher-
quality software more efficiently. Process capability maturity models such as CMM,
CMMI (Chrissis et al., 2003) and ISO/IEC 15504 (SPICE) are SPI frameworks for
defining and measuring processes and practices that can be used by software develop-
ing organisations. However, the population of organisations that have adopted process
capability maturity model is only a part of the entire population of software-
developing organisations [1]. Deployment is often not only multi-project, but multi-
site and multi-customer and the whole SPI initiative typically requires a long-term

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 143157, [2008.
© Springer-Verlag Berlin Heidelberg 2008

144 M. Niazi et al.

approach. It takes significant time to fully implement an SPI initiative [2-5]. The
failure rate of SPI initiatives is also very high, estimated as 70% [6; 7]. The signifi-
cant investment and limited success are reasons for many organisations being reluc-
tant to embark on a long path of systematic process improvement.

CMMI is the successor to CMM and is consistent with the international standard
ISO/IEC 15504. The most well-known representation of CMMI is the “staged” repre-
sentation, which has five “levels” of process maturity for organisations. Each of the
five levels is composed of several process areas — for each process area, several goals
are defined which contain different practices. For an organisation to reach a maturity
level, they must satisfy the goals of the process areas for that level and all lower lev-
els. The practices help an organisation understand how to achieve maturity goals and
serve as examples of the activities to be addressed when undertaking a SPI pro-
gramme.

Level 2 is the first level that defines a collection of process capabilities that largely
focus on supporting process areas, but also includes some project management and
engineering process areas. There are two goals in Level 2: Specific Goal one (SG1) -
Manage Requirements and Generic Goal two (GG2) — Institutionalize Managed Proc-
ess. SGI1 contains five specific practices (SP) of which SP1.3-1 — manage require-
ments changes is the key practice.

This paper reports on the implementation of the specific practice - manage re-
quirements changes - of CMMI Level 2. We have developed a model for require-
ments change management and have done initial validation of this model. The major
contributions of this paper are:

1. to present a requirements change management model in order to effectively
manage requirements changes.
ii. to evaluate the requirements change management model via an expert panel

review process.

To achieve these objectives, we address the following research questions which are
based on the Technology Acceptance Model (TAM) [8; 9]:

e RQI. How can one implement CMMI Level 2 specific practice - manage re-
quirements changes?

e RQ2. What is the perceived ‘“ease of learning” of the outcome of the re-
quirements change management practice implementation?

e RQ3. What is the “perceived usefulness” of the outcome of the requirements
change management practice implementation?

This paper is organised as follows, Section 2 provides the background to the re-
search. Section 3 describes the study method. In Section 4 the development of re-
quirements change management model is described. Section 5 gives evaluation of our
model. Section 6 presents conclusions and future work.

2 Background

Requirements engineering (RE) is concerned with describing a client’s problem do-
main (the context), determining the desired effects the client wants to exert upon that

A Model for Requirements Change Management 145

domain (the requirements) and specifying the proposed Information Technology (IT)
(the specification) to a) help enable those desired effects to occur and b) to give de-
signers a specification to help them build the proposed IT. Thus the RE process has a
huge impact on the effectiveness of the software development process [10]. When RE
processes are ad hoc, poorly defined or poorly executed, the end product is typically
unsatisfactory [11].

The Standish group reported that, on average, the percentage of software projects
completed on-time and within budget has improved from 16% in 1995 [12] to 34%
in 2003 [13]. However, nearly two-thirds of the projects examined in the 2003 re-
port [13] were ‘challenged’ (i.e. only partially successful) with the authors observ-
ing that one of the main reasons for project failure is unstable requirements caused
by poor management of RE processes. Several other studies have also identified
problems with the RE process [10; 14-20]. A UK study found that of 268 docu-
mented development problems, requirements problems accounted for 48% of those
problems [14].

The actual effort in requirements engineering is not very large. Alexander and Ste-
vens [21] recommend that about 5% of project effort goes into requirements effort
(elicitation, analysis, verification, validation, testing), not including specification.
This might be about 25% of calendar time (or no more than three months dependent
upon project size). They state that system specification might also take 20-25% of
calendar time. Hoffmann and Lehner [22] examined 15 projects and found they ex-
pended on average 16% of project effort on RE activities. Chatzoglou and Macaulay
[23] surveyed 107 projects and found requirements capture and analysis took over
15% of total elapsed time. In a study of 16 software projects, MacDonell and Shep-
perd [24] found that there was so much variance in effort in Project Planning and
Requirements Specification phases and in comparison with overall project effort that
no patterns could be drawn from it, except that without the requirements phase, or
with a poor requirements phase, the project was not successful.

Software development is a dynamic process. It is widely reported that requirements
often change during the software/system development process. These changes are
inevitable and driven by several factors including ambiguities in original require-
ments, evolving customer needs, constant changes in software and system require-
ments, business goals, work environment and government regulation [25]. Volatile
requirements are regarded as a factor that cause major difficulties during system de-
velopment for most organisations in the software industry [26]. Simulation models of
software development projects demonstrate that requirements volatility has a signifi-
cant impact on development effort and project duration [27; 28]. Furthermore, volatile
requirements contribute to the problems of software project schedule overruns and
may ultimately contribute to software project failure [26; 29; 30].

Despite the importance of the requirements change management, little empirical
research has been carried out in the domain of SPI on developing ways to effectively
implement this specific practice (such as manage requirements changes) of SPI mod-
els such as CMMI. We have focused on this specific practice and designed a require-
ments change management model in this paper.

146 M. Niazi et al.

3 Study Method

We have used two data collection sources, i.e. SPI literature and requirements change
management practices in two organisations. We have analysed and evaluated the data
collected from both sources in order to produce a requirements change management
model for implementing a CMMI level 2 specific practice.

The SPI literature considered in this research includes case studies, experience re-
ports and high-level software process descriptions. Most of the reviewed studies report
real life experiences of SPI implementation and provide specific guidelines and rec-
ommendations for SPI implementation. The data extraction phase of the literature
review was confined to the material related to the description of the processes and
practices of managing the requirements changes. Each piece of the extracted data was
reviewed carefully and a list of reported characteristics of an effective process of man-
aging requirements was produced. While every effort was made to control the re-
searchers’ bias during the literature search, papers selections, data extraction, and
analysis phases, we do not claim that we followed a systematic process of reviewing
the literature as recommended by evidence-based software engineering paradigm [31].

For collecting data about the requirement change management practices in two or-
ganisations, we used semi-structured interviews with one representative from each
company. The interviewees were nominated by their respective companies as they
were considered the most experienced and knowledgeable requirements engineers.
Hence, they were considered the most appropriate persons to answer questions about
requirements change processes in their respective organisations. Thus the sample is
not random but a convenience sample because we sought a response from a person
with a specific role within the organisation. In order to identify a suitable and relevant
set of questions for the interview instrument, we consulted a number of books and
research articles [4; 14; 32-37]. After designing a list of questions, we assessed their
suitability by mapped them on the objectives of our research project. One of our col-
leagues also reviewed the interview instrument and helped us to improve it. For con-
fidentiality reasons, we are not allowed to report the names of the companies whose
requirements change management processes were studied. Hence, we will call them
Company A and Company B in this paper.

Company A has more than two hundred employees that are directly employed for
software production and/or maintenance. The company has an outstanding profile and
repute earning history for more than 10 years. The company is predominantly con-
cerned with logistics for outsource development. The scope of the company is multi-
national. The company believes that it is at CMMI level three but it has not been
certified for CMMI maturity level by external auditors.

Company B is a small company with less than 20 professionals who are directly con-
cerned with software production and/or maintenance. This company is predominantly
concerned with embedded systems for in-house development for the last two years.

One of the researchers has conducted the interviews in face-to-face meeting ses-
sions. The interviews consisted of a short series of questions in the form of a
questionnaire (available from authors upon request), which allowed us to gather in-
formation on the demographics of the company followed by a list of questions about
requirements change management processes. Each interview lasted for approximately

A Model for Requirements Change Management 147

half an hour. We have used a Dictaphone to record the responses of the interviewees
and also took extensive notes during the interviews.

To analyse the interviewees’ responses, we have read the notes taken during the inter-
views in order to consolidate the important point that were made about requirements
change management process during the interviews. We have also listened to the tapes
many times in order to ensure that we have not missed out anything important relating to
the requirements change management. This two steps process has given confidence that
the transcription process has not changed the original data generated in the interviews.

4 Results

4.1 Findings from Literature

We have identified three requirements models from the literature suitable for re-
quirements change management: the spiral-like change management process [38],
Olsen’s change management model [39], and Ince’s change process model [40]. We
believe these models can be adapted in order to implement the CMMI level 2 specific
practice - requirements change management. This is because these are normative
models that deal with requirements change management effectively. In the next sec-
tions, we provide brief reviews of these models.

4.1.1 The Spiral-Like Change Management Process [38]
This model divides the change management process into four cycles as shown in
Figure 1:

Problem inderstanding Evaluate altermative solutions,
identify and resolve risks

1* roamnd: Problem ocvming
2°? ronmd: Problem solving
3 roamd: System enginesTing
4% round: Tedmology-specific

solution
analysis

Create nminfenaioe
istory doaumnent

Plan for next phases Develop

Fig. 1. The spiral-like change management process [38]

148 M. Niazi et al.

i. Ist round: Problem owning
ii. 2nd round: Problem solving
iii. 3rd round: System engineering

iv. 4th round: Technology-specific

Round 1 of this model is the initial cycle; the founder or owner of a problem begins
this cycle. A problem can be a request to add a new feature or services in the system
or to fix a problem in the existing system. At the end of the first cycle the owner de-
cides whether a change needs to be made and if the change is deemed necessary, how
it should be accommodated. Round 2 is only required if the change needs to be
looked at from a non-technical viewpoint. Round 3 is the planning stage. It examines
the change from a system point of view and makes an implementation plans for the
round 4. Round 4 generates, implements and verifies the technical solution. The
change is finished and the results of this change are recorded.

4.1.2 Olsen’s Change Management Model [39]

Olsen views the whole software development process as simply a queue of changes
that need to be made as shown in Figure 2. Olsen believes that all work done by
software designers changes. This model can be applied to both software development
and maintenance as it is not life cycle dependent. The sources of changes are made
available by the users who suggest possible requirement changes. These changes are
then passed to the “manage change” section where these changes are managed by

£ Change managers &]

Fl”““”ﬁ" Engineering w, chedule
£ /' ing g ched uk:
Quality [raiming
_ Manage
SPOnsors T change i SPonsors
) Suppart Marketing| o
J SUgEeslions Products ¥ J.J
Praduction T

Users S “Users

Approved

hanges —

e ‘ Engincers _ Engincers

Excoutallgs

.Il Test code

Implement

software) | Engineeis
Documents =

[nspect paper

Potential changes

Fig. 2. Olsen’s change management model [39]

A Model for Requirements Change Management 149

change managers. The approved changes are passed on to the implementation section
where necessary changes are made in the software. After completing implementation,
verification begins by testing code and by inspecting papers. When a change has been
implemented and verified it is then passed back to change managers who will then
release the change in a product for its users.

4.1.3 Ince’s Change Process Model [40]

Ince’s model focuses on how software configuration management relates to software
change management. This model has two main sources of change requests, i.e. cus-
tomer and development team as shown in Figure 3. In order for the change process to
be initiated, a change request must be initiated in a software project. All such change
requests are recorded in a change request note. The change control board then con-
siders the suggested change. The change control board can reject the change (the
change will not take place), batch the change (the change will take place but not im-
mediately) or accept the change (the change is to be implemented at the earliest

Change request —_jw Change request
note filled in

Change l/

considered by the . _
_ Sanctioned
change control

board

Change authorization

Rejected = .
note filled in

L System
'F]?"“it—“‘ —p| documentation
implemented maodified
Current batched Change
changes vahdated
Validation and Current
test records configuration
produced records updated

Fig. 3. Ince’s change process model [40]

150 M. Niazi et al.

possible time). If the request for the change is successful, a change authorisation note
must be filled. After this the change can be implemented and a system’s documenta-
tion is modified. After implementation the change is validated. Validation and test
records are then produced to document the changes that have been taken place. Fi-
nally the configuration records are updated and the staff is informed about the new
changes.

4.2 Finding from Companies

Having discussed the findings from reviewing the literature, we now present the find-
ings about the requirements change management processes of two companies based
on analyzing of the data gathered through interviews with two requirements engineer-
ing experts of those companies.

4.2.1 Company A’s Requirements Change Model

We shall now discuss the key points about the requirements change management
process of Company A. Figure 4 shows the process company A follows to manage
requirements changes. The findings from the interview are:

Change request
form from engineer

A A
DATABASE > VALIDATE —» IMPLEMENTED —» | VERIFIED
A
Change request v v
from customer Customer Manager End of change
request

Fig. 4. Company A’s requirements change model

e Company A follows a predefined process when changes are required.
Changes to the system are done through formal configuration management
using a tool called Redbox.

e Staff must fill in change request forms before any processes can begin.

e Company A has in place a process (traceability) that confirms the require-
ment back to the customer to make sure that the company knows exactly
what the customer desires. All requirements that come in are assessed and an
outline design document is produced. This document is checked to ensure it
corresponds to the customer’s requirements. This document is then passed
onto a change control board. Final step is the system confirmation which en-
sures that the workforce clearly understands what changes are required.

4.2.2

A Model for Requirements Change Management 151

Company A contains multiple stages at which testing can be done. The first
kind of testing is ‘unit testing’ which is internal testing. An in-house team
specialised in system and regression testing performs this testing. The second
type is called “field trials” where they release software into specific locations
for specific groups of users. Another type is called “user acceptance testing”
where the company performs testing with their customer.

The reasons for changes are primarily customer driven. The main reason is to
enable general enhancements to business process. These can be minor or ma-
jor enhancements. Minor enhancements are considered standard software
maintenance when just small tweaks are needed. Major enhancements are
system rewrites or amending large parts of the systems. Reasons for changes
can vary from project to project and the majority are minor changes.

Company B’s Requirements Change Model

In this section, we discuss the key points that we have extracted from the interview
followed by our interpretation of how Company B manages its requirements changes
as shown in Figure 5.

Change is p| Change is
Change request ACCEPTED | IMPLEMENTED
from engineer M
A il Change is Accepted v
v REJECTED —
- end of change Change is
Notify request | VERIFIED
Customer | customer with
reasons
Change Change is Change is
is rejected rejected accepted
Email VALIDATE ’
Change request .| change — meeting End of change
from customer Email | with engineers request
and management ¢

Fig. 5. Company B’s requirements change model

Company B does not follow any set process or model to manage require-
ments changes. Requirements changes are done on an informal basis mainly
using emails to communicate. Customers email changes if required. These
requests are then evaluated to see if the requested changes can be made.
Software Engineers can also suggest possible changes to the customers via
emails.

The company does not use a database to store change requests.

The company does not use change request forms.

152 M. Niazi et al.

e All requests are forwarded to all the members of the management and devel-
opment teams. Every member offers comments on the validity of the request
and identifies ramifications of these changes, if any, on the existing software.

e Each request is handed over to the developer who will then implement the
change.

e Verification is done by the person who implements the change. At the end of
the project the whole team double-checks the software for any problems or
issues.

e The most common reasons for making any changes are functionality en-
hancements. Bug fixes are also required.

e All changes are treated the same regardless of their size.

4.3 Our Requirements Change Model (RCM)

RCM development was initiated by creating and agreeing its success criteria. Objec-
tives were set to clarify the purpose of the model and outline what the model is ex-
pected to describe. These criteria guided development and are later used to help
evaluate the RCM.

The first stage in the development of RCM was to set criteria for its success. The
motivation for setting these criteria comes from previously conducted empirical stud-
ies [36; 41] and by a consideration of the Technology Acceptance Model [8; 9]. The
following criteria were used.

e User satisfaction: stakeholders need to be satisfied with the results of the
RCM. Stakeholders (e.g. requirements engineers, systems analysts, outsourc-
ing project staff) should be able to use the RCM to achieve specified goals
according to their needs and expectations without confusion or ambiguity.

e [Ease of use: complex models and standards are rarely adopted by organisa-
tions as they require resources, training and effort. The structure of the RCM
should be simple, flexible and easy to follow.

In the second stage, in order to address these desired criteria, research questions (see
Section 1) were developed. In order to answer research questions, in the third stage,
we have extensively reviewed the RE literature and conducted interviews with two
RE experts. In the final stage, based on an extensive literature review and findings
from the interviews, we have developed a model of Requirements Change Manage-
ment for a CMMI level 2 specific practice. The model is based on five core elements:
request, validate, implement, verify and update as shown in Figure 6. Within each of
these elements, we have identified a set of specific activities that need to take place
during requirements change management process.

The initial stage is the change “Request”. We have decided to include this element
in the RCM as this element was found in the both companies’ requirements change
management processes as well as also in Ince change model [40]. The main sources
of requests may be either internal or external. The internal requests come from the
project management or software maintenance teams within the company. The external
requests come from the customers. These internal and external requests are then fed to
a requirements change pool. The requirements change pool contains a description of
the change, the reasons behind the changes and who has requested the change.

A Model for Requirements Change Management 153

The next stage is to “Validate” the change request. The validation of the change re-
quest was cited in our two interviews and also in the Spiral-like change management
process and the Ince change model [38; 40]. The first activity in the validate stage is
to understand the change request (i.e. what needs to be done — fix, an enhancement or
removal). Request analysis is the activity to look at the different ways in which the
request can be met, i.e. how much effort is needed to make this change, how much
effort is needed to implement this change, the impact of the change, the risk of change
and the priority of each change request. In addition, in the validation stage it is also
analysed if the change request is:

e consistent with the business goals of the organisations;

e not ambiguous i.e. could it be read in different ways by different people;

e feasible in the context of the budget and schedule available for the system
development;

e consistent with other requirements of the system.

REQUEST VALIDATE IMPLEMENT VERIFY UPDATE
External
Source
Request <
4 Understanding
Requirements
Change Pool ¢
Request
Analysis
A
Internal
Request Update
Source Decision - Implement | =% >
Yes
A 4
No
Finished
Rejected

Fig. 6. Requirements change management model

The final activity of the validation process is to make decision if the change request
should be accepted, rejected or reanalysed with new evidence.

The third stage is to “Implement” the changes. In this stage all the accepted
changes are consolidated and are implemented in the form of end product or software.

154 M. Niazi et al.

The fourth stage is to “Verify” changes where it is ascertained that the software
conforms to its specification. The verification of the change request was cited in our
two interviews and also in the Olsen’s change management model [39]. In this stage
the new product/software is tested in the form of regression testing, field trials or user
acceptance. The testing method will depend on the characteristics of the request and
the environment of the product/software. If the verification stage is not successful the
change request is sent back to the “Validate” stage for further understanding and
analysis of the change request.

The final stage is “Update”. Documentation on the software is updated with the
changes made. The customers and the project team are all informed about these up-
date so that everyone is working on the current up to date version. The finished step
is when the product/software is released with the new requirements included.

5 Model Evaluation

The initial evaluation of the model was performed via an expert review process. The
expert panel review process was used in order to seek opinions of two SPI experts
about the “ease of learning” and “user satisfaction” [8; 9] of the proposed require-
ments change model. One SPI expert has 25 years of experience in software
development and SPI. The second expert has 6 years of experience in software devel-
opment and SPI related activities.

In order to seek SPI experts’ opinion about requirements change model, a ques-
tionnaire was designed in which some questions were taken from [42-44] and tailored
to fit into this research project goals. This questionnaire is divided into two parts, i.e.
demographic and model feedback.

Before sending out this questionnaire to the SPI experts, drafts questionnaire were
reviewed by two researchers. These researchers were asked to critically evaluate the
questions against “‘ease of learning” and “user satisfaction”. Based on their feedback,
some questions were re-written in order to better capture the required data. The ques-
tionnaire was tested by two researchers before sending requests to the experts.

e Fase of Learning: Both experts rated the model as clear and easy to under-
stand. Neither expert felt that a great deal of prior knowledge of SPI was
needed to understand the proposed model. Both experts also felt that the di-
vision of the model into five core sections aided them in their understanding.
This was encouraging as it showed that our model was concise and
comprehensive.

e User Satisfaction: Both experts felt that in general our model would be useful
within the software industry. Neither of the experts thought that any key part
was missing from our requirements change management model. Both experts
felt that the requirements change management model is clear and can effec-
tively manage the requirements change process. However, other companies
might need to adapt this model in order to fulfil their specific requirements.

Based on the initial evaluation, we are confident that the proposed model can help
organisations to implementing requirement change management process according to
CMMI level 2 maturity requirement, however, we are also realize the need for further

A Model for Requirements Change Management 155

evaluation of the model to rigorously assess its various elements. We plan to perform
this evaluation through multiple case studies in the industrial context.

6 Conclusion

The objective of this research is to develop and empirically assess a model that would
help organisation to effectively manage requirements changes. For this purpose, we
identified following research questions to be addressed by the reported research:

e RQI. How can one implement CMMI Level 2 specific practice - manage re-
quirements changes?

e RQ2. What is the perceived “ease of learning” of the outcome of the re-
quirements change management practice implementation?

e RQ3. What is the “perceived usefulness” of the outcome of the requirements
change management practice implementation?

In order to address the RQ1, we have developed a requirements change management
model based on literature review and two companies’ processes of managing re-
quirements changes. During the literature review, we analysed the published experi-
ence reports, case studies and articles to identify a list of characteristics required to
effectively manage requirements change process. We have identified three require-
ments models from the literature and we believe these models can be adapted in order
to implement the CMMI level 2 specific practice - requirements change management.
Our interviews with two companies’ representative provided us with interesting in-
sights into their requirements change management processes.

In order to address the RQ2 and RQ3, we performed an initial evaluation of the
proposed model using the expert review process. We sought the opinions of two SPI
experts about the “ease of learning” and “user satisfaction” [8; 9] of the proposed
requirements change model. Both experts rated the model as clear and easy to under-
stand. Both also experts felt that in general our model would be useful within the
software industry. However, it was noted that some companies might need to adapt
this model to their specific requirements.

For further improvement and rigorous evaluation, we plan to conduct multiple case
studies in industrial setting to trial the proposed model.

References

1. Leung, H.: Slow change of information system development practice. Software quality
journal 8(3), 197-210 (1999)

2. SEI: Process Maturity Profile. Software Engineering Institute Carnegie Mellon University
(2004)

3. Niazi, M., Wilson, D., Zowghi, D.: Critical Barriers for SPI Implementation: An empirical
study. In: IASTED International Conference on Software Engineering (SE 2004), Austria,
pp. 389-395 (2004)

4. Niazi, M., Wilson, D., Zowghi, D.: Critical Success Factors for Software Process Im-
provement: An Empirical Study. Software Process Improvement and Practice Jour-
nal 11(2), 193-211 (2006)

156

5.

11.
12.

13.
14.

15.

16.

20.

21.

22.

23.

24.

25.

26.

M. Niazi et al.

Niazi, M., Wilson, D., Zowghi, D.: Implementing Software Process Improvement Initia-
tives: An empirical study. In: The 7th International Conference on Product Focused Soft-
ware Process Improvement. LNCS, pp. 222-233 (2006)

SEI: Process maturity profile of the software community. Software Engineering Institute
(2002)

. Ngwenyama, O., Nielsen, P.v.: Competing values in software process improvement: An

assumption analysis of CMM from an organizational culture perspective. IEEE Transac-
tions on Software Engineering 50, 100-112 (2003)

. Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User acceptance of computer technology: A

comparison of two theoretical models. Management Science 35, 982-1003 (1989)
Davis, F.D.: Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Infor-
mation Technology. MIS Quarterly 13(3), 319-340 (1989)

. El Emam, K., Madhavji, H.N.: A Field Study of Requirements Engineering Practices in In-

formation Systems Development. In: Second International Symposium on Requirements
Engineering, pp. 68-80 (1995)

Standish-Group: Chaos: A Recipe for Success. Standish Group International (1999)
Standish-Group: Chaos - the state of the software industry. Standish group international
technical report, pp. 1-11 (1995)

Standish-Group: Chaos - the state of the software industry (2003)

Hall, T., Beecham, S., Rainer, A.: Requirements Problems in Twelve Software Compa-
nies: An Empirical Analysis. IEE Proceedings - Software, 153-160 (2002)

Kamsties, E., Hormann, K., Schlich, M.: Requirements Engineering in Small and Medium
Enterprises. Requirements Engineering 3(2), 84-90 (1998)

Nikula, U., Fajaniemi, J., Kalviainen, H.: Management View on Current Requirements
Engineering Practices in Small and Medium Enterprises. In: Fifth Australian Workshop on
Requirements Engineering, pp. 81-89 (2000)

. Nuseibeh, B., Easterbrook, S.: Requirements Engineering: a roadmap. In: 22nd Interna-

tional Conference on Software Engineering, pp. 3546 (2000)

. Siddiqi, J., Chandra, S.: Requirements Engineering: The Emerging Wisdom. IEEE Soft-

ware 13(2), 15-19 (1996)

. Beecham, S., Hall, T., Rainer, A.: Software Process Problems in Twelve Software Com-

panies: An Empirical Analysis. Empirical software engineering 8, 7—42 (2003)

Niazi, M.: An empirical study for the improvement of requirements engineering process.
In: The 17th International Conference on Software Engineering and Knowledge Engineer-
ing, Taipei, Taiwan, Republic of China July 14-16, pp. 396-399 (2005)

Alexander, L., Stevens, R.: Writing Better Requirements. Addison-Wesley, Reading (2002)
Hoffmann, H., Lehner, F.: Requirements Engineering as a Success Factor in Software Pro-
jects. IEEE Software, 58—66 (July/August 2001)

Chatzoglou, P., Macaulay, L.: Requirements Capture and Analysis: A Survey of Current
Practice. Requirements Engineering Journal 1, 75-87 (1996)

MacDonell, S., Shepperd, M.: Using Prior-Phase Effort Records for Re-estimation During
Software Projects. In: 9th Int. Symp on Software Metrics, Sydney, Australia, September 3-
5, 2003, pp. 73-86 (2003)

Barry, E.J., Mukhopadhyay, T., Slaughter, S.A.: Software Project Duration and Effort: An
Empirical Study. Information Technology and Management 3(1-2), 113-136 (2002)
Zowghi, D., Nurmuliani, N.: A study of the impact of requirements volatility on software
project performance. In: Ninth Asia-Pacific Software Engineering Conference, pp. 3—11
(2002)

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

A Model for Requirements Change Management 157

Pfahl, D., Lebsanft, K.: Using simulation to analyse the impact of software requirement
volatility on project performance. Information and Software Technology Journal 42,
1001-1008 (2000)

Ferreira, S., Collofello, J., Shunk, D., Mackulak, G., Wolfe, P.: Utilization of Process
Modeling and Simulation in Understanding the Effects of Requirements Volatility in
Software Development. In: International Workshop on Software Process Simulation and
Modeling (ProSim 2003), Portland, USA (2003)

Stark, G., Skillicorn, A., Ameele, R.: An Examination of the Effects of Requirements
Changes on Software Maintenance Releases. Journal of Software Maintenance: Research
and Practice 11, 293-309 (1999)

Zowghi, D., Nurmuliani, N., Powell, S.: The Impact of Requirements Volatility on Soft-
ware Development Lifecycle. In: Proceedings of Software Engineering Conference, Aus-
tralian, pp. 28-37 (2004)

Kitchenham, B.: Procedures for Performing Systematic Reviews. Keele University, Tech-
nical ReportTR/SE0401 (2004)

Chrissis, M., Konrad, M., Shrum, S.: CMMI Guidelines for Process Integration and Prod-
uct Improvement. Addison-Wesley, Reading (2003)

Creswell, J.: Research Design: Qualitative, quantitative and mixed methods approaches.
Sage, London (2002)

Kotonya, G., Sommerville, I.: Requirements Engineering Processes and Techniques. John
Wiley, Chichester (1998)

Niazi, M., Cox, K., Verner, J.: An empirical study identifying high perceived value re-
quirements engineering practices. In: Fourteenth International Conference on Information
Systems Development (ISD 2005), Karlstad University, Sweden, August 15-17 (2005)
Niazi, M., Cox, K., Verner, J.: A Measurement Framework for Assessing the Maturity of
Requirements Engineering Process. Software Quality Journal (in press for publication,
2008)

Beecham, S., Hall, T., Rainer, A.: Building a requirements process improvement model.
Department of Computer Science, University of Hertfordshire, Technical report No: 378
(2003)

Mikérdinen, M.: Application management requirements for embedded software. Technical
Research Centre of Finland, VTT Publications 286 (1996)

Olsen, N.: The software rush hour. IEEE Software, 29-37 (September 1993)

Ince, D.: Introduction to software quality assurance and its implementation. McGraw-Hill,
New York (1994)

Niazi, M., Wilson, D., Zowghi, D.: A Maturity Model for the Implementation of Software
Process Improvement: An empirical study. Journal of Systems and Software 74(2), 155—
172 (2005)

Beecham, S. and Hall, T.: Expert panel questionnaire: Validating a requirements pro-
cess improvement model (May 2003), http: //homepages.feis.herts.ac.uk/
~pppgroup/requirements_cmm.htm

Rainer, A., Hall, T.: Key success factors for implementing software process improvement:
a maturity-based analysis. Journal of Systems & Software (62), 71-84 (2002)

Niazi, M.: A Framework for Assisting the Design of Effective Software Process Improve-
ment Implementation Strategies, PhD thesis, University of Technology Sydney (2004)

Experience Report on the Effect of Software
Development Characteristics on Change Distribution

Anita Guptal, Reidar Conradi', Forrest Shull2, Daniela Cruzes?,
Christopher Ackermann?, Harald R¢nneberg3, and Einar Landre®

! Dep. of Computer and Information Science (IDI), Norwegian University of Science and
Technology (NTNU), Trondheim, Norway
{anitaash, conradi}@idi.ntnu.no
% Fraunhofer Center Maryland, College Park, USA
{fshull, dcruzes, cackermann}@fc-md.umd.edu

? StatoilHydro ASA KTIJ/IT, Forus, Stavanger
{haro, einla}@statoilhydro.com

Abstract. This paper reports on an industrial case study in a large Norwegian
Oil and Gas company (StatoilHydro ASA) involving a reusable Java-class
framework and an application that uses that framework. We analyzed software
changes from three releases of the framework and the application. On the basis
of our analysis of the data, we found that perfective and corrective changes ac-
count for the majority of changes in both the reusable framework and the non-
reusable application. Although adaptive changes are more frequent and has
longer active time in the reusable framework, it went through less refactoring
compared to the non-reusable application. For the non-reusable application we
saw preventive changes as more frequent and with longer active time. We also
found that designing for reuse seems to lead to fewer changes, as well as we
saw a positive effect on doing refactoring.

Keywords: Software reuse, Software quality, Software changes, Case Study.

1 Introduction

Understanding the issues within software evolution and maintenance has been a focus
since the 70’s. The aim has been to identify the origin of a change, as well as the
frequency and cost in terms of effort. Software changes are important because they ac-
count for a major part of the costs of the software. At the same time, they are necessary;
the ability to alter software quickly and reliably means that new business opportunities
can be taken advantage of, and that businesses thereby can remain competitive [1].

Several previous studies have concluded that reusable software components are
more stable (less change density) than non-reusable components [20-22]. However,
few of these studies have investigated and compared the characteristics of software
changes (such as distribution, how long the changes tend to stay in the system, and
number of files modified for each change type) for reusable and non-reusable compo-
nents. In the study described here we investigate whether aspects of software changes,
such as their frequency, type, or difficulty, can be better understood based on:

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 158 2008.
© Springer-Verlag Berlin Heidelberg 2008

Experience Report on the Effect of Software Development Characteristics 159

e Characteristics of the process being applied (e.g. whether different change char-
acteristics are seen when designing for reuse vs. designing for a specific context),
and

e Characteristics of the product being built (e.g. whether different change charac-
teristics are seen for systems before and after refactoring).

By “change characteristics” here we refer to attributes of the set of software
changes made to a system over time, such as the relative frequency of different types
of changes, the files of the system affected by the changes, and how the changes were
implemented.

The case study described here is on the reuse process in the IT-department of a
large Norwegian Oil & Gas company, StatoilHydro ASA'. We have collected data
from software changes for three releases of a reusable class framework called Java
Enterprise Framework (JEF), as well as three releases of one application called Digi-
tal Cargo Files (DCF) that uses this framework “as-is”, without modification. All data
in our study are software changes from the evolution (e.g. development) and mainte-
nance phases for the three releases each of two systems.

The purpose of this study is to compare change characteristics across systems, with
respect to the impact of reuse on change types, frequency, active time and localization
of the effects of changes on the systems.

We were particularly interested in gaining insight into properties of systems being
designed to be reusable, since that was a major focus for the reuse program at Sta-
toilHydro ASA. The results are important in that they characterize and explain the
changes to the reusable framework and the non-reusable application.

The paper is structured as follows. Section 2 presents the related work. Section 3
introduces the context in StatoilHydro ASA. Section 4 presents the motivation for the
research and the research questions. Furthermore, Section 5 describes the research
methodology. Section 6 presents the results and possible explanations of our analysis
of software changes extracted from Rational ClearCase. Section 7 looks into the va-
lidity threats for our study. Section 8 states our conclusions.

2 Related Work

Lehman [2] carried out the first empirical work on software changes, finding that
systems that operate in the real world have to be adapted continuously, otherwise,
their changeability decreases rapidly. During the lifetime of software systems, they
usually need to be changed as the original requirements may change to reflect chang-
ing business, user and customer needs [3]. Other changes occurring in a software
system’s environment may emerge from undiscovered errors during system validation
that require repair, from the introduction of new hardware.

Changes to software may be categorized into four classes based on the intent of
making the change, namely corrective, adaptive, perfective and preventive. In general,
corrective refers to fixing bugs, adaptive are related to new environments or plat-
forms, while implementing altered or new requirements, as well as improving per-
formance, can be classified as perfective. Finally, changes made to improve future

! ASA stands for “allmennaksjeselskap”, meaning Incorporated.

160 A. Gupta et al.

maintainability can be thought of as preventive [4]. Such taxonomy is useful because
it captures the kind of situations that developers face over time. However, differences
may exist in the definition of these change classes, which can make the comparison of
studies difficult. We have in our study decided to use the definition given by [5]:

e Adaptive changes are those related to adapting to new platforms, environments or
other applications.

e Corrective changes are those related to fixing bugs.

e Perfective changes are that that encompass new or changed requirements as well
as optimizations.

e Preventive changes are those having to do with restructuring and reengineering.

Several studies have investigated the distributions of different changes (e.g. correc-
tive, adaptive, perfective, and preventive) based on change logs of different systems.
These studies show that:

- The classifications of changes are different among different studies. For example,
some studies [6-11] have classified the changes into adaptive, corrective, and per-
fective; some of them have still a fourth category [9-11]. Other studies have clas-
sified changes into adaptive, preventive, and perfective [12-17] and four of these
studies have classified changes into a fourth category: corrective [14-17]. One
study has classified changes into planned enhancement, requirement modifica-
tions, optimization and “other” [18]. Yet another study has classified changes
into user support, repair and enhancement [19].

- Definitions of change types are different among different studies. For example,
perfective change has been defined to include user enhancements, improved
documentation, and recoding for computational efficiency [6][7]. It is also de-
fined as encompassing new or changed requirements (expanded system require-
ments) as well as optimization [12][13][15]. While, [10] has defined the same
type as including enhancements, tuning and reengineering.

- The distributions of changes are different for different systems. For example, the
most frequent changes of the studied system in [6][10][11] are perfective
changes. However, perfective changes in the system in [7] are the least frequent
ones. In the study conducted by [9][15] the most frequent changes are adaptive
changes. While, in [18] the most frequent changes are in the category “other”.

Table 1 shows different studies and the most frequent changes found in the results.
We also distinguish systems that were designed to be reused as part of another sys-
tem. We can see that 64% of the studies have perfective changes as the most frequent
ones, 21% have corrective changes, followed closely by 14% that have adaptive
changes as the most frequent ones.

Other studies [20-25] have investigated whether the amount of changes varies
according to development characteristics without classifying changes into different
categories. We are aware of no previous studies that have compared change
distributions between reusable software components and non-reusable ones, which we
are looking at in this study.

Experience Report on the Effect of Software Development Characteristics 161

Table 1. Related work

Reusable Studied systems Most
system? frequent
change
types
No System which has been operational for at least 1 year, represents a significant| Perfective

investment of time and effort, and is of fundamental importance to the| changes
organization [6].

No A case study investigating 2152 change requests collected for 2 years in a| Adaptive
Canadian financial institute [9]. changes
No A survey conducted in the MIS department in 9 different business types in| Perfective
Hong Kong [10]. changes
No Survey carried out in a computer department of a large Norwegian| Perfective

organisation in 1990-1991 (studyl) and 1992-1993 (study2). The computer changes
department studied maintains of more than 70 software applications and
include 110 maintainers, distributed on 11 maintenance groups [14].

No Study of 10 projects conducted in Flight Dynamic Division (FDD) in| Perfective
NASA’s Goddard Space Flight Center. FDD maintains over 100 software changes
systems totaling about 4.5 millions lines of code [11].

No Analyzed 654 change and maintenance requests from a large software| Corrective
application (written in SQL) [19] changes
No A survey carried out in financial organizations in Portugal. Data was collected | ~Adaptive
from 20 project managers [15]. changes
No 453 non-defect changes from an Ada system developed at the Software| Perfective
Engineering Laboratory (SEL) of the NASA Space Flight Center [18]. changes
No Version control and maintenance records from a multi-million line real-time| Corrective
software system [7]. changes
No An integrated system for automated surveillance, a reengineering project| Perfective
(Written in C++; version 3 is 41 KLOC) [16]. changes
No Three software products, a subset of Linux consisting of 17 kernel modules| Corrective
and 6506 versions, and GCC consisting of 850 KLOC [8]. changes
Yes Analyzed 169 change requests (covers any change in the requirements or| Perfective

assets from the time of requirement baseline) for 4 releases of a large telecom changes
system. This system reuses components [12].

No Web-based java application, consisting of 239 classes and 127 JSP files.| Perfective
Analysis of fault reports [17]. changes

Yes Analyzed 208 change requests (covers any change in the requirements) for| Perfective
three releases of a reusable framework [13]. changes

3 The StatoilHydro ASA Setting

StatoilHydro ASA is a Norwegian company, and is part of the Oil & Gas industry. It
is represented in 40 countries, has a total of about 31,000 employees, and is headquar-
tered in Europe.

The central IT-department of the company is responsible for developing and deliv-
ering software meant to give key business areas better flexibility in their operation. It
is also responsible for the operation and support of IT-systems. This department con-
sists of approximately 100 developers, located mainly in Norway. Since 2003, a
central IT strategy of the O&S (Oil Sales, Trading and Supply) business area has been
to explore the potential benefits of reusing software systematically. StatoilHydro ASA
has developed a custom framework of reusable components based on J2EE - JEF
(Java Enterprise Framework). The actual JEF framework consists of seven separate

162 A. Gupta et al.

components, which can be applied separately or together when developing applica-
tions. Table 2 shows the size and release date of the three JEF releases. This JEF
framework is currently being reused in two applications at StatoilHydro ASA. In this
study we investigated one of these applications, namely DCF (Digital Cargo Files),
due to the available data set. DCF is mainly a document storage application: A “cargo
file” is a container for working documents related to a deal or cargo, used by all par-
ties in the O&S strategy plan at StatoilHydro ASA. DCF is meant to replace the cur-
rent means of handling cargo files, which are physical folders containing printouts of
documents pertaining to a particular cargo or deal. The DCF application also consists
of seven components. Table 3 gives an overview of the size and release date of the
three DCF releases.

Although they have different aims, JEF and DCF have certain similarities. These
systems operate in the same business domain, were conducted by a fairly stable set of
developer from the same IT-department, were built over nearly the same time period,
and are of similar size. The maturity level is the same for JEF and DCF. Thus they
provide us with a fairly controlled environment for looking at whether process and
product considerations impact the change characterization of systems.

Table 2. The size and release date of the three JEF releases

Release 1: 14. June 2005

Release 2: 9. Sept. 2005

Release 3: 8. Nov. 2005

17 KSLOC

19 KSLOC

20 KSLOC

Table 3. The size and release date of the three DCF releases

Release 1: 1. Aug. 2005

Release 2: 14. Nov. 2005

Release 3: 8. May 2006

20 KSLOC

21 KSLOC

25 KSLOC

3.1 Software Change Data in StatoilHydro ASA

When a software change is detected during integration/system testing, a change re-
quest or trouble report is written (by test manager, developers etc.) and tracked in the
Rational ClearQuest tool. Examples of software changes are:

add, modify or delete functionalities

address a possible future problem by improving the design
adapt to changes from component interfaces

bug fixing

The test managers assign the change requests and trouble reports to developers.
The developers then access the source files in the version control system (Rational
ClearCase) to make modifications. When implementing the changes the developers
adhere to the following steps:

(1
2
3)
“)

Check out the file(s) corresponding to the specific change request.

Implement the specific software change.

Check the file back in to Rational ClearCase.

While checking in the file, they input a change description, a thorough descrip-
tion of what changes were made and a time and date.

Experience Report on the Effect of Software Development Characteristics 163

Rational ClearCase captures various information about source code changes and
the ClearQuest also stores information about changes to requirements and other
documents. We extracted the data for JEF and DCF from Rational ClearCase as de-
scribed in Table 4, with a corresponding example.

Table 4. The data collected from Rational ClearCase

Data Example

[File id 8

System VEF

[Filename IDataAccessException

INumber of versions 2

Dates’ Version 1: 19.04.2005, Version 2: 04.01.2007

IPhysical size (kilobytes) 1800

Size of a files first version INon-commented SLOC (source lines of code): 34
Commented SLOC: 58

Size of a files last version INon-commented SLOC: 34
Commented SLOC: 51

IDescriptions of what changes occurred infVersion 1: Component support for accessing data.

leach file version |Version 2: Remove obsolete java source file header entries.

IComponent to which the file belongs One of the seven JEF or DCF components

4 Research Questions

The existence of comparable systems in the StatoilHydro ASA environment gave us
the ability to examine our major research goal: The impact of reuse:

e The reusable framework (JEF) had changes related to all kinds of potential
downstream reuse.

e The non-reusable application: DCF had only software changes related to the
specific goals of that application (explained in section 3). The DCF
application has different development characteristics for release 1 and
release 2 and 3:

o DCF1.0 is relatively unstructured, since it was unclear what the
developers were supposed to implement, and how it should be
organized. In the beginning the developers did not have a detailed
design, and a lot of changes were made regarding functionality and
design during the implementation and testing period.

o DCF 2.0 and 3.0 were based on refactoring. Prior to DCF2.0, when
the design and the goals became clearer the developers realized that
the code they had developed was complex and hard to maintain.
Therefore, they decided to do refactoring to improve the structure
and ease the code maintenance.

The research questions we addressed for our goal are:

RQ1: Does the distribution of change types vary for different development charac-
teristics? We hypothesize that the development process being employed would have a

% The date here refers to when the file was checked in after undergoing a change by the devel-
oper.

164 A. Gupta et al.

measurable impact on the type and number of changes required to a system. Making a
software reusable may help to reduce certain kinds of changes, but may increase the
frequency of other kinds of changes. For example, components that need to be reus-
able may have more adaptive changes, over a longer period of time, as more envi-
ronments are found that could exploit such components. Since DCF went through a
refactoring we also expect the preventive changes to decrease for release 2 and 3,
compared to release 1. We have the following related questions:

o RQI.1: Does JEF have higher adaptive changes than DCF?

o RQI.2: Is there a decrease in the preventive changes before and after refac-
toring for DCF?

o RQ.1.3 Do perfective and corrective changes account for the majority of the
changes, with adaptive following closely?

RQ2: What change types are the longest active for different development charac-
teristics? Our purpose is to investigate what change types (perfective, preventive,
corrective and adaptive) are longest active for different systems, which may provide
some insight into which types of changes are more difficult or problematic to make. It
is important to clarify that the changes that are longest active do not necessarily
require more effort; a change may not have been constantly under work the entire
time it was open. However, if characteristic patterns are found, this can be useful as
the starting point for a conversation with the developers to explore differences. The
following are the related research questions for RQ2:

o RQ2.1: Are adaptive changes longer active in JEF than DCF?
o RQ2.2: Are preventive changes longer active before refactoring than after
for DCF?

