

Lecture Notes in Computer Science 5089
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Andreas Jedlitschka Outi Salo (Eds.)

Product-Focused
Software Process
Improvement

9th International Conference, PROFES 2008
Monte Porzio Catone, Italy, June 23-25, 2008
Proceedings

13

Volume Editors

Andreas Jedlitschka
Fraunhofer Institute for Experimental Software Engineering
Fraunhofer Platz 1, 67663 Kaiserslautern, Germany
E-mail: andreas.jedlitschka@iese.fraunhofer.de

Outi Salo
VTT Technical Research Centre of Finland
Kaitoväylä 1, 90570 Oulu, Finland
E-mail: Outi.Salo@vtt.fi

Library of Congress Control Number: 2008929491

CR Subject Classification (1998): D.2, K.6, K.4.2, J.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-69564-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69564-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12320066 06/3180 5 4 3 2 1 0

Preface

On behalf of the PROFES Organizing Committee, we are proud to present to you the
proceedings of the 9th International Conference on Product-Focused Software Process
Improvement (PROFES 2008) held in Frascati - Monteporzio Catone, Rome, Italy.

Since 1999, PROFES has established itself as one of the recognized international
process improvement conferences. The main theme of PROFES is professional soft-
ware process improvement (SPI) motivated by product and service quality needs.
Focussing on a product to be developed, PROFES 2008 addressed both quality engi-
neering and management topics including processes, methods, techniques, tools, or-
ganizations, and enabling SPI. Both solutions found in practice and the relevant
research results from academia were presented.

Domains such as the automotive and mobile applications industry are growing rap-
idly, resulting in a strong need for professional development and improvement.
Nowadays, the majority of embedded software is developed in collaboration, and
distribution of embedded software development continues to increase. Thus, PROFES
2008 addressed different development modes, roles in the value chain, stakeholders’
viewpoints, collaborative development, as well as economic and quality aspects. Ag-
ile development was included again as one of the themes.

Since the beginning of the series of PROFES conferences, the purpose has been to
bring to light the most recent findings and novel results in the area of process im-
provement, and to stimulate discussion among researchers, experienced professionals,
and technology providers from around the world.

The technical program was selected by a committee of leading experts in software
process improvement, software process modeling, and empirical software engineering
research. This year, 61 papers from 23 nations were submitted, with each paper re-
ceiving at least three reviewers. After thorough evaluation, the Program Committee
selected 31 technical full papers. The topics addressed in these papers indicate that
SPI is still a vibrant research discipline, but is also of high interest for the industry;
many papers report on case studies or SPI-related experience gained in industry.

The technical program consisted of the tracks quality and measurement, cost esti-
mation, capability and maturity models, lessons learned and best practices, software
process improvement, systems and software quality, and agile software development.

We were proud to have three keynote speakers, Antonia Bertolini, Kurt Schneider,
and Horst Degen-Hientz. Interesting tutorials and workshops were co-located with
PROFES 2008.

We are thankful for the opportunity to have served as Program Co-chairs for this
conference. The Program Committee members and reviewers provided excellent sup-
port in reviewing the papers. We are also grateful to the authors, presenters, and Ses-
sion Chairs for their time and effort in making PROFES 2008 a success. The General
Chair, Frank Bomarius, and the Steering Committee provided excellent guidance. We
wish to thank Fraunhofer IESE, the VTT Technical Research Centre of Finland, and
University of Rome Tor Vergata for supporting the conference. We are also grateful to
the authors for high-quality papers, the Program Committee for their hard work in

 Preface VI

reviewing the papers, and the Organizing Committee for making the event possible. In
addition, we sincerely thank Frank Bomarius for his work as a General Chair of PRO-
FES 2008. Last, but not least, many thanks to Giovanni Cantone and his team at Uni-
versity of Rome Tor Vergata for the local organization of this conference and the
maintenance of the PROFES 2008 website, and Sonnhild Namingha and Isabelle
Schlitzer at Fraunhofer IESE for her support in copyediting this volume.

June 2008 Andreas Jedlitschka
Outi Salo

Organization

General Chair

Frank Bomarius, Fraunhofer IESE and University of Applied Sciences Kaiserslautern,
Germany

Program Co-chairs

Andreas Jedlitschka, Fraunhofer IESE, Germany
Outi Salo, VTT Technical Research Centre, Finland

Tutorial and Workshop Chair

Darja Šmite, Rigas Informacijas Tecnologijas Instituts, Latvia

Organization Chair

Giovanni Cantone, Università degli Studi di Roma Tor Vergata, Italy

Local Organization Committee

Università degli Studi di Roma Tor Vergata, Italy

Anna Lomartire, Centro di Calcolo e Documentazione (CCD)
Gianfranco Pesce, Centro di Calcolo e Documentazione (CCD)
Davide Falessi, Dipartimento di Informatica, Sistemi e Produzione
Maurizio Saltali, Dipartimento di Informatica, Sistemi e Produzione
Alessandro Sarcià, Dipartimento di Informatica, Sistemi e Produzione

PR Chair

S. Alessandro Sarcià, Università degli Studi di Roma Tor Vergata, Italy

Publicity Co-chairs

Benelux Ko Doorns, Philips
Canada Dietmar Pfahl, University of Calgary
Central Europe Frank Seelisch, Fraunhofer IESE

 Organization VIII

Finland Minna Isomursu, VTT
Japan Shuji Morisaki, NAIST
Scandinavia Tore Dybå, SINTEF
South America Christiane Gresse von Wangenheim, Universidade do Vale do Itajaí
USA Raimund L. Feldmann, FC-MD, USA

Program Committee

Zeiad A. Abdelnabi, Garyounis University - IT College, Libya
Silvia Abrahão, Universidad Politécnica de Valencia, Spain
Muhammad Ali Babar, Lero, University of Limerick, Ireland
Bente Anda, Simula Research Laboratory, Norway
Maria Teresa Baldassarre, University of Bari, Italy
Andreas Birk, SWPM - Software.Process.Management, Germany
Danilo Caivano, University of Bari, Italy
Gerardo Canfora, University of Sannio, Italy
Jeff Carver, Mississippi State, USA
Marcus Ciolkowski, Fraunhofer IESE, Germany
Reidar Conradi, Norwegian University of Science and Technology, Norway
Beniamino Di Martino, Second University of Naples, Italy
Torgeir Dingsøyr , SINTEF, Norway
Tore Dybå, SINTEF, Norway
Davide Falessi, University of Rome "Tor Vergata", Italy
Raimund Feldmann, Fraunhofer Center Maryland, USA
Jens Heidrich, Fraunhofer Institute for Experimental Software Engineering, Germany
Martin Höst, Lund University, Sweden
Frank Houdek, Daimler AG, Germany
Hajimu Iida, NAIST, Japan
Katsuro Inoue, Osaka University, Japan
Janne Järvinen, F-Secure, Finland
Erik Johansson, Ericsson Mobile Platforms, Sweden
Natalia Juristo, Universidad Politécnica de Madrid, Spain
Kari Kansala, NOKIA, Finland
Pasi Kuvaja, University of Oulu, Finland
Marek Leszak, Alcatel-Lucent, Germany
Lech Madeyski, Wroclaw University of Technology, Poland
Annukka Mäntyniemi, VTT Technical Research Centre of Finland, Finland
Annukka Mäntyniemi, Nokia, Finland
Kenichi Matsumoto, Nara Institute of Science and Technology, Japan
Makoto Matsushita, Osaka University, Japan
Nils Brede Moe, SINTEF ICT, Norway
Maurizio Morisio , Politecnico di Torino, Italy
Mark Mueller, Robert Bosch GmbH, Germany
Jürgen Münch, Fraunhofer IESE, Germany
Haruka Nakao, Japan Manned Space Systems Corporation, Japan
Risto Nevalainen , FiSMA ry, Finland

 Organization IX

Mahmood Niazi, Keele University, UK
Paolo Panaroni, INTECS, Italy
Dietmar Pfahl, University of Calgary, Canada
Minna Pikkarainen, VTT, Finland
Teade Punter, Embedded Systems Institute (ESI), The Netherlands
Austen Rainer, University of Hertfordshire, UK
Karl Reed, La Trobe University, Australia
Daniel Rodríguez , University of Alcalá, Spain
Kurt Schneider, Leibniz Universität Hannover, Germany
Carolyn Seaman, UMBC and Fraunhofer Center Maryland, USA
Darja Smite, University of Latvia, Latvia
Michael Stupperich, Daimler AG, Germany
Guilherme Travassos, COPPE/UFRJ, Brazil
Markku Tukiainen, University of Joensuu, Finland
Mark van den Brand, Eindhoven University of Technology, The Netherlands
Rini van Solingen, LogicaCMG and Delft University of Technology, The Netherlands
Sira Vegas, Universidad Politecnica de Madrid, Spain
Matias Vierimaa, VTT, Finland
Hironori Washizaki, National Institute of Informatics, Japan
Claes Wohlin, Blekinge Institute of Technology, Sweden
Bernard Wong, University of Technology, Sydney, Australia

External Reviewers

Ramón Garcia-Martinez, Buenos Aires Institute of Technology, Argentina
Anna Grimán Padua, Simón Bolívar University, Venezuela
Martín Solari, ORT University, Uruguay
Adam Trendowicz, Fraunhofer IESE, Germany

Table of Contents

Keynote Addresses

Software Testing Forever: Old and New Processes and Techniques for
Validating Today’s Applications . 1

Antonia Bertolino

Culture of Error Management “Why Admit an Error When No One
Will Find Out?” . 2

Horst Degen-Hientz

Supporting Experience and Information Flow in Software Projects 3
Kurt Schneider

Quality and Measurement I

Goal-Oriented Setup and Usage of Custom-Tailored Software
Cockpits . 4

Jens Heidrich and Jürgen Münch

MIS-PyME Software Measurement Maturity Model-Supporting the
Definition of Software Measurement Programs . 19

Maŕıa Dı́az-Ley, Félix Garćıa, and Mario Piattini

Predicting Software Metrics at Design Time . 34
Wolfgang Holz, Rahul Premraj, Thomas Zimmermann, and
Andreas Zeller

A Metrics Suite for Measuring Quality Characteristics of JavaBeans
Components . 45

Hironori Washizaki, Hiroki Hiraguchi, and Yoshiaki Fukazawa

Cost Estimation

Software Cost Estimation Inhibitors - A Case Study 61
Ana Magazinovic, Joakim Pernst̊al, and Peter Öhman

Impact of Base Functional Component Types on Software Functional
Size Based Effort Estimation . 75

Luigi Buglione and Cigdem Gencel

Managing Uncertainty in ERP Project Estimation Practice: An
Industrial Case Study . 90

Maya Daneva

XII Table of Contents

The Effect of Entity Generalization on Software Functional Sizing:
A Case Study . 105

Oktay Turetken, Onur Demirors, Cigdem Gencel,
Ozden Ozcan Top, and Baris Ozkan

Capability and Maturity Models

Towards a Capability Model for the Software Release Planning
Process—Based on a Multiple Industrial Case Study 117

Markus Lindgren, Rikard Land, Christer Norström, and Anders Wall

From CMMI to SPICE – Experiences on How to Survive a SPICE
Assessment Having Already Implemented CMMI . 133

Fabio Bella, Klaus Hörmann, and Bhaskar Vanamali

A Model for Requirements Change Management: Implementation of
CMMI Level 2 Specific Practice . 143

Mahmood Niazi, Charles Hickman, Rashid Ahmad, and
Muhammad Ali Babar

Systems and Software Quality

Experience Report on the Effect of Software Development
Characteristics on Change Distribution . 158

Anita Gupta, Reidar Conradi, Forrest Shull, Daniela Cruzes,
Christopher Ackermann, Harald Rønneberg, and Einar Landre

Virtual Prototypes in Developing Mobile Software Applications and
Devices . 174

Kari Liukkunen, Matti Eteläperä, Markku Oivo,
Juha-Pekka Soininen, and Mika Pellikka

Comparing Assessment Methodologies for Free/Open Source Software:
OpenBRR and QSOS . 189

Jean-Christophe Deprez and Simon Alexandre

Quality and Measurement II

Predicting Software Fault Proneness Model Using Neural Network 204
Yogesh Singh, Arvinder Kaur, and Ruchika Malhotra

Automating the Measurement of Functional Size of Conceptual Models
in an MDA Environment . 215

Beatriz Maŕın, Oscar Pastor, and Giovanni Giachetti

How Does a Measurement Programme Evolve in Software
Organizations? . 230

Lasse Harjumaa, Jouni Markkula, and Markku Oivo

Table of Contents XIII

A Fault Prediction Model with Limited Fault Data to Improve Test
Process . 244

Cagatay Catal and Banu Diri

Software Process Improvement

Big Improvements with Small Changes: Improving the Processes of a
Small Software Company . 258

Anu Valtanen and Jarmo J. Ahonen

Software Process Improvement Methodologies for Small and Medium
Enterprises . 273

Deepti Mishra and Alok Mishra

An Empirical Study on Software Engineering Knowledge/Experience
Packages . 289

Pasquale Ardimento and Marta Cimitile

Customized Predictive Models for Process Improvement Projects 304
Thomas Birkhölzer, Christoph Dickmann, Harald Klein,
Jürgen Vaupel, Stefan Ast, and Ludger Meyer

Lessons Learned and Best Practices I

Improving Customer Support Processes: A Case Study 317
Marko Jäntti and Niko Pylkkänen

Influential Factors on Incident Management: Lessons Learned from a
Large Sample of Products in Operation . 330

João Caldeira and Fernando Brito e Abreu

Pitfalls in Remote Team Coordination: Lessons Learned from a Case
Study . 345

Darja Šmite, Nils Brede Moe, and Richard Torkar

Agile Software Development

A Model to Identify Refactoring Effort during Maintenance by Mining
Source Code Repositories . 360

Raimund Moser, Witold Pedrycz, Alberto Sillitti, and
Giancarlo Succi

The Application of ISO 9001 to Agile Software Development 371
Tor St̊alhane and Geir Kjetil Hanssen

XIV Table of Contents

Study of the Evolution of an Agile Project Featuring a Web Application
Using Software Metrics . 386

Giulio Concas, Marco Di Francesco, Michele Marchesi,
Roberta Quaresima, and Sandro Pinna

Lessons Learned and Best Practices II

Identifying and Understanding Architectural Risks in Software
Evolution: An Empirical Study . 400

Odd Petter Nord Slyngstad, Jingyue Li, Reidar Conradi, and
M. Ali Babar

A Hands-On Approach for Teaching Systematic Review 415
Maria Teresa Baldassarre, Nicola Boffoli, Danilo Caivano, and
Giuseppe Visaggio

An Empirical Study Identifying High Perceived Value Practices of
CMMI Level 2 . 427

Mahmood Niazi, Muhammad Ali Babar, and Suhaimi Ibrahim

Workshops

2nd International Workshop on Measurement-Based Cockpits
for Distributed Software and Systems Engineering Projects
(SOFTPIT 2008) . 442

Marcus Ciolkowski, Jens Heidrich, Marco Kuhrmann, and
Jürgen Münch

10th International Workshop on: Learning Software Organizations
-Methods, Tools, and Experiences- . 443

Raimund L. Feldmann and Martin Wessner

Implementing Product Line Engineering in Industry: Feedback from
the Field to Research . 444

Davide Falessi and Dirk Muthig

What to Learn from Different Standards and Measurement Approaches?
Is a Pragmatic Integrative Approach Possible? . 445

Fabio Bella and Horst Degen-Hientz

Author Index . 447

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, p. 1, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Software Testing Forever:
Old and New Processes and Techniques for

Validating Today's Applications

Antonia Bertolino

Istituto di Scienza e Tecnologie dell’Informazione
Consiglio Nazionale delle Ricerche

via Moruzzi, 1, 56124 Pisa, Italy
antonia.bertolino@isti.cnr.it

Software testing is a very complex activity deserving a first-class role in
software development. Testing related activities encompass the entire
development process and may consume a large part of the effort required for
producing software. In this talk, I will first organize into a coherent framework
the many topics and tasks forming the software testing discipline, pointing at
relevant open issues [1]. Then, among the outlined challenges, I will focus on
some hot ones posed by the testing of modern complex and highly dynamic
systems [2]. What is assured is that software testers do not risk to remain
without their job, and testing researchers are not at short of puzzles. Software
testing is and will forever be a fundamental activity of software engineering:
notwithstanding the revolutionary advances in the way it is built and employed
(or perhaps exactly because of), the software will always need to be eventually
tried and monitored. In the years, software testing has evolved from an “art” to
a discipline, but test practice largely remains a trial-and-error methodology. We
will never find a test approach that is guaranteed to deliver a “perfect” product,
whichever is the effort we employ. However, what we can and must pursue is to
transform testing from “trial-and-error” to a systematic, cost-effective and
predictable engineering practice.

Keywords: Software testing research challenges, Testing and monitoring of
dynamic systems, Testing for functional and non-functional properties.

References

1. Bertolino, A.: Software Testing Research: Achievements, Challenges, Dreams. In: 2007
Future of Software Engineering, at ICSE 2007, Minneapolis, USA, May 20 - 26, pp. 85–103
(2007)

2. The Plastic Consortium, Deliverable D4.1: Test Framework Specification and Architecture,
http://www.ist-plastic.org/

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, p. 2, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Culture of Error Management
“Why Admit an Error When No One Will Find Out?”

Horst Degen-Hientz*

KUGLER MAAG CIE GmbH Germany
horst.degen-hientz@kuglermaag.com

www.kuglermaag.com

What has a Stradivari and Linux in common? It is the error culture-driven proc-
ess that created it. A culture of restless strives for innovation and quality ena-
bling continuous learning. We systematically get trained by being punished as
child when doing mistakes and often need a life long cumbersome process to
undo this conditioning. In western world many organization behave just like as
that: errors are socially not acceptable. This seems to be universal applicable as
Kaizen and the “zero-defect-culture” can teach us. It is not a society intrinsic at-
titude - as one can observe from the Toyota way - which took years to establish
an organizational error management culture. Studies in Europe show too that
organizational error management are a means to boost companies’ performance
and goals achievement. Hence, what can we learn from Stradivari and Linux? It
is the way to organize error management and innovation. This is key to open
source projects and the raising inner source projects as observable in companies
like Google.

* CTO and Partner at KUGLER MAAG CIE.

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, p. 3, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Supporting Experience and Information Flow in
Software Projects

Kurt Schneider

Leibniz Universität Hannover
Institut für Praktische Informatik FG Software Engieering

Welfengarten 1, 30167 Hannover, Germany
kurt.schneider@inf.uni-hannover.de

Several large companies have conducted initiatives for systematic learning from
experience in software engineering. In the international Software Experience
Center (SEC), for example, five companies exchanged experiences and collabo-
rated in building experience exchange mechanisms to be used within each com-
pany. Many insights were gained and lessons were learned over the years,
among them: (1) Written and documented experiences are the exception rather
than the rule. (2) Although not documented in detail or controlled by a process,
experience needs guidance and support in order to reach the designated person
or group. The “flow” of experience must be kept in mind. (3) Experience is a
delicate material, and any avoidable effort or threshold to participate in system-
atic experience exploitation may endanger stakeholder participation and suc-
cess. (4) Tools can effectively be built to support orderly flow of experience,
but they must be optimized for cognitive support of their users. These lessons
learned from supporting experience exploitation can be applied to software pro-
jects more generally: Requirements, rationale, and other information flowing
through a software project resemble experience with respect to the above-
mentioned characteristics: They are often communicated orally rather than in a
document. There are diverse processes and practices designed to channel infor-
mation flow. Early and vague requirements must be handled with care, and
tools need to be optimized to reduce cognitive barriers and thresholds, or they
will not be accepted. A focus on information and experience flow takes the
above-mentioned lessons into account. Information flows within one project,
while experience often cuts across several projects. Requirements of one project
are useful only in that same project. Experience in designing a product, how-
ever, may be reused in subsequent projects. Information and experience flows
need to be modelled explicitly. A simple notation is proposed to capture just the
essence of flowing information. What may seem like a subtle shift from proc-
esses to flows offers a new perspective: Based on those models, dedicated tech-
niques and tools can be developed for analysing and for improving the flows. A
wide range of current trends in software engineering can benefit from a better
understanding of – and support for – appropriate information flow: Interfaces to
the subcontractors, distributed and collaborative teams, Wiki webs, and a vari-
ety of new communication channels in global software engineering call for a
focus on information flow.

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 4–18, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Goal-Oriented Setup and Usage of Custom-Tailored
Software Cockpits

Jens Heidrich and Jürgen Münch

Fraunhofer IESE, Fraunhofer Platz 1, 67663 Kaiserslautern, Germany
{jens.heidrich, juergen.muench}@iese.fraunhofer.de

Abstract. Software Cockpits, also known as Software Project Control Centers,
support the management and controlling of software and system development
projects and provide means for quantitative measurement-based project control.
Currently, many companies are developing simple control dashboards that are
mainly based on Spreadsheet applications. Alternatively, they use solutions
providing a fixed set of project control functionality that cannot be sufficiently
customized to their specific needs and goals. Specula is a systematic approach
for defining reusable, customizable control components and instantiate them
according to different organizational goals and characteristics based on the
Quality Improvement Paradigm (QIP) and GQM. This article gives an overview
of the Specula approach, including the basic conceptual model, goal-oriented
measurement, and the composition of control components based on explicitly
stated measurement goals. Related approaches are discussed and the use of
Specula as part of industrial case studies is described.

Keywords: Software Project Control Center, QIP, GQM.

1 Introduction

The complexity of software development projects continues to increase. One major
reason is the ever-increasing complexity of functional as well as non-functional soft-
ware requirements (e.g., reliability or time constraints for safety-critical systems). The
more complex the requirements, the more people are usually involved in meeting
them, which further increases the complexity of controlling and coordinating the
project. This, in turn, makes it even harder to develop the system according to plan
(i.e., matching time and budget constraints). Project control issues are very hard to
handle. Many software development organizations still lack support for obtaining
intellectual control over their software development projects and for determining the
performance of their processes and the quality of the produced products. Systematic
support for detecting and reacting to critical project states in order to achieve planned
goals is often missing [15].

Companies have started to introduce so-called software cockpits, also known as
Software Project Control Centers (SPCC) [15] or Project Management Offices (PMO)
[16], for systematic quality assurance and management support. A software cockpit is
comparable to an aircraft cockpit, which centrally integrates all relevant information

 Goal-Oriented Setup and Usage of Custom-Tailored Software Cockpits 5

for monitoring and controlling purposes. A project manager can use it to get an over-
view of the project state and a quality assurance manager can use it to check the qual-
ity of the software product. In addition to these primary users of an SPCC, basically
any role of a project may profit from making direct or indirect use of the SPCC func-
tionality. For instance, a developer can use the SPCC to keep track of code quality or
to trace quality issues. The benefit provided by an SPCC for a certain project role
depends on the functionality and services offered. However, the needs with respect to
project control differ between different organizations, projects, and roles. They de-
pend on organizational goals (business goals), process maturity, the experience of the
project team, and many other factors. For instance, for multi-disciplinary, distributed
software development, measurement data has to be collected from different sources
(locations) and formats. In this case, integration of data is crucial for getting a consis-
tent picture of the project state.

In general, an important success factor in the software engineering domain is that
these solutions are customized to the specific goals, organizational characteristics and
needs, as well as the concrete project environment. Specula (lat. watch tower) is an
approach for composing project control functionality out of reusable control compo-
nents [7], [8]. It was mainly developed at the Fraunhofer Institute for Experimental
Software Engineering (IESE) and makes use of the Quality Improvement Paradigm
(QIP) for integrating project control activities into a continuous improvement cycle.
Furthermore, the GQM approach [2] is used for explicitly specifying measurement
goals for project control.

Section 2 of the article presents related work in the field of software project control
centers and key performance indicators for project control. Section 3 introduces the
Specula approach, describes the underlying conceptual model and its relationship to
goal-oriented measurement, and finally presents the basic steps of the methodology
for composing control components (encapsulated, packaged techniques for project
control) based on explicitly defined measurement goals. Section 4 presents first em-
pirical evaluation results based on industrial case studies conducted. The article con-
cludes with a brief summary and discussion of future work.

2 Related Work

An overview of the state of the art in Software Project Control Centers can be found
in [15]. The scope was defined as generic approaches for online data interpretation
and visualization on the basis of past experience. However, project dashboards were
not included in this overview. In practice, many companies develop their own
dashboards (mainly based on Spreadsheet applications) or use dashboard solutions
that provide a fixed set of predefined functions for project control (e.g., deal with
product quality only or solely focus on project costs) and are very specific to
the company for which they were developed. Most of the existing, rather generic,
approaches for control centers offer only partial solutions. Especially purpose- and
role-oriented usages based on a flexible set of techniques and methods are not com-
prehensively supported. For instance, SME (Software Management Environment)
[10] offers a number of role-oriented views on analyzed data, but has a fixed, built-in
set of control indicators and corresponding visualizations. The SME successor

6 J. Heidrich and J. Münch

WebME (Web Measurement Environment) [19] has a scripting language for custom-
izing the interpretation and visualization process, but does not provide a generic set of
applicable controlling functions. Unlike Provence [13] and PAMPA [18], approaches
like Amadeus [17] and Ginger2 [20] offer a set of purpose-oriented controlling func-
tions with a certain flexibility, but lack a role-oriented approach to data interpretation
and visualization.

The indicators used to control a development project depend on the project’s goals
and the organizational environment. There is no default set of indicators that is always
used in all development projects in the same manner. According to [14], a “good”
indicator has to (a) support analysis of the intended information need, (b) support the
type of analysis needed, (c) provide the appropriate level of detail, (d) indicate a pos-
sible management action, and (e) provide timely information for making decisions
and taking action. The concrete indicators that are chosen should be derived in a sys-
tematic way from the project goals [12], making use of, for instance, the Goal Ques-
tion Metric (GQM) approach. Some examples from indicators used in practice can be
found in [1]. With respect to controlling project cost, the Earned Value approach
provides a set of commonly used indicators and interpretation rules. With respect to
product quality, there exists even an ISO standard [11]. However, the concrete usage
of the proposed measures depends upon the individual organization. Moreover, there
is no unique classification for project control indicators. One quite popular classifica-
tion of general project management areas is given by the Project Management Body
of Knowledge (PMBoK) [16]. The PMBoK distinguishes between nine areas, includ-
ing project time, cost, and quality management.

The ideas behind GQM and the Quality Improvement Paradigm (QIP) [2] are well-
proven concepts that are widely applied in practice today. An approach based on
GQM and QIP to create and maintain enhanced measurement plans, addressing data
interpretatation and visualization informally, is presented in [5]. Moreover, related
work in this field is presented.

3 The Specula Approach

Specula is a state-of-the-art approach for project control. It interprets and visualizes
collected measurement data in a goal-oriented way in order to effectively detect plan
deviations. The control functionality provided by Specula depends on the underlying
goals with respect to project control. If these goals are explicitly defined, the corre-
sponding functionality is composed out of packaged, freely configurable control
components. Specula provides four basic components: (1) a logical architecture for
implementing software cockpits [15], (2) a conceptual model formally describing the
interfaces between data collection, data interpretation, and data visualization [9], (3)
an implementation of the conceptual model, including a construction kit of control
components [4], and (4) a methodology of how to select control components accord-
ing to explicitly stated goals and customize the SPCC functionality [9].

The methodology is based on the Quality Improvement Paradigm (QIP) and makes
use of the GQM approach [2] for specifying measurement goals. QIP is used to im-
plement a project control feedback cycle and make use of experiences and knowledge
gathered in order to reuse and customize control components. GQM is used to drive

 Goal-Oriented Setup and Usage of Custom-Tailored Software Cockpits 7

the selection process of finding the right control components according to defined
goals. Large parts of the approach are supported by a corresponding prototype tool,
called Specula Project Support Environment (PSE), which is currently also being used
as part of industrial case studies (see Section 4 and [4]). Specula basically addresses
the following roles that make use of the provided functionality:

• Primary Users: Project manager, quality assurance manager, and controller who
mainly use an SPCC to control different aspects of the software development pro-
ject and initiate countermeasures in case of deviations and risks.

• Secondary Users: Developers and technical staff who use an SPCC to enter meas-
urement data as well as to detect root causes for deviations and risks.

• Administrators: Administrators who have to install and maintain an SPCC.
• Measurement Experts: Experts who define measurement goals, support derivation

of control components, and help to customize and effectively use the SPCC.

Section 3.1 gives a brief overview of the conceptual model upon which Specula is
built. Section 3.2 addresses the connection of the conceptual model to goal-oriented
measurement, and Section 3.3 provides a brief overview of all steps necessary to
apply the Specula approach as a whole.

3.1 Cockpit Concepts

The conceptual model of the Specula approach formalizes the process of collecting,
interpreting, and visualizing measurement data for software project control. The de-
rived structure for operationally controlling a development project is called a Visuali-
zation Catena (VC) [7], which defines components for automatically and manually
collecting measurement data, processing and interpreting these data, and finally visu-
alizing the processed and interpreted data. The processing and interpretation of col-
lected measurement data is usually related to a special measurement purpose, like
analyzing effort deviations, or guiding a project manager. A set of techniques and
methods (from the repository of control components) is used by the VC for covering
the specified measurement purpose. The visualization and presentation of the proc-
essed and collected measurement data is related to roles of the project that profit from
using the data. The VC creates a set of custom-made controlling views, which pre-
sents the data according to the interests of the specified role, such as a high-level
controlling view for a project manager, and a detailed view of found defects for a
quality assurance manager. The whole visualization catena has to be adapted in ac-
cordance with the context characteristics and organizational environment of the soft-
ware development project currently being controlled.

Fig. 1 gives an overview of all VC components and their corresponding types.
Specula distinguishes between the following five components on the type level from
which a concrete VC is instantiated for a certain project:

(T1) Data types describe the structure of incoming data and data that is further
processed by the VC. For instance, a time series (a sequence of time stamp and corre-
sponding value pairs) or a project plan (a hierarchical set of activities having a start
and end date and an effort baseline) could be logical data types that could either be
directly read-in by the system or be the output of a data processing function.

8 J. Heidrich and J. Münch

(T2) Data access object packages describe the different ways concrete data types
may be accessed. For instance, an XML package contains data access objects for
reading data (having a certain data type) from an XML file, writing data to an XML
file, or changing the contents of an XML file. A special package may be used, for
instance, to automatically connect to an effort tracking system or bug tracking data
base. A data access object contains data type-specific parameters in order to access
the data repositories.

(T3) Web forms describe a concrete way of managing measurement data manually,
involving user interaction. A web form manages a concrete data type. For instance,
new data may be added, existing data may be changed or completely removed. A web
form also refers to other data types that are needed as input. For instance, in order to
enter effort data manually, one needs the concrete activities of the project for which
the effort is tracked. Web forms are needed if the data cannot be automatically re-
trieved from an external data source.

Visualization
Catena

presents
results of Function

Instance (I3)
View Instance

(I4)
Data Entries

(I1)
Web Form

Instance (I2)

processes
contents of

manages
data for

Function
(T4)

View
(T5)

Data Type
(T1)

instance ofinstance ofinstance of

is built uponcomprises

Web Form
(T3)

instance of

DAO Package
(T2)

accessed through

Visualization
Catena

presents
results of Function

Instance (I3)
View Instance

(I4)
Data Entries

(I1)
Web Form

Instance (I2)

processes
contents of

manages
data for

Function
(T4)

View
(T5)

Data Type
(T1)

instance ofinstance ofinstance of

is built uponcomprises

Web Form
(T3)

instance of

DAO Package
(T2)

accessed through

Fig. 1. Overview of the elements of the conceptual model. A view instance presents the results
of a data processing function, which in turn processes the contents of data entries for which
data is provided by a web form instance.

(T4) Functions represent a packaged control technique or method, which is used to
process incoming data (like Earned Value Analysis, Milestone Trend Analysis, or
Tolerance Range Checking). A function needs different data types as input, produces
data of certain data types as output, and may be adapted to a concrete context through
a set of parameters.

(T5) Views represent a certain way of presenting data, like drawing a two-
dimensional diagram or just a table with a certain number of rows and columns. A
view visualizes different data types and may refer to other views in order to create a
hierarchy of views. The latter may, for instance, be used to create a view for a certain
project role consisting of a set of sub-views.

 Goal-Oriented Setup and Usage of Custom-Tailored Software Cockpits 9

In addition, the following components are distinguished on the instances level:

(I1) Data entries instantiate data types and represent the concrete content of meas-
urement data that are processed by the SPCC. We basically distinguish between
external and internal data. External data must be read-in or imported from an exter-
nal location, or manually entered into the system. Each external data object has to be
specified explicitly by a data entry containing, for instance, the start and end time
and the interval at which the data should be collected. In addition, the data access
object package that should be used to access the external data has to be specified.
Internal data are the outcome of functions. They are implicitly specified by the func-
tion producing the corresponding data type as output and therefore need no explicit
specification and representation as data entry. External as well as internal data may
be used as input for instances of functions or views if their corresponding data types
are compatible.

(I2) Web form instances provide web-based forms for manually managing meas-
urement data for data entries. All mandatory input data type slots of the instantiated
web form have to be filled with concrete data entries and all mandatory parameters
have to be set accordingly.

(I3) Function instances apply the instantiated function to a certain set of data en-
tries filling the mandatory input slots of the function. A function instance processes
(external and internal) data and produces output data, which could be further proc-
essed by other function instances or visualized by view instances. All mandatory
function parameters have to be set accordingly.

(I4) Finally, view instances apply the instantiated view to a certain set of data en-
tries filling the corresponding mandatory data type slots of the view. A view instance
may refer to other view instances in order to build up a hierarchy of views.

Each component of a VC and its corresponding type contains explicitly specified
checks that may be used to test whether the specification is complete and consistent,
whether data are read-in correctly, whether function instances can be computed accu-
rately, and whether view instances can be created successfully. A visualization catena
consists of a set of data entries, each having exactly one active data access object for
accessing incoming data, a set of web form instances for managing the defined data
entries, a set of function instances for processing externally collected and internally
processed data, and finally, a set of view instances for visualizing the processing re-
sults. A formal specification of all components may be found in [6].

3.2 Mapping Cockpit Concepts to GQM

For a goal-oriented selection of control components, a structured approach is needed
that describes how to systematically derive control components from project goals
and characteristics. GQM provides a template for defining measurement goals, sys-
tematically derives questions that help to make statements about the goals, and finally
derives metrics in order to help answer the stated questions. In order to complete such
a measurement plan for a concrete project, each metric can be further described by a
data collection specification (DCS) basically making statements on who or which tool
has to collect the measurement data at which point in time of the project from which

10 J. Heidrich and J. Münch

Association
Inheritance
Aggregation
Class

presents
results of

Function
Instance

View Instance

Data Entries

Web Form
Instance

processes
contents of

implemented
through

is built upon

comprises
Goal

Question

Metric

Data Collection
Specification

refined by

refined by

assessed
through

answered
through

operationalized
through

visualizes
assessment of

visualizes
answers of

computes
values for

collects
data for

computes
answers for

computes
assessment for

collects data
according to

implements

presents
results of

Function
Instance

View Instance

Data Entries

Web Form
Instance

processes
contents of

implemented
through

is built upon

comprises
Goal

Question

Metric

Data Collection
Specification

refined by

refined by

assessed
through

answered
through

operationalized
through

visualizes
assessment of

visualizes
answers of

computes
values for

collects
data for

computes
answers for

computes
assessment for

collects data
according to

implements

Fig. 2. Mapping the conceptual model to the GQM paradigm. On the left side, one can see the
components of the visualization catena. On the right side, one can see the structure of a GQM
model and a corresponding data collection specification.

data source. In [8], usage scenarios on how to derive a GQM plan from a control goal
and how to define a VC that is consistent with the defined goals are described.

Fig. 2 presents an overview of all relationships between a GQM plan, its DCS, and
a visualization catena (cf. [9]):

• Data entries collect measurement data for GQM metrics according to the DCS. If
the data has to be collected manually, a web form instance is used to implement the
DCS in addition. For instance, if the DCS states that the start and end date of an ac-
tivity shall be collected from an MS Project file, a corresponding data entry is de-
fined and a web form instance implements importing the project plan from the file.

• Function instances compute metric values if a metric has to be computed from
other metrics. For instance, if a cost performance index is computed for an Earned
Value Analysis, the budgeted costs of work performed and the actual costs of work
performed are needed. A function instance could also compute answers for GQM
questions by taking into account all metrics assigned to the question and applying
an interpretation model to all metric values. In analogy, a function instance could
assess the attainment of a GQM goal by assessing the answers of all assigned ques-
tions using an interpretation model.

• View instances visualize the answers to GQM questions. A chart is produced or
tables are displayed illustrating the metric results of the corresponding questions
and the interpretation model used to answer the question. For instance, the cost
performance and schedule performance index could be visualized as a line chart in
which good and bad index values are marked accordingly. A view instance could
also visualize the assessment of the GQM goal.

3.3 Composing Control Components

Specula is largely based on the Quality Improvement Paradigm (QIP). The basic
phases and steps are as follows:

 Goal-Oriented Setup and Usage of Custom-Tailored Software Cockpits 11

Phase I: Characterize Control Environment: First, project stakeholders character-
ize the environment in which project control shall be applied in order to set up a
corresponding measurement program that is able to provide a basis for satisfying all
needs.

• Describe the project context. Important characteristics for setting up project control
mechanisms have to be defined.

• Discuss the overall organization. Organizational characteristics have to be clari-
fied. This includes roles and responsibilities, potential stakeholders, like managers
of the organization, project managers, quality assurance manager, developers, and
team organization.

Phase II: Set Control Goals: Then, measurement goals for project control are de-
fined and metrics are derived determining what kind of data to collect.

• Elicit control goals. The Specula approach makes use of GQM in order to define
measurement goals in a structured way. GQM already provides a systematic ap-
proach for defining measurement goals, systematically derives questions that help
to make statements about the goals, and finally derives metrics in order to help an-
swer the stated questions.

• Clarify relations to higher-level goals. The relation to higher-level goals should be
modeled. For this purpose, all measurement goals are connected to higher-level
software and business goals using the GQM+Strategies® approach [3].

• Derive indicators. Based on the measurement goals defined for project control,
questions and metrics have to be derived using GQM.

• Define GQM model. A GQM model is created containing the project-specific
measurement goals, corresponding questions that make statements about achieving
goals, and metrics that support answering the questions.

Phase III: Goal-oriented Composition: Next, a visualization catena is composed
based on the defined goals in order to provide online feedback on the basis of the data
collected during project execution. More details about this process can be found in [9].

• Derive measurement plan. A comprehensive measurement plan has to be derived
based on the GQM model, including a data collection specification.

• Define interpretation models. Interpretation models are used to basically aggregate
measurement data in order to answer a GQM question or make a statement about
achieving a GQM goal.

• Derive data entries and web form instances. Next, matching data types are identi-
fied based on the metric definition, the object to be measured and the quality
attribute. For each simple metric (which is not computed from other metrics), in-
stantiate the data type and create a corresponding data entry. The data collection
specification is used to determine the start time, end time, and interval when the
data should be collected. If the metric has to be collected manually, a web form is
identified based on the data source and the instantiated web form is attached to the
data entry.

• Derive function instances for complex metrics. For each complex metric (which is
computed from other metrics), a function is identified that is able to compute the
metric based on the metric definition, the object to be measured, and the quality

12 J. Heidrich and J. Münch

attribute. The identified functions are instantiated by first filling all input data slots
with data entries or results of other function instances. Then, the function instances
are parameterized according to the metric definition.

• Derive function instances for GQM questions. If an interpretation model is de-
scribed in the GQM plan that defines how to formally answer a question, a func-
tion implementing this model is identified based on the object and quality attribute
addressed in order to compute the answers to the question. The functions are in-
stantiated by filling all input data slots with data entries or results of other function
instances assigned to the question. The function instances are parameterized ac-
cording to the interpretation model.

• Derive view instances for GQM questions. The answers to the question are visual-
ized by identifying a set of views based on the kind of answers to the question and
the data visualization specifications of the measurement plan (if any). The identified
views are instantiated by filling all input data slots with data entries or results of
function instances assigned to the question. The view instances are parameterized
according to the data presented (e.g., title and axis description, size, and color).

• Derive function instances for GQM goals. If an interpretation model is described in
the GQM plan that defines how to formally assess goal attainment, a function im-
plementing this model is identified and instantiated based on the object and quality
focus addressed in order to attain the measurement goal.

• Derive view instances for GQM goals. Goal attainment is visualized by identifying
and instantiating a set of views based on the kind of assessment of the goal and the
data visualization specifications of the measurement plan (if any).

• Check consistency and completeness. After defining the whole visualization catena
for controlling the project, the consistency and completeness of the mapping proc-
ess are checked.

• Configure SPCC. If the visualization catena is defined and checked, it has to be
transferred to a corresponding tool (Specula tool prototype).

• Provide training. Training is provided for all SPCC users in order to guarantee the
effective usage of the SPCC.

Phase IV: Execute Project Control Mechanisms: Once the visualization catena is
specified, a set of role-oriented views are generated by the SPCC for controlling the
project based on the specified visualization catena. If a plan deviation or project risk
is detected, its root cause must be determined and the control mechanisms have to be
adapted accordingly.

• Perform data collection. The SPCC users have to perform data collection activities
according to the measurement plan defined.

• Use control views for GQM questions. The SPCC users have to use the view in-
stances offered to get answers for the GQM questions of their GQM model.

• Use control views for GQM goals. The SPCC users have to use the view instances
offered to get a general answer with respect to achieving a certain goal of the GQM
models.

• Check SPCC functionality. The SPCC users should check the correct functionality
of the Project Control Center regularly.

 Goal-Oriented Setup and Usage of Custom-Tailored Software Cockpits 13

Phase V: Analyze Results: After project completion, the resulting visualization ca-
tena has to be analyzed with respect to plan deviations and project risks detected in-
time, too late, or not detected at all. The causes for plan deviations and risks that have
been detected too late or not all have to be determined.

• Analyze plan deviations and project risks. The complete lists of plan deviations
and project risks have to be analyzed after the end of the project.

• Analyze measurement plan. For all deviations and risks that were not detected at
all, the measurement plan has to be analyzed with respect to missing goals or other
missing parts of the GQM models.

• Analyze interpretation models. For all deviations and risks that were not detected at
all or that were detected too late, the interpretation models have to be checked to
see whether they work as intended or whether metrics or answers to questions need
to be interpreted in a different way.

• Analyze visualization catena. For all deviations and risks that were detected too
late, the components of the visualization catena that helped in detecting them have
to be analyzed to see whether they can be improved to support earlier detection in
future projects.

Phase VI: Package Results: The analysis results of the visualization catena that
was applied may be used as a basis for defining and improving control activities for
future projects (e.g., selecting the right control techniques and data visualizations,
choosing the right parameters for controlling the project).

4 Empirical Evaluation and Usage Example

The evaluation of the Specula approach is currently being conducted in the context of
several industrial case studies as part of the Soft-Pit research project funded by the
German Federal Ministry of Education and Research (http://www.soft-pit.de). The
project focuses on getting experience and methodological support for operationally
introducing control centers into companies and projects. The project includes per-
forming several industrial case studies with German companies from different do-
mains, in which the developed control center and its deployment are evaluated. The
project is mainly organized intro three iterations focusing on different controlling
aspects. An application of Specula in the first iteration showed the principal applica-
bility of the VC concept in an industrial environment. Results can be found in [4]. The
second iteration focused on three aspects: (a) perceived usefulness and ease of use of
the approach, (b) found plan deviations and project risks, and (c) costs for setting up
and applying an SPCC. Those aspects were evaluated in four industrial case studies,
in which the Specula prototype tool was used to control the software development
project. The system was perceived as useful and easy to use. However, the degree of
usefulness depended on the group of users: the benefits for secondary users were
limited. Usefulness also varied across different organizations; this may be related to
the different control mechanisms used before introducing an SPCC. Preliminary re-
sults show that following a structured process for setting up an SPCC also does result
in a significantly improved detection rate of plan deviations and project risks. The

14 J. Heidrich and J. Münch

costs for setting up and applying an SPCC were around 10% of the overall develop-
ment effort for a medium-sized project (10 team members). In the following, the
basic steps of the method are illustrated using data from a practical course conducted
at the University of Kaiserslautern in which the Specula project control approach was
applied.

Phase I: Characterize Control Environment: The aim was to develop mobile ser-
vices for creating a virtual office of the future. There were 17 team members. The
project manager and quality assurance manager should use an SPCC to control differ-
ent aspects of the project. In addition, an administrator (not part of the project team)
was provided who was familiar with the SPCC tool.

Phase II: Set Control Goals: A measurement expert conducted structured inter-
views with the project manager and quality assurance manager in order to retrieve the
measurement goals with respect to project control that are to be achieved:

• Analyze the project plan for the purpose of monitoring the consistency of the plan
from the point of view of the project manager.

• Analyze the project plan for the purpose of comparing the actual effort with the
planned effort from the point of view of the project manager.

• Analyze the project plan for the purpose of monitoring schedule adherence from
the point of view of the project manager.

• Analyze the project plan for the purpose of monitoring effort tracking regularity
from the point of view of the project manager.

• Analyze the source code for the purpose of monitoring the quality from the point of
view of the quality assurance manager.

• Analyze the defect detection activities for the purpose of monitoring their effi-
ciency from the point of view of the quality assurance manager.

Phase III: Goal-oriented Composition: A visualization catena was created for the
GQM goals above. For example, if the goal is to evaluate the effort plan with respect
to plan deviation, the corresponding control components can be selected as follows.
Fig. 3 presents the GQM model for this goal on the left side and the corresponding
excerpt of the resulting VC on the right side. The one and only question asked was
about absolute effort deviation per activity. A complex metric defined the deviation as
the amount that an actual effort value is above an effort baseline. Three simple met-
rics were consequently defined and operationalized by corresponding data collection
specifications. The baseline should be extracted from a project plan stored in an MS
project file, so a corresponding web form collecting project plan information and data
types representing the project activities and the effort baseline were instantiated. The
actual effort data should be extracted from the company-wide effort tracking system
including effort per person and activity. A data type was instantiated that accesses the
tracking system using a corresponding data access object. A function was applied to
aggregate the effort data for each activity across all persons. In order to compute the
complex metric “effort plan deviation”, a tolerance range checking function was ap-
plied that computes the deviation accordingly. Finally, a view was instantiated in
order to graphically display the results of the assigned function instances and data
entries. Fig. 4 presents the complete visualization catena that was derived for all goals
defined as outputted by the Specula prototype tool (instantiation of the concepts
shown in Fig. 1). As can be seen, the logical dependency of components is quite high,

 Goal-Oriented Setup and Usage of Custom-Tailored Software Cockpits 15

DT3: Table Data

VI1: Effort Analysis
View

FI2: Aggregate
Effort Data

FI1: Effort Analysis

Reported
Effort

Effort Plan
Deviation

Project
Activities

Effort
per Activity

Effort
Accounting

WFI1: Upload MS
Project File

Object: Effort Plan
Purpose: Evaluate
Quality Focus: Plan Deviation
Viewpoint: Project Manager
Context: Project LAB

Q1: Absolute effort
deviation per activity?

M1: Absolute effort
deviation above baseline

M2: Effort baseline
per activity

M3: Actual effort per
activity

DCS1: Collect weekly
from project plan

(stored in MS Project
format)

DCS2: Collect daily from
effort accounting data base

(as effort per person and
activity)

F2: Aggregate
Data

F1: Tolerance
Range Checking

V1: Hierarchical
Line Chart

WF1: MS Project
Import From

DT2: Project Plan
Structure

GQM Plan Visualization CatenaReused Components

DT1: Baseline
Data

Effort
Baseline

Fig. 3. Composing the VC from reusable components. The left side shows the GQM plan to be
implemented by an SPCC. According to the information specified in the GQM plan, compo-
nents are identified from a reuse repository and instantiated in order to create a visualization
catena.

View Instance Function Instance Data Entry Web Form Instance Data Flow

Defect Analysis

Effort Aggregation

Control Points Assessment
FXCop Results Analysis

Milestone Trend Analysis

Schedule Completion Analysis

Effort Analysis

Project Plan Consistency Analysis

Control Defect Activities

Control Defect Affiliations

Control Defect Classes

Control Defect Data

Control Defect States

Control Effort Data

Control Hierarchy: Attributes

Control Hierarchy: Objects

Control Mappings

Control Metric List: FXCop Issues

Control Metric: Activities Baseline Effort

Control Metric: Activities End Dates

Control Metric: Activities Percentage Complete

Control Metric: Activities Start Dates

Control Project Structure: Activities

Defect Analysis View

Project Assessment View

FXCop Product Issues View

Schedule Analysis View

Effort Analysis View

Milestone Trend View

Project Plan Consistency View

Diagram Overview

Define Control Attribute Hierarchy

Define Control Mappings

Define Control Object Hierarchy

Edit Defect Affiliations

Edit Defect Classes

Edit Defect Data

Edit Defect Detection Activities

Edit Defect States

Edit Effort Data

Edit Project Plan

Import/Export Y-Model

Upload FXCop Results

Upload MS Project FileWFI1: Upload
MS Project File

DE3: Reported
Effort

DE1: Project Activities

DE2: Effort Baseline

FI2: Aggregate
Effort Data

FI1: Effort
Analysis

VI1: Effort
Analysis View

Defect Analysis

Effort Aggregation

Control Points Assessment
FXCop Results Analysis

Milestone Trend Analysis

Schedule Completion Analysis

Effort Analysis

Project Plan Consistency Analysis

Defect Analysis

Effort Aggregation

Control Points Assessment
FXCop Results Analysis

Milestone Trend Analysis

Schedule Completion Analysis

Effort Analysis

Project Plan Consistency Analysis

Control Defect Activities

Control Defect Affiliations

Control Defect Classes

Control Defect Data

Control Defect States

Control Effort Data

Control Hierarchy: Attributes

Control Hierarchy: Objects

Control Mappings

Control Metric List: FXCop Issues

Control Metric: Activities Baseline Effort

Control Metric: Activities End Dates

Control Metric: Activities Percentage Complete

Control Metric: Activities Start Dates

Control Project Structure: Activities

Control Defect Activities

Control Defect Affiliations

Control Defect Classes

Control Defect Data

Control Defect States

Control Effort Data

Control Hierarchy: Attributes

Control Hierarchy: Objects

Control Mappings

Control Metric List: FXCop Issues

Control Metric: Activities Baseline Effort

Control Metric: Activities End Dates

Control Metric: Activities Percentage Complete

Control Metric: Activities Start Dates

Control Project Structure: Activities

Defect Analysis View

Project Assessment View

FXCop Product Issues View

Schedule Analysis View

Effort Analysis View

Milestone Trend View

Project Plan Consistency View

Diagram Overview

Defect Analysis View

Project Assessment View

FXCop Product Issues View

Schedule Analysis View

Effort Analysis View

Milestone Trend View

Project Plan Consistency View

Diagram Overview

Define Control Attribute Hierarchy

Define Control Mappings

Define Control Object Hierarchy

Edit Defect Affiliations

Edit Defect Classes

Edit Defect Data

Edit Defect Detection Activities

Edit Defect States

Edit Effort Data

Edit Project Plan

Import/Export Y-Model

Upload FXCop Results

Upload MS Project File

Define Control Attribute Hierarchy

Define Control Mappings

Define Control Object Hierarchy

Edit Defect Affiliations

Edit Defect Classes

Edit Defect Data

Edit Defect Detection Activities

Edit Defect States

Edit Effort Data

Edit Project Plan

Import/Export Y-Model

Upload FXCop Results

Upload MS Project FileWFI1: Upload
MS Project File

DE3: Reported
Effort

DE1: Project Activities

DE2: Effort Baseline

FI2: Aggregate
Effort Data

FI1: Effort
Analysis

VI1: Effort
Analysis View

Fig. 4. Example visualization catena. One can see all input and output data of all control com-
ponents used for constructing the VC. 13 web form instances provide input for 15 data entries,
which are processed by 8 function instances, and visualized by 8 view instances.

16 J. Heidrich and J. Münch

even for a limited number of control components. The excerpts of the VC discussed
above are highlighted accordingly.

Phase IV: Execute Project Control Mechanisms: Fig. 5 presents a visualization of
the effort controlling view generated by the Specula prototype tool. During the execu-
tion of the project, the team members entered their effort data using the corresponding
Specula web form. The project manager regularly updated the project plan using MS
Project and imported the plan into the SPCC. The quality assurance manager used a
static code analysis tool to analyze code quality and imported a corresponding report
into the SPCC.

Phase V: Analyze Results: General deviations from the effort baseline were de-
tected including, but not limited to, that the requirements phase took a lot more effort
than planned. The project manager updated the project plan accordingly. In addition,
if we assume that a negative milestone trend was not detected at all, an important
milestone might have been missed.

Phase VI: Package Results: If we assume that the control component for detecting
milestone trends used a wrong parameter setting, it will have to be adapted for future
use in subsequent projects.

Fig. 5. User interface of the Specula prototype tool. On the left side, one can see the overall
navigation bar. The menu close to the navigation bar displays all available views for controlling
the project. On the right side, one can see the selected view for analyzing effort data.

5 Conclusion and Future Work

The article presented the Specula controlling approach for setting up a project control
mechanism in a systematic and goal-oriented way, profiting from experiences gathered.

 Goal-Oriented Setup and Usage of Custom-Tailored Software Cockpits 17

Reusable control components were defined and instantiated to illustrate how to define
measurement-based project control mechanisms and instantiate them for the software
development projects of a concrete organization. A high-level process was shown that
provided guidance on how to select the right control components for data collection,
interpretation, and visualization based on explicitly defined measurement goals. More-
over, a simple example was presented of how to apply generically defined control com-
ponents. The Specula approach implements a dynamic approach for project control; that
is, measures and indicators are not predetermined and fixed for all projects. They are
dynamically derived from measurement goals at the beginning of a development project.
Existing control components can be systematically reused across projects or defined
newly from scratch. Data is provided in a purpose- and role-oriented way; that is, a cer-
tain role sees only measurement data visualizations that are needed to fulfill the specific
purpose. Moreover, all project control activities are defined explicitly, are built upon
reusable components, and are systematically performed throughout the whole project. A
context-specific construction kit is provided, so that elements with a matching interface
may be combined. The qualitative benefits of the approach include: being able to identify
and reduce risks related to introducing software cockpits, being more efficient in setting
up and adapting project controlling mechanisms, allowing for more transparent decision-
making regarding project control, reducing the overhead of data collection, increasing
data quality, and, finally, achieving projects that are easier to plan and to control.

Further development and evaluation of the approach will take place in the context
of the Soft-Pit project. Future work will also concentrate on setting up a holistic con-
trol center that integrates more aspects of engineering-style software development
(e.g., monitoring of process-product dependencies and linking results to higher-level
goals). The starting point for setting up such a control center are usually high-level
business goals, from which measurement programs and controlling instruments can be
derived systematically. Thus, it would be possible to transparently monitor, assess,
and optimize the effects of business strategies performed.

Acknowledgements

This work was supported in part by the German Federal Ministry of Education and
Research (Soft-Pit Project, No. 01ISE07A). We would also like to thank Sonnhild
Namingha from Fraunhofer IESE for reviewing a first version of this article.

References

1. Agresti, W., Card, D., Church, V.: Manager’s Handbook for Software Development. SEL
84-101, NASA Goddard Space Flight Center. Greenbelt, Maryland (November 1990)

2. Basili, V.R., Caldiera, G., Rombach, D.: The Experience Factory. Encyclopaedia of Soft-
ware Engineering 1, 469–476 (1994)

3. Basili, V.R., Heidrich, J., Lindvall, M., Münch, J., Regardie, M., Rombach, D., Seaman,
C., Trendowicz, A.: GQM+Strategies®: A Comprehensive Methodology for Aligning
Business Strategies with Software Measurement. In: Büren, G., Bundschuh, M., Dumke,
R. (eds.) MetriKon 2007, DASMA-Software-Metrik-Kongress, Kaiserslautern, Germany,
November 15-16, 2007, pp. 253–266 (2007)

18 J. Heidrich and J. Münch

4. Ciolkowski, M., Heidrich, J., Münch, J., Simon, F., Radicke, M.: Evaluating Software Pro-
ject Control Centers in Industrial Environments. In: International Symposium on Empirical
Software Engineering and Measurement, ESEM, Madrid, pp. 314–323 (2007)

5. Differding, C.: Adaptive measurement plans for software development. Fraunhofer IRB
Verlag, PhD Theses in Experimental Software Engineering, 6 (2001) ISBN: 3-8167-5908-4

6. Heidrich, J.: Custom-made Visualization for Software Project Control. Technical Report
06/2003, Sonderforschungsbereich 501, University of Kaiserslautern (2003)

7. Heidrich, J., Münch, J.: Goal-oriented Data Visualization with Software Project Control
Centers. In: Büren, G., Bundschuh, M., Dumke, R. (eds.) MetriKon 2005, DASMA-
Software-Metrik-Kongress, Kaiserslautern, Germany, November 15-16, 2005, pp. 65–75
(2005)

8. Heidrich, J., Münch, J., Wickenkamp, A.: Usage Scenarios for Measurement-based Project
Control. In: Dekkers, T. (ed.) Proceedings of the 3rd Software Measurement European Fo-
rum. Smef 2006, Rome, Italy, May 10-12, 2006, pp. 47–60 (2006)

9. Heidrich, J., Münch, J.: Cost-Efficient Customisation of Software Cockpits by Reusing
Configurable Control Components. In: Dekkers, T. (ed.) Proceedings of the 4th Software
Measurement European Forum. Smef 2007, Rome, Italy, May 9-11, 2007, pp. 19–32
(2007)

10. Hendrick, R., Kistler, D., Valett, J.: Software Management Environment (SME)— Con-
cepts and Architecture (Revision 1). NASA Goddard Space Flight Center Code 551, Soft-
ware Engineering Laboratory Series Report SEL-89-103, Greenbelt, MD, USA (1992)

11. ISO 9126: Software Engineering – Product Quality. Technical Report. ISO/IEC TR 9126.
Geneva (2003)

12. Kitchenham, B.A.: Software Metrics. Blackwell, Oxford (1995)
13. Krishnamurthy, B., Barghouti, N.S.: Provence: A Process Visualization and Enactment

Environment. In: Sommerville, I., Paul, M. (eds.) ESEC 1993. LNCS, vol. 717, pp. 451–
465. Springer, Heidelberg (1993)

14. McGarry, J., Card, D., Jones, C., Layman, B., Clark, E., Dean, J., Hall, F.: Practical Soft-
ware Measurement – Objective Information for Decision Makers, 1st edn. Addison-
Wesley Professional, Reading (2001)

15. Münch, J., Heidrich, J.: Software Project Control Centers: Concepts and Approaches. Jour-
nal of Systems and Software 70(1), 3–19 (2003)

16. Project Management Institute: A Guide to the Project Management Body of Knowledge
(PMBOK Guide) 2000 Edition. Project Management Institute, Four Campus Boulevard,
Newtown Square, PA 19073-3299 USA (2000)

17. Selby, R.W., Porter, A.A., Schmidt, D.C., Berney, J.: Metric-Driven Analysis and Feed-
back Systems for Enabling Empirically Guided Software Development. In: Proceedings of
the 13th International Conference on Software Engineering, pp. 288–298 (1991)

18. Simmons, D.B., Ellis, N.C., Fujihara, H., Kuo, W.: Software Measurement – A Visualiza-
tion Toolkit for Project Control and Process Improvement. Prentice Hall Inc., New Jersey
(1998)

19. Tesoriero, R., Zelkowitz, M.V.: The Web Measurement Environment (WebME): A Tool
for Combining and Modeling Distributed Data. In: Proceedings of the 22nd Annual Soft-
ware Engineering Workshop (SEW) (1997)

20. Torii, K., Matsumoto, K., Nakakoji, K., Takada, Y., Takada, S., Shima, K.: Ginger2: An
Environment for Computer-Aided Empirical Software Engineering. IEEE Transactions on
Software Engineering 25(4), 474–492 (1999)

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 19–33, 2008.
© Springer-Verlag Berlin Heidelberg 2008

MIS-PyME Software Measurement Maturity Model-
Supporting the Definition of Software Measurement

Programs

María Díaz-Ley1, Félix García2, and Mario Piattini2

1 Sistemas Técnicos de Loterías del Estado (STL)
Gaming Systems Development Department 28234 Madrid, Spain

Maria.diaz@stl.es
2 University of Castilla-La Mancha

Alarcos Research Group – Institute of Information Technologies & Systems
Dep. of Information Technologies & Systems – Escuela Superior de Informática

13071 Ciudad Real, Spain
{Felix.Garcia, Mario.Piattini}@uclm.es

Abstract. An important reason why measurement program implementation fails
is that the maturity of companies as regards measurement has not been taken
into account at its definition phase. Unfortunately, the major methods and
frameworks supporting measurement programs –such as Goal Question Metric
(GQM), Goal-Driven Software Measurement, GQ(I)M, PSM and ISO/IEC
15939– do not explicitly address, this issue, which is especially important in
small and medium settings, where low measurement maturity level is typical
and there are more measurement implementation constraints. Additionally,
these companies usually have poor measurement knowledge, limited resources
and budget, which prevent measurement integration in the corporate culture.
This restricts measurement support in these companies and increases the
chances of failure. In this paper we will be looking at an adaptation of the soft-
ware measurement maturity method developed by Daskalantonakis. The so-
called “MIS-PyME maturity model” is focused on giving support towards
measurement program definition and is integrated in MIS-PyME, a methodo-
logical framework for measurement suited to small and medium settings.

Keywords: Software measurement maturity model, measurement program
definition, success factor, SMEs, MIS-PyME.

1 Introduction

A software measurement program is the result of an initiative meant to define and
implement the whole process required to obtain and treat certain software information
needs. A successful measurement program is such that becomes a good tool [1], i.e. it
directly contributes to solving a part of the engineering problem at hand and generates
value rather than data [2]. However, software measurement has proved to be a com-
plex and difficult undertaking in the field of software, especially within the context of
small and medium enterprises [3].

20 M. Díaz-Ley, F. García, and M. Piattini

In literature one can find that many factors are involved in the successful imple-
mentation of measurement programs. As an example, Gopal et al. [4] identified and
checked some success factors by analyzing their effects on the success of measure-
ment programs. The success of a measurement program was measured using two
variables: use of metrics in decision-making and improved organizational perform-
ance. The success factors selected were divided into two groups: organizational and
technical factors.

Daskalantonakis also developed a good practice guide based on his experience at
Motorola [5, 6]. He gives major importance to the integration of measurement pro-
grams with the rest of the software processes of an organization. In addition, he ar-
gues that the best people to analyse measurement results are the project managers and
engineers involved in the measurement program, since they are experts in that particu-
lar field and understand perfectly the meaning of that data.

Fenton et Hall [7] identified fifteen success factors based on their experience,
which are as follows: incremental implementation, well planned metrics framework,
use of existing metrics materials, involvement of developers during implementation,
measurement process transparent to developers, usefulness of metrics data, feedback
to developers, ensuring that data is seen to have integrity, and that measurement data
is used and seen to be used, securing commitment on the part of project managers, use
of automated data collection tools, constantly improving the measurement program,
internal metrics champions used to manage the program, use of external metrics gurus
and provision of training from practitioners.

In [8] Pfleeger states that it is necessary to link the establishment of a measurement
program to the maturity level of an organization. “Metrics are welcome only when
they are clearly needed and easy to collect and understand.” As an example, a meas-
urement immature organization should not intend to implement a predictive model.
This may lead to results that are unexpectedly negative, positive but spurious, difficult
to interpret, or difficult to build on in subsequent studies [9]. Also, measurement can-
not exceed software process: if the development process does not define the types of
tests, it is not possible to evaluate the efficiency of some tests as regards others.

In this paper we look at how this last success factor is integrated in MIS-PyME, a
methodological framework for defining software measurement programs focused on
small and medium enterprises (SMEs) or settings. We describe an adaptation of
Daskalantonakis’[6] software measurement maturity method and the interface for
integrating this model into MIS-PyME in order to support it for the purpose of defin-
ing measurement programs adapted to the measurement maturity of each company.

This paper is organized as follows: Section 2 brings this work into context by
summarizing existing software measurement maturity models. Section 3 introduces
MIS-PyME. Section 4 describes MIS-PyME measurement maturity module. Section 5
gives an example of a real-life application for this module and underlines its advan-
tages, and Section 6 sums up the content of this paper and outlines future research.

2 Related Work

In this section the major measurement maturity methods and models found in litera-
ture are summarized. We start with Daskalantonakis’ [6] method for assessing an

 MIS-PyME Software Measurement Maturity Model 21

organization’s software measurement technology which is consistent with the SEI
Software process assessment methodology [10]. This method is based on a number of
assumptions which determine the focus of the Measurement Technology Assessment.
From these assumptions, ten themes are derived according to which the company is
characterized and evaluated:

1. Formalization of the development process
2. Formalization of the measurement process
3. Scope of measurement within the organization
4. Implementation support for formally capturing and analyzing knowledge
5. Measurement evolution within the organization
6. Measurement support for management control of software projects
7. Project improvement using measurement technology
8. Product improvement using measurement technology
9. Process improvement using measurement technology
10. Predictability of project, product, and process characteristics

For each theme, five evolutionary stages are defined that a software development
organization may follow in order to reach the highest level of maturity for that par-
ticular theme. These five evolutionary stages correspond to the five levels of software
process maturity as defined by SEI: initial, repeatable, defined, managed and opti-
mized. Some questions have been classified by maturity level in order to perform the
assessment.

Niessink and Vliet define a capability maturity model for measurement (M-CMM)
as that which can be used to assess the measurement capability of software organiza-
tions and to identify ways to improve their measurement capability [11].The model
measures the measurement capability on a five ordinal scale which matches Daskalan-
tonakis’ maturity stages. However, Niessink and Vliet define a set of pre-established
processes which are different for each level and have to be in place so that an organi-
zation can reside on that level. On the other hand, following Daskalantonakis’
method, each theme has its own development path.

As regards measurement treatment in software capability maturity models, we
must highlight CMM [10] and its successor, CMMI [12], which both include a key
process called Measurement and Analysis. This process defines good practices to
implement a measurement process in an organization and reach maturity level 2.

In MIS-PyME, the measurement maturity model is used as a support module to
help define measurement programs which are adapted to the measurement maturity of
the organization. It will not be initially used for organization evaluation purposes. The
measurement maturity module will be used as a reference to seek detailed information
about a number of measurement aspects, helping the user to decide whether it is con-
venient or not to implement an indicator for a particular maturity measurement aspect
(e.g., can the organization implement the indicator for evaluation purposes?).

Based on this assumption, we found Daskalantonakis’ [6] method to be the most
suitable for our needs, since the themes defined for assessing maturity mostly match
the measurement aspects we want to assess, and because each measurement aspect
(theme) has an evolution path organized into different levels, thus allowing the user to
adjust its definition depending on what can be achieved.

22 M. Díaz-Ley, F. García, and M. Piattini

CMMI [12] deals with most of the measurement aspects. However, they are dis-
tributed across most of the key process areas: software project planning at level 2,
integrated software management at level 3, quantitative process management at level
4, etc. [13] but it does not deal with this information in a separate module.

Niessink and van Vliet [11] developed their own model to try and evaluate an or-
ganization’s measurement maturity, and we focus on encouraging the user to define a
measurement program which matches the organization’s measurement maturity. The
key processes defined in this model do not look in sufficient detail at some important
measurement capability issues, such as what the company can measure (product,
process, project, etc), to what extent (some projects, the whole organization, etc.),
their analysis capability (characterizing, evaluating, etc.). This model makes a broader
evaluation of measurement processes and does not go into detail as much as would be
necessary for users to define their measurement program.

The major models supporting software measurement program definition include:
Goal Question Metric (GQM) [14], Goal-Driven Software Measurement GQ(I)M
[15], PSM [16] and ISO/IEC 15939 [17]. None of them give explicit support to users
in defining measurement programs suitable for their measurement maturity.

3 MIS-PyME

MIS-PyME (Marco metodológico para la definición de Indicadores de Software ori-
entado a PyME) is a methodological framework focused on defining measurement
programs based on software indicators in small and medium settings [18].

MIS-PyME framework is classified in three main modules: the methodology and
roles (MIS-PyME methodology), the workproducts which give support to the meth-
odology (MIS-PyME Measurement Goals Table, MIS-PyME Indicator Template and
MIS-PyME Database) and the third module - the measurement maturity (MIS-PyME
Measurement Maturity Model).

MIS-PyME Methodology is based on GQ(I)M [15, 19], but it is designed to define
basic indicators which are commonly used and required in most small and medium
software development settings. Like GQ(I)M, MIS-PyME is a top-down methodology
since it develops a measurement program with the ultimate goal in mind, but restricts
actual changes to software process improvement, and may be conditioned by the MIS-
PyME table of measurement goals and the indicator templates provided. MIS-PyME
work-products are as follows:

- MIS-PyME table of measurement goals: MIS-PyME framework proposes a set of
structured measurement goals usually required to implement improvement activi-
ties related to software processes.

- MIS-PyME indicator templates: An indicator template is defined for each meas-
urement goal. The indicator template will guide users and help them define indi-
cators and measures for a specific measurement goal. An indicator template
shows, among other things, the possibility of implementing the indicator as
regards the measurement maturity of the company, the conditions required to suc-
cessfully implement the indicator regarding previous indicators required, condi-
tions which must be fulfilled in order to successfully implement the indicator and
how to integrate this indicator into the software process. The typical questions

 MIS-PyME Software Measurement Maturity Model 23

which the indicator tries to answer are proposed. Typical outcomes and their re-
lated analysis may also be described and show the user what the potential of an
indicator is, etc.

- MIS-PyME database: Each MIS-PyME indicator template contains a set of ex-
amples of real indicators which have been defined in a successfully implemented
measurement program.

One of the objectives of MIS-PyME is to define and implement measurement pro-
grams which are adapted to the measurement maturity of the setting. Companies
should work in defining and implementing measurement programs which they can
successfully implement, rather than trying to obtain the best measure when there are
several obstacles that make a successful implementation impossible.

This paper aims to describe the third module which contains MIS-PyME measure-
ment maturity model, and how this model is linked to the indicator templates which
are intended as a guide for users.

4 MIS-PyME Measurement Maturity Model

As indicated in the second section, MIS-PyME measurement maturity (MIS-PyME-
MM) model is based on Daskalantonakis’ [6] method, but modified as follows:

- MIS-PyME model does not only take into account the development process, but
also the quality and management processes. Additionally, it deals with the proc-
ess from the point of view of capability, rather than formalization.

- The scope theme has been deeply specified by indicating what the company is
able to measure at each capability level.

- Implementation support does not only take into account measurement support
tools, but also the development and management tools required for the company
to reach each measurement capability level.

- Some themes specified in Daskalantonakis’ [6] method have been unified for the
sake of simplicity: “scope”, “measurement evolution” and “predictability” have
been joined into one, and product, project and process improvement themes have
been included in other themes.

- The theme known as “Formalization of the measurement process” has not been
included in MIS-PyME measurement maturity model since it is mainly used to
evaluate measurement process and not so much to support measurement program
definition.

- An interface between MIS-PyME measurement maturity model and the rest of
the MIS-PyME framework has been defined in order to give support to the meas-
urement analyst.

MIS-PyME measurement maturity model, which is defined in table 2, will be
mainly required during the indicator definition phase. When the measurement analyst
defines the indicators, he will be supported by the corresponding MIS-PyME indica-
tor template. This template will make recommendations for measurement maturity
(amongst others) in terms of indicator implementation. These recommendations come
from the interface of MIS-PyME measurement maturity module.

24 M. Díaz-Ley, F. García, and M. Piattini

The interface of MIS-PyME measurement maturity module, which is shown in ta-
ble 3, 4 and 5, establishes a relationship between the measurement maturity model
and MIS-PyME Indicator templates. This interface helps users decide if their meas-
urement maturity is enough for certain values of the indicator field by posing ques-
tions based on MIS-PyME measurement maturity model. Therefore, some indicator
fields depend on the maturity of the company as regards measurement, especially
these fields are those which determine the goal of the indicator and are the following:

Table 1. Indicator template fields which depend on measurement maturity

Indicator
Field

MIS-PyME-
MM theme

Description

Software
management,
quality and
development
capability

Measurement process has to fit with the rest of the processes.
Otherwise, the implementation of the measurement program
will in all probability fail. For example, you cannot measure
the effectiveness between test phases if test phases are not well
differentiated.

Measurement
scope

There are certain kinds of measures which require a certain
degree of measurement maturity and previous experience. As
an example, you cannot make reliable predictions on a particu-
lar aspect when there has not been any previous, frequent and
rigorous measurement of that aspect.

Tools sup-
port

In order to implement some measurement programs, some
tools are required such as databases, tools that make it possible
to visualize an indicator control panel, etc.

Purpose

Measurement
support for
management
issues

Measurement should be established in order to support process
improvement goals, which also means management goals. If
there is not any purpose in analyzing measurement in terms of
decision making or corrective actions, the implementation of a
measurement program is not recommended (for example, it is
not advisable to implement a measurement program for project
monitoring purposes).

If the existing measurement data is not used to take simple
corrective actions, it is not recommended to do so for other
purposes such as optimization.

Entity Measurement
scope

If organizational information is needed based on measurement
usually it is previously required to measure projects or products
individually.

Projects are the first entities to be measured; products comes
second and processes third

Tool support There are a number of measurements which cannot be per-
formed if certain management or development tools are not in
place.

Focus

Processes
capability

The aspect to be measured has to be established by the other
development, management or quality processes.

 MIS-PyME Software Measurement Maturity Model 25

- Purpose. This field specifies the intention of the indicator. MIS-PyME suggested
values based on [20] which are as follows: characterizing, monitoring, evaluating,
predicting and optimizing.

- Entity: This indicator specifies what is to be measured: the process (PROC), the
project (PRJ) or the product (PROD).

- Focus: It specifies the aspect or attribute to be measured, a quality attribute (reli-
ability, portability, usability, etc.), process performance (compliance, efficiency),
user satisfaction, etc.

Table 1 shows the measurement maturity aspects on which each of the above fields
depends.

5 MIS-PyME Measurement Maturity Model - Case Study

In this section we show how MIS-PyME measurement maturity model was applied in
an experience which consisted in implementing a measurement program in a medium-
sized setting. This experience has given us an idea about the usefulness and benefits
of the proposed MIS-PyME maturity model for SMEs.

The measurement program was defined and implemented in the software develop-
ment and maintenance department of Sistemas Técnicos de Loterías del Estado
(STL), which is formed by 39 employees. This company was created by the Spanish
Government and provides operational and IT development services for the national
lottery.

In 2003, the quality department in STL encouraged an initiative to implement
measurement programs in the development and maintenance department in STLbut it
was not well accepted and implementation was unsuccessful. The director of the de-
velopment and maintenance department was nonetheless aware of the importance of
measurement and was intent on mastering this. Most especially, his objective was to
improve management and quality control through these measures. In July 2006, he
defined two process improvement goals:

- PIG 1: Improving project and process monitoring and control. He particularly
wished to improve the monitoring of the project’s progress in comparison with
the plan, controlling the tests phases and improving project planning.

- PIG 2: Improving development service and product quality. This goal focused on
monitoring and evaluating the development service and product quality.

These process improvement goals comprise five sub-goals, and the indicators
shown in figure 1.

We now show two outstanding indicators that were modified to make them be bet-
ter adapted to the maturity of the company based on MIS-PyME measurement matur-
ity model.

IND-PRJ-FiabImpl indicator aimed to evaluate the reliability of the product devel-
oped in order to take corrective actions if necessary. This indicator was necessary for
the second process improvement goal (improving development service and product
quality). The intention of this indicator is to “evaluate”; the focus is “reliability” and
the entity is the “product”.

26 M. Díaz-Ley, F. García, and M. Piattini

Fig. 1. Measurement Program Definition Implemented in STL

Initially, this indicator evaluated the reliability of the company based on a fix
value meant as a threshold (a number of failures registered in production after the
product had been installed). However, even if we had experience and we knew
(more-less) the reliability of the products in production, and thanks to the sugges-
tions included in this indicator template provided by MIS-PyME which are based on
MIS-PyME measurement maturity, we realized that we were not mature enough to
state what the reliability of the product would be based on the characteristics of the
product developed with a fix goal. The measurement maturity model made us

 MIS-PyME Software Measurement Maturity Model 27

reflect on this. Focusing on Table 3 and the purpose of “evaluating” the questions
are: “do we rigorously, frequently and in an organized fashion measure the reliabil-
ity of the product and other aspects that may have a relationship with the reliability
of the product?” and “could we set reliable goals based on the available data?” Both
answers were negative.

We therefore decided to evaluate indicators based on a range of values (good, nor-
mal, not too good, not acceptable). In this case we could answer affirmatively to the
questions posed: we could define in a reliable way the ranges of reliability of the
product developed, which would depend on the type of project: high, medium, low.
As can be observed, we descend from level 4 to level 3 in terms of the measurement
scope theme. Regarding the measurement support for management issues theme, the
top manager was very interested in this indicator, which was included in the project
close reports, and the intention was to monitor these data and take corrective actions
in case of frequent negative results, therefore the answer of “¿Is measurement going
to be used to take corrective actions?” is affirmative.

As regards the focus element of the indicator, the quality (see table 4), we ful-
filled maturity measurement requirements. Our management process already pro-
vided a close project activity where project managers analyzed the reliability in
production of the product developed in addition to other project issues. Regarding
“tool support” theme, we had an incident database were failures in production were
registered. Most of the people in the company used it and the process was quite well
established.

The indicator Ind-PRJ-TestConformance was also modified for it to be better
adapted to the maturity of the company. This indicator was defined so as to achieve
the first process improvement goal: monitoring conformance with test phases. Ini-
tially, this indicator assessed conformance with test phases based on the failures de-
tected during each test phase and compared with a threshold. We were not mature
enough to define a threshold for each testing activity, but we were mature enough to
define a percentage ratio threshold between test phases (e.g. more than 70% of the
failures should be detected during integration test). In both cases, we went on with the
fourth measurement maturity level but the second definition was easier and more
reliable for us since we were experienced in analyzing the percentage of defects
found. Project managers agreed to these modifications and stated that the previous
definition of the indicator had not been accurate.

The examples set out in this section illustrate how important it is to define meas-
urement programs which are adapted to the measurement maturity of each company.
Even if it seems evident, it is quite easy to make the mistake of trying to define the
best measures, even if we cannot implement them. In SMEs it is still easier to make
this mistake since resources, budget and measurement culture are limited, and people
who define measurement programs may be from inside the company and not too ex-
perienced. MIS-PyME indicator templates advise users as to what measurement ma-
turity requirements they should fulfill in order to define the indicator. These advise
come from, MIS-PyME measurement maturity model.

28 M. Díaz-Ley, F. García, and M. Piattini

T
ab

le
 2

. M
IS

-P
yM

E
. M

ea
su

re
m

en
t m

at
ur

ity
 m

od
el

 b
as

ed
 o

n
th

at
 d

ev
el

op
ed

 b
y

D
as

ka
la

nt
on

ak
is

[6
]

Th
em

es

Le
ve

l 1

Le
ve

l 2

Le
ve

l 3

Le
ve

l 4

Le
ve

l 5

So
ftw

ar
e

m
an

ag
em

en
t,

qu
al

ity

an
d

de
ve

lo
pm

en
t

ca
pa

bi
lit

y

Im
m

at
ur

e
pr

oc
-

es
se

s.
Pr

oj
ec

ts
 d

ep
en

d
on

 e
xp

er
ie

nc
ed

pr

of
es

si
on

al
s.

Pr

oj
ec

t m
an

-
ag

em
en

t f
oc

us
.

R
ep

ea
t t

as
ks

 w
hi

ch

ha
ve

 b
ee

n
m

as
te

re
d

in
 th

e
pa

st
.

Pr
oj

ec
t d

ep
en

ds
 o

n
ex

pe
rie

nc
ed

 p
ro

fe
s-

si
on

al
s.

Pr
oj

ec
t m

an
ag

em
en

t
fo

cu
s.

Pr
oj

ec
ts

 c
ha

ra
ct

er
iz

ed
 a

nd
 re

a-
so

na
bl

y
un

de
rs

to
od

.
Pr

oj
ec

t a
nd

 d
ev

el
op

m
en

t s
ys

te
m

m

an
ag

em
en

t f
oc

us
.

M
ea

su
rin

g
ov

er
 p

ro
ce

ss

an
d

pr
oc

es
s c

on
tro

l.
Fo

cu
s

on
 c

on
tro

lli
ng

 th
e

pr
oc

es
s.

O
pt

im
iz

ed
 p

ro
ce

ss
.

Fo
cu

s o
n

pr
oc

es
s

im
pr

ov
em

en
t.

So
ft-

w
ar

e
pr

oc
es

s i
m

-
pr

ov
em

en
t,

be
ne

fit
s

ar
e

qu
an

tif
ie

d.

M
ea

su
re

m
en

t
sc

op
e

C
ar

rie
d

ou
t o

c-
ca

si
on

al
ly

 w
ith

ex

pe
rie

nc
ed

pe

op
le

 o
r n

ot
 a

t
al

l.

C
ar

rie
d

ou
t i

n
bi

g
pr

oj
ec

ts
 a

nd
 w

ith
 e

x-
pe

rie
nc

ed
 p

eo
pl

e.

M
ea

su
re

m
en

t i
s

ba
se

d
on

 p
ha

se
-b

y-
ph

as
e

pr
oj

ec
t t

ra
ck

-
in

g,
 a

ct
ua

l a
ga

in
st

 e
s-

tim
at

e
(s

iz
e,

 e
ffo

rt,

sc
he

du
le

, e
tc

.).

Tr
ac

ki
ng

 th
e

qu
al

ity

of
 p

ro
du

ct
s i

n
pr

o-
du

ct
io

n.
 T

he
re

 a
re

so

m
e

es
tim

at
io

n
m

ec
ha

ni
sm

s a
nd

so

m
e

hi
st

or
ic

al
 d

at
a.

O
rg

an
iz

at
io

n
es

ta
bl

is
he

s s
ta

n-
da

rd
 p

ro
ce

ss
es

 a
nd

 m
ea

su
re

m
en

t
m

od
el

s w
hi

ch
 a

re
 fo

llo
w

ed
 in

pr

oj
ec

ts
 a

nd
 p

ro
du

ct
s.

C
ro

ss
-

pr
oj

ec
ts

 a
na

ly
se

s a
re

 a
va

ila
bl

e.

D
at

a
co

lle
ct

ed
 a

nd
 a

na
ly

si
s a

re

m
or

e
re

lia
bl

e
an

d
co

ns
is

te
nt

.
Pl

an
ni

ng
 a

nd
 tr

ac
ki

ng
 is

 o
fte

n
pe

rfo
rm

ed
 a

t w
or

k-
pa

ck
ag

e
le

ve
l a

nd
 st

ill
 in

vo
lv

es
 a

ct
ua

l v
s

pl
an

ne
d

pe
rfo

rm
an

ce
. D

ef
ec

t
qu

al
ity

 m
ea

su
re

s a
re

 c
ol

le
ct

ed

ov
er

 th
e

de
ve

lo
pe

d
pr

od
uc

ts
.

Th
re

sh
ol

d
te

ch
ni

qu
es

 a
re

 u
se

d.

M
ea

su
re

m
en

t i
s u

se
d

in

m
os

t o
f t

he
 p

ro
je

ct
s a

nd

pr
od

uc
ts

. M
ea

su
re

m
en

t
m

od
el

s a
re

 a
ls

o
pr

oc
es

s f
o-

cu
se

d
an

d
th

er
e

is
 a

n
un

-
de

rs
ta

nd
in

g
of

 th
e

pr
oc

es
s

pe
rfo

rm
an

ce
. T

he
 m

ea
s-

ur
em

en
t p

ro
ce

ss
 is

 in
te

-
gr

at
ed

 in
to

 th
e

de
ve

lo
p-

m
en

t p
ro

ce
ss

. T
he

re
 is

 a

br
oa

de
r v

ie
w

 o
f q

ua
lit

y,

no
t j

us
t d

ef
ec

ts
 b

ut
 u

sa
bi

l-
ity

, m
ai

nt
ai

na
bi

lit
y,

 fl
ex

i-
bi

lit
y,

 e
tc

. T
he

re
 is

 a
 se

t o
f

m
ea

su
re

s t
ha

t r
ep

re
se

nt
s a

qu

an
tit

at
iv

e
m

od
el

 o
f t

he

ov
er

al
l l

ife
 c

yc
le

 p
ro

ce
ss

.

W
el

l a
da

pt
ed

 m
ea

s-
ur

em
en

t m
od

el
s.

M
ea

su
rin

g
ov

er
al

l
pr

oc
es

s i
m

pr
ov

e-
m

en
t,

im
pr

ov
in

g
bu

si
ne

ss
 re

su
lts

 a
nd

th

e
ca

pa
bi

lit
y

of
 se

t-
tin

g
qu

an
tit

at
iv

e
im

pr
ov

em
en

t g
oa

ls
.

Th
e

or
ga

ni
za

tio
n

im
pl

em
en

ts
 a

 c
on

-
tro

l p
an

el
 to

 k
ee

p
tra

ck
 o

f a
ch

ie
ve

-
m

en
ts

. I
m

pr
ov

e-
m

en
t c

an
 b

e
qu

an
ti-

ta
tiv

el
y

pr
ov

ed
.

To
ol

s
su

p-
po

rt
Th

er
e

ar
e

no

to
ol

s t
o

ex
pl

ic
-

itl
y

su
pp

or
t

M
ea

su
re

m
en

t s
up

po
rt

to
ol

s f
oc

us
ed

 o
n

pr
o-

je
ct

s.
Th

er
e

ar
e

so
m

e

Pr
oj

ec
t a

nd
 p

ro
du

ct
 fo

cu
s m

ea
s-

ur
em

en
t t

oo
ls

. T
he

re
 is

 a
 m

ea
s-

ur
em

en
t d

at
ab

as
e

fo
r s

to
rin

g
hi

s-

M
ea

su
re

m
en

t s
up

po
rt

to
ol

s
fo

cu
se

d
on

 p
ro

je
ct

s a
nd

pr

od
uc

ts
. T

he
re

 is
 a

n
or

-

Th
er

e
ar

e
or

ga
ni

za
-

tio
na

l t
oo

ls
 w

hi
ch

au

to
m

at
ic

al
ly

 c
ol

-

 MIS-PyME Software Measurement Maturity Model 29

pr
oc

es
s m

ea
s-

ur
em

en
t.

to
ol

s w
hi

ch
 su

pp
or

t
es

tim
at

io
ns

.
Th

er
e

ar
e

in
ci

de
nt

,
co

st
 a

nd
 p

la
nn

in
g

m
an

ag
em

en
t t

oo
ls

.

to
ric

al
 d

at
a.

 T
he

re
 is

 a
 li

fe
 c

yc
le

co

nf
ig

ur
at

io
n

m
an

ag
em

en
t t

oo
l

fo
r e

ac
h

re
qu

ire
m

en
t,

m
od

el
s f

or

an
al

ys
is

, e
tc

.

ga
ni

za
tio

na
l d

at
ab

as
e

w
he

re
 h

is
to

ric
al

 d
at

a
is

st

or
ed

.
D

at
a

in
 th

e
da

ta
ba

se
 a

re

m
or

e
re

lia
bl

e
an

d
th

er
e

ar
e

ac
tio

ns
 to

 p
re

ve
nt

 re
-

co
rd

in
g

di
rty

 d
at

a.
 D

ev
el

-
op

m
en

t o
f a

n
ad

va
nc

ed
 e

n-
vi

ro
nm

en
t i

s u
se

d
w

hi
ch

au

to
m

at
ic

al
ly

 p
ro

vi
de

s
pr

od
uc

t m
ea

su
re

s.

le
ct

 d
at

a
on

 th
e

pr
o-

je
ct

, p
ro

du
ct

 a
nd

pr

oc
es

s a
nd

 g
en

er
-

at
e

a
co

nt
ro

l p
an

el

of
 in

di
ca

to
rs

 in
 o

r-
de

r t
o

pr
ov

id
e

an
al

ys
es

. T
he

y
al

so

ge
ne

ra
te

 a
ut

om
at

ic

re
po

rts
.

M
ea

su
re

m
en

t
su

pp
or

t
fo

r
m

an
ag

em
en

t
is

su
es

M
an

ag
em

en
t i

s
no

t s
up

po
rte

d
by

 m
ea

su
re

s

B
as

ic
 p

ro
je

ct
 m

an
-

ag
em

en
t.

M
ile

st
on

es

an
d

co
m

m
itm

en
t

m
an

ag
em

en
t.

M
ea

s-
ur

em
en

t i
s u

se
d

to

ta
ke

 re
ac

tiv
e

de
ci

-
si

on
s d

ur
in

g
pr

oj
ec

t
de

ve
lo

pm
en

t,
if

th
er

e
ar

e
de

vi
at

io
ns

, e
tc

.

Th
e

pr
od

uc
t d

ev
el

op
ed

 is
 c

on
-

tro
lle

d
by

 m
ea

ns
 o

f m
ea

su
re

s
w

hi
ch

 a
re

 u
se

d
to

 m
ak

e
de

ci
-

si
on

s r
eg

ar
di

ng
 th

e
pr

od
uc

t.
D

at
a

is
 u

se
d

to
 e

st
im

at
e

ra
ng

es

an
d

th
re

sh
ol

ds
 fo

r t
he

 p
ro

je
ct

an

d
pr

od
uc

t.
Th

is
 a

llo
w

s t
ak

in
g

co
rr

ec
tiv

e
ac

tio
ns

 w
ith

ou
t t

he

ne
ed

 o
f r

e-
pl

an
ni

ng
.

It
is

 p
os

si
bl

e
to

 p
re

di
ct

 th
e

pr
od

uc
t,

se
rv

ic
e

an
d

ot
he

r
at

tri
bu

te
s b

ef
or

e
th

e
pr

od
-

uc
t i

s i
n

pr
od

uc
tio

n.
 U

su
al

pr

ob
le

m
s a

re
 c

on
tro

lle
d.

 It

is
 p

os
si

bl
e

to
 a

da
pt

 p
ro

c-
es

se
s a

nd
 p

la
ns

 in
 o

rd
er

 to

ac
hi

ev
e

a
ce

rta
in

 q
ua

lit
y

de
gr

ee
 o

r o
th

er
 k

in
d

of

go
al

.

It
is

 p
os

si
bl

e
to

 p
re

-
di

ct
 a

nd
 p

re
ve

nt

pr
ob

le
m

s.
Te

ch
no

-
lo

gi
ca

l n
ee

ds
 a

nd

va
lu

es
 a

re
 k

no
w

n
th

an
ks

 to
 m

ea
su

re
-

m
en

t.

Th
em

es

C
ha

ra
ct

er
iz

in
g

M
on

ito
rin

g
Ev

al
ua

tin
g

Pr
ed

ic
tin

g
O

pt
im

iz
in

g
So

ftw
ar

e
m

an
ag

em
en

t,
qu

al
ity

an

d
de

ve
lo

pm
en

t
ca

pa
bi

lit
y

H
as

th

e
co

m
-

pa
ny

de

fin
ed

th

e
at

tri
bu

te
s

w
hi

ch
 a

re
 t

o
be

m

ea
su

re
d,

 e
ve

n
in

fo
rm

al
ly

?

(L
ev

el
 3

)
H

av
e

th
e

at
tri

bu
te

s
w

hi
ch

ar

e
to

be

m

ea
su

re
d

be
en

in

cl
ud

ed

in

co
m

pa
ny

pr

oc
es

se
s?

 A
re

 t
he

y
co

rr
ec

tly

un
de

rs
to

od
 a

nd
 u

se
d?

(L
ev

el
 4

) I
s

at
tri

bu
te

 e
va

lu
a-

tio
n

in
cl

ud
ed

 in
 th

e
pr

oc
es

s?

(L
ev

el
 4

)
A

re
 p

ro
c-

es
se

s
st

ab
le

 e
no

ug
h

to
 b

e
pe

rf
or

m
ed

 ri
g-

or
ou

sl
y

an
d

pr
ov

id
e

re
lia

bl
e

da
ta

 f
or

 t
he

pu

rp
os

e
of

 m
ak

in
g

es
tim

at
io

ns
?

(L
ev

el
 5

)
Is

 i
t

po
ss

ib
le

to

 p
re

di
ct

 a
ttr

ib
ut

es
 i

n
or

de
r

to
 p

re
ve

nt
 p

ro
b-

le
m

s
an

d
m

ak
e

su
ita

bl
e

ch
an

ge
s?

T
ab

le
 3

. M
IS

-P
yM

E
 M

ea
su

re
m

en
t M

at
ur

it
y

In
te

rf
ac

e
as

 r
eg

ar
ds

 P
ur

po
se

T
ab

le
 2

. (
co

nt
in

ue
d)

30 M. Díaz-Ley, F. García, and M. Piattini

M
ea

su
re

m
en

t
sc

op
e

(L
ev

el
 1

)
–

N
o

m
at

ur
ity

su

g-
ge

st
io

n.

 (L
ev

el
 2

)
Is

 a
ny

 e
st

im
at

in
g

m
ec

ha
ni

sm
 r

eq
ui

re
d

to
 m

on
i-

to
r

ac
tu

al
 v

s
pl

an
ne

d?
 I

s
it

av
ai

la
bl

e?
 I

s
da

ta
 f

ro
m

 o
th

er

pr
oj

ec
ts

av

ai
la

bl
e?

Is

th

e
so

ftw
ar

e
m

an
ag

em
en

t p
ro

ce
ss

st

ab
le

en

ou
gh

to

in

cl
ud

e
m

ea
su

re
m

en
t a

ct
iv

iti
es

?
(L

ev
el

 3
) H

as
 th

e
pr

oj
ec

t b
ee

n
m

on
ito

re
d

ph
as

e-
by

-p
ha

se
 b

e-
fo

re

st
ar

tin
g

m
on

ito
rin

g
w

or
k-

pa
ck

ag
es

?

(L
ev

el
 4

) D
oe

s
th

is
 a

ttr
ib

ut
e

(a
nd

 a
ny

 o
th

er
s

re
la

te
d

to
 it

)
un

de
rg

o
fre

qu
en

t,
rig

or
ou

s
an

d
ge

ne
ra

liz
ed

m

ea
su

re
-

m
en

t
w

hi
ch

 m
ak

es
 i

t
po

ss
i-

bl
e

to

de
fin

e
a

re
lia

bl
e

ev
al

ua
tio

n
go

al
 a

da
pt

ed
 t

o
th

e
ch

ar
ac

te
ris

tic
s

of
 th

e
or

-
ga

ni
za

tio
n?

(L

ev
el

 3
)

Is
 t

he
re

 s
uf

fic
ie

nt

da
ta

an

d
bu

si
ne

ss

kn
ow

l-
ed

ge

to

de
fin

e
ra

ng
es

of

go

od
,

no
rm

al
,

ba
d,

 e
tc

.
re

-
ga

rd
in

g
th

is
 a

ttr
ib

ut
e

an
d

th
e

ch
ar

ac
te

ris
tic

s
of

 th
e

or
ga

ni
-

za
tio

n?

(L
ev

el

4)

H
as

th

e
m

ea
su

re
m

en
t

pr
oc

-
es

s
be

en
 e

st
ab

lis
he

d
or

ga
ni

za
tio

na
lly

?
D

oe
s

th
is

at

tri
bu

te

(a
nd

 a
ny

 o
th

er
s

re
-

la
te

d
to

 i
t)

un
de

rg
o

fre
qu

en
t,

rig
or

ou
s

an
d

ge
ne

ra
liz

ed

m
ea

su
re

m
en

t
w

hi
ch

m

ak
es

 it
 p

os
si

bl
e

to

pr
ed

ic
t i

t?
 I

s
it

po
s-

si
bl

e
to

 o
bt

ai
n

re
li-

ab
le

es

tim
at

io
ns

ba

se
d

on
 t

he
 a

va
il-

ab
le

 d
at

a?

(L
ev

el
 5

)
D

oe
s

th
e

or
-

ga
ni

za
tio

n
ha

ve
 a

 p
er

-
fo

rm
an

ce
 c

on
tro

l
pa

ne
l

of
 o

rg
an

iz
at

io
na

l
pr

oc
-

es
se

s
an

d
im

pr
ov

em
en

t
go

al
s?

 I
s

th
e

or
ga

ni
za

-
tio

n
qu

al
ita

tiv
el

y
ab

le
 to

de

te
rm

in
e

if
a

go
al

 h
as

be

en

ac
hi

ev
ed

?
Is

it

po
ss

ib
le

 to
 d

ef
in

e
a

re
li-

ab
le

 im
pr

ov
em

en
t p

la
n?

To
ol

s
su

p-
po

rt
(L

ev
el

 1
)

–
N

o
m

at
ur

ity

su
g-

ge
st

io
n.

(L
ev

el
 2

)
A

re
 th

er
e

an
y

to
ol

s
w

hi
ch

pr

ov
id

e
th

e
re

qu
ire

d
in

di
ca

to
rs

to

sh

ow

pr
oj

ec
t

pr
og

re
ss

?
If

an
y

at
tri

bu
te

pr

od
uc

t i
s

m
ea

su
re

d
ba

se
d

on

de
fe

ct
s

or
 f

ai
lu

re
s,

is
 t

he
re

an

y
in

ci
de

nt
 m

an
ag

em
en

t t
oo

l
in

 th
e

or
ga

ni
za

tio
n?

(L
ev

el
 4

) I
s

th
er

e
an

 o
rg

an
i-

za
tio

n
da

ta
ba

se
 to

 s
to

re
 h

is
-

to
ric

al
 d

at
a?

(L
ev

el
 4

) I
s

th
er

e
an

or

ga
ni

za
tio

n
da

ta
-

ba
se

 to
 s

to
re

 h
is

to
ri-

ca
l

da
ta

?
A

nd
 e

st
i-

m
at

io
n

m
ec

ha
ni

sm
s

an
d

to
ol

s?

(L
ev

el

4)

Is

th
er

e
a

m
an

ag
em

en
t t

oo
l t

o
dy

-
na

m
ic

al
ly

 a
nd

 a
ut

om
at

i-
ca

lly
 o

bt
ai

n
in

di
ca

to
rs

,
re

po
rts

 a
nd

 e
st

im
at

io
ns

in

 o
rd

er
 to

 m
ak

e
so

ph
is

-
tic

at
ed

 a
na

ly
se

s?

M
ea

su
re

m
en

t
su

pp
or

t
fo

r
m

an
ag

em
en

t
is

su
es

(L
ev

el
 1

)
W

ha
t

is
 t

he
 i

nt
en

de
d

us
e

of

m
ea

s-
ur

em
en

t?

Is

it
m

ea
nt

to

co

n-
tri

bu
te

 t
o

de
ci

-
si

on

m
ak

in
g

an
d

to
 e

nc
ou

r-
ag

e
im

pr
ov

e-

(L
ev

el
 2

)
Is

 i
t

in
te

nd
ed

 t
o

m
ak

e
re

ac
tiv

e
de

ci
si

on
s

ba
se

d
on

 t
he

 r
es

ul
ts

 o
f

th
e

m
ea

s-
ur

em
en

t
an

al
ys

is

re
ga

rd
in

g
pr

oj
ec

ts
 a

nd
 p

ro
du

ct
s

in
 p

ro
-

du
ct

io
n?

(L

ev
el

 3
)

–
Is

 i
t

in
te

nd
ed

 t
o

m
ak

e
de

ci
si

on
s

re
ga

rd
in

g
th

e
de

ve
lo

pe
d

pr
od

uc
t

ba
se

d
on

(L
ev

el
 4

)
Is

 it
 th

e
or

ga
ni

za
-

tio
n’

s
pu

rp
os

e
to

 m
ak

e
im

-
pr

ov
em

en
ts

 a
s

re
qu

ire
d

to

ac
hi

ev
e

a
go

al
?

(L
ev

el

3)

Is

m
ea

su
re

m
en

t
go

in
g

to
 b

e
us

ed
 to

 ta
ke

 c
or

-
re

ct
iv

e
ac

tio
ns

 i
n

ad
va

nc
e

w
ith

ou
t

th
e

ne
ed

of

re

-
pl

an
ni

ng
?

(L
ev

el
 4

)
Is

 p
re

di
c-

tio
n

go
in

g
to

be

us

ed

to

im
pr

ov
e

pr
oj

ec
t

pl
an

ni
ng

,
av

oi
d

fu
tu

re

pr
ob

-
le

m
s,

et
c?

 I
s

pr
ed

ic
-

tio
n

go
in

g
to

be

us

ed

to

ad
ap

t
th

e
pl

an
ni

ng
 in

 o
rd

er
 to

(L
ev

el
 5

) W
ha

t i
s t

he
 in

-
te

nd
ed

 u
se

 o
f

m
ea

su
re

-
m

en
t?

 I
s

it
m

ea
nt

 t
o

be

us
ed

 t
o

m
ak

e
dy

na
m

ic

de
ci

si
on

s
in

or

de
r

to

av
oi

d
pr

ob
le

m
s

an
d

ad
ap

t
th

e
de

ve
lo

pm
en

t,
qu

al
ity

 a
nd

 m
an

ag
em

en
t

pr
oc

es
s?

 I
s

it
in

te
nd

ed

T
ab

le
 3

. (
co

nt
in

ue
d)

 MIS-PyME Software Measurement Maturity Model 31

m
en

t?

O
th

er
-

w
is

e,
 w

ha
t i

s
its

pu

rp
os

e?

m
ea

su
re

m
en

t r
es

ul
ts

?
ac

hi
ev

e
a

ce
rta

in

go
al

?
to

en

co
ur

ag
e

th
e

im
-

pr
ov

em
en

t o
f

co
nt

ro
lle

d
ac

tio
ns

 t
o

ac
hi

ev
e

pr
oc

-
es

s a
nd

 b
us

in
es

s g
oa

ls
?

Th
em

es

Q
ua

lit
y

(m
ai

nt
ai

na
bi

lit
y,

 re
lia

bi
lit

y,

po
rta

bi
lit

y,
 u

sa
bi

lit
y)

C

os
t

(e
ff

or
t,

pe
r-

so
nn

el
)

Pr
oj

ec
t

pr
og

re
ss

,
ca

le
nd

ar

Pr
oc

es
s

(c
om

pl
ia

nc
e,

ef

fe
ct

iv
en

es
s)

C

lie
nt

 sa
tis

fa
ct

io
n

So
ftw

ar
e

m
an

ag
e-

m
en

t,
qu

al
-

ity
 a

nd
 d

e-
ve

lo
pm

en
t

ca
pa

bi
lit

y

(L
ev

el
 2

)
Is

 r
el

ia
bi

lit
y

ta
ke

n
in

to

ac
co

un
t

in

pr
oc

es
s

de
fin

iti
on

?
(L

ev
el

 4
)

A
re

 m
ai

nt
ai

na
bi

lit
y,

 u
s-

ab
ili

ty
 a

nd
 p

or
ta

bi
lit

y
ta

ke
n

in
to

ac

co
un

t i
n

th
es

e
pr

oc
es

se
s?

 Is
 th

er
e

an
y

qu
an

tif
ia

bl
e

ag
re

em
en

t
w

ith

th
e

us
er

 a
s

re
ga

rd
s

th
es

e
as

pe
ct

s
of

th

e
pr

od
uc

t?

(L
ev

el

2)

A
re

w

or
ke

rs
 a

ss
ig

ne
d

an
 a

ct
iv

ity
 o

r
a

ta
sk

du

rin
g

th
e

pr
oj

ec
t

m
an

ag
e-

m
en

t
pr

oc
es

s?

A
re

an

y
es

ti-
m

at
es

 p
er

fo
rm

ed

fo
r

th
e

ef
fo

rt
th

at

th
is

 w
ill

 in
vo

lv
e?

(L
ev

el
 2

)
A

re
 p

ro
-

je
ct

s
pl

an
ne

d?

D
o

pr
oc

es
se

s
sp

ec
ify

an

y
m

on
ito

rin
g

ac
-

tiv
iti

es

fo
r

pr
oj

ec
t

pr
og

re
ss

?

(L
ev

el
 4

)
Is

 t
he

 d
e-

ve
lo

pm
en

t
pr

oc
es

s
w

el
l

de
fin

ed
?

A
re

de

ve
lo

pm
en

t
ph

as
es

w

el
l d

iff
er

en
tia

te
d?

(L
ev

el

2)

D
oe

s
th

e
pr

oc
es

s
de

fin
e

a
cl

os
e

co
lla

bo
ra

tio
n

fo
r

th
e

pr
oj

ec
t

ac
tiv

ity

w
he

re

pr
oj

ec
t

m
an

ag
er

s
re

fle
ct

ab

ou
t

th
e

de
ve

lo
pm

en
t

of
 t

he
 p

ro
je

ct
 f

ro
m

 t
he

po

in
t o

f
vi

ew
 o

f
th

e
cl

i-
en

t?

D
o

th
ey

ha

ve

en
ou

gh

re
so

ur
ce

s
an

d
ex

pe
rie

nc
e

to

de
ve

lo
p

th
is

 ta
sk

?
To

ol
s

su
p-

po
rt

(L
ev

el

2)

Is

th
er

e
an

y
in

ci
de

nt

m
an

ag
em

en
t t

oo
l i

n
or

de
r t

o
ob

ta
in

da

ta
 b

as
ed

 o
n

de
fe

ct
s

an
d

fa
ilu

re
s?

Is

th

er
e

an
y

co
nf

ig
ur

at
io

n
m

an
-

ag
em

en
t

to
ol

?
(L

ev
el

 4
)

Is
 t

he
re

an

y
de

ve
lo

pm
en

t
to

ol
 w

he
re

 c
od

e
qu

al
ity

 a
ttr

ib
ut

es
 c

an
 b

e
ob

ta
in

ed

su
ch

as

:
cy

cl
om

at
ic

co

m
pl

ex
ity

,
m

od
ul

e
co

up
lin

g,
 in

he
rit

an
ce

, e
tc

.?

(L
ev

el
 2

)
Is

 th
er

e
an

y
ef

fo
rt/

ta
sk

m

an
ag

em
en

t
to

ol

w
hi

ch

ca
n

be

us
ed

 in
 e

ac
h

pr
o-

je
ct

?

(L
ev

el

2)

Is

th
er

e
an

y
to

ol
 t

o
su

pp
or

t
pr

oj
ec

t p
la

nn
in

g?

(L
ev

el

3)

Is

th
er

e
an

y
pr

oj
ec

t
m

an
-

ag
em

en
t

to
ol

to

co

nt
ro

l
pr

oj
ec

t
pr

o-
gr

es
s

by

w
or

k-
pa

ck
ag

es
?

(L
ev

el

2)
:

Is

th
er

e
an

y
in

ci
de

nt

m
an

-
ag

em
en

t
to

ol

w
hi

ch

m
ak

es
 i

t
po

ss
ib

le
 t

o
ob

ta
in

 d
at

a
ba

se
d

on

de
fe

ct
s

an
d

fa
ilu

re
s?

A

nd
 a

ny
 m

an
ag

em
en

t
to

ol

fo
r

lif
e

cy
cl

e
pr

oj
ec

t i
nf

or
m

at
io

n?

(L
ev

el
 2

)
Is

 t
he

re
 a

ny

in
ci

de
nt

 a
nd

 c
ha

ng
e

re
-

qu
es

t
m

an
ag

em
en

t
to

ol

w
hi

ch
 m

ak
es

 it
 p

os
si

bl
e

to
 o

bt
ai

n
da

ta
 b

as
ed

 o
n

de
fe

ct
s a

nd
 fa

ilu
re

s?

T
ab

le
 4

. M
IS

-P
yM

E
 M

ea
su

re
m

en
t M

at
ur

it
y

In
te

rf
ac

e
as

 r
eg

ar
ds

 F
oc

us

T
ab

le
 3

. (
co

nt
in

ue
d)

32 M. Díaz-Ley, F. García, and M. Piattini

Table 5. MIS-PyME Measurement Maturity Interface as regards Entity and depending on
Measurement Scope theme

Project Product Process

(Level 3) Before
monitoring work
packages it is better to
start with (Level 2)
phase-by-phase moni-
toring.

(Level 3) It is not
possible to make
cross-project analysis
if a measurement
model has not been
established for the
whole organization.

(Level 2-3) Measuring products attributes in
production is usually easier, more reliable and
important than measuring attributes in develop-
ment, such as the reliability of products.

(Level 3) Usually it is more urgent to proceed
with the measurement of projects than with that
of products in development, which are used for
quality control. Therefore our suggestion is to
start measuring projects first and then products
in development. (Level 3-4) Usually it is easier
and more important to measure products based
on defects or failures than to measure effective-
ness, reliability, and afterwards other attributes
such as friendliness, complexity, maintainabil-
ity, etc.

(Level 4)
Usually, ma-
turity and
some experi-
ence with
projects and
products are
required to
measure the
aspects of a
process.

6 Conclusions and Further Research

This paper highlights a factor which must be taken into account in order to success-
fully implement measurement programs, which is defining measurement programs
adapted to the measurement maturity of each company.

The paper gives an outline of MIS-PyME measurement maturity model, which is
an adaptation of the measurement maturity method developed by Daskalantonakis [6]
and the interface defined to integrate this model into MIS-PyME framework. For
illustration purposes, two examples are provided and a case study (software meas-
urement program definition in a medium setting) gives an idea of the advantages
MIS-PyME measurement maturity model brings with it.

This support module, a measurement maturity framework integrated in the meas-
urement program model for the purpose of defining measurement programs adapted
to the measurement maturity of each company, is especially important for SMEs,
since usually these companies have poor measurement knowledge and limited re-
sources and budget and people from inside the company, not too experienced in the
field, may be those who define the measurement program.

Our future work will revolve around testing and improving MIS-PyME measure-
ment maturity module.

Acknowledgment. We would like to thank the staff of Sistemas Técnicos de Loterías
del Estado (STL) for their collaboration. This research has been sponsored by the
COMPETISOFT (CYTED, 506AC0287), ESFINGE (Dirección General de Investiga-
ción del Ministerio de Educación y Ciencia, TIN2006-15175-C05-05) and INGENIO
(Junta de Comunidades de Castilla-La Mancha, PAC08-0154-9262) projects.

 MIS-PyME Software Measurement Maturity Model 33

References

1. Hughes, R.T.: Expert Judgment as an Estimating Method. Information and Software Tech-
nology, 67–75 (1996)

2. Niessink, F., Vliet, H.v.: Measurements Should Generate Value, Rather Than Data. In:
Proceedings of the Sixth International Software Metrics Symposium (METRICS 1999),
Boca Raton (1999)

3. Gresse, C., Punter, T., Anacleto, A.: Software measurement for small and medium enter-
prises. In: 7th International Conference on Empirical Assessment in Software Engineering
(EASE), Keele, UK (2003)

4. Gopal, A., et al.: Measurement Programs in Software Development: Determinants of Suc-
cess. IEEE Transactions on Software Engineering 28(9), 863–875 (2002)

5. Daskalantonakis, M.K.: A Practical View of Software Measurement and Implementation
Experiences Within Motorola. IEEE Transactions on Software Engineering 18(11), 998–
1010 (1992)

6. Daskalantonakis, M.K., Yacobellis, R.H., Basili, V.R.: A Method for Assessing Software
Measurement Technology. Quality Engineering, 27-40 (1990)

7. Hall, T., Fenton, N.: Implementing Effective Software Metrics Programs. IEEE soft-
ware 14(2), 55–65 (1997)

8. Pfleeger, S.L.: Understanding and Improving Technology Transfer in Software Engineer-
ing. Systems ans Software 47 (1999)

9. Briand, L.C., Morasca, S., Basili, V.R.: An Operational Process for Goal-Driven Defini-
tion of Meassures. IEEE Transactions on Software Engineering 28, 1106–1125 (2002)

10. SEI, The Capability Maturity Model: Guidelines for Improving the Software Process, Soft-
ware Engineering Institute (1995)

11. Niessink, F., Vliet, H.V.: Towards Mature Measurement Programs. Software Maintenance
and Reengineering (1998)

12. CMMI Product Team: CMMI for Systems Engineering/Software Engineering, Version 1.1 -
Staged Representation (CMU/SEI-2002-TR-002, ADA339224), Software Engineering In-
stitute, Carnegie Mellon University: Pittsburgh, PA (2002)

13. Weber, C., Layman, B.: Measurement Maturity and the CMM: How measurement Prac-
tices Evolve as Processes Mature. Software Quality Parctitioner 4(3) (2002)

14. Solingen, R.v., Berghout, E.: The Goal/Quesiton/Metric Method - A practical guide for
Quality Improvement of Software Development. Mc Graw Hill (1999)

15. Park, R.E., Goethert, W.B., Florac, W.A.: Goal-Driven Software Measurement-A Guide-
book. Carnegie Mellon University Pittsburgh: Software Engineering Institute (1996)

16. PSM: Practical Software and Systems Measurement - A Foundation for Objective Project
Management Version 4.0c. Deptartment of Defense and US Army (November 2000)

17. ISO/IEC 15939, Software Engineering-Software Measurement Process, ISO and IEC, Edi-
tors (2002)

18. Diaz-Ley, M., García, F., Piattini, M.: Software Measurement Programs in SMEs - Defin-
ing Software Indicators: A methodological framework. In: PROFES 2007 (2007)

19. Goethert, W., Siviy, J.: Applications of the Indicator Template for Measurement and
Analysis. Software Engineering Measurement and Analysis Initiative (September 2004)

20. Basili, V.R., Weiss, D.: A Methodology for Collecting Valid Software Engineering Data.
IEEE Transactions on Software Engineering 10(11), 758–773 (1984)

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 34–44, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Predicting Software Metrics at Design Time

Wolfgang Holz1, Rahul Premraj1, Thomas Zimmermann2, and Andreas Zeller1

1 Saarland University, Germany
{holz, premraj, zeller}@st.cs.uni-sb.de

2 University of Calgary, Canada
tz@acm

Abstract. How do problem domains impact software features? We mine soft-
ware code bases to relate problem domains (characterized by imports) to code
features such as complexity, size, or quality. The resulting predictors take the
specific imports of a component and predict its size, complexity, and quality
metrics. In an experiment involving 89 plug-ins of the ECLIPSE project, we
found good prediction accuracy for most metrics. Since the predictors rely only
on import relationships, and since these are available at design time, our ap-
proach allows for early estimation of crucial software metrics.

1 Introduction

Estimating the cost (or size) for a software project is still a huge challenge for project
managers—in particular because the estimation typically is done at a stage where
only few features of the final product are known. To date, several models have been
proposed to improve estimation accuracy [1], but none have performed consistently
well. Moreover, although a lot of emphasis is laid upon early estimation of develop-
ment costs, the parameters used by many models are not known until much later in
the development cycle [2]—that is, at a stage when prediction is both trivial and
worthless.

In this work, we show how to reliably predict code metrics that serve as inputs (in-
cluding software size) to prediction models very early on in the project by learning
from existing code. We leverage the problem domain of the software to predict these
metrics. The problem domain manifests itself in import relationships—that is, how
individual components rely on each other’s services. In earlier work, it has been
shown that a problem domain, as characterized by imports, impacts the likelihood of
software defects [3] or vulnerabilities [4].

Our approach is sketched in Figure 1. We train a learner from pairs of imports and
code metrics, as found in existing software. The resulting predictor takes the set of
imports for a component (as available in the design phase) and predicts metrics for the
component. Managers can then use the predicted metrics as a basis to make other
decisions, such as: What will this product cost to develop? How many people should I
allocate to the project? Will this product have several defects to be fixed?

 Predicting Software Metrics at Design Time 35

This paper makes the following contributions:

1. We present a novel software size estimation method during the design phase of
development.

2. Using the ECLIPSE code base, we show how imports can be used to predict soft-
ware size, given as source lines of code (SLOC) [5].

3. Using the ECLIPSE code base, we show how to predict software complexity, as
defined by the widely used object-oriented ckjm software metrics [6].

We expect that advance reliable knowledge of such product-specific metrics can be a
boon to solving several management issues that constantly loom over all types of
development projects at an early stage.

This paper is organized as follows. In Section 2, we discuss features and shortcom-
ings of contemporary cost estimation models. The data used for our experimentation
is elaborated upon in Section 3. Thereafter, we present our experimental setup in
Section 4, which is followed by results and discussions in Section 5. Threats to valid-
ity are addressed in Section 6 and lastly, we conclude our work in Section 7.

Fig. 1. Approach overview. By learning from the relationship between imports and metrics in
existing code, we can predict metrics based on imports alone.

2 Background

As discussed above, cost estimation is vital to a successful outcome of a software
project. But most contemporary estimation models depend upon characteristics of the
software that are typically unknown at start. For example, many models take into
account the relationship between software size and cost. Examples include algo-
rithmic models such as COCOMO [7] and Putnam [8], regression models [9] and
analogy-based models [10–13]. To use these models, first an estimate of the size of
the project is needed. Again, size is unknown at start of the project and can only be
estimated based on other characteristics of the software. Hence, basing cost estimates
on an estimate of size adds to uncertainty of the estimates and fate of the project. This
challenges the value of such models.

We propose a novel approach that, in contrast to others, focusses on estimating the
size of a component with as little knowledge as its design. This places managers at a
unique position from where they can choose between several alternatives to optimize
not only size, but also other metrics of the software that serve as its quality indicators.
We present these metrics in more detail in the following section.

36 W. Holz et al.

3 Data Collection

We used 89 core plug-ins from the ECLIPSE project as data source for our study.
Core plug-ins are those that are installed by default in ECLIPSE. We used both source
code and binaries to extract the data necessary to build prediction models. In this
section, we describe the metrics extracted and the methods employed for their extrac-
tion. The metrics or features can be grouped into two categories; first, input
 features, i.e., the features that are already known to us, and second, output features,
which we wish to predict.

3.1 Input Features

As mentioned above, we hypothesize that the domain of the software determines
many of its metrics, for instance, defects—a quality indicator. Similar to Schröter et
al. [3], we assume that the import directives in source code indicate the domain of the
software.

Naturally, our first task is to establish the domains of the 89 ECLIPSE plug-ins, i.e.,
extract all import directives from the relevant code. At first, this task seems trivial
because one can quickly glance through JAVA source code to find the import direc-
tives at the top of the file.

However, this task becomes very complex when one encounters a situation as illus-
trated in Figure 2. Here, the import directive in Label 1 contains reference to package
import java.sql.* instead of classes. Later, in Label 2, objects of classes
Connection and Statement belonging to the java.sql package have been
instantiated.

It is crucial that such references to packages are resolved to class levels; else we
run the risk of leading statistical learning models astray. To accomplish this, we used
the Eclipse ASTParser [14] that transforms JAVA code into a tree form, where the
code is represented as AST nodes (subclasses of ASTNode). Each element in JAVA
code has an associated, specialised AST node that stores relevant information items.
For example, a node SimpleType contains the name, return type, parameters, and like.
Further information to examine the program structure more deeply is allowed by
bindings, a provision in ASTParser. It is these bindings that resolve import packages
into the relevant classes. Figure 2 demonstrates this where the two classes referred to
in Label 2 get resolved by the ASTParser as java.sql.Connection (Label 3)
and java.sql.Statement (Label 4) respectively.

Using the above method, we extracted 14,185 unique and resolved import state-
ments from the 89 ECLIPSE plug-ins used in this study.

3.2 Output Features

As mentioned earlier, the knowledge of as many product-specific metrics early in the
project’s life cycle has several advantages. We demonstrate our model’s capacity to
predict such metrics on a set of commonly known and used in the software develop-
ment community.

 Predicting Software Metrics at Design Time 37

Fig. 2. An illustration of the use of the ASTParser to resolve import directives

Source Lines of Code (SLOC). The count of lines of code is the simplest measure of
the system size. Early estimate of SLOC or a similar size measure can substantially
influence management and execution of the project: development costs and duration
of the project can be estimated, system requirements can be inferred, required team
size can be appropriated, and like.

Many definitions for counting SLOC have been proposed. We implemented a tool
to count SLOC abiding the guidelines laid by Wheeler [5]. As Wheeler recommends,
we count the physical lines of code, which is defined as follows:

38 W. Holz et al.

A physical SLOC is a line ending in a new line or end-of-file marker, and which
contains at least one non-whitespace non-comment character.

Object-Oriented (OO) Metrics. Our second output feature is a set of OO metrics,
referred to as ckjm metrics defined by Chidamber and Kemerer [6]. The ckjm tool
computes six different metrics, summarised in Table 1. These metrics have previously
been used to predict fault-proneness of classes [15], changes in short-cycled devel-
opment projects using agile processes [16], system size [17, 18], and as software
quality indicators [19–21].

Table 1. List of ckjm Metrics

Abbreviation Metric
CA Afferent Couplings
CBO Coupling between Class Objects
CBOJDK* Java specific CBO
DIT Depth of Inheritance Tree
NOC Number of Children
NPM Number of Public Methods
LCOM Lack of Cohesion in Methods
RFC Response for a Class
WMC Weighted Methods per Class
* In this metric, Java JDK classes (java.*, javax.*, and others) are in-

cluded. We created a new metric because the use of JDK classes does
not count toward a class’s coupling because the classes are relatively
stable in comparison to the rest of the project.

While the ckjm metrics have been shown to be useful predictors of a variety of
software characteristics, a downside of their usage is that substantial parts of the code
have to be written to reliably compute them. At this juncture, when code is reasonably
mature, the value of such predictions is diminished, i.e., the new knowledge arrives
too late in the product’s life cycle. Our research alleviates this problem by predicting
the ckjm metrics for classes at a very early stage of the life cycle. Endowed with pre-
dicted values of the ckjm metrics, project managers can make further predictions of
software characteristics based on these values.

In Table 2, we present some summary statistics of the output features. The values
suggest that most metrics are highly skewed. DIT is somewhat flat and most classes
have no children (NOC), similar to the finding by Chidamber and Kemerer [6]. In
fact, almost 84% of the classes had no children. Particularly noticeable is the fact that
many metrics have extreme outliers, for example maximum value of LCOM is
329,563.

3.3 Data Format

After the data has been extracted, we have to shape it as feature vectors to be fed into
statistical learning models. Each file is represented as a single row. The input features,
that is, the imported classes are represented as dummies. This is illustrated in Figure 3

 Predicting Software Metrics at Design Time 39

Table 2. Summary Statistics of Output Features

Metric Min Max Median Mean Std. Dev
CA 0 588 2 5.40 5.23
CBO 0 212 9 13.86 16.15
CBOJDK 2 223 15 20.40 18.56
DIT 1 8 1 1.67 1.05
NOC 0 82 0 0.47 2.03
NPM 0 834 4 7.13 13.26
LCOM 0 329,563 9 164.10 3200.28
RFC 0 848 24 39.46 48.96
SLOC 3 7645 72 146.70 273.64
WMC 0 835 7 12.02 18.06

Fig. 3. Data format for experimentation

where each of the 14,185 import directives is represented as one column. To indicate
that a file imports a class, the value of the respective cell is set to 1, while otherwise it
is set to zero. The eleven output features (SLOC and ckjm metrics) are represented as
columns too alongside the input features. As a result, we have a large matrix with
11,958 rows (files) and 14,196 columns (filename + input features + output features).

4 Experimental Setup

This section elaborates upon the experiments we performed. We begin with describ-
ing the prediction model, our training and test sets and lastly, the evaluation for the
model performance.

4.1 Support Vector Machine

Support vector machine (SVM) is primarily a supervised classification algorithm that
can learn to separate data into two classes by drawing a hyper-plane in-between them.
The coordinates of the hyper-plane are determined by ensuring maximum distance
between select boundary points of the two classes and the center of the margin. The

40 W. Holz et al.

boundary points are called support vectors. The algorithm uses an implicit mapping of
the input data to a high-dimensional feature space where the data points become line-
arly separable. This mapping is defined by a kernel function, i.e., a function returning
the inner product between two points in the suitable feature space.

Recently, SVM has been upgraded to even perform regression. This is done by us-
ing a different kernel function—the ε-insensitive loss function. Basically, this func-
tion determines the regression coefficients by ensuring that the estimation errors lie
below or equal to a threshold value, ε. For more information, we refer the reader to a
tutorial on the topic [22].

Besides the kernel function, it is also possible to choose the SVM’s kernel. In a pi-
lot study (predicting SLOC), we found that the linear kernel overwhelmingly outper-
forms other kernels including polynomial, radial bias, and sigmoid when using the
evaluation criteria presented in Section 4.3. Hence, we chose to use the same kernel
across all our experiments.

4.2 Procedure

The SVM regression model learns using training data instances. For this, we ran-
domly sample 66.67% of the data described in Section 3 to create the training set,
while the remaining instances of the data (33.33%) that comprise the test set. Once
the model is trained on the training data, it is tested on the test data using only the
input features. The output features for the test data are predicted by the model, which
are then evaluated using the measures described in Section 4.3.

Additionally, to minimise sample bias, we generate 30 independent samples of
training and testing sets, and perform our experiments on each of the 30 pairs.

4.3 Evaluation

We evaluate the results from the prediction model using PredX, a popular perform-
ance metric used in software engineering. We chose not to use other performance
metrics such as MMRE because they have been shown to be biased [23]. PredX meas-
ures the percentage of predictions made that lie within ±x% of the actual value. The
larger the value of PredX, the higher is the prediction accuracy. Typically, x takes the
values 25 and 50. We use the same values for our evaluation.

5 Results and Discussion

Figure 4 presents the results from our experiments. All metrics are presented in al-
phabetical order on the y-axis, while the PredX values are plotted on the x-axis. For
each metric, we have plotted both, Pred25 (as circles) and Pred50 values (as trian-
gles) from each of the thirty experimental runs. The plots are jittered [24], i.e., a small
random variation has been introduced to ease observation of overlapping values on
the x-axis.

We observe from the figure that SLOC is predicted with reasonable accuracy.
Pred25 values hover around 42% while Pred50 values hover around 71%. Whereas,
prediction results for CBO and CBOJDK are outstandingly good. The Pred25 values

 Predicting Software Metrics at Design Time 41

Fig. 4. Prediction accuracy for output metrics

for CBO hover around 72% and even higher for CBOJDK at 86%. Their Pred50
values hover around 88% and 97% respectively. The model also predicts RFC and
DIT values with reasonable accuracy. The values of Pred25 for both these metrics
hover around 51–54%. Pred50 for DIT hover around 77%, while the same for RFC
hovers around 83%.

The prediction accuracy for other metrics, i.e., CA, LCOM, NOC, and NPM is
relatively lower. Nearly all Pred25 and Pred50 values for most of these metrics are
lower than 50%. One metric that markedly stands out is number of children (NOC).
This is primarily because of the distribution of the metric. Recall from Table 2 that
the median value of NOC is zero and nearly 84% files have no children. This explains
the poor results for NOC.

Overall, the prediction accuracy derived from our approach is good for most met-
rics. It is obvious that early and reliable estimation of SLOC places projects at a van-
tage point by contributing substantially to their likelihood of success. Our results for

42 W. Holz et al.

SLOC demonstrate the value of our approach. Perhaps, these can be even topped by
using more varied data and other prediction models.

Equally worthy is the approach’s capability of predicting code-related metrics as
early as during the design phase. Values of many of the metrics could be predicted
with high accuracy, up to Pred50 = 97%. The results warrant the use of our approach
to facilitate many decisions pertaining to complexity, quality, and maintainability, and
allow assessment of alternatives designs. If our results can be replicated in different
environments, we anticipate the approach to be valuable support tool for practitioners.

6 Threats to Validity

Although we examined 89 ECLIPSE plug-ins that covered a wide spectrum of do-
mains, from compilers to user-interfaces, we cannot claim with certainty that these
plug-ins are representative of all kinds of software projects.

We also approximated the design of plug-ins by its import directives at release
time. These relations may have undergone a series of changes from the initial design.

Lastly, we did not filter outliers from our data set. While doing so may improve the
prediction accuracy of the models, we chose to preserve the outliers in the data since
they make interesting cases to examine and realistically assess the power of our
prediction models.

7 Conclusions and Consequences

When it comes to components, you are what you import. As soon as you know which
components you will interact with, one can already predict the future size of the com-
ponent or its complexity. This allows for early estimation and allocation of resources,
reducing the risk of low quality or late delivery. Even if the present study limits itself
to just one platform (i.e., ECLIPSE plug-ins), the technique can easily be replicated
and evaluated on other code bases.

Our approach is easily generalisable to other metrics. Most interesting in this as-
pect is cost: If we know the actual development cost of a component, we can again
relate this cost to its domain—and come up with a predictor that directly predicts
development cost based on a given set of imports. Instead of development cost, we
could also learn from and predict maintenance costs or risk. We are currently working
to acquire appropriate data and look forward to apply our technique on it.

What is it that makes a specific domain impact software metrics? Obviously, the
imports we are looking at are just a symptom of some underlying complexity—a
complexity we can describe from experience, but which is hard to specify or measure
a priori. Why is it that some domains require more code to achieve a particular goal?
Is there a way to characterize the features that impact effort? Why do some domain
result in more complex code? How do characteristics of imported components impact
the features of the importers?

All these questions indicate that there is a lot of potential to not only come up with
better predictors, but also to increase our general understanding of what makes soft-
ware development easy, and what makes it hard. With the present work, we have

 Predicting Software Metrics at Design Time 43

shown how to infer such knowledge for specific projects—and hopefully provided a
starting point for further, more general, investigations.

In addition, we have made the data set used for this study publicly available for ex-
perimentation. The data set can be accessed from the PROMISE repository at

http://promisedata.org/

For more information about our research on the prediction of code features visit
http://www.st.cs.uni-sb.de/softevo/

Acknowledgments

Many thanks are due to the anonymous PROFES reviewers for their helpful sugges-
tions on an earlier revision of this paper.

References

[1] Jorgensen, M., Shepperd, M.J.: A systematic review of software development cost esti-
mation studies. IEEE Transactions on Software Engineering 33(1), 33–53 (2007)

[2] Delany, S.J.: The design of a case representation for early software development cost es-
timation. Master’s thesis, Stafford University, U.K. (1998)

[3] Schröter, A., Zimmermann, T., Zeller, A.: Predicting component failures at design time.
In: Proceedings of the 5th International Symposium on Empirical Software Engineering,
September 2006, pp. 18–27 (2006)

[4] Neuhaus, S., Zimmermann, T., Holler, C., Zeller, A.: Predicting vulnerable software com-
ponents. In: Proceedings of the 14th ACM Conference on Computer and Communica-
tions Security (October 2007)

[5] Wheeler, D.A.: SLOCCount user’s guide (Last accessed 23-11-2007),
http://www.dwheeler.com/sloccount/sloccount.html

[6] Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans-
actions on Software Engineering 20(6), 476–493 (1994)

[7] Boehm, B.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)
[8] Putnam, L.H., Myers, W.: Measures for excellence: reliable software on time, within

budget. Yourdon Press, Englewood Cliffs (1991)
[9] Mendes, E., Kitchenham, B.A.: Further comparison of cross-company and within-

company effort estimation models for web applications. In: IEEE METRICS, pp. 348–
357. IEEE Computer Society, Los Alamitos (2004)

[10] Shepperd, M.J., Schofield, C.: Estimating software project effort using analogies. IEEE
Transactions on Software Engineering 23(11), 736–743 (1997)

[11] Kirsopp, C., Mendes, E., Premraj, R., Shepperd, M.J.: An empirical analysis of linear ad-
aptation techniques for case-based prediction. In: Ashley, K.D., Bridge, D.G. (eds.)
ICCBR 2003. LNCS, vol. 2689, pp. 231–245. Springer, Heidelberg (2003)

[12] Mendes, E., Mosley, N., Counsell, S.: Exploring case-based reasoning for web hyperme-
dia project cost estimation. International Journal of Web Engineering and Technol-
ogy 2(1), 117–143 (2005)

[13] Mendes, E.: A comparison of techniques for web effort estimation. In: ESEM, pp. 334–
343. IEEE Computer Society, Los Alamitos (2007)

44 W. Holz et al.

[14] Marques, M.: Eclipse AST Parser (Last accessed 14-01-2008),
http://www.ibm.com/developerworks/opensource/library/os-ast/

[15] Basili, V., Briand, L., Melo, W.: A validation of object-oriented design metrics as quality
indicators. IEEE Transactions on Software Engineering 22(10), 751–761 (1996)

[16] Alshayeb, M., Li, W.: An empirical validation of object-oriented metrics in two different
iterative software processes. IEEE Transations of Software Engineering 29(11), 1043–
1049 (2003)

[17] Ronchetti, M., Succi, G., Pedrycz, W., Russo, B.: Early estimation of software size in ob-
ject-oriented environments: a case study in a CMM level 3 software firm. Technical re-
port, Informatica e Telecomunicazioni, University of Trento (2004)

[18] Aggarwal, K.K., Singh, Y., Kaur, A., Malhotra, R.: Empirical study of object-oriented
metrics. Journal of Object Technology 5(8) (2006)

[19] Subramanyam, R., Krishnan, M.: Empirical analysis of ck metrics for object-oriented de-
sign complexity: Implications for software defects. IEEE Transactions on Software Engi-
neering 29(4), 297–310 (2003)

[20] Andersson, M., Vestergren, P.: Object-oriented design quality metrics. Master’s thesis,
Uppsala University, Uppsala, Sweden (June 2004)

[21] Thwin, M.M.T., Quah, T.S.: Application of neural networks for software quality predic-
tion using object-oriented metrics. Journal of Systems and Software 76(2), 147–156
(2005)

[22] Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Statistics and Com-
puting 14, 199–222 (2004)

[23] Foss, T., Stensrud, E., Kitchenham, B., Myrveit, I.: A simulation study of the model
evaluation criterion MMRE. IEEE Transactions on Software Engineering 29(11), 985–
995 (2003)

[24] Chambers, J.M., Cleveland, W.S., Kleiner, B., Tukey, P.A.: Graphical Methods for Data
Analysis. Wadsworth (1983)

A Metrics Suite for Measuring Quality

Characteristics of JavaBeans Components

Hironori Washizaki, Hiroki Hiraguchi, and Yoshiaki Fukazawa

Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, Japan
{washi, h hira, fukazawa}@fuka.info.waseda.ac.jp

Abstract. In component-based software development, it is necessary to
measure the quality of components before they are built into the sys-
tem in order to ensure the high quality of the entire system. However,
in application development with component reuse, it is difficult to use
conventional metrics because the source codes of components cannot be
obtained, and these metrics require analysis of source codes. Moreover,
conventional techniques do not cover the whole of quality characteristics.
In this paper, we propose a suite of metrics for measuring quality of Jav-
aBeans components based on limited information that can be obtained
from the outside of components without any source codes. Our suite con-
sists of 21 metrics, which are associated with quality characteristics based
on the ISO9126 quality model. Our suite utilizes the qualitative evalu-
ation data available on WWW to empirically identify effective metrics,
and to derive a reference value (threshold) for each metric. As a result
of evaluation experiments, it is found our suite can be used to effectively
identify black-box components with high quality. Moreover we confirmed
that our suite can form a systematic framework for component quality
metrics that includes conventional metrics and newly defined metrics.

1 Introduction

Component-based software development (CBD) has become widely accepted as a
cost-effective approach to software development, as it emphasizes the design and
construction of software systems using reusable components[1]. In this paper,
we use object-oriented (OO) programming language for the implementation of
components. CBD does not always have to be object-oriented; however, it has
been indicated that using OO paradigm/language is a natural way to model and
implement components[2].

Low-quality individual components will result in an overall software package
of low quality. It is therefore important to have product metrics for measuring
the quality of component units. A variety of product metrics have been proposed
for components[3,4,5,6]; however, nobody has so far reported on the results of a
comprehensive investigation of quality characteristics.

In this paper we propose a suite of metrics that provide a comprehensive
mechanism for judging the quality characteristics of high-quality black-box com-
ponents, chiefly from the viewpoint of users.

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 45–60, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

46 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

2 Component-Based Development and JavaBeans

A component is a replaceable/reusable software unit that provides a certain func-
tion. Components are generally implemented in an object-oriented programming
language.Component-baseddevelopment is amethod for determining the software
architecture (component architecture) that forms a development platform, reusing
executable components or developing new components according to the architec-
ture standard, and combining the resulting components to develop new software.

With the appearance of comprehensive development environments based on
a visual component assembly metaphor and the popularization of environments
for implementing web applications (JSP, ASP, etc.), client components have
already become popular way of implementing items such as GUI components
and general-purpose logic components[8]. Therefore this paper is concerned with
JavaBeans components[10] as the subject of quality measurements.

2.1 JavaBeans Technology

JavaBeans is a component architecture for developing and using local compo-
nents in the Java language. A JavaBeans component (”bean”) is defined as a
single class in the Java language that satisfies the two conditions listed below.
Accordingly, a bean has constructors, fields and methods, which are the con-
stituent elements of ordinary classes.

– It has an externally accessible default constructor that does not take any
arguments, and can be instantiated simply by specifying the class name.

– It includes a java.io.Serializable interface and is capable of being
serialized.

Figure 1 shows the UML class diagram of an example of a bean. In this
example, the Chart class is a bean according to this definition. In JavaBeans, in
addition to the above mentioned definition, it is recommended that the target
class and associated classes conform to the following mechanism to make it easier
for them to be handled by development environments and other beans:

– Properties: A property is a named characteristic whose value can be set
and/or got (read) from outside the bean. In target classes that are handled
as beans, a property is defined by implementing a setting method that al-
lows the value of a characteristic to be externally set, and a getting method
that allows the value of a characteristic to be externally read. Methods of
both types are called property access methods. Property access methods are
chiefly implemented according to the naming rules and the method typing.
When the target class has a getXyz() method that returns a value of type
A (or a setXyz() method that requires a argument value of type A), then
it can be inferred that the class has a writable (or readable) property xyz.
Most of a bean’s properties tend to have a one-to-one correspondence to
the fields implemented in the bean class[5]). In the example shown in Fig 1,
the Chart class has the methods setTitle and getTitle() for setting and

A Metrics Suite for Measuring Quality Characteristics 47

Grid Border

Chart

- title: String
+ Chart()
+ getTitle() : String
+ setTitle(String): void
+ plot(): void
+ addUpdatedListener(UpdatedListener): void
+ removeUpdatedListener(UpdatedListener): void

ChartBeanInfoChartBeanInfo

<<interface>>
java::beans::BeanInfo

<<interface>>
java::beans::BeanInfo

Packaged in the same JAR file

<<interface>>
java::io::Serializable

<<interface>>
java::io::Serializable

UpdatedListenerUpdatedListener

UpdatedEventUpdatedEvent

Fig. 1. Example of a bean and its associated classes (UML class diagram)

getting the value of a title field. Accordingly, the Chart bean has a title
property whose value can be set and got.

– Methods: A method is a function that is provided for external interaction
with a bean. In target classes that are handled as beans, they are defined by
implementing public methods that can be called externally. In the example
of Fig 1, the Chart bean has a plot() method.

– Events: An event is a mechanism for externally announcing that certain
circumstances have arisen inside a bean. The constituent elements of an
event are an event source, and event listener, and an event object. In the
example of Fig. 1, the Chart bean has an Updated event.

The above mentioned definitions and mechanisms do not guarantee that it will
exist in an environment where the other classes and/or interfaces on which the
bean depends are present when the bean is independently distributed. Therefore,
in JavaBeans it is recommended that a JAR archive file is used to store all the
Java classes and interfaces on which the bean depends in the same archive file
for distribution and reuse. In the example of Fig 1, the Grid and Border classes
and event-related classes and interfaces on which the Chart bean depends must
be distributed by storing them all together in a single JAR file.

2.2 JavaBeans Public Information

Components are not only reused within organizations to which the components’
developers belong, but are also distributed in the form of an object code via
the Internet and reused in other environments[9]. Therefore, users who want to

48 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

reuse components often cannot obtain source codes of the components except
for object codes. To allow a bean to be reused as a black-box component while
keeping all its internal details hidden, the following information can be obtained
externally without having to analyze the source code.

– Basic bean information: An introspection mechanism[10] can be used to ob-
tain information about the properties, events and methods of the above men-
tioned mechanism. This information is obtained either based on the naming
rules, or by analyzing a BeanInfo object provided by the bean developer.

– Class constituent information: Information relating to the constructors, fields
and methods of the bean as a class can be obtained by using a reflection
mechanism.

– Archive file structure information: Information about the structure of the
archive file containing the bean (information on the presence or absence
of various resource files such as icons, and the constituent elements of other
classes/interfaces on which the bean depends) can also be obtained externally
without analyzing the source code.

This externally accessible public information is an essential judgment resource
for measuring the quality characteristics of a bean.

3 Component Quality Metrics

To evaluate a component when it is reused, the component is assessed from
a variety of viewpoints (e.g., maintainability, reusability, and so on)[11]. This
necessitates the use of metrics that consistently deal with the overall quality
provided by a component rather than a single metric that deals with a single
quality characteristic of a component.

Since beans are implemented in Java, it is possible to apply the quality
measurements of conventional object-oriented product metrics. However, most
conventional metrics perform measurements on entire object-oriented systems
consisting of class sets. On the other hand, since components are highly inde-
pendent entities, it is difficult for these metrics to reflect the component charac-
teristics even when applied to individual component units.

Also, conventional metrics often require analysis of the target source code.
Components are sometimes distributed to and reused by third parties across
a network, and since in this case they are black-box components whose source
code cannot be seen by the user, it is impossible to use conventional white-box
metrics[5]. Accordingly, for components whose source code is not exposed, we
need measurements that can be applied in a black-box fashion.

In this paper, based on these issues, we use the following procedure to con-
struct a suite of metrics that provide a component’s user with useful materials
for making judgments when a component is reused.

1. Comprehensive investigation of basic metrics
2. Selection of basic metrics based on qualitative assessment information
3. Construction of a suite of metrics

A Metrics Suite for Measuring Quality Characteristics 49

3.1 Comprehensive Investigation of Basic Metrics

All the information that can be measured from outside a bean is comprehensively
investigated as basic metrics. The investigation results are shown in Table 1.
Tables 1(a), (b) and (c) show the metrics relating to the bean’s information,
class structure information, and archive file structure information resepectively.

In Table 1(a), ”Default event present” expresses whether an initially selected
event is pre-specified when a bean that provides multiple events is used in a de-
velopment environment. Similarly, ”Default property present” expresses whether
an initially selected property is pre-specified.

In Table 1(b), RCO and RCS are the ratios of property getting methods and
setting methods out of all the bean fields, and are used as metrics expressing the
extent to which the properties of fields can be publicly got and set[5]. SCCp and
SCCr are the ratios of methods that have no arguments or return values, and are
used as metrics expressing the independence of the methods[5]. PAD and PAP
are the ratios of public/protected methods and fields, and are used as metrics
expressing the degree to which the methods and fields are encapsulated[12].

In Table 1(c), the notation ”Overall M” represents the results of applying
metric M under conditions where the constituent elements of all the classes
contained in the archive file that includes the bean are assumed to exist within
a single class. The number of root classes expresses the number of classes that
are direct descendents of java.lang.Object. Also, ”Overall bean field (method)
ratio” expresses the ratio of fields and methods that a bean has in the sum total
of fields (methods) in the entire classes.

3.2 Selection of Basic Metrics

Out of all the resulting basic metrics, we select those that are useful for judging
the level of quality of the component. For this selection we use manually obtained
component evaluation information published at jars.com[13]. The evaluation in-
formation at jars.com has already been used to set the evaluation standard values
of a number of metrics[5,6]. At jars.com, in-house or independent group of Java
capable and experienced individuals review each bean from the viewpoints of pre-
sentation, functionality and originality.Finally beans are rated into 8 levels as total
of those different viewpoints. These 8 evaluation levels are normalized to the in-
terval [0, 1] (where 1 is best), and the resulting value is defined as the JARS score.

As our evaluation sample, we used all of the 164 beans that had been evaluated
at jars.com as of March 2004. The publication of beans at jars.com means that
they are reused in unspecified large numbers, so the JARS score is thought to
reflect the height of the overall quality of the component taking the fact that
the bean is reused into account. We therefore verified the correlation between
the measured values of each bean’s basic metrics and its JARS score.

As the verification method, we divided the components into a group with a
JARS score of 1 (group A: 117 components) and a group with a JARS score
of less than 1 (group B: 47 components), and we applied the basic metrics to
all the beans belonging to each group. In cases where testing revealed a differ-
ence between the measured value distributions of each group, this basic metric

50 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

Table 1. Possible basic metrics relating to: (A: normality test result of ”good” com-
ponents group, B: that of ”poor” group, T : difference test result of both distributions)

(a) bean itself

Metric M A B T

BeanInfo present n n n
Number of events n n Y
Number of methods (of bean) n n Y
Number of properties n n n
Default event present n n n
Default property present n n n

(b) class constituent

Metric M A B T

Number of fields n n Y
RCO n n Y
RCS n n Y
abstract field ratio n n n
final field ratio n n n
private field ratio n n n
protected field ratio n n Y
public field ratio n n n
static field ratio n Y n
transient field ratio n n n
volatile field ratio n n n
PAD n n Y
Number of constructors n n Y
Constructor without arguments n n Y
(default constructor) ratio

Average number of n n Y
arguments per constructor

private constructor ratio n n n
protected constructor ratio n n n
public constructor ratio n n n
Total number of methods n n n
SCCp Y Y Y
SCCr n n n
Average number of arguments Y n n
per method

abstract method ratio n n n
final method ratio n n n
native method ratio n n n
private method ratio n n n
protected method ratio n n Y
public method ratio n Y n
static method ratio n n Y
strictfp method ratio n n n
synchronized method ratio n n Y
PAP n Y n

(c) archive file constituent

Metric M A B T
Number of files n n Y

Class file ratio n Y n

Number of icons n n Y

Number of classes n n Y

Number of root classes n n n

Average depth of class hierarchy (DIT) Y Y Y

Abstract class ratio Y n n

final class ratio n n Y

Interface ratio n n n

private class ratio n n Y

protected class ratio n n Y

public class ratio n n n

static member class ratio n n n

synchronized class ratio n n n

Overall number of fields n n Y

Average number of fields per class n n n

Overall RCO n n Y

Overall RCS n n Y

Overall abstract field ratio n n n

Overall final field ratio n Y n

Overall private field ratio Y Y n

Overall protected field ratio n n n

Overall public field ratio n Y n

Overall static field ratio n Y n

Overall transient field ratio n n n

Overall volatile field ratio n n n

Overall PAD n n n

Overall number of constructors n n Y

Average number of constructors per class n Y n

Overall constructor without arguments n Y n

(default constructor) ratio

Overall average number of Y Y n

arguments per constructor

Overall private constructor ratio n n n

Overall protected constructor ratio n n Y

Overall public constructor ratio n n n

Overall number of methods n Y n

Average number of methods per class n n n

Overall SCCp n n Y

Overall SCCr n n n

Overall average number of n Y n

arguments per method

Overall abstract method ratio n n n

Overall final method ratio n n n

Overall native method ratio n n n

Overall private method ratio Y n n

Overall protected method ratio n Y n

Overall public method ratio Y Y n

Overall static method ratio n Y n

Overall strictfp method ratio n n n

Overall synchronized method ratio n n n

Overall PAP Y Y n

Overall bean field ratio n n Y

Overall bean method ratio n n Y

A Metrics Suite for Measuring Quality Characteristics 51

was judged to affect the JARS score and was selected as a metric constituting
the suite of metrics. Tests were performed for each metric M according to the
following procedure.

1. With regard to the distribution of the measured value of M in each group,
we tested for normality at a critical probability of 5%. The test results
of group A and group B are respectively shown in columns A and B of
Table 1. Y indicates that the results were normal, and n indicates that the
results were not normal.

2. We tested the differences in the distributions of the measured values in both
groups. When both groups were found to be normal, we used Welch’s t-
test[14] to check whether or not both groups had the same population mean.
In other cases, we used the Mann-Whitney U-test[14] to check whether or not
the median values of both population distributions were the same. These test
results are shown in the T column of Table 1. Y indicates that the distributions
were found to be different; i.e. there is a possibility to classify each bean into
two groups by using the target metric.

3.3 Construction of Quality Metrics Suite

As a result of these tests, we found differences in the distributions of the mea-
sured values between the two groups for 29 metrics. Below, we will consider the
association of these measurement test results with quality characteristics in the
ISO9126 quality model[7]1.
· Number of events: Figure 2(a) shows a box-and-whisker plot of the measure-
ment results. This box-and-whisker plot shows the range of the measured values
together with the 25%/75% quantiles and the median value for group A (JARS
score = 1; left side) and group B (JARS score < 1; right side). The measured
values tended to be higher in group A. It seems that beans with a large number
of events have sufficient necessary functions and a higher level of suitability.
· Number of methods: According to Fig. 3(a), there tended to be more methods
in group A. Beans with a greater number of methods are able to fully perform
the required operations and have a greater level of suitability.
· Number of fields: According to Fig. 3(b), the number of fields tends to be
smaller in group A. This is thought to be because when using a bean in which
the number of fields has been suppressed, the user is unaware of the unnecessary
fields, resulting n greater understandability.
· Ratio of protected fields: No differences were observed in the distributions of
measured values relating to fields with other types of visibility (private/public),
so it appears that field visibility does not affect a bean’s quality. This metric
was therefore excluded from the suite.
· Ratio of protected methods: No differences were observed in the distribu-
tions of measured values relating to methods with other types of visibility (pri-
vate/public), so it appears that method visibility does not affect a bean’s quality.
This metric was therefore excluded from the suite.
1 Although several problems such as ambiguity have been indicated for the ISO9126

model[15] it can be a good starting point to explore related quality characteristics.

52 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

Fig. 2. Number of events (p-value of the null hypothesis=0.0007)

(a) (b)

Fig. 3. (a) Number of methods (0.0068) (a) Number of fields (0.0008)

· RCO and RCS: According to Fig. 4(a) and (b), both of these measured values
tended to be smaller in group A. By suppressing the number of properties that
can be got/set, it is possible to reduce access as properties to more fields than are
necessary, which is thought to result in a high level of maturity. Also, since the
user is not bothered with unnecessary fields when using the bean, it is though
that the understandability is high.
· Overall RCO and overall RCS: According to Fig. 5(a) and (b), both of these
measured values tended to be smaller in group A. Unlike the bean RCO/RCS
values, the overall RCO/RCS values are thought to represent the internal ma-
turity and stability of a bean.
· PAD: According to Fig. 6(a), this measured value tended to be smaller in group
A. In a bean where this measured value is small, there are few fields that can
be operated on without using property access methods, so it is thought that the
maturity and changeability are high.
· Number of constructors: According to Fig. 6(b), this measured value tended to
be larger in group A. When there is a large number of constructors, it is possible
to select a suitable constructor when the class is instantiated, so it is thought
that the suitability and testability are high.
· Default constructor ratio: This measured value tended to be smaller in group
A. However, since all beans must by definition have a default constructor, this

A Metrics Suite for Measuring Quality Characteristics 53

(a) (b)

Fig. 4. (a) RCO (0.0671) (b) RCS (0.1096)

(a) (b)

Fig. 5. (a) Overall RCO (0.0061) (b) Overall RCS (0.0071)

(a) (b)

Fig. 6. (a) PAD (0.0042) (b) Number of constructors (0.0031)

metric exhibited the same tendency as the number of constructors. Accordingly,
this metric is redundant and is excluded from the suite.
· Average number of arguments per constructor: This measured value tended
to be larger in group A. However, since all beans must by definition have a
void constructor, this metric exhibited the same tendency as the number of
constructors. Accordingly, this metric is excluded from the suite.

54 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

(a) (b)

Fig. 7. (a) SCCp (0.0049) (b) Overall SCCp (0.0004)

(a) (b)

Fig. 8. (a) Static method ratio (0.0857) (b) Synchronized method ratio (0.0083)

· SCCp and overall SCCp: According to Fig. 7(a) and (b), the measured values
for both of these metrics tended to be smaller in group A (where there is a higher
proportion of methods with no arguments). It is thought that the understand-
ability and analyzability are high because less information has to be prepared
at the user side when the methods are used. Here, the overall SCCp differs from
the SCCp of individual beans in that there is no redundancy because it relates
to the handling of methods inside the bean.
· static method ratio: According to Fig. 8(a), the measured values tended to be
smaller in group A. When there are few static methods, the possibility of being
operated from various locations without instantiating a bean is reduced, so it is
thought that that the analyzability is high.
· Synchronized method ratio: According to Fig. 8(b), this measured value tended
to be smaller in group A. When there are few synchronized methods, it is thought
that the target bean is set up so that it can be used either in multi-thread or
single-thread environments, thus resulting in high analyzability.
· Number of files: According to Fig. 9(a), this measured value tended to be larger
in group A. However, since the measured value of the number of files is more or
less proportionally related to the number of classes, it is thought that the number

A Metrics Suite for Measuring Quality Characteristics 55

(a) (b)

Fig. 9. (a) Number of files (0.0005) (b) Number of icons (0.0641)

(a) (b)

Fig. 10. (a) Number of classes (0.0009) (b) Average depth of class hierarchy (0.0009)

of classes is a more suitable indicator of the scale of a bean. Accordingly, the
number of files is excluded from the suite.
· Number of icons: According to Fig. 9(b), this measured value tended to be
larger in group A. Icons are information used to represent beans when they are
selected in the development environment, and the magnitude of this measured
value is thought to reflect the degree of operability.
· Number of classes: According to Fig. 10(a), the number of classes tended to be
larger in group A. Looking at the results for other metrics, there is no difference
between the distributions of group A and group B in terms of the average number
of fields per class and the average number of methods per class, so it is thought
that beans with a large number of classes in the archive are not dependent on
class sets that are fragmented any more than is necessary, but that they purely
express more functions. Therefore, it is thought that beans with more classes
have higher suitability.
· Average depth of class hierarchy (DIT[16]): According to Fig. 10(b), this mea-
sured value tended to be larger in group A. In object-oriented design, the reuse of
fields/methods and the embodiment of variable parts are realized by differential
definitions based on inheritance. Therefore, it is thought that the analyzability

56 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

(a) (b)

Fig. 11. (a) Final class ratio (0.0585) (b) Private class ratio (0.0074)

(a) (b)

Fig. 12. (a) Protected class ratio (0.2509) (b) Overall number of fields (0.0016)

and changeability both increase with increasing depth of the inheritance hierar-
chy in the class set that constitutes the archive.
· final/private/protected class ratio: According to Fig. 11(a) and (b) and
Fig. 12(a), all three of these metrics tended to be smaller in group A. Since these
measured values are not encapsulated in a bean any more than is necessary, it
is thought that the testability is high.
· Overall number of fields: According to Fig. 12(b), this measured value tended
to be larger in group A. Since there is no difference between the two groups in
terms of the distribution of the average number of fields per class, it is thought
that this measured value increases as the number of classes increases, regardless
of how high the quality is. Therefore, this metric is excluded from the suite
because it represents the same characteristic as the number of classes.
· Overall number of constructors: This measured value tended to be larger in
group A. Since there was no difference between the two groups in terms of the
distribution of the average number of constructors per class, it is thought that
this measured value increases as the number of classes increases, regardless of
how high the quality is. Therefore, this metric is excluded from the suite because
it represents the same characteristic as the number of classes.
· Overall protected constructor ratio: No differences were observed in the distri-
butions of measured values relating to constructors with other types of visibility
(private/public), so it appears that the visibility of constructors in the class set

A Metrics Suite for Measuring Quality Characteristics 57

(a) (b)

Fig. 13. (a) Overall bean field ratio (0.0000) (b) Overall bean method ratio (0.0000)

constituting an archive does not affect a bean’s quality. This metric is therefore
excluded from the suite.
· Overall bean field ratio/bean method ratio: According to Fig. 13(a) and (b),
this measured value tended to be smaller in group A for both of these metrics. In
beans where these measured values are small, the realization of required functions
is transferred to (fields/method in) other dependent class sets while suppressing
information that is published externally, so it is thought that the maturity and
analyzability are high.

Based on these findings, we selected 21 metrics to be incorporated in the qual-
ity metrics suite. According to our consideration of the results, Figure 14 shows
a framework for component quality metrics (i.e. the suite of quality metrics) in
which these metrics are associated with the quality characteristics mentioned in
the ISO9126 quality model. In Fig. 14, metrics that are thought to be effective
for measuring the quality of beans are connected by lines to the quality sub-
characteristics that are closely related to these metrics in order to show their
linked relationships. Of the 21 metrics, 14 metrics obtained results relating to
maintainability.

Using this framework, it is possible to make detailed quality measurements
focused on beans, and to select metrics that efficiently and comprehensively take
account of the overall bean quality.

4 Verifying the Validity of the Metrics Suite

4.1 Standard Assessment Criteria

As a threshold value for deciding whether a target bean belongs in either group
A or group B of the previous section, we obtained standard assessment crite-
ria for each basic metric. Using these standard assessment criteria, we verified
whether or not it is possible to judge the quality of a bean. If XM,a and XM,b

are the average values of metric M in group A and group B respectively, then
the standard assessment criterion EM is defined as follows:

58 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

Functionality Number of classes

Quality characteristic Sub characteristic

Suitability

Metric

Number of events

Number of methods

Maintainability Testability

Reliability Maturity

Operability

Usability Understandability

Analysability

Changeability

Stability

Number of constructors

final class ratio

private class ratio

protected class ratio

static method ratio

synchronized method ratio

Average depth of class hierarchy

Overall bean field ratio

Overall bean method ratio

PAD

Overall RCO

Overall RCS

RCO

RCS

Number of fields

SCCp

Overall SCCp

Number of icons

Fig. 14. A framework of component quality metrics

EM =

{
More than or equals to XM,a+XM,b

2
(if XM,a > XM,b)

Less than or equals to XM,a+XM,b

2
(Otherwise)

When a measured value corresponds to a standard assessment criterion, the
corresponding quality characteristics and/or sub-characteristics of the bean are
high. For each of the 21 metrics constituting the proposed metrics suite,
Table 2 lists the proportion of beans in group A that correspond to the standard
assessment criterion (conformity RA) and the proportion of beans in group B
that do NOT correspond to the standard assessment criterion (conformity RB).
If both of RA and RB are close to 100%, the target standard assessment criterion
is almost perfectly useful to classify each bean into two groups.

As both degrees of conformity become higher, it shows that the metric is more
effective at correctly measuring the quality of the target bean and classifying it
into the correct group. According to Table 2, the conformity values are both 50%
or more for nine metrics such as SCCp, which shows that these nine metrics are
particularly effective at quality measurements. Also, since the overall average

A Metrics Suite for Measuring Quality Characteristics 59

Table 2. Standard assessment criteria and conformity

Metric M EM RA RB

Number of events ≥ 11 77% 57%
Number of methods ≥ 248 60% 61%
Number of icons ≥ 4 99% 26%
Number of classes ≥ 31 45% 83%
Average depth of class hierarchy ≥ 2.6 69% 57%
Final class ratio ≤ 3% 96% 26%
Private class ratio ≤ 6% 79% 30%
Protected class ratio ≤ 0.8% 98% 17%
Overall RCO ≤ 4% 78% 48%
Overall RCS ≤ 5% 78% 39%
Overall SCCp ≤ 42% 91% 52%
Number of fields ≤ 18 76% 48%
RCO ≤ 9% 80% 39%
RCS ≤ 9% 76% 43%
PAD ≤ 25% 74% 52%
Number of constructors ≥ 2% 63% 78%
SCCp ≥ 66% 51% 61%
Static method ratio ≤ 1.5% 84% 35%
Synchronized method ratio ≤ 4% 93% 35%
Overall bean field ratio ≤ 22% 91% 57%
Overall bean method ratio ≤ 27% 87% 52%

Average – 74% 50%

values for both types of conformity are equal to or over 50%, it is highly likely
that the quality of a bean can be suitably assessed by using the combination of
multiple metrics constituting the proposed metrics suite.

4.2 Comparison with Conventional Metrics

Metrics suitable for beans in situations where the source code is unavailable
include the usability metrics of Hirayama et al.[6], the testability metrics sum-
marized by R. Binder[12], and the object-oriented metrics of Chidamber and
Kemerer[16]. Of these conventional metrics, our proposed metrics suite includes
all the metrics that can be applied to beans. The contribution of this paper
is that it proposes a systematic framework for component quality metrics that
includes these existing metrics and newly defined metrics, and that it has been
verified using qualitative assessment information.

Metrics for measuring the complexity and reusability of beans have been pro-
posed by Cho et al.[3], but these metrics included the need for analysis of the
bean source code. Wang also proposes metrics for measuring the reusability of
JavaBeans components[4]; however the metrics indicate the actual reuse rates of
the reused component in a component library and cannot be used in a situation
where sufficient time has not passed since the target component was developed.

60 H. Washizaki, H. Hiraguchi, and Y. Fukazawa

In contrast, our metrics suite can be used in two situations where the source
codes are unavailable and where the components were newly developed.

5 Conclusion and Future Work

We have proposed metrics for evaluating the overall quality of individual Jav-
aBeans components in a black-box fashion, and we have empirically confirmed
that they are effective based on a correlation with the resulting qualitative as-
sessment information.

In the future, by carrying out manual verification trials, we plan to make a
detailed verification of the effectiveness of these proposed metrics, and of the
validity of the association between each metric and the quality characteristics.
Several metrics that constitute the proposed metrics suite can also be applied
to ordinary Java classes that are not beans. We also plan to investigate the
possibility of applying them to other classes besides beans.

References

1. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, Reading (1999)

2. Hopkins, J.: Component Primer. Communications of the ACM 43(10) (2000)
3. Cho, E., Kim, M., Kim, S.: Component Metrics to Measure Component Quality.

In: Proc. 8th Asia-Pacific Software Engineering Conference (2001)
4. Wand, A.J.A.: Reuse Metrics and Assessment in Component-Based Development.

In: Proc. 6th IASTED International Conference on Software Engineering and Ap-
plications (2002)

5. Washizaki, H., et al.: A Metrics Suite for Measuring Reusability of Software Com-
ponents. In: Proc. 9th IEEE International Symposium on Software Metrics (2003)

6. Hirayama, M., Sato, M.: Usability evaluation of software components. IPSJ Jour-
nal 45(6) (2004)

7. ISO/IEC 9126 International Standard: Quality Characteristics and Guidelines for
Their Use (1991)

8. Suzuki, M., Maruyama, K., Aoki, T., Washizaki, H., Aoyama, M.: A Research
Study on Realization of Componentware Technology, Research Institute of Software
Engineering (2003)

9. Aoyama, M., et al.: Software Commerce Broker over the Internet. In: Proc. 22nd
IEEE Annual International Computer Software and Applications Conference (1998)

10. Hamilton, G.: JavaBeans 1.01 Specification, Sun Microsystems (1997)
11. Sedigh-Ali, S., et al.: Software Engineering Metrics for COTS-Based Systems, Com-

puter, vol. 34(5) (2001)
12. Binder, R.: Design for Testability in Object-Oriented Systems. Communications of

the ACM 37(9) (1994)
13. JARS.COM: Java Applet Rating Service, http://www.jars.com/
14. Glass, G.V., Hopkins, K.D.: Statistical Methods in Education and Psychology.

Allyn & Bacon, MA (1996)
15. Al-Kilidar, H., et al.: The use and usefulness of the ISO/IEC 9126 quality standard.

In: Proc. 4th International Symposium on Empirical Software Engineering (2005)
16. Chidamber, S., Kemerer, C.: A Metrics Suite for Object Oriented Design. IEEE

Transactions on Software Engineering 20(6) (1994)

http://www.jars.com/

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 61–74, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Software Cost Estimation Inhibitors - A Case Study

Ana Magazinovic, Joakim Pernstål, and Peter Öhman

Chalmers, Computer Science and Engineering
SE – 421 96 Gothenburg, Sweden

{ana.magazinovic, pernstal, peter.ohman}@chalmers.se

Abstract. Software cost estimation errors are increasing in the automotive in-
dustry along with the number of software components in modern vehicles. As
the software cost estimation is an important and problematic part of project
planning there is a need of process improvement to decrease estimation errors.
However, to improve the process of cost estimation there is a need to explore
whether the perceived cost estimation problem is an estimation problem or if it
is a management problem. This paper focuses on inhibitors in the process of
software cost estimation in system development projects and reports the results
of a study carried out at a Swedish automotive company in order to gain an un-
derstanding for the factors that affect the cost estimation process.

Keywords: Cost Estimation, Case Study, Empirical Software Engineering,
Automotive Systems.

1 Introduction and Related Work

Cost estimation is an important part of the project planning process. The issue was
addressed by Lederer and Prasad [1] who found that the average importance rating
among the software managers and other professionals participating in their study was
highly important. Most software organizations find the cost estimation activity to be a
necessary part of project planning. According to Heemstra [2] 65% of the organiza-
tions estimate projects as a rule, and Lederer and Prasad [1] wrote that 87% of organi-
zations’ large projects are estimated.

Just as cost estimation is an important part of project planning, it is also considered
a problem. In their paper [3] Moores and Edwards report that 91% of the companies
in their study see cost estimation as a problem.

While the figures above are taken from studies concentrating on software industry
the amount of software in embedded vehicle systems is increasing and the automotive
industry is facing the same problems as the software industry. For the last 30 years the
share of electronics and software has grown exponentially in vehicles since the major
part of new innovations is realized with software and electronics. According to Grimm
[4] and Broy [5] up to 40% of production costs are spent on electronic components and
software in premium cars. Today's premium cars contain approximately 70 Electronic
Control Units (ECU) controlling infotainment, climate and speed, and new communica-
tion networks are added continuously. Further, the new software based systems tend to
become more complex which makes cost estimation even more difficult.

62 A. Magazinovic, J. Pernstål, and P. Öhman

With small profit margins in the automotive industry on the one hand and cost
overruns in the software industry [1, 6] on the other improved cost estimation process
in software development projects is needed to increase cost control. The factors that
affect the process of cost estimation need to be explored and understood before a cost
estimation method can be proposed and adjusted to the company.

From a research point of view [7], over 50% of the efforts made in the area of
Software Cost Estimation research is concentrated on examining the different meth-
ods used to estimate effort and cost of software development, such as expert judgment
[8, 9], algorithmic models [10] and estimation by analogy [11]. Much of the work has
been spent on developing own methods and on history based evolution. However,
there are exceptions that point to the need of research concerning organizational is-
sues such as problems created by management and politics. In Laderer and Prasad
paper [6] one of the conclusions is that political and management control issues
should be given more attention in cost estimation research, and Kitchenham writes in
her book [12] that before improving the estimation process, there is a need to explore
whether the problem is really an estimation problem and not a management problem.

The studies investigating the causes of cost estimation errors, such as the Phan et
al. study involving software professionals from 191 organizations [13], the van
Genuchten study involving project managers responsible for cost estimation in six
different projects [14], the Lederer and Prasad study with 112 software professionals
in different organizations [1, 6] and the Subramanian and Breslawski [15] study in-
volving project managers representing 45 different projects, are mainly based on a set
of predefined questions and are regretfully suffering from low response rates.

The purpose of this paper is to revisit the research question in order to explore
whether responses would be consistent using qualitative methodology. The results
will be compared to the results of the Lederer and Prasad study [1, 6], thus the re-
search question is designed to respond to the second part of the research question
presented in the Lederer and Prasad study [1, 6]: “What causes do actually predict
inaccurate cost estimates?”:

RQ: What underlying factors affect the process of software cost
estimation in system development projects?

To answer the research question an exploratory case study was designed and car-
ried out at Volvo Car Corporation (VCC). Eleven interviews were conducted involv-
ing both functional and project managers and other professionals in the Electrical and
Electronic Systems Engineering Unit at VCC.

2 Methodology

The qualitative study underlying this paper was conducted as an exploratory single
case study as the research question is of exploratory nature and the study focuses on
contemporary events, without any possibility to manipulate behavior directly, pre-
cisely and systematically.

According to Yin [16], six sources of evidence are most commonly used in case
studies, namely documentation, archival records, interviews, direct observations,
participant observations and physical events. The interviews were chosen as the pri-
mary source of evidence. Direct observation was provided by one of the researchers

 Software Cost Estimation Inhibitors - A Case Study 63

who spent a one-week field trip at the company, and participant observation was
added by the other researcher working at the company. However, the archival records
and documentation (time spent on projects, costs etc) were found to be insufficient for
triangulation of results due to unreliable time reports.

To increase the reliability of the results the investigator triangulation was per-
formed. The study was performed by a team of two researchers, present during data
collection and data analysis.

2.1 Case Selection

This study took place at the Electrical and Electronics Systems Engineering Unit at
Volvo Car Corporation (VCC). Volvo Car Corporation was sold to the Ford Motor
Company (FMC) by the Volvo Group in 1999 with FMC as a sole owner. Since then,
VCC has produced 450 000 units per year, where safety has been made their
trademark.

The selection of interviewees was made with the help of senior researchers with
knowledge of the VCC organization and of industry partners working at the company.
The selection criteria consisted of work experience, experience of the company, posi-
tion at the company, and familiarity with external factors affecting the process of cost
estimation such as contact with suppliers and the owner of VCC, FMC.

The matrix organization [17] of VCC needed to be considered due to budget divi-
sion between the functional and the project parts of the organization. The budget for
the functional part of the organization includes component costs; development costs
are included in the project budget.

The interviews were conducted during the late spring of 2007. Ten of the inter-
viewees had eight to 28 years of experience at VCC; one had worked at the company
for 13 months. The majority of the interviewees had been working at the company
since the time before FMC took over ownership. All had more than eight years of
work experience.

The interviewees were chosen such that they would reflect the organization. Nine
were part of the project organization, ranging from concept phase managers to devel-
opment managers and managers on high and low levels. Two of the interviewees were
chosen to represent the functional part of the organization.

2.2 Data Collection

Data were collected using semi-structured interviews as the main source of evidence.
Some observational and participatory input was provided by the research team con-
ducting the study. Both of the researchers were present during the interviews. One of
the researchers had the role of interviewer and listener, the other wrote down the
interview.

2.2.1 Collecting the Background Information
One of the researchers spent one week at the company in order to increase the under-
standing of the company structure, development processes, jargon and product. The
second researcher had eight years of experience in the company, working in the
manufacturing department.

64 A. Magazinovic, J. Pernstål, and P. Öhman

2.2.2 Interviews
The interviews held were semi-structured to allow the two-way communication
needed to perform this exploratory study. An interview guide was created and adapted
to the jargon at the company. It was reviewed by senior researchers to assure the qual-
ity of the contents of the questions and by industry representatives in order to assure
the understandability of the questions.

The interviewees received an introduction to the study in advance. Sample ques-
tions were included.

Six focus areas were developed and used during the interviews to answer the re-
search question:

1. Cost and time estimation process deals with the purpose of finding out how the
estimation work is done, whether any kind of methodology is used with any tem-
plates and process descriptions to be followed, whether the people involved in
producing estimates find the methodology, the templates and process descriptions
helpful, how the estimates are reported and to whom.

2. Factors affecting the individual estimates focuses on the work done by the indi-
vidual and factors that affect this work. The focus was on finding out whether
those who work with estimates discuss their estimates with anyone, how those
people affect the estimators’ decisions and whether there are other factors in-
volved than calculations made by interviewees or others.

3. People who have an influence on the estimates focuses on the groups dealing
with the estimates (if such groups exist). The purpose was to find out how the or-
ganizational structure affects the estimates, whether there are groups that pro-
duce/review the estimates or whether it is one-man job. If such groups exist the
focus was to be on exploring the group culture, communication and the priority
the estimates were given during their group meetings.

4. Usage of the estimates focuses on if and how the estimates are used, and if they
are considered to be useful.

5. Modification of the estimates focuses on understanding whether and how the
estimates are updated, whether there are formal occasions for doing this and, if
so, how the estimators perceived those meetings.

6. Efficiency of the estimation work focuses on the time that the estimation work
takes versus the usefulness of the final estimates, including their correctness.

The interviews were conducted by two researchers to increase the amount of data
collected as suggested by Anda and Hove [18]. One had the role of interviewer and
listener, and the other wrote down the interview. As issues related to economy are
considered to be sensitive [18], the interviews were not recorded. The most sensitive
questions were asked late in the interview. The focus was not on the exact figures,
taking the edge off the most sensitive questions.

Directly after the interviews, the data collected were reviewed and the interviews
were summarized in order to gain as much useful data as possible.

2.3 Data Analysis

To increase the validity of the results the data were analyzed separately by the two
researchers. Each researcher made an independent analysis of the data collected. The

 Software Cost Estimation Inhibitors - A Case Study 65

independent results were compared to inspect the validity of the results. The validity
was found to be sufficient. A list was agreed upon that contained 14 issues.

The results were discussed and reviewed by senior researchers to verify the quality
of the work done and its results. A group of industry representatives reviewed the list
to verify that the issues were not misunderstood. All the steps were documented to
ensure traceability.

3 Analysis

This chapter is outlined as follows. First the results of the underlying case study are
presented. The issue abstraction level was chosen to correspond to the abstraction
level of the issues reported in the compared study in order to make the second part of
the analysis possible, namely the validation of the results found in the Lederer and
Prasad study [6].

The issues found in the study underlying this paper not present in the Lederer and
Prasad study [6] are also compared to other literature in the last part of the analysis.

3.1 Analysis of the VCC Results

The interviewees, who all belong to the Electrical and Electronics Systems Engineer-
ing Unit, state that the understanding of how software is developed is inadequate in
the other parts of the company, leading to many of the issues mentioned below. Volvo
Car Corporation (VCC) is a company that has, like the rest of automotive industry,
relied mainly on mechanical components for many years. The development process at
the company has not yet been fully adapted to the increasing development of software
and electronic components.

The interviewees stated that they use expert judgment approach and to some extent
also analogy to past projects. Both top-down and bottom-up [19] estimates are made
in order to get the most realistic cost estimate possible when making estimates for
new products.

The price per hour for a developer is fixed, regardless of which developer does the
work. The price includes overhead costs and is calculated annually for all of VCC.
The estimated costs are calculated by multiplying estimated effort (in hours) and the
developer cost (per hour).

The list of issues identified contains 14 issues:

1. There is an error in tracking the actual project costs leading to difficulties when
comparing them to the estimated costs. All the development time spent on a pro-
ject is not reported by the developers, and is sometimes reported as being done on
another project.

2. The project organization does not exclusively own the relationship to the suppli-
ers leading to conflict of interest. The interviewees state that, because the project
and functional parts of organization have separate budgets including development
costs in the project budget and component costs in the functional budget, there is
a lack of cooperation between them, making estimation work more difficult.

3. The satisfaction with time spent on estimates is low among the interviewees.
Some of them find the time spent on estimates to be too low, and wish that more

66 A. Magazinovic, J. Pernstål, and P. Öhman

time could be spent on estimates in order to make them more accurate and de-
tailed. Others believe that the estimates are a waste of time, time that should be
spent on technical tasks instead.

4. Management estimation goals are not taken seriously. The estimation errors that
the interviewees state are considered acceptable do not correspond to manage-
ment estimation accuracy goals.

5. Dependences of other projects are not taken into account when estimating costs.
The staff resources might be moved to other, more critical projects to meet the
deadlines.

6. Unclear requirements make it difficult to know what is to be developed and es-
timated. Especially producing early estimates for new technology is found to be
difficult.

7. Changes in requirements are allowed late in the development process. These are
difficult to foresee, making estimation work more difficult.

8. The padding is removed from the estimates when detected by management. This
is compensated by padding added at a higher level in the organization hierarchy.

9. Unrealistic estimates are presented at the project milestones in order for the
project to continue. There is a belief that the development work must be done in
any case and the estimates presented are sometimes too optimistic.

10. The estimates are affected by the budget and management goals, such as cost
savings and efficiency demands, leading sometimes to too optimistic estimates.

11. Different company cultures and estimation techniques lead to difficulties when
communicating estimates to FMC representatives. The cooperation between the
companies is aggravated by different cultures in terms of development, estima-
tion methodology, management and politics.

12. There is a lack of competence in estimating costs for development done by sup-
pliers. The interviewees also express frustration over lack of competence when
reviewing prices proposed by suppliers, as well as when estimating suppliers’
abilities to finalize the project successfully. The company has a team that revises
cost estimates for hardware components developed by suppliers. However, no
such service is provided for software development, making it difficult to estimate
the future costs of development work done by the suppliers as well as understand
whether prices suggested by suppliers are reasonable or not.

13. There is no common template for estimates. Opinions about what template there
is for the purpose of cost estimation differ, from no template at all to different
kinds of documents that could be used to provide support while making esti-
mates.

14. There is a lack of estimation competence and the existing estimation competence
is not used properly. The interviewees state that there is in-house development of
software components and that it would be preferable to use this competence when
making estimates.

3.2 Validation of Lederer and Prasad Top Issues [6]

The Lederer and Prasad study [6] was conducted in the form of a questionnaire, sent
out to 400 software professionals and answered by 112, resulting in 16 top factors
correlated to estimation inaccuracy.

 Software Cost Estimation Inhibitors - A Case Study 67

The issues found in the study underlying this paper were categorized in the same
manner as in the Lederer and Prasad paper [6], focusing on four categories: Method-
ology issues that affect the tuning of the estimate, management issues dealing with
project control, user communication issues and politic issues.

Table 1. User communication issues compared to issues found buy Lederer and Prasad [6]

VCC issues Lederer and Prasad issues [6]
- L&P 17. Users’ lack of understanding of their own

requirements.
VCC 7. Changes in requirements
are allowed late in the development
process.

L&P 14. Frequent request for changes by users

- L&P 16. Users’ lack of data processing
understanding

VCC 6. Unclear requirements. L&P 10. Poor or imprecise problem definition

Two of the Lederer and Prasad user communication issues [6], found in table 1,
were validated by the issues found in this study, two could not be validated.

The interviewees participating in this study mention problems in estimation proc-
ess due to requests for change late in the development process (VCC 7) and unclear
requirements (VCC 7) increasing the uncertainty of the estimate.

Table 2. Methodology issues compared to issues found by Lederer and Prasad [6]

VCC issues Lederer and Prasad issues [6]
VCC 13. There is no common template for
estimates.

L&P 3. Lack of adequate methodology or
guidelines for estimating

VCC 1. There is an error in tracking the pro-
ject costs leading to difficulties while compar-
ing them to the estimated costs.

L&P 12. Inability to tell where past estimates
failed

- L&P 5. Lack of setting and review of standard

durations for use in estimating
VCC 14. There is a lack of estimation compe-
tence and the existing estimation competence
is not used properly.

L&P 13. Insufficient analysis when developing
the estimate

VCC 2. The project organization does not
exclusively own the relationship to the sup-
pliers leading to conflict of interest.

L&P 4. Lack of coordination of systems devel-
opment, technical services, operations, data
administration etc. functions during the devel-
opment.

Among the methodology issues found by Lederer and Prasad [6] (table 2) four are
validated by the issues found in this study. One of the issues could not be validated,
namely L&P 5 Lack of setting and review of standard durations for use in estimating.

VCC1, There is an error in tracking the project costs leading to difficulties while
comparing them to the estimated costs, leads to inability to learn from past mistakes.
L&P 12, Inability to tell where past estimates failed, addresses this issue as well.

68 A. Magazinovic, J. Pernstål, and P. Öhman

VCC 13 , There is no common template for estimates, is compared to L&P 3, Lack
of adequate methodology or guidelines for estimating [6]. The problem, as perceived
by the interviewees in the study underlying this paper, is usage of different, more or
less official templates, if any. There seems to be no common template, or if there is
such a template, there are difficulties with communicating it to the employees.

The interviewees also state that there is a lack of estimation competence and the
existing competence is not used properly (VCC 14) which corresponds to L&P 13,
Insufficient analysis when developing the estimate.

VCC 2, The project organization does not exclusively own the relationship to the
suppliers leading to conflict of interest corresponds to some extent to issue 4, found
by Lederer and Prasad [6], Lack of coordination of systems development, technical
services, operations, data administration etc. functions during the development.

Table 3. Politic issues compared to issues found by Lederer and Prasad [6]

VCC issues Lederer and Prasad issues [6]
VCC 10. The estimates are affected by the
budget and management goals.

(VCC 9. Unrealistic estimates are presented at
the project milestones, in order for the project
to continue.)

L&P 22. Pressures from managers, users or
others to increase or reduce the estimate

- L&P 21. Reduction of project scope or quality to
stay within estimate, resulting in extra work later

VCC 8. The padding is removed from the
estimates when detected by management.

L&P 20. Removal of padding from estimate by
manager

- L&P 19. Red tape (paperwork)

VCC 11. Different company cultures and
estimation techniques lead to difficulties
when communicating estimates to the FMC
representatives.

-

VCC 12. There is a lack of competence in
estimating costs for development done by
suppliers.

-

Three of the politic issues (table 3) found by Lederer and Prasad [6] were validated
by the issues found in this study, L&P 19, Red tape, could not be validated.

VCC 10, The estimates are affected by the budget and management goals corre-
sponds to L&P 22, Pressures from managers, users or others to increase or reduce
the estimate. This, together with removal of padding (VCC 8, L&P 20) leaves less
room for risk management.

Two new issues emerged in this study that were not mentioned by Lederer and
Prasad [6], namely VCC 11, Different company cultures and estimation techniques
lead to difficulties when communicating estimates to the FMC representatives and
VCC 12, There is a lack of competence in estimating costs for development done by
suppliers.

 Software Cost Estimation Inhibitors - A Case Study 69

Table 4. Management issues compared to issues found by Lederer and Prasad [6]

VCC issues Lederer and Prasad issues [6]
VCC 1. There is an error in tracking the
project costs leading to difficulties
while comparing them to the estimated
costs.

L&P 18.Performance reviews don’t consider whether
estimates were met
L&P 8. Lack of project control comparing estimates
and actual performance

- L&P 24. Lack of careful examination of the estimate
by Information Systems Department management

VCC 3. The satisfaction with time spent
on estimates is low.

-

VCC 4. Management estimation goals
are not taken seriously.

-

VCC 5. Dependences of other projects
are not taken into account when esti-
mating costs.

-

Among the Lederer and Prasad issues [6] in the management category presented in
table 4, two are validated by the results of this study, L&P 24, Lack of careful exami-
nation of the estimate by Information Systems Department management, could not be
validated.

VCC 1, There is an error in tracking the project costs leading to difficulties while
comparing them to the estimated costs, mentioned also among the issues in table 2,
leads to L&P 8, Lack of project control comparing estimates and actual performance
as well as the inability to consider whether estimates were met (L&P 18).

Three new issues emerged in this study that did not correspond to the issues found
by Lederer and Prasad [6], namely VCC 3, The satisfaction with time spent on esti-
mates is low, and VCC 4, Management estimation goals are not taken seriously,
VCC 5, Dependences of other projects are not taken into account when estimating
costs.

3.3 Comparison to Other Literature

Five of the issues found in this study are not confirmed by the issues found by
Lederer and Prasad [6], se table 5. In order to investigate the validity of those issues,
the comparison to other literature was made.

VCC 3, The satisfaction with time spent on estimates is low, VCC 4, Management
estimation goals are not taken seriously, and VCC 5, Dependences of other projects
are not taken into account when estimating costs addresses the problems described in
Van Genuchten paper [14]: No commitment by personnel to the plan and Priority
shifts.

The problematic relationship between vendor and supplier, mentioned in VCC 12,
There is a lack of competence in assessing suppliers’ estimates and resources, has
been discussed by many researchers, Bruce et al [20] describe in their paper both risks
and negative experiences associated with such collaborations. They mention more
costly and complicated development, loss of control ownership and differing aims and
objectives leading to conflicts.

70 A. Magazinovic, J. Pernstål, and P. Öhman

VCC 11, Different company cultures and estimation techniques lead to difficulties
when communicating estimates to the FMC representatives, could not be confirmed
by other software engineering literature.

Table 5. VCC issues not reported in the Lederer and Prasad paper [6]

VCC 3: The satisfaction with time spent on estimates is low.
VCC 4: Management estimation goals are not taken seriously.
VCC 5: Dependences of other projects are not taken into account when estimating
costs.
VCC 11: Different company cultures and estimation techniques lead to difficulties
when communicating estimates to the FMC representatives.
VCC 12: There is a lack of competence in assessing suppliers’ estimates and re-
sources.

4 Discussion of Results and Validity

The objective of the study reported here was to elicit the factors that affect the process
of software cost estimation in system development projects. The study was performed
at Volvo Car Corporation.

The paper focuses on the factors that affect the process of cost estimation
negatively. The analysis was divided in tree parts, analysis of the results of the study
underlying this paper, validation of the results of a quantitative study [1, 6] with a
similar purpose and comparison of the issues found in this study that were not present
among the issues in the comparing study [1, 6] to other software engineering
literature.

4.1 Discussion of Results

The results of this study were used for validation of top 16 issues reported in the
Lederer and Prasad paper [6] . 62,5% of the Lederer and Prasad issues [6] were vali-
dated by the results of the study underlying this paper.

Five issues were found in this study were nor reported by Lederer and Prasad [6].
A comparison of those issues to other software engineering literature was made.

Looking at the methodology issues it can be seen that the prerequisites for success-
fully using the methodologies mentioned by the interviewees in the study underlying
this paper are insufficient. Experts should be used to make successful expert judg-
ment. This is contradicted by the VCC 14, There is a lack of estimation competence
and the existing estimation competence is not used properly. To make analogies to
earlier projects, those projects must be documented, both as concerns the results and
estimates. However, VCC 1 states that There is an error in tracking the project costs
leading to difficulties when comparing them to the estimated costs. Not being able to
compare estimates with the results makes it impossible to understand which (if any)
parts of the estimates were too optimistic or pessimistic. Inadequate time reports by
the developers and not reporting which projects they spend time on make it impossi-
ble to know how much each project actually costs.

 Software Cost Estimation Inhibitors - A Case Study 71

Delays in a certain project might lead to changes in plans for other ongoing or
forthcoming projects (VCC 5, Dependences of other projects are not taken into ac-
count when estimating costs). The delays can be more or less permanent, making the
comparison of early estimates and results even harder.

The interviewees state that the development work must be done properly, no matter
what the situation, and that the start of production must not be delayed. This attitude,
together with management goals for cost savings and greater efficiency, could lead to
producing optimistic estimates in order to be able to continue the project. The man-
agement goals for increased effectiveness and savings are also believed to lead to
unrealistic estimates (se VCC 4, Management estimation goals are not taken seriously
and VCC 10, The estimates are affected by the budget and management goals)

To make estimates as accurate as possible including suppliers’ prices, the func-
tional and project parts of the organization must be able to cooperate. However,
cooperation is complicated by their budgets being separated which might lead to
competition instead of cooperation (VCC 2, The project organization does not exclu-
sively own the relationship to the suppliers leading to conflict of interest).

Among the politic issues (table 3) there is a connection that points toward a sense
of frustration over the way the estimates are handled. The management and budget
goals (VCC 10, The estimates are affected by the budget and management goals) lead
to reducing the estimates and removing padding (VCC 8, The padding is removed
from the estimates when detected by management). There also seems to be frustration
over unsatisfactory communication with suppliers and FMC representatives.

VCC 5, Unclear requirements, (user communication issues, table 1) is an impor-
tant issue in terms of estimates. Not knowing at an early stage what is to be developed
is tantamount to not knowing what is to be estimated and paid for. Allowing changes
in requirements late in the development process (VCC 7) adds to the uncertainty in
early estimates.

The differences between the results reported by Lederer and Prasad [6] and the re-
sults reported in this paper could depend on several reasons. VCC is a company with
a long history of primarily mechanical development with development processes not
fully adapted to increasing amount of software components. The participants in the
Lederer and Prasad are spread in several different industries.

Also, issues VCC 5, Dependences of other projects are not taken into account
when estimating costs, VCC 11, Different company cultures and estimation tech-
niques lead to difficulties when communicating estimates to the FMC representatives
and VCC 12, There is a lack of competence in assessing suppliers’ estimates and
resources point at the fact that estimation of effort in a project can not be viewed as
an isolated event in a multi project environment with stakeholders outside the organi-
zation in question.

4.2 Validity Discussion

To increase construct validity investigator triangulation (two evaluators) was per-
formed. A team of two researchers was present during the data collection and data
analysis. During data analysis each of the researchers performed the analysis inde-
pendently. The independent results were compared and merged to a list of 14 issues.

72 A. Magazinovic, J. Pernstål, and P. Öhman

One of the researchers has been working at the VCC’s unit of Manufacturing En-
gineering for 8 years. However, the unit of Manufacturing Engineering has not been a
part of the study; the study was performed at the Electronics development department.

The chain of evidence was established and maintained from the case study
questions and protocol to summarized interviews and the study report. The key infor-
mants, in this case both senior researchers and representatives from the industry fol-
lowed the study and were invited to review the results before publication. The reports
were written in a way that did not disclose the identity of the participants in the study.

According to Yin [16], the internal validity is an important issue mainly in ex-
planatory studies. Internal validity is increased by establishing a causal relationship
where certain conditions lead to other conditions. In the study presented here the
problem of interviewee not feeling comfortable in talking about the sensitive issues
such as presenting unrealistic estimates could be discussed. To increase interviewees’
trust the interviews were not recorded and interviewees were guarantied anonymity.

To increase the external validity of this case study the results of the similar studies
were used to triangulate the results. Only one of the issues found in this study was not
confirmed by other software engineering literature. Similarities found lead to believe
that the generalization might be possible.

To increase reliability it must be ensured that the study can be repeated, with the
same results, according to Yin [16]. This case study was carefully documented in
order to make it possible for it to be replicated later on. All the data have been stored,
linking the case study protocol with interview summaries, citations and the results
database.

5 Summary

The purpose of the study that this paper is based on was to explore whether there are
any underlying factors that affect the process of software cost estimation in systems
development projects. The case study was conducted at Volvo Car Corporation. 14
inhibitors were reported in this paper and used to validate the results of a quantitative
study with a similar objective [6]. 62,5% of the issues found in the qualitative study
were validated by this study, the rest could not be confirmed.

The findings of the study underlying this paper were compared to other existing
software engineering literature in order to triangulate the results. Only one of the
issues could not be confirmed.

Future Work

To improve the process of cost and effort estimation, the organizational issues should
be explored further. In this study the organizational issues were divided among the
management, politic and to some extent user communication and methodological
issues in order to mirror the Lederer and Prasad study [6], however, many of these
issues are interdependent and we suggest a classification in to organizational and
methodological issues instead to simplify further studies.

Observing the results of this and similar studies there seems to be a lack of deeper
analysis, such as root cause analysis, and usage of external theory that could explain
the issues found. This issue should be addressed in forthcoming studies.

 Software Cost Estimation Inhibitors - A Case Study 73

Acknowledgements

This research has been conducted within the COSY project which is funded by the
Swedish industry and government joint research program IVSS – Intelligent Vehicle
Safety Systems.

We would like to thank the Volvo Car Corporation for giving us the opportunity to
conduct this study, and the interviewees that participated in the study for taking time
from their busy schedules in order to help us.

Also, we would like to thank associated professor Sofia Börjesson at Technology,
Management and Economics department at Chalmers University of Technology for
valuable input during the phases of preparation, analysis and reporting.

References

1. Lederer, A.L., Prasad, J.: Informations systems software cost estimating: a current assess-
ment. Journal of information technology 8(1), 22–33 (1993)

2. Heemstra, F.J.: Software cost estimation. Information and Software Technology 34(10),
627–639 (1992)

3. Moores, T.T., Edwards, J.S.: Could Large UK Corporations and Computing Companies
Use Software Cost Estimating Tools?-A Survey. European Journal of Information Sys-
tems 1(5), 311–319 (1992)

4. Grimm, K.: Software technology in an automotive company - major challenges. In: Pro-
ceedings of 25th International Conference on Software Engineering, pp. 498–503 (2003)

5. Broy, M.: Challenges in automotive software engineering. In: Proceeding of the 28th in-
ternational conference on Software engineering, pp. 33–42 (2006)

6. Lederer, A.L., Prasad, J.: Causes of inaccurate software development cost estimates. Jour-
nal of Systems and Software 31(2), 125–134 (1995)

7. Jørgensen, M., Sheppard, M.: A Systematic Review of Software Development Cost Esti-
mation Studies. IEEE Transactions on Software Engineering 33(1), 33–53 (2007)

8. Hill, J., Thomas, L.C., Allenb, D.E.: Experts’ estimates of task durations in software de-
velopment projects. International Journal of Project Management 18(1), 13–21 (2000)

9. Hughes, R.T.: Expert judgement as an estimating method. Information and Software Tech-
nology 38(2), 67–75 (1996)

10. Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., Selby, R.: Cost models
for future software life cycle processes: COCOMO 2.0. Annals of Software Engineer-
ing 1(1), 57–94 (1995)

11. Shepperd, M., Schofield, C.: Estimating software project effort using analogies. IEEE
Transactions on Software Engineering 32(11), 736–743 (1997)

12. Kitchenham, B.: Software Metrics: Measurement for Software Process Improvement.
Blackwell Publishers, Malden (1996)

13. Phan, D., Vogel, D., Nunamaker, J.: The Search for Perfect Project Management. Com-
puterworld, 97–100 (1988)

14. van Genuchten, M.: Why is software late? An empirical study of reasons for delay insoft-
ware development. IEEE Transactions on Software Engineering 17(6), 582–590 (1991)

15. Subramanian, G.H., Breslawski, S.: An empirical analysis of software effort estimate al-
terations. Journal of Systems and Software 31(2), 135–141 (1995)

16. Yin, R.: Case study research: design and methods, 3rd edn. (2003)

74 A. Magazinovic, J. Pernstål, and P. Öhman

17. Buchanan, D.A., Huczynski, A.: Organizational Behaviour: An Introductory Text. Pren-
tice-Hall, Englewood Cliffs (1997)

18. Anda, B., Hove, S.E.: Experiences from Conducting Semi-structured Interviews in Em-
pirical Software Engineering Research. In: Proceedings of the 11th IEEE International
Software Metrics Symposium (METRICS 2005) (2005)

19. Jørgensen, M.: Top-down and bottom-up expert estimation of software development ef-
fort. Information and Software Technology 46(1), 3–16 (2004)

20. Bruce, M., Leverick, F., Littler, D., Wilson, D.: Success factors for collaborative product
development: a study of suppliers of information and communication technology. R&D
Management 25(1), 33–44 (1995)

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 75–89, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Impact of Base Functional Component Types on Software
Functional Size Based Effort Estimation

Luigi Buglione1 and Cigdem Gencel2

1 École de Technologie Supérieure (ETS) / Engineering.it
Luigi.Buglione@computer.org

2 Blekinge Institute of Technology, Department of Systems and Software Engineering
cigdem.gencel@bth.se

Abstract. Software effort estimation is still a significant challenge for software
management. Although Functional Size Measurement (FSM) methods have
been standardized and have become widely used by the software organizations,
the relationship between functional size and development effort still needs fur-
ther investigation. Most of the studies focus on the project cost drivers and con-
sider total software functional size as the primary input to estimation models. In
this study, we investigate whether using the functional sizes of different func-
tionality types, represented by the Base Functional Component (BFC) types; in-
stead of using the total single size figure have a significant impact on estimation
reliability. For the empirical study, we used the projects data in the International
Software Benchmarking Standards Group (ISBSG) Release 10 dataset, which
were sized by the COSMIC FSM method.

Keywords: Functional Size Measurement, Effort Estimation, COSMIC, Base
Functional Component, International Software Benchmarking Standards Group
(ISBSG).

1 Introduction

Forty years after the term “software engineering” was coined [28] great effort has
been put forth to identify and fine tune the “software process” and its proper man-
agement. Unique tools and techniques have been developed for software size, effort,
and cost estimation to address challenges facing the management of software devel-
opment projects [16][42][45].

A considerable amount of these efforts have been put on software size measure-
ment based on the fact that software size is the key measure. Function Point Analysis
(FPA) was designed initially in 1979 [1] by Albrecht. This method was aimed at
overcoming some of the shortcomings of measures based on Source Lines of Code
(SLOC) for estimation purposes and productivity analysis, such as their availability
only fairly late in the development process and their technology dependence.

FPA method was based on the idea of determining size based on capturing the
amount of functionality laid out on software functional requirements. They take into
account only those elements in the application layer that are logically ‘visible’ to the

76 L. Buglione and C. Gencel

user and not the technology or the software development methodology used. Since the
introduction of the concept, the topic of FPA evolved quite a bit. Many variations and
improvements on the original idea were suggested [11], some of which proved to be
milestones in the development of Functional Size Measurement (FSM).

FPA was designed in a business application environment and has become a de
facto standard for this community. During the following years, a large number of
variants for both business application software and for other application domains
(such as real-time, Web, Object Oriented, and data warehouse systems)1 were devel-
oped. In the ’90s, work was initiated at the International Organization for Standardi-
zation (ISO) level to lay the common principles and foundations for regulating de jure
standards in FSM. Between 1998 and 2005, the 14143 standard family was developed
[31]2 [33]-[37] with four instantiations matching with those requirements; the Com-
mon Software Measurement International Consortium Full Function Points (COSMIC
FFP) [38][46] the International Function Point Users Group (IFPUG) FPA [39][43],
MarkII FPA [40][44] and the Netherlands Software Metrics Association (NESMA)
FSM [41] methods. A fifth FSM method, the Finnish one by FISMA [48], will be
standardized in a while. The evolution of current FSM methods is shown in Figure 1.

Fig. 1. Evolution of the main Functional Size Measurement (FSM) methods

Among those, COSMIC3 [46] adopted in 2003 as ISO 19761 [38], has been defined
as a 2nd generation FSM method as a result of a series of innovations, such as a better fit
with both real-time and business application environments, identification and measure-
ment of multiple software layers, different perspectives of functional users from which
the software can be observed and measured, and the absence of a weighting system.

Due to these constructive progresses, FSM has begun to be widely used for soft-
ware size measurement. The number of benchmarking data on the projects which
were measured by FSM methods has significantly increased in well-known and rec-
ognized benchmarks such as the one by ISBSG [13] with more than 4,100 projects.
On the other hand, one of the major uses of software size measurement is its use in
software effort estimation for software management purposes. However, effort esti-
mation still remains a challenge for software practitioners and researchers.

1 Please refer to [42] and [11] for a detailed list and a history of FSM-like methods.
2 Part 1 (14143-1) has recently been updated (February 2007) [32] from its first release [31]

(1998).
3 From version 3.0, the old name of this method (COSMIC-FFP) is become simply ‘COSMIC’.

 Impact of Base Functional Component Types on Software Functional Size 77

Effort estimation based on the functional size figures have just begun to emerge as
more empirical data are collected in benchmarking datasets as in ISBSG dataset. The
nature of the relationship between functional size and effort has been explored in
many studies (see Section 2). The project related attributes such as ‘Team Size’, ‘Pro-
gramming Language Type’, ‘Organization Type’, ‘Business Area Type’ and ‘Appli-
cation Type’ were considered in the estimation models. However, the common
conclusion of these studies was that although different models are successfully used
by different groups and for particular domains, none of them has gained general ac-
ceptance by the software community due to the fact that no model is considered to
perform well enough to fully meet market needs and expectations.

The general approach of the existing studies is the functional size of a software
system is expressed as a single value obtained by a specific FSM method. This single
value is derived from a measurement function in all ISO-certified FSM methods, and
it is the result of adding together the functional sizes of different Base Functional
Component (BFC)4 Types to obtain a total functional size. Each BFC Type represents
different type of functionality to be provided to the users.

In our previous study [47], we made an analysis on the ISBSG dataset to test our
hypothesis which states that the effort required to develop the unit size of each of the
BFC Types, which provide different user functionalities is different and hence con-
tributes to total effort at different levels. The results showed that using the functional
sizes of each BFC Type as inputs to effort estimation improve the estimation reliabil-
ity. In that study, we considered ‘Application Type’ to form the homogenous sub-
groups of projects for the statistical analysis.

In the study presented here, we further investigate the contribution of different
functionality types represented by BFC Types to total development effort. We again
utilized the project data, which were measured by COSMIC-FFP [46] in the ISBSG
dataset Release 10 [13]. In this case, we formed the sub-groups of projects with re-
spect to ‘Development Type’. Then, we made Pareto analysis to further investigate
the effect of the size of the projects on the estimation reliability. We also analyzed the
distribution of different BFC Types in different Application Types.

The paper is organized as follows: Section 2 presents some background on functional
size measurement and related work on its relationship to project effort. Section 3
presents the data preparation process. Section 4 presents the data analysis and Section 5,
the conclusions of this study.

2 Related Work

There is a large body of literature on software effort estimation models and techniques
in which a discussion on the relationship between software size and effort as a pri-
mary predictor has been included, such as [2][5][6][14][15][17][18].

Other factors related to non-functional characteristics of software projects are also
included in many estimation models. Significant variations on the impact of other
project cost drivers have been observed. Therefore a number of experimental studies
were performed to investigate their impact on the size-effort relationship. Among the

4 BFC Type: A defined category of BFCs. A BFC is an elementary unit of an FUR defined by

and used by an FSM method for measurement purposes [31].

78 L. Buglione and C. Gencel

cost drivers investigated, ‘Team Size’, ‘Programming Language Type’, ‘Organization
Type’, ‘Business Area Type’, ‘Application Type’ and ‘Development Platform’ have
been found to affect the size-effort relationship at different levels of significance
[23][24][25][26][27][29]. Among these, the most significant are reported in [23][24]
to be ‘Team Size’, ‘Business Area Type’ and ‘Application Type’.

Constructive Cost Model (COCOMO) II [6], the revised version of the original
COCOMO [5] takes into account the cost drivers in the estimation models and pro-
vide for measuring functional size and converting this result to SLOC. However,
‘backfiring’ of SLOC from functional size still can not account for the extra uncer-
tainty introduced by adding another level of estimation [7][8][9].

In [22], Leung and Fan discuss both the strengths and weaknesses of effort estima-
tion models. They evaluated the performance of existing models as well as of newer
approaches to software estimation and found them as unsatisfactory. Similarly, in a
number of studies, such as [2][19][20][21], related work on effort and cost estimation
models is assessed and compared. They concluded that the models, which are being
used by different groups and in different domains, still have not gained universal
acceptance.

Most of the above approaches use functional size as the primary predictor and con-
sider other project parameters in effort estimation. Abran et al. [3] used the 2003
version of the ISBSG repository to build estimation models for projects sized by the
FPA method. They defined the concept of a software functional profile as the distri-
bution of function types within the software. They investigated whether or not the
size-effort relationship was stronger if a project was close to the average functional
profile of the sample studied. For each sample, it was noted that there was one func-
tion type that had a stronger relationship with project effort. Moreover, the sets of
projects located within a certain range of the average profile led to estimation models
similar to those for the average functional profile, whereas projects located outside the
range gave different regression models, these being specific to each of the corre-
sponding subsets of projects.

In [4], the impact of the functional profile on project effort was investigated using
the ISBSG repository. The ISBSG projects included in this analysis were sized by
COSMIC method. In COSMIC, a functional profile corresponds to the relative distri-
bution of its four BFC Types for any particular project. It was observed that the iden-
tification of the functional profile of a project and its comparison with the profiles of
their own samples can help in selecting the best estimation models relevant to its own
functional profile.

In [10], the types of functionalities a software system can provide to its users are
identified, and a multidimensional measure which involves measuring the functional
size of each functionality type is defined. It was suggested that experimental studies
should be conducted to find the relationship between the functional size of each func-
tionality type and the effort needed to develop the type of functionality that can pio-
neer new effort estimation methods.

In [47], Gencel and Buglione explored whether effort estimation models based on
the BFC types, rather than those based on a single total value would improve estima-
tion models. They observed a significant improvement in the strength of the size-
effort relationship.

 Impact of Base Functional Component Types on Software Functional Size 79

3 Data Preparation

In this study, the projects data in the ISBSG 2007 Repository CD Release 10 [13]
were used for the statistical analysis. The ISBSG Repository includes more than 4,106
projects data on a very wide range of projects. Among those, 117 projects were sized
using COSMIC-FFP. The projects cover a wide range of applications, development
techniques and tools, implementation languages, and platforms. Table 1 shows the
filtration process with respect to the project attributes defined in the ISBSG dataset.

Table 1. Filtration of ISBSG 2007 Dataset Release10

Step Attribute Filter Projects
Excluded

Remaining
Projects

1 Count Approach5 = COSMIC-FFP 3,989 117

2 Data Quality Rating (DQR) = {A | B} 5 112

3
Quality Rating for Unadjusted
Function Points (UFP)

= {A | B} 21 91

= {New Development} 34

= {Enhancement} 30 4 Development Type

= {Re-development}

22

5

In the first step, we filtered the dataset with respect to the ‘Count Approach’ attrib-
ute to obtain the projects measured by COSMIC. This step provided 117 projects.

In the second step, we analyzed these 117 projects with respect to ‘Data Quality
Rating (DQR)’ to keep only the highest quality data for statistical analysis. In the
ISBSG dataset, each project has a Quality Tag6 (A, B, C or D) assigned by the ISBSG
reviewers based on whether or not the data fully meet ISBSG data collection quality
requirements. Considering this ISBSG recommendation, 5 of the projects with a C
and D rating were ignored, leaving 112 projects following this filtration step.

In the third step, we verified the availability of fields of size by functional type (or
BFC) in the data set, for each of the 112 projects from step 2, since these fields are
necessary for this study. The verification indicates that this information is not avail-
able for 21 of the projects, leaving 91 projects for the next step.

Since many factors vary simultaneously, the statistical effects may be harder to
identify in a more varied dataset than in a more homogeneous one. Therefore, in
Step 4, we built a series of homogeneous subsets considering the ‘Development Type’
attribute. We built homogeneous subsets for ‘New Development’, ‘Enhancement’ and
‘Re-development’ projects out of the 91 remaining projects. While forming the

5 No further filter has been considered with respect to the COSMIC versions.
6 A: The data submitted were assessed as sound, with nothing identified that might affect their

integrity; B: The submission appears fundamentally sound, but there are some factors which
could affect the integrity of the submitted data; C: Due to significant data not being provided,
it was not possible to assess the integrity of the submitted data; D: Due to one factor or a
combination of factors, little credibility should be given to the submitted data.

80 L. Buglione and C. Gencel

subsets, we removed the outlier projects which have very low productivity values.
Since the data points for the Re-development projects were too few for statistical
analysis (5 projects), we removed them from further analysis.

While exploring the nature of the relationship, we did not consider the impact of
‘Application Type’. In our previous study [47] we observed that the strength of rela-
tionship between functional size and effort are much lower when we formed homoge-
nous subsets with respect to Application type (0.23 for Subset 1; 0.56 for Subset 2 and
0.39 for Subset 3). But, we observed increases in R2 values (0.23 to 0.41 for Subset 1;
0.56 to 0.60 for Subset 2 and 0.39 to 0.54 for Subset 3) when the functional sizes of
each of the BFC Types are taken into account for effort estimation purposes instead of
total functional size which motivated us to further investigate the effects of BFC
Types on the strength of the relationship.

4 Statistical Data Analysis and Results

The primary aim of this study is to explore whether or not an effort estimation model
based on the components of functional size rather than on only a total single value of
functional size would improve estimation models and if so formulating the estimation
model.

In this study, the two sub-datasets are first analyzed to determine the strength of
the relationship between the total functional size and the development effort by apply-
ing a Linear Regression Analysis method. Then, the strength of the relationship
between the functional sizes of the COSMIC BFC Types used to determine total func-
tional size and development effort is analyzed by applying a Multiple Regression
Analysis method. These findings are compared to the models representing the rela-
tionship between total functional size and effort. All the statistical data analyses in
this study were performed with the GiveWin 2.10 [12] commercial tool and its sub
modules and the Microsoft-Excel ‘Data Analysis ToolPak’7.

4.1 Total Functional Size - Effort Relationship

For the Linear Regression Analysis [30], we have the independent variable as Func-
tional Size and the dependent variable as the Normalized Work Effort (NW_Effort) as
given by the following formula;

SizeFunctionalBBEffortNW 10_ += (1)

where B0 and B1 are the coefficients to be estimated from a generic data sample. Nor-
malized Work Effort variable is used so that the effort data among the projects which
do not include all the phases of the development life cycle are comparable.

Figure 2 shows the relationship between Normalized Work Effort and COSMIC
Function Points (CFP). For the New Development Projects dataset, the R2 statistic is
better than that for the Enhancement Project datasests.

7 http://office.microsoft.com/en-gb/excel/HP052038731033.aspx

 Impact of Base Functional Component Types on Software Functional Size 81

 a) Sub-dataset 1: New Development Projects (n=34)

b) Sub-dataset 2: Enhancement Projects (n=30)

Fig. 2. The Relationship between Normalized Work Effort and COSMIC Functional Size

A significance test is also carried out in building a linear regression model. This is
based on a 5% level of significance. An F-test is performed for the overall model. A
(Pr > F) value of less than 0.05 indicates that the overall model is useful. That is, there
is sufficient evidence that at least one of the coefficients is non-zero at a 5% level of
significance. Furthermore, a t-test is conducted on each βj (0 ≤ j ≤ k). If all the values
of (Pr > |t|) are less than 0.05, then there is sufficient evidence of a linear relationship
between y and each xj (1 ≤ j ≤ k) at the 5% level of significance. The results of the
linear regression analysis are given in Table 2.

For subsets 1 and 2, the Total Functional Size is found to explain about 76% and
71% of the NW_Effort respectively. See [50] for an exhaustive discussion and detailed
explanation about the meaning of the statistical variables. Because two subsets ob-
tained proper R2 values against a quite high number of data points, they were not split
by size ranges8 or by application types. In this case a further split, the too reduced
number of data points would not assure a statistical significance of the obtained results.

8 See [51] for a size range classification applying Pareto Analysis, applied on ISBSG r9 data

repository.

82 L. Buglione and C. Gencel

Table 2. Regression Analysis Results (Normalized Work Effort – Total Functional Size)

Subset 1: New Development Projects
 Coeff StdError t-value t-prob Split1 Split2 reliable

Constant -49.78763 24.48831 -2.033 0.0504 0.0363 0.4419 0.7000
Functional Size 0.58882 0.05787 10.174 0.0000 0.0000 0.0000 1.0000
R2 = 0.7639
 value prob
normality test 28.5832 0.0000

Subset 2: Enhancement Projects
 Coeff StdError t-value t-prob Split1 Split2 reliable

Constant -196.24813 83.73519 -2.344 0.0264 0.2963 0.0081 0.7000
Functional Size 3.13900 0.38040 8.252 0.0000 0.0004 0.0000 1.0000
R2 = 0.7086

 value prob
normality test 4.3408 0.1141

4.2 Functional Sizes of BFC Types – Size-Effort Relationship

The COSMIC method [38][46] is designed to measure the software functional size
based on its Functional User Requirements (FURs). Each FUR is decomposed into its
elementary components, called Functional Processes9. The BFCs of this method are
assumed to be Data Movement Types, which are of four types; Entry (E), Exit (X),
Read (R) and Write (W). The functional size of each Functional Process is determined
by counting the Entries, Exits, Reads and Writes in each Functional Process, and the
Total Functional Size is the sum of the functional sizes of the Functional Processes.

In this study, the Multiple Regression Analysis method [30] was used to analyze
the relationship between the dependent variable Normalized Work Effort and the
functional sizes of each BFC Type as the dependent variables. The following multiple
linear regression model [30] that expresses the estimated value of a dependent vari-
able y as a functions of k independent variables, x1,x2, ….. , xk, is used:

kk XBxBxBBy ++++=22110 (2)

where B0, B1, B2, Bk are the coefficients to be estimated from a generic data sample.
Thus, the effort estimation model can then be expressed as:

)()()()(_ 3210 WBRBXBEBBEffortNW k++++= (3)

where, NW_Effort (Normalized Work Effort) is the dependent variable and E, X, R
and W are the independent variables representing the number of Entries, Exits, Reads
and Writes respectively. In building a multiple linear regression model, the same
significance tests as discussed in the previous section are carried out. Table 3 shows
the multiple regression analysis results.

9 Functional Process: “an elementary component of a set of FURs comprising a unique, cohe-

sive and independently executable set of data movements” [38].

 Impact of Base Functional Component Types on Software Functional Size 83

Table 3. Multiple Regression Analysis Results (Normalized Work Effort – Functional Sizes of
BFC Types)

Sub-dataset 1: New Development Projects dataset
Observations: 34
 Coeff StdError t-value t-prob
Constant -31.83818 18.46448 -1.724 0.0953
E 0.72694 0.38916 1.868 0.0719
X 0.01875 0.25507 0.073 0.9419
R -0.03702 0.24675 -0.150 0.8818
W 2.21199 0.42239 5.237 0.0000
R2 = 0.8919
 value prob
normality test 13.2388 0.0013

After F presearch testing,

 Coeff StdError t-value t-prob Split1 Split2 reliable
Constant -32.10285 17.75256 -1.808 0.0803 0.1592 0.0360 0.7000
E 0.74298 0.23129 3.212 0.0031 0.0004 0.0000 1.0000
W 2.17018 0.30448 7.128 0.0000 0.0000 0.4214 0.7000

R2 = 0.8918

Sub-dataset 2: Enhancement Projects Dataset
Observations: 30
 Coeff StdError t-value t-prob
Constant -46.26395 67.37480 -0.687 0.4986
E -0.47787 1.91093 -0.250 0.8046
X 7.37899 1.40681 5.245 0.0000
R -1.76768 1.35114 -1.308 0.2027
W 8.08448 2.59471 3.116 0.0046
R2 = 0.8755
 value prob
normality test 3.3048 0.1916

After F presearch testing, specific model of WE;

 Coeff StdError t-value t-prob Split1 Split2 reliable
X 7.61616 1.31971 5.771 0.0000 0.0000 0.0000 1.0000
R -2.51783 0.99965 -2.519 0.0180 0.1747 0.0129 0.7000
W 7.55544 2.47507 3.053 0.0050 0.1043 0.0058 1.0000
R2 = 0.8713

In Table 4, the results from the two approaches are summarized. The results show
that the R2 is higher using the four BFC Types rather than the single total COSMIC
FPs (+16.7% for new development; +23.6% for enhancement projects).

Another observation from the regression analysis results is that the functional sizes
of not all BFC Types are found to be significant in estimating the effort. Two of the
BFC Types, i.e. Entry and Write for New Development projects and Exit, Read and
Write for Enhancement projects were found to model Normalized Work Effort.

84 L. Buglione and C. Gencel

Table 4. Comparison of the Results

Sub-datasets # of Data
Points

R2 (Using Total Func-
tional Size (CFP))

R2 (Using
BFC Types)

Increase10
(%)

Sub-dataset 1:
New Development

34 0.76 0.89 +16.7%

Sub-dataset 2:
Enhancement

30 0.71 0.88 +23.6%

So, the next two questions were; 1) What about the prediction capability of an esti-
mation model using only the BFC Types found to be significant in estimating the ef-
fort, not necessarily all the four ones at a time? 2) Is there a correlation between the
contribution of BFC Types to total functional size and the BFC Types which are found
to be significant in estimating the effort? Table 5 shows the results for Question 1.

Table 5. Comparison of the Results

 R2 FORMULA

Sub-dataset 1:
New Development
Projects (n=34)

Total functional
size (CFP) 0.7639

Y=0.5888*CFP-49.788

 E/X/W/R 0.8919

Y=0.72694*E+0.011875*X-
0.03702*R+2.21199*W-31.83818

 E/X 0.8918 Y=0.74298*E+2.17018*W-32.10285

Sub-dataset 2:
Enhancement
Projects(n=30)

Total functional
size (CFP) 0.7086

Y=3.139*CFP-196.25

 E/X/W/R
0.8755

Y=-0.47787*E+7.37899*X-
1.76768*R+8.08448*W-46.26395

 X/R/W 0.8713 Y=7.61616*X-2.51783*R+7.55544*W

Thus, for New Development projects, the functional sizes of only E and W types of
BFCs and for Enhancement Projects, X, R and W types can as better estimate the
effort as when the functional sizes of all four types are used. In order to answer Ques-
tion 2, we analyzed the distribution of the BFC Types with respect to the Develop-
ment Type (see Figure 3).

The contribution to total functional size to Enhancement projects by R type BFC is
the greatest, while X and E types contribute more for New Development projects. In
terms of BFC Types, E, X and W types are predominant in New Development pro-
jects, while R in Enhancement ones.

Thus, we could not find a correlation between the level of contribution of BFC
Types to total functional size and the ones which are found to be significant in estima-
tion capability of an estimation model.

10 It was calculated as the relative increment: [(R2(BFC)-R2(CFP)/R2(CFP)).

 Impact of Base Functional Component Types on Software Functional Size 85

Fig. 3. The distribution of BFC Types by Development Type

5 Conclusions and Prospects

This study has explored whether an effort estimation model based on the functional
sizes of BFC Types rather than the total functional size value would provide better
results. Our hypothesis was that the development effort for each of the BFC Types,
which provide different user functionalities, might be different.

The R2 statistics were derived from Linear Regression Analysis to analyze the
strength of the relationship between total functional size and normalized work effort.
The results were compared to the R2 statistics derived from the Multiple Regression
Analysis performed on the Functional Sizes of the BFC Types and Normalized Work
Effort. We observed increases in R2 values (0.76 to 0.89 for New Development pro-
jects and 0.71 to 0.88 for Enhancement projects) when the functional sizes of each of
the BFC Types are taken into account for effort estimation purposes instead of the
total functional size. The results showed a significant improvement, i.e. +16.7 % for
new development projects and +23.6% for enhancement projects, in the effort estima-
tion predictability.

Another interesting observation in this study is that the functional sizes of all BFC
Types are not found to be significant in estimating the effort. Two of the BFC
Types, i.e. Entry and Write for New Development projects and Exit, Read and Write
for Enhancement projects were found to better model Normalized Work Effort.

We also analyzed the dominating BFC types in each of the datasets analyzing the
frequency distribution. For New Development projects, it is the Entry (33.4%) and
Exit (34.3%) that are dominant among the four BFC types. For Enhancement projects
Entry (28.1%), Exit (23.8%) and Read (37.1%) that are all dominant. The results of
these analysis showed that there is no correlation between the dominating BFC Types

86 L. Buglione and C. Gencel

in the dataset and the BFC Types which are found to be significant in estimating the
effort.

Our hypothesis in this study was developing different functionality types requires
different amounts of work effort and contributes to effort estimation in different levels
of significance. The results of this study confirmed our hypothesis. Although we built
some estimation formulas based on the data in ISBSG dataset, our aim in this study
was not to arrive at a generic formula but rather compare the conventional approach
to effort estimation and our approach discussed in this paper. Further research is re-
quired to analyze which BFC Types are significant in estimating effort and to con-
clude the ones to be used for establishing reliable estimation models. Further work
should also include comparisons with related work performed with the IFPUG FPA
method.

Because of the improvements in the estimation results just using four proxies in-
stead of the solely functional size unit value, the organizational consideration would
be the data gathering process. Usually, only the total functional size values are stored,
not the whole detail derived from the measurement. However, with a low additional
cost in terms of time in the data insertion it would be possible to obtain better estima-
tion premises. In process improvement terms, using the terminology of a well known
and proven maturity model as Capability Maturity Models Integration (CMMI) [49],
this action would have a positive impact on:

• PP (Project Planning, Specific Practice (SP)1.4 about the estimation model used
for deriving estimates comparing estimated and actual values;

• MA (Measurement & Analysis, SP2.3) about the storage of project data;
• OPD (Organizational Process Definition) about the definition of the measure-

ment repository (SP1.4);
• GP (General Practice) 3.2 (Collect Improvement Information), that is the generic

practice crossing all the PA (Process Areas) about the capability of collecting
info to be used for improving the organizational unit’s results.

Thus, starting to consider which BFC Types are significant in estimation instead of
using total size figures and using establishing estimation models considering different
functionality types is promising. In order to verify these conclusions and find other
eventual useful relationships, further studies will also be conducted on the ISBSG
dataset for the projects measured by IFPUG FPA.

References

[1] Albrecht, A.J.: Measuring Application Development Productivity. In: Proc. Joint
SHARE/GUIDE/IBM Application Development Symposium, pp. 83–92 (1979)

[2] Abran, A., Ndiaye, I., Bourque, P.: Contribution of Software Size in Effort Estimation.
Research Lab in Software Engineering, École de Technologie Supérieure, Canada (2003)

[3] Abran, A., Gil, B., Lefebvre, E.: Estimation Models Based on Functional Profiles. In: In-
ternational Workshop on Software Measurement – IWSM/MetriKon, Kronisburg (Ger-
many), pp. 195–211. Shaker Verlag (2004)

 Impact of Base Functional Component Types on Software Functional Size 87

[4] Abran, A., Panteliuc, A.: Estimation Models Based on Functional Profiles. III Taller In-
ternacional de Calidad en Technologias de Information et de Communications, Cuba,
February 15-16 (2007)

[5] Boehm, B.W.: Software Engineering Economics. Prentice-Hall, Englewood Cliffs (1981)
[6] Boehm, B.W., Horowitz, E., Madachy, R., Reifer, D., Bradford, K.C., Steece, B., Brown,

A.W., Chulani, S., Abts, C.: Software Cost Estimation with COCOMO II. Prentice Hall,
New Jersey (2000)

[7] Neumann, R., Santillo, L.: Experiences with the usage of COCOMOII. In: Proc. of Soft-
ware Measurement European Forum 2006, pp. 269–280 (2006)

[8] De Rore, L., Snoeck, M., Dedene, G.: COCOMO II Applied In A Banking And Insur-
ance Environment: Experience Report. In: Proc. of Software Measurement European Fo-
rum 2006, pp. 247–257 (2006)

[9] Rollo, A.: Functional Size measurement and COCOMO – A synergistic Approach. In:
Proc. of Software Measurement European Forum 2006, pp. 259–267 (2006)

[10] Gencel, C.: An Architectural Dimensions Based Software Functional Size Measurement
Method, PhD Thesis, Dept. of Information Systems, Informatics Institute, Middle East
Technical University, Ankara, Turkey (2005)

[11] Gencel, C., Demirors, O.: Functional Size Measurement Revisited. Scheduled for publi-
cation in ACM Transactions on Software Engineering and Methodology (July 2008)

[12] GiveWin 2.10, http://www.tspintl.com/
[13] ISBSG Dataset 10 (2007), http://www.isbsg.org
[14] Hastings, T.E., Sajeev, A.S.M.: A Vector-Based Approach to Software Size Measurement

and Effort Estimation. IEEE Transactions on Software Engineering 27(4), 337–350
(2001)

[15] Jeffery, R., Ruhe, M., Wieczorek, I.: A Comparative Study of Two Software Develop-
ment Cost Modeling Techniques using Multi-organizational and Company-specific Data.
Information and Software Technology 42, 1009–1016 (2000)

[16] Jones, T.C.: Estimating Software Costs. McGraw-Hill, New York (1998)
[17] Jørgensen, M., Molokken-Ostvold, K.: Reasons for Software Effort Estimation Error: Im-

pact of Respondent Role, Information Collection Approach, and Data Analysis Method.
IEEE Transactions on Software Engineering 30(12), 993–1007 (2004)

[18] Kitchenham, B., Mendes, E.: Software Productivity Measurement Using Multiple Size
Measures. IEEE Transactions on Software Engineering 30(12), 1023–1035 (2004)

[19] Briand, L.C., El Emam, K., Maxwell, K., Surmann, D., Wieczorek, I.: An Assessment
and Comparison of Common Software Cost Estimation Models. In: Proc. of the 21st In-
tern. Conference on Software Engineering, ICSE 1999, Los Angeles, CA, USA, pp. 313–
322 (1998)

[20] Briand, L.C., Langley, T., Wieczorek, I.: A Replicated Assessment and Comparison of
Software Cost Modeling Techniques. In: Proc. of the 22nd Intern. Conf. on Software en-
gineering, ICSE 2000, Limerick, Ireland, pp. 377–386 (2000)

[21] Menzies, T., Chen, Z., Hihn, J., Lum, K.: Selecting Best Practices for Effort Estimation.
IEEE Transactions on Software Engineering 32(11), 883–895 (2006)

[22] Leung, H., Fan, Z.: Software Cost Estimation. Handbook of Software Engineering, Hong
Kong Polytechnic University (2002)

[23] Angelis, L., Stamelos, I., Morisio, M.: Building a Cost Estimation Model Based on Cate-
gorical Data. In: 7th IEEE Int. Software Metrics Symposium (METRICS 2001), London
(April 2001)

[24] Forselius, P.: Benchmarking Software-Development Productivity. IEEE Software 17(1),
80–88 (2000)

88 L. Buglione and C. Gencel

[25] Lokan, C., Wright, T., Hill, P.R., Stringer, M.: Organizational Benchmarking Using the
ISBSG Data Repository. IEEE Software 18(5), 26–32 (2001)

[26] Maxwell, K.D.: Collecting Data for Comparability: Benchmarking Software Develop-
ment Productivity. IEEE Software 18(5), 22–25 (2001)

[27] Morasca, S., Russo, G.: An Empirical Study of Software Productivity. In: Proc. of the
25th Intern. Computer Software and Applications Conf. on Invigorating Software Devel-
opment, pp. 317–322 (2001)

[28] Naur, P., Randell, B. (eds.): Software Engineering, Conference Report, NATO Science
Committee, Garmisch (Germany), 7-11 October (1968)

[29] Premraj, R., Shepperd, M.J., Kitchenham, B., Forselius, P.: An Empirical Analysis of
Software Productivity over Time. In: 11th IEEE International Symposium on Software
Metrics (Metrics 2005). IEEE Computer Society Press, Los Alamitos (2005)

[30] Neter, J., Wasserman, W., Whitmore, G.A.: Applied Statistics. Allyn & Bacon (1992)
[31] ISO/IEC 14143-1: Information Technology – Software Measurement – Functional Size

Measurement – Part 1: Definition of Concepts (1998)
[32] ISO/IEC 14143-1: Information Technology – Software Measurement – Functional Size

Measurement – Part 1: Definition of Concepts (February 2007)
[33] ISO/IEC 14143-2: Information Technology – Software Measurement – Functional Size

Measurement - Part 2: Conformity Evaluation of Software Size Measurement Methods to
ISO/IEC 14143-1:1998 (2002)

[34] ISO/IEC TR 14143-3: Information Technology – Software Measurement – Functional
Size Measurement – Part 3: Verification of Functional Size Measurement Methods (2003)

[35] ISO/IEC TR 14143-4: Information Technology – Software Measurement – Functional
Size Measurement - Part 4: Reference Model (2002)

[36] ISO/IEC TR 14143-5: Information Technology – Software Measurement – Functional
Size Measurement – Part 5: Determination of Functional Domains for Use with Func-
tional Size Measurement (2004)

[37] ISO/IEC FCD 14143-6: Guide for the Use of ISO/IEC 14143 and related International
Standards (2005)

[38] ISO/IEC 19761:2003, Software Engineering – COSMIC-FFP: A Functional Size Meas-
urement Method, International Organization for Standardization(2003)

[39] ISO/IEC IS 20926:2003, Software Engineering-IFPUG 4.1 Unadjusted Functional Size
Measurement Method - Counting Practices Manual, International Organization for Stan-
dardization (2003)

[40] ISO/IEC IS 20968:2002, Software Engineering – MK II Function Point Analysis –
Counting Practices Manual, International Organization for Standardization (2002)

[41] ISO/IEC IS 24570:2005, Software Engineering – NESMA functional size measurement
method version 2.1 – Definitions and counting guidelines for the application of Function
Point Analysis, International Organization for Standardization (2005)

[42] Symons, C.: Come Back Function Point Analysis (Modernized) – All is Forgiven! In:
Proc. of the 4th European Conf. on Software Measurement and ICT Control (FESMA-
DASMA 2001), Germany, pp. 413–426 (2001)

[43] The International Function Point Users Group (IFPUG). Function Points Counting Prac-
tices Manual (release 4.2), International Function Point Users Group, Westerville, Ohio
(January 2004)

[44] United Kingdom Software Metrics Association (UKSMA). MkII Function Point Analysis
Counting Practices Manual, v 1.3.1 (1998)

[45] Thayer, H.R.: Software Engineering Project Management, 2nd edn. IEEE Computer So-
ciety Press, Los Alamitos (2001)

 Impact of Base Functional Component Types on Software Functional Size 89

[46] The Common Software Measurement International Consortium (COSMIC). COSMIC-
FFP v.3.0, Measurement Manual (2007)

[47] Gencel, C., Buglione, L.: Do Different Functionality Types Affect the Relationship be-
tween Software Functional Size and Effort? In: Proceedings of the Intern. Conf. on Soft-
ware Process and Product Measurement (IWSM-MENSURA 2007), Palma de Mallorca,
Spain, November 5-8, 2007, pp. 235–246 (2007)

[48] FISMA, PAS Submission to ISO/IEC JTC1/SC7 – Information Technology – Software
and Systems Engineering – FISMA v1.1 Functional Size Measurement Method, Finnish
Software Metrics Association (2006), http://www.fisma.fi/wp-
content/uploads/2007/02/fisma_fsmm_11_iso-final-1.pdf

[49] CMMI Product Team, CMMI for Development, Version 1.2, CMMI-DEV v1.2, Continu-
ous Representation, CMU/SEI-2006-TR-008, Technical Report, Software Engineering
Institute (August 2006),
http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tr008.pdf

[50] Maxwell, K.: Applied Statistics for Software Managers. Prentice Hall, Englewood Cliffs
(2002)

[51] Santillo, L., Lombardi, S., Natale, D.: Advances in statistical analysis from the ISBSG
benchmarking database. In: Proceedings of SMEF (2nd Software Measurement European
Forum), Rome (Italy), March 16-18, 2005, pp. 39–48 (2005),
http://www.dpo.it/smef2005

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 90–104, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Managing Uncertainty in ERP Project Estimation
Practice: An Industrial Case Study

Maya Daneva

University of Twente
m.daneva@utwente.nl

Abstract. Uncertainty is a crucial element in managing projects. This paper’s
aim is to shed some light into the issue of uncertain context factors when esti-
mating the effort needed for implementing enterprise resource planning (ERP)
projects. We outline a solution approach to this issue. It complementarily de-
ploys three techniques to allow a tradeoff between ERP projects requiring more
effort than expected and those requiring less. We present the results of a case
study carried out in a telecommunication company site.

1 Introduction

ERP effort estimation is a key consideration when ERP consultants prepare a bid in a
request-for-proposal process and when an ERP adopter compares alternative bids to
make a choice on their ERP implementation consulting partner. Those involved in bid
preparation or bid comparison are well aware of the fact that ERP projects very often
suffer from unexpected rework and delays [1,10,14,21,26] caused by factors going
beyond their control. While this situation might sound like a common symptom for
many types of software projects (including ERP), researchers [8,14,17,24,25,27,28]
indicate that commonplace effort/duration estimation techniques don’t fit as solution
vehicles in ERP project context, thus leaving both consultants and adopters with little
or no support in their effort estimation efforts. For example, [5,9,10,14,17,18,20,
21,24,26,27,28], indicate that a typical ERP project contains multiple sources of un-
certainty, and that historical data don’t exist for some significant sources of volatility.
Examples of such context characteristics are the degree of adjusting the vendor’s off-
the-shelf package to the specific ERP-adopter’s requirements [10,14,17,20], the com-
plex interaction between software engineering and business (re)engineering activities
within the project [1,5,10,21], the strength of the coupling among the modules making
up the package [14,18,27].

In this article, we start a systematic study of balancing uncertainties in ERP project
estimation from the perspective of the ERP-adopting organization and as part of the
ERP requirements engineering (RE) process. Our objective is to provide adopters
with a vehicle to help them reason about cost and schedule implications of their ERP
implementation decisions which they may need to make at the stage of early require-
ments. We show how an integrated approach, which complements a traditional ef-
fort/duration model (namely COCOMO II) with the concepts of portfolio

 Managing Uncertainty in ERP Project Estimation Practice 91

management and Monte Carlo simulation, allows a tradeoff between ERP projects
requiring more effort than expected and those requiring less. Two ideas are key to our
approach to uncertainty: (i) the use of probability distribution definitions to character-
ize project context factors [19], and (ii) the use of portfolios of projects [12], instead
of treating projects separately, as traditional models do (e.g. COCOMO II).

We structure the presentation as follows. Section 2 discusses how ERP projects
and custom software projects are different from efforts estimation perspective. In
Section 3 we provide some background, including a discussion of effort estimation
techniques, which bear some similarity to our approach Therein, we also construct our
multi-concept-based solution approach and, in Section 4, we present the case study in
which we applied it. Some possible validity threats are analyzed in Section 5. Early
conclusions about how our approach needs to be improved are presented in Section 6.

2 Thinking of ERP Systems from Effort Estimation Perspective

We mean this section a sidebar for readers who are less familiar with cross-
organizational ERP systems and ERP projects. Our motivation for including a discus-
sion on ERP systems from effort estimation perspective is to help the readers
understand the rest of the paper and to avoid misunderstandings.

ERP systems are packaged software solutions, the key function of which is to co-
ordinate work in a business. They are the vehicles modern organizations use to
achieve true business connectivity, a state in which everyone knows what everyone
else is doing in the business all over the world and at the same time. In the past
decade, the importance of ERP systems to companies has dramatically increased as
companies have begun to realize how decisive the impact of ERP is on their future:
organizations and their business partners and customers have started developing
‘value webs’, and ERP systems have become the tool of choice for obtaining the co-
ordination support that companies need and for staying interconnected [7,10,21]. By
‘value web’, we mean a set of different, independent (or nearly independent) busi-
nesses forming a business network — for example, the business value web of Cisco
Systems, a company who collaborates with a large number of its big customers
worldwide. Cisco simplified and standardized its customer-facing processes through
an Oracle 11i Everest ERP solution which linked its 30000 customers and partners
involved in Cisco’s so-called Quote-to-Cash chain [4]. A value web can also be any
large company which has restructured as a set of nearly independent business units,
each responsible for its own profit and loss. For example, Monsanto, a chemical engi-
neering business, including dozens of business units most of which use an SAP solu-
tion as their collaboration support platform [10].

An ERP implementation project is the customization and introduction of a cross-
organizational ERP system in a value web. Our research effort is focused on investi-
gating measurement models which can be used for ERP project cost estimation at the
requirements engineering stage of ERP implementation projects; for example, esti-
mating effort at the ERP bidding stage, at which point requirements are not yet fully
known. Following [16], we consider a project quote to consist of three components:
estimated cost, profit, and contingency. Here, however, we focus on the models used

92 M. Daneva

to estimate cost in particular, and, for this reason, we leave aside profit and
contingency.

Literature sources [9,10,14,17,18,20,21,23,24,25,27,28] comparing ERP projects to
other projects indicate that, unlike business information systems projects (e.g. data
warehousing or workflow management systems) or custom software projects, ERP
projects:

1. are broad in terms of functionality, covering thousands of business activities;
2. treat the cross-organizational business processes in a value web as the fun-

damental building blocks of the system;
3. deliver a shared system which lets the business activities of one company be-

come an integral part of the business of its partners;
4. create system capabilities far beyond the sum of the ERP components’ indi-

vidual capabilities, which, allows the resulting system to qualitatively ac-
quire new properties as result of its configuration;

5. may well include diverse configurations, each of which matches the needs of
a unique stakeholder group, which, in turn, implies the presence of cost driv-
ers unique to each configuration;

6. deliver a system which is incomplete once the ERP project is over, because
an ERP solution must mirror rapidly-changing business requirements, and so
be adjusted regularly to accommodate current business needs;

7. don’t have an identified owner at cross-organizational system level, as the
system is shared;

8. may well have a low level of organizational awareness of what new project
activities (e.g. identifying and analyzing capability gaps, investigation and
mapping of configuration options [20]) are to be added in order to plan and
manage the ERP project, and what the factors are that drive effort for these
new activities.

9. are not “built” in the sense that a master architect envisions the parts and
their relationships; rather they evolve into existence and change through their
life cycles as new shared pieces of functionality are built, existing intra-
organizational systems connect to become shared, and shared parts of the
system are disintegrated as soon as needs of sharing processes and data
disappear.

The analyses by the above authors suggest that these characteristics pose effort es-
timation challenges which are well beyond those encountered in ordinary business
information systems or custom projects. Clearly, existing models account for drivers,
which model a subset only of the phenomena essential for ERP effort estimation. For
example, the models to date would - hopefully with some adaptation, handle a single
ERP system instance, a single version or a single configuration, but would leave esti-
mators with very little guidance on how to estimate effort/time for those implementa-
tion projects targeting multiple ERP configurations, or co-existing ERP instances of
the same package [21]. Traditional models are also inflexible in that they take as in-
puts pre-defined parameters [14,17,24], that is, they consider size to be a one-
dimensional concept (e.g. function points or lines of code). This is not enough in the
ERP project realities which prompt the use of a multi-dimensional size measure [24].
For example, the preliminary empirical research [9] done by the author on how ERP

 Managing Uncertainty in ERP Project Estimation Practice 93

adopters and consultants define ‘size’, yielded three categories of definitions: ‘size’
was referred to as an attribute of the implementation tasks (e.g. ‘size’ is defined as the
number of ERP transactions to be configured), as an attribute of the ERP user com-
munity (e.g. the number of users), or as an attribute of the ERP functionality (e.g.
function points). (Within each definition category, there also were different opinions
on what ‘size’ means.) We found, that among these definitions, FPs – as a characteris-
tic of functionality, is the only one which has been used as input in the models of the
COCOMO II family. Furthermore, traditional models rest on an accumulated body of
software measurement knowledge from the past 25-30 years, while effort estimation
for ERP could not take advantage of such a body of knowledge merely because soft-
ware engineering and business (re)engineering processes are inseparable in ERP pro-
jects. This, in turn, poses a unique challenge to effort estimation analysts because the
growing complexity of the cross-organizational business processes means growing
complexity in the ERP solution that embeds these processes [21]; suppose, we apply
Glas’ estimation [13] that for every 25% increase in complexity of the task to be
automated, the increase in complexity of the solution is 100%, one could imagine the
magnitude of complexity ERP-adopters face.

The literature we reviewed in this section provides evidence that the nine charac-
teristics above (labeled 1-9) make it almost impossible for ERP-adopters to determine
a level of trust in any estimate. Examples of some specific barriers to trust, which
researchers [1,10,23,24,25] have found to be traceable to the above ERP project char-
acteristics, include: lack of consensus on the objectives of the estimates, no known
steps to ensure the integrity of the estimation process, no historical evidence at the
ERP adopter's site supporting a reliable estimate, or the inability to clearly see
whether or not estimates are consistent with consultants’ demonstrated accomplish-
ments on other projects in comparable organizations in the same sector.

3 Sources, Approach and Related Work

Our solution rests on four types of sources: (i) the COCOMO II reference model [2]
that lets us account for ERP adopter’s specific cost drivers, (ii) the Monte Carlo simu-
lation [19] which lets us approach the cost drivers’ degrees of uncertainty, (iii) the
effort-and-deadline-probability-based portfolio management concept [12] which lets
us quantify the chance for success with proposed interdependent deadlines for a set of
related ERP projects, and (iv) our own experience in ERP RE [4,5,6]. We chose the
combination of (i), (ii) and (iii), because other researchers already experimented with
it [15] and found it encouraging. Unlike [15], where the three methods were used
complementarily for the purpose of custom software contract bidding, we adapt each
of the methods to the context of ERP projects and we adopt their joint use therein.

3.1 COCOMO II

COCOMO II [2] is one of the best-known algorithmic model for setting budgets and
schedules as a basis for planning and control. It comprises (i) five scale factors, which
reflect economies and diseconomies of scale observable in projects of various sizes,
and (ii) 17 cost drivers, which serve to adjust initial effort estimations. In ERP project

94 M. Daneva

settings, at least three of the scale factors are directly related to the joint RE and archi-
tecture design activities, and thus raises the role of architects in reducing project costs.
COCOMO II allows ERP teams to include in their estimates (i) the maturity level of
the ERP adopting organization, (ii) the extent to which requirements’ and system
architecture’s volatility is reduced before ERP configuration, and (iii) the level of
team cohesion and stakeholders’ participation. In COCOMO II, the degrees of both
the scale factors and the cost drivers vary from extra low, very low, low and nominal
to high, very high and extra high. Suppose ERP project stakeholders assign a degree
to each scale factor and cost driver, the estimation of project effort and duration will
result from the two equations below:

Effort = A x (Size)E x ∏
=

17

1i

EM i (1)

and Time = C x (Effort) F (2)

where E and F are calculated via the following two expressions, respectively:

E = B + 0.01 x ∑
=

5

1j

SF j and

F = D + 0.2 x (E – B)

In (1) and (2), SF stands for the scale factors, and EM means cost drivers.

3.2 The Monte Carlo Simulations

To obtain more realistic estimates, we approached the inherent uncertainty of the cost
drivers by applying NOSTROMO [19], a Monte Carlo simulation technique used at
the THAAD Project Office (USA). This is a problem-solving technique used to ap-
proximate the probability of certain outcomes by running multiple trial runs, called
simulations, using random variables. When used in combination with COCOMO II,
repeatedly running the model many times and collecting samples of the output vari-
ables for each run helps the estimation analysts produce an overall picture of the
combined effect of different input variables distribution on the output of the model.

3.3 The Portfolio Management Concept

We couple the above techniques with a portfolio management concept [12] based on
an effort-and-deadline-probability model that allows us to quantify the uncertainty
associated with a project estimate. We chose it because (i) it is applicable at the stage
of requirements or project bidding [12], (ii) its only input requirement is a record of
previous projects; although it does require an effort estimate for every project, it need
be nothing more sophisticated than a subjective opinion [12]; and (iii) it fits with the
ERP adopters’ project realities suggesting that an ERP project is implemented as a
portfolio of interdependent subprojects [5,6]. Each subproject is a piece of functional-
ity (or an ERP module) linked to other pieces (or modules). For example, the Sales
and Distribution module in a package is tightly linked with the Accounts Receivable

 Managing Uncertainty in ERP Project Estimation Practice 95

and Profits Center Reporting functionality of the Financial Accounting and Control-
ling modules [22]. Suppose we have a set of interdependent subprojects, the effort-
and-deadline-probability model [12] will yield (i) the probability of portfolio’s
success with the proposed deadlines for each subproject in this portfolio, and (ii) a set
of new deadlines which will result in a required probability of success. The portfolio
success is judged by two conditions applied to any two subprojects a and b for which
deadlinea is earlier than deadlineb. The conditions are that: (i) subproject a is to be
over by deadlinea and (ii) subproject a and subproject b are to be over by deadlineb. In
other words, the conditions require all subprojects planned with a deadline before
deadlineb to be completed by deadlineb , rather than just project b. This is the key to
the portfolio approach, because uncertainty about completion of project b incorpo-
rated uncertainty from all previous projects.

Suppose the ERP adopter engages in total E people in the project and let d be the
number of work days it takes from start date to deadline, then the total available re-
sources is Exd. So, suppose an ERP portfolio Y is made up by n subprojects, the suc-
cess conditions are represented as follows:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

≤

++

+

n
d

d

d

E

n
YYY

YY

Y

...
2

1

..
21

...
21

1

 (3)

where Yi is the estimated effort for subproject i to succeed. We check if, for any j, (j=
1..n), the sum of Y1,..,Yj is greater of Exdj. If this is true, then deadline dj has failed.
Success probabilities result from simulations in which Y1,...,Yn are generated from a
predetermined probability distribution. If we deem Y1, …,Yn is satisfying all condi-
tions, then we say that the portfolio Y succeeds. The portfolio’s probability of success
is equal to the ratio of the number of successes in the set Y to the number of trials in
the simulation.

3.4 How It Fits Together?

Our solution approach consists of eight steps which are presented in Figure 1. Be-
cause we designed our approach with the RE stage in mind, we suggest Unadjusted
Function Points (FP) [5] be used as a size estimate. This is consistent with the posi-
tion of the COCOMO II authors [2, page 17]. We chose this measure of functional
size because (i) it is applicable to any ERP package and not to a specific package’s
context [5] and (ii) it’s the only measure of size that fits the project stage of early
requirements. Furthermore, to account for uncertainty of the ERP project context, we
suggest the COCOMO II model take as inputs the probability distributions of the five
COCOMO scale factors and 17 cost drivers, instead of using as inputs single values
(as in [2]). This design choice has been recommended by the THAAD Project Office
[19] and by the JLP NASA researchers as well. Deploying the Monte Carlo simula-
tion manes to ascribe a particular distribution type to an input variable in a model, get
randomly-selected values, feed them into the COCOMO II model and, then, see how
likely each resulting outcome is. In other words, for each uncertain factor, our

96 M. Daneva

approach yields possible effort and duration estimation values. In contrast to CO-
COMO II, our output is the probability distributions of effort and duration and not the
most likely effort and duration (which COCOMO II creates).

The probability distributions are, then, fed into the portfolio management method
[12]. To run it, we first formulate a condition for success, as in (3), then we bunch
projects into portfolios and we obtain the probability of successfully delivering the
projects under time constraints as well under effort constraints.

Fig. 1. The solution approach: a high-level view

4 The Case Study

The research methodologist R. Yin [31] makes the note that a case study has a distinct
advantage when a ‘how’ or ‘why’ question is being interrogated about a contempo-
rary set of events over which the researcher has little or no control. In software engi-
neering, case studies are also useful in answering a “which is better” question [30] and,
here, this is what we are after. Below, we describe the application of our approach and
state our expectation of it (Section 4.1) and the results we obtained (Section 4.2)

4.1 Application of the Method

The solution approach was applied in a setting of a large organization-wide ERP roll-
out that included eight functional modules of one ERP package (namely SAP) and
covered three locations of a North American telecommunication company [5]. The
modules were: Material Management, Sales and Distribution, Service Management,
Accounts Payable, Accounts Receivable, Plant Maintenance, Project System, and
Asset Management. Our data came from 13 SAP projects implemented in the case
study company. The projects were carried out between November, 1997 and October,
2003. In this period, the author was employed by the case company as a SAP process
analyst and was actively involved in the projects. The ERP implementation process
model adopted in the context of the projects was the AcceleratedSAP (ASAP) RE
process [22]. It is a project-specific process, engineered and standardized by SAP, and

 Managing Uncertainty in ERP Project Estimation Practice 97

provided to clients by ASAP-certified consulting partners. The ASAP process has
been extensively elaborated in [22]. The practical settings for our 13 projects have
been described in detail in [5]. They included the following: to manage implementa-
tion complexity, each of our projects was broken down in a number of subprojects
reflecting the number of components to be configured. For example, the first project
had to implement six components and was broken down in six subprojects. The total
number of our subprojects in which the standard ASAP process was instantiated was
67. For each subproject, there was a dedicated RE team. This is a group of individuals
who are assigned to a specific subproject, contribute time to and run the RE cycle for
this subproject, and deliver the business requirements document for a specific SAP
component. Each RE team consisted of one or two SAP consultants who provided in-
depth knowledge in both the ASAP implementation process and the SAP components,
and a number of business representatives, the so-called process owners. They were
department managers and subject matter experts who contributed the necessary line
know-how, designed new processes and operational procedures to be supported by the
SAP modules, and provided the project with the appropriate authority and resources.
All process owners had above average level of experience with IT-projects in their
departments and, before starting the projects, attended a three-hour training session on
the ASAP process. Next, we considered our consultants as an even mix of experts,
new hires and novices. Each expert had at least 5 years of configuration and integra-
tion experience with a specific SAP functional module. Most experts had ASAP RE
experience. Our consulting partners provided evidence that their less experienced
staff-members completed the standard training courses on both the ASAP process and
the corresponding SAP modules. However, none of the consultants had any experi-
ence in the telecommunication sector; they were unaware of the requirements princi-
ples in this domain and were supposed to carry out RE activities under novel and
challenging conditions. All the teams were supported by a process architect responsi-
ble for architecting the solution, sharing process knowledge and consulting on ongo-
ing basis with the teams on SAP reuse, process methods, and RE tools. The architect
was the only resource the teams shared. The 67 teams worked separately and with
relatively little communication among them. This allowed us to initially consider and
include 67 subprojects in our case study.

For each of the 13 projects, we got (i) project size data, (ii) reuse levels, (iii) start
and end dates, and (iv) scale factor and cost driver ratings. Size was measured in
terms of unadjusted IFPUG FP [6]. Reuse levels were formed by using a reuse indica-
tor that included reused requirements as a percentage of total requirements delivered
[5]. Next, the effort multipliers A, B, and EM in equation (1) and (2) and the scale
factors SF were calibrated by using ERP effort data collected between 1997 and 2004
in the case study company.

Because we had the ratings of the cost drivers and scale factors only and no
knowledge about the uncertainty of the ratings, we assigned to each factor its distribu-
tion type and its parameters of probability distribution (namely center, min and max)

98 M. Daneva

based on previously published experiences and recommendations by other authors
[15,19]. For example, this case study used McDonnald’s [19] default ‘high’ levels of
uncertainty associated to the ratings of the RESL, DATA, ACAP and PCAP cost
drivers [2]. (Because of space limitation, we refer readers to reference [2] which gives
detailed definitions of these cost drivers). The level of uncertainty determines - in
turn, the distribution type to be assigned to each cost driver: normal, triangular, and
uniform for low, medium and high uncertainty, respectively.

We also opted to use a lognormal distribution for functional size, which was moti-
vated by the observations of Chulani et al [3]. These researchers investigated the size
distribution and indicate that its skew is positive and that log(size) is likely to be a
normal distribution.

With this input data (namely, the COCOMO II factors and uncertainty values), we
run Monte Carlo simulations which gave us samples of (i) effort, expressed in person-
month, and (ii) time, expressed in months. Generally, a Monte Carlo simulation con-
sists of many - often thousands of, trials, each of which is an experiment where we
supply numerical values for input variables, evaluate the model to compute numerical
values for outcomes of interest, and collect these values for later analysis. In this case
study, we used 10000 trials and generated the samples of effort and time, as presented
in Figure 2 and Figure 3, respectively. In these histograms, the Y-dimension shows
the frequency with which a value was observed in the sample of 10000 trials. The
X-dimension shows the value range. Because the average subproject involved four
professionals (two business users, one external consultant and one internal IS team
members), we adopted the assumption for E to be 4.

Effort: Frequency Chart

0

100

200

300

400

500

600

17,9 18,9 19,9 20,9 21,9 22,9

Fig. 2. The Monte Carlo histogram of the probability distribution of effort (in person/months)

 Managing Uncertainty in ERP Project Estimation Practice 99

Time: Frequency Chart

0

100

200

300

400

500

600

3,8 4,8 5,8 6,8 7,8 8,8 9,8

Fig. 3. The Monte Carlo histogram of the probability distribution of time (in months)

Based on the observation that COCOMO II provides time estimation as in (2), we
formulated the following condition for portfolio management in terms of time con-
straints:

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

≤

++

+

n
m

m

m

n
TTT

TT

T

...
2

1

...
21

...
21

1

 (4)

where Ti is the ERP implementation time in months for subproject i. In this condition,
we did not include the number of people E, because COCOMO II assumed an average
number of project staff [2] which was accounted in (2). Furthermore, as recommended
in [15], we attempted to improve the chances for portfolio success by adjusting the cost
drivers and scale factors. Hence, we adopted the assumption that for
projects with two different ratings for the same factor, the probability of success for
each project will be different too. Finally, our case study plan included assessment of
how much the probability of success increased when treating ERP projects as a portfo-
lio. We expected that the suprojects with high uncertainty ratings would benefit more
from portfolio management, than the projects with low uncertainty ratings would do.

4.2 Results

This sections reports on the results with respect to: (i) what we observe when adjust-
ing COCOMO II cost drivers, and (ii) what we learnt from the probability of success
of highly-uncertain projects when managing them as a portfolio.

100 M. Daneva

To understand how cost drivers and scale factors make a difference in terms of pro-
ject success, for each one of them we constructed two portfolios: the first one had this
driver/cost factor rated ‘very high’ for all projects and the second portfolio had it
rated ‘very low’ for all projects. For example, we found that when selective reuse [6]
was practiced in ERP projects, the probability of success was higher under both time
and effort constraints. For the purpose of illustrating this point, we report on the re-
sults (see Table 1) yielded when constructing two portfolios of subprojects, namely
the first one with the factor of REUSE rated as very high for all subprojects and the
second one with REUSE rated very low for all subprojects. We make two notes: First,
that low level of reuse in an ERP project indicates massive customization of the stan-
dard components and that a high level of reuse indicates limited customization [5].
Second, we ruled out the rating ‘extremely high’ as it’s relatively rarely to be ob-
served in a ERP project context [6,10]. Table 1 suggests that when a project is com-
posed of subprojects all of which have REUSE rated very high, the probability of
success is greater under both time and effort constraints.