RQ3: How localized are the effects of different types of changes, for different de-
velopment characteristics? We hypothesize that a change that needs to modify many
files is not well-supported by the architecture, and hence more expensive to fix. Our
purpose is to investigate whether development changes can be successful in reducing
this metric for a system, and allowing future changes to be more localized. We would
like to investigate the following research questions for RQ3:

o RQ3.1: Is the average number of files modified for adaptive changes higher
in JEF than DCF?

o RQ3.2: Is the average number of files modified for preventive changes
higher before refactoring than after for DCF?

S Research Methodology

We analyzed a representative sample of the software changes for both the JEF frame-
work and the DCF application to answer the research questions RQ/-RQO3.

Our analysis began from the files checked into Rational ClearCase. In total over all
releases, there were 481 files for JEF framework and 1365 for the DCF application,
distributed across the seven components in each system. Due to the manual nature of
the analysis it was infeasible to analyse all changes to all 1846 files. Therefore we
adopted a strategy of analysing a representative subset of the files in each component.

Experience Report on the Effect of Software Development Characteristics 165

In our data collection we decided to have a threshold value of 10 files. This means
that if a component had more than 10 files we would not include all of the files in our
dataset, but pick a random subset that was representative of the properties of the larg-
est. A sampling calculator [26] was used to calculate a sufficient sample size. For
example component JEFClient had 195 files. Based on the calculated sample size
(165), we randomly (using a mathematic function in excel) selected 165 files from the
JEFClient to include in the dataset.

In total we used 442 files for the JEF framework and 932 files for the DCF applica-
tion. Table 5 gives an overview of the actual number of files in Rational ClearCase vs.
the number of files we analyzed, and the size (in SLOC, including the non-
commented source lines of code) for the collected files.” In total we analyzed 1105
changes for the JEF framework and 4650 changes for the DCF application. We can
see that the number of changes for DCF is higher than for JEF. This can be explained
by that DCF development was going on for about 10 months (Table 3), while JEF
development was going on for about 6 months (Table 2). Due to longer development
period, DCF faced more changes.

Table 5. Description of data set collected from ClearCase

Actual | Number | Number of Size in
number | of files changes SLOC for
of files | collected | collected | files collected

DCEF: Release 1 (before refactoring) 426 282 2111 15K
DCEF: Release 2 and 3 (after refactoring) 939 650 2539 55K
JEF framework 481 442 1105 38K
Total 1846 1374 5755 108K

During the classification and comparison, we noticed that some of the changes de-
scriptions were labelled as “no changes” (meaning no changes were made to the
code), and “initial review” (meaning changes resulting from formal code review of
the code). The changes in category “code review” are changes we cannot classify,
since no description of the change was provided. We grouped “no changes” into the
category “other” and “initial review” into the category “code review”. The changes in
the category “other” and “code review” are excluded from the analysis for RQ1 —
RQ3. Quantitative differences among the change profiles of the systems were used to
formulate questions for the development team. These questions were addressed via
interviews which elicited possible explanations for these differences.

6 Results

Before investigating our specific research questions, we examined the distribution of
data across the change history. The test for normality of our datasets failed, meaning
that the data is not normally distributed. Additionally, we investigated the variances

3 However, the SLOC is just for the last version of the collected files. For example, if a file has
6 versions, the SLOC is presented for version 6 only and not for the remaining files. Thus
these values should be taken as only an approximate overview of file sizes.

166 A. Gupta et al.

for each change type for JEF and DCF and they turned out to be quite large (e.g. 3555
for DCF and 11937 for JEF for perfective changes) respectively. Hence, we decided
not to use T-tests to statistically test our hypotheses, and present the results with his-
tograms. The following is a summary and possible explanation of the results from our
analysis of software changes for JEF and DCF.

RQI: Does the distribution of change types vary for different development charac-
teristics? We plotted our data in a histogram, shown in Fig. 1. From Fig. 1-a) we
observed the following for JEF:

1) Decreasing perfective, corrective, preventive and adaptive changes over the
three releases. The sudden drop in number of perfective changes for JEF be-
tween release 1 and release 2 and 3, yields that release 2 and 3 did not have
much requirement changes and was based more on third party components. We
can also see that there is not a big difference in the number of changes between
release 2 and 3.

2) The preventive and adaptive changes decrease towards O between release 2 and
release 3.

3) For the 3" release the dominating changes are perfective and corrective, but the
perfective changes are the most frequent ones.

For DCF (Fig. 1-b) we observed that:

1)Although the number of changes goes down for DCF between release 1 and 2
(before and after refactoring) for all change types, there is not a tendency that
shows that any of these change types are decreasing.

2)It seems that corrective changes remain in the 25% of the changes.

1400 1400
1200 1200
1000 1000
800 800
600 - BIEF 1.0 600 BDCF1.0
‘2‘28 1 I mEF 20 ‘2‘88 ~ mocr20
04 JEF3.0 0 DCF3.0
(5\4@ 6_0\\0 (@Q/ K§Q/ (5\\\® (;_QA@ ;0\\24 ‘@@
«& & & R & & <& &
< s <C <° & <@ v

Fig. 1. Number of Changes: a) JEF, b) DCF

Fig. 1 shows that perfective and corrective changes account for the majority of
changes, for both the reusable JEF framework and the non-reusable DCF application.
Our results confirm some of the findings from earlier studies (see Table 1), which
shows that perfective and corrective changes are the most frequent ones independent
of which kind of development characteristics the applications have. However, for JEF
compared to DCF the adaptive changes follow closely. Regarding the perfective
changes a contributing factor on DCF was an incomplete and poorly documented
design, which required a high number of improvements over time. Important factor
for JEF was to develop a common framework to support GUI (Graphical User

Experience Report on the Effect of Software Development Characteristics 167

Interface) development “up front” (developing without knowing all the functionalities
a framework may need). The least frequent changes for the non-reusable application
are the adaptive changes, and for the reusable framework the least frequent changes
are the preventive changes. Contributing factors for the preventive and adaptive
changes for DCF were:

e Preventive changes: Time pressure and incomplete and poorly documented
design lead to some refactoring, since everything was not implemented op-
timally the first time. However, we can see a decrease in the preventive
changes before (release 1) and after (release 2) refactoring.

e Adaptive changes: Minor changes were made to the environment/platform,
which explains the small amount of adaptive changes.

Contributing factors for the preventive and adaptive changes for JEF were:

e Preventive changes: JEF did not go through the same time pressure as DCF
during development. That resulted in a higher code quality for JEF, and less
need for refactoring.

e Adaptive changes: StatoilHydro ASA changed their version control system
from PVCS to Rational ClearCase in the middle of the project. All the files
in the PVCS had a java comment, but when StatoilHydro ASA switched to
Rational ClearCase the java comments in all the files were removed. The
reason for why these changes are seen as adaptive changes is due to that
these files had to be adapted to a different version control system (see section
2 for definition of adaptive changes). The higher frequency (compared to
DCF) of adaptive changes can also be explained by the fact that JEF is built
over various third party components, and changes in these components will
cause changes in the framework.

We can see from Fig. 1 that JEF has a higher amount of adaptive changes than
DCF. For JEF we see that adaptive changes accounted for more than usual compared
to DCF, but still a fairly low number. This might be some surprising given that we
expected JEF to need to be reused in a number of different environments/applications.
However, this can partially be explained by the fact that the data we collected from
Rational ClearCase includes just one application reusing the JEF framework. There
are other application reusing JEF but they are for the time being under development
and no data is available.

Answering our research questions:

o RQI.1: Does JEF have higher adaptive changes than DCF? Yes, JEF (total
number of changes 94) has higher adaptive changes than DCF (total number
of changes 58).

o RQI1.2: Is there a decrease in the preventive changes before and after refac-
toring for DCF? Yes, there is a decrease in the preventive changes before
(total number of changes 306) and after (203 for release 2 and 240 for release
3) refactoring for DCF. We can see there is a slightly increase between re-
lease 2 and 3 (18%), but still the number of changes are less for release 3
compared to before refactoring.

o RQ.1.3: Do perfective and corrective changes account for the majority of the
changes, with adaptive following closely? Yes, perfective and corrective

168 A. Gupta et al.

changes account for the majority of changes for JEF and DCF, but it is only
for JEF that adaptive changes follow closely.

RQ2: What change types are the longest active for different development charac-
teristics? From Fig. 1-a) we saw there was not a big difference in the number of
changes between release 2 and 3. Therefore, we decided not to divide the JEF frame-
work into three releases for our analysis of RQ2, since it will not affect the average.
This means that for RQ2 we will here compare DCF release 1, 2 and 3 against the
whole JEF framework.

By comparing the change types that are longest active for JEF and DCF, we found
from Fig. 2-a) that adaptive (average of 50,2days) changes are longest active for JEF.
This is because StatoilHydro ASA changed their version control system from PVCS
to Rational ClearCase in the middle of the project. All the files in the PVCS had a
java comment related to this version control system, but when StatoilHydro ASA
switched to Rational ClearCase the java comments in all the files were removed. The
JEF framework is built over various third party components, and changes in these
components will cause changes in the framework. However, we can speculate that
adaptive changes were longest active for JEF, because they affected many files. An-
other reason could be that adaptive changes were given low priority to fix. Thus, these
files may have been checked out while developers might have been busy with other
tasks with higher priority.

From Fig. 2-b) we can see that preventive changes (average of 17,0 days) are
longest active for DCF, and the number of days for preventive changes drops (84% in
average) between the two first releases of DCF. This is because before refactoring the
code was difficult and hard to maintain (release 1), but after the refactoring the code
became easier to maintain (release 2).

60 60
50 50
40 40
30 30 HDCF1.0
20 20
10 | ™ JEF 10 | W DCF2.0
o | [] o /N m _ DCF3.0
<@ 2 2 < < <
O & & & &
& & & & & & & P
Q¢ & "2 e Q% ® "2 A

Fig. 2. Average #of days the changes are active: a) JEF, b) DCF

It is important to clarify that the changes that are longest active do not mean that
they require more effort, since we do not have the effort data. However, by looking
into what change types are active longest we might to some extant be able to say if
these changes stays longer in the applications and require more time to fix.

Answering our research questions:

o RQ2.1: Are adaptive changes longer active in JEF than DCF? Yes, adaptive
changes are longer active for JEF (average of 50,2 days) than DCF (average
of 2,5 days).

Experience Report on the Effect of Software Development Characteristics 169

o RQ2.2: Are preventive changes longer active before refactoring than after
for DCF? Yes, preventive changes are longer active before refactoring; re-
lease 1 has an average of 23, 5 days. While after refactoring; release 2 has an
average of 3,8 days, and release 3 has an average of 19, 3 days. We can see
there is an increase between release 2 and 3 (80% in average), but still the
average number of days are less for release 3 compared to before refactoring.

RQ3: How localized are the effects of different types of changes, for different de-
velopment characteristics? For RQ3 we will also compare DCF release 1, 2 and 3
against the whole JEF framework. By comparing the average number of files changed
for each change type (Fig. 3), we found that DCF has higher average amount of files
modified for the preventive changes (14,5). From Fig. 3-a) we can see that JEF has
higher amount of files changed for the adaptive changes (5,5).

30 30
25 25
20 20
1

15 5 B DCF1.0
10 10

s | JEF s | HDCF2.0

o] [| 0 - DCF3.0

@\e (‘}“\Q’ ;@z @z ‘&z @\Q, @q’ ;&@
& & & R <& & & R
o N > & L & > &
] G N] G Q¢

Fig. 3. Average amount of files modified: a) JEF, b) DCF

From Fig. 3-b) we can also see the affect of the refactoring that happened between
all the three releases, since the average number of files modified decreases. This
decrease in the files for the preventive changes is related to adapting to an open
source system framework to improve and ease the code related to handling GUI
events. Before refactoring most of the code was developed by the developers and just
some parts of the open source system framework were used. This made the code more
complex, and difficult to maintain. Due to the high time-pressure the code was
developed quickly and was defect-prone. However, during the refactoring the
developers adapted more of the open source system framework and the code became
much more structured.

Answering our research questions:

o RQ3.1: Is the average number of files modified for adaptive changes higher
in JEF than DCF? Yes, the average number of files modified for adaptive
changes is higher for JEF (5,5 files modified) than DCF (2,4 files modified).

o RQ3.2: Is the average number of files modified for preventive changes
higher before refactoring than after for DCF? Yes, DCF (before refactoring)
has in average 25,5 modified files. While DCF (after refactoring) has in av-
erage 18,5 modified files (release 2), and 8,4 modified files (release 3).

170 A. Gupta et al.

RQ2 combined with RQ3, we see the following results for DCF:

o Even though the average number of days the changes are active are high for
perfective and preventive changes, the number of files modified (within
these two change types) are getting less over the three releases.

7 Threats to Validity

We here discuss possible threats to validity in our case study and the steps we took to
guard against them, using the definitions provided by [27]:

Construct Validity: All our data is from the pre- and post-delivery software
changes (covering any reported changes) for the three releases of the reusable frame-
work, and for the three releases of the DCF application.

External Validity: The object of study is a framework consisting of only seven com-
ponents, and only one application. The whole data set of software changes in StatoilHy-
dro ASA has been collected for three releases of the reusable framework, as well as for
three releases of the application. So, our results should be relevant and valid for other
releases of the framework and other future releases of the application. The entire data
set is taken from one company. Application of these results to other environments needs
to be considered on a case by case basis, considering factors such as:

e The nature of the software development: The DCF application and the JEF
framework in our study are based on the object-oriented programming lan-
guage, namely Java. Additionally, DCF is based on a waterfall process while
JEF is based on a combined incremental/waterfall process.

o The profile of the company and projects: The profile of the company is an oil
and gas company, and hence the projects are related to oil and gas field.

e The way that software changes are defined and classified: Our definition of
software changes and other definitions used (see section 2), vary among the
different studies.

e The way that software changes are collected and measured: We have col-
lected software changes related only to the non-commented source lines of
code for a reusable framework and a non-reusable application.

Internal Validity: All of the software changes for JEF and DCF were classified
manually. Two researchers classified independently all the changes, and then cross-
validated the results. This is to enhance the validity of the data collection process. A
threat to the internal validity is the number of files we have selected from Rational
ClearCase. However, we have 422 files for the JEF framework and 932 files for the
DCEF application, which should be enough files to draw a valid conclusion. We did a
semi-random sampling to ensure the normal distribution between components.

Conclusion Validity: We verified the reasons for differences of software change pro-
files between the JEF and DCF by interviewing one senior developer (see section 5).
Just asking one developer might cause systematic bias. However, we do not consider
this possibility to be a threat for our investigation, because the senior developer has
worked with both the JEF framework and the DCF application. His insights further
supported our results for RQ1-RQ3.

Experience Report on the Effect of Software Development Characteristics 171

8 Conclusion and Future Work

Few published empirical studies characterize and compare the software changes for a
reusable framework with those of a non-reusable application. We have presented the
results from a case study for a reusable class framework and one application reusing it
in StatoilHydro ASA. We studied the impact that software changes had on different
development characteristics (e.g. impact of reuse and impact of refactoring). Our
results support previous findings to the effect that perfective and corrective changes
accounts for the majority of changes in both reusable and non-reusable software, but
it is only for the reusable framework that adaptive changes follow closely. We also
observed that DCF faced higher time-to-market pressure, more unstable requirements,
and less quality control than the reusable framework.

When it comes to designing for reuse it does have an effect on the aspect of the
change types. Our results indicate that adaptive changes have longer active time and
files related to adaptive changes are more modified in JEF compared to DCF. The
increase in adaptive change might be a result of successfully shielding the end user
(i.e. DCF developer) from changes from the vendors. Additionally, preventive
changes are more common in DCF (due to the refactoring that took place). So, the
amount of changes, as well as the effect on the localization of changes will not be
similar to the systems not necessarily designed for reuse.

Non-reusable applications usually face more unstable requirements, higher time-to-
market pressure, and less quality control than the reusable framework. Therefore,
their poorer quality is not surprising. So, making a component reusable will not auto-
matically lead to better code quality. In order to lower the amount of software changes
of the reusable component, it is important to define and implement a systematic reuse
policy; such as better design [28] and better change management [21].

In addition, we have seen a positive affect for the refactoring. A system with poor
structure initially has to deal with more frequent preventive changes before refactor-
ing than after. However, our results indicated that there was an increase in preventive
changes between release 2 and 3 (after refactoring), but the increase in release 3 was
still less than before refactoring.

The lesson learned here is that developing a framework “up front” (developing
without knowing all the functionalities a framework may need) is always difficult and
challenging, since you do not know all of the requirements that will appear when a
reusable framework is being used.

One interesting question raised by StatoilHydro ASA is whether the results of our
study could be used as input to improve future reuse initiatives. In addition, we intend
(i) to expand our dataset to include future releases of the JEF framework, future re-
leases of the DCF application, and new applications (further reuse of the JEF frame-
work), and (ii) to refine our research questions on the basis of the initial findings
presented herein.

Acknowledgement

This work was financed by the Norwegian Research Council for the SEVO project
[29] with contract number 159916/V30. We thank StatoilHydro ASA for involving us

172 A. Gupta et al.

in their reuse projects. This work is also partially sponsored by NSF grant
CCF0438933, "Flexible High Quality Design for Software."

References

1. Bennett, K.H., et al.: Software Maintenance and Evolution: A Roadmap. In: 22nd Intl.
Conf. on Software Engineering, pp. 73-78. IEEE Press, Limerick (2000)

2. Lehman, M.M., et al.: Programs, Life Cycles and Laws of Software Evolution. In: Proc.
Special Issue Software Eng., vol. 68(9), pp. 1060-1076. IEEE CS Press, Los Alamitos
(1980)

3. Postema, M., et al.: Including Practical Software Evolution in Software Engineering Edu-
cation. IEEE Computer Society Press, Los Alamitos (2001)

4. Sommerville, I.: Software Engineering. Sixth Edition. Addison-Wesley, Reading (2001)

5. Bennet, P.L.: Software Maintenance Management: A Study of the Maintenance of Com-
puter Application Software in 487 Data Processing Organizations. Addison-Wesley Pub.,
Reading (1980)

6. Lientz, B.P., et al.: Characteristics of Application Software Maintenance. Communications
of the ACM 21(6), 466-471 (1978)

7. Mockus, A., et al.: Identifying Reasons for Software Changes Using Historical Database.
In: Proc. IEEE Intl. Conf. on Software Maintenance, pp. 120-130. IEEE CS Press, San
Jose (2000)

8. Schach, S.R., et al.: Determining the Distribution of Maintenance Categories: Survey ver-
sus Management. Empirical Software Engineering 8, 351-366 (2003)

9. Abran, A, et al.: Analysis of Maintenance Work Categories Through Measurement. In:
Proc. Conf on Software Maintetance, pp. 104—113. IEEE CS Press, Sorrento (1991)

10. Yip, S., et al.: A Software Maintenance Survey. In: Proc. 1st Int. Asia- Pacific Software
Engineering Conference, Tokyo, pp. 70-79 (1994)

11. Basili, V., et al.: Understanding and Predicting the Process of Software Maintenance Re-
leases. In: 18th Intl. Conf. on Software Engineering, pp. 464—474. IEEE CS Press, Berlin
(1996)

12. Mohagheghi, P.: An Empirical Study of Software Change: Origin, Impact, and Functional
vs. Non-Functional Requirements. In: Proc. at Intl. Symposium on Empirical Software
Engineering, pp. 7-16. IEEE CS Press, Los Angeles (2004)

13. Gupta, A., et al.: An Empirical Study of Software Changes in Statoil ASA - Origin,
Piority Level and Relation to Component Size. In: Intl. Conf. on Software Engineering
Advances, p. 10. IEEE CS Press, Tahiti (2006)

14. Jgrgensen, M.: The Quality of Questionnaire Based Software Maintenance Studies. ACM
SIGSOFT - Software Engineering Notes 20(1), 71-73 (1995)

15. Sousa, M., et al.: A Survey on the Software Maintenance Process. In: Intl. Conf. on Soft-
ware Maintenance, pp. 265-274. IEEE CS Press, Bethesda (1998)

16. Satpathy, M., et al.: Maintenance of Object Oriented Systems through Re-engineering: A
Case Study. In: Proceedings of the 10th Intl. Conf. on Software Maintenance, pp. 540—
549. IEEE CS Press, Montreal (2002)

17. Lee, M.G., et al.: An Empirical Study of Software Maintenance of a Web-based Java Ap-
plication. In: Proceedings of the IEEE Intl. Conf. on Software Maintenance, pp. 571-576.
IEEE CS Press, Budapest (2005)

18. Evanco, M.: Analyzing Change Effort in Software During Development. In: Proc. 6th Intl.
Symposium on Software Metric, Boca Raton, pp. 179-188 (1999)

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Experience Report on the Effect of Software Development Characteristics 173

. Burch, E., et al.: Modeling Software Maintenance Requests: A Case Study. In: Proceed-

ings of the Intl. Conf. on Software Maintenance, pp. 40-47. IEEE CS Press, Bari (1997)
Mohagheghi, P.: An Empirical Study of Software Reuse vs. Defect Density and Stability.
In: Proc. 26th Intl. Conf. on Software Engineering, pp. 282-292. IEEE-CS press, Edin-
burgh (2004)

Selby, W.: Enabling Reuse-Based Software Development of Large-Scale Systems. IEEE
Transactions on Software Engineering 31(6), 495-510 (1995)

Gupta, A, et al.: A Case Study of Defect-Density and Change-Density and their Progress
over Time. In: 11th European Conf. on Software Maintenance and Reengineering, pp. 7—
16. IEEE Computer Society, Amsterdam (2007)

Zhang, W., et al.: Reuse without compromising performance: industrial experience from
RPG software product line for mobile devices. In: Proc. 9th Intl. Software Product Line
Conference, pp. 57-69. Springer, Rennes (2005)

Frakes, W.B., et al.: An industrial study of reuse, quality, and productivity. Journal of Sys-
tem and Software 57(2), 99-106 (2001)

Algestam, H., et al.: Using Components to Increase Maintainability in a Large Telecom-
munication System. In: Proc 9th Int. Asia- Pacific Software Engineering Conference, pp.
65-73 (2002)

Sampling calculator , http://www.macorr.com/ss_calculator.htm

Wohlin, C.: Experimentation in Software Engineering — An Introduction. Kluwer Aca-
demic Publishers, Dordrecht (2002)

Succi, G., et al.: Analysis of the Effects of Software Reuse on Customer Satisfaction in an
RPG Environment. IEEE Transactions on Software Engineering 27(5), 473—479 (2001)
Sevo project, http://www.idi.ntnu.no/grupper/su/sevo/

Virtual Prototypes in Developing Mobile Software
Applications and Devices

Kari Liukkunen', Matti Eteléperﬁz, Markku Oivol, Juha-Pekka Soininenz,
and Mika Pellikka®

! Department of Information Processing Science, University of Oulu
P.O. Box 300, 90014 Oulu, Finland
2 VTT, Kaitoviyli 1, 90570, Oulu, Finland
3 CCC Group, Tietotie 2, 90460 Oulunsalo, Finland
kari.liukkunen@oulu.fi, matti.etelapera@vtt.fi,
markku.oivo@oulu.fi, juha-pekka.soininen@vtt.fi,
mika.pellikka@ccc.fi

Abstract. The goal of this paper is to study how software based virtual proto-
types and hardware simulation tools can be combined. By combining these
tools and techniques we can shorten the time to market with parallel concurrent
design and more importantly, we can provide a real-time simulation environ-
ment for virtual prototypes. Application designers get access to a simulated re-
alistic real-time mobile device well before the first prototypes are available
from the device manufacturer. The research work was done in two cases. In the
first case the virtual prototypes were used to illustrate and help to select new
mobile application concepts and to test new applications usability. In the second
case the virtual prototypes were used for modelling the product platforms, e.g.
the computer system and the simulation of the complete system including both
hardware and software. Our approach facilitates early simulation and testing of
the final user experience and system behaviour in cases where they are heavily
dependent on the characteristics and performance of the underlying computer
platform.

Keywords: Usability requirements, user interfaces, user experiences, virtual
prototypes, mobile software applications, virtual platform.

1 Introduction

In order to meet the usability requirements in the development of interactive software
for handheld devices, such as mobile phone applications, the user-centred design
approach is an appealing approach. There are tools that enable the virtual simulation
of applications for handheld devices (terminals). These tools offer a virtual design
space that is used to design the application and produce the virtual prototypes that can
be used to simulate the application logic and user interface. There are also tools that
allow the simulation of the target hardware platforms for the terminals for example
for building software platforms for mobile devices. These tools are normally used in

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 174 2008.
© Springer-Verlag Berlin Heidelberg 2008

Virtual Prototypes in Developing Mobile Software Applications and Devices 175

isolation by different designer groups. However, our goal was to integrate these tools
and their use for early and realistic simulation purposes. Rapid capacity increase of
simulator workstations and the simulation tools have made it possible for the first
time.

Paper prototyping or story boarding enables the rapid concept designing of certain
parts of software’s user interface, but with virtual prototyping and simulation tools it
is possible to produce fully interactive simulations. Virtual prototypes enable the
rapid concept design of software applications already before the implementation work
has started. Virtual prototypes can therefore be used to pilot software application
concepts and support the concept selection process. When usability and user experi-
ence are considered the real performance provided by the execution platform needs to
be taken into account. Otherwise, the usability results are based on false hopes of
ideal machines. Then the specification can lead to enormous implementation prob-
lems, where the software developers are facing an impossible mission. In the worst
case, the result may be the change of specification and redesign.

Performance modeling and simulation is currently used approach to analyse the
embedded or mobile system, but it has also its limitations. Real-time (or almost real-
time) performance is needed in order to provide realistic responses to the user for
usability studies. However, the final performance depends very often on the software
and hardware architecture design decisions on a very detailed level. The final per-
formance bottlenecks can be results from example poorly designed search algorithms,
inadequate bus or memory interfaces or unfortunate interactions of different system
functions. Modelling the system on such detailed level is too much time consuming,
too expensive and typically results too slow simulation performance to be practical.

In case both hardware and software are new, the system architect and designers can
optimise the final system instead of software or hardware. From product development
point of view the benefits are naturally related to better product, but only if we can do
the software and hardware development in parallel and if we can look the complete
system characteristics during the design (Fig. 1).

1 1
Scenarios ' Use Case ' Use
1 1
] T T]
1 | A | 1
| |
' . A '
Application- : Application : Application
concept 1 model 1
1 1
| | |
| (] |
!) == |) v
Platform- : Platform model : Platform
concept : :
Concept models Virtual prototypes Real product

Fig. 1. Virtual prototypes in application and platform modeling

In embedded system domain, the development of hardware and software has been
sequential. Typically embedded software has been developed for some existing em-
bedded hardware. Two factors are changing this. First, the increase pressure to

176 K. Liukkunen et al.

shorten the design time, which also means that the hardware has to renew more rap-
idly. Secondly, the hardware is becoming more flexible due to the reconfigurability.
In practice the functionality of the most of the embedded systems today could be
implemented using SoPC (system on programmable chip) devices where it is possible
to change the hardware system also on run-time.

Complexity of underlying hardware has also increased and it is making the man-
agement of performance of complete system extremely difficult. For example, if we
look into a modern mobile terminal platform such as OMAP2 architecture, we see a
complex computer with general purpose processor ARMI1 running Symbian or
Linux real-time operating systems, a very complex DSP processor, programmable
accelerators for video and graphics, few buses, a complex memory organisations and
an interconnect that tries to feed up all units with data. So, it is complex embedded
computer with a complex set of software services on the top of it. And it is targeted
for a battery operated device. The next generation platforms will be even more com-
plex with packet-switched networks and multiple processors.

With battery operated devices and current system complexities it is clear that tradi-
tional general purpose computer design ideas needs to be rethought. Hardware archi-
tecture design must be guided by the intended use cases and applications. The system
resources must be optimised for them in order to avoid the waste of time, energy and
money. Similarly in the software architecture and software design, the decisions must
be based on the knowledge on what actually happens in the system, how system re-
sources are used, and how the system would respond to the user.

The approach taken in this is to combine software based virtual prototypes and
hardware simulation tools. By combining these tools and techniques we can shorten
the time to market with parallel design of usability, software system and underlying
computer hardware as shown in Fig. 2. Even more importantly, we can provide a
real-time simulation environment for virtual prototypes containing both models of
applications and execution platforms. Then the application designers can get realistic
environment were they can design and test not only the logic of the UI, but also the
timing, delays and many other crucial time related issues in UI design. Application
designers get access to a simulated realistic real-time mobile device well before the
first prototypes are available from the device manufacturer. The first models can be
very abstract conceptual models that are then refined during the design until the real

Traditional Hardware design ‘
platform

design

Software design

Integration & testing

Time

| Virtual HW design

Virtual Saved time

!
i
]
platform ’ Software design !
design HW implementation N
1
i

Integration & testing

Time

Fig. 2. Virtual versus traditional platform design. Simultaneous hardware and software design
is one of the benefits of virtual platform based design

Virtual Prototypes in Developing Mobile Software Applications and Devices 177

product is ready as shown in Fig. 2. Both the application software developers and
execution platform developers can have very rapid feedback on how the changes
made in either area affect to the complete system and its usability characteristics.

Simulation tools used in this research were CCC Group’s Cybelius Maestro, which
is suitable for simulating application’s user interface and CoWare’s Electronic System
Level design tool set, especially SystemC simulation tool, suitable for simulating
target platforms. These tools were used in different parts of the development process,
starting from collecting ideas and ending to software testing using the virtual hard-
ware platform. In this project, it was impossible to have only one case and follow it
throw the development process. We have to use three different cases. In this paper we
later describe these cases and our experiences.

2 Related Work

Modern computer software is characterized by continuous change, by very tight time-
lines, and by an emphatic need for customer/user satisfaction. In many cases, time-to-
market is the most important management requirement. If a market window is missed,
the software project itself may be meaningless. Virtual design has the potential to help
in these critical problem areas. Tseng et al. [18] explain that virtual design is proposed
to replace hardware prototypes with computational (virtual) prototypes of systems and
the processes that they may undergo. By replacing hardware with computational pro-
totypes, the potential is tremendous for greatly reducing product development time,
manufacturing facility ramp-up time, and product development cost.

2.1 Virtual Prototyping

Virtual prototyping can be viewed either as a technology term or as a process descrip-
tion. The process description of virtual prototyping is as follows [13]:

“Virtual prototyping is a process in which a product or a product concept,
its behavior and usage are simulated as realistically as possible by combining
different prototyping and simulation models and techniques.”

When virtual prototyping is viewed as technology term, the focus is usually on the
virtual prototype and its realization. Based on the definition given by Haug et al. [7] a
virtual prototype could be described as follows:

“A virtual prototype is a simulation of a target object which aims at an
adequate degree of realism that is comparable with the physical and logical
functionality and the appearance of the possible real object, and that is
achieved by combining different prototyping and simulation models and
techniques.”

According to Kiljander [14] the UI prototyping methods include Mathematical
models, Scenarios, 2D & 3D drawings and computer aided design (CAD) models, Sto-
ryboards, Paper prototypes, Computer simulations, Virtual reality prototypes, Hard
models, and Hardware prototypes. Ulrich & Eppinger [19] have classified prototypes
along two dimensions — physical/analytical and comprehensive/focused. Kiljander [14]
has ordered the different UI prototyping methods to this classification according to the
methods’ level of fidelity i.e. interactivity or concreteness they support (Fig. 3).

178 K. Liukkunen et al.

Beta
Physical Prototype
Hardware
Hard models S prototypes

Alpha Fihal
Prototype Product

wvirthhal Reality
pfototypes

Computer
imulptions

Focused - protatype: » Comprehensive
Storybdards
3D CAD
models
-—wiz‘
] emal al
models

v
Analytical

Fig. 3. Classification of Prototypes with UI Prototyping Methods [14]

2.2 System Simulation

There are three basic approaches, if the characteristics of executing hardware are
taken into account during the development of software applications [11]. First, we can
measure the effects of hardware if the hardware exits. This is naturally very accurate
method. The accuracy and the reliability of results depend on the maturity of the
software we are developing. The second approach is to use some hardware prototype
or hardware emulator that mimics the final hardware. The accuracy is degraded, be-
cause the used hardware is not exactly as the final hardware and it introduces errors.
The third alternative is to model the hardware and simulate its behavior in a computer.
The simulation model is called a virtual platform and if we simulate the execution of
application software or even the complete software system, the complete system
model is a virtual prototype of a product.

The traditional technique for the analysis of software-hardware system is co-
simulation. The first co-simulation environments were commercialized during early
1990s and because the need for co-simulation was initiated from hardware design the
simulation models were very detailed and slow. In the co-simulation the software can
be executed using real processors, emulated processors, RTL-simulation models of
the processors, instruction-set simulators of the processors [8, 1], or more abstract
functional simulation models [5]. Similar abstraction levels are available for the other
hardware parts and recently the development has been from detailed hardware de-
scriptions towards more abstract transactional models. In the processor-hardware
interface bit-accurate models, bus-accurate functional models and abstract communi-
cation channels have been used [2].

When co-simulation is used for system-level design, the problem is the trade-off
between modeling effort, accuracy and performance. Complex software systems can-
not be simulated using a clock-accurate processor or bus models. There are three
basic approaches for solving the performance problems. The first is to increase the
abstraction level of the hardware simulation by, for example, using concurrent proc-
esses that communicate using channels [4, 6]. The second is to use host-based execu-
tion of the software instead of trying to execute machine code instructions [20]. The

Virtual Prototypes in Developing Mobile Software Applications and Devices 179

third is to replace the final code with a more abstract workload model that only gener-
ates events for the hardware architecture instead of implementing the complete func-
tionality of the software [15]. The state-of-the-art tools currently are based on the use
of high-level modeling and simulation languages such as SystemC [21]. SystemC is
based on C++ and shares the same syntax and advanced features such as dynamic
memory allocation and object oriented design partitioning. It is a very flexible lan-
guage and it is possible to build custom platform simulators of different abstraction
levels using it [22].

3 Research Approach

In this research we have carried out three cases to study how virtual prototypes can be
used for piloting and testing of mobile software applications, how these virtual proto-
types can support usability planning and collecting the user experiences of a Web-
based product and how virtual platform can be used to test software applications
(Fig. 4). Cases included iterative construction of virtual prototype solutions for two
real-world applications (City of Oulu and Ouman). In these two cases Ul-simulation
was used to collect mobile application ideas for the city of Oulu. Solution concepts
were then created from these ideas. Concepts were built in the form of virtual proto-
types. In the second case study the goal was to gather usability requirements of the
Web application for a company called Ouman. The City of Oulu case was categorized
as “Concept design process” and Ouman case as “Requirements gathering”. In the
third (VTT) case research scope was to demonstrate the capabilities of virtual plat-
form design methodology on software development. Full commercial implementation
was left out of the scope of this research.

Ideas are
collected

Soucopls cue Concepts are Usability Implementation
created from the | P requirements 12
Ees selected are gathered is started

/'

Concepts are

demonstrated

Concept design process Requirements Implementation
gathering

Fig. 4. Focus of the City of Oulu and Ouman research cases

3.1 UI Simulation Approach

Virtual design is becoming more important also because the functions of a product are
implemented more and more through software. For example, in mobile phones the
size of software has risen from some kilobytes in analogue phones to several mega-
bytes in the latest smart phones. The weighting of software is shifting from lower

180 K. Liukkunen et al.

level system to the UI parts. In some consumer products Ul software can account for
over 50% of the entire software. [13, 14]. This shift can be better understood looking
at it from a user’s perspective. Mayhew points out that as far as users are concerned
the UI is the product, because their entire experience with the product is their experi-
ence with its UL [16].

The definition of usability from ISO 9241-11 is: “The extent to which a product
can be used by specified users to achieve specified goals with effectiveness, effi-
ciency, and satisfaction in a specified context of use.” [10, 2]. Jokela [12] describes
that the ISO 9241-11 definition is not only a formal standard, but is also becoming the
de facto standard. He also points out that one essential feature concerning usability is
that it is not an absolute product property, but it always exists in relation to the users
of the product.

Virtual prototypes are created in a concept design process. It is possible to see the in-
ternational standard ISO 13407 as a concept design process. It identifies five UCD ac-
tivities (processes), four of which deal with the substance of UCD while one is about the
planning of “human-centred design”. The processes of UCD are illustrated in Fig. 5.

identify need of
human-centred design

understand &
specify the context
of use
¥

evaluate designs
against
requirements

specify the user &
organizational
requirements

\ produce
design
solutions

Fig. 5. Processes for user-centered design in ISO 13407 [9]

To be exact, concepts are created as a result of the “produce design solutions”
process, but performing every process of the standard is essential for getting relevant
results. Accurate product concepts would be hard to create without understanding the
context and environment of use.

In this research the focus is on concept design of Web applications Uls and collect-
ing usability data concerning the Uls before the real application actually exists. This
can be achieved by illustrating the concepts with functional virtual prototypes, and by
performing usability tests to users with these virtual prototypes. These activities are
described in the ISO 13407 standard as “produce design solutions” and “evaluate
designs against requirements” processes.

3.2 HW Simulation Approach

Our approach is based on the idea that application software is mapped on the platform
model of computer system and the resulting system model is then simulated (Fig. 6.).
The SW is written in C and compiled to target processor. The platform model is

Virtual Prototypes in Developing Mobile Software Applications and Devices 181

created using Coware ESL tools and SystemC models. The model should be created
detailed enough to provide performance data for usability analysis, but abstract
enough to have adequate real-time performance for interactive use of applications. In
the CoWare toolset a simulation engine is a SystemC simulator. In case we identify
any performance of functionality problems then either the application code or plat-
form hardware model can be changed or the whole system re-simulated.

Platform

Platform HW
changes !

Apﬁ!ication
SW changes

Performance
problems?

Fig. 6. Basic application-platform simulation approach

The resulting system model is actual a virtual prototype of a product. It consists of
HW model, i.e. the execution platform, the HW-depended SW parts, e.g. operating
system such as Symbian or Linux, control SW code and platform services, etc., and
application code as shown in Fig. 7. Modeled execution platform and simulator offers
full visibility to all parts of hardware so it is possible to monitor all parts of system.
This is superior feature to any implementation or emulator, since it allows the de-
signer to see what happens inside a computer, which is typically impossible. The
modern embedded systems computers are integrated components containing several
processors, dedicated memory organizations and complex interconnect that are

. . R R Virtual
Applications/ Applications
Application models J

/ Prototyping
J Environment
®\N API
Control SW + Operating '/@
System+ Platform Service SW ———W_
Platform service
ideas
= [ev] [

Platform @\
innovation - e——ou HW Platform

ideas

(ISS+TLM) Service from

Simulator kernel partners
s o

simulators S

Network Network
simulation services

Fig. 7. Virtual prototype of a mobile terminal

182 K. Liukkunen et al.

impossible to access from outside of the component. It is also possible to separate the
computer system part and SW development environment and to encapsulate it into
distributable package for third party application developers.

4 Empirical Experiences

In University of Oulu case Cybelius Maestro tool was used to pilot software applica-
tion concepts and to support the concept selection process (City of Oulu case). It was
also used to gather user experiences collected concerning the selected concept
(Ouman case). VTT created a case example of a mobile stereoscopic video recorder
platform. The aim was to demonstrate the capabilities of virtual platform design
methodology on software development. Also the feasibility of such approach and the
work effort needed to make a virtual platform were quantified.

4.1 City of Oulu - Rapid Concept Design Process of Mobile Applications

For the ROOSTER-project, the City of Oulu mobilized their different working sec-
tors; construction, cleaning, sports, education and health care in order to find new
ideas for mobile phone applications. Meetings were arranged with these working
sectors. The idea was to collect ideas for possible future mobile applications that
could help citizens of Oulu in using their facilities as well as the workers themselves
in their everyday work. The central technologies that were concerned in this research
case were the Radio-Frequency Identification (RFID) tag and mobile phone. About 30
potential ideas were gathered from the meetings in total. The goal was to identify few
potential ideas that would eventually be implemented as real applications.

Simulations from the collected ideas were implemented in a “quick and dirty” way
because in this case no usability requirements were gathered. Simulations from these
two ideas were further used for demonstration purposes in following meetings.

Maestro’s Physical User Interface (PUI) model’s front view consisted of several
Key components and one view component. For example the pictures of an ID card, a
RFID-tag, a Globe indicating the Internet and a computer indicating a server were in
fact own components. These images were needed, because actions and data flow
between these components and the phone might otherwise be hard for the user to
comprehend. The created concept of the system that retrieves a map of the building
the person enters in is illustrated in Fig. 8.

When the user clicks left mouse button on top of the RFID-Tag the mobile phone
moves on top of it (Fig. 8.). Phone connecting to the Internet is indicated with a green
arrow from the phone to the Internet to indicate the information flow. The same indi-
cation is also used to describe dataflow from the Internet to server and from Server
back to the mobile phone. Indication of touching the RFID tag was implemented with
a PUI-component that sets a smaller mobile phone visible on top of the RFID-tag
image. After few seconds from pressing the RFID-tag, the mobile phone returns to the
centre. Finally in this simulation the map of the building was opened to the phone
view.

Virtual Prototypes in Developing Mobile Software Applications and Devices 183

RFID-Tag

Fig. 8. A created system concept for City of Oulu case in its start and end position. RFID-Tag
is touched with the phone and information is retrieved from the Internet.

The simulation style presented in Fig. 8. was used also in the implementation of
the other concepts in the City of Oulu case. The development time of one simulation
was approximately one day for a developer who is familiar with Maestro. In order to
use Maestro efficiently the developer needs to have Java programming skill as well as
skills to use some graphics software, e.g. GIMP or PhotoShop. Based on these em-
pirical experiences, it can be said that with experienced developer, simulation tool
suits extremely well in rapid design of mobile application concepts. This way mobile
application can be piloted already in concept design phase, thus making the concept
selection more efficient.

4.2 Ouman - User Experiences of Web-Based Application Simulation

The goal was to create a Web application representing Ouman’s Web-based heat
regulation system called EH-Net. A design decision was made that the simulation
would represent a full scale Web server, and usability issues would be collected from
users using the simulation. Because of the time constraints in the project it was de-
cided that functionality of the simulation would be restricted to those parts of the
system that concerned the user goals. Simulations were made in form of applets so
that it was possible to use them remotely with Web browsers through the Internet.

Usability requirements gathering was started by arranging a stakeholder meeting.
User groups along with their technical background and responsibilities were identi-
fied. The tasks and goals of these user groups were then studied. Ouman provided the
“Design guidelines” and “Style guides” that were used in interaction design of the
simulation. Ouman also defined usability requirements for the system. Also descrip-
tion of the environment of use and restrictions of use for different groups were
defined.

In Maestro tool the PUI model is defined with front - and back views, where an
image of the device for example a specific mobile phone model can be inserted along
with various key components including Key, Liquid Crystal Display (LCD) and Led.
Keys are used for example to simulate the mobile phone’s key presses, whereas LCD
is the view area of the device. Led’s can be used to indicate different states of the
device for example power on/off. Applet representing a Web server was done using
only the LCD component. Maestro GUI components have also a feature called touch
screen that enables the use of simulations without externally defined key triggers.

184 K. Liukkunen et al.

Every component contains specific set of methods that can be called from the simula-
tion at runtime. The only prerequisite is that the touch screen feature is enabled from
the component properties. For example in Ouman simulation dropdown menus func-
tionality was implemented by grouping the functionalities of TextField, List and But-
ton component List is set invisible when entering the state and visible after the Button
is pressed. List is set invisible again after a list item is selected from the list. Finally
the text from the selected list item is set to the TextField component.

Three iterations were implemented to the simulation before launching the final lar-
ger scale usability test session. All the needed graphics were implemented already in
the first iteration; second and third iteration contained only logical fixes. The third
iteration contained only cosmetic fixes and therefore it was considered to be good
enough quality for starting the larger scale usability testing.

It is important to notice that the test done here is not usability testing in the sense it
is generally understood. Usability testing usually involves a controlled experiment
and such an environment was not implemented in this research. The testing done in
this research was more like usability appraisal, and it was done remotely. Neverthe-
less, real usability issues were found. The test group consisted of six persons with
some experience in software development and user interfaces. Nielsen explains that
the best results from usability testing come when testing with 5 users and running as
many small tests as is affordable. Nielsen’s has also described that 5 testers can find
over 75% of the usability problems. With 6 testers the amount increases already to
nearly 90% [17.]. Based on this information the test group’s size was sufficient.

Usability issues were gathered by creating an applet from the Web application
simulation and storing the HTML-file containing the applet to a Web server. The
applet could then be run by test users’ using their PC’s Web browsers. Data received
from the questionnaire was qualitative. Some of the answers could not be counted
valid usability issues. This is because some usability flaws found by the user were
actually simulation tool and simulation specific problems. Only usability issues that
could be identified to concern the real system were collected.