Table 1. Analysis of the probability of success for the factor REUSE under effort constraints
and time constraints

Probability of success REUSE rating
 Under effort constraints Under time constraints

Very low 68.78% 76.52%

Very high 96.87% 98.88%

We observed that 13 out of the 17 factors from the COCOMO II model can be ad-
justed in a way that maximizes the probability of success. These 13 factors are: data-
base size (DATA), product complexity (CPLX), REUSE, documentation (DOCU),
platform volatility (PVOL), analyst capability (ACAP), programmer capability
(PCAP), personnel continuity (PCON), applications experience (APEX), language
and tool experience (LTEX), use of software tools (TOOL), multi-site implementation
(SITE), required implementation schedule (SCED).

Regarding our second group of results, our observations suggest that bundling ERP
projects as a portfolio had the advantage over managing projects separately in terms
of ability to explicitly and systematically approach uncertainty. We compared the
probability of success for projects under effort constraints and for projects under time
constraints, respectively (Table 2 and Table 3). They indicate that the probabilities of
success for projects with high uncertainty ratings are greater when those projects are
managed as a portfolio.

Table 2. Increase in probability of success for low and high uncertain projects under effort
constraints

Probability of success Uncertainty level
 Individual projects

(a)
Portfolio

(b)

Ratio of increase
(a)/(b)

Low uncertainty 93.78% 98.81% 1.05

High uncertainty 84.31% 97.76% 1.16

 Managing Uncertainty in ERP Project Estimation Practice 101

Table 3. Increase in probability of success for low and high uncertain projects under time
constraints

Probability of success Uncertainty level
 Individual projects

(a)
Portfolio

(b)

Ratio of increase
(a)/(b)

Low uncertainty 15.76% 87.52% 5.55

High uncertainty 8.31% 75.91% 9.13

5 Evaluation of Validity Concerns

We did obviously a preliminary step only towards a better understanding of the major
phenomena that cause uncertainty in ERP effort estimation. To this end, we could
only say that we need to carry out a few replication studies so that the findings of this
study can be consolidated and transformed into recommendations to ERP project
managers. As per the recommendation of research methodologists [30,31], we did an
early assessment of the following validity [30] threats:

First, the major threat to external validity arises from the fact that the company’s
projects might not be representative for the entire population of ERP adopters. We
however, believe that our project context is typical for the telecommunication compa-
nies in North America: we judge these settings typical because they seemed common
for all SAP adopting organizations who were members of the American SAP Tele-
communications User Group (ASUG). The ASUG meets on regular basis to discuss
project issues and suggest service sector-specific functionality features to the vendor
for inclusion in future releases. The SAP components our case company implemented
are the ones which other ASUG companies have in place to automate their non-core
processes (accounting, inventory, sales & distribution, cell site maintenance).

Second, when constructing the portfolio, the author based her choice of ‘very low/
very high’ ratings on her own experience in implementing ERP. While for some driv-
ers, as reuse, the author did research on what reuse levels are achievable in an ERP
project [6], for others the author set up the ratings in a way that - clearly, could be
subjective. However, this design choice was the only possible way to go, given the
fact that, to the best of our knowledge, there is no published research on the CO-
COMO II factor ratings which are more common in ERP context. We plan, in the
future, to research the topic of economies and diseconomies of scale in ERP projects,
hoping that new knowledge will help refine our approach.

Next, we deployed complementary three models of three types. However, we are
aware that there are other promising effort estimation modeling techniques by each
type. For example, there is a number of approaches using portfolio concepts [29]
which might be good candidates for the ERP settings. In the future, we are interested
in investigating whether different modeling choices sustain our results or limit the
validity of our findings to the subset of the analyzed models.

6 Conclusions

In this case study we have demonstrated that the complementary use of Monte Carlo
simulation, a portfolio management method and a parametric empirical model

102 M. Daneva

(COCOMO II) can help counterpart the uncertainty in early ERP effort estimation
based on business requirements. The ultimate objective of the approach is to ensure
that setbacks in some ERP implementations are balanced by gain in others. Our ap-
proach is positioned to leverage off the current body of knowledge in both software
economics and ERP RE. The targeted effect was to systematically cope with two
aspects inherent to ERP project contexts: (i) lack of ERP-adopter’s specific historical
information about the context and (ii) strong bias by outsourcing partners and ERP
consultants in cost estimation. We found this approach to be one good alternative to
ERP-adopters as they no longer have to live with whatever estimates are given to
them by ERP consultants.

The case study provided evidence that led us to conclude the following:

(i) when managed as a portfolio, highly-uncertain ERP projects have a greater
chance to succeed under time and under effort constraints,

(ii) subprojects with high uncertainty ratings would have greater advantages from
portfolio management than projects with low uncertainty ratings would do.

(iii) it’s possible to adjust cost drivers so that one increases the probability of suc-
cess for highly uncertain ERP projects, a company might have to implement. We have
also shown that 13 out of the 17 COCOMO II cost drivers can be adjusted to increase
the chances for success.

With respects to (1) and (2), our results agree with the observation by Jiamthub-
thugsin and Sutivong [15] who experimented with the portfolio management method
in the context of custom projects. Though, we must acknowledge (i) that we have
preliminary results only and (ii) that related validity concerns [30] remain our most
important issue. In the next six months, we will work in collaboration with three
European companies to carry out a series of experiments and case studies to test our
approach. The results will serve to properly evaluate its validity and come up with an
improved version of our method.

Acknowledgements

The author thanks the anonymous reviewers for their comments and suggestions,
which greatly improved the clarity and value of this work. The author also thanks the
following organizations without whose support this research program would not have
become a reality: the Netherlands Science Organization (NWO) for supporting the
CARES project and the QuadREAD project, CTIT for supporting the COSMOS pro-
ject, IFPUG, NESMA and ISBSG, for making their resources available to me, and the
QuadREAD industry partners for the stimulating discussions that helped make sure
this research remained industry-relevant.

References

[1] Arnesen, S., Thompson, J.: How to Budget for Enterprise Software, Strategic Finance,
January 2005, pp. 43–47 (2005)

[2] Boehm, B.: Software Cost Estimation with COCOMO II. Prentice Hall, Upper Saddle
River (2000)

 Managing Uncertainty in ERP Project Estimation Practice 103

[3] Chulani, S., Boehm, B., Steece, B.: Bayesian Analysis of Empirical Software Engineering
Cost Models. IEEE Trans on SE 25(4), 573–583

[4] Cisco Systems, How Cisco Upgraded Their Purchasing,
http://www.cisco.com/web/about/ciscoitatwork/business_of_it/erp_purchasing.html

[5] Daneva, M.: ERP Requirements Engineering Practice: Lessons Learnt. IEEE Soft-
ware 21(2), 26–33 (2004)

[6] Daneva, M.: Measuring Reuse of SAP Requirements: a Model-based Approach. In: Proc.
of Symposium on Software Reuse. ACM Press, New York (1999)

[7] Daneva, M., Wieringa, R.J.: A Requirements Engineering Framework for Cross-
organizational ERP Systems. Requirements Engineering Journal 11, 194–204 (2006)

[8] Daneva, M.: Approaching the ERP Project Cost Estimation Problem: an Experiment. In:
Int’. Symposium on Empirical Software Engineering and Measurement (ESEM), p. 500.
IEEE Computer Society Press, Los Alamitos (2007)

[9] Daneva, M.: Preliminary Results in a Multi-site Empirical Study on Cross-organizational
ERP Size and Effort Estimation. In: Proc of the Int. Conf. on Software Process and Prod-
uct Measurement (MENSURA), Palma, Spain, pp. 182–193. UIB Press (2007)

[10] Davenport, T.: Mission Critical: Realizing the Promise of Enterprise Systems. HBS Press
(2000)

[11] Fenton, N.E., Pfleeger, S.L.: Software Metrics: A Rigorous and Practical Approach, 2nd
edn. PWS Publishing (1998)

[12] Fewster, R.M., Mendes, E.: Portfolio Management Method for Deadline Planning. In:
Proc. of METRICS 2003, pp. 325–336. IEEE, Los Alamitos (2003)

[13] Glas, R.L.: Facts and Falacies of Software Engineering, p. 58. Perason Education, Boston
[14] Hansen, T.: Multidimensional Effort Prediction for ERP System Implementation. In:

Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4278, pp.
1402–1408. Springer, Heidelberg (2006)

[15] Jiamthubthugsin, W., Sutivong, D.: Protfolio Management of Software Development Pro-
jects Using COCOMO II. In: Proc. of ICSE 2006, pp. 889–892 (2006)

[16] Kitchenham, B.A., Pickard, L., Linkman, S., Jones, P.: Modelling Software Bidding
Risks. IEEE Transactions on Software Engineering 29(6), 542–554 (2003)

[17] Koch, S.: ERP Implementation Effort Estimation Using Data Envelopment Analysis. In:
Abramowicz, W., Mayr, H.C. (eds.) Technologies for Business Information Systems, pp.
121–132. Springer, Dordrecht (2007)

[18] Luo, W., Strong, D.M.: A Framework for Evaluating ERP Implementation Choices. IEEE
Transactions on Engineering Management 5(3), 322–333 (2004)

[19] McDonald, P., Giles, S., Strickland, D.: Extensions of Auto-Generated Code and NOS-
TROMO Methodologies. In: Proc. of 19th Int. Forum on COCOMO, Los Angeles, CA

[20] Parthasarathy, S., Anbazhagan, N., Evaluation, E.R.P.: Implementation Choices Using
AHP. International Journal of Enterprise Information Systems 3(3), 52–65 (2007)

[21] Rettig, C.: The Trouble with Enterprise Systems, Sloan Management Review. Fall 49(1),
21–27 (2007)

[22] SAP AG, ASAP Methodology for Rapid R/3 Implementation: User Manual, Walldorf
(1999)

[23] Stamelos, I., Angelis, L., Morosio, M., Sakellaris, E., Bleris, G.: Estimating the Devel-
opment Cost of Custom Software. Information & Management 40, 729–741 (2003)

[24] Stensrud, E.: Alternative Approaches to Effort Prediction of ERP Projects. Inf.&Soft
Techn. 43(7), 413–423 (2001)

[25] Stensrud, E., Myrtveit, I.: Identifying High Performance ERP Projects. IEEE Trans.
Software Engineering 29(5), 398–416 (2003)

104 M. Daneva

[26] Summer, M.: Risk Factors in Enterprise Wide Information Systems Projects. In: Special
Interest Group on Computer Personnel Research Annual Conference Chicago, Illinois,
pp. 180–187

[27] Vogelesang, F.: Using COSMIC FFP for Sizing, Estimating and Planning in an ERP En-
vironment. In: Int’l Workshop on Software Measurement, Potsdam, pp. 327–342. Shaker
Publ. (2006)

[28] Vogelezang, F.: Application Portfolio Management: How much Software Do I Have? In:
Proc. of the Software Measurement Forum (SMEF), Italy (2007)

[29] Verhoef, C.: Quantitative IT Portfolio Management. Science of Computer Programming,
vol. 45(1), pp. 1–96 (2002)

[30] Wohlin, C.: Experimentation in Software Engineering. Springer, Heidelberg (2000)
[31] Yin, R.: Case Study Research, Design and Methods, 3rd edn. Sage Publications, Newbury

Park (2002)

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 105–116, 2008.
© Springer-Verlag Berlin Heidelberg 2008

The Effect of Entity Generalization on Software
Functional Sizing: A Case Study

Oktay Turetken1,*, Onur Demirors 1, Cigdem Gencel2, Ozden Ozcan Top1,
and Baris Ozkan1

1 Informatics Institute, Middle East Technical University, 06531, Ankara, Turkey
{oktay, demirors, ozden, bozkan}@ii.metu.edu.tr

2 Blekinge Institute of Technology, Department of Systems and Software Engineering
cigdem.gencel@bth.se

Abstract. In this paper we discuss a specific result derived from a multiple case
study. The case study involved implementation of IFPUG Function Point
Analysis and COSMIC Functional Size Measurement methods in an innovative
military software development project by different groups of experts.
Application of these methods in a case that provides a number of size
measurement challenges enabled us to observe significant improvement
opportunities for the methodologies. In this paper, we depict the utilization of
the entity generalization concept in two FSM methods and based on our
observations we discuss the effects of different interpretations of the concept for
measuring the software functional size.

Keywords: Functional size measurement, COSMIC FSM, IFPUG FPA, entity
generalization.

1 Introduction

Poor estimation remains to be one of the main reasons for software project failures.
Functional Size Measurement (FSM) methods are advocate for providing necessary
input for estimation models. FSM methods are intended to measure the size of
software by quantifying the functionality delivered to the user. Since the introduction
of the concept [2], a variety of FSM methods have been formulated and many
improvements have been made on these methods [11].

FSM methods have their own definition of functionality, utilize different counting
rules for the different functional components of functional user requirements and have
their own units and scales for their measures. In spite of these differences, they are
expected to produce similar results as they are based on a set of shared principles. A
number of research studies have been performed in order to clarify their conceptual
basis and establish the common principles of FSM methods [8], [10], [13].

* This study is supported by The Scientific and Technological Research Council of Turkey

(TUBITAK), Project 107E010.

106 O. Turetken et al.

The objectives of this paper are to discuss how the concept of entity generalization
is considered in commonly used FSM methods; the International Function Point Users
Group Function Point Analysis (IFPUG FPA) [17] and the Common Software
Measurement International Consortium FSM (COSMIC FSM) [18] and to investigate
how different interpretations of this concept affect the functional size of the software
measured by these methods. Findings are based on the case study we conducted on an
innovative military software development project. Specifically, we observe how entity
abstractions - in the form of inheritance or generalization/specialization between
entities or classes - may lead to different assumptions when identifying elementary
components for the measurement and the effects of these different assumptions on the
functional size. We evaluate the methods based on our findings and discuss the
difficulties we faced during the implementation of the methods.

The paper is organized as follows: Section 2 briefly summarizes the FSM methods
and related research. In section 3, we describe the case study. Section 4 presents our
findings and conclusions.

2 Related Work

Measuring the software size with the ‘functionality’ attribute was first introduced by
Albrecht [2] in his Function Point Analysis (FPA) method. With the refinements of
the technique, FPA has evolved into the IFPUG FPA [12] method. During the
following years, several new measurement methods ([1], [5], [22], [29]) or extending
the applicability of FSM methods to different functional domains in addition to
business application software ([21], [28], [30]) have been developed. Studies by
Symons’ [26] and Gencel et al. [11] provide detailed discussions on FSM methods.

The publication of the first ISO/EIC’s 14143-1 standard [14] in 1998 aimed at
clarifying the fundamental concepts of FSM. It defined concepts such as ‘Functional
User Requirements (FUR)1’, ‘Functional Size2’, Base Functional Component (BFC)3’,
‘BFC Type4’ and the FSM requirements that should be met by a candidate method.
Currently, Mark II FPA (MkII FPA) [16], IFPUG FPA [17], COSMIC FSM [18] and
Netherlands Software Metrics Association FSM (NESMA FSM) [19] are certified by
ISO as being international standards.

Earlier FSM methods have been criticized of lacking support for concepts such as
inheritance and aggregation [1], [7], [24], which are generally associated with object-
oriented methodologies. This creates ambiguities and difficulties in determining the
functional components and measuring the functional size.

In order to better reflect the needs of object-oriented (OO) software development
methodologies, several approaches have been proposed. Some of these works that

1 FURs: A sub-set of the user requirements. The FURs represent the user practices and

procedures that the software must perform to fulfill the users’ needs.
2 Functional Size: A size of the software derived by quantifying the FUR.
3 BFC: An elementary unit of FUR defined by and used by an FSM Method for measurement

purposes.
4 BFC Type: A defined category of BFCs. A BFC is classified as one and only one BFC Type.

 The Effect of Entity Generalization on Software Functional Sizing 107

adapt FPA method to OO concepts yield results that are similar to what would have
been obtained by directly applying IFPUG FPA. Whitmire [31] considered each
general class as a logical file and methods sent across the application boundary as
transactional functions. For classes that are part of an inheritance hierarchy, “if the
generalization is truly part of the application domain, it is counted as a separate
logical file”. If the generalization was build for the ease of modeling, general class is
counted with each specialized class. In IFPUG FPA, a logical file is a user identifiable
group of logically related data or control information. Internal Logical Files (ILFs) are
maintained within the boundary of the application, whereas External Logical Files
(EIFs) are maintained within the boundary of another application.

Fetcke et al. [7] defined rules for mapping OO-Jacobson method to concepts from
IFPUG FPA and verified the rules by applying them in three case studies. For
inheritance relationships, they defined two rules. First; an abstract class is not visible
to the user and does not relate logical files itself. It is rather a candidate for a record
element type (RET) for each class that inherits its properties. RETs are optional or
mandatory subgroup of data elements within an ILF or EIF. They influence the
degree of functional complexity (low, average, high) of logical files. Second;
specialized classes of a concrete general class are candidates for a logical file or a
RET of that class. With these presumptions, however, the work does not elucidate
whether specialized classes are logical files of their own or RETs for the general
class.

To overcome these difficulties Abrahao et al. [1] proposed OO-Method Function
Points (OOmFP) for measuring the functional size of OO systems which is compliant
with the IFPUG FPA rules.

Similarly, Caldiera et al. [3] adapted IFPUG FPA rules for measuring object
oriented analysis and design specifications. They proposed alternative ways for
identifying logical files and handling entity abstractions, but did not propose clear
rules or recommendations of when and under what conditions each can be applied. In
an inheritance hierarchy, a logical file may comprise all the entities in the hierarchy or
every entity can be mapped to a logical file.

Mapping of object oriented modeling concepts onto the measurement constructs
has also been studied for COSMIC FSM. Jenner [20] proposed a mapping for the
concepts used in UML diagrams onto the abstract COSMIC FSM model. It is argued
that UML sequence diagrams have a more appropriate level of granularity to measure
functional size. Diab et al. [6] proposed a set of formal rules for applying COSMIC
FSM to object-oriented specifications. The work proposes a formalization of the
COSMIC FSM measure for the real-time object oriented modeling language.

3 The Case Study

We conducted a multiple-case study in order to evaluate and explore the similarities
and differences between FSM methods. By implementing IFPUG FPA [12] and
COSMIC FSM [28] methods, different measurers measured the functional size of a
case project.

108 O. Turetken et al.

In the scope of this paper, we deal only with the differences among methods in
handling the entity generalization and how these affect the measurement results
between the functional size figures obtained by different measurers. Therefore,
although the description of the whole case study is presented; in this paper, the results
which are related to these specific questions on entity generalization are discussed. It
should be noted that our aim here is not to find out which of the methods is better, but
to shed light into the improvement opportunities of each of these methods.

3.1 FSM Methods Utilized

In general, FSM methods first requires the functional user requirements (FUR) to be
decomposed into ‘Transactions’, which involve inputting, outputting and processing
of items or groups of data, triggered by events outside the software [15]. From
transactions, BFCs are identified and then each of these is categorized to BFC Types
and the attributes relevant for obtaining the base counts are identified. The next step is
the actual measurement where the functional size of each BFC is measured by
applying a measurement function to the BFC Types and the related attributes. The
overall functional size of the software system is computed by summing up the results.

In IFPUG FPA, the BFCs are classified as the Transactional Function (TF) Types
and Data Function (DF) Types. DF may be an Internal Logical File (ILF) or an
External Interface File (EIF), whereas a TF can be of the type; External Input (EI),
External Output (EO), or External Inquiry (EQ). These components are weighted
according to their complexity and their weights are summed. The functional
complexity of each logical file is based on the number of record element types (RETs)
(subgroup within a logical file) and the number of data element types (DETs) within a
logical file. A DET is a unique user recognizable, non-repeated field which is
equivalent to the ‘entity attribute’. The functional complexity of a logical file can be
low, average or high, each corresponding to an IFPUG function point value.

In COSMIC FSM each FUR is decomposed into ‘Functional Processes’ (FP) and
each of these FPs is assumed to comprise a set of sub-processes, called Data
Movement Types. Data movement types are the BFCs of this method. A data
movement moves one or more data attribute belonging to a single ‘data group’, where
each included data attribute describes a complementary aspect of the same ‘object of
interest’. An object of interest is any ‘thing’ or a conceptual object that is identified
from the point of view of the Functional User Requirements. It is equivalent to
‘entity-type’ in entity relationship (ER) analysis or ‘class’ in UML [23]. There are
four kinds of Data Movement Types: Entry (E), Exit (X), Read (R), and Write (W).
Each of these is defined as a BFC Type [18]. The value in COSMIC FP is the total
number of data movements performed in the software system.

A detailed discussion on the differences and similarities between these two
methods can be found in [10].

3.2 Description of the Case Project and the Software Application

The case project involved the development of a conceptual modeling tool (KAMA)
that provides a common notation and a method for the conceptual model developers

 The Effect of Entity Generalization on Software Functional Sizing 109

in different modeling and simulation development projects particularly in the military
domain. The project was started in June 2005 and completed in July 2007.

The total number of project staff worked consisted of 21 people; 1 project
manager, 1 assistant project manager, 2 steering committee members, 1 project
coordinator, 8 researchers, 1 software development team leader, 1 quality assurance
team leader, 4 software engineers (1 part-time), 1 part-time test engineer and 2 quality
engineers (1 part-time). The efforts utilized for the project totaled up to 1,832 person-
days. Table 1 gives the details of the efforts utilized for the tool development part of
the project.

Table 1. The development effort for the case project

Software Development
Life Cycle Phase

Effort
(person-days)

Development Processes 1,287
 Software Requirements Analysis 227
 Software Design 185
 Software Coding & Unit Testing 670
 Testing 205
Management 135
Supporting Processes 410
Total 1,832

The types of software tools and programming languages used in the development
phases were as follows: Rational Software Architect as the software analysis and
design tool, Requisite Pro as the requirements management tool, and C# as the
programming language. Unified Modeling Language (UML) [23] was used for
representing analysis and design. Related IEEE standards were utilized for the project
work products, which were kept under configuration control by the Subversion tool.

With respect to CHAR Method defined in [15], the functional domain of the
KAMA is determined as ‘Information System’.

KAMA is a graphical modeling tool that supports a specific notation based on
UML. It supports the development of conceptual models with a set of diagrams,
model elements and their relationships. Each diagram simply consists of a set of
model elements and the relationships between them. The type of model elements in a
diagram and the type of the relationships that can exist between them is determined
by the diagram type. The notation comprises 8 diagram types, 10 model element types
and 15 relationship types. The diagram entity has a common set of attributes
maintained for all types. For the model elements, on the other hand, together with the
common attributes that are maintained by all, there exist attributes specific to types.
Similar situation also holds for relationship types. Fig. 1 depicts the model element,
relationship and diagram entities and partial data model for the entity abstractions
with an extended entity-relationship (EER) model.

The characteristics of the data entities to be maintained by the tool make it a good
candidate for generalization/specialization practices to be applied for model element,
diagram and relationship entities.

110 O. Turetken et al.

Fig. 1. Entity generalizations for diagrams, model elements and relationships

3.3 Case Study Conduct

The functional size measurement of the KAMA was performed by IFPUG FPA and
COSMIC FSM based on the software requirements specification (SRS) document.
Together with the requirements statements, the document included UML use case
diagrams, activity diagrams describing the details of the use cases and a data model in
the form of a simple class diagram.

The measurements were performed independently by two groups of measurers,
each of which involved two measurement experts. The measurements were performed
by different groups to better understand potential measurement variances caused by
assumptions and interpretations of the different measurers. The results were verified
according to the measurement rules of each method by the measurer who himself did
not involved in that measurement process. In the group of measurers, one of them
holds a PhD. degree in the related subjects; two are PhD. students and one is an MSc.
student working on related subjects, in particular on software functional size
measurement. All the measurers received training for at least one of the FSM methods
and they all measured at least one project previously.

The measurement results are given in Table 2 and Table 3. Since ISO view takes
the adjustment of the functional size via quality and technical requirements outside
the scope of the FSM [13], we do not take into account the adjustment phase of the
IFPUG FPA for the purpose of this case study.

It took 105 person-hours of effort to measure the functional size of KAMA
implementing COSMIC FSM. The measurement with IFPUG FPA took 102 person-
hours. Although the functional size for each of the method differs significantly, the
effort values utilized for the measurement were quite similar.

Model
Element

Entity StateMission Goal

Relationship

Performs ControlsHas Inherits ...

...

Diagram

Mission
Space

Command
Hierarchy

Entity
Ontology

Work
Flow

...

a)

b)

c)

 The Effect of Entity Generalization on Software Functional Sizing 111

Table 2. Case Project - IFPUG FPA Size Measurement Details

No. of
Elementary Processes

No. of
ILFs

No. of
EIFs

No. of
EIs

No. of
EOs

No. of
EQs

Functional Size
(IFPUG FP)
(Unadjusted)

45 11 0 26 1 18 306

Table 3. Case Project - COSMIC FSM Size Measurement Details

No. of
Functional Processes

No. of
Entries

No. of
Exits

No. of
Reads

No. of
Writes

Functional Size
(COSMIC FP)

55 61 154 314 160 697

4 Findings and Conclusions

Although the rules for identifying the BFCs and BFC types differ for each method,
using similar concepts and comparable attributes, decomposition of the functional
user requirements into ‘transactions’ is expected to yield the same set of transactions.
While this is not explicitly asserted by any of the FSM methods, it is one of the
underlying assumptions of research related with the conversion of the sizes or
unification of these methods [8], [4], [10], [25]. When the same groups of measurers
involve in the measurement process, they usually identify similar or identical
transactions for measurements performed by different FSM methods [10], [11].

However, in this case study, the differences in the interpretation of the rules by
different measurers cause significant differences in the measurement results. During
the case study conduct, the measurers faced some difficulties in identifying the
entities and transactions. This was mainly due to the structure of the data to be
maintained by the application and the way the FSM methods handles entity
generalization.

IFPUG Implementation Results. Although IFPUG FPA measurement process does
not give any precedence rule for identifying the data and transactional functions, in
our case study we started with the data functions. Because, we utilized ILFs to better
identify the transactional functions and valuing their complexity. The complexity of a
transactional function is dependent on the number of ILFs/EIFs maintained during the
transactions as well as the total number of input and output DETs.

IFPUG FPA takes the complete inheritance hierarchy as a single logical file, with a
RET for each subclass [12]. For example, the complete inheritance hierarchy of
‘model elements’ is considered as one ILF with a number of RETs for each special
type (Fig. 2). Thus, with respect to the counting rules, the functional complexity of
the model element ILF is high and so the contribution on the total functional size is 15
IFPUG function points (FP). The affect of number of RETs on functional size were
limited in the sense that, with 10 RETs for each of the special model element type
having attributes of their own, the contribution of the ILF is increased from 7 to 15
function points (complexity level from low to high).

112 O. Turetken et al.

Fig. 2. A mapping from entities to an ILF in IFPUG FPA

Identifying the data functions (ILF & EIF) was useful in determining the
transactional functions, because the primary intend of the transactional functions
(elementary processes in IFPUG FPA) is to maintain one or more logical files (create,
update, read, delete, etc.). Besides, the functional complexity of a transactional
function depends on the number of logical files referenced and the total number of
input and output DET to and from the transaction.

Unifying all special entities in the inheritance hierarchy into an ILF also combined
many of the transactions performed on each of the special entity. For example, a
transaction of creating an ‘actor’ model element was combined with creating a ‘state’
model element, even though system may need to behave in a different way for each of
them. It can be argued that those two entities are separate in the user domain and
whether the application handles both entities in the same way or not can be a design
choice rather than a decision to be given in the requirements phase.

The difference for those two cases can be significant for applications similar to
KAMA, where entity abstractions (aggregation, generalization, etc) are applied
extensively. For example, for the elementary process of creating a model element, the
size is 6 FP (complexity level being high). On the other hand, having separate element
creation process for each special type would result significantly larger values in total.
For 10 specific types, the result would be 60 FP (each having 6 FP with functional
complexity level high). Applying the same principle for other generalized entities
(relationship and diagram types) and related elementary processes (update, deletion,
read, etc.), the difference would be more substantial.

Based on these assumptions, where we consider each special type as a separate
ILF, we re-measured the size and the resulting value turned out to be 1789 FP, as
opposed to 306 FP in the first measurement performed in the case study. The number
of elementary processes increased from 45 to 260 and the number of ILFs increased
from 11 to 41. 485% difference in the functional size is significant.

Another notable difficulty about IFPUG FPA is related to the counting rules for
transactional functions. One of the rules to be applied in order for an elementary
process to be counted as a unique occurrence of an elementary process (external
input-EI, external output-EO or external inquiry-EQ) is the following [12]:

“The set of data elements identified is different from the sets identified for
other external inputs/outputs/inquiries for the application.”

ILF : Model Element
RETs :
Entity
Actor ,
Role ,
Mission ,
Task,

I /O ,
State ,
Goal ,
Criteria ,
Note

Actor

Entity

Role

Mission

Task

 I/O State Goal Criteria

Model
Element

Note

 The Effect of Entity Generalization on Software Functional Sizing 113

In the context of entity generalization/specialization, this can be interpreted in a
way which is different than the practices applied in the counting manual and other
guiding sources [9]. For example, with respect to the practices applied regarding the
rules in the counting manual, creating an ‘actor’ and ‘state’ model elements is
considered as a unique external input maintaining the ‘model element’ ILF. However,
with respect to the rule given above, we can argue that, if the ‘actor’ and ‘state’ model
elements have different attributes other than the ones they have in common, creating
each of them can be considered as different elementary processes. Because, creating
an ‘actor’ model element will maintain a different set of DETs than creating the
‘state’ model element. This interpretation yet again may result considerable
differences in the result. In order to observe the affect of such an interpretation on our
case project, we recalculated the functional size. The resulting size value was 512 FP,
which is 67% more than the original 306 FP value. The number of ILFs remained the
same but the number of elementary processes increased from 45 to 82. Hence,
different interpretations and assumptions regarding the counting rules and the
structure of the data leaded to differences in functional size, which was significant for
our case.

COSMIC Implementation Results. For the COSMIC FSM measurement case, the
measurement group had some difficulties particularly in identifying the functional
processes and measuring their functional size. One of the main reasons for that was
the lack of clear assistance in the measurement manual [28] for distinguishing
processes that maintain a set of ‘objects of interests’ that can be abstracted to a
general entity. The group’s tendency was to treat all special entities as separate object
of interests, and consider each transaction performed on them as separate functional
processes. For example, two functional processes; creating a ‘mission space’ diagram
and creating ‘entity ontology’ diagram are considered as separate since they maintain
two different object of interests and they are triggered by different triggering events
perceived by the functional user (triggering event 1 - the user wants to create an
‘entity ontology’ diagram; triggering event 2 - the user wants to create ‘mission
space’ diagram). Accordingly, we obtained totally 270 functional processes.
However, the processing logic of the functional processes which maintain sub-entities
is the same. Therefore, we considered those as the same and measured only one.
Based on this assumption, we obtained 55 functional processes in total, which was
only 20% of the value obtained in first measurement.

Another difficulty was the measurement of each functional process which
maintains sub-entities. The measurement group needed to refer to COSMIC FSM
guideline for sizing business applications software [27]. The COSMIC FSM
measurement manual [28] recommends the reader to refer to this guideline for the
details on determining object of interests and separate data groups. To better handle
generalization, the guideline introduces a new term; ‘sub-type object of interest’.

According to the guideline, sub-types are the specialized entities (classes) that are
in the lowest level in the inheritance hierarchy. The general principle is that where
there is a need to distinguish more than one sub-type in the same functional process,
each sub-type is treated as a separate object of interest. Hence, according to the rules
in the guideline, instead of having separate functional processes for each special

114 O. Turetken et al.

entity, their contribution on the functional size was taken into account by including
additional data movements for each of the special entity (sub-type object of interest)
in the functional processes. However, if the functional process did not need to
distinguish special entities, only the general entity is referred. For example, creating a
model element is a functional process that requires distinguishing each type of model
element. For 10 special entities, there were 10 Entry and 10 Write data movements in
the functional process.

COSMIC FSM guideline for sizing business applications software defines
specific rules to handle entity generalizations in measuring the functional size of a
functional process and provides examples demonstrating how generalizations can
be reflected to the measurement practice. We still faced difficulties in identifying
the functional processes maintaining sub-entities. Identifying functional processes
are derived by the set of triggering events sensed by each of the functional user. In
our case study, although their processing logics are similar, we arrived at separate
functional processes each maintaining different sub-entities. Therefore, it is
necessary to extend COSMIC FSM measurement manual with specific rules in
order to clarify the procedure to be followed when identifying and combining
similar functional processes which maintain sub-entities that are generalized. In
addition, it is still arguable whether generalization or specialization practices can be
performed in the user domain or they belong to the solution domain and are design
issues.

In our study, we observed that, with different interpretations and assumptions,
significantly different set of base functional components (BFCs) for the same
software can be identified and this can occur not only among different FSM methods
but also for the same method. We observed that there is an improvement opportunity
for both methods regarding the rules to better accommodate entity generalizations,
since current rules are subject to ambiguity and interpretation.

References

1. Abrahao, S., Poels, P., Pastor, O.: A Functional Size Measurement Method for Object-
Oriented Conceptual Schemas: Design and Evaluation Issues. Software & System
Modeling 5(1), 48–71 (2006)

2. Albrecht, A.J.: Measuring Application Development Productivity. In: Proc. of the IBM
Applications Development Symposium, Monterey, California, pp. 83–92 (1979)

3. Caldiera, G., Antoniol, G., Fiutem, R., Lokan, C.: Definition and Experimental Evaluation
of Function Points for Object Oriented Systems. In: Proceedings of the 5th International
Symposium on Software Metrics, Bethesda (1998)

4. Cuadrado-Gallego, J.J., Rodriguez, D., Machado, F., Abran, A.: Convertibility Between
IFPUG and COSMIC Functional Size Measurements. In: Münch, J., Abrahamsson, P.
(eds.) PROFES 2007. LNCS, vol. 4589, pp. 273–283. Springer, Heidelberg (2007)

5. DeMarco, T.: Controlling Software Projects. Yourdon press, New York (1982)
6. Diab, H., Frappier, M., St. Denis, R.: Formalizing COSMIC-FFP using ROOM. In:

ACS/IEEE Inter. Conf. on Computer Systems and Applications, pp. 312–318 (2001)

 The Effect of Entity Generalization on Software Functional Sizing 115

7. Fetcke, T., Abran, A., Nguyen, T.H.: Mapping the OO-Jacobson Approach into Function
Point Analysis. In: Proceedings of TOOL 1997, Santa Barbara, CA (1998)

8. Fetcke, T., Abran, A., Dumke, R.: A Generalized Representation for Selected Functional
Size Measurement Methods. In: International Workshop on Software Measurement (2001)

9. Garmus, D., Herron, D.: Measuring the Software Process: A Practical Guide to Functional
Requirements. Prentice Hall, New Jersey (1996)

10. Gencel, C., Demirors, O.: Conceptual Differences Among Functional Size Measurement
Methods. In: Proc. of the First International Symposium on Empirical Software
Engineering and Measurement - ESEM 2007, Madrid, Spain, pp. 305–313 (2007)

11. Gencel, C., Demirors, O.: Functional Size Measurement Revisited. ACM Transactions on
Software Engineering and Methodology (to be published, 2008)

12. International Function Point Users Group (IFPUG), Function Point Counting Practices
Manual, Release 4.2.1 (2005)

13. IEEE Std. 14143.1: Implementation Note for IEEE Adoption of ISO/IEC 14143-1:1998 -
Information Technology- Software Measurement- Functional Size Measurement -Part 1:
Definition of Concepts (2000)

14. ISO/IEC 14143-1: Information Technology - Software Measurement - Functional Size
Measurement - Part 1: Definition of Concepts (1998, revised in 2007)

15. ISO/IEC TR 14143-5: Information Technology - Software Measurement - Functional Size
Measurement - Part 5: Determination of Functional Domains for Use with Functional Size
Measurement (2004)

16. ISO/IEC IS 20968:2002: Software Engineering - MK II Function Point Analysis -
Counting Practices Manual (2002)

17. ISO/IEC IS 20926:2003: Software Engineering - IFPUG 4.1 Unadjusted Functional Size
Measurement Method - Counting Practices Manual (2003)

18. ISO/IEC 19761:2003: Software Engineering - COSMIC-FFP: A Functional Size
Measurement Method (2003)

19. ISO/IEC IS 24570:2005: Software Engineering - NESMA functional size measurement
method Ver.2.1 - Definitions and counting guidelines for the application of FPA (2005)

20. Jenner, M.S.: COSMIC-FFP and UML: Estimation of the Size of a System Specified in
UML – Problems of Granularity. In: Proc. the Fourth European Conference on Software
Measurement and ICT Control, pp. 173–184 (2001)

21. Jones, T.C.: A Short History of Function Points and Feature Points. Software Productivity
Research Inc., USA (1987)

22. NESMA, Definitions and Counting Guidelines for the Application of Function Point
Analysis, Version 2.0 (1997)

23. OMG, Unified Modeling Language: Superstructure, Ver.2.0, Formal/05-07-04, Object
Management Group (2005)

24. Rains, E.: Function points in an Ada object-oriented design? OOPS Messenger 2(4), 23–
25 (1991)

25. Symons, C.: Software Sizing and Estimating: MkII Function Point Analysis. John Wiley,
Chichester (1993)

26. Symons, C.: Come Back Function Point Analysis (Modernized) – All is Forgiven!). In:
Proc. of the 4th European Conf. on Software Measurement and ICT Control (FESMA-
DASMA 2001), Germany, pp. 413–426 (2001)

27. The Common Software Measurement International Consortium (COSMIC): Guideline for
Sizing Business Applications Software Using COSMIC-FFP, Version 1.0 (2005)

28. The Common Software Measurement International Consortium (COSMIC): COSMIC
Method, Version 3.0, Measurement Manual (2007)

116 O. Turetken et al.

29. The United Kingdom Software Metrics Association: MkII Function Point Analysis
Counting Practices Manual, V.1.3.1 (1998)

30. Whitmire, S.A.: 3D Function Points: Scientific and Real-time Extensions to Function
Points. In: Proceedings of the 1992 Pacific Northwest Software Quality Conference (1992)

31. Whitmire, S.A.: Applying function points to object-oriented software models. In: Keyes, J.
(ed.) Software Engineering Productivity Handbook, pp. 229–244. McGraw-Hill, New
York (1992)

Towards a Capability Model for the Software
Release Planning Process — Based on a Multiple

Industrial Case Study

Markus Lindgren1, Rikard Land2, Christer Norström2, and Anders Wall3

1 ABB Force Measurement, Västerås, Sweden
markus.lindgren@mdh.se

2 School of Innovation, Design, and Engineering
Mälardalen University, Västerås, Sweden

rikard.land@mdh.se, christer.norstrom@mdh.se
3 ABB Corporate Research, Västerås, Sweden

anders.wall@se.abb.com

Abstract. Software release planning is an important activity for effec-
tively identifying the customer needs generating best business, especially
for incremental software development. In this paper we propose a capa-
bility model for improving the release planning process of an organiza-
tion. Using this model it is possible to 1) determine the capabilities of an
organization’s release planning process, and 2) identify areas for improve-
ment. The model is based on empirical data from a multiple case study
involving 7 industrial companies, all being producers of software inten-
sive systems. We also provide examples of how the proposed capability
model can be applied using the companies from the study.

1 Introduction

Release planning can be seen as a company-wide optimization problem involving
many stakeholders where the goal is to maximize utilization of the often limited
resources of a company and turn them into business benefit [1]. As input to
release planning is a set of needs that, when implemented as part of a product,
provides some business/customer value. Release planning results in a decision of
what to include in future release(s) of a product, and consequently, a decision
of what not to include; normally the cost of implementing all proposed needs
exceeds the budget allocated to a release. Thus, the set of needs needs to be
prioritized in order to maximize the business value of the included needs. In ad-
dition, there are constraints that must be considered during release planning [1],
such as, time-to-market and dependencies between needs. An overview of some
relevant aspects of release planning is illustrated in Fig. 1.

Poorly performed release planning can result in “wrong” features being re-
leased to the market and/or being released at the “wrong” point in time. An-
other possible impact of poor release planning is inefficient use of the resources
available to an organization. Ultimately, release planning impacts how successful
and profitable an organization can become.

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 117–132, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

118 M. Lindgren et al.

New needs

Development
project(s)

”Quality”
needs

Competitors

New technology

Internal QA

(Sub-set of Stakeholders)

Quality in Use

Release/ Product
Planning

Release
Plan

Release
Plan

Product

Product changes/
New features

Project constraints:
- Budget
- Time-to-market
- Resources
- Developers
- ...

and

Fig. 1. Overview of relevant aspects of release planning

In this paper we propose a capability model for improving the release planning
process of an organization, which is based on empirical data from a multiple case
study on software release planning in industry [2,3,4]. Using this capability model
it is possible to:

– Determine the capabilities of an organizations release planning process.
– Identify areas for improvement.

We also illustrate how this capability model can be applied to determine the
capabilities of a company’s release planning process, using the companies from
our multiple case study as examples.

The outline of this paper is as follows: Section 2 presents a selection of re-
lated work, Section 3 describes the research method, Section 4 presents the re-
lease planning capability model, Section 5 presents examples of using the release
planning model, Section 6 provides a more extensive release planning example
from industry, putting things into context, and Section 7 discusses future work.
Finally, in Section 8 we summarize the paper.

2 Related Work

Release planning research is mainly focused on formalizing the release planning
problem, typically by formulating the problem as an optimization problem, where
customer value should be optimized while subject to a set of constraints [1,5].
In addition, there are a number of tools being developed implementing these
algorithms [6]. However, there is also work indicating that the release planning
problem in itself is “wicked” and therefore hard, and possibly unsuitable, to
formulate as an optimization problem [7].

In [8,1] two different approaches to release planning research are discussed,
referred to as the art and science of release planning. The approaches formulating
release planning as an optimization problem belong to the science approach,
while we in this paper are more focused on the art of release planning. We discuss
how a company can perform release planning from a more practical point of

Towards a Capability Model 119

view. Furthermore, it is rare to consider how the existing system impacts release
planning, exception being [8,6], which again are science approaches.

Requirements engineering is related to release planning, e.g., prioritization of
needs is a common problem. However, release planning is a more general problem,
since it, e.g., considers resource constraints [6]. Focal Point is one example of a
requirements prioritization tool based on the work presented in [9].

Research within the area of process improvement is active, where the perhaps
most well-known model and most used in practice is the CMMI [10]. CMMI
is focussed on an organization’s capabilities and maturity of running product
development project(s). It specifies practices that must be adhered to in order to
reach a specific CMMI level, where CMMI level 1 represents an organization with
lowest maturity and CMMI level 5 represents the highest maturity. However,
CMMI provides little detail on how to perform release planning. The CMMI
process areas being related to release planning are project planning, requirement
development, and requirement management. Within these process areas there are
practices for capturing and managing requirements, but when it comes to how
to select which features to include in the next release of a product there is no
information or practice; CMMI in several cases merely states “resolve conflicts”.
This paper can be seen as an extension of CMMI that addresses some areas
where CMMI provides little or no information.

There are also a number of standards which have parts related to release plan-
ning, for example, IEEE Std. 830:1998, 1220:2005, 12207:1996, and 15288:2002.
IEEE Std. 830 specifies how a complete, correct, and non-ambiguous software
requirement specification should be written. IEEE Std. 1220 specifies the tasks
required throughout a system’s life cycle to transform stakeholder needs, re-
quirements, and constraints into a system solution. IEEE Std. 12207 specifies a
common framework for software life cycle processes, similarly IEEE Std. 15288
defines a framework for systems engineering life cycle processes. As these are
standards, they rarely state how to perform a specified required task, instead
they state that the task must be performed (somehow). In this paper we provide
more “hands-on” approaches to release planning; surprisingly little is concerned
with release planning in these standards.

To conclude, existing research provide little information concerning how to
improve an organizations release planning process, and there is little work on
how to consider the quality of the existing system during release planning.

3 Research Method

In this paper we investigate the effectiveness of performing software release plan-
ning. We do this by proposing an initial model expressing the capabilities of an
organizations release planning process, which aid in identifying areas for im-
provement. The model is a first attempt in this direction which we expect to be
refined and become more detailed over a period of time. This work is based on
empirical data collected during a multiple case study involving 7 industrial com-
panies [4]. For confidentiality reasons there are no company names, no names of

120 M. Lindgren et al.

interviewed people, and no absolute numbers on, e.g., budget, in this paper nor
in [4], but where possible we present relative figures.

In our study we have used semi-structured interviews as the primary data
collection method (with a common line of questions/topics), sometimes com-
plemented by documents received from the interviewees. The main alternative,
direct observations, has not been used due to the topic being studied containing
company sensitive information and partly due to practical limitations.

In conducting the study we have followed the recommendations by Yin [11]
for multiple case studies. We have addressed construct validity in multiple ways.
First, there have always been two researchers present during each interview in
order to reduce possibilities of misunderstandings. Second, interview notes have
been taken during each interview, which have been sent to interviewees for ap-
proval [4]. Third, we have had two test interviews to improve our interview setup.
In total we have interviewed 16 people (excluding test interviews), typically 2–4
persons per company to achieve data triangulation.

To strengthen the internal validity of our study we have used multiple re-
searchers when performing analysis and made use of pattern-matching tech-
niques, and we have considered rival explanations. To increase reliability of our
study, all collected data, and derivations thereof, are stored in a database ac-
cessible only to the researchers in the study, e.g., interview notes and merged
notes per company. In addition, the study design is documented, which includes
the interview questions. Using this material it is possible to trace conclusions to
collected data, and vice verse. To counter researcher bias multiple researchers
have been involved in most of the steps of this study. Furthermore, companies
that the researchers in the study are affiliated with are excluded from the study.

Thanks to industrial contacts we have been able to find a relatively large num-
ber of companies and persons willing to participate in our study, which aids in
increasing the external validity of our results. However, there is risk that the se-
lection is not fully generalizable to other domains and/or nationalities/cultures.
In selecting people to interview we have asked our contact person(s) at each
company for references to people working with release planning. Our interviews
have mainly been with product managers, managers, and project leaders.

All companies in the study develop software intensive embedded systems with
a typical life cycle of 10–20 years. However, the companies are in different product
domains, e.g., automation, telecommunication, and automotive. Table 1 presents
some relative data concerning the characteristics of products developed, pro-
duced, and sold by the studied companies in order to provide a feel for their
main characteristics. In Table 1 Volume refers to the produced product volume,
while the rows % Software, % Electronics, and % Mechanical is our subjective
judgment of the products’ software, electrical, and mechanical content, which
in turn reflect the amount of resources these companies invest in these areas.
Case 3 is excluded from the table since it is a management consulting company
that has no products. The case numbering in Table 1 is consistent with [4,2].

We are partly using a grounded theory approach [12] in this research, since
we define a model based on observed data. The model we present in this paper

Towards a Capability Model 121

Table 1. Charachteristics of companies in the study, where VH = Very high, H =
High, M = Medium, L = Low, and VL = Very low

Case 1 2 4 5 6 7
Volume VH H VH L M L-M
% Software L-M L-M H L-M M H
% Electronics M M H M M M
% Mechanical H H L H M L
Employees H H VH L-M VL VL-L

% in R&D VL VL H L-M VL VL

has partially been validated in a workshop with participants from our study.
However, since we created the model based on collected data, the same data
cannot be used to validate the model. Nevertheless, it can be used to motivate
and illustrate the model until further studies validate it.

Proper validation of the model requires a baseline with which to compare, for
example, the state before changing the release planning process in an organiza-
tion, and then collect data after introducing the change; as has been done for
CMMI [13]. We have not yet reached such a state in this research.

4 Improving the Release Planning Process

In its generalized form, release planning can be considered to consist of three
different process activities, as illustrated in Fig. 2:

Elicit Needs. Collect stated, and unstated, needs from the different stakehold-
ers. Other literature, e.g. [8], refers to this activity as requirements elicitation,
which typically refers to a phase within a development project. We mainly
refer to need collection occurring prior to forming the development project.

Make Release Decision. Prioritize the needs such that the cost and schedule
for realization fits within the constraints of the release, and decide the con-
tents of the release. Again, this is an activity that primarily occurs prior to
the development project.

Realize Needs. Typically performed as product development project(s) within
the research and development (R&D) part of the organization, where the
prioritized needs are implemented as part of a product(s).

These process activities can, but need not, be performed in sequence; typically
these are continuous activities with data flow between them.

Make Release
Decision Realize NeedsElicit Needs

Fig. 2. Overview of the release planning process

122 M. Lindgren et al.

In this section we present a capability model for improving an organization’s
release planning process, inspired by the Test Process Improvement (TPI) [14]
framework, and partly by the CMMI [10], therefore there are some similarities.
Our focus is placed on need elicitation and making the release planning decision,
while we are aware of there being other important areas within release planning
as well, such as, choice of time horizon and resolving need dependencies.

Each of the following sub-sections describe key-areas within the three process
activities from Fig. 2. For each key-area a capability scale is presented, with
levels from A–D, where A represents lowest capability and D represents highest
capability. Using these descriptions it is possible to pinpoint the capability for
an organization within each key-area. While describing the key-areas we also
present some examples of how the key-area can be applied in practice, using
examples from our multiple case study [4]. However, it should be noted that we
do not suggest that it is always economical for an individual organization to
strive for level D in each key-area.

We have derived the set of key-areas based on what we have observed as being
important activities in our study; the set we present is in no way guaranteed to
be complete. Within each key-area we have ranked observed data from the cases
within each area to form the capability levels. The ranking has partly been
validated in a workshop with participants from our study. However, we expect
our proposed capability model to be refined and detailed in the future; this is
only a first attempt at building a capability model for release planning. For
example, in this model there are capability levels from A to D, however, it is
not necessary for there being four levels within each key-area. Furthermore, the
model has been devised with a focus on software, although it may be possible
to apply the model in other domains as well.

In TPI [14] there are also key-areas with levels A–D. In addition, there is a test
maturity matrix relating the level within each key-area to a test maturity scale,
from 0 to 13. For example, for an organization to have rating 3 it is required to
have level A in the key-area Estimation and planning, level B in Test specification
techniques, etc. In our work we currently haven’t reached a state where we can
present a similar maturity matrix for release planning. Yet, the key-areas will
allow an organization to identify possible improvement key-areas.

4.1 Elicit Needs

We have identified the following key-areas within the process activity elicit needs:
need Elicitation and need documentation.

Need elicitation: Refers to how and from which stakeholders needs are elicited.
Elicited needs are prioritized, in other key-areas, and a decision is made of what
to include in a release. The capability scale is as follows:

Level A. Adhoc. Needs are collected when opportunities arise, for example,
during meetings with customers or other stakeholders. Typically this activity
is unstructured and performed by product management.

Towards a Capability Model 123

Level B. Formal Path. Each (important) stakeholder group has a formal path
for passing need requests to product management. Typically these needs are
collected prior to upcoming release planning decisions. This formal path
should be described in the process description for the organization.

A stakeholder group refers to a specific “type” of stakeholders, e.g., the
end-customer can be one such type. Other such possible types are developers,
testers, and commissioners. What differentiate these are that they each use
the product in different ways, and therefore also have different needs.

Level C. Stakeholders Prioritize Needs. Needs are collected using both A
and B, but with the addition of each stakeholder group also assigning prior-
ities to the needs. Product management, which makes the release decision,
receives a set of prioritized need lists, one from each group, and is required
to make the release plan decision and to be able to motivate this decision.

Level D. Stakeholders Rate Needs Based on Product Strategy. An ex-
tension of C where the internal stakeholders of the company assign priori-
ties based on the product and/or company strategy; external stakeholders
prioritize needs according to level C.

Example 1. Case 1 fulfils level B by having three parts within the organization,
which each focus on a separate area of the product [4]. These areas are product
features, product quality, and cost-cut (mainly related to production cost), which
each propose needs to product management; illustrated in left part of Fig. 3. In
a similar way Case 4 has a formal path for collection of feature needs and quality
needs; illustrated in right part of Fig. 3.

Example 2. Case 4 develops a product platform used by two other parts of their
organization, O1 and O2 [4]. One way in which Case 4 fulfils level B for need
elicitation is that product management for O1 and O2 propose needs to product
management for Case 4. In addition, system responsibles from O1, O2, and from
Case 4 propose needs to product management for Case 4, as is illustrated in
Fig. 4. Furthermore, they apply a principle, called “one-voice”, where each group
(i.e., each line to product management in Fig. 4) prioritize the set of needs before
passing them to product management for Case 4, thereby fulfulling level C.

Collect Needs

Identify Product Feature Needs

Identify Quality Needs

Identify Cost-Cut Opportunities

Identify Quality Needs

Prioritize Quality Needs

Identify Product Feature Needs

Prioritize Product Feature Needs

Collect Needs

Case 1 Case 4

Fig. 3. Two examples of a formal path existing for need elicitation

124 M. Lindgren et al.

Platform
release plan

Product
management
for Platform

- product management
- system responsibles

Order to
 R&D

- product management
- system responsibles

O2

Platform
- system responsibles

O1

Fig. 4. Example of having a formal path for need elicitation

Documentation: For a need to become eligible for prioritization into a release
there typically needs to be some documentation, e.g., a short description of what
business benefit the need aims to fulfil. The capability scale is as follows:

Level A. Adhoc. Only a short description of the need, if any.
Level B. Template. A common template for need documentation consisting

of at least: a short description of the need, an initial cost estimate for re-
alizing the need, an initial return-of-investment calculus, and a statement
concerning the consequences on the existing system of introducing the need.
Typically, this documentation should be at most one page.

Level C. Tool Support. The information from Level B are stored in a tool/
database, which can be accessed by all people involved in need elicitation.

Level D. Type of Need. An extension of Level C where the needs are classi-
fied according to at least the following types: new feature, quality improve-
ment, cost-cut.

Example 3. In our study [4] all the companies use some form of template for
the proposed needs. However, its form range from a short statement, a one page
statement (as in level B), to templates with 3 PowerPoint slides.

4.2 Make Release Decision

These are the key-areas we have identified belonging to making the release de-
cision: decision Material, product strategy, and release plan decision.

Decision material: In addition to the need documentation described in Sec-
tion 4.1 there can be different types of studies that refine the needs and produce
decision material, which complement the mentioned need documentation. The
purpose of the decision material, produced via studies, is both for increasing
confidence of data and risk reduction. Typically this is related to, e.g., refining
cost-estimates, determine consequences for the existing system, refining return-
of-investment calculus. The capability scale is as follows:

Level A. Adhoc. No formal decision material is used, instead the decision ma-
terial is formed by the “gut-feeling” [2] of the individuals involved in making
the release plan decision.

Towards a Capability Model 125

Level B. Unstructured Pre-study. A pre-study is performed with purpose
of refining a need proposal. The results produced by the pre-study partly
depend on which individual(s) perform the pre-study, and partly on the
people ordering the pre-study.

Level C. Structured Pre-study. A structured pre-study [2], compared to an
unstructured (level B), has a standardized set of issues which should be
investigated in the pre-study. It considers alternatives, as is described in the
process area Technical Solution in CMMI [10].

Level D. Feasibility Study. This is more oriented towards the solution for
how to realize the proposed need(s) into the existing system, and investigat-
ing different alternatives. In addition to performing a structured pre-study,
as in level C, a feasibility study is performed with the goal determining how
the proposed need(s) can be realized into the existing system, the resources
required to complete the task, refine cost-estimates, and address market is-
sues; see feasibility study on Wikipedia.

Example 4. The development projects in Case 1 are to large degrees concerned
with production issues, since their products have large mechanical content (see
Table 1) and the production is both complicated and costly. Therefore, before
any decisions are made they need to know the consequences for production (as
far as possible). These consequences are investigated via structured pre-studies,
illustrated in left part of Fig. 5.

Case 4 on the other hand delivers a product platform to O1 and O2 (previously
mentioned in Example 2), which in turn use the platform to develop products. In
case the platform is delivered at the wrong point in time or with too poor quality,
this will have consequences on the efficiency for O1’s and O2’s development
projects. To reduce this risk, and to improve confidence in the decisions being
made are the correct ones, Case 4 use both pre-studies and feasibility studies;
before and after each study it is possible to re-prioritize the proposed needs,
illustrated in Fig. 5.

Elicit Needs

1st Prioritization

Perform Pre-Study

2nd Prioritization

Elicit Needs

Perform Pre-Study

1st Prioritization

2nd Prioritization

Perform Feasibility Study

3rd Prioritization

Case 1 Case 4

Fig. 5. Two examples of using studies to refine need proposals

126 M. Lindgren et al.

Product strategy: Having a well-defined and clearly communicated product
strategy often helps employees within an organization to know what to strive
for; also an aid in daily prioritization of tasks. So far we have not yet reached a
state where we can present a capability scale. Still, we present some examples
from our industrial cases [4]:

Adhoc. Each release basically has its own focus and is not directly related to
any product/business strategy.

Release Profile. Case 7 uses a release profile, which sets the top-level priorities
for the next release. For example, the profile can be aimed at improving
usability and/or extending the set of supported communication protocols.

Product Strategy. Each product produced by Case 1 has an attribute profile,
consisting of more than 20 attributes, defining the target properties of the
product. Furthermore, the attribute profile is clearly linked to the company
strategy. Case 2 also has a clearly defined product strategy, with 8 core values
and 3 premium values; these values are used when determining the business
value of proposed development projects.

Another possibility expressing the product strategy is by using the measure
of effectiveness (MOE) defined in IEEE Std. 1220:2005, which is an explicit
mathematical expression “. . . by which an acquirer will measure satisfaction with
products produced by the technical effort.” The expression should capture the
top-level goals, i.e., should not contain too many details. The difference compared
to the previous strategy, is that it is measurable.

Release plan decision: The needs elicited in Section 4.1, including its docu-
mentation and decision material, is used as a basis for prioritization and followed
by a decision of what needs to be included in the next release. We have not yet
reached a state where we can present a full capability scale, the first two levels
are presented, while the following two are proposals which might fit into the
capability scale (these have not been observed in the industrial cases):

Level A. Adhoc. Needs are prioritized based on the “gut-feeling” [2] of product
management.

Level B. Tool Support. A decision support tool, such as Focal Point, is used
to aid in making the decision. The prioritization should make use of the
product/company strategy.

Metrics (not based on observed data). Use metrics, e.g., production cost,
maintenance costs, used product options, sold product volume, quality-in-
use, and prediction of these variables, as support when making decisions. We
have not yet defined a specific set of metrics, but to reduce the number of
decisions based on “gut-feeling” [2] more objective data must be used.

Optimizing (not based on observed data). Once proper metrics are in place
it might be possible to introduce optimization. For example, by adapting cur-
rent “science” approaches [1,6] to consider these metrics when computing re-
lease plans. Further research is required to reach such a position.

Towards a Capability Model 127

4.3 Realize Needs

How to realize needs in development projects is not within the scope of this
paper; refer to, e.g., CMMI [10] for a description of practices/key-areas. However,
one related issue is given an organization with certain capabilities of its release
planning process and a certain maturity for performing development projects,
e.g., determined using CMMI, which of these two areas should be improved in
order to have best effect?

The maturity and capabilities of performing development projects controls
the efficiency with which needs can be implemented, while release planning is
more focused on effectiveness, i.e., making sure that the correct features and
quality improvements are released to customers. Consequently, it is not certain
that a company with 100% efficiency in its development projects is the most
successful one. This indicates there being a need for being at least as good at
release planning as performing development projects.

5 Application of the Capability Model

In this section we evaluate the release planning key-areas presented in Section 4
for the companies in our multiple case study [4]. This evaluation is based on
qualitative reasoning of the empirical data from our study, which is the same
data used in developing the release planning capability model. Based on the
results from the evaluation we also present suggestions for how to improve the
release planning processes for the companies. We lack data for making explicit
conclusions in some cases due to using a grounded theory approach in building
our capability model, i.e., the model was constructed after collecting the data.

The results of our analysis is summarized in Table 5; case numbering is con-
sistent with [4,2]. Below we comment on each key-area requiring further analysis
to reach a conclusion concerning the capability level.

Need Elicitation: Case 1 fulfils level B since it has a formal path for product
features, quality improvements, and cost-cut; as discussed in Example 1. Case 4
fulfils level C by having a formal path, for product features and quality needs,
and by the stakeholders prioritizing the needs; as discussed in Example 2.

Table 2. Capability levels for each release planning key-area and company

Level BRelease profileLevel BLevel A-BLevel ACase 7

Level AAdhocLevel BLevel BLevel ACase 6

Level AAdhocLevel A-B?Level BLevel ACase 5

Level A/BAdhocLevel DLevel BLevel CCase 4

Level A?Product strategyLevel CLevel A?Level B-DCase 2

Level AProduct strategyLevel CLevel ALevel BCase 1

Release Plan
Decision

Product
Strategy

Decision
Material

Need
Documentation

Need
Elicitation

Key-
Area

Level BRelease profileLevel BLevel A-BLevel ACase 7

Level AAdhocLevel BLevel BLevel ACase 6

Level AAdhocLevel A-B?Level BLevel ACase 5

Level A/BAdhocLevel DLevel BLevel CCase 4

Level A?Product strategyLevel CLevel A?Level B-DCase 2

Level AProduct strategyLevel CLevel ALevel BCase 1

Release Plan
Decision

Product
Strategy

Decision
Material

Need
Documentation

Need
Elicitation

Key-
Area

128 M. Lindgren et al.

We have insufficient data for clearly determining the capability level for Case 2,
but it is somewhere between level B-D on the capability scale. Development
projects are rated using the product strategy, indicating part support for level
D, but we lack data concerning the existance of a proper formal path (level B) for
need elicitation and if stakeholders prioritize needs (level C).

For Case 5 our interviews cover release planning with a planning horizon of
5–10 years, and therefore we lack data for the more near time planning. Still,
the data we have indicate level A.

Case 6 and Case 7 are rather similar, both having level A. This judgement
is made since they do not have any formal path for needs from R&D. Though,
there are formal paths from sales and marketing.

Need Documentation: Almost all companies in the study have some form of
template for documenting proposed needs. For example, Case 5 and Case 6 doc-
ument needs using up to three PowerPoint slides, with cost estimates, business
impact, and a time plan. Case 4 uses a “one-pager” containing a slogan, business
benefit, estimated cost, and impact on other parts of the system. Case 7 has an
Excel template but seems to lack cost-estimate, but there may be other templates
not covered during the interviews. Case 1 seems to use only a short-description,
but which is refined in pre-studies and later stored as a change request in a
database. For Case 2 we have no exact data.

Decision Material: Case 1 fulfils level C, as discussed in Example 4, and Case 4
fulfils level D, as also discussed in Example 4. Case 2 performs structured pre-
studies and projects are also required to rate their impact on the 8 core values
defined in their product strategy. The data we have from Case 6 and Case 7
indicate that they perform pre-studies, but the format for these pre-studies is not
strictly defined (level B). We lack data for Case 5, but based on our impression
from our interviews we suspect they are between level A–B.

Product Strategy: Case 1 and Case 2 have clearly defined product strategies
as discussed in Section 4.2. Case 7 uses a release profile defining the top-level
goals for the next release. Case 4, Case 5, and Case 6 did not seem to have a
defined product strategy that had impact of how needs where prioritized, instead
these companies based their decisions making “good business”.

Release Plan Decision: The release plan decision is usually made in a group
discussion, where typically stakeholders need to “lobby” for their own case. In
case there is data support the proposed need, e.g., a customer survey, then such
data often has strong impact beneficial. Case 1, Case 4, Case 5 seem to handle
in the decision making in similar ways. Case 7 uses the tool Focal Point [9] as
an aid in decision making. Case 6 has tried using Focal Point, but considers to
be a bit awkward when comparing needs with very different costs.

5.1 Improvement Proposals

Here we discuss some possible ways in which the companies in our study can
improve their release planning processes.

Towards a Capability Model 129

Case 4 has highest capability level, among the companies in the study, for need
elicitation, decision material, and need documentation; see Table 5. We have data
from other sources indicating that Case 4 also has highest CMMI level among
the investigated companies. We have not looked further into this issue. Areas
where Case 4 possibly can improve is by defining a more clear product strategy
and by employing decision support tools to a greater extent.

Case 7 can improve their need elicitation by having a formal path for R&D
and possibly other important stakeholders. Probably they will benefit of using
R&D for performing structured pre-studies, which in turn should result in better
time and cost-estimates for development.

Case 6 is in a similar position as Case 7; improvement areas being need elicita-
tion and decision material. Possibly they can improve by using a release profile.
Case 1 has a very large product volume compared to most of the other cases
(see Table 1) and make use of many metrics and customer surveys to track their
performance. Possibly they can improve their need documentation.

For Case 2 and Case 5 we lack data for making good improvement suggestions.
Still, it should be noted that Case 2, compared to the other companies, seems
to take more decisions on lower organizational levels.

6 The Problem into Context

The different process activities and key-areas described in Section 4 can be im-
plemented in many different ways. For example, it is possible to use them in a
staged/waterfall manner or in an iterative way. What suits an organization usu-
ally depends on the business context, and therefore it is not necessarily related
to release planning capabilities. However, to provide a better understanding for
how the key-areas can be combined we provide one example from our study.

Example 5. One basic understanding concerning release planning for Case 4 [4]
is that there will be changes during a release project, e.g., there will always be
needs which aren’t thought of during the initial planning of a release and there
will be changes to proposed needs. To cope with this they do not assign more
than 50% of the release budget to the initial release plan, the remaining 50% is
planned to be used for needs and changes during the release project.

During the initial phases of release planning there is usually 4 times as many
needs as can fit within the budget of a release. In order to identify the needs
that provide best return-of-investment/customer benefit they iteratively refine
needs using pre-studies and feasibility studies. These investigations explore more
needs than can fit within the budget allocated to a release. The needs for which
pre-studies are performed requires, if developed, roughly 130% of the release
budget. Needs are prioritized after the pre-studies such that feasibility studies
are performed for needs requiring roughly 110% of the release budget. Prioriti-
zation is also performed after the feasibility studies, which in the end result in
a release plan requiring 100% of the release budget, as is illustrated in Fig. 6.
Furthermore, the people capable of performing pre-/feasibility studies are often

130 M. Lindgren et al.

Pre-study MRS 0

Feasibility study MRS 1

Project Execution MRS 2

50% unassigned 130% of budget

110% of budget

100% of budget

50% assigned

Main Requirement Specification (MRS)

Fig. 6. Overview of iterative need refinement

a scarce resource, therefore these studies are performed throughout the release
project; the vertical lines in Fig. 6 indicate start of study.

The of goals of Case 4’s release planning process are:

Efficiency. Obtain efficient use of the resources available to the organization,
including, e.g., R&D, local sales offices, and marketing.

ROI. The goal of basically all companies is to generate profit, therefore invest-
ments should be made such that return of investment is maximized.

Flexibility. For most organizations it is desirable to have a flexibility that al-
lows late detected needs, e.g., new customer needs, to be included into the
current release, thereby enabling a short time-to-market.

Risk reduction. In all product development, and within most organizations,
there are different kinds of risk. For product development one such potential
risk is underestimating cost and/or time for development.

7 Future Work

Here we discuss some possibilities for future work resulting from this paper.
There are possibly other “key-areas” for release planning processes, which remain
to be identified. Work needs to be performed to develop a maturity matrix for
release planning, as exists for TPI [14]. Improve the release planning process
capability model, such that it relies less on subjective judgements, and rather use
more objective data, e.g., measured directly on the quality and costs associated
with a product. Further validation and refinement of the model is also required.

8 Conclusion

Software release planning is an important activity for selecting the needs that
best fulfil customer needs and at the same time provide a sound return-of-
investment to the organization developing the software. Ultimately, release plan-
ning impacts how successful an organization can become.

In this paper we present a capability model for improving the release planning
process of an organization. Using this model it is possible to:

Towards a Capability Model 131

1. Determine the capabilities of an organization’s release planning process.
2. Identify areas for improvement.

The model is based on empirical data obtained from a multiple case study on
release planning in industry involving 7 different companies. All companies in the
study are producers of software intensive embedded systems, where the products
have a relatively long life cycle; typically in the range of 10–20 years. In the
paper we also apply our proposed capability model on the companies in our
study, and illustrate how the capabilities of their release planning processes can
be determined and discuss opportunities for improvement.

Acknowledgements

This work was partially supported by the Knowledge Foundation (KKS) via
the graduate school Intelligent Systems for Robotics, Automation, and Process
Control (RAP), and partially supported by the Swedish Foundation for Strategic
Research (SSF) via the strategic research centre PROGRESS.

References

1. Ruhe, G., Saliu, O.: Art and Science of Software Release Planning. IEEE Soft-
ware 22(6), 47–53 (2005)

2. Lindgren, M., Norström, C., Wall, A., Land, R.: Importance of Software Architec-
ture during Release Planning. In: Proc. Working IEEE/IFIP Conference on Soft-
ware Architecture (WICSA) 2008. IEEE Computer Society, Los Alamitos (2008)

3. Lindgren, M., Land, R., Norström, C., Wall, A.: Key Aspects of Software Release
Planning in Industry. In: Proc. 19th Australian Software Engineering Conference,
IEEE Computer Society, Los Alamitos (2008)

4. Lindgren, M.: Release Planning in Industry: Interview Data. Technical Report
MDH-MRTC-219/2007-1-SE, Mälardalen Real-Time Research Centre (2007)

5. Jung, H.W.: Optimizing Value and Cost in Requirements Analysis. IEEE Soft-
ware 15(4), 74–78 (1998)

6. Saliu, M.O., Ruhe, G.: Supporting Software Release Planning Decisions for Evolv-
ing Systems. In: 29th Annual IEEE/NASA Software Engineering Workshop, pp.
14–26. IEEE Computer Society, Los Alamitos (2005)

7. Carlshamre, P.: Release Planning in Market-Driven Software Product Develop-
ment: Provoking an Understanding. Requirements Engineering 7(3) (2004)

8. Saliu, O., Ruhe, G.: Software release planning for evolving systems. Innovations in
Systems and Software Engineering 1(2) (2005)

9. Karlsson, J., Ryan, K.: A Cost-Value Approach for Prioritizing Requirements.
IEEE Software 14(5) (1997)

10. CMMI Product Team: CMMI for Development, Version 1.2. Technical Report
CMU/SEI-2006-TR-008, Carnegie Mellon — Software Engineering Institute (2006)

11. Yin, R.K.: Case Study Research: Design and Methods (Applied Social Research
Methods), 3rd edn. Sage Publications Inc., Thousand Oaks (2003)

12. Strauss, M., Corbin, J.M.: Basics of Qualitative Research: Techniques and Pro-
cedures for Developing Grounded Theory, 2nd edn. Sage Publications, Thousand
Oaks (1998)

132 M. Lindgren et al.

13. Gibson, D.L., Goldenson, D.R., Kost, K.: Performance Results of CMMI-Based
Process Improvement. Technical Report CMU/SEI-2006-TR-004, Carnigie Mellon
— Software Engineering Institute (2006)

14. Andersin, J.: TPI — a model for Test Process Improvement. Technical report,
University of Helsinki, Department of Computer Science (2004)

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 133–142, 2008.
© Springer-Verlag Berlin Heidelberg 2008

From CMMI to SPICE – Experiences on How to
Survive a SPICE Assessment Having Already

Implemented CMMI

Fabio Bella*, Klaus Hörmann*, and Bhaskar Vanamali*

KUGLER MAAG CIE GmbH, Leibnizstr. 11
70806, Kornwestheim, Germany

{Fabio.Bella, Klaus.Hoermann, Bhaskar.Vanamali}@kuglermaag.com
www.kuglermaag.com

Abstract. Dealing with multiple models for process assessment and improve-
ment is a challenging, time-consuming task. In the automotive sector, for ex-
ample, several suppliers drive their process improvement on the basis of
CMMI®. However, many car manufacturers require process capability ratings
determined on the basis of Automotive SPICE™. The approach presented aims
at preparing organizations already working according to CMMI for Automotive
SPICE assessments. The approach was already successfully applied in indus-
trial settings and lessons learned are discussed. The approach helps to avoid
misunderstandings during assessments due to different model taxonomy,
achieve appropriate process ratings, and save both effort and costs.

Keywords: Systems and Software Process Improvement, SPI Methods and
Tools, Industrial Experiences and Case Studies, Process Assessment, Lessons
Learned, Automotive and Transportation Systems.

1 Introduction

Whenever different customer groups ask for compliance with different models, a need
for dealing with multiple models typically arises. An example of this situation is the
Automobile Industry where some customers ask for ISO/IEC 15504 (SPICE) compli-
ance, some for Automotive SPICE™ compliance, whereas many companies already
started using the Capability Maturity Model® Integration (CMMI®) to drive their
internal process improvement.

In the automotive industry, particularly in Europe, SPICE has become a mandatory
standard and ticket-to-trade. Car manufacturers (OEMs) such as Audi, BMW, Daim-
ler, Porsche and Volkswagen (the so called HIS group) but also Ford, Volvo, and
FIAT are assessing their electronic/software suppliers based on Automotive SPICE.
Additionally, the German Association of the Automotive Industry (VDA) has adopted
Automotive SPICE as its reference standard for assessing the capability of companies
supplying software-determined systems for the automotive industry.

* All authors are iNTACS ISO 15504 assessors, one is also an iNTACS ISO 15504 trainer, SEI

SCAMPI Lead Appraiser, and CMMI Instructor.

134 F. Bella, K. Hörmann, and B. Vanamali

Some big tier-one suppliers estimate their annual additional costs due to misalign-
ment between the internally available CMMI-compliant processes and the expected
Automotive SPICE-compliant processes to be greater than 1 Million Euro per year.

One important question arises: Do assessed organizations need to have knowledge
about ISO/IEC 15504 / Automotive SPICE to successfully pass an assessment based
on these standards? Yes. There are too many differences between these models that
one could expect to pass an Assessment according to model A successfully if the
previous process work has been concentrating on model B. In addition, it may become
very difficult if not impossible to adhere to the tight assessment time schedules: mis-
understandings may occur and, in the worst case, this may lead to an inappropriate
capability determination. Our experience shows that applying Automotive SPICE in a
CMMI environment has to be prepared. Process improvement and project staff needs
to be trained on the basics of Automotive SPICE and relevant gaps need to be identi-
fied to allow process documentation to be revised where necessary.

In this paper, we present an approach that enables companies performing internal
process improvement on the basis of CMMI to survive SPICE assessments through a
systematic preparation process. In particular, this approach aims at avoiding redun-
dant or even conflicting process-related activities. In the first case, process-related
activities are performed twice: once for CMMI and again for SPICE. In the second
case, process changes introduced to achieve better SPICE results can lead to process
deterioration with respect to CMMI rating. The core of the approach relies on map-
pings between CMMI and Automotive SPICE.

Similar mappings have been provided for older versions of CMMI and Automotive
SPICE, e.g. [10]. [3] provides a mapping between an older version of CMMI and the
ISO/IEC 15504-2:1998. Numerous proprietary mappings have been performed but are
not publicly available.

The AK13, the working group within the German VDA in charge of process
assessments, is currently developing a detailed mapping between CMMI and Automo-
tive SPICE and plans to provide a delta-list to support the evaluation of CMMI
appraisals in comparison with Automotive SPICE. The list would also support com-
panies implementing Automotive SPICE. We are supporting the VDA in performing
this task.

The remainder of this paper is structured as follows. Section 2 presents an excursus
on methodologies for process assessment and improvement. Section 3 presents the
approach. Section 4 subsumes the differences between CMMI and Automotive
SPICE. Section 5 introduces lessons learned when developing and applying it. Fi-
nally, section 6 summarizes the paper.

2 Excursus: CMMI, ISO/IEC 15504, Automotive SPICE

In an assessment/appraisal, the processes applied by an organization are examined
and compared with the good practices included in a reference model by interviewing
project staff and investigating documents from projects or other organizational func-
tions. The objective is to determine to which degree these practices have been imple-
mented within the organization which is commonly referred to as a capability level or
maturity level.

 From CMMI to SPICE – Experiences on How to Survive a SPICE Assessment 135

The Capability Maturity Model (CMM) [4] was developed by the Software Engi-
neering Institute (SEI). CMM is the first model defined to identify process-related
risks by means of appraisals. The model is no longer maintained and has been re-
placed by the Capability Maturity Model Integration® (CMMI®). CMMI offers dif-
ferent models (called “constellations”), each of which addresses a different area of
interest. Models for development [12] and acquisition [11] processes are available. A
model for services is currently under development. A large number of companies
apply CMMI for their improvement programs. Although the model is proprietary, it is
a de-facto standard.

The international standard ISO/IEC 15504 addresses process assessments and the
determination of process capability. The publishing process of the first five parts was
concluded 2006. ISO/IEC 15504 Part 2 [7] defines the minimum requirements to
perform an ISO/IEC 15504 compliant assessment. The standard allows the specifica-
tion of a specific Process Assessment Model (PAM) based on a suitable Process Ref-
erence Model (PRM). The PRM contains high level definitions of processes in terms
of process purpose and expected outcomes. Compliant PRMs are ISO/IEC 12207 [5]
for software life cycle process, ISO/IEC 15288 [6] for Systems engineering life cycle
process, and the Automotive SPICE PRM [2]. Conformant PAMs are the ISO/IEC
15504 Part 5 [8] and the Automotive SPICE PAM [1].

In 2001, an Automotive SPICE Initiative was founded to define a PAM for the
automotive sector. The core team of this initiative are representatives of Audi AG,
BMW AG, Fiat Auto S.p.A., Daimler AG, Dr. Ing. h.c. F. Porsche AG, Procurement
Forum, Volkswagen AG and Volvo Car Corporation (representing Ford Europe,
Jaguar and Land Rover).

The members of HIS (“Hersteller Initiative Software” - Car manufacturer Initiative
Software), i.e., Audi, BMW, Daimler, Porsche, and Volkswagen together with other
OEMs such as Ford, Volvo and FIAT are assessing their software suppliers on the
basis of Automotive SPICE. Based on the findings of Automotive SPICE Assess-
ments the OEMs will rate their suppliers in A, B, or C category, thus defining the
contractual implications for future work. A C-supplier will not be considered for fu-
ture quotations while a B-supplier will have to launch an improvement program.

Therefore, it is a ticket-to-trade to reach the required process capability. By the
HIS members only, more than 250 ISO/IEC 15504 Assessments have been performed
up to now. The total number is expected to increase steadily.

In the reminder of this paper, the term CMMI means CMMI for Development ver-
sion 1.2 and the term Automotive SPICE means the PAM version 2.3.

3 An Approach for Surviving Automotive SPICE Assessment
Having Already Implemented CMMI

The approach described in this section consists of the elements training, mappings
process of the organization/CMMI/Automotive SPICE, a gap analysis, and a work-
shop for planning the necessary steps to prepare the Automotive SPICE assessment.
All phases are conducted by an experienced Automotive SPICE assessor also skilled
in CMMI.

136 F. Bella, K. Hörmann, and B. Vanamali

Automotive SPICE Training. A basic Automotive SPICE training is provided to
key roles. The training covers the principles and structure of Automotive SPICE, the
capability dimension and the requirements regarding the most important processes
(i.e., the processes in scope, typically the HIS Scope). The generic SPICE assessment
approach and possibly some particularities of the assessment approach of the OEM
requesting the assessment are introduced. For inexperienced organizations, a typical
duration is two days for the improvement team and one day for the development team.
For experienced organizations, shorter training may be enough.

Mapping 1: CMMI/Automotive SPICE. Even a mature organization working for
many years according to CMMI can have substantial gaps with respect to Automotive
SPICE1. A list of the corresponding differences needs to be determined through a
mapping. The mapping can be applied further on in future assessment preparations.
Due to its importance, the mapping is discussed in more detail in this section.

Mapping 2: Processes of the Organization/CMMI/Automotive SPICE. A ge-
neric mapping between the models alone is not sufficient. There is a huge number of
detailed differences between the models which may or may not be relevant, depend-
ing on how the organization has shaped its processes. It is therefore very important to
have mappings available between model requirements and their implementation in
terms of the processes and work products of the organization. In other words, if one
wants to know if and where a particular model practice has been implemented, map-
ping 2 will identify the precise process elements and work products. At least one
mapping for Automotive SPICE is required, a second mapping for CMMI is useful to
evaluate if changes to processes might corrupt the CMMI compliance.

Gap Analysis. Even with mapping 2 some uncertainties remain: It is not clear to
which degree the project(s) or organizational functions follow their own processes.
This may be due to tailoring options chosen or simply due to low process adherence.
Another reason is that often gaps cannot be judged purely on the basis of a process
mapping but need the evaluation of practices actually being performed and of actual
work products. This is why in all cases a concrete gap analysis has to be performed on
the projects and organizational functions in scope. This gap analysis can be guided by
the previous mappings. The assessor conducts meetings with the key roles, perform-
ing interviews and inspecting documents to determine the actual gaps and documents
the results. The gap analysis can be usually conducted within two or three days.

Improvement Workshop. During the improvement workshop, the results of the
gap analysis are discussed between the assessor and the key roles. The purpose of the
workshop is to prioritize the actual gaps and determine a strategy for closing them
before the assessment.

In the following, more details concerning the mapping are presented. CMMI and
Automotive SPICE can be compared from at least three different perspectives: with
respect to their structure, to their content, and the methods applied to analyze proc-
esses. In the following, the respective structures are compared and essential differ-
ences regarding the content are sketched.

A first important difference between CMMI and Automotive SPICE is that CMMI
uses two representations, the “Staged Representation” and the “Continuous Represen-
tation”. However, only the Continuous Representation has the required structure that
allows a comparison with Automotive SPICE.

1 Which holds also true vice versa.

 From CMMI to SPICE – Experiences on How to Survive a SPICE Assessment 137

Table 1. Mapping main CMMI and Automotive SPICE concepts

CMMI Automotive SPICE
Process Area Process
Purpose Process Purpose
Specific Goals Process Outcomes
Specific Practices Base Practices
Subpractices -
Typical Work Products Output Work Products
- Work Product Characteristics
Generic Goals Process Attributes
Generic Practices Generic Practices
Generic Practice Elaborations -
- Generic Resources
Examples -
Amplifications -
Capability Levels Capability Levels

Table 1 shows a mapping of the main concepts applied in the two models. For most
of the concepts a proper translation can be found. For CMMI’s Subpractices, Exam-
ples, and Amplifications exist no corresponding concepts in Automotive SPICE.
CMMI, on the other side, does not include Generic Resources. Furthermore, only a
weak correspondence exists between Specific Goals and Process Outcomes.

With respect to the granularity of the models, Automotive SPICE is subdivided
into more processes (31 processes or 48, if additional processes from ISO/IEC 15504
Part 5 are considered) than CMMI (22 Process Areas).

With respect to the content, Fig. 1 depicts the relationships between CMMI process
areas and the Automotive SPICE processes included in the HIS scope. As shown in
the figure, CMMI covers most of the processes from the HIS scope. The process
SUP.9 Problem Solution Management is not addressed by CMMI.

In the following, a list of differences between CMMI and Automotive SPICE is in-
troduced.

RD, REQM Compared with ENG.2, ENG.4

• Communication mechanisms for disseminating requirements are not required
in CMMI.

• Traceability requirements are much more explicit in Automotive SPICE
• In general, Automotive SPICE requires three different levels of require-

ments: customer, system, and software level. CMMI requires only two lev-
els: customer and product level. The product level in CMMI can include as
many sub-levels as necessary.

SAM Compared with ACQ.4

Automotive SPICE requires more details than CMMI with respect to the cooperation
between customer and supplier:

• common processes and interfaces (e.g. regarding PP, PMC, QA, Testing, etc)
• regular exchange of information
• joint reviews

138 F. Bella, K. Hörmann, and B. Vanamali

Fig. 1. Mapping CMMI / Automotive SPICE (HIS Scope)

• tracking of open issues and corrective actions
• change request management

PPQA Compared with SUP.1

• CMMI requires quality assurance strategy and plan on Level 2. Automotive
SPICE requires them already on Level 1.

• Automotive SPICE requires explicitly that the organizational structure for
quality assurance is independent from project management. CMMI claims
just objectivity in this regard.

• CMMI does not require any escalation mechanism.

CM Compared with SUP.8, SUP.10

• CMMI requires configuration management on Level 2. Automotive SPICE
requires it already on Level 1.

• CMMI does not require a branch management strategy

 From CMMI to SPICE – Experiences on How to Survive a SPICE Assessment 139

• CMMI does not require managing backup, storage, archiving, handling and
delivery

• The practices to be implemented for the process SUP.10 (Change Manage-
ment) are only partially addressed by CMMI within informative text.

TS Compared with ENG.3, ENG.5, ENG.6

• Verification of design and code is not addressed by TS but by the process ar-
eas VER/VAL. VER/VAL do not specify which products need to be verified
an validated. This decision is up to the user.

• Communication mechanisms for disseminating the design are required by
Automotive SPICE on Level 1. CMMI requires such mechanisms only indi-
rectly through the generic practice “Stakeholder Involvement” on Level 2.

• Traceability requirements are addressed by CMMI within REQM not TS.
Automotive SPICE presents much more explicit requirements with respect to
traceability.

• CMMI does not require any description of dynamic behaviour.
• CMMI does not require any description of the objectives regarding resource

consumption.
• Test criteria (ENG.5) and unit verification strategy (ENG.6) are addressed by

CMMI in VER/VAL.
• In general, Automotive SPICE covers three different abstraction levels, i.e.,

system architectural design, software design, and software construction.
CMMI covers only two levels explicitly, i.e., design and implementation.
The different levels within design are described in informative text.

PI Compared with ENG.7, ENG.9

• Automotive SPICE requirements for planning, performing and documenting
integration testing are more detailed.

• Traceability is explicitly required by Automotive SPICE. REQM not PI cov-
ers traceability issues.

4 Discussion of Differences between the Models

Both CMMI and Automotive SPICE aim at assessing and improving processes. The
two models present, therefore, a great overlap in terms of concepts and content.

Process improvement is an expensive and time-consuming task. Therefore, if a
company driving process improvement based on CMMI shall be assessed on the basis
of Automotive SPICE, the CMMI-based processes must be utilized to the highest
degree possible to demonstrate Automotive SPICE compliance. However, this is not
an easy task, since the content of the two models is structured differently and their
focus is placed on different subjects in some cases. The engineering processes, for
instance, are addressed in Automotive SPICE by ten different processes, i.e., ENG.1-
ENG.10. The same scope is addressed in CMMI by only six process areas (REQM,
RD, TS, PI, VER, and VAL). As a further example, the process SUP.9 Problem reso-
lution management is not addressed at all by CMMI.

140 F. Bella, K. Hörmann, and B. Vanamali

As a consequence, there is quite a number of model differences to be resolved be-
fore an organization can achieve good results in an Automotive SPICE assessment.
This is typically true even if the organization has already achieved good results (e.g.,
Maturity Level 3 and up) in previous CMMI appraisals.

5 Lessons Learned

The approach presented here is a combination of service elements which – each
alone – have been developed over many years in a large number of customer projects.
These customers were in different industries, most of them in the automotive industry.
Because of the obvious benefits of each of the service elements it was a logical con-
sequence to combine them into one service offering. We started offering this combi-
nation in 2006. Our lessons learned with the individual service elements are:

1. Training: Model training of some form is used in every improvement project,
it is an integral part of it. How should one understand what is required by a
model without being appropriately trained? So far we have performed many
hundreds of such trainings. Regarding Automotive SPICE our experience is
that usually a two days training for the improvement team is appropriate and
a one day training for the staff members which are going to be interviewed. In
case of a long-term improvement effort these trainings are performed long be-
fore any assessment activities start. In case of a pure assessment preparation
(typically preparation for a supplier assessment) it can be rather short before
the assessment due to schedule reasons.

2. Mapping between models: As soon as a new model version appears on the
market we do usually have customer requests for advising them if these
changes are relevant and what they should change. This is mostly relevant to
those of our customers in the automotive industry who work according to
CMMI and need to be compliant to Automotive SPICE. This was the case for
recent changes from CMMI v1.1 to v1.2 and from Automotive SPICE PAM
v2.3 to v2.3. Our experience with these mappings is that their benefit is lim-
ited. The reason for this is that these mappings can never tell you what ex-
actly you have to change, they can only help you focus your attention for a
more detailed analysis of your processes. Only this detailed analysis will un-
veil what precisely has to be changed.

3. Mappings between the organization’s processes and the model(s): This is a
standard recommendation we gave to most of our customers because it has so
many advantages: it helps tracking progress when implementing the model,
identifying risks and gaps still to be closed etc. It also helps later during proc-
ess maintenance to prevent loosing compliance to a model. There were cer-
tainly more than ten customers who followed this advice. Typically these
were those customers who took it really seriously and also had the resources
and budget for such activities. We believe that this type of mapping saves a
tremendous amount of effort in case of a preparation for an assessment using
a different model. The reason is that it allows, together with the previous
mapping outlined in item 2 above, the very fast identification of candidates

 From CMMI to SPICE – Experiences on How to Survive a SPICE Assessment 141

for process enhancements to accommodate to the new model or to changes of
a model.

4. Gap Analysis: We have performed certainly more than 100 gap analyses for
CMMI, SPICE and Automotive SPICE. Most of them have been internally
within a process improvement initiative to track progress and verify readiness
for the final (external) assessments. Others have been for other purposes such
as supplier assessments or the external validation that an improvement initia-
tive was successful. Within the context of this paper the gap analysis is
strongly recommended for a serious assessment preparation because it checks
upon the differences between theory (how the processes should be, from their
definition) and practice (how the processes are performed in reality). There
are good reasons why there can be differences as outlined before.

5. Improvement Workshop: We have done this more than fifty times after
performing assessments and appraisals. It allows explaining the gaps to the
process improvement team and is especially necessary for less experienced
organizations.

As mentioned before, there is little experience so far with organizations having
adopted all five service element. However, our experience is that the more of these
service elements are adopted, the higher is the probability to perform well in an
Automotive SPICE assessment. We have seen this in at least six assessments of
automotive companies being on CMMI Maturity Level 3 how smooth it went in a
preparation phase of two to four months to pass Automotive SPICE supplier assess-
ments with Capability Level three in all processes of the HIS scope.

6 Conclusions

In this paper, we addressed the problem of multiple models for process improvement
to be applied within one single organization. The problem arises in all those cases in
which different customer groups ask for compliance with different models. This is,
for instance, the case in the automotive sector where many car manufacturers require
process capability ratings determined on the basis of Automotive SPICE whereas
several suppliers improve their processes on the basis of CMMI.

Automotive SPICE and CMMI address process assessment and improvement in a
similar way and present a great overlap in terms of concepts and content. Neverthe-
less, they also show many differences that need to be addressed appropriately when
preparing Automotive SPICE assessments.

In this paper, a brief overview of approaches for process assessment and improve-
ment was given and the challenges were introduced that arise when implementing
Automotive SPICE on top of CMMI. An approach was described which combines
several good practices in preparing for Automotive SPICE assessments. Also, some
lessons learned from applying this approach in different customer projects were
presented.

In our experience, each of the individual elements of this approach increases the
probability to pass an Automotive SPICE assessment successfully.

142 F. Bella, K. Hörmann, and B. Vanamali

Acknowledgments. The authors would like to thank the following KUGLER MAAG
CIE consultant colleagues for their experience reports and valuable comments: Dr.
Karl-Heinz Augenstein, Dr. Michael Faeustle, Dr. Kurt Flad, Dr. Ewin Petry, and Mr.
Dieter Wachendorf.

References

1. Automotive SIG: Automotive SPICE™ Process Assessment Model (PAM), RELEASE
v2.3 (May 5, 2007)

2. Automotive SIG: Automotive SPICE™ Process Reference Model (PRM), RELEASE v4.3
(May 5, 2007)

3. Dorling, A.: CMMi Mapping to ISO/IEC TR 15504-2:1998 (last visited February 3, 2008),
http://www.isospice.com/articles/33/1/CMMi-Mapping-to-
ISOIEC-TR-15504-21998/Page1.html

4. Paulk, M., Weber, C., Garcia, S., Chrissis, M., Bush, M.: Key practices of the Capability
Maturity Model, Version 1.1, Technical Report CMU/SEI-93-TR-025, Software Engineer-
ing Institute, Carnegie Mellon University (1993)

5. International Organization for Standardization (ISO): ISO/IEC
12207:1995/Amd.2:2004(E): Information technology - Software life cycle processes.
Amendment 2. Genf (2004)

6. International Organization for Standardization (ISO): ISO/IEC 15288:2002(E): Systems
engineering - System life cycle processes. Genf (2002)

7. International Organization for Standardization (ISO): ISO/IEC 15504-2:2003(E): Informa-
tion Technology - Process assessment - Part 2: Performing an assessment. Geneve (2003)

8. International Organization for Standardization (ISO): ISO/IEC 15504-5:2006(E): Informa-
tion technology - Process assessment - Part 5: An exemplar process assessment model.
Genf (2006)

9. Rout, T.P., El Emam, K., Fusani, M., Goldenson, D., Jung, H.: SPICE in retrospect: De-
veloping a standard for process assessment. J. Syst. Softw. 80(9), 1483–1493 (2007),
http://dx.doi.org/10.1016/j.jss.2007.01.045

10. Sassenburg, H., Kitson, D.: A Comparative Analysis of CMMI and Automotive SPICE.
European SEPG, Amsterdam/Netherlands (June 2006)

11. Software Engineering Institute: CMMI for Acquisition, Version 1.2 (November 2007)
12. Software Engineering Institute: CMMI for Development, Version 1.2 (August 2006)

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 143 – 157, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Model for Requirements Change Management:
Implementation of CMMI Level 2 Specific Practice

Mahmood Niazi1, Charles Hickman1, Rashid Ahmad2, and Muhammad Ali Babar3

1 School of Computing and Mathematics, Keele University, ST5 5BG, UK
mkniazi@cs.keele.ac.uk, u2i42@ugi.keele.ac.uk

2 College of EME, National University of Science & Technology, Rawalpindi, Pakistan
rashid@ceme.edu.pk

3 Lero, University of Limerick, Ireland
muhammad.alibabar@ul.ie

Abstract. OBJECTIVE – The objective of this research is to implement CMMI
Level 2 specific practice – SP 1.3-1 manage requirements changes. In this paper
we have proposed a model for requirements change management and also dis-
cussed initial validation of this model. This model is based on both an empirical
study that we have carried out and our extensive literature review of software
process improvement (SPI) and requirements engineering (RE).

METHOD – For data collection we have interviewed SPI experts from re-
puted organisations. Further work includes analysing research articles, pub-
lished experience reports and case studies. The initial evaluation of the model
was performed via an expert review process.

RESULTS – Our model is based on five core elements identified from litera-
ture and interviews: request, validate, implement, verify and update. Within
each of these elements we have identified specific activities that need to take
place during requirements change management process.

CONCLUSIONS – The initial evaluation of the model shows that the re-
quirements change management model is clear, easy to use and can effectively
manage the requirements change process. However, more case studies are
needed to evaluate this model in order to further evaluate its effectiveness in the
domain of RE process.

1 Introduction

Software Process Improvement (SPI) has been a long-standing approach promoted by
software engineering researchers, intended to help organisations develop higher-
quality software more efficiently. Process capability maturity models such as CMM,
CMMI (Chrissis et al., 2003) and ISO/IEC 15504 (SPICE) are SPI frameworks for
defining and measuring processes and practices that can be used by software develop-
ing organisations. However, the population of organisations that have adopted process
capability maturity model is only a part of the entire population of software-
developing organisations [1]. Deployment is often not only multi-project, but multi-
site and multi-customer and the whole SPI initiative typically requires a long-term

144 M. Niazi et al.

approach. It takes significant time to fully implement an SPI initiative [2-5]. The
failure rate of SPI initiatives is also very high, estimated as 70% [6; 7]. The signifi-
cant investment and limited success are reasons for many organisations being reluc-
tant to embark on a long path of systematic process improvement.

CMMI is the successor to CMM and is consistent with the international standard
ISO/IEC 15504. The most well-known representation of CMMI is the “staged” repre-
sentation, which has five “levels” of process maturity for organisations. Each of the
five levels is composed of several process areas – for each process area, several goals
are defined which contain different practices. For an organisation to reach a maturity
level, they must satisfy the goals of the process areas for that level and all lower lev-
els. The practices help an organisation understand how to achieve maturity goals and
serve as examples of the activities to be addressed when undertaking a SPI pro-
gramme.

Level 2 is the first level that defines a collection of process capabilities that largely
focus on supporting process areas, but also includes some project management and
engineering process areas. There are two goals in Level 2: Specific Goal one (SG1) -
Manage Requirements and Generic Goal two (GG2) – Institutionalize Managed Proc-
ess. SG1 contains five specific practices (SP) of which SP1.3-1 – manage require-
ments changes is the key practice.

This paper reports on the implementation of the specific practice - manage re-
quirements changes - of CMMI Level 2. We have developed a model for require-
ments change management and have done initial validation of this model. The major
contributions of this paper are:

i. to present a requirements change management model in order to effectively
manage requirements changes.

ii. to evaluate the requirements change management model via an expert panel
review process.

To achieve these objectives, we address the following research questions which are
based on the Technology Acceptance Model (TAM) [8; 9]:

• RQ1. How can one implement CMMI Level 2 specific practice - manage re-
quirements changes?

• RQ2. What is the perceived “ease of learning” of the outcome of the re-
quirements change management practice implementation?

• RQ3. What is the “perceived usefulness” of the outcome of the requirements
change management practice implementation?

This paper is organised as follows, Section 2 provides the background to the re-
search. Section 3 describes the study method. In Section 4 the development of re-
quirements change management model is described. Section 5 gives evaluation of our
model. Section 6 presents conclusions and future work.

2 Background

Requirements engineering (RE) is concerned with describing a client’s problem do-
main (the context), determining the desired effects the client wants to exert upon that

 A Model for Requirements Change Management 145

domain (the requirements) and specifying the proposed Information Technology (IT)
(the specification) to a) help enable those desired effects to occur and b) to give de-
signers a specification to help them build the proposed IT. Thus the RE process has a
huge impact on the effectiveness of the software development process [10]. When RE
processes are ad hoc, poorly defined or poorly executed, the end product is typically
unsatisfactory [11].

The Standish group reported that, on average, the percentage of software projects
completed on-time and within budget has improved from 16% in 1995 [12] to 34%
in 2003 [13]. However, nearly two-thirds of the projects examined in the 2003 re-
port [13] were ‘challenged’ (i.e. only partially successful) with the authors observ-
ing that one of the main reasons for project failure is unstable requirements caused
by poor management of RE processes. Several other studies have also identified
problems with the RE process [10; 14-20]. A UK study found that of 268 docu-
mented development problems, requirements problems accounted for 48% of those
problems [14].

The actual effort in requirements engineering is not very large. Alexander and Ste-
vens [21] recommend that about 5% of project effort goes into requirements effort
(elicitation, analysis, verification, validation, testing), not including specification.
This might be about 25% of calendar time (or no more than three months dependent
upon project size). They state that system specification might also take 20-25% of
calendar time. Hoffmann and Lehner [22] examined 15 projects and found they ex-
pended on average 16% of project effort on RE activities. Chatzoglou and Macaulay
[23] surveyed 107 projects and found requirements capture and analysis took over
15% of total elapsed time. In a study of 16 software projects, MacDonell and Shep-
perd [24] found that there was so much variance in effort in Project Planning and
Requirements Specification phases and in comparison with overall project effort that
no patterns could be drawn from it, except that without the requirements phase, or
with a poor requirements phase, the project was not successful.

Software development is a dynamic process. It is widely reported that requirements
often change during the software/system development process. These changes are
inevitable and driven by several factors including ambiguities in original require-
ments, evolving customer needs, constant changes in software and system require-
ments, business goals, work environment and government regulation [25]. Volatile
requirements are regarded as a factor that cause major difficulties during system de-
velopment for most organisations in the software industry [26]. Simulation models of
software development projects demonstrate that requirements volatility has a signifi-
cant impact on development effort and project duration [27; 28]. Furthermore, volatile
requirements contribute to the problems of software project schedule overruns and
may ultimately contribute to software project failure [26; 29; 30].

Despite the importance of the requirements change management, little empirical
research has been carried out in the domain of SPI on developing ways to effectively
implement this specific practice (such as manage requirements changes) of SPI mod-
els such as CMMI. We have focused on this specific practice and designed a require-
ments change management model in this paper.

146 M. Niazi et al.

3 Study Method

We have used two data collection sources, i.e. SPI literature and requirements change
management practices in two organisations. We have analysed and evaluated the data
collected from both sources in order to produce a requirements change management
model for implementing a CMMI level 2 specific practice.

The SPI literature considered in this research includes case studies, experience re-
ports and high-level software process descriptions. Most of the reviewed studies report
real life experiences of SPI implementation and provide specific guidelines and rec-
ommendations for SPI implementation. The data extraction phase of the literature
review was confined to the material related to the description of the processes and
practices of managing the requirements changes. Each piece of the extracted data was
reviewed carefully and a list of reported characteristics of an effective process of man-
aging requirements was produced. While every effort was made to control the re-
searchers’ bias during the literature search, papers selections, data extraction, and
analysis phases, we do not claim that we followed a systematic process of reviewing
the literature as recommended by evidence-based software engineering paradigm [31].

For collecting data about the requirement change management practices in two or-
ganisations, we used semi-structured interviews with one representative from each
company. The interviewees were nominated by their respective companies as they
were considered the most experienced and knowledgeable requirements engineers.
Hence, they were considered the most appropriate persons to answer questions about
requirements change processes in their respective organisations. Thus the sample is
not random but a convenience sample because we sought a response from a person
with a specific role within the organisation. In order to identify a suitable and relevant
set of questions for the interview instrument, we consulted a number of books and
research articles [4; 14; 32-37]. After designing a list of questions, we assessed their
suitability by mapped them on the objectives of our research project. One of our col-
leagues also reviewed the interview instrument and helped us to improve it. For con-
fidentiality reasons, we are not allowed to report the names of the companies whose
requirements change management processes were studied. Hence, we will call them
Company A and Company B in this paper.

Company A has more than two hundred employees that are directly employed for
software production and/or maintenance. The company has an outstanding profile and
repute earning history for more than 10 years. The company is predominantly con-
cerned with logistics for outsource development. The scope of the company is multi-
national. The company believes that it is at CMMI level three but it has not been
certified for CMMI maturity level by external auditors.

Company B is a small company with less than 20 professionals who are directly con-
cerned with software production and/or maintenance. This company is predominantly
concerned with embedded systems for in-house development for the last two years.

One of the researchers has conducted the interviews in face-to-face meeting ses-
sions. The interviews consisted of a short series of questions in the form of a
questionnaire (available from authors upon request), which allowed us to gather in-
formation on the demographics of the company followed by a list of questions about
requirements change management processes. Each interview lasted for approximately

 A Model for Requirements Change Management 147

half an hour. We have used a Dictaphone to record the responses of the interviewees
and also took extensive notes during the interviews.

To analyse the interviewees’ responses, we have read the notes taken during the inter-
views in order to consolidate the important point that were made about requirements
change management process during the interviews. We have also listened to the tapes
many times in order to ensure that we have not missed out anything important relating to
the requirements change management. This two steps process has given confidence that
the transcription process has not changed the original data generated in the interviews.

4 Results

4.1 Findings from Literature

We have identified three requirements models from the literature suitable for re-
quirements change management: the spiral-like change management process [38],
Olsen’s change management model [39], and Ince’s change process model [40]. We
believe these models can be adapted in order to implement the CMMI level 2 specific
practice - requirements change management. This is because these are normative
models that deal with requirements change management effectively. In the next sec-
tions, we provide brief reviews of these models.

4.1.1 The Spiral-Like Change Management Process [38]
This model divides the change management process into four cycles as shown in
Figure 1:

Fig. 1. The spiral-like change management process [38]

148 M. Niazi et al.

i. 1st round: Problem owning
ii. 2nd round: Problem solving

iii. 3rd round: System engineering
iv. 4th round: Technology-specific

Round 1 of this model is the initial cycle; the founder or owner of a problem begins
this cycle. A problem can be a request to add a new feature or services in the system
or to fix a problem in the existing system. At the end of the first cycle the owner de-
cides whether a change needs to be made and if the change is deemed necessary, how
it should be accommodated. Round 2 is only required if the change needs to be
looked at from a non-technical viewpoint. Round 3 is the planning stage. It examines
the change from a system point of view and makes an implementation plans for the
round 4. Round 4 generates, implements and verifies the technical solution. The
change is finished and the results of this change are recorded.

4.1.2 Olsen’s Change Management Model [39]
Olsen views the whole software development process as simply a queue of changes
that need to be made as shown in Figure 2. Olsen believes that all work done by
software designers changes. This model can be applied to both software development
and maintenance as it is not life cycle dependent. The sources of changes are made
available by the users who suggest possible requirement changes. These changes are
then passed to the “manage change” section where these changes are managed by

Fig. 2. Olsen’s change management model [39]

 A Model for Requirements Change Management 149

change managers. The approved changes are passed on to the implementation section
where necessary changes are made in the software. After completing implementation,
verification begins by testing code and by inspecting papers. When a change has been
implemented and verified it is then passed back to change managers who will then
release the change in a product for its users.

4.1.3 Ince’s Change Process Model [40]
Ince’s model focuses on how software configuration management relates to software
change management. This model has two main sources of change requests, i.e. cus-
tomer and development team as shown in Figure 3. In order for the change process to
be initiated, a change request must be initiated in a software project. All such change
requests are recorded in a change request note. The change control board then con-
siders the suggested change. The change control board can reject the change (the
change will not take place), batch the change (the change will take place but not im-
mediately) or accept the change (the change is to be implemented at the earliest

Fig. 3. Ince’s change process model [40]

150 M. Niazi et al.

possible time). If the request for the change is successful, a change authorisation note
must be filled. After this the change can be implemented and a system’s documenta-
tion is modified. After implementation the change is validated. Validation and test
records are then produced to document the changes that have been taken place. Fi-
nally the configuration records are updated and the staff is informed about the new
changes.

4.2 Finding from Companies

Having discussed the findings from reviewing the literature, we now present the find-
ings about the requirements change management processes of two companies based
on analyzing of the data gathered through interviews with two requirements engineer-
ing experts of those companies.

4.2.1 Company A’s Requirements Change Model
We shall now discuss the key points about the requirements change management
process of Company A. Figure 4 shows the process company A follows to manage
requirements changes. The findings from the interview are:

Fig. 4. Company A’s requirements change model

• Company A follows a predefined process when changes are required.
Changes to the system are done through formal configuration management
using a tool called Redbox.

• Staff must fill in change request forms before any processes can begin.
• Company A has in place a process (traceability) that confirms the require-

ment back to the customer to make sure that the company knows exactly
what the customer desires. All requirements that come in are assessed and an
outline design document is produced. This document is checked to ensure it
corresponds to the customer’s requirements. This document is then passed
onto a change control board. Final step is the system confirmation which en-
sures that the workforce clearly understands what changes are required.

Change request
form from engineer

Change request
from customer

DATABASE VALIDATE

Customer

IMPLEMENTED VERIFIED

End of change
request

Manager

 A Model for Requirements Change Management 151

• Company A contains multiple stages at which testing can be done. The first
kind of testing is ‘unit testing’ which is internal testing. An in-house team
specialised in system and regression testing performs this testing. The second
type is called “field trials” where they release software into specific locations
for specific groups of users. Another type is called “user acceptance testing”
where the company performs testing with their customer.

• The reasons for changes are primarily customer driven. The main reason is to
enable general enhancements to business process. These can be minor or ma-
jor enhancements. Minor enhancements are considered standard software
maintenance when just small tweaks are needed. Major enhancements are
system rewrites or amending large parts of the systems. Reasons for changes
can vary from project to project and the majority are minor changes.

4.2.2 Company B’s Requirements Change Model
In this section, we discuss the key points that we have extracted from the interview
followed by our interpretation of how Company B manages its requirements changes
as shown in Figure 5.

Fig. 5. Company B’s requirements change model

• Company B does not follow any set process or model to manage require-
ments changes. Requirements changes are done on an informal basis mainly
using emails to communicate. Customers email changes if required. These
requests are then evaluated to see if the requested changes can be made.
Software Engineers can also suggest possible changes to the customers via
emails.

• The company does not use a database to store change requests.
• The company does not use change request forms.

Change request
from engineer

Change request
from customer

Customer

VALIDATE
change – meeting

with engineers
and management

Change is
ACCEPTED

Change is
IMPLEMENTED

Change is
VERIFIED

Change is
REJECTED –
end of change

request

End of change
request

Email

Email

Notify
customer with
reasons

Change is
rejected

Change is
accepted

Change
is rejected

Email

Accepted

152 M. Niazi et al.

• All requests are forwarded to all the members of the management and devel-
opment teams. Every member offers comments on the validity of the request
and identifies ramifications of these changes, if any, on the existing software.

• Each request is handed over to the developer who will then implement the
change.

• Verification is done by the person who implements the change. At the end of
the project the whole team double-checks the software for any problems or
issues.

• The most common reasons for making any changes are functionality en-
hancements. Bug fixes are also required.

• All changes are treated the same regardless of their size.

4.3 Our Requirements Change Model (RCM)

RCM development was initiated by creating and agreeing its success criteria. Objec-
tives were set to clarify the purpose of the model and outline what the model is ex-
pected to describe. These criteria guided development and are later used to help
evaluate the RCM.

The first stage in the development of RCM was to set criteria for its success. The
motivation for setting these criteria comes from previously conducted empirical stud-
ies [36; 41] and by a consideration of the Technology Acceptance Model [8; 9]. The
following criteria were used.

• User satisfaction: stakeholders need to be satisfied with the results of the
RCM. Stakeholders (e.g. requirements engineers, systems analysts, outsourc-
ing project staff) should be able to use the RCM to achieve specified goals
according to their needs and expectations without confusion or ambiguity.

• Ease of use: complex models and standards are rarely adopted by organisa-
tions as they require resources, training and effort. The structure of the RCM
should be simple, flexible and easy to follow.

In the second stage, in order to address these desired criteria, research questions (see
Section 1) were developed. In order to answer research questions, in the third stage,
we have extensively reviewed the RE literature and conducted interviews with two
RE experts. In the final stage, based on an extensive literature review and findings
from the interviews, we have developed a model of Requirements Change Manage-
ment for a CMMI level 2 specific practice. The model is based on five core elements:
request, validate, implement, verify and update as shown in Figure 6. Within each of
these elements, we have identified a set of specific activities that need to take place
during requirements change management process.

The initial stage is the change “Request”. We have decided to include this element
in the RCM as this element was found in the both companies’ requirements change
management processes as well as also in Ince change model [40]. The main sources
of requests may be either internal or external. The internal requests come from the
project management or software maintenance teams within the company. The external
requests come from the customers. These internal and external requests are then fed to
a requirements change pool. The requirements change pool contains a description of
the change, the reasons behind the changes and who has requested the change.

 A Model for Requirements Change Management 153

The next stage is to “Validate” the change request. The validation of the change re-
quest was cited in our two interviews and also in the Spiral-like change management
process and the Ince change model [38; 40]. The first activity in the validate stage is
to understand the change request (i.e. what needs to be done – fix, an enhancement or
removal). Request analysis is the activity to look at the different ways in which the
request can be met, i.e. how much effort is needed to make this change, how much
effort is needed to implement this change, the impact of the change, the risk of change
and the priority of each change request. In addition, in the validation stage it is also
analysed if the change request is:

• consistent with the business goals of the organisations;
• not ambiguous i.e. could it be read in different ways by different people;
• feasible in the context of the budget and schedule available for the system

development;
• consistent with other requirements of the system.

Fig. 6. Requirements change management model

The final activity of the validation process is to make decision if the change request
should be accepted, rejected or reanalysed with new evidence.

The third stage is to “Implement” the changes. In this stage all the accepted
changes are consolidated and are implemented in the form of end product or software.

Requirements
Change Pool

Internal
Source

External
Source

Request
Understanding

Request
Analysis

Implement
Update

Finished

REQUEST VALIDATE IMPLEMENT VERIFY UPDATE

Request
Decision

Testing

Rejected

Yes

No

154 M. Niazi et al.

The fourth stage is to “Verify” changes where it is ascertained that the software
conforms to its specification. The verification of the change request was cited in our
two interviews and also in the Olsen’s change management model [39]. In this stage
the new product/software is tested in the form of regression testing, field trials or user
acceptance. The testing method will depend on the characteristics of the request and
the environment of the product/software. If the verification stage is not successful the
change request is sent back to the “Validate” stage for further understanding and
analysis of the change request.

The final stage is “Update”. Documentation on the software is updated with the
changes made. The customers and the project team are all informed about these up-
date so that everyone is working on the current up to date version. The finished step
is when the product/software is released with the new requirements included.

5 Model Evaluation

The initial evaluation of the model was performed via an expert review process. The
expert panel review process was used in order to seek opinions of two SPI experts
about the “ease of learning” and “user satisfaction” [8; 9] of the proposed require-
ments change model. One SPI expert has 25 years of experience in software
development and SPI. The second expert has 6 years of experience in software devel-
opment and SPI related activities.

In order to seek SPI experts’ opinion about requirements change model, a ques-
tionnaire was designed in which some questions were taken from [42-44] and tailored
to fit into this research project goals. This questionnaire is divided into two parts, i.e.
demographic and model feedback.

Before sending out this questionnaire to the SPI experts, drafts questionnaire were
reviewed by two researchers. These researchers were asked to critically evaluate the
questions against “ease of learning” and “user satisfaction”. Based on their feedback,
some questions were re-written in order to better capture the required data. The ques-
tionnaire was tested by two researchers before sending requests to the experts.

• Ease of Learning: Both experts rated the model as clear and easy to under-
stand. Neither expert felt that a great deal of prior knowledge of SPI was
needed to understand the proposed model. Both experts also felt that the di-
vision of the model into five core sections aided them in their understanding.
This was encouraging as it showed that our model was concise and
comprehensive.

• User Satisfaction: Both experts felt that in general our model would be useful
within the software industry. Neither of the experts thought that any key part
was missing from our requirements change management model. Both experts
felt that the requirements change management model is clear and can effec-
tively manage the requirements change process. However, other companies
might need to adapt this model in order to fulfil their specific requirements.

Based on the initial evaluation, we are confident that the proposed model can help
organisations to implementing requirement change management process according to
CMMI level 2 maturity requirement, however, we are also realize the need for further

 A Model for Requirements Change Management 155

evaluation of the model to rigorously assess its various elements. We plan to perform
this evaluation through multiple case studies in the industrial context.

6 Conclusion

The objective of this research is to develop and empirically assess a model that would
help organisation to effectively manage requirements changes. For this purpose, we
identified following research questions to be addressed by the reported research:

• RQ1. How can one implement CMMI Level 2 specific practice - manage re-
quirements changes?

• RQ2. What is the perceived “ease of learning” of the outcome of the re-
quirements change management practice implementation?

• RQ3. What is the “perceived usefulness” of the outcome of the requirements
change management practice implementation?

In order to address the RQ1, we have developed a requirements change management
model based on literature review and two companies’ processes of managing re-
quirements changes. During the literature review, we analysed the published experi-
ence reports, case studies and articles to identify a list of characteristics required to
effectively manage requirements change process. We have identified three require-
ments models from the literature and we believe these models can be adapted in order
to implement the CMMI level 2 specific practice - requirements change management.
Our interviews with two companies’ representative provided us with interesting in-
sights into their requirements change management processes.

In order to address the RQ2 and RQ3, we performed an initial evaluation of the
proposed model using the expert review process. We sought the opinions of two SPI
experts about the “ease of learning” and “user satisfaction” [8; 9] of the proposed
requirements change model. Both experts rated the model as clear and easy to under-
stand. Both also experts felt that in general our model would be useful within the
software industry. However, it was noted that some companies might need to adapt
this model to their specific requirements.

For further improvement and rigorous evaluation, we plan to conduct multiple case
studies in industrial setting to trial the proposed model.

References

1. Leung, H.: Slow change of information system development practice. Software quality
journal 8(3), 197–210 (1999)

2. SEI: Process Maturity Profile. Software Engineering Institute Carnegie Mellon University
(2004)

3. Niazi, M., Wilson, D., Zowghi, D.: Critical Barriers for SPI Implementation: An empirical
study. In: IASTED International Conference on Software Engineering (SE 2004), Austria,
pp. 389–395 (2004)

4. Niazi, M., Wilson, D., Zowghi, D.: Critical Success Factors for Software Process Im-
provement: An Empirical Study. Software Process Improvement and Practice Jour-
nal 11(2), 193–211 (2006)

156 M. Niazi et al.

5. Niazi, M., Wilson, D., Zowghi, D.: Implementing Software Process Improvement Initia-
tives: An empirical study. In: The 7th International Conference on Product Focused Soft-
ware Process Improvement. LNCS, pp. 222–233 (2006)

6. SEI: Process maturity profile of the software community. Software Engineering Institute
(2002)

7. Ngwenyama, O., Nielsen, P.v.: Competing values in software process improvement: An
assumption analysis of CMM from an organizational culture perspective. IEEE Transac-
tions on Software Engineering 50, 100–112 (2003)

8. Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User acceptance of computer technology: A
comparison of two theoretical models. Management Science 35, 982–1003 (1989)

9. Davis, F.D.: Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Infor-
mation Technology. MIS Quarterly 13(3), 319–340 (1989)

10. El Emam, K., Madhavji, H.N.: A Field Study of Requirements Engineering Practices in In-
formation Systems Development. In: Second International Symposium on Requirements
Engineering, pp. 68–80 (1995)

11. Standish-Group: Chaos: A Recipe for Success. Standish Group International (1999)
12. Standish-Group: Chaos - the state of the software industry. Standish group international

technical report, pp. 1–11 (1995)
13. Standish-Group: Chaos - the state of the software industry (2003)
14. Hall, T., Beecham, S., Rainer, A.: Requirements Problems in Twelve Software Compa-

nies: An Empirical Analysis. IEE Proceedings - Software, 153–160 (2002)
15. Kamsties, E., Hormann, K., Schlich, M.: Requirements Engineering in Small and Medium

Enterprises. Requirements Engineering 3(2), 84–90 (1998)
16. Nikula, U., Fajaniemi, J., Kalviainen, H.: Management View on Current Requirements

Engineering Practices in Small and Medium Enterprises. In: Fifth Australian Workshop on
Requirements Engineering, pp. 81–89 (2000)

17. Nuseibeh, B., Easterbrook, S.: Requirements Engineering: a roadmap. In: 22nd Interna-
tional Conference on Software Engineering, pp. 35–46 (2000)

18. Siddiqi, J., Chandra, S.: Requirements Engineering: The Emerging Wisdom. IEEE Soft-
ware 13(2), 15–19 (1996)

19. Beecham, S., Hall, T., Rainer, A.: Software Process Problems in Twelve Software Com-
panies: An Empirical Analysis. Empirical software engineering 8, 7–42 (2003)

20. Niazi, M.: An empirical study for the improvement of requirements engineering process.
In: The 17th International Conference on Software Engineering and Knowledge Engineer-
ing, Taipei, Taiwan, Republic of China July 14-16, pp. 396–399 (2005)

21. Alexander, I., Stevens, R.: Writing Better Requirements. Addison-Wesley, Reading (2002)
22. Hoffmann, H., Lehner, F.: Requirements Engineering as a Success Factor in Software Pro-

jects. IEEE Software, 58–66 (July/August 2001)
23. Chatzoglou, P., Macaulay, L.: Requirements Capture and Analysis: A Survey of Current

Practice. Requirements Engineering Journal 1, 75–87 (1996)
24. MacDonell, S., Shepperd, M.: Using Prior-Phase Effort Records for Re-estimation During

Software Projects. In: 9th Int. Symp on Software Metrics, Sydney, Australia, September 3-
5, 2003, pp. 73–86 (2003)

25. Barry, E.J., Mukhopadhyay, T., Slaughter, S.A.: Software Project Duration and Effort: An
Empirical Study. Information Technology and Management 3(1-2), 113–136 (2002)

26. Zowghi, D., Nurmuliani, N.: A study of the impact of requirements volatility on software
project performance. In: Ninth Asia-Pacific Software Engineering Conference, pp. 3–11
(2002)

 A Model for Requirements Change Management 157

27. Pfahl, D., Lebsanft, K.: Using simulation to analyse the impact of software requirement
volatility on project performance. Information and Software Technology Journal 42,
1001–1008 (2000)

28. Ferreira, S., Collofello, J., Shunk, D., Mackulak, G., Wolfe, P.: Utilization of Process
Modeling and Simulation in Understanding the Effects of Requirements Volatility in
Software Development. In: International Workshop on Software Process Simulation and
Modeling (ProSim 2003), Portland, USA (2003)

29. Stark, G., Skillicorn, A., Ameele, R.: An Examination of the Effects of Requirements
Changes on Software Maintenance Releases. Journal of Software Maintenance: Research
and Practice 11, 293–309 (1999)

30. Zowghi, D., Nurmuliani, N., Powell, S.: The Impact of Requirements Volatility on Soft-
ware Development Lifecycle. In: Proceedings of Software Engineering Conference, Aus-
tralian, pp. 28–37 (2004)

31. Kitchenham, B.: Procedures for Performing Systematic Reviews. Keele University, Tech-
nical ReportTR/SE0401 (2004)

32. Chrissis, M., Konrad, M., Shrum, S.: CMMI Guidelines for Process Integration and Prod-
uct Improvement. Addison-Wesley, Reading (2003)

33. Creswell, J.: Research Design: Qualitative, quantitative and mixed methods approaches.
Sage, London (2002)

34. Kotonya, G., Sommerville, I.: Requirements Engineering Processes and Techniques. John
Wiley, Chichester (1998)

35. Niazi, M., Cox, K., Verner, J.: An empirical study identifying high perceived value re-
quirements engineering practices. In: Fourteenth International Conference on Information
Systems Development (ISD 2005), Karlstad University, Sweden, August 15-17 (2005)

36. Niazi, M., Cox, K., Verner, J.: A Measurement Framework for Assessing the Maturity of
Requirements Engineering Process. Software Quality Journal (in press for publication,
2008)

37. Beecham, S., Hall, T., Rainer, A.: Building a requirements process improvement model.
Department of Computer Science, University of Hertfordshire, Technical report No: 378
(2003)

38. Mäkäräinen, M.: Application management requirements for embedded software. Technical
Research Centre of Finland, VTT Publications 286 (1996)

39. Olsen, N.: The software rush hour. IEEE Software, 29–37 (September 1993)
40. Ince, D.: Introduction to software quality assurance and its implementation. McGraw-Hill,

New York (1994)
41. Niazi, M., Wilson, D., Zowghi, D.: A Maturity Model for the Implementation of Software

Process Improvement: An empirical study. Journal of Systems and Software 74(2), 155–
172 (2005)

42. Beecham, S. and Hall, T.: Expert panel questionnaire: Validating a requirements pro-
cess improvement model (May 2003), http://homepages.feis.herts.ac.uk/
~pppgroup/requirements_cmm.htm

43. Rainer, A., Hall, T.: Key success factors for implementing software process improvement:
a maturity-based analysis. Journal of Systems & Software (62), 71–84 (2002)

44. Niazi, M.: A Framework for Assisting the Design of Effective Software Process Improve-
ment Implementation Strategies, PhD thesis, University of Technology Sydney (2004)

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 158–173, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Experience Report on the Effect of Software
Development Characteristics on Change Distribution

Anita Gupta1, Reidar Conradi1, Forrest Shull2, Daniela Cruzes2,
Christopher Ackermann2, Harald Rønneberg3, and Einar Landre3

1 Dep. of Computer and Information Science (IDI), Norwegian University of Science and
Technology (NTNU), Trondheim, Norway

{anitaash, conradi}@idi.ntnu.no
2 Fraunhofer Center Maryland, College Park, USA

{fshull, dcruzes, cackermann}@fc-md.umd.edu
3 StatoilHydro ASA KTJ/IT, Forus, Stavanger
{haro, einla}@statoilhydro.com

Abstract. This paper reports on an industrial case study in a large Norwegian
Oil and Gas company (StatoilHydro ASA) involving a reusable Java-class
framework and an application that uses that framework. We analyzed software
changes from three releases of the framework and the application. On the basis
of our analysis of the data, we found that perfective and corrective changes ac-
count for the majority of changes in both the reusable framework and the non-
reusable application. Although adaptive changes are more frequent and has
longer active time in the reusable framework, it went through less refactoring
compared to the non-reusable application. For the non-reusable application we
saw preventive changes as more frequent and with longer active time. We also
found that designing for reuse seems to lead to fewer changes, as well as we
saw a positive effect on doing refactoring.

Keywords: Software reuse, Software quality, Software changes, Case Study.

1 Introduction

Understanding the issues within software evolution and maintenance has been a focus
since the 70’s. The aim has been to identify the origin of a change, as well as the
frequency and cost in terms of effort. Software changes are important because they ac-
count for a major part of the costs of the software. At the same time, they are necessary;
the ability to alter software quickly and reliably means that new business opportunities
can be taken advantage of, and that businesses thereby can remain competitive [1].

Several previous studies have concluded that reusable software components are
more stable (less change density) than non-reusable components [20-22]. However,
few of these studies have investigated and compared the characteristics of software
changes (such as distribution, how long the changes tend to stay in the system, and
number of files modified for each change type) for reusable and non-reusable compo-
nents. In the study described here we investigate whether aspects of software changes,
such as their frequency, type, or difficulty, can be better understood based on:

 Experience Report on the Effect of Software Development Characteristics 159

• Characteristics of the process being applied (e.g. whether different change char-
acteristics are seen when designing for reuse vs. designing for a specific context),
and

• Characteristics of the product being built (e.g. whether different change charac-
teristics are seen for systems before and after refactoring).

By “change characteristics” here we refer to attributes of the set of software
changes made to a system over time, such as the relative frequency of different types
of changes, the files of the system affected by the changes, and how the changes were
implemented.

The case study described here is on the reuse process in the IT-department of a
large Norwegian Oil & Gas company, StatoilHydro ASA1. We have collected data
from software changes for three releases of a reusable class framework called Java
Enterprise Framework (JEF), as well as three releases of one application called Digi-
tal Cargo Files (DCF) that uses this framework “as-is”, without modification. All data
in our study are software changes from the evolution (e.g. development) and mainte-
nance phases for the three releases each of two systems.

The purpose of this study is to compare change characteristics across systems, with
respect to the impact of reuse on change types, frequency, active time and localization
of the effects of changes on the systems.

We were particularly interested in gaining insight into properties of systems being
designed to be reusable, since that was a major focus for the reuse program at Sta-
toilHydro ASA. The results are important in that they characterize and explain the
changes to the reusable framework and the non-reusable application.

The paper is structured as follows. Section 2 presents the related work. Section 3
introduces the context in StatoilHydro ASA. Section 4 presents the motivation for the
research and the research questions. Furthermore, Section 5 describes the research
methodology. Section 6 presents the results and possible explanations of our analysis
of software changes extracted from Rational ClearCase. Section 7 looks into the va-
lidity threats for our study. Section 8 states our conclusions.

2 Related Work

Lehman [2] carried out the first empirical work on software changes, finding that
systems that operate in the real world have to be adapted continuously, otherwise,
their changeability decreases rapidly. During the lifetime of software systems, they
usually need to be changed as the original requirements may change to reflect chang-
ing business, user and customer needs [3]. Other changes occurring in a software
system’s environment may emerge from undiscovered errors during system validation
that require repair, from the introduction of new hardware.

Changes to software may be categorized into four classes based on the intent of
making the change, namely corrective, adaptive, perfective and preventive. In general,
corrective refers to fixing bugs, adaptive are related to new environments or plat-
forms, while implementing altered or new requirements, as well as improving per-
formance, can be classified as perfective. Finally, changes made to improve future

1 ASA stands for “allmennaksjeselskap”, meaning Incorporated.

160 A. Gupta et al.

maintainability can be thought of as preventive [4]. Such taxonomy is useful because
it captures the kind of situations that developers face over time. However, differences
may exist in the definition of these change classes, which can make the comparison of
studies difficult. We have in our study decided to use the definition given by [5]:

• Adaptive changes are those related to adapting to new platforms, environments or
other applications.

• Corrective changes are those related to fixing bugs.
• Perfective changes are that that encompass new or changed requirements as well

as optimizations.
• Preventive changes are those having to do with restructuring and reengineering.

Several studies have investigated the distributions of different changes (e.g. correc-
tive, adaptive, perfective, and preventive) based on change logs of different systems.
These studies show that:

- The classifications of changes are different among different studies. For example,
some studies [6-11] have classified the changes into adaptive, corrective, and per-
fective; some of them have still a fourth category [9-11]. Other studies have clas-
sified changes into adaptive, preventive, and perfective [12-17] and four of these
studies have classified changes into a fourth category: corrective [14-17]. One
study has classified changes into planned enhancement, requirement modifica-
tions, optimization and “other” [18]. Yet another study has classified changes
into user support, repair and enhancement [19].

- Definitions of change types are different among different studies. For example,
perfective change has been defined to include user enhancements, improved
documentation, and recoding for computational efficiency [6][7]. It is also de-
fined as encompassing new or changed requirements (expanded system require-
ments) as well as optimization [12][13][15]. While, [10] has defined the same
type as including enhancements, tuning and reengineering.

- The distributions of changes are different for different systems. For example, the
most frequent changes of the studied system in [6][10][11] are perfective
changes. However, perfective changes in the system in [7] are the least frequent
ones. In the study conducted by [9][15] the most frequent changes are adaptive
changes. While, in [18] the most frequent changes are in the category “other”.

Table 1 shows different studies and the most frequent changes found in the results.
We also distinguish systems that were designed to be reused as part of another sys-
tem. We can see that 64% of the studies have perfective changes as the most frequent
ones, 21% have corrective changes, followed closely by 14% that have adaptive
changes as the most frequent ones.

Other studies [20-25] have investigated whether the amount of changes varies
according to development characteristics without classifying changes into different
categories. We are aware of no previous studies that have compared change
distributions between reusable software components and non-reusable ones, which we
are looking at in this study.

 Experience Report on the Effect of Software Development Characteristics 161

Table 1. Related work

Reusable
system?

Studied systems Most
frequent
change
types

No System which has been operational for at least 1 year, represents a significant
investment of time and effort, and is of fundamental importance to the
organization [6].

Perfective
changes

No A case study investigating 2152 change requests collected for 2 years in a
Canadian financial institute [9].

Adaptive
changes

No A survey conducted in the MIS department in 9 different business types in
Hong Kong [10].

Perfective
changes

No Survey carried out in a computer department of a large Norwegian
organisation in 1990-1991 (study1) and 1992-1993 (study2). The computer
department studied maintains of more than 70 software applications and
include 110 maintainers, distributed on 11 maintenance groups [14].

Perfective
changes

No Study of 10 projects conducted in Flight Dynamic Division (FDD) in
NASA’s Goddard Space Flight Center. FDD maintains over 100 software
systems totaling about 4.5 millions lines of code [11].

Perfective
changes

No Analyzed 654 change and maintenance requests from a large software
application (written in SQL) [19]

Corrective
changes

No A survey carried out in financial organizations in Portugal. Data was collected
from 20 project managers [15].

Adaptive
changes

No 453 non-defect changes from an Ada system developed at the Software
Engineering Laboratory (SEL) of the NASA Space Flight Center [18].

Perfective
changes

No Version control and maintenance records from a multi-million line real-time
software system [7].

Corrective
changes

No An integrated system for automated surveillance, a reengineering project
(Written in C++; version 3 is 41 KLOC) [16].

Perfective
changes

No Three software products, a subset of Linux consisting of 17 kernel modules
and 6506 versions, and GCC consisting of 850 KLOC [8].

Corrective
changes

Yes Analyzed 169 change requests (covers any change in the requirements or
assets from the time of requirement baseline) for 4 releases of a large telecom
system. This system reuses components [12].

Perfective
changes

No Web-based java application, consisting of 239 classes and 127 JSP files.
Analysis of fault reports [17].

Perfective
changes

Yes Analyzed 208 change requests (covers any change in the requirements) for
three releases of a reusable framework [13].

Perfective
changes

3 The StatoilHydro ASA Setting

StatoilHydro ASA is a Norwegian company, and is part of the Oil & Gas industry. It
is represented in 40 countries, has a total of about 31,000 employees, and is headquar-
tered in Europe.

The central IT-department of the company is responsible for developing and deliv-
ering software meant to give key business areas better flexibility in their operation. It
is also responsible for the operation and support of IT-systems. This department con-
sists of approximately 100 developers, located mainly in Norway. Since 2003, a
central IT strategy of the O&S (Oil Sales, Trading and Supply) business area has been
to explore the potential benefits of reusing software systematically. StatoilHydro ASA
has developed a custom framework of reusable components based on J2EE - JEF
(Java Enterprise Framework). The actual JEF framework consists of seven separate

162 A. Gupta et al.

components, which can be applied separately or together when developing applica-
tions. Table 2 shows the size and release date of the three JEF releases. This JEF
framework is currently being reused in two applications at StatoilHydro ASA. In this
study we investigated one of these applications, namely DCF (Digital Cargo Files),
due to the available data set. DCF is mainly a document storage application: A “cargo
file” is a container for working documents related to a deal or cargo, used by all par-
ties in the O&S strategy plan at StatoilHydro ASA. DCF is meant to replace the cur-
rent means of handling cargo files, which are physical folders containing printouts of
documents pertaining to a particular cargo or deal. The DCF application also consists
of seven components. Table 3 gives an overview of the size and release date of the
three DCF releases.

Although they have different aims, JEF and DCF have certain similarities. These
systems operate in the same business domain, were conducted by a fairly stable set of
developer from the same IT-department, were built over nearly the same time period,
and are of similar size. The maturity level is the same for JEF and DCF. Thus they
provide us with a fairly controlled environment for looking at whether process and
product considerations impact the change characterization of systems.

Table 2. The size and release date of the three JEF releases

Release 1: 14. June 2005 Release 2: 9. Sept. 2005 Release 3: 8. Nov. 2005
17 KSLOC 19 KSLOC 20 KSLOC

Table 3. The size and release date of the three DCF releases

Release 1: 1. Aug. 2005 Release 2: 14. Nov. 2005 Release 3: 8. May 2006
20 KSLOC 21 KSLOC 25 KSLOC

3.1 Software Change Data in StatoilHydro ASA

When a software change is detected during integration/system testing, a change re-
quest or trouble report is written (by test manager, developers etc.) and tracked in the
Rational ClearQuest tool. Examples of software changes are:

• add, modify or delete functionalities
• address a possible future problem by improving the design
• adapt to changes from component interfaces
• bug fixing

The test managers assign the change requests and trouble reports to developers.
The developers then access the source files in the version control system (Rational
ClearCase) to make modifications. When implementing the changes the developers
adhere to the following steps:

(1) Check out the file(s) corresponding to the specific change request.
(2) Implement the specific software change.
(3) Check the file back in to Rational ClearCase.
(4) While checking in the file, they input a change description, a thorough descrip-

tion of what changes were made and a time and date.

 Experience Report on the Effect of Software Development Characteristics 163

Rational ClearCase captures various information about source code changes and
the ClearQuest also stores information about changes to requirements and other
documents. We extracted the data for JEF and DCF from Rational ClearCase as de-
scribed in Table 4, with a corresponding example.

Table 4. The data collected from Rational ClearCase

Data Example
File id 8
System JEF
Filename DataAccessException
Number of versions 2
Dates2 Version 1: 19.04.2005, Version 2: 04.01.2007
Physical size (kilobytes) 1800
Size of a files first version Non-commented SLOC (source lines of code): 34

Commented SLOC: 58
Size of a files last version Non-commented SLOC: 34

Commented SLOC: 51
Descriptions of what changes occurred in
each file version

Version 1: Component support for accessing data.
Version 2: Remove obsolete java source file header entries.

Component to which the file belongs One of the seven JEF or DCF components

4 Research Questions

The existence of comparable systems in the StatoilHydro ASA environment gave us
the ability to examine our major research goal: The impact of reuse:

• The reusable framework (JEF) had changes related to all kinds of potential
downstream reuse.

• The non-reusable application: DCF had only software changes related to the
specific goals of that application (explained in section 3). The DCF
application has different development characteristics for release 1 and
release 2 and 3:

o DCF1.0 is relatively unstructured, since it was unclear what the
developers were supposed to implement, and how it should be
organized. In the beginning the developers did not have a detailed
design, and a lot of changes were made regarding functionality and
design during the implementation and testing period.

o DCF 2.0 and 3.0 were based on refactoring. Prior to DCF2.0, when
the design and the goals became clearer the developers realized that
the code they had developed was complex and hard to maintain.
Therefore, they decided to do refactoring to improve the structure
and ease the code maintenance.

The research questions we addressed for our goal are:

RQ1: Does the distribution of change types vary for different development charac-
teristics? We hypothesize that the development process being employed would have a

2 The date here refers to when the file was checked in after undergoing a change by the devel-

oper.

164 A. Gupta et al.

measurable impact on the type and number of changes required to a system. Making a
software reusable may help to reduce certain kinds of changes, but may increase the
frequency of other kinds of changes. For example, components that need to be reus-
able may have more adaptive changes, over a longer period of time, as more envi-
ronments are found that could exploit such components. Since DCF went through a
refactoring we also expect the preventive changes to decrease for release 2 and 3,
compared to release 1. We have the following related questions:

o RQ1.1: Does JEF have higher adaptive changes than DCF?
o RQ1.2: Is there a decrease in the preventive changes before and after refac-

toring for DCF?
o RQ.1.3 Do perfective and corrective changes account for the majority of the

changes, with adaptive following closely?

RQ2: What change types are the longest active for different development charac-
teristics? Our purpose is to investigate what change types (perfective, preventive,
corrective and adaptive) are longest active for different systems, which may provide
some insight into which types of changes are more difficult or problematic to make. It
is important to clarify that the changes that are longest active do not necessarily
require more effort; a change may not have been constantly under work the entire
time it was open. However, if characteristic patterns are found, this can be useful as
the starting point for a conversation with the developers to explore differences. The
following are the related research questions for RQ2:

o RQ2.1: Are adaptive changes longer active in JEF than DCF?
o RQ2.2: Are preventive changes longer active before refactoring than after

for DCF?

RQ3: How localized are the effects of different types of changes, for different de-
velopment characteristics? We hypothesize that a change that needs to modify many
files is not well-supported by the architecture, and hence more expensive to fix. Our
purpose is to investigate whether development changes can be successful in reducing
this metric for a system, and allowing future changes to be more localized. We would
like to investigate the following research questions for RQ3:

o RQ3.1: Is the average number of files modified for adaptive changes higher
in JEF than DCF?

o RQ3.2: Is the average number of files modified for preventive changes
higher before refactoring than after for DCF?

5 Research Methodology

We analyzed a representative sample of the software changes for both the JEF frame-
work and the DCF application to answer the research questions RQ1-RQ3.

Our analysis began from the files checked into Rational ClearCase. In total over all
releases, there were 481 files for JEF framework and 1365 for the DCF application,
distributed across the seven components in each system. Due to the manual nature of
the analysis it was infeasible to analyse all changes to all 1846 files. Therefore we
adopted a strategy of analysing a representative subset of the files in each component.

 Experience Report on the Effect of Software Development Characteristics 165

In our data collection we decided to have a threshold value of 10 files. This means
that if a component had more than 10 files we would not include all of the files in our
dataset, but pick a random subset that was representative of the properties of the larg-
est. A sampling calculator [26] was used to calculate a sufficient sample size. For
example component JEFClient had 195 files. Based on the calculated sample size
(165), we randomly (using a mathematic function in excel) selected 165 files from the
JEFClient to include in the dataset.

In total we used 442 files for the JEF framework and 932 files for the DCF applica-
tion. Table 5 gives an overview of the actual number of files in Rational ClearCase vs.
the number of files we analyzed, and the size (in SLOC, including the non-
commented source lines of code) for the collected files.3 In total we analyzed 1105
changes for the JEF framework and 4650 changes for the DCF application. We can
see that the number of changes for DCF is higher than for JEF. This can be explained
by that DCF development was going on for about 10 months (Table 3), while JEF
development was going on for about 6 months (Table 2). Due to longer development
period, DCF faced more changes.

Table 5. Description of data set collected from ClearCase

 Actual
number
of files

Number
of files

collected

Number of
changes
collected

Size in
SLOC for

files collected
DCF: Release 1 (before refactoring) 426 282 2111 15K
DCF: Release 2 and 3 (after refactoring) 939 650 2539 55K
JEF framework 481 442 1105 38K
Total 1846 1374 5755 108K

During the classification and comparison, we noticed that some of the changes de-
scriptions were labelled as “no changes” (meaning no changes were made to the
code), and “initial review” (meaning changes resulting from formal code review of
the code). The changes in category “code review” are changes we cannot classify,
since no description of the change was provided. We grouped “no changes” into the
category “other” and “initial review” into the category “code review”. The changes in
the category “other” and “code review” are excluded from the analysis for RQ1 –
RQ3. Quantitative differences among the change profiles of the systems were used to
formulate questions for the development team. These questions were addressed via
interviews which elicited possible explanations for these differences.

6 Results

Before investigating our specific research questions, we examined the distribution of
data across the change history. The test for normality of our datasets failed, meaning
that the data is not normally distributed. Additionally, we investigated the variances

3 However, the SLOC is just for the last version of the collected files. For example, if a file has

6 versions, the SLOC is presented for version 6 only and not for the remaining files. Thus
these values should be taken as only an approximate overview of file sizes.

166 A. Gupta et al.

for each change type for JEF and DCF and they turned out to be quite large (e.g. 3555
for DCF and 11937 for JEF for perfective changes) respectively. Hence, we decided
not to use T-tests to statistically test our hypotheses, and present the results with his-
tograms. The following is a summary and possible explanation of the results from our
analysis of software changes for JEF and DCF.

RQ1: Does the distribution of change types vary for different development charac-
teristics? We plotted our data in a histogram, shown in Fig. 1. From Fig. 1-a) we
observed the following for JEF:

1) Decreasing perfective, corrective, preventive and adaptive changes over the
three releases. The sudden drop in number of perfective changes for JEF be-
tween release 1 and release 2 and 3, yields that release 2 and 3 did not have
much requirement changes and was based more on third party components. We
can also see that there is not a big difference in the number of changes between
release 2 and 3.

2) The preventive and adaptive changes decrease towards 0 between release 2 and
release 3.

3) For the 3rd release the dominating changes are perfective and corrective, but the
perfective changes are the most frequent ones.

For DCF (Fig. 1-b) we observed that:

1) Although the number of changes goes down for DCF between release 1 and 2
(before and after refactoring) for all change types, there is not a tendency that
shows that any of these change types are decreasing.

2) It seems that corrective changes remain in the 25% of the changes.

0
200
400
600
800

1000
1200
1400

JEF 1.0

JEF 2.0

JEF 3.0 0
200
400
600
800

1000
1200
1400

DCF 1.0

DCF 2.0

DCF 3.0

Fig. 1. Number of Changes: a) JEF, b) DCF

Fig. 1 shows that perfective and corrective changes account for the majority of
changes, for both the reusable JEF framework and the non-reusable DCF application.
Our results confirm some of the findings from earlier studies (see Table 1), which
shows that perfective and corrective changes are the most frequent ones independent
of which kind of development characteristics the applications have. However, for JEF
compared to DCF the adaptive changes follow closely. Regarding the perfective
changes a contributing factor on DCF was an incomplete and poorly documented
design, which required a high number of improvements over time. Important factor
for JEF was to develop a common framework to support GUI (Graphical User

 Experience Report on the Effect of Software Development Characteristics 167

Interface) development “up front” (developing without knowing all the functionalities
a framework may need). The least frequent changes for the non-reusable application
are the adaptive changes, and for the reusable framework the least frequent changes
are the preventive changes. Contributing factors for the preventive and adaptive
changes for DCF were:

• Preventive changes: Time pressure and incomplete and poorly documented
design lead to some refactoring, since everything was not implemented op-
timally the first time. However, we can see a decrease in the preventive
changes before (release 1) and after (release 2) refactoring.

• Adaptive changes: Minor changes were made to the environment/platform,
which explains the small amount of adaptive changes.

Contributing factors for the preventive and adaptive changes for JEF were:

• Preventive changes: JEF did not go through the same time pressure as DCF
during development. That resulted in a higher code quality for JEF, and less
need for refactoring.

• Adaptive changes: StatoilHydro ASA changed their version control system
from PVCS to Rational ClearCase in the middle of the project. All the files
in the PVCS had a java comment, but when StatoilHydro ASA switched to
Rational ClearCase the java comments in all the files were removed. The
reason for why these changes are seen as adaptive changes is due to that
these files had to be adapted to a different version control system (see section
2 for definition of adaptive changes). The higher frequency (compared to
DCF) of adaptive changes can also be explained by the fact that JEF is built
over various third party components, and changes in these components will
cause changes in the framework.

We can see from Fig. 1 that JEF has a higher amount of adaptive changes than
DCF. For JEF we see that adaptive changes accounted for more than usual compared
to DCF, but still a fairly low number. This might be some surprising given that we
expected JEF to need to be reused in a number of different environments/applications.
However, this can partially be explained by the fact that the data we collected from
Rational ClearCase includes just one application reusing the JEF framework. There
are other application reusing JEF but they are for the time being under development
and no data is available.

Answering our research questions:

o RQ1.1: Does JEF have higher adaptive changes than DCF? Yes, JEF (total
number of changes 94) has higher adaptive changes than DCF (total number
of changes 58).

o RQ1.2: Is there a decrease in the preventive changes before and after refac-
toring for DCF? Yes, there is a decrease in the preventive changes before
(total number of changes 306) and after (203 for release 2 and 240 for release
3) refactoring for DCF. We can see there is a slightly increase between re-
lease 2 and 3 (18%), but still the number of changes are less for release 3
compared to before refactoring.

o RQ.1.3: Do perfective and corrective changes account for the majority of the
changes, with adaptive following closely? Yes, perfective and corrective

168 A. Gupta et al.

changes account for the majority of changes for JEF and DCF, but it is only
for JEF that adaptive changes follow closely.

RQ2: What change types are the longest active for different development charac-
teristics? From Fig. 1-a) we saw there was not a big difference in the number of
changes between release 2 and 3. Therefore, we decided not to divide the JEF frame-
work into three releases for our analysis of RQ2, since it will not affect the average.
This means that for RQ2 we will here compare DCF release 1, 2 and 3 against the
whole JEF framework.

By comparing the change types that are longest active for JEF and DCF, we found
from Fig. 2-a) that adaptive (average of 50,2days) changes are longest active for JEF.
This is because StatoilHydro ASA changed their version control system from PVCS
to Rational ClearCase in the middle of the project. All the files in the PVCS had a
java comment related to this version control system, but when StatoilHydro ASA
switched to Rational ClearCase the java comments in all the files were removed. The
JEF framework is built over various third party components, and changes in these
components will cause changes in the framework. However, we can speculate that
adaptive changes were longest active for JEF, because they affected many files. An-
other reason could be that adaptive changes were given low priority to fix. Thus, these
files may have been checked out while developers might have been busy with other
tasks with higher priority.

From Fig. 2-b) we can see that preventive changes (average of 17,0 days) are
longest active for DCF, and the number of days for preventive changes drops (84% in
average) between the two first releases of DCF. This is because before refactoring the
code was difficult and hard to maintain (release 1), but after the refactoring the code
became easier to maintain (release 2).

0

10

20

30

40

50

60

JEF

0

10

20

30

40

50

60

DCF 1.0

DCF 2.0

DCF 3.0

Fig. 2. Average #of days the changes are active: a) JEF, b) DCF

It is important to clarify that the changes that are longest active do not mean that
they require more effort, since we do not have the effort data. However, by looking
into what change types are active longest we might to some extant be able to say if
these changes stays longer in the applications and require more time to fix.

Answering our research questions:

o RQ2.1: Are adaptive changes longer active in JEF than DCF? Yes, adaptive
changes are longer active for JEF (average of 50,2 days) than DCF (average
of 2,5 days).

 Experience Report on the Effect of Software Development Characteristics 169

o RQ2.2: Are preventive changes longer active before refactoring than after
for DCF? Yes, preventive changes are longer active before refactoring; re-
lease 1 has an average of 23, 5 days. While after refactoring; release 2 has an
average of 3,8 days, and release 3 has an average of 19, 3 days. We can see
there is an increase between release 2 and 3 (80% in average), but still the
average number of days are less for release 3 compared to before refactoring.

RQ3: How localized are the effects of different types of changes, for different de-
velopment characteristics? For RQ3 we will also compare DCF release 1, 2 and 3
against the whole JEF framework. By comparing the average number of files changed
for each change type (Fig. 3), we found that DCF has higher average amount of files
modified for the preventive changes (14,5). From Fig. 3-a) we can see that JEF has
higher amount of files changed for the adaptive changes (5,5).

0

5

10

15

20

25

30

JEF

0

5

10

15

20

25

30

DCF 1.0

DCF 2.0

DCF 3.0

Fig. 3. Average amount of files modified: a) JEF, b) DCF

From Fig. 3-b) we can also see the affect of the refactoring that happened between
all the three releases, since the average number of files modified decreases. This
decrease in the files for the preventive changes is related to adapting to an open
source system framework to improve and ease the code related to handling GUI
events. Before refactoring most of the code was developed by the developers and just
some parts of the open source system framework were used. This made the code more
complex, and difficult to maintain. Due to the high time-pressure the code was
developed quickly and was defect-prone. However, during the refactoring the
developers adapted more of the open source system framework and the code became
much more structured.

Answering our research questions:

o RQ3.1: Is the average number of files modified for adaptive changes higher
in JEF than DCF? Yes, the average number of files modified for adaptive
changes is higher for JEF (5,5 files modified) than DCF (2,4 files modified).

o RQ3.2: Is the average number of files modified for preventive changes
higher before refactoring than after for DCF? Yes, DCF (before refactoring)
has in average 25,5 modified files. While DCF (after refactoring) has in av-
erage 18,5 modified files (release 2), and 8,4 modified files (release 3).

170 A. Gupta et al.

RQ2 combined with RQ3, we see the following results for DCF:

o Even though the average number of days the changes are active are high for
perfective and preventive changes, the number of files modified (within
these two change types) are getting less over the three releases.

7 Threats to Validity

We here discuss possible threats to validity in our case study and the steps we took to
guard against them, using the definitions provided by [27]:

Construct Validity: All our data is from the pre- and post-delivery software
changes (covering any reported changes) for the three releases of the reusable frame-
work, and for the three releases of the DCF application.

External Validity: The object of study is a framework consisting of only seven com-
ponents, and only one application. The whole data set of software changes in StatoilHy-
dro ASA has been collected for three releases of the reusable framework, as well as for
three releases of the application. So, our results should be relevant and valid for other
releases of the framework and other future releases of the application. The entire data
set is taken from one company. Application of these results to other environments needs
to be considered on a case by case basis, considering factors such as:

• The nature of the software development: The DCF application and the JEF
framework in our study are based on the object-oriented programming lan-
guage, namely Java. Additionally, DCF is based on a waterfall process while
JEF is based on a combined incremental/waterfall process.

• The profile of the company and projects: The profile of the company is an oil
and gas company, and hence the projects are related to oil and gas field.

• The way that software changes are defined and classified: Our definition of
software changes and other definitions used (see section 2), vary among the
different studies.

• The way that software changes are collected and measured: We have col-
lected software changes related only to the non-commented source lines of
code for a reusable framework and a non-reusable application.

Internal Validity: All of the software changes for JEF and DCF were classified
manually. Two researchers classified independently all the changes, and then cross-
validated the results. This is to enhance the validity of the data collection process. A
threat to the internal validity is the number of files we have selected from Rational
ClearCase. However, we have 422 files for the JEF framework and 932 files for the
DCF application, which should be enough files to draw a valid conclusion. We did a
semi-random sampling to ensure the normal distribution between components.

Conclusion Validity: We verified the reasons for differences of software change pro-
files between the JEF and DCF by interviewing one senior developer (see section 5).
Just asking one developer might cause systematic bias. However, we do not consider
this possibility to be a threat for our investigation, because the senior developer has
worked with both the JEF framework and the DCF application. His insights further
supported our results for RQ1-RQ3.

 Experience Report on the Effect of Software Development Characteristics 171

8 Conclusion and Future Work

Few published empirical studies characterize and compare the software changes for a
reusable framework with those of a non-reusable application. We have presented the
results from a case study for a reusable class framework and one application reusing it
in StatoilHydro ASA. We studied the impact that software changes had on different
development characteristics (e.g. impact of reuse and impact of refactoring). Our
results support previous findings to the effect that perfective and corrective changes
accounts for the majority of changes in both reusable and non-reusable software, but
it is only for the reusable framework that adaptive changes follow closely. We also
observed that DCF faced higher time-to-market pressure, more unstable requirements,
and less quality control than the reusable framework.

When it comes to designing for reuse it does have an effect on the aspect of the
change types. Our results indicate that adaptive changes have longer active time and
files related to adaptive changes are more modified in JEF compared to DCF. The
increase in adaptive change might be a result of successfully shielding the end user
(i.e. DCF developer) from changes from the vendors. Additionally, preventive
changes are more common in DCF (due to the refactoring that took place). So, the
amount of changes, as well as the effect on the localization of changes will not be
similar to the systems not necessarily designed for reuse.

Non-reusable applications usually face more unstable requirements, higher time-to-
market pressure, and less quality control than the reusable framework. Therefore,
their poorer quality is not surprising. So, making a component reusable will not auto-
matically lead to better code quality. In order to lower the amount of software changes
of the reusable component, it is important to define and implement a systematic reuse
policy; such as better design [28] and better change management [21].

In addition, we have seen a positive affect for the refactoring. A system with poor
structure initially has to deal with more frequent preventive changes before refactor-
ing than after. However, our results indicated that there was an increase in preventive
changes between release 2 and 3 (after refactoring), but the increase in release 3 was
still less than before refactoring.

The lesson learned here is that developing a framework “up front” (developing
without knowing all the functionalities a framework may need) is always difficult and
challenging, since you do not know all of the requirements that will appear when a
reusable framework is being used.

One interesting question raised by StatoilHydro ASA is whether the results of our
study could be used as input to improve future reuse initiatives. In addition, we intend
(i) to expand our dataset to include future releases of the JEF framework, future re-
leases of the DCF application, and new applications (further reuse of the JEF frame-
work), and (ii) to refine our research questions on the basis of the initial findings
presented herein.

Acknowledgement

This work was financed by the Norwegian Research Council for the SEVO project
[29] with contract number 159916/V30. We thank StatoilHydro ASA for involving us

172 A. Gupta et al.

in their reuse projects. This work is also partially sponsored by NSF grant
CCF0438933, "Flexible High Quality Design for Software."

References

1. Bennett, K.H., et al.: Software Maintenance and Evolution: A Roadmap. In: 22nd Intl.
Conf. on Software Engineering, pp. 73–78. IEEE Press, Limerick (2000)

2. Lehman, M.M., et al.: Programs, Life Cycles and Laws of Software Evolution. In: Proc.
Special Issue Software Eng., vol. 68(9), pp. 1060–1076. IEEE CS Press, Los Alamitos
(1980)

3. Postema, M., et al.: Including Practical Software Evolution in Software Engineering Edu-
cation. IEEE Computer Society Press, Los Alamitos (2001)

4. Sommerville, I.: Software Engineering. Sixth Edition. Addison-Wesley, Reading (2001)
5. Bennet, P.L.: Software Maintenance Management: A Study of the Maintenance of Com-

puter Application Software in 487 Data Processing Organizations. Addison-Wesley Pub.,
Reading (1980)

6. Lientz, B.P., et al.: Characteristics of Application Software Maintenance. Communications
of the ACM 21(6), 466–471 (1978)

7. Mockus, A., et al.: Identifying Reasons for Software Changes Using Historical Database.
In: Proc. IEEE Intl. Conf. on Software Maintenance, pp. 120–130. IEEE CS Press, San
Jose (2000)

8. Schach, S.R., et al.: Determining the Distribution of Maintenance Categories: Survey ver-
sus Management. Empirical Software Engineering 8, 351–366 (2003)

9. Abran, A., et al.: Analysis of Maintenance Work Categories Through Measurement. In:
Proc. Conf on Software Maintetance, pp. 104–113. IEEE CS Press, Sorrento (1991)

10. Yip, S., et al.: A Software Maintenance Survey. In: Proc. 1st Int. Asia- Pacific Software
Engineering Conference, Tokyo, pp. 70–79 (1994)

11. Basili, V., et al.: Understanding and Predicting the Process of Software Maintenance Re-
leases. In: 18th Intl. Conf. on Software Engineering, pp. 464–474. IEEE CS Press, Berlin
(1996)

12. Mohagheghi, P.: An Empirical Study of Software Change: Origin, Impact, and Functional
vs. Non-Functional Requirements. In: Proc. at Intl. Symposium on Empirical Software
Engineering, pp. 7–16. IEEE CS Press, Los Angeles (2004)

13. Gupta, A., et al.: An Empirical Study of Software Changes in Statoil ASA – Origin,
Piority Level and Relation to Component Size. In: Intl. Conf. on Software Engineering
Advances, p. 10. IEEE CS Press, Tahiti (2006)

14. Jørgensen, M.: The Quality of Questionnaire Based Software Maintenance Studies. ACM
SIGSOFT – Software Engineering Notes 20(1), 71–73 (1995)

15. Sousa, M., et al.: A Survey on the Software Maintenance Process. In: Intl. Conf. on Soft-
ware Maintenance, pp. 265–274. IEEE CS Press, Bethesda (1998)

16. Satpathy, M., et al.: Maintenance of Object Oriented Systems through Re-engineering: A
Case Study. In: Proceedings of the 10th Intl. Conf. on Software Maintenance, pp. 540–
549. IEEE CS Press, Montreal (2002)

17. Lee, M.G., et al.: An Empirical Study of Software Maintenance of a Web-based Java Ap-
plication. In: Proceedings of the IEEE Intl. Conf. on Software Maintenance, pp. 571–576.
IEEE CS Press, Budapest (2005)

18. Evanco, M.: Analyzing Change Effort in Software During Development. In: Proc. 6th Intl.
Symposium on Software Metric, Boca Raton, pp. 179–188 (1999)

 Experience Report on the Effect of Software Development Characteristics 173

19. Burch, E., et al.: Modeling Software Maintenance Requests: A Case Study. In: Proceed-
ings of the Intl. Conf. on Software Maintenance, pp. 40–47. IEEE CS Press, Bari (1997)

20. Mohagheghi, P.: An Empirical Study of Software Reuse vs. Defect Density and Stability.
In: Proc. 26th Intl. Conf. on Software Engineering, pp. 282–292. IEEE-CS press, Edin-
burgh (2004)

21. Selby, W.: Enabling Reuse-Based Software Development of Large-Scale Systems. IEEE
Transactions on Software Engineering 31(6), 495–510 (1995)

22. Gupta, A., et al.: A Case Study of Defect-Density and Change-Density and their Progress
over Time. In: 11th European Conf. on Software Maintenance and Reengineering, pp. 7–
16. IEEE Computer Society, Amsterdam (2007)

23. Zhang, W., et al.: Reuse without compromising performance: industrial experience from
RPG software product line for mobile devices. In: Proc. 9th Intl. Software Product Line
Conference, pp. 57–69. Springer, Rennes (2005)

24. Frakes, W.B., et al.: An industrial study of reuse, quality, and productivity. Journal of Sys-
tem and Software 57(2), 99–106 (2001)

25. Algestam, H., et al.: Using Components to Increase Maintainability in a Large Telecom-
munication System. In: Proc 9th Int. Asia- Pacific Software Engineering Conference, pp.
65–73 (2002)

26. Sampling calculator , http://www.macorr.com/ss_calculator.htm
27. Wohlin, C.: Experimentation in Software Engineering – An Introduction. Kluwer Aca-

demic Publishers, Dordrecht (2002)
28. Succi, G., et al.: Analysis of the Effects of Software Reuse on Customer Satisfaction in an

RPG Environment. IEEE Transactions on Software Engineering 27(5), 473–479 (2001)
29. Sevo project, http://www.idi.ntnu.no/grupper/su/sevo/

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 174–188, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Virtual Prototypes in Developing Mobile Software
Applications and Devices

Kari Liukkunen1, Matti Eteläperä2, Markku Oivo1, Juha-Pekka Soininen2,
and Mika Pellikka3

1 Department of Information Processing Science, University of Oulu
P.O. Box 300, 90014 Oulu, Finland

2 VTT, Kaitoväylä 1, 90570, Oulu, Finland
3 CCC Group, Tietotie 2, 90460 Oulunsalo, Finland

kari.liukkunen@oulu.fi, matti.etelapera@vtt.fi,
markku.oivo@oulu.fi, juha-pekka.soininen@vtt.fi,

mika.pellikka@ccc.fi

Abstract. The goal of this paper is to study how software based virtual proto-
types and hardware simulation tools can be combined. By combining these
tools and techniques we can shorten the time to market with parallel concurrent
design and more importantly, we can provide a real-time simulation environ-
ment for virtual prototypes. Application designers get access to a simulated re-
alistic real-time mobile device well before the first prototypes are available
from the device manufacturer. The research work was done in two cases. In the
first case the virtual prototypes were used to illustrate and help to select new
mobile application concepts and to test new applications usability. In the second
case the virtual prototypes were used for modelling the product platforms, e.g.
the computer system and the simulation of the complete system including both
hardware and software. Our approach facilitates early simulation and testing of
the final user experience and system behaviour in cases where they are heavily
dependent on the characteristics and performance of the underlying computer
platform.

Keywords: Usability requirements, user interfaces, user experiences, virtual
prototypes, mobile software applications, virtual platform.

1 Introduction

In order to meet the usability requirements in the development of interactive software
for handheld devices, such as mobile phone applications, the user-centred design
approach is an appealing approach. There are tools that enable the virtual simulation
of applications for handheld devices (terminals). These tools offer a virtual design
space that is used to design the application and produce the virtual prototypes that can
be used to simulate the application logic and user interface. There are also tools that
allow the simulation of the target hardware platforms for the terminals for example
for building software platforms for mobile devices. These tools are normally used in

 Virtual Prototypes in Developing Mobile Software Applications and Devices 175

isolation by different designer groups. However, our goal was to integrate these tools
and their use for early and realistic simulation purposes. Rapid capacity increase of
simulator workstations and the simulation tools have made it possible for the first
time.

Paper prototyping or story boarding enables the rapid concept designing of certain
parts of software’s user interface, but with virtual prototyping and simulation tools it
is possible to produce fully interactive simulations. Virtual prototypes enable the
rapid concept design of software applications already before the implementation work
has started. Virtual prototypes can therefore be used to pilot software application
concepts and support the concept selection process. When usability and user experi-
ence are considered the real performance provided by the execution platform needs to
be taken into account. Otherwise, the usability results are based on false hopes of
ideal machines. Then the specification can lead to enormous implementation prob-
lems, where the software developers are facing an impossible mission. In the worst
case, the result may be the change of specification and redesign.

Performance modeling and simulation is currently used approach to analyse the
embedded or mobile system, but it has also its limitations. Real-time (or almost real-
time) performance is needed in order to provide realistic responses to the user for
usability studies. However, the final performance depends very often on the software
and hardware architecture design decisions on a very detailed level. The final per-
formance bottlenecks can be results from example poorly designed search algorithms,
inadequate bus or memory interfaces or unfortunate interactions of different system
functions. Modelling the system on such detailed level is too much time consuming,
too expensive and typically results too slow simulation performance to be practical.

In case both hardware and software are new, the system architect and designers can
optimise the final system instead of software or hardware. From product development
point of view the benefits are naturally related to better product, but only if we can do
the software and hardware development in parallel and if we can look the complete
system characteristics during the design (Fig. 1).

Fig. 1. Virtual prototypes in application and platform modeling

In embedded system domain, the development of hardware and software has been
sequential. Typically embedded software has been developed for some existing em-
bedded hardware. Two factors are changing this. First, the increase pressure to

Application-
concept Application

Platform-
concept Platform Platform model

Application
model

Virtual prototypes

Scenarios Use Case Use

Concept models Real product

176 K. Liukkunen et al.

shorten the design time, which also means that the hardware has to renew more rap-
idly. Secondly, the hardware is becoming more flexible due to the reconfigurability.
In practice the functionality of the most of the embedded systems today could be
implemented using SoPC (system on programmable chip) devices where it is possible
to change the hardware system also on run-time.

Complexity of underlying hardware has also increased and it is making the man-
agement of performance of complete system extremely difficult. For example, if we
look into a modern mobile terminal platform such as OMAP2 architecture, we see a
complex computer with general purpose processor ARM11 running Symbian or
Linux real-time operating systems, a very complex DSP processor, programmable
accelerators for video and graphics, few buses, a complex memory organisations and
an interconnect that tries to feed up all units with data. So, it is complex embedded
computer with a complex set of software services on the top of it. And it is targeted
for a battery operated device. The next generation platforms will be even more com-
plex with packet-switched networks and multiple processors.

With battery operated devices and current system complexities it is clear that tradi-
tional general purpose computer design ideas needs to be rethought. Hardware archi-
tecture design must be guided by the intended use cases and applications. The system
resources must be optimised for them in order to avoid the waste of time, energy and
money. Similarly in the software architecture and software design, the decisions must
be based on the knowledge on what actually happens in the system, how system re-
sources are used, and how the system would respond to the user.

The approach taken in this is to combine software based virtual prototypes and
hardware simulation tools. By combining these tools and techniques we can shorten
the time to market with parallel design of usability, software system and underlying
computer hardware as shown in Fig. 2. Even more importantly, we can provide a
real-time simulation environment for virtual prototypes containing both models of
applications and execution platforms. Then the application designers can get realistic
environment were they can design and test not only the logic of the UI, but also the
timing, delays and many other crucial time related issues in UI design. Application
designers get access to a simulated realistic real-time mobile device well before the
first prototypes are available from the device manufacturer. The first models can be
very abstract conceptual models that are then refined during the design until the real

Hardware design

Software design

In teg ration & tes ting

H W im plem entation

Tim e

Tim e

S aved tim e

Traditiona l
p la tform
design

V irtual
p la tform
design

V irtua l HW design

S oftware design

In tegra tion & tes ting

Fig. 2. Virtual versus traditional platform design. Simultaneous hardware and software design
is one of the benefits of virtual platform based design

 Virtual Prototypes in Developing Mobile Software Applications and Devices 177

product is ready as shown in Fig. 2. Both the application software developers and
execution platform developers can have very rapid feedback on how the changes
made in either area affect to the complete system and its usability characteristics.

Simulation tools used in this research were CCC Group’s Cybelius Maestro, which
is suitable for simulating application’s user interface and CoWare’s Electronic System
Level design tool set, especially SystemC simulation tool, suitable for simulating
target platforms. These tools were used in different parts of the development process,
starting from collecting ideas and ending to software testing using the virtual hard-
ware platform. In this project, it was impossible to have only one case and follow it
throw the development process. We have to use three different cases. In this paper we
later describe these cases and our experiences.

2 Related Work

Modern computer software is characterized by continuous change, by very tight time-
lines, and by an emphatic need for customer/user satisfaction. In many cases, time-to-
market is the most important management requirement. If a market window is missed,
the software project itself may be meaningless. Virtual design has the potential to help
in these critical problem areas. Tseng et al. [18] explain that virtual design is proposed
to replace hardware prototypes with computational (virtual) prototypes of systems and
the processes that they may undergo. By replacing hardware with computational pro-
totypes, the potential is tremendous for greatly reducing product development time,
manufacturing facility ramp-up time, and product development cost.

2.1 Virtual Prototyping

Virtual prototyping can be viewed either as a technology term or as a process descrip-
tion. The process description of virtual prototyping is as follows [13]:

“Virtual prototyping is a process in which a product or a product concept,
its behavior and usage are simulated as realistically as possible by combining
different prototyping and simulation models and techniques.”

When virtual prototyping is viewed as technology term, the focus is usually on the
virtual prototype and its realization. Based on the definition given by Haug et al. [7] a
virtual prototype could be described as follows:

“A virtual prototype is a simulation of a target object which aims at an
adequate degree of realism that is comparable with the physical and logical
functionality and the appearance of the possible real object, and that is
achieved by combining different prototyping and simulation models and
techniques.”

According to Kiljander [14] the UI prototyping methods include Mathematical
models, Scenarios, 2D & 3D drawings and computer aided design (CAD) models, Sto-
ryboards, Paper prototypes, Computer simulations, Virtual reality prototypes, Hard
models, and Hardware prototypes. Ulrich & Eppinger [19] have classified prototypes
along two dimensions – physical/analytical and comprehensive/focused. Kiljander [14]
has ordered the different UI prototyping methods to this classification according to the
methods’ level of fidelity i.e. interactivity or concreteness they support (Fig. 3).

178 K. Liukkunen et al.

Fig. 3. Classification of Prototypes with UI Prototyping Methods [14]

2.2 System Simulation

There are three basic approaches, if the characteristics of executing hardware are
taken into account during the development of software applications [11]. First, we can
measure the effects of hardware if the hardware exits. This is naturally very accurate
method. The accuracy and the reliability of results depend on the maturity of the
software we are developing. The second approach is to use some hardware prototype
or hardware emulator that mimics the final hardware. The accuracy is degraded, be-
cause the used hardware is not exactly as the final hardware and it introduces errors.
The third alternative is to model the hardware and simulate its behavior in a computer.
The simulation model is called a virtual platform and if we simulate the execution of
application software or even the complete software system, the complete system
model is a virtual prototype of a product.

The traditional technique for the analysis of software-hardware system is co-
simulation. The first co-simulation environments were commercialized during early
1990s and because the need for co-simulation was initiated from hardware design the
simulation models were very detailed and slow. In the co-simulation the software can
be executed using real processors, emulated processors, RTL-simulation models of
the processors, instruction-set simulators of the processors [8, 1], or more abstract
functional simulation models [5]. Similar abstraction levels are available for the other
hardware parts and recently the development has been from detailed hardware de-
scriptions towards more abstract transactional models. In the processor-hardware
interface bit-accurate models, bus-accurate functional models and abstract communi-
cation channels have been used [2].

When co-simulation is used for system-level design, the problem is the trade-off
between modeling effort, accuracy and performance. Complex software systems can-
not be simulated using a clock-accurate processor or bus models. There are three
basic approaches for solving the performance problems. The first is to increase the
abstraction level of the hardware simulation by, for example, using concurrent proc-
esses that communicate using channels [4, 6]. The second is to use host-based execu-
tion of the software instead of trying to execute machine code instructions [20]. The

 Virtual Prototypes in Developing Mobile Software Applications and Devices 179

third is to replace the final code with a more abstract workload model that only gener-
ates events for the hardware architecture instead of implementing the complete func-
tionality of the software [15]. The state-of-the-art tools currently are based on the use
of high-level modeling and simulation languages such as SystemC [21]. SystemC is
based on C++ and shares the same syntax and advanced features such as dynamic
memory allocation and object oriented design partitioning. It is a very flexible lan-
guage and it is possible to build custom platform simulators of different abstraction
levels using it [22].

3 Research Approach

In this research we have carried out three cases to study how virtual prototypes can be
used for piloting and testing of mobile software applications, how these virtual proto-
types can support usability planning and collecting the user experiences of a Web-
based product and how virtual platform can be used to test software applications
(Fig. 4). Cases included iterative construction of virtual prototype solutions for two
real-world applications (City of Oulu and Ouman). In these two cases UI-simulation
was used to collect mobile application ideas for the city of Oulu. Solution concepts
were then created from these ideas. Concepts were built in the form of virtual proto-
types. In the second case study the goal was to gather usability requirements of the
Web application for a company called Ouman. The City of Oulu case was categorized
as “Concept design process” and Ouman case as “Requirements gathering”. In the
third (VTT) case research scope was to demonstrate the capabilities of virtual plat-
form design methodology on software development. Full commercial implementation
was left out of the scope of this research.

Fig. 4. Focus of the City of Oulu and Ouman research cases

3.1 UI Simulation Approach

Virtual design is becoming more important also because the functions of a product are
implemented more and more through software. For example, in mobile phones the
size of software has risen from some kilobytes in analogue phones to several mega-
bytes in the latest smart phones. The weighting of software is shifting from lower

180 K. Liukkunen et al.

level system to the UI parts. In some consumer products UI software can account for
over 50% of the entire software. [13, 14]. This shift can be better understood looking
at it from a user’s perspective. Mayhew points out that as far as users are concerned
the UI is the product, because their entire experience with the product is their experi-
ence with its UI. [16].

The definition of usability from ISO 9241-11 is: “The extent to which a product
can be used by specified users to achieve specified goals with effectiveness, effi-
ciency, and satisfaction in a specified context of use.” [10, 2]. Jokela [12] describes
that the ISO 9241-11 definition is not only a formal standard, but is also becoming the
de facto standard. He also points out that one essential feature concerning usability is
that it is not an absolute product property, but it always exists in relation to the users
of the product.

Virtual prototypes are created in a concept design process. It is possible to see the in-
ternational standard ISO 13407 as a concept design process. It identifies five UCD ac-
tivities (processes), four of which deal with the substance of UCD while one is about the
planning of “human-centred design”. The processes of UCD are illustrated in Fig. 5.

Fig. 5. Processes for user-centered design in ISO 13407 [9]

To be exact, concepts are created as a result of the “produce design solutions”

process, but performing every process of the standard is essential for getting relevant
results. Accurate product concepts would be hard to create without understanding the
context and environment of use.

In this research the focus is on concept design of Web applications UIs and collect-
ing usability data concerning the UIs before the real application actually exists. This
can be achieved by illustrating the concepts with functional virtual prototypes, and by
performing usability tests to users with these virtual prototypes. These activities are
described in the ISO 13407 standard as “produce design solutions” and “evaluate
designs against requirements” processes.

3.2 HW Simulation Approach

Our approach is based on the idea that application software is mapped on the platform
model of computer system and the resulting system model is then simulated (Fig. 6.).
The SW is written in C and compiled to target processor. The platform model is

 Virtual Prototypes in Developing Mobile Software Applications and Devices 181

created using Coware ESL tools and SystemC models. The model should be created
detailed enough to provide performance data for usability analysis, but abstract
enough to have adequate real-time performance for interactive use of applications. In
the CoWare toolset a simulation engine is a SystemC simulator. In case we identify
any performance of functionality problems then either the application code or plat-
form hardware model can be changed or the whole system re-simulated.

Application Platform

Mapping

Simulation

Application
SW changes

Platform HW
changes

Performance
problems?

Fig. 6. Basic application-platform simulation approach

The resulting system model is actual a virtual prototype of a product. It consists of
HW model, i.e. the execution platform, the HW-depended SW parts, e.g. operating
system such as Symbian or Linux, control SW code and platform services, etc., and
application code as shown in Fig. 7. Modeled execution platform and simulator offers
full visibility to all parts of hardware so it is possible to monitor all parts of system.
This is superior feature to any implementation or emulator, since it allows the de-
signer to see what happens inside a computer, which is typically impossible. The
modern embedded systems computers are integrated components containing several
processors, dedicated memory organizations and complex interconnect that are

Applications/
Application models

API

Control SW + Operating
System+ Platform Service SW

CPU

Other
simulators

Platform
innovation
ideas

Network
simulation

Network
services

Service from
partners

Platform service
ideas

Simulator kernel

HW Platform
(ISS+TLM)

Virtual
Prototyping

Environment

ApplicationsApplications/
Application models

API

Control SW + Operating
System+ Platform Service SW

CPU

Other
simulators

Platform
innovation
ideas

Network
simulation

Network
services

Service from
partners

Platform service
ideas

Simulator kernel

HW Platform
(ISS+TLM)

Virtual
Prototyping

Environment

Applications

Fig. 7. Virtual prototype of a mobile terminal

182 K. Liukkunen et al.

impossible to access from outside of the component. It is also possible to separate the
computer system part and SW development environment and to encapsulate it into
distributable package for third party application developers.

4 Empirical Experiences

In University of Oulu case Cybelius Maestro tool was used to pilot software applica-
tion concepts and to support the concept selection process (City of Oulu case). It was
also used to gather user experiences collected concerning the selected concept
(Ouman case). VTT created a case example of a mobile stereoscopic video recorder
platform. The aim was to demonstrate the capabilities of virtual platform design
methodology on software development. Also the feasibility of such approach and the
work effort needed to make a virtual platform were quantified.

4.1 City of Oulu – Rapid Concept Design Process of Mobile Applications

For the ROOSTER-project, the City of Oulu mobilized their different working sec-
tors; construction, cleaning, sports, education and health care in order to find new
ideas for mobile phone applications. Meetings were arranged with these working
sectors. The idea was to collect ideas for possible future mobile applications that
could help citizens of Oulu in using their facilities as well as the workers themselves
in their everyday work. The central technologies that were concerned in this research
case were the Radio-Frequency Identification (RFID) tag and mobile phone. About 30
potential ideas were gathered from the meetings in total. The goal was to identify few
potential ideas that would eventually be implemented as real applications.

Simulations from the collected ideas were implemented in a “quick and dirty” way
because in this case no usability requirements were gathered. Simulations from these
two ideas were further used for demonstration purposes in following meetings.

Maestro’s Physical User Interface (PUI) model’s front view consisted of several
Key components and one view component. For example the pictures of an ID card, a
RFID-tag, a Globe indicating the Internet and a computer indicating a server were in
fact own components. These images were needed, because actions and data flow
between these components and the phone might otherwise be hard for the user to
comprehend. The created concept of the system that retrieves a map of the building
the person enters in is illustrated in Fig. 8.

When the user clicks left mouse button on top of the RFID-Tag the mobile phone
moves on top of it (Fig. 8.). Phone connecting to the Internet is indicated with a green
arrow from the phone to the Internet to indicate the information flow. The same indi-
cation is also used to describe dataflow from the Internet to server and from Server
back to the mobile phone. Indication of touching the RFID tag was implemented with
a PUI-component that sets a smaller mobile phone visible on top of the RFID-tag
image. After few seconds from pressing the RFID-tag, the mobile phone returns to the
centre. Finally in this simulation the map of the building was opened to the phone
view.

 Virtual Prototypes in Developing Mobile Software Applications and Devices 183

Fig. 8. A created system concept for City of Oulu case in its start and end position. RFID-Tag
is touched with the phone and information is retrieved from the Internet.

The simulation style presented in Fig. 8. was used also in the implementation of
the other concepts in the City of Oulu case. The development time of one simulation
was approximately one day for a developer who is familiar with Maestro. In order to
use Maestro efficiently the developer needs to have Java programming skill as well as
skills to use some graphics software, e.g. GIMP or PhotoShop. Based on these em-
pirical experiences, it can be said that with experienced developer, simulation tool
suits extremely well in rapid design of mobile application concepts. This way mobile
application can be piloted already in concept design phase, thus making the concept
selection more efficient.

4.2 Ouman – User Experiences of Web-Based Application Simulation

The goal was to create a Web application representing Ouman’s Web-based heat
regulation system called EH-Net. A design decision was made that the simulation
would represent a full scale Web server, and usability issues would be collected from
users using the simulation. Because of the time constraints in the project it was de-
cided that functionality of the simulation would be restricted to those parts of the
system that concerned the user goals. Simulations were made in form of applets so
that it was possible to use them remotely with Web browsers through the Internet.

Usability requirements gathering was started by arranging a stakeholder meeting.
User groups along with their technical background and responsibilities were identi-
fied. The tasks and goals of these user groups were then studied. Ouman provided the
“Design guidelines” and “Style guides” that were used in interaction design of the
simulation. Ouman also defined usability requirements for the system. Also descrip-
tion of the environment of use and restrictions of use for different groups were
defined.

In Maestro tool the PUI model is defined with front - and back views, where an
image of the device for example a specific mobile phone model can be inserted along
with various key components including Key, Liquid Crystal Display (LCD) and Led.
Keys are used for example to simulate the mobile phone’s key presses, whereas LCD
is the view area of the device. Led’s can be used to indicate different states of the
device for example power on/off. Applet representing a Web server was done using
only the LCD component. Maestro GUI components have also a feature called touch
screen that enables the use of simulations without externally defined key triggers.

184 K. Liukkunen et al.

Every component contains specific set of methods that can be called from the simula-
tion at runtime. The only prerequisite is that the touch screen feature is enabled from
the component properties. For example in Ouman simulation dropdown menus func-
tionality was implemented by grouping the functionalities of TextField, List and But-
ton component List is set invisible when entering the state and visible after the Button
is pressed. List is set invisible again after a list item is selected from the list. Finally
the text from the selected list item is set to the TextField component.

Three iterations were implemented to the simulation before launching the final lar-
ger scale usability test session. All the needed graphics were implemented already in
the first iteration; second and third iteration contained only logical fixes. The third
iteration contained only cosmetic fixes and therefore it was considered to be good
enough quality for starting the larger scale usability testing.

It is important to notice that the test done here is not usability testing in the sense it
is generally understood. Usability testing usually involves a controlled experiment
and such an environment was not implemented in this research. The testing done in
this research was more like usability appraisal, and it was done remotely. Neverthe-
less, real usability issues were found. The test group consisted of six persons with
some experience in software development and user interfaces. Nielsen explains that
the best results from usability testing come when testing with 5 users and running as
many small tests as is affordable. Nielsen’s has also described that 5 testers can find
over 75% of the usability problems. With 6 testers the amount increases already to
nearly 90% [17.]. Based on this information the test group’s size was sufficient.

Usability issues were gathered by creating an applet from the Web application
simulation and storing the HTML-file containing the applet to a Web server. The
applet could then be run by test users’ using their PC’s Web browsers. Data received
from the questionnaire was qualitative. Some of the answers could not be counted
valid usability issues. This is because some usability flaws found by the user were
actually simulation tool and simulation specific problems. Only usability issues that
could be identified to concern the real system were collected.

The implementation work of the simulations grows exponentially when the focus is
on the usability of a product. There are numerous features that need to be imple-
mented in order to create a simulation that can offer adequate degree of realism that is
comparable with the physical and logical functionality and the appearance of the
possible real object. In this case it took a full month to implement the first version of
the simulation that could be used to gather user experiences and usability issues. Nev-
ertheless, empirical data from this case shows that virtual prototypes can be used to
gather valid usability issues and thus they can provide support for planning the usabil-
ity of a product.

4.3 Virtual Platform Model of a Mobile Device

The aim of the case was to demonstrate the capabilities of virtual platform design
methodology on software development. Also the feasibility of such approach and the
work effort needed to make a virtual platform were quantified [23].

A SystemC based toolset from CoWare was used in this work for developing the
virtual platform hardware model. The SystemC language [24] has a dual role in ESL
(Electronic System Level) design as being both a hardware description language and a

 Virtual Prototypes in Developing Mobile Software Applications and Devices 185

system description language. CoWare is one of the few tool vendors which currently
provide virtual platform technology. The tools allow the user to build a whole plat-
form from scratch by using models of commercial IP blocks or by building synthesiz-
able processors models and any other custom IP blocks. The models used by the
CoWare tools are SystemC based, so models of various abstraction levels can be
incorporated in the platform. The platform designer can create a virtual platform of
his design to be distributed to software developers. Software designers then receive a
virtual platform package which includes a compiler, a debugger and the platform
simulator. As software designers give feedback of the system issues back to the plat-
form designer, they will receive an updated version of the virtual platform package
later on.

The stereoscopic video recorder which was chosen as the case example is a device
which multiplexes and encodes video streams from two independent cameras repre-
senting the human visual system. This creates a video stream which captures a true
three dimensional view. The approach is viable in future mobile phones for example
due to the rapid development camera technology and compact autostereoscopic liquid
crystal displays. Both encoding and decoding modes were implemented in the virtual
platform for approach feasibility studies and architecture exploration purposes. Per-
formance of these platforms and the performance of the simulator were measured.
During the architecture exploration, we also approximated the time taken by each step
in creating and modifying the platform. The amount of time consumed was also ap-
proximated for the consecutive changes made to the platform after the initial learning
curve had been confronted. This allowed us to quantify the effort in learning the
method and tools used.

An ARM9 processor family based platform was chosen, because it is one of the
most popular processor types for embedded multimedia devices. Designing the hard-
ware platform block diagram was straightforward and intuitive. Different platforms
variations were tested for the 3D recorder, such as running the instructions from the
fast SRAM memories or the external memories over the bus.

The software development for the virtual platform proved to be very straight for-
ward. The initial port of the stereoscopic codec was developed in a PC environment
with a gcc cross compiling environment. An operating system was not used in the
virtual platform. Instead the stereoscopic video encoding software was a standalone
ARM-binary, because this was considered to be enough for performance evaluation of
the most critical parts of the system. System boot up codes were naturally required to
setup the system prior to the execution of the video encoder in addition to the actual
codec work. Ffmpeg / libavcodec open source encoding/decoding software was cho-
sen as the starting point for the stereoscopic encoding and decoding task. The codec is
customizable, but is not fully optimized for ARM9. Modifications to the original code
were made.

The hardware modeling was done by one research and the software was created
concurrently with the hardware by a research scientist with background in video en-
coding software. As with all new tools, virtual platform involves a significant learn-
ing curve, so the results for time consumed in model changes are displayed in two
categories. The first one is the amount of work for the first time user making a build-
ing or changing the platform. The time to build a new hardware platform from scratch
was measured to be eight weeks for a novice user. The total time to build a working

186 K. Liukkunen et al.

platform with all the software and peripherals included was 16 weeks. This amount
includes the concurrent software and hardware development. After building the first
platform and encountering the initial obstacles, it was possible to build a working
virtual platform model from scratch in a week.

The CoWare tools could perform virtual platform simulation with two modes: fast
and full. The fast mode was suited for functional verification, but did not give accu-
rate timing data for performance approximation. On the other hand the full mode was
accurate, but approximately ten times slower than the fast mode. The fast simulation
mode reached 11.8 MIPS performance on a 3,2GHz Intel Xeon workstation. This is
9.6 times slower than real time. This gap is becoming smaller as simulator worksta-
tions and the simulation tools improve.

5 Conclusions and Future Work

Virtual prototypes can be used to gather usability requirements already in early phase
of product development life cycle reducing the amount of errors that are implemented.
Paper prototyping or story boarding enables the rapid concept designing of certain
parts of software’s user interface, but with virtual prototyping and simulation tools it
is possible to produce fully interactive simulations. With interactive simulations it is
possible to find even more relevant usability issues from a software product. Virtual
prototypes enable the rapid concept design of software applications user interface
already before the implementation work has started. Virtual prototypes can therefore
be used to pilot software application concepts and support the concept selection proc-
ess. The application designers can get realistic environment were they can design and
test not only the logic of the UI, but also the timing, delays and many other crucial
time related issues in UI design. Application designers get access to a simulated real-
istic real-time mobile device well before the first prototypes are available from the
device manufacturer. The tools can be used for piloting and testing of mobile software
applications and platforms and how these virtual prototypes can support planning and
collecting the user experiences.

Virtual platform modeling is a feasible approach for both software and hardware
development. The tools used in this work also proved to be suitable for architecture
exploration and performance evaluation. The functionality of the platform can be
modeled very accurately with virtual platforms and they provide an intuitive way of
developing and testing software for both functional and performance estimation. The
functional verification simulations used in our work were still 9.6 times slower than
real time, but this gap is becoming smaller as simulator workstations and the simula-
tion tools improve.

Table 1. Simulation development times in research cases

UI simulation 1 day
Application simulation 4 weeks
Working virtual platform model 1 week

 Virtual Prototypes in Developing Mobile Software Applications and Devices 187

Our experiences (Table 1.) with integrated prototyping tools indicate that it is pos-
sible to shorten development time considerably. However, it was difficult to find
benchmarking data for comparing our results and hence further empirical research is
required to quantify the improvements.. Also, tight integration of UI (e.g. Maestro)
and platform (e.g. CoWare) simulation tools would be needed to enable optimal use
of both simulation techniques. This kind of tight tool integration would be a promis-
ing and interesting future research area.

Acknowledgments

The research work presented in this paper was done in ROOSTER research project at
the Department of Information Processing Science, University of Oulu and at VTT.
Project was financially supported by the National Technology Agency of Finland
(TEKES) and industrial partners CCC, Nokia, Elektrobit, F-Secure, TietoEnator,
Jaakko Pöyry Oy, Pöyry Telecom Oy, Ouman, Embe Systems Oy and City of Oulu.

References

1. Austin, T., Larson, E., Ernst, D.: SimpleScalar: An Infrastructure for Computer System
Modeling. Computer 35(2), 59–67 (2002)

2. Benini, L., Bertozzi, D., Bruni, D., Drago, N., Fummi, F., Poncino, M.: SystemC Cosimu-
lation and Emulation of Multiprocessor SoC Designs. Computer 36(4), 53–59 (2003)

3. Bevan, N.: International standards for HCI and usability. International Journal of Human-
Computer Studies 55 (4), 533–552 (2001)

4. Buck, J., Ha, S., Lee, E., Messerschmitt, D.: Ptolemy: A Framework for Simulating and
Prototyping Heterogeneous Systems. International Journal of Computer Simulation 4,
152–182 (1994)

5. Chandra, S., Moona, R.: Retargetable Functional Simulator Using High Level Processor
Models. In: Proceedings of 13th International Conference on VLSI Design, 2000, Calcutta,
India, January 3–7, 2000, pp. 424–429. IEEE Computer Society Press, Los Alamitos
(2000)

6. Grötker, T., Liao, S., Martin, G., Swan, S.: System Design with SystemC, p. 217. Kluwer
Academic Publishers, Boston (2002)

7. Haug, E.J., Kuhl, J.G., Tsai, F.F.: Virtual Prototyping for Mechanical System Concurrent
Engineering. In: Haug, E.J. (ed.) Concurrent Engineering: Tools and Technologies for
Mechanical System Design, pp. 851–879. Springer, Heidelberg (1993)

8. Hughes, C., Pai, V., Ranganathan, P., Adve, S.: Rsim: simulating shared-memory multi-
processors with ILP processors. Computer 35(2), 40–49 (2002)

9. ISO/IEC 13407: Human-Centered Design Processes for Interactive Systems.1999:
ISO/IEC 13407: 1999 (E) (1999)

10. ISO/IEC 9241-11: Ergonomic requirements for office work with visual display terminals
(VDTs). Part 11 - Guidelines for Specifying and Measuring Usability.1998: ISO/IEC
9241-11: 1998 (E) (1998)

11. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experimen-
tal Design, Measurement, Simulation and Modeling, p. 685. John Wiley & Sons, Inc, New
York (1991)

188 K. Liukkunen et al.

12. Jokela, T.: Making User-Centred Design Common Sense: Striving for an Unambiguous
and Communicative UCD Process Model. In: ACM International Conference Proceeding
Series, vol. 31, pp. 19–26 (2002)

13. Kerttula, M.: Virtual Design. A Framework for the Development of Personal Electronic
Products. VTT, Finland (2006)

14. Kiljander, H.: User Interface Prototyping of Handportable Communication Products. Aca-
demic Licentiate Thesis, p. 122. Helsinki University of Technology, Espoo, Finland
(1997)

15. Lahiri, K., Raghunathan, A., Dey, S.: Performance Analysis of Systems with Multi-
Channel Communication Architectures. In: Proceedings of 13th International Conference
on VLSI Design, Calcutta, India, January 3–7, 2000, pp. 530–537. IEEE Computer Society
Press, Los Alamitos (2000)

16. Mayhew, D.J.: The Usability Engineering Lifecycle, a practitioner’s handbook for user in-
terface design, 4th edn. Morgan Kaufmann Publishers, Inc., San Francisco (1999)

17. Nielsen, J.: Why You Only Need to Test With 5 Users. [Web-document] (2000) [Refer-
enced 1.6.2007], http://www.useit.com/alertbox/20000319.html

18. Tseng, M.M., Jianxin, J., Chuan-Jun, S.: A framework of virtual design for product cus-
tomization. Emerging Technologies and Factory Automation Proceedings 9(12), 7–14
(1997)

19. Ulrich, K.T., Eppinger, S.D.: Product Design and Development. McGraw-Hill, Inc., New
York (1995)

20. Živojnović, V., Meyr, H.: Compiled SW/HW Cosimulation. In: Proceedings of 33rd De-
sign Automation Conference, Las Vegas, NV, USA, June 3–7, 1996, pp. 690–695. ACM
Press, New York (1996)

21. See for example: http://www.systemc.org
22. Kreku, J., Kauppi, T., Soininen, J.-P.: Evaluation of platform architecture performance us-

ing abstract instruction-level workload models. In: International Symposium on System-
on-Chip, Tampere, Finland (2004)

23. Eteläperä, M., Vatjus-Anttila, J., Soininen, J.-P.: Architecture Exploration of 3D Video
Recorder Using Virtual Platform Models. In: 10th EUROMICRO CONFERENCE on
DIGITAL SYSTEM DESIGN Architectures, Methods and Tools (2007)

24. See: http://www.systemc.org

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 189–203, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Comparing Assessment Methodologies for Free/Open
Source Software: OpenBRR and QSOS*

Jean-Christophe Deprez and Simon Alexandre

Centre d’Excellence en Technologies de l’Information et de la Communication (CETIC),
Charleroi, Belgium

{Jean-Christophe.Deprez, Simon.Alexandre}@cetic.be

Abstract. Many organizations using Free/Open Source Software (FlOSS) are
dealing with the major problem of selecting the most appropriate software
product corresponding to their needs. Most of theses companies are currently
selecting FlOSS projects using ad-hoc techniques. However, in the last couple
of years, two methodologies for assessing FlOSS project have emerge, namely
QSOS and OpenBRR. The objective of this work is, through a detailed and rig-
orous assessment methodology comparison, to allow companies to have a better
understanding of these two assessment methodologies content and limitation.
This work compares both methodologies on several aspects, among others, their
overall approaches, their scoring procedures and their evaluation criteria.

Keywords: assessment methodologies, open source, free software.

1 Introduction

Many organizations have started to integrate Free (libre) Open-Source Software
(FlOSS1) in their products, systems and infrastructures. Furthermore, software solu-
tions that rely on FlOSS components become more frequently available to customers.
In turn, organizations want assurance regarding the quality of FlOSS projects before
integrating them in their solutions.

Having identified this need, several methodologies help select appropriate FlOSS
projects have surfaced in the past couple of years. Two prominent methodologies are
the Qualification and Selection Open Source (QSOS) backed by Atos Origin and
Open Business Readiness Rating (OpenBRR) created by Carnegie Mellon West and
Intel. Although fairly light weight, these two methodologies help shed lights on the
seriousness of FlOSS projects.

The contribution of this paper is to compare the two assessment methodologies,
OpenBRR and QSOS. In the end, it helps identify which of the two methodologies
better fits one’s context. Our comparison is performed based on the description of the
methodologies and not on their empirical application. Based on our findings, our fu-
ture work will aim at creating a new methodology, namely, the QUALOSS

* This work is partly funded by QUALOSS (#33547), a research project funded under the FP6

programme of the European Commission.
1 FlOSS stands for Free libre Open Source Software.

190 J.-C. Deprez and S. Alexandre

methodology that takes advantages of the strong points of QSOS and OpenBRR while
eliminating the weaknesses of both.

The rest of this paper is structured as follows. Section 2 presents the two methodolo-
gies. Section 3 introduces our comparison approach. Section 4 compares OpenBRR
and QSOS. Section 5 reviews the advantages and weaknesses of both methodologies.
Section 6 discusses the related work and Section 7 concludes with our future work.

2 Description of QSOS and OpenBRR

Both assessment methodologies help their users reach a similar goal, that is, select
among a list of similar FlOSS projects for the one best suited to their context. The two
following subsections present QSOS and OpenBRR respectively.

2.1 QSOS

This section presents version 1.6 of QSOS, which appears in [1]. The top part of the
QSOS methodologies consists of the following series of steps:

• Start from a list of FlOSS projects whose products seems to fit with the overall
requirements (set by the product user or product integrator)

• Evaluate each FlOSS project along the list of evaluation criteria given by QSOS.
This step assigns an absolute score to each evaluation criterion.

• The evaluator can adjust the importance of each criterion based on the particular
context. This is done by assigning a weight and threshold to each criterion.

• The scores obtained using 2 are weighted based on 3 so as to get the relative
score corresponding to the given context. The outcome of this step is a ranking
that determines the qualification or elimination FlOSS projects.

• QSOS then suggests trying the top FlOSS projects that meet qualification criteria.
This number can vary between 2-5 FlOSS products depending on the criticality
of the decision.

QSOS also provides a tree-hierarchy of evaluation criteria shown in Figure 1 along
with a procedure to score each leaf criterion. QSOS splits its evaluation template in
two sections: a generic section and a specific section. The generic section includes
criteria that apply to all software products while the criteria of the specific section
include an expected list the functionality and therefore varies according to software
product family such as groupware, cms, database, etc. Due to space consideration, we
only present evaluation criteria of the generic section. It is worth emphasizing that the
templates listing functionality of software product families is specific to the web ver-
sion of QSOS (at www.qsos.org) but it is not described in [1].

Figure 1 shows the tree hierarchy of evaluation criteria in QSOS's generic section.
We note that this hierarchy comes from the paper version (.pdf) of QSOS 1.6 and not
the web version of the template, which slightly differs. In particular, the web version
lists the item “Independence of development” under the “Industrialized Solution”
category whereas the paper version includes it “Intrinsic Durability”. Second, the web
version elevated “Exploitability” as a top-level category where as the paper version
includes it as a sub-category of “Industrialized Solution”. Finally, the paper version

 Comparing Assessment Methodologies 191

Industrialized Solution

Services

Training

Support

Consulting

Availability / Recentness

Quality Assurance
QA Process

PM and QA Tools

Sources

Diversity of distribution

Exploitability
Ease of Use, Ergonomics

Administration / Monitoring

Modularity

Code Modification

Code Extension
By-Products

Documentation

Packaging

Technical Adaptability

Intrinsic Durability

Maturity

Age

Stability

History / known problems

Fork Probability

Adoption

Popularity

References

Contributing Community

Books

Development Leadership
Size of Leading Team

Management Style

Activity

Turnover / Dev. identification

Activity on Bugs

Activity on Functionality

Activity on ReleasesIndependence of dev.

Strategy

License

Permissiveness

Protection against proprietary forks

Size of copyright owning team

Source code modification Level of professionalism

Strategical independence

Copyright owners

Sponsor

Fig. 1. Generic criteria from QSOS version 1.6

contains a section on “Service Providing” that list a few criteria to evaluate the ability
of a service provider to help with the integration of a FlOSS component.

Along the hierarchy of Figure 1, QSOS gives a procedure to score each leaf crite-
ria. A valid score is 0, 1 or 2. Table 1 shows a sample of the scoring procedure for
three leaf criteria. We point to [1] for the description of the whole scoring procedure.

2.2 OpenBRR

OpenBRR [2] asks to follow these high level steps:

1. Perform a pre-screening (Quick Assessment). This step starts with a long list of
FlOSS projects whose software product fits the overall requirement and ends
with a few viable candidates for the final selection. This initial filtering is based
on the criticality of the product or system that will integrate the FlOSS compo-
nent as well as a handful of viability criteria determined based on the context.

Roadmap

192 J.-C. Deprez and S. Alexandre

Table 1. QSOS scoring procedure for three leaf criteria

Criteria Score = 0 Score = 1 Score = 2
Age Less than 3 month old Between 3 month old

and 3 year old
More than 3 year old

Training No offer of training
identified

Offer exists but is re-
stricted geographically
and to one language or
is provided by a single
contractor

Rich offer provided by
several contractors, in
several languages and
split into modules of
gradual levels

Source Code
Quality

Not very readable code
or of poor quality, in-
coherence in coding
styles

Readable but not really
commented in details

Readable and com-
mented code imple-
menting classic design
patterns with a coherent
and applied coding pol-
icy

2. Tailor the evaluation template (Target Usage Assessment): This step consists of
reviewing and selecting the appropriate evaluation criteria from the hierarchy
proposed by OpenBRR. One may also decide to add new criteria and procedure
to score these criteria. The outcome is a customized version of the evaluation
template fit to the context, which is usually defined by an organization, the kind
of FlOSS software product to select, the criticality of the product in which the
FlOSS component will be integrated, etc.

3. Data Collection and Processing: This step starts from the list of the FlOSS pro-
jects that passed the viability checks of point 1 above. It consists in collecting the
raw data needed to score the evaluation criteria selected during point 2 and to ap-
ply the weight factor associated to each metrics determine during point 2 as well.

4. Data Translation: Aggregate the relative metric scores so as to obtain the score of
each category. Each category score is then adjusted based on its weight factor de-
termined during point 2. The final business readiness rating can then be published.

OpenBRR proposes a set of evaluation criteria for points 1 and 2 in our above list.
In relation to point 1, the quick assessment, OpenBRR suggests looking at the follow-
ing 8 issues and eventually adapting the list to better fit a given context:

(1) licensing, (2) standard compliance, (3) referenceable adopters, (4) availability
of support, (5) implementation language(s), (6) third party reviews, (7) books, and
(8) review by industry analysts such as Gartner.

For these criteria, OpenBRR let its user determine the scoring procedure and even-
tually what is a make or break situation. For example, if an organization only consid-
ers a FlOSS project when it is published under a license compatible with BSD then no
use wasting time evaluating FlOSS components with a stronger copyleft bend.

Concerning point 2 above, the target usage assessment, OpenBRR proposes the
template of evaluation criteria shown in Figure 2. In addition, OpenBRR gives a scor-
ing procedure to evaluate the leaves of Figure 2. The procedure assigns a score be-
tween 1 and 5 where 1 is unacceptable and 5 is excellent. Due to space consideration,
we only describe the procedure for three criteria in Table 2.

 Comparing Assessment Methodologies 193

Usability

End user UI experience

Time for setup pre-requisites for installing open source software

Time for vanilla installation/configuration

Number of minor releases in past 12 months

Quality

Number of point/patch releases in past 12 months

Number of open bugs for the last 6 months

Number of bugs fixed in last 6 months (compared to # of bugs opened)

Number of P1/critical bugs opened

Security

Average bug age for P1 in last 6 months

Number of security vulnerabilities in the last 6
months that are moderately to extremely critical

Number of security vulnerabilities still open (unpatched)

Is there a dedicated information (web page, wiki, etc) for security?

Scalability
Reference deployment

Designed for scalability

Is there any 3rd party Plug-ins

Public API / External ServiceArchitecture

Enable/disable features through configuration

Average volume of general mailing list in the last 6 months

Quality of professional support

Existence of various documentations.Documentation

User contribution framework

Support

Performance
Performance Testing and Benchmark Reports available

Performance Tuning & Configuration

Professionalism
Project Driver

Difficulty to enter the core developer team

 How many books does amazon.com gives for Power Search query:
 “ subject:computer and title:component name”Adoption

Reference deployment

Average volume of general mailing list in the last 6 months

Number of unique code contributor in the last 6 months
Community

Fig. 2. OpenBRR hierarchy of evaluation criteria

Table 2. OpenBRR scoring procedure for three leaf criteria

Criteria 1 2 3 4 5
Time for vanilla

installation
 > 4 hours 1-4

hours
30min to
1 hours

10-30 min-
utes

< 10 minutes

User Contribu-
tion Framework

Users cannot
contribute

 Users are al-
lowed to con-
tribute

 Users are allowed to con-
tribute and contribution are
edited / filtered by experts

Reference De-
ployment

No Yes Yes, with publication of
user’s size

3 Comparison Approach

Our comparison approaches is divided in several comparison exercises:

1. Comparison of the overall steps of the methodologies.
2. Analysis of the scoring procedures.

194 J.-C. Deprez and S. Alexandre

3. Coverage analysis of the evaluation criteria and adequacy of the hierarchies of
criteria

The comparison of the overall steps first highlights the similarities and differences,
including those related to how each methodology is intended to be applied in the field.

The analysis of the scoring procedures addresses the following three questions.

1. Is the range of scores adequate?
2. Is the scoring procedure of each evaluation criteria unambiguous?
3. Is the raw data required by the procedure in order to compute its result

likely to be available in the field?

The coverage analysis compares the evaluation criteria between QSOS and
OpenBRR in order to determine which are similar vs. those only present in only one
of the methodologies. In addition, we also quickly assess the accuracy of the termi-
nology used to express criteria and categories of criteria in each methodology.

4 Comparing QSOS, OpenBRR

In this section, we compare QSOS and OpenBRR based on the comparison approach
introduced in Section 3.

4.1 Comparison of the Overall Approaches

This section compares the overall approaches by highlighting first, their similarities
and second, their differences.

Both methodologies are similar in the following aspects:

• Each methodology proposes a predefined set of criteria for evaluating FlOSS
projects. The set of criteria is categorized into a tree hierarchy of 2 levels for
OpenBRR or of 3 levels for QSOS.

• The evaluation consists of scoring the various criteria based on a standard scoring
procedure. During the evaluation of a given FlOSS project, this step results in as-
signing score to each criterion. We refer to this score as absolute.

• Users can adjust the importance of each criterion according to their context by
varying the weight assigned to each criterion. In particular, during an evaluation,
the absolute scores are weighted based on their importance to the current evalua-
tion context. We refer to the weighted absolute scores as relative scores.

• A decision can be taken based on the resulting relative scores.

However, the 2 methodologies do differ in the order in which they apply the points
above. The current order reflects that of QSOS while OpenBRR suggests inverting
point 2 and 3 so that users first select criteria relevant to their context and therefore
avoid scoring useless ones. In addition, OpenBRR allows the creation of new criteria
as well as the tailoring of the scoring procedure for criteria.

These variations result from the difference in how each methodology is to be ap-
plied in the field.

QSOS believes that the absolute scores obtained when applying the scoring proce-
dures are universal. Hence, the scoring procedure for a particular version of a FlOSS

 Comparing Assessment Methodologies 195

project only takes place once. Others can then comment on the evaluation if a score
seems unfair. However, once it is agreed on, the absolute scores of the given version
of a FlOSS projects are universal and eventually made available to everyone. The
only way to adjust the final outcome of an evaluation is to adapt the weights assigned
to evaluation criteria.

OpenBRR on the other hand is a standard methodology but it assumes that every
user instantiates it in a slight different way. Hence, the evaluation of a particular
FlOSS project would result in slightly different scores depending on the context in
which the evaluation is performed. The result of an evaluation is therefore not meant
for reuse, even the absolute scores obtained for the evaluation criteria. In the case of
OpenBRR, this seems a wise decision since the user is free to eliminate and add
evaluation criteria as well as to modify and create new scoring procedures for new or
existing criteria. In conclusion, OpenBRR provides a standard methodology that is
expected to be tailored in practice.

As a result of the difference between the application and reuse strategies of QSOS
and OpenBRR, it is easy to find a growing repository of FlOSS product evaluations
for QSOS but not for OpenBRR.

The important question is: “Can a methodology be universal, at least partially such
as QSOS, so that intermediate score (such as the absolute score of QSOS) can be re-
used and shared?”

First, QSOS can apply such a strategy because its scoring procedure only allows a
range of three scores 0, 1, and 2. Hence, the variance of scores between different
evaluator is reduced. We delay further discussion on the range of scoring procedures
for our next comparison exercise in the next subsection. Second, we believe that pro-
viding a one size-fits-all scoring procedure is not adequate for every criterion. For
example, QSOS attributes a score based on the number of books published. Some
FlOSS products address niche markets and the publication of books is very unlikely
however, various technical articles in professional magazine may very well be of in-
terest and a good substitution to the book published criterion. Although QSOS could
allow such a tailoring in the scoring procedure, we have not seen it in practice, at least
in evaluation sheet accessible via http://www.qsos.org/sheets/index.html.

Finally, it is worth noting that QSOS defines the scope of an evaluation based on
the particular version of a FlOSS product while this information is not clear for
OpenBRR. Hence, we may suppose that OpenBRR intend to leave that issue open so
that it is possible for one to apply decide if the scope is a whole project or just a spe-
cific version of a particular FlOSS product. Leaving this decision to the users raises
the following concern: When applying scoring procedures it is very important to
clearly define the scope of the dataset so not to include data related to other versions.
In some cases, this is not always easy or feasible. For example, the number of post on
forums or the number of book published may not be about the particular version being
evaluated. Hence, this may make the scoring procedure ambiguous.

4.2 Comparison of the Scoring Procedures

Both methodologies provide a scoring procedure in order to transform raw data into a
score assigned to evaluation criteria. Table 1 and 2 respectively show a sample of the
scoring procedures of QSOS and OpenBRR. Below we compare the complete scoring

196 J.-C. Deprez and S. Alexandre

procedures based on the 3 checks mention in section 3, in particular, the score range,
the scoring procedure clarity/ambiguity, and the data availability.
Score Ranges
QSOS proposes a procedure whose result assigns a discreet score between 0 and 2,
that is, 0, 1, or 2 to each evaluation criteria. Unfortunately, this range seems too re-
strictive to appreciate fully the information, at least, for certain criteria. We feel that a
minimum of 4 levels would be required. With just 3 levels, the middle score may have
true mid position but it may embed a positive or negative tilt.

OpenBRR has a procedure that assigns a discreet score between 1 and 5. In this
context, a 5-level score is adequate. It is clear that 1 and 2 are negative while 4 and 5
are positive. Allowing a neutral score of 3 is also acceptable. However, we observe
that in 14 of the 28 evaluation criteria, scoring rules do not use all 5 levels; in 13
cases, 3 of the 5 levels are used, in particular, 1, 3, and 5 skipping 2 and 4 and in the
remaining case, 4 levels are used: 1, 3, 4, and 5. In turn, for more than half of the
evaluation criteria, the procedure is no better than the 3 levels offered by QSOS.
Clarity and ambiguity of scoring procedures
Both scoring procedures lack clarity in certain of their scoring rules. We determined
that the scoring rule of a criterion was ambiguous if the wording was unclear or if it
could be interpreted differently by different people or in different contexts or also, if
we identified a gap in the description of the scoring procedure, for example, the de-
scription given is clear for each score but there are many real-life situations not
accounted for where it would be hard to settle on an actual score.

Our analysis finds the following:
QSOS contains a total of 41 evaluation criteria and 22 of them are found to be am-

biguous. The 22 scoring rules we found ambiguous are for the following criteria: sta-
bility, fork probability, popularity, references, contributing community, management
style, activity on bugs, on functionality, on release, training, support, consulting,
documentation availability, PM and QA tools, ergonomics, admin/monitoring, modu-
larity, code modification, source code modification – level of professionalism, source
code quality, intrinsic complexity, and technical documentation.

The scoring procedure for source code quality is given in Table 1.
OpenBRR has 28 evaluation criteria. In most cases, evaluation criteria have much

more specific meanings hence this leads to scoring rules that are much more precise.
Nonetheless, we found 7 ambiguous cases: end-user UI experience, is there a dedi-
cated information for security?, performance testing and benchmarks, performance
tuning and configuration, design for scalability, quality of professional support, and
difficulty to enter the core development team.

As already mentioned in Section 4.1, beside clarity, we can also question scoring
rules on their range of applicability to the world of software products and compo-
nents. However, we must be careful on the value of this comparison. OpenBRR rec-
ognizes that its rules may not be applicable to all situations hence allows tailoring by
the evaluator. On the other hand, QSOS aims at providing scoring rules that compute
universal scores hence it is more important for QSOS to propose generic rules. Inci-
dentally, ambiguous rules usually seem more generic and it is thus the likely reason
why more than half of QSOS’s rules were found ambiguous. Furthermore, QSOS is
capable to achieve a certain level of universality in its rules because its scores only
vary between three discreet outcomes. Having a fourth or fifth outcome would make

 Comparing Assessment Methodologies 197

it much harder for rules to stay generic. Unfortunately, as we pointed out earlier, a
three point scale is likely not enough to truly help in good decision making.
Likelihood of data availability
In addition to the clarity of a rule, it is also important that the data requested be avail-
able otherwise the lack of data also put the applicability of the methodology at stake.
When determining that some data is unavailable, it may mean that the data will be
really hard to find but it can also suggest that the data is not readily available. That is,
the raw data is not available and obtaining it would require posting a question on a
forum hence would depend on the friendliness of community members and whether
the members who answered actually know the correct data.

For QSOS, we found that 5 criteria have scoring rules requesting data unlikely to
be available, in particular for the following criteria, history/known problem, fork
probability, management style, developer identification/turnover, independence of
developments.

For OpenBRR, we determined that 9 criteria asked for data that would likely be
unavailable: time to setup pre-requisites, time for vanilla installation/configuration,
number of security vulnerabilities in last 6 months, number of security vulnerabilities
still open, performance testing and benchmarks, performance tuning and configura-
tion, reference deployment, designed for scalability, difficulty to enter the develop-
ment team.

4.3 Coverage of the Evaluation Criteria and Quality of Wording

This section first studies the similarities and differences among the evaluation criteria of
QSOS and OpenBRR. This exercise is done for the leaf criteria of both methodologies.
Second, we analyze the adequacy of the terminology used by both methodologies.

We start from the QSOS hierarchy and compare every leaf criteria with those of
OpenBRR, including the viability criteria used in the quick assessment set, that is, the
first pre-filtering step of OpenBRR.

The possible results of a pair wise comparison between two criteria A and B are:

• The two criteria are equivalent (A = B)
• One criterion is a more generic than the other (A < B (A is special case of

B) or A > B (A is a more general case of B)),
• The two criteria have some similarity relationship of a fuzzy nature (A ~

B), for example, A may influence B or vice versa.
• The two characteristics have nothing in common

We must emphasize that our coverage analysis actually does not compare the crite-
ria based on the semantic of their wording but rather compares them based on the se-
mantic of their scoring rules.

In the comparison table shown in Table 3, the left column enumerate all QSOS
characteristics and then, for every leaf characteristic of QSOS, we indicate whether
OpenBRR has corresponding characteristic with one of the relationship signs identi-
fied above (=, < , >, or ~). This is shown by the relationship sign preceding the char-
acteristics in the OpenBRR columns.

198 J.-C. Deprez and S. Alexandre

Table 3. Coverage analysis between QSOS and OpenBRR leaf criteria

QSOS OpenBRR

Age NONE

Stability ~ all Quality sub-criteria

History, known problems (=
Management Ability)

NONE

Maturity

Fork probability NONE

Popularity = Referenceable Adopters
(from Quick Assessment)

References (= level of mission
criticality of references)

NONE

Contributing community (=
volume and diversity of com-
munity contribution)

> Community .. Average
volume on general mailing
list in the last 6 months

> Community .. Number of
unique code contributor in the
last 6 months

Adoption

Books (number of books pub-
lished about products)

= Adoption .. How many
Books …

Leading Team (= Size of lead-
ing team)

NONE Development lea-
dership

Management style (= level of
democracy of management)

~ Professionalism .. Project
Driver

~ Professionalism .. Diffi-
culty to enter core developer
team

Developers identification,
turnover

~ Professionalism .. Diffi-
culty to enter core developer
team

Activity on bugs = Quality .. Number of open
bugs, .. number of fixed bugs,
and ..average bug age in the
last 6 months + .. number of
P1/critical bugs opened

Intrinsic
Durability

Activity

Activity on functionalities NONE

 Comparing Assessment Methodologies 199

Table 3. (continued)

QSOS OpenBRR

Activity on releases = Quality .. number of minor
releases and .. number of
point/patch releases in past 12
months

Independence of development ~ Professionalism .. Project
Driver

Training (Diversity in geo-
graphical, cultural and gradual
aspects)

NONE

Support (Level of commitment
assigned to support)

~ Support .. Quality of pro-
fessional support

Services

Consulting (Diversity in geo-
graphical and cultural aspects)

NONE

Documentation (Availability and recency of
documentation)

~ Documentation .. Existence
of various kinds of documen-
tation

Quality Assurance Process ~ Performance testing and
benchmark reports available

QualityAssurance

PM and QA Tools NONE

Sources NONE Packaging

*nix packaging NONE

Ease of use, ergonomics > Usability .. time for vanilla
installation/configuration

Industrialized
Solution

Exploitability

Administration/Monitoring
(Availability of functionality
for administration and moni-
toring)

NONE

Technical
adaptability

Modularity (Software modularity) ~ Scalability .. Design for
scalability
~ Architecture .. Are they any
third party plug-ins?
~ Architecture .. Public API /
External Service

200 J.-C. Deprez and S. Alexandre

Table 3. (continued)

QSOS OpenBRR

Code modification (Ease of
build-ability)

NONE

By-Products

Code extension (Extensibility
or plug-ability)

= Architecture .. Are they any
third party plug-ins? AND
Architecture .. Public API /
External Service

Permissiveness ~ Licensing/Legal (in the
quick assessment)

License

Protection against proprietary
forks

~ Licensing/Legal (in the
quick assessment)

Copyright owners (Size of copyright owning
team)

NONE

Modification of source code (Level of profession-
alism of procedure for proposition of modifica-
tion.)

~ Professionalism .. Diffi-
culty to enter core developer
team

Roadmap (availability + precision of the roadmap) NONE

Sponsor (Driving force behind product) = Professionalism .. Project
Driver

Strategy

Strategical independence ~ Professionalism .. Project
Driver

Services
Providing

Maintainability Quality of Source Code (Vol-
ume of comment and use of
design pattern)

~ Scalability .. design for
scalability
~ Performance .. Tuning &
Configuration (on user's end)
~ Architecture .. Are there
any third party plug-ins?
~ Architecture .. public API /
External service

Technological dispersion
(number of prog.lang. used)

~ Implementation language
(in the quick assessment)

Intrinsic complexity (Com-
plexity of algorithms)

NONE

Technical documentation (De-
sign and arch doc + others)

~ Documentation .. Existence
of various kinds of documen-
tation

 Comparing Assessment Methodologies 201

Table 3. (continued)

QSOS OpenBRR

Direct availability (Number of
experts available within a
consulting company)

~ Support .. quality of profes-
sionalism support

Code Mastery

Indirect availability (Number
of experts available in partner
companies of serv. prov.)

~ Support .. quality of profes-
sionalism support

From Table 3, we observe that 16 QSOS criteria are not covered by OpenBRR.
Conversely, we can also derive the OpenBRR criteria not covered by QSOS using
Table 3 and Figure 2. In particular, the 7 following criteria are not covered by QSOS:
end user UI experience, time for setup pre-requisites for installing open source soft-
ware, all 3 criteria under security, reference deployment, user contribution frame-
work. In addition, there are also 5 criteria from the quick assessment step of Open
BRR not covered by QSOS: standard compliance, availability of a supporting or sta-
ble organization, implementation languages, third party reviews and industry analyst.

Beside our coverage analysis, we also add a few comments regarding the wording
used by both methodologies for their criteria as well as for the higher-level nodes in
their tree hierarchies.

We find that QSOS uses a very appropriate nomenclature for the higher level
nodes in its tree hierarchies. However, the leaf criteria are usually summarized in very
imprecise words. This forces the investigation of the scoring rules to understand accu-
rately the meaning of criteria. For example, the criterion References under Intrinsic
Durability .. Adoption is rather unclear. Once reading the scoring rules, we find that it
measures the number of cases where users use a FlOSS product in mission critical
solutions. Hence, the wording mission criticality of references would be more accu-
rate without being too lengthy. This kind of re-wording could take place for several
QSOS criteria.

For OpenBRR, this is the exact opposite. The wording of metrics is accurate and ex-
tensive although sometimes quite lengthy. Many criteria could therefore be re-worded in
shorter phrases without loosing clarity. Concerning, the top node in the tree hierarchy,
we find that the terms used are often very broad and inaccurate. For example, Quality is
much too broad and a term such as stability or reliability would be more appropriate.

5 Advantages and Disadvantages of QSOS and OpenBRR

This section reviews the advantage and disadvantages of both methodologies. Besides
helping decide which methodology to use, this comparison exercise will be our start-
ing point to create a new methodology that preserves most advantages of both meth-
odologies while getting rid of the disadvantages.

202 J.-C. Deprez and S. Alexandre

 Advantages Disadvantages
QSOS • Open repository of evaluation

scores for various FlOSS projects
(this pushes evaluators to collabo-
rate on evaluation and to facilitate
cross validation)

• Extensive list of criteria
• Interesting innovating nomencla-

ture for the tree hierarchy
• QSOS methodology is versioned

and evaluation mention the QSOS
version used

• Ambiguous scoring rules for more
than half of the criteria

• Scoring procedure with 3-level
scale may make decision making
harder

• Universality of scoring rules is not
possible for many criteria

OpenBRR • Allows for tailoring hence better
fit one’s evaluation context

• Clearer scoring procedure with
fewer ambiguities

• 5-level scoring scale for about half
of the criteria

• Ask evaluator to perform a quick
assessment step to reduce the
evaluation effort

• No open repository of evaluation
(due to possible tailoring)

• Does not exploit the 5-level scales
for more than half of the criteria

• Terminology is broad and impre-
cise for the top nodes in the hier-
achy

• OpenBRR does not seem to be
versioned. However, this may be
left to the evaluator

In addition, we find that both methodologies have a particular important weakness.
They do not require evaluators to capture the location of the raw data used to obtain
the evaluation scores. This makes it hard to refute or argue the correctness of an
evaluation. However, we did find that in practice, several QSOS evaluation sheets list
URL’s where raw data used for evaluation are mentioned.

6 Related Work

Prior to QSOS [1] and OpenBRR [2], other FlOSS evaluation methodologies were
proposed, notably, two of them called Open Source Maturity Model respectively cre-
ated by Golden from Navica [3] and by Frans-Willem Duijnhouwer from CapGemini
[4]. In addition David Wheeler also proposed a very high level methodology to
quickly evaluate FlOSS projects. These three efforts were used as a stepping stone by
OpenBRR. On the other hand, OpenBRR and QSOS were created in parallel and
to the best of our knowledge we are the first effort comparing FlOSS assessment
methodologies.

An orthogonal body of research studies whether FlOSS development allows reach-
ing software component of higher quality; an example of such efforts is found in [5].
These research endeavors have the objectives to determine how FlOSS development
differs from the traditional methods used in the proprietary world and also to identify
whether these differences impact the quality of code and of software products. On the

 Comparing Assessment Methodologies 203

other hand, the evaluation methodologies compared in this work do not argue that
FlOSS is better than proprietary. Rather, they give a mean to evaluate and to compare
among several FlOSS alternatives without taking a stand on whether FlOSS or pro-
prietary yields better quality.

On a more general note, the European Commission is currently funding several re-
search projects related to open source and quality, namely, QUALOSS [6], FLOSS-
METRICS [7], SQO-OSS [8], and QUALIPSO [9]. The first project listed is led by
the authors of this article.

7 Future Work

Based on the comparison exercises presented in this paper, our future goal is to derive
a new methodology for evaluating FlOSS projects. As OpenBRR learned from previ-
ous works, the QUALOSS project aims to bring FlOSS assessment to a higher level
of objectivity, completeness, and clarity.

The goal is to create a methodology applicable at different level of thoroughness. A
first light level will closely resemble QSOS and OpenBRR in principle with most of
the advantages and without the shortcomings.

References

1. Method for Qualification and Selection of Open Source software (QSOS) version 1.6 ©
Atos Origin (April 2006), http://qsos.org/

2. Business Readiness Rating for Open Source © OpenBRR.org, BRR 2005 – Request fro
Comment 1 (2005), http://www.openbrr.org

3. Golden, B.: Open Source Maturity Model © Navica, http://www.navicasoft.com/
pages/osmmoverview.htm

4. Widdows, C., Duijnhouwer, F.-W.: Open Source Maturity Model © CapGemini (August
2003), http://www.SeriouslyOpen.org

5. Aberdour, M.: Achieving Quality in Open-Source Software. IEEE Software 24(1), 58–64
(2007)

6. QUALOSS (2008), http://www.qualoss.org/
7. FlossMETRICS (2008), http://flossmetrics.org/
8. SQO-OSS (2008), http://www.sqo-oss.eu/
9. QUALIPSO (2008), http://www.qualipso.org/

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 204–214, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Predicting Software Fault Proneness
Model Using Neural Network

Yogesh Singh, Arvinder Kaur, and Ruchika Malhotra

University School of Information Technology, Guru Gobind Singh Indraprastha University,
Kashmere Gate, Delhi-110006, India

ys66@rediffmail.com, arvinderkaurtakkar@yahoo.com,
ruchikamalhotra2004@yahoo.com

Abstract. Importance of construction of models for predicting software quality
attributes is increasing leading to usage of artificial intelligence techniques such
as Artificial Neural Network (ANN). The goal of this paper is to empirically
compare traditional strategies such as Logistic Regression (LR) and ANN to as-
sess software quality. The study used data collected from public domain NASA
data set. We find the effect of software metrics on fault proneness. The fault
proneness models were predicted using LR regression and ANN methods. The
performance of the two methods was compared by Receiver Operating Charac-
teristic (ROC) analysis. The areas under the ROC curves are 0.78 and 0.745 for
the LR and ANN model, respectively. The predicted model shows that software
metrics are related to fault proneness. The models predict faulty classes with
more than 70 percent accuracy. The study showed that ANN method can also
be used in constructing software quality models and more similar studies should
further investigate the issue. Based on these results, it is reasonable to claim that
such a model could help for planning and executing testing by focusing re-
sources on fault-prone parts of the design and code.

Keywords: empirical validation, metrics, software quality, artificial neural
network.

1 Introduction

Software metrics [2, 6, 7, 11, 12, 16, 20, 22, 27-29, 30] provide ways to evaluate the
quality of software and their use in earlier phases of software development can help
organizations in assessing large software development quickly, at a low cost [1].
There have been empirical studies evaluating the impact of software metrics on soft-
ware quality and constructing models that utilize them in predicting quality attributes
of the system, such as [1, 4, 6, 8-10, 13-15, 19, 21-22, 24-25, 28-29, 31-32, 35-36,
38]. Most of these prediction models are built using statistical techniques. ANN have
seen an explosion of interest over the years, and are being successfully applied across
a range of problem domains, in areas as diverse as finance, medicine, engineering,
geology and physics. Indeed, anywhere that there are problems of prediction, classifi-
cation or control, neural networks are being introduced. ANN can be used as a predic-
tive model because it is very sophisticated modeling technique capable of modeling

 Predicting Software Fault Proneness Model Using Neural Network 205

complex functions. In [25], Khoshgoftaar et al. presented a case study of real time
avionics software to predict the testability of each module from static measurements
of source code. They found that ANN is a promising technique for building predictive
models, because they are able to model nonlinear relationships.

Thus LR and ANN approaches are inherently different, raising the question
whether one approach has better performance than the other. To investigate this ques-
tion, the performance of LR and ANN methods was compared in the study for
predicting software fault proneness. The public domain NASA data set is used in
this study to empirically evaluate the relationship of software metrics with fault
proneness.

The study is divided into following parts:

(i) Software fault proneness model is constructed using multivariate analy-
sis to predict fault proneness of classes using LR and ANN technique.

(ii) The performance of the models is evaluated using ROC analysis.

The paper is organized as follows: Section 2 summarizes the related work. Section 3
summarizes the metrics studied and describes sources from which data is collected.
Section 4 presents the research methodology followed in this paper. The results of the
study are given in section 5. The model is evaluated in section 6. Section 7 presents threats
to validity of the models and conclusions of the research are presented in section 8.

2 Related Work

Khoshgaftaar at al. [25] introduced the use of the neural networks as a tool for pre-
dicting software quality. In [25], they presented a large telecommunications system,
classifying modules as fault prone or not fault prone. They compared the ANN model
with a non-parametric discriminant model, and found the ANN model had better pre-
dictive accuracy.

Huang et al. [24] proposed a neuro-fuzzy constructive cost model for software cost
estimation. In another research, Cartwright [9] compared four prediction techniques:
regression, rule induction, nearest neighbor, and neural nets. Other recent studies
include using machine learning algorithms [31-32].

3 Research Background

In this section we present the summary of metrics studied in this paper (Section 3.1)
and empirical data collection (Section 3.2).

3.1 Dependent and Independent Variables

The binary dependent variable in our study is fault proneness. The goal of our study is
to empirically explore the relationship between software metrics and fault proneness
at the class level. Fault proneness is defined as the probability of fault detection in a
class. We use LR and ANN methods to predict probability of fault proneness. The
metrics are summarized in Table 1.

206 Y. Singh, A. Kaur, and R. Malhotra

Table 1. Metrics Studied

Metric Source
Cyclomatic complexity
Design complexity

Lines Of Code (LOC)

Mc Cabe [30]

Branch count
Call pairs
Maintenance severity
Edge count
Node count
Design density

Miscellaneous

3.2 Empirical Data Collection

This study makes use of public domain data set KC4 from the NASA Metrics Data
Program. The data in KC4 was collected from a ground-based subscription server
consisting of 25 KLOC of Perl source code [34]. This system consists of 126 classes
and provides method-level static metrics. At the method level, 21 software product
metrics based on product’s complexity, size and vocabulary are given.

The metrics having constant or missing values were removed from the analysis.
The metrics having less than 6 data points were also removed from the analysis.

4 Research Methodology

In this section the steps taken to analyze software metrics for classes taken for analy-
sis are described. The procedure used to analyze the data collected for each measure is
described in following stages (i) outlier analysis (ii) LR and ANN modeling (iii)
model evaluation.

4.1 Outlier Analysis

Data points, which are located in an empty part of the sample space, are called out-
liers. Outlier analysis is done to find data points that are over influential and removing
them is essential. Univariate and multivariate outliers were found in our study. To
identify multivariate outlier we calculate for each data point the Mahalanobis Jack-
knife distance. Details on outlier analysis can be found in [4, 23].

The input metrics were normalized using min-max normalization. Min-max nor-
malization performs a linear transformation on the original data [17]. Suppose that
minA and maxA are the minimum and maximum values of an attribute A. It maps
value v of A to v’ in the range 0 to 1 using the formula:

AA

Av
v

minmax

min
'

−
−= (1)

 Predicting Software Fault Proneness Model Using Neural Network 207

4.2 Logistic Regression (LR) Modeling

LR is the most widely used technique [1] in literature used to predict dependent vari-
able from set of independent variables (a detailed description is given by ([1], [4] and
[23]). Binary LR is used to construct models when the dependent variable is binary as
in our case. In our study, the dependent variable is fault proneness and the independ-
ent variable is metrics. LR is of two types: (i) Univariate LR (ii) Multivariate LR.

Univariate LR is a statistical method that formulates a mathematical model depict-
ing relationship among dependent variable and each independent variable. This tech-
nique is used to test hypotheses.

Multivariate LR is used to construct a prediction model for the fault-proneness of
classes. In this method metrics are used in combination. The multivariate LR formula
can be defined as follows:

).......(

).......(

21
11

11

1
),.....,(

nno

nno

XAXAA

XAXAA

n

e

e
XXXprob

+++

+++

+
= (2)

where niXi ,.......,2,1, = , are the independent variables. Prob is the probability of de-
tecting faults in a class. Univariate logistic formula is a special case of multivariate
LR formula and can be defined as:

)(

)(

21
1

1

1
),.....,(

XAA

XAA

n
o

o

e

e
XXXprob

+

+

+
= (3)

In LR two stepwise selection methods forward selection and backward elimination
can be used [4]. In forward stepwise procedure, stepwise variable entry examines the
variables in the block at each step for entry. The backward elimination method in-
cludes all the independent variables in the model. Variables are deleted one at a time
from the model until a stopping a criterion is fulfilled. We have used backward elimi-
nation method using metrics selected in univariate analysis. Details of LR method can
be found in [1].

4.3 Artificial Neural Network Modeling

The network used in this work belongs to Multilayer Feed Forward networks and is
referred to as M-H-Q network with M source nodes, H nodes in hidden layer and Q
nodes in the output layer [36]. The input nodes are connected to every node of the
hidden layer but are not directly connected to the output node. Thus the network does
not have any lateral or shortcut connection.

ANN repetitively adjusts different weights so that the difference between desired
output from the network and actual output from ANN is minimized. The network
learns by finding a vector of connection weights that minimizes the sum of squared
errors on the training data set. The summary of ANN used in this study is shown in
Table 2. The ANN was trained by standard error back propagation algorithm at a
learning rate of 0.005, having the minimum square error as the training stopping
criterion.

208 Y. Singh, A. Kaur, and R. Malhotra

The input layer has one unit for each input variable. Each input value in the data set is
normalized within the interval [0, 1] using min-max normalization (see Section 4.1).
Given an n by m matrix of multivariate data, Principal component analysis [26] can reduce
the number of columns. We performed Principal component analysis on the input metrics
to produce domain metrics [36]. In our study n represents the number of classes for which
OO metrics have been collected. Using Principal component analysis, the n by m matrix is
reduced to n by p matrix (where p<m).

We use one hidden layer as what can be achieved in function approximation with
more than one hidden layer can also be achieved by one hidden layer [25]. There is
one unit in the output layer. The output unit with value greater than a threshold (cutoff
point) indicates the class selected by the network is fault prone otherwise it is not.

Table 2. ANN Summary

Architecture
Layers 3
Input Units 4
Hidden Units 5
Output Units 1
0Training
Transfer Function Tansig
Algorithm Back Propagation
Training Function TrainBR

Due to the nonlinear nature of ANN, the statistical tests for parameter significance
that are used in LR cannot be applied here. Instead we used ROC analysis [18] to
heuristically assess the importance of input variables for the classification result.

4.4 Evaluating the Performance of the Model

The common measures to assess the quality of predicted model in our study are:

• The sensitivity and specificity of the model is calculated to predict the correct-
ness of the model. The percentage of classes correctly predicted to be fault
prone is known as sensitivity of the model. The percentage of non-occurrences
correctly predicted i.e. classes predicted not to be fault prone is called specificity
of the model.

• Yourdon’s J coefficient [14]: J coefficient is defined as:

(4) 1 −+= fsJ

The J coefficient can vary from –1 to +1 with plus 1 being perfect accuracy and –1
being the worst accuracy.

• Proportion correct is defined as: It is defined as ratio of number of classes cor-
rectly classified as fault prone (and not fault prone) and total number of classes.

 Predicting Software Fault Proneness Model Using Neural Network 209

• Receiver Operating Characteristic (ROC) analysis: The LR model outputs and
the ANN outputs were evaluated for performance using ROC analysis. ROC
curve, which is defined as a plot of sensitivity on the y-coordinate versus its 1-
specificity on the x coordinate, is an effective method of evaluating the quality
or performance of predicted models [14]. While constructing ROC curves, one
selects many cutoff points between 0 and 1 in our case, and calculates sensitivity
and specificity at each cut off point. We report sensitivity and specificity of the
predicted models for threshold selected by ROC (mostly taken as classifier out-
put [14]).

 Area Under the ROC Curve (AUC) is a combined measure of sensitivity and
specificity [14]. In order to compute the accuracy of the predicted models, we
use the area under ROC curve. The standard error for ROC curves was deter-
mined according to the method proposed by Hanley and McNeil [18].

• In order to predict accuracy of model it should be applied on different data sets.
We therefore performed k-cross validation of models [37]. The data set is ran-
domly divided into k subsets. Each time one of the k subsets is used as the test
set and the other k-1 subsets are used to form a training set. Therefore, we get
the fault proneness for all the k classes.

5 Analysis Results

In this section we described the analyses performed to find the relationship between
software metrics and fault proneness of the classes. We first employed LR [23] method,
which is widely used to predict quality models. We then employed ANN technique to
predict the fault proneness of the classes. This method is rarely applied in this area.

5.1 Logistic Regression (LR) Analysis

In this subsection we find the relationship of independent variables (metrics) with
dependent variable (fault proneness). Table 3 shows the Coefficient (B) and Signifi-
cance (p-value) of metrics included in the model.

The model is applied to all system classes to compare predicted and actual fault
proneness (or non fault proneness). A threshold of P0=0.5 is chosen using ROC analysis
(Table 4). Classes with predicted probability above 0.5 are classified to be fault prone
and below this threshold are classified as to be not fault prone. This threshold was se-
lected to balance the number of actual and predicted faults. Out of 61 classes actually
fault prone, 47 classes were predicted to be fault prone. The sensitivity of the model is
77%. Similarly 47 out of 64 classes were predicted not to be fault prone. Thus specific-
ity of the model is 73.4%. This shows that the model correctness is good.

Table 3. Multivariate Analysis for LR Model

Variable Call pairs Design
density

Edge
count

Constant

B 0.011 0.014 0.239 0.554
p-value 0.185 -2.350 0.009 0.531

210 Y. Singh, A. Kaur, and R. Malhotra

Table 4. Predicted Correctness of LR Model

Predicted

Observed 0.00 1.00

Percent
Correct

0.00 47 17 73.4%
1.00 14 47 77%

Table 5. Predicted Correctness of ANN Model

Predicted

Observed .00 1.00
Percent
Correct

.00 42 22 65.4%
1.00 11 50 80.3%

5.2 Artificial Neural Network (ANN) Method

The results of the model predicted are shown in Table 5. Out of 61 classes actually
fault prone, 50 classes were predicted to be fault prone (Table 5). The sensitivity of
the model is 80.3%. Similarly 42 out of 64 classes were predicted not to be fault
prone. Thus specificity of the model is 65.4%. This shows that the sensitivity of the
model is high as compared to model predicted using LR approach but specificity is
slighter less as compared to LR model.

6 Model Evaluation

In this section we present the results of cross validation of LR and ANN models and
also perform ROC analysis to compare these approaches.

6.1 Cross Validation of Models Using ROC Analysis

The accuracy of models predicted is somewhat optimistic since the models are ap-
plied on same data set from which they are derived from. To predict accuracy of
model it should be applied on different data sets thus we performed 10-cross valida-
tion of LR and ANN models following the procedure given in Section 4. For the
10-cross validation, the classes were randomly divided into 10 equal parts of ap-
proximately. We summarized the results of cross validation of predicted models via
the LR and ANN approaches in Table 6.

In Figure 1, the ROC curves for LR and ANN models are presented. The ROC
curve for the LR model is shown in Figure 1(a), AUC was 0.78 (SE 0.040), providing
75.4% of sensitivity and 71.8% of specificity. Whereas, the area under the ROC curve
for ANN model was 0.745 (SE 0.044), with sensitivity 75.4% and specificity 65.4%.

 Predicting Software Fault Proneness Model Using Neural Network 211

Fig. 1. ROC curve for (a) LR and (b) ANN models

As shown in Table 6, the results of cross validation of ANN model were almost
similar as compared to cross validation results of LR model.

Table 6. Results of 10-cross validation of Models

Technique Sensitivity Specificity Proportion
correct

J Coefficient AUC

LR 75.4 71.8 73.8 0.48 0.78
(SE 0.040)

ANN 75.4 65.4 73.8 0.49 0.745
(SE 0.044)

7 Threats to Validity

The study has a number of limitations that are not unique to our study but are
common with most of the empirical studies in the literature. However, it is neces-
sary to repeat them here. The degree to which the results of our study can be gen-
eralized to other research settings is questionable. The reason is that the systems
developed are medium-sized. In this study severity of faults is not taken into ac-
count. There can be number of faults which can leave the system in various states
e.g. a failure that is caused by a fault may lead to a system crash or an inability to
open a file. The former failure is more severe than latter, although the types of
fault are not the same.

Though these results provide guidance for future research on the use of LR and
ANN methods to find the impact of software metrics on fault proneness, further vali-
dations are necessary with different systems to draw stronger conclusions.

8 Conclusions

We conducted an empirical analysis of the software metrics. The main goal of our
study was to examine and compare LR and ANN methods in order to find the impact

212 Y. Singh, A. Kaur, and R. Malhotra

of software metrics on fault proneness. Thus we employed LR and ANN methods to
assess the applicability of the software metrics to predict fault proneness. This is the
primary contribution of our study. The performance of the fault proneness models
were evaluated using ROC analysis, since few studies have used this method in past.

The AUC for LR model was 0.78 (SE 0.040), providing of sensitivity 75.4% and
71.4%of specificity. The AUC for ANN model was 0.745 (SE 0.044), with sensitivity
75.4% and specificity 65.4%. The models predicted using both LR and ANN method
yielded good AUC using ROC analysis. This study confirms that construction of
ANN is feasible, adaptable to systems, and useful in predicting fault prone classes.

While research continues, practitioners and researchers may apply ANN method
for constructing models to predict faulty classes.

As in all empirical studies the relationship we established is valid only for certain
population of systems. In this case, we can roughly characterize this population as
“medium-sized systems.”

More similar type of studies must be carried out with large data sets to get an accu-
rate measure of performance outside the development population. We further plan to
replicate our study to predict models based on other artificial intelligence techniques.

References

1. Aggarwal, K.K., Singh, Y., Kaur, A., Malhotra, R.: Investigating the Effect of Coupling
Metrics on Fault Proneness in Object-Oriented Systems. Software Quality Profes-
sional 8(4), 4–16 (2006)

2. Aggarwal, K.K., Singh, Y., Kaur, A., Malhotra, R.: Software Reuse Metrics for Object-
Oriented Systems. In: Third ACIS Int’l Conference on Software Engineering Research,
Management and Applications (SERA 2005), pp. 48–55. IEEE Computer Society, Los
Alamitos (2005)

3. Barnett, V., Price, T.: Outliers in Statistical Data. John Wiley & Sons, Chichester (1995)
4. Basili, V., Briand, L., Melo, W.: A Validation of Object-Oriented Design Metrics as Qual-

ity Indicators. IEEE Transactions on Software Engineering 22(10), 751–761 (1996)
5. Belsley, D., Kuh, E., Welsch, R.: Regression Diagnostics: Identifying Influential Data and

Sources of Collinearity. John Wiley & Sons, Chichester (1980)
6. Briand, L., Daly, W., Wust, J.: Unified Framework for Cohesion Measurement in Object-

Oriented Systems. Empirical Software Engineering 3, 65–117 (1998)
7. Briand, L., Daly, W., Wust, J.: A Unified Framework for Coupling Measurement in Ob-

ject-Oriented Systems. IEEE Transactions on software Engineering 25, 91–121 (1999)
8. Briand, L., Daly, W., Wust, J.: Exploring the relationships between design measures and

software quality. Journal of Systems and Software 5, 245–273 (2000)
9. Cartwright, M., Kadoda, G.: Comparing software prediction techniques using simulation.

IEEE Transactions of Software Engineering 27(1), 1014–1022 (2001)
10. Cartwright, M., Shepperd, M.: An Empirical Investigation of an Object-Oriented Software

System. IEEE Transactions of Software Engineering 26(8), 786–796 (1999)
11. Chidamber, S., Kemerer, C.: A metrics Suite for Object-Oriented Design. IEEE Trans.

Software Engineering SE-20(6), 476–493 (1994)
12. Chidamber, S., Kemerer, C.: Towards a Metrics Suite for Object Oriented design. In: Proc.

Conference on Object-Oriented Programming: Systems, Languages and Applications
(OOPSLA 1991). Published in SIGPLAN Notices, vol. 26(11), pp. 197–211 (1991)

 Predicting Software Fault Proneness Model Using Neural Network 213

13. Chidamber, S., Darcy, D., Kemerer, C.: Managerial use of Metrics for Object-Oriented
Software: An Exploratory Analysis. IEEE Transactions on Software Engineering 24(8),
629–639 (1998)

14. El Emam, K., Benlarbi, S., Goel, N., Rai, S.: The Confounding Effect of Class Size on the
Validity of Object-Oriented Metrics. IEEE Transactions on Software Engineering 27(7),
630–650 (2001)

15. Gyimothy, T., Ferenc, R., Siket, I.: Empirical validation of object-oriented metrics on open
source software for fault prediction. IEEE Trans. Software Engineering 31(10), 897–910
(2005)

16. Halstead, M.H.: Elements of Software Science. North Holland, New York (1997)
17. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Harchort India Private Lim-

ited (2001)
18. Hanley, J., McNeil, B.: The meaning and use of the area under a Receiver Operating Char-

acteristic ROC curve. Radiology 143, 29–36 (1982)
19. Harrison, R., Counsell, S.J., Nithi, R.V.: An Evaluation of MOOD set of Object-Oriented

Software Metrics. IEEE Trans SE-24(6), 491–496 (1998)
20. Henderson-Sellers, B.: Object-Oriented Metrics, Measures of Complexity. Prentice-Hall,

Englewood Cliffs (1996)
21. Henry, S., Kafura, D.: Software structure metrics based on information flow. IEEE Trans-

actions on Software Engineering SE 7(5), 510–518 (1981)
22. Hitz, M., Montazeri, B.: Measuring Coupling and Cohesion in Object-Oriented Systems.

In: Proc. Int. Symposium on Applied Corporate Computing, Monterrey, Mexico (1995)
23. Hosmer, D., Lemeshow, S.: Applied Logistic regression. John Wiley and Sons, Chichester

(1989)
24. Huang, X., Capretz, L.F., Ren, J., Ho, D.: A neuro-fuzzy model for software cost estima-

tion. In: International Conference on Quality Software, p. 126 (2003)
25. Khoshgaftaar, T.M., Allen, E.D., Hudepohl, J.P., Aud, S.J.: Application of neural networks

to software quality modeling of a very large telecommunications system. IEEE Transac-
tions on Neural Networks 8(4), 902–990 (1997)

26. Kothari, C.R.: Research Methodology. Methods and Techniques, New Age International
Limited (2004)

27. Lorenz, M., Kidd, J.: Object-Oriented Software Metrics. Prentice-Hall, Englewood Cliffs
(1994)

28. Lee, Y., Liang, B., Wu, S., Wang, F.: Measuring the Coupling and Cohesion of an Object-
Oriented program based on Information flow (1995)

29. Li, W., Henry, S.: Object-Oriented Metrics that Predict Maintainability. Journal of Sys-
tems and Software 23(2), 111–122 (1993)

30. Mccabe, T.J.: A Complexity Measure. IEEE Transactions on Software Engineering SE
2(4), 308–320 (1976)

31. Menzies, T., DiStefano, J., Orrego, A., Chapman, R.: Assessing Predictors of Software De-
fects. In: Proc. Workshop Predictive Software Models (2004)

32. Menzies, T.: Data Mining Static Code Attributes to Learn Defect Predictors. IEEE Trans-
actions on Software Engineering 32(11), 771–784 (2006)

33. Myers, G.J.: Composite/Structured Design, Von Nostrand, Reinhold, New York (1978)
34. ASA/WVU IV&V Facility, Metrics Data Program, http://mdp.ivv.nasa.gov
35. Olague, H., Etzkorn, L., Gholston, S., Quattlebaum, S.: Empirical Validation of Three

Software Metrics Suites to Predict Fault-Proneness of Object-Oriented Classes Developed
Using Highly Iterative or Agile Software Development Processes. IEEE Transactions on
software Engineering 33(8), 402–419 (2007)

214 Y. Singh, A. Kaur, and R. Malhotra

36. Singh, Y., Kaur, A., Malhotra, R.: Application of Logistic Regression and Artificial Neural
Network for Predicting Software Quality Models. In: International Conference on Soft-
ware Engineering Research and Practice (SERP 2007), Las Vegas, USA, June 25-26
(2007)

37. Stone, M.: Cross-validatory choice and assessment of statistical predictions. J. Royal Stat.
Soc. 36, 111–147 (1974)

38. Yuming, Z., Hareton, L.: Empirical analysis of Object-Oriented Design Metrics for pre-
dicting high severity faults. IEEE Transactions on Software Engineering 32(10), 771–784
(2006)

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 215–229, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Automating the Measurement of Functional Size of
Conceptual Models in an MDA Environment*

Beatriz Marín, Oscar Pastor, and Giovanni Giachetti

Department of Information Systems and Computation,
Technical University of Valencia,

Camino de Vera s/n,
46022 Valencia, Spain

{bmarin, opastor, ggiachetti }@dsic.upv.es

Abstract. The manual measurement of functional size is generally very time-
consuming and has many precision errors. For this reason, it is necessary to
automate the measurement process to obtain a solution that can be applied in a
MDA industrial development. The OO-Method COSMIC Function Points
(OOmCFP) is a measurement procedure that has been designed to measure the
functional size of object-oriented applications generated from their conceptual
models by means of model transformations. This work presents the definition of
the mechanisms that are necessary to automate the OOmCFP procedure. This
work also presents the OOmCFP tool that implements the OOmCFP procedure.
Since this tool measures the functional size of industrial applications generated
in MDA environments from their conceptual models, it is not necessary to per-
form the measurement task on the final code. The OOmCFP tool incorporates
the benefits that the COSMIC measurement method provides. These benefits
are demonstrated through a comparative analysis.

Keywords: Conceptual modeling, Object orientation, Functional size meas-
urement, COSMIC, MDA, Tool.

1 Introduction

The Model-Driven Architecture (MDA) approach [17] separates application and busi-
ness logic from the platform technology, allowing code generation by means of model
transformations. In MDA contexts, conceptual models are used as input to the process
of code generation. Thus, the conceptual models must have enough semantic formal-
ization in order to specify all the functionality of the final application and also to
avoid different interpretations for the same model.

The OO-Method approach [18] [20] is an object-oriented method that provides the
required semantic formalization to define complete and unambiguous conceptual
models, allowing the automatic generation of software products [19] using an

* This work has been developed with the support of MEC under the project SESAMO

TIN2007-62894 and co financed by FEDER.

216 B. Marín, O. Pastor, and G. Giachetti

MDA-based technology. This method has been implemented in a suite of industrial
tools by CARE Technologies [5].

The adoption of MDA-based technology has presented new challenges, such as
measuring the size of the products that are generated from their conceptual models.
This is important because the size of the conceptual model allows that the cost of the
application that is automatically generated will be estimated correctly. The Function
Point Analysis (FPA) proposal ([9] [10]), together with its adaptations of this meas-
urement method [1] [2] [15] [23] [24], is used to do this. However, these FPA-based
approaches have limitations for the measurement of conceptual models used in MDA
environments [4] [8] [14]. For instance, FPA-based approaches only allow the meas-
urement of the functionalities from the viewpoint of the human user, ignoring all the
functionality that the human user does not see, which should be built for the correct
operation of the application.

To overcome the limitations of the initial design of the FPA measurement method,
the COSMIC measurement method was defined [3] [13]. COSMIC allows the meas-
urement from different points of view: from the human user viewpoint (like FPA);
from the developer viewpoint (including all the functionalities that should be built);
and from the viewpoint of any user of the conceptual model. Currently, there are
some approaches that apply COSMIC for the purpose of estimating the functional size
of future software applications from conceptual models, such as Poels’ proposal [22]
and Diab’s proposal [7]. Both of these FSM procedures were defined establishing a
mapping between the COSMIC concepts and their primitives; however their propos-
als are not compliant with MDA principles.

For industrial MDA development, it is essential to do the measurements quickly
and in a precise way because the functional size determines the cost of the generated
applications. Therefore, a tool that allows the automatic measurement of conceptual
models used in MDA environments is needed to avoid the excessive time and the
precision errors involved in a manual measurement process.

This paper introduces the OOmCFP proposal from a practical perspective. This is a
procedure to measure the functional size of OO-Method conceptual models based on
COSMIC, focusing on the OOmCFP tool, which automates the measurement of OO-
Method conceptual models through the implementation of the OOmCFP proposal.
The OOmCFP tool includes all the benefits that are related to the COSMIC approach.
It allows a better measurement of the conceptual models involved in the OO-Method
MDA industrial approach and makes the practical application of the OOmCFP ap-
proach possible.

The rest of the paper is organized as follows: section 2 and section 3 present the
main concepts of the COSMIC method and the OO-Method approach, respectively.
Section 4 presents the OOmCFP measurement procedure and an example of the
measurement of an OO-Method conceptual model using the OOmCFP proposal. Sec-
tion 5 presents the tool that automates the OOmCFP proposal and a comparative
analysis of the results obtained in the measurement of conceptual models of real ap-
plications. Finally, section 6 presents a discussion on the results achieved as well as
suggestions for further work.

 Automating the Measurement of Functional Size 217

2 The COSMIC Functional Size Measurement Method

The COSMIC functional size measurement method can be used to measure any type
of software. The application of this measurement method includes three phases: the
measurement strategy, the mapping of concepts, and the measurement of the identi-
fied concepts.

In the measurement strategy phase, the purpose and the scope of the measurement
exercise must be defined. Next, the functional users, which are types of users that
send (or receive) data to (from) the functional process of the application to be meas-
ured must be identified. Finally, the level of granularity of the description of the piece
of software to be measured is also identified.

In the mapping phase, the functional processes (the elementary components of a
set of functional user requirements) must be identified. Next, the data groups must be
identified. A data group is a set of data attributes that are distinct, non empty, non
ordered, non redundant, and that participate in a functional process. The identification
of the data attributes of a data group is optional.

In the measurement phase, the data movements (Entry, Exit, Read and Write) for
every functional process must be identified. When all the data movements of the func-
tional process are identified, the measurement function must be applied: this is a
mathematical function that assigns 1 CFP to each data movement of the functional
process. Then, after all the functional processes are measured, the measurement re-
sults are aggregated to obtain the functional size of the piece of software that has been
measured.