The implementation work of the simulations grows exponentially when the focus is
on the usability of a product. There are numerous features that need to be imple-
mented in order to create a simulation that can offer adequate degree of realism that is
comparable with the physical and logical functionality and the appearance of the
possible real object. In this case it took a full month to implement the first version of
the simulation that could be used to gather user experiences and usability issues. Nev-
ertheless, empirical data from this case shows that virtual prototypes can be used to
gather valid usability issues and thus they can provide support for planning the usabil-
ity of a product.

4.3 Virtual Platform Model of a Mobile Device

The aim of the case was to demonstrate the capabilities of virtual platform design
methodology on software development. Also the feasibility of such approach and the
work effort needed to make a virtual platform were quantified [23].

A SystemC based toolset from CoWare was used in this work for developing the
virtual platform hardware model. The SystemC language [24] has a dual role in ESL
(Electronic System Level) design as being both a hardware description language and a

Virtual Prototypes in Developing Mobile Software Applications and Devices 185

system description language. CoWare is one of the few tool vendors which currently
provide virtual platform technology. The tools allow the user to build a whole plat-
form from scratch by using models of commercial IP blocks or by building synthesiz-
able processors models and any other custom IP blocks. The models used by the
CoWare tools are SystemC based, so models of various abstraction levels can be
incorporated in the platform. The platform designer can create a virtual platform of
his design to be distributed to software developers. Software designers then receive a
virtual platform package which includes a compiler, a debugger and the platform
simulator. As software designers give feedback of the system issues back to the plat-
form designer, they will receive an updated version of the virtual platform package
later on.

The stereoscopic video recorder which was chosen as the case example is a device
which multiplexes and encodes video streams from two independent cameras repre-
senting the human visual system. This creates a video stream which captures a true
three dimensional view. The approach is viable in future mobile phones for example
due to the rapid development camera technology and compact autostereoscopic liquid
crystal displays. Both encoding and decoding modes were implemented in the virtual
platform for approach feasibility studies and architecture exploration purposes. Per-
formance of these platforms and the performance of the simulator were measured.
During the architecture exploration, we also approximated the time taken by each step
in creating and modifying the platform. The amount of time consumed was also ap-
proximated for the consecutive changes made to the platform after the initial learning
curve had been confronted. This allowed us to quantify the effort in learning the
method and tools used.

An ARMD9 processor family based platform was chosen, because it is one of the
most popular processor types for embedded multimedia devices. Designing the hard-
ware platform block diagram was straightforward and intuitive. Different platforms
variations were tested for the 3D recorder, such as running the instructions from the
fast SRAM memories or the external memories over the bus.

The software development for the virtual platform proved to be very straight for-
ward. The initial port of the stereoscopic codec was developed in a PC environment
with a gcc cross compiling environment. An operating system was not used in the
virtual platform. Instead the stereoscopic video encoding software was a standalone
ARM-binary, because this was considered to be enough for performance evaluation of
the most critical parts of the system. System boot up codes were naturally required to
setup the system prior to the execution of the video encoder in addition to the actual
codec work. Ffmpeg / libavcodec open source encoding/decoding software was cho-
sen as the starting point for the stereoscopic encoding and decoding task. The codec is
customizable, but is not fully optimized for ARM9. Modifications to the original code
were made.

The hardware modeling was done by one research and the software was created
concurrently with the hardware by a research scientist with background in video en-
coding software. As with all new tools, virtual platform involves a significant learn-
ing curve, so the results for time consumed in model changes are displayed in two
categories. The first one is the amount of work for the first time user making a build-
ing or changing the platform. The time to build a new hardware platform from scratch
was measured to be eight weeks for a novice user. The total time to build a working

186 K. Liukkunen et al.

platform with all the software and peripherals included was 16 weeks. This amount
includes the concurrent software and hardware development. After building the first
platform and encountering the initial obstacles, it was possible to build a working
virtual platform model from scratch in a week.

The CoWare tools could perform virtual platform simulation with two modes: fast
and full. The fast mode was suited for functional verification, but did not give accu-
rate timing data for performance approximation. On the other hand the full mode was
accurate, but approximately ten times slower than the fast mode. The fast simulation
mode reached 11.8 MIPS performance on a 3,2GHz Intel Xeon workstation. This is
9.6 times slower than real time. This gap is becoming smaller as simulator worksta-
tions and the simulation tools improve.

5 Conclusions and Future Work

Virtual prototypes can be used to gather usability requirements already in early phase
of product development life cycle reducing the amount of errors that are implemented.
Paper prototyping or story boarding enables the rapid concept designing of certain
parts of software’s user interface, but with virtual prototyping and simulation tools it
is possible to produce fully interactive simulations. With interactive simulations it is
possible to find even more relevant usability issues from a software product. Virtual
prototypes enable the rapid concept design of software applications user interface
already before the implementation work has started. Virtual prototypes can therefore
be used to pilot software application concepts and support the concept selection proc-
ess. The application designers can get realistic environment were they can design and
test not only the logic of the UI, but also the timing, delays and many other crucial
time related issues in Ul design. Application designers get access to a simulated real-
istic real-time mobile device well before the first prototypes are available from the
device manufacturer. The tools can be used for piloting and testing of mobile software
applications and platforms and how these virtual prototypes can support planning and
collecting the user experiences.

Virtual platform modeling is a feasible approach for both software and hardware
development. The tools used in this work also proved to be suitable for architecture
exploration and performance evaluation. The functionality of the platform can be
modeled very accurately with virtual platforms and they provide an intuitive way of
developing and testing software for both functional and performance estimation. The
functional verification simulations used in our work were still 9.6 times slower than
real time, but this gap is becoming smaller as simulator workstations and the simula-
tion tools improve.

Table 1. Simulation development times in research cases

UI simulation 1 day
Application simulation 4 weeks
Working virtual platform model 1 week

Virtual Prototypes in Developing Mobile Software Applications and Devices 187

Our experiences (Table 1.) with integrated prototyping tools indicate that it is pos-
sible to shorten development time considerably. However, it was difficult to find
benchmarking data for comparing our results and hence further empirical research is
required to quantify the improvements.. Also, tight integration of UI (e.g. Maestro)
and platform (e.g. CoWare) simulation tools would be needed to enable optimal use
of both simulation techniques. This kind of tight tool integration would be a promis-
ing and interesting future research area.

Acknowledgments

The research work presented in this paper was done in ROOSTER research project at
the Department of Information Processing Science, University of Oulu and at VTT.
Project was financially supported by the National Technology Agency of Finland
(TEKES) and industrial partners CCC, Nokia, Elektrobit, F-Secure, TietoEnator,
Jaakko Poyry Oy, Poyry Telecom Oy, Ouman, Embe Systems Oy and City of Oulu.

References

1. Austin, T., Larson, E., Ernst, D.: SimpleScalar: An Infrastructure for Computer System
Modeling. Computer 35(2), 59-67 (2002)

2. Benini, L., Bertozzi, D., Bruni, D., Drago, N., Fummi, F., Poncino, M.: SystemC Cosimu-
lation and Emulation of Multiprocessor SoC Designs. Computer 36(4), 53—59 (2003)

3. Bevan, N.: International standards for HCI and usability. International Journal of Human-
Computer Studies 55 (4), 533-552 (2001)

4. Buck, J., Ha, S., Lee, E., Messerschmitt, D.: Ptolemy: A Framework for Simulating and
Prototyping Heterogeneous Systems. International Journal of Computer Simulation 4,
152-182 (1994)

5. Chandra, S., Moona, R.: Retargetable Functional Simulator Using High Level Processor
Models. In: Proceedings of 13th International Conference on VLSI Design, 2000, Calcutta,
India, January 3-7, 2000, pp. 424-429. IEEE Computer Society Press, Los Alamitos
(2000)

6. Grotker, T., Liao, S., Martin, G., Swan, S.: System Design with SystemC, p. 217. Kluwer
Academic Publishers, Boston (2002)

7. Haug, E.J., Kuhl, J.G., Tsai, F.F.: Virtual Prototyping for Mechanical System Concurrent
Engineering. In: Haug, E.J. (ed.) Concurrent Engineering: Tools and Technologies for
Mechanical System Design, pp. 851-879. Springer, Heidelberg (1993)

8. Hughes, C., Pai, V., Ranganathan, P., Adve, S.: Rsim: simulating shared-memory multi-
processors with ILP processors. Computer 35(2), 40-49 (2002)

9. ISO/IEC 13407: Human-Centered Design Processes for Interactive Systems.1999:
ISO/IEC 13407: 1999 (E) (1999)

10. ISO/IEC 9241-11: Ergonomic requirements for office work with visual display terminals
(VDTs). Part 11 - Guidelines for Specifying and Measuring Usability.1998: ISO/IEC
9241-11: 1998 (E) (1998)

11. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experimen-
tal Design, Measurement, Simulation and Modeling, p. 685. John Wiley & Sons, Inc, New
York (1991)

188

12.

13.

14.

20.

21.
22.

23.

24.

K. Liukkunen et al.

Jokela, T.: Making User-Centred Design Common Sense: Striving for an Unambiguous
and Communicative UCD Process Model. In: ACM International Conference Proceeding
Series, vol. 31, pp. 19-26 (2002)

Kerttula, M.: Virtual Design. A Framework for the Development of Personal Electronic
Products. VTT, Finland (2006)

Kiljander, H.: User Interface Prototyping of Handportable Communication Products. Aca-
demic Licentiate Thesis, p. 122. Helsinki University of Technology, Espoo, Finland
(1997)

. Lahiri, K., Raghunathan, A., Dey, S.: Performance Analysis of Systems with Multi-

Channel Communication Architectures. In: Proceedings of 13th International Conference
on VLSI Design, Calcutta, India, January 3-7, 2000, pp. 530-537. IEEE Computer Society
Press, Los Alamitos (2000)

. Mayhew, D.J.: The Usability Engineering Lifecycle, a practitioner’s handbook for user in-

terface design, 4th edn. Morgan Kaufmann Publishers, Inc., San Francisco (1999)

. Nielsen, J.: Why You Only Need to Test With 5 Users. [Web-document] (2000) [Refer-

enced 1.6.2007], http://www.useit.com/alertbox/20000319.html

. Tseng, M.M., Jianxin, J., Chuan-Jun, S.: A framework of virtual design for product cus-

tomization. Emerging Technologies and Factory Automation Proceedings 9(12), 7-14
(1997)

. Ulrich, K.T., Eppinger, S.D.: Product Design and Development. McGraw-Hill, Inc., New

York (1995)

Zivojnovi¢, V., Meyr, H.: Compiled SW/HW Cosimulation. In: Proceedings of 33rd De-
sign Automation Conference, Las Vegas, NV, USA, June 3-7, 1996, pp. 690-695. ACM
Press, New York (1996)

See for example: http://www.systemc.org

Kreku, J., Kauppi, T., Soininen, J.-P.: Evaluation of platform architecture performance us-
ing abstract instruction-level workload models. In: International Symposium on System-
on-Chip, Tampere, Finland (2004)

Eteldperd, M., Vatjus-Anttila, J., Soininen, J.-P.: Architecture Exploration of 3D Video
Recorder Using Virtual Platform Models. In: 10th EUROMICRO CONFERENCE on
DIGITAL SYSTEM DESIGN Architectures, Methods and Tools (2007)

See: http://www.systemc.org

Comparing Assessment Methodologies for Free/Open
Source Software: OpenBRR and QSOS™

Jean-Christophe Deprez and Simon Alexandre

Centre d’Excellence en Technologies de 1’ Information et de la Communication (CETIC),
Charleroi, Belgium
{Jean-Christophe.Deprez, Simon.Alexandre}@cetic.be

Abstract. Many organizations using Free/Open Source Software (FIOSS) are
dealing with the major problem of selecting the most appropriate software
product corresponding to their needs. Most of theses companies are currently
selecting FIOSS projects using ad-hoc techniques. However, in the last couple
of years, two methodologies for assessing FIOSS project have emerge, namely
QSOS and OpenBRR. The objective of this work is, through a detailed and rig-
orous assessment methodology comparison, to allow companies to have a better
understanding of these two assessment methodologies content and limitation.
This work compares both methodologies on several aspects, among others, their
overall approaches, their scoring procedures and their evaluation criteria.

Keywords: assessment methodologies, open source, free software.

1 Introduction

Many organizations have started to integrate Free (/ibre) Open-Source Software
(FIOSS") in their products, systems and infrastructures. Furthermore, software solu-
tions that rely on FIOSS components become more frequently available to customers.
In turn, organizations want assurance regarding the quality of FIOSS projects before
integrating them in their solutions.

Having identified this need, several methodologies help select appropriate FIOSS
projects have surfaced in the past couple of years. Two prominent methodologies are
the Qualification and Selection Open Source (QSOS) backed by Atos Origin and
Open Business Readiness Rating (OpenBRR) created by Carnegie Mellon West and
Intel. Although fairly light weight, these two methodologies help shed lights on the
seriousness of FIOSS projects.

The contribution of this paper is to compare the two assessment methodologies,
OpenBRR and QSOS. In the end, it helps identify which of the two methodologies
better fits one’s context. Our comparison is performed based on the description of the
methodologies and not on their empirical application. Based on our findings, our fu-
ture work will aim at creating a new methodology, namely, the QUALOSS

" This work is partly funded by QUALOSS (#33547), a research project funded under the FP6
programme of the European Commission.
! FIOSS stands for Free libre Open Source Software.

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 189! r 008.
© Springer-Verlag Berlin Heidelberg 2008

190 J.-C. Deprez and S. Alexandre

methodology that takes advantages of the strong points of QSOS and OpenBRR while
eliminating the weaknesses of both.

The rest of this paper is structured as follows. Section 2 presents the two methodolo-
gies. Section 3 introduces our comparison approach. Section 4 compares OpenBRR
and QSOS. Section 5 reviews the advantages and weaknesses of both methodologies.
Section 6 discusses the related work and Section 7 concludes with our future work.

2 Description of QSOS and OpenBRR

Both assessment methodologies help their users reach a similar goal, that is, select
among a list of similar FIOSS projects for the one best suited to their context. The two
following subsections present QSOS and OpenBRR respectively.

2.1 QSOS

This section presents version 1.6 of QSOS, which appears in [1]. The top part of the
QSOS methodologies consists of the following series of steps:

e Start from a list of FIOSS projects whose products seems to fit with the overall
requirements (set by the product user or product integrator)

e Evaluate each FIOSS project along the list of evaluation criteria given by QSOS.
This step assigns an absolute score to each evaluation criterion.

e The evaluator can adjust the importance of each criterion based on the particular
context. This is done by assigning a weight and threshold to each criterion.

e The scores obtained using 2 are weighted based on 3 so as to get the relative
score corresponding to the given context. The outcome of this step is a ranking
that determines the qualification or elimination FIOSS projects.

e QSOS then suggests trying the top FIOSS projects that meet qualification criteria.
This number can vary between 2-5 FIOSS products depending on the criticality
of the decision.

QSOS also provides a tree-hierarchy of evaluation criteria shown in Figure 1 along
with a procedure to score each leaf criterion. QSOS splits its evaluation template in
two sections: a generic section and a specific section. The generic section includes
criteria that apply to all software products while the criteria of the specific section
include an expected list the functionality and therefore varies according to software
product family such as groupware, cms, database, etc. Due to space consideration, we
only present evaluation criteria of the generic section. It is worth emphasizing that the
templates listing functionality of software product families is specific to the web ver-
sion of QSOS (at www.gsos.org) but it is not described in [1].

Figure 1 shows the tree hierarchy of evaluation criteria in QSOS's generic section.
We note that this hierarchy comes from the paper version (.pdf) of QSOS 1.6 and not
the web version of the template, which slightly differs. In particular, the web version
lists the item “Independence of development” under the “Industrialized Solution”
category whereas the paper version includes it “Intrinsic Durability”. Second, the web
version elevated “Exploitability” as a top-level category where as the paper version
includes it as a sub-category of “Industrialized Solution”. Finally, the paper version

Comparing Assessment Methodologies 191

Age

Stability

History / known problems

Fork Probability

Popularity

Adoption

References

Contributing Community

Intrinsic Durability

Books

Size of Leading Team

Development Leadership

Management Style

Turnover/ Dev. identification

Activity

Activity on Bugs

Activity on Functionality

Independence of dev.

Activity on Releases

Training

Services

Support

Consulting

Industrialized Solution

Documentation '—{

Availability / Recentness

Quality Assurance

QA Process

PM and QA Tools

Sources

Packaging

Diversity of distribution

Exploitability

Ease of Use, Ergonomics

Administration / Monitoring

Modularity

Technical Adaptability

Code Modification

By-Products

Code Extension

J Roadmap [

Permissiveness

License 4{

Protection against proprietary forks

Copyright owners 4{

Size of copyright owning team

Strategy

urce code modiﬁcalioﬂ—{

Level of professionalism

Sponsor

trategical independenc:

Fig. 1. Generic criteria from QSOS version 1.6

contains a section on “Service Providing” that list a few criteria to evaluate the ability
of a service provider to help with the integration of a FIOSS component.

Along the hierarchy of Figure 1, QSOS gives a procedure to score each leaf crite-

ria. A valid score is 0, 1 or 2. Table 1 shows a sample of the scoring procedure for
three leaf criteria. We point to [1] for the description of the whole scoring procedure.

2.2 OpenBRR

OpenBRR [2] asks to follow these high level steps:

1.

Perform a pre-screening (Quick Assessment). This step starts with a long list of
FIOSS projects whose software product fits the overall requirement and ends
with a few viable candidates for the final selection. This initial filtering is based
on the criticality of the product or system that will integrate the FIOSS compo-
nent as well as a handful of viability criteria determined based on the context.

192 J.-C. Deprez and S. Alexandre

Table 1. QSOS scoring procedure for three leaf criteria

Criteria Score =0 Score =1 Score =2
Age Less than 3 month old [Between 3 month old |More than 3 year old
and 3 year old
Training |No offer of training Offer exists butis re- [Rich offer provided by
identified stricted geographically [several contractors, in
and to one language or [several languages and
is provided by a single [split into modules of
contractor gradual levels
Source Code[Not very readable code [Readable but not really [Readable and com-
Quality or of poor quality, in- (commented in details |mented code imple-

coherence in coding menting classic design

styles patterns with a coherent
and applied coding pol-
icy

2. Tailor the evaluation template (Target Usage Assessment): This step consists of
reviewing and selecting the appropriate evaluation criteria from the hierarchy
proposed by OpenBRR. One may also decide to add new criteria and procedure
to score these criteria. The outcome is a customized version of the evaluation
template fit to the context, which is usually defined by an organization, the kind
of FIOSS software product to select, the criticality of the product in which the
FIOSS component will be integrated, etc.

3. Data Collection and Processing: This step starts from the list of the FIOSS pro-
jects that passed the viability checks of point 1 above. It consists in collecting the
raw data needed to score the evaluation criteria selected during point 2 and to ap-
ply the weight factor associated to each metrics determine during point 2 as well.

4. Data Translation: Aggregate the relative metric scores so as to obtain the score of
each category. Each category score is then adjusted based on its weight factor de-
termined during point 2. The final business readiness rating can then be published.

OpenBRR proposes a set of evaluation criteria for points 1 and 2 in our above list.
In relation to point 1, the quick assessment, OpenBRR suggests looking at the follow-
ing 8 issues and eventually adapting the list to better fit a given context:

(1) licensing, (2) standard compliance, (3) referenceable adopters, (4) availability
of support, (5) implementation language(s), (6) third party reviews, (7) books, and
(8) review by industry analysts such as Gartner.

For these criteria, OpenBRR let its user determine the scoring procedure and even-
tually what is a make or break situation. For example, if an organization only consid-
ers a FIOSS project when it is published under a license compatible with BSD then no
use wasting time evaluating FIOSS components with a stronger copyleft bend.

Concerning point 2 above, the target usage assessment, OpenBRR proposes the
template of evaluation criteria shown in Figure 2. In addition, OpenBRR gives a scor-
ing procedure to evaluate the leaves of Figure 2. The procedure assigns a score be-
tween 1 and 5 where 1 is unacceptable and 5 is excellent. Due to space consideration,
we only describe the procedure for three criteria in Table 2.

Usability

Quality

Security

Performance

Scalability

Architecture

Support

Adoption

Community

g

by

Comparing Assessment Methodologies

193

End user Ul experience

Time for setup pre-requisites for installing open source software

Time for vanilla installation/configuration

Number of minor releases in past 12 months

Number of point/patch releases in past 12 months

Number of open bugs for the last 6 months

umber of bugs fixed in last 6 months (compared to # of bugs opened)

Number of P1/critical bugs opened

Average bug age for P1 in last 6 months

Number of security vulnerabilities in the last 6
months that are moderately to extremely critical

Number of security vulnerabilities still open (unpatched)

Is there a dedicated information (web page, wiki, etc) for security?

Performance Testing and Benchmark Reports available

Performance Tuning & Configuration

Reference deployment

Designed for scalability

Is there any 3rd party Plug-ins

Public API/ External Service

Enable/disable features through configuration

Average volume of general mailing list in the last 6 months

Quality of professional support

of various

User contribution framework

How many books does amazon.com gives for Power Search query:

ster and

ent name’

Reference deployment

Average volume of general mailing list in the last 6 months

Number of unique code contributor in the last 6 months

Project Driver

Difficulty to enter the core developer team

Fig. 2. OpenBRR hierarchy of evaluation criteria

Table 2. OpenBRR scoring procedure for three leaf criteria

Criteria 1 2 3 4 5

Time for vanilla|>4hours |1-4 30min to 10-30 min-|< 10 minutes

installation hours |1 hours lutes
User Contribu- [Users cannot |Users are al- [Users are allowed to con-
tion Framework|contribute lowed to con- tribute and contribution are

tribute edited / filtered by experts

Reference De- No Yes Yes, with publication of

ployment user’s size

3 Comparison Approach

Our comparison approaches is divided in several comparison exercises:

1. Comparison of the overall steps of the methodologies.
2. Analysis of the scoring procedures.

194 J.-C. Deprez and S. Alexandre

3. Coverage analysis of the evaluation criteria and adequacy of the hierarchies of
criteria

The comparison of the overall steps first highlights the similarities and differences,
including those related to how each methodology is intended to be applied in the field.
The analysis of the scoring procedures addresses the following three questions.

1. Is the range of scores adequate?

2. Is the scoring procedure of each evaluation criteria unambiguous?

3. Is the raw data required by the procedure in order to compute its result
likely to be available in the field?

The coverage analysis compares the evaluation criteria between QSOS and
OpenBRR in order to determine which are similar vs. those only present in only one
of the methodologies. In addition, we also quickly assess the accuracy of the termi-
nology used to express criteria and categories of criteria in each methodology.

4 Comparing QSOS, OpenBRR

In this section, we compare QSOS and OpenBRR based on the comparison approach
introduced in Section 3.

4.1 Comparison of the Overall Approaches

This section compares the overall approaches by highlighting first, their similarities
and second, their differences.
Both methodologies are similar in the following aspects:

e Each methodology proposes a predefined set of criteria for evaluating FIOSS
projects. The set of criteria is categorized into a tree hierarchy of 2 levels for
OpenBRR or of 3 levels for QSOS.

e The evaluation consists of scoring the various criteria based on a standard scoring
procedure. During the evaluation of a given FIOSS project, this step results in as-
signing score to each criterion. We refer to this score as absolute.

e Users can adjust the importance of each criterion according to their context by
varying the weight assigned to each criterion. In particular, during an evaluation,
the absolute scores are weighted based on their importance to the current evalua-
tion context. We refer to the weighted absolute scores as relative scores.

e A decision can be taken based on the resulting relative scores.

However, the 2 methodologies do differ in the order in which they apply the points
above. The current order reflects that of QSOS while OpenBRR suggests inverting
point 2 and 3 so that users first select criteria relevant to their context and therefore
avoid scoring useless ones. In addition, OpenBRR allows the creation of new criteria
as well as the tailoring of the scoring procedure for criteria.

These variations result from the difference in how each methodology is to be ap-
plied in the field.

QSOS believes that the absolute scores obtained when applying the scoring proce-
dures are universal. Hence, the scoring procedure for a particular version of a FIOSS

Comparing Assessment Methodologies 195

project only takes place once. Others can then comment on the evaluation if a score
seems unfair. However, once it is agreed on, the absolute scores of the given version
of a FIOSS projects are universal and eventually made available to everyone. The
only way to adjust the final outcome of an evaluation is to adapt the weights assigned
to evaluation criteria.

OpenBRR on the other hand is a standard methodology but it assumes that every
user instantiates it in a slight different way. Hence, the evaluation of a particular
FIOSS project would result in slightly different scores depending on the context in
which the evaluation is performed. The result of an evaluation is therefore not meant
for reuse, even the absolute scores obtained for the evaluation criteria. In the case of
OpenBRR, this seems a wise decision since the user is free to eliminate and add
evaluation criteria as well as to modify and create new scoring procedures for new or
existing criteria. In conclusion, OpenBRR provides a standard methodology that is
expected to be tailored in practice.

As a result of the difference between the application and reuse strategies of QSOS
and OpenBRR, it is easy to find a growing repository of FIOSS product evaluations
for QSOS but not for OpenBRR.

The important question is: “Can a methodology be universal, at least partially such
as QSOS, so that intermediate score (such as the absolute score of QSOS) can be re-
used and shared?”

First, QSOS can apply such a strategy because its scoring procedure only allows a
range of three scores 0, 1, and 2. Hence, the variance of scores between different
evaluator is reduced. We delay further discussion on the range of scoring procedures
for our next comparison exercise in the next subsection. Second, we believe that pro-
viding a one size-fits-all scoring procedure is not adequate for every criterion. For
example, QSOS attributes a score based on the number of books published. Some
FIOSS products address niche markets and the publication of books is very unlikely
however, various technical articles in professional magazine may very well be of in-
terest and a good substitution to the book published criterion. Although QSOS could
allow such a tailoring in the scoring procedure, we have not seen it in practice, at least
in evaluation sheet accessible via http://www.qsos.org/sheets/index.html.

Finally, it is worth noting that QSOS defines the scope of an evaluation based on
the particular version of a FIOSS product while this information is not clear for
OpenBRR. Hence, we may suppose that OpenBRR intend to leave that issue open so
that it is possible for one to apply decide if the scope is a whole project or just a spe-
cific version of a particular FIOSS product. Leaving this decision to the users raises
the following concern: When applying scoring procedures it is very important to
clearly define the scope of the dataset so not to include data related to other versions.
In some cases, this is not always easy or feasible. For example, the number of post on
forums or the number of book published may not be about the particular version being
evaluated. Hence, this may make the scoring procedure ambiguous.

4.2 Comparison of the Scoring Procedures

Both methodologies provide a scoring procedure in order to transform raw data into a
score assigned to evaluation criteria. Table 1 and 2 respectively show a sample of the
scoring procedures of QSOS and OpenBRR. Below we compare the complete scoring

196 J.-C. Deprez and S. Alexandre

procedures based on the 3 checks mention in section 3, in particular, the score range,
the scoring procedure clarity/ambiguity, and the data availability.

Score Ranges

QSOS proposes a procedure whose result assigns a discreet score between 0 and 2,
that is, 0, 1, or 2 to each evaluation criteria. Unfortunately, this range seems too re-
strictive to appreciate fully the information, at least, for certain criteria. We feel that a
minimum of 4 levels would be required. With just 3 levels, the middle score may have
true mid position but it may embed a positive or negative tilt.

OpenBRR has a procedure that assigns a discreet score between 1 and 5. In this
context, a 5-level score is adequate. It is clear that 1 and 2 are negative while 4 and 5
are positive. Allowing a neutral score of 3 is also acceptable. However, we observe
that in 14 of the 28 evaluation criteria, scoring rules do not use all 5 levels; in 13
cases, 3 of the 5 levels are used, in particular, 1, 3, and 5 skipping 2 and 4 and in the
remaining case, 4 levels are used: 1, 3, 4, and 5. In turn, for more than half of the
evaluation criteria, the procedure is no better than the 3 levels offered by QSOS.
Clarity and ambiguity of scoring procedures
Both scoring procedures lack clarity in certain of their scoring rules. We determined
that the scoring rule of a criterion was ambiguous if the wording was unclear or if it
could be interpreted differently by different people or in different contexts or also, if
we identified a gap in the description of the scoring procedure, for example, the de-
scription given is clear for each score but there are many real-life situations not
accounted for where it would be hard to settle on an actual score.

Our analysis finds the following:

QSOS contains a total of 41 evaluation criteria and 22 of them are found to be am-
biguous. The 22 scoring rules we found ambiguous are for the following criteria: sta-
bility, fork probability, popularity, references, contributing community, management
style, activity on bugs, on functionality, on release, training, support, consulting,
documentation availability, PM and QA tools, ergonomics, admin/monitoring, modu-
larity, code modification, source code modification — level of professionalism, source
code quality, intrinsic complexity, and technical documentation.

The scoring procedure for source code quality is given in Table 1.

OpenBRR has 28 evaluation criteria. In most cases, evaluation criteria have much
more specific meanings hence this leads to scoring rules that are much more precise.
Nonetheless, we found 7 ambiguous cases: end-user Ul experience, is there a dedi-
cated information for security?, performance testing and benchmarks, performance
tuning and configuration, design for scalability, quality of professional support, and
difficulty to enter the core development team.

As already mentioned in Section 4.1, beside clarity, we can also question scoring
rules on their range of applicability to the world of software products and compo-
nents. However, we must be careful on the value of this comparison. OpenBRR rec-
ognizes that its rules may not be applicable to all situations hence allows tailoring by
the evaluator. On the other hand, QSOS aims at providing scoring rules that compute
universal scores hence it is more important for QSOS to propose generic rules. Inci-
dentally, ambiguous rules usually seem more generic and it is thus the likely reason
why more than half of QSOS’s rules were found ambiguous. Furthermore, QSOS is
capable to achieve a certain level of universality in its rules because its scores only
vary between three discreet outcomes. Having a fourth or fifth outcome would make

Comparing Assessment Methodologies 197

it much harder for rules to stay generic. Unfortunately, as we pointed out earlier, a
three point scale is likely not enough to truly help in good decision making.
Likelihood of data availability

In addition to the clarity of a rule, it is also important that the data requested be avail-
able otherwise the lack of data also put the applicability of the methodology at stake.
When determining that some data is unavailable, it may mean that the data will be
really hard to find but it can also suggest that the data is not readily available. That is,
the raw data is not available and obtaining it would require posting a question on a
forum hence would depend on the friendliness of community members and whether
the members who answered actually know the correct data.

For QSOS, we found that 5 criteria have scoring rules requesting data unlikely to
be available, in particular for the following criteria, history/known problem, fork
probability, management style, developer identification/turnover, independence of
developments.

For OpenBRR, we determined that 9 criteria asked for data that would likely be
unavailable: time to setup pre-requisites, time for vanilla installation/configuration,
number of security vulnerabilities in last 6 months, number of security vulnerabilities
still open, performance testing and benchmarks, performance tuning and configura-
tion, reference deployment, designed for scalability, difficulty to enter the develop-
ment team.

4.3 Coverage of the Evaluation Criteria and Quality of Wording

This section first studies the similarities and differences among the evaluation criteria of
QSOS and OpenBRR. This exercise is done for the leaf criteria of both methodologies.
Second, we analyze the adequacy of the terminology used by both methodologies.

We start from the QSOS hierarchy and compare every leaf criteria with those of
OpenBRR, including the viability criteria used in the quick assessment set, that is, the
first pre-filtering step of OpenBRR.

The possible results of a pair wise comparison between two criteria A and B are:

e The two criteria are equivalent (A = B)

e One criterion is a more generic than the other (A < B (A is special case of
B) or A > B (A is a more general case of B)),

e The two criteria have some similarity relationship of a fuzzy nature (A ~
B), for example, A may influence B or vice versa.

e The two characteristics have nothing in common

We must emphasize that our coverage analysis actually does not compare the crite-
ria based on the semantic of their wording but rather compares them based on the se-
mantic of their scoring rules.

In the comparison table shown in Table 3, the left column enumerate all QSOS
characteristics and then, for every leaf characteristic of QSOS, we indicate whether
OpenBRR has corresponding characteristic with one of the relationship signs identi-
fied above (=, <, >, or ~). This is shown by the relationship sign preceding the char-
acteristics in the OpenBRR columns.

198

J.-C. Deprez and S. Alexandre

Table 3. Coverage analysis between QSOS and OpenBRR leaf criteria

QSOS OpenBRR
[ntrinsic Maturity Age INONE
Durability - - -
Stability ~ all Quality sub-criteria
History, known problems (= |[NONE
IManagement Ability)
[Fork probability INONE
IAdoption [Popularity = Referenceable Adopters

(from Quick Assessment)

References (= level of mission
criticality of references)

INONE

Contributing community (=
volume and diversity of com-
munity contribution)

> Community .. Average
volume on general mailing
list in the last 6 months

> Community .. Number of
unique code contributor in the
last 6 months

Books (number of books pub-
lished about products)

= Adoption .. How many
Books ...

Development lea-

[eading Team (= Size of lead-

NONE

turnover

dership ing team)
Management style (= level of |~ Professionalism .. Project
democracy of management) |Driver
~ Professionalism .. Diffi-
culty to enter core developer
team
Activity Developers identification, ~ Professionalism .. Diffi-

culty to enter core developer
team

Activity on bugs

= Quality .. Number of open
bugs, .. number of fixed bugs,
and ..average bug age in the
last 6 months + .. number of
P1/critical bugs opened

Activity on functionalities

NONE

Comparing Assessment Methodologies

Table 3. (continued)

199

QSOS

OpenBRR

Activity on releases

= Quality .. number of minor
releases and .. number of
point/patch releases in past 12|
months

[Independence of development

~ Professionalism .. Project
Driver

Industrialized

Solution

Services

Training (Diversity in geo-
graphical, cultural and gradual
aspects)

INONE

Support (Level of commitment|
assigned to support)

~ Support .. Quality of pro-
fessional support

Consulting (Diversity in geo-
eraphical and cultural aspects)

INONE

[Documentation (Availability and recency of

~ Documentation .. Existence

documentation) of various kinds of documen-
tation
QualityAssurance [Quality Assurance Process ~ Performance testing and
benchmark reports available
PM and QA Tools INONE
IPackaging Sources INONE
*nix packaging INONE

Exploitability

Ease of use, ergonomics

> Usability .. time for vanilla
installation/configuration

Administration/Monitoring
(Availability of functionality
for administration and moni-
toring)

NONE

Technical
adaptability

Modularity (Software modularity)

~ Scalability .. Design for
scalability

~ Architecture .. Are they any
third party plug-ins?

~ Architecture .. Public API/
[External Service

200

J.-C. Deprez and S. Alexandre

Table 3. (continued)

QSOS

OpenBRR

[By-Products

(Code modification (Ease of
build-ability)

INONE

Code extension (Extensibility
or plug-ability)

= Architecture .. Are they any
third party plug-ins? AND
Architecture .. Public API/
[External Service

design pattern)

Strategy License Permissiveness ~ Licensing/Legal (in the
quick assessment)
[Protection against proprietary |~ Licensing/Legal (in the
forks quick assessment)
Copyright owners (Size of copyright owning INONE
team)
Modification of source code (Level of profession- |~ Professionalism .. Diffi-
alism of procedure for proposition of modifica- [culty to enter core developer
tion.) team
Roadmap (availability + precision of the roadmap){[NONE
Sponsor (Driving force behind product) = Professionalism .. Project
Driver
Strategical independence ~ Professionalism .. Project
Driver
Services Maintainability Quality of Source Code (Vol- |~ Scalability .. design for
Providing ume of comment and use of |scalability

~ Performance .. Tuning &
Configuration (on user's end)

~ Architecture .. Are there
any third party plug-ins?

~ Architecture .. public API/
[External service

[Technological dispersion
(number of prog.lang. used)

~ Implementation language
(in the quick assessment)

[ntrinsic complexity (Com-
plexity of algorithms)

INONE

[Technical documentation (De-
sign and arch doc + others)

~ Documentation .. Existence
of various kinds of documen-
tation

Comparing Assessment Methodologies 201

Table 3. (continued)

QSOS OpenBRR

Code Mastery Direct availability (Number of |~ Support .. quality of profes-
experts available within a sionalism support
consulting company)

[ndirect availability (Number |~ Support .. quality of profes-
of experts available in partner [sionalism support
companies of serv. prov.)

From Table 3, we observe that 16 QSOS criteria are not covered by OpenBRR.
Conversely, we can also derive the OpenBRR criteria not covered by QSOS using
Table 3 and Figure 2. In particular, the 7 following criteria are not covered by QSOS:
end user Ul experience, time for setup pre-requisites for installing open source soft-
ware, all 3 criteria under security, reference deployment, user contribution frame-
work. In addition, there are also 5 criteria from the quick assessment step of Open
BRR not covered by QSOS: standard compliance, availability of a supporting or sta-
ble organization, implementation languages, third party reviews and industry analyst.

Beside our coverage analysis, we also add a few comments regarding the wording
used by both methodologies for their criteria as well as for the higher-level nodes in
their tree hierarchies.

We find that QSOS uses a very appropriate nomenclature for the higher level
nodes in its tree hierarchies. However, the leaf criteria are usually summarized in very
imprecise words. This forces the investigation of the scoring rules to understand accu-
rately the meaning of criteria. For example, the criterion References under Intrinsic
Durability .. Adoption is rather unclear. Once reading the scoring rules, we find that it
measures the number of cases where users use a FIOSS product in mission critical
solutions. Hence, the wording mission criticality of references would be more accu-
rate without being too lengthy. This kind of re-wording could take place for several
QSOS criteria.

For OpenBRR, this is the exact opposite. The wording of metrics is accurate and ex-
tensive although sometimes quite lengthy. Many criteria could therefore be re-worded in
shorter phrases without loosing clarity. Concerning, the top node in the tree hierarchy,
we find that the terms used are often very broad and inaccurate. For example, Quality is
much too broad and a term such as stability or reliability would be more appropriate.

5 Advantages and Disadvantages of QSOS and OpenBRR

This section reviews the advantage and disadvantages of both methodologies. Besides
helping decide which methodology to use, this comparison exercise will be our start-
ing point to create a new methodology that preserves most advantages of both meth-
odologies while getting rid of the disadvantages.

202 J.-C. Deprez and S. Alexandre

Advantages Disadvantages

QSOS eOpen repository of evaluatione Ambiguous scoring rules for more
scores for various FIOSS projects| than half of the criteria
(this pushes evaluators to collabo-eScoring procedure with 3-level
rate on evaluation and to facilitate| scale may make decision making
cross validation) harder

e Extensive list of criteria e Universality of scoring rules is not

e [nteresting innovating nomencla-| possible for many criteria
ture for the tree hierarchy

©QSOS methodology is versioned|
and evaluation mention the QSOS
version used

OpenBRR |e Allows for tailoring hence bettereNo open repository of evaluation|

fit one’s evaluation context (due to possible tailoring)

e Clearer scoring procedure withje Does not exploit the 5-level scales
fewer ambiguities for more than half of the criteria

e 5-level scoring scale for about halfle Terminology is broad and impre-
of the criteria cise for the top nodes in the hier-|

e Ask evaluator to perform a quick| achy
assessment step to reduce theleOpenBRR does not seem to be|
evaluation effort versioned. However, this may be|
left to the evaluator

In addition, we find that both methodologies have a particular important weakness.
They do not require evaluators to capture the location of the raw data used to obtain
the evaluation scores. This makes it hard to refute or argue the correctness of an
evaluation. However, we did find that in practice, several QSOS evaluation sheets list
URL’s where raw data used for evaluation are mentioned.

6 Related Work

Prior to QSOS [1] and OpenBRR [2], other FIOSS evaluation methodologies were
proposed, notably, two of them called Open Source Maturity Model respectively cre-
ated by Golden from Navica [3] and by Frans-Willem Duijnhouwer from CapGemini
[4]. In addition David Wheeler also proposed a very high level methodology to
quickly evaluate FIOSS projects. These three efforts were used as a stepping stone by
OpenBRR. On the other hand, OpenBRR and QSOS were created in parallel and
to the best of our knowledge we are the first effort comparing FIOSS assessment
methodologies.

An orthogonal body of research studies whether FIOSS development allows reach-
ing software component of higher quality; an example of such efforts is found in [5].
These research endeavors have the objectives to determine how FIOSS development
differs from the traditional methods used in the proprietary world and also to identify
whether these differences impact the quality of code and of software products. On the

Comparing Assessment Methodologies 203

other hand, the evaluation methodologies compared in this work do not argue that
FIOSS is better than proprietary. Rather, they give a mean to evaluate and to compare
among several FIOSS alternatives without taking a stand on whether FIOSS or pro-
prietary yields better quality.

On a more general note, the European Commission is currently funding several re-
search projects related to open source and quality, namely, QUALOSS [6], FLOSS-
METRICS [7], SQO-OSS [8], and QUALIPSO [9]. The first project listed is led by
the authors of this article.

7 Future Work

Based on the comparison exercises presented in this paper, our future goal is to derive
a new methodology for evaluating FIOSS projects. As OpenBRR learned from previ-
ous works, the QUALOSS project aims to bring FIOSS assessment to a higher level
of objectivity, completeness, and clarity.

The goal is to create a methodology applicable at different level of thoroughness. A
first light level will closely resemble QSOS and OpenBRR in principle with most of
the advantages and without the shortcomings.

References

1. Method for Qualification and Selection of Open Source software (QSOS) version 1.6 ©
Atos Origin (April 2006), http://gsos.org/

2. Business Readiness Rating for Open Source © OpenBRR.org, BRR 2005 — Request fro
Comment 1 (2005), http://www.openbrr.org

3. Golden, B.: Open Source Maturity Model © Navica, http://www.navicasoft.com/
pages/osmmoverview.htm

4. Widdows, C., Duijnhouwer, F.-W.: Open Source Maturity Model © CapGemini (August
2003), http://www.SeriouslyOpen.org

5. Aberdour, M.: Achieving Quality in Open-Source Software. IEEE Software 24(1), 58-64

(2007)

QUALOSS (2008), http://www.gqualoss.org/

FlossMETRICS (2008), http://flossmetrics.org/

SQO-0OSS (2008), http: //www.sgo-oss.eu/

QUALIPSO (2008), http: //www.qualipso.org/

O ® o

Predicting Software Fault Proneness
Model Using Neural Network

Yogesh Singh, Arvinder Kaur, and Ruchika Malhotra

University School of Information Technology, Guru Gobind Singh Indraprastha University,
Kashmere Gate, Delhi-110006, India
ys66@rediffmail.com, arvinderkaurtakkar@yahoo.com,
ruchikamalhotra2004@yahoo.com

Abstract. Importance of construction of models for predicting software quality
attributes is increasing leading to usage of artificial intelligence techniques such
as Artificial Neural Network (ANN). The goal of this paper is to empirically
compare traditional strategies such as Logistic Regression (LR) and ANN to as-
sess software quality. The study used data collected from public domain NASA
data set. We find the effect of software metrics on fault proneness. The fault
proneness models were predicted using LR regression and ANN methods. The
performance of the two methods was compared by Receiver Operating Charac-
teristic (ROC) analysis. The areas under the ROC curves are 0.78 and 0.745 for
the LR and ANN model, respectively. The predicted model shows that software
metrics are related to fault proneness. The models predict faulty classes with
more than 70 percent accuracy. The study showed that ANN method can also
be used in constructing software quality models and more similar studies should
further investigate the issue. Based on these results, it is reasonable to claim that
such a model could help for planning and executing testing by focusing re-
sources on fault-prone parts of the design and code.

Keywords: empirical validation, metrics, software quality, artificial neural
network.

1 Introduction

Software metrics [2, 6, 7, 11, 12, 16, 20, 22, 27-29, 30] provide ways to evaluate the
quality of software and their use in earlier phases of software development can help
organizations in assessing large software development quickly, at a low cost [1].
There have been empirical studies evaluating the impact of software metrics on soft-
ware quality and constructing models that utilize them in predicting quality attributes
of the system, such as [1, 4, 6, 8-10, 13-15, 19, 21-22, 24-25, 28-29, 31-32, 35-36,
38]. Most of these prediction models are built using statistical techniques. ANN have
seen an explosion of interest over the years, and are being successfully applied across
a range of problem domains, in areas as diverse as finance, medicine, engineering,
geology and physics. Indeed, anywhere that there are problems of prediction, classifi-
cation or control, neural networks are being introduced. ANN can be used as a predic-
tive model because it is very sophisticated modeling technique capable of modeling

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 204 2008.
© Springer-Verlag Berlin Heidelberg 2008

Predicting Software Fault Proneness Model Using Neural Network 205

complex functions. In [25], Khoshgoftaar et al. presented a case study of real time
avionics software to predict the testability of each module from static measurements
of source code. They found that ANN is a promising technique for building predictive
models, because they are able to model nonlinear relationships.