Figure 1 shows the COSMIC metamodel, which illustrates the information that
should be represented by the software artefact to be measured.

Fig. 1. Metamodel of COSMIC.

3 The OO-Method Approach

OO-Method is a method that allows the automatic generation of software from con-
ceptual models. It has a formal definition supported by OASIS [21], which is an ob-
ject-oriented, formal specification language for Information Systems. This method is
supported by the compiler of OO-Method conceptual models that is implemented in
the OlivaNova Suite [5].

The OO-Method model compiler generates applications according to a three-tier
software architecture: a tier for the client component, which contains the graphical
user interface-related software components; a tier for the server component, which

218 B. Marín, O. Pastor, and G. Giachetti

contains the business rules and the connections to the database; and a tier for the data-
base component, which contains the persistence aspects of the applications.

The software production process in OO-Method is represented by three models:

• The Requirements Model, which specifies the system requirements using
a set of techniques such as the Mission Statement, the Functions Refine-
ment Tree, the Use Case Model, and the Sequence Diagrams Model.

• The Conceptual Model, which captures the static and dynamic properties
of the functional requirements of the system by means of an Object
Model, a Dynamic Model, and a Functional Model. The conceptual model
also allows the specification of the user interfaces in an abstract way
through the Presentation Model. With all of these models, the conceptual
model has all the details needed for the automatic generation of the soft-
ware application. The complete definition of the elements of the concep-
tual model of OO-Method is described in detail in [19].

• The Execution Model, which allows the transition from the problem space
(represented by the conceptual model) to the solution space (the corre-
sponding software product). This model fixes the mappings between con-
ceptual primitives and their corresponding software representations in a
target software development environment.

For the purpose of this work, we only need to focus on the Conceptual Model,
which is the artifact from which we want to measure the functional size through the
corresponding measurement process.

4 OOmCFP: A Measurement Procedure for the OO-Method
Conceptual Model

OOmCFP (OO-Method COSMIC Function Points) is a measurement procedure that
was developed for measuring the functional size of the OO-Method applications that
are based on the MDA approach [16]. In the OOmCFP procedure, the entity to be
measured is an OO-Method conceptual model, and the attribute to be measured is the
functional size, which is defined by the ISO/IEC 14143-1 standard as the size of soft-
ware derived by quantifying the functional user requirements [12].

The OOmCFP was defined in accordance with the COSMIC measurement manual
version 3.0 [3]. We selected this functional size method for the design of OOmCFP
for the simplicity with which it quantifies functional size without being limited by
maximum values, as occurs in other standards (IFPG FPA, NESMA FPA or MARK II
FPA). Given that the OOmCFP procedure was designed in accordance with COSMIC,
a mapping between the concepts used in COSMIC and the concepts used in the OO-
Method conceptual model has been defined (Table 1). It is important to note that the
mapping has been done in only one direction since only some of the elements of the
conceptual model are relevant to the measurement of the functional size when COS-
MIC is used.

 Automating the Measurement of Functional Size 219

Table 1. Results obtained from the mapping between COSMIC and OO-Method

OOmCFP
Purpose: To Measure the functional size of the OO-Method conceptual models to
estimate the cost of the applications specifically generated by the OlivaNova Suite.
Scope: The OO-Method conceptual model, which has all the functionality details from
which the final software application will be built.
Granularity Level: Low level, since all the details in the OO-Method conceptual
model are needed to generate the applications.
Layers: The Client component, the Server component, and the Database component of
an OO-Method application since each component is generated for a specific software
environment.
Pieces of Software: The Client component, the Server component, and the Database
component of an OO-Method application since every layer has at least one piece of
software.
Functional Users:
- Human users are functional users of the client component of an OO-Method applica-
tion since data is sent (or receive) to (from) this component.
- The Client component of an OO-Method application is a functional user of the
Server component of the application. This user is called client functional user.
- The Server component of an OO-Method application is a functional user for both the
Client component and for the Database component of the OO-Method application.
This user is called server functional user.
Boundaries: The OO-Method applications have three boundaries that separates the
users from the layers: one boundary between the human user and the Client compo-
nent; one boundary between the client functional user and the Server component; and
one boundary between the server functional user and the Database component – see
Figure 2.
Triggering Events:
- The human functional user carries out triggering events that occur in the real world.
- The client functional user carries out triggering events that occur in the interaction
units of the presentation model of the OO-Method conceptual model.
- The server functional user carries out the triggering events that occur in the server
component of the software.
Functional Processes: Direct successors of the menu of the presentation model of OO-
Method conceptual model. Every child represents a single functional process, either a
selection of a given class population (a Population Interaction Unit (PIU)) or an exe-
cution of a service (a Service Interaction Unit (SIU)). These interaction units can be
combined into more complex interaction units (as a Master Detail Interaction Unit
(MDIU)).
Data Movements: The data movements that can occur in the OO-Method applications
are shown in Figure 2. Note that the write and read data movements only can occur
between the server functional user and the database component of an OO-Method
application.
Data Groups: The classes of the object model of the OO-Method conceptual model,
which are used in the functional process.
Data Attributes: The set of attributes of each class that is identified as a Data Group.

220 B. Marín, O. Pastor, and G. Giachetti

Once the mapping between COSMIC and OO-Method has been defined, the meas-
urement rules of the OOmCFP must also be defined. These rules are the rules that
assign a numerical value to the data movements that take place between the functional
users and the software components of an OO-Method application. The data move-
ments that can occur in the OO-Method applications are shown in Figure 2.

Fig. 2. Data movements that can occur in the functional processes of an OO-Method
application

Given that the applications generated from the OO-Method conceptual model has a
three-tier architecture, three types of entry (E) data movements can occur in a func-
tional process: from the human user to the client component of the application; from
the client component of the application to the server component of the application;
and from the server component of the application to the client component of the ap-
plication (see Figure 2). A set of measurement rules has been defined for each type of
entry data movements.

Three types of exit (X) data movements can occur in a functional process: from the
client component of the application to the human user; from the client component of
the application to the server component of the application; and from the server com-
ponent of the application to the client component of the application. Figure 2 shows
the exit data movements. A set of measurement rules has been defined for each type
of exit data movements.

Only one type of read (R) data movements can occur in OO-Method applications:
only the server component of the software can read the persistence storage (see Figure 2).
A set of measurement rules has been defined for this type of data movements.

Only one type of write (W) data movements can occur in OO-Method applications:
only the sever component of the software can write to the persistence storage (Figure 2).
A set of measurement rules for the write data movements has been defined.

 Automating the Measurement of Functional Size 221

According to the COSMIC functional size measurement method, each data move-
ment will be assigned one size unit, which is referred to as 1 CFP. To measure the
functional size of a functional process, the functional size of all the data movements
of the functional process should be added – see formula (1).

∑
=

=
n

i
intDataMoveme

1
sonalProcesSizeFuncti (1)

Once all the functional processes are measured with formula (1), then all the meas-
urements should be added to obtain the functional size of the layer that contains these
functional processes – see formula (2).

∑
=

=
n

i
iocessPronalSizeFuncti

1
SizeLayer (2)

To measure of the generated software applications from the developer’s viewpoint,
it is necessary to add the functional size of every layer. This calculation is represented
in formula (3).

∑
=

=
n

i
iSizeLayer

1
ionodApplicatSizeOOMeth (3)

Finally, with the three formulas, it is possible to measure the functional size of the
OO-Method software applications that are generated from their conceptual model in
an MDA environment. The measurement rules include all the functionalities needed
by the application for its correct operation; in other words, it includes all the function-
alities from the developer’s viewpoint.

In terms of the validation of the OOmCFP procedure, since the validation of
COSMIC (from the perspective of the measurement theory) has been carried out suc-
cessfully using the DISTANCE framework [6], the theoretical validation of the
OOmCFP procedure can be inferred. Moreover, an expert has validated the confor-
mity of the OOmCFP procedure with the COSMIC version 3.0.

4.1 A Measurement Example

Figure 3 shows an example of an OO-Method conceptual model that allows the auto-
matic generation of a fully working application. This application allows the creation
and deletion of invoices with their details, and also allows the creation of the custom-
ers associated to the invoice. The administrator of the application, which is repre-
sented by the class Admin, can execute the services of the application.

The populations: PIU_Admin, PIU_Customer, PIU_Invoice1, and the master detail
MDIU_Invoice are identified as functional processes by applying the mapping rules
presented in Table 1.

1 PIU is the OO-Method acronym for “Population Interaction Unit”. A PIU represents an entry-

point for the application, through the presentation of a set of instances of a class. An instance
can be selected, and the corresponding set of actions and/or navegations specified in the Pres-
entation Model are offered to the user. More details can be found in [19].

222 B. Marín, O. Pastor, and G. Giachetti

Fig. 3. Example of an OO-Method conceptual model. Left: Object model. Right: Presentation
Model

After identifying the functional processes, the OOmCFP measurement rules are
applied to identify the data movements that occur in each functional process. The
measurement rules applied to the example are presented in the following table.

Table 2. Measurement rules of OOmCFP applied to the example

Component Measurement Rule
Client Rule 3. 1 entry data movement for each different class that corresponds to an argu-

ment of a SIU that participates in a functional process.
Client Rule 10. 1 entry data movement for each different class that contributes with attrib-

utes to the display set of a PIU or IIU that participates in a functional process.
Client Rule 15. 1 exit data movement for all the attributes that are shown in a display set

of a PIU or IIU that participates in a functional process.
Client Rule 22. 1 exit data movement for the set of data-valued arguments of a SIU that

participates in a functional process.
Client Rule 23. 1 exit data movement for each different class that corresponds to an argu-

ment of a SIU that participates in a functional process.
Server Rule 7. 1 entry data movement for the set of data-valued arguments of a SIU that

participates in a functional process.
Server Rule 8. 1 entry data movement for each different class that corresponds to an argu-

ment of a SIU that participates in a functional process.
Server Rule 25. 1 exit data movement for each different class that contributes with attrib-

utes to the display set of a PIU or IIU that participates in a functional process.
Server Rule 30. 1 read data movement for each different class that contributes with attrib-

utes to the display set of a PIU or IIU that participates in a functional process.
Server Rule 31. 1 read data movement for each different class that is used in the derivation

formula of the derived attributes of the display set of a PIU or IIU that participates
in a functional process.

Server Rule 35. 1 read data movement for each different class that is used in the default
value formula of an object-valued argument of a service that is related to a SIU that
participates in a functional process.

 Automating the Measurement of Functional Size 223

Table 2. (continued)

Component Measurement Rule
Server Rule 36. 1 read data movement for each different class that is used in the valuation

formula of the event that is related to a SIU that participates in a functional process.
Server Rule 38. 1 read data movement for each different class that is used in the formula of

the transaction, the operation or the global service that is related to a SIU that par-
ticipates in a functional process.

Server Rule 50. 1 write data movement for the class that contains a destroy event or trans-
action that is related to a SIU that participates in a functional process.

Server Rule 51. 1 write data movement for the class that contains a creation event or trans-
action that is related to a SIU that participates in a functional process.

Server Rule 52. 1 write data movement for the class that contains an event that has valua-
tions and that is related to a SIU that participates in a functional process.

With the measurements rules presented above, we have identified the data move-
ments that occur in the functional processes. The following table shows the data
movements that are identified for each functional process in the client component and
in the server component of the OO-Method application.

Table 3. Data movements of the functional processes that occur in the client component and in
the server component of the OO-Method application

Client Component Server component Functional Process
Entry Exit Read Write Entry Exit Read Write

PIU_Admin 8 8 0 0 6 2 2 4
PIU_Customer 8 8 0 0 6 2 2 5
PIU_Invoice 2 1 0 0 0 2 3 0
MDIU_Invoice 8 11 0 0 8 2 4 6

Once all of the data movements are identified, the formulas defined in OOmCFP
are applied to obtain the functional size for each functional process. Thus, Table 4
presents the functional size of the functional process in the client component of the
software and in the server component of the OO-Method application.

Table 4. Data movements of the functional processes that occur in the software components of
the application

Functional Process Client Component Server Component
PIU_Admin 16 14
PIU_Customer 16 15
PIU_Invoice 3 5
MDIU_Invoice 19 20

Next, by applying formula (2), we can obtain the functional size of each piece of
software: the functional size of the client component of the application is 54 cfp; and
the functional size of the server component of the application is 54 cfp.

224 B. Marín, O. Pastor, and G. Giachetti

Finally, we obtain the functional size of the OO-Method application by applying
formula (3). The resultant functional size is 108 cfp.

It is important to note that the manual measurement of this small example took 70
minutes. Keeping in mind that the model has only four classes, the manual measure-
ment of real applications that may contain 100 or more classes would require at least
116 hours. Therefore, it is very important to automate the measurement procedure to
be able to measure efficiently conceptual models of real applications. By automating
the measurement procedure many possible human errors could be avoided. The next
section presents the development of the tool that automates the OOmCFP procedure.

5 The Automation of the OOmCFP Procedure

Since the automation of the measurement of conceptual models with the OOmCFP
proposal is essential, a tool must be developed to implement the measurement rules
defined in OOmCFP and to aggregate the results according to the formulas presented
in Section 4. The OOmCFP tool has been developed using Visual Studio .Net 2003
with the language C#.

This tool must have a flexible architecture that allows adaptation to the evolution
of conceptual models. It must also be agile in the measurement process.

To provide this flexible architecture, the OOmCFP tool was developed with a set
of layers that allows easy incorporation of new measurement rules or changes in the
existing measurement rules.

The first layer of the OOmCFP tool consists of the pre-charge of the OO-Method
conceptual model that is generated from the Olivanova Suite [5] in an XML file. In
this layer, the functional elements are organized in a hierarchical way, according to
the functional processes identified for the client component and the server component.

In the second layer of the OOmCFP tool, each element that participates in each
functional process is identified, and the measurement of the data movements that
occur in each functional process are performed through the rules defined in OOmCFP.
To reduce the coupling of the measurement of the elements, each rule is grouped by
element and is implemented in an independent way. The result of the analysis of each
element is stored in the same element.

The third layer of the OOmCFP tool consists of the aggregation of the values of
each element according to the formulas defined in the OOmCFP. Thus, the tool ob-
tains the functional size of each functional process, the functional size of each com-
ponent of the application, and the functional size of the complete application.

The last layer consists of the generation of a final measurement report of the meas-
urement in an XML file. This XML file can be transformed into other formats using
XSLT. By default, the OOmCFP tool transforms the XML file in an HTML page.

Since the longest processing time and run time occur in the identification and
measurement step of functional elements, we have implemented a cache mechanism
to provide agility to the counting process. This reduces the high amount of time re-
quired to analyze elements that have already been analyzed. Thus, when a new func-
tional element is identified, the cache mechanism verifies whether or not it already
exists. It so, the value of the measurement is recovered.

 Automating the Measurement of Functional Size 225

To avoid overflow, the related elements are stored in an auxiliary array (Figure 4).
Once the analysis of the first element is finished, the analysis of the elements stored in
the auxiliary array continues sequentially. If the related elements are also related to
other elements, these elements are added at the end of the auxiliary array, eliminating
the loop of iterations and avoiding overflow.

Fig. 4. Schema of the solution to avoid overflow problems

The architecture of the OOmCFP tool provides an efficient measurement process.
Therefore, the measurement of conceptual models that generate real applications is
done in a few seconds, thus expediting the process of estimating the cost of the final
application.

The precision of the measurement is defined as the closeness of agreement between
quantity values obtained by replicated measurements of a quantity under specified
conditions [11]. In general, it is not possible to ensure precision in manual measure-
ments since people can make mistakes in the identification of the functional process,
the application of the measurement rules, or even the application of the formulas. In
contrast, when a tool performs the measurement, it can ensure the precision of the
measures because it is an automated measurement where a precise procedure will
always produce the same result in any measurement task. Consequently, the
OOmCFP tool avoids the errors of the manual measurements and assures the preci-
sion of the measurements.

5.1 Using the OOmCFP Tool

The steps for using the OOmCFP tool are the following:
The first step is to load the XML file that contains the OO-Method conceptual

model and to specify the path where the report will be saved.
The second step is to show a summary of the model that will be measured and the

path of the report.
The third step is to show the number of functional processes that have been meas-

ured and the function points for every layer of the application. In this step, the report
with all the results of the measurement is saved in the path indicated in the first step.
Figure 5 shows the report generated by the OOmCFP tool.

We have verified how the OOmCFP tool works in practice using some predefined
OO-Method conceptual models.

5.2 A Comparative Analysis of COSMIC and FPA

A preliminary comparative analysis has been carried out with respect to the functional
size of five conceptual models used in real applications. These conceptual models
belong to the Management Information System domain.

226 B. Marín, O. Pastor, and G. Giachetti

Fig. 5. Report generated by the OOmCFP tool

The analysis compares the functional sizes obtained for the OO-Method conceptual
models using the COSMIC and FPA techniques. OOmCFP is used as the COSMIC
measurement procedure, and OOmFP [1] is used as the FPA measurement procedure.

Before the analysis was carried out, we formulated the following hypothesis:
H1: The functional size of the measurement of an OO-Method conceptual model

using a COSMIC-based approach is bigger than the measurement using a FPA-based
approach.

Table 5 shows the results obtained. The Model column shows an identifier for each
model; the Classes column shows the number of classes associated to each model; the
OOmCFP column shows the number of function points obtained with the OOmCFP
procedure; the OOmFP column shows the number of function points obtained with
the OOmFP procedure; and the last column Dif shows the difference between the
results obtained with the OOmCFP procedure and those obtained with the OOmFP
procedure.

Table 5. Functional size of OO-Method conceptual models measured with the OOmCFP ap-
proach and the OOmFP approach

Model Classes OOmCFP OOmFP Dif
M1 9 836 463 373
M2 17 357 308 49
M3 30 2019 1158 861
M4 83 4326 2811 1515
M5 193 14649 6267 8382

 Automating the Measurement of Functional Size 227

As Table 5 shows, the functional size obtained was bigger when the OOmCFP ap-
proach was used. Therefore, as expected, hypothesis H1 is true since more aspects are
taken into account when COSMIC is used as the measurement strategy. This demon-
strates that when COSMIC is used, a better measurement of the functionality gener-
ated from the conceptual models in MDA environments is obtained.

Table 5 also shows that the differences obtained in the comparative analysis do not
follow a common pattern, because the measurement approaches analyzed use differ-
ent conceptual elements to quantify the functional size of the applications.

An important final consideration is that the complexity of the conceptual model is
not measured by either the COSMIC approach or by the IFPUG approach. However,
we believe that the conceptual elements that COSMIC uses in the measurement of the
functional size can be used to define metrics to measure the complexity of the concep-
tual models.

6 Conclusions and Further Work

In this paper, we have introduced OOmCFP, which is an FSM procedure for object-
oriented applications generated in MDA environments. OOmCFP allows the meas-
urement of the functional size in the conceptual models that will be transformed in the
generated applications. Therefore, we consider that OOmCFP specifies the functional
requirements for the development of a tool to automate the measurement of the func-
tional size of applications generated in MDA environments.

We have presented the OOmCFP tool, which automates the OOmCFP procedure.
To develop the OOmCFP tool, a set of aspects has been taken into account. These
aspects are related to the performance of the functional measurement process and
implementation aspects. The performance aspects are focused on the reduction of the
measurement time. The implementation aspects consider a correct execution of the
measurement process avoiding the overflows that can be produced by the measure-
ment of large OO-Method conceptual models.

A measurement example demonstrates how the OOmCFP tool is more efficient
than the measurements that are performed manually. This example also shows how
the OOmCFP tool can obtain precise measurements for the OO-Method conceptual
models.

A comparative analysis shows how a COSMIC-based approach, like OOmCFP,
provides a better measurement of the conceptual models that are used in an MDA
environment. This is because, in contrast to other FSM standards like IFPG FPA,
NESMA FPA or MARK II FPA, it allows the functional size measurement of multi-
layer applications (like the applications modeled with the OO-Method approach) from
different viewpoints.

Further work will include empirical studies of the reproducibility and the repeat-
ability of OOmCFP. It also include the analysis of the rules presented in this work in
order to take into account different points of view (such as the human user viewpoint)
for the measurement of applications generated in MDA environments.

228 B. Marín, O. Pastor, and G. Giachetti

References

1. Abrahão, S., Pastor, O.: Estimating the Applications Functional Size from Object-Oriented
Conceptual Models. In: International Function Point User Group Annual Conference (IF-
PUG 2001), Las Vegas, USA (2001)

2. Abrahão, S., Pastor, O.: Measuring the functional size of web applications. International
Journal of Web Engineering and Technology (IJWET) 1(1), 5–16 (2003)

3. Abran, A., Desharnais, J., Lesterhuis, A., Londeix, B., Meli, R., Morris, P., Oligny, S.,
O’Neil, M., Rollo, T., Rule, G., Santillo, L., Symons, C., Toivonen, H.: The COSMIC
Functional Size Measurement Method, version 3.0 In GELOG, http://www.gelog.
etsmtl.ca

4. Abran, A., Pierre, N.: Function Points: A Study of Their Measurement Processes and Scale
Transformations. Journal Systems and Software 25(2), 171–184 (1994)

5. CARE Technologies, http://www.care-t.com
6. Condori-Fernández, N.: Un procedimiento de medición de tamaño funcional a partir de

especificaciones de requisitos, Doctoral thesis, Universidad Politécnica de Valencia, Va-
lencia, España (2007)

7. Diab, H., Koukane, F., Frappier, M., St-Denis, R.: μcROSE: Automated Measurement of
COS-MIC-FFP for Rational Rose Real Time. Information and Software Technology 47(3),
151–166 (2005)

8. Giachetti, G., Marín, B., Condori-Fernández, N., Molina, J.C.: Updating OO-Method
Function Points. In: 6th IEEE International Conference on the Quality of Information and
Communications Technology (QUATIC 2007), Lisboa, Portugal, pp. 55–64 (2007)

9. IFPUG: International Function Point Users Group, http://www.ifpug.org
10. IFPUG, Function Point Counting Practices Manual Release 4.1, International Function

Point Users Group, Westerville, Ohio, USA (1999)
11. ISO, International vocabulary of basic and general terms in metrology (VIM), Interna-

tional Organization for Standardization, Geneva, Switzerland (2004)
12. ISO, ISO/IEC 14143-1, Information Technology – Software Measurement – Functional

Size Measurement – Part 1: Definition of Concepts (1998)
13. ISO, ISO/IEC 19761, Software Engineering – CFF – A Functional Size Measurement

Method (2003)
14. Kitchenham, B.: Counterpoint: The Problem with Function Points. IEEE Software Status

Report 14(2), 29–31 (1997)
15. Lehne, A.: Experience Report: Function Points Counting of Object-Oriented Analysis and

Design based on the OOram method. In: Conference on Object-Oriented Programming
Systems, Languages, and Applications (OOPSLA 1997), Atlanta, Georgia (October 1997)

16. Marín, B., Condori-Fernández, N., Pastor, O., Abran, A.: Measuring the Functional Size of
Conceptual Models in a MDA Environment. In: The 20th International Conference on Ad-
vanced Information Systems Engineering (CAiSE 2008), Montpellier, France (accepted,
2008)

17. OMG: Web site of MDA, http://www.omg.org/mda/
18. OO-Method Group Web Site, http://oomethod.dsic.upv.es
19. Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice. Springer, Heidelberg

(2007)
20. Pastor, O., Gómez, J., Insfrán, E., Pelechano, V.: The OO-Method Approach for Informa-

tion Systems Modelling: From Object-Oriented Conceptual Modeling to Automated Pro-
gramming. Information Systems 26 (2001)

 Automating the Measurement of Functional Size 229

21. Pastor, O., Hayes, F., Bear, S.: OASIS: An Object-Oriented Specification Language. In:
Loucopoulos, P. (ed.) CAiSE 1992. LNCS, vol. 593, pp. 348–363. Springer, Heidelberg
(1992)

22. Poels, G.: Functional Size Measurement of Multi-Layer Object-Oriented Conceptual Mod-
els. In: Proceedings of 9th International Object-Oriented Information Systems Conference,
Geneva, Switzerland, pp. 334–345 (2003)

23. Tavares, H., Carvalho, A., Castro, J.: Medicao de Pontos por Funcao a partir da Especifi-
cao de Requisitos. In: Workshop on Requirements Engineering, Universidad Politécnica
de Valencia, Spain, November 2002, pp. 278–298 (2002)

24. Uemura, T., Kusumoto, S., Inoue, K.: Function Point Measurement Tool for UML Design
Specification. In: 5th International Software Metrics Symposium, IEEE METRICS, Flor-
ida, USA, pp. 62–71 (1999)

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 230–243, 2008.
© Springer-Verlag Berlin Heidelberg 2008

How Does a Measurement Programme Evolve in
Software Organizations?

Lasse Harjumaa, Jouni Markkula, and Markku Oivo

University of Oulu, Department of Information Processing Science
P.O. Box 3000

FIN-90014 OULUN YLIOPISTO
{lasse.harjumaa, jouni.markkula, markku.oivo}@oulu.fi

Abstract. Establishing a software measurement programme within an organiza-
tion is not a straightforward task. Previous literature surveys have focused on
software process improvement in general and software measurement has been
analysed in case studies. This literature survey collects the data from separate
cases and presents the critical success factors that are specific to software
measurement programmes. We present a categorization of the success factors
based on organizational roles that are involved in measurement. Furthermore,
the most essential elements of success in different phases of the life cycle of the
measurement programme are analysed. It seems that the role of upper manage-
ment is crucial when starting measurement and the individual developers' im-
pact increases in the later phases. Utilization of the measurement data and
improvement of the measurement and development processes requires active
management support again.

Keywords: Software measurement, software metrics, software process.

1 Introduction

Software measurement is an area that covers a wide variety of activities in software
engineering. Defining data that is needed, implementing tools and procedures to col-
lect the data and analysing the data are some of the tasks that are needed. Tradition-
ally, the term "metrics" has been used to characterise source code in a quantifiable
manner. Metrics are also used to estimate quality, schedule and resource requirements
of software development efforts. Metrics and measurement are essential in order to
manage the software development work efficiently, and metrics also enable bench-
marking and exact representing of functional requirements. [1]

The main objective of measuring software development is to support managerial
decision making. Producing quality software that is delivered to customers on time is
a challenging task, and predicting effort that is needed to produce the software is even
more challenging. Incorrect estimates of code quality or development lifecycle may
cause significant financial losses to the producer organization. Accurate metrics data
that is at all times available to managers is extremely important in software process
management and improvement [2].

 How Does a Measurement Programme Evolve in Software Organizations? 231

Even though the software metrics and measurement has been actively studied for
decades, it still seems that many software organizations do not actively collect and
analyze metrics data. Fenton and Neil [3] state that much of the metrics research is
irrelevant to practitioners because of irrelevant scope or irrelevant content. While
academia is mostly interested in studying very fine-grained and code-related metrics,
industry would need more process improvement-related metrics that are easy to col-
lect and use.

Existing software process literature surveys [4] have focused on software process
improvement in general and software measurement has been analysed mostly in case
studies. This paper is based on a wide literature survey and presents the critical suc-
cess factors that are specific to software measurement programmes. This paper aims
at contributing to the measurement research by clarifying the requirements for a suc-
cessful measurement programme introduction and evolution. A chronological view to
measurement efforts in different phases of the framework implementation is provided.
In addition, a categorization outlining requirements from different organizational
perspectives is presented in order to efficiently manage the design and implementa-
tion of a measurement programme.

The rest of the paper is organized as follows: Section two introduces the research
approach that has been utilized in this review. Section three summarizes the related
work, general-level success factors of a measurement programme, and introduces the
categorization that has been established based on the factors found in literature. In
section four, the success of measurement is reflected to the categorization. Further-
more, a time scale of the factors and related organizational roles is sketched. Section
five discusses the limitations and implications of this review, and finally sectin six
concludes the work.

2 Research Setting

In this paper, we will analyze the requirements for successful measurement program
implementations. We aim at finding the essential elements of the measurement suc-
cess at different organizational levels. Furthermore, the study aims at describing how
the involvement of people in different organizational roles changes while the meas-
urement programme evolves within the organization.

The study consists of a two-phase literature review and a meta-analysis of the rec-
ognized software measurement success factors. For finding and categorizing the suc-
cess factors, a set of well-known and frequently cited research articles is surveyed.
The factors listed in different reports are quite widely agreed, and a limited selection
of articles was considered to be adequate in order to get a comprehensive view on the
substance.

The literature review is continued by searching real industry case studies on meas-
urement programme implementations. Overlapping material was avoided, i.e. articles
that were used in success factor categorization, were not used for this analysis. Issues
that seemed to arise most often in these experience reports were categorized accord-
ing to the success factor classification. In addition, involvement of people working in
different organizational levels will be studied, and the intensity of involvement in

232 L. Harjumaa, J. Markkula, and M. Oivo

different phases is evaluated in order to find out the how measurement efforts should
be targeted.

Cases for the analysis were selected from the online databases of IEEE, ACM, El-
sevier and Springer. Articles had to satisfy the following search criteria: 1) Abstract
section of an article must indicate terms “software” and either “measurement” or
“metrics” and 2) the abstract section must indicate that a “case study” is reported. The
Springer database does not support searching abstracts, so the search was based on
paper title. This search resulted in total of 251 articles in the four databases. After
checking the titles and abstracts of the articles, 21 articles were chosen for closer
look. Especially the result set from the IEEE database includes a number of articles
that were presenting measurement techniques and individual metrics when compared
to our approach of looking for practical experiences in implementing and sustaining
measurement programmes. Naturally, some papers concerned other fields than soft-
ware engineering. Articles that were either technical (no practical experiences) or not
software related were omitted. If the same case was identified in two databases, it was
taken into account only once. Articles that concerned the whole measurement pro-
gramme rather than single metrics were preferred. Both conference articles and jour-
nal papers were accepted. The year span of the selected articles was 1993-2006.
Table 1 summarizes the search results of the material.

Table 1. Search results from scientific publications databases

 ACM Elsevier IEEE Springer Total
Total number
of articles

53 32 137 29 251

Examined
articles

5 2 8 6 21

Thus, the second phase of the literature review is based on 21 case studies report-
ing both successful and failed measurement and metrics implementations.

3 Success Factors for a Measurement Programme

The literature concerning measurement programme implementations gives quite con-
curred view of the requisites for successful metrics adoption. This review provides a
synthesis of the most crucial success factors and outlines a grouping based on typical
organizational roles that are involved in measurement.

3.1 Success Factors

When analysing successes and failures of metrics programmes, one must understand
that implementation of such a programme is not a simple activity of utilizing a fixed
method or tool within the organization. Implementation and adoption of a measurement
framework does not guarantee its routine use in an organization. Resources and long-
term commitment are required to gain the maximum benefits of the measurement [5].

 How Does a Measurement Programme Evolve in Software Organizations? 233

Table 2. Success factors of a metrics programme

Success factor

 R
ef

er
en

ce

 H
al

l &
 F

en
to

n
19

97
 [

7]

Iv
er

se
n

&
 M

at
hi

as
se

n
20

03
 [

8]

P
fl

ee
ge

r
19

93
 [

6]

B
ri

an
d

et
 a

l.
19

96
 [

9]

D
ek

ke
rs

 1
99

9
[1

0]

H
er

bs
le

b
&

 G
ri

nt
er

 1
99

8
[1

1]

K
itc

he
nh

am
 e

t a
l.

20
06

 [
12

]

N
ie

ss
in

k
&

 v
an

 V
lie

t 2
00

1
[1

3]

G
op

al
 e

t a
l.

20
05

 [
5]

Upper management support x x x
Adequate resources x x x x x
Establishing reward system x x
Incremental implementation x x x x
Constant improvement of the metrics
programme

x x x

Aligning with business goals x x
Added value to organization x
Measurement data is used at organ-
izational level

x x x x x x

Capability to change x x x
Commitment from project managers x
Process transparent to developers x x x x
Well-planned framework x x x x x
Use of existing metrics materials x x
Use of external gurus x
Process ownership x x
Usefulness of metrics data x x x x
Measurement data is used in project
management

x x x x x x x

Feedback to developers x x x x x
Arranging training x
Ensuring integrity of data x x
Developer involvement during im-
plementation

 x x

Providing feedback for improve-
ments

 x x x x x

Data accuracy x x x
Automated data collection x x x
Effortless process x x

234 L. Harjumaa, J. Markkula, and M. Oivo

The adaptation of a measurement framework cannot be judged merely as a success
or a failure. Even though the actual data collecting activities may be implemented
properly and seem to work well, the data may be useless if the management is not
motivated to utilize it in decision-making [6]. Furthermore, objectives of the meas-
urement are defined differently in different organizations.

Literature indicates that the high-level success factors in metrics programme im-
plementations are quite similar in different cases, although the actual implementation
is always unique. However, one must notice that research on metrics programmes is
typically reported on ”case basis”, which means success factors have been drawn
from a single organization. Another stream of research is to compare metrics pro-
grammes in two or more organizations, e.g., [7]. Table 2 summarizes the typical
success factors reported in reviewed case studies. The table does not include all the
material found in the survey. Instead, it provides a comprehensive overview of the
well-known and widely agreed success factors.

The definition of success factors for a measurement programme is highly context
dependent. For example, introducing measurement can lead into establishment of the
measurement capability or the measurement results can provide useful information
and better understanding of the underlying process, development work practices and
product quality. We have taken a value perspective; a measurement programme is
considered to be successful when it provides added value to the organization and ROI
of the measurement programme is clearly positive. Measurement does not always
need to lead to SPI type improvements and it is important to distinguish between
improvement goals and measurement goals. Even though they are often related, they
are logically different. Thus, SPI success factors are not necessarily exactly same as
measurement success factors.

Introducing metrics always involves change. Integrating a metrics programme into
old practices or refusing any alterations may decrease the probability of achieve the
benefits of metrics [13]. This change should be planned. Several studies show that
measurement practices should be introduced in deliberate way, including [7, 8, 10]. A
dedicated team or a metrics project with clear objectives provides good support for
metrics introduction [7]. Setting up the procedures for collecting and analysing the
metrics is on the responsibility of the management. Mandating use of metrics without
making necessary adjustments to underlying working procedures will most probably
cause the metrics programme to fail [5].

Organization’s capability to introduce changes into its working procedures and
adopt new practices seems to be a critical success factor according to several case
studies [5, 6, 8, 10, 14, 15]. In addition to collecting metrics, an organization needs to
react to the measurement results. Thus, organizational flexibility helps to achieve
benefits from the measurement. Usually the upper management initiates strategic
organizational changes while middle management can introduce minor changes. For
example, Gopal et al. [5] state that structural changes may be mandatory when intro-
ducing a measurement programme. Data collection always affects on underlying
working methods, at least in form of new data collection tools. Furthermore, when
utilizing the measurement data, it is expected that development processes are trans-
formed into more efficient shape.

Measurement should be started with a simple set of metrics [8, 9]. Attempting to
collect every possible piece of data at once will most likely decrease the quality of

 How Does a Measurement Programme Evolve in Software Organizations? 235

data and become burdensome for the personnel. A good starting point is to collect and
analyse the data that is already available in some form [8]. The scope and amount of
the metrics can be increased later [7, 8].

A case study by Iversen and Mathiassen [8] implies that the better the employees
recognize the purpose and importance of the data, the better is the quality of the data.
Tying data collection and reporting with bonus system may improve the data quality
[8] but is normally not a good approach in process improvement. However, data
should never be used directly against developers and those who report the data. Con-
fidentiality of measures is important. Measures of individuals should automatically be
available only for those who the data is directly related to. Wider availability has to
be agreed with data owners and relevant stakeholders. Results of the measurement can
be published, but with care and agreements with the data owners. Metrics provide
valuable feedback for developers and teams when they are based on accurate data [6,
8]. Furthermore, measurements should generate as little extra work as possible for the
developers [6].

The single most important issue is the use of data [16]. If the data is not used, the
whole metrics program will probably turn into a burden that does not help in process
improvement. For example, Frederiksen and Mathiassen [14] provide practical sug-
gestions for validating the usefulness of metrics from managerial viewpoint. Further-
more, if the data reveals deficiencies, the organization must take corrective actions
based on the measurement [6, 7]. Also individual developers should be aware that the
data they provide is appreciated and really used. Usefulness and practical utilization
of the metrics data traditionally means that the results of the measurement should be
made visible. In addition, measurement should help a software development company
to achieve financial or other benefits over its competitors. Thus, measurement should
generate value for the organization [13].

Niessink and van Vliet [19] present five different cases of measurement program
implementations and analyse the reasons why some of them were more successful
than others. They list several success factors that help in achieving organizational
goals, thus creating additional value to the organization. The factors they have identi-
fied are 1) measurement data is used for reporting purposes 2) measurement data can
be used to monitor performance of the organization 3) an organization can learn from
the measurement data 4) measurement can help in achieving performance improve-
ment 5) an assessment if the organization meets a set of norms, or benchmarking, can
be checked from measurement data (“organizational health”) and 6) measurements
help in determining how well organizational goals are achieved and identifying if new
directions should be taken (“navigation”) [19].

Support for the measurement has to be concrete. When initializing the measure-
ment programme, it must be ensured that measurements are based on real needs, only
meaningful data is collected and proper tools are provided for those who collect, store
and analyze the data. Involved people should also be provided adequately time to
report their data accurately. Methods like Goal-Question-Metric (GQM) and its fur-
ther development GQM+strategies have been developed and successfully used to
tackle these issues [6, 12, 16, 17, 18, 27]. GQM approach can be used to establish a
goal-driven measurement system, starting with definition of organizational goals,
measurement goals, and then posing questions to address the goals, and finally identi-
fying appropriate metrics that provide answers to the questions [18].

236 L. Harjumaa, J. Markkula, and M. Oivo

3.2 Factor Grouping

The list of agreed success factors is quite long and there is certainly some overlapping
between separate items. In order to understand the basic elements of success, we will
categorize the factors into a more readable form. We will look at the success factors
from three different viewpoints. This classification is based on the assumption that
effort and involvement that is required from people working in different roles within an
organization to achieve effective measurement programme is different. For example,
top management is unlikely involved in data collection, and individual developers
cannot provide financial resources for running the metrics programme. Thus, we will
use the following categorization for classifying the factors for successful measurement.

1) Top management. The upper management is responsible for identifying changes
in business environment, setting corresponding business goals for the organization
and directing the organization according to the current strategy.

2) Middle management. Managers of specific divisions or processes are responsi-
ble for making more fine-grained tactical decision in order to follow the organiza-
tional strategy. They put the organization-level business goals into practice by setting
concrete goals for products and projects.

3) Developers. Individual designers and coders form the operational level that ac-
tually creates the products and projects. They also produce the data that is needed for
measurement. Interestingly, it is developer related actions and work products that are
measured and developers themselves are usually mainly responsible for collecting the
measurement data.

In addition to organization-level categorization, the factors can be grouped into
five high-level maxim that capture the essence of the measurement implementation.
These core topics can be named as a) commitment, which is required from everybody
that is involved, b) planning, that is necessary in defining and managing the process,
c) data utilization, which means that people know that the measurement data is used
to guide and manage the organization, d) training & knowledge, which ensure that
everybody understand the meaning of different metrics and knows how to report and
interpret the data, and finally e) tool support to make the measurement process effort-
less to operate. We have based the categorization on the success factors found in lit-
erature to structure the main high-level elements of success. Figure 1 illustrates these
categorizations. On the left side, all the success factors are grouped from the organiza-
tional viewpoint. Some items are listed more than once, as they relate to more than
one organizational level (“measurement data is used”, for example). On the right side,
the grouping into five top-level values is presented with links to related original suc-
cess factors.

There are several issues that need to be paid special attention in all three organiza-
tional levels. Two-way feedback, commitment and real use of the data are factors that
cross the levels. Ensuring these necessities will also increase understanding of the
measurement and transparency of the programme. Training, proper understanding of
metrics and tool support for metrics collection and analysis are mostly connected to
the operational level, while more abstract issues, commitment and planning are im-
portant from the management point of view. Data utilization concerns basically eve-
rybody in the organization.

 How Does a Measurement Programme Evolve in Software Organizations? 237

individual
level /
developers

project
level /
middle
mgmt

organizational
level / top
mgmt

commitment

training&knowledge

data utilization

tool support

planning

upper management support

adequate resources

establishing reward system

incremental implementation

constant improvement of the metrics programme

aligning with business goals

added value to organization

measurement data is used

organization’s capability to change

commitment from project managers

process transparent to developers

well-planned framework

use of existing metrics materials

use of external gurus

process ownership

usefulness of metrics data

measurement data is used

feedback to developers

arranging training

ensuring integrity of data

involvement during implementation

providing feedback for improvements

data accuracy

automated data collection

Fig. 1. Categorization of software measurement success factors

To summarize, measurement involves several other stakeholders at different organ-
izational levels. Project managers are the main persons responsible for keeping the
measurement in operation and the work of individual developers is most likely to
change when the metrics collection is started.

4 Involvement in Different Phases of Measurement
Implementation

We suggest that not all organizational roles are similarly involved in the measurement
programme implementation in different phases. Examination of the timeline from the
measurement programme initiation to its operation helps to understand, who should
act and when in order to succeed.

4.1 Viewpoints to Measurement Case Studies

Selected articles were categorized according to the five high level success factor cate-
gories. Attention was paid to the most important contributions of the articles by
searching the main theme and the most emphasized lessons learnt from each represen-
tation. Typically each study emphasized a specific viewpoint to the software

238 L. Harjumaa, J. Markkula, and M. Oivo

measurement field and it was easy to categorize the article accordingly. Some of the
papers have been set into more than one category.

Planning is considered very important and many of studies focused on providing
guidance for the planning phase. For example, Latum et al. [16] and Berander and
Jönsson [20] report cases in which GQM approach has been used for the measurement
definition. Proper planning the measurement framework and prioritization of the
measurement goals may help in keeping the size of the measurement framework man-
ageable [20].

The most studied facet is tool support for data collection, analysis and visualiza-
tion. According to Johnson et al. [21], developers may not be willing to adopt metrics
tools if they have to switch from the development environment to another set of tools
for recording metrics. Automated tools help the individual developers’ metrics collec-
tion process, but on the other hand, set new requirements on development tools. Fur-
thermore, developers may feel that their privacy is threatened when data is recorded
automatically [21].

Even though commitment of the senior management is recognized as a crucial suc-
cess factor, aspects of people’s attitudes towards measurement programmes have been
little investigated. Furthermore, upper management commitment is usually listed
among the most widely agreed success factors, but commitment is needed in every
level in order to ensure accurate and adequate measurement data.

Measurement-related knowledge is another aspect that hardly any case study ad-
dresses, although training is obviously needed when introducing new methods and
tools within the organization. Furthermore, understanding and knowledge of the
measurement process develops over time in both individual and organizational level.
It would be important to understand how the underlying measurement programme
works and how the data can be explored in order to improve the measurement [22].

Table 3 summarizes the number of research articles focusing on different view-
points to software measurement.

Table 3. The number of articles focusing on different measurement viewpoints

Planning 6

Tools 11

Commitment 2

Training & knowledge 1

Data utilization 8

During the analysis, it became evident that most of the research focuses on specific
metrics, defining new metrics and implementations of tools for metrics collection and
representation. There are, however, a number of articles describing measurement
programme implementations. Especially interesting are reports that analyze possible
reasons for a failure of measurement programme introduction. It is probably easier to
detect absence of a particular success factor than its presence.

 How Does a Measurement Programme Evolve in Software Organizations? 239

4.2 Measurement Evolution

Establishing a software measurement programme is not a straightforward task. Meas-
urement process needs to be introduced carefully and maintained actively in order to
keep it running and effective. Adoption of software measurement tools and proce-
dures is unlikely to happen instantaneously. Implementation of the measurement pro-
gramme usually requires defining, designing and implementing the appropriate tools
for collecting and analysing data. This series of tasks and organizational processes
typically follows the stages in innovation diffusion models describing the adoption of
a new idea within an organization. Innovation diffusion is a widely studied theory in
the information systems field describing how a new idea develops in an organization
in stages. Rogers [23] has entitled these phases as knowledge, persuasion, adoption
and routinization.

Another way looking at the evolution of a software measurement programme is the
development of organizational memory. Measurement data describe the processes and
products of a company, thus they contribute significantly to the organization’s knowl-
edge, which developes and cumulates in time. Anand et al. [24] define the concept of
organizational memory as follows: “information and knowledge known by the or-
ganization and the processes by which such information is acquired, stored and
retrieved by organization members”. According to Stein [25], the organizational
memory process consists of the following phases: 1) acquisition, 2) retention, 3)
maintenance and 4) retrieval. When looked from the measurement viewpoint, acquisi-
tion phase is related to defining and operationalization of the needed metrics and
collection of the data. Retention phase concerns the data structures and systems, as
well as established practices of data collection. Maintenance phase relate to measure-
ment data quality and reliability management. Retrieval phase concerns availability of
the metrics for decision making, addressing as such also the analysis and presentation
methods, tools and practices of metrics usage.

Figure 2 illustrates these four phases and points out the observations that have been
emerged in the literature review. In the first phases, the upper management role is
most crucial, as planning, resourcing and necessary organizational changes can be
supplied only by management. When moving towards latter phases, operational roles
are more important, because it depends heavily on developers and project managers,
how accurate the data is - or if it is collected at all.

For example, Gopal et al. [5] stress the role of upper management in guiding the
metrics framework implementation and providing resources for establishing the
measurement successfully. The management role in adaptation is crucial, as it may be
required to introduce structural changes within the organization [5]. If there are organ-
izational and managerial problems, metrics programme will fail more likely than in
well-managed organizations [15].

Even a well-planned metrics framework can result in a failure, if the data is not
used to initiate improvements in organization-level software processes, as a case re-
ported in [19] suggests. Another case in the same article shows that in addition to
rigorous implementation, data integrity needs to be ensured during the operation of
measurement.

240 L. Harjumaa, J. Markkula, and M. Oivo

Acquisition Retention Maintenance Retrieval

The role of upper
management is
emphasized

Proper planning
is needed

Outside expertise
may be beneficial

Upper management
support still needed

Project level important

Adaptability is
required from the
organization in
order to find out
“the own way” to
measure

Developers and
project management
run the process

Communication and
publishing are
important
Commitment from
everybody

Tools are useful

Upper management
initiates SPI

Developers use the
data

Data used in
all levels in the
organization

Two-way feedback

Analysis tools

Fig. 2. The phases of measurement programme implementation

The case of Contel Corporation [6] demonstrates that streamlined data collection
and analysis is necessary to achieve good results from measurement. Daskalantonakis
[26] lists guidelines for data collection and interpretation and automated data gather-
ing tools among the most important success factors in Motorola. It seems that without
proper tools measurement may become too strenuous.

The main issue in keeping the measurement programme alive is its usefulness. Ni-
essink and van Vliet [19] state that a measurement program should create value for
the organization. This means that the data gathered in measurement must be used in a
meaningful way. Positive influence in development costs, developer productivity or
customer feedback is the best motivators to keep the measurement running.

The change in software engineering industry is quite rapid. As the markets change,
development organizations' business goals will change. Metrics and measurement
should be linked to the business goals of an organization to help in high-level decision
making [27]. Thus, changes in the business and organizational goals should be re-
flected in the measurement. If metrics that are collected are not relevant, they are
useless. Furthermore, criteria for success or failure can be different in different busi-
ness situations.

Upholding a metrics framework is quite similar to keeping software process im-
provement continuous and running. Adequate resourcing, appropriate people roles
and constant, visible feedback are necessities of success. Similar to SPI, the attitude
of upper management in the beginning reflects to the later phases and the motivation
of individual employees, who have a vital role in the operational phase.

5 Discussion

The main contribution of this study for practitioners is the model describing software
measurement programme evolution. Paying attention to the typical life cycle of a
metrics programme and targeting resources according to the involvement required by

 How Does a Measurement Programme Evolve in Software Organizations? 241

top management, middle management or developers should help the organization to
manage the measurement and its implementation.

Related research work usually stresses the importance of upper management sup-
port but does not describe concretely, in which phases the management support is
most beneficial. Furthermore, we have arranged the success factors into two-level
hierarchy that gives either overview of the measurement-related issues or more de-
tailed list of the success factors. This helps to understand and direct the measurement
efforts into right direction in the organization.

For academia, our review provides a new view on categorizing and prioritizing the
well-known success factors. We would like to add organizational adaptability to the
list of success factors. Certain research articles on software metrics report the organi-
zation's capability to change as a critical success factor, and in a number of studies
this requirement can be observed implicitly. However, we would like to emphasize
the importance of this organizational capability. We also believe that organizational
aspects should be paid more attention to in software measurement research. The
measurement programme can be reflected to innovation diffusion, for example [5].
This paper utilizes the concept of organizational learning for describing the institu-
tionalization of a measurement programme. Life cycle model presented in this paper
is quite rough and needs further studying. Empirical, industrial cases for refining the
model and validating it are needed and we are planning to evaluate the metrics
frameworks used in software development companies towards our categorization and
life cycle model.

The analysis of measurement case studies also gives an overview, which aspects of
the field are most studied. As can be noticed, tool support collecting and analyzing the
metrics have been greatly emphasized in research, while training has been much less
addressed. This could be an indication of a need for further research.

The number of articles that reported real-life experiences in such detail that they
could be selected for the analysis was fairly low. More variety in the search criteria
would have, of course, increased the amount of material. However, even with this
magnitude, the evidence shows the directions that measurement research is going.

6 Conclusion

Establishing a software measurement programme is not a straightforward task. Meas-
urement process needs to be introduced carefully and maintained actively in order to
keep it running and effective. Adoption of software measurement tools and proce-
dures is unlikely to happen overnight. Implementation of the measurement pro-
gramme requires defining, designing and possibly implementing the appropriate tools
for collecting and analysing data.

The key factors for keeping a metrics programme alive and continuously improv-
ing include the proper use of the data and meaningful tools to enable easy collecting
and representation of the measurement results. Adjustment of the measurement ac-
cording changing business surroundings is necessary in order to keep the data valid
and meaningful.

Involvement of people working on different organizational levels varies in differ-
ent phases of the measurement programme life cycle. In the beginning, the role of the

242 L. Harjumaa, J. Markkula, and M. Oivo

top management is very important, as initiating the required resources and motivation
for use of metrics have to be ensured at the organizational level. Later on, when the
measurement process matures, the role of middle management becomes more empha-
sized for streamlined and efficient operation of the process. Along the way, motiva-
tion and knowledge of individual developers have to be ensured in order to gain accu-
rate and adequate data.

Further research is needed on the evolution aspect of a measurement programme in
order to efficiently guide and manage measurement-related efforts. Training, knowl-
edge and motivation of the people working with metrics have been rarely studied, yet
those are extremely important issues to understand. One interesting approach would
also be to contrast the measurement programme evolution with the maturity level of
the organization.

References

1. Kan, S.H.: Metrics and Models in Software Quality Engineering. Addison-Wesley, Read-
ing (1995)

2. Rainer, A., Hall, T.: A quantitative and qualitative analysis of factors affecting software
process improvement. Journal of Systems and Software 66(1), 7–21 (2003)

3. Fenton, N.E., Neil, M.: Software Metrics: Roadmap. In: Proceedings of The Future of
Software Engineering, pp. 357–370 (2000)

4. Dyba, T.: An empirical investigation of the key factors for success in software process im-
provement. Transactions on Software Engineering 31(5), 410–424 (2005)

5. Gopal, A., Mukhopadhyay, T., Krishnan, M.S.: The Impact of Institutional Forces on
Software Metrics Programs. IEEE Transactions on Software Engineering 31(8) 679–694
(2005)

6. Pfleeger, S.: Lessons learned in Building a Corporate Metrics Program. IEEE Software 10,
67–74 (1993)

7. Hall, T., Fenton, N.: Implementing Effective Software Metrics Programs. IEEE Soft-
ware 14(2), 55–65 (1997)

8. Iversen, J., Mathiassen, L.: Cultivation and Engineering of a Software Metrics Program.
Info Systems Journal 13(1), 3–19 (2003)

9. Briand, L., Differding, C., Rombach, D.: Practical Guidelines for Measurement-based
Process Improvement. Software Process Improvement and Practice 2(4), 253–280 (1996)

10. Dekkers, C.A.: The Secrets of Highly Successful Measurement Programs. Cutter IT Jour-
nal 12(4), 29–35 (1999)

11. Herbsleb, J.D., Grinter, R.E.: Conceptual Simplicity Meets Organizational Complexity:
Case Study of a Corporate Metrics Program. In: Proceedings o the International Confer-
ence on Software Engineering, pp. 271–280 (1998)

12. Kitchenham, B., Kutay, C., Jeffery, R., Connaughton, C.: Lessons learnt from the analysis
of large-scale corporate databases. In: Proceedings of the International Conference on
Software Engineering (ICSE 2006), pp. 439–444 (2006)

13. Niessink, F., van Vliet, H.: Measurements Should Generate Value, Rather than Data. In:
Proceedings of the IEEE Metrics Symposium, pp. 31–38 (1999)

14. Frederiksen, H.D., Mathiassen, L.: Information-Centric Assessment of Software Metrics
Practices. IEEE Transactions on Engineering Management 52(3), 350–362 (2005)

15. Berry, M., Jeffery, R.: An Instrument for Assessing Software Measurement Programs.
Empirical Software Engineering An International Journal 5(3), 183–200 (2000)

 How Does a Measurement Programme Evolve in Software Organizations? 243

16. Latum, F., Solingen, R., Oivo, M., Hoisl, B., Rombach, H.D., Ruhe, G.: Adopting GQM-
Based Measurement in an Industrial Environment. IEEE Software, 78–86 (1998)

17. Basili, V., Weiss, D.: A Methodology for Collecting Valid Software Engineering Data.
IEEE Transactions on Software Engineering SE10(6), 728–738 (1984)

18. Basili, V., Caldiera, G., Rombach, D.: Goal Question Metric Paradigm. In: Marciniak, J.J.
(ed.) Encyclopedia of Software Engineering, vol. 1, pp. 528–532. John Wiley & Sons,
Chichester (1994)

19. Niessink, F., van Vliet, H.: Measurement program success factors revisited. Information &
Software Technology 43(10), 617–628 (2001)

20. Berander, P., Jönsson, P.: A goal question metric based approach for efficient measure-
ment framework definition. In: Proceedings of the Fifts ACM-IEEE International Sympo-
sium on Empirical Software Engineering (ISESE), pp. 316–325 (2006)

21. Johnson, P.M., Kou, H., Paulding, M.G., Zhang, Q., Kagawa, A., Yamashita, T.: Improv-
ing Software Development Management through Software Project Telemetry. IEEE Soft-
ware 22(4), 76–85 (2005)

22. Mendonça, M.G., Basili, V.R.: Validation of an Approach for Improving Existing Meas-
urement Frameworks. IEEE Transactions on Software Engineering 26(6), 484–499 (2000)

23. Rogers, E.M.: Diffusion of innovations, 4th edn. Free Press, New York (1995)
24. Anand, V., Manz, C.C., Glick, W.H.: An organizational memory approach to information

management. Academy of Management Review 23(4), 796–809 (1998)
25. Stein, E.W.: Organizational memory: review of concepts and recommendations for man-

agement. International Journal of Information Management 15(2), 17–32 (1995)
26. Daskalantonakis, M.K.: A Practical View of Software Measurement and Implementation

Experiences Within Motorola. IEEE Transactions on Software Engineering 18(11), 998–
1010 (1992)

27. Basili, V., Heidrich, J., Lindvall, M., Munch, J., Regardie, M., Trendowicz, A.: GQM +
Strategies - Aligning Business Strategies with Software Measurement. In: Proceedings of
the 1st International Symposium on Empirical Software Engineering and Measurement
(ESEM 2007), Madrid, Spain (2007)

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 244–257, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Fault Prediction Model with Limited Fault Data to
Improve Test Process

Cagatay Catal1 and Banu Diri2

1 The Scientific and Technological Research Council of TURKEY,
Marmara Research Center, Information Technologies Institute

Kocaeli, TURKEY
cagatay.catal@bte.mam.gov.tr

2 Yildiz Technical University, Department of Computer Engineering
Istanbul, TURKEY

banu@ce.yildiz.edu.tr

Abstract. Software fault prediction models are used to identify the fault-prone
software modules and produce reliable software. Performance of a software
fault prediction model is correlated with available software metrics and fault
data. In some occasions, there may be few software modules having fault data
and therefore, prediction models using only labeled data can not provide accu-
rate results. Semi-supervised learning approaches which benefit from unlabeled
and labeled data may be applied in this case. In this paper, we propose an artifi-
cial immune system based semi-supervised learning approach. Proposed ap-
proach uses a recent semi-supervised algorithm called YATSI (Yet Another
Two Stage Idea) and in the first stage of YATSI, AIRS (Artificial Immune
Recognition Systems) is applied. In addition, AIRS, RF (Random Forests) clas-
sifier, AIRS based YATSI, and RF based YATSI are benchmarked. Experimen-
tal results showed that while YATSI algorithm improved the performance of
AIRS, it diminished the performance of RF for unbalanced datasets. Further-
more, performance of AIRS based YATSI is comparable with RF which is the
best machine learning classifier according to some researches.

Keywords: Semi-supervised learning, software fault prediction, YATSI, artifi-
cial immune systems, AIRS.

1 Introduction

Software testing is one of the most crucial quality assurance activities for Software
Quality Engineering. Beyond testing, there are various quality assurance alternatives
that can be applied for high-assurance systems such as flight control software and
large-scale telecommunication software. Some of these quality assurance activities
are formal verification, fault prevention, fault tolerance, and fault prediction [1].

Software systems are becoming more and more complex. If we examine the evolu-
tion of Microsoft’s Operating Systems (OS) with respect to lines of code, we can
easily observe the complexity. According to Andrew Tanenbaum [2], Windows NT
3.1 had 6 Million lines of code (MLOC) in 1993 and Windows Vista Beta 2 had 50

 A Fault Prediction Model with Limited Fault Data to Improve Test Process 245

MLOC in 2005. Mac OS X 10.4 has 86 MLOC [3], Debian 3.1 has 215 MLOC [2],
and Eclipse Europa release [4] has 17 MLOC. As we see from these large-scale pro-
jects, lines of code for today’s software can be expressed MLOC scale. According to
the Assistant Secretary of the U. S. Army, the systems of the future are likely to have
billions of lines of code. The Software Engineering Institute published a study report
in June 2006 after 12-month investigation to solve the ultra-large-scale system prob-
lem of U.S. Department of Defense [5]. According to the current and future complex-
ity of software systems, we can express that effective quality assurance activities are
required to improve the quality of software systems.

Software fault prediction activity mostly uses previous software metrics and fault
data to predict the fault-prone modules for the next release of software. This activity
creates a model applied before system testing in the next release of software. Some
tools [6] or experts may divide modules into three groups: High, Medium and Low
fault-prone. Some researchers [7] also predicted the number of faults for each module
of software. Halstead and McCabe metrics are method-level metrics and used as inde-
pendent variables. Chidamber-Kemerer metrics suite [8] is an example for class-level
metrics suite, but in this study we only applied method-level metrics. Various benefits
of software fault prediction models are explained below:

• Identification of refactoring candidates,
• Improvement for software testing process and quality,
• Selection of the best design from alternatives by using class-level metrics,
• Reaching a highly assurance system.

Mostly researchers used public datasets during their studies from NASA Software
Metrics Data Program. PROMISE repository stores public datasets from NASA [9].
We built prediction models using Artificial Immune Systems paradigm during our
Fault Prediction Research Program [10]. However, our models used previous software
metrics and fault data for modeling. When a company starts a new project type or does
not have any previous fault data, these models can not be built. Therefore, we need
new approaches under these circumstances. Zhong et al. [11] proposed unsupervised
learning approaches using Neural-Gas and K-means clustering algorithms in 2004.
Another challenging problem occurs when the company has few fault data. Supervised
learning approaches can not build powerful models with few fault data. One solution
can be using unlabeled software modules together with labeled data during learning.
This type of learning is known as semi-supervised learning. Some situations where we
need semi-supervised fault prediction models are given below [12]:

• During decentralized software development, some companies may not col-
lect fault data for their software components.

• Execution cost of data collection tools may be expensive.
• Company may not collect fault data for a version due to the lack of budget.

Seliya et al. [12] used Expectation-Maximization (EM) algorithm for this problem in
2004 and had comparable results with classification algorithms. Seliya at al.’s study [12]
is the first study in literature for semi-supervised software fault prediction. In this study,
we investigate RF, AIRS, and YATSI algorithms for semi-supervised software fault
prediction. YATSI algorithm has been proposed in 2006 by Driessens et al. [13], but

246 C. Catal and B. Diri

its performance has not been observed for unbalanced datasets specifically. It is a meta
semi-supervised algorithm and it has been evaluated using several datasets. The evalua-
tion parameter was accuracy in their study, but our study focuses on software fault pre-
diction problem which has unbalanced limited fault data. The reason why we use RF is
its high performance for software fault prediction as reported by Ma et al. [14] and Guo
et al. [15]. According to their study, RF is the best classifier among other machine learn-
ing classifiers that locate in WEKA [16] and See5 [17]. Furthermore, AIRS has been
chosen because of its high performance reported by Catal et al. [10]. In first stage of
YATSI, RF and AIRS have been applied.

We attempt to answer five questions given below in this study:

1) Does YATSI improve the performance of AIRS for semi-supervised fault
prediction?

2) Does YATSI improve the performance of RF for semi-supervised fault
prediction?

3) How accurately do AIRS based YATSI, RF based YATSI, RF, and AIRS algo-
rithms predict faults for semi-supervised fault prediction?

4) How does performance of algorithms change when percentages of labeled mod-
ules increase?

5) Does YATSI always increase the performance of classifiers?

To the best of our knowledge this is the first study to investigate Artificial Immune
Systems paradigm for semi-supervised learning. This study explores performance of
YATSI algorithm with unbalanced datasets for the first time. Furthermore, this study
is the second attempt which applies semi-supervised learning algorithms for software
fault prediction with limited fault data. This paper is organized as follows: the follow-
ing section presents the related work. Section 3 explains semi-supervised learning
approach. Section 4 introduces our modeling approach. Section 5 shows experimental
results. Section 6 presents the conclusions and future works.

2 Related Work

Most studies on software fault prediction focused on using a supervised learning ap-
proach. Genetic Programming [18], Decision Trees [19], Neural Networks [20], Na-
ïve Bayes [21], Dempster-Shafer Networks [22], Case-based Reasoning [23], Fuzzy
Logic [24], and various different methods have been used as supervised learning ap-
proaches. We applied Artificial Immune Systems paradigm for software fault predic-
tion during our Fault Prediction Research Program [10]. Except Seliya et al.’s study
[12], we did not encounter any semi-supervised learning approach for software fault
prediction problem. Seliya et al. [12] used EM algorithm for this problem and labeled
the unlabeled data points iteratively. Missing values for EM algorithm were the class
labels of the unlabeled data. According to their study, EM algorithm provided compa-
rable results with classification algorithms. Driessens et al. [13] proposed a simple
semi-supervised learning algorithm called YATSI in 2006. In this study, we applied
AIRS algorithm in first step of YATSI algorithm. We investigated AIRS in first step
because its accuracy was high for software fault prediction during our researches [10],
[25]. Furthermore, we applied RF for the first step of YATSI because Ma et al. [14]

 A Fault Prediction Model with Limited Fault Data to Improve Test Process 247

reported that RF always achieves better performance than other machine learning
algorithms. Guo et al. [15] observed that performance of the RF is better than Dis-
criminant analysis, logistic regression, and other machine learning algorithms that
locate in WEKA [16] and See5 [17].

3 Semi-supervised Learning

Supervised and unsupervised learning methods in machine learning are well-studied
subjects, not only in the context of the advanced algorithms, but also in terms of their
clear benefits. Supervised learning methods use a training dataset consisting of inputs
and their relevant labels to learn the input-output relationship. Unsupervised learning
methods do not use class labels and they are categorized into clustering and compo-
nent analysis groups [26]. However, collecting class labels is a time consuming, and
expensive process because this process requires human efforts to be able to label each
data point [27]. In speech recognition, recording speech is so cheap but labeling huge
amount of speech requires a human to listen all of the recorded data [28]. If we could
use unlabeled data together with labeled one for classification and clustering prob-
lems, we could prevent spending unnecessary time on labeling phase. Semi-
supervised learning area in machine learning is interested in building such algorithms
learning from labeled and unlabeled data. Genetic research, medical diagnosis, spam
email detection, bioinformatics, and computer vision are the major areas which there
are needs to explore semi-supervised algorithms.

Semi-supervised learning area can be categorized into two groups: semi-supervised
classification and semi-supervised clustering. Traditional machine learning classifiers
can not benefit from unlabeled data because they have not been designed for this
purpose. Therefore, we need some algorithms to enhance performance with unlabeled
data. Actually, semi-supervised learning concept is not a new idea. During 1960s,
self-training approaches have been proposed [29], [30], [31] and they are accepted as
the first methods which benefits from unlabeled data.

Some researchers are very optimistic to use semi-supervised classification algo-
rithms when there is not enough labeled data [32], but building an accurate semi-
supervised model requires a huge effort. Furthermore, using unlabeled data together
with labeled one for classification does not guarantee to improve the classifier per-
formance. Many publications [33], [34], [35], [36], [37] reported the performance
improvement of the classifiers when unlabeled data are used during IJCAI2001,
NIPS1998, NIPS1999, and NIPS2000 workshops [32]. Even though many researchers
showed that unlabeled data improves the performance of classifiers, there exist papers
reporting the performance degradation of classifiers [38]. Nigam et al. [34] showed
that degradation in classifier performance can result when the data do not conform to
the assumptions of the model. Baluja [33] and Shahshahani et al. [39] reported degra-
dation in imagine understanding. Bruce [40] observed degradation in Bayesian net-
work classifiers. Elworthy [41] explained that Hidden Markov Model with unlabeled
data can lead to degradation in classifier accuracy for some occasions. Some re-
searchers suggest that unlabeled samples should only be used if classifier performance
is not satisfactory [32]. Transductive inference, proposed by Vapnik [42], is similar to
semi-supervised learning. A general decision rule is not generated and only labels of

248 C. Catal and B. Diri

the unlabeled points are predicted [28] for transductive inference. We can divide the
existing semi-supervised algorithms into five groups:

1-) Self-training: A classifier uses a small portion of the labeled dataset for training
and the generated model is used to label the unlabeled data. The most confident data
points from the new labeled one are added to the training set and this process is re-
peated until convergence [27]. Yarowsky [43] used self-training for word sense dis-
ambiguation problem.
2-) Co-training: Co-training proposed by Blum et al. [44]. Features are split into two
sets and each classification algorithm is trained with one of these sets. Each classifier
predicts the labels of unlabeled data and teaches the most confident data points to the
other classifier. After this step, classifiers are again retrained and this process is re-
peated. Nigam et al. [45] made experiments to benchmark co-training with EM and
generative mixture models.
3-) Transductive Support Vector Machines (TSVM): Bennett et al. first implemented
TSVMs using an integer programming method [37]. Joachims [46] implemented a
combinatorial transductive approach called SVM-light TSVM and this is the first
widely used software in this area [27]. The aim is to label unlabeled data so that
maximum margin is reached on the available labeled data and new labeled data [27].
4-) Graph based Methods: Unlabeled and labeled data points are nodes and similarity
of examples are edges for graph based methods [27]. Blum et al. [47] and Zhu et al.
[48] proposed different graph based methods. Cluster kernels and Markov random
walks are some examples of graph based methods. The performance of these methods
depends on the graph structure and edge weights.
5-) Generative models: “It assumes a model p(x, y) = p(y) p(x|y) where p(x|y) is an
identifiable mixture distribution, for example Gaussian mixture models” [27].

4 Modeling Approach

5%, 10%, and %20 of datasets have been used as training sets and rest data have been
used as test sets. Arranging datasets with these percentages let us simulate the la-
beled-unlabeled data problem for software fault prediction using labeled datasets.

4.1 Immune Based YATSI Algorithm

Performance of YATSI is correlated with performance of the classification algorithm
used in first stage. For this reason, in first stage of YATSI we experimented with two
high performance algorithms, RF and AIRS, which have proved their performance for
software fault prediction. Ma et al. [14] and Guo et al. [15] showed that RF is the best
classification algorithm in WEKA and See5. Catal et al. [10] proved that AIRS pro-
vides remarkable results for software fault prediction. Immune based YATSI is a
special form of YATSI algorithm for software fault prediction and it deals only with
two classes, fault-prone and not fault-prone. Furthermore, adjustment factor for
YATSI, F, is chosen 1 in this algorithm. RF based YATSI is same with this algorithm
except the usage of AIRS in first stage. As in YATSI algorithm, the number of nearest
neighbor is fixed to 10 and KD-trees are used for nearest neighbor search. Weights of
the data points locating in labeled dataset are chosen 1 and weights of pre-labeled

 A Fault Prediction Model with Limited Fault Data to Improve Test Process 249

points are smaller than 1. Weights of the pre-labeled points are calculated by dividing
the number of labeled data points to the number of unlabeled data points. The reason
of this difference is that we trust the labeled data points much more than pre-labeled
points. In YATSI algorithm, weights are summed for each class and the largest weight
identifies the class label of the data point. If it is in the nearest neighbors set, the only
factor is its weight [13]. The pseudo code for immune based YATSI is shown below
and it is similar to YATSI algorithm.

Algorithm Pseudo code for Immune-based YATSI algorithm
Input: Labeled data Dl, unlabeled data Du, nearest neighbor number K, N=|Dl|,
 M=|Du|, unlabeled data point du
Step 1: Use AIRS classifier to produce the model Ml using Dl
 Use Ml to pre-label data points of Du
 Assign 1.0 weight to data points of Dl and N/M weight to points of Du
 Combine Dl and Du to produce D
Step 2: For each data point, du, inside Du

 Search for the K-nearest neighbors to the du
 Sum the weights of the fault-prone K-nearest neighbors (Wfp)
 Sum the weights of the not fault-prone K-nearest neighbors (Wnfp)
 Predict the label of the du with the largest weight (Wfp or Wnfp)

4.2 Artificial Immune Recognition Systems

Artificial Immune Systems is a biologically inspired computing paradigm such as
Neural Networks, and Swarm Intelligence. This paradigm has been used for several
application areas such as robotics, data mining, and computer security. Watkins [49]
proposed Artificial Immune Recognition Systems (AIRS) algorithm for classification
problems. Resource-limited approach of Timmis et al. [50] and clonal selection ap-
proach of De Castro et al. [51] are applied in this algorithm. Brownlee [52] imple-
mented this algorithm in Java. Performance of AIRS algorithm has been examined for
various machine learning datasets [49]. Each data point in dataset is called antigen.
This algorithm has the following features [52]:

• Self-regulatory: No need to identify a topology before training,
• Performance: High performance for several datasets,
• Parameter stability: No need to optimize parameters of the algorithm,
• Generalization: No need to use all the data points for generalization.

The details of the algorithm are explained below [10]. Step 2, 3, 4 are used for each
data point in dataset and Step 1 and 5 are applied one time.

1-) Initialization: Dataset is normalized into [0, 1] interval. Affinity threshold vari-
able is computed.
2-) Antigen Training: Each data point in training set is provided to the memory pool
to stimulate the recognition cells in memory pool. Stimulation values are assigned to
the recognition cells and the cell which has maximum stimulation value is marked as
the best memory cell. This cell is used for affinity maturation and cloned, then mu-
tated. These clone cells are put into the Artificial Recognition Ball (ARB) pool.

250 C. Catal and B. Diri

Formula 1 depicts the stim formula. Formula 2 shows how to compute the number of
clones.

stim = 1- affinity . (1)

numClones=stim*clonalRate*hypermutationRate. (2)

3-) Competition for limited resource: After mutated clones are added to the ARB
pool, competition starts. Antigen is used to stimulate the ARB pool and limited re-
source is computed with respect to stimulation values. ARBs with very limited re-
source or no limited resource are deleted from ARB pool. This step continues until
stopping criteria is met. Otherwise, mutated clones of ARBs are produced.
4-) Memory cell selection: Candidate memory cell which has a maximum stimulation
score from ARB pool is chosen. ARB is copied to the memory cell pool if ARB’s
stimulation value is better than the original best matching memory.
5-) Classification: Memory cell pool is used for cross-validation and K-nearest
neighbor approach is applied for classification.

4.3 Random Forests

RF is a classification algorithm that includes tens or hundreds of trees. Results of
these trees are used for majority voting and RF chooses the class who has the highest
votes. Breiman’s algorithm has been used in this study. “Each classification tree is
built using a bootstrap sample of the data, and at each split the candidate set of vari-
ables is a random subset of the variables.” [53]. “Each tree is constructed using the
following algorithm [54]:

1. Let the number of training cases be N, and the number of variables in the classi-
fier be M.

2. We are told the number m of input variables to be used to determine the decision
at a node of the tree; m should be much less than M.

3. Choose a training set for this tree by choosing N times with replacement from all
N available training cases (i.e. take a bootstrap sample). Use the rest of the cases
to estimate the error of the tree, by predicting their classes.

4. For each node of the tree, randomly choose m variables on which to base the
decision at that node. Calculate the best split based on these m variables in the
training set.

5. Each tree is fully grown and not pruned (as may be done in constructing a normal
tree classifier)”.

5 Experimental Study

5.1 System Description

The datasets which belong to NASA projects have been accessed from PROMISE
repository [9]. Each dataset has 21 metrics shown in Table 1. Table 2 depicts the
datasets and their properties.

 A Fault Prediction Model with Limited Fault Data to Improve Test Process 251

Table 1. Metrics inside datasets

Attributes Information
loc McCabe's line count of code
v(g) McCabe "cyclomatic complexity"
ev(g) McCabe "essential complexity"
iv(g) McCabe "design complexity"
n Halstead total operators + operands
v Halstead "volume"
l Halstead "program length"
d Halstead "difficulty"
i Halstead "intelligence"
e Halstead "effort"
b Halstead delivered bugs
t Halstead's time estimator
lOCode Halstead's line count
lOComment Halstead's count of lines of comments
lOBlank Halstead's count of blank lines
lOCodeAndComment Lines of comment and code
uniq_Op Unique operators
uniq_Opnd Unique operands
total_Op Total operators
total_Opnd Total operands
branchCount Branch count of the flow graph

Table 2. Datasets and their details

Dataset Language LOC Project Fault % # of methods
KC2 C++ 43K Data processing 21 % 523
CM1 C 20K Instrument 21% 498
PC1 C 40K Flight software 7% 1109
JM1 C 315K Real time 19% 10885

5.2 Experimental Setting

Eclipse has been used for our software development environment. WEKA source
code from http://www.cs.waikato.ac.nz/~ml/weka/ website, MARSDEN project from
http://www.cs.waikato.ac.nz/~fracpete/marsden/ website, and Artificial Immune Sys-
tem based algorithms from http://wekaclassalgos.sourceforge.net website have been
downloaded and exported into a Java project in Eclipse. MARSDEN includes several
semi-supervised algorithms and YATSI is one of these algorithms. Since AIRS algo-
rithm is a 3rd party classifier, it did not include Capabilities framework in its imple-
mentation. Therefore, we changed the source code of AIRS algorithm by overriding
getCapabilities() method inside AIRS1 class. After building the project, a jar file has
been created. During our experiments, we used Experimenter tool that locates in
WEKA. We added four datasets from Datasets panel and four algorithms from Algo-
rithms panel. We repeated experiment 20 times. Experiment type has been chosen as
“Train/Test Percentage Split (data randomized)” and “Train percentage” has been
used 5, 10, and 20 for our experiments.

252 C. Catal and B. Diri

5.3 Evaluation Criteria

Fault prediction datasets are mostly unbalanced and therefore, accuracy should not be
used as evaluation criteria for classifier performance. Bradley [55] used AUC to com-
pare several machine learning algorithms and showed that AUC has better properties
than accuracy. Ling et al. [56] suggested using AUC for comparing classification
systems and showed that AUC is more statistically consistent than accuracy for bal-
anced or unbalanced datasets. Therefore, we compared performance of classifiers
using AUC values.

5.4 Results and Analysis

We have conducted several tests and used J48, AIRS, and YATSI algorithms. Ma et
al. [14] used G-mean1, G-mean2, and F-measure for their benchmarking study. They
had marked the top three algorithms with respect to G-mean1, G-mean2, and F-
measure values. They showed that RF always has top three values for G-mean1, G-
mean2, and F-measure. However, in our experiments we could not use this approach
because no algorithm had this feature in these datasets. Therefore, we used ROC
value to compare the performance of algorithms as suggested in many studies. The
test results are given in Table 3 and 4. In tables, we show the accuracy and AUC val-
ues for algorithms.

We’ve observed degradation in RF performance when YATSI applied and noticed
that adding unlabeled data diminished the classification performance of RF for soft-
ware fault prediction. For example, AUC value of RF is 0.74 and AUC value of
YATSI (RF) is 0.71 for KC2 dataset with 5% labeled modules. Degradation for AUC
value points out the degradation of the classifier performance. Driessens et al. [13]
showed that YATSI often improves the performance of the base classifier, but RF
loses some of its accuracy with YATSI algorithm. However, their study did not focus
on unbalanced datasets. This study shows new evidence which points out the degrada-
tion in RF performance when used in first stage of YATSI for unbalanced datasets.
According to our experiments and Cozman et al. [32], very optimistic ideas to use
unlabeled data should be changed in machine learning community.

Our empirical results demonstrated that YATSI improves the performance of AIRS
based software fault prediction model. If you compare AUC of AIRS with AUC of
YATSI (AIRS), you can easily see that AUC becomes larger with YATSI. This shows
that the performance of AIRS improves. For example, AUC of AIRS algorithm is
0.65 and AUC of YATSI (AIRS) is 0.76 for KC2 dataset with 5% labeled modules.
Increase of AUC points out the improvement of the performance. Performance of RF
is better than AIRS and AIRS based YATSI algorithm. We need to improve the per-
formance of AIRS based YATSI algorithm for semi-supervised software fault predic-
tion. Supervised learning approach (Random Forests) provided better results than
semi-supervised learning approach (YATSI) for this study. Furthermore, more labels
usually lead to better results as in Driessens et al.’s study [13]. Therefore, 20% train-
ing set and 80% test set with RF is the best combination for this semi-supervised
software fault prediction problem.

 A Fault Prediction Model with Limited Fault Data to Improve Test Process 253

Table 3. Performance results of algorithms on project JM1

Classifiers Dataset % labeled Accuracy AUC
AIRS JM1 5 72.41 0.55
YATSI(AIRS) JM1 5 73.89 0.59
RF JM1 5 78.74 0.64
YATSI(RF) JM1 5 77.95 0.61
AIRS JM1 10 72.53 0.56
YATSI(AIRS) JM1 10 75.39 0.62
RF JM1 10 79.28 0.66
YATSI(RF) JM1 10 78.66 0.63
AIRS JM1 20 72.44 0.56
YATSI(AIRS) JM1 20 76.62 0.63
RF JM1 20 79.75 0.68
YATSI(RF) JM1 20 80.16 0.65

Table 4. Performance results of algorithms on KC2, CM1, and PC1 datasets

Classifiers Dataset % la-
beled

Accuracy AUC

AIRS KC2 5 78.69 0.65
YATSI(AIRS) KC2 5 79.13 0.76
RF KC2 5 80.26 0.74
YATSI(RF) KC2 5 79.88 0.71
AIRS KC2 10 77.53 0.67
YATSI(AIRS) KC2 10 79.19 0.73
RF KC2 10 81.34 0.78
YATSI(RF) KC2 10 81.09 0.75
AIRS KC2 20 77.50 0.69
YATSI(AIRS) KC2 20 80.24 0.77
RF KC2 20 82.22 0.79
YATSI(RF) KC2 20 82.16 0.77
AIRS CM1 5 87.93 0.53
YATSI(AIRS) CM1 5 87.40 0.55
RF CM1 5 88.35 0.59
YATSI(RF) CM1 5 87.63 0.56
AIRS CM1 10 83.34 0.54
YATSI(AIRS) CM1 10 85.29 0.59
RF CM1 10 88.68 0.63
YATSI(RF) CM1 10 87.72 0.58
AIRS CM1 20 82.10 0.55
YATSI(AIRS) CM1 20 85.43 0.61
RF CM1 20 88.59 0.65
YATSI(RF) CM1 20 88.97 0.60
AIRS PC1 5 88.25 0.54
YATSI(AIRS) PC1 5 89.77 0.59

254 C. Catal and B. Diri

Table 4. (continued)

RF PC1 5 92.32 0.65
YATSI(RF) PC1 5 91.73 0.58
AIRS PC1 10 88.39 0.54
YATSI(AIRS) PC1 10 90.69 0.63
RF PC1 10 92.46 0.68
YATSI(RF) PC1 10 92.18 0.63
AIRS PC1 20 89.17 0.57
YATSI(AIRS) PC1 20 91.53 0.69
RF PC1 20 92.94 0.72
YATSI(RF) PC1 20 92.91 0.67

6 Conclusions and Future Work

Supervised learning approaches can not build powerful models with very limited fault
data. Therefore, unlabeled software modules should be used together with labeled
data during learning in this study. AIRS based YATSI approach was presented for
building semi-supervised software fault prediction problem. The datasets which have
been used in this study are JM1, KC2, PC1, and CM. Our experiments answered to
our five research questions clearly. The answers to these questions are given below:

1) YATSI improves the performance of AIRS for semi-supervised fault prediction.
2) YATSI does not improve the performance of RF.
3) RF provides the best performance for semi-supervised software fault prediction.
4) Performance improves when percentages of labeled modules increase.
5) YATSI does not always improve the performance of classifiers.

This paper makes a number of contributions: First, as a new model, we propose
AIRS based YATSI classification system for semi-supervised software fault predic-
tion. According to our literature survey, this is the first semi-supervised algorithm
which uses Artificial Immune Systems paradigm. Second, we show evidence which
points out the degradation in RF performance when used in first stage of YATSI for
unbalanced datasets. Third, we show that YATSI improves the performance of AIRS
algorithm for unbalanced datasets. Forth, we present that more labels lead to better
results for semi-supervised software fault prediction. Last, semi-supervised learning
approaches are applied for software fault prediction with limited data as the second
attempt after Seliya et al.’s study [12]. For the future, we plan using feature reduction
techniques prior to learning step to improve the performance of AIRS based YATSI
algorithm. We plan using correlation-based feature selection algorithm because it
improved the performance of AIRS during our Fault Prediction Research Program.
We plan using different distance functions instead simple Euclidean distance. Fur-
thermore, co-training and self-training approaches can be used to improve the pro-
posed algorithm.

 A Fault Prediction Model with Limited Fault Data to Improve Test Process 255

Acknowledgement

This project is supported by The Scientific and Technological Research Council of
TURKEY (TUBITAK) under Grant 107E213. The findings and opinions in this study
belong solely to the authors, and are not necessarily those of the sponsor.

References

1. Tian, J.: Software Quality Engineering: Testing, Quality Assurance, and Quantifiable Im-
provement. John Wiley and Sons Inc., Hoboken (2005)

2. http://en.wikipedia.org/wiki/Source_lines_of_code#_note-1 (Re-
trieved on 06-10-2007)

3. http://www.macintouch.com/specialreports/wwdc2006/ (Retrieved on
2007-10-06)

4. http://www.linuxdevices.com/news/NS9334092346.html (Retrieved on
2007-10-06)

5. Northrop, L., Feiler, P., Gabriel, R.P., Goodenough, J., Linger, R., Longstaff, T., Kazman,
R., Klein, M., Schmidt, D., Sullivan, K., Wallnau, K.: Ultra-Large-Scale Systems: The
Software Challenge of the Future. Carnegie Mellon University, Pittsburgh (2006)

6. http://www.ismwv.com (Retrieved on 2007-10-06)
7. Khoshgoftaar, T.M., Seliya, N.: Tree-based Software Quality Models for Fault Prediction.

In: Proc. 8th Intl. Software Metrics Sym., Canada, pp. 203–214 (2002)
8. Chidamber, S.R., Kemerer, C.F.: A Metrics Suite for Object-Oriented Design. IEEE Trans.

on Software Eng. 20(6), 476–493 (1994)
9. Sayyad, S.J., Menzies, T.J.: The PROMISE Repository of Software Engineering Databases.

University of Ottawa, Canada (2005), http://promise.site.uottawa.ca/
SERepository

10. Catal, C., Diri, B.: Software Fault Prediction with Object-Oriented Metrics Based Artifi-
cial Immune Recognition System. In: 8th Intl. Conf. on Product Focused Software Process
Improvement, pp. 300–314. Springer, Latvia (2007)

11. Zhong, S., Khoshgoftaar, T.M., Seliya, N.: Unsupervised Learning for Expert-Based Soft-
ware Quality Estimation. In: Proc. 8th Intl. Symp. on High Assurance Systems Engineer-
ing, Tampa, FL, USA, pp. 149–155 (2004)

12. Seliya, N., Khoshgoftaar, T.M., Zhong, S.: Semi-Supervised Learning for Software Qual-
ity Estimation. In: Proc. 16th IEEE Intl. Conf. on Tools with Artificial Intelligence, Boca
Raton, FL, pp. 183–190 (2004)

13. Driessens, K., Reutemann, P., Pfahringer, B., Leschi, C.: Using Weighted Nearest
Neighbor to Benefit from Unlabeled Data. In: Proc. 10th Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pp. 60–69 (2006)

14. Ma, Y., Guo, L., Cukic, B.: A Statistical Framework for the Prediction of Fault-Proneness.
In: Advances in Machine Learning Application in Software Eng. Idea Group Inc. (2006)

15. Guo, L., Ma, Y., Cukic, B., Singh, H.: Robust Prediction of Fault-Proneness by Random
Forests. In: Proc. 15th Intl. Symp. on Software Reliability Eng., Brittany, France, pp. 417–
428 (2004)

16. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques.
Morgan Kaufmann (2005)

17. http://www.rulequest.com/see5-info.html (Retrieved on 2007-10-06)

256 C. Catal and B. Diri

18. Evett, M., Khoshgoftaar, T., Chien, P., Allen, E.: GP-based Software Quality Prediction.
In: Proc. 3rd Annual Genetic Programming Conference, San Francisco, pp. 60–65 (1998)

19. Khoshgoftaar, T.M., Seliya, N.: Software Quality Classification Modeling Using The
SPRINT Decision Tree Algorithm. In: Proc. 4th IEEE International Conference on Tools
with Artificial Intelligence, Washington, pp. 365–374 (2002)

20. Thwin, M.M., Quah, T.: Application of Neural Networks for Software Quality Prediction
Using Object-Oriented Metrics. In: Proc. 19th International Conference on Software Main-
tenance, Amsterdam, The Netherlands, pp. 113–122 (2003)

21. Menzies, T., Greenwald, J., Frank, A.: Data Mining Static Code Attributes to Learn Defect
Predictors. IEEE Transactions on Software Engineering 33(1), 2–13 (2007)

22. Guo, L., Cukic, B., Singh, H.: Predicting Fault Prone Modules by the Dempster-Shafer Be-
lief Networks. In: Proc. 18th IEEE International Conference on Automated Software En-
gineering, pp. 249–252. IEEE Computer Society, Montreal (2003)

23. El Emam, K., Benlarbi, S., Goel, N., Rai, S.: Comparing Case-based Reasoning Classifiers
for Predicting High Risk Software Components. Journal of Systems and Software 55(3),
301–320 (2001)

24. Yuan, X., Khoshgoftaar, T.M., Allen, E.B., Ganesan, K.: An Application of Fuzzy Cluster-
ing to Software Quality Prediction. In: Proc. 3rd IEEE Symp. on Application-Specific Sys-
tems and Software Eng. Technology, vol. 85. IEEE Computer Society, Washington (2000)

25. Catal, C., Diri, B.: Software Defect Prediction using Artificial Immune Recognition Sys-
tem. In: IASTED Intl. Conf. on Software Engineering, Innsbruck, Austria, pp. 285–290
(2007)

26. Huang, T.M., Kecman, V.: Performance Comparisons of Semi-Supervised Learning Algo-
rithms. In: Proc. Workshop on Learning with Partially Classified Training Data, Intl. Conf.
on Machine Learning, Germany, pp. 45–49 (2005)

27. Zhu, X.: Semi-supervised learning literature survey (Technical Report 1530). University of
Wisconsin-Madison (2005), http://www.cs.wisc.edu/~jerryzhu/pub/ssl_
survey.pdf

28. Chapelle, O., Schölkopf, B., Zien, A.: SemiSupervised Learning. MIT Press (2006)
29. Scudder, H.J.: Probability of Error of Some Adaptive Pattern-Recognition Machines. IEEE

Trans. on Information Theory 11, 363–371 (1965)
30. Fralick, S.C.: Learning to Recognize Patterns without a Teacher. IEEE Trans. on Informa-

tion Theory 13, 57–64 (1967)
31. Agrawala, A.K.: Learning with a Probabilistic Teacher. IEEE Trans. on Information The-

ory 16, 373–379 (1970)
32. Cozman, F.G., Cohen, I., Cirelo, M.C.: Semi-supervised Learning of Mixture Models. In:

Intl. Conference on Machine Learning, Washington, USA, pp. 99–106 (2003)
33. Baluja, S.: Probabilistic Modeling for Face Orientation Discrimination: Learning from La-

beled and Unlabeled Data. In: Neural Infor. Proc. Syst., Colorado, USA, pp. 854–860
(1998)

34. Nigam, K., McCallum, A.K., Thrun, S., Mitchell, T.: Text Classification from Labeled and
Unlabeled Documents using EM. Machine Learning 39, 103–144 (2000)

35. Miller, D.J., Uyar, H.S.: A Mixture of Experts Classifier with Learning based on Both La-
beled and Unlabelled Data. In: Neural Infor. Proc. Systems, Colorado, USA, pp. 571–577
(1996)

36. Goldman, S., Zhou, Y.: Enhancing Supervised Learning with Unlabeled Data. In: 17th Int.
Joint Conf. on Machine Learning, Stanford, pp. 327–334 (2000)

 A Fault Prediction Model with Limited Fault Data to Improve Test Process 257

37. Bennett, K.P., Demiriz, A.: Semi-supervised Support Vector Machines. In: Proc. Ad-
vances in Neural information Processing Systems, pp. 368–374. MIT Press, Cambridge
(1999)

38. Cozman, F.G., Cohen, I.: Unlabeled Data can Degrade Classification Performance of Gen-
erative Classifiers. In: Florida Art. Intel. Research Society, Florida, pp. 327–331 (2002)

39. Shahshahani, B.M., Landgrebe, D.A.: The Effect of Unlabeled Samples in Reducing the
Small Sample Size Problem and Mitigating the Hughes Phenomenon. IEEE Trans. on
Geoscience and Remote Sensing 32, 1087–1095 (1994)

40. Bruce, R.: Semi-supervised Learning using Prior Probabilities and EM. In: IJCAI Work-
shop on Text Learning, pp. 17–22 (2001)

41. Elworthy, D.: Does Baum-Welch Re-estimation Help Taggers? In: 4th Conf. on Applied
Natural Language Processing, Stuttgart, Germany, pp. 53–58 (1994)

42. Vapnik, V., Chervonenkis, A.: Theory of Pattern Recognition, Nauka, Moscow (1974)
43. Yarowsky, D.: Unsupervised Word Sense Disambiguation Rivaling Supervised Methods.

In: Proc. 33rd Ann. Meeting of the Assoc. for Compt. Linguistics, pp. 189–196. Cam-
bridge (1995)

44. Blum, A., Mitchell, T.: Combining Labeled and Unlabeled Data with Co-Training. In:
Proc. 11th Annual Conf. on Computational Learning Theory, Wisconsin, pp. 92–100
(1998)

45. Nigam, K., Ghani, R.: Analyzing the Effectiveness and Applicability of Co-training. In:
Ninth Intl. Conf. on Information and Knowledge Management, Washington, pp. 86–93
(2000)

46. Joachims, T.: Transductive Inference for Text Classification using Support Vector Ma-
chines. In: Proc. Intl. Conference on Machine Learning, Slovenia, pp. 200–209 (1999)

47. Blum, A., Chawla, S.: Learning from Labeled and Unlabeled Data using Graph Mincuts.
In: Proc. 18th Intl. Conference on Machine Learning, Massachusetts, USA, pp. 19–26
(2001)

48. Zhu, X., Ghahramani, Z., Lafferty, J.: Semi-supervised Learning using Gaussian Fields
and Harmonic Functions. In: 20th Intl. Conf. on Mach. Learning, Washington, pp. 912–
919 (2003)

49. Watkins, A.: AIRS: A Resource Limited Artificial Immune Classifier, Master Thesis, Mis-
sissippi State University (2001)

50. Timmis, J., Neal, M.: Investigating the Evolution and Stability of a Resource Limited Arti-
ficial Immune Systems. In: Genetic and Evo. Compt. Conf., Nevada, pp. 40–41 (2000)

51. De Castro, L.N., Von Zubben, F.J.: The Clonal Selection Algorithm with Engineering Ap-
plications. In: Genetic and Evolutionary Computation Conference, pp. 36–37 (2000)

52. Brownlee, J.: Artificial Immune Recognition System: A Review and Analysis, Technical
Report. No 1-02, Swinburne University of Technology (2005)

53. Jin, X., Bie, R.: Random Forest and PCA for Self-Organizing Maps based Automatic Mu-
sic Genre Discrimination. In: Intl. Conference on Data Mining, Las Vegas, pp. 414–417
(2006)

54. http://en.wikipedia.org/wiki/Random_forest (Retrieved on 2007-10-06)
55. Bradley, A.P.: The use of the Area under the ROC Curve in the Evaluation of Machine

Learning Algorithms. Pattern Recognition 30, 1145–1159 (1997)
56. Ling, C.X., Huang, J., Zhang, H.: AUC: A Better Measure than Accuracy in Comparing

Learning Algorithms. In: Canadian Conference on Artificial Intelligence, pp. 329–341
(2003)

Big Improvements with Small Changes:

Improving the Processes of a Small Software
Company

Anu Valtanen and Jarmo J. Ahonen

University of Kuopio, Department of Computer Science, P.O.B 1627,
FI-70211 Kuopio, Finland

anu.valtanen@uku.fi, jarmo.ahonen@uku.fi
http://www.cs.uku.fi

Abstract. Majority of software companies are small. They have un-
derstood that it is crucial for their business to improve their software
processes but they often do not have the knowledge and resources to do
it. In this paper one way of introducing a process culture and improving
the processes of a small company is presented. The problems that a small
company has with its efforts towards better processes are also discussed
and simple but working solutions to them are introduced.

1 Introduction

Majority of software companies are small [1]. For example in Finland, all compa-
nies operating in both, data processing and software engineering fields, employ
less than 50 people1. Small companies (SC’s) have understood that it is cru-
cial for their business to improve their processes and working methods but they
usually do not have the knowledge or resources to do it. Software process im-
provement (SPI) has been researched quite a lot since the late 1980’s when it
was proven that the quality of a software system can be improved by improving
the quality of the process used to develop it [2]. However, the research mostly
concerns SPI for the larger companies and there is not that much information
on the topic of SPI in smaller companies.

One of the main problems with smaller software companies is that they do
not have a process culture. In a process culture people’s customs and behaviours
are influenced by process-oriented thinking and process management principles.
The process is followed naturally. Process culture and process infrastructure
are needed to institutionalize processes [3]. When process culture is missing,
employees of the company do not have common and documented ways of work.
This leads to a situation where everyone does things their own way, and soon
ends up in a chaotic situation where no one is responsible. The most problematic
challenges in software industry are how to keep up with the contracted schedules
and how to produce quality software. It is shown that well defined and followed
processes help solving these problems [4].
1 http://www.stat.fi (2006).

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 258–272, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.cs.uku.fi

Big Improvements with Small Changes 259

The first step in setting up a process culture and improving software processes
is modeling the current process [3]. This is the first brain teaser for a small
company. Where and how to start? Good way to start is to pick an SPI model to
support the efforts [3]. The problem is that most of the popular and widely known
SPI models and techniques, for example CMMI [5] and SPICE [6], are designed
for bigger companies who often have thousands of employees and therefore they
are hard to apply in an SC. Also ISO’s widely used quality standard ISO 9001
[7] is popular in SPI but suffers from same limitations as CMMI and SPICE.

There are some methods and models developed for the needs of smaller com-
panies, for example [8] [9] [10]. However, most of these models suffer from some
limitations. They are usually developed using some standard or known SPI model
and applying them requires some knowledge of the model they are based on.
Small companies often do not have that kind of knowledge and acquiring it de-
mands a lot of resources. In smaller enterprises one of the main problems with
SPI efforts is usually the lack of resources. To help small companies in their
process improvement efforts there are different kinds of approaches established,
for example ASPE-MSC [11] that combines the methods and models mentioned
above.

The improvement work of one small company’s processes is described in this
article. The starting situation was that the company had the urge to improve
their processes and ways of work but they did not know where to start. To
get going with the improvements their current processes were modeled and then
optimized. Modelings were carried out using a lightweight software process mod-
eling method which is founded on modeling the processes through a wall-chart
technique. The modeling technique does not require knowledge on any other SPI
model. The PISKO technique is described in [12], applied in [13], [14], [15] and
adapted in [11], [16].

Important issues, when choosing process improvement model for a small com-
pany, are researched to be that the model relates to company’s business goals,
focuses on most important software processes and of course, gives maximum
value to the money invested. It is also perceived that the improvement technique
should be flexible and easy-to-use [17]. All these requirements can be considered
fulfilled in our technique of choice.

In this article the story of one small software company’s efforts of creating
process culture, modeling and improving their processes is told. The first part of
the article presents the research and the problems with improving the processes
of an SC. In the second part the improvement technique used is introduced.
After that the target company and the results and notions made during the
improvement project are presented. In the next section the resource needs of the
improvement project presented here are discussed. The obtained results were
interesting. The sole descriptions of the process and discussions about the ways
of work had a significant impact on the efficiency of the process. Through the
modelings and discussions the weak parts of the process were identified and the
processes were simplified, properly documented and made easier to follow.

260 A. Valtanen and J.J. Ahonen

2 Research Problem

The goal of this research was to see if it is possible to create a process culture,
meaning that the company has individual defined processes which are followed
automatically inside the company, and improve the processes of a small company
with an approach that requires minimal amount of resources from the target
company and leaves widely known SPI models and methods for future reference.
The starting situation being quite chaotic with the target company’s working
methods, the first step was to make their processes in such a condition that the
actual improvement work would be possible. Besides of researching if efficient
improvement could be done with a lightweight technique, using the expertise of
the target company’s employees, one of the main goals was to find a working
way to take advantage of the company’s small size while evolving the processes.
In other words, the research questions were:

– How to create a process culture in an SC?
– How to make efficient improvement happen with SC’s limited resources?

The current tendency to improve software processes is to use the widely known
standards and models like ISO 9001 [7], CMMI [5] and SPICE [6]. Using these
methods is not the best way to improve the processes of a small company because
of their often too heavy structure. For example, most problematic issues while
using ISO 9001 and CMMI’s predecessor CMM in small companies are researched
to be their lack of guidance and action instructions [18]. This presents a big
problem when typical situation in an SC is that they do not have special SPI
experts at their service. It either is not often possible for them to hire much
outside help in form of researchers because of limited resources. Therefore the
improvement projects are realistic only with lighter approaches.

Another problem, related to the lack of guidance and action instructions pro-
vided by the earlier mentioned methods, is that CMMI and SPICE do not com-
mit on how to improve the processes that are at initial level. It is not possible to
start the actual improvement work and strive for higher maturity levels of the
process if there are problems with the ground stones of the process. Especially
for a small company, it is hard to find a way to improve their processes from the
initial level in practice [19]. It is also said that the existing process models do
not help to benefit from the smallness of the companies [18]. Smallness usually
means that the companies are more flexible, have faster reaction time and better
communication inside the organization than their bigger competitors.

Because of the problems adapting the widely known standards and methods
for the use of smaller comanies, there are quite a many alternative approaches
developed that are based on methods like SPICE and CMMI. Such approaches
for SPI in smaller companies are for example Mares [10], PRISMS [8] and PEM
[9]. All of these models require some knowledge of the models they are based on.
Because the goal of this research was not to find out process’s maturity levels,
or other CMMI and SPICE related issues, but to model the process with as
simple way as possible and then streamline it, these adapted methods were not
suitable here.

Big Improvements with Small Changes 261

In software process improvement the improvement method works as a plain
framework for the improvements. The method always needs to be adapted to
the needs of the target company [3]. In this sense, especially in small companies,
it seems rational to pick a method that does not need lots of adapting and
particular training but can be adopted to use right away, the PISKO technique
was chosen as the template of the improvement project because of this. The
lightweight and informal nature of the technique has turned out to be efficient
in revealing the true nature and the problems of the software engineering process
at hand, see eg. [13], [14], [15].

In addition to the usage of PISKO technique, the answers to the questions
stated above were searched using action research as a research method. Action
research is ”an iterative process involving researchers and practitioners acting
together on a particular cycle of activities, including problem diagnosis, action
intervention, and reflective learning” [20]. In this case the researchers and the
target company worked in very tight cooperation.

3 The Improvement Technique

The PISKO technique [12] is based on the idea that any attempt to model
the actual software process should emphasize the opinion and experience of the
experts of the target organization. The PISKO technique is designed to be easy to
use for people who have no prior knowledge of it and it requires minimal amount
of resources. Further analysis and evaluation of the technique is presented in [12].
The technique has six phases.

1. Model the process with wall-chart technique.
2. Analyze the gathered information and define the problems and points of

improvement.
3. Create an electronic version of the process descriptions.
4. Inspect and approve the electronic versions.
5. Analyze and enhance the approved process descriptions.
6. Inspect the results.

3.1 The Wall-Chart Sessions

The wall-chart technique is the back bone of the method. During the wall-chart
sessions the current process is modeled and the problems with it are identified.
The sessions consist of meetings with approximately five experts from the target
organization and two researchers. The experts should be the actual people who
realize the process at hand every day, they also should have quite a long expe-
rience with the process. The experts are the ones who model the actual process
and the researchers work as a chairman and the secretary of the sessions.

In the beginning of the sessions the technique is explained to the participa-
tors. First task is to resolve the main phases of the process. All this is done by
discussing together and then attaching paper notes with different phases on the
wall-chart. While deciding the phases it is important that all the participators

262 A. Valtanen and J.J. Ahonen

bring out their opinion and that in the end every one has a consensus on the
phases and their names. After the different phases are identified they are con-
nected in order to make the process’s progress visible. The result of this first
modeling phase is a wall-chart presenting the current state. The next task is to
create electronic version of the descriptions made.

PISKO techniques resource needs are minimal. As a whole it takes about two
whole working days to create the process descriptions with the target company’s
experts, half a working day to create the electronic versions and a couple of days
to analyze the results. Applying the technique does not require any investments
into expensive tools, all one needs is regular office supplies, paper and drawing
pens. The electronic versions are also generated using usual spreadsheet pro-
grams. In addition to time consumed the most valuable resources needed assem-
bling the process descriptions using PISKO are the opinions and the expertise
of the people using the process.

3.2 Process Descriptions and Their Analysis

After the modelings the wall-chart is turned into electronic descriptions of the
process. The descriptions are completed with textual descriptions of the process’s
phases. The goal is to make an understandable and extensive documentation of
the process’s current state.

After creating the electronic version the descriptions are inspected and ap-
proved by the representatives of the target company. The approved descriptions
are analyzed by the researchers and then enhanced with the target company.
When all this is done and the process descriptions are ready it is time to inspect
the results and find out what the possible problems and points of improvement
are. The end product of the process modelings is extensive report that includes
the problems found and suggestions how to improve the software process.

4 The Target Company and the Current State of the
Process

The company whose processes were modeled and improved is a small company
that has less than twenty employees. The company is a traditional software
house. The company’s working environment is quite free and they have a low
hierarchy. The general director of the company takes part in almost everything
and because of this has a good knowledge of what is going on in the company. In
this sense the freeness of the environment is a good thing. The employees feel free
to talk about their work related problems and other issues. But when thinking in
terms of the process culture the environment seems to be a bit too loose. When
starting the process improvement efforts the work force did not seem to have
any idea how their processes worked or even if they had any. General working
guidelines did not exist in the reality. So the first step was to model their current
process with PISKO modeling technique.

The company had never before thought of their work as a process. There was
no existing process descriptions or quality manuals. So it was necessary to start

Big Improvements with Small Changes 263

from the basics. To set up a process culture the company had to start thinking
in terms of a process. It seemed that the employees of the company thought that
the concept of process was something fancy and difficult. Even though the truth
is that every company follows a process of their own kind and by optimizing it
the work becomes easier.

The modeling sessions and conversations were a good starting point. Bringing
stakeholders in the same room and laying out pencils and paper notes and asking
the employees to tell how they start developing a new version of their software
received a good reception. Through modeling sessions and free conversations the
current situation was modeled.

Using the wall-chart technique twenty-one stages of the process excluding the
ones with marketing and training were identified. Already at this point many
points of improvement were easy to identify. The established process model can
be seen in Figure 1.

The result of the modelings showed that the company’s lack of process de-
scriptions and definitions had led them to follow an overly complicated way of
working. Because there was no common guidelines, employees of the company
made the same tasks differently every time. This was the reason why the process
had so many stages and iterations. Some of the complexity also resulted from
differences between the work groups. Even in a small company, people in certain
roles form groups, and develop their own ways of work if they do not have com-
mon and documented process to follow. When every group develops a different
way to do their tasks it is sure to add complexity to the process.

After the wall-chart sessions the process model was enhanced with textual
descriptions of the process and approved by the target company, according to
the PISKO technique. By working together with the actual experts and real-
izers of the process the process descriptions were completed. At this point the
current situation was clear to everyone and there was a consensus between the
target company’s employees and the researchers that the process should really
be streamlined in order to make it usable.

5 Problems Found

The process starts from development meetings where the possible new features
of software are deliberated and ends in dispatching the new version to customers.
The phases between follow the typical progress of a software process, from design
to implementation through testing and to delivery of the product. Even though
the phases seemed clear there was a lot of iteration and jumping back and forth
between different work stages.

The complete process turned out to be overly complicated and it was obvious
it needed to be simplified to make it more efficient. The modelings showed that
the company’s lack of defined processes and complicated ways of work had led
them to a circle of problems. There were problems with roles and responsibilities,
meeting practices, decision making, documenting and testing.

264 A. Valtanen and J.J. Ahonen

Fig. 1. The modeled process

Most serious problems found were the ones with documentation. In a small
organization the information is often transferred in discussions and the docu-
mentation is neglected. This was the case here too. Not only the process doc-
umentation itself was neglected but also the basic documentation. When they

Big Improvements with Small Changes 265

had a meeting they did not necessarily make a memo of it. So the organization
also lacked good meeting practices. Their meetings were not carefully planned
beforehand and because of this the important issues that should have been dealt
were forgotten. The company also did not have the habit of choosing a clear
chairman and secretary for their meetings.

The problems with documentation and meeting culture led to problems with
decision making. The employees felt that they did not always stick to what they
had decided and when there were no documents of the decisions it was not always
clear what the decision really was. One of the most serious problems found was
also that the company could not always hold to their schedules because it was
not always clear what had been scheduled.

One more documentation related problem was found. The company had prob-
lems with testing its products. They had deficiencies in their knowledge of testing
itself but it was also unclear what to test and when because there was no proper
test plans. All the problems found while modeling and assessing the current state
of the process were problems in the very ground stones of their working practices.

6 Improving the Process

After creating the process definitions and identifying the problems it was time to
make improvement happen. The improvement efforts were continued by taking a
closer look at the current process. What did the modeled phases really include?
The text descriptions of the process were examined and the phases of the process
compared. The purpose was to see if some of the phases were unnecessary and
if some of them could be combined to others to avoid needless work. In addition
to clarifying the process and making it more efficient the earlier found problems
had to be excluded.

The improvement work was continued with the stakeholders of the company
through the process descriptions made. It was important for them to take part in
the improvement work so the improved process would be based on their opinions
and expertise. This was a good way to approach the problems. The discussions
held helped to trim the process’s phases from twenty-one to ten. The main
changes were that the actual planning phase was simplified and clarified. It was
agreed that instead of six different work phases the planning of the new software
version would be implemented in three phases. The work done inside these phases
was specified and made clear to all of the stakeholders. Also the implementation
phases were clarified in the same manner.

The goal, while creating the new process definitions, was to make descriptions
that were extensive enough to cover the whole process but not too exhaustive so
the process documentation would really be used as the basis of everyday work.
So the process’s primary documentation should cover only few pages. The idea
was to create a poster-like definitions that could be spread via company’s web
pages or hung on the wall in order to be easily available for everyone. More
specific descriptions were also created to support the actual process model to
define what happens inside the phases. The revised process description can be
seen in Figure 2.

266 A. Valtanen and J.J. Ahonen

Fig. 2. The process after streamlining

To solve the problems found in the earlier phases of improvement efforts it was
time to go back to the basics with the company’s software engineering process.
The roles and responsibilities of different parts of process had to be revisited,

Big Improvements with Small Changes 267

meeting practices and decision making improved. Also the problematic issues
with documenting and testing had to be dealt.

It was not enough just to simplify the process model. There had to be clear pre-
and post-conditions in every phase to make it possible to follow the streamlined
process. So as the first step of the improvement activities the conditions and their
confirmation were decided. Many of these were different kinds of documents,
signed decisions or other kinds of written products.

In addition to simplifying the process and making it easier to follow the earlier
mentioned problems had to be solved. These problems seemed to be the reason
why company’s process was originally so complicated. When they did not have
proper roles and responsibilities it directly affected the decision making and
documenting. The main problem with testing process, that they were not always
sure what should be tested and how, was also a documentation related problem.

Solving the problems was started from the ones with meeting practices. A
proper meeting culture where every meeting had a clear agenda and convener
was established, also memo templates to be used to document the meetings were
created. Other documentation problems were also solved by creating documen-
tation templates for the use of design, testing and so on. In addition to that
different kinds of check-lists were created to control the phases and to make sure
that the steps inside the phases really were properly implemented.

All of the improvement activities would be useless if no one took the re-
sponsibility to control their realization in practice. This being the situation, the
company was advised to nominate a person in charge for every phase, whose
duty is to make sure that the newly introduced process is followed; meetings are
contrived, the documentation templates used and the check-lists filled the way
it was agreed.

7 Resources Needed

One of the main goals of the improvement work presented here was the small
amount of resources needed. The phases and the resource needs of the modeling
work using PISKO technique are presented in Table 1.

As it can be seen from the Table 1, the resource needs were quite minimal.
Creating the descriptions of the target company’s current situation, defining the
problems and points of improvement related to it and then streamlining the
process took only 78 man-hours of the researchers and target company’s mutual
time and 117 man-hours in total, when counting the time that the researchers
used creating the electronic descriptions and analyzing the situation. The time
used in the actual modelings and meetings was 24 hours in total.

The practical improvement work took about 231 man-hours during four
months, the time spent in the actual meetings being 45 hours in total. With
the lightweight improvement actions, presented in Table 2, it was possible to get
the new process going. The introduction of the new process was quite easy. The
only training need was to introduce inspection protocol to the company.

The positive attitude among the target company’s employees was a big help
while taking the new process in use. It also helped that the new process was based

268 A. Valtanen and J.J. Ahonen

Table 1. The Resources used in the PISKO sessions

PHASE p/TC1 p/R2 h/TC3 h/R4 TOTALh5

1 Process modeling 5 2 20 8 28
2 Creating electronic descriptions 0 2 0 6 6

and identifying the problems
3 Process model check-up 2 1 2 1 3
4 Electronic descriptions 0 1 0 1 1
5 Process model definition 5 1 10 2 12
6 Electronic descriptions 0 1 0 1 1
7 Enhancing the descriptions 3 1 6 2 8
8 Electronic descriptions 0 1 0 1 1
9 Approval of the descriptions 5 2 20 8 28

and identifying the problems
and points of improvement

10 Inspecting the results and 5 2 20 8 28
planning improvement actions
TOTAL 78 39 117

Table 2. Resources used implementing the first improvement actions

PHASE p/TC1 p/R2 h/TC3 h/R4 TOTALh5

11 Creating check-lists 2 1 12 6 18
12 Inspection training 6 1 48 8 56
13 Inspecting the check-lists 5 1 20 4 24
14 Enhancing meeting practices 6 1 60 10 70
15 Creating document templates 2 1 30 15 45
16 Inspecting document templates 6 1 12 6 18

TOTAL 182 49 231

in the old one, the ways of work did not change dramatically and the changes
made had a good reception because the employees themselves had agreed on
taking the new practices in use.

The process improvement project, of which starting point the modelings de-
scribed here were, was executed in 18 months during which the researchers were
in tight co-operation with the target company. The monetary value of these
improvements is hard to estimate, but the advantages brought by the improve-
ment work were easily detectable while the improvement project was analyzed
afterwards. The employees of the target company feel that the problems found

1 The number of participants from the Target Company.
2 The number of Researchers participating.
3 The man-hours the Target Company’s personnel used.
4 The man-hours the Researchers used.
5 The man-hours used in total.

Big Improvements with Small Changes 269

during the modelings of their process do not exist anymore. The employees also
feel that planning their work has become easier when they have a concrete pro-
cess to follow.

The improvement efforts with this company are still going on in form of a
search of more mature and efficient processes. While working with new chal-
lenges with the company, it is self-evident that the improvement work described
here was successful in creating process culture. The new process’s terms are in-
ternalized and in every day use, the process descriptions are kept up-to-date and
the newly introduced documentation and meeting practices are followed.

8 Discussion

In this paper, a simple way of introducing the process culture and improving
the processes of a small company was presented. The problems that an SC has
while attempting to improve it’s processes were also discussed and solutions to
them proposed.

The improvement efforts described here proved that it is possible to obtain
good results with small amount of resources while improving the processes of
a small company. Similar results are reported in [13] and [11]. The use of a
lightweight modeling technique like PISKO is a good starting point for the im-
provement efforts. The technique itself is flexible and does not demand a lot of
resources so it fits in well with the needs of a smaller company’s SPI.

The modelings proved that only presenting the concept of a process to the
workforce has a big impact. Discussing and modeling the process at hand, us-
ing a wall-chart technique, works as an initiative of creating a process culture
and changing the way of thinking. Discussions between the experts of the com-
pany help them outline different aspects of their work and during the wall-chart
sessions not only the current state of the process is modeled but many good
methods are transferred between the participants.

The key ingredients while improving the processes of a small company are the
enthusiasm of the employees of the target company, planning and executing the
improvements together with the experts of the company and taking care that
someone is really responsible of making improvement happen, not only while the
improvement project first takes place but also in the future.

By using a simple improvement method like PISKO one does not have to use
limited improvement resources to train the personnel of the target organization.
Quite the contrary, it is possible to start modeling the process’s current state
right away. After the modelings it is easy to identify the problems in the process
and go on excluding them because the employees of the target company have
taken part in the improvement work from the very beginning and are aware of the
current situation. Even though it is clear that it is not possible to improve any
process if the current situation is not known, it came almost as a surprise how
big of a change it is possible to create just by making the process visible to it’s

270 A. Valtanen and J.J. Ahonen

realizers and then taking the next step to optimizing the phases in collaboration
with the target company.

The modelings proved that the target company’s processes were at initial
state. The problems found were in the basics of the software process. The prob-
lems with roles and responsibilities, meeting practices, decision making, docu-
menting and testing were due to inadequate formality of work. Once detected
all of the problems were quite easy to solve with small improvements.

While solving the problems it became obvious that the documentation plays
an important role also in a smaller software company even though it is often
neglected. Even with only a few people, it is not enough just to transfer the
information orally, the written documents are also needed to make the process
successful. In our case most of the problems in the process were due to inad-
equate information transfer. Almost all these problems were solvable through
documentation.

One of the main goals of these improvement efforts was to set up a process
culture. To create a process culture, the company needs a process to follow, and
to have a process means that some formality is required. At this point there was
a conflict with our other goal, keeping the advantages of the smallness in mind.
As mentioned earlier the freeness of the target company’s working environment
is both an advantage and disadvantage and too formal ways of work might kill
the advantages brought by it. During all the improvements made, especially
while optimizing the process and deciding on the pre- and post-conditions of the
process’s phases, it was necessary to keep in mind the advantages that the small
size of the company brings and create a process that supports it. The flexibility
of the PISKO technique supports this goal well. It was also a big help that the
target company’s employees had taken part in the improvement efforts from the
very beginning. This way it was possible to create a process that really meets
their needs and is easily adjustable for the future’s changing requirements.

Modeling technique pretty similar to PISKO, is applied in [16] and the re-
searchers end up recommending involving the developers in creating process
guides. It is easy to agree with this in the light of our research. The introduction
of the new process was quite easy in the target company. There was no special
training needed and the positive attitude among the target company’s employees
was a big help while taking the new process in use. The implementation of the
new process was easy probably because the users of the process had taken part
in creating it. It also helped that the new process was based in the old one, the
ways of work did not change dramatically so there was no significant problems
with resistance to change.

The small amount of resources needed in the improvement work and the
clearly visible advantages of having defined processes convinced the target com-
pany to keep improving their processes further. Now that there is a process
culture created, the basic problems of the process fixed and the process opti-
mized in the target company it is possible to start aiming towards even more
efficient ways of work. In addition of making sure that the process is followed
and kept up to date, the future work with the company consists of introducing

Big Improvements with Small Changes 271

new working methods, for example in the form of enhancing their testing skills,
that make it possible to keep improving their process and making their work
even more profitable.

References

1. Richardson, I., Gresse von Wangenheim, C.: Guest Editors’ Introduction: Why are
Small Software Organizations Different? In: Software, vol. 24, pp. 18–22. IEEE,
Los Alamitos (2007)

2. Humphrey, W.S.: Managing the Software Process. Addison-Wesley Professional,
Reading (1989)

3. Zahran, S.: Software Process Improvement: Practical Guidelines for Business Suc-
cess. Addison Wesley Professional, Reading (1998)

4. Fantina, R.: Practical Software Process Improvement. Artech House, Inc., Norwood
(2005)

5. Chrissis, M., Konrad, M., Shrum, S.: CMMI Guidelines for Process Integration and
Product Development. Addison-Wesley, Reading (2007)

6. El Emam, K., Drouin, J.-N., Melo, W.: SPICE The Theory and Practice of Soft-
ware Process Improvement and Capability Determination. IEEE Computer Society
Press, Los Alamitos (1998)

7. Bamford, R.: ISO 9001:2000 for Software and Systems Providers: An Engineering
Approach. Auerbach Publishers, Incorporated (2003)

8. Allen, P., Ramachandran, M., Abushama, H.: PRISMS: an approach to software
process improvement for small to medium enterprises. In: Proceedings of Third
International Conference on Quality Software, pp. 211–214 (2003)

9. Trudel, S., Lavoie, J.-M., Par, M.-C., Suryn, W.: PEM: The small company-
dedicated software process quality evaluation method combining CMMI and
ISO/IEC 14598. Software Quality Journal, Springer Link 14, 7–23 (2006)

10. Gresse von Wangenheim, C., Anacleto, A., Salviano, C.F.: Helping Small Compa-
nies Assess Software Processes. IEEE Software 23, 91–98 (2006)

11. Wangenheim, C.G., Weber, S., Hauck, J.C.R., Trentin, G.: Experiences on es-
tablishing software processes in small companies. In: Information and Software
Technology, vol. 48, pp. 890–900. Elsevier, Amsterdam (2006)

12. Ahonen, J.J., Forsell, M., Taskinen, S.K.: A modest but practical software process
modeling technique for software process improvement. Software Process Improve-
ment and Practice 7, 33–44 (2002)

13. Savolainen, P., Sihvonen, H.-M., Ahonen, J.J.: SPI with Lightweight Software Pro-
cess Modeling in a Small Software Company. In: Abrahamsson, P., Baddoo, N.,
Margaria, T., Messnarz, R. (eds.) EuroSPI 2007. LNCS, vol. 4764, pp. 71–81.
Springer, Heidelberg (2007)

14. Ahonen, J.J., Junttila, T.: A case study on quality-affecting problems in software
engineering projects. In: Proceedings of IEEE International Conference on Soft-
ware: Science, Technology and Engineering. SwSTE 2003, pp. 145–153 (2003)

15. Ahonen, J.J., Junttila, T., Sakkinen, M.: Impacts of the Organizational Model on
Testing: Three Industrial Cases. In: Empirical Software Engineering, vol. 9, pp.
275–296. Springer, Heidelberg (2004)

16. Dingsøyr, T., Moe, N.B., Dyb̊a, T., Conradi, R.: A Workshop-Oriented Approach
for Defining Electronic Process Guides–A Case Study. In: The 11th Norwegian
Conference on Information Systems (2004)

272 A. Valtanen and J.J. Ahonen

17. Richardson, I.: SPI Models: What Characteristics are Required for Small Software
Development Companies? Software Quality Journal 10, 101–114 (2002)

18. Demirors, O., Demirors, E.: Software Process Improvement in a Small Organi-
zation: Difficulties and Suggestions. In: Gruhn, V. (ed.) EWSPT 1998. LNCS,
vol. 1487, pp. 1–12. Springer, Heidelberg (1998)

19. Harjumaa, L., Tervonen, I., Vuorio, P.: Using Software Inspection as a Catalyst for
SPI in a Small Company. LNCS, pp. 62–75. Springer, Heidelberg (2004)

20. Avison, D., Lau, F., Myers, M., Nielsen, P.A.: Action Research. Communications
of the ACM 42, 94–97 (1999)

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 273–288, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Software Process Improvement Methodologies
for Small and Medium Enterprises

Deepti Mishra and Alok Mishra

Department of Computer Engineering, Atilim University,
Incek, 06836, Ankara, Turkey

deepti@atilim.edu.tr, alok@atilim.edu.tr

Abstract. Today, the software industry is one of the most rapidly growing
sectors and small software development companies play an important role in
economy. Many such organizations have been interested in Software Process
Improvement (SPI). It has been observed that the successful implementation of
SPI methodologies is generally not possible within the context of small and me-
dium-sized software enterprises (SMEs) because they are not capable of bearing
the cost of implementing these software process improvement programs.
Further the proper implementation of software engineering techniques is
difficult task for SMEs as they often operate on limited resources and with strict
time constraints. There are number of methodologies to address these issues. In
this paper, various SPI methodologies for SMEs are discussed and compared.
This will lead towards maturity of software process improvement in SMEs and
also facilitates in development of automation tools for SPIs in future.

Keywords: process, software process improvement, software quality, small and
medium enterprises, SME.

1 Introduction

The way with which we develop software impacts the quality of the software and
hence software process is one of the most crucial factors in determining the quality of
the software. A software process is a set of activities, together with ordering con-
straints among them, such that if the activities are performed properly and in accor-
dance with the ordering constraints, the desired result is produced. The desired result
is high quality software at low cost. As each software development project is an in-
stance of the process it follows, it is essentially the process that determines the ex-
pected outcomes of a project [23]. Software processes play an important role in coor-
dinating different teams in large organizations so that their practices don’t grow out of
touch with one another [14]. Ideally, these processes should combine the need for
flexibility and creativity, but that balance is hard to achieve [17]. A vast majority of
software producers, which have not yet implemented a methodology for software
process improvement, are paying high costs of production and systems maintenance,
and therefore being displaced from the global market, not being on the same competi-
tiveness level than companies that possesses a process improvement method [21].
There are several models for software process improvement, such as the Capability

274 D. Mishra and A. Mishra

Maturity Model Integration (CMMI), the Software Process Improvement and Capa-
bility dEtermination (SPICE) and the ISO 9000 norms from the International Stan-
dardization Organization. These models provide quality patterns that a company
should implement to improve its software development process [21]. Unfortunately, it
has been observed that the successful implementation of such models is generally not
possible within the context of small and medium-sized software organizations be-
cause they are not capable of bearing the cost of implementing these software process
improvement programs [26, 53] and the proper implementation of software
engineering techniques is difficult task for SMEs as they often operate on limited
resources and with strict time constraints [53]. Dyba [14] indicated that SPI can be
used as a competitive advancement strategy for both small and large organizations
[14]. Today, the software industry is one of the most rapidly growing sectors and this
situation stimulates especially the constant creation of small companies which play an
important role in economy [53] and in the last few years, a great number of organiza-
tions have been interested in Software Process Improvement (SPI) [10]. A consider-
able amount of software is produced world-wide by SMEs ranging from 1 to about 50
employees [19]. In this context, German and Brazil software market of these compa-
nies was around 77% and 69% during 2001 [37]. Richardson [43] observed that there
is need for small software companies in Irish sector to improve their software process.
The term small setting has been defined as an organization or company of fewer than
approximately 100 people, and a project of fewer than approximately 20 people [49].
As mentioned in the Software Engineering Institute Web site for small settings, a ma-
jor aspect to be considered in these environments is that the amount of resources used
to support a process improvement effort would be a large percentage of an organiza-
tion’s operating budget, [49]. Brodman and Johnson define a small organization as
fewer than 50 software developers and a small project as fewer than 20 developers
[24].

2 Related Works and Rationale of SPI in SMEs

Existing software engineering and organization development literature acknowledges
that there are fundamental operational differences between small and large organiza-
tions [14]. Small organizations seem more concerned about practice, while large or-
ganizations seem more concerned about formal process [14]. Russ and McGregor [45]
observed that software development process can be just as critical to a small project’s
success as it is to that of large one due to number of external dependencies per team
member. They further argued that its goal is to produce the high quality and timely
results for today’s market without imposing a large overhead on a small project.

Larsen and Kautz [33] also viewed that these organizations are afraid of the initial
expenses which they assume are large both with regard to direct costs for process
assessment, training and tools, but also due to indirect costs for personal and time
resources when implementing improvement actions. Kuvaja et al. [30] further
supports that it is quite difficult for any SME to choose an improvement approach,
and to apply it in their organization without help of external consultants or substantial
investment in time of their software managers. Cultural issues like resistance to
change from the employees or the management areas, who regard the extra work

 Software Process Improvement Methodologies for Small and Medium Enterprises 275

required for quality assurance as a useless and complicated burden put on the
developing team. According to Biro et al. [6] national culture also affects the process
improvement methods. Kuvaja et al. [30] mentioned that main problem of the small
companies is that they cannot afford to maintain substantial expertise of software
process improvement within their companies, but they have to buy it from external
sources. Further problem related to the lack of expertise is to find how to start the
improvement and what experts to use. Due to budget constraints services of a
consultant organization to improve the software quality is not possible, still the need
for a good quality assurance program is becoming more evident, and managers are
striving to achieve international quality standards that, in the long run, result in lower
production cost [21]. According to Kautz [26] the software process improvement is
rewarding and advantageous also for small organizations if it takes into account the
peculiarities of such organizations. Dyba [14] also found empirically that small
organizations implemented SPI as effectively as large organizations, and in turn,
achieve high organizational performance. According to his study main lesson to be
learned is that to implement SPI at least as effectively as their larger counterparts,
small software organizations should capitalize on their relative strengths in employee
participation and exploration of new knowledge. There are various approaches,
languages and tools for process definition [1] however, are rarely applied in practice
[11] specifically with small organization [39]. Further only few studies in the context
of small software companies have been performed [29, 46, 47]. In order to get an
edge in ever-growing highly competitive software development world, it is significant
for an organization to regularly monitor the software process. It is important for an
organization to continuously improve its software process on the basis of feedback
from various stakeholders. It is also supported by Mintzberg [38] that for smaller or-
ganization where much of the work is coordinated through direct supervision and mu-
tual adjustment, it is important to find a balance between these mechanisms and for-
mal, defined and highly detailed documented procedures to facilitate organizational
learning [40]. Despite the fact that even in the US most software producing units are
comparably small and state a need for improvement [8], little is known about software
process improvement in this kind of organization [26]. Kautz [26] further supported
the view that even small organizations with little more than two developers can profit
from some basic formal routines. According to his research project conclusion if pro-
cedures are defined, concisely described, tested and feedback from these tests can be
used as feedback to improve the procedures and routines. According to Kuvaja [30] it
is quite common understanding amongst the SMEs that full-scale assessment methods
are only useful in large organizations and do not serve the SMEs appropriately. Dyba
[14] found empirically that small organizations implemented SPI as effectively as
large organizations, and in turn, achieve high organizational performance. Neverthe-
less, small software development teams can improve their software processes benefi-
cially as well as large organizations [41, 13]. Therefore the objective of this paper is
to present these software process improvement methodologies for SMEs from a
comparative perspective. This will lead towards maturity of software process
improvement and also facilitates in development of automation tools for SPIs which
can be tailored according to the specific organization. It can also result in interesting
empirical outcome and comparisons in SPI approaches among organizations.

276 D. Mishra and A. Mishra

The remainder of this paper is organized as follows: The following section discuss
software process improvement methodologies for SMEs. Later, these methodologies
are compared. Finally, the paper concludes with limitations and directions for future
research in this area.

3 Software Process Improvement Models for SMEs

Any software process improvement plan requires a qualified statement about the cur-
rent status of software development in the companies and a description of strengths
and weaknesses identifying areas for improvement On the basis of literature survey
we have selected following five SPI methodologies which have been implemented in
SMEs. Due to limited resources and the size of the organizations, an extensive, formal
assessment of the software practices following defined comprehensive approaches
like the Capability Maturity Model [42], the ISO9000-3 guidelines [22], the TickIT
scheme [52], Bootstrap [31] and IDEAL [28] model was not considered to be neces-
sary or appropriate in this context. It is also supported by Kautz [26]. Further
MESOPYME objectives are similar to those of the IDEAL model [36] from the Soft-
ware Engineering Institute (SEI).

Salient features of selected software process improvement methodologies for
SMEs are discussed in this section.

3.1 A Methodology for Self-Diagnosis for Software Quality

This methodology for self diagnosis is based on concepts, goals and activities defined
by Capability Maturity Model (CMM) which can be used by a small or micro
organization as a part of internal audit plan before the official appraisal. It is difficult
for SMEs to assess their current capabilities by using SCAMPI A (only method in
CMMI product suite that can result in a rating) appraisal method because it takes
longer and consume more resources. In order to gather this information related to the
current processes of the organization, researchers have created 3 questionnaires [21]:

• The extended maturity questionnaire(EMQ)
• The Goals, Activities and Responsibilities Matrix(GAR)
• The Directed Questionnaire

The Extended Maturity Questionnaire (EMQ)
EMQ is based on the Maturity Questionnaire developed by SEI. The main difference
between EMQ and maturity questionaire developed by SEI is that every question has
potential three answers (YES, NO, PARTIALLY ACHIEVED) instead of two (YES,
NO). So, this questionnaire accurately represents organizations current states as some
of the goals are only partially achieved and if the organization will use SEI
questionaire then it will result in NO.

The Goals, Activities and Responsibilities Matrix(GAR)
The success of a model based on CMM depends on the complete achievement of
certain goals and commitments for every Key Process Areas (KPA). There is a close
relationship among goals, activities and abilities, which are not that immediately

 Software Process Improvement Methodologies for Small and Medium Enterprises 277

apparent from the 344 pages description of the CMM standard [9]. In order to
facilitate the task of the software administrators a matrix is proposed. This matrix
includes relationship between abilities (variables), activities (practices and sub-
practices associated to each KPA), goals and commitments (objectives to achieve in
each KPA) as well as the responsible individuals (The client, the requirement analyst,
the software engineering group, the manager, the quality assurance group) for each
KPA. GAR Matrix can be automated by means of an expert system.

The Directed Questionnaire
The last format of Self-Diagnosis Methodology is a direct questionnaire with which a
lead auditor can construct a knowledge base. This questionnaire has the essence of the
original Maturity Questionnaire from CMM but in this case each new question is
generated based on the answer of the previous questions. So a new question may be
directed to complement information obtained earlier, or to confirm such information.
In any case, useless questions are discarded.

Evaluating the Result of the Self Diagnosis
The results obtained from the questionnaires answer the basic question: Are the Key
Process areas required by CMM for a certain level achieved? For each KPA, there are
four possible answers: The KPA is either fully achieved, partially achieved, not
achieved, or it doesn’t apply. The KPAs that are partially achieved or not achieved are
the areas of opportunity for improvement and that should be part of an action plan.

3.2 Software Process Matrix (SPM) Model

This model helps the organization in finding the relative importance of software
processes. For the high priority processes, the practices that need to be worked on are
determined by Software Process Matrix (SPM). SPM is based on Quality Function
Deployment (QFD). In QFD, the ‘voice of the customer’ is collected, and the relative
importance of each customer requirement is measured. In the house of quality matrix,
these requirements are used to identify design characteristics which have the greatest
impact on customer requirements. Although QFD consists of many matrics, the main
focus is often this matrix, as using it alone can have a significant effect on the product
development process [16]. Using QFD, the software process model is treated as the
customer where software processes are the customer requirements. These processes
were identified from software process literature. The design characteristics are the
practices which must be followed for processes to be successful. These practices were
also identified from the software process literature.

A crucial part of the development of the software process matrix was to identify
the relationships between processes and practices. Those which are explicitly
mentioned in the literature were easily identified. Using expert opinions and various
statistical techniques, other relationships between processes and practices were
identified, resulting in the development and verification of the software process
matrix which was then validated in the industry.

For a small company to use any software process model to their advantage, it is
imperative that the effort expended is minimal. The SPM provides them with a generic
section that has been completed previously and can be used in their company. A
questionnaire is provided to assess the current performance, planned future performance

278 D. Mishra and A. Mishra

and importance to the company for every process. From the company’s point of view,
all they need to provide are the measurements for calculating the overall importance of
the software process considering the following [43]:

• Current capability as assessed using a self-assessment questionnaire.
• Future capability as input from management.
• Importance of software process to the business.
• Competitive analysis
• Market leverage for company specific requirement e.g. ISO-certification.

Allowing management to choose whether or not to include figures for competitive
analysis and market leverage allows flexibility within the model.

Practices with the highest values are the most important, and therefore it is
suggested that these should be worked on first in the organization. From this, the
priorities to be included in any software process improvement action plan are
established and can help the organization to determine their improvement strategy.
The complete SPM provides the organization with a ranked list of actions which can
be input to their software process improvement strategy. This ranked list can be
combined with cost figures and time-effective calculations thus taking these factors
into account when determining the action plan for the organization.

3.3 An Approach for Software Process Establishment in Micro and Small
Companies (ASPE-MSC)

An Approach for Software Process Establishment in Micro and Small Companies
(ASPE-MSC) is defined by integrating and adapting existing approaches
[2,4,5,12,32,34,48] to the characteristics of small software companies. The principal
phases of the approach are:

Planning: In the beginning, the process establishment is planned on a high level.
Later on, during strategic analysis, the plan is revised, completed and adapted in ac-
cordance to the decisions made.

Phase 1, Diagnosis: The objective of this phase is to contextualize the organization
and to obtain a high-level snapshot of the actual software process in place. Such a
baseline can be established through a software process assessment using, e.g. MARES
[18], an ISO/IEC 15504 conformant process assessment method tailored to small
companies.

Phase 2, Strategic analysis: The objective of this phase is to specify the scope and to
prioritize candidate processes to be established based on the results of the diagnosis
and in accordance with the organization’s business and improvement goals. This can
be done by using, e.g. an adaptation of the SWOT (Strengths/Weaknesses/
Opportunities/Threats) analysis technique [25] relating the importance of processes
and their assessed/estimated capability.

Phase 3, Definition: The objective of this phase is to define the selected software proc-
ess(es) in form of a process guide in order to support process performers. Generally, the
definition of the selected process(es) begins with the descriptive modeling of the actual
process(es) in place. This activity is composed of a process familiarization phase and a

 Software Process Improvement Methodologies for Small and Medium Enterprises 279

detailed elicitation phase [4]. During the process familiarization phase an overview of
the software process and its general structure, interaction and sequence is obtained and
documented, for example, in a process flow diagram. In a next step, roles, competencies
and responsibilities related to each activity are identified.

Phase 4, Implementation: First, the evaluation of the defined process(es) is planned
in parallel to their implementation. This includes the revision and/or definition of
measures in order to monitor and determine the effectiveness and suitability of the
process(es) and whether the expected benefits are achieved.

Monitoring & Control: The complete establishment of the process (es) is monitored
and controlled. Therefore, data is collected and analyzed by the process engineer and
assistant. If required, corrective actions are initiated and the plan is updated.

Post-mortem: Once a complete process establishment cycle is terminated, the proc-
ess establishment approach is evaluated as a basis for continuous improvement. This
is done by collecting and analyzing feedback from process performers, sponsor, and
the process engineer and assistant in a feedback meeting or by questionnaires.

3.4 PRISMS: An Approach to Software Process Improvement for Small to
Medium Enterprises [3]

PRISMS is an action research project, with a team of three researchers from Leeds
Metropolitan University working alongside managers and developers in participating
companies advising and assisting with the planning and implementation of software
process improvement programmes, over a three year period.

The key features of the process are:

• The existing informal process is examined, and, if resources permit an ex-
plicit model is created.

• In the PRISMS programme the business goals are defined earlier by man-
agement. These goals drive much of the subsequent activity, especially the
selection and prioritization of key process areas for improvement, and the se-
lection of measurements.

• A consultation exercise is carried out, involving all members of development
teams. A brainstorming session, and/or questionnaire-based survey help the
developer’s team to take ownership of the SPI programme, and to be in-
volved in the programme from the earliest stage.

• A tailored version of the CMM assessment is carried out by members of the
research team, primarily to help identify key process areas (KPAs) for
improvement.

• Using these inputs the KPAs for improvement are identified and prioritized.
The main criteria here should be the extent to which the KPAs are likely to
contribute to the identified business goals. One company has found a weighted
selection approach of the type described by Martin [35] to be useful. The proc-
ess/practice matrix approach described by Richardson [44] could also be used.

• Measurements are defined as an integral part of the SPI planning process.
Managers are generally keen to have more precise ways of tracking key

280 D. Mishra and A. Mishra

resource and quality indicators. The Goal Question Metric paradigm can be
used to measure selected attributes based on the business goals defined for
the SPI programme [7].

• The SPI plan is periodically reviewed, and there is provision to collect feed-
back from stakeholders.

Most important aspects of measurement for SPI programmes in smaller organization
is that they should be simple to gather and interpret, and that they should be used in
planning and decision making. Simple automation can help reduce the overhead asso-
ciated with data collection and processing.

3.5 MESOPYME [10]

MESOPYME has been defined, taking into account a generic SPI model defined by
ISPI [15] with four stages—whose objectives are similar to those of the IDEAL
model [36] from the SEI. The key features of MESOPYME are as follows:

• Stage 1: Commitment to improvement. Its objective is to obtain the sup-
port of senior management to carry out the improvement project.

• Stage 2: Software process assessment. Its objective is to obtain strengths
and weaknesses of the process assessed with respect to a software process
model— CMM (Capability Maturity Model). From this assessment, proc-
esses (usually 1 to 3) to be improved are selected.

• Stage 3: Improvement solution. Its objective is to provide the needed infra-
structure to carry out improvement (in selected processes), and to create the
plan to follow in order to define and implement improvement in these se-
lected processes. The improvement solution stage is performed through the
application of a generic set of components that we have called an Action
Package. An Action Package is a general solution to a particular software
process area that should be customized to a company, taking into accounts its
business goals and assessment results. An action package is implemented in
some selected pilot projects.

• Stage 4: Institutionalize. Finally, improvement must be institutionalized.

4 Discussion

As these SPI methodologies are divergent in characteristics, therefore it is required to
find out some significant but common attributes so that we can find a comparative
view of all selected SPI approaches. Kautz et al. [28] concluded in their findings that
first lesson for small organizations, which wish to perform improvement activities, is
that it makes sense to use a structural model to organize the process. They further
suggested that the second lesson is that model should be adjusted to the particular
conditions of the organizations and the third lesson is that it makes sense to perform
the improvement activities as a project with clearly assigned and documented roles,
responsibilities and resources. Beyond the adjustment of general models (which is in
fact a base for these approaches), Kautz [27] points out the significance of factors to
be studied further like management support and commitment, project planning and

 Software Process Improvement Methodologies for Small and Medium Enterprises 281

organization, education and training, assessment, monitoring and evaluation, staff
involvement, support and knowledge transfer by external consultants, usability and
validity of the introduced changes and cultural feasibility for process improvement in
software SMEs. As SMEs have limited budgets and resources, following factors are
important for them before selecting any SPI model.

1. If it is based on already established SPI methods like CMM then it may be better
in the long run. Although this factor is not important right now as achieving some
specific CMM level is not the objective at present and SME cannot afford to
achieve this in the present position. But later organization may grow and may
wish to achieve a specific established method like CMM. If the SPI model they
are choosing at present is based on for example CMM then it will be easy to
switch.

2. There are two key questions: where am I and what needs to be improved? and
how to improve it? If a SPI model answers both these questions successfully, then
it is easier for the organization to use and implement it.

3. Whether it takes into consideration specific needs of the organization then it is
better for the organization.

4. If it provides some flexibility to the organization like choice of different methods
for assessment etc. then it is better. It is also supported by Glass [17] that these
processes should combine the need for flexibility and creativity. Further Richardson
[43, 44] found flexibility as significant characteristic for software process and
included in her proposed model.

5. Whether it is continuous or staged? An organization may choose one over an-
other. Continuous representation allows an organization to select the order of im-
provement that best meets the organization’s business objectives and mitigates
the organization’s areas of risk. On the other hand, staged representation provides
a proven sequence of improvements, beginning with basic management practices
and progressing through a predefined and proven path of successive levels, each
serving as a foundation for the next [50].

6. Involvement of software development team members from the starting is very
important. Their views should be considered while deciding what needs to be im-
proved? It may help in securing their confidence and commitment in SPI initia-
tive. Otherwise they may resist SPI initiative later on.

7. Whether it requires SME’s people, who will take part in SPI initiative, to have
prior experience in this field. If it does, it may not be suitable as SMEs have diffi-
culty in recruiting and retaining experienced staff.

8. Whether it requires the need to take the help of external expert. If this is the case,
it might be difficult for the organization as they have to bear the extra cost.

9. Whether roles and responsibilities are clearly assigned to all people taking part in
SPI initiative. Also, if they need training, it should be provided. Both these fac-
tors are important for any successful SPI initiative as mentioned by Kautz [27].

10. If a tool can be used for self assessment, it will be easier to assess the current
status and to determine the areas, which needs to be improved. Additionally,
more people can be involved during this phase without much substantial effort.

11. Data collection and evaluation is integral in any SPI initiative. It can be difficult
for software practitioners to do this if an organization does not have special team

282 D. Mishra and A. Mishra

to do this task. Use of tool for this purpose can make the job of software practi-
tioners easy in this case.

12. Sometimes origin of an SPI method is also important. A particular SPI method
originated in a particular country is tested in the software development organiza-
tions of that country. Although due to the emergence of global standards in soft-
ware development, organizations all over the world are similar to each other in
terms of platforms, technical tools and other things they are using. Still cultural
factors play an important role, and there one SPI initiative which was tested suc-
cessfully in one country may not get equal success in another country. This is
also supported by Biro et al. [6] that national culture affects the process
improvement methods. Additionally, people who developed a particular SPI
model may be available for helping the organizations situated in their country.

These models for SMEs are based on some existing methods like CMM, GQM,
QFD etc. These approaches are adapted and simplified either by incorporating some
additional questionnaires (in Self-diagnosis model) or matrix (in SPM model) or
process guides (in ASPE-MSC) or action packages (in MESOPYME) so that they can
be used by these organizations.

One key point is that all methods except self diagnosis model considers business
objectives of the organization while making the SPI plan. Moreover, these methods
(excluding self diagnosis) are flexible enough that although methods for identifying
and prioritizing areas of improvement are suggested but organizations can choose any
other method also. Furthermore, organizations have the flexibility to select processes
more important to them for SPI plan. These methods not only detects what needs to
be improved but also provides the roadmap that how to improve it.

Software practitioners are involved from the beginning in both SPM and PRISMS
method. They take active participations during self assessment. All practitioners’
views, regarding which processes need to be improved, were taken into consideration.

As far as practitioner’s knowledge level is concerned, Self-diagnosis and
MESOPYME do not require much experience while other models need much knowl-
edge and experience to assess current capabilities of the process. SMEs generally do
not have people dedicated for quality work alone. A person has many roles in these
organizations for example people who are doing software development are also re-
sponsible for SPI initiative. These individuals may or may not have experience deal-
ing with SPI initiative so it may not be easier for them to use any of these models
without the help of some external consultant.

These SPI models are specifically developed for SMEs as these organizations do
not have the resources and cannot bear the cost to implement CMMI, SPICE etc. In
this context it is important to note some outcomes for instance SPIRE results indi-
cated that “of the small software development units who applied to be involved in
SPIRE, 27% dropped out. The most common reasons given were resource or funding
problems” [51]. Wieggers says [54], “the most common point of failure in SPI is lack
of follow-through into action planning and action plan implementation.” Also per-
formance of these activities is expensive- yearly cost of improvement $245,000 [20],
and time consuming – a full process improvement cycle could take between 18 and 24
months [55]. Moreover, this is more difficult to perform in SMEs because they do not

 Software Process Improvement Methodologies for Small and Medium Enterprises 283

SP
I M

od
el

s

 C
ri

te
ri

a

Se
lf-

di
ag

no
si

s
SP

M
 M

od
el

A

SP
E

-M
SC

PR

IS
M

S
M

E
SO

PY
M

E

B
as

ed
 o

n

C

M
M

Q

FD

M
an

y
ex

is
tin

g
ap

pr
oa

ch
es

C

M
M

 a
nd

 G
Q

M

C
M

M

K
ey

 Q
ue

st
io

n

W
he

re
 a

m
 I?

 W
ha

t s
ho

ul
d

I d
o?

W

ha
t n

ee
ds

 to
 b

e
im

pr
ov

ed
?

H
ow

 to
 im

pr
ov

e?

W
he

re
 a

m
 I?

 W
ha

t n
ee

ds
 to

 b
e

im
pr

ov
ed

?
H

ow
 to

 im
pr

ov
e?

W

he
re

 a
m

 I
?

W
ha

t n
ee

ds

to
 b

e
im

pr
ov

ed
?

H
ow

 t
o

im
pr

ov
e?

W
he

re
 a

m
 I?

 W
ha

t n
ee

ds
 to

be

im

pr
ov

ed
?

H
ow

to

im

pr
ov

e?

W
ha

t i
s n

ew
?

EM
Q

qu

es
tio

nn
ai

re

fo
r

as
se

ss
m

en
t.

A
ls

o,

re
la

tio
ns

hi
p

am
on

g
ab

ili
tie

s,
ac

tiv
iti

es
,

go
al

s,
an

d
co

m
m

itm
en

ts

fo
r

ev
er

y
K

PA

in

m
at

rix

fo
rm

at
 is

 p
ro

vi
de

d.

SP
M

(s

of
tw

ar
e

pr
oc

es
s

m
at

rix
)

th
at

id

en
tif

ie
s

pr
ac

tic
es

ne

ed
ed

fo

r
so

ftw
ar

e
pr

oc
es

se
s

to

be

im
pr

ov
ed

.

Ite
ra

tiv
e-

In
cr

em
en

ta
l

ap
pr

oa
ch

fo

r
as

se
ss

m
en

t,
id

en
tif

ic
at

io
n

an
d

im
pl

em
en

ta
tio

n
of

 S
PI

 p
la

n.

A
da

pt
in

g
C

M
M

by

in

co
rp

or
at

in
g

bu
si

ne
ss

ob

je
ct

iv
es

 w
ith

 t
he

 h
el

p
of

 G
Q

M
 p

ar
ad

ig
m

Em
ph

as
is

on

SP

I
im

pl
em

en
ta

tio
n

st
ep

w

ith

th
e

he
lp

 o
f

ac
tio

n
pa

ck
ag

es

de
ve

lo
pe

d
by

pr

ob
le

m

do
m

ai
n

ex
pe

rts
.

Im
pl

em
en

ta
tio

n
de

ta
ils

C
ur

re
nt

si

tu
at

io
n

of

th
e

co
m

pa
ny

 is
 a

ss
es

se
d

w
ith

EM

Q
 q

ue
st

io
nn

ai
re

.
Th

is

id
en

tif
ie

s
K

PA
’s

w

hi
ch

ar

e
pa

rti
al

ly
 a

ch
ie

ve
d

or

no
t

ac
hi

ev
ed

at

al

l
to

at

ta
in

 a
 p

ar
tic

ul
ar

 C
M

M

le
ve

l.
O

nc
e

K
PA

s
fo

r
im

pr
ov

em
en

t
ar

e
id

en
tif

ie
d,

go

al
s,

an
d

co
m

m
itm

en
ts

fo

r
ev

er
y

K
PA

 c
an

 b
e

fo
un

d
ou

t
w

ith

th
e

he
lp

of

G

A
R

m

at
rix

.

Fi
rs

t
pr

io
rit

iz
ed

lis

t
of

pr

oc
es

se
s

fo
r

so
ftw

ar
e

pr
oc

es
s

im
pr

ov
em

en
t

ac
co

rd
in

g
to

th

e
bu

si
ne

ss

ob
je

ct
iv

es
 a

nd
 o

th
er

 f
ac

to
rs

ar

e
m

ad
e.

 T
he

n
a

ra
nk

ed
 li

st

of
 a

ct
io

ns
 i

s
m

ad
e

w
ith

 t
he

he

lp

of

SP
M

to

im

pr
ov

e
ab

ov
e

m
en

tio
ne

d
pr

oc
es

se
s.

Fi
rs

t
di

ag
no

si
s

of

cu
rr

en
t

ca
pa

bi
lit

ie
s

is

do
ne

th

en

pr
io

rit
iz

ed

lis
t

of

ca
nd

id
at

e
pr

oc
es

se
s

is
 m

ad
e

ac
co

rd
in

g
to

th

e
di

ag
no

si
s,

bu
si

ne
ss

ob

je
ct

iv
es

an

d
im

pr
ov

em
en

t
go

al
s.

La
te

r
th

es
e

pr
oc

es
se

s
ar

e
de

fin
ed

in

fo

rm

of

a
pr

oc
es

s
gu

id
e.

Th
er

ea
fte

r
im

pl
em

en
te

d
w

ith
 t

he
 h

el
p

of

th
ei

r
pr

oc
es

s
gu

id
e

an
d

ev
al

ua
te

d
co

nt
in

uo
us

ly
.

Fi
rs

t
cu

rr
en

t
pr

oc
es

s
is

ex

am
in

ed

an
d

as
se

ss
ed

.
Th

en

K
PA

s
fo

r
im

pr
ov

em
en

t
ar

e
id

en
tif

ie
d

ba
se

d
on

cu

rr
en

t
ca

pa
bi

lit
ie

s,
bu

si
ne

ss
 g

oa
ls

 g
iv

en
 b

y
th

e
m

an
ag

em
en

t a
nd

 a
fte

r
co

ns
ul

ta
tio

n
w

ith

de
ve

lo
pe

rs
.

La
te

r
pr

oc
es

s
im

pr
ov

em
en

t
pl

an

is

m
ad

e
an

d
im

pl
em

en
te

d.

Fi
rs

tly

cu
rr

en
t

pr
oc

es
s

is

as
se

ss
ed

an

d
th

en

ac
tio

n
pa

ck
ag

e
fo

r
ea

ch

pr
oc

es
s

ar
ea

co

ns
is

tin
g

of

ac
tio

n
pl

an
,

in
fr

as
tru

ct
ur

e
ne

ed
ed

,
te

ch
ni

qu
es

,
to

ol
s,

m
et

ric
s

et
c.

, i
s

de
ve

lo
pe

d
ac

co
rd

in
g

to
 t

he
 b

us
in

es
s

go
al

s
an

d
as

se
ss

m
en

t
re

su
lts

.
La

te
r

th
is

ac

tio
n

pa
ck

ag
e

is

im
pl

em
en

te
d

in
 s

om
e

pi
lo

t
pr

oj
ec

ts
.

Fi
na

lly

im
pr

ov
em

en
t

is

in
st

itu
tio

na
liz

ed
.

Fl
ex

ib
ili

ty

N
ot

 fl
ex

ib
le

.
D

ef
in

ed

m
et

ho
ds

an

d
to

ol
s.

El
im

in
at

io
n

is
 n

ot

pr
ef

er
re

d.

Fl
ex

ib
le

.
C

om
pa

ny

is

no
t

re
qu

ire
d

to

in
cl

ud
e

al
l

fa
ct

or
s

of
 m

ea
su

re
m

en
t

fo
r

ov
er

al
l

im
po

rta
nc

e
of

so

ftw
ar

e
pr

oc
es

se
s.

O
nl

y
pr

oc
es

se
s

im
po

rta
nt

fo

r
co

m
pa

ny
 a

re
 c

on
si

de
re

d
fo

r
im

pr
ov

em
en

t.

Fl
ex

ib
le

. M
et

ho
ds

 fo
r

as
se

ss
in

g
cu

rr
en

t c
ap

ab
ili

tie
s

an
d

to
 p

rio
rit

iz
e

pr
oc

es
se

s a
re

su

gg
es

te
d

bu
t o

rg
an

iz
at

io
n

ca
n

us
e

ot
he

r m
et

ho
ds

 a
ls

o.

O
nl

y
pr

oc
es

se
s i

m
po

rta
nt

 fo
r

co
m

pa
ny

 n
ee

d
to

 b
e

co
ns

id
er

ed
 fo

r i
m

pr
ov

em
en

t.

Fl
ex

ib
le

. M
et

ho
ds

 to

id
en

tif
y

an
d

pr
io

rit
iz

e
K

PA
s f

or
 im

pr
ov

em
en

t
ar

e
su

gg
es

te
d

bu
t

or
ga

ni
za

tio
ns

 c
an

 u
se

ot

he
r m

et
ho

ds
 a

ls
o.

Fl
ex

ib
le

. C
an

 b
e

ta
ilo

re
d

to

th
e

sp
ec

ifi
c

ne
ed

 o
f a

n
or

ga
ni

za
tio

n.

C
on

tin
u.

/ S
ta

ge

St
ag

ed

C
on

tin
uo

us

C
on

tin
uo

us

C
on

tin
uo

us

C
on

tin
uo

us

In
vo

lv
em

en
t o

f

ea
m

 m
em

be
rs

fr

om
 th

e
ve

ry

be
gi

nn
in

g

N
ot

 m
en

tio
ne

d.
 O

ne

au
di

to
r d

oe
s t

he
 se

lf
as

se
ss

m
en

t

Y
es

, T
he

y
gi

ve
 i

nf
or

m
at

io
n

ab
ou

t
w

hi
ch

pr

oc
es

se
s

ne
ed

s t
o

be
 im

pr
ov

ed
.

O
nl

y
on

e
pe

rs
on

 (p
ro

ce
ss

en

gi
ne

er
 o

r a
ss

is
ta

nt
 P

E)
 is

in

vo
lv

ed
 d

ur
in

g
as

se
ss

m
en

t.
O

th
er

s a
re

 in
vo

lv
ed

 d
ur

in
g

im
pl

em
en

ta
tio

n.

Y
es

, T
he

y
gi

ve
 in

fo
rm

at
io

n
ab

ou
t w

hi
ch

 p
ro

ce
ss

es

ne
ed

s t
o

be
 im

pr
ov

ed
.

N
ot

 m
en

tio
ne

d.
 It

 is
 n

ot
 c

le
ar

th

at
 w

ho
 d

ec
id

es
 w

hi
ch

pr

oc
es

s n
ee

ds
 to

 b
e

im
pr

ov
ed

?
Th

ey
 a

re
 in

vo
lv

ed

du
rin

g

So
ft

w
ar

e
de

ve
.

T

T
ab

le
 1

. C
om

pa
ri

so
n

of
 v

ar
io

us
 s

of
tw

ar
e

pr
oc

es
s

m
od

el
s

fo
r

sm
al

l a
nd

 m
ed

iu
m

 e
nt

er
pr

is
es

im
pl

em
en

ta
tio

n.

284 D. Mishra and A. Mishra

T
ab

le
 1

. (
co

nt
in

ue
d)

 Software Process Improvement Methodologies for Small and Medium Enterprises 285

have resources to carry out improvement implementation [10]. By these reasons, this
SPI approach is restricted to large organizations but Dyba [14] found that small or-
ganizations can and do implement SPI elements as effectively as large organizations,
and in turn, achieve high organizational performance. Therefore, this indicates that
SPI can be used as competitive advancement strategy for both small and large soft-
ware organizations. But whether a small or medium scale organization can implement
these methods without the help of some external quality consultant is yet to be
proven.

5 Conclusion

In this paper we had studied software process improvement methodologies for SMEs
and compared their significant characteristics. Each ones has its benefits and limitations.
Organization’s should select the specific process improvement methodology keeping in
view their business goals, models, characteristics and resource limitations. These
methodologies can be adapted and tailored according to the organizational context. Russ
and McGregor [45] proposed a software development process for small projects by in-
tegrating portions of an iterative, incremental process model with a quality assurance
process and a measurement process used for process improvement. This process inte-
grates many activities that might appear in separate processes in a larger project and its
goal is to produce the high quality and timely results required for today’s market with-
out imposing a large overhead on a small project. Resources are scarce for small com-
panies and most of them think they cannot afford the investment [33].

Furtherwork in this area is directed to perform case studies and empirical
validation in real software development environment. It would be interesting to study
the impact, efforts and comparison of these approaches on SPI in SMEs. Dyba [14]
also suggested that future studies should focus on the specific needs of small software
organizations in more depth; for example, through longitudinal, multiple case studies.
Further research should be related to the study of new and improved measures of SPI
success, comparison of measurement instruments, and validation of SPI success
measures [14]. These further experiences will move towards tailoring software
enginering methods and improvement strategies [14]. According to Russ and
McGregor [45], if process monitoring and evaluation can be automated more, it will
further free team members to focus on the project’s goal of producing a quality soft-
ware systems in SMEs.

References

1. Acuna, X., Ferre, M., Lopez, L.M.: The Software Process: Modeling, Evaluation and Im-
provement. World Scientific Publishing Company, Argentina (2000)

2. Ahonen, J.J., Forsell, M., Taskinen, S.-K.: A modest but practical software process model-
ing technique for software process improvement. Software Process Improvement and Prac-
tice 7 (2002)

3. Allen, P., Ramachandran, M., Abushama, H.: PRISMS: an Approach to Software Process
Improvement for Small to Medium Enterprises. In: Proceedings of the Third International
Conference On Quality Software (QSIC 2003), November 6-7. IEEE, Dallas (2003)

286 D. Mishra and A. Mishra

4. Becker-Kornstaedt, U.: Towards Systematic Knowledge Elicitation for Descriptive Soft-
ware Process Modeling. In: Bomarius, F., Komi-Sirviö, S. (eds.) PROFES 2001. LNCS,
vol. 2188. Springer, Heidelberg (2001)

5. Becker-Kornstaedt, U., Hamann, D., Verlage, M.: Descriptive Modeling of Software Proc-
esses, IESE-Report 045.97/E, Fraunhofer Institute IESE, Germany (1997)

6. Biro, M., Messnarz, R., Davison, A.G.: The impact of national cultural factors on the ef-
fectiveness of process improvement methods: The third dimension. Software Quality Pro-
fessional 4(4), 34–41 (2002)

7. Briand, L., Differding, C., Rombach, H.D.: Practical Guidelines for Measurement-Based
Process Improvement. Software Process: Improvement and Practice 2, 253–280 (1996)

8. Broadman, J.D., Johnson, D.L.: What small business and small organizations say about the
CMM. In: Proceedings of the 16th International Conference on Software Engineering, pp.
331–340. IEEE Computer Society, Los Alamitos (1994)

9. Bush, M.: CMM, The Capability Maturity Model. In: Guidelines for Improving the Soft-
ware Process, Carnegie Mellon University, Software Engineering Institute. SEI Series in
Software Engineering. Addison-Wesley, Reading (1995)

10. Calvo-Manzano, J.A., Agustin, G.C., Gilabert, T.S.F., Seco, A.D.A., Sanchez, L.Z., Cota,
M.P.: Experiences in the Application of Software Process Improvement in SMES. Soft-
ware Quality Journal 10, 261–273 (2002)

11. Christie, M., et al.: Software Process Automation: Interviews, Survey and Workshop results.
Technical Report CMU/SEI-97-TR-008, Carnegie Mellon University/SEI (October 1997)

12. Curtis, B., Kellner, M.I., Over, J.: Process modeling. Communications of the ACM 35(9)
(1992)

13. Damele, G., Bazzana, G., Maiochhi: Quantifying the benefits of software process im-
provement in Italtel Linea UT Exchange. In: Proc. ISS Conf., Berlin (April 1995)

14. Dyba, T.: Factors of Software Process Improvement Success in Small and Large Organiza-
tions: An Empirical Study in the Scandinavian Context. In: Proceedings of the 9th Euro-
pean software engineering conference (ESEC/FSE 2003), Helsinki, Finland, September 1-
5, pp. 148–157 (2003)

15. ESSI, IBERIA, LAE. SPIE: Software Process Improvement and Experimentation, ESSI
Project: No 10344 (February 1994)

16. Fortuna, R.M.: Beyond quality: Taking SPC upstream. Quality Progress, 23–28 (June
1988)

17. Glass, R.L.: Software Creativity. Prentice-Hall, Englewood Cliffs (1995)
18. von Wangenheim, C.G., Anacleto, A., Salviano, C.F.: Helping Small Companies Assess

Software Processes. IEEE Software (January/February 2006)
19. Gresse, C., Punter, T., Anacleto, A.: Software measurement for small and medium enter-

prises – A Brazilian-German view on extending the GQM method (2003),
http://www.sj.univali.br/prof/Christiane%20Gresse%20Von%20Wa
ngenheim/papers/ease2003.pdf

20. Herbsleb, J., Carleton, A., Rozum, J., Siegel, J., Zubrow, D.: Benefits of CMM-based
Software Process Improvement: Initial Results, Technical Report: CMU/SEI-94-TR-013,
Pittsburgh (August 1994)

21. Herrera, E.M., Trejo Ramirez, R.A.: A Methodology for self-diagnosis for software qual-
ity assurance in small and medium-sized industries in Latin America. The Electronic Jour-
nal on Information Systems in Developing Countries 15(4), 1–13 (2003)

22. ISO9001, Quality systems- model for quality assurance in design, development, produc-
tion, installation, and servicing, European Standard EN29001, Brussels, Belgium (1987)

 Software Process Improvement Methodologies for Small and Medium Enterprises 287

23. Jalote, P.: An Integrated Approach to Software Engineering, 2nd edn. Narosa Publishing
House (2000)

24. Johnson, D., Johnson, L., Brodman, J.G.: Applying the CMM to Small Organizations and
Small Projects. In: Proceedings of the 1998 Software Engineering Process Group Confer-
ence, Chicago, IL (1998)

25. Johnson, G., Scholes, K., Sexty, R.W.: Exploring Strategic Management. Prentice Hall,
Englewood Cliffs (1989)

26. Kautz, K.: Software Process Improvement in Very Small Enterprises: Does it Pay Off?
Software Process – Improvement and Practice 4, 209–226 (1998)

27. Kautz, K.: Making Sense of Measurements for Small Organizations. IEEE Software 16(2),
14–20 (1999)

28. Kautz, K., Hansen, H.W., Thaysen, K.: Applying and Adjusting a Software Process Im-
provement Model in Practice: The use of the IDEAL Model in a Small Software Enter-
prise. In: Proceedings of ICSE 2000, Limerick. ACM Press, New York (2000)

29. Kurniawati, F., Jeffery, R.: The Long-term effects of an EPG/ER in a small software or-
ganization. In: Proceedings of the Australian Software Engineering Conference, Australia
(2004)

30. Kuvaja, P., Palo, J., Bicego, A.: TAPISTRY- A Software Process Improvement Approach
Tailored for Small Enterprises. Software Quality Journal 8, 149–156 (1999)

31. Kuvaja, P., Simila, L., Krzanik, L., Bicego, A., Koch, G., Sankonen, S.: Software Process
Assessment and Improvement: the BOOTSTRAP Approach. Blackwell, Malden (1994)

32. Kellner, M.I., et al.: Process Guides: Effective Guidance for Process Participants. In: Pro-
ceedings of the Fifth International Conference on the Software Process, USA (1998)

33. Larsen, E.A., Kautz, K.: Quality Assurance and software process improvement in Norway.
Software Process – Improvement and Practice 3, 71–86 (1997)

34. Madhavji, N.H., Holtje, D., Hong, W., Bruckhaus, T.: Elicit: A Method for Eliciting Proc-
ess Models. In: Proceedings of the Third International Conference on the Software Proc-
ess, SA, 1994 (2002)

35. Martin, S.: Business Process Improvement. McGraw-Hill, New York (2002)
36. McFeeley, B.: IDEALSM: A users guide for software process improvement, Handbook

CMU/SEI-96-HB-001, Software Engineering Institute, Carnegie Mellon University (1996)
37. Ministerio da Ciencia e Tecnologia, Quality and Productivity of the Brasilian Software

Sector (in Portuguese), Ministerio da Ciencia e Tecnologia, Brazil (Government report –
No Author) (2001)

38. Mintzberg, H.: Structures in Fives: Designing Effective Organizations. Prentice Hall Inter-
national, Englewood Cliffs (1993)

39. Moe, N.B., Dingsoyr, T., Johansen, T.: Process guides as Software Process Improvement
in a small company. In: Proceedings of the EuroSPI Conference, Germany (2002)

40. Nonaka, I.: A dynamic theory of organizational knowledge creation. Organization Sci-
ence 5, 14–37 (1994)

41. Paulish, D.J.: Case studies of software process improvement methods, SEI Technical Re-
ports, CMI SEI-93-TR-26 (1993)

42. Paulk, M.C., Curtis, B., Chrissis, M.B., Weber, C.V.: Capability Maturity Model version
1.1. IEEE Software, 18–27 (July 1993)

43. Richardson, I.: SPI models: What characteristics are required for small software develop-
ment companies? Software Quality Journal 10, 101–114 (2002)

44. Richardson, I.: Software Process Matrix: a Small Company SPI Model. Software Process:
Improvement and Practice 6, 157–165 (2001)

288 D. Mishra and A. Mishra

45. Russ, M.L., McGregor, J.D.: A Software Development Process for small projects. IEEE
Software, 96–101 (September/October 2000)

46. Scott, L., Carvalho, Jeffery, R., Becker-Kornstaedt, U., Ambara, J.D.: Understanding the
use of an electronic process guide. Information and Software Technology 44(10) (2002)

47. Scott, L., Jeffery, R., Becker-Kornstaedt, U.: Preliminary results of an industrial EPG
evaluation. In: Proceedings of Fourth ICSE Workshop on Software Engineering over the
internet, Canada (2001)

48. Scott, L., Zettel, J., Hamann, D.: Supporting Process Engineering in Practice: An Experi-
ence Based Scenario. In: Proceedings of the Conference on Quality Engineering in Soft-
ware Technology (CONQUEST), Germany (2000)

49. Software Engineering Institute, Improving processes in small settings: A research initiative
of the SEI’s IPRC, http://www.sei.cmu.edu/iprc/iprc-overview.pdf

50. Software Engineering Institute Capability Maturity Model®Integration (CMMISM) Ver-
sion 1.1, http://www.sei.cmu.edu/pub/documents/02.reports/pdf/02tr004.pdf

51. SPIRE, Software Process Improvement in Regions of Europe, European Analysis Report
v2.0, ESSI Project: No. 23873, Dissemination action (April 1999),
http://www.cse.dcu.ie/spire

52. TickIT, A Guide to software quality management system construction and certification us-
ing EN29001, Issue 2.0, UK Department of Trade and Industry, London, UK (1992)

53. Wangenheim, C.G.V., Weber, S., Hauck, J.C.R., Trentin, G.: Experiences on establishing
software processes in small companies. Information and Software Technology 48(2006),
890–900 (2006)

54. Wieggers, K.E., Sturzenberger, D.C.: A Modular Software Process Mini-Assessment
Method. IEEE Software 171, 62–69 (2000)

55. Zahran, S.: Software Process Improvement: Practical Guidelines for Business Success.
Addison-Wesley, Reading (1998)

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 289–303, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Empirical Study on Software Engineering
Knowledge/Experience Packages

Pasquale Ardimento and Marta Cimitile

Dept. of Informatics, University of Bari, Via Orabona, 4,
I-70126 Bari, Italy

{ardimento, cimitile}@di.unibari.it

Abstract. This paper is concerned with characterization of software engineering
knowledge and experience packages (EP) in the user perspective. It presents the
first iteration of an evidence-based study. Results are presented from surveys
conducted with many practitioners about the available experience bases, and on
literature, to improve our understanding about the state of the practice and art for
EP. Additionally, the paper presents attributes and their properties that, in the
opinion of the participant practitioners, are relevant for characterizing an EP in the
user perspective. Subsequently, with regard to this empirical system, the
Acceptability indirect measurement model is provided for experience
components. Moreover, the test of this measurement model is shown, which
involved both developing qualitative evaluations with practitioners, and
measuring ten Internet-available experience bases. Finally, the threats to validity
are considered that, as usual for pilot studies, call for further investigation.

Keywords: Experience Package, Experience Base, Software Measurement,
Empirical Software Engineering, Survey, and Experiment.

1 Introduction

Software Engineering (SE) knowledge and experience is a critical factor for software
industry advancement [1,2,3]. The main SE processes - Development, Maintenance,
Evolution, and nowadays Revolution [4] (i.e. software architecture radical
reengineering) – still depend strictly on man-centered activities. Consequently, SE
knowledge and experience, as gained in doing research and developing products,
should be capitalized organization wide for reuse [5,6]. Assets to reuse should not be
limited to mostly mature knowledge and experiences, more or less formalized, in case
already taught; maturing and also pioneering experiences, lessons learned, and
implicit or tacit knowledge gained during the development of application software or
research projects, constitute a patrimony that should be [1,8,9] collected, analyzed, in
case developed ad hoc in laboratory, synthesized, documented, wrapped in
Experience Packages, EP(s), and distributed organization wide for reuse and tailoring
to project specificities, rather than neglected or left in the individual ownership, hence
subject to migration, and eventually forgotten and/or lost [10,11]. Finally, in our view,
knowledge and experience should be allowed for unrestricted circulation [7] both

290 P. Ardimento and M. Cimitile

intra and inter the SE research world and the production world, those scientists and
practitioners who share a value chain at least.

This paper is concerned with experience packaging: EP(s) and related structures,
e.g. an Experience Base (EB), or a System of EB(s), that is a structure of EB(s) or
Experience Base System (EBS). Because the paper shows that these objects share
experience-related basic properties, in the remainder of this paper, let us denote such
an object by EO, whatever it might be, an EP item, an EB or EBS structure.

The goal [12] is to characterize EO(s). The focus is on EO comprehension for
selection, and application. It is assumed the perspective of the software project team,
manager and technicians, in the context of an academic lab that works from many
years in strict relationship with software development organizations.

In order to meet this goal, we conducted surveys on literature and with practitioner
to identify the basic attributes and properties of the EO empirical relational system.
Moreover, we utilized practitioners to measure these attributes both qualitatively, and
qualitatively but in ordinal scale. Furthermore, we developed a software measurement
model (SMM) on the given empirical relational system. Finally, we verified these
SMM(s) vs. those qualitative/quantitative data by a pilot experiment.

The remainder of this paper is structured as follows: Section 2 recalls previous
work. Section 3 shows the paper motivation and research questions. Section 4
presents surveys, lesson learned, and qualitative/quantitative evaluations. Based on
these, Section 5 presents identification and characterization of the basic layers and
components of the Acceptability measurement model. Section 6 synthesizes on such a
model, which Section 7 verifies in lab by using ten experience bases. Section 8
completes the paper by providing some conclusive insights and final remarks, and
showing prospective works.

2 Previous Work

Let us recall a few of the EO related works. An extended technical report [16]
presents both the Empirical Relational System (ERS), and the Formal Relational
System (FRS) of this study, their properties, operations, and relations; it also includes
extended bibliography. An ERS can be, briefly defined as a model of the part of the
“real world” we are interested in and FRS represents the mapping to numbers or
symbols of the concepts of the real world, in particular, the formal objects relate to the
empirical objects, formal relationships model the empirical relationships and formal
operations are the mapping of empirical operations.

Software measurement models: Basic concepts are in classic books [13] and in some
more recent surveys [14, 15]. Some aspects were investigated that concern formal
definition and validation of attribute-based measurement models (see references
in [15]).

Regarding the development of SMM(s), it is fundamental the work about the Goal-
Question Metrics paradigm [12,17,18].

SE knowledge and experience representation for reuse and exchange: The Experience
Factory (EF) [19] was introduced for collecting, analyzing, synthesizing, storing, and
spreading organization wide knowledge and software experience of any kind, hence

 An Empirical Study on Software Engineering Knowledge/Experience Packages 291

making it available for project organizations. The EF concept was successively
refined [36], surveyed [8,20], taught [21], specialized to different domains [5],
implemented [22,23,24,25,26,27], and extended [28]. The EF is an architecture
framework that is able to support both the Quality Improvement Paradigm [29], and
the Goal-Question-Metrics method [18]. EF is a logical organization, which might
have or not have a separate physical implementation [5, 8, 1]. From the organizational
and technological points of view, an EF is founded around an experience base. From a
process perspective, an EF consists of methods, techniques, and tools for working on
reusable experience. To facilitate diffusion and reuse organization wide, knowledge is
organized in EP(s), which populate the EB.

In order to reuse a package without having to consult the person or group, who
initially gained and reported about an experience or formalized and stored knowledge,
an EP is to intend as a chunk of knowledge/experience that is organized according to
EF and EB rules and structures, including instructions for usage [30], and pros and
cons of such a usage.

Experience Packages: Some pioneering organizations begun with storing into
repositories, describing by digital catalogues, and publishing knowledge/experience
packages. Nowadays, an amount of EP repositories are available through Interned.
Moreover, a number of published papers describe and characterize the available EP(s)
[21]. However, regarding EP(s) transfer and circulation, the literature recognize that
we are still missing rigorous definition of the EP attributes necessary for having
transferable and able for circulation EP(s) [24].

3 Paper Motivation and Research Questions

Current knowledge/experience packages are very often published through Internet;
apparently, it should be easy to identify by various search engines, and eventually
access and use them for free or at reasonable cost.

Nevertheless, we should not neglect that practitioners still seem to access and use
those knowledge/experience packages rarely [31]. Whether this would hold true, we
should deduce that there must still be some significantly wrong things in the way we
use to package experiences. Regarding this point, a relevant question is hence: In
what extent, is it actually accessed and utilized the set of PE(s) available through
Internet? Answering this question in a useful way requires taking in major account the
point of view of the EP end-users, i.e. business-software stakeholders.

This leads to place further relevant questions, like: In what extent is it well defined
and implemented the set of EF and EO rules and structures that we use to
accommodate knowledge/experiences in packages and bases? Is it easy for business
stakeholders to look for recognizing useful EO(s), if any, among the available ones?
Is it reasonable the effort required; can a given organization afford it? Moreover:
Does it pay off using a recognized meritorious EO to start from the project on hand?
What is the trade-off, and who should pay for basic costs, like searching for useful
EO(s) and training personnel? In other words, some technical and economic barriers
still hamper the development and subsequent usage of EO(s). Removing or, at least,
moderating the impact of those barriers is a research task; hence, questions placed
above are research questions.

292 P. Ardimento and M. Cimitile

4 Preliminary Empirical Work

This paper is based on the development of a number of technology innovation and
transfer projects within an academic SE Research Laboratory (SERLab) [32]. These
projects were mainly aimed to transferring research results from that lab to production
environments [33].

At certain point in times, our doubts about the practical utility of some EP(s) we
were considering, pushed us to ask practitioners for their opinion about the usages, if
any, they were doing of EO(s) in their projects, and then, based on their depressing
answers, to conduct survey both on literature, and EO(s) as they are available through
Internet.

The goal of this preliminary stage of our research was hence to conduct a
qualitative study aimed to get confirmation/disconfirmation that EO(s) are rarely
utilized, in our region at least, and in case of disconfirmation, to start reasoning about
the why of such a result, what the influential factors might be, and what is the
perception about the levels of presence or absence of such factors in actual EO(s).

In order to meet this goal, we started with informally interviewing many
practitioners. Eventually, based on the analysis of the language these practitioners and
ourselves were using to describe pros and cons of using EO(s), we found some
recurring terms used, like EO’s “acceptability”, “comprehensibility”, “identifiability”,
“applicability”, “evaluability”, “usability”, “cost”, and so on. Additionally, an initial
kernel of lesson learned (LL) was established [34].

Then, in order to know whether SE had already identified these terms – and, in
case, had already transposed them in direct/indirect SMM(s) – we launched a survey.
This additional work gave us further insights, allowing us to extend the initial list of
collected LL [34].

Researchers and practitioners, who participated to this survey, agreed in
recognizing “acceptability” as the main term in the user view. Hence, we called
acceptability (Ea) the correspondent attribute of the EO empirical system; it should
be able to represent as a whole an experience component (i.e. package, base, or
system of bases), thus it was defined as in the followings (let the terms EP, EB and
EBS map the empirical attributes EPa, EBa, and EBSa, respectively):

• acceptability (Ea) concerns the extent in which an EO is adequate for usage
in the software applications a practitioner is developing or expect to develop.

Participants also identified three main empirical factors as in the followings, which
might influence the ability of software practitioners to cope with an EO; we should
look for relationships of these factors with Ea, if any:

• identifiability (Ei), which concerns the user quickness in recognizing
effectively the contents of an EO;

• applicability (Ec), which is the availability in an EO of the information that
users need for assessing cost and benefit of using that EO.

• evaluability (Ee), i.e. making explicit technical constraints, requirements, and
technical barriers, which relate to using an EO.

Additionally, the participants identified other potentially influential factors/sub-
factors/parameters, which next sections 5 and 6 will take in consideration.

Our consequent decisions were: to collect an as large as possible set of the EB(s) as
available through Internet; to select a number of them for pilot investigation; to

 An Empirical Study on Software Engineering Knowledge/Experience Packages 293

evaluate these EB(s) first qualitatively, and then quantitatively but using a scale as
rough as an ordinal one, from the perspective of the EB user, in view of utilizing
qualitative results to intersect [35], and results of all kinds to verify more precise and
reliable quantitative results, as a controlled experiment should provide.

Subsequently, we searched Internet for the available EB(s) by using common
search engines, so acquiring a number of EB(s). For this first iteration of our
investigation, we selected 10 EB(s), and all of them were in the SE area. These
constituted the EBS to investigate; rather than using pure random selection, we
preferred to conduct, and use results from, literature survey on EP analysis [36,
23,24]. We were aware of the fact that the size of the chosen EBS (#10) could not be
enough for deep inference analysis; however, we evaluated it adequate for a pilot
experiment, and the effort we could be able to enact in this stage of the study.

Following this point, we worked with each of the selected EO(s) in the aim of
evaluating them qualitatively and quantitatively from the consumer perspective.
Concerning the former, the question was: As a whole, is it the given EO good enough
for a consumer? Expected answer: Yes (Y), Not (N) or a documented Doubt (D).
Concerning the most recurrent attributes, how do you score each of them? Expected
result: Null or quite null (NN), Very Low (VL), Moderately Low (ML), Moderately
High (MH), Very High (VH), or Top most (TT).

Table 1 shows generic local identifiers (leftmost column) for the EB(s) we utilized
in the empirical study, and qualitative (rightmost column, QL) and quantitative results
obtained. These results flow over any pessimistic conjecture about the state of the
EP(s) practice in the user perspective.

In fact, all of the investigated EO(s) seem to be of no utility for practitioners.
However, these results also seem to give some interesting insights: Qualitative results
seem to show a similar movement than Ea. Additionally, a number of points could
depend on a combination of Ei, Ec, and Ee.

Table 1. Qualitative evaluation of, (column QL), and quantitative evaluations in ordinal scale
of some empirical attributes for, the experience bases utilized in this work

 Ei Ec Ee Ea QL
EB1 MH MH MH MH D
EB2 ML NN MH VL N
EB3 TT MH VL MH D
EB4 ML MH NN ML N
EB5 MH MH NN ML N
EB6 MH NN NN ML N
EB7 MH MH NN ML N
EB8 ML NN VL VL N
EB9 ML NN NN VL N
EB10 MH MH NN MH D

5 Attributes of the Acceptability Software Measurement Model

The goals of this section are to reason on knowledge/experience packages and bases,
and show some basic properties of an SMM, which we call Acceptability for the

294 P. Ardimento and M. Cimitile

empirical attribute acceptability, Ea. An extended version of this paper [16] is made
available on request to authors, which includes the detailed definition of the ERS,
FRS, and scales for EO(s). Nevertheless, some basic empirical findings should be
sketched, which concern the EO empirical system, including attributes
aforementioned Ee, Ei, Ec, and Ea. In order to abstract on these attributes, let us use
words that derive from “worth” (e.g. “worthiness”) to denote such an empirical
attribute, whatever it might be. Given two or more EO(s), some operations are
allowed, including the following ones. (i) Moving or copying information to an EP
(Merge, Copy); in the destination EP, the quantity of empirical attributes is affected;
this occurs in a way that a simple addition is not enough to model; what occurs is a
more or less complex averaging. In other words, it makes to decrease the worthiness
of a worth-for-use experience package moving to it unworthy or moderately worth
information, and vice versa, for what concerns moving worth-for-use knowledge to a
not meritorious package. (ii) Removing information from an EP package; similar to
behaviors describes in point (i) but reversed. (iii) Putting EP(s) in the same set; it is an
operation (Union) that does not change properties of those EP(s). Moreover: an EB is
a structure on such a set; keys should be provided for facilitating the access to EB
items; eventually, when the size of the EB is high enough, a catalog should be
attached to the set, in order to help users in property-based searching for an EP.

Based on the ERS sketched above, an ERS-homomorphic FRS is constructed that,
once augmented with a Ratio scale in a Real range, e.g. [0..1], leads to define SMM(s)
for Acceptability and related sub-factors, as next sub-section shows.

 5.1 Components of the Acceptability SMM

It gave us the chance of identifying the Acceptability’s main factors, sub-factors, and
so on up to reach leaf parameters, the EO surveys that we had conducted.

Let us scale all these factors, sub-factors, and parameters in the Real sub-range
[0..1]. Because each leaf parameter relates a chunk of information that serves a
precise objective in the EO user view, let 0 be assigned when the information is
missing or definitely bed, 1 when it completely meets the user needs, and an
intermediate value in proportion to the quality of the registered information, as being
between the worse and the best one. Of course, we expect that applying an indirect
SMM to an EO will provide a measure that is reasonably dependent on the values that
the EO components assume: e.g., an indirect SMM should return 0 (0.5 or 1,
respectively) when its leaf parameters measure 0 (0.5 or 1, respectively).

Let us note that, when we were in this stage with our study, we also started to
design the verification of the Acceptability SMM. Hence, in order to make
manageable our first iteration of the SMM development, we made the further design
decision to restrict the test cases for the leaf parameters to the central point, and the
upper and lower bounds, of the Real scale we had chosen for them; in practice, we
designed them to assume values 0.0, 0.5, and 1.0, in case just 0.0 and 1.0, so
postponing other test settings to further iterations.

5.1.1 Basic Factors
As already mentioned, in our view, three basic factors impact on Acceptability:

• Identifiability, i.e. the user quickness in recognizing the contents of an EP;

 An Empirical Study on Software Engineering Knowledge/Experience Packages 295

• Applicability, i.e. making explicit technical constraints, requirements, and
technical barriers, which relate to using an EP;

• Evaluability, i.e. the availability in an EP of the information that users need
for assessing cost and benefit expected for using that EP.

5.1.2 Sub-factors
The survey that we conducted also provided us with knowledge for identifying the
sets of information kinds that an EP is requested to include, in order to satisfy the
preconditions that make applicable the Acceptability basic factors.

Because many stakeholders participated in deriving these kinds of the due
information, some of those sets show a huge size. In other word, this lead the
breakdown of each basic factor in multiple sub-factors, and these in sub sub-factors,
eventually leaf parameters, i.e. factors that we are able to measure or want to leave to
their stakeholders for subjective evaluation. The remainder of this section presents the
decompositions that we made for the basic factors. See [16] for an extended
presentation.

5.1.2.1 Description Parameters. We call Description Parameters (DP) the categories
of the information that impact on Identifiability of an EO. In the followings, number 3
categories of description parameters are shown italicized, together with an associated
information kind and some comments. Domain (DP1): Application domain of the
EO. Problems afforded (DP2): Problems the EO could help to solve. The
author/owner of EO should express these problems in the user view and terms, i.e. as
the target stakeholders perceive and express them. Keywords (DP3): They specify
about the domain indicated for the given parameter. As far as a stakeholder proceeds
in refining her or his selection, keywords can give help in understanding the set of
problems that EO can solve, including problems that documentation does not
explicitly mention elsewhere.

5.1.2.2 Experience Parameters. Let us call Experience Parameters (ExP) the categories
of the information that impact on Applicability. In the followings, number 3 categories
of identifiability parameters are presented. History (ExP1): concerns (i) the When,
Where, and Why the EO was originated and, in case, modified; (ii) successes and
failures in applying EO in industrial settings, and (iii) problems of any kind encountered
with adopting EO for previous applications. Prerequisites (ExP2): in order to let an EO
be applicable, they enumerate the conditions that business process has to meet,
including activities to enact in advance, and semi finished materials, tools, techniques,
methods, resources, and skills to make available. Platform (ExP3): concerns the
infrastructures allowed for applying EO. It is worth to include and highlight
information about the flexibility of using EO with given infrastructures, and the level of
scalability these can afford without affecting the effectiveness of the EO adoption.

5.1.2.3 Evaluability Parameters. Let us call Experience Values (EV) the categories
of the information that impact on Evaluability. In the followings, number 11
categories of evaluability parameters are presented. Economic Impact (EV1): it is the
set of key performance indicators that might help users in assessing the EP significant
business value. Those indicators are requested to summarize on the whole economic

296 P. Ardimento and M. Cimitile

impact of each of the following parameter fields. Impact on Process (EV2): The set of
key performance indicators that should be used to assess the significant impact of the
package for each business process. They must summarize the whole impact of the
following fields. Impact on Products (EV3): Description of the consequences the new
knowledge will eventually have. Again, in this case, a model should be attached for
estimating the costs of application of the package (e.g. modification of any interaction
of the working products with the innovative ones; recovery of data from the old
products to be used in the new, any changes in platform hardware and software…)
and the benefits. Market Impact (EV4): Description of what market changes the
company setup will note after introduction of the knowledge package. A cost-benefit
estimation model should be attached. Impact on Value Chain (EV5): Description of
changes in the whole value chain, and especially the impact on the business processes
related to the innovated process. One integrated or two separate cost-benefit models
should be present. Value for the Stakeholders (EV6): Detailed analysis of all the
expected values per type of stakeholder, who is concerned with applying the given
EP. Values are expected to be expressed quantitatively as far as possible, therefore
have an attached estimation model. Adoption Risks (EV7): Events that could occur
during the EP adoption process and give a negative impact on time needed to acquire
the knowledge that the EB includes, or on cost to incur and/or benefits to gain for
using the EP. Actions that the EP puts in place to mitigate the risk should be
explained in detail, including how and in what extent they work. All the risks listed
should be associated with mitigation actions described in the EP Package Acquisition
Plan (see next point). Package Acquisition Plan (EV8): Details about the actions to be
taken in order to apply the EP. The plan is requested to point out how to govern the
bearing of the innovation. The acquisition process is requested to report on trace from
needs to resources. It is also requested to indicate acquisition time and costs; these
should be predictable; hence the PE should be attached to appropriate estimation
models. The EP is also requested to indicate what are activities that it ensures,
benefits that it provides, and actions to take for maximizing benefits and mitigating
the risks. Skills Required (EV9): The skills necessary to utilize the package should be
described in detail. Models for package acquisition should also be described. It is
also worth to describe in detail how the skills will evolve that the package has a
bearing on. Evidence (EV10): The documentation files should be attached, where data
and information are located that concern verification of the included empirical
models. Owing to the cost of this validation, collections of experience applying the
same package in previous projects, even in different contexts, can be amply used.
Package Owner Cost (EV11): Return On Investment (ROI) calculation Model taking
into account the expected costs and benefits derived from all the other variables
regarding application of the knowledge package.

6 Synthesizing the Acceptability SMM

The goal of this section is to provide synthesized models, i.e. SMM(s), for the
breakdown shown in Section 5, and put all together, layer after layer, up to reach the
top layer, and so defining the Acceptability SMM. Let us recall that all the presented

 An Empirical Study on Software Engineering Knowledge/Experience Packages 297

SMM(s) take value in the Real range [0..1]. In the remaining SMM(s) are formally
defined1.

∀k Є [1 .. EBS.size()], let it be:

• Description Parameter Presence, DPP[i, k], i in [1 .. DP.size()]. DPP[i, k]
takes value in {0, 1}, taking the latter if and only if (“iff”) the EB[k]
includes one or more EP(s) having DP[i] = 1.

• Experience Parameter Presence, EPP[i, k], as for DPP; takes 1 iff the EB[k]
includes one or more EP(s) having ExP(i) = 1.

• Experience Value Presence, EVP[i, k], s for DPP, but taking 1 iff the EB[k]
includes one or more EP(s) having EV(i) = 1.

• Description Parameter Rate, DPR[k]: for EB[k], it takes value according
to (1).

• Experience Parameter Rate, EPR[k]: for EB[k], it takes value according
to (2).

• Experience Value Rate, EVR[k]: for EB[k], it takes value according to (3).
• Based on SMM(s) from (1) to (3): Let the acceptability EPA of a given EP be

a function of the EP’s triplet (DPR, EPR, EVR). The same holds for the EBA
of an EB, and the EBSA for an EBS. Hence, it is allowed using the simpler
notation EA to denote any of them. The more this triplet approaches the value
(1,1,1), the more acceptable is to consider the EO. In order to make simpler
the usage of our SMM, let EA take value according to (4), again in the Real
range [0..1].

Finally we can define three further SMM(s), one per basic-factors, which we call
Identifiability Influence (II), Applicability Influence (AI), and Evaluability Influence
(EI), respectively. They take Real value again in the Real range [0..1], according with
formulas (5), (6), (7), respectively.

DPRn= ∑i DPPi, n /DP.size(). (1)

EPRn= ∑i EPRi, n /EP.size(). (2)

EVRn= ∑i EVPi, n /EV.size(). (3)

EA(E) = (DPR(E) + EPR(E) + EVR(E))/BasicFactors.size(). (4)

1 In the aim managing the complexity of the description in the limited room made available, the

notation utilized is a classic object-oriented index-based notation. Hence, for a given EBS,
EBS.size() return the number of the included EB(s), and similarly for other structures: e.g.
BasicFactors.size() returns the number of basic factors (3 in the current version of the model),
DP.size() returns the number of DP parameters (3 in the current version of the model), and the
same holds for EP.size(). Again, EV.size() returns the number of EV parameters (11 in the
current version of the model). An expression like ∀k Є [1 .. EBS.size()] should read “For any
EB in the current EBS, let the following points be applied”. EB[k] should read “The k-th EB
of EBS”. Similarly for EB[k].Z.size(), and EB[k].Z[i], which should read “The size of the
item Z in an EB”, and “the i-th element of the item Z in the k-th EB”, respectively.

298 P. Ardimento and M. Cimitile

II=∑t (DPRt=1..E.size())/E.size(). (5)

AI=∑t (EPRt=1..E.size())/ E.size(). (6)

EI=∑t (EVRt=1..E.size())/ E.size(). (7)

7 Pilot Experiment

In order to verify the Acceptability SMM, we conducted a pilot empirical by using the
EB(s) in Table 1, first column, as experiment objects. Two subjects – the same
researchers who had developed the Acceptability SMM – utilized each of the EB(s)’
ES and assigned values to the ES leaf parameters. They eventually applied bottom-up
the indirect SMM(s) in Section 6, so assigning value to leaf parameters and measuring
for sub-factors, factors, and Acceptability.

The basic experiment hypotheses to confirm or disconfirm were that SMM
outcomes significantly meet the correspondent quantitative and qualitative measures
in Table 1, as agreed by a large collectivity of practitioners and researchers, based on
experience. These practitioners, in some way, should be to consider experiment
subjects too.

7.1 Data Presentation and Analysis

For each EB(s) in the given EBS, reports the values that factors DPR, EPR, EVR, and
EBA assume. An extended version of this paper [16] reports figures for frequency
distribution, box plots, and further graphics of data in

Table 2.
Let us observe that it usually shows very low values, the Acceptability (see

rightmost column in Table 2) of the given EBS’EB(s) (first column).
The best EBA value (0.56) relates to EB1 and is a few up the central point of the

scale (0.50); the worst EBA value (0.11) relates to EB9; this is an EB with which we
were in great difficulty also when trying to visit it. Note that Real values in Table 2
completely map the qualitative/ordinal values in Table 1.

Based on the EBA data in Table 2, we can use expression (4) for an easy
calculation of the Acceptability for the given set of EB(s), so obtaining again a quite
low value (see expression (8)).

Based on the DPR, EPR, and EVR data in Table 2 (see the homonymous columns),
we can easily obtain values for II, AI, and EI, respectively (9).

EBSA= 0.32. (8)

II=0.56; AI=0.26; EI=0.13. (9)

 An Empirical Study on Software Engineering Knowledge/Experience Packages 299

Table 2. Acceptability of the experiment EBS

 DPR EPR EVR EBA

EB1 0.66 0.66 0.36 0,56
EB2 0.33 0.00 0.27 0.20
EB3 1.00 0.33 0.18 0.50
EB4 0.33 0.33 0.09 0.25
EB5 0.66 0.33 0.09 0.36
EB6 0.66 0.00 0.09 0.25
EB7 0.66 0.33 0.00 0.33
EB8 0.33 0.00 0.18 0.17
EB9 0.33 0.00 0.00 0.11
EB10 0.66 0.66 0.00 0.44

Concerning the EB sample utilized in the experiment, let us consider the results of
tests run to determining whether EBA, DPR, EPR, and EVR can be adequately
modeled by normal distributions. As expected, the chi-square tests were not run
because the number of observations was too small for each of those variables.
However, since the smallest P-value among the test performed is not greater than 0.10
for EBA and EVR, we cannot reject the idea that EBA and EVR come from a normal
distribution with 90% or higher confidence. Vice versa, since the smallest P-value
among the test performed is greater than 0.10 for DPR and EPR, we cannot reject the
idea that any of them comes from a normal distribution with 90% or higher
confidence.

Concerning the results of fitting a multiple linear regression model to describe the
relationship between EBA and the independent variables DPR, EPR, and EVR in
Table 2, expression (10) shows the equation of the fitted model. Since the P-value in
the ANOVA table is less than 0.05 (see [16]), there is a statistically significant
relationship between EBA and the given three independent variables at the 95%
confidence level. The R-Squared statistic indicate that the model as fitted explain
79.11% of the variability in EBA. In determining whether the model can be
simplified, notice that the highest P-value on the independent variables is 0.74,
belonging to EVR. Since the P-value is greater than 0.10, that variable is not
statistically significant at the 90% or higher confidence level. Consequently, we
should consider removing EVR from the model.

EBA= 0.12 + 0.18*DPR + 0.37*EPR + 0.07*EVR. (10)

7.2 Discussion

Computation (8) asserts that it is definitely low the level of Accessibility of the EBS,
which we made by selecting through Internet from the EB(s) that SE literature mostly
mentions. It seems to justify the definitely scarce usage of SE EB(s) in professional
environments, the lack of supports and guidance that those EB(s) offer to professional
users. At the present state of the art, because of the structure and organization of
EB(s) as they are, it seems that the EB(s) designers do not account enough the point

300 P. Ardimento and M. Cimitile

of view of the practitioner software engineers, who, in their turn, demand for
simplifying the access to, and suppressing barriers to consultation, comprehension,
and acquisition of EB(s).

Expression (9) shows that values of Evaluability and Identifiability are quite small.
However, it also shows that Applicability seems to influence more than Identifiability
the EBSA (low) result, while Evaluability seems to be ininfluent. O course, due to the
importance of the latter in the empirical domain, there must be something wrong in
the used EBS and/or the proposed SMM.

The median of DPR is 0.67; hence, its distance from the top value (1.0) is 50% of
its own value. Despite the unsatisfaction that this value generates, it also indicates that
more than half of the analyzed EB(s) do wrap information which significantly
facilitate the identification of the EP(s). Because the lowest DPR value does measure
0.33, then the whole EBS contains some EP-identification-oriented pieces of
information. Hence, while we recognize that producers pay some attention to
describing knowledge and experiences that their EP(s) encompasses, our study seems
to tell that a major attention should be prescribed for information of this kind, and
related formatting rules and standard representation schema should be provided.

The median of EPR is 0.33, which is really far away the top of the scale (1.0). This
confirms that, concerning the EP(s)’ technicalities, the analyzed EBS show a lack of
information for applicability. The lowest EPS value is 0.0, which occurs 4 out of 10
times. This means that a consistent part of the EBS does not include technical
descriptions of any kind, which could help users to evaluate the given packaged
knowledge for use in their applications. In conclusion, EP(s) producers seem to place
no care in providing information oriented to support EP(s) applicability.

The median EVR of is 0.10, which is a value near to the very bottom of the scale
(0). In fact, for the given experiment data set, the bottom-scale occurs three out of ten
times. Data range from 0.00 up to 0.18; hence, the whole experiment EBS is very
short of validated cost-benefits information. This means that EP users are not allowed
to develop reliable benefit/cost analysis related to the acquisition/usage of such an EP.

In conclusion, it is reasonable that practitioners rarely utilize the knowledge, which
the EBS we analyzed makes available. The Acceptability SMM we have been
providing is quite as huge as the empirical domains it addresses; however, it makes
explicit a practitioners’ tacit believe that there are problems with quality of
information that EP(s) encompass.

7.3 Validity Evaluations

The conduced empirical studies belong to the categories of Survey, and Pilot Study
for SMM verification, respectively.

As already mentioned, we enacted surveys informally, i.e. without having a plan
defined and documented in advance. However, because we had continual tight contact
with the participant practitioners, we met them as frequently as we needed, and hence
were able solve doubts, and eventually to keep threats in control, to the best of our
understanding.

Concerning the validity of results: External validity; we are sufficiently confident
that the selected experiment EP(s) are built as similar as professional and business
ones. Hence, threats should not affect the external validity of this work. Internal

 An Empirical Study on Software Engineering Knowledge/Experience Packages 301

validity: due to the higher expertise of involved subjects, and the used treatments,
threats should not affect the internal validity of this study. However, not using
common forms for collecting EP knowledge from practitioners could be a threat.
Construct validity: because members of the research group were also involved as
experiment subjects, and they were interested to get successful results for their own
PhD thesis, hypotheses guessing/fishing should be accounted as a threat. Conclusion
validity: both the type and limited number of the experiment objects used should be
accounted for threatening seriously the conclusion validity.

8 Conclusions and Future Work

In the present paper, we have been studying experience bases (EB) and their packages
(EP) in the perspective of the professional user. We used ten EB(s), which are mostly
mentioned in the scientific literature, as experiment sample. We analyzed these
packages, and conducted surveys with experts and through literature, to the aim of
understanding the extent in which they are able to support their actual/potential target
users by giving these users the information they need to import those chunks of
knowledge in their processes and products. To this aim: (i) with the help of many
software practitioners, we detected basic attributes for, (ii) we developed, and (iii)
verified, a basic Software Measurement Model (SMM), which we called
Acceptability, and some other related sub-SMM(s).

Results show that Acceptability is a promising measurement model for EP(s):
however, it should be further verified with more objects and subjects. However, those
results confirm the believe of the involved practitioners that the acceptability of the
experience bases as they are is mostly not yet sufficient for an extensive inclusion in
their software processes, (ii) fortunately, there are many EB(s) that encompass
information devoted to support the use on EP(S); however, this information usually
shows very poor quality and organization.

The experience we gained is giving our prospective work a twofold goal: (i)
enacting extended test of, and improving our Acceptability measurement model,
according to the collected set of lessons learned, and (ii) identifying and
experimenting with further ideas, which relates to the architecture of the information
to organize in an EB in view of improving the EB’s acceptability in the user
perspective.

References

1. Davenport, T.H., Prusak, L.: Working Knowledge. Harvard Business School Press (1998)
2. Agresti, W.: Knowledge Management. Advances in Computers, 53 (2000)
3. Endres, A., Rombach, D.: A Handbook of Software and Systems Engineering. Addison-

Wesley, Reading (2003)
4. Cantone, G., D’Angiò, A., Falessi, A., Lomartire, A., Pesce, G., Scarrone, S., Does a well

structured code pay off? In: A Pilot Study, TR UoRM2 DISP submitted for acceptance to
Profes 2008 International Conference (2008)

5. Basili, V.R., Caldiera, G., Cantone, G.: A Reference Architecture for the Component
Factory. ACM Transactions on Software Engineering and Methodology (1994)

302 P. Ardimento and M. Cimitile

6. Decker, B., Ras, E., Rech, J., Klein, B., Reuschling, Ch., Höcht, Ch., Kilian, L.,
Traphoener, R., Haas, V., A Framework for Agile Reuse in Software Engineering using
Wiki Technology. In: Knowledge Management for Distributed Agile Processes Workshop,
Germany (2005)

7. Chesbrough, H.W.: Open Innovation: The New Imperative for Creating And Profiting
from Technology. Harvard Business School Press (2005)

8. Basili, V.R., Caldiera, G., Rombach, H.D.: Experience Factory, Encyclopedia of Software
Engineering, vol. 1. John Wiley & Sons, Chichester (1994)

9. Bomarius, F., Ruhe, G.: Learning Software Organization, Methodology and Applications.
LNCS. Springer, Heidelberg (2000)

10. Thong, J.Y.L., Hong, W.Y., Tam, K.Y.: What leads to user acceptance of digital libraries?
ACM, New York (2004)

11. Basili, V.R., Rombach, H.D.: The TAME Project: Towards improvement-oriented
software environments. IEEE Transactions on Software Engineering (June 1988)

12. Basili, V.R., Weiss, D.M.: A methodology for collecting valid software engineering data.
IEEE TSE SE-10(6) (1984)

13. Fenton, N.E.: Software Metrics: A Rigorous Approach. Intl. Thomson Computer Press
(1991)

14. Cantone, G., Donzelli, P.: Software Measurements: from Concepts to Production, TR
ISERN-96-15 (in Italian), For A slightly up-dated version of this paper see Cantone G.,
Donzelli, P. e Pesce, G.: Misure software: teoria, modelli e ciclo di vita. In: GUFPI –
ISMA (Eds.) Metriche del Software. Esperienze e ricerche, Franco Angeli (2006),
http://isern.iese.de/network/ISERN/pub/technical_reports/ise
rn-96-15.pdf

15. Morasca, S.: Software Measurements. In: Handbook of Software Engineering and
Knowledge Engineering, ch. 26, vol. 1, World Scientific Publishing Co. Pte. Ltd,
Singapore (2001)

16. Ardimento, P., Cimitile, M.: An Empirical Investigation on Software Engineering
Knowledge/Experience Packages: Surveys on the State of the Art and Practice,
Development of Measurement Models, and Pilot Experimental Verification, TR01, DI
UoBari (January 2008)

17. van Solingen, R., Oivo, M., Hoisl, B., Rombach, D., Rue, G.: Adopting GQM-based
measurement in an industrial environment. IEEE Software (January/February 1998)

18. Solingen, R., van Berghout, E.: The Goal/Question/Metrics Method: a practical guide for
quality improvement of software quality. McGraw-Hill PC, New York (1999)

19. Basili, V.R.: Software Development: A Paradigm for the Future. In: Proceedings of
COMPSAC (1989)

20. Koennecker, A., Jeffery, R., Low, G.: Lessons Learned from the Failure of an Experience
Base Initiative Using Bottom-up Development Paradigm. In: Proceedings of the 24th
Annual Software Engineering Workshop, USA (1999)

21. Ruhe, G.: Experience Factory-Based Professional Education and Training. IEEE Software
(1999)

22. Basili, V.R., McGarry, F.E.: The Experience Factory: How to Build and Run One. In:
Tutorial given at the 17th International Conference on Software Engineering. ACM Press,
New York (1995) A slightly up-dated version of this paper was also presented at the 20th
International Conference on Software Engineering (ICSE 2000),Kyoto, Japan, April
(1998)

 An Empirical Study on Software Engineering Knowledge/Experience Packages 303

23. Basili, V.R., Lindvall, M., Costa, P.: Implementing the Experience Factory concepts as a
set of Experience Bases. In: Proceedings of the 13th Conference on Software Engineering
and Knowledge Engineering (2001)

24. Basili, V.R., Bomarius, F., Feldmann, R.L.: Get Your Experience Factory Ready for the
Next Decade: Ten Years After Experience Factory: How to Build and Run One, ICSE
Tutorial (2007)

25. Jedlitschka, A., Pfahl, D.: Experience-Based Model-Driven Improvement Management
with Combined Data Sources from Industry and Academia. In: Proceedings of the 2003
International Symposium on Empirical Software Engineering (2003)

26. Broomé, M., Runeson, P.: Technical Requirements for the Implementation of an
Experience Base. In: Proceedings of the Eleventh Conference on Software Engineering
and Knowledge Engineering, Germany (1999)

27. Jedlitschka, A., Nick, M.: Software Engineering Knowledge Repositories. In: Conradi, R.,
Wang, A.I. (eds.) Empirical Methods and Studies in Software Engineering Experiences
from ESERNET. Springer, Heidelberg (2003)

28. Feldmann, R.L., Rus, I.: When Knowledge and Experience Repositories grow new
Challenges Arise. In: Proceedings of the 5th International Workshop on Learning Software
Organizations (2003)

29. Basili, V.R.: The Maturing of the Quality Improvement Paradigm in the SEL and
Experience Factory Fundamentals. In: 18th Software Engineering Workshop (SEL),
NASA/Goddard Space Flight Center, Greenbelt, MD, 1-2 December (1993)

30. PERFECT Consortium, PIA Experience Factory- The PEF Model, PERFECT Consortium
(1997)

31. Rus, I., Lindwall, M.: Knowledge Management in Software Engineering. IEEE Software
(2002)

32. http://www.serlab.di.uniba.it
33. Boffoli, N., Caivano, D., La Nubile, F., Visaggio, G.: La Sperimentazione come Veicolo

per l’Introduzione di Innovazione Tecnologica, AICA (2003)
34. Ardimento, P., Cimitile, M.: Lesson Learned while Studying Empirically Software

Engineering Knowledge/Experience Base, TR01, DI UoBari (January 2008)
35. Seaman, C.: Qualitative Methods in Empirical Studies of Software Engineering. IEEE

Transaction on Software Engineering 25 (1999)
36. Basili, V.R.: The Experience Factory and its relationship to other quality approaches. In:

Advances in Computers, vol. 41, Academic Press, London (1995)
37. Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell, B., Wesslen, A.:

Experimentation in Software Engineering: an Introduction. Kluwer Academic Publishers,
Dordrecht (2000)

38. Jedlitschka, A., Pfahl, D.: Experience-Based Model Driven Improvement Management
with Combined Data Sources from Industry and Academia. IEEE Software (2003)

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 304 – 316, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Customized Predictive Models for Process
Improvement Projects

Thomas Birkhölzer1, Christoph Dickmann2, Harald Klein3, Jürgen Vaupel2,
Stefan Ast3, and Ludger Meyer3

1 University of Applied Sciences Konstanz, Braunegger Str. 55, 78462 Konstanz, Germany
thomas.birkhoelzer@htwg-konstanz.de

2 Siemens Medical Solutions, Postfach 3260, 91050 Erlangen, Germany
{christoph.dickmann, juergen.vaupel}@siemens.com

3 Siemens CT SE 3, Otto-Hahn-Ring 6, 81730 München, Germany
{h.klein, stefan.ast, ludger.meyer}@siemens.com

Abstract. A methodology is presented to quantitatively model the expected re-
lationships between investments in process improvements and improvements in
business measures. Such a predictive model can be used as an auxiliary in proc-
ess improvement planning in addition to established models like CMMI. Differ-
ent from a generic model like CMMI, the proposed methodology allows for
creating a fully customized model focusing on the context or product at hand.
To manage the inherent parameter uncertainty of quantitative modelling of
software processes a novel approach in this context is used by explicitly han-
dling the parameter variations using interval arithmetic. The paper outlines the
methodology and presents results from a study at Siemens.

Keywords: Process Improvement, Modelling, Quantification, Simulation.

1 Introduction

Each process improvement project or effort is guided by expectations of the relation-
ships between investments in process improvements and the “resulting” improve-
ments in business measures. For example, an improvement in the process area re-
quirement engineering ought to yield better customer satisfaction and therefore better
business results in the long term.

Ideally, these expected relationships determine the priority and order of improvement
efforts (which process areas or practices should be considered first?), the chosen amount
(how much is necessary / appropriate to achieve the desired return on investment?), and
the measurement of success (did the improvement project meet the promises?).

However, process performances and therefore process improvements are just one
factor influencing the respective business measures. For example, customer satisfac-
tion depends not only on the quality of requirement engineering (or other internal
processes) but on technology changes, competitor behaviour, market trends, and
sometimes even unsubstantiated customer perception. Thus, the relationships between
process improvements and business measures are highly perturbed by other superim-
posed effects and cannot easily be read off existing data. Therefore, only few of such

 Customized Predictive Models for Process Improvement Projects 305

statistic relationships are reported in the literature based on long term observations or
surveys with many participants [14]. Moreover, such generic findings may or may not
apply to a concrete situation or organization.

This creates the well known dilemma for most process improvement efforts: The
groundwork of attestable relationships between efforts and results is just not readily
available. There are two common ways to cope with this:

Either, process improvement efforts are planned or proposed on implicit qualitative
expectations of process experts, but without concrete or explicit quantification: A
practice is proposed and argued as “better” in a concrete situation and in terms of cer-
tain issues, but usually without any quantification and consideration of side-effects.
This approach is often successful, because it is based on the expert’s knowledge of the
concrete environment; however, the implicit nature of such reasoning hampers prior-
ity planning, resource balancing, and control of success.

Or, process improvement efforts are planned based on existing generic process
models like CMMI [13]. A CMMI assessment usually provides clear guidelines for
improvement priorities and feedback on the success so far (improvement in capability
or maturity level) based on a model that is acknowledged and widely adopted. How-
ever, the generic nature of the model does not consider any specific context, e.g. the
priorities based on the capability or maturity levels may or may not be optimal for a
concrete organization.

In this situation, a third alternative is described in this paper: Explicit quantitative
modelling of the implicit knowledge of the experts of the organization. The basic goal
is to cast the assumptions and experiences of the experts into a model that estimates
the eventual business outcomes of improvement investments. Such a customized or-
ganization- or product-focused model can then be used as an auxiliary tool for priority
planning, resource balancing, and control of success. Within a process improvement
project, such a modelling can be accomplished with reasonable extra effort as will be
outlined below. Such modeling also helps defining measures and improving the un-
derstanding of software development processes and their results.

Of course, such an estimation tool can not claim proven evidence. The results must be
handled with the appropriate care and should augment, but not replace other reasoning. In
order to support this, the inherent variation (due to uncertainty or different assessment by
experts) of the parameters is preserved using an interval arithmetic calculation.

Modeling and simulation is an emerging methodology in the context of process
improvement. An overview of the field can be found in [3] and [7]. The prevailing
approach is to model software project performance [2], [4], [5], [6], [8], [9], [11], i.e.
the simulation resembles the course of a single software project. To evaluate process
alternatives, different simulation runs with different parameters or model structure are
then compared.

In our work, the goal is a model on the level of the organization as a whole, i.e.
simulation variables represent the process definition and performance in organizations
that use process models to run development projects. Of course, from a bottom-up
perspective, organization performance consists of the sum of project performances.
Therefore, one might consider simulating organization performance based on single
projects. However, such a bottom-up approach would create a very complex simula-
tion which would be comprehensible only for specialized model experts. For this rea-
son, a top-down modelling approach was chosen as described in section 2.1. A similar
idea, however with a much more limited scope, can be found in [10].

306 T. Birkhölzer et al.

In this paper, the use of interval arithmetic is introduced in this context to explicitly
embody the existing, inevitable parameter uncertainty in the model and in the simula-
tion outcomes.

In section 2 the generic structure of the model and the underlying calculus are out-
lined, section 3 discusses the necessary steps to actually instantiate a customized
model, and section 4 presents some exemplary results of a pilot study. The paper is
concluded by a brief discussion of possible uses of such a model in section 5.

2 Model

2.1 Structure

In order to compare the effects of different investment scenarios in the context of proc-
ess improvement, the predictive model should relate investments in a (customizable) set
of process areas to a (customizable) set of development or business metrics, see Fig. 1.
The metrics as indicators of process performance can itself be used to decide about the
process improvement investment in the next improvement iteration.

To achieve this, the model structure is to be designed as a compromise between
expressiveness, i.e. ability to capture the important characteristics of the relations, and
comprehensibility. The latter is of special importance to enable software process
experts to use and customize the model, but requires the introduction of top-down
(simplifying) abstractions.

Moreover, additional details of a model structure are justified only if data or
knowledge is available to fill the associated parameters. Otherwise, parameter uncer-
tainties superpose any effects gained by the added details.

Therefore, the model is based on the following abstractions:

• The performance of a process area can be described by a single number, e.g. the
capability level. This concept is taken from established process models like
CMMI or SPICE.

• A continuous investment is necessary to maintain a certain performance of a
process area. This reflects the fact that process improvement is not a one time
effort but needs continuous dedication.

• The performance of a process area reacts with a first-order time-dynamic with
dead-time to a change in investment, see Fig. 2.

Predictive model of a
software development

organization

Investments
into a set of
process areas Set of metricsPredictive model of a

software development
organization

Investments
into a set of
process areas Set of metrics

Fig. 1. External view of the intended predictive model: The model should relate in-
vestments to outcomes in order to enable analysis of different investment strategies

 Customized Predictive Models for Process Improvement Projects 307

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13

Time steps

C
ap

ab
ili

ty
le

ve
l

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13

Time steps

C
ap

ab
ili

ty
le

ve
l

Delay

Agility

Fig. 2. Step response of a first-order time-dynamic with dead-time as used in equation (1) with

the two parameters agility λ and delay τ

• Metrics depend on the performances of process areas only. Each metrics can po-
tentially be influenced by any process area. Other influences are considered as
constant (i.e. are omitted in the context of the model).

• All dependencies are either linear or gated by another model element. The latter
is used to model the notion of prerequisites, i.e. the fact that some process areas
require a certain performance of other process areas in order to be effective.

These abstractions were translated into mathematical formulas. The resulting

mathematical model consists of sets of inputs () n
tntt uuu R∈= ,,1 ˆ,,ˆˆ K representing in-

vestments, internal state variables () n
tntt xxx R∈= ,,1 ˆ,,ˆˆ K representing normalized

process area performances, and outputs () m
tmtt yyy R∈= ,,1 ˆ,,ˆˆ K representing nor-

malized business metrics. These model elements are related by time-discrete, nonlin-
ear, first-order difference equations:

itiitiiti sxx τλλ −+ ⋅+⋅−= ,,1,)ˆ(n)1(ˆ , (1)

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

⋅⋅+⋅

⋅+⋅=

∑ ∑

∑∑

j j

x
ij

x
ij

j

tj
x

ij
x

ijtl
x

ij

j

tj
x

ij

tiiti

xxx

eus
ij

)()(

,
)()(

,
)(

,
)(

,,

)ˆ(n),),ˆ(ng()ˆ(n

ˆ

γβ

μνγβ
α , (2)

()

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

⋅⋅+⋅
=

∑ ∑

∑ ∑

j j

y
ij

y
ij

j j

tj
x

ij
x

ijtl
y

ijtj
y

ij

ti

xxx

y
ij

)()(

,
)()(

,
)(

,
)(

,

)ˆ(n,),ˆ(ng)ˆ(n

ˆ

γβ

μνγβ
 , (3)

308 T. Birkhölzer et al.

⎪
⎩

⎪
⎨

⎧

<
≤≤

>
=

0for0

10for

1for1

)(n

arg

argarg

arg

arg , (4)

)(1

1
),,g(μνμν

−−+
=

arge
arg . (5)

Equation (1) embodies the time characteristic of the process area performances. It
uses time difference equations (i.e. discrete time) instead to differential equations (con-
tinuous time) because the simulator should provide outputs only at discrete time points
to reflect the fact that most real world metrics are also available a discrete time points
only. Moreover, difference equations can be implemented without integration method-
ology (system dynamics). Equation (2) expresses the relationships within process area
performances and equation (3) between process area performances and metrics con-
taining linear and gated dependencies. Equations (4) and (5) are auxiliary functions for
normalization and gating. The denominator terms in equation (2) and (3) normalize the
values of all variables to the range zero to one. This complicates the formulas, but dras-
tically eases parameter identification since no scaling issues need to be considered. The
gating function as specified by equation (5) is used to model that a certain capability
level of one process area is a prerequisite of the effects of another process area. Further
details and motivation of this structure can be found in [12] und [15].

2.2 Interval Arithmetic

Equations (1) to (3) contain parameters γβατλ ,,,, , which are to be specified based

on expert knowledge, see section 3. Since none of these parameters is amenable to a
precise measurement or evaluation, this parameter identification can not provide or
claim sharp values for each parameter. More realistically, each parameter is character-
ized by an interval, e.g. []iii hl ,∈λ , where il is the smallest and ih the largest

value, which the parameter might assume. This interval carries the notion of the pa-
rameter fuzziness due to varying expert appraisals, varying organizational environ-
ments, or inherent uncertainty.

Using interval arithmetic [1], this parameter fuzziness can be directly accounted for
in the calculus of the model.

The basic idea of interval arithmetic is to provide worst case estimates for the re-
sults of mathematical operations involving variables bounded by intervals, e.g.

[] []
[]

[] .),,,max(,),,,min(

,

,,

kikikikikikikikiki

kikiki

kkkiii

hhlhhlllhhlhhlllaa

hhllaa

hlahla

⋅⋅⋅⋅⋅⋅⋅⋅∈⋅⇒
++∈+⇒

∈∧∈
 (6)

The incorporation of this interval arithmetic into equations (1) to (5) is rather
straightforward by replacing the standard mathematical operation by interval opera-
tion yielding to intervals as results for the process area performances tx̂ and metrics

tŷ . Special consideration, however, is required for the normalization in equation (2)

and (3), because in these equations the same parameters appear at multiple places

 Customized Predictive Models for Process Improvement Projects 309

(nominator and denominator). Simple interval arithmetic would ignore this depend-
ency and create an overly pessimistic result, i.e. an interval larger than necessary.
However, it can be shown, that the worst case values (minimum and maximum) are at
the limits of the respective parameter intervals. Therefore, an embedded combinato-
rial search can provide the sought-after result interval.

3 Instantiating a Customized Model

In a study at Siemens, the methodology to instantiate a model based on the framework
presented in section 2 was developed. It proceeds along the following steps:

1. Collection of the sets of process areas, which should be considered in the model.
In a concrete environment this is usually rather straightforward process manage-
ment knowledge or an organizational standard.

In the Siemens project, 19 process areas were used [15] that are part of a com-
pany-internal common process model which is based on CMMI. This static model
comprises the process areas, the metrics, and qualitative relations between them. It
was developed and agreed on within Siemens independent of the simulation model
by a community process involving experts from all business units.

2. Collection of the set of metrics, which should be considered in the model. De-
pending on the maturity of the organization, the existing metric definitions might
be refined or complemented during this step.

In the Siemens project, the 7 metrics of the company process model were
chosen.

3. Identification of the model parameters using a questionnaire-based expert survey.
The questionnaire used in the Siemens project contained 126 questions, most of

them with seven scaled answer alternatives to check. It took 40-90 minutes to
complete. Specific care was taken to phrase the questions in the language of proc-
ess experts, not using mathematical terminology or formulas. Instead, the ques-
tions focused on one model aspect at a time, e.g. the time variations (agility) of
one process area or the strength of a particular relation. The 26 Siemens experts
who completed the questionnaire had process knowledge from different Siemens
business units with distributed software development and on average 6.6 years of
process improvement expertise.

4. Compilation of the answers to determine the range for the respective parameter.
In the Siemens project, the first and third quartiles of the answers were used as

boundaries for the respective intervals to capture the existing variation but to ex-
clude outliers. The sizes of the intervals were between one and four on the scale of
seven answer alternatives with an average of about two. For example the first and
third quartile of the answers to the speed of change (parameter λ) for the process
area “Project Management” yielded the interval []6,3 and for the process area

“Requirement Engineering” the interval []4,3 .

5. Determination of the mappings of the scaled answer alternatives to actual parame-
ter values and of normalized model variables (process performances and metrics)
to real world units.

310 T. Birkhölzer et al.

The resulting model is filed as a spreadsheet (Microsoft Excel form) allowing easy
access to any element of the specification without special knowledge or tools.

Cornerstone of the specification process described above is the identification of the
model parameters by process experts (step 3). At a first glance, this might seem a
rather difficult task and a considerable add-on effort for an improvement project.
However, the questions collect systematically the following information:

• How much is an improvement in a process area about to cost?
• How much time does an improvement in a process area approximately need un-

til first effects are visible (dead-time) and until it is fully effective?
• How much does a process area influence a certain metric?
• What are possible prerequisites for the effectiveness of a process area?

For almost all of these questions, there exist no readily available empirical evidence –
therefore, the task seems indeed difficult. Nevertheless, each improvement project is
driven by at least implicit assumptions about this information, otherwise no resource
planning or prioritization would be possible. The questionnaire is therefore just a sys-
tematic approach to gather these implicit assumptions and document them explicitly.
This might not be an additional burden but a value itself.

4 Results of the Study at Siemens

A special Java application was developed for interactive simulation, analysis and
visualization of the models described above. Fig. 3 shows a screenshot of the pro-
gram. The investment inputs are chosen by sliders on the left side. The diagrams on
the right are the resulting metrics. Diagrams of the process area performances can be

Fig. 3. Screenshot of the simulation application. The inputs are entered on the left side; the met-
rics are displayed in the center.

 Customized Predictive Models for Process Improvement Projects 311

accessed in a separate window. The application permits models to be fully flexible
within the framework of section 2 and implements the respective interval arithmetic
calculations.

The model developed within the Siemens study was extensively analyzed with this
application, for example checking the step response for all 19 investment inputs. Al-
though more than 120 parameters were gathered just by expert estimates and not
tuned beyond the procedure outlined in section 3, the model predicted expected or
understandable results in almost all cases.

On the other hand, some results of the modeling revealed some omissions and im-
preciseness in the preexisting assumptions of the experts, e.g. missing aspects in the
chosen set of process areas. This led to a refinement of the set of process areas.

It is beyond the scope of this paper to present or discuss company specific details
of the model results. The following should rather give an impression of the type of re-
sults that can be obtained.

 a) b)

c)

Fig. 4. Step responses of the metrics “Scope of Fulfillment”: a) investment in “Technology and
Innovation” only; b) investment in “Requirement Engineering” only; c) investment in “Re-
quirement Engineering” and “Technology and Innovation” at the same time. White parts of the
bars indicate the range of variability.

312 T. Birkhölzer et al.

As first example, the metrics “Scope of Fulfillment” is chosen. According to the
experts, this metric is influenced (in the context of this project) by the process areas
“Requirement Engineering”, “Technology and Innovation”, and “System Family”.
The influence of “Technology and Innovation”, however, is gated by the process area
“Requirement Engineering”. This models the experience that an advanced “Require-
ment Engineering” is necessary to actually translate innovation into customer value
(“Scope of Fulfillment”).

Fig. 4 shows the step responses for an equal add-on investment of 10,000 Euro per
month in “Technical Innovation” (Fig. 4a) alone, “Requirement Engineering” alone
(Fig 4b), and in both at the same time (Fig. 4c). Each bar represents a time step; the
blank parts of the bars represent the intervals of uncertainty.

Fig. 5. Step responses of selected metrics for an investment in “Testing” only. White parts of
the bars indicate the range of variability.

In this case, an investment in “Technology and Innovation” alone is predicted to be
not effective, whereas an investment in “Requirement Engineering” alone shows con-
siderable improvement effects on “Scope of Fulfillment”. A combined investment in
“Requirement Engineering” and “Technology and Innovation” yields the best
improvement even with a little less uncertainty. Thus, the model would suggest an
improvement sequence starting with “Requirement Engineering” but not with “Tech-
nology and Innovation”. Note, that the intervals of uncertainty in Fig. 4b und 4c also
reflect the variations in the assessment of time dynamics.

 Customized Predictive Models for Process Improvement Projects 313

Fig. 6. Step responses of selected metrics for an investment in “Architecture and Design Proc-
ess” only. White parts of the bars indicate the range of variability.

As second example, a trade-off between improvements in the process areas “Test-
ing” and “Architecture and Design Process” should be explored. According to the ex-
perts, both process areas influence the metrics displayed in Fig. 5 and Fig. 6. The
former one shows the simulation results of an add-on investment of 10,000 Euro per
month in “Testing” only. In Fig. 6 the same amount is invested in “Architecture and
Design Process”. Note, that the metrics “Field Quality” measured in number of de-
fects and “Internal Defect Correction Cost” have an inverse direction, i.e. their values
are reduced by an improvement action. In the simulator, this is achieved by mapping
the internal normalized variable to an inverse scale.

In a first analysis step, only the two metrics “Field Quality” and “Internal Defect
Correction Cost” (upper row of Fig. 5 and Fig. 6 respectively) should be considered.
Both strategies yield somewhat different results for these metrics, but these
differences are within the bandwidth of variations (white bars) anyway. This means
considering field quality and defect costs only, there are different opinions about the
trade-off between “Testing” (direct but end-of-pipe measures) and “Architecture and
Design Process” (indirect but upfront measures) among the experts, while there is an
agreement about the significance of both. It is unlikely, that this uncertainty can be re-
solved by a more precise model or parameter estimation.

In a second analysis step, however, the simulation directly and visibly indicates
that the metrics “Reusability” is improved by an investment in “Architecture and

314 T. Birkhölzer et al.

Design Process” only (and not by an investment in “Testing” only) providing a dis-
tinct advantage in a trade-off consideration agreed by all experts.

In a prepared and dissected example, such discriminative relationships might seem
obvious. However, the incorporation of the multitude of such interrelations in a simu-
lation model assures that none of them gets lost during the discussions and planning
of a process improvement effort.

5 Discussion

Within the context of a process improvement effort or project, the development and
use of a predictive model as described can provide several distinct advantages:

• The collection of model elements (process areas and metrics to be considered)
and the investigation of their relationships is a systematic and thorough means
to reveal and document the pre-existing assumptions and expectations of the in-
volved process experts, i.e. valuable organizational knowledge. The quantitative
nature of the model enforces at least tentative commitments with respect to these
assumptions and expectations which might otherwise be sidestepped.

• In the best case, the estimations of the process experts widely agree and a model
can easily be deduced. Dissimilar estimates, however, would yield too large in-
tervals for the respective parameters, which hamper model expressiveness and
use. Nevertheless, the uncovering and clarification of such differing expecta-
tions – in general or with respect to specific issues – might benefit the
improvement project completely independent of model usage. Therefore, pa-
rameter variability can be used as an indicator to check and reduce unnecessary
variants in process improvement perception and comprehension.

• Each single relationship just expresses the prevalent knowledge of experts.
There is no “magic knowledge generation” in the methodology. However, the
simulation model enables to evaluate the interrelations of all these single pieces
supported by interaction, graphic, and animation. This might generate new in-
sights into the complex cohesion and interplay of these elements.

• The simulation approach and tool allow different frameworks to be used. While
CMMI was the underlying framework in the Siemens project, it can be used to
model any relationships between efforts, performances of practices, and out-
comes. Therefore, the methodology can be applied to other process models or
organizational setups or as well.

• The quantitative model allows various modes of analysis, e.g. testing of alterna-
tives to find an optimal improvement strategy or sequence given a specific goal.
Automated search algorithms can find solutions, which might otherwise be
missed. Of course, due to the abstract nature of the model, such “solutions” may
not be considered as authoritative or dependable, but should just serve as pro-
posals for further discussion and evaluation.

• The quantitative modelling and simulation indirectly supports the organization to
achieve later, quantitative levels of CMMI, i.e. level 4 and 5. It prepares structur-
ing and performing process improvement projects and measurements such that
the model inputs and outputs are used to plan, control and present results.

 Customized Predictive Models for Process Improvement Projects 315

6 Summary

In this paper, a new methodology was presented to develop a customized predictive
model for process improvement efforts or projects. As an important part, interval
arithmetic was introduced in this context to explicitly account for the inevitable pa-
rameter uncertainties. The mathematical framework as well as the necessary steps for
model development were outlined and results from a project at Siemens were
presented.

Unlike generic models like CMMI, all model elements, especially process areas
and metrics (outcomes), can be freely chosen which enables an easy adaptation to or-
ganization-wide as well as to product- or department-specific contexts.

By explicitly documenting implicit assumptions and expectations and by providing
a quantifiable base for decisions and comparisons of alternatives, such a model can
serve as a valuable auxiliary for process improvement planning and implementation.

References

1. Moore, R.E.: Interval analysis. Prentice-Hall, Englewood Cliffs (1966)
2. Lin, C., Abdel-Hamid, T., Sherif, J.: Software-Engineering Process Simulation Model

(SEPS). Journal of Systems and Software 38, 263–277 (1997)
3. Kellner, M.L., Madachy, R.J., Raffo, D.M.: Software Process Modeling and Simulation:

Why? What? How? Journal of Systems and Software 46, 91–105 (1999)
4. Christie, A.M.: Simulation in Support of CMM-based Process Improvement. Journal of

Systems and Software 46, 107–112 (1999)
5. Raffo, D.M., Vandeville, J.V., Martin, R.H.: Software Process Simulation to Achieve

Higher CMM Levels. Journal of Systems and Software 46, 163–172 (1999)
6. Williford, J., Chang, A.: Modeling the FedEx IT Division: A System Dynamics Approach

to Strategic IT Planning. Journal of Systems and Software 46, 203–211 (1999)
7. Raffo, D.M., Kellner, M.I.: Modeling Software Processes Quantitatively and Evaluating

the Performance of Process Alternatives. In: Emam, K.E., Madhavji, N. (eds.) Elements of
Software Process Assessment and Improvement., pp. 297–341. IEEE Computer Society
Press, Los Alamitos (1999)

8. Iazeolla, G., Donzelli, P.: A Hybrid Software Process Simulation Model. The Journal of
Software Process Improvement and Practice, 97–109 (2001)

9. Martin, R., Raffo, D.M.: Application of a Hybrid Simulation Model to a Software Devel-
opment Project. Journal of Systems and Software 59, 237–246 (2001)

10. Pfahl, D., Stupperich, M., Krivobokova, T.: PL-SIM: A Generic Simulation Model for
Studying Strategic SPI in the Automotive Industry. In: Proceedings of the 5th International
Workshop on Software Process Simulation and Modeling (ProSim 2004), Edinburgh, pp.
149–158 (2004)

11. Raffo, D.M., Nayak, U., Setamanit, S., Sullivan, P., Wakeland, W.: Using Software Proc-
ess Simulation to Assess the Impact of IV&V Activities. In: Proceedings of the 5th Inter-
national Workshop on Software Process Simulation and Modeling (ProSim 2004), Edin-
burgh, pp. 197–205 (2004)

12. Birkhölzer, T., Dickmann, C., Vaupel, J., Dantas, L.: An Interactive Software Manage-
ment Simulator based on the CMMI Framework. Software Process Improvement and Prac-
tice 10(3), 327–340 (2005)

316 T. Birkhölzer et al.

13. CMMI Product Team: CMMI for Development, Version 1.2. CMMI-DEV, V1.2,
CMU/SEI-2006-TR-008, Pittsburgh (2006)

14. Galin, D., Avrahami, M.: Are CMM Program Investments Beneficial? Analyzing Past
Studies. IEEE Software 23(6), 81–87 (2006)

15. Dickmann, C., Klein, H., Birkhölzer, T., Fietz, W., Vaupel, J., Meyer, L.: Deriving a Valid
Process Simulation from Real World Experiences. In: Wang, Q., Pfahl, D., Raffo, D.M.
(eds.) ICSP 2007. LNCS, vol. 4470, pp. 272–282. Springer, Heidelberg (2007)

Improving Customer Support Processes: A Case
Study

Marko Jäntti1 and Niko Pylkkänen2

1 University of Kuopio, Department of Computer Science,
P.O. Box 1627, 70211, Kuopio, Finland

mjantti@cs.uku.fi
2 TietoEnator Forest&Energy Oy, Microkatu 1,

P.O. Box 1199, 70211, Kuopio, Finland
niko.pylkkanen@tietoenator.com

Abstract. IT organizations need systematic methods to manage the in-
creasing number of service requests and software problems reported by
customers. A large number of open problems can rapidly increase the
costs of software maintenance and development. Therefore, an IT orga-
nization needs a well-defined customer support model. However, existing
customer support models have one major shortcoming: a lack of process
description that shows the interaction between different support pro-
cesses (incident management, problem management and change manage-
ment) and their activities. In this paper, we use a constructive research
method to build an improved process model for customer support. Ad-
ditionally, we present findings of a case study that focused on improving
support processes in a medium-sized Finnish IT company. The research
question in this paper is: What is the role of the problem management
process in customer support?

1 Introduction

Customer support processes are often the most visible part of the IT organiza-
tion to customers. By improving the quality of the support processes, IT orga-
nizations can easily increase the customer satisfaction on services and products.
Additionally, the world-wide interest in IT service management processes, such
as IT Infrastructure Library ITIL [1] and COBIT [2] provides evidence that the
research area is important. In this paper, we focus on two service support pro-
cesses: incident management and problem management. The primary focus is on
problem management.

IEEE Standard Classification for Software Anomalies (IEEE 1994) [3] states
that anomalies (problems and defects) may be found during the review, test,
analysis, compilation, or use of software products or applicable documentation.
A Framework for Counting Problems and Defects by the Software Engineering
Institute (SEI) [4] emphasizes the same activities. It identifies five major activi-
ties to find problems and defects: software product synthesis, inspections, formal
reviews, testing and customer service.

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 317–329, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

318 M. Jäntti and N. Pylkkänen

In the SEI model, the software product synthesis is defined as "the activity
of planning creating and documenting the requirements, design, code, user pub-
lications, and other software artifacts that constitute a software product" [4].
Formal reviews include for example, defect causal analysis (DCA) meetings, ser-
vice reviews, and problem reviews. A defect causal analysis method is based on
the data received from a software problem report. The DCA approach [5] has
three major principles: 1) Reduce defects to improve quality: software quality can
be improved if the organization focuses on preventing and detecting defects in
early phase of software development. 2) Apply local expertise: people who really
know the cause of the failure and how to prevent problems in the future should
participate in causal analysis meetings. 3) Focus on systematic errors: DCA peo-
ple should select a sample of systematic problems from a problem database to
be reviewed.

Service review meetings belong to the activities of the service level manage-
ment process in ITIL [6]. The purpose of service review meetings is to review
how service level requirements were met in the last service period, to identify
weak areas in the service, for example the root cause of service breaks, and to
define required improvement actions. Problem reviews [1] are quite similar than
defect causal analysis meetings [7]. The purpose of problem reviews is to review
the problems that have a high business impact. Problem reviews are focused to
determine what was done right and wrong in problem resolution, what could be
done better next time and how to prevent the problem from occurring again in
the future.

Software testing is a process of executing a program on a set of test cases
and comparing the actual results with expected results. The testing process
requires the use of a test model that is a description about what should be tested
and how testing should be executed [8]. Previous studies have emphasized the
need of shifting testing to early phases of software development process such as
requirements and specification phase and design [9].

Customer service including support processes is a broad concept. In fact, it
can involve the other above mentioned problem finding activities. There are var-
ious theoretical frameworks and models regarding service support and managing
problems and defects available for IT organizations: First, maturity models are
designed for measuring the maturity level of software development processes
or service management processes [10],[2]. Perhaps the most well-known maturity
model in software engineering is the capability maturity model CMM [11]. There
is also a specific CMM model for IT Service management CMM [12]. Second,
quality standards (ISO 20000 service management standard [13], ISO/IEC 12207
[14]) include auditable requirements for processes. Third, there are IT service
management process frameworks that define how to perform support processes:
ITIL [1], COBIT [2], and Microsoft Operations Framework [15]. Fourth, software
development lifecycle models (Rational Unified Process [16], for instance) also
include information on quality assurance methods such as testing, risk manage-
ment and defect prevention. Finally, academic literature provides a wide selection
of other quality assurance models, such as Defect Management Process [17], the

Improving Customer Support Processes 319

framework for counting problems and defects [4], Personal Software Process [18]
and software maintenance models [19], [20].

1.1 Our Contribution

All above mentioned service management models and maintenance models seem
to have one major shortcoming. They do not include a process model that would
show the interaction between different support processes as one diagram. The
improved model should include incident management activities (identify and
record, classify, investigate, and resolve incident), reactive problem manage-
ment with problem control activities (identify and record, classify, investigate,
and resolve problem, error control and proactive problem management), change
management and application development. We call this model "a big picture of
support processes".

The main contribution of this paper is 1) to provide an improved support pro-
cess model, 2) to examine the role of problem management in customer support,
and 3) to present experiences of a case study where we used that model to im-
prove support processes in a medium-sized Finnish IT company. The results of
this study are useful for support process managers and software quality managers
and can be used to improve the quality of the service support processes.

The rest of the paper is organized as follows. In Section 2, the research methods
of this study are described. In Section 3, an improved support process model
and main findings from the case study are presented. Section 4 is the analysis of
findings. The discussion and the conclusions are given in Section 5.

2 Research Methods

This case study is a part of the results of MaISSI (Managing IT Services and
Service Implementation) and SOSE (Service Oriented Software Engineering) re-
search projects at the University of Kuopio, Finland. The research question in this
paper is: What is the role of the problem management process in customer sup-
port? Both constructive and case study research methods were used in this study.
First, we build a theory-based model for customer support using a constructive
research method. A theory consists of four key elemements: a boundary that de-
scribes the domain of interest, key constructs within the domain, the values that
constructs may take, and the relationships between the constructs [21]. Our model
is based on the ITIL process framework (service support section) because ITIL is
the most widely used service management framework in the world [1].

A case study can be defined as "an empirical inquiry that investigates a con-
temporary phenomenon within its real-life context, especially when the bound-
aries between phenomenon and context are not clearly evident" [22]. Case
studies can be categorized into exploratory, explanatory and descriptive case
studies. Our study is more exploratory than explanatory or descriptive because
we did not have any predefined hypotheses in the study and did not focus on
finding cause-effect relationships.

320 M. Jäntti and N. Pylkkänen

2.1 The Case Organization and Data Collection Methods

Our case organization Alfa supplies solutions for the navigation industry. Alfa is
focused on mobile phones and portable devices. Data collection methods included
informal discussions in research meetings with Alfa. Persons who participated
in research meetings were a researcher and 2 research assistants (University of
Kuopio), a quality manager (Alfa), and a support engineer (Alfa). The case or-
ganization was selected because they were very interested in improving customer
support processes based on the IT Infrastructure Library framework. They were
also planning to launch a knowledge base. The study was carried out according
to the following schedule:

– September 14, 2006: Alfa and the research team defined goals for the pilot
project (improving support processes: incident management and problem
management).

– September 19, 2006: Alfa introduced the support process to the research
team.

– October - December, 2006: The research team analyzed the support process
of Alfa by using ITIL process framework as a benchmarking target.

– January 11, 2007: The results of the analysis (identified challenges) were
presented in a review meeting (Alfa and the research team).

– January - March 2007: The research team (a research assistant) evaluates
knowledge base / FAQ manager applications and their properties.

– March 1, 2007: The results of the tool evaluation were presented to Alfa. As
a result of the evaluation, the best tool was selected and installed.

– March, 2007: The FAQ manager tool was configurated, and user manuals
and a new process description created.

– March 27, 2007: The FAQ manager tool, the process description were re-
viewed with a sample case (a customer sends a problem ticket, the first line
support creates a draft FAQ item, the second line support approves and
publishes the FAQ item (Alfa and the research team).

2.2 Data Analysis Method

A within-case analysis method [23] was used in this case study. The data anal-
ysis focused on identifying strengths and challenges in Alfa’s support processes.
The most important results of the case study were tabulated according to the
following questions:

– Which business goals have been set for the process improvement?
– Which tools are used for managing incidents and problems?
– How do they call the workflow asset (for example, helpdesk case)?
– What is the current state of the support process description?
– Which service support levels are visible in the process description?
– Which metrics are used within the support process?
– Which proactive methods are used within problem management?
– Which challenges are related to the customer support?

Improving Customer Support Processes 321

Additionally, we studied whether the customer support model of Alfa contains
similar elements (activities and phases) than our improved customer support
model.

3 The Role of Problem Management in Customer
Support

In this section, the improved customer support process model is described. The
support model was created by analyzing the service support processes of the IT
service management framework (ITIL) and integrating the activities of the sup-
port processes together. Our model has the following advantages compared to the
previous models:

– It emphasizes the role of customers (main users, normal users) in the support
process. In fact, we consider a customer main user as a very first support
level (we call it the support level ’0’).

– It integrates the activities performed by service desk teams, product support
teams and product development teams together. The ITIL framework does
not provide a detailed process diagram that would show the relations between
different support process activities.

– It highlights the role of proactive problem management within customer
support. IT organizations tend to document reactive problem management
activities but usually forget to document proactive ones.

– It creates a bridge between problem management and error management
(defect management). Previously presented defect management processes,
such as [17],[24] focus solely on software defects although software users
encounter also problems that never end to defects (for example, hardware
problems, documentation errors, or problems with service availability and
service performance)

– It uses knowledge management concepts [25] in proactive problem manage-
ment. A knowledge base application helps organizations to create, store,
share, and use the knowledge related to problems and their resolutions.

– It adopts the best features of ITIL-based support processes, such as users
are never allowed to contact software developers directly. All servie requests
and problem reports go through a single point of contact, a service desk.

3.1 The Improved Customer Support Model

Figure 1 describes our improved support process model. The customer support
process usually begins when a customer encounters a problem while using a
service or a product and takes contact to the service desk (by phone, by email
or by a web form). This contact, that is related to customer’s or user’s problem
is called an incident. An incident can be defined as "any event which is not
part of the standard operation of a service and which causes, or may cause, an
interruption to, or a reduction in, the quality of that service" [1]. It is important
to distinguish service requests from incidents. Service requests can be defined as

322 M. Jäntti and N. Pylkkänen

Problem Control

Identify &
record

Incident

Classify and
give initial
support

Investigate &
diagnose

Close
incident

No Can be
resolved ?

Ye
s

Identify and
record the
problem

Investigate
and diagnose

Resolve and
close the
problem

Classify the
problem

Record the
RFC

Close the
change

Classify the
RFC

Estimate
impact

Proactive
problem

management

Problem

Yes

RFC ?

Yes -
Assign Request For Change to Change Management

Change Management

Problem Management

Service Desk & Incident
Management

Application
Management

Requirement
s

Change
Review

Coordinate
implementa-

tion

Change
approved?

Design Build Deploy

Customer

Service
Request/

Query

Operate Optimize

Success?

No

Yes

Service
 Request ?

No

Service
Request

procedure

Valid
change ?

No

Error in CI? No

Error Control

Identify and
record the

error

Error
Assessment

Record error
resolution

Yes

Close the
error

RFC

RFC

Urgent
Procedures

Yes

CAB,
Change
Manager

No - Open a problem
record

Resolve
incident

Resolution
accepted

YesNo

Fig. 1. Improved customer support model

"a request from user for support, delivery, information, advice or documentation,
not being a failure in the IT infrastructure" [1]. A good example of a service
request is a user’s request for more disk space.

While the goal of incident management (the process performed by the ser-
vice desk function) is to restore normal service operation as quickly as possible,
problem management aims to minimize the impact of problems on the business,
to identify the root cause of problems, and resolve errors related to configura-
tion items (CIs). The key difference between problem management and incident
management is that in problem management, the quality of the resolution plays
a more important role than the resolution time.

3.2 The Relation between Problem Management and Customer
Support

Problem management has both reactive and proactive aspects. Reactive prob-
lem management aims to resolve incidents and problems reported by customers.

Improving Customer Support Processes 323

Problem Management (PM)
Process

- Problem control
- Error control
- The proactive prevention of problems
- Identifying problem trends
- Producing information to managers
- Problem reviews

Incident details
from Incident
Management

Configuration
details from
CMDB

Any defined
Work-arounds

Inputs Major activities Outputs

Known Errors

A Request for Change

An updated Problem record
(including a solution/Work-around)

A closed Problem record for a
resolved Problem

Response from Incident matching
to Problems and Known Errors

Management information

Fig. 2. The inputs, outputs and key activities of the problem management process

This is a traditional task of any service desk or help desk. The proactive prob-
lem management in turn tries to prevent incidents before they occur. Proactive
activities work in a similar way than defect prevention activities [24]. Reactive
problem management is divided into problem control and error control activi-
ties where the problem control is responsible for identifying the root cause of a
problem [26] and defining a temporary solution (work-around) for the problem.

In order to improve a process, we need information on its inputs, outputs
and phases (or stages). In Figure 2, the inputs, outputs and key activities of the
problem management process are described.

A frequently asked question is when does the incident management process
stop and when does problem management process start? Problem control (the
first phase of the reactive problem management process) begins when incident
analysis reveals repetitive incidents, or the incident does not match any of the
existing problems or known errors. Additionally, when incidents are defined as
very serious and significant, they are sent directly to problem control.

The content of problem control and error control phases are explained in ITIL
process description and in our previous work. First, the problem management
team identifies and records the problem (enters a basic description of problem).
Second, the problem management team classifies the problem (defines category,
impact, urgency and priority. Third, the problem is investigated and given a
diagnosis including the root cause of the problem. In this phase problem man-
agement might create a Request for change to implement a problem resolution.
A Request for change is "a formal part of the change management process, used
to record details of a request for a change to any configuration item (CI) within
an infrastructure, or to services, procedures and items associated with the in-
frastructure" [1].

The second frequently asked question is when does the problem control ac-
tivity stop and when does the error control activity start? The error control

324 M. Jäntti and N. Pylkkänen

process focuses on correcting known errors by generating request for changes to
change management. The basic activities of error control are error identifica-
tion, error assessment, recording error resolution. Errors can be found both from
users and customers (live environment) and testing and development (develop-
ment environment). According to ITIL "known error status is assigned when the
root cause of the problem is found and a workaround has been identified" [1].
We have interpreted this rule that the error control activity begins when the
root cause of the problem is a defect (in code or in the IT infrastructure). Er-
ror assessment consists of identifying means how error could be resolved. Error
resolution might require a contact to third-party service providers or technology
providers. Finally, the error resolution (symptoms and resolution actions) should
be recorded into known error database or a knowledge base. A knowledge base
is a database for knowledge management. It can be used for collecting, organiz-
ing, and searching the knowledge. The knowledge base usually provides its users
with solutions to known problems [27], [28]. A well-designed knowledge base
helps both service desk and customers to find solutions for problems quickly.

3.3 Improving Customer Support Processes: Case Alfa

Table 1 shows the general findings related to the support process of Alfa. Data
was collected in the research project meetings between Alfa and the research
team.

Customer calls and emails are assigned to an outsourced service desk. The
service desk is responsible for the first line support. If the service desk is not able
to resolve the problem, the help desk issue (incident) is escalated to the second
line support. Alfa also has third line support that is responsible for handling
business-related service requests such as overcharging on the Alfa e-commerce
site. The performance of the support process is measured by using various metrics
such as the number of customer calls answered in less than 20 seconds and the
number of missed calls. Service desk and incident management uses an open
source based request tracking application that is configured to Alfa’s needs.

The service desk records all customer contacts (incidents and service requests)
into a request tracking application. Although the service desk has been out-
sourced to an external service provider, the second line support and a quality
manager of Alfa are also able to monitor all the recorded customer requests
and problems. Alfa uses a term "Problem Ticket" for customer requests and
problems. The same Problem Ticket goes through the whole support process.
Problem Tickets are categorized by types (for example, license problem, ques-
tion, installation).

Problem tickets are not formally prioritized when they are recorded into re-
quest tracking application although it is possible to define the priority level for
the problem record. However, the second line support performs some kind of
prioritization for tickets. Alfa’s quality manager stated that there has been no
need to prioritize cases because Alfa is able to resolve most cases within a couple
of days without priority levels. The request tracking application also includes a
module for managing frequently asked questions. Alfa uses this FAQ module to

Improving Customer Support Processes 325

Table 1. The support process of an IT company Alfa

Factor Alfa’s way to do things

Goals for SPI Adapt ITIL concepts to the support pro-
cess
Implement a knowledge base with a multi-
language support
Decrease the number of support requests

Tools Open source issue management tool
Workflow asset Issue
Service Support Levels 1st line: Service Desk

2nd line: Support engineer
3rd line: sales

Metrics Number of support requests/month
% of missed calls
Number of support requests by type
Number of open requests/week
% of calls answered < 20 seconds, < 30
seconds
Number of support requests resolved
within 1 working day, next day, 3rd day

Proactive methods Training of retailers
Monitoring user forums
A static FAQ column on the support site
Testing

share information within the organization. The FAQ module enables publish-
ing knowledge base articles to support the work of the first-line and second-line
support. However, Alfa second line support stated that it is difficult to publish
knowledge base articles for customers through the FAQ module because of the
poor language support. Alfa would like to obtain a dynamic FAQ application
that would decrease the number of the customer contacts to the service desk.

Problems that are assigned to the second-line support are investigated. If the
root cause of the problem is an application bug, the problem will be recorded
as a bug into bug management application. The traceability between the re-
quest tracking application and the bug management application is maintained
by recording the request ID to the bug record. Thus, there is a connection be-
tween a customer request/problem and a bug. Alfa does not have a process of
handling request for changes. Required changes are usually implemented in the
next version of the application.

4 Analysis

The analysis of case study focused on identifying strengths and challenges in Alfa’s
support processes. We analyzed whether Alfa’s support process includes the same
activities, roles, and tasks than our improved support process description.

326 M. Jäntti and N. Pylkkänen

Table 2. The strengths and challenges of Alfa’s support process

Strengths Challenges

1. Customer contacts are sent to the Ser-
vice Desk (SD), which takes care of the
first line support.

1. The support process documentation
does not include activities or roles of SD
and incident management.

2. Measurable targets have been defined
for the SD and the incident management
processes. The progress of Incident han-
dling is monitored.

2. Measurable goals have not been de-
fined for the problem management pro-
cess.

3. Employees in the SD are well educated
(customer service, technical knowledge)
and people are trained continuously (e.g.
new features in products).

3. ITIL concepts are not visible in the
support process.

4. All the reported cases are recorded to
the incident database and those cases are
updated when necessary.

4. The lack of a public knowledge base

5. Incidents are categorized according to
predefined instructions.

5. Customers do not receive an incident
confirmation receipt.

6. There is a bridge between the problem
and error control: problem id is stored in
the error record to maintain the trace-
ability between those cases.

6. There is no unified tool to handle in-
cidents, problems and defects.

7. Three support levels are recognized
in Service Support process (outsourced
SD, Problem Management and third line
support).

7. Priority of the incident or the prob-
lem is not defined in SD or in problem
management.

8. Problems concerning the products of
third party providers are stored and han-
dled.

8. The processes and activities of prob-
lem control, error control and proactive
problem management are poorly defined.

9. Standardized reports are produced
regularly about incident and problem
rates.
10. The organization has recognized the
need for proactive problem management.

Table 2 presents the results of the analysis (strengths and weaknesses in Alfa’s
support processes).

The research question in this paper was: what is the role of the problem man-
agement process in customer support? In our case organization Alfa, problem
management process and its key activities (identify, classify, investigate, resolve
problem) were poorly visible in the customer support process. We consider this
as a major challenge. However, interviews revealed that these activities were per-
formed by a support engineer. Additionally, Alfa’s support process included no
documentation on proactive problem management activities, such as trend anal-
yses and preventive actions. In addition to the challenges, we identified a lot of
positive things regarding Alfa’s customer support, for example, they used three

Improving Customer Support Processes 327

support levels, they monitored the performance of the outsourced service desk
daily, they recorded errors related to the services of 3rd party service providers,
and used diverse metrics to monitor the recording and resolution of support
requests.