Thus LR and ANN approaches are inherently different, raising the question
whether one approach has better performance than the other. To investigate this ques-
tion, the performance of LR and ANN methods was compared in the study for
predicting software fault proneness. The public domain NASA data set is used in
this study to empirically evaluate the relationship of software metrics with fault
proneness.

The study is divided into following parts:

(1) Software fault proneness model is constructed using multivariate analy-
sis to predict fault proneness of classes using LR and ANN technique.
(i1) The performance of the models is evaluated using ROC analysis.

The paper is organized as follows: Section 2 summarizes the related work. Section 3
summarizes the metrics studied and describes sources from which data is collected.
Section 4 presents the research methodology followed in this paper. The results of the
study are given in section 5. The model is evaluated in section 6. Section 7 presents threats
to validity of the models and conclusions of the research are presented in section 8.

2 Related Work

Khoshgaftaar at al. [25] introduced the use of the neural networks as a tool for pre-
dicting software quality. In [25], they presented a large telecommunications system,
classifying modules as fault prone or not fault prone. They compared the ANN model
with a non-parametric discriminant model, and found the ANN model had better pre-
dictive accuracy.

Huang et al. [24] proposed a neuro-fuzzy constructive cost model for software cost
estimation. In another research, Cartwright [9] compared four prediction techniques:
regression, rule induction, nearest neighbor, and neural nets. Other recent studies
include using machine learning algorithms [31-32].

3 Research Background

In this section we present the summary of metrics studied in this paper (Section 3.1)
and empirical data collection (Section 3.2).

3.1 Dependent and Independent Variables

The binary dependent variable in our study is fault proneness. The goal of our study is
to empirically explore the relationship between software metrics and fault proneness
at the class level. Fault proneness is defined as the probability of fault detection in a
class. We use LR and ANN methods to predict probability of fault proneness. The
metrics are summarized in Table 1.

206 Y. Singh, A. Kaur, and R. Malhotra

Table 1. Metrics Studied

Metric Source
Cyclomatic complexity Mc Cabe [30]
Design complexity

Lines Of Code (LOC)

Branch count Miscellaneous
Call pairs
Maintenance severity
Edge count

Node count
Design density

3.2 Empirical Data Collection

This study makes use of public domain data set KC4 from the NASA Metrics Data
Program. The data in KC4 was collected from a ground-based subscription server
consisting of 25 KLOC of Perl source code [34]. This system consists of 126 classes
and provides method-level static metrics. At the method level, 21 software product
metrics based on product’s complexity, size and vocabulary are given.

The metrics having constant or missing values were removed from the analysis.
The metrics having less than 6 data points were also removed from the analysis.

4 Research Methodology

In this section the steps taken to analyze software metrics for classes taken for analy-
sis are described. The procedure used to analyze the data collected for each measure is
described in following stages (i) outlier analysis (ii) LR and ANN modeling (iii)
model evaluation.

4.1 Outlier Analysis

Data points, which are located in an empty part of the sample space, are called out-
liers. Outlier analysis is done to find data points that are over influential and removing
them is essential. Univariate and multivariate outliers were found in our study. To
identify multivariate outlier we calculate for each data point the Mahalanobis Jack-
knife distance. Details on outlier analysis can be found in [4, 23].

The input metrics were normalized using min-max normalization. Min-max nor-
malization performs a linear transformation on the original data [17]. Suppose that
min, and max, are the minimum and maximum values of an attribute A. It maps
value v of A to v’ in the range O to 1 using the formula:

v —min A

P ——— (1)

max A—min A

Predicting Software Fault Proneness Model Using Neural Network 207

4.2 Logistic Regression (LR) Modeling

LR is the most widely used technique [1] in literature used to predict dependent vari-
able from set of independent variables (a detailed description is given by ([1], [4] and
[23]). Binary LR is used to construct models when the dependent variable is binary as
in our case. In our study, the dependent variable is fault proneness and the independ-
ent variable is metrics. LR is of two types: (i) Univariate LR (ii) Multivariate LR.

Univariate LR is a statistical method that formulates a mathematical model depict-
ing relationship among dependent variable and each independent variable. This tech-
nique is used to test hypotheses.

Multivariate LR is used to construct a prediction model for the fault-proneness of
classes. In this method metrics are used in combination. The multivariate LR formula
can be defined as follows:

e(An+A]X]+ +AnXn)

prob(X1, X2,....Xn) = Aot ALX 1ot AnXir) @)

l1+e

where Xi,i =1,2,....... ,n, are the independent variables. Prob is the probability of de-
tecting faults in a class. Univariate logistic formula is a special case of multivariate
LR formula and can be defined as:

e(An+A|X)

prob(X1,X2,....Xn) = T GaeAX) 3)

I+e

In LR two stepwise selection methods forward selection and backward elimination
can be used [4]. In forward stepwise procedure, stepwise variable entry examines the
variables in the block at each step for entry. The backward elimination method in-
cludes all the independent variables in the model. Variables are deleted one at a time
from the model until a stopping a criterion is fulfilled. We have used backward elimi-
nation method using metrics selected in univariate analysis. Details of LR method can
be found in [1].

4.3 Artificial Neural Network Modeling

The network used in this work belongs to Multilayer Feed Forward networks and is
referred to as M-H-Q network with M source nodes, H nodes in hidden layer and Q
nodes in the output layer [36]. The input nodes are connected to every node of the
hidden layer but are not directly connected to the output node. Thus the network does
not have any lateral or shortcut connection.

ANN repetitively adjusts different weights so that the difference between desired
output from the network and actual output from ANN is minimized. The network
learns by finding a vector of connection weights that minimizes the sum of squared
errors on the training data set. The summary of ANN used in this study is shown in
Table 2. The ANN was trained by standard error back propagation algorithm at a
learning rate of 0.005, having the minimum square error as the training stopping
criterion.

208 Y. Singh, A. Kaur, and R. Malhotra

The input layer has one unit for each input variable. Each input value in the data set is
normalized within the interval [0, 1] using min-max normalization (see Section 4.1).
Given an n by m matrix of multivariate data, Principal component analysis [26] can reduce
the number of columns. We performed Principal component analysis on the input metrics
to produce domain metrics [36]. In our study n represents the number of classes for which
OO metrics have been collected. Using Principal component analysis, the n by m matrix is
reduced to n by p matrix (where p<m).

We use one hidden layer as what can be achieved in function approximation with
more than one hidden layer can also be achieved by one hidden layer [25]. There is
one unit in the output layer. The output unit with value greater than a threshold (cutoff
point) indicates the class selected by the network is fault prone otherwise it is not.

Table 2. ANN Summary
Architecture
Layers 3
Input Units 4
Hidden Units 5
Output Units 1
OTraining
Transfer Function Tansig
Algorithm Back Propagation
Training Function TrainBR

Due to the nonlinear nature of ANN, the statistical tests for parameter significance
that are used in LR cannot be applied here. Instead we used ROC analysis [18] to
heuristically assess the importance of input variables for the classification result.

4.4 Evaluating the Performance of the Model

The common measures to assess the quality of predicted model in our study are:

e The sensitivity and specificity of the model is calculated to predict the correct-
ness of the model. The percentage of classes correctly predicted to be fault
prone is known as sensitivity of the model. The percentage of non-occurrences
correctly predicted i.e. classes predicted not to be fault prone is called specificity
of the model.

e Yourdon’s J coefficient [14]: J coefficient is defined as:

J=s+f-1 4
The J coefficient can vary from —1 to +1 with plus 1 being perfect accuracy and —1
being the worst accuracy.

e Proportion correct is defined as: It is defined as ratio of number of classes cor-
rectly classified as fault prone (and not fault prone) and total number of classes.

Predicting Software Fault Proneness Model Using Neural Network 209

e Receiver Operating Characteristic (ROC) analysis: The LR model outputs and
the ANN outputs were evaluated for performance using ROC analysis. ROC
curve, which is defined as a plot of sensitivity on the y-coordinate versus its 1-
specificity on the x coordinate, is an effective method of evaluating the quality
or performance of predicted models [14]. While constructing ROC curves, one
selects many cutoff points between 0 and 1 in our case, and calculates sensitivity
and specificity at each cut off point. We report sensitivity and specificity of the
predicted models for threshold selected by ROC (mostly taken as classifier out-
put [14]).

Area Under the ROC Curve (AUC) is a combined measure of sensitivity and
specificity [14]. In order to compute the accuracy of the predicted models, we
use the area under ROC curve. The standard error for ROC curves was deter-
mined according to the method proposed by Hanley and McNeil [18].

e In order to predict accuracy of model it should be applied on different data sets.
We therefore performed k-cross validation of models [37]. The data set is ran-
domly divided into k subsets. Each time one of the k subsets is used as the test
set and the other k-1 subsets are used to form a training set. Therefore, we get
the fault proneness for all the k classes.

S Analysis Results

In this section we described the analyses performed to find the relationship between
software metrics and fault proneness of the classes. We first employed LR [23] method,
which is widely used to predict quality models. We then employed ANN technique to
predict the fault proneness of the classes. This method is rarely applied in this area.

5.1 Logistic Regression (LR) Analysis

In this subsection we find the relationship of independent variables (metrics) with
dependent variable (fault proneness). Table 3 shows the Coefficient (B) and Signifi-
cance (p-value) of metrics included in the model.

The model is applied to all system classes to compare predicted and actual fault
proneness (or non fault proneness). A threshold of Py=0.5 is chosen using ROC analysis
(Table 4). Classes with predicted probability above 0.5 are classified to be fault prone
and below this threshold are classified as to be not fault prone. This threshold was se-
lected to balance the number of actual and predicted faults. Out of 61 classes actually
fault prone, 47 classes were predicted to be fault prone. The sensitivity of the model is
77%. Similarly 47 out of 64 classes were predicted not to be fault prone. Thus specific-
ity of the model is 73.4%. This shows that the model correctness is good.

Table 3. Multivariate Analysis for LR Model

Variable Call pairs Design Edge Constant
density count

B 0.011 0.014 0.239 0.554

p-value 0.185 -2.350 0.009 0.531

210 Y. Singh, A. Kaur, and R. Malhotra

Table 4. Predicted Correctness of LR Model

Predicted
Percent
Observed 0.00 1.00 Correct
0.00 47 17 73.4%
1.00 14 47 77%

Table 5. Predicted Correctness of ANN Model

Predicted
Percent
Observed .00 1.00 Correct
.00 42 22 65.4%
1.00 11 50 80.3%

5.2 Artificial Neural Network (ANN) Method

The results of the model predicted are shown in Table 5. Out of 61 classes actually
fault prone, 50 classes were predicted to be fault prone (Table 5). The sensitivity of
the model is 80.3%. Similarly 42 out of 64 classes were predicted not to be fault
prone. Thus specificity of the model is 65.4%. This shows that the sensitivity of the
model is high as compared to model predicted using LR approach but specificity is
slighter less as compared to LR model.

6 Model Evaluation

In this section we present the results of cross validation of LR and ANN models and
also perform ROC analysis to compare these approaches.

6.1 Cross Validation of Models Using ROC Analysis

The accuracy of models predicted is somewhat optimistic since the models are ap-
plied on same data set from which they are derived from. To predict accuracy of
model it should be applied on different data sets thus we performed 10-cross valida-
tion of LR and ANN models following the procedure given in Section 4. For the
10-cross validation, the classes were randomly divided into 10 equal parts of ap-
proximately. We summarized the results of cross validation of predicted models via
the LR and ANN approaches in Table 6.

In Figure 1, the ROC curves for LR and ANN models are presented. The ROC
curve for the LR model is shown in Figure 1(a), AUC was 0.78 (SE 0.040), providing
75.4% of sensitivity and 71.8% of specificity. Whereas, the area under the ROC curve
for ANN model was 0.745 (SE 0.044), with sensitivity 75.4% and specificity 65.4%.

Predicting Software Fault Proneness Model Using Neural Network 211

1.0 1.0=
08— 0.8 -
Z =y
= .
2 06 ; 06—
i =
wn
S 044 c 04—
w a
0.2 n 0.2 =
0.0 T T T] 0.0 | T I T
00 02 04 06 08 10 00 02 04 068 08 1.0

1 - Specificity 1 - Specificity

Fig. 1. ROC curve for (a) LR and (b) ANN models

As shown in Table 6, the results of cross validation of ANN model were almost
similar as compared to cross validation results of LR model.

Table 6. Results of 10-cross validation of Models

Technique | Sensitivity | Specificity | Proportion | J Coefficient AUC
correct
LR 75.4 71.8 73.8 0.48 0.78
(SE 0.040)
ANN 75.4 65.4 73.8 0.49 0.745
(SE 0.044)

7 Threats to Validity

The study has a number of limitations that are not unique to our study but are
common with most of the empirical studies in the literature. However, it is neces-
sary to repeat them here. The degree to which the results of our study can be gen-
eralized to other research settings is questionable. The reason is that the systems
developed are medium-sized. In this study severity of faults is not taken into ac-
count. There can be number of faults which can leave the system in various states
e.g. a failure that is caused by a fault may lead to a system crash or an inability to
open a file. The former failure is more severe than latter, although the types of
fault are not the same.

Though these results provide guidance for future research on the use of LR and
ANN methods to find the impact of software metrics on fault proneness, further vali-
dations are necessary with different systems to draw stronger conclusions.

8 Conclusions

We conducted an empirical analysis of the software metrics. The main goal of our
study was to examine and compare LR and ANN methods in order to find the impact

212 Y. Singh, A. Kaur, and R. Malhotra

of software metrics on fault proneness. Thus we employed LR and ANN methods to
assess the applicability of the software metrics to predict fault proneness. This is the
primary contribution of our study. The performance of the fault proneness models
were evaluated using ROC analysis, since few studies have used this method in past.

The AUC for LR model was 0.78 (SE 0.040), providing of sensitivity 75.4% and
71.4%o0f specificity. The AUC for ANN model was 0.745 (SE 0.044), with sensitivity
75.4% and specificity 65.4%. The models predicted using both LR and ANN method
yielded good AUC using ROC analysis. This study confirms that construction of
ANN is feasible, adaptable to systems, and useful in predicting fault prone classes.

While research continues, practitioners and researchers may apply ANN method
for constructing models to predict faulty classes.

As in all empirical studies the relationship we established is valid only for certain
population of systems. In this case, we can roughly characterize this population as
“medium-sized systems.”

More similar type of studies must be carried out with large data sets to get an accu-
rate measure of performance outside the development population. We further plan to
replicate our study to predict models based on other artificial intelligence techniques.

References

1. Aggarwal, K.K., Singh, Y., Kaur, A., Malhotra, R.: Investigating the Effect of Coupling
Metrics on Fault Proneness in Object-Oriented Systems. Software Quality Profes-
sional 8(4), 4-16 (2006)

2. Aggarwal, K.K., Singh, Y., Kaur, A., Malhotra, R.: Software Reuse Metrics for Object-
Oriented Systems. In: Third ACIS Int’l Conference on Software Engineering Research,
Management and Applications (SERA 2005), pp. 48-55. IEEE Computer Society, Los
Alamitos (2005)

3. Barnett, V., Price, T.: Outliers in Statistical Data. John Wiley & Sons, Chichester (1995)

4. Basili, V., Briand, L., Melo, W.: A Validation of Object-Oriented Design Metrics as Qual-
ity Indicators. IEEE Transactions on Software Engineering 22(10), 751-761 (1996)

5. Belsley, D., Kuh, E., Welsch, R.: Regression Diagnostics: Identifying Influential Data and
Sources of Collinearity. John Wiley & Sons, Chichester (1980)

6. Briand, L., Daly, W., Wust, J.: Unified Framework for Cohesion Measurement in Object-
Oriented Systems. Empirical Software Engineering 3, 65-117 (1998)

7. Briand, L., Daly, W., Wust, J.: A Unified Framework for Coupling Measurement in Ob-
ject-Oriented Systems. IEEE Transactions on software Engineering 25, 91-121 (1999)

8. Briand, L., Daly, W., Wust, J.: Exploring the relationships between design measures and
software quality. Journal of Systems and Software 5, 245-273 (2000)

9. Cartwright, M., Kadoda, G.: Comparing software prediction techniques using simulation.
IEEE Transactions of Software Engineering 27(1), 1014-1022 (2001)

10. Cartwright, M., Shepperd, M.: An Empirical Investigation of an Object-Oriented Software
System. IEEE Transactions of Software Engineering 26(8), 786—796 (1999)

11. Chidamber, S., Kemerer, C.: A metrics Suite for Object-Oriented Design. IEEE Trans.
Software Engineering SE-20(6), 476-493 (1994)

12. Chidamber, S., Kemerer, C.: Towards a Metrics Suite for Object Oriented design. In: Proc.
Conference on Object-Oriented Programming: Systems, Languages and Applications
(OOPSLA 1991). Published in SIGPLAN Notices, vol. 26(11), pp. 197-211 (1991)

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

Predicting Software Fault Proneness Model Using Neural Network 213

Chidamber, S., Darcy, D., Kemerer, C.: Managerial use of Metrics for Object-Oriented
Software: An Exploratory Analysis. IEEE Transactions on Software Engineering 24(8),
629-639 (1998)

El Emam, K., Benlarbi, S., Goel, N., Rai, S.: The Confounding Effect of Class Size on the
Validity of Object-Oriented Metrics. IEEE Transactions on Software Engineering 27(7),
630-650 (2001)

Gyimothy, T., Ferenc, R., Siket, I.: Empirical validation of object-oriented metrics on open
source software for fault prediction. IEEE Trans. Software Engineering 31(10), 897-910
(2005)

Halstead, M.H.: Elements of Software Science. North Holland, New York (1997)

Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Harchort India Private Lim-
ited (2001)

Hanley, J., McNeil, B.: The meaning and use of the area under a Receiver Operating Char-
acteristic ROC curve. Radiology 143, 29-36 (1982)

Harrison, R., Counsell, S.J., Nithi, R.V.: An Evaluation of MOOD set of Object-Oriented
Software Metrics. IEEE Trans SE-24(6), 491-496 (1998)

Henderson-Sellers, B.: Object-Oriented Metrics, Measures of Complexity. Prentice-Hall,
Englewood Cliffs (1996)

Henry, S., Kafura, D.: Software structure metrics based on information flow. IEEE Trans-
actions on Software Engineering SE 7(5), 510-518 (1981)

Hitz, M., Montazeri, B.: Measuring Coupling and Cohesion in Object-Oriented Systems.
In: Proc. Int. Symposium on Applied Corporate Computing, Monterrey, Mexico (1995)
Hosmer, D., Lemeshow, S.: Applied Logistic regression. John Wiley and Sons, Chichester
(1989)

Huang, X., Capretz, L.F., Ren, J., Ho, D.: A neuro-fuzzy model for software cost estima-
tion. In: International Conference on Quality Software, p. 126 (2003)

Khoshgaftaar, T.M., Allen, E.D., Hudepohl, J.P., Aud, S.J.: Application of neural networks
to software quality modeling of a very large telecommunications system. IEEE Transac-
tions on Neural Networks 8(4), 902-990 (1997)

Kothari, C.R.: Research Methodology. Methods and Techniques, New Age International
Limited (2004)

Lorenz, M., Kidd, J.: Object-Oriented Software Metrics. Prentice-Hall, Englewood Cliffs
(1994)

Lee, Y., Liang, B., Wu, S., Wang, F.: Measuring the Coupling and Cohesion of an Object-
Oriented program based on Information flow (1995)

Li, W., Henry, S.: Object-Oriented Metrics that Predict Maintainability. Journal of Sys-
tems and Software 23(2), 111-122 (1993)

Mccabe, T.J.: A Complexity Measure. IEEE Transactions on Software Engineering SE
2(4), 308-320 (1976)

Menzies, T., DiStefano, J., Orrego, A., Chapman, R.: Assessing Predictors of Software De-
fects. In: Proc. Workshop Predictive Software Models (2004)

Menzies, T.: Data Mining Static Code Attributes to Learn Defect Predictors. IEEE Trans-
actions on Software Engineering 32(11), 771-784 (2006)

Myers, G.J.: Composite/Structured Design, Von Nostrand, Reinhold, New York (1978)
ASA/WVU IV&V Facility, Metrics Data Program, http: //mdp.ivv.nasa.gov
Olague, H., Etzkorn, L., Gholston, S., Quattlebaum, S.: Empirical Validation of Three
Software Metrics Suites to Predict Fault-Proneness of Object-Oriented Classes Developed
Using Highly Iterative or Agile Software Development Processes. IEEE Transactions on
software Engineering 33(8), 402—419 (2007)

214 Y. Singh, A. Kaur, and R. Malhotra

36. Singh, Y., Kaur, A., Malhotra, R.: Application of Logistic Regression and Artificial Neural
Network for Predicting Software Quality Models. In: International Conference on Soft-
ware Engineering Research and Practice (SERP 2007), Las Vegas, USA, June 25-26
(2007)

37. Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. Royal Stat.
Soc. 36, 111-147 (1974)

38. Yuming, Z., Hareton, L.: Empirical analysis of Object-Oriented Design Metrics for pre-
dicting high severity faults. IEEE Transactions on Software Engineering 32(10), 771-784
(2006)

Automating the Measurement of Functional Size of
Conceptual Models in an MDA Environment™

Beatriz Marin, Oscar Pastor, and Giovanni Giachetti

Department of Information Systems and Computation,
Technical University of Valencia,
Camino de Vera s/n,
46022 Valencia, Spain
{bmarin, opastor, ggiachetti }@dsic.upv.es

Abstract. The manual measurement of functional size is generally very time-
consuming and has many precision errors. For this reason, it is necessary to
automate the measurement process to obtain a solution that can be applied in a
MDA industrial development. The OO-Method COSMIC Function Points
(OOmCEFP) is a measurement procedure that has been designed to measure the
functional size of object-oriented applications generated from their conceptual
models by means of model transformations. This work presents the definition of
the mechanisms that are necessary to automate the OOmCFP procedure. This
work also presents the OOmCFP tool that implements the OOmCFP procedure.
Since this tool measures the functional size of industrial applications generated
in MDA environments from their conceptual models, it is not necessary to per-
form the measurement task on the final code. The OOmCFP tool incorporates
the benefits that the COSMIC measurement method provides. These benefits
are demonstrated through a comparative analysis.

Keywords: Conceptual modeling, Object orientation, Functional size meas-
urement, COSMIC, MDA, Tool.

1 Introduction

The Model-Driven Architecture (MDA) approach [17] separates application and busi-
ness logic from the platform technology, allowing code generation by means of model
transformations. In MDA contexts, conceptual models are used as input to the process
of code generation. Thus, the conceptual models must have enough semantic formal-
ization in order to specify all the functionality of the final application and also to
avoid different interpretations for the same model.

The OO-Method approach [18] [20] is an object-oriented method that provides the
required semantic formalization to define complete and unambiguous conceptual
models, allowing the automatic generation of software products [19] using an

" This work has been developed with the support of MEC under the project SESAMO
TIN2007-62894 and co financed by FEDER.

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 215 008.
© Springer-Verlag Berlin Heidelberg 2008

216 B. Marin, O. Pastor, and G. Giachetti

MDA-based technology. This method has been implemented in a suite of industrial
tools by CARE Technologies [5].

The adoption of MDA-based technology has presented new challenges, such as
measuring the size of the products that are generated from their conceptual models.
This is important because the size of the conceptual model allows that the cost of the
application that is automatically generated will be estimated correctly. The Function
Point Analysis (FPA) proposal ([9] [10]), together with its adaptations of this meas-
urement method [1] [2] [15] [23] [24], is used to do this. However, these FPA-based
approaches have limitations for the measurement of conceptual models used in MDA
environments [4] [8] [14]. For instance, FPA-based approaches only allow the meas-
urement of the functionalities from the viewpoint of the human user, ignoring all the
functionality that the human user does not see, which should be built for the correct
operation of the application.

To overcome the limitations of the initial design of the FPA measurement method,
the COSMIC measurement method was defined [3] [13]. COSMIC allows the meas-
urement from different points of view: from the human user viewpoint (like FPA);
from the developer viewpoint (including all the functionalities that should be built);
and from the viewpoint of any user of the conceptual model. Currently, there are
some approaches that apply COSMIC for the purpose of estimating the functional size
of future software applications from conceptual models, such as Poels’ proposal [22]
and Diab’s proposal [7]. Both of these FSM procedures were defined establishing a
mapping between the COSMIC concepts and their primitives; however their propos-
als are not compliant with MDA principles.

For industrial MDA development, it is essential to do the measurements quickly
and in a precise way because the functional size determines the cost of the generated
applications. Therefore, a tool that allows the automatic measurement of conceptual
models used in MDA environments is needed to avoid the excessive time and the
precision errors involved in a manual measurement process.

This paper introduces the OOmCFP proposal from a practical perspective. This is a
procedure to measure the functional size of OO-Method conceptual models based on
COSMIC, focusing on the OOmCFP tool, which automates the measurement of OO-
Method conceptual models through the implementation of the OOmCFP proposal.
The OOmMCFP tool includes all the benefits that are related to the COSMIC approach.
It allows a better measurement of the conceptual models involved in the OO-Method
MDA industrial approach and makes the practical application of the OOmCFP ap-
proach possible.

The rest of the paper is organized as follows: section 2 and section 3 present the
main concepts of the COSMIC method and the OO-Method approach, respectively.
Section 4 presents the OOmCFP measurement procedure and an example of the
measurement of an OO-Method conceptual model using the OOmCFP proposal. Sec-
tion 5 presents the tool that automates the OOmCFP proposal and a comparative
analysis of the results obtained in the measurement of conceptual models of real ap-
plications. Finally, section 6 presents a discussion on the results achieved as well as
suggestions for further work.

Automating the Measurement of Functional Size 217

2 The COSMIC Functional Size Measurement Method

The COSMIC functional size measurement method can be used to measure any type
of software. The application of this measurement method includes three phases: the
measurement strategy, the mapping of concepts, and the measurement of the identi-
fied concepts.

In the measurement strategy phase, the purpose and the scope of the measurement
exercise must be defined. Next, the functional users, which are types of users that
send (or receive) data to (from) the functional process of the application to be meas-
ured must be identified. Finally, the level of granularity of the description of the piece
of software to be measured is also identified.

In the mapping phase, the functional processes (the elementary components of a
set of functional user requirements) must be identified. Next, the data groups must be
identified. A data group is a set of data attributes that are distinct, non empty, non
ordered, non redundant, and that participate in a functional process. The identification
of the data attributes of a data group is optional.

In the measurement phase, the data movements (Entry, Exit, Read and Write) for
every functional process must be identified. When all the data movements of the func-
tional process are identified, the measurement function must be applied: this is a
mathematical function that assigns 1 CFP to each data movement of the functional
process. Then, after all the functional processes are measured, the measurement re-
sults are aggregated to obtain the functional size of the piece of software that has been
measured.

Figure 1 shows the COSMIC metamodel, which illustrates the information that
should be represented by the software artefact to be measured.

’—‘Fundional_pmcess 1.0 1.0 | Triggering_Everts |1 n 1 ‘Functlurval_User 1 1.n
 — i i i i Lo
1n 1

s @] Piscs_Softwsre |4 ;

Data_ovement 1n 1 [oeta_croue : :
1] 1.n | Layer| q 1 | ©perstional_Environment
o — —

o.n
J 1 1

Ohject_Interest Attribtes Granularity_level
— 1 1 1
1 [1

Fig. 1. Metamodel of COSMIC.

3 The OO-Method Approach

00O-Method is a method that allows the automatic generation of software from con-
ceptual models. It has a formal definition supported by OASIS [21], which is an ob-
ject-oriented, formal specification language for Information Systems. This method is
supported by the compiler of OO-Method conceptual models that is implemented in
the OlivaNova Suite [5].

The OO-Method model compiler generates applications according to a three-tier
software architecture: a tier for the client component, which contains the graphical
user interface-related software components; a tier for the server component, which

218 B. Marin, O. Pastor, and G. Giachetti

contains the business rules and the connections to the database; and a tier for the data-
base component, which contains the persistence aspects of the applications.
The software production process in OO-Method is represented by three models:

e The Requirements Model, which specifies the system requirements using
a set of techniques such as the Mission Statement, the Functions Refine-
ment Tree, the Use Case Model, and the Sequence Diagrams Model.

e The Conceptual Model, which captures the static and dynamic properties
of the functional requirements of the system by means of an Object
Model, a Dynamic Model, and a Functional Model. The conceptual model
also allows the specification of the user interfaces in an abstract way
through the Presentation Model. With all of these models, the conceptual
model has all the details needed for the automatic generation of the soft-
ware application. The complete definition of the elements of the concep-
tual model of OO-Method is described in detail in [19].

e The Execution Model, which allows the transition from the problem space
(represented by the conceptual model) to the solution space (the corre-
sponding software product). This model fixes the mappings between con-
ceptual primitives and their corresponding software representations in a
target software development environment.

For the purpose of this work, we only need to focus on the Conceptual Model,
which is the artifact from which we want to measure the functional size through the
corresponding measurement process.

4 OOmCFP: A Measurement Procedure for the OO-Method
Conceptual Model

OOmCFP (OO-Method COSMIC Function Points) is a measurement procedure that
was developed for measuring the functional size of the OO-Method applications that
are based on the MDA approach [16]. In the OOmCFP procedure, the entity to be
measured is an OO-Method conceptual model, and the attribute to be measured is the
functional size, which is defined by the ISO/IEC 14143-1 standard as the size of soft-
ware derived by quantifying the functional user requirements [12].

The OOmMCFP was defined in accordance with the COSMIC measurement manual
version 3.0 [3]. We selected this functional size method for the design of OOmCFP
for the simplicity with which it quantifies functional size without being limited by
maximum values, as occurs in other standards (IFPG FPA, NESMA FPA or MARK II
FPA). Given that the OOmCFP procedure was designed in accordance with COSMIC,
a mapping between the concepts used in COSMIC and the concepts used in the OO-
Method conceptual model has been defined (Table 1). It is important to note that the
mapping has been done in only one direction since only some of the elements of the
conceptual model are relevant to the measurement of the functional size when COS-
MIC is used.

Automating the Measurement of Functional Size 219

Table 1. Results obtained from the mapping between COSMIC and OO-Method

OOmCFP

Purpose: To Measure the functional size of the OO-Method conceptual models to
estimate the cost of the applications specifically generated by the OlivaNova Suite.
Scope: The OO-Method conceptual model, which has all the functionality details from
which the final software application will be built.

Granularity Level: Low level, since all the details in the OO-Method conceptual
model are needed to generate the applications.

Layers: The Client component, the Server component, and the Database component of
an OO-Method application since each component is generated for a specific software
environment.

Pieces of Software: The Client component, the Server component, and the Database
component of an OO-Method application since every layer has at least one piece of
software.

Functional Users:

- Human users are functional users of the client component of an OO-Method applica-
tion since data is sent (or receive) to (from) this component.

- The Client component of an OO-Method application is a functional user of the
Server component of the application. This user is called client functional user.

- The Server component of an OO-Method application is a functional user for both the
Client component and for the Database component of the OO-Method application.
This user is called server functional user.

Boundaries: The OO-Method applications have three boundaries that separates the
users from the layers: one boundary between the human user and the Client compo-
nent; one boundary between the client functional user and the Server component; and
one boundary between the server functional user and the Database component — see
Figure 2.

Triggering Events:

- The human functional user carries out triggering events that occur in the real world.
- The client functional user carries out triggering events that occur in the interaction
units of the presentation model of the OO-Method conceptual model.

- The server functional user carries out the triggering events that occur in the server
component of the software.

Functional Processes: Direct successors of the menu of the presentation model of OO-
Method conceptual model. Every child represents a single functional process, either a
selection of a given class population (a Population Interaction Unit (PIU)) or an exe-
cution of a service (a Service Interaction Unit (SIU)). These interaction units can be
combined into more complex interaction units (as a Master Detail Interaction Unit
(MDIU)).

Data Movements: The data movements that can occur in the OO-Method applications
are shown in Figure 2. Note that the write and read data movements only can occur
between the server functional user and the database component of an OO-Method
application.

Data Groups: The classes of the object model of the OO-Method conceptual model,
which are used in the functional process.

Data Attributes: The set of attributes of each class that is identified as a Data Group.

220 B. Marin, O. Pastor, and G. Giachetti

Once the mapping between COSMIC and OO-Method has been defined, the meas-
urement rules of the OOmMCFP must also be defined. These rules are the rules that
assign a numerical value to the data movements that take place between the functional
users and the software components of an OO-Method application. The data move-
ments that can occur in the OO-Method applications are shown in Figure 2.

i Boundary E Boundary
1 [
] n
Human ——M _ L
ieres I Client C Setrvet
l] l T
] 1
X E . X
| []
| []

Fig. 2. Data movements that can occur in the functional processes of an OO-Method
application

Given that the applications generated from the OO-Method conceptual model has a
three-tier architecture, three types of entry (E) data movements can occur in a func-
tional process: from the human user to the client component of the application; from
the client component of the application to the server component of the application;
and from the server component of the application to the client component of the ap-
plication (see Figure 2). A set of measurement rules has been defined for each type of
entry data movements.

Three types of exit (X) data movements can occur in a functional process: from the
client component of the application to the human user; from the client component of
the application to the server component of the application; and from the server com-
ponent of the application to the client component of the application. Figure 2 shows
the exit data movements. A set of measurement rules has been defined for each type
of exit data movements.

Only one type of read (R) data movements can occur in OO-Method applications:
only the server component of the software can read the persistence storage (see Figure 2).
A set of measurement rules has been defined for this type of data movements.

Only one type of write (W) data movements can occur in OO-Method applications:
only the sever component of the software can write to the persistence storage (Figure 2).
A set of measurement rules for the write data movements has been defined.

Automating the Measurement of Functional Size 221

According to the COSMIC functional size measurement method, each data move-
ment will be assigned one size unit, which is referred to as 1 CFP. To measure the
functional size of a functional process, the functional size of all the data movements
of the functional process should be added — see formula (1).

SizeFunctionalProcess = Y, DataMovementi (1
i=1
Once all the functional processes are measured with formula (1), then all the meas-
urements should be added to obtain the functional size of the layer that contains these
functional processes — see formula (2).

n
SizeLayer = " SizeFunctional Process: ()
i=1
To measure of the generated software applications from the developer’s viewpoint,

it is necessary to add the functional size of every layer. This calculation is represented
in formula (3).

SizeOOMethodApplication - i SizeLayer: (3)
i=1

Finally, with the three formulas, it is possible to measure the functional size of the
0O-Method software applications that are generated from their conceptual model in
an MDA environment. The measurement rules include all the functionalities needed
by the application for its correct operation; in other words, it includes all the function-
alities from the developer’s viewpoint.

In terms of the validation of the OOmCFP procedure, since the validation of
COSMIC (from the perspective of the measurement theory) has been carried out suc-
cessfully using the DISTANCE framework [6], the theoretical validation of the
OOmCFP procedure can be inferred. Moreover, an expert has validated the confor-
mity of the OOmCFP procedure with the COSMIC version 3.0.

4.1 A Measurement Example

Figure 3 shows an example of an OO-Method conceptual model that allows the auto-
matic generation of a fully working application. This application allows the creation
and deletion of invoices with their details, and also allows the creation of the custom-
ers associated to the invoice. The administrator of the application, which is repre-
sented by the class Admin, can execute the services of the application.

The populations: PIU_Admin, PIU_Customer, PIU_InVOiCGl, and the master detail
MDIU_Invoice are identified as functional processes by applying the mapping rules
presented in Table 1.

' PIU is the OO-Method acronym for “Population Interaction Unit”. A PIU represents an entry-
point for the application, through the presentation of a set of instances of a class. An instance
can be selected, and the corresponding set of actions and/or navegations specified in the Pres-
entation Model are offered to the user. More details can be found in [19].

222

B. Marin, O. Pastor, and G. Giachetti

Invoice Customer
id_Inwvoice A address)
invoicelbate custonName

totalipount

lenadil

create_inst A

- Actions Hierarchy
creat e_1nst -~

nroductira 1o

::i:t:;l::; - ::i:t:;l::; w EN= M?deloF.an.:tula
e = E Administratar
M D D r’:’,:’ @ FIU_admin [Administratar]
11 5 ,j:’:J 2B Customer
e % PIU_Custamer [Customer]
y,”:ﬁ =B Invoice
Detal = Admin E F'IU_Invc-icn.a [Irwoice List].
id Detail | id Ldmin i MDIU_Irvoice [New Invoice]
pr;duct,Det.s

creat.e_inst N
dalete inst

edit jmstar B

create_inst A
delete_inst
edit jnstar

W

Fig. 3. Example of an OO-Method conceptual model. Left: Object model. Right: Presentation

Model

After identifying the functional processes, the OOmCFP measurement rules are
applied to identify the data movements that occur in each functional process. The
measurement rules applied to the example are presented in the following table.

Table 2. Measurement rules of OOmCFP applied to the example

Component Measurement Rule

Client Rule 3. 1 entry data movement for each different class that corresponds to an argu-
ment of a SIU that participates in a functional process.

Client Rule 10. 1 entry data movement for each different class that contributes with attrib-
utes to the display set of a PIU or IIU that participates in a functional process.

Client Rule 15. 1 exit data movement for all the attributes that are shown in a display set
of a PIU or IIU that participates in a functional process.

Client Rule 22. 1 exit data movement for the set of data-valued arguments of a SIU that
participates in a functional process.

Client Rule 23. 1 exit data movement for each different class that corresponds to an argu-
ment of a SIU that participates in a functional process.

Server Rule 7. 1 entry data movement for the set of data-valued arguments of a SIU that
participates in a functional process.

Server Rule 8. 1 entry data movement for each different class that corresponds to an argu-
ment of a SIU that participates in a functional process.

Server Rule 25. 1 exit data movement for each different class that contributes with attrib-
utes to the display set of a PIU or IIU that participates in a functional process.

Server Rule 30. 1 read data movement for each different class that contributes with attrib-
utes to the display set of a PIU or IIU that participates in a functional process.

Server Rule 31. 1 read data movement for each different class that is used in the derivation
formula of the derived attributes of the display set of a PIU or IIU that participates
in a functional process.

Server Rule 35. 1 read data movement for each different class that is used in the default

value formula of an object-valued argument of a service that is related to a SIU that
participates in a functional process.

Automating the Measurement of Functional Size 223

Table 2. (continued)

Component Measurement Rule |

Server Rule 36. 1 read data movement for each different class that is used in the valuation
formula of the event that is related to a SIU that participates in a functional process.

Server Rule 38. 1 read data movement for each different class that is used in the formula of

the transaction, the operation or the global service that is related to a SIU that par-
ticipates in a functional process.

Server Rule 50. 1 write data movement for the class that contains a destroy event or trans-
action that is related to a SIU that participates in a functional process.

Server Rule 51. 1 write data movement for the class that contains a creation event or trans-
action that is related to a SIU that participates in a functional process.

Server Rule 52. 1 write data movement for the class that contains an event that has valua-

tions and that is related to a SIU that participates in a functional process.

With the measurements rules presented above, we have identified the data move-
ments that occur in the functional processes. The following table shows the data
movements that are identified for each functional process in the client component and
in the server component of the OO-Method application.

Table 3. Data movements of the functional processes that occur in the client component and in
the server component of the OO-Method application

Functional Process Client Component Server component
Entry Exit Read Write Entry Exit Read Write
PIU_Admin 8 8 0 0 6 2 2 4
PIU_Customer 8 8 0 0 6 2 2 5
PIU_Invoice 2 1 0 0 0 2 3 0
MDIU_Invoice 8 11 0 0 8 2 4 6

Once all of the data movements are identified, the formulas defined in OOmCFP
are applied to obtain the functional size for each functional process. Thus, Table 4
presents the functional size of the functional process in the client component of the
software and in the server component of the OO-Method application.

Table 4. Data movements of the functional processes that occur in the software components of
the application

Functional Process Client Component Server Component

PIU_Admin 16 14
PIU_Customer 16 15
PIU_Invoice 3 5

MDIU_Invoice 19 20

Next, by applying formula (2), we can obtain the functional size of each piece of
software: the functional size of the client component of the application is 54 cfp; and
the functional size of the server component of the application is 54 cfp.

224 B. Marin, O. Pastor, and G. Giachetti

Finally, we obtain the functional size of the OO-Method application by applying
formula (3). The resultant functional size is 108 cfp.

It is important to note that the manual measurement of this small example took 70
minutes. Keeping in mind that the model has only four classes, the manual measure-
ment of real applications that may contain 100 or more classes would require at least
116 hours. Therefore, it is very important to automate the measurement procedure to
be able to measure efficiently conceptual models of real applications. By automating
the measurement procedure many possible human errors could be avoided. The next
section presents the development of the tool that automates the OOmCFP procedure.

5 The Automation of the OOmCFP Procedure

Since the automation of the measurement of conceptual models with the OOmCFP
proposal is essential, a tool must be developed to implement the measurement rules
defined in OOmMCFP and to aggregate the results according to the formulas presented
in Section 4. The OOmMCFP tool has been developed using Visual Studio .Net 2003
with the language C#.

This tool must have a flexible architecture that allows adaptation to the evolution
of conceptual models. It must also be agile in the measurement process.

To provide this flexible architecture, the OOmCFP tool was developed with a set
of layers that allows easy incorporation of new measurement rules or changes in the
existing measurement rules.

The first layer of the OOmCFP tool consists of the pre-charge of the OO-Method
conceptual model that is generated from the Olivanova Suite [5] in an XML file. In
this layer, the functional elements are organized in a hierarchical way, according to
the functional processes identified for the client component and the server component.

In the second layer of the OOmMCFP tool, each element that participates in each
functional process is identified, and the measurement of the data movements that
occur in each functional process are performed through the rules defined in OOmCFP.
To reduce the coupling of the measurement of the elements, each rule is grouped by
element and is implemented in an independent way. The result of the analysis of each
element is stored in the same element.

The third layer of the OOmMCFP tool consists of the aggregation of the values of
each element according to the formulas defined in the OOmCFP. Thus, the tool ob-
tains the functional size of each functional process, the functional size of each com-
ponent of the application, and the functional size of the complete application.

The last layer consists of the generation of a final measurement report of the meas-
urement in an XML file. This XML file can be transformed into other formats using
XSLT. By default, the OOmCFP tool transforms the XML file in an HTML page.

Since the longest processing time and run time occur in the identification and
measurement step of functional elements, we have implemented a cache mechanism
to provide agility to the counting process. This reduces the high amount of time re-
quired to analyze elements that have already been analyzed. Thus, when a new func-
tional element is identified, the cache mechanism verifies whether or not it already
exists. It so, the value of the measurement is recovered.

Automating the Measurement of Functional Size 225

To avoid overflow, the related elements are stored in an auxiliary array (Figure 4).
Once the analysis of the first element is finished, the analysis of the elements stored in
the auxiliary array continues sequentially. If the related elements are also related to
other elements, these elements are added at the end of the auxiliary array, eliminating
the loop of iterations and avoiding overflow.

- - o T v
Functional Element 2 <~— >(FE 21 /

Functional Element 1 }——>_FE2
A FEn N N
™ ,"" B ~— - \\\ . N i
Auxiliary # FEn 1 Functional Element n -
Array FEnn e —

Fig. 4. Schema of the solution to avoid overflow problems

A4 A

The architecture of the OOmCFP tool provides an efficient measurement process.
Therefore, the measurement of conceptual models that generate real applications is
done in a few seconds, thus expediting the process of estimating the cost of the final
application.

The precision of the measurement is defined as the closeness of agreement between
quantity values obtained by replicated measurements of a quantity under specified
conditions [11]. In general, it is not possible to ensure precision in manual measure-
ments since people can make mistakes in the identification of the functional process,
the application of the measurement rules, or even the application of the formulas. In
contrast, when a tool performs the measurement, it can ensure the precision of the
measures because it is an automated measurement where a precise procedure will
always produce the same result in any measurement task. Consequently, the
OOmCEFP tool avoids the errors of the manual measurements and assures the preci-
sion of the measurements.

5.1 Using the OOmCFP Tool

The steps for using the OOmCFP tool are the following:

The first step is to load the XML file that contains the OO-Method conceptual
model and to specify the path where the report will be saved.