5 Discussion and Conclusions

In this paper, the research question was: what is the role of the problem man-
agement process in customer support? Problem management plays a key role
in customer support (the 2nd support level), as well as incident management.
Unfortunately, the activities of problem management are often very poorly doc-
umented compared to incident management activities. As the main contribution
of this study we first presented a theory-based model for customer support (with
strong focus on problem management) by using a constructive research method.
We defined the process inputs, main activities and the process outputs for the
problem management process and presented an improved process model where
activities of different support processes were described. Our process model pro-
vides a rapid overview how support requests move forward in the organization
between different processes. A well-defined process description creates a basis
for the process improvement. Some frequently asked questions related to the
ITIL-based problem management were also discussed, such as when does the
incident management process stop and when does problem management process
start and what is the interface between problem control and error control.

Second, we presented results of a case study that focused on improving the
support process in a medium-sized Finnish IT company "Alfa". Alfa’s support
process was examined and analyzed whether it includes the same activities, roles,
and tasks than our improved support process description. As a key improvement
area we identified that Alfa’s support process documentation does not include
a comprehensive definition of the activities of service desk, incident manage-
ment and problem management. ITIL based concepts such as knowledge base,
incidents, and known errors are not visible in the process description. However,
Alfa’s support process also had several strengths. For example, they had defined
three support levels, they monitored continuously reported problems and had
defined a wide selection of metrics for monitoring the performance of support
process. The contributions of this paper can be used by problem managers and
quality managers to improve problem management processes.

As with all case studies, there are following limitations and validity threats re-
garding our study. The case study methodology has received a frequent criticism
concerning the generalization of research results. If a study is based on a single
case, it cannot provide statistical generalizations. However, we can expand the
theory. Regarding construct validity, researchers should ensure that the data is
collected from several sources. In this study, the main sources of data collection
were a quality manager and a support engineer of Alfa. Product developers did
not participate in the meetings. We used the word “improved model” because the
process model solved some problems that we identified in our previous studies.

328 M. Jäntti and N. Pylkkänen

However, more research work is needed to validate our model in practice and to
define suitable metrics for support processes.

In future studies we intend to improve our research framework by examin-
ing proactive problem management from IT customer’s viewpoint. We shall also
continue the introduction of ITIL-based support processes with new case or-
ganizations. Additionally, we need to collect empirical data to show that our
recommendations for problem management will lead to better results.

Acknowledgment

This paper is based on research in MaISSI and SOSE projects, funded by the
National Technology Agency TEKES, European Regional Development Fund
(ERDF), and industrial partners.

References

1. Office of Government Commerce: ITIL Service Support. The Stationary Office, UK
(2002)

2. COBIT 4.0: Control Objectives for Information and related Technology: COBIT
4.0. IT Governance Institute (2005)

3. IEEE Standard 1044-1993: IEEE Standard Classification for Software Anomalies.
IEEE (1994)

4. Florac, W.: Software quality measurement a framework for counting problems and
defects. Technical Report CMU/SEI-92-TR-22 (1992)

5. Card, D.N.: Learning from our mistakes with defect causal analysis. IEEE Soft-
ware 15(1), 56–63 (1998)

6. Office of Government Commerce: ITIL Service Delivery. The Stationary Office, UK
(2002)

7. Leszak, M., Perry, D.E., Stoll, D.: A case study in root cause defect analysis. In:
ICSE 2000: Proceedings of the 22nd international conference on Software engineer-
ing, pp. 428–437. ACM Press, New York (2000)

8. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley,
Reading (2001)

9. Binder, R.: Testing Object-Oriented Systems: Models, Patterns, and Tools.
Addison-Wesley, Reading (2000)

10. Pink Elephant: Itil process maturity. Pink Elephant Whitepaper (2005),
http://www.pinkelephant.com/en-US/ResourceCenter/PinkPapers/
PinkPapersList.htm

11. Jalote, P.: CMM in Practice, Processes for Executing Software Projects at Infosys.
Addison-Wesley, Reading (2000)

12. Niessinka, F., Clerca, V., Tijdinka, T., van Vlietb, H.: The it service capability
maturity model version 1.0. CIBIT Consultants&Vrije Universiteit (2005)

13. ISO/IEC: ISO/IEC 20000 A Pocket Guide. Van Haren Publishing (2006)
14. ISO/IEC 12207: Information Technology Software Life-Cycle Processes. ISO/IEC

Copyright Office (1995)
15. Microsoft: Microsoft operations framework (2007), http://www.microsoft.com/

technet/solutionaccelerators/cits/mo/mof/default.mspx

http://www.pinkelephant.com/en-US/ResourceCenter/PinkPapers/PinkPapersList.htm
http://www.pinkelephant.com/en-US/ResourceCenter/PinkPapers/PinkPapersList.htm
http://www.microsoft.com/technet/solutionaccelerators/cits/mo/mof/default.mspx
http://www.microsoft.com/technet/solutionaccelerators/cits/mo/mof/default.mspx

Improving Customer Support Processes 329

16. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.
Addison-Wesley, Reading (1999)

17. Quality Assurance Institute: A software defect management process. Research Re-
port number 8 (1995)

18. Hirmanpour, I., Schofield, J.: Defect management through the personal software
process. Crosstalk, The Journal of Defense Software Engineering (2003)

19. Kajko-Mattsson, M.: A conceptual model of software maintenance. In: ICSE 1998:
Proceedings of the 20th international conference on Software engineering, pp. 422–
425. IEEE Computer Society, Washington (1998)

20. April, A., Hayes, J.H., Abran, A., Dumke, R.: Software maintenance maturity
model (smmm): the software maintenance process model: Research articles. J.
Softw. Maint. Evol. 17(3), 197–223 (2005)

21. Eierman, M.A., Niederman, F., Adams, C.: Dss theory: a model of constructs and
relationships. Decis. Support Syst. 14(1), 1–26 (1995)

22. Yin, R.: Case Study Research: Design and Methods. Sage Publishing, Beverly Hills
(1994)

23. Eisenhardt, K.: Building theories from case study research. Academy of Manage-
ment Review 14, 532–550 (1989)

24. Mays, R.G., Jones, C.L., Holloway, G.J., Studinski, D.P.: Experiences with defect
prevention. IBM Syst. J. 29(1), 4–32 (1990)

25. CEN Workshop Agreement CWA 14924-1: European Guide to Good Practice in
Knowledge Management, Part 1. European Committee for Standardization (2004)

26. Zhen, J.: It needs help finding root causes. Computerworld 39(33), 26 (2005)
27. Davis, K.: Charting a knowledge base solution: empowering student-employees and

delivering expert answers. In: SIGUCCS 2002: Proceedings of the 30th annual ACM
SIGUCCS conference on User services, pp. 236–239. ACM Press, New York (2002)

28. Jackson, A., Lyon, G., Eaton, J.: Documentation meets a knowledge base: blurring
the distinction between writing and consulting (a case study). In: SIGDOC 1998:
Proceedings of the 16th annual international conference on Computer documenta-
tion, pp. 5–13. ACM Press, New York (1998)

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 330–344, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Influential Factors on Incident Management:
Lessons Learned from a Large Sample of Products in

Operation

João Caldeira and Fernando Brito e Abreu

Faculty of Sciences and Technology
Universidade Nova de Lisboa

Lisboa, Portugal
j.caldeira@fct.unl.pt, fba@di.fct.unl.pt

Abstract. Understanding causal relationships on incident management can help
software development organizations in finding the adequate level of resourcing,
as well as improving the quality of services they provide to their end-users
and/or customers. This paper presents an empirical study conducted upon a
sample of incident reports recorded during the operation of several hundred
commercial software products, over a period of three years, on six countries in
Europe and Latin America. The underlying research questions refer to the vali-
dation of which are the influencing factors affecting the incidents management
lifecycle. Nonparametric analysis of variance procedures are used for testing
hypotheses.

Keywords: Software development, Empirical Software Engineering, Software
Quality, ITIL, Incident Management, Problem Management, Release and De-
ployment Management, Services Science.

1 Introduction

"If you want the present to be different from the past, study the past."
Baruch de Spinoza (1632-1677)

1.1 Motivation

Organizations with in-house software development strive for finding the right number
of resources (with the right skills) and adequate budgets. A good way to optimize
those figures is avoiding expenditures on overhead activities, such as excessive cus-
tomer support. This can be achieved by identifying incident’s root causes and use that
knowledge to improve the software evolution process.

Software development and software quality improvement have been strong topics
for discussion in the last decades [1, 2]. Software Engineering has always been con-
cerned with theories and best practices to develop software for large-scale usage.
However, most times those theories are not validated in real-life environments [3].
Several factors were identified that explain this lack of experimental validation [4].

 Influential Factors on Incident Management 331

In real-life operation environments end-users/customers face software faults, lack
of functionalities and sometimes just lack of training. These incidents should be
somehow reported. According to the ITIL1 framework [5], in an organization with a
Service Management approach [6-10], this problem is addressed by two specific
processes: Incident Management [6], which deals with the restoration of the service to
the end-user within the Service Level Agreements [7, 10] (if they exist), and Problem
Management [6] which aims at finding the underlying cause of reported incidents.

When an organization implements these ITIL processes, then it will address all
kind of incidents (software, hardware, documentation, services, etc) raised by the end-
users/customers. In this paper we are only concerned about software-related incidents.

The incidents database is an important asset for software engineering teams. Learn-
ing from past experience in service management, allows shifting from a reactive ap-
proach to a more proactive one. The latter is referred in the Software Maintenance
chapter of the SWEBOK2 (see Table 1), although seldom brought to practice.

Table 1. Software maintenance categories (source: SWEBOK [11])

 Correction Enhancement
Proactive Preventive Perfective
Reactive Corrective Adaptive

This paper presents a statistical-based analysis of software related incidents result-
ing from the operation of several hundred commercial software products, from 2005
to 2007. The incidents were reported by customers of a large independent software
vendor. Although that vendor operates worldwide, we were only able to have access
to data from six countries in Europe and Latin America. Further details regarding the
products and their users cannot be provided here due to a non-disclosure agreement.

The main goal of this paper is shedding some light on the influential factors that af-
fect incidents lifecycle from creation to its closure, namely the schedule of its phases.
Understanding this lifecycle can help software development organizations in allocat-
ing adequate resources (people and budget), increasing the quality of services they
provide and finally improving their image in the marketplace.

The work presented herein is on the crossroads of Empirical Software Engineering
and of the emerging area of Services Science [12, 13]. It is organized as follows:
section 2 presents a survey of related work; section 3 contains the empirical study;
finally, section 4 presents the conclusions, the threats to validity and future work.

1 The IT Infrastructure Library (ITIL) is the de facto standard for IT service management, an

initiative launched in the late 80´s by the UK Office of Government Commerce’s (OGC). The
ITIL framework is as a generic reference model proposing a set of concepts and good prac-
tices for managing information technology, infrastructure, development and operations.

2 The Guide to the SoftWare Engineering BOdy of Knowledge (SWEBOK) is an IEEE CS
initiative aiming to: (i) promote a consistent view of software engineering worldwide, (ii)
clarify the place and set the boundary of software engineering with respect to other disci-
plines such as computer science, project management, computer engineering, and mathemat-
ics, (iii) characterize the contents of the software engineering discipline, (iv) provide a topical
access to the Software Engineering Body of Knowledge and (v) provide a foundation for cur-
riculum development and individual certification and licensing material.

332 J. Caldeira and F. Brito e Abreu

2 Related Work

To support our research, we have tried to find related work in the area of empirical
software engineering within the ITIL scope. Having searched several digital libraries
such as the ones of ACM, IEEE, Springer or Elsevier, we were able to find only a few
papers about incident management. Even scarcer were those referencing real-life
empirical studies on software incidents and how they that can help improving the
software engineering process. This section presents a categorized overview of the
published works that we found to be closer-related to our work presented hereafter.

2.1 Categorization Process

ITIL is concerned about three basic aspects in IT Service Management (ITSM): tech-
nology, people and processes. The technology aspect refers to all the technical com-
ponents (typically hardware and software) involved when dealing with IT services.
The people aspect addresses the way persons are organized and the way they should
behave when involved in a certain process. Finally, the process aspect relates to how
activities are linked together in order to deliver value to a specific business area. We
categorized the related work according to the extent it has approached those ITSM
aspects. For classifying each of the aspects, we use the following ordinal scale:

Absent /

Fuzzy view The topic is not addressed or addressed in a fuzzy way

Partly /
Isolated view

The topic is addressed insufficiently, not explicit or lacking
context

Largely /
Contextualized view

The topic is addressed explicitly and context is provided,
although not exhaustively

Fully /
Holistic view

The topic is addressed exhaustively, sustained with evidence
and with adequate rationale being provided

Besides that categorization, we provide, for each work, its main goal (as we per-

ceived it), a commented abstract and, finally, we comment about the relation each
work has with ours. Notice that we have kept the capitalized denomination of ITIL
processes (e.g Incident, Problem or Configuration Management).

2.2 Review of Related Work

Barash et al. (2007) [14] Technology People Processes

Goal – Managing service incidents and improving an IT support organization.
Comments – This work has a clear link with ITIL. The main topics addressed are
Incident and Problem Management and the improvement an organization can achieve
in their support activities by analyzing incident metrics. The authors suggest ways to
improve staff allocation, shift rotation, working hours and the escalation of incidents.

We could not find, in this work, a clear link between Incident or Problem Man-
agement processes with the software development process and how they can help
each other in improving the quality of the service to the end-users. We also could not

 Influential Factors on Incident Management 333

find a direct relationship to any other ITIL processes beyond the two referred ones.
Nevertheless, we should not forget that if we improve the performance of the IT sup-
port organization, we are indirectly improving the performance of all other areas.
Relation with Our Work – This work is related with our own since it also addresses
the management of incidents (herein we only address software incidents), and it tries
to improve an IT Support Organization.

Sjoberg et al. (2005) [3] Technology People Processes

Goal – A survey of controlled experiments in Software Engineering.
Comments – In this work there is a detailed classification about the areas where those
software experiments were conducted. It is interesting to realize that among the group
of areas with fewer experiments, we find Strategy, Alignment, IT impact. These are
within the most important issues addressed by ITIL and Service Management. One of
the things that first came to our eyes is the fact that there is no category named “Ser-
vice”. We can assume that within all experiments done, none was made having the
“Service” in mind. This is even more important since nowadays services are heavily
dependent on software, and, on the other hand, the use of software can be seen as a
service on its own. Overall, this work is a quantitative summary of controlled
experiments. While the people and the processes aspects are briefly addressed, the
technology aspect is only slightly covered. Indeed, few environment descriptions are
provided on the technical conditions on which the experiments took place.

Although this survey was performed around three years ago, we have not found
evidence, since then, contradicting the obvious need of more experiments relating
software, services and their management processes.
Relation with Our Work – We expected that other studies like the one performed in
our paper would be reported in this survey. While on the methodology side this is
true, since many of the reported experiments use empirical data and statistical analy-
sis, the same cannot be said regarding the context (incident management).

Niessink and Vliet (2000) [15] Technology People Processes

Goal – Software maintenance and software development from a service perspective.
Comments – The authors clearly identify differences between services and products
and how these differences affect the way end-users or customers assess their quality.
One of the more relevant aspects of this work is the focus put on the need for defining
Service Level Agreements (SLA), Service Catalogs and the importance of good Inci-
dent and Problem Management processes within an organization. These three aspects
and the positive impact they can have in organizations that implement them are high-
lighted and understood, but not exhaustively explained. This would be addressed by
detailing and giving examples on the implementation of the above aspects. In brief,
the important topics are there, but not enough detail is provided.
Relation with Our Work – The relation lies on the ITIL focus. This is not an empiri-
cal study, but it covers all the important aspects of Service Management.

334 J. Caldeira and F. Brito e Abreu

Jansen and Brinkkemper (2006) [16] Technology People Processes

Goal – Study of the release, delivery and deployment of software.
Comments – This is a very interesting paper about the software update process and
how it can help software vendors and end-users/customers in the software deployment
process. The approach taken fits in the realm of the Asset and Configuration
Management, Release and Deployment Management ITIL processes. Notice that the
deployment phase, which is focused in this paper, is precisely the one when most
incidents are usually reported. This is due to the fact that IT systems and platforms are
becoming increasingly more heterogeneous and complex and also because quality
management systems (in general) and SLA verification (in particular) imply the re-
cording of incidents originated by the operation.
Relation with Our Work – This work focuses on the technology used to improve the
software deployment process, but does not cover any empirical study or data analysis.
It is related to our work because it touches another key process in ITIL.

Mohagheghi and Conradi (2007) [17] Technology People Processes

Goal – Quality, productivity and economic benefits of software reuse.
Comments – This work is about software reuse and its benefits. Based on previous
studies, the authors state that component reuse is related with software with fewer
defects. The latter are identified by means of failures in operation and are the origin of
reported incidents. The end-user perspective is not covered in this paper, and this is
vital for a Service Management approach. Some references are made to software
changes, software deployment and even infrastructure resources required for software
execution. These are somehow implicit references to ITIL Change Management,
Release and Deployment Management and Capacity Management processes.
Relation with Our Work – This work shares our objective of achieving a tangible
and positive impact on the software development process by adopting ITIL-like best
practices. This has strengthened our conviction that the impact of incident manage-
ment on the software development lifecycle deserves further analysis.

2.3 Review Summary

It is widely accepted that we lack experimentation in Software Engineering in general.
This phenomenon is even more acute on what concerns experimentation related with
incidents and services. As Spinoza observed more than 300 years ago, we need to
understand how services were provided in the past to improve their quality in the
future. Even if the related work is scarce, we should look at it collectively to try draw-
ing some picture of the current state-of-the-art. For that purpose, a summary of the
categorized related work is presented in Table 2.

Out of the three aspects, the one that deserves the least attention is clearly “peo-
ple”, while the “technology” and “process” aspects have somehow equivalent empha-
ses. We believe that this difference is due to the fact that researchers working in this
area have mostly an Engineering background. Understanding people and their moti-
vations requires Social Sciences skills.

 Influential Factors on Incident Management 335

Table 2. Summary of related work

Proposal Technology People Processes Relation
Barash et al. (2007) High
Sjoberg et al. (2005) Medium

Niessink and Vliet (2000) High
Jansen and Brinkkemper (2006) Low
Mohagheghi and Conradi (2007) Low

However, the most relevant conclusion we reached while performing this unambi-
tious state-of-the-art survey, is that the empirical study of incident management has
not yet been adequately addressed in the scientific literature. We believe this situation
is due to the fact that real-life samples contain sensitive data to companies and so are
usually unavailable to researchers.

3 The Empirical Study

3.1 Process and Instrumentation

Our empirical process consisted on the four steps represented in Fig. 1. We collected
the data on the first days of January 2008, using an incident management system
client interface. This tool allowed to export incidents data into a CSV (Comma Sepa-
rated Values) file that could be loaded into a spreadsheet (MS Excel). Next, we fil-
tered out a very small percentage of cases that had erroneous data (e.g. invalid dates).
Then, we computed several variables from existing data, namely by calculating dif-
ferences between pairs of dates.. The resulting dataset was then loaded into the SPSS
statistical analysis tool, where the statistical analysis took place,

Fig. 1. Empirical study workflow

3.2 The Sample

The subjects of our empirical study are around 23 thousand incidents, reported by
end-users/customers, occurred during the operation of around 700 software products3.
The incidents were recorded with a proprietary incident management system during a
time span of three years (2005 to 2007) in around 1500 companies in 6 countries.

We considered three geographical zones, with two countries in each one. The
zones are Latin America (LA), Southwestern Europe (SE) and Central Europe (CE).
Notice that there are 4 languages spoken in the considered countries: English (EN),
French (FR), Portuguese (PT) and Spanish (ES). More details are provided in Table 3.

3 When a given product is available on different platforms, this number considers those in-

stances as distinct products. Some distinction is also due to different licensing schemes.

Data
Filtering

Variables
Computation

Statistical
Analysis

Data
Collection

336 J. Caldeira and F. Brito e Abreu

Table 3. Countries with their zones and languages

3.3 Descriptive Variables

The variables used in this empirical study are self-described in Table 4. The choice on
the characterization of the incidents (Category, Impact and Priority) is performed by
the person who registers the incident (the end-user/customer or a support staff mem-
ber). Incidents have a defined lifecycle. In this paper we will only consider closed
incidents, since those are the only ones for which we know the values of all timing
variables. Fig. 2 describes how the three timing variables are calculated, regarding
specific milestones in the incidents’ lifecycle.

Table 4. Variables used in this empirical study, their scale types and description

Variable Scale Description
Product Nominal Name of the product causing the incident
Company Nominal Name of the company where the product is installed
Country Nominal Name of the country where the incident was originated
Zone Nominal Zone of the globe where the country lies
Language Nominal Language spoken in the country
Category Nominal Represents incident’s root cause

Valid values are: 3rd Party Solution, Customer Support, Customiza-
tion, Documentation, Function, Installation, Internationalization,
Compatibility, Licensing, Localization, Performance, RFI, Security
Threat, Stability, Education, Uncategorized

Impact Ordinal Measures incident’s business criticality
Valid values are: 1-Critical, 2-High, 3-Medium, 4-Low

Priority Ordinal Measures incident’s correction prioritization as seen by the support
4

Valid values are the same as for the impact
Status Nominal Current status of the incident in its life cycle
WeekOfCreation Interval Order of the week (in the year) when the incident occurred

Valid values belong to the interval [1, 53]
WeekdayOfCreation Interval Order of the day (in the week) when the incident occurred.

Valid values belong to the interval [1, 7]
TimeToRespond Absolute Elapsed time from incident creation until a support person has

started to work on it
TimeToResolve Absolute Elapsed time from incident creation until a resolution is given to the

end-user
TimeToConfirm Absolute Elapsed time since the resolution was given to the end-user until a

confirmation is obtained that the incident is closed

4 According to ITIL, incidents priority should be calculated based upon urgency and impact.

However, the incident management system used in this study does not yet support the concept
of urgency. The priority is assigned directly by the incident recorder.

Country Zone Language # of Incidents # of Customers # of Software Products
England (UK) CE EN 7349 530 460
France (FR) CE FR 8237 554 444
Spain (ES) SE ES 4014 219 359

Argentina (AR) LA ES 535 66 88
Portugal (PT) SE PT 556 37 107
Brazil (BR) LA PT 2221 125 250

Total 22912 1531

 Influential Factors on Incident Management 337

Fig. 2. Incidents’ lifecycle timing variables

3.4 Research Questions

To understand incident management we must find answers for these two questions:

Q1: Which factors influence the lifecycle of incidents?

Q2: Are there patterns in the occurrence of incidents?

Regarding Q1, the set of variables that best describe incidents lifecycle at a macro-
scopic level are TimeToRespond, TimeToResolve and TimeToConfirm. The answer to
Q1 is important both to clients and service providers. For clients, particularly for large
organizations operating in several countries, it will allow taking decisions in the for-
mulation and negotiation of Service Level Agreements (SLAs). For service providers
it will also help in finding the adequate level of staffing.

Regarding the possible factors influencing the incidents lifecycle, we can consider
the following variables inscribed in Table 4: Product, Company, Country, Zone, Lan-
guage, Category, Impact and Priority. We have selected the following research ques-
tions within the scope of this paper:

• Has the impact of an incident an influence on its lifecycle?

• Has the priority of an incident an influence on its life-
cycle?

• Has the originating country of an incident an influence on
its lifecycle?

• Has the originating geographical zone of an incident an in-
fluence on its lifecycle?

• Has the language spoken in the country where the incident
was reported, an influence on its lifecycle?

• Has the incident category an influence on its lifecycle?

Regarding Q2, the occurrence of incidents can be measured by a simple counting
or a weighted sum (e.g. taking the Impact or Priority as a weight) of incidents match-
ing one of the possible values of the variable under consideration. For instance, if we
were concerned with the identification of seasonal patterns, we can consider the day
within the week (WeekdayOfCreation) or the week within the year (WeekOfCreation)
when the incidents were reported. Again, the answer to Q2 will bring benefits to cli-
ent and service provider. Both will become aware of worst and best-case scenarios
and thus take appropriate actions.

Due to the lack of space, we have just considered here a possible pattern, which is
the distribution of critical incidents, the ones which give more headaches to all stake-
holders. In this case, since the incidents were recorded using the same incident man-
agement system and supposedly using similar classification criteria, we would expect

TimeToRespond TimeToResolve TimeToConfirm

End-user reports
the incident

Support staff starts
working in the incident

Support staff provides a
potential resolution

End-user confirms that
the incident is fixed

338 J. Caldeira and F. Brito e Abreu

the proportion of critical incidents to be the same across countries. In other words, the
corresponding research question is simply:

• Is the distribution of critical incidents the same across
countries?

3.5 Hypotheses Identification and Testing

In this section we identify which are the statistical hypotheses that must be tested in
order to answer the previously stated research questions. We then apply the adequate
statistical tests and interpret their results. Research questions are prefixed by “RQ”.

RQ: Has the Impact of an Incident an Influence on Its Lifecycle?
In other words, we want to know if incidents with different assigned impacts differ in
the corresponding lifecycle schedules (TimeToRespond, TimeToResolve, TimeTo-
Confirm). Notice that the Impact category is assigned by the person that records the
incident in the incident management system at the time of its creation.

Due to the fact that those schedules are not normally distributed, we can only per-
form a non-parametric analysis of variance. We will use the Kruskal-Wallis one-way
analysis of variance, an extension of the Mann-Whitney U test, which is the nonpara-
metric analog of one-way ANOVA test. The Kruskal-Wallis H test allows assessing
whether several independent samples are from the same population (i.e. if they have
similar statistical distributions). In our case those independent samples are the groups
of incidents for each of the four Impact categories.

Let T be a schedule and i and j two different impact categories. Then, the underly-
ing hypotheses for this test are the following:

H0: ∀i,j :T i ~ T j vs. H1: ¬ ∀i,j :T i ~ T j

Table 5. Testing the influence of the impact on incident schedules with the Kruskal-Wallis one-
way analysis of variance test

352.381 77.532 18.487
3 3 3

.000 .000 .000

Chi-Square
df
Asymp. Sig.

TimeToRespond TimeToResolve TimeToConfirm

The Kruskal-Wallis H test statistic is distributed approximately as chi-square. Con-
sulting a chi-square table with df = 3 (degrees of freedom) and for a significance of α
= 0.01 (probability of Type I error of 1%) we obtain a critical value of chi-square of
11.3. Since this value is less than the computed H values (for each of the schedule
variables in Table 5), we reject the null hypothesis that the samples do not differ on
the criterion variable (the Impact). In other words, given any of the schedule vari-
ables, we cannot sustain that the statistical distributions of the groups of incidents
corresponding to each of the Impact categories are the same. This means that we ac-
cept the alternative hypothesis that the impact of an incident has influence on all
the schedule variables.

 Influential Factors on Incident Management 339

RQ: Has the Priority of an Incident an Influence on Its Lifecycle?
Here we want know if incidents with different assigned priorities differ in the cor-
responding lifecycle schedules (TimeToRespond, TimeToResolve, TimeToConfirm).
We will follow the same rationale as for the previous research question, regarding the
applicable statistic and its interpretation.

Table 6. Testing the influence of the priority on incident schedules with the Kruskal-Wallis
one-way analysis of variance test

298.918 80.868 13.210
3 3 3

.000 .000 .004

Chi-Square
df
Asymp. Sig.

TimeToRespond TimeToResolve TimeToConfirm

Again the critical value of chi-square for (df = 3, α = 0.01) = 11.3. Since this value
is less than the computed H values for each of the schedule variables in Table 6, we
reject the null hypothesis that the samples do not differ on the criterion variable (the
Priority). In other words, given any of the schedule variables, we cannot sustain that
the statistical distributions of the groups of incidents corresponding to each of the
Priority categories are the same. This means that we accept the alternative hypothesis
that the priority of an incident has influence on all the schedule variables.

RQ: Has the Originating Country of an Incident an Influence on Its Lifecycle?
The rational for answering this research question is the same as for the previous one.
To enable the application of the Kruskal-Wallis test, we have automatically recoded
the Country variable from string categories into numerical categories.

Table 7. Testing the influence of the originating country on incident schedules with the
Kruskal-Wallis one-way analysis of variance test

1666.912 337.181 44.877
5 5 5

.000 .000 .000

Chi-Square
df
Asymp. Sig.

TimeToRespond TimeToResolve TimeToConfirm

Given that the critical value of chi-square for (df = 5, α = 0.01) = 15.1. Since this
value is less than the computed H values for each of the schedule variables in Table 7,
we reject the null hypothesis that the samples do not differ on the criterion variable
(the Country). In other words, given any of the schedule variables, we cannot sustain
that the statistical distributions of the groups of incidents corresponding to each of the
countries are the same. This means that we accept the alternative hypothesis that the
country of an incident has influence on all the schedule variables.

RQ: Has the Originating Geographical Zone of an Incident an Influence on Its
Lifecycle?
The rational for answering this research question is again the same as for the previous
one. To enable the application of the Kruskal-Wallis test, we have automatically re-
coded the Zone variable from string categories into numerical categories.

340 J. Caldeira and F. Brito e Abreu

Table 8. Testing the influence of the originating zone on incident schedules with the Kruskal-
Wallis one-way analysis of variance test

1546.415 139.297 17.727
2 2 2

.000 .000 .000

Chi-Square
df
Asymp. Sig.

TimeToRespond TimeToResolve TimeToConfirm

Given that the critical value of chi-square for (df = 2, α = 0.01) = 9.21, we reject
the null hypothesis that the samples do not differ on the criterion variable (the
Zone). In other words, given any of the schedule variables, we cannot sustain that
the statistical distributions of the groups of incidents corresponding to each of the
geographical zones are the same. Then we accept the alternative hypothesis that the
geographical zone where the incident was reported has influence on all the
schedule variables.

RQ: Has the Incident Category an Influence on Its Lifecycle?
Again, after performing an automatic recode (for the Category variable), we obtained
the following summary table:

Table 9. Testing the influence of the category on incident schedules with the Kruskal-Wallis
one-way analysis of variance test

837.595 1258.178 612.215
15 15 15

.000 .000 .000

Chi-Square
df
Asymp. Sig.

TimeToRespond TimeToResolve TimeToConfirm

Given that the critical value of chi-square for (df = 15, α = 0.01) = 30.6, we reject
the null hypothesis that the samples do not differ on the criterion variable (the inci-
dent Category). In other words, given any of the schedule variables, we cannot sustain
that the statistical distributions of the groups of incidents corresponding to each cate-
gory are the same. This means that we accept the alternative hypothesis that the inci-
dent category has influence on all the schedule variables.

RQ: Is the Distribution of Critical Priority Incidents the Same Across
Countries?
Since we know the proportion of total incident reports originated in each country (see
Fig. 3) we can expect that the incidents with critical priority per country follow the
same proportion of values. For this purpose we will use the Chi-Square Test proce-
dure that tabulates a variable into categories and computes a chi-square statistic. This
non-parametric goodness-of-fit test compares the observed and expected frequencies
in each country to test if each one contains the same proportion of values.

 Influential Factors on Incident Management 341

UKPTFRESBRAR

Country

40,0%

30,0%

20,0%

10,0%

0,0%

P
er

ce
n

t

32,0%

2,46%

35,72%

17,66%

9,72%

2,43%

Fig. 3. Percentage of incident reports per country

To apply this test we only selected the critical incidents and obtained the results
displayed in Table 10. Since the critical value of the chi-square for (df = 5, α = 0.01)
= 15.1, we reject the null hypothesis that the proportion of critical priority incidents is
the same across countries. This means that we accept the alternative hypothesis that
the proportion of critical priority incidents is different across countries.

Table 10. Results of applying the Chi-Square Test procedure to assess if the distribution of
critical priority incidents is the same across countries

12 17.8 -5.8
39 71.2 -32.2

154 129.3 24.7
198 261.5 -63.5

15 18.0 -3.0
314 234.3 79.7
732

AR
BR
ES
FR
PT
UK
Total

Observed N Expected N Residual

64.203
5

.000

Chi-Square
df
Asymp. Sig.

Country

4 Conclusions and Future Work

4.1 Conclusions

In this paper we obtained statistically significant evidence that several independent
variables (Impact, Priority, Country, Zone and Category) have an influence on inci-
dents lifecycle, as characterized by three dependent variables (TimeToRespond, Time-
ToResolve and TimeToConfirm). To assess the intensity of the relationship among the
independent and dependent variables we must use appropriate measures of associa-
tion, but that analysis could not be included in this paper due to space restrictions.

There is no surprise on the influence of incident’s business criticality (the Impact)
and incident’s correction prioritization recorded by the support (the Priority) on inci-
dents lifecycle. After all, those incident descriptors were proposed with that same aim.

342 J. Caldeira and F. Brito e Abreu

Not so obvious is the observed fact that either the country or the geographical zone
of an organization reporting an incident, has influence on all descriptive variables that
characterize incidents lifecycle. This means that organizations from different coun-
tries (or geographical zones) do not receive the same kind of support, although they
are using the same products and, in principle, paying approximately the same for it.
Several reasons, which we have not been explored yet, may explain this phenomenon:

• exigency on SLAs formalization and compliance verification by clients may some-
how differ from country to country;

• cultural differences that cause a distinction on the tolerance to failure by final users
(e.g. not complaining because an incident was yet solved);

• language differences that somehow influence the relationship between final users
and the international support that is provided by the software vendor worldwide,

The incident category also has a direct influence on the three schedule variables.
However, we have many kinds of recorded incidents, ranging from those occurring at
software installation, to those related to software functionalities. The incidents can
also go from enhancement requests to “true” bugs. This diversity requires a careful
study before any interpretation of value can be performed.

Another apparent surprise was the fact that the proportion of critical incidents is
not the same across countries. In all countries, except the UK and Spain, the actual
number of critical incidents was below the expectation. This may indicate that end-
users in those countries are causing an over-grading in incidents critically assessment
by the support. Sometimes, end-users/customers tend to think that their incidents have
always higher impact, simply because it affects the way they do their work and not
based on the impact the incident has on the business. Again, this issue deserves fur-
ther study before sensible conclusions can be drawn.

We have taken a view of the incident management process inspired by the ITIL
approach, thus highlighting the importance of combining efforts to link engineering
and management areas.

4.2 Threats to the Validity

The main threats to this empirical study are related with data quality and the incident
management process itself.

The main data quality related threats are:

• Data missing and/or wrong data (product name, version, etc) provided from the
end-users/customers;

• Wrong data entered by the support staff (priority, impact, categorization, reso-
lution codes, etc).

The main Incident Management process threats are:

• Lack of skills about the support tool can make some information non reliable
(time to respond to incidents, time to resolve, etc);

• Customer non-response to a provided solution can cause incidents to be open
when in fact they could be closed.

 Influential Factors on Incident Management 343

As an external threat to this empirical study, we can point that there is data missing
from the software development process (resources allocated, activities, development
tools, development methodology, etc.) which could help us to better evaluate and
understand some of the results.

4.3 Future Work

This empirical study was built upon a large sample of real-life data on incidents
across a large period of time, on a long list of commercial products and customers in
different countries. We are conscious that we have only scratched the surface. We
plan to continue this work by deeply analyzing all the incidents, their categories, soft-
ware errors and their causes.

Besides understanding the incident management process, our final aim is proposing
some guidelines to cost-effectively improve software quality, based on incident man-
agement optimization. These guidelines can be focused on the products that appear to
have more reported incidents or simply based on the most frequent incident catego-
ries. For this to be done accurately, we plan to collect more data, such as information
about software development resources and activities performed during the overall
development process.

References

1. Humphrey, W.: Managing the Software Process. Addison-Wesley Publishing Company,
Boston (1989)

2. El-Eman, K., Drouin, J.-N., Melo, W. (eds.): SPICE: The Theory and Practice of Software
Process Improvement and Capability Determination. IEEE Computer Society Press, Los
Alamitos (1997)

3. Sjøberg, D.I.K., Hannay, J.E., Hansen, O., Kampenes, V.B., Karahasanovic, A., Liborg,
N.-K., Rekdal, A.: A survey of controlled experiments in software engineering. IEEE
Transactions on Software Engineering 9, 733–753 (2005)

4. Jedlitschka, A., Ciolkowski, M.: Towards Evidence in Software Engineering. In: Proc. of
International Symposium on Empirical Software Engineering (ISESE 2004), pp. 261–270.
IEEE Computer Society Press, Washington (2004)

5. OGC: The Official Introduction to the ITIL Service Lifecycle Book. TSO, London (2007)
6. Cannon, D., Wheeldon, D.: ITIL Service Operation. TSO, London (2007)
7. Case, G., Spalding, G.: ITIL Continual Service Improvement. TSO, London (2007)
8. Iqbal, M., Nieves, M.: ITIL Service Strategy. TSO, London (2007)
9. Lacy, S., MacFarlane, I.: ITIL Service Transition. TSO, London (2007)

10. Loyd, V., Ruud, C.: ITIL Service Design. TSO, London (2007)
11. Abran, A., Moore, J.W., Bourque, P., Dupuis, R. (eds.): Guide to the Software Engineer-

ing Body of Knowledge (SWEBOK). IEEE Computer Society Press, Los Alamitos (2004)
12. Abe, T.: What is Service Science? Research report nr. 246, Fujitsu Research Institute, To-

kyo (2005)
13. Poole, G.: A new academic discipline needed for the 21st century. Triangle Business Jour-

nal (2007)

344 J. Caldeira and F. Brito e Abreu

14. Barash, G., Bartolini, C., Wu, L.: Measuring and Improving the Performance of an IT
Support Organization in Managing Service Incidents. In: Proc. of 2nd IEEE/IFIP Interna-
tional Workshop on Business-Driven IT Management (BDIM 2007), pp. 11–18. IEEE
Computer Society Press, Los Alamitos (2007)

15. Niessink, F., Vliet, H.v.: Software Maintenance from a Service Perspective. Journal of
Software Maintenance: Research and Practice 12(2), 103–120 (2000)

16. Jansen, S., Brinkkemper, S.: Evaluating the Release, Delivery and Development Processes
of Eight Large Product Software Vendors applying the Customer Configuration Update
Model. In: Proc. of International Workshop on Interdisciplinary Software Engineering Re-
search (WISER 2006) @ ICSE 2006, Shangai, China (2006)

17. Mohagheghi, P., Conradi, R.: Quality, productivity and economic benefits of software re-
use: a review of industrial studies. In: Empirical Software Engineering, vol. 12(5), pp.
471–516. Kluwer Academic Publishers, Hingham (2007)

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 345–359, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Pitfalls in Remote Team Coordination: Lessons
Learned from a Case Study

Darja Šmite1, Nils Brede Moe2, and Richard Torkar3

1 University of Latvia, Latvia
2 SINTEF, Norway

3 Blekinge Institute of Technology, Sweden
Darja.Smite@lu.lv, Nils.B.Moe@sintef.no, Richard.Torkar@bth.se

Abstract. As companies become more and more distributed, multi-site develop-
ment is becoming a norm. However along with the new opportunities, geographic
distribution is proven to increase the complexity of software engineering introduc-
ing challenges for remote team communication, coordination and control. In this
article we present an illustrative singe-case study with an intra-organizational in-
tra-national context focussing on the effect of geographic distribution on team co-
ordination practices and how this influences remote team performance. Based on
our findings we conclude that a) distribution significantly influences the nature of
coordination; b) remote team coordination mechanisms can't be chosen disregard-
ing the complexity of the given tasks and c) the distribution of work on complex
software development tasks shall be avoided.

1 Introduction

Distributed software teams, in which members interact with one another across
geographic, organizational, and other boundaries, are becoming commonplace in soft-
ware organizations. Distributed software teams can be composed of the best individu-
als for the task regardless of their physical or organizational location, thus enhancing
the quality of software development. However, problems of geographic distribution,
such as decreased speed of work [1, 2], loss of communication richness [2, 3] and
coordination breakdown [2, 3] experienced in highly distributed global software engi-
neering projects may also be faced in an intra-organizational intra-national software
development environment.

While most opportunities of work distribution are found on the business level,
most challenges are introduced at the level of development practice [4]. Lacking
knowledge and expertise, managers tend to underestimate the complexity of remote
team coordination. Lack of proximity and ability to use well-known proven practices
for team coordination makes project managers uncomfortable and insecure. Subse-
quently, missing trust in a distributed project may even lead to termination of further
collaboration [5].

Coordination of work is an important aspect of teamwork and team leadership [19].
Coordination together with communication and collaboration are recognized as the
key enablers of software development processes [20].

346 D. Šmite, N.B. Moe, and R. Torkar

Motivated by the importance of distributed work and software development teams,
the objective of this paper is to explore and discuss the interrelation between geo-
graphic distribution, team coordination styles and team performance. The core re-
search questions are therefore:

RQ1: What are the consequences of geographic distribution on how work is co-
ordinated in a distributed software team?

RQ2: What characterizes the effect of different coordinating mechanisms on dis-
tributed team performance?

We first illustrate the nature of remote team coordination with a case study and
then use related literature to understand the effect of different coordination mecha-
nisms on the remote team performance.

The rest of the paper is structured in the following way: in section 2 we describe
related literature. Section 3 describes our research method in detail. In Section 4, we
present results from a case study on work coordination in a distributed environment.
We discuss our results and research questions in section 5. Finally, recommendations
on how to coordinate work in a distributed project conclude the paper.

2 Related Research Overview

2.1 Coordination of Software Work

Software development consists of solving tasks with different complexity, and differ-
ent task complexities require different coordination mechanisms [6]. Mintzberg [6]
proposes the following coordination mechanisms:

1. Mutual adjustment—based on the simple process of informal communication,
achieved by a continuous exchange of information among participants;

2. Direct supervision—one person takes responsibility for the work of others by issu-
ing instructions and monitoring their actions;

3. Standardization—of which there are four types: work processes, output, skills (as
well as knowledge), and norms.

The coordinating mechanisms may be considered as the most basic elements of
structure, the glue that holds the organization together [6]. The mechanisms may act
as substitutes for each other to some degree, but all will typically be found in a rea-
sonably well-developed organization.

Simple tasks are easily coordinated by mutual adjustment, but when work becomes
more complex, direct supervision tends to be added and takes over as the primary
means of coordination. When things get even more complicated, standardization of
work processes (or outputs) take over as the primary coordinating mechanism, in
combination with the other two. Then, when things become really complex, mutual
adjustment tends to become primary again, but in combination with the others (Fig.
1). This means that even though mutual adjustment should be the most important co-
ordinating mechanism when developing software even in a global context, the need
for the different coordinating mechanisms depends on the different tasks.

 Pitfalls in Remote Team Coordination 347

Fig. 1. Complexity of task [6]

Mutual adjustment and direct supervision can be categorized as coordinating by
feedback [18], where coordination is adjusted continually as people observe the ef-
fects of their own and others’ actions. However, geographic distribution is associated
with reduction of informal contact, lack of proximity and task awareness [4], which
are crucial for applying these coordination mechanisms. One dominant perspective on
software development is rooted in the rationalistic paradigm, which promotes a prod-
uct-line approach to software development using a standardized, controllable, and
predictable software engineering process [19]. This perspective is inspired by a
mechanistic worldview [20], making standardization of work processes the most
important coordinating mechanism. Unfortunately, organizational diversity and dis-
parities in work practices make it difficult to only rely on standardization [5]. These
problems are often underestimated and discovered too late in the projects [5].

2.2 Coordination of Distributed Software Work

Research in globally distributed software development (GSD) is in the phase, where
case studies of various kinds (in most cases having a qualitative focus) provide input
for researchers and organizations to, in the end, improve upon activities in this con-
text. The same applies to this paper and hence relevant work can be found in different
contributions where lessons learned, models, problem descriptions and communica-
tion patterns are analyzed using a case study approach.

Coordination in distributed development and especially in GSD has caught the at-
tention of several researchers. Cataldo et al. [7] present four case studies, where they
exemplify coordination breakdown problems in GSD focusing on how these problems
could still occur in spite of supporting tools and processes (one of the findings was to
emphasize lateral communication in GSD projects). Holmström et al. (a) [8] present a
number of challenges with respect to temporal, geographical and socio-cultural dis-
tance and combined with the conclusion that GSD should be trimmed down towards
nearshoring. Additionally, Holmström et al. (b) [4] (containing two case studies) in-
vestigate how agile processes can help in reducing different types of “distances”, i.e.
they found some indications that agile practices may assist in alleviating some of the
problems in GSD.

Crowston et al. [9] try to explain the performance of teams working for Free/Libre
Open Source Software (FLOSS) from a GSD perspective. The conclusion is that the

348 D. Šmite, N.B. Moe, and R. Torkar

problems faced by these teams can be recognized as human-centred. In this paper we
further examine this issue from an intra-organizational intra-national industry context.

Herbsleb et al. [10] present a number of lessons learned from nine distributed pro-
jects. They propose future research on different dimensions of coordination mecha-
nisms and how they play together. In this paper we look at communication patterns,
project management issues, the effect of traveling and different communities of prac-
tice, i.e. issues which Herbsleb et al. introduced in [10].

Finally, at least three other types of research contributions can be found in the field
of coordination research in GSD. First, the quantitative studies (which are fairly un-
common in GSD research) of Herbsleb and Mockus [1], where they discovered that
distributed work is significantly slower than co-located through mining source code
repositories for further analysis. Second, contributions covering tool support in a GSD
context; here Boden et al. [11] and Fomseca et al. [12] can serve as good examples.
Third, and final, we find contributions focusing on coordination analysis [13] and
predictions [14] that help in better understanding coordination issues in GSD.

3 Research Design and Methodology

3.1 Study Context

To contribute to the existing literature on remote team coordination we exemplify the
nature of coordination mechanisms in a geographically distributed environment by a
single-case study run in a Northern European software organization nationally dis-
tributed across two locations. The development project involved a customer from
Norway that engaged the case company that in its turn outsourced some work to its
remote location within the national borders. In this study we focused on the intra-
organizational relationship, where the central team with several years of experience as
a supplier, was now put into an engaging partner role.

The company made a decision to employ developers in one of the poorest regions
in the same company for decreasing their development costs. The company rented an
office and employed a group of local software engineers all working as developers.

The goal of the project was to deliver a web-based e-commerce application system
built around mordern technology. The project started in May 2005 and ended in April
2006. In total 1,460 man-days were used exceeding the planned effort by 12%.

The project suffered from ambiguity in the initial set of requirements because a
great amount of changes was reported by the end customer during the project. There-
fore, schedule deviations were foreseen in advance and negotiated with the customer
without extending the deadlines. However this caused extra work during the week-
ends for the development teams. Additional expenses were not planned by the cus-
tomer and resulted in the scope of the project being narrowed. As a result, testing
activities were limited and several requirements were not implemented. This sequen-
tially decreased the end customer satisfaction.

The quality of the delivered software was perceived as poor by the project manager
due to a high amount and severity of bugs uncovered during system testing (1,144
bugs) and acceptance testing (220 bugs). The manager regularly expressed his low
satisfaction with the performance of the remote team, which served as a motivation

 Pitfalls in Remote Team Coordination 349

for our investigation. In addition to the project goal, the project manager aimed to
verify the suitability of the remote team for future globally distributed projects.

Process Distribution: The entire project was divided into a set of subsequential
phases. Most of the activities were performed on site by the central unit. Development
tasks were distributed between the on-site and off-site (central and remote) teams.
However, the tasks were allocated according to the independent software architecture
modules and primarily did not request close dependency between the distributed pro-
grammers. Table 1 shows the lifecycle process distribution between the teams:

• Customer unit consisting of 2 people (overall project manager and systems analyst)
• Central supplier unit consisting of 6 people (project manager, 2 system analysts, 2

testers and a programmer)
• Remote supplier unit consisting of 5 people (a team leader and 4 programmers).

The project manager and the remote team leader have worked in the studied com-
pany for 3 years. System analysts and testers had more than 10 years of experience in
the same company. Programmers‘ experience varied between 2-5 years.

Table 1. Lifecycle process distribution

Lifecycle activities Customer Supplier: Central unit Supplier: Remote unit
Requirements Analysis X X
High Level Design X
Detail Architecture X
Development X X
Unit Testing X X
System Testing X
Acceptance Testing X X

Thus, software processes in this project were distributed between the members of
an intra-organizational and intra-national team. According to Prikladnicki et al. in
[17] the project can also be characterized as an internal domestic supply.

Task Complexity: The developed software product was perceived as a complex sys-
tem from both an architectural and technological perspectives. This was particularly
discussed when the project was summed up in the end during the post mortem meet-
ing. Another reason for work complexity was lack of experience of the developers
with the new technologies the project was built on and unfamiliarity with the business
domain. This required close cooperation and joint problem solving.

Process Quality Assurance: Since the supplier organization implemented a quality
system and certified its processes according to the ISO 9001:2000 standard, the pro-
ject followed standardized guidelines for requirement specification, task management,
progress reporting and monitoring, and other activities. The project manager estab-
lished a specifically tailored quality plan describing the procedures to follow. Weekly
teleconferences were organized to discuss urgent problems and plans. A special tool
was used for allocating tasks and monitoring progress. This tool was also used to
monitor the workload of each developer.

350 D. Šmite, N.B. Moe, and R. Torkar

3.2 Data Sources and Analysis

In this case study we have used multiple data sources: individual and group inter-
views, post mortem analysis, risk survey and participant observations; all collected by
the first author, to identify problems related to distribution and the effect of different
coordination styles on team performance.

We conducted four individual qualitative interviews, which were from 30 to 60
minutes long in the central location and one a 90 minutes group interview with the
remote development unit in their location. We also organized a post mortem analysis
meeting [16] at the end of the project. The meeting involved all project members in
the discussion of what went well and what did not work in the project, concluded with
a root-cause analysis of the major issues. In addition, a risk checklist was distributed
to the central project manager and the remote team leader in order to identify prob-
lems related to collaboration. The first author of this paper was also involved in the
quality assurance and process improvement activities during the last 6 months of the
project. This enabled the possibility to use participant observation [16] when observ-
ing both teams. In this study we are mainly relying on qualitative interviews [15] and
participant observation [16].

Multiple sources of evidence enabled triangulation when analysing the material.
This helped us increased validity and allowed to create a broad view of the project,
also collecting the “unsaid issues”; the remote team reported many problems and was
open to the researcher during the group interview performed at their premises, how-
ever, they did not to report any problems related to collaboration, communication or
coordination during the post-mortem meeting.

The qualitative analysis of the data was performed in several steps. First we
analyzed the problems reported and observed from both teams separately. This al-
lowed us to see the diversity of evidence dependent on the chosen investigation
method and the team perspective. Next we analyzed the interrelation between the
problems, geographic distribution and related them to the three coordination mecha-
nisms. At the end, we tracked the influence of different coordination mechanisms on
the team behaviour.

We believe that the selected case is internally representative, since the studied pro-
ject involved all of the employees in the remote location. The internal validity could
be improved by observing several collaborative projects, but this was not possible to
address, since the selected project was the only ongoing project between the central
and the remote locations at the time of investigation. We also believe that such factors
as poor working environment that may have affected the remote team motivation shall
be seen as a part of the supply chain management and coordination.. Our study is
limited because it is only validated in the context of a Northern European intra-
organizational intra-national collaboration and therefore has potential threats to exter-
nal validity. Hence, the findings cannot be generalized widely to practitioners from
other countries. To improve the potential for external validity of our single-case
study, we applied existing theory as recommended by Yin (2003) and emphasize our
contribution as exploratory-illustrative rather than theory-building. Reliability of the
study can be judged upon the description of the methodology used and the context of
the intra-organizational intra-national collaboration.

 Pitfalls in Remote Team Coordination 351

4 Coordination of Work in a Distributed Project

We now present how the different coordinating mechanisms were used in the case
study and discuss the reasons of coordination pitfalls.

4.1 Standardization

Face-to-face contact is the richest communication channel we have, and any elec-
tronic channel is significantly poorer [18]. Hence, if coordination is based on coordi-
nation by programme (strandardization) in a distributed team, where coordination is
affected through instructions and plans generated beforehand, this will reduce the
level of face-to-face communication, which again tends to hinder effective communi-
cation and the possibility for coordination by mutual adjustment.

Case-study: Standardization was selected as a prior ground for project coordination,
following processes certified according to the ISO 9001:2000 standard. The project
manager established guidelines (project quality assurance plans, communication
plans, different software development related process handling guidelines) for the
team and expected everybody to follow them.

As the project went on, the project manager realized that even though the work
processes were standardized, there were disparities in work practices between the
central and remote units. Not working according to the established processes as ex-
pected, resulted in a lack of understanding of the context of decision-making, and
decreased the level of trust between the distributed team members. These disparities
considerably decreased the predictability of the team member performance and mu-
tual cohesion.

The project manager reported that the remote team performance was unexpectedly
low. Although the collocated team members in the remote location were cohesive,
their informality caused problems for team coordination: the systems analysts from
the central location reported that the remote team unit acted “as a joint body”, inde-
pendently shifting their work tasks and interpreting unclear requirements. The remote
team was able to act independently, which was good, but making operational deci-
sions without sufficient information often caused subsequent rework. Coordination by
standardization didn’t encourage frequent feedback from the remote location, there-
fore, it caused delays and absence of a jont problem resolution, resulting in the remote
team making operational desicions on insuficcient grounds . In addition, due to the
remote team’s independent behaviour, the project manager felt he had a limited vis-
ability of what was done by whom and when, which he felt caused an inability to ef-
fectively coordinate and plan the remote team’s work load. This illustrates that despite
the official project guidelines, according to the project manager the remote team acted
differently than expected.

Often lacking awareness of the distant activities, the project manager perceived the
remote team to be less productive than expected. The amount of defects uncovered
during testing was percived as too high and decreased his cognition even more. How-
ever, there could be another explanation for this. Despite the standard technological
infrastructure, the remote team suffered from old-fashioned computers and slow
communication lines. This required several hours for remote code compilation per

352 D. Šmite, N.B. Moe, and R. Torkar

day. Thereby, unjustified application of new unstable architectural solutions caused
additional rework. These problems were reported to the project manager only at the
end of the project during the post-mortem analysis meeting. However, uncertainty of
the remote activities and not satisfied with the quality delivered, resulted in the desire
of the project manager to increase the use of direct supervision for team coordination
during the project.

Discussion: Relying on coordination by standardization has led to a list of problems
in relation to a) disparities in work practices, b) little feedback, and c) lack of trans-
parency of the remote activities.

The project manager chose standardization as the primary coordinating mechanism
independent of the tasks to be solved, and their complexity. While the remote devel-
opment team struggled with technological issues because of an unknown development
platform in addition to an increased number of changes, lack of mutual adjustment
reduced the possibility for solving these issues effectively and a joint decision-making
process between the distributed teams. Change-driven agile practices that were recog-
nized as key for the remote team cohesion went into conflict with the plan-driven
standardized work practices of the central unit. These disparities caused misunder-
standings, e.g. project guidelines prescribed each developer to report their effort indi-
vidually, however, the reported progress could be misleading, since there was a high
level of workload shift between the remote unit members.

4.2 Direct Supervision

According to Takeuchi and Nonaka [21] management should establish enough check-
points to prevent instability, ambiguity, and tension from turning into chaos. At the
same time, managers should avoid the kind of rigid control that impairs creativity and
spontaneity [21]. Therefore direct supervision must be used with care.

Case-Study: Because the project manager lacked previous experience with remote
team coordination and coordination by standardization was problematic because of
the limited feedback and disparities in work practices, he then started relying more on
direct supervision as the most important coordination strategy.

The remote unit communicated directly with the systems analysts and testers
whenever necessary. Some of the tasks and most of the problem reported were also
coordinated directly without the project manager’s and remote team leader’s in-
volvement. This produced a situation where the local project manager had a feeling
that he was not in charge of all the activities, which together with the geographic dis-
tribution and lacking transparency caused him a “headache” because he felt he lacked
control of the project. The project manager also reported that it was difficult to spread
awareness of everyday activities and more importantly rapid changes across the dis-
tance. Feeling he had no control over the remote team, he increased monitoring and
started requiring daily progress reports. At the end of the project, he even suggested to
install a video camera on the remote site.

Feeling not trusted and afraid of collaboration determination, the remote team started
to report even fewer problems. This again resulted in the project manager perceived the
remote team as inactive and lacking initiative in the weekly teleconferences, often

 Pitfalls in Remote Team Coordination 353

remaining silent. This again limited his ability to supervise the remote team and de-
crease the cognition even more.

Discussion: Geographic distribution made remote team coordination a complex task
and led the project to a chain of problems in relation to a) lacking proximity and
transparency, b) fear of losing control, c) lack of trust and d) decreased feedback.

Our case illustrates a closed loop that starts with a lack of trust and belief of the
project manager in the remote team's ability to perform, leading to increased monitor-
ing and supervision, which eventually leads to a lowered morale of the remote team,
unwillingness to collaborate and little feedback. The remote team's silence and delays
given the lowered levels of trust are misinterpreted by the project manager and trust
decreases even more. Again, this increases the project manager's desire to monitor. It
was a deadlocked situation.

When a manager in whom the employee has little trust gives negative feedback, it
is likely that the employee will doubt the accuracy of the feedback [23, 24]. This hin-
ders the team leader from managing the team effectively.

4.3 Mutual Adjustment

Mutual adjustment in its pure form requires everyone to communicate with everyone
[18]. Therefore to employ mutual adjustment as the prime coordinating mechanisms
the team or network need to be dense and co-located, and since our communication
abilities are limited, that means they also have to be small [18]. Usually there is a lim-
ited possibility for face-to-face communication in a GSD project.

Case-Study: Because the project managers first relied on standardization, mutual
adjustment was not seen as an option for coordination with the remote team. When
standardization did not work as expected, he started relying on direct supervision was
increased, but because of problems with trust and giving feedback, the level of mutual
adjustment was reduced even more. Achieving effective mutual adjustment was also
difficult because of the geographic distribution, no travelling to the remote office and
only relying on instant messaging tools and phone as primary communication means.

As a consequence of heavy monitoring, both sides reported the decreased level of
trust; which again reduced the possibly for mutual adjustment even more. Though the
remote unit had previous work experience with the system analysts from the central
location.

Geographic distribution and lack of transparency caused psychological discomfort
for the project manager. He claimed: “I am not sure if they are working over there”.
The project manager recognized he lacked a belief in the remote team's ability to
perform and this was also felt by the remote team lead and reported through the risk
survey. A number of contributions in other research disciplines has reported on nu-
merous occasions that studied and analyzed this type of organizational behaviour e.g.
[3, 25]. Trust was also affected by the lack of face-to-face meetings, poor socializa-
tion, too little communication, misunderstood silence and unwillingness to discuss
collaborative problems. In the project this was a significant impediment to apply
mutual adjustment for team coordination.

The remote team claimed that there was an increased amount of seemingly unim-
portant questions that were never communicated through distance, however thei

354 D. Šmite, N.B. Moe, and R. Torkar

would have been resolved if the systems analysts travelled on a regular basis to the
remote location.

The diversity of social situation in the capital city and the small town increased the
gap between the two distributed teams. The benefits that were organized for the cen-
tral location were not offered for the remote location. Their office got low technologi-
cal infrastructure, old computers and communication lines. The remote-team leader
complained: “It took some time to even organize the supply of drinking water. It was
not easy to convince the management to order the service and it wasn’t easy to find
the service supplier in our region”. After feeling the lack of trust and belief in their
performance from the central location, they were afraid to complain about their prob-
lems. This subsequently decreased the team‘s psychological comfort and ability to
rely on mutual adjustment.

Discussion: Several of the problems described are examples of impediments to estab-
lishing mutual adjustment in geographically distributed projects. The case shows that
geographic distribution and missing trust affected the project manager’s and the
team’s behaviour. While the project manager didn’t trust and believe in success of
collaboration, the team tried to hide their problems. Given development tasks that
were perceived as complex, in addition to frequent changes, stressed by the deadlines
and the usage of unfamiliar technologies, the remote team relied on mutual adjust-
ment to coordinate and leverage their work within the team. Because face-to-face
meetings were costly, and the project was distributed to save costs, neither systems
analysts nor the project manager ever travelled and, therefore, lack of proximity of the
remote team’s activity caused coordination breakdown.

5 Discussion

5.1 Pitfalls in Remote Team Coordination

In this paper we try to understand, what is the effect of geographic distribution on
how the work is coordinated in a distributed environment. The area of distributed
software work is relatively new, and the majority of research conducted in this area is
exploratory in nature. Contributing ro related research [26, 27, 2] our case study
serves as an example, where distributed software teams rely on formal mechanisms
(standardization), such as detailed architectural design and plans, to address impedi-
ments to team communication that result from geographical separation. However, in
contradiction to a common view that the most effective way to manage global soft-
ware teams is reliance on methodological standardization [2], the results of our case
study indicate that coordination by program didn’t work as intended, due to problems
with disparities in work practices and limited feedback from the remote location.

Trying to improve the situation, direct supervision became the next dominating co-
ordination mechanism. However, lack of proximity and trust, troubled the ability for
direct supervision. Trying to control the remote team, the project manager from the
central unit stumbled upon the problem of lacking trust and subsequently missing
feedback again.

Our case also proves that coordination by mutual adjustment is troublesome because
of the geographic distribution. Lacking trust, limited opportunities for face-to-face

 Pitfalls in Remote Team Coordination 355

contact and constant feedback in the distributed environment make it difficult to use
mutual adjustment when coordinating work, which again hinders effective communica-
tion. This is one of the reasons for distributed organizations having problems to display
the same cohesiveness, resilience, and endurance as a “physical” organization, and it is
likely that a distributed organization will therefore experience a handicap that must be
outweighed by other factors [18]. Frequent communication is important in distributed
teams for providing constant confirmation that team members are still there and still
working [28]. If feedback is provided on a regular basis, communication improves,
which in turn leads to greater trust and improve team performance [29, 30]. Lacking
mutual adjustment results in choosing either direct supervision or standardization as the
dominating coordinating mechanisms.

5.2 The Effect of Coordination Mechanisms on Remote Team Performance

Exploring the characteristics of the effect of different coordination mechanisms on
distributed team performance, we have gathered the observations that indicate that
lacking balance in selecting coordination mechanisms not only leads to coordination
pitfalls, but also affects the remote team performance.

Relying on standardization as the primary coordinating mechanisms one should be
sure that there are no disparities in work practices, since it is difficult to discover such
disparities using standardization. Moreover, disparities in work practices can lead to
troubled understanding of the manager’s decisions, misunderstanding of requirements
and misbehaviour during implementation and testing [5].

The effect of direct supervision, can have devastating effects (such as decreased
team performance or a total project breakdown) when people do not trust each other.
Trust is a premise for getting necessary feedback, which is needed for direct supervi-
sion to be successful [5].

By not fulfilling the most basic needs [25], e.g. existence and relatedness, or the
most basic hygiene factors [31], e.g. working conditions, it is not likely that the em-
ployees will enjoy their work and therefore perform accordingly (a paycheck is not
enough [32]). Additionally, a manager must always adapt the leadership style no mat-
ter what type of coordinating mechanisms might come into play. Employing a task-
oriented and authoritarian style [3], when it is not appropriate, will seriously influence
work throughput in most teams.

In the case study described in this paper the manager would most likely have bene-
fited by applying situational leadership [33],[34]. The manager, who tried to empower
and delegate reponsibility to the team [35], ended up with a role where he was defin-
ing and instruct the team what to do, and then making it impossible to empower the
team Furthermore, the attempts of the remote team to cope with the complexity of the
given tasks by applying mutual adjustment on their site were not appreciated.

5.3 Implications for Practitioners

With our case study we exemplify the behaviour of the project manager who didn’t
trust the remote team and the effect of his coordination style on the remote team per-
formance and psychological comfort. We therefore recommend:

356 D. Šmite, N.B. Moe, and R. Torkar

Adjust Your Coordination Mechanisms: Consider the nature and perceived com-
plexity of the tasks (both technical and business related) given to the distributed team
and adjust the coordinating mechanisms taking this into account. Since the remote
team may have problems understanding the tasks it is important to use a mechanism
that encourage frequent communication and feedback.

Furthermore, estimate the level of organizational diversity and disparities in work
practices before relying on standardization. In addition, managers should avoid the
kind of rigid control that impairs creativity and spontaneity [21]. Therefore direct su-
pervision must be used with care. A premise for being able to adjust the coordinating
mechanism is frequent feedback and trust. This can be achieved by using the meas-
ures suggested by Moe and Smite [5].

Make it Possible to Apply Mutual Adjustment When Needed: A software organi-
zation often deploys experts in multi-disciplinary teams that carry out projects in a
complex and dynamic environment. Such organizations can be classified as innova-
tive, where mutual adjustment is the most important coordinating mechanism [6]. The
managers should avoid rigid control (direct supervision), which impairs creativity and
spontaneity [21]. Mutual adjustment is also important when solving complex tasks.
Therefore there is a need for mutual adjustment in any software development project.
Relying too much on standardization and direct supervision, together with having
problems achieving trust will make it difficult to apply mutual adjustment.

Avoid Complex Task Distribution: Carmel claimes that the cost of coordinating
work increases when either the tasks are new or uncertain, or when the work units
become more interdependent [2]. Distribution of interdependent and tasks perceived
as complex exacerbates the problems related even more.

In addition, making the remote team responsible for entire modules is important,
i.e. from planning to testing, the team gets a deeper understanding of the tasks it is
working on. Training and investment in a long time relationship is also important.
Extending the existing studies on globally distributed software development (GSD)
that recommend to ‘trim down GSD towards nearshoring‘ [8], we emphasize that dis-
tributing software development within national and organizational borders still, in
some ways, faced the same difficulties as those faced in the GSD context. Therefore,
we recommend evaluating all pros and cons before starting a distributed project and
avoiding pure cost reduction deals.

Keep the Team Small: Given that mutual adjustment in its pure form requires every-
one to communicate with everyone, the team or network needs to be compact [18].

5.4 Implications for Future Research

While this case study illustrates the effect of coordination by standardization and di-
rect supervision, our future work will focus on exploring the effect of coordination by
mutual adjustment. Holmström et al. state [4]: despite the fact that the more common
view is that agile methods are not applicable for GSD, agile practices may assist in
alleviating some of the distribution problems. We would therefore be interested in
exploring distributed software teams that mainly rely on mutual adjustment while
performing tasks of different complexity. Future research should also study how work

 Pitfalls in Remote Team Coordination 357

is coordianted when there exist a more mature relationship between the remote and
local team.

Along with the research in the area of global software development, we also em-
phasize the importance of empirical research in the intra-organizational intra-national
context to supplement the understanding of internal domestic supply chains.

6 Conclusions

While organizations become more distributed, software development tasks of differ-
ent complexity are often performed by distributed software teams. Team coordination
necessary to make sure that it contributes to the overall objective faces new chal-
lenges with respect to geographic distribution of project managers and their teams.
The overhead of control and coordination associated with any software project is as-
tounding [2]. It is therefore important to understand the pitfalls of team coordination
in order to make a distributed project successful.

We have found that:

• Failure applying standardization may result in direct supervision becoming the
dominating coordination mechanism, but this only increases the problems re-
lated to decreased communication and missing feedback.

• Trust and a common understanding of the work processes is a premise for suc-
ceeding with standardization, direct supervision and mutual adjustment.

• Application of frequent communication and feedback through mutual adjust-
ment is essential in overcoming the complex tasks.

Although theory suggests that different coordination mechanisms shall dominate in
different situations dependent on task complexities [6], geographic distribution intro-
duces certain impediments in applying each of the mechanisms discussed in this
paper. In particular, disparities in work practices put under threat the path of stan-
dardization, lack of proximity troubles direct supervision and distribution makes it
difficult to apply mutual adjustment, which is important for complex tasks. Thus,
coordinating mechanisms shall be chosen thoroughly and in balance.

Acknowledgments. This research is supported by the Research Council of Norway
under Grant 181658/I30, the Knowledge Foundation in Sweden under a research
grant for the project BESQ, European Social Fund under grant “Doctoral student re-
search and post doctoral research support for university of Latvia” and the Latvian
Council of Science within project Nr. 02.2002.

References

1. Herbsleb, J.D., Mockus, A.: An Empirical Study of Speed and Communication in Globally
Distributed Software Development. IEEE Transactions on Software Engineering 29(3),
481–494 (2003)

2. Carmel, E.: Global software teams: collaborating across borders and time zones. Prentice-
Hall, Englewood Cliffs (1999)

358 D. Šmite, N.B. Moe, and R. Torkar

3. Tannenbaum, R., Schmidt, W.H.: How to Choose a Leadership Pattern. Harvard Business
Review 51, 162–174 (1973)

4. Holmström, H., Fitzgerald, B., Ågerfalk, P.J., Conchúir, E.Ó.: Agile Practices Reduce Dis-
tance in Global Software Development. Information Systems Management 23(3), 7–18
(2006)

5. Moe, N.B., Šmite, D.: Understanding a Lack of Trust in Global Software Teams: A Multi-
ple-Case Study. In: Software Process Improvement and Practice. John Wiley & Sons (in
press, 2008)

6. Mintzberg, H.: Mintzberg on Management: Inside Our Strange World of Organizations.
Free Press, New York (1989)

7. Cataldo, M., Bass, M., Herbsleb, J.D., Bass, L.: On Coordination Mechanisms in Global
Software Development. In: Proceedings of the International Conference on Global Soft-
ware Engineering (ICGSE 2007), pp. 71–80. IEEE Computer Society Press, Munich,
Germany (2007)

8. Holmström, H., Conchúir, E.Ó., Ågerfalk, P.J., Fitzgerald, B.: Global Software Develop-
ment Challenges: A Case Study on Temporal, Geographical and Socio-Cultural Distance.
In: Proceedings of the International Conference on Global Software Engineering, pp. 3–
11. IEEE Computer Society Press, Costão do Santinho, Florianópolis, Brazil (2006)

9. Crowston, K., Annabi, H., Howison, J., Masango, C.: Effective Work Practices for Soft-
ware Engineering: Free/libre Open Source Software Development. In: Proceedings of the
2004 ACM Workshop on Interdisciplinary Software Engineering Research, pp. 18–26.
ACM Press, Newport Beach (2004)

10. Herbsleb, J.D., Paulish, D.J., Bass, M.: Global Software Development at Siemens: Experi-
ence from Nine Projects. In: Proceedings of the 27th International Conference on Software
Engineering (ICSE 2005), pp. 524–533. ACM Press, St. Louis (2005)

11. Boden, A., Nett, B., Wulf, V.: Coordination Practices in Distributed Software Develop-
ment of Small Enterprises. In: Proceedings of the International Conference on Global
Software Engineering (ICGSE 2007), pp. 235–246. IEEE Computer Society Press, Mu-
nich, Germany (2007)

12. Fonseca, S.B., Souza, C.R.B.d., Redmiles, D.F.: Exploring the Relationship between De-
pendencies and Coordination to Support Global Software Development Projects. In: Pro-
ceedings of the International Conference on Global Software Engineering (ICGSE 2006),
p. 243. IEEE Computer Society, Costão do Santinho, Florianópolis, Brazil (2006)

13. Wiredu, G.O.: A Framework for the Analysis of Coordination in Global Software Devel-
opment. In: Proceedings of the 2006 International Workshop on Global Software
Development for the Practitioner at International Conference on Software Engineering, pp.
38–44. ACM Press, Shanghai, China (2006)

14. Herbsleb, J.D., Mockus, A.: Formulation and Preliminary Test of an Empirical Theory of
Coordination in Software Engineering. In: Proceedings of ACM Symposium on the Foun-
dations of Software Engineering (FSE), Helsinki, Finland, pp. 112–121 (2003)

15. Myers, M.D., Newman, M.: The Qualitative Interview in IS Research: Examining the
Craft. Information and Organization 17(1), 2–26 (2007)

16. Dingsøyr, T.: Postmortem Reviews: Purpose and Approaches in Software Engineering. In-
formation and Software Technology 47(5), 293–303 (2005)

17. Prikladnicki, R., Audy, J.L.N., Damian, D., de Oliveira, T.C.: Distributed Software Devel-
opment: Practices and Challenges in Different Business Strategies of Offshoring and On-
shoring. In: Proceedings of the International Conference on Global Software Engineering
(ICGSE 2007), pp. 262–274. IEEE Computer Society Press, Munich, Germany (2007)

 Pitfalls in Remote Team Coordination 359

18. Groth, L.: Future Organizational Design: The Scope for the IT-based Enterprise. John
Wiley & Sons, New York (1999)

19. Dybå, T.: Improvisation in Small Software Organizations. IEEE Software 17(5), 82–87
(2000)

20. Nerur, S., Balijepally, V.: Theoretical reflections on agile development methodologies -
The traditional goal of optimization and control is making way for learning and innova-
tion. Communications of the ACM 50, 79–83 (2007)

21. Takeuchi, H., Nonaka, I.: The New New Product Development Game. Harvard Business
Review 64, 137–146 (1986)

22. McGregor, D.: The Human Side of Enterprise. McGraw Hill, New York (1960)
23. Dirks, K.T., Ferrin, D.L.: The role of trust in organizational settings. Organization Sci-

ence 12, 450–467 (2001)
24. Salas, E., Sims, D.E., Burke, C.S.: Is there a big five in teamwork? Small Group Re-

search 36, 555–599 (2005)
25. Alderfer, C.P.: An Empirical Test of a New Theory of Human Needs. Organizational Be-

havior & Human Performance 4, 142–176 (1969)
26. Ramesh, B., Cao, L., Mohan, K., Xu, P.: Can distributed software development be agile?

Communications of the ACM 49, 41–46 (2006)
27. Ågerfalk, P.J., Fitzgerald, B.: Flexible and distributed software processes: Old petunias in

new bowls? Communications of the ACM 49, 26–34 (2006)
28. Jarvenpaa, S.L., Shaw, T.R., Staples, D.S.: Toward contextualized theories of trust: The

role of trust in global virtual teams. Information Systems Research 15, 250–267 (2004)
29. Jarvenpaa, S.L., Knoll, K., Leidner, D.E.: Is anybody out there? Antecedents of trust in

global virtual teams. Journal of Management Information Systems 14, 29–64 (1998)
30. Jarvenpaa, S.L., Leidner, D.E.: Communication and trust in global virtual teams. Organi-

zation Science 10, 791–815 (1999)
31. Tagiuri, R.: Managing people: Ten essential behaviors. Harvard Business Review 73, 10–

10 (1995)
32. Whyte, W.F.: Money and Motivation. Harper & Row, New York (1955)
33. Hersey, P., Blanchard, K.H.: Life Cycle Theory of Leadership. Training and Development

Journal 33, 94–94 (1979)
34. Hersey, P., Blanchard, K.H.: Great ideas revisited: Revisiting the life-cycle theory of lead-

ership. Training & Development 50, 42–48 (1996)
35. Hersey, P., Blanchard, K.H., Johnson, D.E.: Management of Organizational Behavior:

Leading Human Resources. Prentice Hall, New Yersey (2001)

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 360–370, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Model to Identify Refactoring Effort during
Maintenance by Mining Source Code Repositories

Raimund Moser1, Witold Pedrycz2, Alberto Sillitti1, and Giancarlo Succi1

1 Center for Applied Software Engineering, Free University of Bolzano-Bozen, Italy
2 Department of Electrical and Computer Engineering, University of Alberta, Canada

{raimund.moser, alberto.sillitti, giancarlo.succi}@unibz.it,
pedrycz@ee.ualberta.ca

Abstract. The use of refactoring as a way to continuously improve the design
and quality of software and prevent its aging is mostly limited to Agile Meth-
odologies and to a lower amount to software reengineering. In these communi-
ties refactoring is supposed to improve in the long-term the structure of existing
code in order to make it easier to modify and maintain. To sustain such claims
and analyze the impact of refactoring on maintenance we need to know how
much refactoring developers do. In few cases such information is directly avail-
able for example from CVS log messages. In this study we propose a model on
how to mine software repositories in order to obtain information of refactoring
effort throughout the evolution of a software system. Moreover, we have devel-
oped a prototype that implements our model and validate our approach with two
small case studies.

Keywords: refactoring, software metrics, software evolution, Agile Methodologies.

1 Introduction

Refactoring is defined as a behavior-preserving source-code transformation [3] that
increases the quality of the code and reduces its complexity. Agile developers claim
that refactoring has a positive impact on the evolution of the overall design of a soft-
ware system [2]: frequently refactored code is easier to understand, to maintain, to
modify, and to adjust to new requirements. However, nowadays such claims are not
yet validated sufficiently by quantitative data coming from real projects in industry.
Data collection in software industry is hard: developers and managers do not want to
waste time for “non productive” activities and additional resources dedicated to man-
ual data collection are very costly. Therefore, only automatic and non-invasive data
collection processes and data analysis [18] [10] can leverage metric programs in the
software industry. With this work we follow this approach: we aim at identifying in
an automatic way refactoring effort during maintenance of a software system in order
to enable automatic monitoring and analysis of the impact of refactoring for example
on software maintainability and software maintenance costs.

 A Model to Identify Refactoring Effort during Maintenance 361

Most of the research done in refactoring can be classified into three different catego-
ries [13]:

1. Refactoring and the code structure: how does refactoring change the internal
structure of the software? Such approaches use different techniques such as ab-
stract syntax tree representation of source code to analyze which kind of graph
transformations are achieved by refactoring and how different software metrics
(coupling, cohesion, complexity, etc.) are changed by it [3].

2. Refactoring and code smells: other researchers focus on the identification of code
smells by mining change history, software metrics and by using source code
visualization in order to identify which refactoring to apply for which code smell
and more in general when to apply refactoring during development [17] [7] [19].
Bois et al. [4] for example analyze how refactoring manipulates coupling and co-
hesion metrics and how to identify refactoring opportunities that improve these
metrics.

3. Refactoring and reverse engineering: in reverse engineering people analyze how
refactoring can be used to reconstruct the design flow of a software system and
how to support reverse engineering [6]. In this context refactoring is often used to
convert legacy code in to a more structured form [15].

While some of the issues regarding the relationship between refactoring and the de-
sign and quality of source code are addressed by the research listed above many ques-
tions remain still open [12]. One reason for the limited empirical validation of the
claimed benefits of refactoring throughout the evolution of a software system is
clearly the lack of quantitative data: industrial studies where data about refactoring is
collected within the scope of a metrics program are rare and open source projects
usually do not provide such information. However, the availability of such data is a
precondition for assessing the benefits of refactoring for maintenance costs and the
long-term evolution of software design, code quality, and testability [4] [20].

The idea of this research is to propose a model for mining automatically source code
repositories of a software system in order to get quantitative data on refactoring effort
throughout its evolution. We follow in part the approach proposed by Demeyer et al.
[6]: we use changes of source code metrics as basis for identifying refactorings.
Whereas Demeyer et al. focus on the evolution of the design of a software system in
order to support reverse engineering we extend the work of Demeyer et al. in several
ways:

• We focus on how to identify refactoring activities throughout maintenance of a
software system rather than detecting single refactorings and their influence on
software design.

• We develop a metric independent model that takes into account a larger number
of refactorings than the method used by Demeyer et al.

• We introduce the notion of “refactoring activity”, which is a kind of probability
for the occurrence of refactorings during software development.

The main contributions of this paper are twofold: first, we propose a general model
for detecting refactoring activities during maintenance of a software system by mining

362 R. Moser et al.

its source code repository. And second, we instantiate such model and perform a case
study on one industrial and one open source project for a first validation.

The paper is organized as follows. In Section 2, we define our model for identify-
ing “refactoring activity”. In Section 3, we discuss a prototype implementation of the
model, and Section 4 describes two small case studies. In Section 5, we discuss
threats to validity and we briefly outline some possible directions for future work.
Finally, in Section 6, we draw some conclusions of this research.

2 A Model for Computing “Refactoring Activity”

The basic idea we use in this research is simple: a refactoring may be detected by
analyzing the changes of several source code metrics, which are affected by it. Let us
make a simple example: the “Extract Method” refactoring [8] extracts a part of a long
and complex method and puts it into its own method. Thus, such refactoring will for
sure increase the number of methods in a class by one and probably also lower the
lines of code of its longest method. If we find such change pattern in a software re-
pository we may conclude that it originates from an “Extract Method” refactoring.
However, things are not that easy: many other activities (bug fixes, adding functional-
ity, etc.) could lead to the same change pattern. In general it is not possible to associ-
ate in a one-to-one relation software refactorings with change patterns of source code
metrics. At most we can group “refactoring change patterns” – changes of source
code metrics induced by a refactoring Ri - into two categories:

1. Necessary changes: Those that are induced by refactoring Ri always in the same
(deterministic) way. The “Extract Method” refactoring for example will always
increase the number of methods in a class by one. Thus, such changes are always
observed after a refactoring of this type has been applied.

2. Likely changes: these changes may or may not be visible as a consequence of a
refactoring Ri. An “Extract Method” refactoring for example will most often be
applied to the largest method of a class. The likelihood to observe such changes
depends on the specific refactoring and several “soft” factors (developers, coding
standards, etc.).

Taking into consideration the observations above we propose a model that is based on
the following two assumptions:

• First, a refactoring changes some code metrics in a determined way while others
can be changed with a likelihood that depends on the specific type of refactoring,
metric, and several “soft” factors.

• Second, “refactoring change patterns” in general are induced with a higher prob-
ability by refactoring than by other coding activities.

More formally we can define a model for detecting “refactoring activity” in the fol-
lowing way:

Let R = {Ri, Ri is a refactoring} be a set of refactorings. Furthermore, we denote
the set of source code metrics we consider by M = {Mi, where Mi is source code met-
ric}. We assume that we can decompose our software system at any specific point in

 A Model to Identify Refactoring Effort during Maintenance 363

time t into a set of entities Et = {e(i)t , e(i)t is source code entity i at time t}. Then we
compute the change metrics for one entity e at time t in the following way:

ΔMi(et) = Mi(et) - Mi(et-Δt), where Δt is a time interval we choose for computing the
changes of metric Mi.

By ΔMt we denote the set of all change metrics at time t, i.e., the changes of all
metrics Mi from t - Δt to t. Next we define a probability function that gives the prob-
ability that a set of change metrics ΔMt originates from a refactoring Ri:

pt : R × ΔM t → 0,1[] with pt (Ri ,ΔM1(et),ΔM 2 (et),...) ∈ 0,1[] (1)

If pt evaluates to 0 we can exclude for sure that refactoring Ri has been applied on e
while a resulting value of 1 means that e has been definitely refactored (a refactoring
Ri has been applied) during the time interval [t-Δ, t].

We sum up all entities of a software system and all considered refactorings and get
a general formula for a measure of “refactoring activity” in the time interval [t-Δt, t]:

RAt = pt r,ΔM t (e)()r ∈ R∑e ∈ E∑
1

ER
×100%,where ER = {e ∈ E, pt (e) ≠ 0} (2)

Formula (2) is not normalized and therefore not a probability in a strict sense. It says
the following: if some entities have been refactored and we are able to identify such
refactorings with a probability of 1 we get a refactoring activity RAt of 100%. Values
less than 100% indicate a smaller probability for refactoring while values higher than
100% mean that more than one refactoring has been applied to the same entity. We
divide formula (2) by the number of entities that show a refactoring probability
greater than zero in order to prevent that a very small refactoring probability for many
entities of a software system does sum up to a big overall refactoring activity. In this
way if for example we find in a software system 100 entities, which show a change
pattern that gives a very small refactoring probability of 0.01 for each entity, then the
overall refactoring activity is 1% and not 100% as it would be if we omit the denomi-
nator in formula (2).

3 An Implementation of the Model

The model described in Section 2 depends on 5 parameters we have to choose for a
real implementation:

1. A set of refactorings: we consider 20 refactorings, at least two for each category,
from Fowler’s book [8].

2. A set of source code metrics: we choose the Chidamber and Kemerer set of ob-
ject-oriented metrics [5], McCabes’s cyclomatic complexity [11] of a method,
non-commented lines of code of a method and some other size or complexity-
related measures (see Table 1).

3. A time interval for calculating the changes of source code metrics: we use a con-
stant time interval of one day.

364 R. Moser et al.

4. A suitable probability function for modeling the relationship between a refactor-
ing and specific change patterns.

5. A decomposition of a software system into distinct entities: we consider Java
classes as entities.

For the implementation of a first prototype we have chosen a set of parameters, which
turns out to be reasonable for the two case studies we present in the next section. For
the decomposition aspect our approach is simple and intuitive: we consider single
classes of an object-oriented software system as basic entities. All metrics calcula-
tions are based on classes and for the moment we do not consider for example the
method or package level. The prototype is easily extendible and adjustable to new
metrics, refactorings, and probability functions. At the moment it implements about
20 refactorings described in Fowler’s book [8]. Fowler divides refactorings into 6
different groups: “Composing Methods”, “Moving Features Between Objects”, “Or-
ganizing Data”, “Simplifying Conditional Expressions”, “Making Method Calls Sim-
pler”, and “Dealing With Generalization”. For each of these groups we consider at
least the two refactorings, which are most common among developers [6] [3].

For collecting source code metrics we use the PROM tool [18]. It enables in an
easy and non-invasive way the daily extraction of several object-oriented and proce-
dural source code metrics from a source code repository. For the case study to be
presented in the next Section we collect the metrics listed in Table 1. These are also
implemented in our tool.

Table 1. Selected metrics for computing change patterns

Metric name Definition
CK metrics Chidamber and Kemerer set of object-oriented

design metrics
LOC Number of Java statements per class
NOM Number of methods declared in a class
NOA Number of attributes declared in a class
LOC_PER_METHOD Average number of Java statements per method in

a class
MAX_LOC_PER_METHOD Maximum number of Java statements per method

of all methods in a class
PARAM_PER_METHOD Average number of parameters per method in a

class
MAX_PARAM_PER_METHOD Maximum number of parameters per method of all

methods in a class
MCC Average McCabe’s cyclomatic complexity per

method in a class
MAX_MCC Maximum McCabe’s complexity per method of all

methods in a class
NUMBER_OF_CLASSES Number of classes

We do not claim that the metrics in Table 1 are the most suitable ones for detecting
refactorings. We employ them in this first study because many industrial and open
source metric tools provide them; moreover, other researchers use a similar set of
metrics [6] [20]. Clearly, in the future we plan to experiment with a different set of

 A Model to Identify Refactoring Effort during Maintenance 365

metrics in order to find out which ones may be the most powerful refactoring detec-
tors. Moreover, at the moment we compute only daily changes of the source code
metrics. We think that our model could be improved significantly if instead we com-
pute changes between single CVS log groups [16]. At the moment we are implement-
ing this feature and in the future we plan to do a larger experiment using CVS log
groups as time windows for change patterns.

For the case studies we implemented for each refactoring a very simple probability
function, which we illustrate with the “Extract Method” (EM) refactoring:

pt (EM , ΔM t (class)) =

p ← necessary condition = true∧ likely condition = true

q ← necessary condition = true∧ likely condition = false

0 ← otherwise

⎧
⎨
⎪

⎩ ⎪
 (3)

A necessary condition is for example: ΔM=1 and ΔLOC_PER_METHOD<0 and
ΔRFC>0 and ΔCBO=0 and inheritance hierarchy is not changed. A likely condition
could be: ΔMAX_LOC_PER_METHOD<0.

We have derived the necessary and likely conditions for the change patterns in (3)
by carefully analyzing the description and examples of the refactorings given in
Fowler’s book [8]. However, we can for sure not provide a complete and exact set of
conditions, but rather some heuristic rules that may be appropriate only under certain
circumstances. The weighting factors p and q allow us to adjust the importance of a
single rule and may vary for different environments. For the case studies we tried
different values for p and q and found that if we set for all refactorings p=0.9 and
q=0.1 we obtain fairly good results. This is only a first, very simple approach for a
probability function and for the future we plan to investigate more in depth, which
kind of probability functions would improve our results. However, as we see in the
next Section such simple probability function already provides satisfactory results.

4 Two Case Studies

We have evaluated our model on two development projects: an agile, close-to indus-
trial software project developed at VTT, Finland, and an open source software project,
PMD (http://pmd.sourceforge.net).

In the close-to industrial software development project developers have docu-
mented refactoring activities using “user stories”. This facilitates the evaluation, as we
do not have to browse the source code to check whether our method is successful or
not. In the following we provide a brief description of the characteristics of the first
case study used for evaluation.

The object under study is a commercial software project at VTT in Oulu, Finland.
The programming language in use was Java and the final product consists of 33 Java
classes. The development process followed a tailored version of the Extreme Pro-
gramming practices [1]: two pairs of programmers (four people) have worked for a
total of eight weeks (1- and 2-week iterations). Throughout the project mentoring was
provided on XP and other programming issues according to the XP approach. Three
of the four developers had an education equivalent to a BSc and limited industrial
experience. The fourth developer was an experienced industrial software engineer.
The team worked in a collocated environment. From the project plan we know that 3
user stories have been developed in order to refactor part of the system. A first

366 R. Moser et al.

Fig. 1. Temporal evolution of the refactoring activity. Days means the number of development
days excluding days used for planning and other activities. The Refactoring Activity RA is given
in percentage as defined in (2).

validation of our proposed method is to check whether we are able to detect these 3
user stories by using our model.

Figure 1 shows the resulting refactoring activity per day and additionally the days
when the 3 user stories on refactoring have been implemented: each data point repre-
sents the outcome of our model, i.e., the refactoring activity as defined in (2), for one
development day. Our model is able to predict fairly well the days when a “refactor-
ing user story” was implemented, as the refactoring activity of those days is located
above one standard deviation of the overall mean. However, a few more days show a
similar high refactoring activity and in absolute numbers the refactoring activity is not
very high (in between 13% and 20%). We could obtain higher numbers by choosing
different model parameters. However, in order to be able to compare the two case
studies we use the same set of parameters for both; our results allow us to discrimi-
nate fairly well refactoring from other development activities, for which it is sufficient
to look at the relative differences of daily refactoring activities. To conclude we can
state that our model predicts those days when developers did larger refactorings and
that for the project under scrutiny the overall refactoring activity is rather low. This
could be explained by the fact that developers were exposed for the first time to an
Agile process and did not have prior experience with refactoring, which was con-
firmed by the project manager.

In the PMD project (http://pmd.sourceforge.net) developers have documented
refactoring activities in the CVS log messages. Again, this facilitates the validation
since we do not have to browse manually the source code for identifying potential
refactorings. PMD is an open source tool that scans Java source code and looks for
potential coding problems. Its development started around summer 2002; the total

 A Model to Identify Refactoring Effort during Maintenance 367

number of developers is 13 and it has one lead developer. Unfortunately we cannot
obtain further information about the team structure and development methodology
from the project website. As we see form the number of unit tests and CVS log mes-
sages PMD has been extensively unit tested and refactored during its evolution. We
analyze only the main module pmd: it has about 770 Java classes and 60000 lines of
non-commented source code. Over a period of three years we choose randomly 10
CVS log groups both for refactoring and other maintenance activities. We identify
days with commits related to refactoring by their respective CVS log messages, which
have to contain the word “refactoring”. The ten non-refactoring related commits deal
– as it can be seen from the CSV log messages – with bug fixing or adding new func-
tionality. For each day we compute the changes of source code metrics by extracting
them once in the morning and once in the evening from the CVS repository. The
results we obtain by running our tool on the 10 refactoring change patterns are re-
ported in Table 2:

Table 2. Refactoring activity for CVS commits related to refactoring

Date CVS log message Refactoring
activity

2002-07-02 More refactoring 90%
2003-03-04 Some refactoring … 74%
2003-03-24 Minor refactoring 80%
2003-03-28 Cleaned up the GUI a bit; refactoring … 90%
2005-06-14 Minor refactoring 80%
2005-08-03 … refactored away one of the symbol table passes 10%
2005-08-14 A bit of refactoring and renaming … 80%
2005-09-24 More refactoring … 10%
2005-10-01 A big refactoring … 90%
2006-02-03 Minor refactoring 70%

For eight out of the ten “refactoring days” we obtain a refactoring activity of more
than 70% and for the remaining days we get an activity of 10%. For the “non refactor-
ing days” the computed refactoring activity is in all but one case (for which we find a
refactoring activity of 42%) less than 30%. Thus, our model is able to separate fairly
well refactoring activities from other maintenance activities; a two-sample Wilcoxon
test [9] confirms at a 95% level. In comparison with the industrial case study we find
a much higher overall refactoring activity for the open source project. We explain this
by the fact that some of the contributors and the lead developer of the PMD project
are experienced software engineers and familiar with the practice of refactoring.

5 Threats to Validity and Future Work

As stated several times the validity and power of our model depends on different
factors: the set of source code metrics, the time interval used for computation of their
changes, the selection of refactorings, and a suitable probability function. The choice

368 R. Moser et al.

of these factors determines to a high amount the models accuracy and the number of
both false positives and false negatives.

This research is at an early stage and we have to investigate more in-depth the im-
pact of the choice of the parameters on the model’s accuracy. Moreover, the heuristics
we use is subjective and preliminary and we have to control how stable both the num-
ber of false negatives and false positives are if we vary them. In particular, we would
like to analyze which set of metrics is most suitable as refactoring indicators and how
to model a powerful probability function. For such analysis we plan to replicate our
experiment with different parameters (metrics, probability functions, refactorings) and
with a larger set of CVS transactions both for PMD and other open source and
possible industrial projects. We expect to confirm the results obtained from the small
samples presented in this study and to be able to gain some insights into how model
parameters affect prediction accuracy and change in different development
environments and projects.

We are aware of the fact that the individual “refactoring experience” of developers
has a big impact on the predictive capability of our model. In order to assess such
impact quantitatively and to evaluate whether it is a serious threat to the external
validity of our approach, we plan to analyze and compare two similar projects, but
which are different in terms of developers’ refactoring experience.

Finally, only after such larger experimentation we may conclude (a) if we can gen-
eralize our approach and (b) in general how valid and usable it is for collecting auto-
matically refactoring effort during maintenance of a software system.

6 Conclusions

This research proposes a model for identifying automatically refactoring activities
during development or maintenance of a software system by mining its source code
repository. We developed a prototype, which implements our model and applied it to
one close-to industrial software project and one open source project.

Overall, the results we obtain are promising: in most cases we are able to distin-
guish fairly well refactoring from other maintenance activities. Such information is
valuable as it can be used for identifying:

• The amount of refactoring done during maintenance: to few refactoring could
indicate that developers are not aware of/do not have time for refactoring and
the code dies the early death of entropy [2].

• The developers, who do most of the refactoring work and those who do not
refactor at all. Thus, developers with a lot of refactoring experience can be
identified and train other developers on refactoring techniques.

• The parts of a software system that are never or rarely refactored. This could
indicate that a) those parts are very well designed and stable and do not need
any further refactoring or b) that they are potential future “troublemakers” in
terms of bugs and lack of understandability and modifiability.

• The impact of refactoring on the long-term evolution of software design,
code quality, and testability [4] [20].

 A Model to Identify Refactoring Effort during Maintenance 369

Finally, in a recent study [14] we found some evidence that refactoring has a posi-
tive impact on both the quality of the final software product and developers productiv-
ity. In such light the amount of refactoring dedicated to a project can be used as
additional indicator for the quality of the product. This could be exploited particularly
in the context of open source development where it is difficult to estimate final prod-
uct quality: among other indicators we can extract the refactoring activity from a
project’s code repository and use it for quality estimation.

In the future we plan to analyze also the use of different kind of refactorings by de-
velopers. We think that it would be very valuable – especially for junior programmers
– to identify those refactorings that are used most often by experienced software engi-
neers and are probably most effective for improving software maintainability.

References

1. Abrahamsson, P., Hanhineva, A., Hulkko, H., Ihme, T., Jäälinoja, J., Korkala, M.,
Koskela, J., Kyllönen, P., Salo, O.: Mobile-D: An Agile Approach for Mobile Application
Development. In: Proceedings 19th Annual ACM Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications, OOPSLA 2004, Vancouver, British
Columbia, Canada (2004)

2. Beck, K.: Extreme Programming Explained: Embrace Change. Addison-Wesley, Reading
(2000)

3. Bois, B.D., Mens, T.: Describing the impact of refactoring on internal program quality. In:
Proceedings of the International Workshop on Evolution of Large-scale Industrial Soft-
ware Applications (ELISA), Amsterdam, The Netherlands (2003)

4. Bois, B.D., Demeyer, S., Verelst, J.: Refactoring – Improving Coupling and Cohesion of
Existing Code. In: Belgian Symposium on Software Restructuring, Gent, Belgium (2005)

5. Chidamber, S., Kemerer, C.F.: Metrics suite for object-oriented design. IEEE Transactions
on Software Engineering 20(6), 476–493 (1994)

6. Demeyer, S., Ducasse, S., Nierstrasz, O.: Finding Refactorings via Change Metrics. In:
Proceedings 15th Annual ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2000, Minneapolis, USA (2000)

7. van Emden, E., Moonen, L.: Java Quality Assurance by Detecting Code Smells. In: Pro-
ceedings of the 9th Working Conference on Reverse Engineering. IEEE Computer Society
Press, Los Alamitos (2002)

8. Fowler, M.: Refactoring Improving the Design of Existing Code. Addison-Wesley, Read-
ing (2000)

9. Hollander, M., Wolfe, D.A.: Nonparametric statistical inference, pp. 68–75. John Wiley &
Sons, New York (1999)

10. Johnson, P.M., Disney, A.M.: Investigating Data Quality Problems in the PSP. In: Pro-
ceedings of 6th International Symposium on the Foundations of Software Engineering
(SIGSOFT 1998) (1998)

11. McCabe, T.: Complexity Measure. IEEE Transactions on Software Engineering 2(4), 308–
320 (1976)

12. Mens, T., Demeyer, S., Bois, B.D., Stenten, H., van Gorp, P.: Refactoring: Current Re-
search and Future Trends. Electronic Notes in Theoretical Computer Science, vol. 82(3)
(2003)

13. Mens, T., Tourwé, T.: A Survey of Software Refactoring. IEEE Transactions on Software
Engineering 30(2), 126–139 (2004)

370 R. Moser et al.

14. Moser, R., Abrahamsson, P., Pedrycz, W., Sillitti, A., Succi, G.: A case study on the im-
pact of refactoring on quality and productivity in an agile team. In: Proc. of the 2nd IFIP
Central and East European Conference on Software Engineering Techniques CEE-SET
2007, Poznan, Poland (2007)

15. Pizka, M.: Straightening spaghetti-code with refactoring? In: Proceedings of the Int. Conf.
on Software Engineering Research and Practice - SERP, Las Vegas, NV, pp. 846–852
(2004)

16. Ratzinger, J., Fischer, M., Gall, H.: Improving Evolvability through Refactoring. In: Pro-
ceedings 2nd International Workshop on Mining Software Repositories, MSR 2005, Saint
Louis, Missouri, USA (2005)

17. Ratzinger, J., Fischer, M., Gall, H.: EvoLens: Lens-View Visualizations of Evolution
Data. In: Proceedings of 8th International Workshop on Principles of Software Evolution
(IWPSE 2005), Lisbon, Portugal, 5-7 September (2005)

18. Sillitti, A., Janes, A., Succi, G., Vernazza, T.: Collecting, Integrating and Analyzing Soft-
ware Metrics and Personal Software Process Data. In: Proceedings of the EUROMICRO,
Belek-Antalya, Turkey, September 3-5 (2003)

19. Simon, F., Steinbruckner, F., Lewerentz, C.: Metrics based refactoring. In: Proc. European
Conf. Software Maintenance and Reengineering, pp. 30–38. IEEE Computer Society
Press, Los Alamitos (2001)

20. Stroulia, E., Kapoor, R.V.: Metrics of Refactoring-based Development: An Experience
Report. In: The 7th International Conference on Object-Oriented Information Systems,
Calgary, AB, Canada, pp. 113–122. Springer, Heidelberg (2001)

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 371–385, 2008.
© Springer-Verlag Berlin Heidelberg 2008

The Application of ISO 9001 to Agile Software
Development

Tor Stålhane1 and Geir Kjetil Hanssen1,2

1 The Norwegian University of Science and Technology
2 SINTEF ICT

Abstract. In this paper we discuss how to reconcile agile development’s focus
on speed and lean development with ISO 9001’s need for documentation, trace-
ability and control. We see no need to change neither ISO 9001 nor the agile
concept. Instead, we see a need to be flexible when using terms such as plan-
ning and evidence of conformance. It is true that we can include everything in
agile development by making it a requirement but there is a limit to how many
documents we can require from an agile process without destroying the very
concept of agility.

Keywords: quality assurance, agile software development, ISO 9001.

1 Introduction

With the quick advance of agile methods, some developers feel that ISO 9001 and
other quality assurvance standards have become irrelevant or not needed any more.
The idea seems to be that an ISO 9001 conformant process is incompatible with an
agile development process. Our goal is to show that there in reality is more that unite
than that separate the two strategies and that both will bring benefits to a project if
they are combined.

Many potential customers require that the development company has an ISO cer-
tificate before they will award it a contract. This holds both for government agencies
and for private companies. The main reason for this is the level of trust created by an
ISO 9001 certificate. It is much easier to check that the company has an ISO 9001
certificate than it is to check that they have a good development process and, if they
have one, that they really follow it. In addition, there are many companies that are
already ISO 9001 certified and want to keep their certificate while at the same time be
able to introduce agile development.

2 Related Work

The idea of reconciling agile development and ISO 9001 is probably almost as old as
agile development itself. Even though the inventors of agile development did not
consider this a problem, quite a lot of managers and quality assurance persons did.

372 T. Stålhane and G.K. Hanssen

The papers published in this area are many and varied. A problem is that some of
the authors do not understand the ISO 9001 or are not aware of the fact that the stan-
dard has changed to a process oriented view with the new ISO 9001:2000. A case in
point is a paper by Mnkandla and Dwolatzky [1]. Their main argument all too often
boils down to statements like “the application of Object-Oriented design principles
lead to maintainable systems”.

Another simple but in this case workable solution is suggested by Namioka and
Bran [15]. By looking at each time box or increment as a separate project, the
problem of making the process ISO 9001 conformant disappears. This solution will,
however, create some extra time boxes that are only concerned with developing
documentation.

McMichael and Lombardi discuss problems pertaining to aligning ISO 9001 and
agile development [2] in a paper from 2007. Their main claim is that XP and Scrum
together will fulfill all of ISO 9001’s requirements. Their discussion is a bit sketchy,
but they are on the right tack when they state that “ISO 9001 does not equate quality.
It simply helps ensure that your agile practices are being followed”. Boehm and
Turner point their fingers at the same problem in [3] when they discuss the need to
balance agility and discipline and observe that “Every successful venture in a chang-
ing world requires both agility and discipline”.

Vriens [4] has published a paper where he discusses the full range of CMM, ISO
9001 and their relationships to XP and Scrum. He observes that most of the ISO 9001
requirements are independent of development methods used and are covered by the
existing processes.

One author who has done a really thorough job on agile development and ISO
9001 is Wright [5]. He has used an approach that has many ideas in common with the
approach that we will use later in this paper – go through the ISO 9001 requirements
item by item and see what XP and Scrum have to offer in line of conformance. We
do, however, disagree with some of his statements and the overall conclusion that
none of XP’s practices needed to be changed. We will look at two points that under-
line some of the problems with agile development when it comes to ISO 9001 – one is
taken from the table on XP versus ISO 9001 and one is taken from the table on XP
versus TickIT [6].

 In his ISO 9001 versus XP table Wright has looked at the ISO 9001 item 7.3.4
“At suitable stages, systematic reviews of design and development shall be performed
in accordance with planned arrangements”. The author claims that pair programming
is a continuous code review. This claim does, however, not hold up against most of
the available definitions of a code review – see for instance [7]. The design is not
systematically reviewed in pair programming since the focus is on the other person’s
coding. In addition, pair programming does not include documentation, which makes
a later review difficult.

In Wright’s table of TickIT versus XP, he claims that “customer stories and accep-
tance tests fully define the software requirements”. There are two problems with this
statement. Firstly, that the acceptance test defines the requirements is manifestly
wrong. The acceptance test is written based on the requirements, not the other way
around, although the new trend of automated acceptance testing may change this [27]
Secondly, the customer stories are way too imprecise to serve as requirements. It is

 The Application of ISO 9001 to Agile Software Development 373

the stories plus the customer’s acceptance – often not in writing – that define the re-
quirements.

An approach similar to the one used by Wright is used by Ilieva et al [16]. They
had a process that was already ISO 9001 conformant. Their problem was to identify
how they could change the process in an agile direction and still stay ISO 900 con-
formant. They called this a gap analysis and the approach seemed successful – they
introduced agile development in e-business development and management to stay ISO
9001 conformant.

Melis et al. [9] focus on part seven of the ISO 9001 – product realization, since this
is the part of the ISO 9001 that it most heavily touched by agile development. The
paper gives a good overview of the relation between agile development and ISO 9001
for this part of the standard but leave the rest untouched. The authors identify ISO
9001 items 7.3.2 – 7.3.7 as the most important challenges for making an ISO confor-
mant agile process.

Keenan [10] has studied ISO 9001 and XP in order to use ideas from both in a
process tailoring project. He states that “the desire to support an agile development
philosophy is one of the main motivators” for looking at process tailoring.

A paper by Nawrocki et al. [11] is important because the authors have performed
an experiment with XP and parts of ISO 9001. The main results, as reported in the
paper, are that the XP projects in the experiment suffered from such problems as low
maintainability and late delivery. In addition to part seven of the ISO 9001 standard,
Nawrocki also studied the effect of agile methods on part eight - measurement, analy-
sis and improvement.

The TickIT International has also looked into ISO 9001 and agile development.
Southwell sums up his observations as follows [12]: (1) many of these principles
address issues which are not really covered by ISO 9001 and TickIT and are therefore
not in conflict with them, (2) several principles addresses similar concerns to those of
ISO 9001 but goes further and (3) some of the principles are in complete agreement
even if the approaches are rather different.

We have also found two master theses [13, 14] that treat the problem of agile vs.
ISO 9001. Both contain reports from case studies, which make their works important.
In addition, they have done a complete review of the ISO 9001 requirements. Their
goal, however, was not to check the additions needed in agile development to stay
conformant to ISO 9001 but to see how well the agile development projects in the
case studies adhered to ISO 9001.

Vitoria, in [13] looks at the whole TickIT standard and analyzes how it has been
used in two case study projects. For the two projects in question he found that 33% of
TickIT could not be applied in an XP project, 24% could be partly applied, 20% could
be applied in full, while 23% were not relevant since the two projects were student
project.

Erharuyi [14] looks at part seven and eight of ISO 9001, just as Nawrocki [11]. As
should be expected, his conclusions are pretty much the same as those of Nawrocki.
However, his paper contains some blatant misunderstandings, such as the claim that
test plan updates is part of corrective actions – ISO 9001, item 8.5.2.

374 T. Stålhane and G.K. Hanssen

Another interesting case study is presented by Stephen Sykes in [17]. This case
study includes an auditor’s report of all findings when auditing a company using the
agile method Crystal. The main conclusion is that all nonconformities identified dur-
ing the ISO 9001 audit can be solved with a little flexibility from all parties involved.

3 Agile Development

Agile software development is a way of organizing the development process, empha-
sizing direct and frequent communication – preferably face-to-face, frequent deliver-
ies of working software increments, short iterations, active customer engagement
throughout the whole development life-cycle and change responsiveness rather than
change avoidance. This can be seen as a contrast to waterfall-like processes which
emphasize thorough and detailed planning and design upfront and consecutive plan
conformance. Over the past ten years or so agile methods have gained great interest
and popularity as they seem to address recurring problems such as budget overruns,
delivering the wrong features and generating a lot of overhead in the form of report-
ing, formalism, re-planning and extensive management. The basic concepts of agile
software development are concisely described in the agile manifesto1. Agile software
development can be seen as a philosophy and several defined methods based on these
ideas are in use, all sharing a common set of values and principles. The best known
and most used agile methods are Extreme Programming (XP) [22] and Scrum [23].

The main constructs used in agile development are:

• Iteration: a short (2-4 weeks) period of analysis, design, development
and testing. In Scrum, iterations are called sprints.

• Product backlog: a list of prioritized requirements for the product
• Sprint or iteration backlog: a selection of items from the product backlog

being developed in an iteration
• Sprint review: an evaluation of the outcome of a sprint, done in coopera-

tion with the customer to identify fulfilled requirements and require-
ments needing further improvement. This can also be viewed as a
retrospective. Thus, the term review here refers to review of the software
being developed.

• Sprint planning: is done in the start of an iteration or a sprint and results
in a sprint backlog with items that in total can be developed within the
timeframe of an iteration by the current team of developers.

• Standup-meeting: a daily short meeting where each team member re-
ports on progress, plans and problems. This can include both product
and process-related problems.

Compared to a strict water-fall model, an agile process involves and engages the cus-
tomer both initially, in each iteration and in the finalization of the product. In each
iteration, the customer collaborates with the development team for requirement speci-
fication, knowledge transfer and acceptance testing – see Fig. 1.

1 www.agilemanifesto.org

 The Application of ISO 9001 to Agile Software Development 375

Fig. 1. Customer involvement in agile development

The ideas behind agile software development are not new [19] as they clearly are
inspired by agile and lean manufacturing which have been in use in many types of
industries for decades, the radical innovations in the Japanese post-war industry is
probably the best known example [20]. Yet, some important changes need to be made
to make this fit software development [21]. The most fundamental principle from lean
development being applied is the principle of waste reduction: all work and work
products not directly contributing to the development of software should be consid-
ered as waste and thus avoided or minimized.

Since the first book on Extreme Programming by Kent Beck was published in 1999
the interest and industrial use has grown surprisingly fast. The huge interest seen in
industry does in most cases stem from the developers and can be explained by the sim-
ple and human-centric values carried out by agile methods which may be appealing to
practitioners but threatening to management. The basic principles are easy to grasp and
seems to address the most fundamental problems bugging developers. However, among
this interest and willingness to radically change the development process, several critical
voices have emerged and many experience reports indicate that it is not straight forward
- in most cases it is an act of balancing agility and discipline [24].

One type of critique against agile methods is the deliberate avoidance of documen-
tation as this may be considered as waste; documents are not software and software
development should develop software, not documents. This is a strict concept and
probably explains the common perception that agile software development is incom-
patible with well known quality assurance standards such as ISO 9001. As we will
show later, this does, however, not necessarily have to be true.

4 The ISO 9001 Requirements

The requirements of ISO 9001 are, at the top level, summarized in a few points:
• The company must have a quality assurance management process – part 4.

376 T. Stålhane and G.K. Hanssen

• The product’s quality is the responsibility of the management – part 5. As
a result of this, the company’s management must make the necessary re-
sources available for quality assurance work and training – part 6.

• The company shall have one or more documented processes for product
realization – part 7. The process must produce documents that can be (1)
reviewed for acceptance and (2) used as proof of conformance.

• All reports of non-conformances, both of the product or the process, shall
be reported and analyzed and should lead to a corrective action – part 8.

In addition to ISO 9001, the document ISO 90003 is also important. This is
not a standard but a guideline for applying ISO 9001 to software development and
maintenance.

ISO 9001 focuses on situations where we have or are abut to sign a contract. The
contract is signed on the basis of a defined process. One of the roles of this process is
to give the customer confidence that the quality will be as specified and it is thus
important that the process is followed.

ISO 9001 uses document review as its main control and verification mechanism.
Many companies that use agile development claim that pair programming makes
reviews unnecessary. In addition, there exist both experiments and case studies that
show that pair programming, given the right conditions, give a lower failure rate than
traditional software development – see for instance [18, 28] We can, however, not
dispose of document reviews and still claim ISO 9001 conformance. A statement
from DnV is enlightening here: “The main point is that verification shall be per-
formed according to plan – see ISO 9001, item 7.3.5. The amount of verification
needed must be adapted to the importance of each artifact and our confidence in the
process that produced it. If the company has developed a strong confidence in the
results from e.g. pair programming, it will be reasonable to move the resources
somewhere else where there is a larger probability that the verification process will
contribute to a better product quality. Thus, pair programming will influence the veri-
fication plan but cannot be used as an argument to suspend verification and verifica-
tion planning”.

5 Comparing ISO 9001 with Agile Development

When comparing ISO 9001 and agile development, we have defined agile develop-
ment as adherence to the basic principles as formulated in [19]. In order to compare
agile development with ISO 9001, we used the same approach as we have earlier used
when introducing ISO 90001 to a Norwegian company [8]. The approach is simple
and pragmatic – use a table containing all the ISO 9001 items aligned with the corre-
sponding item in the ISO 90003 guidelines. Have a free column where we can indi-
cate whether agile development meets the requirements of ISO 9001 as explained in
ISO 90003. All items not ticked off are given a closer scrutiny to see whether we need
to add or change something in order to achieve conformance.

For the main activity for this paper – deciding what is conformant to ISO 9001 and
what is not – we used three approaches: (1) what has been accepted by other auditors

 The Application of ISO 9001 to Agile Software Development 377

[17], (2) our own expert judgment, based on developing an ISO 9001 conformant
development process [8] and (3) the experience of two auditors from DnV – “Det
norske Veritas”.

In addition to this, we compared our assessment to the assessments in [5], [13],
[14] and [17] and did a closer investigation where there was a disagreement. This
process left us with 15 items where agile methods only partly were able to fulfill the
ISO 9001 requirements and four items where agile methods could not meet the re-
quirements at all. As should be expected, part seven of the ISO 9001 standard domi-
nates in both cases – nine out of 15 of the partly fulfilled items and two of the four
items that were not fulfilled at all. On the positive side – of the 50 items in ISO 9001,
31 items will not need any changes or enhancements whatsoever by either side.

The results of the comparison process were used as our starting point for a three
step process: (1) identify the reasons for the lack of full conformance, (2) see how
these lacks can be amended, either by extending the development process or by aug-
menting the ISO 90003 guidelines. For a discussion of the confidence that can be
placed in this approach, see section 7 – Threats to validity.

6 What Can Be Done to Achieve Conformance

This section is organized as follows: each ISO 9001 requirement that is not clearly
conformant with agile development is quoted in italics. It is then followed by an ex-
planation, change or adaptation to agile development that in our opinion is needed in
order to meet the ISO 9001 requirement.

4.2.1.d: The quality management system documentation shall include documents
needed by the organization to ensure the effective planning, operation and control of
its processes.

As for any kind of development methodology, an agile development project always
starts by defining how the methodology shall be used in the given project. The plan-
ning of an agile project can easily be documented in a simple form specifying for
instance iteration length, how to record and track requirements etc.

4.2.4: Records shall be established and maintained to provide evidence of confor-
mity to requirements and of the effective operation of the quality management system.
Records shall remain legible, readily identifiable and retrievable. A documented
procedure shall be established to define the controls needed for the identification,
storage, protection, retrieval, retention time and disposition of records.

In between iterations, conformity to requirements is evaluated by the product
owner and records of the results are kept as evidence of conformity.

5.3: Top management shall ensure that the quality policy

• 5.3 a: is appropriate to the purpose of the organization
• 5.3 b: includes a commitment to comply with requirements and continually

improve the effectiveness of the quality management system

378 T. Stålhane and G.K. Hanssen

A well implemented agile process, with the necessary conditions in place will sup-
port the purpose of the organization. That is, delivering well functioning software
within the compromised time- and cost frame. A well working agile process will
ensure a dedicated commitment to requirements as these are continuously evaluated
based on experience from development and testing.

5.4.1: Top management shall ensure that quality objectives, including those needed
to meet the requirements for the product, are established at relevant functions and
levels within the organization. The quality objectives shall be measurable and consis-
tent with the quality policy.

The agile method Evo [29] emphasizes measurable quality objectives and this
practice can easily be applied in other agile methods and meets the ISO 9001 re-
quirement.

5.6.2: The input to management review shall include information on

• 5.6.2 a: results of audits
• 5.6.2 b: customer feedback
• 5.6.2 c; process performance and product conformity

After each iteration, the process performance is reviewed and potential improve-
ments are implemented in the following iteration. Reviews are based on input from
developers and customer feedback. Output from such retrospectives [25] can in the
context of ISO 9001 be used as input to management review.

7.1: The organization shall plan and develop the processes needed for product re-
alization. Planning product realization shall be consistent with the requirements of
the other processes of the quality management system (see 4.1). In planning product
realization, the organization shall determine the following as appropriate

7.1a: quality objectives and requirements for the product
7.1 b: the need to establish processes, documents and provide resources specific to

the product

The adaptation of an agile process at the start of the development project covers
this requirement. Adaptation, or process planning, may include deciding iteration
length, strategies for requirements documentation, staffing etc.

7.2.1a: The organization shall determine requirements specified by the customer,
including the requirements for delivery and post-delivery activities.

Agile processes include practices for determining requirements but this is usually
focused on features and qualities of the product itself. To cover the requirement of
determining requirements for delivery and post-delivery activities this needs to be
included. One way of dealing with this is to add additional sprints after delivery to
deal with any post-delivery activities.

7.2.2: The organization shall review the requirements related to the product. The
review shall be conducted prior to the organization’s commitment to supply a product
to the customer (e.g. submission to tenders, acceptance of contracts or orders, accep-
tance of changes to contracts or orders) and shall ensure that

 The Application of ISO 9001 to Agile Software Development 379

• 7.2.2a: product requirements are defined.
• 7.2.2 c: the organization has the ability to meet the defined requirements
• 7.2.2 x2: where the customer provides no documented statement of require-

ments, the customer requirements shall be confirmed by the organization be-
fore acceptance

This ISO 9001 requirement is the most problematic if it is to be interpreted strictly.
It requires the development organization to have the complete requirements defined
upfront. However, agile methods actually do specify that requirements should be
gathered upfront. They will, however, not be complete and will not contain all the
details. This is based on the assumption that it is impossible to get a complete over-
view of all details up front; instead the most important aspects should be documented.
In Scrum this is documented in the product backlog which is set up prior to the first
iteration - at this time it constitutes the best possible understanding of the require-
ments. Compared to traditional requirements specifications it differs in the way that it
is anticipated to change, based on experience from development. The conclusion of
this issue is that if an auditor accepts this initial overview of requirements, agile
methods fulfil this requirement. If not, we find that the fundamental principle of re-
quirements evolution in agile methods is in conflict with ISO 9001.

7.3.1a: The organization shall plan and control the design and development of the
product. During the design and development planning, the organization shall deter-
mine the design and development stages.

Agile methods cover planning and control of the product design. It differs from the
traditional approach in that this is done iteratively and incrementally, yet it is handled.
It will still produce documents that can be used as proof of conformance for the ac-
tivities mentioned in 7.3.1a. Examples of documents that have been accepted as proof
of conformance are e.g. pictures of the whiteboard showing requirements planned, in
work or completed.

7.3.2: Inputs related to product requirements shall be determined and records
maintained (see 4.2.4). These inputs shall include

• 7.3.2 a: functional and performance requirements.
• 7.3.2 x1: these inputs shall be reviewed for adequacy. Requirements shall be

complete, unambiguous and not in conflict with each other

This is handled through the requirements process in agile methods. In front of each
iteration, new requirements are gathered or existing requirements altered due to cus-
tomer feedback. These requirements are then reviewed and recorded through coopera-
tion between the customer and the development team. This includes both functional
and performance requirements.

7.3.3: The outputs from design and development shall be provided in a form that
enables verification against the design and development input and shall be approved
prior to release. Design and development output shall

• 7.3.3 a: meet the input requirements for design and development

380 T. Stålhane and G.K. Hanssen

There seems to be a certain amount of disagreement in the agile camp as to
whether e.g. XP requires design but all this aside, it is no problem to include a high
level design activity in the first planning game and a low-level design at the start of
each iteration.

7.3.4: At suitable stages, systematic reviews of design and development shall be
performed in accordance with planned arrangements (see 7.3.1)

7.3.4 a: to evaluate the usability of the results of design and development to meet
requirements

Design and development is reviewed in every transition between iterations as a
joint effort between the development team and the customer. The customer is given a
particular responsibility of evaluating usability and requirements conformance.

7.3.5: Verification shall be performed in accordance with planned arrangements
(see 7.3.1) to ensure that the design and development outputs have meet the design
and development requirements. Records of the results of the verification and any
necessary actions shall be maintained

It is not a problem to include a high level design activity in the first planning game
and a low-level design at the start of each iteration.

7.3.7: Design and development changes shall be identified and records main-
tained. The changes shall be reviewed, verified and validated, as appropriate, and
approved before implementation. The review of design and development changes
shall include evaluation of the effect of the changes on constituent parts and products
already delivered. Records of the results of the review of changes and any necessary
actions shall be maintained (see 4.2.4)

The review done after each iteration takes care of this. This is done as a joint effort
between the development team, the customer or product owner and other possible
stakeholders which amongst other issues consider changes to design and develop-
ment. Decisions are documented in the form of an updated product backlog. If neces-
sary, formal and signed minutes of meeting can be made to keep track of the design
and development history.

8.1: The organization shall plan and implement the monitoring, measurement,
analysis and improvement processes needed

• 8.1 a: to demonstrate conformity of the product
• 8.1 b: to ensure conformity of the quality management system

This is covered by the planning and adoption of the agile method being used. A
central part of all agile methods is close monitoring of progress to early discover
potential problems. The reviews done between iterations also include an evaluation of
the development process itself to potentially identify software process improvement
initiatives.

8.2.3: The organization shall apply suitable methods for monitoring and, where
applicable, measurement of the quality management system process. These methods
shall demonstrate the ability of the process to achieve planned results. When planned

 The Application of ISO 9001 to Agile Software Development 381

results are not achieved, correction and corrective action shall be taken, as appropri-
ate, to ensure conformity of the product.

Besides evaluation of product increments, the review in between iterations also
may include a retrospective [25]. This has the same function as a traditional assess-
ment of the process performance, potentially leading to process improvement actions
to be implemented in the following iterations.

8.2.4: The organization shall monitor and measure the characteristics of the prod-
uct to verify that product requirements have been met. This shall be carried out at
appropriate stages of the product realization process in accordance with the planned
arrangements (see 7.1)

Evidence of conformity with the acceptance criteria shall be maintained. Records
shall indicate the person(s) authorizing release of product (see 4.2.4)

This is handled by the iteration reviews. Acceptance of requirements are docu-
mented e.g. in the product backlog or similar.

8.5.2: The organization shall take action to eliminate the cause of nonconformity in
order to prevent recurrence. Corrective actions shall be appropriate to the effects of
the nonconformity encountered.

A documented procedure shall be established to define requirements for

• 8.5.2 c: evaluating the need for actions to ensure that nonconformities do not
recur

• 8.5.2 d: determining and implementing action needed
• 8.5.2 e: records of the results of action taken (see 4.2.4)
• 8.5.2 f: reviewing corrective action taken

The iteration reviews intend to discover nonconformity with requirements. This is
either caused by too little resources in the previous iteration due to unforeseen diffi-
culties, insufficient understanding of the requirements or a bad process. Only the
latter case is of interest here. The process causes are registered and will later be used
as input to a process improvement activity.

8.5.3: The organization shall take action to eliminate the cause of potential non-
conformities in order to prevent their occurrence. Preventive actions shall be appro-
priate to the effects of the potential problems.

A documented procedure shall be established to define requirements for

• 8.5.3 a: determining potential nonconformities and their causes
• 8.5.3 b: evaluating the need for action to prevent occurrence of nonconform-

ities
• 8.5.3 c: determining and implementing action needed
• 8.5.3 d: records of results of action taken (see 4.2.4)
• 8.5.3 e: reviewing preventive action taken

The intention of having frequent reviews of development progress, requirements
and process performance in cooperation with the customer is, among other things, to
eliminate causes of potential nonconformities. As both the software product and re-
lated knowledge grows, the development team and the customer continuously

382 T. Stålhane and G.K. Hanssen

improve their ability to discover potential sources of nonconformity. Such reviews
may, if relevant, produce software process improvement actions – both to reactively
take immediate action and as a mean to proactively improve the development process
for later development projects.

7 Threats to Validity

There are three threats to validity for our conclusion – have we (1) understood ISO
9001, (2) have we touched all relevant ISO 9001 items and (3) have we understood
agile development in general and Scrum and XP in special?

7.1 Have We Understood ISO 9001

One of the authors has experience with helping a company becoming ISO 9001 certi-
fied and has a through knowledge of ISO 9001. Whenever we have been in doubt, we
have consulted personnel at DnV who certify Norwegian companies. They have a
large amount of ISO 9001 experience and have been able to clear up any misunder-
standings that we might have had.

An ISO 9001 certification audit is, however, not an exact science. Different audi-
tors may have different standards for what they find acceptable. Thus, there is always
a possibility that what we have found acceptable – e.g. the Scrum planning process –
may not be accepted as a planning process by some auditors.

7.2 Have We Touched All Relevant ISO 9001 Items

By using the standard itself plus its guideline, we went through the whole standard,
item by item. All items that concerned documents, documentation or acceptance of
documents, together with all issues pertaining to the implementation, validation and
verification of a software system were assessed – see chapter 5.

In addition, we have coordinated our findings with four independent sources and
all ISO 9001 items we identified were also identified by at least one of these sources.
Thus, we are confident that all relevant ISO 9001 items are identified and assessed.

7.3 Have We Understood Agile Development

Agile development is not an exact defined methodology and there exist a handful of
agile methods that varies [26]. Yet they are all based on the few common principles
described in chapter 3. In our assessment we have tried to apply these common and
fundamental principles to reduce a potential bias from our own interpretations of what
agile development is, yet a certain level of subjective interpretation is inevitable.

7.4 Our Claims to Validity

Based on the discussion in the sections 7.1 to 7.3 we claim that our conclusions re-
garding ISO 9001 and agile development will be valid for a wide range of companies
and auditing authorities.

 The Application of ISO 9001 to Agile Software Development 383

8 Conclusion and Future Work

Based on the discussions in the chapter on threats to validity, we feel that our obser-
vations and conclusions are relevant for the topic.

The main difference between ISO 9001 and agile methods is that ISO 9001 insists
on documentation for reviews and to demonstrate process conformity. Agile methods
try to avoid writing documents that does not contribute to the finished system. On the
other hand – if the customer requires a certain document, the use of agile methods are
no hindrance for developing them.

There are ways to deal with many of the documents that ISO 9001 requires. We
can add such activities as review meetings, writing design documents and so on. The
process will still keep the most important agile ideas, such as short iterations, building
in increments, including the customer, reprioritizing requirements whenever need, and
constantly adjusting scope, time and cost within the bounds of the project contract.
One often used slogan in the agile community is “Do the Simplest Thing that Could
Possibly Work”. The term “simplest” does not mean it is forbidden to add extra proc-
ess artifacts or activities. There are, however, limits to how many new artifacts that
can be added to an agile method and still insist on labeling it agile. The changes nec-
essary to be conformant to ISO 9001 are, however, well inside those limits.