The second step is to show a summary of the model that will be measured and the
path of the report.

The third step is to show the number of functional processes that have been meas-
ured and the function points for every layer of the application. In this step, the report
with all the results of the measurement is saved in the path indicated in the first step.
Figure 5 shows the report generated by the OOmCFP tool.

We have verified how the OOmCFP tool works in practice using some predefined
0O0-Method conceptual models.

5.2 A Comparative Analysis of COSMIC and FPA

A preliminary comparative analysis has been carried out with respect to the functional
size of five conceptual models used in real applications. These conceptual models
belong to the Management Information System domain.

226 B. Marin, O. Pastor, and G. Giachetti

00-Method COSMIC Function Points Count Results

Data obtained from a model produced on 24/10/2007

For the application: AgenciaFotograficaAdmin20071024 and for the following View: V_View

SUMMARY
Total COSMIC Function Points Count for the application: 1309
Total COSMIC Function Points Count for the ¢lient component: 760

Total COSMIC Function Points Count for the server component: 549

Client Component Server Component
Total of Functional Process: 19 Total of Functional Process: 19
Function Points Count: 760 Function Points Count:549
Total Total
Name N of Entry| N° of Exit |N® of Read [N° of Write| Function Name No of Entry| N° of Exit |N° of Read [N° of Write| Function
Points. Points.
PIU_Admin 4 4 0 o] PIU_Admin 3 1 1 2 7
PIU_Editorial 7 17 *] o 24 PIU_Editorial 4 4 4 3 15
PIU_Solicitud 11 24 0 0 35 PIU_Solicitud 7 4 3 4 20
PIU_Nivel 8 27 0 o 35 PIU_Nivel 6 3 3 4 16
PIU_Fotografo 26 54 0 1] 80 PIU_Fotografo 17 11 13 =) 49
PIU_FotografoxNivel 27 55 0 o 82 PIU_FotografoxNivel 18 11 13 3 50
[P1U_Fotografoxnivelobj] 27 55 0] 82 PIU_FotografoxNivelObj] 18 11 13 E 50
PIU_SolicitudReportaje 7 7 0 0 14 PIU_SolicitudReportaje S 2 3 1 11
PIU_Tema 5 i1 0 o 16 PIU_Tema 4 2 2 3 11
PIU_Reportaje 14 27 0] 41 PIU_Reportaje 10 4 & 1 21
PIU_Exclusiva 41 84 0 0 125 PIU_Exclusiva 26 19 20 12 77
PIU_ExcluProceso 3 4 1] o 7 PIU_ExcluProceso 2 2 3 o 7
PIU_ExcluEntregada 13 27 0 1] 40 PIU_ExcluEntregada g]] 4 24
MDIU_Albaran 17 17 0 o 34 MDIU_Albaran 9 8 23 1 41
MDIU_albaranExcusiva 17 17 *] o 34 MDIU_albaranExclusiva 9 8 23 1 41
MDIU_Factura 28 27 0 0 55 MDIU_Factura 15 12 47 2 76
PIU_UsuarioDepCom 5 i1 0 o 16 PIU_UsuarioDepCom 4 2 2 3 11
PIU_UsuarioDepProd s 11 0] 16 PIU_UsuarioDepProd El 2 2 3 11
PIU_UsuarioDepTec 5 11 0 0 16 PIU_UsuarioDepTec 4 2 2 3 11

Fig. 5. Report generated by the OOmCFP tool

The analysis compares the functional sizes obtained for the OO-Method conceptual
models using the COSMIC and FPA techniques. OOmCEFP is used as the COSMIC
measurement procedure, and OOmFP [1] is used as the FPA measurement procedure.

Before the analysis was carried out, we formulated the following hypothesis:

H1: The functional size of the measurement of an OO-Method conceptual model
using a COSMIC-based approach is bigger than the measurement using a FPA-based
approach.

Table 5 shows the results obtained. The Model column shows an identifier for each
model; the Classes column shows the number of classes associated to each model; the
OOmCFP column shows the number of function points obtained with the OOmCFP
procedure; the OOmFP column shows the number of function points obtained with
the OOmFP procedure; and the last column Dif shows the difference between the
results obtained with the OOmCFP procedure and those obtained with the OOmFP
procedure.

Table 5. Functional size of OO-Method conceptual models measured with the OOmCEFP ap-
proach and the OOmFP approach

Model Classes OOmCFP OOmFP Dif

M1 9 836 463 373
M2 17 357 308 49
M3 30 2019 1158 861
M4 83 4326 2811 1515

M5 193 14649 6267 8382

Automating the Measurement of Functional Size 227

As Table 5 shows, the functional size obtained was bigger when the OOmCFP ap-
proach was used. Therefore, as expected, hypothesis H1 is true since more aspects are
taken into account when COSMIC is used as the measurement strategy. This demon-
strates that when COSMIC is used, a better measurement of the functionality gener-
ated from the conceptual models in MDA environments is obtained.

Table 5 also shows that the differences obtained in the comparative analysis do not
follow a common pattern, because the measurement approaches analyzed use differ-
ent conceptual elements to quantify the functional size of the applications.

An important final consideration is that the complexity of the conceptual model is
not measured by either the COSMIC approach or by the IFPUG approach. However,
we believe that the conceptual elements that COSMIC uses in the measurement of the
functional size can be used to define metrics to measure the complexity of the concep-
tual models.

6 Conclusions and Further Work

In this paper, we have introduced OOmCFP, which is an FSM procedure for object-
oriented applications generated in MDA environments. OOmCFP allows the meas-
urement of the functional size in the conceptual models that will be transformed in the
generated applications. Therefore, we consider that OOmCFP specifies the functional
requirements for the development of a tool to automate the measurement of the func-
tional size of applications generated in MDA environments.

We have presented the OOmCFP tool, which automates the OOmCFP procedure.
To develop the OOmCFP tool, a set of aspects has been taken into account. These
aspects are related to the performance of the functional measurement process and
implementation aspects. The performance aspects are focused on the reduction of the
measurement time. The implementation aspects consider a correct execution of the
measurement process avoiding the overflows that can be produced by the measure-
ment of large OO-Method conceptual models.

A measurement example demonstrates how the OOmCFP tool is more efficient
than the measurements that are performed manually. This example also shows how
the OOmCFP tool can obtain precise measurements for the OO-Method conceptual
models.

A comparative analysis shows how a COSMIC-based approach, like OOmCFP,
provides a better measurement of the conceptual models that are used in an MDA
environment. This is because, in contrast to other FSM standards like IFPG FPA,
NESMA FPA or MARK II FPA, it allows the functional size measurement of multi-
layer applications (like the applications modeled with the OO-Method approach) from
different viewpoints.

Further work will include empirical studies of the reproducibility and the repeat-
ability of OOmCEFP. It also include the analysis of the rules presented in this work in
order to take into account different points of view (such as the human user viewpoint)
for the measurement of applications generated in MDA environments.

228

B. Marin, O. Pastor, and G. Giachetti

References

11.

12.

14.

15.

17.
18.
19.

20.

. Abrahio, S., Pastor, O.: Estimating the Applications Functional Size from Object-Oriented

Conceptual Models. In: International Function Point User Group Annual Conference (IF-
PUG 2001), Las Vegas, USA (2001)

Abrahdo, S., Pastor, O.: Measuring the functional size of web applications. International
Journal of Web Engineering and Technology (IJWET) 1(1), 5-16 (2003)

. Abran, A., Desharnais, J., Lesterhuis, A., Londeix, B., Meli, R., Morris, P., Oligny, S.,

O’Neil, M., Rollo, T., Rule, G., Santillo, L., Symons, C., Toivonen, H.: The COSMIC
Functional Size Measurement Method, version 3.0 In GELOG, http://www.gelog.
etsmtl.ca

Abran, A., Pierre, N.: Function Points: A Study of Their Measurement Processes and Scale
Transformations. Journal Systems and Software 25(2), 171-184 (1994)

CARE Technologies, http: //www.care-t.com

Condori-Fernandez, N.: Un procedimiento de medicién de tamafio funcional a partir de
especificaciones de requisitos, Doctoral thesis, Universidad Politécnica de Valencia, Va-
lencia, Espaiia (2007)

Diab, H., Koukane, F., Frappier, M., St-Denis, R.: ncROSE: Automated Measurement of
COS-MIC-FFP for Rational Rose Real Time. Information and Software Technology 47(3),
151-166 (2005)

Giachetti, G., Marin, B., Condori-Ferndndez, N., Molina, J.C.: Updating OO-Method
Function Points. In: 6th IEEE International Conference on the Quality of Information and
Communications Technology (QUATIC 2007), Lisboa, Portugal, pp. 55-64 (2007)
IFPUG: International Function Point Users Group, http://www.ifpug.org

. IFPUG, Function Point Counting Practices Manual Release 4.1, International Function

Point Users Group, Westerville, Ohio, USA (1999)

ISO, International vocabulary of basic and general terms in metrology (VIM), Interna-
tional Organization for Standardization, Geneva, Switzerland (2004)

ISO, ISO/IEC 14143-1, Information Technology — Software Measurement — Functional
Size Measurement — Part 1: Definition of Concepts (1998)

. ISO, ISO/IEC 19761, Software Engineering — CFF — A Functional Size Measurement

Method (2003)

Kitchenham, B.: Counterpoint: The Problem with Function Points. IEEE Software Status
Report 14(2), 29-31 (1997)

Lehne, A.: Experience Report: Function Points Counting of Object-Oriented Analysis and
Design based on the OOram method. In: Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA 1997), Atlanta, Georgia (October 1997)

. Marin, B., Condori-Ferndndez, N., Pastor, O., Abran, A.: Measuring the Functional Size of

Conceptual Models in a MDA Environment. In: The 20th International Conference on Ad-
vanced Information Systems Engineering (CAiSE 2008), Montpellier, France (accepted,
2008)

OMG: Web site of MDA, http: //www.omg.org/mda/

OO-Method Group Web Site, http://oomethod.dsic.upv.es

Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice. Springer, Heidelberg
(2007)

Pastor, O., Gémez, J., Insfran, E., Pelechano, V.: The OO-Method Approach for Informa-
tion Systems Modelling: From Object-Oriented Conceptual Modeling to Automated Pro-
gramming. Information Systems 26 (2001)

21.

22.

23.

24.

Automating the Measurement of Functional Size 229

Pastor, O., Hayes, F., Bear, S.: OASIS: An Object-Oriented Specification Language. In:
Loucopoulos, P. (ed.) CAiSE 1992. LNCS, vol. 593, pp. 348-363. Springer, Heidelberg
(1992)

Poels, G.: Functional Size Measurement of Multi-Layer Object-Oriented Conceptual Mod-
els. In: Proceedings of 9th International Object-Oriented Information Systems Conference,
Geneva, Switzerland, pp. 334-345 (2003)

Tavares, H., Carvalho, A., Castro, J.: Medicao de Pontos por Funcao a partir da Especifi-
cao de Requisitos. In: Workshop on Requirements Engineering, Universidad Politécnica
de Valencia, Spain, November 2002, pp. 278-298 (2002)

Uemura, T., Kusumoto, S., Inoue, K.: Function Point Measurement Tool for UML Design
Specification. In: 5th International Software Metrics Symposium, IEEE METRICS, Flor-
ida, USA, pp. 62-71 (1999)

How Does a Measurement Programme Evolve in
Software Organizations?

Lasse Harjumaa, Jouni Markkula, and Markku Oivo

University of Oulu, Department of Information Processing Science
P.O. Box 3000
FIN-90014 OULUN YLIOPISTO
{lasse.harjumaa, jouni.markkula, markku.oivo}@oulu.fi

Abstract. Establishing a software measurement programme within an organiza-
tion is not a straightforward task. Previous literature surveys have focused on
software process improvement in general and software measurement has been
analysed in case studies. This literature survey collects the data from separate
cases and presents the critical success factors that are specific to software
measurement programmes. We present a categorization of the success factors
based on organizational roles that are involved in measurement. Furthermore,
the most essential elements of success in different phases of the life cycle of the
measurement programme are analysed. It seems that the role of upper manage-
ment is crucial when starting measurement and the individual developers' im-
pact increases in the later phases. Utilization of the measurement data and
improvement of the measurement and development processes requires active
management support again.

Keywords: Software measurement, software metrics, software process.

1 Introduction

Software measurement is an area that covers a wide variety of activities in software
engineering. Defining data that is needed, implementing tools and procedures to col-
lect the data and analysing the data are some of the tasks that are needed. Tradition-
ally, the term "metrics" has been used to characterise source code in a quantifiable
manner. Metrics are also used to estimate quality, schedule and resource requirements
of software development efforts. Metrics and measurement are essential in order to
manage the software development work efficiently, and metrics also enable bench-
marking and exact representing of functional requirements. [1]

The main objective of measuring software development is to support managerial
decision making. Producing quality software that is delivered to customers on time is
a challenging task, and predicting effort that is needed to produce the software is even
more challenging. Incorrect estimates of code quality or development lifecycle may
cause significant financial losses to the producer organization. Accurate metrics data
that is at all times available to managers is extremely important in software process
management and improvement [2].

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 230 2008.
© Springer-Verlag Berlin Heidelberg 2008

How Does a Measurement Programme Evolve in Software Organizations? 231

Even though the software metrics and measurement has been actively studied for
decades, it still seems that many software organizations do not actively collect and
analyze metrics data. Fenton and Neil [3] state that much of the metrics research is
irrelevant to practitioners because of irrelevant scope or irrelevant content. While
academia is mostly interested in studying very fine-grained and code-related metrics,
industry would need more process improvement-related metrics that are easy to col-
lect and use.

Existing software process literature surveys [4] have focused on software process
improvement in general and software measurement has been analysed mostly in case
studies. This paper is based on a wide literature survey and presents the critical suc-
cess factors that are specific to software measurement programmes. This paper aims
at contributing to the measurement research by clarifying the requirements for a suc-
cessful measurement programme introduction and evolution. A chronological view to
measurement efforts in different phases of the framework implementation is provided.
In addition, a categorization outlining requirements from different organizational
perspectives is presented in order to efficiently manage the design and implementa-
tion of a measurement programme.

The rest of the paper is organized as follows: Section two introduces the research
approach that has been utilized in this review. Section three summarizes the related
work, general-level success factors of a measurement programme, and introduces the
categorization that has been established based on the factors found in literature. In
section four, the success of measurement is reflected to the categorization. Further-
more, a time scale of the factors and related organizational roles is sketched. Section
five discusses the limitations and implications of this review, and finally sectin six
concludes the work.

2 Research Setting

In this paper, we will analyze the requirements for successful measurement program
implementations. We aim at finding the essential elements of the measurement suc-
cess at different organizational levels. Furthermore, the study aims at describing how
the involvement of people in different organizational roles changes while the meas-
urement programme evolves within the organization.

The study consists of a two-phase literature review and a meta-analysis of the rec-
ognized software measurement success factors. For finding and categorizing the suc-
cess factors, a set of well-known and frequently cited research articles is surveyed.
The factors listed in different reports are quite widely agreed, and a limited selection
of articles was considered to be adequate in order to get a comprehensive view on the
substance.

The literature review is continued by searching real industry case studies on meas-
urement programme implementations. Overlapping material was avoided, i.e. articles
that were used in success factor categorization, were not used for this analysis. Issues
that seemed to arise most often in these experience reports were categorized accord-
ing to the success factor classification. In addition, involvement of people working in
different organizational levels will be studied, and the intensity of involvement in

232 L. Harjumaa, J. Markkula, and M. Oivo

different phases is evaluated in order to find out the how measurement efforts should
be targeted.

Cases for the analysis were selected from the online databases of IEEE, ACM, El-
sevier and Springer. Articles had to satisfy the following search criteria: 1) Abstract
section of an article must indicate terms “software” and either “measurement” or
“metrics” and 2) the abstract section must indicate that a “case study” is reported. The
Springer database does not support searching abstracts, so the search was based on
paper title. This search resulted in total of 251 articles in the four databases. After
checking the titles and abstracts of the articles, 21 articles were chosen for closer
look. Especially the result set from the IEEE database includes a number of articles
that were presenting measurement techniques and individual metrics when compared
to our approach of looking for practical experiences in implementing and sustaining
measurement programmes. Naturally, some papers concerned other fields than soft-
ware engineering. Articles that were either technical (no practical experiences) or not
software related were omitted. If the same case was identified in two databases, it was
taken into account only once. Articles that concerned the whole measurement pro-
gramme rather than single metrics were preferred. Both conference articles and jour-
nal papers were accepted. The year span of the selected articles was 1993-2006.
Table 1 summarizes the search results of the material.

Table 1. Search results from scientific publications databases

ACM | Elsevier IEEE Springer Total
Total number | 53 32 137 29 251
of articles
Examined 5 2 8 6 21
articles

Thus, the second phase of the literature review is based on 21 case studies report-
ing both successful and failed measurement and metrics implementations.

3 Success Factors for a Measurement Programme

The literature concerning measurement programme implementations gives quite con-
curred view of the requisites for successful metrics adoption. This review provides a
synthesis of the most crucial success factors and outlines a grouping based on typical
organizational roles that are involved in measurement.

3.1 Success Factors

When analysing successes and failures of metrics programmes, one must understand
that implementation of such a programme is not a simple activity of utilizing a fixed
method or tool within the organization. Implementation and adoption of a measurement
framework does not guarantee its routine use in an organization. Resources and long-
term commitment are required to gain the maximum benefits of the measurement [5].

How Does a Measurement Programme Evolve in Software Organizations? 233
Table 2. Success factors of a metrics programme
o0 o
= i
S = 12 |z
— S o0 =
o~ N 8 \O N
— = =~ = 18 |=
o~ 5] = I~ Qo A
Q|2 = |5 |9 |& |4
=) < T |© =) = — > “
— = = [— = <
= = o — o= = S
— = -~ < o
5] S |0 |— | O 5} S PSS
= o) RSN
= |I= | |35 |8 |g |E —
4 S g |- s = s |3 =
g |5 5 |8 |z |8 |E |[¥ |5
2 08 g an kel [} A 0] -E —
) — 172} 5} =) Y o = 2 <
&= = = 9} S =4 &-4 L o =
& Qo = j= 5} O = L=)
Success factor I~ T |z E 8 a7 |8 |Z |6
Upper management support X X X
Adequate resources X | X X | X X
[Establishing reward system X X
Incremental implementation X | X | X | X
Constant improvement of the metrics| x | x X
[programme
Aligning with business goals X X
Added value to organization
Measurement data is used at organ-| x | X | X X X | X
izational level
Capability to change X X | X
Commitment from project managers | x
Process transparent to developers X | X | X X
Well-planned framework X | X | X | X | X
Use of existing metrics materials X X
Use of external gurus X
Process ownership X X
Usefulness of metrics data X X X X
Measurement data is used in projec x | X | X X | X X | X
management
IFeedback to developers X | x | X X X
|Arranging training X
[Ensuring integrity of data X X
Developer involvement during im- X X
lementation
Providing feedback for improve- X X | x X | X
ments
IData accuracy X | X X
|Automated data collection X X X
[Effortless process X X

234 L. Harjumaa, J. Markkula, and M. Oivo

The adaptation of a measurement framework cannot be judged merely as a success
or a failure. Even though the actual data collecting activities may be implemented
properly and seem to work well, the data may be useless if the management is not
motivated to utilize it in decision-making [6]. Furthermore, objectives of the meas-
urement are defined differently in different organizations.

Literature indicates that the high-level success factors in metrics programme im-
plementations are quite similar in different cases, although the actual implementation
is always unique. However, one must notice that research on metrics programmes is
typically reported on “case basis”, which means success factors have been drawn
from a single organization. Another stream of research is to compare metrics pro-
grammes in two or more organizations, e.g., [7]. Table 2 summarizes the typical
success factors reported in reviewed case studies. The table does not include all the
material found in the survey. Instead, it provides a comprehensive overview of the
well-known and widely agreed success factors.

The definition of success factors for a measurement programme is highly context
dependent. For example, introducing measurement can lead into establishment of the
measurement capability or the measurement results can provide useful information
and better understanding of the underlying process, development work practices and
product quality. We have taken a value perspective; a measurement programme is
considered to be successful when it provides added value to the organization and ROI
of the measurement programme is clearly positive. Measurement does not always
need to lead to SPI type improvements and it is important to distinguish between
improvement goals and measurement goals. Even though they are often related, they
are logically different. Thus, SPI success factors are not necessarily exactly same as
measurement success factors.

Introducing metrics always involves change. Integrating a metrics programme into
old practices or refusing any alterations may decrease the probability of achieve the
benefits of metrics [13]. This change should be planned. Several studies show that
measurement practices should be introduced in deliberate way, including [7, 8, 10]. A
dedicated team or a metrics project with clear objectives provides good support for
metrics introduction [7]. Setting up the procedures for collecting and analysing the
metrics is on the responsibility of the management. Mandating use of metrics without
making necessary adjustments to underlying working procedures will most probably
cause the metrics programme to fail [5].

Organization’s capability to introduce changes into its working procedures and
adopt new practices seems to be a critical success factor according to several case
studies [5, 6, 8, 10, 14, 15]. In addition to collecting metrics, an organization needs to
react to the measurement results. Thus, organizational flexibility helps to achieve
benefits from the measurement. Usually the upper management initiates strategic
organizational changes while middle management can introduce minor changes. For
example, Gopal et al. [5] state that structural changes may be mandatory when intro-
ducing a measurement programme. Data collection always affects on underlying
working methods, at least in form of new data collection tools. Furthermore, when
utilizing the measurement data, it is expected that development processes are trans-
formed into more efficient shape.

Measurement should be started with a simple set of metrics [8, 9]. Attempting to
collect every possible piece of data at once will most likely decrease the quality of

How Does a Measurement Programme Evolve in Software Organizations? 235

data and become burdensome for the personnel. A good starting point is to collect and
analyse the data that is already available in some form [8]. The scope and amount of
the metrics can be increased later [7, 8].

A case study by Iversen and Mathiassen [8] implies that the better the employees
recognize the purpose and importance of the data, the better is the quality of the data.
Tying data collection and reporting with bonus system may improve the data quality
[8] but is normally not a good approach in process improvement. However, data
should never be used directly against developers and those who report the data. Con-
fidentiality of measures is important. Measures of individuals should automatically be
available only for those who the data is directly related to. Wider availability has to
be agreed with data owners and relevant stakeholders. Results of the measurement can
be published, but with care and agreements with the data owners. Metrics provide
valuable feedback for developers and teams when they are based on accurate data [6,
8]. Furthermore, measurements should generate as little extra work as possible for the
developers [6].

The single most important issue is the use of data [16]. If the data is not used, the
whole metrics program will probably turn into a burden that does not help in process
improvement. For example, Frederiksen and Mathiassen [14] provide practical sug-
gestions for validating the usefulness of metrics from managerial viewpoint. Further-
more, if the data reveals deficiencies, the organization must take corrective actions
based on the measurement [6, 7]. Also individual developers should be aware that the
data they provide is appreciated and really used. Usefulness and practical utilization
of the metrics data traditionally means that the results of the measurement should be
made visible. In addition, measurement should help a software development company
to achieve financial or other benefits over its competitors. Thus, measurement should
generate value for the organization [13].

Niessink and van Vliet [19] present five different cases of measurement program
implementations and analyse the reasons why some of them were more successful
than others. They list several success factors that help in achieving organizational
goals, thus creating additional value to the organization. The factors they have identi-
fied are 1) measurement data is used for reporting purposes 2) measurement data can
be used to monitor performance of the organization 3) an organization can learn from
the measurement data 4) measurement can help in achieving performance improve-
ment 5) an assessment if the organization meets a set of norms, or benchmarking, can
be checked from measurement data (“organizational health”) and 6) measurements
help in determining how well organizational goals are achieved and identifying if new
directions should be taken (“navigation”) [19].

Support for the measurement has to be concrete. When initializing the measure-
ment programme, it must be ensured that measurements are based on real needs, only
meaningful data is collected and proper tools are provided for those who collect, store
and analyze the data. Involved people should also be provided adequately time to
report their data accurately. Methods like Goal-Question-Metric (GQM) and its fur-
ther development GQM-+strategies have been developed and successfully used to
tackle these issues [6, 12, 16, 17, 18, 27]. GQM approach can be used to establish a
goal-driven measurement system, starting with definition of organizational goals,
measurement goals, and then posing questions to address the goals, and finally identi-
fying appropriate metrics that provide answers to the questions [18].

236 L. Harjumaa, J. Markkula, and M. Oivo

3.2 Factor Grouping

The list of agreed success factors is quite long and there is certainly some overlapping
between separate items. In order to understand the basic elements of success, we will
categorize the factors into a more readable form. We will look at the success factors
from three different viewpoints. This classification is based on the assumption that
effort and involvement that is required from people working in different roles within an
organization to achieve effective measurement programme is different. For example,
top management is unlikely involved in data collection, and individual developers
cannot provide financial resources for running the metrics programme. Thus, we will
use the following categorization for classifying the factors for successful measurement.

1) Top management. The upper management is responsible for identifying changes
in business environment, setting corresponding business goals for the organization
and directing the organization according to the current strategy.

2) Middle management. Managers of specific divisions or processes are responsi-
ble for making more fine-grained tactical decision in order to follow the organiza-
tional strategy. They put the organization-level business goals into practice by setting
concrete goals for products and projects.

3) Developers. Individual designers and coders form the operational level that ac-
tually creates the products and projects. They also produce the data that is needed for
measurement. Interestingly, it is developer related actions and work products that are
measured and developers themselves are usually mainly responsible for collecting the
measurement data.

In addition to organization-level categorization, the factors can be grouped into
five high-level maxim that capture the essence of the measurement implementation.
These core topics can be named as a) commitment, which is required from everybody
that is involved, b) planning, that is necessary in defining and managing the process,
c) data utilization, which means that people know that the measurement data is used
to guide and manage the organization, d) training & knowledge, which ensure that
everybody understand the meaning of different metrics and knows how to report and
interpret the data, and finally e) tool support to make the measurement process effort-
less to operate. We have based the categorization on the success factors found in lit-
erature to structure the main high-level elements of success. Figure 1 illustrates these
categorizations. On the left side, all the success factors are grouped from the organiza-
tional viewpoint. Some items are listed more than once, as they relate to more than
one organizational level (“measurement data is used”, for example). On the right side,
the grouping into five top-level values is presented with links to related original suc-
cess factors.

There are several issues that need to be paid special attention in all three organiza-
tional levels. Two-way feedback, commitment and real use of the data are factors that
cross the levels. Ensuring these necessities will also increase understanding of the
measurement and transparency of the programme. Training, proper understanding of
metrics and tool support for metrics collection and analysis are mostly connected to
the operational level, while more abstract issues, commitment and planning are im-
portant from the management point of view. Data utilization concerns basically eve-
rybody in the organization.

How Does a Measurement Programme Evolve in Software Organizations? 237

organizational upper management support

level / top adequate resources
mgmt

establishing reward system

incremental implementation

constant improvement of the metrics programme
aligning with business goals

added value to organization

measurement data is used

organization’s capability to change

project commitment from project managers

g;ﬁ;l/e process transparent to developers

mgmt well-planned framework

use of existing metrics materials

use of external gurus

process ownership

usefulness of metrics data

measurement data is used

feedback to developers

arranging training

ensuring integrity of data

individual involvement during implementation
:‘;;’fé /i; pors providing feedback for improvements

data accuracy

automated data collection

Fig. 1. Categorization of software measurement success factors

To summarize, measurement involves several other stakeholders at different organ-
izational levels. Project managers are the main persons responsible for keeping the
measurement in operation and the work of individual developers is most likely to
change when the metrics collection is started.

4 Involvement in Different Phases of Measurement
Implementation

We suggest that not all organizational roles are similarly involved in the measurement
programme implementation in different phases. Examination of the timeline from the
measurement programme initiation to its operation helps to understand, who should
act and when in order to succeed.

4.1 Viewpoints to Measurement Case Studies

Selected articles were categorized according to the five high level success factor cate-
gories. Attention was paid to the most important contributions of the articles by
searching the main theme and the most emphasized lessons learnt from each represen-
tation. Typically each study emphasized a specific viewpoint to the software

238 L. Harjumaa, J. Markkula, and M. Oivo

measurement field and it was easy to categorize the article accordingly. Some of the
papers have been set into more than one category.

Planning is considered very important and many of studies focused on providing
guidance for the planning phase. For example, Latum et al. [16] and Berander and
Jonsson [20] report cases in which GQM approach has been used for the measurement
definition. Proper planning the measurement framework and prioritization of the
measurement goals may help in keeping the size of the measurement framework man-
ageable [20].

The most studied facet is tool support for data collection, analysis and visualiza-
tion. According to Johnson et al. [21], developers may not be willing to adopt metrics
tools if they have to switch from the development environment to another set of tools
for recording metrics. Automated tools help the individual developers’ metrics collec-
tion process, but on the other hand, set new requirements on development tools. Fur-
thermore, developers may feel that their privacy is threatened when data is recorded
automatically [21].

Even though commitment of the senior management is recognized as a crucial suc-
cess factor, aspects of people’s attitudes towards measurement programmes have been
little investigated. Furthermore, upper management commitment is usually listed
among the most widely agreed success factors, but commitment is needed in every
level in order to ensure accurate and adequate measurement data.

Measurement-related knowledge is another aspect that hardly any case study ad-
dresses, although training is obviously needed when introducing new methods and
tools within the organization. Furthermore, understanding and knowledge of the
measurement process develops over time in both individual and organizational level.
It would be important to understand how the underlying measurement programme
works and how the data can be explored in order to improve the measurement [22].

Table 3 summarizes the number of research articles focusing on different view-
points to software measurement.

Table 3. The number of articles focusing on different measurement viewpoints

Planning 6
Tools 11
Commitment 2
Training & knowledge 1
Data utilization 8

During the analysis, it became evident that most of the research focuses on specific
metrics, defining new metrics and implementations of tools for metrics collection and
representation. There are, however, a number of articles describing measurement
programme implementations. Especially interesting are reports that analyze possible
reasons for a failure of measurement programme introduction. It is probably easier to
detect absence of a particular success factor than its presence.

How Does a Measurement Programme Evolve in Software Organizations? 239

4.2 Measurement Evolution

Establishing a software measurement programme is not a straightforward task. Meas-
urement process needs to be introduced carefully and maintained actively in order to
keep it running and effective. Adoption of software measurement tools and proce-
dures is unlikely to happen instantaneously. Implementation of the measurement pro-
gramme usually requires defining, designing and implementing the appropriate tools
for collecting and analysing data. This series of tasks and organizational processes
typically follows the stages in innovation diffusion models describing the adoption of
a new idea within an organization. Innovation diffusion is a widely studied theory in
the information systems field describing how a new idea develops in an organization
in stages. Rogers [23] has entitled these phases as knowledge, persuasion, adoption
and routinization.

Another way looking at the evolution of a software measurement programme is the
development of organizational memory. Measurement data describe the processes and
products of a company, thus they contribute significantly to the organization’s knowl-
edge, which developes and cumulates in time. Anand et al. [24] define the concept of
organizational memory as follows: “information and knowledge known by the or-
ganization and the processes by which such information is acquired, stored and
retrieved by organization members”. According to Stein [25], the organizational
memory process consists of the following phases: 1) acquisition, 2) retention, 3)
maintenance and 4) retrieval. When looked from the measurement viewpoint, acquisi-
tion phase is related to defining and operationalization of the needed metrics and
collection of the data. Retention phase concerns the data structures and systems, as
well as established practices of data collection. Maintenance phase relate to measure-
ment data quality and reliability management. Retrieval phase concerns availability of
the metrics for decision making, addressing as such also the analysis and presentation
methods, tools and practices of metrics usage.

Figure 2 illustrates these four phases and points out the observations that have been
emerged in the literature review. In the first phases, the upper management role is
most crucial, as planning, resourcing and necessary organizational changes can be
supplied only by management. When moving towards latter phases, operational roles
are more important, because it depends heavily on developers and project managers,
how accurate the data is - or if it is collected at all.

For example, Gopal et al. [5] stress the role of upper management in guiding the
metrics framework implementation and providing resources for establishing the
measurement successfully. The management role in adaptation is crucial, as it may be
required to introduce structural changes within the organization [5]. If there are organ-
izational and managerial problems, metrics programme will fail more likely than in
well-managed organizations [15].

Even a well-planned metrics framework can result in a failure, if the data is not
used to initiate improvements in organization-level software processes, as a case re-
ported in [19] suggests. Another case in the same article shows that in addition to
rigorous implementation, data integrity needs to be ensured during the operation of
measurement.

240 L. Harjumaa, J. Markkula, and M. Oivo

> Acquisiti0|> Retention>> Maintenan> Retrieval >

Proper planning
is needed

Outside expertise
may be beneficial

The role of upper
management is
emphasized

Adaptability is
required from the
organization in
order to find out
“the own way” to
measure

Upper management
support still needed

Project level important

Communication and
publishing are
important
Commitment from
everybody

Tools are useful
Developers and

project management
run the process

Data used in

all levels in the
organization
Two-way feedback

Analysis tools

Upper management
initiates SPI

Developers use the

data

Fig. 2. The phases of measurement programme implementation

The case of Contel Corporation [6] demonstrates that streamlined data collection
and analysis is necessary to achieve good results from measurement. Daskalantonakis
[26] lists guidelines for data collection and interpretation and automated data gather-
ing tools among the most important success factors in Motorola. It seems that without
proper tools measurement may become too strenuous.

The main issue in keeping the measurement programme alive is its usefulness. Ni-
essink and van Vliet [19] state that a measurement program should create value for
the organization. This means that the data gathered in measurement must be used in a
meaningful way. Positive influence in development costs, developer productivity or
customer feedback is the best motivators to keep the measurement running.

The change in software engineering industry is quite rapid. As the markets change,
development organizations' business goals will change. Metrics and measurement
should be linked to the business goals of an organization to help in high-level decision
making [27]. Thus, changes in the business and organizational goals should be re-
flected in the measurement. If metrics that are collected are not relevant, they are
useless. Furthermore, criteria for success or failure can be different in different busi-
ness situations.

Upholding a metrics framework is quite similar to keeping software process im-
provement continuous and running. Adequate resourcing, appropriate people roles
and constant, visible feedback are necessities of success. Similar to SPI, the attitude
of upper management in the beginning reflects to the later phases and the motivation
of individual employees, who have a vital role in the operational phase.

5 Discussion

The main contribution of this study for practitioners is the model describing software
measurement programme evolution. Paying attention to the typical life cycle of a
metrics programme and targeting resources according to the involvement required by

How Does a Measurement Programme Evolve in Software Organizations? 241

top management, middle management or developers should help the organization to
manage the measurement and its implementation.

Related research work usually stresses the importance of upper management sup-
port but does not describe concretely, in which phases the management support is
most beneficial. Furthermore, we have arranged the success factors into two-level
hierarchy that gives either overview of the measurement-related issues or more de-
tailed list of the success factors. This helps to understand and direct the measurement
efforts into right direction in the organization.

For academia, our review provides a new view on categorizing and prioritizing the
well-known success factors. We would like to add organizational adaptability to the
list of success factors. Certain research articles on software metrics report the organi-
zation's capability to change as a critical success factor, and in a number of studies
this requirement can be observed implicitly. However, we would like to emphasize
the importance of this organizational capability. We also believe that organizational
aspects should be paid more attention to in software measurement research. The
measurement programme can be reflected to innovation diffusion, for example [5].
This paper utilizes the concept of organizational learning for describing the institu-
tionalization of a measurement programme. Life cycle model presented in this paper
is quite rough and needs further studying. Empirical, industrial cases for refining the
model and validating it are needed and we are planning to evaluate the metrics
frameworks used in software development companies towards our categorization and
life cycle model.

The analysis of measurement case studies also gives an overview, which aspects of
the field are most studied. As can be noticed, tool support collecting and analyzing the
metrics have been greatly emphasized in research, while training has been much less
addressed. This could be an indication of a need for further research.

The number of articles that reported real-life experiences in such detail that they
could be selected for the analysis was fairly low. More variety in the search criteria
would have, of course, increased the amount of material. However, even with this
magnitude, the evidence shows the directions that measurement research is going.

6 Conclusion

Establishing a software measurement programme is not a straightforward task. Meas-
urement process needs to be introduced carefully and maintained actively in order to
keep it running and effective. Adoption of software measurement tools and proce-
dures is unlikely to happen overnight. Implementation of the measurement pro-
gramme requires defining, designing and possibly implementing the appropriate tools
for collecting and analysing data.

The key factors for keeping a metrics programme alive and continuously improv-
ing include the proper use of the data and meaningful tools to enable easy collecting
and representation of the measurement results. Adjustment of the measurement ac-
cording changing business surroundings is necessary in order to keep the data valid
and meaningful.

Involvement of people working on different organizational levels varies in differ-
ent phases of the measurement programme life cycle. In the beginning, the role of the

242 L. Harjumaa, J. Markkula, and M. Oivo

top management is very important, as initiating the required resources and motivation
for use of metrics have to be ensured at the organizational level. Later on, when the
measurement process matures, the role of middle management becomes more empha-
sized for streamlined and efficient operation of the process. Along the way, motiva-
tion and knowledge of individual developers have to be ensured in order to gain accu-
rate and adequate data.

Further research is needed on the evolution aspect of a measurement programme in
order to efficiently guide and manage measurement-related efforts. Training, knowl-
edge and motivation of the people working with metrics have been rarely studied, yet
those are extremely important issues to understand. One interesting approach would
also be to contrast the measurement programme evolution with the maturity level of
the organization.

References

1. Kan, S.H.: Metrics and Models in Software Quality Engineering. Addison-Wesley, Read-
ing (1995)

2. Rainer, A., Hall, T.: A quantitative and qualitative analysis of factors affecting software
process improvement. Journal of Systems and Software 66(1), 7-21 (2003)

3. Fenton, N.E., Neil, M.: Software Metrics: Roadmap. In: Proceedings of The Future of
Software Engineering, pp. 357-370 (2000)

4. Dyba, T.: An empirical investigation of the key factors for success in software process im-
provement. Transactions on Software Engineering 31(5), 410-424 (2005)

5. Gopal, A., Mukhopadhyay, T., Krishnan, M.S.: The Impact of Institutional Forces on
Software Metrics Programs. IEEE Transactions on Software Engineering 31(8) 679-694
(2005)

6. Pfleeger, S.: Lessons learned in Building a Corporate Metrics Program. IEEE Software 10,
67-74 (1993)

7. Hall, T., Fenton, N.: Implementing Effective Software Metrics Programs. IEEE Soft-
ware 14(2), 55-65 (1997)

8. Iversen, J., Mathiassen, L.: Cultivation and Engineering of a Software Metrics Program.
Info Systems Journal 13(1), 3-19 (2003)

9. Briand, L., Differding, C., Rombach, D.: Practical Guidelines for Measurement-based
Process Improvement. Software Process Improvement and Practice 2(4), 253-280 (1996)

10. Dekkers, C.A.: The Secrets of Highly Successful Measurement Programs. Cutter IT Jour-
nal 12(4), 29-35 (1999)

11. Herbsleb, J.D., Grinter, R.E.: Conceptual Simplicity Meets Organizational Complexity:
Case Study of a Corporate Metrics Program. In: Proceedings o the International Confer-
ence on Software Engineering, pp. 271-280 (1998)

12. Kitchenham, B., Kutay, C., Jeffery, R., Connaughton, C.: Lessons learnt from the analysis
of large-scale corporate databases. In: Proceedings of the International Conference on
Software Engineering (ICSE 2006), pp. 439-444 (2006)

13. Niessink, F., van Vliet, H.: Measurements Should Generate Value, Rather than Data. In:
Proceedings of the IEEE Metrics Symposium, pp. 31-38 (1999)

14. Frederiksen, H.D., Mathiassen, L.: Information-Centric Assessment of Software Metrics
Practices. IEEE Transactions on Engineering Management 52(3), 350-362 (2005)

15. Berry, M., Jeffery, R.: An Instrument for Assessing Software Measurement Programs.
Empirical Software Engineering An International Journal 5(3), 183—-200 (2000)

20.

21.

22.

23.
24.

25.

26.

27.

How Does a Measurement Programme Evolve in Software Organizations? 243

. Latum, F., Solingen, R., Oivo, M., Hoisl, B., Rombach, H.D., Ruhe, G.: Adopting GQM-

Based Measurement in an Industrial Environment. IEEE Software, 78—-86 (1998)

. Basili, V., Weiss, D.: A Methodology for Collecting Valid Software Engineering Data.

IEEE Transactions on Software Engineering SE10(6), 728-738 (1984)

. Basili, V., Caldiera, G., Rombach, D.: Goal Question Metric Paradigm. In: Marciniak, J.J.

(ed.) Encyclopedia of Software Engineering, vol. 1, pp. 528-532. John Wiley & Sons,
Chichester (1994)

. Niessink, F., van Vliet, H.: Measurement program success factors revisited. Information &

Software Technology 43(10), 617-628 (2001)

Berander, P., Jonsson, P.: A goal question metric based approach for efficient measure-
ment framework definition. In: Proceedings of the Fifts ACM-IEEE International Sympo-
sium on Empirical Software Engineering (ISESE), pp. 316-325 (2006)

Johnson, P.M., Kou, H., Paulding, M.G., Zhang, Q., Kagawa, A., Yamashita, T.: Improv-
ing Software Development Management through Software Project Telemetry. IEEE Soft-
ware 22(4), 76-85 (2005)

Mendonga, M.G., Basili, V.R.: Validation of an Approach for Improving Existing Meas-
urement Frameworks. IEEE Transactions on Software Engineering 26(6), 484—499 (2000)
Rogers, E.M.: Diffusion of innovations, 4th edn. Free Press, New York (1995)

Anand, V., Manz, C.C,, Glick, W.H.: An organizational memory approach to information
management. Academy of Management Review 23(4), 796-809 (1998)

Stein, E.W.: Organizational memory: review of concepts and recommendations for man-
agement. International Journal of Information Management 15(2), 17-32 (1995)
Daskalantonakis, M.K.: A Practical View of Software Measurement and Implementation
Experiences Within Motorola. IEEE Transactions on Software Engineering 18(11), 998—
1010 (1992)

Basili, V., Heidrich, J., Lindvall, M., Munch, J., Regardie, M., Trendowicz, A.: GQM +
Strategies - Aligning Business Strategies with Software Measurement. In: Proceedings of
the 1st International Symposium on Empirical Software Engineering and Measurement
(ESEM 2007), Madrid, Spain (2007)

A Fault Prediction Model with Limited Fault Data to
Improve Test Process

Cagatay Catal' and Banu Diri2

'"The Scientific and Technological Research Council of TURKEY,
Marmara Research Center, Information Technologies Institute
Kocaeli, TURKEY
cagatay.catal@bte.mam.gov.tr
2Yildiz Technical University, Department of Computer Engineering
Istanbul, TURKEY
banu@ce.yildiz.edu.tr

Abstract. Software fault prediction models are used to identify the fault-prone
software modules and produce reliable software. Performance of a software
fault prediction model is correlated with available software metrics and fault
data. In some occasions, there may be few software modules having fault data
and therefore, prediction models using only labeled data can not provide accu-
rate results. Semi-supervised learning approaches which benefit from unlabeled
and labeled data may be applied in this case. In this paper, we propose an artifi-
cial immune system based semi-supervised learning approach. Proposed ap-
proach uses a recent semi-supervised algorithm called YATSI (Yet Another
Two Stage Idea) and in the first stage of YATSI, AIRS (Artificial Immune
Recognition Systems) is applied. In addition, AIRS, RF (Random Forests) clas-
sifier, AIRS based YATSI, and RF based YATSI are benchmarked. Experimen-
tal results showed that while YATSI algorithm improved the performance of
AIRS, it diminished the performance of RF for unbalanced datasets. Further-
more, performance of AIRS based YATSI is comparable with RF which is the
best machine learning classifier according to some researches.

Keywords: Semi-supervised learning, software fault prediction, YATSI, artifi-
cial immune systems, AIRS.

1 Introduction

Software testing is one of the most crucial quality assurance activities for Software
Quality Engineering. Beyond testing, there are various quality assurance alternatives
that can be applied for high-assurance systems such as flight control software and
large-scale telecommunication software. Some of these quality assurance activities
are formal verification, fault prevention, fault tolerance, and fault prediction [1].
Software systems are becoming more and more complex. If we examine the evolu-
tion of Microsoft’s Operating Systems (OS) with respect to lines of code, we can
easily observe the complexity. According to Andrew Tanenbaum [2], Windows NT
3.1 had 6 Million lines of code (MLOC) in 1993 and Windows Vista Beta 2 had 50

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 244 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Fault Prediction Model with Limited Fault Data to Improve Test Process 245

MLOC in 2005. Mac OS X 10.4 has 86 MLOC [3], Debian 3.1 has 215 MLOC [2],
and Eclipse Europa release [4] has 17 MLOC. As we see from these large-scale pro-
jects, lines of code for today’s software can be expressed MLOC scale. According to
the Assistant Secretary of the U. S. Army, the systems of the future are likely to have
billions of lines of code. The Software Engineering Institute published a study report
in June 2006 after 12-month investigation to solve the ultra-large-scale system prob-
lem of U.S. Department of Defense [5]. According to the current and future complex-
ity of software systems, we can express that effective quality assurance activities are
required to improve the quality of software systems.

Software fault prediction activity mostly uses previous software metrics and fault
data to predict the fault-prone modules for the next release of software. This activity
creates a model applied before system testing in the next release of software. Some
tools [6] or experts may divide modules into three groups: High, Medium and Low
fault-prone. Some researchers [7] also predicted the number of faults for each module
of software. Halstead and McCabe metrics are method-level metrics and used as inde-
pendent variables. Chidamber-Kemerer metrics suite [8] is an example for class-level
metrics suite, but in this study we only applied method-level metrics. Various benefits
of software fault prediction models are explained below:

Identification of refactoring candidates,

Improvement for software testing process and quality,

Selection of the best design from alternatives by using class-level metrics,
Reaching a highly assurance system.

Mostly researchers used public datasets during their studies from NASA Software
Metrics Data Program. PROMISE repository stores public datasets from NASA [9].
We built prediction models using Artificial Immune Systems paradigm during our
Fault Prediction Research Program [10]. However, our models used previous software
metrics and fault data for modeling. When a company starts a new project type or does
not have any previous fault data, these models can not be built. Therefore, we need
new approaches under these circumstances. Zhong et al. [11] proposed unsupervised
learning approaches using Neural-Gas and K-means clustering algorithms in 2004.
Another challenging problem occurs when the company has few fault data. Supervised
learning approaches can not build powerful models with few fault data. One solution
can be using unlabeled software modules together with labeled data during learning.
This type of learning is known as semi-supervised learning. Some situations where we
need semi-supervised fault prediction models are given below [12]:

e During decentralized software development, some companies may not col-
lect fault data for their software components.

e Execution cost of data collection tools may be expensive.

e Company may not collect fault data for a version due to the lack of budget.

Seliya et al. [12] used Expectation-Maximization (EM) algorithm for this problem in
2004 and had comparable results with classification algorithms. Seliya at al.’s study [12]
is the first study in literature for semi-supervised software fault prediction. In this study,
we investigate RF, AIRS, and YATSI algorithms for semi-supervised software fault
prediction. YATSI algorithm has been proposed in 2006 by Driessens et al. [13], but

246 C. Catal and B. Diri

its performance has not been observed for unbalanced datasets specifically. It is a meta
semi-supervised algorithm and it has been evaluated using several datasets. The evalua-
tion parameter was accuracy in their study, but our study focuses on software fault pre-
diction problem which has unbalanced limited fault data. The reason why we use RF is
its high performance for software fault prediction as reported by Ma et al. [14] and Guo
et al. [15]. According to their study, RF is the best classifier among other machine learn-
ing classifiers that locate in WEKA [16] and See5 [17]. Furthermore, AIRS has been
chosen because of its high performance reported by Catal et al. [10]. In first stage of
YATSI, RF and AIRS have been applied.
We attempt to answer five questions given below in this study:

1) Does YATSI improve the performance of AIRS for semi-supervised fault
prediction?

2) Does YATSI improve the performance of RF for semi-supervised fault
prediction?

3) How accurately do AIRS based YATSI, RF based YATSI, RF, and AIRS algo-
rithms predict faults for semi-supervised fault prediction?

4) How does performance of algorithms change when percentages of labeled mod-
ules increase?

5) Does YATSI always increase the performance of classifiers?

To the best of our knowledge this is the first study to investigate Artificial Immune
Systems paradigm for semi-supervised learning. This study explores performance of
YATSI algorithm with unbalanced datasets for the first time. Furthermore, this study
is the second attempt which applies semi-supervised learning algorithms for software
fault prediction with limited fault data. This paper is organized as follows: the follow-
ing section presents the related work. Section 3 explains semi-supervised learning
approach. Section 4 introduces our modeling approach. Section 5 shows experimental
results. Section 6 presents the conclusions and future works.

2 Related Work

Most studies on software fault prediction focused on using a supervised learning ap-
proach. Genetic Programming [18], Decision Trees [19], Neural Networks [20], Na-
ive Bayes [21], Dempster-Shafer Networks [22], Case-based Reasoning [23], Fuzzy
Logic [24], and various different methods have been used as supervised learning ap-
proaches. We applied Artificial Immune Systems paradigm for software fault predic-
tion during our Fault Prediction Research Program [10]. Except Seliya et al.’s study
[12], we did not encounter any semi-supervised learning approach for software fault
prediction problem. Seliya et al. [12] used EM algorithm for this problem and labeled
the unlabeled data points iteratively. Missing values for EM algorithm were the class
labels of the unlabeled data. According to their study, EM algorithm provided compa-
rable results with classification algorithms. Driessens et al. [13] proposed a simple
semi-supervised learning algorithm called YATSI in 2006. In this study, we applied
AIRS algorithm in first step of YATSI algorithm. We investigated AIRS in first step
because its accuracy was high for software fault prediction during our researches [10],
[25]. Furthermore, we applied RF for the first step of YATSI because Ma et al. [14]

A Fault Prediction Model with Limited Fault Data to Improve Test Process 247

reported that RF always achieves better performance than other machine learning
algorithms. Guo et al. [15] observed that performance of the RF is better than Dis-
criminant analysis, logistic regression, and other machine learning algorithms that
locate in WEKA [16] and See5 [17].

3 Semi-supervised Learning

Supervised and unsupervised learning methods in machine learning are well-studied
subjects, not only in the context of the advanced algorithms, but also in terms of their
clear benefits. Supervised learning methods use a training dataset consisting of inputs
and their relevant labels to learn the input-output relationship. Unsupervised learning
methods do not use class labels and they are categorized into clustering and compo-
nent analysis groups [26]. However, collecting class labels is a time consuming, and
expensive process because this process requires human efforts to be able to label each
data point [27]. In speech recognition, recording speech is so cheap but labeling huge
amount of speech requires a human to listen all of the recorded data [28]. If we could
use unlabeled data together with labeled one for classification and clustering prob-
lems, we could prevent spending unnecessary time on labeling phase. Semi-
supervised learning area in machine learning is interested in building such algorithms
learning from labeled and unlabeled data. Genetic research, medical diagnosis, spam
email detection, bioinformatics, and computer vision are the major areas which there
are needs to explore semi-supervised algorithms.

Semi-supervised learning area can be categorized into two groups: semi-supervised
classification and semi-supervised clustering. Traditional machine learning classifiers
can not benefit from unlabeled data because they have not been designed for this
purpose. Therefore, we need some algorithms to enhance performance with unlabeled
data. Actually, semi-supervised learning concept is not a new idea. During 1960s,
self-training approaches have been proposed [29], [30], [31] and they are accepted as
the first methods which benefits from unlabeled data.

Some researchers are very optimistic to use semi-supervised classification algo-
rithms when there is not enough labeled data [32], but building an accurate semi-
supervised model requires a huge effort. Furthermore, using unlabeled data together
with labeled one for classification does not guarantee to improve the classifier per-
formance. Many publications [33], [34], [35], [36], [37] reported the performance
improvement of the classifiers when unlabeled data are used during IJCAI2001,
NIPS1998, NIPS1999, and NIPS2000 workshops [32]. Even though many researchers
showed that unlabeled data improves the performance of classifiers, there exist papers
reporting the performance degradation of classifiers [38]. Nigam et al. [34] showed
that degradation in classifier performance can result when the data do not conform to
the assumptions of the model. Baluja [33] and Shahshahani et al. [39] reported degra-
dation in imagine understanding. Bruce [40] observed degradation in Bayesian net-
work classifiers. Elworthy [41] explained that Hidden Markov Model with unlabeled
data can lead to degradation in classifier accuracy for some occasions. Some re-
searchers suggest that unlabeled samples should only be used if classifier performance
is not satisfactory [32]. Transductive inference, proposed by Vapnik [42], is similar to
semi-supervised learning. A general decision rule is not generated and only labels of

248 C. Catal and B. Diri

the unlabeled points are predicted [28] for transductive inference. We can divide the
existing semi-supervised algorithms into five groups:

1-) Self-training: A classifier uses a small portion of the labeled dataset for training
and the generated model is used to label the unlabeled data. The most confident data
points from the new labeled one are added to the training set and this process is re-
peated until convergence [27]. Yarowsky [43] used self-training for word sense dis-
ambiguation problem.

2-) Co-training: Co-training proposed by Blum et al. [44]. Features are split into two
sets and each classification algorithm is trained with one of these sets. Each classifier
predicts the labels of unlabeled data and teaches the most confident data points to the
other classifier. After this step, classifiers are again retrained and this process is re-
peated. Nigam et al. [45] made experiments to benchmark co-training with EM and
generative mixture models.

3-) Transductive Support Vector Machines (TSVM): Bennett et al. first implemented
TSVMs using an integer programming method [37]. Joachims [46] implemented a
combinatorial transductive approach called SVM-light TSVM and this is the first
widely used software in this area [27]. The aim is to label unlabeled data so that
maximum margin is reached on the available labeled data and new labeled data [27].
4-) Graph based Methods: Unlabeled and labeled data points are nodes and similarity
of examples are edges for graph based methods [27]. Blum et al. [47] and Zhu et al.
[48] proposed different graph based methods. Cluster kernels and Markov random
walks are some examples of graph based methods. The performance of these methods
depends on the graph structure and edge weights.

5-) Generative models: “It assumes a model p(x, y) = p(y) p(xly) where p(xly) is an
identifiable mixture distribution, for example Gaussian mixture models” [27].

4 Modeling Approach

5%, 10%, and %20 of datasets have been used as training sets and rest data have been
used as test sets. Arranging datasets with these percentages let us simulate the la-
beled-unlabeled data problem for software fault prediction using labeled datasets.

4.1 Immune Based YATSI Algorithm

Performance of YATSI is correlated with performance of the classification algorithm
used in first stage. For this reason, in first stage of YATSI we experimented with two
high performance algorithms, RF and AIRS, which have proved their performance for
software fault prediction. Ma et al. [14] and Guo et al. [15] showed that RF is the best
classification algorithm in WEKA and See5. Catal et al. [10] proved that AIRS pro-
vides remarkable results for software fault prediction. Immune based YATSI is a
special form of YATSI algorithm for software fault prediction and it deals only with
two classes, fault-prone and not fault-prone. Furthermore, adjustment factor for
YATSI, F, is chosen 1 in this algorithm. RF based YATSI is same with this algorithm
except the usage of AIRS in first stage. As in YATSI algorithm, the number of nearest
neighbor is fixed to 10 and KD-trees are used for nearest neighbor search. Weights of
the data points locating in labeled dataset are chosen 1 and weights of pre-labeled

A Fault Prediction Model with Limited Fault Data to Improve Test Process 249

points are smaller than 1. Weights of the pre-labeled points are calculated by dividing
the number of labeled data points to the number of unlabeled data points. The reason
of this difference is that we trust the labeled data points much more than pre-labeled
points. In YATSI algorithm, weights are summed for each class and the largest weight
identifies the class label of the data point. If it is in the nearest neighbors set, the only
factor is its weight [13]. The pseudo code for immune based YATSI is shown below
and it is similar to YATSI algorithm.

Algorithm Pseudo code for Immune-based YATSI algorithm
Input: Labeled data Dy, unlabeled data D,, nearest neighbor number K, N=ID||,
M=ID,l, unlabeled data point d,
Step 1: Use AIRS classifier to produce the model M, using D,
Use M, to pre-label data points of D,
Assign 1.0 weight to data points of D;and N/M weight to points of D,
Combine D, and D, to produce D
Step 2: For each data point, d,, inside D,
Search for the K-nearest neighbors to the d,
Sum the weights of the fault-prone K-nearest neighbors (Wg,)
Sum the weights of the not fault-prone K-nearest neighbors (Wg,)
Predict the label of the d, with the largest weight (Wy, or W,;fp)

4.2 Artificial Immune Recognition Systems

Artificial Immune Systems is a biologically inspired computing paradigm such as
Neural Networks, and Swarm Intelligence. This paradigm has been used for several
application areas such as robotics, data mining, and computer security. Watkins [49]
proposed Artificial Immune Recognition Systems (AIRS) algorithm for classification
problems. Resource-limited approach of Timmis et al. [50] and clonal selection ap-
proach of De Castro et al. [51] are applied in this algorithm. Brownlee [52] imple-
mented this algorithm in Java. Performance of AIRS algorithm has been examined for
various machine learning datasets [49]. Each data point in dataset is called antigen.
This algorithm has the following features [52]:

Self-regulatory: No need to identify a topology before training,
Performance: High performance for several datasets,

Parameter stability: No need to optimize parameters of the algorithm,
Generalization: No need to use all the data points for generalization.

The details of the algorithm are explained below [10]. Step 2, 3, 4 are used for each
data point in dataset and Step 1 and 5 are applied one time.

1-) Initialization: Dataset is normalized into [0, 1] interval. Affinity threshold vari-
able is computed.

2-) Antigen Training: Each data point in training set is provided to the memory pool
to stimulate the recognition cells in memory pool. Stimulation values are assigned to
the recognition cells and the cell which has maximum stimulation value is marked as
the best memory cell. This cell is used for affinity maturation and cloned, then mu-
tated. These clone cells are put into the Artificial Recognition Ball (ARB) pool.

250 C. Catal and B. Diri

Formula 1 depicts the stim formula. Formula 2 shows how to compute the number of
clones.

stim = 1- affinity . ey
numClones=stim*clonalRate*hypermutationRate. 2)

3-) Competition for limited resource: After mutated clones are added to the ARB
pool, competition starts. Antigen is used to stimulate the ARB pool and limited re-
source is computed with respect to stimulation values. ARBs with very limited re-
source or no limited resource are deleted from ARB pool. This step continues until
stopping criteria is met. Otherwise, mutated clones of ARBs are produced.

4-) Memory cell selection: Candidate memory cell which has a maximum stimulation
score from ARB pool is chosen. ARB is copied to the memory cell pool if ARB’s
stimulation value is better than the original best matching memory.

5-) Classification: Memory cell pool is used for cross-validation and K-nearest
neighbor approach is applied for classification.

4.3 Random Forests

RF is a classification algorithm that includes tens or hundreds of trees. Results of
these trees are used for majority voting and RF chooses the class who has the highest
votes. Breiman’s algorithm has been used in this study. “Each classification tree is
built using a bootstrap sample of the data, and at each split the candidate set of vari-
ables is a random subset of the variables.” [53]. “Each tree is constructed using the
following algorithm [54]:

1. Let the number of training cases be N, and the number of variables in the classi-
fier be M.

2. We are told the number m of input variables to be used to determine the decision
at a node of the tree; m should be much less than M.

3. Choose a training set for this tree by choosing N times with replacement from all
N available training cases (i.e. take a bootstrap sample). Use the rest of the cases
to estimate the error of the tree, by predicting their classes.

4. For each node of the tree, randomly choose m variables on which to base the
decision at that node. Calculate the best split based on these m variables in the
training set.

5. Each tree is fully grown and not pruned (as may be done in constructing a normal
tree classifier)”.

5 Experimental Study

5.1 System Description

The datasets which belong to NASA projects have been accessed from PROMISE
repository [9]. Each dataset has 21 metrics shown in Table 1. Table 2 depicts the
datasets and their properties.

A Fault Prediction Model with Limited Fault Data to Improve Test Process 251

Table 1. Metrics inside datasets

Attributes Information

loc McCabe's line count of code

v(g) McCabe "cyclomatic complexity"
ev(g) McCabe "essential complexity"
iv(g) McCabe "design complexity"

n Halstead total operators + operands
v Halstead "volume"

1 Halstead "program length"

d Halstead "difficulty"

i Halstead "intelligence"

e Halstead "effort"

b Halstead delivered bugs

t Halstead's time estimator

10Code Halstead's line count
10Comment Halstead's count of lines of comments
10Blank Halstead's count of blank lines
10CodeAndComment Lines of comment and code
uniq_Op Unique operators

uniq_Opnd Unique operands

total_Op Total operators

total_Opnd Total operands

branchCount Branch count of the flow graph

Table 2. Datasets and their details

Dataset Language LOC Project Fault % # of methods
KC2 C++ 43K Data processing 21 % 523

CM1 C 20K Instrument 21% 498

PC1 C 40K Flight software 7% 1109

JM1 C 315K Real time 19% 10885

5.2 Experimental Setting

Eclipse has been used for our software development environment. WEKA source
code from http://www.cs.waikato.ac.nz/~ml/weka/ website, MARSDEN project from
http://www.cs.waikato.ac.nz/~fracpete/marsden/ website, and Artificial Immune Sys-
tem based algorithms from http://wekaclassalgos.sourceforge.net website have been
downloaded and exported into a Java project in Eclipse. MARSDEN includes several
semi-supervised algorithms and YATSI is one of these algorithms. Since AIRS algo-
rithm is a 3" party classifier, it did not include Capabilities framework in its imple-
mentation. Therefore, we changed the source code of AIRS algorithm by overriding
getCapabilities() method inside AIRS1 class. After building the project, a jar file has
been created. During our experiments, we used Experimenter tool that locates in
WEKA. We added four datasets from Datasets panel and four algorithms from Algo-
rithms panel. We repeated experiment 20 times. Experiment type has been chosen as
“Train/Test Percentage Split (data randomized)” and “Train percentage” has been
used 5, 10, and 20 for our experiments.

252 C. Catal and B. Diri

5.3 Evaluation Criteria

Fault prediction datasets are mostly unbalanced and therefore, accuracy should not be
used as evaluation criteria for classifier performance. Bradley [55] used AUC to com-
pare several machine learning algorithms and showed that AUC has better properties
than accuracy. Ling et al. [56] suggested using AUC for comparing classification
systems and showed that AUC is more statistically consistent than accuracy for bal-
anced or unbalanced datasets. Therefore, we compared performance of classifiers
using AUC values.

5.4 Results and Analysis

We have conducted several tests and used J48, AIRS, and YATSI algorithms. Ma et
al. [14] used G-meanl, G-mean2, and F-measure for their benchmarking study. They
had marked the top three algorithms with respect to G-meanl, G-mean2, and F-
measure values. They showed that RF always has top three values for G-meanl, G-
mean2, and F-measure. However, in our experiments we could not use this approach
because no algorithm had this feature in these datasets. Therefore, we used ROC
value to compare the performance of algorithms as suggested in many studies. The
test results are given in Table 3 and 4. In tables, we show the accuracy and AUC val-
ues for algorithms.

We’ve observed degradation in RF performance when YATSI applied and noticed
that adding unlabeled data diminished the classification performance of RF for soft-
ware fault prediction. For example, AUC value of RF is 0.74 and AUC value of
YATSI (RF) is 0.71 for KC2 dataset with 5% labeled modules. Degradation for AUC
value points out the degradation of the classifier performance. Driessens et al. [13]
showed that YATSI often improves the performance of the base classifier, but RF
loses some of its accuracy with YATSI algorithm. However, their study did not focus
on unbalanced datasets. This study shows new evidence which points out the degrada-
tion in RF performance when used in first stage of YATSI for unbalanced datasets.
According to our experiments and Cozman et al. [32], very optimistic ideas to use
unlabeled data should be changed in machine learning community.

Our empirical results demonstrated that YATSI improves the performance of AIRS
based software fault prediction model. If you compare AUC of AIRS with AUC of
YATSI (AIRS), you can easily see that AUC becomes larger with YATSI. This shows
that the performance of AIRS improves. For example, AUC of AIRS algorithm is
0.65 and AUC of YATSI (AIRS) is 0.76 for KC2 dataset with 5% labeled modules.
Increase of AUC points out the improvement of the performance. Performance of RF
is better than AIRS and AIRS based YATSI algorithm. We need to improve the per-
formance of AIRS based YATSI algorithm for semi-supervised software fault predic-
tion. Supervised learning approach (Random Forests) provided better results than
semi-supervised learning approach (YATSI) for this study. Furthermore, more labels
usually lead to better results as in Driessens et al.’s study [13]. Therefore, 20% train-
ing set and 80% test set with RF is the best combination for this semi-supervised
software fault prediction problem.

A Fault Prediction Model with Limited Fault Data to Improve Test Process

Table 3. Performance results of algorithms on project JM1

Classifiers Dataset % labeled Accuracy AUC
AIRS IM1 5 72.41 0.55
YATSI(AIRS) IM1 5 73.89 0.59
RF IM1 5 78.74 0.64
YATSI(RF) IM1 5 77.95 0.61
AIRS IM1 10 72.53 0.56
YATSI(AIRS) IM1 10 75.39 0.62
RF IM1 10 79.28 0.66
YATSI(RF) IM1 10 78.66 0.63
AIRS IM1 20 72.44 0.56
YATSI(AIRS) IM1 20 76.62 0.63
RF IM1 20 79.75 0.68
YATSI(RF) IM1 20 80.16 0.65

Table 4. Performance results of algorithms on KC2, CM1, and PC1 datasets

253

Classifiers Dataset % la- Accuracy AUC
beled
AIRS KC2 5 78.69 0.65
YATSI(AIRS) KC2 5 79.13 0.76
RF KC2 5 80.26 0.74
YATSI(RF) KC2 5 79.88 0.71
AIRS KC2 10 77.53 0.67
YATSI(AIRS) KC2 10 79.19 0.73
RF KC2 10 81.34 0.78
YATSI(RF) KC2 10 81.09 0.75
AIRS KC2 20 77.50 0.69
YATSI(AIRS) KC2 20 80.24 0.77
RF KC2 20 82.22 0.79
YATSI(RF) KC2 20 82.16 0.77
AIRS CM1 5 87.93 0.53
YATSI(AIRS) CM1 5 87.40 0.55
RF CM1 5 88.35 0.59
YATSI(RF) CM1 5 87.63 0.56
AIRS CM1 10 83.34 0.54
YATSI(AIRS) CM1 10 85.29 0.59
RF CM1 10 88.68 0.63
YATSI(RF) CM1 10 87.72 0.58
AIRS CM1 20 82.10 0.55
YATSI(AIRS) CM1 20 85.43 0.61
RF CM1 20 88.59 0.65
YATSI(RF) CM1 20 88.97 0.60
AIRS PC1 5 88.25 0.54
YATSI(AIRS) PC1 5 89.77 0.59

254 C. Catal and B. Diri

Table 4. (continued)

RF PC1 5 92.32 0.65
YATSI(RF) PCl1 5 91.73 0.58
AIRS PC1 10 88.39 0.54
YATSI(AIRS) PC1 10 90.69 0.63
RF PC1 10 92.46 0.68
YATSI(RF) PC1 10 92.18 0.63
AIRS PC1 20 89.17 0.57
YATSI(AIRS) PC1 20 91.53 0.69
RF PC1 20 92.94 0.72
YATSI(RF) PC1 20 92.91 0.67

6 Conclusions and Future Work

Supervised learning approaches can not build powerful models with very limited fault
data. Therefore, unlabeled software modules should be used together with labeled
data during learning in this study. AIRS based YATSI approach was presented for
building semi-supervised software fault prediction problem. The datasets which have
been used in this study are M1, KC2, PC1, and CM. Our experiments answered to
our five research questions clearly. The answers to these questions are given below:

1) YATSI improves the performance of AIRS for semi-supervised fault prediction.
2) YATSI does not improve the performance of RF.

3) RF provides the best performance for semi-supervised software fault prediction.
4) Performance improves when percentages of labeled modules increase.

5) YATSI does not always improve the performance of classifiers.

This paper makes a number of contributions: First, as a new model, we propose
AIRS based YATSI classification system for semi-supervised software fault predic-
tion. According to our literature survey, this is the first semi-supervised algorithm
which uses Artificial Immune Systems paradigm. Second, we show evidence which
points out the degradation in RF performance when used in first stage of YATSI for
unbalanced datasets. Third, we show that YATSI improves the performance of AIRS
algorithm for unbalanced datasets. Forth, we present that more labels lead to better
results for semi-supervised software fault prediction. Last, semi-supervised learning
approaches are applied for software fault prediction with limited data as the second
attempt after Seliya et al.’s study [12]. For the future, we plan using feature reduction
techniques prior to learning step to improve the performance of AIRS based YATSI
algorithm. We plan using correlation-based feature selection algorithm because it
improved the performance of AIRS during our Fault Prediction Research Program.
We plan using different distance functions instead simple Euclidean distance. Fur-
thermore, co-training and self-training approaches can be used to improve the pro-
posed algorithm.

A Fault Prediction Model with Limited Fault Data to Improve Test Process 255

Acknowledgement

This project is supported by The Scientific and Technological Research Council of
TURKEY (TUBITAK) under Grant 107E213. The findings and opinions in this study
belong solely to the authors, and are not necessarily those of the sponsor.

References

10.

12.

14.

15.

17.

. Tian, J.: Software Quality Engineering: Testing, Quality Assurance, and Quantifiable Im-

provement. John Wiley and Sons Inc., Hoboken (2005)
http://en.wikipedia.org/wiki/Source_lines_of_code#_note-1 (Re-
trieved on 06-10-2007)
http://www.macintouch.com/specialreports/wwdc2006/ (Retrieved on
2007-10-06)

http://www.linuxdevices.com/news/NS9334092346.html (Retrieved on
2007-10-06)

Northrop, L., Feiler, P., Gabriel, R.P., Goodenough, J., Linger, R., Longstaff, T., Kazman,
R., Klein, M., Schmidt, D., Sullivan, K., Wallnau, K.: Ultra-Large-Scale Systems: The
Software Challenge of the Future. Carnegie Mellon University, Pittsburgh (2006)
http://www.ismwv.com (Retrieved on 2007-10-06)

Khoshgoftaar, T.M., Seliya, N.: Tree-based Software Quality Models for Fault Prediction.
In: Proc. 8th Intl. Software Metrics Sym., Canada, pp. 203-214 (2002)

. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object-Oriented Design. IEEE Trans.

on Software Eng. 20(6), 476-493 (1994)

Sayyad, S.J., Menzies, T.J.: The PROMISE Repository of Software Engineering Databases.
University of Ottawa, Canada (2005), http://promise.site.uottawa.ca/
SERepository

Catal, C., Diri, B.: Software Fault Prediction with Object-Oriented Metrics Based Artifi-
cial Immune Recognition System. In: 8th Intl. Conf. on Product Focused Software Process
Improvement, pp. 300-314. Springer, Latvia (2007)

. Zhong, S., Khoshgoftaar, T.M., Seliya, N.: Unsupervised Learning for Expert-Based Soft-

ware Quality Estimation. In: Proc. 8th Intl. Symp. on High Assurance Systems Engineer-
ing, Tampa, FL, USA, pp. 149-155 (2004)

Seliya, N., Khoshgoftaar, T.M., Zhong, S.: Semi-Supervised Learning for Software Qual-
ity Estimation. In: Proc. 16th IEEE Intl. Conf. on Tools with Artificial Intelligence, Boca
Raton, FL, pp. 183-190 (2004)

. Driessens, K., Reutemann, P., Pfahringer, B., Leschi, C.: Using Weighted Nearest

Neighbor to Benefit from Unlabeled Data. In: Proc. 10th Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pp. 60-69 (2006)

Ma, Y., Guo, L., Cukic, B.: A Statistical Framework for the Prediction of Fault-Proneness.
In: Advances in Machine Learning Application in Software Eng. Idea Group Inc. (2006)
Guo, L., Ma, Y., Cukic, B., Singh, H.: Robust Prediction of Fault-Proneness by Random
Forests. In: Proc. 15th Intl. Symp. on Software Reliability Eng., Brittany, France, pp. 417—
428 (2004)

. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques.

Morgan Kaufmann (2005)
http://www.rulequest.com/see5-info.html (Retrieved on 2007-10-06)

256

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

C. Catal and B. Diri

Evett, M., Khoshgoftaar, T., Chien, P., Allen, E.: GP-based Software Quality Prediction.
In: Proc. 3rd Annual Genetic Programming Conference, San Francisco, pp. 60-65 (1998)
Khoshgoftaar, T.M., Seliya, N.: Software Quality Classification Modeling Using The
SPRINT Decision Tree Algorithm. In: Proc. 4th IEEE International Conference on Tools
with Artificial Intelligence, Washington, pp. 365-374 (2002)

Thwin, M.M., Quah, T.: Application of Neural Networks for Software Quality Prediction
Using Object-Oriented Metrics. In: Proc. 19th International Conference on Software Main-
tenance, Amsterdam, The Netherlands, pp. 113-122 (2003)

Menzies, T., Greenwald, J., Frank, A.: Data Mining Static Code Attributes to Learn Defect
Predictors. IEEE Transactions on Software Engineering 33(1), 2-13 (2007)

Guo, L., Cukic, B., Singh, H.: Predicting Fault Prone Modules by the Dempster-Shafer Be-
lief Networks. In: Proc. 18th IEEE International Conference on Automated Software En-
gineering, pp. 249-252. IEEE Computer Society, Montreal (2003)

El Emam, K., Benlarbi, S., Goel, N., Rai, S.: Comparing Case-based Reasoning Classifiers
for Predicting High Risk Software Components. Journal of Systems and Software 55(3),
301-320 (2001)

Yuan, X., Khoshgoftaar, T.M., Allen, E.B., Ganesan, K.: An Application of Fuzzy Cluster-
ing to Software Quality Prediction. In: Proc. 3rd IEEE Symp. on Application-Specific Sys-
tems and Software Eng. Technology, vol. 85. IEEE Computer Society, Washington (2000)
Catal, C., Diri, B.: Software Defect Prediction using Artificial Immune Recognition Sys-
tem. In: IASTED Intl. Conf. on Software Engineering, Innsbruck, Austria, pp. 285-290
(2007)

Huang, T.M., Kecman, V.: Performance Comparisons of Semi-Supervised Learning Algo-
rithms. In: Proc. Workshop on Learning with Partially Classified Training Data, Intl. Conf.
on Machine Learning, Germany, pp. 45-49 (2005)

Zhu, X.: Semi-supervised learning literature survey (Technical Report 1530). University of
Wisconsin-Madison (2005), http://www.cs.wisc.edu/~jerryzhu/pub/ssl_
survey.pdf

Chapelle, O., Scholkopf, B., Zien, A.: SemiSupervised Learning. MIT Press (2006)
Scudder, H.J.: Probability of Error of Some Adaptive Pattern-Recognition Machines. IEEE
Trans. on Information Theory 11, 363-371 (1965)

Fralick, S.C.: Learning to Recognize Patterns without a Teacher. IEEE Trans. on Informa-
tion Theory 13, 57-64 (1967)

Agrawala, A.K.: Learning with a Probabilistic Teacher. IEEE Trans. on Information The-
ory 16, 373-379 (1970)

Cozman, F.G., Cohen, L., Cirelo, M.C.: Semi-supervised Learning of Mixture Models. In:
Intl. Conference on Machine Learning, Washington, USA, pp. 99-106 (2003)

Baluja, S.: Probabilistic Modeling for Face Orientation Discrimination: Learning from La-
beled and Unlabeled Data. In: Neural Infor. Proc. Syst., Colorado, USA, pp. 854-860
(1998)

Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text Classification from Labeled and
Unlabeled Documents using EM. Machine Learning 39, 103-144 (2000)

Miller, D.J., Uyar, H.S.: A Mixture of Experts Classifier with Learning based on Both La-
beled and Unlabelled Data. In: Neural Infor. Proc. Systems, Colorado, USA, pp. 571-577
(1996)

Goldman, S., Zhou, Y.: Enhancing Supervised Learning with Unlabeled Data. In: 17th Int.
Joint Conf. on Machine Learning, Stanford, pp. 327-334 (2000)

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

A Fault Prediction Model with Limited Fault Data to Improve Test Process 257

Bennett, K.P., Demiriz, A.: Semi-supervised Support Vector Machines. In: Proc. Ad-
vances in Neural information Processing Systems, pp. 368-374. MIT Press, Cambridge
(1999)

Cozman, F.G., Cohen, I.: Unlabeled Data can Degrade Classification Performance of Gen-
erative Classifiers. In: Florida Art. Intel. Research Society, Florida, pp. 327-331 (2002)
Shahshahani, B.M., Landgrebe, D.A.: The Effect of Unlabeled Samples in Reducing the
Small Sample Size Problem and Mitigating the Hughes Phenomenon. IEEE Trans. on
Geoscience and Remote Sensing 32, 1087-1095 (1994)

Bruce, R.: Semi-supervised Learning using Prior Probabilities and EM. In: IJCAI Work-
shop on Text Learning, pp. 17-22 (2001)

Elworthy, D.: Does Baum-Welch Re-estimation Help Taggers? In: 4th Conf. on Applied
Natural Language Processing, Stuttgart, Germany, pp. 53-58 (1994)

Vapnik, V., Chervonenkis, A.: Theory of Pattern Recognition, Nauka, Moscow (1974)
Yarowsky, D.: Unsupervised Word Sense Disambiguation Rivaling Supervised Methods.
In: Proc. 33rd Ann. Meeting of the Assoc. for Compt. Linguistics, pp. 189-196. Cam-
bridge (1995)

Blum, A., Mitchell, T.: Combining Labeled and Unlabeled Data with Co-Training. In:
Proc. 11th Annual Conf. on Computational Learning Theory, Wisconsin, pp. 92-100
(1998)

Nigam, K., Ghani, R.: Analyzing the Effectiveness and Applicability of Co-training. In:
Ninth Intl. Conf. on Information and Knowledge Management, Washington, pp. 86-93
(2000)

Joachims, T.: Transductive Inference for Text Classification using Support Vector Ma-
chines. In: Proc. Intl. Conference on Machine Learning, Slovenia, pp. 200-209 (1999)
Blum, A., Chawla, S.: Learning from Labeled and Unlabeled Data using Graph Mincuts.
In: Proc. 18th Intl. Conference on Machine Learning, Massachusetts, USA, pp. 19-26
(2001)

Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised Learning using Gaussian Fields
and Harmonic Functions. In: 20th Intl. Conf. on Mach. Learning, Washington, pp. 912—
919 (2003)

Watkins, A.: AIRS: A Resource Limited Artificial Immune Classifier, Master Thesis, Mis-
sissippi State University (2001)

Timmis, J., Neal, M.: Investigating the Evolution and Stability of a Resource Limited Arti-
ficial Immune Systems. In: Genetic and Evo. Compt. Conf., Nevada, pp. 40-41 (2000)

De Castro, L.N., Von Zubben, F.J.: The Clonal Selection Algorithm with Engineering Ap-
plications. In: Genetic and Evolutionary Computation Conference, pp. 3637 (2000)
Brownlee, J.: Artificial Immune Recognition System: A Review and Analysis, Technical
Report. No 1-02, Swinburne University of Technology (2005)

Jin, X., Bie, R.: Random Forest and PCA for Self-Organizing Maps based Automatic Mu-
sic Genre Discrimination. In: Intl. Conference on Data Mining, Las Vegas, pp. 414417
(2006)

http://en.wikipedia.org/wiki/Random_forest (Retrieved on 2007-10-06)
Bradley, A.P.: The use of the Area under the ROC Curve in the Evaluation of Machine
Learning Algorithms. Pattern Recognition 30, 1145-1159 (1997)

Ling, C.X., Huang, J., Zhang, H.: AUC: A Better Measure than Accuracy in Comparing
Learning Algorithms. In: Canadian Conference on Artificial Intelligence, pp. 329-341
(2003)

Big Improvements with Small Changes:
Improving the Processes of a Small Software
Company

Anu Valtanen and Jarmo J. Ahonen

University of Kuopio, Department of Computer Science, P.O.B 1627,
FI-70211 Kuopio, Finland
anu.valtanen@uku.fi, jarmo.ahonen@uku.fi
http://www.cs.uku.fi

Abstract. Majority of software companies are small. They have un-
derstood that it is crucial for their business to improve their software
processes but they often do not have the knowledge and resources to do
it. In this paper one way of introducing a process culture and improving
the processes of a small company is presented. The problems that a small
company has with its efforts towards better processes are also discussed
and simple but working solutions to them are introduced.

1 Introduction

Majority of software companies are small [I]. For example in Finland, all compa-
nies operating in both, data processing and software engineering fields, employ
less than 50 peopleﬂ. Small companies (SC’s) have understood that it is cru-
cial for their business to improve their processes and working methods but they
usually do not have the knowledge or resources to do it. Software process im-
provement (SPI) has been researched quite a lot since the late 1980’s when it
was proven that the quality of a software system can be improved by improving
the quality of the process used to develop it [2]. However, the research mostly
concerns SPI for the larger companies and there is not that much information
on the topic of SPI in smaller companies.

One of the main problems with smaller software companies is that they do
not have a process culture. In a process culture people’s customs and behaviours
are influenced by process-oriented thinking and process management principles.
The process is followed naturally. Process culture and process infrastructure
are needed to institutionalize processes [3]. When process culture is missing,
employees of the company do not have common and documented ways of work.
This leads to a situation where everyone does things their own way, and soon
ends up in a chaotic situation where no one is responsible. The most problematic
challenges in software industry are how to keep up with the contracted schedules
and how to produce quality software. It is shown that well defined and followed
processes help solving these problems [4].

! http://www.stat.fi (2006).

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 258 2008‘
© Springer-Verlag Berlin Heidelberg 2008

http://www.cs.uku.fi

Big Improvements with Small Changes 259

The first step in setting up a process culture and improving software processes
is modeling the current process [3]. This is the first brain teaser for a small
company. Where and how to start? Good way to start is to pick an SPI model to
support the efforts [3]. The problem is that most of the popular and widely known
SPI models and techniques, for example CMMI [5] and SPICE [@], are designed
for bigger companies who often have thousands of employees and therefore they
are hard to apply in an SC. Also ISO’s widely used quality standard ISO 9001
[7] is popular in SPI but suffers from same limitations as CMMI and SPICE.

There are some methods and models developed for the needs of smaller com-
panies, for example [§] [9] [10]. However, most of these models suffer from some
limitations. They are usually developed using some standard or known SPI model
and applying them requires some knowledge of the model they are based on.
Small companies often do not have that kind of knowledge and acquiring it de-
mands a lot of resources. In smaller enterprises one of the main problems with
SPI efforts is usually the lack of resources. To help small companies in their
process improvement efforts there are different kinds of approaches established,
for example ASPE-MSC [11] that combines the methods and models mentioned
above.

The improvement work of one small company’s processes is described in this
article. The starting situation was that the company had the urge to improve
their processes and ways of work but they did not know where to start. To
get going with the improvements their current processes were modeled and then
optimized. Modelings were carried out using a lightweight software process mod-
eling method which is founded on modeling the processes through a wall-chart
technique. The modeling technique does not require knowledge on any other SPI
model. The PISKO technique is described in [12], applied in [I3], [14], [I5] and
adapted in [T1], [16].

Important issues, when choosing process improvement model for a small com-
pany, are researched to be that the model relates to company’s business goals,
focuses on most important software processes and of course, gives maximum
value to the money invested. It is also perceived that the improvement technique
should be flexible and easy-to-use [17]. All these requirements can be considered
fulfilled in our technique of choice.

In this article the story of one small software company’s efforts of creating
process culture, modeling and improving their processes is told. The first part of
the article presents the research and the problems with improving the processes
of an SC. In the second part the improvement technique used is introduced.
After that the target company and the results and notions made during the
improvement project are presented. In the next section the resource needs of the
improvement project presented here are discussed. The obtained results were
interesting. The sole descriptions of the process and discussions about the ways
of work had a significant impact on the efficiency of the process. Through the
modelings and discussions the weak parts of the process were identified and the
processes were simplified, properly documented and made easier to follow.

260 A. Valtanen and J.J. Ahonen

2 Research Problem

The goal of this research was to see if it is possible to create a process culture,
meaning that the company has individual defined processes which are followed
automatically inside the company, and improve the processes of a small company
with an approach that requires minimal amount of resources from the target
company and leaves widely known SPI models and methods for future reference.
The starting situation being quite chaotic with the target company’s working
methods, the first step was to make their processes in such a condition that the
actual improvement work would be possible. Besides of researching if efficient
improvement could be done with a lightweight technique, using the expertise of
the target company’s employees, one of the main goals was to find a working
way to take advantage of the company’s small size while evolving the processes.
In other words, the research questions were:

— How to create a process culture in an SC?
— How to make efficient improvement happen with SC’s limited resources?

The current tendency to improve software processes is to use the widely known
standards and models like ISO 9001 [7], CMMI [5] and SPICE [6]. Using these
methods is not the best way to improve the processes of a small company because
of their often too heavy structure. For example, most problematic issues while
using ISO 9001 and CMMTI’s predecessor CMM in small companies are researched
to be their lack of guidance and action instructions [I8]. This presents a big
problem when typical situation in an SC is that they do not have special SPI
experts at their service. It either is not often possible for them to hire much
outside help in form of researchers because of limited resources. Therefore the
improvement projects are realistic only with lighter approaches.

Another problem, related to the lack of guidance and action instructions pro-
vided by the earlier mentioned methods, is that CMMI and SPICE do not com-
mit on how to improve the processes that are at initial level. It is not possible to
start the actual improvement work and strive for higher maturity levels of the
process if there are problems with the ground stones of the process. Especially
for a small company, it is hard to find a way to improve their processes from the
initial level in practice [19]. It is also said that the existing process models do
not help to benefit from the smallness of the companies [I8]. Smallness usually
means that the companies are more flexible, have faster reaction time and better
communication inside the organization than their bigger competitors.

Because of the problems adapting the widely known standards and methods
for the use of smaller comanies, there are quite a many alternative approaches
developed that are based on methods like SPICE and CMMI. Such approaches
for SPI in smaller companies are for example Mares [10], PRISMS [8] and PEM
[9]. All of these models require some knowledge of the models they are based on.
Because the goal of this research was not to find out process’s maturity levels,
or other CMMI and SPICE related issues, but to model the process with as
simple way as possible and then streamline it, these adapted methods were not
suitable here.

Big Improvements with Small Changes 261

In software process improvement the improvement method works as a plain
framework for the improvements. The method always needs to be adapted to
the needs of the target company [3]. In this sense, especially in small companies,
it seems rational to pick a method that does not need lots of adapting and
particular training but can be adopted to use right away, the PISKO technique
was chosen as the template of the improvement project because of this. The
lightweight and informal nature of the technique has turned out to be efficient
in revealing the true nature and the problems of the software engineering process
at hand, see eg. [13], [14], [15].

In addition to the usage of PISKO technique, the answers to the questions
stated above were searched using action research as a research method. Action
research is "an iterative process involving researchers and practitioners acting
together on a particular cycle of activities, including problem diagnosis, action
intervention, and reflective learning” [20]. In this case the researchers and the
target company worked in very tight cooperation.

3 The Improvement Technique

The PISKO technique [12] is based on the idea that any attempt to model
the actual software process should emphasize the opinion and experience of the
experts of the target organization. The PISKO technique is designed to be easy to
use for people who have no prior knowledge of it and it requires minimal amount
of resources. Further analysis and evaluation of the technique is presented in [12].
The technique has six phases.

1. Model the process with wall-chart technique.

2. Analyze the gathered information and define the problems and points of
improvement.

Create an electronic version of the process descriptions.

Inspect and approve the electronic versions.

Analyze and enhance the approved process descriptions.

Inspect the results.

S Gt

3.1 The Wall-Chart Sessions

The wall-chart technique is the back bone of the method. During the wall-chart
sessions the current process is modeled and the problems with it are identified.
The sessions consist of meetings with approximately five experts from the target
organization and two researchers. The experts should be the actual people who
realize the process at hand every day, they also should have quite a long expe-
rience with the process. The experts are the ones who model the actual process
and the researchers work as a chairman and the secretary of the sessions.

In the beginning of the sessions the technique is explained to the participa-
tors. First task is to resolve the main phases of the process. All this is done by
discussing together and then attaching paper notes with different phases on the
wall-chart. While deciding the phases it is important that all the participators

262 A. Valtanen and J.J. Ahonen

bring out their opinion and that in the end every one has a consensus on the
phases and their names. After the different phases are identified they are con-
nected in order to make the process’s progress visible. The result of this first
modeling phase is a wall-chart presenting the current state. The next task is to
create electronic version of the descriptions made.

PISKO techniques resource needs are minimal. As a whole it takes about two
whole working days to create the process descriptions with the target company’s
experts, half a working day to create the electronic versions and a couple of days
to analyze the results. Applying the technique does not require any investments
into expensive tools, all one needs is regular office supplies, paper and drawing
pens. The electronic versions are also generated using usual spreadsheet pro-
grams. In addition to time consumed the most valuable resources needed assem-
bling the process descriptions using PISKO are the opinions and the expertise
of the people using the process.

3.2 Process Descriptions and Their Analysis

After the modelings the wall-chart is turned into electronic descriptions of the
process. The descriptions are completed with textual descriptions of the process’s
phases. The goal is to make an understandable and extensive documentation of
the process’s current state.

After creating the electronic version the descriptions are inspected and ap-
proved by the representatives of the target company. The approved descriptions
are analyzed by the researchers and then enhanced with the target company.
When all this is done and the process descriptions are ready it is time to inspect
the results and find out what the possible problems and points of improvement
are. The end product of the process modelings is extensive report that includes
the problems found and suggestions how to improve the software process.

4 The Target Company and the Current State of the
Process

The company whose processes were modeled and improved is a small company
that has less than twenty employees. The company is a traditional software
house. The company’s working environment is quite free and they have a low
hierarchy. The general director of the company takes part in almost everything
and because of this has a good knowledge of what is going on in the company. In
this sense the freeness of the environment is a good thing. The employees feel free
to talk about their work related problems and other issues. But when thinking in
terms of the process culture the environment seems to be a bit too loose. When
starting the process improvement efforts the work force did not seem to have
any idea how their processes worked or even if they had any. General working
guidelines did not exist in the reality. So the first step was to model their current
process with PISKO modeling technique.

The company had never before thought of their work as a process. There was
no existing process descriptions or quality manuals. So it was necessary to start

Big Improvements with Small Changes 263

from the basics. To set up a process culture the company had to start thinking
in terms of a process. It seemed that the employees of the company thought that
the concept of process was something fancy and difficult. Even though the truth
is that every company follows a process of their own kind and by optimizing it
the work becomes easier.

The modeling sessions and conversations were a good starting point. Bringing
stakeholders in the same room and laying out pencils and paper notes and asking
the employees to tell how they start developing a new version of their software
received a good reception. Through modeling sessions and free conversations the
current situation was modeled.

Using the wall-chart technique twenty-one stages of the process excluding the
ones with marketing and training were identified. Already at this point many
points of improvement were easy to identify. The established process model can
be seen in Figure 1.

The result of the modelings showed that the company’s lack of process de-
scriptions and definitions had led them to follow an overly complicated way of
working. Because there was no common guidelines, employees of the company
made the same tasks differently every time. This was the reason why the process
had so many stages and iterations. Some of the complexity also resulted from
differences between the work groups. Even in a small company, people in certain
roles form groups, and develop their own ways of work if they do not have com-
mon and documented process to follow. When every group develops a different
way to do their tasks it is sure to add complexity to the process.

After the wall-chart sessions the process model was enhanced with textual
descriptions of the process and approved by the target company, according to
the PISKO technique. By working together with the actual experts and real-
izers of the process the process descriptions were completed. At this point the
current situation was clear to everyone and there was a consensus between the
target company’s employees and the researchers that the process should really
be streamlined in order to make it usable.

5 Problems Found

The process starts from development meetings where the possible new features
of software are deliberated and ends in dispatching the new version to customers.
The phases between follow the typical progress of a software process, from design
to implementation through testing and to delivery of the product. Even though
the phases seemed clear there was a lot of iteration and jumping back and forth
between different work stages.

The complete process turned out to be overly complicated and it was obvious
it needed to be simplified to make it more efficient. The modelings showed that
the company’s lack of defined processes and complicated ways of work had led
them to a circle of problems. There were problems with roles and responsibilities,
meeting practices, decision making, documenting and testing.

264 A. Valtanen and J.J. Ahonen

Process Model

Production Marketing and training

©
v 1) [T
DEVELOPMENT 22)
! MEETING PRODUCTIZATION |-
/ l | +PRIZING
[2) INFORMATION ‘,
/ 3)DESIGN f—~ oo o
22) MARKETING
Q BUDGET
/ h 4
5) i 4) TECHNICAL
PROTOTYPING > DESIGN [+
/ \
22) MARKETING
L €) TYING THE NEW I| ™ ?PLANNING *
FEATURES OF T
SOFTWARE \
/ ,/\ 7) IMPLE- ‘ I]
! 9 Wriing the MENTATION
instruction -— 22) MARKETING
f manuals --.14_/‘ AND SALES
II :
11) MATERIAL
‘ A OIRTTION 10) THE APPROVAL EITESTING fa—tTY
MEETING OF THE NEW
1 3 7 FEATURES OF * Py
SOFTWARE |
| | 1 | |
12) UPDATING 13) ! L/
THE DEMODATA RESTALLATION. (1= ——
| f PACKAGES f
| 14) TESTING OF
| ol |
| INSTALLATION
| I PACKAGES
|
ff IR
15) CHOOSING THE
| [ity | I EI00SME L 18 HanDoUTS
\ \ \ TESTERS
1A I_. 16) EXTERNAL 23) INTERNAL
\ TESTING = TRAINING
\‘ " 17)
\ L] PUBLICATION j#—!
(|
\ DeCes{on 23) COOPERATION
j"/f' PARTNER (4
21) Maintenance [TRANING
19) INTERNET
vlhe:;lf;gbnre PUBLICATION
23) CUSTOMER
\ ° ™ TRAINING

Fig. 1. The modeled process

Most serious problems found were the ones with documentation. In a small
organization the information is often transferred in discussions and the docu-
mentation is neglected. This was the case here too. Not only the process doc-
umentation itself was neglected but also the basic documentation. When they

Big Improvements with Small Changes 265

had a meeting they did not necessarily make a memo of it. So the organization
also lacked good meeting practices. Their meetings were not carefully planned
beforehand and because of this the important issues that should have been dealt
were forgotten. The company also did not have the habit of choosing a clear
chairman and secretary for their meetings.

The problems with documentation and meeting culture led to problems with
decision making. The employees felt that they did not always stick to what they
had decided and when there were no documents of the decisions it was not always
clear what the decision really was. One of the most serious problems found was
also that the company could not always hold to their schedules because it was
not always clear what had been scheduled.

One more documentation related problem was found. The company had prob-
lems with testing its products. They had deficiencies in their knowledge of testing
itself but it was also unclear what to test and when because there was no proper
test plans. All the problems found while modeling and assessing the current state
of the process were problems in the very ground stones of their working practices.

6 Improving the Process

After creating the process definitions and identifying the problems it was time to
make improvement happen. The improvement efforts were continued by taking a
closer look at the current process. What did the modeled phases really include?
The text descriptions of the process were examined and the phases of the process
compared. The purpose was to see if some of the phases were unnecessary and
if some of them could be combined to others to avoid needless work. In addition
to clarifying the process and making it more efficient the earlier found problems
had to be excluded.

The improvement work was continued with the stakeholders of the company
through the process descriptions made. It was important for them to take part in
the improvement work so the improved process would be based on their opinions
and expertise. This was a good way to approach the problems. The discussions
held helped to trim the process’s phases from twenty-one to ten. The main
changes were that the actual planning phase was simplified and clarified. It was
agreed that instead of six different work phases the planning of the new software
version would be implemented in three phases. The work done inside these phases
was specified and made clear to all of the stakeholders. Also the implementation
phases were clarified in the same manner.

The goal, while creating the new process definitions, was to make descriptions
that were extensive enough to cover the whole process but not too exhaustive so
the process documentation would really be used as the basis of everyday work.
So the process’s primary documentation should cover only few pages. The idea
was to create a poster-like definitions that could be spread via company’s web
pages or hung on the wall in order to be easily available for everyone. More
specific descriptions were also created to support the actual process model to
define what happens inside the phases. The revised process description can be
seen in Figure 2.

266 A. Valtanen and J.J. Ahonen

Process Model

Production Marketing and training

6 T !

_— m
i T FROCAUCTIZATION |
- + PRIZING
1)
DEVELCPMENT E=
MEETING
[} 121 MARKETING
| EUDGET

\ 3 THING THE NEW
FEATURES OF

SOFTWRAE
L 13 MARKETING
/ \]
¢ |
5 WRITING THE
INSTRAUCTICH T
MarUALS 1£) MARKETING
¥ KD SALES

N o—

71 THE AFFTRCIAL
WEETRG CF THE NEW
FEATURES OF
4RE
15) INTERNAL
| TRaMNG
&) DELIERY
PREFARATION
15}
COOPERATION
PARTHER.
TRAIKING
5 PUBLICATION
BECISION
17} CLSTOMER

TRAINNG
e 10} DELERY

Fig. 2. The process after streamlining

To solve the problems found in the earlier phases of improvement efforts it was
time to go back to the basics with the company’s software engineering process.
The roles and responsibilities of different parts of process had to be revisited,

Big Improvements with Small Changes 267

meeting practices and decision making improved. Also the problematic issues
with documenting and testing had to be dealt.

It was not enough just to simplify the process model. There had to be clear pre-
and post-conditions in every phase to make it possible to follow the streamlined
process. So as the first step of the improvement activities the conditions and their
confirmation were decided. Many of these were different kinds of documents,
signed decisions or other kinds of written products.

In addition to simplifying the process and making it easier to follow the earlier
mentioned problems had to be solved. These problems seemed to be the reason
why company’s process was originally so complicated. When they did not have
proper roles and responsibilities it directly affected the decision making and
documenting. The main problem with testing process, that they were not always
sure what should be tested and how, was also a documentation related problem.

Solving the problems was started from the ones with meeting practices. A
proper meeting culture where every meeting had a clear agenda and convener
was established, also memo templates to be used to document the meetings were
created. Other documentation problems were also solved by creating documen-
tation templates for the use of design, testing and so on. In addition to that
different kinds of check-lists were created to control the phases and to make sure
that the steps inside the phases really were properly implemented.

All of the improvement activities would be useless if no one took the re-
sponsibility to control their realization in practice. This being the situation, the
company was advised to nominate a person in charge for every phase, whose
duty is to make sure that the newly introduced process is followed; meetings are
contrived, the documentation templates used and the check-lists filled the way
it was agreed.

7 Resources Needed

One of the main goals of the improvement work presented here was the small
amount of resources needed. The phases and the resource needs of the modeling
work using PISKO technique are presented in Table 1.

As it can be seen from the Table 1, the resource needs were quite minimal.
Creating the descriptions of the target company’s current situation, defining the
problems and points of improvement related to it and then streamlining the
process took only 78 man-hours of the researchers and target company’s mutual
time and 117 man-hours in total, when counting the time that the researchers
used creating the electronic descriptions and analyzing the situation. The time
used in the actual modelings and meetings was 24 hours in total.

The practical improvement work took about 231 man-hours during four
months, the time spent in the actual meetings being 45 hours in total. With
the lightweight improvement actions, presented in Table 2, it was possible to get
the new process going. The introduction of the new process was quite easy. The
only training need was to introduce inspection protocol to the company.

The positive attitude among the target company’s employees was a big help
while taking the new process in use. It also helped that the new process was based

268 A. Valtanen and J.J. Ahonen

Table 1. The Resources used in the PISKO sessions

PHASE p/TC" p/R* h/TC® h/R* TOT ALK’
1 Process modeling 5 2 20 8 28
2 Creating electronic descriptions 0 2 0 6 6
and identifying the problems
3 Process model check-up 2 1 2 1 3
4 FElectronic descriptions 0 1 0 1 1
5 Process model definition 5 1 10 2 12
6 Electronic descriptions 0 1 0 1 1
7 Enhancing the descriptions 3 1 6 2 8
8 Electronic descriptions 0 1 0 1 1
9 Approval of the descriptions 5 2 20 8 28
and identifying the problems
and points of improvement
10 Inspecting the results and 5 2 20 8 28
planning improvement actions
TOTAL 78 39 117

Table 2. Resources used implementing the first improvement actions

PHASE p/TC" p/R* h/TC® h/R* TOT ALR®

11 Creating check-lists 2 1 12 6 18

12 Inspection training 6 1 48 8 56

13 Inspecting the check-lists 5 1 20 4 24

14 Enhancing meeting practices 6 1 60 10 70

15 Creating document templates 2 1 30 15 45

16 Inspecting document templates 6 1 12 6 18
TOTAL 182 49 231

in the old one, the ways of work did not change dramatically and the changes
made had a good reception because the employees themselves had agreed on

taking the new practices in use.

The process improvement project, of which starting point the modelings de-
scribed here were, was executed in 18 months during which the researchers were
in tight co-operation with the target company. The monetary value of these
improvements is hard to estimate, but the advantages brought by the improve-
ment work were easily detectable while the improvement project was analyzed
afterwards. The employees of the target company feel that the problems found

! The number of participants from the Target Company.
2 The number of Researchers participating.

3 The man-hours the Target Company’s personnel used.
4 The man-hours the Researchers used.

5 The man-hours used in total.

Big Improvements with Small Changes 269

during the modelings of their process do not exist anymore. The employees also
feel that planning their work has become easier when they have a concrete pro-
cess to follow.

The improvement efforts with this company are still going on in form of a
search of more mature and efficient processes. While working with new chal-
lenges with the company, it is self-evident that the improvement work described
here was successful in creating process culture. The new process’s terms are in-
ternalized and in every day use, the process descriptions are kept up-to-date and
the newly introduced documentation and meeting practices are followed.

8 Discussion

In this paper, a simple way of introducing the process culture and improving
the processes of a small company was presented. The problems that an SC has
while attempting to improve it’s processes were also discussed and solutions to
them proposed.

The improvement efforts described here proved that it is possible to obtain
good results with small amount of resources while improving the processes of
a small company. Similar results are reported in [I3] and [1I]. The use of a
lightweight modeling technique like PISKO is a good starting point for the im-
provement efforts. The technique itself is flexible and does not demand a lot of
resources so it fits in well with the needs of a smaller company’s SPI.

The modelings proved that only presenting the concept of a process to the
workforce has a big impact. Discussing and modeling the process at hand, us-
ing a wall-chart technique, works as an initiative of creating a process culture
and changing the way of thinking. Discussions between the experts of the com-
pany help them outline different aspects of their work and during the wall-chart
sessions not only the current state of the process is modeled but many good
methods are transferred between the participants.

The key ingredients while improving the processes of a small company are the
enthusiasm of the employees of the target company, planning and executing the
improvements together with the experts of the company and taking care that
someone is really responsible of making improvement happen, not only while the
improvement project first takes place but also in the future.

By using a simple improvement method like PISKO one does not have to use
limited improvement resources to train the personnel of the target organization.
Quite the contrary, it is possible to start modeling the process’s current state
right away. After the modelings it is easy to identify the problems in the process
and go on excluding them because the employees of the target company have
taken part in the improvement work from the very beginning and are aware of the
current situation. Even though it is clear that it is not possible to improve any
process if the current situation is not known, it came almost as a surprise how
big of a change it is possible to create just by making the process visible to it’s

270 A. Valtanen and J.J. Ahonen

realizers and then taking the next step to optimizing the phases in collaboration
with the target company.

The modelings proved that the target company’s processes were at initial
state. The problems found were in the basics of the software process. The prob-
lems with roles and responsibilities, meeting practices, decision making, docu-
menting and testing were due to inadequate formality of work. Once detected
all of the problems were quite easy to solve with small improvements.

While solving the problems it became obvious that the documentation plays
an important role also in a smaller software company even though it is often
neglected. Even with only a few people, it is not enough just to transfer the
information orally, the written documents are also needed to make the process
successful. In our case most of the problems in the process were due to inad-
equate information transfer. Almost all these problems were solvable through
documentation.

One of the main goals of these improvement efforts was to set up a process
culture. To create a process culture, the company needs a process to follow, and
to have a process means that some formality is required. At this point there was
a conflict with our other goal, keeping the advantages of the smallness in mind.
As mentioned earlier the freeness of the target company’s working environment
is both an advantage and disadvantage and too formal ways of work might kill
the advantages brought by it. During all the improvements made, especially
while optimizing the process and deciding on the pre- and post-conditions of the
process’s phases, it was necessary to keep in mind the advantages that the small
size of the company brings and create a process that supports it. The flexibility
of the PISKO technique supports this goal well. It was also a big help that the
target company’s employees had taken part in the improvement efforts from the
very beginning. This way it was possible to create a process that really meets
their needs and is easily adjustable for the future’s changing requirements.

Modeling technique pretty similar to PISKO, is applied in [I6] and the re-
searchers end up recommending involving the developers in creating process
guides. It is easy to agree with this in the light of our research. The introduction
of the new process was quite easy in the target company. There was no special
training needed and the positive attitude among the target company’s employees
was a big help while taking the new process in use. The implementation of the
new process was easy probably because the users of the process had taken part
in creating it. It also helped that the new process was based in the old one, the
ways of work did not change dramatically so there was no significant problems
with resistance to change.

The small amount of resources needed in the improvement work and the
clearly visible advantages of having defined processes convinced the target com-
pany to keep improving their processes further. Now that there is a process
culture created, the basic problems of the process fixed and the process opti-
mized in the target company it is possible to start aiming towards even more
efficient ways of work. In addition of making sure that the process is followed
and kept up to date, the future work with the company consists of introducing

Big Improvements with Small Changes 271

new working methods, for example in the form of enhancing their testing skills,
that make it possible to keep improving their process and making their work
even more profitable.

References

10.

11.

12.

13.

14.

15.

16.

. Richardson, I., Gresse von Wangenheim, C.: Guest Editors’ Introduction: Why are

Small Software Organizations Different? In: Software, vol. 24, pp. 18-22. IEEE,
Los Alamitos (2007)

Humphrey, W.S.: Managing the Software Process. Addison-Wesley Professional,
Reading (1989)

Zahran, S.: Software Process Improvement: Practical Guidelines for Business Suc-
cess. Addison Wesley Professional, Reading (1998)

Fantina, R.: Practical Software Process Improvement. Artech House, Inc., Norwood
(2005)

Chrissis, M., Konrad, M., Shrum, S.: CMMI Guidelines for Process Integration and
Product Development. Addison-Wesley, Reading (2007)

El Emam, K., Drouin, J.-N., Melo, W.: SPICE The Theory and Practice of Soft-
ware Process Improvement and Capability Determination. IEEE Computer Society
Press, Los Alamitos (1998)

Bamford, R.: ISO 9001:2000 for Software and Systems Providers: An Engineering
Approach. Auerbach Publishers, Incorporated (2003)

. Allen, P., Ramachandran, M., Abushama, H.: PRISMS: an approach to software

process improvement for small to medium enterprises. In: Proceedings of Third
International Conference on Quality Software, pp. 211-214 (2003)

Trudel, S., Lavoie, J.-M., Par, M.-C., Suryn, W.: PEM: The small company-
dedicated software process quality evaluation method combining CMMI and
ISO/IEC 14598. Software Quality Journal, Springer Link 14, 7-23 (2006)

Gresse von Wangenheim, C., Anacleto, A., Salviano, C.F.: Helping Small Compa-
nies Assess Software Processes. IEEE Software 23, 91-98 (2006)

Wangenheim, C.G., Weber, S., Hauck, J.C.R., Trentin, G.: Experiences on es-
tablishing software processes in small companies. In: Information and Software
Technology, vol. 48, pp. 890-900. Elsevier, Amsterdam (2006)

Ahonen, J.J., Forsell, M., Taskinen, S.K.: A modest but practical software process
modeling technique for software process improvement. Software Process Improve-
ment and Practice 7, 33-44 (2002)

Savolainen, P., Sihvonen, H.-M., Ahonen, J.J.: SPI with Lightweight Software Pro-
cess Modeling in a Small Software Company. In: Abrahamsson, P., Baddoo, N.,
Margaria, T., Messnarz, R. (eds.) EuroSPI 2007. LNCS, vol. 4764, pp. 71-81.
Springer, Heidelberg (2007)

Ahonen, J.J., Junttila, T.: A case study on quality-affecting problems in software
engineering projects. In: Proceedings of IEEE International Conference on Soft-
ware: Science, Technology and Engineering. SwWSTE 2003, pp. 145-153 (2003)
Ahonen, J.J., Junttila, T., Sakkinen, M.: Impacts of the Organizational Model on
Testing: Three Industrial Cases. In: Empirical Software Engineering, vol. 9, pp.
275-296. Springer, Heidelberg (2004)

Dingsgyr, T., Moe, N.B., Dyba, T., Conradi, R.: A Workshop-Oriented Approach
for Defining Electronic Process Guides—A Case Study. In: The 11th Norwegian
Conference on Information Systems (2004)

272 A. Valtanen and J.J. Ahonen

17. Richardson, I.: SPI Models: What Characteristics are Required for Small Software
Development Companies? Software Quality Journal 10, 101-114 (2002)

18. Demirors, O., Demirors, E.: Software Process Improvement in a Small Organi-
zation: Difficulties and Suggestions. In: Gruhn, V. (ed.) EWSPT 1998. LNCS,
vol. 1487, pp. 1-12. Springer, Heidelberg (1998)

19. Harjumaa, L., Tervonen, 1., Vuorio, P.: Using Software Inspection as a Catalyst for
SPI in a Small Company. LNCS, pp. 62-75. Springer, Heidelberg (2004)

20. Avison, D., Lau, F., Myers, M., Nielsen, P.A.: Action Research. Communications
of the ACM 42, 94-97 (1999)

Software Process Improvement Methodologies
for Small and Medium Enterprises

Deepti Mishra and Alok Mishra

Department of Computer Engineering, Atilim University,
Incek, 06836, Ankara, Turkey
deepti@atilim.edu.tr, alok@atilim.edu.tr

Abstract. Today, the software industry is one of the most rapidly growing
sectors and small software development companies play an important role in
economy. Many such organizations have been interested in Software Process
Improvement (SPI). It has been observed that the successful implementation of
SPI methodologies is generally not possible within the context of small and me-
dium-sized software enterprises (SMEs) because they are not capable of bearing
the cost of implementing these software process improvement programs.
Further the proper implementation of software engineering techniques is
difficult task for SMEs as they often operate on limited resources and with strict
time constraints. There are number of methodologies to address these issues. In
this paper, various SPI methodologies for SMEs are discussed and compared.
This will lead towards maturity of software process improvement in SMEs and
also facilitates in development of automation tools for SPIs in future.

Keywords: process, software process improvement, software quality, small and
medium enterprises, SME.

1 Introduction

The way with which we develop software impacts the quality of the software and
hence software process is one of the most crucial factors in determining the quality of
the software. A software process is a set of activities, together with ordering con-
straints among them, such that if the activities are performed properly and in accor-
dance with the ordering constraints, the desired result is produced. The desired result
is high quality software at low cost. As each software development project is an in-
stance of the process it follows, it is essentially the process that determines the ex-
pected outcomes of a project [23]. Software processes play an important role in coor-
dinating different teams in large organizations so that their practices don’t grow out of
touch with one another [14]. Ideally, these processes should combine the need for
flexibility and creativity, but that balance is hard to achieve [17]. A vast majority of
software producers, which have not yet implemented a methodology for software
process improvement, are paying high costs of production and systems maintenance,
and therefore being displaced from the global market, not being on the same competi-
tiveness level than companies that possesses a process improvement method [21].
There are several models for software process improvement, such as the Capability

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 27 2008.
© Springer-Verlag Berlin Heidelberg 2008

274 D. Mishra and A. Mishra

Maturity Model Integration (CMMI), the Software Process Improvement and Capa-
bility dEtermination (SPICE) and the ISO 9000 norms from the International Stan-
dardization Organization. These models provide quality patterns that a company
should implement to improve its software development process [21]. Unfortunately, it
has been observed that the successful implementation of such models is generally not
possible within the context of small and medium-sized software organizations be-
cause they are not capable of bearing the cost of implementing these software process
improvement programs [26, 53] and the proper implementation of software
engineering techniques is difficult task for SMEs as they often operate on limited
resources and with strict time constraints [53]. Dyba [14] indicated that SPI can be
used as a competitive advancement strategy for both small and large organizations
[14]. Today, the software industry is one of the most rapidly growing sectors and this
situation stimulates especially the constant creation of small companies which play an
important role in economy [53] and in the last few years, a great number of organiza-
tions have been interested in Software Process Improvement (SPI) [10]. A consider-
able amount of software is produced world-wide by SMEs ranging from 1 to about 50
employees [19]. In this context, German and Brazil software market of these compa-
nies was around 77% and 69% during 2001 [37]. Richardson [43] observed that there
is need for small software companies in Irish sector to improve their software process.
The term small setting has been defined as an organization or company of fewer than
approximately 100 people, and a project of fewer than approximately 20 people [49].
As mentioned in the Software Engineering Institute Web site for small settings, a ma-
jor aspect to be considered in these environments is that the amount of resources used
to support a process improvement effort would be a large percentage of an organiza-
tion’s operating budget, [49]. Brodman and Johnson define a small organization as
fewer than 50 software developers and a small project as fewer than 20 developers
[24].

2 Related Works and Rationale of SPI in SMEs

Existing software engineering and organization development literature acknowledges
that there are fundamental operational differences between small and large organiza-
tions [14]. Small organizations seem more concerned about practice, while large or-
ganizations seem more concerned about formal process [14]. Russ and McGregor [45]
observed that software development process can be just as critical to a small project’s
success as it is to that of large one due to number of external dependencies per team
member. They further argued that its goal is to produce the high quality and timely
results for today’s market without imposing a large overhead on a small project.
Larsen and Kautz [33] also viewed that these organizations are afraid of the initial
expenses which they assume are large both with regard to direct costs for process
assessment, training and tools, but also due to indirect costs for personal and time
resources when implementing improvement actions. Kuvaja et al. [30] further
supports that it is quite difficult for any SME to choose an improvement approach,
and to apply it in their organization without help of external consultants or substantial
investment in time of their software managers. Cultural issues like resistance to
change from the employees or the management areas, who regard the extra work

Software Process Improvement Methodologies for Small and Medium Enterprises 275

required for quality assurance as a useless and complicated burden put on the
developing team. According to Biro et al. [6] national culture also affects the process
improvement methods. Kuvaja et al. [30] mentioned that main problem of the small
companies is that they cannot afford to maintain substantial expertise of software
process improvement within their companies, but they have to buy it from external
sources. Further problem related to the lack of expertise is to find how to start the
improvement and what experts to use. Due to budget constraints services of a
consultant organization to improve the software quality is not possible, still the need
for a good quality assurance program is becoming more evident, and managers are
striving to achieve international quality standards that, in the long run, result in lower
production cost [21]. According to Kautz [26] the software process improvement is
rewarding and advantageous also for small organizations if it takes into account the
peculiarities of such organizations. Dyba [14] also found empirically that small
organizations implemented SPI as effectively as large organizations, and in turn,
achieve high organizational performance. According to his study main lesson to be
learned is that to implement SPI at least as effectively as their larger counterparts,
small software organizations should capitalize on their relative strengths in employee
participation and exploration of new knowledge. There are various approaches,
languages and tools for process definition [1] however, are rarely applied in practice
[11] specifically with small organization [39]. Further only few studies in the context
of small software companies have been performed [29, 46, 47]. In order to get an
edge in ever-growing highly competitive software development world, it is significant
for an organization to regularly monitor the software process. It is important for an
organization to continuously improve its software process on the basis of feedback
from various stakeholders. It is also supported by Mintzberg [38] that for smaller or-
ganization where much of the work is coordinated through direct supervision and mu-
tual adjustment, it is important to find a balance between these mechanisms and for-
mal, defined and highly detailed documented procedures to facilitate organizational
learning [40]. Despite the fact that even in the US most software producing units are
comparably small and state a need for improvement [8], little is known about software
process improvement in this kind of organization [26]. Kautz [26] further supported
the view that even small organizations with little more than two developers can profit
from some basic formal routines. According to his research project conclusion if pro-
cedures are defined, concisely described, tested and feedback from these tests can be
used as feedback to improve the procedures and routines. According to Kuvaja [30] it
is quite common understanding amongst the SMEs that full-scale assessment methods
are only useful in large organizations and do not serve the SMEs appropriately. Dyba
[14] found empirically that small organizations implemented SPI as effectively as
large organizations, and in turn, achieve high organizational performance. Neverthe-
less, small software development teams can improve their software processes benefi-
cially as well as large organizations [41, 13]. Therefore the objective of this paper is
to present these software process improvement methodologies for SMEs from a
comparative perspective. This will lead towards maturity of software process
improvement and also facilitates in development of automation tools for SPIs which
can be tailored according to the specific organization. It can also result in interesting
empirical outcome and comparisons in SPI approaches among organizations.

276 D. Mishra and A. Mishra

The remainder of this paper is organized as follows: The following section discuss
software process improvement methodologies for SMEs. Later, these methodologies
are compared. Finally, the paper concludes with limitations and directions for future
research in this area.

3 Software Process Improvement Models for SMEs

Any software process improvement plan requires a qualified statement about the cur-
rent status of software development in the companies and a description of strengths
and weaknesses identifying areas for improvement On the basis of literature survey
we have selected following five SPI methodologies which have been implemented in
SME:s. Due to limited resources and the size of the organizations, an extensive, formal
assessment of the software practices following defined comprehensive approaches
like the Capability Maturity Model [42], the ISO9000-3 guidelines [22], the TickIT
scheme [52], Bootstrap [31] and IDEAL [28] model was not considered to be neces-
sary or appropriate in this context. It is also supported by Kautz [26]. Further
MESOPYME objectives are similar to those of the IDEAL model [36] from the Soft-
ware Engineering Institute (SEI).

Salient features of selected software process improvement methodologies for
SMEs are discussed in this section.

3.1 A Methodology for Self-Diagnosis for Software Quality

This methodology for self diagnosis is based on concepts, goals and activities defined
by Capability Maturity Model (CMM) which can be used by a small or micro
organization as a part of internal audit plan before the official appraisal. It is difficult
for SMEs to assess their current capabilities by using SCAMPI A (only method in
CMMI product suite that can result in a rating) appraisal method because it takes
longer and consume more resources. In order to gather this information related to the
current processes of the organization, researchers have created 3 questionnaires [21]:

e The extended maturity questionnaire(EMQ)
e The Goals, Activities and Responsibilities Matrix(GAR)
e The Directed Questionnaire

The Extended Maturity Questionnaire (EMQ)

EMQ is based on the Maturity Questionnaire developed by SEI. The main difference
between EMQ and maturity questionaire developed by SEI is that every question has
potential three answers (YES, NO, PARTIALLY ACHIEVED) instead of two (YES,
NO). So, this questionnaire accurately represents organizations current states as some
of the goals are only partially achieved and if the organization will use SEI
questionaire then it will result in NO.

The Goals, Activities and Responsibilities Matrix(GAR)

The success of a model based on CMM depends on the complete achievement of
certain goals and commitments for every Key Process Areas (KPA). There is a close
relationship among goals, activities and abilities, which are not that immediately

Software Process Improvement Methodologies for Small and Medium Enterprises 277

apparent from the 344 pages description of the CMM standard [9]. In order to
facilitate the task of the software administrators a matrix is proposed. This matrix
includes relationship between abilities (variables), activities (practices and sub-
practices associated to each KPA), goals and commitments (objectives to achieve in
each KPA) as well as the responsible individuals (The client, the requirement analyst,
the software engineering group, the manager, the quality assurance group) for each
KPA. GAR Matrix can be automated by means of an expert system.

The Directed Questionnaire

The last format of Self-Diagnosis Methodology is a direct questionnaire with which a
lead auditor can construct a knowledge base. This questionnaire has the essence of the
original Maturity Questionnaire from CMM but in this case each new question is
generated based on the answer of the previous questions. So a new question may be
directed to complement information obtained earlier, or to confirm such information.
In any case, useless questions are discarded.

Evaluating the Result of the Self Diagnosis

The results obtained from the questionnaires answer the basic question: Are the Key
Process areas required by CMM for a certain level achieved? For each KPA, there are
four possible answers: The KPA is either fully achieved, partially achieved, not
achieved, or it doesn’t apply. The KPAs that are partially achieved or not achieved are
the areas of opportunity for improvement and that should be part of an action plan.

3.2 Software Process Matrix (SPM) Model

This model helps the organization in finding the relative importance of software
processes. For the high priority processes, the practices that need to be worked on are
determined by Software Process Matrix (SPM). SPM is based on Quality Function
Deployment (QFD). In QFD, the ‘voice of the customer’ is collected, and the relative
importance of each customer requirement is measured. In the house of quality matrix,
these requirements are used to identify design characteristics which have the greatest
impact on customer requirements. Although QFD consists of many matrics, the main
focus is often this matrix, as using it alone can have a significant effect on the product
development process [16]. Using QFD, the software process model is treated as the
customer where software processes are the customer requirements. These processes
were identified from software process literature. The design characteristics are the
practices which must be followed for processes to be successful. These practices were
also identified from the software process literature.

A crucial part of the development of the software process matrix was to identify
the relationships between processes and practices. Those which are explicitly
mentioned in the literature were easily identified. Using expert opinions and various
statistical techniques, other relationships between processes and practices were
identified, resulting in the development and verification of the software process
matrix which was then validated in the industry.

For a small company to use any software process model to their advantage, it is
imperative that the effort expended is minimal. The SPM provides them with a generic
section that has been completed previously and can be used in their company. A
questionnaire is provided to assess the current performance, planned future performance

278 D. Mishra and A. Mishra

and importance to the company for every process. From the company’s point of view,
all they need to provide are the measurements for calculating the overall importance of
the software process considering the following [43]:

Current capability as assessed using a self-assessment questionnaire.
Future capability as input from management.

Importance of software process to the business.

Competitive analysis

Market leverage for company specific requirement e.g. ISO-certification.

Allowing management to choose whether or not to include figures for competitive
analysis and market leverage allows flexibility within the model.

Practices with the highest values are the most important, and therefore it is
suggested that these should be worked on first in the organization. From this, the
priorities to be included in any software process improvement action plan are
established and can help the organization to determine their improvement strategy.
The complete SPM provides the organization with a ranked list of actions which can
be input to their software process improvement strategy. This ranked list can be
combined with cost figures and time-effective calculations thus taking these factors
into account when determining the action plan for the organization.

3.3 An Approach for Software Process Establishment in Micro and Small
Companies (ASPE-MSC)

An Approach for Software Process Establishment in Micro and Small Companies
(ASPE-MSC) is defined by integrating and adapting existing approaches
[2,4,5,12,32,34,48] to the characteristics of small software companies. The principal
phases of the approach are:

Planning: In the beginning, the process establishment is planned on a high level.
Later on, during strategic analysis, the plan is revised, completed and adapted in ac-
cordance to the decisions made.

Phase 1, Diagnosis: The objective of this phase is to contextualize the organization
and to obtain a high-level snapshot of the actual software process in place. Such a
baseline can be established through a software process assessment using, e.g. MARES
[18], an ISO/IEC 15504 conformant process assessment method tailored to small
companies.

Phase 2, Strategic analysis: The objective of this phase is to specify the scope and to
prioritize candidate processes to be established based on the results of the diagnosis
and in accordance with the organization’s business and improvement goals. This can
be done by using, e.g. an adaptation of the SWOT (Strengths/Weaknesses/
Opportunities/Threats) analysis technique [25] relating the importance of processes
and their assessed/estimated capability.

Phase 3, Definition: The objective of this phase is to define the selected software proc-
ess(es) in form of a process guide in order to support process performers. Generally, the
definition of the selected process(es) begins with the descriptive modeling of the actual
process(es) in place. This activity is composed of a process familiarization phase and a

Software Process Improvement Methodologies for Small and Medium Enterprises 279

detailed elicitation phase [4]. During the process familiarization phase an overview of
the software process and its general structure, interaction and sequence is obtained and
documented, for example, in a process flow diagram. In a next step, roles, competencies
and responsibilities related to each activity are identified.

Phase 4, Implementation: First, the evaluation of the defined process(es) is planned
in parallel to their implementation. This includes the revision and/or definition of
measures in order to monitor and determine the effectiveness and suitability of the
process(es) and whether the expected benefits are achieved.

Monitoring & Control: The complete establishment of the process (es) is monitored
and controlled. Therefore, data is collected and analyzed by the process engineer and
assistant. If required, corrective actions are initiated and the plan is updated.

Post-mortem: Once a complete process establishment cycle is terminated, the proc-
ess establishment approach is evaluated as a basis for continuous improvement. This
is done by collecting and analyzing feedback from process performers, sponsor, and
the process engineer and assistant in a feedback meeting or by questionnaires.

3.4 PRISMS: An Approach to Software Process Improvement for Small to
Medium Enterprises [3]

PRISMS is an action research project, with a team of three researchers from Leeds
Metropolitan University working alongside managers and developers in participating
companies advising and assisting with the planning and implementation of software
process improvement programmes, over a three year period.

The key features of the process are:

e The existing informal process is examined, and, if resources permit an ex-
plicit model is created.

e In the PRISMS programme the business goals are defined earlier by man-
agement. These goals drive much of the subsequent activity, especially the
selection and prioritization of key process areas for improvement, and the se-
lection of measurements.

e A consultation exercise is carried out, involving all members of development
teams. A brainstorming session, and/or questionnaire-based survey help the
developer’s team to take ownership of the SPI programme, and to be in-
volved in the programme from the earliest stage.

e A tailored version of the CMM assessment is carried out by members of the
research team, primarily to help identify key process areas (KPAs) for
improvement.

e Using these inputs the KPAs for improvement are identified and prioritized.
The main criteria here should be the extent to which the KPAs are likely to
contribute to the identified business goals. One company has found a weighted
selection approach of the type described by Martin [35] to be useful. The proc-
ess/practice matrix approach described by Richardson [44] could also be used.

e Measurements are defined as an integral part of the SPI planning process.
Managers are generally keen to have more precise ways of tracking key

280 D. Mishra and A. Mishra

resource and quality indicators. The Goal Question Metric paradigm can be
used to measure selected attributes based on the business goals defined for
the SPI programme [7].

e The SPI plan is periodically reviewed, and there is provision to collect feed-
back from stakeholders.

Most important aspects of measurement for SPI programmes in smaller organization
is that they should be simple to gather and interpret, and that they should be used in
planning and decision making. Simple automation can help reduce the overhead asso-
ciated with data collection and processing.

3.5 MESOPYME [10]

MESOPYME has been defined, taking into account a generic SPI model defined by
ISPI [15] with four stages—whose objectives are similar to those of the IDEAL
model [36] from the SEI. The key features of MESOPYME are as follows:

e Stage 1: Commitment to improvement. Its objective is to obtain the sup-
port of senior management to carry out the improvement project.

e Stage 2: Software process assessment. Its objective is to obtain strengths
and weaknesses of the process assessed with respect to a software process
model— CMM (Capability Maturity Model). From this assessment, proc-
esses (usually 1 to 3) to be improved are selected.

e Stage 3: Improvement solution. Its objective is to provide the needed infra-
structure to carry out improvement (in selected processes), and to create the
plan to follow in order to define and implement improvement in these se-
lected processes. The improvement solution stage is performed through the
application of a generic set of components that we have called an Action
Package. An Action Package is a general solution to a particular software
process area that should be customized to a company, taking into accounts its
business goals and assessment results. An action package is implemented in
some selected pilot projects.

e Stage 4: Institutionalize. Finally, improvement must be institutionalized.

4 Discussion

As these SPI methodologies are divergent in characteristics, therefore it is required to
find out some significant but common attributes so that we can find a comparative
view of all selected SPI approaches. Kautz et al. [28] concluded in their findings that
first lesson for small organizations, which wish to perform improvement activities, is
that it makes sense to use a structural model to organize the process. They further
suggested that the second lesson is that model should be adjusted to the particular
conditions of the organizations and the third lesson is that it makes sense to perform
the improvement activities as a project with clearly assigned and documented roles,
responsibilities and resources. Beyond the adjustment of general models (which is in
fact a base for these approaches), Kautz [27] points out the significance of factors to
be studied further like management support and commitment, project planning and

Software Process Improvement Methodologies for Small and Medium Enterprises 281

organization, education and training, assessment, monitoring and evaluation, staff
involvement, support and knowledge transfer by external consultants, usability and
validity of the introduced changes and cultural feasibility for process improvement in
software SMEs. As SMEs have limited budgets and resources, following factors are
important for them before selecting any SPI model.

1. [If it is based on already established SPI methods like CMM then it may be better
in the long run. Although this factor is not important right now as achieving some
specific CMM level is not the objective at present and SME cannot afford to
achieve this in the present position. But later organization may grow and may
wish to achieve a specific established method like CMM. If the SPI model they
are choosing at present is based on for example CMM then it will be easy to
switch.

2. There are two key questions: where am I and what needs to be improved? and
how to improve it? If a SPI model answers both these questions successfully, then
it is easier for the organization to use and implement it.

3. Whether it takes into consideration specific needs of the organization then it is
better for the organization.

4. If it provides some flexibility to the organization like choice of different methods
for assessment etc. then it is better. It is also supported by Glass [17] that these
processes should combine the need for flexibility and creativity. Further Richardson
[43, 44] found flexibility as significant characteristic for software process and
included in her proposed model.

5. Whether it is continuous or staged? An organization may choose one over an-
other. Continuous representation allows an organization to select the order of im-
provement that best meets the organization’s business objectives and mitigates
the organization’s areas of risk. On the other hand, staged representation provides
a proven sequence of improvements, beginning with basic management practices
and progressing through a predefined and proven path of successive levels, each
serving as a foundation for the next [50].

6. Involvement of software development team members from the starting is very
important. Their views should be considered while deciding what needs to be im-
proved? It may help in securing their confidence and commitment in SPI initia-
tive. Otherwise they may resist SPI initiative later on.

7. Whether it requires SME’s people, who will take part in SPI initiative, to have
prior experience in this field. If it does, it may not be suitable as SMEs have diffi-
culty in recruiting and retaining experienced staff.

8. Whether it requires the need to take the help of external expert. If this is the case,
it might be difficult for the organization as they have to bear the extra cost.

9. Whether roles and responsibilities are clearly assigned to all people taking part in
SPI initiative. Also, if they need training, it should be provided. Both these fac-
tors are important for any successful SPI initiative as mentioned by Kautz [27].

10. If a tool can be used for self assessment, it will be easier to assess the current
status and to determine the areas, which needs to be improved. Additionally,
more people can be involved during this phase without much substantial effort.

11. Data collection and evaluation is integral in any SPI initiative. It can be difficult
for software practitioners to do this if an organization does not have special team

282 D. Mishra and A. Mishra

to do this task. Use of tool for this purpose can make the job of software practi-
tioners easy in this case.

12. Sometimes origin of an SPI method is also important. A particular SPI method
originated in a particular country is tested in the software development organiza-
tions of that country. Although due to the emergence of global standards in soft-
ware development, organizations all over the world are similar to each other in
terms of platforms, technical tools and other things they are using. Still cultural
factors play an important role, and there one SPI initiative which was tested suc-
cessfully in one country may not get equal success in another country. This is
also supported by Biro et al. [6] that national culture affects the process
improvement methods. Additionally, people who developed a particular SPI
model may be available for helping the organizations situated in their country.

These models for SMEs are based on some existing methods like CMM, GQM,
QFD etc. These approaches are adapted and simplified either by incorporating some
additional questionnaires (in Self-diagnosis model) or matrix (in SPM model) or
process guides (in ASPE-MSC) or action packages (in MESOPYME) so that they can
be used by these organizations.

One key point is that all methods except self diagnosis model considers business
objectives of the organization while making the SPI plan. Moreover, these methods
(excluding self diagnosis) are flexible enough that although methods for identifying
and prioritizing areas of improvement are suggested but organizations can choose any
other method also. Furthermore, organizations have the flexibility to select processes
more important to them for SPI plan. These methods not only detects what needs to
be improved but also provides the roadmap that how to improve it.

Software practitioners are involved from the beginning in both SPM and PRISMS
method. They take active participations during self assessment. All practitioners’
views, regarding which processes need to be improved, were taken into consideration.

As far as practitioner’s knowledge level is concerned, Self-diagnosis and
MESOPYME do not require much experience while other models need much knowl-
edge and experience to assess current capabilities of the process. SMEs generally do
not have people dedicated for quality work alone. A person has many roles in these
organizations for example people who are doing software development are also re-
sponsible for SPI initiative. These individuals may or may not have experience deal-
ing with SPI initiative so it may not be easier for them to use any of these models
without the help of some external consultant.

These SPI models are specifically developed for SMEs as these organizations do
not have the resources and cannot bear the cost to implement CMMI, SPICE etc. In
this context it is important to note some outcomes for instance SPIRE results indi-
cated that “of the small software development units who applied to be involved in
SPIRE, 27% dropped out. The most common reasons given were resource or funding
problems” [51]. Wieggers says [54], “the most common point of failure in SPI is lack
of follow-through into action planning and action plan implementation.” Also per-
formance of these activities is expensive- yearly cost of improvement $245,000 [20],
and time consuming — a full process improvement cycle could take between 18 and 24
months [55]. Moreover, this is more difficult to perform in SMEs because they do not

283

Software Process Improvement Methodologies for Small and Medium Enterprises

‘uonejuawd[duwr SurLmnp
poAjoAUl aIe Koy T, /paAoxdur
9q 01 Spasu ssa001d

YoIyM SIPIOap oym Jey)

1B3[10U SI)] "PAUOTIUA JON

‘paaoxduir oq 03 spasu
s9ss0001d YoIyM NOqE
uoneuLIojur dAI3 A3], ‘SO A

‘uonejudwddur

SuLInp PIAJOAUT dIE SIOYIO
JUSWISSISSE SULINP PIA[OAUT
SI (g uejsisse 10 19ouiSud
ssao01d) uosiad auo A[uQ

‘paroxduir 9q 0} Spadu
sossaoord yomym jnoqe
uoneuLIojul A1 A3y, ‘sOA

JUDWISSISSE
J19s 2y s20p IojIpne
JuQ “pauonudW JON

Sutuuidaq

K134 3y) woay
SIdqUIdW Wed],
*9A9P 318M}JOS
JO JUSUIDAOAU]

snonunuo)) snonunuoy) snonunuo)) snonunuo)) paSeis | a8e)S /nunuo)
“JudwaA0IdwI 10J PIIIPISUOD “uawaAolduwr
9q 01 paau Auedwod | 10j ParapIsuod de Auedwoo
“0S[B SPOYIOW I9Y}0 10 Juepiodwr s9ssa001d A[uQ | 103 juepodwr sassaooxd
asn ued suoneziuesIo “OS[B SPOYIoW oo asn ued | A[uQ 's3ssao01d dremijos
nq pa)sa3ans are uoneziues1o nq paysasdns | Jo oouepodwr [eIoA0 ‘paiayoid
‘uoneziuesio JuswdAoxdw 10 SyYJY | 91e s9ss9001d dznrionid 0) pue | 10] JUSWAINSEIW JO SI0JOBJ | JoU SI UONBUNWI[] 'S[00}
ue Jo podu o1510ads oty oznuoud pue AJnuapt sonifiqedes juormno Juissasse | [[e opnpour 0} paxnbal | pue spoylw pauyeq Amqrxarg
0} palo[ie) 9q Ue)) "3[qIX3[] 0} SPOYIdIN "9]qIX3[] 10J SPOYIIN 9[qIXa[] | 1ou st Auedwo) -9[qIxo[] “9[qIXALF JON
“pazijeuonninsur “XLjew
st JuouroAodurt AVD Jo dioy oy yum
Areutg *syoafod ‘payuswddwr pue apewr *A[snonunuod pajen|ead N0 punoj 3q ued Yy
jopid owos ur pajuowdduwir | st uejd juowesordwr | pue opm3 ssoocord mory AIoAD 10J SIUSUIIUITIOD
st ofeyoed uonoe siyy | sseooxd 19je ‘s1odojoasp | o djoy oy yum pojuswojduur pue ‘sjeod ‘paynuopl
I0)e] 'S)NSOI JUOWISSISSE | [IM uone)nsuod | 1oyearay] -opm3 ssao0id | °sasso001d pauonusw dA0qe | oIe JudwaAoxdur
pue s[eo3 ssouisnq oy} 0) | I9e pue JUSWSSeULW Y} | B JO WO} ul pauyop oare | droidwr 01 NS Jo doy | 10] SYJY 90UQ [oA9]
Burp100oe padofoAdp st 010 | Aq uoAIS s[eoS ssoursnq | sossoooxrd osoyy IojeT ‘S[e0S | oy UM opeul SI SUONOE Jo | NND Jemnoned e urene
solaw ‘sjooy ‘sanbruyody | ‘sanijiqeded JuaLINd | JudwaAoldwl pue S3A103(QO | ISI| PaYURI B USY [, "OPBW AIB | O} [[B JB PIAdIYdE joU
‘papasu amjonnseyur ‘uejd | U0 paseq PIYNUIP! | SsauIsnq ‘SISOUeIp A1 O} | SI0J0B] IOYIO pue $IAN0S[QO | 10 pasdiyoe Ajented ore
uonoe Jo 3Junsisuoo eAIR | Al Juswaaoxdwin | Suip10doe opewl sI sass00id | ssauisng 9yl 01 SuIpI0OOR | YoIyM S VI SOUHULpI
ssoooxd yoewa 10y oFeyoed | 101 SYd uoy], | ayepipues jo 3siy poznuoud | juourosoidur ssaooad | siyy, -arreuuonsonb QA s[rejp
UOIOB UOY) PUEB PASSISSE | "PISSISSE PUB PIuUUELXd | UAY) ouop SI soniiqedeo | oremyyos 10J s9ssa00xd | yiim possasse st Auedwioo | uonejudwdduwy

st ssaooxd juormo Apsing

St ssaooxd jud1md - SIr|

uoLINd Jo SisouSerp JsIg

Jo s pozpuoud sig

oY) JO uonEmIs JUALINY

"popiaoxd st jeurioy
xmew ul yay A1oas

‘spedxa urewop ‘poroiduwil | 10J SJUSWIWUWIOD pue
wolqoxd Aq padojoasp wSipered NOD Jo ‘ueld [dS Jo uonejuowadwir | oq 0} $9ssa001d dIMIJOS | ‘S[ROT ‘SANIATIOR ‘SaNI[IqE
soFeyoed uonoe jo djoy oy | djoy oy yum saAnoafqo | pue UoneOYNUIPI | I10J papaau soonoeld | Suowre digsuonear
i doys uonejuswdwir | ssaursng Suneiodioour | ‘uowssesse 10j yoeoidde | soynuopr jery (XIjew | ‘OS|y ‘JUSWUSSISSE MU ST JRY AN
1dS uo siseydwyg | &9 WD Sundepy [eyuoWwIOU[-0ATRI)] | sseooid oremyos) NS | 10f oemeuuonsonb ONT
;onoxdurt ;onoxdun
0} MOH /paAaoxdwr 2q | 0} MmOH ¢paaoidwr 2q 0} ;oaoxdwr 0y moy /pasoxdur Jonoxdwr oy moHq oP T uonsang) A3y
0} SPaaU JRUA\ (] WE IOYA\ | SPU JeyA\ (] WE JISYA\ | 9q 0} SPAdU JBYA (] Wk YA\ | (paroiduir q 0} SPaou JeyAy | PINOYS JYAL (] W QIO
IWIAD NOD pue WIND soyoeoxdde Sunsrxo Auejy aio WIND uo pasegqg
T eua)
HNAJOSHIN SINSIId JSIN-AdSV IPPOIN NS SISOUSEIP-JPS < SPPPON IdS

sosLIdI9)US WNIpawW pue [[ews J0j S[opou $s3001d aIem)jos snowea jo uosuedwo)) °T Qe

D. Mishra and A. Mishra

284

uredg ureyIg OOIXOIN pueaI] BOLIDWIY UNE] uBLO
“panuy
‘sanipiqedes st uoneordde sy uoy)
JudLINd pue s[eos ‘uerd *saping ssaooi1d jo papuaur jou st uondope
ssauisnq suoneziuesio | juowoAoidur ssooo1d | juowdojoAsp pue uonjezntiord WIND U JI 'ININD 4Aq
oy} 03 Surpioooe ofexoed | pue [opowr sseooxd juormo | sseooxd JUOWISSISSE *00UdLI0dXd A[qRIOPISUOD | JUIUISSOSSE [BIONJO 210Joq
uonoe dojoadp 01 odxo | Amuept 0] popoesu st | ssadord 10§ papasu | spasu sassa001d d1emIFOS JO | JUSWISSIsSE [euzout syurea)suo)
UIBWIOP JO 00UBISISSE SPOON | dduoLadxo o[qeropisuo) | st oououedxs o[qeropisuo) | souepodwir oY) Sumnsedly | 1oy pasn oq Auo ue)
“eare $sa001d
[OBd I0J S)[NSAI JUSWISSISSE ‘uerd *210 SISI[POAYO ‘dINjonyseIjur
pue s[eos ssoursnq | juswaAoxdur ssodoxd | pammnbax ‘sojdurexa
a1y 03 SurpI0ddE *0j0 soLew | jo uoneyuawadur | ‘osn o} sjoo} pue sonbruyoo) JuowoAodurt
‘sjo0} ‘sonbiuyod) ‘popoou | Joye [opowl $s9001d | ‘BLILID IX9/ANUS SUIBIUOD yuowaAoduwr | ssadoxd dI1BM]JOS
amyonnseyyur ‘ued uonoe | pasiadr 1oje pue ueld | jeq) juowoasoidwr 1oy pajodfes | ssavord QIEM)JOS | I0] PoAdIYoR 9q O} awonnQ

Surureyuoo oFexoed uonoy | judwoAoidu $59001J | $9ss9001d 10J opINg $S2001J | 10J SUONOE JO ISI[PAYURY | SPIdAU Jey) S[eOT ‘SUONOY
uawdAoIdu uawdAoIduy UONEN[EAJ pue
10§ REIREIEN ssaooxd *S9OINOSAI AJOAJD | I0J Pa1os[as ssaooxd JudUWAINSBIW

10J J10ddns [00], ‘uonOd[j0O
BJEp 10J poUOnUOW JON

01 Apea1 s1 uoneziueSio
J ouop oq ue)

10y oddns jooy ‘woONod[[0d
Bjep 10J pouopuow JON

pauonuaw 10N

orqesridde JoN

10§ UODIIN[0d
ejep pajewojny

pauonuaw JON

“aareuuonsanb jo
UOISIOA J[qBZIOISNO pue
payipow uo paseq ‘sdx

pauonuaw JON

pauonuaw JON

“IO}IPNE [ENMIA SE 1o
ued JBY) JUSWISSISSE J[OS
10J w)sAs padxa dojaaap
0} ssarSoxd ur yropm

juduassasse
JIs 10y [oo],

‘uoneudwa|dut 210Joq
uoAlS st Sururen [eradg
dATRIIUL JudwdAoidu
K19A2 10J PpOYSIqeIS? Are
soniiqisuodsar pue se[oy

“pauonuAUI
jou Ik so0I YO
‘suonoe JudwdAoIdu
Jjo uonejuswardu
10J 9[qIsuodsar SI oym
uordweyo juowdAoidu

ssaoord st o1 A[uQ

‘paxmbai j1 ‘Gururen
udAIS st 10ourSud ssaooxd
JUBISISSY "Paulop ale AJIANOE
[oBd 0) pAje[al sanIIqisuodsar
pue sopudjedwos ‘sajoy

‘pauonuaw
jou e sd[01 BYPQ IdS
10 9|qisuodsar si 1oourSuo
douemsse Ajenb KuQ

pauonuaw J0N

Sururen) pue
sapIqisuodsax
‘sajoy

IRjsuen
o3pajmoury| 9[qeud o) JuB)SIsSe
se Sunoe dokojdwa duo yum

‘uoszad | pasn st (100urSus ssaoord)
padouaadxa sarmbar uepd | jadxd [euIdIXd ue ‘osniadxs
‘sanqiqedes | juswasoxdur ssoooxd | pamnbar syoe| uoneziueSio ‘Kuedwod
JuLIND pue sjeos | jo uoneuowaldwr | oy J ‘uoneyuowddwr | 03 sseoord jo oduelrodur
ssouisngq suoneziuesio oy | pue judwdofoadp os|y | pue uonuyap | pue ssao01d QIBM}JOS
01 3uIp10ooe suadxa urewop | Juowasoidwr I10J Sy | sseooid ‘uoneznuond | & Jo oouewopdd aImng
Kq padojoasp are sogeyoed | Aynuopr ‘ssadord juormd | ssadoxd ‘soniiqedeo | pouuejd pue sonijiqedeo [9A9] d3pagmouy
uonoe se OQEDCOQKO S$Sasse 0] uoﬁuiv&%v juaumd ssasse 01 Ouﬁo_uonxo judnd ssasse 0} OOEOT—QQKQ "asn 03 %mmmm .OOEOT—QQKO s.uonndeld
yonw pasu 1,US90(] | 9]qeIopISuod SPAON | 9[qeIOpISUOD SPOON | 9]qeIopISU0d SPOON | yonw padu 3.usa0(
T eui)
HNAJOSAIN SINSIId OSIN-AdSV PPOIN INAS SIsouseIp-J|o§ < SPPOIN IdS

(ponuiuo9) Y dqe,

Software Process Improvement Methodologies for Small and Medium Enterprises 285

have resources to carry out improvement implementation [10]. By these reasons, this
SPI approach is restricted to large organizations but Dyba [14] found that small or-
ganizations can and do implement SPI elements as effectively as large organizations,
and in turn, achieve high organizational performance. Therefore, this indicates that
SPI can be used as competitive advancement strategy for both small and large soft-
ware organizations. But whether a small or medium scale organization can implement
these methods without the help of some external quality consultant is yet to be
proven.

5 Conclusion

In this paper we had studied software process improvement methodologies for SMEs
and compared their significant characteristics. Each ones has its benefits and limitations.
Organization’s should select the specific process improvement methodology keeping in
view their business goals, models, characteristics and resource limitations. These
methodologies can be adapted and tailored according to the organizational context. Russ
and McGregor [45] proposed a software development process for small projects by in-
tegrating portions of an iterative, incremental process model with a quality assurance
process and a measurement process used for process improvement. This process inte-
grates many activities that might appear in separate processes in a larger project and its
goal is to produce the high quality and timely results required for today’s market with-
out imposing a large overhead on a small project. Resources are scarce for small com-
panies and most of them think they cannot afford the investment [33].

Furtherwork in this area is directed to perform case studies and empirical
validation in real software development environment. It would be interesting to study
the impact, efforts and comparison of these approaches on SPI in SMEs. Dyba [14]
also suggested that future studies should focus on the specific needs of small software
organizations in more depth; for example, through longitudinal, multiple case studies.
Further research should be related to the study of new and improved measures of SPI
success, comparison of measurement instruments, and validation of SPI success
measures [14]. These further experiences will move towards tailoring software
enginering methods and improvement strategies [14]. According to Russ and
McGregor [45], if process monitoring and evaluation can be automated more, it will
further free team members to focus on the project’s goal of producing a quality soft-
ware systems in SMEs.

References

1. Acuna, X., Ferre, M., Lopez, L.M.: The Software Process: Modeling, Evaluation and Im-
provement. World Scientific Publishing Company, Argentina (2000)

2. Abhonen, J.J., Forsell, M., Taskinen, S.-K.: A modest but practical software process model-
ing technique for software process improvement. Software Process Improvement and Prac-
tice 7 (2002)

3. Allen, P., Ramachandran, M., Abushama, H.: PRISMS: an Approach to Software Process
Improvement for Small to Medium Enterprises. In: Proceedings of the Third International
Conference On Quality Software (QSIC 2003), November 6-7. IEEE, Dallas (2003)

286

10.

12.

13.

15.

17.
18.

20.

21.

22.

D. Mishra and A. Mishra

Becker-Kornstaedt, U.: Towards Systematic Knowledge Elicitation for Descriptive Soft-
ware Process Modeling. In: Bomarius, F., Komi-Sirvio, S. (eds.) PROFES 2001. LNCS,
vol. 2188. Springer, Heidelberg (2001)

Becker-Kornstaedt, U., Hamann, D., Verlage, M.: Descriptive Modeling of Software Proc-
esses, IESE-Report 045.97/E, Fraunhofer Institute IESE, Germany (1997)

Biro, M., Messnarz, R., Davison, A.G.: The impact of national cultural factors on the ef-
fectiveness of process improvement methods: The third dimension. Software Quality Pro-
fessional 4(4), 34—41 (2002)

. Briand, L., Differding, C., Rombach, H.D.: Practical Guidelines for Measurement-Based

Process Improvement. Software Process: Improvement and Practice 2, 253-280 (1996)
Broadman, J.D., Johnson, D.L.: What small business and small organizations say about the
CMM. In: Proceedings of the 16th International Conference on Software Engineering, pp.
331-340. IEEE Computer Society, Los Alamitos (1994)

Bush, M.: CMM, The Capability Maturity Model. In: Guidelines for Improving the Soft-
ware Process, Carnegie Mellon University, Software Engineering Institute. SEI Series in
Software Engineering. Addison-Wesley, Reading (1995)

Calvo-Manzano, J.A., Agustin, G.C., Gilabert, T.S.F., Seco, A.D.A., Sanchez, L.Z., Cota,
M.P.: Experiences in the Application of Software Process Improvement in SMES. Soft-
ware Quality Journal 10, 261-273 (2002)

. Christie, M., et al.: Software Process Automation: Interviews, Survey and Workshop results.

Technical Report CMU/SEI-97-TR-008, Carnegie Mellon University/SEI (October 1997)
Curtis, B., Kellner, M.I., Over, J.: Process modeling. Communications of the ACM 35(9)
(1992)

Damele, G., Bazzana, G., Maiochhi: Quantifying the benefits of software process im-
provement in Italtel Linea UT Exchange. In: Proc. ISS Conf., Berlin (April 1995)

. Dyba, T.: Factors of Software Process Improvement Success in Small and Large Organiza-

tions: An Empirical Study in the Scandinavian Context. In: Proceedings of the 9th Euro-
pean software engineering conference (ESEC/FSE 2003), Helsinki, Finland, September 1-
5, pp. 148-157 (2003)

ESSI, IBERIA, LAE. SPIE: Software Process Improvement and Experimentation, ESSI
Project: No 10344 (February 1994)

. Fortuna, R.M.: Beyond quality: Taking SPC upstream. Quality Progress, 23-28 (June

1988)

Glass, R.L.: Software Creativity. Prentice-Hall, Englewood Cliffs (1995)

von Wangenheim, C.G., Anacleto, A., Salviano, C.F.: Helping Small Companies Assess
Software Processes. IEEE Software (January/February 2006)

. Gresse, C., Punter, T., Anacleto, A.: Software measurement for small and medium enter-

prises — A Brazilian-German view on extending the GQM method (2003),
http://www.sj.univali.br/prof/Christiane%20Gresse%20Von%20Wa
ngenheim/papers/ease2003.pdf

Herbsleb, J., Carleton, A., Rozum, J., Siegel, J., Zubrow, D.: Benefits of CMM-based
Software Process Improvement: Initial Results, Technical Report: CMU/SEI-94-TR-013,
Pittsburgh (August 1994)

Herrera, E.M., Trejo Ramirez, R.A.: A Methodology for self-diagnosis for software qual-
ity assurance in small and medium-sized industries in Latin America. The Electronic Jour-
nal on Information Systems in Developing Countries 15(4), 1-13 (2003)

ISO9001, Quality systems- model for quality assurance in design, development, produc-
tion, installation, and servicing, European Standard EN29001, Brussels, Belgium (1987)

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Software Process Improvement Methodologies for Small and Medium Enterprises 287

Jalote, P.: An Integrated Approach to Software Engineering, 2nd edn. Narosa Publishing
House (2000)

Johnson, D., Johnson, L., Brodman, J.G.: Applying the CMM to Small Organizations and
Small Projects. In: Proceedings of the 1998 Software Engineering Process Group Confer-
ence, Chicago, IL (1998)

Johnson, G., Scholes, K., Sexty, R.W.: Exploring Strategic Management. Prentice Hall,
Englewood Cliffs (1989)

Kautz, K.: Software Process Improvement in Very Small Enterprises: Does it Pay Off?
Software Process — Improvement and Practice 4, 209-226 (1998)

Kautz, K.: Making Sense of Measurements for Small Organizations. IEEE Software 16(2),
14-20 (1999)

Kautz, K., Hansen, H.-W., Thaysen, K.: Applying and Adjusting a Software Process Im-
provement Model in Practice: The use of the IDEAL Model in a Small Software Enter-
prise. In: Proceedings of ICSE 2000, Limerick. ACM Press, New York (2000)

Kurniawati, F., Jeffery, R.: The Long-term effects of an EPG/ER in a small software or-
ganization. In: Proceedings of the Australian Software Engineering Conference, Australia
(2004)

Kuvaja, P., Palo, J., Bicego, A.: TAPISTRY- A Software Process Improvement Approach
Tailored for Small Enterprises. Software Quality Journal 8, 149-156 (1999)

Kuvaja, P., Simila, L., Krzanik, L., Bicego, A., Koch, G., Sankonen, S.: Software Process
Assessment and Improvement: the BOOTSTRAP Approach. Blackwell, Malden (1994)
Kellner, M.L, et al.: Process Guides: Effective Guidance for Process Participants. In: Pro-
ceedings of the Fifth International Conference on the Software Process, USA (1998)
Larsen, E.A., Kautz, K.: Quality Assurance and software process improvement in Norway.
Software Process — Improvement and Practice 3, 71-86 (1997)

Madhavji, N.H., Holtje, D., Hong, W., Bruckhaus, T.: Elicit: A Method for Eliciting Proc-
ess Models. In: Proceedings of the Third International Conference on the Software Proc-
ess, SA, 1994 (2002)

Martin, S.: Business Process Improvement. McGraw-Hill, New York (2002)

McFeeley, B.: IDEALSM: A users guide for software process improvement, Handbook
CMU/SEI-96-HB-001, Software Engineering Institute, Carnegie Mellon University (1996)
Ministerio da Ciencia e Tecnologia, Quality and Productivity of the Brasilian Software
Sector (in Portuguese), Ministerio da Ciencia e Tecnologia, Brazil (Government report —
No Author) (2001)

Mintzberg, H.: Structures in Fives: Designing Effective Organizations. Prentice Hall Inter-
national, Englewood Cliffs (1993)

Moe, N.B., Dingsoyr, T., Johansen, T.: Process guides as Software Process Improvement
in a small company. In: Proceedings of the EuroSPI Conference, Germany (2002)

Nonaka, I.: A dynamic theory of organizational knowledge creation. Organization Sci-
ence 5, 14-37 (1994)

Paulish, D.J.: Case studies of software process improvement methods, SEI Technical Re-
ports, CMI SEI-93-TR-26 (1993)

Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V.: Capability Maturity Model version
1.1. IEEE Software, 18-27 (July 1993)

Richardson, I.: SPI models: What characteristics are required for small software develop-
ment companies? Software Quality Journal 10, 101-114 (2002)

Richardson, I.: Software Process Matrix: a Small Company SPI Model. Software Process:
Improvement and Practice 6, 157-165 (2001)

288

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

D. Mishra and A. Mishra

Russ, M.L., McGregor, J.D.: A Software Development Process for small projects. IEEE
Software, 96—101 (September/October 2000)

Scott, L., Carvalho, Jeffery, R., Becker-Kornstaedt, U., Ambara, J.D.: Understanding the
use of an electronic process guide. Information and Software Technology 44(10) (2002)
Scott, L., Jeffery, R., Becker-Kornstaedt, U.: Preliminary results of an industrial EPG
evaluation. In: Proceedings of Fourth ICSE Workshop on Software Engineering over the
internet, Canada (2001)

Scott, L., Zettel, J., Hamann, D.: Supporting Process Engineering in Practice: An Experi-
ence Based Scenario. In: Proceedings of the Conference on Quality Engineering in Soft-
ware Technology (CONQUEST), Germany (2000)

Software Engineering Institute, Improving processes in small settings: A research initiative
of the SEI’s IPRC, http://www.sei.cmu.edu/iprc/iprc-overview.pdf
Software Engineering Institute Capability Maturity Model®Integration (CMMISM) Ver-
sion 1.1, http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr004.pdf

SPIRE, Software Process Improvement in Regions of Europe, European Analysis Report
v2.0, ESSI Project: No. 23873, Dissemination action (April 1999),
http://www.cse.dcu.ie/spire

TickIT, A Guide to software quality management system construction and certification us-
ing EN29001, Issue 2.0, UK Department of Trade and Industry, London, UK (1992)
Wangenheim, C.G.V., Weber, S., Hauck, J.C.R., Trentin, G.: Experiences on establishing
software processes in small companies. Information and Software Technology 48(2006),
890-900 (2006)

Wieggers, K.E., Sturzenberger, D.C.: A Modular Software Process Mini-Assessment
Method. IEEE Software 171, 62-69 (2000)

Zahran, S.: Software Process Improvement: Practical Guidelines for Business Success.
Addison-Wesley, Reading (1998)

An Empirical Study on Software Engineering
Knowledge/Experience Packages

Pasquale Ardimento and Marta Cimitile

Dept. of Informatics, University of Bari, Via Orabona, 4,
1-70126 Bari, Italy
{ardimento, cimitile}@di.unibari.it

Abstract. This paper is concerned with characterization of software engineering
knowledge and experience packages (EP) in the user perspective. It presents the
first iteration of an evidence-based study. Results are presented from surveys
conducted with many practitioners about the available experience bases, and on
literature, to improve our understanding about the state of the practice and art for
EP. Additionally, the paper presents attributes and their properties that, in the
opinion of the participant practitioners, are relevant for characterizing an EP in the
user perspective. Subsequently, with regard to this empirical system, the
Acceptability indirect measurement model is provided for experience
components. Moreover, the test of this measurement model is shown, which
involved both developing qualitative evaluations with practitioners, and
measuring ten Internet-available experience bases. Finally, the threats to validity
are considered that, as usual for pilot studies, call for further investigation.

Keywords: Experience Package, Experience Base, Software Measurement,
Empirical Software Engineering, Survey, and Experiment.

1 Introduction

Software Engineering (SE) knowledge and experience is a critical factor for software
industry advancement [1,2,3]. The main SE processes - Development, Maintenance,
Evolution, and nowadays Revolution [4] (i.e. software architecture radical
reengineering) — still depend strictly on man-centered activities. Consequently, SE
knowledge and experience, as gained in doing research and developing products,
should be capitalized organization wide for reuse [5,6]. Assets to reuse should not be
limited to mostly mature knowledge and experiences, more or less formalized, in case
already taught; maturing and also pioneering experiences, lessons learned, and
implicit or tacit knowledge gained during the development of application software or
research projects, constitute a patrimony that should be [1,8,9] collected, analyzed, in
case developed ad hoc in laboratory, synthesized, documented, wrapped in
Experience Packages, EP(s), and distributed organization wide for reuse and tailoring
to project specificities, rather than neglected or left in the individual ownership, hence
subject to migration, and eventually forgotten and/or lost [10,11]. Finally, in our view,
knowledge and experience should be allowed for unrestricted circulation [7] both

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 289 2008.
© Springer-Verlag Berlin Heidelberg 2008

290 P. Ardimento and M. Cimitile

intra and inter the SE research world and the production world, those scientists and
practitioners who share a value chain at least.

This paper is concerned with experience packaging: EP(s) and related structures,
e.g. an Experience Base (EB), or a System of EB(s), that is a structure of EB(s) or
Experience Base System (EBS). Because the paper shows that these objects share
experience-related basic properties, in the remainder of this paper, let us denote such
an object by EO, whatever it might be, an EP item, an EB or EBS structure.

The goal [12] is to characterize EO(s). The focus is on EO comprehension for
selection, and application. It is assumed the perspective of the software project team,
manager and technicians, in the context of an academic lab that works from many
years in strict relationship with software development organizations.

In order to meet this goal, we conducted surveys on literature and with practitioner
to identify the basic attributes and properties of the EQ empirical relational system.
Moreover, we utilized practitioners to measure these attributes both qualitatively, and
qualitatively but in ordinal scale. Furthermore, we developed a software measurement
model (SMM) on the given empirical relational system. Finally, we verified these
SMM(s) vs. those qualitative/quantitative data by a pilot experiment.

The remainder of this paper is structured as follows: Section 2 recalls previous
work. Section 3 shows the paper motivation and research questions. Section 4
presents surveys, lesson learned, and qualitative/quantitative evaluations. Based on
these, Section 5 presents identification and characterization of the basic layers and
components of the Acceptability measurement model. Section 6 synthesizes on such a
model, which Section 7 verifies in lab by using ten experience bases. Section 8
completes the paper by providing some conclusive insights and final remarks, and
showing prospective works.

2 Previous Work

Let us recall a few of the EO related works. An extended technical report [16]
presents both the Empirical Relational System (ERS), and the Formal Relational
System (FRS) of this study, their properties, operations, and relations; it also includes
extended bibliography. An ERS can be, briefly defined as a model of the part of the
“real world” we are interested in and FRS represents the mapping to numbers or
symbols of the concepts of the real world, in particular, the formal objects relate to the
empirical objects, formal relationships model the empirical relationships and formal
operations are the mapping of empirical operations.

Software measurement models: Basic concepts are in classic books [13] and in some
more recent surveys [14, 15]. Some aspects were investigated that concern formal
definition and validation of attribute-based measurement models (see references
in [15]).

Regarding the development of SMM(s), it is fundamental the work about the Goal-
Question Metrics paradigm [12,17,18].

SE knowledge and experience representation for reuse and exchange: The Experience
Factory (EF) [19] was introduced for collecting, analyzing, synthesizing, storing, and
spreading organization wide knowledge and software experience of any kind, hence

An Empirical Study on Software Engineering Knowledge/Experience Packages 291

making it available for project organizations. The EF concept was successively
refined [36], surveyed [8,20], taught [21], specialized to different domains [5],
implemented [22,23,24,25,26,27], and extended [28]. The EF is an architecture
framework that is able to support both the Quality Improvement Paradigm [29], and
the Goal-Question-Metrics method [18]. EF is a logical organization, which might
have or not have a separate physical implementation [5, 8, 1]. From the organizational
and technological points of view, an EF is founded around an experience base. From a
process perspective, an EF consists of methods, techniques, and tools for working on
reusable experience. To facilitate diffusion and reuse organization wide, knowledge is
organized in EP(s), which populate the EB.

In order to reuse a package without having to consult the person or group, who
initially gained and reported about an experience or formalized and stored knowledge,
an EP is to intend as a chunk of knowledge/experience that is organized according to
EF and EB rules and structures, including instructions for usage [30], and pros and
cons of such a usage.

Experience Packages: Some pioneering organizations begun with storing into
repositories, describing by digital catalogues, and publishing knowledge/experience
packages. Nowadays, an amount of EP repositories are available through Interned.
Moreover, a number of published papers describe and characterize the available EP(s)
[21]. However, regarding EP(s) transfer and circulation, the literature recognize that
we are still missing rigorous definition of the EP attributes necessary for having
transferable and able for circulation EP(s) [24].

3 Paper Motivation and Research Questions

Current knowledge/experience packages are very often published through Internet;
apparently, it should be easy to identify by various search engines, and eventually
access and use them for free or at reasonable cost.

Nevertheless, we should not neglect that practitioners still seem to access and use
those knowledge/experience packages rarely [31]. Whether this would hold true, we
should deduce that there must still be some significantly wrong things in the way we
use to package experiences. Regarding this point, a relevant question is hence: In
what extent, is it actually accessed and utilized the set of PE(s) available through
Internet? Answering this question in a useful way requires taking in major account the
point of view of the EP end-users, i.e. business-software stakeholders.

This leads to place further relevant questions, like: In what extent is it well defined
and implemented the set of EF and EO rules and structures that we use to
accommodate knowledge/experiences in packages and bases? Is it easy for business
stakeholders to look for recognizing useful EQ(s), if any, among the available ones?
Is it reasonable the effort required; can a given organization afford it? Moreover:
Does it pay off using a recognized meritorious EO to start from the project on hand?
What is the trade-off, and who should pay for basic costs, like searching for useful
EO(s) and training personnel? In other words, some technical and economic barriers
still hamper the development and subsequent usage of EQ(s). Removing or, at least,
moderating the impact of those barriers is a research task; hence, questions placed
above are research questions.

292 P. Ardimento and M. Cimitile

4 Preliminary Empirical Work

This paper is based on the development of a number of technology innovation and
transfer projects within an academic SE Research Laboratory (SERLab) [32]. These
projects were mainly aimed to transferring research results from that lab to production
environments [33].

At certain point in times, our doubts about the practical utility of some EP(s) we
were considering, pushed us to ask practitioners for their opinion about the usages, if
any, they were doing of EOC(s) in their projects, and then, based on their depressing
answers, to conduct survey both on literature, and EO(s) as they are available through
Internet.

The goal of this preliminary stage of our research was hence to conduct a
qualitative study aimed to get confirmation/disconfirmation that EO(s) are rarely
utilized, in our region at least, and in case of disconfirmation, to start reasoning about
the why of such a result, what the influential factors might be, and what is the
perception about the levels of presence or absence of such factors in actual EO(s).

In order to meet this goal, we started with informally interviewing many
practitioners. Eventually, based on the analysis of the language these practitioners and
ourselves were using to describe pros and cons of using EO(s), we found some

29

recurring terms used, like EQ’s “acceptability”, “comprehensibility”, “identifiability”,
“applicability”, “evaluability”, “usability”, “cost”, and so on. Additionally, an initial
kernel of lesson learned (LLL) was established [34].

Then, in order to know whether SE had already identified these terms — and, in
case, had already transposed them in direct/indirect SMM(s) — we launched a survey.
This additional work gave us further insights, allowing us to extend the initial list of
collected LL [34].

Researchers and practitioners, who participated to this survey, agreed in
recognizing “acceptability” as the main term in the user view. Hence, we called
acceptability (Ea) the correspondent attribute of the EQ empirical system; it should
be able to represent as a whole an experience component (i.e. package, base, or
system of bases), thus it was defined as in the followings (let the terms EP, EB and
EBS map the empirical attributes EPa, EBa, and EBSa, respectively):

° acceptability (Ea) concerns the extent in which an EO is adequate for usage

in the software applications a practitioner is developing or expect to develop.

Participants also identified three main empirical factors as in the followings, which
might influence the ability of software practitioners to cope with an EQ; we should
look for relationships of these factors with Ea, if any:

° identifiability (Ei), which concerns the user quickness in recognizing

effectively the contents of an EO;

° applicability (Ec), which is the availability in an EO of the information that

users need for assessing cost and benefit of using that EO.

° evaluability (Ee), i.e. making explicit technical constraints, requirements, and

technical barriers, which relate to using an EQO.

Additionally, the participants identified other potentially influential factors/sub-
factors/parameters, which next sections 5 and 6 will take in consideration.

Our consequent decisions were: to collect an as large as possible set of the EB(s) as
available through Internet; to select a number of them for pilot investigation; to

An Empirical Study on Software Engineering Knowledge/Experience Packages 293

evaluate these EB(s) first qualitatively, and then quantitatively but using a scale as
rough as an ordinal one, from the perspective of the EB user, in view of utilizing
qualitative results to intersect [35], and results of all kinds to verify more precise and
reliable quantitative results, as a controlled experiment should provide.

Subsequently, we searched Internet for the available EB(s) by using common
search engines, so acquiring a number of EB(s). For this first iteration of our
investigation, we selected 10 EB(s), and all of them were in the SE area. These
constituted the EBS to investigate; rather than using pure random selection, we
preferred to conduct, and use results from, literature survey on EP analysis [36,
23,24]. We were aware of the fact that the size of the chosen EBS (#10) could not be
enough for deep inference analysis; however, we evaluated it adequate for a pilot
experiment, and the effort we could be able to enact in this stage of the study.

Following this point, we worked with each of the selected EO(s) in the aim of
evaluating them qualitatively and quantitatively from the consumer perspective.
Concerning the former, the question was: As a whole, is it the given EO good enough
for a consumer? Expected answer: Yes (Y), Not (N) or a documented Doubt (D).
Concerning the most recurrent attributes, how do you score each of them? Expected
result: Null or quite null (NN), Very Low (VL), Moderately Low (ML), Moderately
High (MH), Very High (VH), or Top most (TT).

Table 1 shows generic local identifiers (leftmost column) for the EB(s) we utilized
in the empirical study, and qualitative (rightmost column, QL) and quantitative results
obtained. These results flow over any pessimistic conjecture about the state of the
EP(s) practice in the user perspective.

In fact, all of the investigated EO(s) seem to be of no utility for practitioners.
However, these results also seem to give some interesting insights: Qualitative results
seem to show a similar movement than Ea. Additionally, a number of points could
depend on a combination of Ei, Ec, and Ee.

Table 1. Qualitative evaluation of, (column QL), and quantitative evaluations in ordinal scale
of some empirical attributes for, the experience bases utilized in this work

Ei Ec Ee Ea QL
EB, MH MH MH MH D
EB, ML NN MH VL N
EB; TT MH VL MH D
EB, ML MH NN ML N
EB;s MH MH NN ML N
EBg MH NN NN ML N
EB; MH MH NN ML N
EBg ML NN VL VL N
EBy ML NN NN VL N
EBy MH MH NN MH D

S Attributes of the Acceptability Software Measurement Model

The goals of this section are to reason on knowledge/experience packages and bases,
and show some basic properties of an SMM, which we call Acceptability for the

294 P. Ardimento and M. Cimitile

empirical attribute acceptability, Ea. An extended version of this paper [16] is made
available on request to authors, which includes the detailed definition of the ERS,
FRS, and scales for EO(s). Nevertheless, some basic empirical findings should be
sketched, which concern the EO empirical system, including attributes
aforementioned Ee, Ei, Ec, and Ea. In order to abstract on these attributes, let us use
words that derive from “worth” (e.g. “worthiness”) to denote such an empirical
attribute, whatever it might be. Given two or more EQ(s), some operations are
allowed, including the following ones. (i) Moving or copying information to an EP
(Merge, Copy); in the destination EP, the quantity of empirical attributes is affected,;
this occurs in a way that a simple addition is not enough to model; what occurs is a
more or less complex averaging. In other words, it makes to decrease the worthiness
of a worth-for-use experience package moving to it unworthy or moderately worth
information, and vice versa, for what concerns moving worth-for-use knowledge to a
not meritorious package. (ii) Removing information from an EP package; similar to
behaviors describes in point (i) but reversed. (iii) Putting EP(s) in the same set; it is an
operation (Union) that does not change properties of those EP(s). Moreover: an EB is
a structure on such a set; keys should be provided for facilitating the access to EB
items; eventually, when the size of the EB is high enough, a catalog should be
attached to the set, in order to help users in property-based searching for an EP.

Based on the ERS sketched above, an ERS-homomorphic FRS is constructed that,
once augmented with a Ratio scale in a Real range, e.g. [0..1], leads to define SMM(s)
for Acceptability and related sub-factors, as next sub-section shows.

5.1 Components of the Acceptability SMM

It gave us the chance of identifying the Acceptability’s main factors, sub-factors, and
so on up to reach leaf parameters, the EO surveys that we had conducted.

Let us scale all these factors, sub-factors, and parameters in the Real sub-range
[0..1]. Because each leaf parameter relates a chunk of information that serves a
precise objective in the EO user view, let 0 be assigned when the information is
missing or definitely bed, 1 when it completely meets the user needs, and an
intermediate value in proportion to the quality of the registered information, as being
between the worse and the best one. Of course, we expect that applying an indirect
SMM to an EO will provide a measure that is reasonably dependent on the values that
the EO components assume: e.g., an indirect SMM should return 0 (0.5 or 1,
respectively) when its leaf parameters measure 0 (0.5 or 1, respectively).

Let us note that, when we were in this stage with our study, we also started to
design the verification of the Acceptability SMM. Hence, in order to make
manageable our first iteration of the SMM development, we made the further design
decision to restrict the test cases for the leaf parameters to the central point, and the
upper and lower bounds, of the Real scale we had chosen for them; in practice, we
designed them to assume values 0.0, 0.5, and 1.0, in case just 0.0 and 1.0, so
postponing other test settings to further iterations.

5.1.1 Basic Factors
As already mentioned, in our view, three basic factors impact on Acceptability:
e [Identifiability, i.e. the user quickness in recognizing the contents of an EP;

An Empirical Study on Software Engineering Knowledge/Experience Packages 295

e Applicability, i.e. making explicit technical constraints, requirements, and
technical barriers, which relate to using an EP;

e Evaluability, i.e. the availability in an EP of the information that users need
for assessing cost and benefit expected for using that EP.

5.1.2 Sub-factors

The survey that we conducted also provided us with knowledge for identifying the
sets of information kinds that an EP is requested to include, in order to satisfy the
preconditions that make applicable the Acceptability basic factors.

Because many stakeholders participated in deriving these kinds of the due
information, some of those sets show a huge size. In other word, this lead the
breakdown of each basic factor in multiple sub-factors, and these in sub sub-factors,
eventually leaf parameters, i.e. factors that we are able to measure or want to leave to
their stakeholders for subjective evaluation. The remainder of this section presents the
decompositions that we made for the basic factors. See [16] for an extended
presentation.

5.1.2.1 Description Parameters. We call Description Parameters (DP) the categories
of the information that impact on Identifiability of an EO. In the followings, number 3
categories of description parameters are shown italicized, together with an associated
information kind and some comments. Domain (DP;): Application domain of the
EO. Problems afforded (DP,): Problems the EO could help to solve. The
author/owner of EO should express these problems in the user view and terms, i.e. as
the target stakeholders perceive and express them. Keywords (DP;): They specify
about the domain indicated for the given parameter. As far as a stakeholder proceeds
in refining her or his selection, keywords can give help in understanding the set of
problems that EO can solve, including problems that documentation does not
explicitly mention elsewhere.

5.1.2.2 Experience Parameters. Let us call Experience Parameters (ExP) the categories
of the information that impact on Applicability. In the followings, number 3 categories
of identifiability parameters are presented. History (ExP;): concerns (i) the When,
Where, and Why the EO was originated and, in case, modified; (ii) successes and
failures in applying EO in industrial settings, and (iii) problems of any kind encountered
with adopting EO for previous applications. Prerequisites (ExP,): in order to let an EO
be applicable, they enumerate the conditions that business process has to meet,
including activities to enact in advance, and semi finished materials, tools, techniques,
methods, resources, and skills to make available. Platform (ExP;): concerns the
infrastructures allowed for applying EO. It is worth to include and highlight
information about the flexibility of using EO with given infrastructures, and the level of
scalability these can afford without affecting the effectiveness of the EO adoption.

5.1.2.3 Evaluability Parameters. Let us call Experience Values (EV) the categories
of the information that impact on Evaluability. In the followings, number 11
categories of evaluability parameters are presented. Economic Impact (EV;): it is the
set of key performance indicators that might help users in assessing the EP significant
business value. Those indicators are requested to summarize on the whole economic

296 P. Ardimento and M. Cimitile

impact of each of the following parameter fields. Impact on Process (EV,): The set of
key performance indicators that should be used to assess the significant impact of the
package for each business process. They must summarize the whole impact of the
following fields. Impact on Products (EV3): Description of the consequences the new
knowledge will eventually have. Again, in this case, a model should be attached for
estimating the costs of application of the package (e.g. modification of any interaction
of the working products with the innovative ones; recovery of data from the old
products to be used in the new, any changes in platform hardware and software...)
and the benefits. Market Impact (EV,): Description of what market changes the
company setup will note after introduction of the knowledge package. A cost-benefit
estimation model should be attached. Impact on Value Chain (EVs): Description of
changes in the whole value chain, and especially the impact on the business processes
related to the innovated process. One integrated or two separate cost-benefit models
should be present. Value for the Stakeholders (EVj): Detailed analysis of all the
expected values per type of stakeholder, who is concerned with applying the given
EP. Values are expected to be expressed quantitatively as far as possible, therefore
have an attached estimation model. Adoption Risks (EV;): Events that could occur
during the EP adoption process and give a negative impact on time needed to acquire
the knowledge that the EB includes, or on cost to incur and/or benefits to gain for
using the EP. Actions that the EP puts in place to mitigate the risk should be
explained in detail, including how and in what extent they work. All the risks listed
should be associated with mitigation actions described in the EP Package Acquisition
Plan (see next point). Package Acquisition Plan (EVy): Details about the actions to be
taken in order to apply the EP. The plan is requested to point out how to govern the
bearing of the innovation. The acquisition process is requested to report on trace from
needs to resources. It is also requested to indicate acquisition time and costs; these
should be predictable; hence the PE should be attached to appropriate estimation
models. The EP is also requested to indicate what are activities that it ensures,
benefits that it provides, and actions to take for maximizing benefits and mitigating
the risks. Skills Required (EV,): The s