We see from the discussions above that the differences between agile development
and an ISO 9001 conformant development process are not insurmountable. Some
changes are, however, needed. We suggest the following actions:

ISO: the ISO 90003 guidelines should include some guidelines concerning (1)
what is accepted as a review (2) several types of reviews and (3) when each type of
reviews is considered necessary.

Agile development: given the suggestions to the ISO 90003 guidelines, there re-
mains two problems – that an agile process produce documents that can be used (1) as
proof of conformance and that (2) can be reviewed as part of ISO 9001’s verification
and validation.

When the abovementioned problems are solved, there will be no problems whatso-
ever when a company wants to use agile development and still keep its ISO 9001
certificate.

Acknowledgements

We gratefully acknowledge the help from T. Skramstad and F. Prytz, DnV for impor-
tant input and fruitful discussions on the interpretation of ISO 9001.

References

[1] Mnkandla, E., Dwolatzky, B.: Defining Agile Quality Assurance. In: The proceedings of
the International Conference on Software Engineering Advances – ICSEA 2006 (2006)

[2] McMichael, M., Lombardi, M.: ISO 9001 and Agile development. In: AGILE 2007
(2007)

384 T. Stålhane and G.K. Hanssen

[3] Boehm, B., Turner, R.: Balancing Agility and Discipline: Evaluating and Integrating Ag-
ile and Plan-Driven Methods. In: the proceedings of 26th International Conference on
Software Engineering – ICSE 2004(2004)

[4] Vriens, C.: Certifying for CMM Level and ISO 9001 with XP@SCRUM. In: The pro-
ceedings of the Agile development Conference – ADC 2003 (2003)

[5] Wright, G.: Achieving ISO 9001 Certification for an XP Company. In: Maurer, F., Wells,
D. (eds.) XP/Agile Universe 2003. LNCS, vol. 2753. Springer, Heidelberg (2003)

[6] The TickIT Guide, British Standards Institute, London, UK (2001)
[7] IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 610.12-1990,

Standards Coordinating Committee of the Computer Society of the IEEE (1990)
[8] Stålhane, T.: Implementing an ISO 9001 certified process. In: Proceedings of the EuroSPI

Conference, Joensuu, Finland (2006)
[9] Melis, M., et al.: Requirements for an ISO Compliant XP Tool. In: Eckstein, J., Baumeis-

ter, H. (eds.) XP 2004. LNCS, vol. 3092. Springer, Heidelberg (2004)
[10] Keenan, F.: Agile Process Tailoring and Problem Analysis (APTLY). In: The proceed-

ings of 26th International Conference on Software Engineering – ICSE 2004 (2004)
[11] Nawrocki, J.R., et al.: Combining Extreme Programming with ISO 9000
[12] Southwell, K.: Agile Process Improvement. In: TickIT International, Firm Focus on be-

half of BSI-DISC ISSN 1354-588
[13] Vitoria, D.: Aligning XP with ISO 9001:2000 – TickIT Guide 5.0 – A case study in two

academic software projects, Master Thesis, School of Engineering, Blekinge Institute of
Technology, Ronneby, Sweden (2004)

[14] Erharuyi, E.: Combining eXtreme Programming with ISO 9000:2000 to Improve Nige-
rian Software Development Processes, Master Thesis, School of Engineering, Blekinge
Institute of Technology, Ronneby, Sweden (2007)

[15] Namioka, A., Bran, C.: eXtreme ISO. In: Proceedings of the OOPL 2004, Vancouver,
Canada, October 24-28 (2004)

[16] Ilieva, S., et al.: Analysis of an agile methodology implementation. In: Proceedings of the
30th EUROMICRO conference (2004)

[17] Cockburn, A.: Crystal Clear – A Human-Powered methodology for Small Teams. Addi-
son-Wesley Longman, Amsterdam ISBN 0201 699478

[18] Aiken, J.: Technical and Human Perspective on Pair Programming. ACM SIGSOFT
Software Engineering Notes 29(5) (2004)

[19] Merisalo-Rantanen, H., Rossi, M.: Is Extreme Programming Just Old Wine in New Bot-
tles: A Comparison of Two Cases. Journal of Database Management (2005)

[20] Takeuchi, H., Nonaka, I.: The New Product Development Game. Harvard Business Re-
view (1986)

[21] Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit for
Software development Mangers. In: Cockburn, A., Highsmith, J. (eds.) The Software De-
velopment Series. Addison Wesley, Reading (2003)

[22] Beck, K.: Extreme programming explained: embrace change. Addison-Wesley, Reading
(2000)

[23] Schwaber, K., Beedle, M.: Agile Software Development with Scrum. Prentice-Hall,
Englewood Cliffs (2001)

[24] Boehm, B., Turner, R.: Balancing Agility and Discipline – A Guide for the Perplexed.
Addison-Wesley, Reading (2004)

[25] Derby, E. and Larsen, D.: Agile Retrospectives: Making Good Teams Great, 20067,
Pragmatic Bookshelf

 The Application of ISO 9001 to Agile Software Development 385

[26] Abrahamsson, P., et al.: Agile software development methods – review and analysis, VTT
Electronics (2003)

[27] Mugridge, R., Cunningham, W.: Fit for Developing Software: Framework for Integrated
Tests (R. Prentice Hall, Upper Saddle River (2005)

[28] Arisholm, E., et al.: Evaluating Pair Programming with Respect to System Complexity
and Programmer Expertise. IEEE Transactions on Software Engineering 33(2), 65–86
(2007)

[29] Gilb, T.: Competitive Engineering: A handbook for systems engineering, requirements
engineering, and software engineering using Planguage. Elsevier, Butterworth-
Heinemann (2005)

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 386–399, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Study of the Evolution of an Agile Project Featuring
a Web Application Using Software Metrics

Giulio Concas1,2, Marco Di Francesco3, Michele Marchesi1,2,
Roberta Quaresima1, and Sandro Pinna1

1 DIEE, Università di Cagliari, Piazza d'Armi,
09123 Cagliari, Italy

{concas, michele, roberta.quaresima, pinnasandro}@diee.unica.it
2 FlossLab s.r.l., viale Elmas, 142

09122 Cagliari, Italy
3 Lab for Open Source Software, ICT District, Sardegna Ricerche, Piazza d'Armi,

09123 Cagliari, Italy
difrancesco80@gmail.com

Abstract. We present an agile process used for the development of a Web ap-
plication written in Java, devised by choosing a set of proven agile practices
taken by existing popular agile methodologies. During the project, we regularly
measured the software using Chidamber and Kemerer object-oriented metrics
suite, and other metrics. The application development evolved through phases,
characterized by a different level of adoption of some key agile practices – such
as pair programming, test-based development and refactoring. The evolution of
the OO metrics of the system, and their behavior related to the agile practices
adoption level is presented and discussed, showing that software quality, as
measured using standard OO metrics, looks directly related to agile practices
adoption.

Keywords: Software metrics, agile methodologies, object-oriented languages.

1 Introduction

Agile methodologies (AMs) have gained adoption in a wide variety of software devel-
opment domains, so we can state that they have become mainstream in software engi-
neering. Several experience reports have been reported in the literature regarding the
successful adoption of AMs in different contexts. In fact the context, expressed in
terms of criticality, size, culture, dynamism and personnel must be taken into account
while choosing the practices, principles and values that represent the best trade off
between discipline and agility for a specific project [4]. AMs have been adopted by
small software firms and by large organizations, by co-located and by distributed
teams, and in general they have been used for developing a wide range of software
products.

However, the availability of software data enabling empirical software engineering
studies about AMs is still scarce. To be valuable, these data should include, for each
examined project, a detailed description of the context and a set of process and

 Study of the Evolution of an Agile Project 387

product metrics. Classical software engineering evolved studying the typical software
projects of the seventies and eighties, where users interacts with a centralized system
through specific user interfaces running on a terminal or on a client workstation. The
first applications of agile methodologies, like the Chrysler C3 project [12] where Ex-
treme Programming was born, were of this kind.

Nowadays, many software firms and open source communities have adopted agile
values, principles and practices for developing applications that interact with the web
using technologies like J2EE or .NET. The availability of qualitative and quantitative
empirical data about Web application projects using agile methodologies is even more
scarce, because this kind of development became popular only in the last years.

In this work we present in detail a software project consisting in the implementa-
tion of FlossAr, a Register of Research software for universities and research insti-
tutes, developed with a complete object-oriented (OO) approach and released with an
open source license [10]. This is a Web application, which has been implemented
through a specialization of the open source software project, jAPS (Java Agile Portal
System) [13], a Java framework for Web portal creation released with GNU GPL 2
open source license. Throughout the project we collected metrics about the software
being developed. Since Java is an OO language, we used the Chidamber and Kemerer
(CK) OO metrics suite [5]. The adoption level of some key agile practices had been
recorded as well during the project.

The goals of this paper are two: to present the principles and practices of the
specific agile process we devised for the project; and to present some quantitative
measurements performed on the system under development, and relate them with the
adoption of some key agile practices. We found that some key software quality met-
rics show significantly different mean values and trends during different phases of the
project, and that these changes can be positively related with the adoption of some
agile practices, namely pair programming, test-based development and refactoring.

The paper is organized as follows: in section 2 we present the agile process we
used; in section 3 we present the OO metrics computed on the software; in section 4
we present the software project, the development team and the phases of its develop-
ment; in section 5 we present and discuss the results, relating software quality – as
resulting from the metrics measurements – with the adoption of agile practices; sec-
tion 6 concludes the paper.

2 Agile Practices

As FlossAr project had to be developed quickly, in front of requirements not well un-
derstood at the beginning, and with a high probability of changing, the management
of FlossLab, the firm behind the development of FlossAr, decided to use an agile
approach to develop the system. With the aid of the software engineering group of the
University of Cagliari, the state of the art of agile software development was
discussed, and a set of practices deemed most suited to our Web application
development was devised.

Agile Methodologies are a recent approach to software development, introduced at
the end of the nineties and now widely accepted worldwide as “mainstream” software
engineering. AMs offer a viable solution when the software to be developed has fuzzy

388 G. Concas et al.

or changing requirements, being able to cope with changing requirements throughout
the life cycle of a project. Several AMs have been formalized, the most popular being
Extreme Programming (XP) [3], Scrum [15], Feature Driven Development [8],
DSDM [9] and others. All AMs follow the principles presented in the Agile Mani-
festo [1].

Very often, software teams willing to pursue an agile approach do not follow “by
the book” a specific AM, but discuss and decide a set of agile practices to be used,
and from time to time review the project and make adjustments to these practices.

Web application development is relatively new, and it lacks the many consolidated
programming practices applied in traditional software development. One of the main
peculiarities of this kind of development is a heterogeneous team, composed by
graphic designers, programmers, Web developers, testers. Moreover, the application
has typically to be run on different platforms, and to interact with legacy systems.

Consequently, the choice of the development practices to use is of paramount im-
portance for the success of the project. The team and its advisors first defined some
principles to be followed:

• Code Reuse: Not only the underlying framework, but also the specialized software
produced must be reusable. In fact, there is no such thing as a general purpose re-
gister of research, but each university or research institution wish to customize
such a system to cope with its specific features and requirements.

• Evolvability: It is very important that the software can be easily modified and up-
graded, in a context where requirements were unclear since the beginning, and new
requirements might be added continuously.

• Maintainability: Errors and failures must be fixed quickly, in every software mod-
ule composing the system, minimizing the probability to introduce new bugs when
old bugs are fixed.

• Modularity: The functional blocks of the underlying framework must be kept, and
new modules must be added on each of them, with no intervention on the frame-
work itself.

• Portability: This was a specific requirement of FlossAr, to be able to propose it to
several research institutions, with different hardware and software contexts. For
other specialization projects it might not be as important.

Following the above principles, the team chose and defined a set of agile practices,
most of them derived from XP methodology [3]. They were:

• Pair Programming: This practice might be considered difficult to apply in the
context of a heterogeneous team. In our case, however, it was one of the keys to
the success of the project. All the development tasks were assigned to pairs and not
to single programmers. Given a task, each pair decided which part of it to develop
together, and which part to develop separately. The integration was in any case
made working together. Sometimes, the developers paired with external
programmers belonging to jAPS development community, and this helped to grasp
quickly the needed knowledge of the framework.

• On Site Customer: A customer's representative was always available to the team.
This customer-driven software development led to a deep redefinition of the
structure and features of the system, particularly in the first months of the project.

 Study of the Evolution of an Agile Project 389

• Continuous Integration: The written code was integrated several times a day.
• Small Releases: Taking advantage of the customer on site, the development was

divided in a sequence of small features, each separately testable by the customer,
guaranteeing a high feedback level. There were three major releases, at a distance
of two months each other.

• Test-Driven Development (TDD): All code must have automated unit tests and
acceptance tests, and must pass all tests before it can be released. In its most
extreme definition, tests are even written before the code. In the presented project,
the choice whether to write tests before or after the code was left to programmers.
However, they had a strong requirement that all code must be provided of tests.

• Refactoring: A continuous refactoring was practiced throughout the project, to
eliminate code duplications and improve hierarchies and abstractions.

• Coding Standards: The same coding standards of the original jAPS project were
kept to increase code readability.

• Collective Code Ownership: The code repository was freely accessible to all pro-
grammers, and each pair had the ability to make changes wherever needed. This
was eased by the uniformity of technical skills of all team members.

• Sustainable Pace: This practice was enforced throughout the project, with the ex-
ception of the week before the main releases, when the team had to work more than
forty hours to complete all the needed features in time.

• Stand-up Meeting: Every day, before starting the work, an informal short meeting
was held by the team, to highlight issues and to organize the daily activities.

• Feature List and Build by Feature: These practices were inspired by FDD agile
methodology [4]. The Feature List is also called “Backlog” in the terminology of
Scrum. A list of the features to implement, ordered by their relevance, was kept in
a Wiki, and the system development was driven implementing them. These fea-
tures are user-oriented – meaning that most of them describe how the system reacts
to user inputs – and have a priority, agreed with the on site customer. Each feature
must be completed at most in one week of pair programming; longer features are
divided in shorter sub-features satisfying this constraint. The Feature Design
activity of FDD was seldom performed before programming, except in the first
interactions of the development, when architectural choices were made, and UML
diagrams were created to document them.

The resulting software process is a standard agile one, proceeding by short itera-
tions and taking advantage of many “classical” agile practices, mainly taken from XP.
Its main peculiarity is the control process, which is less structured than Scrum Sprint
and XP Planning Game, with less meetings and standard artifacts.

2.1 Agile Practices and Software Quality

The goal of some of the agile practices quoted above is to enable the team to success-
fully answer to changes in the requirements, and to maximize feedback with the cus-
tomer and among the team. On Site Customer, Small Releases, Stand-up Meeting,
Feature List, Build by Feature and Sustainable Pace are all practices of this kind.
These practices were adopted during the whole development process, and moreover
do not directly prescribe how code is written. Therefore, it is impossible to assess

390 G. Concas et al.

their impact on the quality of the code, expressed using the quality metrics described
in the followings.

The other practices concern how the code is written and upgraded, and have a more
direct impact on the quality of the code. Among them, we deem that the most effect-
ive to improve code quality are pair programming, TDD and refactoring.

Pair programming, by forcing two developers to work simultaneously at the same
piece of code on the same computer, allows the team to share the knowledge of the
system. The effectiveness of pair programming also depends on the pair rotation strat-
egy, that allows the maximization of communication among developers.

A software system can be described as a network of interconnected components
and the collective knowledge of such a system allows the team to easily add new
functionalities and fix the bugs. On the other hand, the reduction of the amount of
communication leads to specialization, i.e. the fact that a single developer has know-
ledge of, and is comfortable with, only a piece of the entire system. Given that in Ob-
ject Oriented programming a class will cooperate with other classes, issues can arise
when a programmer needs to use a module developed by another programmer. This
gap of knowledge can lead to an increased fault proneness of the class, with con-
sequent impact on its quality metrics.

TDD means that the production code should be adequately covered with automatic
tests. Tests are an excellent documentation tool because they describe the behavior of
a piece of code in term of assertions that compare actual and expected values. Tests
may also be used as a design tool by writing them before the production code. Fol-
lowing a rigorous testing strategy, programmers are forced to write testable code and
this encourages the production of quality code. In the case of classes with many col-
laborations with other classes, testing is difficult because these dependencies lead to
other objects that must be properly initialized, or simulated with mock objects. It is
reasonable to assume that a reduction of the testing level has an impact on coupling
metrics and on the method length.

Refactoring is a practice which aims to simplify the system, without changing its
functionalities. A software system can be represented as a network of interconnected
entities and its readability can be improved by applying some refactoring practices.
Some of these practices need a global knowledge of the system, and perform better if
they are combined with pair programming and testing. For example, reducing the
coupling among classes requires not only a local knowledge of them, but also the
knowledge of the complex network of relations among these classes. Other refactor-
ing practices are finalized to the reduction of local complexity, and can be performed
by programmers with no global picture of the system.

3 The Measured Software Metrics

Throughout the project, we computed and analyzed the evolution of a set of source
code metrics including the Chidamber and Kemerer suite of quality metrics (CK) [5],
the total number of classes, the lines of code of classes (CLOCs) and methods
(MLOCs). The quality of a project is usually measured in terms of lack of defects, or
of maintainability. It has been found that these quality attributes are often correlated

 Study of the Evolution of an Agile Project 391

with specific metrics. For Object Oriented systems, the CK metrics suite is the most
validated in the literature. The CK suite is composed of six metrics:

• Weighted Methods of a Class (WMC): A weighted sum of all the methods
defined in a class. Chidamber and Kemerer suggest assigning weights to the
methods based on the degree of difficulty involved in implementing them [5]. In
our case, we simply computed the number of methods. WMC is a measure of the
complexity of a class.

• Coupling Between Objects (CBO): A count of the number of other classes with
which a given class is coupled. To be more precise, class A is coupled with class B
when at least one method of A invokes a method of B, or accesses a field (instance
or class variable) of B. CBO denotes the dependency of one class on other classes
in the system.

• Response For a Class (RFC): A count of the methods that are potentially invoked
in response to a message received by an object of a particular class. It is computed
as the sum of the number of methods of a class and the number of external methods
called by them. RFC is both a measure of the complexity of a class, and of the
potential communication between the class and other classes. In fact, in empirical
measurements, RFC is often found to be correlated with both WMC and CBO –
though WMC and CBO are not correlated with each other.

• Lack of Cohesion in Methods (LCOM): A count of the number of method pairs
with zero similarity, minus the count of method pairs with non-zero similarity.
Two methods are similar if they use at least one shared field (for example they use
the same instance variable). LCOM measures the cohesiveness of methods within a
class.

• Depth of Inheritance Tree (DIT): The length of the longest path from a given
class to the root class in the inheritance hierarchy. DIT is the total number of
superclasses of a given class, at all levels, and measures how many classes can
influence the class through the inheritance mechanism.

• Number of Children (NOC): A count of the number of immediate subclasses
inherited by a given class. It is a measure of the width of the inheritance tree whose
root is the class.

CK metrics have been largely validated in the literature. In a study of two commer-
cial systems, Li and Henry studied the link between CK metrics and the maintenance
effort [14]. Basili et al. found, in another study, that many of the CK metrics were
associated with fault-proneness of classes [2]. In another study, Chidamber et al. re-
ported that higher values of CK coupling and the cohesion metrics were associated
with reduced productivity and increased rework/design effort [6].

Among CK metrics, RFC, CBO and WMC are those that have been found most
correlated with software quality in the literature [16]. LCOM was not always proved
to be correlated with fault proneness or with maintenance effort related to a class, but
this was the case in some key researches [6], [14]. DIT and NOC are usually consid-
ered less important than other CK metrics [11], [16]. In general, the lower is the value
of CK metrics, the better the quality of the system.

We also consider the LOCs of classes and methods metrics. It is good OO pro-
gramming practice to create small, cohesive classes, and to keep short the method
LOCs, because every method should concentrate on just one task, and should delegate

392 G. Concas et al.

a substantial part of its behavior to other methods. So, also LOC metrics should be
kept reasonably low in a “good” system.

In this paper, for the sake of brevity we consider just the average values of CK
metrics and LOCs metrics, averaged on all the classes or methods of the system. The
average is just a rough measure of the metrics, because it is well known that the distri-
butions of CK and LOCs metrics follow a power-law [7]. However, also given that
the number of classes of the system is of the order of some hundreds, the average of
these metrics should suffice to give an idea of the average quality of the system.

4 The Project and Its Phases

In this work we present in detail a software project consisting in the implementation
of FlossAr, a Register of Research software for universities and research institutes,
developed with a complete object-oriented (OO) approach and released with an Open
Source license [10]. FlossAr manages a repository of data about research groups and
research results – papers, reports, patents, prototypes – aimed to help research evalu-
ation and matching between firms looking for technologies and knowledge, and re-
searchers supplying them. It is a Web application, because both researchers who input
their profiles and products, and people looking for information access the system
through a standard Web browser.

FlossAr has been implemented through a specialization of an open source software
project. We define specialization as the process of creating a software application cus-
tomized for a specific business, starting from an existing, more general software ap-
plication or framework. The general framework we customized is jAPS (Java Agile
Portal System) [13], a Java framework for Web portal creation released with GNU
GPL 2 open source license. jAPS comes equipped with basic infrastructural services
and a simple and customizable content management system (CMS). It is able to integ-
rate different applications, offering a common access point.

FlossAr has been developed by a co-located team of four junior programmers, co-
ordinated by a team leader, adopting the agile process that has been defined in
section 2. All developers had a master degree in computer engineering. The four
junior programmers were just graduated and had experiences of OO design, OO
programming and Web programming in Java and other languages, in projects carried
on during their studies. One of them was fairly skilled in Web site design. They were
taught during university courses about agile practices, but had almost no experience in
applying them. This was their first project carried on in a team. The team leader had a
two year experience in leading software teams and using XP practices.

The project evolved through five main phases, each one characterized by an adop-
tion level of the key agile practices of pair programming, TDD and refactoring. These
phases are summarized below:

• Phase 1: An exploratory phase where the team studied both the functionalities of,
and the way to extend the underlying system (jAPS). It lasted three weeks, at the
beginning of the project, and did not produce code. We will not consider this phase
in the measurements and in the subsequent discussion.

 Study of the Evolution of an Agile Project 393

• Phase 2: A phase characterized by the full adoption of all practices, including
testing, refactoring and pair programming. It lasted ten weeks, leading to the
implementation of a key set of the system features.

• Phase 3: This is a critical phase, characterized by a minimal adoption of pair
programming, testing and refactoring, because a public presentation was
approaching, and the system still lacked many of the features of competitors’
products. So, the team rushed to implement them, compromising the quality. This
phase lasted seven weeks, and included the first release of the system after two
weeks.

• Phase 4: An important refactoring phase, characterized by the full adoption of
testing and refactoring practices and by the adoption of a rigorous pair
programming rotation strategy. This phase was needed to fix the bugs and the bad
design that resulted from the previous phase. It lasted four weeks and ended with
the second release of the system.

• Phase 5: Like phase 2, this is a development phase characterized by the full
adoption of the entire set of practices, until the final release, after seven weeks.
This phase includes three holiday weeks, that are not considered.

5 Results and Discussion

In this section we analyze the evolution of FlossAr source code metrics. At regular
intervals of one week, the source code has been checked out from the CVS repository
and analyzed by a parser that calculates the metrics. The parser and the analyzer have
been developed by our research group as a plug-in for the Eclipse IDE.

The total number of classes of the system (including abstract classes and inter-
faces), which is a good indicator of its size, is shown in Fig. 1. The number of classes
generally increases over time, though not linearly. The project started with 362
classes – those of jAPS release 1.6. At the end of the project, after 28 weeks (exclud-
ing those of phase 1 and the holidays), the system had grown to 514 classes, due to
the development of new features that constituted the specialized system. In this and

Fig. 1. The evolution of the number of classes

394 G. Concas et al.

all the subsequent figures, we delimit with vertical lines the four main phases of de-
velopment (from phase 2 to phase 5), and report as well with arrows the times of the
three releases of the system.

In Table 1 we report the cross-correlation values between all pairs of metrics, com-
puted using the complete time series related to the project, highlighting in bold those
whose value is above 0.8. As you can see, many metrics are fairly correlated with
each other. The most correlated with other metrics are the LOC ones. Also CBO and
NOC metrics are quite correlated with others. WMC is the least correlated metric,
being strongly correlated only with RFC. The only pair that is totally uncorrelated is
WMC and DIT, and in general there is no metrics pair showing anti-correlation, even
at a very low level. These results reflect the fact that, as the system grows, all consid-
ered metrics tend to grow. This grow is in part natural – because a bigger system
tends to be more complex than a smaller one. However, we can also attribute this
growth, that happened mostly during phase 2 and, above all, phase 3, to poor usage –
or no usage – of pair programming, TDD and refactoring during these phases.

Table 1. Cross-correlation values between all measured metrics

Metrics WMC RFC LCOM CBO DIT NOC CLOCs MLOCs
WMC 1 0.94 0.46 0.58 0.09 0.41 0.76 0.53
RFC 0.94 1 0.57 0.81 0.32 0.64 0.91 0.77
LCOM 0.46 0.57 1 0.77 0.81 0.80 0.79 0.81
CBO 0.58 0.81 0.77 1 0.73 0.89 0.96 0.98
DIT 0.09 0.32 0.81 0.73 1 0.90 0.67 0.82
NOC 0.41 0.64 0.80 0.89 0.90 1 0.87 0.94
CLOCs 0.76 0.91 0.79 0.96 0.67 0.87 1 0.96
MLOCs 0.53 0.77 0.81 0.98 0.82 0.94 0.96 1

Table 2 shows the means and standard deviations of the six CK metrics and the
two LOC metrics we computed, in the four relevant phases of the project, just to give
an idea of their magnitude and variation.

Table 2. Statistics related to measured metrics, for the relevant project phases. The number in
italics shown within brakes after the phase is the number of observations of the phase.

Metrics Phase 2 [10] Phase3 [7] Phase 4 [4] Phase 5 [6]
 mean st.dev. mean st.dev. mean st.dev. mean st.dev.
WMC 6.7 0.11 7.0 0.15 6.8 0.10 6.7 0.04
RFC 14.5 0.34 16.0 0.43 15.3 0.16 15.1 0.11
LCOM 25.3 0.4 30.0 5.2 34.7 1.3 33.0 0.4
CBO 3.98 0.10 4.64 0.16 4.52 0.06 4.68 0.03
DIT 0.75 0.006 0.77 0.002 0.81 0.003 0.81 0.005
NOC 0.59 0.006 0.61 0.002 0.62 0.005 0.62 0.005
CLOCs 67.9 1.92 80.2 3.45 78.8 0.78 77.4 0.82
MLOCs 9.53 0.15 10.7 0.27 10.8 0.05 10.9 0.07

In Fig. 2 we show the behavior of the mean values of the four CK metrics not re-
lated to inheritance – WMC, RFC, LCOM and CBO. All the values are normalized to

 Study of the Evolution of an Agile Project 395

the maximum value reached by the metrics. During phase 2, all these metrics tend to
grow, though to different extents. This growth continues during phase 3, up to a peak,
that happens at the end of phase 3 or, in the case of LCOM, at the beginning of phase
4. During phases 4 and 5 these metrics tend to decline, except in the case of CBO, that
shows a slow increase after a dip occurring at the beginning of phase 4.

Fig. 2. The evolution of the mean value of WMC, RFC, LCOM and CBO metrics

In Fig. 3 we show the behavior of the mean values of the CK metrics related to
inheritance – DIT and NOC – and of LOC metrics. Also in this case, the values are
normalized to the maximum value. NOC metric shows a slow, steady increase through-
out the project, looking unaffected by the coding practices used. Note that in literature
this metric is often neglected, or found poorly correlated with software defects [16].
DIT metric behavior is quite stable too, except in the transition from phase 3 to phase
4, where there is a sudden increase of about 0.5. This is due to the fact that one of the
first refactoring activities made in phase 4 was to restructure several inheritance hierar-
chies, factoring out common features in an added abstract superclass. This activity

Fig. 3. The evolution of the mean value of DIT, NOC, CLOCs and MLOCs metrics

396 G. Concas et al.

led to an increase by one of the depth of inheritance tree of about one half of the sys-
tem classes, explaining the jump of DIT metric.

The evolution of both class and method LOCs shows an increasing trend during
phase 2 and the beginning of phase 3, until just before the first release. Then, CLOCs
metric tend to slowly decrease during phases 4 and 5, while MLOCs shows a relative
stabilization, with some minor fluctuations, during the remaining of the project. Both
LOCs metrics are strongly correlated with CBO and, to a lesser extent, with RFC met-
rics, as shown in Table 1.

Now, let us proceed with a deeper discussion of the results shown so far. As de-
scribed in section 4, the level of adoption of key agile practices, and namely pair pro-
gramming, testing and refactoring was highly variable in the different phases of the
project. Since these practices were always applied or not applied together, it is not
possible to discriminate among them, or to assess their relative usefulness, using the
data gathered in this case study. Consequently, we will talk of “key agile practices” as
applied together.

The evolution of many of the studied metrics in conjunction with the process
phases, as shown in Figs. 1, 2 and 3, shows significantly different values and trends,
depending on the specific phase. Our hypothesis is that this variability is due precisely
to the different level of adoption of the key agile practices, because, to our know-
ledge, this is the only difference among the various phases, as regards external factors
that might have an impact on the project. Moreover, the only relevant internal factor
in play is the team experience, both regarding working together applying agile prac-
tices, and about the knowledge of the system itself. Since the project duration was rel-
atively short, we estimate that that the latter factor affected significantly only phase 2.

We performed a Kolmogorov-Smirnov (KS) two-sample test to assess how these
measurements differ from one phase to the next. This KS test determines if two data-
sets differ significantly, i.e. belong to different distributions, making no assumption
on the distribution of the data1. For each computed metric, we compared the measure-
ments belonging to a phase to those belonging to the next. The results are shown in
Table 3, showing in bold the cases with significance levels greater than 95%. Phase 2

Table 3. Confidence level that the measurements taken in two consecutive phases significantly
differ, according to K-S two-sample test

Metrics Phases 2-3 Phases 3-4 Phases 4-5
WMC 99.8% 85.1% 92.9%
RFC 99.99% 95.3% 92.9%
LCOM 91.5% 62.3% 92.9%
CBO 99.99% 85.1% 98.3%
DIT 99.95% 98.7% 92.3%
NOC 99.95% 98.7% 4.75%
CLOCs 99.99% 85.1% 92.9%
MLOCs 99.97% 90.3% 56.4%

1 Since all the metrics computed at a given time depend also on the state of the system in the

previous measurement, the assumption underlying KS test that the samples are mutually in-
dependent random samples could be challenged. However, we used KS test to assess the dif-
ference between measurements in different phases as if they were independent sets of points,
and we believe that at a first approximation the KS test result is still valid.

 Study of the Evolution of an Agile Project 397

metrics differ very significantly from phase 3 in all cases but for LCOM – but getting
a significance higher than 90% also for LCOM. The difference of the metrics of other
consecutive phases are lower, though in several cases there is a significance greater
than 95%, and in most cases greater than 90%. These results in fact confirm the dif-
ference in trends and values of the various metrics in the various phases that are pat-
ent in Figs. 2 and 3. Now, let us discuss the metrics trends during the various phases.

Phase 2 is characterized by a steady growing trend of the number of classes. All
metrics, but LCOM, are stable during the first five weeks of this phase, and then tend
to grow – in particular RFC, CBO, CLOCs and MLOCs. LCOM, on the contrary,
tends to increase during the first four weeks, and then stabilizes. The starting values
of all these metrics are those of the original jAPS framework, constituted by 367
classes and evaluated by code inspection as a project with a good OO architecture.
The increase of RFC and CBO denotes a worsening of software quality. Note that
phase 2 is characterized by a rigorous adoption of agile practices, but we should con-
sider two factors:

• The knowledge of the original framework was initially quite low, so the first addi-
tion of new classes to it in the initial phase had a sub-optimal structure, and it took
time to evolve towards an optimal configuration.

• Some agile practices require a time to be mastered, and our developers were junior;

In general, we might conclude that in phase 2 the team steadily added new features,
and consequently new classes to the system. In the first half of the phase, however,
these classes substantially kept the structure of the original system they were added
to. As the system grew, this structure was slowly impaired, due to the factors quoted
above.

Phase 3 is characterized by a strong pressure for releasing new features and by a
minimal adoption of pair programming, testing and refactoring practices. In this phase
we observe a growth in most metrics, namely all CK metrics related to coupling and
complexity – with an explosive growth of LCOM – and in the LOC metrics. Only
inheritance-related CK metrics are not affected. This shows that in this phase the
quality has been sacrificed for adding several new features.

Phase 4, that follows phase 3, is a refactoring phase where the team, adopting a rig-
orous pair programming rotation strategy together with testing and refactoring, were
able to reduce the values of many important quality metrics, such as WMC, RFC,
LCOM, CBO and CLOCs. In this phase, no new features were added to the system.
However, the number of classes increased during this phase, because refactoring re-
quired to split classes that had grown too much, and to refactor hierarchies, adding
abstract classes and interfaces. In particular, WMC and RFC complexity metrics were
very significantly reduced since the beginning of phase 4, and LCOM was reduced as
well, mainly at the end of the phase. CBO shows a strong decrease in the first weeks,
followed by an increase at the end of the phase. The increase of DIT and correspond-
ing increase of CLOCs, as discussed before, are due to the addition of abstract classes
to the hierarchies, that factor out common features, thus reducing the code of many
classes. Method LOCs was not reduced, but it stopped to grow. Note that the values
of the metrics at the end of phase 4 seem to reach an equilibrium.

398 G. Concas et al.

The last development phase (phase 5) is characterized by the adoption of pair
programming, testing and refactoring practices, and by the addition of further classes
associated to new features. In this phase the metrics don't change significantly – al-
though in the end the values of most of them are slightly lower than at the beginning
of the phase – maybe because the team has become more effective in the adoption of
the agile practices compared to the initial phase 2.

In conclusion, in phase 2 we observed a deterioration of quality metrics, that signi-
ficantly worsened during phase 3; phase 4 led to a significant improvement in quality,
and phase 5 kept this improvement. The only external factors that changed during the
phases were adoption of pair programming, TDD and refactoring, that was abandoned
during phase 3, and systematic use of these practices during phase 4, aiming to im-
prove the quality of the system and with no new feature addition. As regards internal
factors, in phase 2 the team was clearly less skilled in the use of agile practices and in
the knowledge of jAPS framework than in subsequent phases.

Although it is not possible to draw definitive conclusions observing a single, medi-
um-sized project, these observations quantitatively relate software quality metrics
with the use of key agile practices, and this relation is positive – when pair program-
ming, TDD and refactoring are applied, the quality metrics improve, when they are
discontinued, these metrics become significantly worse.

6 Conclusions

In this paper we presented an agile process supporting the development of FlossAr, a
Web application for managing a Register of Research. The process was devised hav-
ing in mind the specificities of the project and of the team; it uses several agile prac-
tices, taken from XP, Scrum and FDD.

During the development we systematically performed measurements on the source
code, using standard software metrics that have been proved to be correlated with
software quality. Moreover, the development itself evolved through phases, character-
ized by a different adoption level of some key agile practices such a pair program-
ming, TDD and refactoring, and by different team skills in using these practices and
in the knowledge of the software framework which the system was built upon.

We were able to correlate several relevant quality metrics with the agile practices
adoption, showing a significant difference in quality metrics of software developed in
the various phases, and a systematic improvement of software quality metrics when
agile practices are thoroughly used by skilled developers. Clearly, these results repre-
sent just a first step toward a more rigorous and systematic assessment of the effect of
the use of agile practices on software quality, as measured using standard metrics.

Future work will be performed measuring other software projects, taking into ac-
count also the number of bugs and the effort to fix them. We also plan to use metrics
more sophisticated than the simple computation of the average of metrics computed
on the classes of the system. Such metrics will be related to behavior of the distribu-
tions of CK metrics on the class population, especially in the tail of the distribution, or
could be complexity metrics computed using the complex network approach [7].

 Study of the Evolution of an Agile Project 399

References

1. Agile Manifesto, http://www.agilemanifesto.org
2. Basili, V., Melo, L.B.: A validation of object oriented design metrics as quality indicators.

IEEE Trans. Software Eng. 22, 751–761 (1996)
3. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd edn. Addi-

son-Wesley, Reading (2004)
4. Boehm, B., Turner, R.: Balancing Agility and Discipline. Addison-Wesley Professional,

Reading (2003)
5. Chidamber, S., Kemerer, C.: A metrics suite for object-oriented design. IEEE Trans. Soft-

ware Eng. 20, 476–493 (1994)
6. Chidamber, S., Kemerer, C.: Managerial use of metrics for object oriented software: An

exploratory analysis. IEEE Trans. Software Eng. 24, 629–639 (1998)
7. Concas, G., Marchesi, M., Pinna, S., Serra, N.: Power-Laws in a Large Object-Oriented

Software System. IEEE Trans. Software Eng. 33, 687–708 (2007)
8. De Luca, J.: A Practical Guide to Feature-Driven Development. Prentice-Hall, Englewood

Cliffs (2002)
9. DSDM Consortium and Stapleton, J. DSDM: Business Focused Development, Pearson

Education (2003)
10. FlossAr site, http://www.flosslab.it/flosslab/en/flossar.wp
11. Gyimothy, T., Ferenc, R., Siket, I.: Empirical Validation of Object-Oriented Metrics on

Open Source Software for Fault Prediction. IEEE Trans. Software Eng. 31, 897–910
(2005)

12. Haungs, J.: Pair Programming on the C3 Project. IEEE Computer 34(2), 118–119 (2001)
13. JAPS: Java agile portal system, http://www.japsportal.org
14. Li, W., Henry, S.: Object oriented metrics that predict maintainability. J. Systems and

Software 23, 111–122 (1993)
15. Schwaber, K.: Agile Project Management with Scrum. Prentice-Hall, Englewood Cliffs

(2001)
16. Subramanyam, R., Krishnan, M.S.: Empirical Analysis of CK Metrics for Object-Oriented

Design Complexity: Implications for Software Defects. IEEE Trans. Software Eng. 33,
687–708 (2007)

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 400–414, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Identifying and Understanding Architectural Risks in
Software Evolution: An Empirical Study

Odd Petter Nord Slyngstad1, Jingyue Li1, Reidar Conradi1, and M. Ali Babar2

1 Department of Computer and Information Science (IDI), Norwegian University of Science
and Technology (NTNU), Trondheim, Norway

{oslyngst, jingyue, conradi}@idi.ntnu.no
2 LERO– The Irish Software Engineering Centre, University of Limerick, Limerick, Ireland

malibaba@lero.ie

Abstract. Software risk management studies commonly focus on project level
risks and strategies. Software architecture investigations are often concerned with
the design, implementation and maintenance of the architecture. However, there
has been little effort to study risk management in the context of software
architecture. We have identified risks and corresponding management strategies
specific to software architecture evolution as they occur in industry, from
interviews with 16 Norwegian IT-professionals. The most influential (and
frequent) risk was “Lack of stakeholder communication affected implementation
of new and changed architectural requirements negatively”. The second most
frequent risk was “Poor clustering of functionality affected performance
negatively”. Architects focus mainly on architecture creation. However, their
awareness of needed improvements in architecture evaluation and documentation
is increasing. Most have no formally defined/documented architecture evaluation
method, nor mention it as a mitigation strategy. Instead, problems are fixed as
they occur, e.g. to obtain the missing artefacts.

Keywords: software architecture, software evolution, risk management,
software architecture evaluation.

1 Introduction

Modern software systems are commonly built by acquiring and integrating various
components developed by commercial or open source entities. The software
engineering community has enabled several processes for developing and maintaining
component-based systems. Proper handling of software architecture is one of the most
important factors towards successful development and evolution of component-based
systems. However, there has been little effort to identify and understand the
architectural risks in software evolution and potential strategies to deal with those
risks. We assert that it is important to obtain and disseminate the information about
potential risks (i.e. problems) in architecture evolution, as the architecture constitutes
the central part of a software system [1]. Knowledge and understanding about
architecture evolution risks should facilitate the development of improved strategies
to mitigate these risks.

 Identifying and Understanding Architectural Risks in Software Evolution 401

We have decided to obtain such knowledge from practicing IT-professionals
working with software architecture, as they are expected to encounter risks (i.e.
problems that may occur) in evolving software architectures on a regular basis. Our
research here is concerned with Component-Based Software Engineering (CBSE)
development, where there has been architectural evolution during the systems’
lifetime.

Using a convenience sample of respondents, we carry out a preliminary investigation
of architectural risks and management strategies in software evolution. This means
changes to the structure(s) of a system of software elements, their external properties
and mutual relationships, all viewed from a perspective of risk analysis and risk
mitigation. This exploratory study is targeted at Norwegian IT-professionals who hold
significant knowledge and experience in designing and evolving software architectures.

We have identified architectural risks (i.e. problems identified in planning or
experienced during the maintenance/evolution) and associated risk management
strategies (i.e. methods to mitigate these issues) as they occur in industry. “Lack of
stakeholder communication affected implementation of new and changed architectural
requirements negatively” was the most influential as well as the most frequent risk.
This risk was most effectively mitigated by extending the time used towards
communication with stakeholders. “Poor clustering of functionality affected
performance negatively” was the next most frequent risk. This risk was in turn most
successfully mitigated by refactoring or improving the modifiability of the architecture.

Furthermore, architects easily handle anticipated or experienced risks. However,
their focus is usually on “forward engineering”, not on reengineering (i.e. the
architecture solution rather than the suitable steps to get there [14] in advance).
Despite this, some of the findings also show that awareness of software
documentation and evaluation issues and practices is increasing. Also, most of the
respondents have no formally defined or documented architecture evaluation method
in place. Rather, challenges are met as they appear, and the main focus is on
obtaining the missing artifact. Finally, none of our respondents mentioned using
formally defined or documented architecture evaluation as a risk mitigation strategy.

The remainder of the paper is organized as follows: Section 2 holds Background.
Research Design is in Section 3. Section 4 contains information on our data
collection, and the results of our study are in Section 5. Discussion and Threats to
Validity are located in Section 6, and Conclusions and future work are in section 7.

2 Background and Related Work

Software Architecture [1] can be defined as the discipline dealing with the structure or
structures of a system, comprising software elements, the externally visible properties
(“interface” of in-going and out-going calls) of those elements, and the relationships
between them. Well-defined software architecture is one of the key factors in
successfully developing and evolving a non-trivial system or a family of systems. A well-
defined software architecture provides a framework for the earliest design decisions to
achieve functional and quality requirements. In addition, it has a profound influence on

402 O.P.N. Slyngstad et al.

project decomposition and coordination. Poor architecture often leads to project
inefficiencies, poor communication, and inaccurate decision making [1]. The above
definition of software architecture refers to software elements, which can be seen as
components of the given software system. Hence software architecture is closely related
to CBSE [2].

Clerc et al. [14] conducted a study to understand architects’ attitudes towards
software architecture knowledge. They found that architects are aiming more at
creation and communication instead of review and maintenance of a system’s
architecture. Bass et al. [21] analyzed the output from 18 ATAM evaluations to
discover risk themes specifically for software architecture. Besides a set of risk
categories, they found that the more prevalent risks are those of omission (i.e. of not
taking action on a particular issue). They also did not find a link between the risk
categories and the business/mission goals or the domain of a system. Bass et al.
further comment that the similarities to their study shown in [23] indicate the
industrial relevance of the risk categories [21], as well as the ability of ATAM
analysis to discover architectural risks. Another risk categorization from ATAM
evaluations is presented in O’Connell [22], using 8 evaluation results. Although
study [22] was analyzed independently from [21], the resulting themes are similar in
content. It should be noted though that neither of these studies deal explicitly with the
evolution of software architecture.

The architecture of a system will evolve as architectural changes are accumulated
over time. There are diverging views in the research community about how software
evolution should be defined. These include considering maintenance as a broader term
[5], seeing evolution as a step in the software lifecycle [4], and regarding evolution as
software systems’ dynamic behavior through maintenance and enhancements [3]. Some
[9] consider evolution as the enhancement and improvement performed on a system
between releases. Based on this description, we define software evolution for this study
as: the systematic and dynamic updating in new/current development or reengineering
from past development of component(s) (source code) or other artifact(s) to a)
accommodate new functionality, b) improve the existing functionality, or c)enhance the
performance or other quality attribute(s) of such artifact(s) between different releases.

If left unchecked, over time, a system’s architecture will naturally decay as new
quality and functional requirements are imposed on it. This decay is manifested by
the original architectural structure(s) being lost. This is sometimes called “software
rot” [20], and is one of the most prevalent reasons behind reengineering the
architecture of a software system.

Risk management entails methods to mitigate risks that may occur during a
software development project. Boehm [8] describes a framework for risk management
consisting of two main steps, namely risk assessment (identification, analysis, and
prioritization) and risk control (planning, resolution, and monitoring). Ropponen and
Lyytinen [6] have identified six elements of software risk. Their results reveal
influence on risk elements by environmental factors (e.g. development method).
Also, awareness of risk management importance and method(s) was shown to have an
effect. Keil et al. [10] conducted a risk management survey of project managers.
They identified several additional important risk factors in comparison with

 Identifying and Understanding Architectural Risks in Software Evolution 403

Boehm [8], contributing these to changes in the industry since Boehm’s study.
Additionally, they discovered that important risks were commonly out of managers’
control. They therefore suggested that project managers widen their attention beyond
traditional software risk factors.

Further based on the definition of risk in Boehm’s article[8], as well as input from
[6][12], we use the following definition for architectural evolution risks: the issues or
problems that can potentially have negative effects on the software architecture of a
system as it evolves over time, hence compromising the continued success of the
architecture. The above studies on architectural risks [21][22] have focused on
discovering risk categories directly from the output of ATAM [1] analyses. They use
analysis outputs from organizations where such evaluation is an established practice.
However, they do not comment on how commonly such formal evaluation methods
are used in industry. Nor do they take software evolution specifically into account. In
[7], the authors found that evaluation practices could range from completely ad-hoc to
formally planned, from qualitative to quantitative. They also discovered that the
approach depended on the goals of the evaluation. This means that additional risk
issues and management strategies could be left undiscovered by looking only at
output from structured analysis reports. We therefore decided to employ semi-
structured interviews to gather qualitative information on risk issues and risk
management strategies.

3 Research Design: Context, Motivation and Research Questions

We observed that risks and risk management strategies are commonly studied in
relation to general software development [11][12][13], identifying risks on the project
level [6][8][10]. Similarly, software architecture studies often focus on the design,
implementation and maintenance of the architecture. While these results are
important, there has been little effort to study risk management in the context of
software architecture [21][22]. Hence, we decided to carry out an empirical study to
help further identify and better understand the risks and risk management strategies in
relation to software architecture.

This research is limited to those software systems which have two major characteris-
tics: use of CBSE and changes in the systems' software architectures during their
lifetimes. This means projects that have at least delivered the first production release, i.e.
can be said to be in the “maintenance” phase.

Our main motivation is to obtain insight into the actual risks (i.e. issues identified
and experienced which may affect the software architecture negatively) and
associated risk management strategies (i.e. effective mitigation methods), as they
occur in industry, in relation to software architecture evolution. We aim to use the
results from this exploratory study as basis for more in-depth studies in this area.

This study is aimed at identifying and understanding risks and strategies relevant to
software architecture evolution. That is, we investigate the steps of risk identification,
analysis and prioritization, as well as risk planning and resolution [8], as they occur in
industry. We do not cover issues pertaining to risk assurance or monitoring [8]. The
research questions are as follows:

404 O.P.N. Slyngstad et al.

RQ1: What are the relevant architectural risks of software evolution, i.e. what
software architecture related risks can be encountered during software evolution?
Any issue that can affect a project adversely if not handled correctly is considered a
risk [8]. The first step in Boehm’s risk management framework [8] entails risk
identification, analysis, and prioritization. We are hence here interested in
investigating the state-of-the-practice regarding risk awareness, i.e. to obtain insight
on which risks that software architects deem more important in relation to software
architecture evolution.

As aforementioned, software architecture is the central part of a software system [1],
so failure of the software architecture can easily cause the entire project to fail. Hence a
proper focus on the software architecture is needed to ensure the project is kept on budget
and schedule. Similarly, changes to the software architecture can cause subsequent
changes in many components of a software system [1]. It is therefore imperative to be
aware of the possible risks incurred on the software architecture through software
evolution.

RQ2: How can these risks best be assessed; through which methods or mechanisms
were these risks identified, analyzed and prioritized? Software architecture evaluation
is widely known as an important and effective way to assess architectural risks [1, 7]. In
order to identify, analyze and prioritize [8] risks there is the need for effective methods
or mechanisms for software architecture evaluation. Such mechanisms help validate
architecture design decisions with respect to required quality attributes (such as
testability, availability, modifiability, performance, usability, security etc.). Prior archi-
tecture analysis studies [21][22] focused on structured analysis outputs as a method to
discover risks. However the analysis methods used can range quite widely [7].
Investigating a wider range of analysis methods will help discover risk issues possibly
missed by earlier studies.

RQ3: How can these risks best be mitigated: what were the relevant risk
management strategies? Were the strategies successful or not? The second step in
Boehm’s framework [8] encompasses risk control. This step focuses on problem
mitigation; it is aimed at handling problems to minimize their impact. Here, our aim is
to obtain the status quo, and suggest possible improvements by enabling a systematic
approach to architectural risk management in software evolution. It is therefore
imperative that we receive information on both positive and negative aspects of
employed risk management strategies, and also on their outcomes.

Again, risks in relation to the central part of a software system (i.e. the architecture
[1]) are important. Proper management of these risks on the three levels, technical,
process and organization [11][12][13], provides the ability to minimize the potentially
far-reaching impacts of these risks [8].

In order to practically explore the three research questions above, we designed an
interview guide consisting of six questions. The relation between the questions in the
interview guide, the research questions, and Boehm’s framework [8] is shown in Table 1.

Question Q6 has been adapted from an earlier empirical study aimed at identifying
the factors that can influence software architecture evaluation practices [7]. We also
gathered demographic data (e.g. level of experience) about the respondents. The

 Identifying and Understanding Architectural Risks in Software Evolution 405

Table 1. Relation between research questions and the interview guide

 Identification,
Analysis, and
Prioritization [8]

Assessment
[8]

Planning, and
Resolution [8]

Questions in the interview guide RQ1 RQ2 RQ3
Q1.1. Describe architectural problems
(indicate influence) and strategies (rate
outcome) you identified in planning
maintenance/evolution?

X X

Q1.2. Describe architectural problems
(indicate influence) and strategies (rate
outcome) experienced and employed
during maintenance/evolution?

X X

Q2. Indicate weighting of and any changes
in the following quality attributes[1]:
testability, availability, modifiability,
performance, usability and security) in your
software architecture?

X

Q3. How has the architecture changed
throughout the lifetime of the system?

X

Q4. Please describe your architecture change
process?

 X X

Q5 Which architectural patterns (e.g.
layering, task control, AI approach pipe-and-
filter etc.) did you use to design the
architecture?

X

Q6. Does your organization use a defined
and/or documented method or process to
evaluate software architecture?

 X X

interview guide was piloted with 3 researchers to ensure quality and ease of
understanding, through which the questions were polished and refined. We aimed to
be flexible so as to gain as much qualitative information on each question as possible.
Therefore, all the questions (Q1-Q6) were left open-ended. Also, the influence of
each risk and the outcome of each strategy were indicated on a 5-point Likert scale.
That is, risk Influence was ranked Very High = 5 to Very Low = 1. Similarly,
strategy Outcome success was ranked Completely = 5, Mostly = 4, Medium = 3,
Somewhat = 2 and Not at all = 1 successful.

4 Data Collection and Analysis

This study was carried out using a convenience sample of participants from the software
industry in Norway. Potential respondents were first contacted by email, and sent the
invitation letter with interview guide to get an overview. Later the potential respondents
were contacted again by phone and signed up for a phone-interview appointment if they
agreed to participate. The respondents were 16 IT-professionals in different companies
with prior knowledge and experience with software architecture.

The phone interviews took on average 30 minutes to carry out, and we obtained
complete responses to all the six questions from all 16 respondents. The data was recorded
on paper and transcribed into electronic form. The responses were also summarized and
read back to the respondents directly after the interviews, so they could be checked for
accuracy.

406 O.P.N. Slyngstad et al.

Nine of the respondents had bachelor level degrees, while seven had master degree
level educations. On average, the respondents had 8 years of experience working
with software architecture, with six having less than five years of experience, five
having 5-10 years of experience and another five having over 10 years of experience.

We analyzed the data as follows: The data was initially analyzed by dividing the
data into discrete parts and coding each piece according to risk or strategy theme(s).
As an example, for risks this was done as {condition – what may go wrong,
consequence(s)}: e.g. “requirements from earlier versions still in effect affected
architecture design negatively.” was coded as {earlier version requirements, negative
for architecture design}.

We then examined them for commonalities and differences, and grouped related
pieces of information based on their coding (e.g. for risks, {earlier version requirements,
negative for architecture design} and {required same functionality as before, negative for
planning} were grouped as {required backward compatibility, negative for architecture
maintenance/evolution planning and design}). Each respondent’s transcript was run
through this procedure. The results were checked by a second researcher to ensure
reliability. This is similar to the constant comparison method described in [16]. The
issues identified in the data analysis were classified into three categories; technical,
process and organizational. We believe that risk management is not merely a technical
issue; rather, it spans all three categories [11][12][13][21].

5 Results

The results are here divided into categories of (1) technical, (2) process and (3)
organizational risks. This means that we have combined the findings from Q1.1 and
Q1.2 for RQ1 and RQ3.

Table 2. Most influential (Influence ≥ 4) technical risks (TRs) and corresponding
management strategies performed

Technical ID Risk Influence Strategy Outcome
Identified in
planning

TR
1

Poor clustering of
functionality affected
performance negatively

4 Refactoring of the
architecture

5

Experienced
during

TR
2

Poor original core design
prolonged the duration of
the maintenance/
evolution cycle

4 Improve modifiability of
the architecture

3

 TR
3

Increased focus on
modifiability contributed
negatively towards
system performance

4 Implementation of
changes towards
modifiability

3

 TR
4

Varying release cycles
for COTS/OSS
components made it
difficult to implement
required changes

4 Use own development as
potential backup

3

 TR
5

Poor clustering of
functionality affected the
performance negatively

4 Implement extra
architecture add-ons

1

 Identifying and Understanding Architectural Risks in Software Evolution 407

Table 3. Most influential (influence ≥ 4) process risks (PRs) and corresponding management
strategies performed

Process ID Risk Influence Strategy Outcome

PR1 Lack of architecture
documentation
contributed to more effort
being used on planning
the maintenance/
evolution

4 Recover arch.
documentation from
current architecture
design

5

Recover evaluation
artefacts where needed

5

Identified in
planning

PR2 Lack of architecture
evaluation delayed
important maintenance/
evolution decisions

4

Alter process to capture
important details

5

Negotiated project
extension

3 PR3 Lack of stakeholder
communication affected
implementation of new/
changed architectural
requirements negatively

5

Allow additional time for
communication/feedback

5

PR4 Insufficient requirements
negotiation contributed to
requirement
incompatibilities on the
architecture

4 Postponed some
requirements to next
maintenance/evolution
cycle

3

Overlay new architecture
change process onto
implementation process

5 PR5 Poor integration of
architecture changes into
implementation process
affected implementation
process and the
architecture design
negatively

4

Integrate architecture
considerations into
implementation process

3

Use separate system for
architecture description
(using ADL), link to
SCM system

3 PR6 Using Software Change
Management (SCM) sys.
w/o explicit software
architecture description
contributed to
inaccuracies in
communicating the
architecture

4

Trial use of additional
ADL system

3

Align terminology with
literature

1 PR7 No standard terminology
affected internal and
external communication
efforts negatively

4

Extra communication to
clarify terminology

1

Experienced
during

PR8 Customer architects being
unfamiliar with
architecture change
process affected maint./
evo. cycle schedule
negatively

4 Extra communication
effort with own resident
architect to clarify

5

Technical risks: Table 2 shows the most influential technical risks and corresponding
management strategies performed. From Table 2, we can see that the strategy applied
in planning towards TR1 was Completely successful (Outcome = 5). Furthermore,
overall the strategies were also 3 out of 5 of Medium success (Outcome = 3), and 1
out of 5 Not at all successful (Outcome = 1).

408 O.P.N. Slyngstad et al.

Table 4. Most influential (influence ≥ 4) organizational risks (ORs) and corresponding
management strategies performed

Organization ID Risk Influence Strategy Outcome

OR
1

Architecture team on a per
maintenance/evolution
cycle basis contributed to
loss of knowledge about
the existing architectural
design

4 Dedicated personnel
to “retrieve”
knowledge

3

OR
2

Cooperative maintenance /
evolution with architects
from customer organization
required extra training and
communication efforts

4 Frequent, interactive,
scheduled meetings
to keep up to date

5

OR
3

Lack of clear point of
contact from customer
organization contributed to
inconsistencies in
communication of the
architecture and
requirements

4 Involve all “layers”
of customer
organization as
stakeholders, allow
extra communication
time

5

Identified in
planning

OR
4

Not allowed to change OSS
as decision mandate
external to architecture
team, affecting
performance and
modifiability negatively

4 Ensure compliance
with external
mandate holder

3

OR
5

Separate architecture team
per maint. / evo. cycle
contributed to insufficient
knowledge about the
existing architectural
design

4 Regain architecture
details from upper
management
remaining

3

OR
6

Prior architecture maint./
evo. by other projects due
to lack of personnel made it
difficult to obtain existing
architecture design
documentation

4 Merge architecture
knowledge /
documentation to
central location

3

OR
7

Large architecture team
affected division of duties
and subsequently
implementation of maint./
evolution cycle negatively

4 Divide duties
between subgroups

3

Experienced
during

OR
8

Lack of clear lead architect
affected implementation
progress negatively and
contributed to extra effort
needed

4 Merge duties and
diverge roles more
clearly

3

Process risks: Table 3 (below) shows the most influential process risks and
corresponding management strategies performed. These results (Table 3) show that all of
the strategies used in response to the most influential risks in planning were Completely
successful. Towards the risks experienced during the maintenance/evolution, the

 Identifying and Understanding Architectural Risks in Software Evolution 409

strate-gies were 3 out of 10 Completely successful, 5 out of 10 of Medium success, while
2 out of 10 were Completely successful.

Organizational risks: Table 4 (below) shows the most influential organizational risks
and corresponding management strategies performed. Among the strategies used in
response to these most influential organizational risks (Table 4) identified in planning, 2
out of 4 were Medium successful, while 2 out of 4 were Completely successful.
Towards those experienced during, the strategies were all Medium successful.

Additionally, our results show that the overall most frequent (and most influential)
risk was “Lack of stakeholder communication affected implementation of new and
changed architectural requirements negatively”. The most successful strategy in
response to this risk was “Allow additional time for communication for communication
and feedback”. The second most frequent risk was “Poor clustering of functionality
affected performance negatively”, with “Refactoring the architecture” and “Improve the
modifiability of the architecture” as corresponding most successful strategies. The
results from questions Q2, Q3, Q5 (Table 5), and Q4, Q6 are below.

Table 5. Summary of additional findings for RQ1

Q2. Quality attribute foci:
• Focus on any given QA can change during the project.
• Only a few projects experienced a lowering of focus on a given QA.
• Most frequent QA with increased focus was Modifiability, followed by Usability.
Q3. Architecture changes made during system lifetime to:

• Improve processing speed or scale (7 out of 16)
• Improve flexibility to accommodate future changes
 (7 out of 16)
• Accommodate new or altered user requirements
 (5 out of 16)

• Improve system uptime (3 out of 16)
• Enable additional access interfaces
 (1 out of 16)

• Increase abstraction level (1 out of 16)
• Support additional record types (1 out of 16)

Q5. Architectural patterns used (as means to solve design challenges):
• Inversion of Control (1 out of 16),
• Layered (3 out of 16),
• Blackboard (3 out of 16),

• Model View Controller (4 out of 16),
• Pipeline (3 out of 16),
• Task Control (2 out of 16), and
• Broker (1 out of 16).

The following are results from Q4 (RQ2, RQ3) (architecture change process):

• none used a strictly defined change process,
• 7 out of 16 performed this process informally,
• 4 out of 16 employed loosely defined procedures,
• 3 out of 16 changed the architecture as part of the development process, and
• 2 out of 16 just change the architecture as needed.

In question Q6, none of the respondents answered that they have a defined or
documented process for software architecture evaluation. 5 out of 16 of the respondents
have a loosely defined process in place if needed. Another 5 out of 16 have knowledge
of evaluation processes or methods mentioned in literature. Yet another 5 out of 16 of
the respondents carry out a software architecture evaluation informally if needed.
Finally, 1 out of 16 of the respondents reports that her/his organization has a process for

410 O.P.N. Slyngstad et al.

software architecture evaluation in place (in this specific case, based on the Architecture
Tradeoff Analysis Method – ATAM [1]), but this is not commonly used.

6 Discussion

6.1 Comparison to Related Work

The Technical risks identified by the respondents show a high focus on design and
creation of the architecture, supporting [14].

While Ropponen’s [6] focus was overall software development risks, ours is software
architecture risks in software evolution. The strategies used in response to the risks we
identified as (See Table 6 below) “Architecture Team” and “Requirements” risks were
reported as being Medium or Completely successful in outcome. We can hence support
the notion that there is at least some success in managing risks related to “Architecture
Team” and “Requirements” [6].

A summarized comparison with the above and Bass et al. [21] is also in Table 6.

Table 6. Summary of comparison to related work

ID Ropponen et al. [6]

 Requirements risks:
PR4 “Insufficient requirements negotiation contributed to requirement incompatibilities”
TR3 “Increased focus on modifiability contributed negatively towards system performance”

 Architecture Team risks:
OR5

“Separate architecture team per maint. / evo. cycle contributed to insufficient knowledge about
the existing architectural design“

OR7

“Large architecture team affected division of duties and subsequently implementation of maint./
evo. cycle negatively”

OR8

“Lack of clear lead architect affected implementation progress negatively and contributed to
extra effort needed”

 Stakeholder risks (from the subcontractor viewpoint):
PR3 “Lack of stakeholder communication affected implementation of maint./ evo. cycle negatively”
OR2

“Cooperative maint./evo. w/ architects from customer organization required extra training and
communication efforts”

OR3

“Lack of clear point of contact from customer organization contributed to inconsistencies in
communication of the architecture and requirements”

PR8 “Customer architects being unfamiliar with architecture change process affected maint./evo
cycle schedule negatively”

ID Bass et al. [21]
 Quality Attribute risk:

TR3 “Increased focus on modifiability contributed negatively towards system performance”
 Integration risks:

TR4 “Varying release cycles for COTS/OSS components made it difficult to implement required
changes”

OR4 “Not allowed to change OSS as decision mandate external to architecture team, affecting
performance and modifiability negatively“

 Requirements risks:
PR4 “Insufficient requirements negotiation contributed to requirement incompatibilities on the

architecture”
TR3 “Increased focus on modifiability contributed negatively towards system performance”

 Documentation risks:

 Identifying and Understanding Architectural Risks in Software Evolution 411

Table 6. (continued)

PR1 “Lack of architecture documentation contributed to more effort being used on planning the
maintenance/evolution”

PR6 “Using Software Change Management system w/o explicit software architecture description
contributed to inaccuracies in communicating the architecture”

 Process and Tools risks:
PR2 “Lack of architecture evaluation delayed important maintenance/evolution decisions”
PR6 “Using Software Change Management system w/o explicit software architecture description

contributed to inaccuracies in communicating the architecture”
 Allocation risks:

TR1 “Poor clustering of functionality affected performance negatively”
TR4 “Varying release cycles for COTS/OSS components made it difficult to implement required

changes”
 Coordination risks:

PR3 “Lack of stakeholder communication affected implementation of maint./evo. cycle negatively”
PR8 “Customer architects being unfamiliar with architecture change process affected maint./evo

cycle schedule negatively”
OR2 “Cooperative maint./evo. with architects from customer organization required extra training and

communication efforts”
OR3 “Lack of clear point of contact from customer organization contributed to inconsistencies in

communication of the architecture and requirements”
OR4 “Not allowed to change OSS as decision mandate external to architecture team, affecting

performance and modifiability negatively”

6.2 Observations on Key Architectural Risks and Promising Risk Management
Strategies

The most influential Process risks we identified (Table 3) show that the main focus is
still forward thinking (producing systems according to budget and schedule)
rather than hindsight reflection and learning. Further, from the answers to Q5 we
can see that the consequences of using one or more specific patterns are neither
explicitly considered, nor evaluated as potential risks (though tactics, packaged by
patterns, is a risk issue also discovered from ATAM reports in [21][22]).

The answers from Q4 and Q6 also point towards this main focus. Hence there is no
apparent specific focus on discovering potential problems (rather problems are fixed
as they are encountered, focussing on the missing artefacts). This is despite the
potential benefits (e.g. identifying architecture design errors and potentially
conflicting quality requirements early) of defined and documented architecture
evaluation described in the literature [1]. However, architects are becoming aware
that their practices around evaluation and documentation need improvement.
This is echoed by the Organizational risks we identified (Table 4), such as
“Architecture team on a per maint./evo. cycle basis contributed to loss of knowledge
about the existing architectural design” and “Large architecture team affected division
of duties and subsequently implementation of maint./evo. cycle negatively”.

A link to Business Risks [19] (i.e. those that affect the viability of a software
system) can also be seen. The architectural risks identified are influenced by and in
turn also affect such elements as e.g. cost, schedule.

Considering the most influential Technical risks (table 3), we can see that the
majority of them were experienced during the maintenance/evolution, without prior
planning. The same appears the case for the most influential Process risks, whereas

412 O.P.N. Slyngstad et al.

for the most influential Organizational risks half were identified in planning, and
another half were experienced during the maintenance/evolution. In terms of
management strategies, one overall trend appears to be that those employed in
response to risks identified in planning had a more successful outcome. This appears
especially to be the case where the same risk was both identified in planning as well
as experienced during the maintenance/evolution (e.g. Technical risks TR1 and TR5:
“Poor clustering of functionality affected performance negatively”). These findings
also emphasize the points about forward engineering and awareness discussed above.

One of the strategies applied towards technical risks, as well as two of the
strategies applied towards process risks were Not at all successful. These strategies
should be viewed in light of the respective projects’ context (Tables 2, 3).
Additionally, improvement is needed in the employed strategies, especially regarding
issues encountered during maintenance/evolution. The lack of a strictly defined and
documented architecture change process reported by the respondents (Q4) is also an
interesting finding. We would expect architecture evaluation to be part of a given
change process in order to analyze the consequences of proposed architectural
changes.

To improve this situation, we believe that rigorous documentation and evaluation of
architecture should be made an integral part of a software architecture change process.
Furthermore, management of risks specific to architectural modifications should
be given more attention. To achieve these objectives, software architects should be
provided appropriate training. Moreover, organizational management should also
demonstrate commitment to implement changes to the way software architecture
changes are handled.

6.3 Threats to Validity

Threats to validity (using definitions provided by Wohlin et al. [15]):

Construct Validity: The research questions are rooted firmly in the research literature,
and the actual questions in the interview guide have direct relations to the research
questions. The interview guide was refined through pre-testing among our colleagues
to ensure quality. All the terms used in the guide were defined at the beginning to
avoid any potential misinterpretations.
External Validity: This study has been conducted by using a convenience sample
of 16 IT-professionals, an issue which remains a threat. Nevertheless, obtaining a
random sample is almost unachievable in software engineering studies because our
community lacks good demographic information about populations of interest [17].
The respondents were chosen by us based on their background and experience with
software architecture. Each respondent nevertheless represents a different company.
Internal Validity: The respondents are all knowledgeable and from the software
industry, and have expressed an interest in the study. They all have the needed
knowledge and background to provide informed answers. We hence believe that they
have answered the questions to the best of their ability, truthfully and honestly,
drawing on their own experiences, skills and knowledge. We also clarified any
ambiguities in the questions or the accompanying definitions during the actual
interviews, in addition to the definitions provided in the guide.

 Identifying and Understanding Architectural Risks in Software Evolution 413

Conclusion Validity: This is an exploratory study. The findings are based on analyzing
data from a relatively small number of software architects. We plan to implement a
large scale study to confirm the results of this study. However, the exploratory nature of
the study has identified several issues that may cause architectural risks for evolving
systems. The insights gained will also function as background for refining the interview
guide towards expansion of the sampling base for the planned larger scale study.

7 Conclusion and Future Work

We conducted phone-based, semi-structured interviews of 16 software architects from
Norway for an exploratory study regarding risks and risk management strategies
occurring in industry related to software architecture evolution.

Our findings include an initial identification of risks and corresponding risk
management strategies as they occur in industry. Our main observations include that “lack
of stakeholder communication affected implementation of new and changed architectural
requirements negatively” was the most influential and frequent risk. The corresponding
most successful strategy was to “Allow additional time for communication and feedback”.
In second place concerning most frequent risks came “Poor clustering of functionality
affected performance negatively”. The most successful management strategies towards
this risk were “Refactoring the architecture”, and “Improve the modifiability of the
architecture”.

Furthermore, architects’ main concerns are towards designing and creating the
architecture. However, our results also show some awareness towards improvements
in relation to how these tasks are performed, as well as towards the importance of
retaining knowledge about and performing evaluation of the architecture. As most
respondents have no formally defined or documented method to evaluate software
architecture, problems are fixed as they occur with focus on the lacking artefacts
rather than on the method.

Our results here will be used as input for a larger study in the software industry to
survey the state-of-practice on risk and risk management regarding software
architecture evolution. In particular, we plan to explore the relation between risks and
risk management practices, and project context factors.

Acknowledgements

We thank all parties involved. The study was performed in the SEVO project, a
Norwegian R&D project in 2004-2008 with contract number 159916/V30.

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 2nd edn. Addison-
Wesley, Reading (2004)

2. Bass, L., Buhman, C., Comella-Dorda, S., Long, F., Robert, J., Seacord, R., Wallnau, K.:
Volume I: Market Assessment of Component-based Software Engineering in SEI
Technical Report number CMU/SEI-2001-TN-007 (2001)

414 O.P.N. Slyngstad et al.

3. Belady, L.A., Lehman, M.M.: A model of a Large Program Development. IBM Systems
Journal 15(1), 225–252 (1976)

4. Bennett, K.H., Rajlich, V.: Software Maintenance and Evolution: A Roadmap. In: ICSE
2000 – Future of Software Engineering, Limerick, Ireland, pp. 73–87 (2000)

5. Sommerville, I.: Software Engineering, 6th edn., p. 728. Addison-Wesley, Reading (2001)
6. Ropponen, J., Lyytinen, K.: Components of Software Development Risk: How to Address

Them? A Project Manager Survey. IEEE Transactions on Software Engineering 26(2), 98–
112 (2000)

7. Ali Babar, M., Bass, L., Gorton, I.: Factors Influencing Industrial Practices of Software
Architecture Evaluation: An Empirical Investigation. In: QoSA 2007, Medford,
Massachusetts, USA, July 12-13 (2007)

8. Boehm, B.W.: Software Risk management: Principles and Practices. IEEE Software 8(1),
32–41 (1991)

9. Carr, M., Kondra, S., Monarch, I., Ulrich, F., Walker, C.: Taxonomy-Based Risk
Identification, Technical Report SEI-93-TR-006, SEI, Pittsburgh, USA (1993)

10. Keil, M., Kule, P.E., Lyytinen, K., Schmidt, R.C.: A Framework for Identifying Softare
Project Risks. Communications of the ACM 4(11), 76–83 (1998)

11. Boehm, B.W.: A Spiral Model of Software Development and Enhancement. IEEE
Computer 21(5), 61–72 (1988)

12. Gemmer, A.: Risk Management: Moving Beyond Process. IEEE Computer 30(5), 33–41
(1997)

13. Hecht, H.: Systems Reliability and Failure Prevention. Artech House Publishers (2004)
14. Clerc, V., Lago, P., van Vliet, H.: The Architect’s Mindset. In: QoSA 2007, Medford,

Massachusetts, USA, July 12-13 (2007)
15. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.:

Experimentation in Software Engineering – An Introduction. Kluwer Academic
Publishers, Dordrecht (2002)

16. Seaman, C.B.: Qualitative Methods in Empirical Studies of Software Engineering. IEEE
Transactions on Software Engineering 25(4), 557–572 (1999)

17. Lethbridge, T.C., Sim, S.E., Singer, J.: Studying Software Engineers: Data Collection
Techniques for Software Field Studies. Empirical Software Engineering 10(3), 311–341
(2005)

18. Kitchenham, B., Pfleeger, S.L.: Principles of Survey Research, Parts 1 to 6. ACM
Software Engineering Notes (2001 – 2002)

19. Messerschmitt, D.G., Szyperski, C.: Marketplace Issues in Software Planning and Design.
IEEE Software 21(3), 62–70 (2004)

20. Johnson, R.E., Foote, B.: Designing Reusable Classes. Journal of Object-Oriented
Programming 1(2), 22–35 (1988)

21. Bass, L., Nord, R., Wood, W., Zubrow, D.: Risk Themes Discovered Through
Architecture Evaluations. In: Proc. WICSA 2007 (2007)

22. O’Connell, D.: Boeing’s Experiences using the SEI ATAM® and QAW Processes
(April 2006),
http://www.sei.cmu.edu/architecture/saturn/2006/OConnell.pdf

23. Charette, R.N.: Why software fails. Spectrum 42(9), 42–49 (2005)

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 415–426, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Hands-On Approach for Teaching Systematic Review

Maria Teresa Baldassarre, Nicola Boffoli, Danilo Caivano, and Giuseppe Visaggio

Department of Informatics, University of Bari – RCOST Bari
{baldassarre, boffoli, caivano, visaggio}@di.uniba.it

Abstract. An essential part of a software engineering education is technology
innovation. Indeed software engineers, as future practitioners, must be able to
identify the most appropriate technologies to adopt in projects. As so, it is
important to develop the skills that will allow them to evaluate and make
decisions on tools, technologies, techniques and methods according to the
available empirical evidence reported in literature. In this sense, a rigorous
manner for analyzing and critically addressing literature is Systematic Review.
It requires formalizing an answerable research question according to the
problem or issues to face; search the literature for available evidence according
to a systematic protocol and retrieve data from the identified sources; analyze
the collected evidence and use it to support decision making and conclusions. In
this paper we report on how Systematic Review has been integrated in the
“Empirical Software Engineering Methods” course that is taught at the
Department of Informatics at the University of Bari, and how students have
been introduced to this type of literature review through a hands-on approach.
As far as we know, it is the first attempt of including a complex topic like
systematic review in a university course on empirical software engineering. We
have no empirical evidence on the effectiveness of the approach adopted, other
than practice-based experience that we have acquired. Nonetheless, we have
collected qualitative data through a questionnaire submitted to the students of
the course. Their positive answers and impressions are a first informal
confirmation of the successful application of our strategy.

Keywords: Empirical Software Engineering, Systematic Review, Statistical
Process Control, Evidence Based Software Engineering.

1 Introduction

Empirical Software Engineering (ESE) is an important component of any software
engineer’s curricula as it trains students to evaluate and make decisions on tools,
technologies, techniques and methods according to the available evidence reported in
literature. Indeed this is pointed out in the “Guidelines for Software Engineering
Education” [3] that shows how SEEK (SE Education Knowledge) can be taught
according to the volume’s guidelines. For each knowledge area, there is a short
description and then a table that delineates the units and topics for that area. For each
knowledge unit, recommended contact hours are designated. For each topic, a Bloom
taxonomy level [5] (indicating what capability a graduate should possess) and the
topic’s relevance (indicating whether the topic is essential, desirable, or optional to

416 M.T. Baldassarre et al.

the core) are designated. In this context, ESE can be categorized as part of the
Mathematical and Engineering Fundamental. In particular, within this knowledge
area, it can be seen as empirical methods and experimental techniques topic of the
engineering foundations for software unit. This area is classified, with an “Essential”
relevance, i.e. the topic is part of the core, and according to the Bloom taxonomy level
it is considered as “c” comprehension, i.e. students should be capable to understand
information and the meaning of material presented. For example, be able to translate
knowledge to a new context, interpret facts, compare, contrast, order, group, infer
causes, predict consequences, etc. Meyer [19] points out that software engineering
education trains professionals for the industry, while ESE develops the skills for
empirically validating tools, techniques used, developed and aimed for industry.

The above considerations point out how important it is to develop the skills that
will allow software engineering students, also future practitioners, to critically and
systematically evaluate the best available evidence on a specific issue of interest, may
it be a tool, method, technique or other. In order to achieve such goal students must be
able to apply the steps involved in evidence based software engineering [14]:

1. convert a problem or need for information into a research question
2. search the literature for evidence to answer the question
3. critically analyze the evidence
4. combine the evidence with previous knowledge and individual experience
5. evaluate performances and eventually make improvements.

This asks for concepts in empirical software engineering, in that students must acquire
the fundamental elements of empirical methods and techniques used for validating a set
of hypotheses, as well as skills for searching literature and critically addressing research
questions. At the Department of Informatics at the University of Bari our graduate
course in Informatics includes a mandatory course called “Empirical Software
Engineering Methods”. In accordance to the SEEK guidelines, the course introduces
students to empirical methods such as surveys, case studies and experiments. It also
gives elements of empirical based software engineering (formalized in the above steps)
and trains students on how to empirically evaluate software engineering tools,
techniques, methods and technologies. Within the course, we have achieved step 2 of
the above activities through a “Systematic Review”. A systematic review is a formal
approach for reviewing research literature [17]. As reviews are often limited to
annotated bibliographies, a systematic review means giving appropriate breadth and
depth, rigor and consistency, let alone effective analysis and synthesis of the literature.
Furthermore, it can be considered as much more effort prone than an ordinary literature
survey. The latter being formally defined as “the selection of available documents (both
published and unpublished) on the topic, which contain information, ideas, data and
evidence written from a particular standpoint to fulfill certain aims or express certain
views on the nature of the topic and how it is to be investigated, and the effective
evaluation of these documents in relation to the research being proposed” [12]. More so,
it has less scientific value than a systematic review, formally defined as a “means of
evaluating and interpreting all available research relevant to a particular research
question or topic area or phenomenon of interest” [17].

In this paper we describe how students have been introduced and addressed to
carrying out systematic reviews as part of the above listed EBSE process within the

 A Hands-On Approach for Teaching Systematic Review 417

Empirical SE Methods course at the University of Bari. To make things easier and
more interesting we have used a hands-on approach and actively involved students in
a real systematic review on the topic of Statistical Process Control (SPC) [9]. We
have carried out some type of qualitative evaluation to assess the student opinions.
Results point out positive answers and impressions and therefore confirm the
approach we adopted.

The rest of the paper is organized as follows: section 2 introduces the reader to the
basic concepts of systematic review which we consider part of the EBSE process;
section 3 illustrates the approach used to involve university graduate students in a
review on the topic of statistical process control. Section 4 presents the general
comments on the opinions collected; finally conclusions are drawn.

2 Searching Evidence through a Systematic Review

An important step of the EBSE process is the search of evidence for answering the
research question. The more evidence found (of both positive and negative results on
the topic being investigated), the more support to rational decision making is assured.
Search of evidence can be done informally from various information sources such as
retrieving customer or software user viewpoints, or asking for expert judgment; or
formally as research-based evidence from sources such as scientific journals, books,
grey literature. In our course we emphasize systematically searching evidence through
a rigorous approach like systematic review. As so, step 2 of the EBSE process
consists in searching the appropriate evidence through a systematic review.

Guidelines on systematic review have been defined and are quite stable in contexts
such as medicine, social sciences, education and information sciences and used for
analyzing and synthesizing existing empirical results on a certain topic. Indeed, there are
many existing guidelines in this field that include the Cochrane Reviewer’s Handbook
[7], Guidelines of the Australian National Health and medical Research Council [1, 2];
CRD Guidelines for those Carrying Out or Commissioning Reviews [16].

Adaptations of these guidelines to software engineering have been made by
Kitchenham in [17]. Also, applications of the procedure for performing a systematic
review are becoming more and more common to the software engineering context in
the past few years [6, 10, 11] and many studies have been carried out on various
topics of interest that range from cost-estimation [15], within and cross company
estimation models [18] to software process improvement [20], to statistical power [8].

We have defined and begun a systematic review on Statistical Process Control
(SPC) [9]. Further details on the study itself can be found in [4].

In this paper we describe how graduate students of our Empirical SE Methods
course have been actively involved in conducting the systematic review.

2.1 Systematic Review Concepts

In spite of the growing importance that systematic review has been achieving in the
past years, it is still a quite new topic to the software engineering community. As so,
before going on, we will provide the reader some preliminary concepts to make the
rest of the paper easier to understand. More details on how to organize a systematic

418 M.T. Baldassarre et al.

review can be found in [17], this section synthesizes the information extracted from
this report.

In general, a systematic review can be seen as a process made up of three main
phases: planning the review, conducting the review, reporting the review (Fig. 1).

Conduct Review

Document Review

1. Specify Research

2. Develop Review Protocol

3. Validate Review Protocol

4. Identify Relevant Research

5. Select Primary Studies

6. Assess Study Quality

7. Extract Required Data

8. Synthesize Data

9. Write Review Report

10. Validate Report

Plan Review

Conduct Review

Document Review

1. Specify Research

2. Develop Review Protocol

3. Validate Review Protocol

4. Identify Relevant Research

5. Select Primary Studies

6. Assess Study Quality

7. Extract Required Data

8. Synthesize Data

9. Write Review Report

10. Validate Report

Plan Review

Fig. 1. Systematic Review Process

This first phase of planning involves specifying the research by motivating the
need for information search; developing the review protocol: the review protocol is
what formally specifies the steps and procedures used for carrying out the systematic
review. It is important for the protocol to be defined before starting the review in
order to avoid that results are in any way influenced by researcher expectations and
desiderata. At this point the research questions are formulated and search strings are
defined based on an analysis of the questions. In defining a search string it is
important to keep in mind that: major terms are identified from the topic area,
intervention and outcomes. Search strings should include synonyms, related terms and
alternative spelling for major terms; boolean “OR” is used to incorporate alternative
spellings and synonyms; boolean “AND” is used to link major terms. The following
details should be used for constructing search strings:

o Population: Software development and maintenance projects and tasks
o Intervention: Statistical process control
o Outcomes: Reported benefits , reported limitations, task type, software

attribute controlled (e.g. productivity, defect rate)

The search process is divided into two parts. First primary sources are identified from
scientific journals, bibliographical databases, digital libraries, electronic databases on
the Internet. Next, secondary sources are searched. The secondary search phase

 A Hands-On Approach for Teaching Systematic Review 419

consists in checking primary sources, identified in the initial search phase, for other
relevant publications; and in contacting researchers who authored primary sources
who we believe could be working on the topic, to enquire whether they have other
unpublished papers or technical reports (i.e. grey literature).

Specific tables (Data Extraction Forms and Aggregation Tables) must then be
defined for documenting all the outcomes of the search process and for accurately
collecting and recording the information of all reviewed papers. The entire process
should be rigorously documented, for example in spreadsheets, database tables. As
final part of the protocol, selection criteria and procedures have to be defined. They
determine the criteria for including or excluding sources from the systematic review.
In carrying out the review, an initial selection of primary sources is carried out after
examining the title and abstract, in order to exclude primary sources that appear
completely irrelevant to the information need of the research question.

A good rule of thumb is to assign at least two researchers to review the search list
and keep a record of the selected papers. Selected papers are then to be reviewed
against the inclusion/exclusion criteria using the same process used for the abstracts.
Reasons for inclusion/exclusion must also be recorded on the spreadsheet.

The third activity of planning involves validating the review protocol. It is
suggested that reviewers external to the study also be involved in this activity to avoid
biases. Validation aims to make sure that all the information extracted relates to the
research questions the review intends answering.

Once the protocol is finalized and validated, the next step is to conduct the review,
i.e. apply all the steps as they have been formally defined. This points out the
importance of the first phase in making the process replicable and adoptable by other
researchers that may differ from those having defined the protocol itself.
Documentation of the steps in this phase is also crucial to keep track of results. This
phase includes: identifying relevant research through the search strings; selecting
primary studies according to the inclusion/exclusion criteria; synthesizing the data in
data extraction tables defined according to the information needs of each research
question.

The final phase is to document the review. This phase is the conclusive part of the
review, important for communicating the results of the study. It can be done in
formats such as technical reports, journal or conference papers, as well as non
technical articles or web pages.

3 The Hands-On Approach

In this section we will describe how university graduate students have been involved
in a systematic review not only by teaching them the theory, but also by allowing
them to apply the concepts. The graduate students involved in the study are students
at their first year of a MSc degree, all with a BSc degree in informatics or
engineering. They all attended the “Empirical SE Methods” course held by the
authors of this work. The topic of the review, Statistical Process Control, was part of
their course program, so students were all familiar with it. Given the aim of the paper
and the space available, we will not go into detail on SPC. Further details on the topic,
and on the review results can be found in [4, 9]. We scheduled our classes in order to

420 M.T. Baldassarre et al.

train students first, and then receive feedback before assigning them the papers. In this
sense our major effort was to introduce them to systematic review. Students
participated on a volunteer basis. We defined a schedule similar to the one adopted in
occasion of the International Advanced School on Empirical Software Engineering
(IASESE 2005), with the difference that we had more time available for training
students and receiving feedback before assigning them the reviews. The schedule we
followed is commented below and reported in Table 1.

Table 1. Schedule of the systematic review

Lesson 1 Systematic review
guidelines & Seminar

We introduced the systematic review methodology
according to the guidelines in [17]; B.Kitchenham held a
Seminar.

Lesson 2 Experiences of
undertaking a
systematic review

Some examples of systematic review carried out in
literature were presented to the students.

Lesson 3 Revise SPC concepts A general overview of SPC

Lesson 4 Define search terms,
inclusion/exclusion
criteria, data extraction
forms

Search terms, inclusion/exclusion criteria and data
extraction forms were defined according to the research
questions and the search motivation provided to students.
The task was assigned as homework.

Lesson 5 Discussion Discussion of proposals.
Final validated version of the protocol. The protocol was
handed out to students so they could familiarize with all
the material for the assignment.

Lesson 6 Search the sources Students were divided into groups, one for each search
source. They selected papers according to the protocol
criteria.

Lesson 7 Group work – guided
exercise

Students were assigned a paper on SPC and were asked
to extract data from the primary source, fill in extraction
forms and aggregate data

Lesson 8 Group work – feedback
on guided exercise

Correctly completed forms were handed out to students.
Obtained results were discussed in groups of 2 and then
with the class.

Lesson 9 Assignment of papers Selected primary sources were assigned to students.
They worked individually at home.

Lesson 10 Group work on assigned
papers

Students that worked on the same paper individually
confronted their data extraction tables and aggregation
tables in groups with the other students that worked on
the same paper.

First we introduced the students to systematic review and presented the guidelines
illustrated in [17]. Barbara Kitchenham also held a seminar on the guidelines (Lesson 1).
On the next day (Lesson 2), we illustrated some examples of reviews carried out in
literature, supported by published papers and technical reports [8, 18]. Although SPC is
part of the students’ course program, we thought it was the case to “refresh” their minds
on the topic, so we dedicated a lesson (Lesson 3) on the concepts that would appear in the
papers to revise. Next, we defined the systematic review protocol on SPC as a class
assignment. It is the case to point out that our research group, in collaboration with
Barbara Kitchenham, had previously set up a preliminary version of the protocol on this
topic. As so, search motivation, research goal and a sketch of the data extraction forms
were clear to us. Consequently, we considered the “definition” part of the protocol as a

 A Hands-On Approach for Teaching Systematic Review 421

useful training exercise for the students and a manner for receiving feedback on our
behalf. On Lesson 4 we gave students the search motivation and research questions and
asked them to identify possible search terms (in class). We assigned the definition of
inclusion/exclusion criteria and data extraction forms as homework. Individual work and
proposals were then discussed in class during lesson 5. We finally came up with a
definitive version of the protocol which was validated by the researchers working on the
project. We also provided the list of search sources, i.e. 8 digital libraries for retrieving
the papers on SPC.

At this point we presented the complete and validated version of the SPC
systematic review protocol and outlined all the details: tables, extraction procedures,
inclusion/exclusion and quality assessment criteria. In Lesson 6 students were
randomly divided into 8 groups, one for each digital library source, and a person of
our research group was assigned to each group as supervisor. Students searched for
papers according to the search terms and search strings; read titles and abstracts and
adopted inclusion/exclusion criteria to select relevant papers. All decisions were
motivated and reported on a spreadsheet. Lists were handed in by each group and
results were discussed in class. A total of 129 sources were identified. After excluding
duplicates we had a set of 96 relevant titles. Given the number of students in the class
(77) we selected a set of 24 papers to review according to the protocol. This initial set
of papers was identified from the digital libraries that we had access to as University
through an account. Also, we tried to balance the total workload for each student
according to the length of papers and type of journals they were retrieved from and
made sure that each paper was analyzed by at least 3 students. So, we had cases of
students assigned to two papers (i.e. the case of short papers) and cases of papers read
by more than 3 students (i.e. the case of long papers). The assignments are
summarized in Table 2. Note that they are reported with a paperID. Full references
can be found in [4].

Before actually assigning the papers of the review, we decided to carry out a
guided exercise (Lesson 7 & Lesson 8). This was important for allowing students to
familiarize with the documentation they used in their final assignment.

In the guided exercise students were asked to extract data from either of two
primary sources [13, 21] (which we ourselves selected) according to the data
extraction form and aggregation tables defined in the SPC protocol. Students were
handed the following material: data extraction form, data aggregation tables, research
questions of the systematic review, one of the two primary studies. So, for the
exercise, half of the students were assigned to a paper [13] and half to another [21].
Students split into pairs and each pair carried out the following tasks: each pair
member extracted the data from the paper independently; the pair members compared
their data collection forms; any disagreements were solved or noted as disagreements
to discuss with the rest of the class and with the researchers. Then, all pairs that had
worked on the same paper joined together and completed the aggregation tables. Once
the tasks were completed, we handed students the correct complete data extraction
forms for the two papers. We had previously analyzed the papers and completed the
forms. Results were discussed in class with other groups that had worked on the same
paper, and with the researchers. Overall, feedback of the guided exercise was positive.
Students became familiar with the data extraction tables. Most of the data they

422 M.T. Baldassarre et al.

extracted was correct. Some students found it difficult to understand the meaning of
the cells in the tables. Further explanations of the data extraction forms were
provided. Also, we decided to translate the cell content in Italian as well, although
answers were to be reported in English. Due to language problems, two students
decided to not continue with the assignment.

Table 2. Paper Assignment to Students

Paper ID
Nr.Students

assigned
Comments

ACM 1 5 --

ACM 2 3 --
CROSSTALK 1 4 --

CROSSTALK 2 4 --

CROSSTALK 3 5 --

CROSSTALK 4 4 --

EMEROTECA1
IEEE 5

3 Two papers per
person

IEEE 10 4 --
IEEE 14

SPRINGER 7
3 Two papers per

person
IEEE 4
IEEE 3

3 Two papers per
person

IEEE 6 4 --
RIF TESI 4 --

SCIENCE DIR 9 3 --
SCIENCE DIRECT 10 4 --

SPRINGER 2 4 --
SPRINGER 3 3 --
SPRINGER 6 4 --
SPRINGER 8 3 --

SPRINGER 1 10
Students worked in

couples due to the paper
length

IEEE_1 0 Used for guided
exercise

IEEE_2 0 Used for guided
exercise

Given the positive results of the presentation part and guided exercise, we

considered it feasible to continue with our schedule (Lesson 9 & Lesson 10). Students
were individually assigned to one of the 24 papers. We ensured that data extraction
from each paper was assigned to at least 3 students. Next, all students reviewing the
same paper met as checkers and confronted their work, in groups, to obtain a unique
version. At this stage a researcher was also assigned as checker, to guarantee that all
pairs (and therefore papers) were controlled by an expert; also, conflicts were solved
by an adjudicator. A PhD student was also recruited as adjudicator.

 A Hands-On Approach for Teaching Systematic Review 423

Given the focus of the paper, we will not discuss or illustrate the results of the
analyses. The reader can refer to [4] for these details.

As it can be seen, the approach adopted has been scheduled in order to allow
students to work individually and in groups, discuss and motivate all their decisions.
Also, it has developed their ability to systematically search for information focused on
the research questions to answer. In this sense, students read paper titles and abstracts
critically addressing the questions and the need for evidence. Their opinions on the
adopted approach were collected through a questionnaire. Details are reported in the
next section.

4 Qualitative Assessment

Once we finished the lessons and carried out the systematic review, students filled in
a questionnaire. The questionnaire is reported in the appendix of this paper. As it can
be seen, its mere objective was to perceive students’ opinions on this experience,
given it was the first time we included systematic review as course topic and also the
first time that we used a hands-on approach as the one described in the previous
section. It is clear that from the students’ answers we were able to carry out some type
of qualitative assessment, which cannot allow us yet to generalize the collected
information. In each case, we consider it an important experience.

The answers followed a general trend of positive impressions. In particular, 95% of
our students found the theoretic lessons and examples provided significant for
understanding the tasks carried out; 5% considered it significant although requested
further details. No one considered them useless.

As for the topic chosen (SPC), 98% of the class agreed that the lessons were useful
for understanding and interpreting the concepts of the analyzed papers. In some cases
the papers faced issues that had not been discussed or presented in class. This made
data extraction more difficult for the students having to review those papers. These
comments suggested as improvement (to keep in mind in future courses) the need for
us researchers to briefly read through the papers before assigning them to the class.

The data extraction forms were easier to understand as more examples were
illustrated. We present some of the most interesting comments:

- “I found the forms easier to understand after a few examples”;
- “I understood the data extraction forms after we were given the assignment

to define them for our systematic review. The discussion in class with
classmates and professors also helped a lot”;

- “the data aggregation forms were a demanding task as it requested to
combine individual work of different students”;

- “knowing that I had to discuss and support my decisions in groups motivated
the individual task of data extraction”

As so, students paid more attention to their individual work knowing they were
asked to discuss it with other classmates in groups and present the results to the entire
class and professors.

Our general impressions on the success of the approach were also confirmed in
question 6, i.e. in most cases the individuals confronting their work agreed on

424 M.T. Baldassarre et al.

everything. This points out that in their individual tasks they interpreted the information
request analogously. In few cases, discussions on minor aspects were necessary.

As it arises from the above opinions and the schedule described in
Table 1, the hands-on approach has given students the chance to apply theoretical

concepts through the assignments on a real systematic review and has enforced the
importance for searching evidence. A student commented: “This experience taught
me that searching for evidence focused at answering a specific research question isn’t
as easy as it seems.”

Students’ impressions are that the approach is rigorous and allows to retrieve the
necessary information and only focus on the evidence from the research question
perspective, i.e. another research question may have classified the same papers as not
relevant to the search although always on SPC. Finally, many of them expressed their
interest in carrying out another systematic review but on another topic like software
product lines or a specific tool.

5 Conclusions

Software engineers as future practitioners are constantly asked to identify the most
appropriate technologies, methods and tools to adopt in projects. This paper has
focused on the importance of developing skills to allow software engineers to make
decisions and evaluations according to the empirical evidence they are able to retrieve
in literature. In order to do so, we have introduced a hands-on approach based on
systematic review as manner for rigorously searching for evidence, as part of the
EBSE process.

In this sense, we have proposed the approach within our university course on
“Empirical SE Methods”. As far as we know it is the first attempt to include
systematic review as part of a university course on empirical software engineering.
We have collected qualitative data on this experience by submitting a questionnaire to
students. The considerations presented in the previous section point out the positive
attitude of our students towards the assigned tasks.

Overall, we consider the approach as a useful means for making students perceive
the importance of searching for evidence in a rigorous and systematic manner such as
systematic review. Also, the approach we adopted allowed them to actively
participate to the review both individually and in groups confronting their opinions
and discussing with pairs.

As researchers we consider systematic review as an essential part of EBSE. Indeed
it is only after collecting evidence on a specific issue that decisions can be made. In
this sense, in our opinion systematic review represents such rigor. The qualitative data
that we have collected from the questionnaires submitted to our graduate course
students has in some way confirmed our opinion. Given the results, we have decided
to adopt the same strategy in our next course. As future work we are planning to
extend our experience and collect evidence on the efficacy and effectiveness of the
approach by assigning students to search for evidence with and without systematic
review as part of the EBSE process.

 A Hands-On Approach for Teaching Systematic Review 425

References

1. Australian National Health and Medical Research Council.: How to review the evidence:
systematic identification and review of the scientific literature (2000) ISBN 186-4960329

2. Australian National Health and Medical Research Council.: How to use the evidence:
assessment and application of scientific evidence (February 2000) ISBN 0642432952

3. Bagert, D.J., Jilburn, T.B., Jislop, G., Lutz, M, McCracken, M., Mengel, S.: Guidelines for
Software Engineering Education Version 1.0. Technical report, CMU/SEI CMU/SEI-99-
TR-032, (1999)

4. Baldassarre, M.T., Caivano, D., Visaggio, G.: Systematic Review of Statistical Process
Control: An Experience Report. In: 11th Evaluation and Assessment in Software
Engineering Conference, BCS UK, pp.94-102 (April 2007) ISBN:978-1-902505-86-2

5. Bloom, B.S.: Taxonomy of educational objectives: The classification of educational goals:
Handbook I, cognitive domain. Longmans Green, New York (1956)

6. Brereton, P., Kitchenham, B., Budgen, D., Turner, M., Khalil, M.: Employing Systematic
Literature Review: An Experience Report. Technical Report TR 05/01, School of
Computing & Mathematics, Keele University (2005)

7. Cochrane-Collaboration, Cochrane reviews’ handbook. Version 4.2.1 (2003)
8. Dyba, T., Kampenes, V.B., Sjoberg, D.: A systematic review of statistical power in

software engineering experiments. Information and Software Technology 48, 745–755
(2006)

9. Florac, W.A., Carleton, A.D.: Measuring the Software Process: Statistical Process Control
for Software Process Improvement. Addison-Wesley, Reading (1999)

10. Glass, R., Vessey, I., Ramesh, V.: Research in software engineering: An analysis of the
literature. Information & Software Technology 44, 491–506 (2002)

11. Glass, R., Vessey, I., Ramesh, V.: An Analysis of Research in Computing Disciplines.
Communications of the ACM 47, 89–94 (2004)

12. Hart, C.: Doing a Literature Review: releasing the social science research imagination.
SAGE Publications, London (1998)

13. Jacob, A., Pillai, S.K.: Statistical Process Control to Improve Coding and Code Review.
IEEE Software 50–55 (May/June 2003)

14. Jorgensen, M., Dyba, T., Kitchenham, B.: Teaching Evidence-Based Software Engineering
to University Students. In: 11th IEEE International Software Metrics Symposium. IEEE
Computer Society Press, Los Alamitos (2005)

15. Jorgensen, M., Shepperd, M.: A Systematic Review of Software Development Cost
Estimation Studies. IEEE Transactions on Software Engineering 33(1), 33–53 (2007)

16. Kahan, K.S., ter Riet, G., Glanville, J., Sowden, A.J., Kleijnen, J.: Undertaking Systematic
Review of Research on Effectiveness. In: CRD’s Guidance for those Carrying Out or
Commissioning Reviews. CRD’s Report Number 4 (2nd edn.), NHS Centre for Reviews
and Dissemination, University of York. ISBN 1900640201 (March 2001)

17. Kitchenham, B.: Procedures for Performing Systematic Reviews. Technical Report
TR/SE0401, Keele University, and Technical Report 0400011T.1, National ICT Australia
(2004)

18. Kitchenham, B., Mendes, E., Travassos, G.: A systematic review of Cross vs. Within
company cost estimation studies. In: 10th International Conference on Evaluation and
Assessment in Software Engineering, Keele University Staffordshire, UK, April 2006,
vol. 3, pp. 79–88 (2006) ISBN 1-902505-74-3

19. Meyer, B.: Software Engineering in the Academy. IEEE Computer 34(5), 28–35 (2001)

426 M.T. Baldassarre et al.

20. Staples, M., Mahmood, N.: Experiences Using Systematic Review Guidelines. In: 10th
International Conference on Evaluation and Assessment in Software Engineering, Keele
University, pp.79-88, BCS UK (2006) ISBN 1-902505-74-3

21. Weller, E.: Practical Applications of Statistical Process Control. IEEE Software, 48–55
(2000)

Appendix: Assessment Questionnaire

Paper_ID: _____________________

1. the theoretic lessons and the examples on systematic review were:
a. significant for understanding the tasks to carry out
b. of no use. The task we carried out consisted in data extraction that

could have been done even without the concepts and examples on
systematic review.

c. Significant but needed further investigation.
d. Other.(specify) __

2. the training lessons on SPC were:
a. useful for understanding and interpreting the contents of the papers
b. pointless. The contents of the paper were different than those

presented in class
c. useful, but more details would have been better.
d. Other.(specify): __

3. Comments on the Data Extraction Forms: ____________________________

4. Comments on the Data Aggregation Forms: __________________________

5. In the group work, how much was taken from your individual work:
a. 20%
b. 40%
c. 60%
d. more than 80%

comments:___

6. In the group work (more than one answer possible)
a. We always agreed on everything
b. We had to discuss about ____% of times
c. In ____ cases we were unable to agree on a decision

comments:___

7. would you repeat this experience? YES / NO
motivate your answer: ___

8. your impressions on individual work: _______________________________
9. your impressions on group work: __________________________________

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, pp. 427–441, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Empirical Study Identifying High Perceived Value
Practices of CMMI Level 2

Mahmood Niazi1, Muhammad Ali Babar2, and Suhaimi Ibrahim3

1 School of Computing and Mathematics, Keele University, ST5 5BG, UK
mkniazi@cs.keele.ac.uk

2 Lero, University of Limerick, Ireland
muhammad.alibabar@ul.ie

3 Centre for Advanced Software Engineering, University Technology Malaysia,
Jalan Semarak, 54100 Kuala Lumpur, Malaysia

suhaimiibrahim@utm.my

Abstract. We have conducted face-to-face questionnaire based interview ses-
sions with twenty-three Malaysian software practitioners in order to determine
the perceived value associated with the specific practices of “requirements
management”, “process and product quality assurance” and “configuration
management” process areas of CMMI level 2 in the stage representation. The
objective of this study is to identify the extent to which a CMMI practice is
used in order to develop a finer-grained framework, which encompasses the no-
tion of perceived value within specific practices. This will provide software
process improvement (SPI) practitioners with some insight into designing ap-
propriate SPI implementation strategies.

We asked practitioners to choose and rank “requirements management”,
“process and product quality assurance” and “configuration management” prac-
tices against the five types of assessments (high, medium, low, zero or do not
know). From this, we propose the notion of ‘perceived value’ associated with
each practice. We have identified ‘high’ and ‘medium’ perceived values CMMI
level 2 practices. We have also identified the viewpoints of developers and
managers about these practices.

1 Introduction

Software Process Improvement (SPI) has been a long-standing approach promoted by
software engineering researchers, intended to help organisations develop higher-
quality software more efficiently. Process capability maturity models such as CMM,
CMMI [1] and ISO/IEC 15504 (SPICE) are SPI frameworks for defining and measur-
ing processes and practices that can be used by software developing organisations.
However, the population of organisations that have adopted process capability
maturity model SPI is only a part of the entire population of software-developing
organisations. CMMI is the successor to CMM and is consistent with the international
standard ISO/IEC 15504. The most well-known representation of CMMI is the
“staged” representation, which has five “levels” of process maturity for organisations.
However, a common concern about CMM, CMMI, and related approaches is their

428 M. Niazi, M. Ali Babar, and S. Ibrahim

relevance and applicability for small organisations [2]. Case studies reporting small
organisations’ experience with CMM [3] invariably discuss the peculiar difficulties
that small organisations have of using and benefiting from CMM, and attempts have
been made to provide guidance about using tailored CMM for small organisations [4].

There has been a call to understand business drivers for SPI “…to make SPI meth-
ods and technologies more … widely used” [5]. Moreover, there has also been an
increasing emphasis on identifying and understanding the relative “perceived value”
of different SPI practices and factors [6]. A better understanding of the relative value
of SPI practices perceived by organisations and practitioners is expected to enable SPI
program managers to concentrate more on “high perceived value” practices. Previ-
ously, researchers have also reported the relative “perceived value” of CMMI prac-
tices with the aim of helping practitioners to pay more attention to the “high perceived
value” practices [6].

Our research is aimed at extending the findings of Wilkie et al. [6] by conducting a
similar study in a different culture. However, we decided to identify the relative “per-
ceived value” of SPI practices based on practitioners’ perception rather than based on
process appraisal like reported by Wilkie et al. in [6]. We believe that software practi-
tioners may associate different values to different SPI practices and the relative value
of a practice may encourage or discourage them from fully supporting a particular
practice. As part of a large project on SPI, we have been empirically studying differ-
ent aspects of the SPI programs in the Asian region [7; 8] as this region has been
attracting significant number of software outsourcing contracts from Western coun-
tries including Ireland, where Wilkie et al. carried out their study. The results of this
project are expected to help software practitioners from vendor organisations (i.e.,
usually Asian software development houses) and client organisations (i.e., usually
Western software development outsourcers) to understand the human related aspects
of SPI in order to design better SPI implementation strategies.

This paper presents results of an empirical study aimed at identifying and under-
standing the relative “perceived value” of CMMI level 2 practices based on the percep-
tion of practitioners in a developing country, Malaysia, involved in outsourced
software development. The findings of the reported study identify those CMMI level 2
practices (requirements management, configuration management and process and
product quality assurance), which are perceived to have “high value” by Malaysian
practitioners.

We have encountered several interesting findings which enabled us to identify and
explain the relative “perceived value” of different practices required to achieve the
CMMI level 2 process maturity. We have also identified a set of research questions
that need to be explored in this line of research. Since a theory explaining the attitude
and behaviour of practitioners toward different aspects of SPI programs does not
exist, this study employs an inductive approach (i.e., using facts to develop general
conclusions) as an attempt to move toward such a theory.

The paper makes the following contributions to the SPI discipline:

 It presents the design and results of a first of its kind study in a developing
country to understand an important aspect of CMMI-based SPI practices.

 It provides information about what practitioners think about the value of dif-
ferent SPI practices for three of the CMMI level 2 process areas.

 An Empirical Study Identifying High Perceived Value Practices 429

It identifies further research areas that need to be explored to support an effective
and successful SPI program.

The following Section explains the concept of perceived value. Section 3 describes
the study design and logistics. Sections 4 presents and discusses findings based on
frequency analysis of the gathered data. Limitations of the study are described in
Section 5. The paper finishes in Section 6 with summary and future work.

2 Perceived Value

In this study, we define ‘perceived value’ to mean the extent to which a SPI practice
is perceived to add value to a project or an organisation based on the perceptions of
practitioners who have been working in the area of SPI in their respective organisa-
tions. This may be considered to be a subjective view as it relies on the self-reported
data. However, the respondents of this study are considered to be SPI experts within
their organisations. Hence, we are confident that their opinion is grounded in signifi-
cant experience of real world SPI initiatives.

In order to describe the notion of perceived value of SPI practices, it is important to
decide on the “criticality” of a perceived value. For this purpose, we have used the
following definition:

• If the majority of respondents (≥ 50%) perceive that a SPI practice has high
value then we treat that practice as critical.

A similar approach has been used in the literature [9; 10]. Rainer and Hall [9] iden-
tified important factors in SPI with the criterion that if the 50% or more participants
perceive that a factor has a major role in software process improvement efforts then
that factor should be treated as having a major impact on SPI. In the highly competi-
tive industry of software development, it is becoming increasing difficult for manag-
ers to make “value neutral” decisions. Like Wilkie et al. [6], we assert that “perceived
value” of a particular practice can be used as a judgement criterion for determining
activities that organisations need to pursue. We believe that where respondents from
different organisations identify a practice as having a high-perceived value then that
practice should be considered for its importance in a process improvement program.
The information about relative “perceived value” can help practitioners and research-
ers to better understand various practices detailed within the CMMI for the purpose of
developing more appropriate implementation strategies and appraisal procedures for
small-to-medium sized organisations.

3 Study Design

We used face-to-face questionnaire based interview sessions as our main approach to
collect data from twenty-three software development practitioners of twenty-three
Malaysian software development organisations. Appendix A shows the demographics
of participants’ organisations. The data was collected from practitioners who were
involved in tackling real SPI implementation issues on a daily basis in their respective
organisations. It is important to acknowledge that the practitioners sampled within

430 M. Niazi, M. Ali Babar, and S. Ibrahim

organisations are representative of practitioners in organisations as a whole. A truly
representative sample is impossible to attain and the researcher should try to remove
as much of the sample bias as possible [11]. In order to make the sample fairly repre-
sentative of SPI practitioners in particular organisation, different groups of practitio-
ners from each organisation were selected to participate in this research. The sample
of practitioners involved in this research includes developers, quality analysts, Soft-
ware Quality Analysis (SQA) team leaders, SQA managers, project managers, and
senior management. Thus the sample is not random but a convenience sample, be-
cause we sought a response from a person with a specific role within a software de-
velopment organisation. We consider that the practitioners who participated in this
study fall into two main categories:

• “Developers” consisting of programmer/ analyst/ SQA coordinator.
• “Managers” consisting of team leader/ project manager, and senior

managers.

We used a closed ended questionnaire as an instrument to collect self-reported
data. In order to describe the importance of a SPI practice, the respondents were sup-
posed to mention each identified practice’s relative value (i.e., High value, Medium
value, Low value, Zero value, or Not sure).

In order to analyse the perceived value of each identified SPI practice, the occur-
rence of a perceived value (high, medium, low, zero) in each questionnaire was
counted. By comparing the occurrences of one SPI practice’s perceived values ob-
tained against the occurrences of other SPI practices’ perceived values, the relative
importance of each SPI practice has been identified.

The responses to the questionnaire were gathered during July 2006. Though all the
participants were well-versed in English and the questionnaire was in English, the
research team had a Malaysian speaking researcher, who provided necessary interpre-
tation and explanation whenever required.

4 Findings

The questionnaire was designed to gather data about the “perceived value” of
practices of six of the seven CMMI maturity level 2 process areas: Requirements
Management, Configuration Management, Project planning, Project Monitoring &
Control, Measurement & Analysis and Process & Product Quality Assurance. How-
ever, because of space limitations, this paper reports the results about the practices of
three process areas: Requirements Management, Process & Product Quality Assur-
ance, and Configuration Management.

There were 23 participants representing 23 small-to-medium sized Malaysian
software development companies. Fourteen of the companies were subsidiaries of the
Multi-National organisation, while remaining 10 companies were national. Majority
of the companies were developing software for more than five years, while three
companies were less than five year old. Thirteen of the participants were working for
small companies (0 to => 19 employees) and other ten worked for medium sized
companies (20 to => 199 employees). We used this categorization based on the or-
ganisation size definition provided by the Australian Bureau of Statistics [12].

 An Empirical Study Identifying High Perceived Value Practices 431

4.1 Requirements Management Practices

Figure 1 presents the CMMI level 2 specific practices for requirements management.
The results show that the most common ‘high’ value practice (61%) is ‘obtain an
understanding of requirements’. Research shows that if a system’s requirements are
not fully understood, it can have a huge impact on the effectiveness of the software
development process for that system [13-15]. When requirements are poorly defined,
the end result is usually a poorer product or a cancelled project [14]. An industry
survey in the UK reported that only 16% of software projects could be considered
truly successful: “Projects are often poorly defined, codes of practice are frequently
ignored and there is a woeful inability to learn from past experience” [16]. The evi-
dence is clear: problems in the requirements phase can have a large impact on the
success of software development projects [15; 17] and this is a lesson that continues
to be usually ignored despite the evidence and the low amount of effort needed to
have a reasonable requirements process. Majority of the participants of this study
perceive this practice of “high value”, which shows that they appear to be well aware
of the critical importance of this practice in a SPI initiative

The requirements management practice ‘obtain commitment to requirements’ is
also a frequently reported ‘high value’ practice in Malaysia. That means majority of
the participants of our study are aware of the importance of obtaining commitments
from the project participants. One can obtain commitment to the requirements from
the project participants by involving the stakeholders in the systems development
process [18; 19]. Involving stakeholders in the development process can reduce their
fear, for example, that development of a software system will result in loss of jobs. It
is also possible that if a new system is installed in an organisation without consulting
the stakeholders, who would be affected by the system, then they may feel that a new
system is unnecessary and therefore they should not co-operate in its specification.

The other frequently cited ‘high value’ practices are ‘manage requirements
changes’ and ‘maintain bidirectional traceability requirements’. Our results have
confirmed the previous findings of several accounts that describe the importance of
these requirements practices [15; 20-23]. It is widely reported that requirements often
change during the software/system development process. These changes are inevita-
ble and driven by several factors including errors in original requirements, evolving
customer needs, constant changes in software and system requirements, business
goals, work environment and government regulation [24]. Volatile requirements are
regarded as a factor that cause major difficulties during system development for most
organisations in the software industry [25]. Volatile requirements contribute to the
problems of software project schedule overruns and may ultimately contribute to
software project failure [25-27]. Furthermore, ad hoc change management can lead to
escalating requirements, uncontrolled scope creep and potentially uncontrolled system
development [13; 28]. Requirements traceability is also cited as a ‘high value’ prac-
tice by the Malaysian practitioners. Traceability of requirements is, in our opinion,
one of the most important parts of requirements management process. It will simply
be impossible to manage requirements relationships except for perhaps in the most
simple of projects without any traceability mechanisms agreed and implemented.

432 M. Niazi, M. Ali Babar, and S. Ibrahim

Using the criterion described in Section 2, we have identified four, frequently cited
(>50%), ‘requirements management’ practices (SP1.1-1, SP1.2-2, SP1.3-1, SP1.4-2)
as having a ‘high’ perceived value.

Requirements Management Specific
Practices

61 52 52 52
43

35
39

26 26 48

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

SP1.1-
1

SP1.2-
2

SP1.3-
1

SP1.4-
2

SP1.5-
1

No Answer

Not Sure

Zero

Low

Medium

High

CMMI Practice
Number

CMMI Practice Description

SP1.1-1 Obtain an understanding of requirements
SP1.2-2 Obtain commitment to requirements
SP1.3-1 Manage requirements changes
SP1.4-2 Maintain bidirectional traceability requirements
SP1.5-1 Identify inconsistencies between project work and requirements

Fig. 1. Requirements Management Practices

4.2 Process and Product Quality Assurance Practices

There are four specific practices in ‘process and product quality assurance’ process
area as shown in Figure 2. It is interesting to find that none of the practice of this
process area was perceived as “high value” practice. Less than 30% of the participants
cited all practices of ‘process and product quality assurance’ as ‘high value’ practices.
These findings may lead someone to conclude that very limited attention is being paid
to process and quality assurance activities in Malaysia. Given that being able to dem-
onstrate process and product quality is one of the main factors for software vendor
companies to achieve certain CMMI maturity level, it is quite interesting revelation
that majority of our study’s participants do not place high value on the practices de-
signed for ensuring process and product quality. If this situation is prevalent in

 An Empirical Study Identifying High Perceived Value Practices 433

Malaysian software development industry, it is likely to have negative impact on
software development economy of the country as many firms from Western countries
(such as USA and UK) are outsourcing software development projects to Asian soft-
ware development houses [29]. Process and product quality assurance is very impor-
tant for companies that either develop software or buy software. This is because the
process and product quality assurance is the activity which provides evidence that the
methods and techniques used are integrated, consistent and correctly applied [30].

However, the bar chart in Figure 2 shows that more than half of the Malaysian practi-
tioners perceived all practices of ‘process and product quality assurance’ process area as
having ‘medium value’. This finding is quite encouraging as it shows that a large major-
ity of the study’s participants is aware of the importance of all the practices in this
process area, albeit a majority of them did not place those practices on the top of their
priority list. It will be interesting to find out the detailed reasons for this situation. This
finding may also be considered as an indicator of an increasing realization of the critical
role of the practices of this process area in achieving CMMI maturity level 2.

However, based on these findings and using the criterion described in Section 2,
this study has not identified any frequently cited (>50%), ‘process and product quality
assurance’ practice which has a ‘high’ perceived value.

Process and Product Quality Assurance
Specific Practices

26 22 26 26

57 65 61 61

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

SP1.1-1 SP1.2-1 SP2.1-1 SP2.2-1

No Answer

Not Sure

Zero

Low

Medium

High

CMMI Practice
Number

CMMI Practice Description

SP1.1-1 Objectively evaluate processes
SP1.2-1 Objectively evaluate work products and services
SP2.1-1 Communicate and ensure resolution of non-compliance issues
SP2.2-1 Establish records

Fig. 2. Process and Product Quality Assurance Practices

434 M. Niazi, M. Ali Babar, and S. Ibrahim

4.3 Configuration Management Practices

Figure 3 shows that there are total 7 specific practices in the Configuration manage-
ment process area. Figure 3 also presents the percentages of the participants’ re-
sponses about the relative ‘value’ of each of the specific practices of this process area.
It is clear that like all specific practices of the process and product quality assurance
process area, none of the specific practices of this process area has been singled out as
having ‘high value’ by majority of the participants of this study. However, a large
majority of the participants perceived that each of the practices of this process area
has either ‘high’ or ‘medium’ value in their process improvement program. That
means there were only a small number of participants who perceived that the practices
of this process area were of ‘Low value’

Configuration Management
Specific Practices

39 43 39 35 35 39 39

43 35 39 52 48 43 43

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

SP1.1
-1

SP1.2
-1

SP1.3
-1

SP2.1
-1

SP2.2
-1

SP3.1
-1

SP3.2
-1

No Answer
Not Sure
Zero
Low
Medium
High

CMMI Practice
Number

CMMI Practice Description

SP1.1-1 Identify the configuration items
SP1.2-1 Establish a configuration management system
SP1.3-1 Create or release baselines
SP2.1-1 Track change requests
SP2.2-1 Control configuration items
SP3.1-1 Establish configuration management records
SP3.2-1 Perform configuration audits

Fig. 3. Configuration Management Practices

 An Empirical Study Identifying High Perceived Value Practices 435

We do not believe that such findings can be considered as a problem specific to
Malaysia as many companies in Western countries with relatively longer history of
software development have been found not being able to adequately control their
configuration items [6]. Hence, we contend that with the passage of time, the impor-
tance of the configuration management practices will also grow among Malaysian
practitioners as they will learn from their Westerns colleagues or such practices will
be mandated by their clients. Another reason for not having any frequently cited ‘high
value’ configuration management practice could be the background and organisa-
tional roles of the participants of this study. There were 49% developers and 51%
managers in this study. Since process related configuration management practices are
usually considered a manager’s responsibility that may be the reasons that none of the
practices was perceived of ‘high value’ by more than 50% of the participants. This
explanation of the finding get more support when we take into account the fact that
50% of the managers participants (see section 4.4) perceived four ‘configuration
management’ practices (SP1.2-1, SP1.3-1, SP3.1-1, SP3.2-1) as having ‘high value’.

However, more than half of the Malaysian practitioners have cited only one practice -
‘track change requests for the configuration items’- as a ‘medium’ value practice. All
other practices are also low cited ‘medium’ value practices. Hence, based on the crite-
rion described in Section 2, we have not identified any practice in this process area that
has been perceived of ‘high value’ by more than 50% of the participants of our study.

4.4 Comparing Developers’ and Managers’ Perceptions

We have also decided to analyse the findings based on the participants’ roles in their
organisations, i.e., developer and manager. We contend that an understanding of the
similarities and differences found among practitioners’ perceptions about the relative
value of the CMMI practices can help managers to design better SPI strategies as they
can place more focus on the practices that are considered of ‘high value’ by practitio-
ners across different roles. We believe that when respondents from different groups of
practitioners consider a practice of ‘high value’, that practice tends to have significant
impact on the success of a SPI program. Tables 1-3 show the relative ‘perceived
value’ of the CMMI practices reported by developers and managers.

Table 1. Requirements Management practices identified by developers and managers

Developers (n=11) Managers (n=12) Requirements
Management Practices H M L Z NS/ NR H M L Z NS/NR
SP1.1-1 6 4 0 0 1 8 4 0 0 0
SP1.2-2 4 6 1 0 0 8 3 1 0 0
SP1.3-1 4 5 2 0 0 8 1 3 0 0
SP1.4-2 5 4 0 1 1 7 2 3 0 0
SP1.5-1 4 7 0 0 0 6 4 2 0 0
H=High, M=Medium, L=Low, Z= Zero, NS/ NR=Not sure/ No response

Table 1 shows the list of requirements management practices along with their re-
spective relative ‘value’ cited by developers and managers. It is evident from Table 1
that only one practice ‘Obtain an understanding of requirements’ considered as having

436 M. Niazi, M. Ali Babar, and S. Ibrahim

‘high value’ by majority of the developers (6 out of 11) and managers (8 out of 12).
‘Obtain commitment to requirements’ is the ‘high’ value practice frequently cited by
the Malaysian managers while the Malaysian developers consider this practice as a
‘medium’ value practice. This shows that the Malaysian managers give importance to
stakeholders’ participation in the systems development process as this is one of the
motivations to obtain commitment to requirements from project participants [18; 19].
More than 50% of the Malaysian managers consider ‘manage requirements changes’,
‘maintain bidirectional traceability requirements’ and ‘identify inconsistencies be-
tween project work and requirements’ as ‘high’ value practices. This results show that
more than 50% of the Malaysian managers have cited all specific practices of the
requirements management process area as having ‘high value’. However, only one
practice, (SP1.1-1) of this process area has been reported as having ‘high value’ by
more than 50% of the Malaysian developers.

Table 2. Process and Quality Assurance practices identified by developers and managers

Developers (n=11) Managers (n=12) Process and Product
Quality Assurance
practices

H M L Z NS/ NR H M L Z NS/NR

SP1.1-1 2 5 2 0 2 4 8 0 0 0
SP1.2-1 1 7 0 0 3 4 8 0 0 0
SP2.1-1 1 7 1 0 2 5 7 3 0 0
SP2.2-1 1 7 2 0 1 5 7 0 0 0

H=High, M=Medium, L=Low, Z= Zero, NS/ NR=Not sure/ No response

Table 2 presents the relative ‘value’ of each of the practices of the process and
quality assurance process area reported by developers and managers. It is interesting
to note that no practice in this process area has been frequently cited (>=50%) as a
‘high’ perceived value. However, majority of the Malaysian developers and managers
consider all practices as a ‘medium’ value practices except for a practice ‘objectively
evaluate processes’ which is only considered by Malaysian managers as a ‘medium’
perceived value practice. These results again reveal that none of the practice of this
process area has been perceived as having ‘high value’ by more than 50% of the par-
ticipants from either group. We have already provided some of the possible explana-
tions for such situation in Section 4.2.

Table 3. Configuration Management practices identified by developers and managers

Developers (n=11) Managers (n=12) Configuration
Management practices H M L Z NS/ NR H M L Z NS/NR

SP1.1-1 4 5 0 0 2 5 5 2 0 0
SP1.2-1 4 4 1 0 2 6 4 2 0 0
SP1.3-1 3 6 0 0 2 6 3 3 0 0
SP2.1-1 3 6 0 0 2 5 6 1 0 0
SP2.2-1 3 5 12 0 2 5 6 1 0 0
SP3.1-1 3 6 0 0 2 6 4 2 0 0
SP3.2-1 3 6 0 0 2 6 4 2 0 0

H=High, M=Medium, L=Low, Z= Zero, NS/ NR=Not sure/ No response

 An Empirical Study Identifying High Perceived Value Practices 437

Table 3 shows the specific practices of the configuration management process area
along with their respective perceived ‘value’ as cited by the Malaysian developers and
managers. Our results show that no specific practice of this process area has been
frequently (>=50%) cited by Malaysian developer as being ‘high’ value practice. We
argue that this is due to the fact that ‘configuration management’ is often considered
the responsibility of managers in any organisation. However, 50% of the Malaysian
managers consider ‘establish a configuration management system’, ‘create or release
baselines’, ‘establish configuration management records’ and ‘perform configuration
audits’ as ‘high value’ practice of the configuration management process area. Using
the criterion described in Section 2, we can say that four ‘configuration management’
practices (SP1.2-1, SP1.3-1, SP3.1-1, SP3.2-1) can be considered as having ‘high
perceived value’ for Malaysian managers. However, none of the practice can be con-
sidered as having ‘high perceived value’ for the Malaysian developers based on their
responses.

5 Limitations

Construct validity is concerned with whether or not the measurement scales represent
the attributes being measured. Our interview instrument was based on the specific
practices of the six process areas of CMMI maturity level 2 [1]. During the inter-
views, the researchers observed that the participants were able to recognize each of
the practice without any difficulty. Hence, their responses provided us with the confi-
dence that all the practices included in the interview instrument were relevant to the
participants’ workspace. External validity is concerned with the generalisation of the
results to other environments than the one in which the initial study was conducted.
External validity was examined by conducting survey with 23 practitioners from 23
different organisations.

Another issue is that the interview surveys are usually based on self-reported data
that reflects what people say they believe or do, not necessarily what they actually
believe or practice. Hence, our results are limited to the respondents’ knowledge,
attitudes, and beliefs regarding the relative ‘value’ of each of the specific practices of
different process areas of CMMI maturity level 2 through semi-structured interviews.
However, the interviewees’ perceptions have not been directly verified through an-
other mechanism such as appraising their organisational practices like Wilkie et al.
[6]. This situation can cause at least one problem – practitioners’ perceptions may not
be fully accurate as the relative ‘values’ assigned to different practices may actually
be different. However, like the researchers of many studies based on opinion data
(e.g. [31; 32]), we also have full confidence in our findings because we have collected
data from practitioners who were directly involved in SPI efforts in their respective
organisations and their perceptions were explored without any direction from the
researchers.

Sample size may be another issue as we could interview only 23 practitioners from
23 Malaysian companies. In this respect, our research was limited by available re-
sources and the number of companies that could be convinced to participate in the
reported study. However, to gain a broader representation of Malaysian practitioners’
views on this topic, more practitioners and companies need to be included in a study.

438 M. Niazi, M. Ali Babar, and S. Ibrahim

Another limitation of the study is the non-existence of a proven theory about hu-
man and organisational aspects of SPI efforts to guide a research similar to ours. That
is why we considered our research as an exploratory approach, aimed at gathering
facts in the hopes of drawing some general conclusions. We expect that the findings
from this research can help us and SPI community to identify research direction to
develop and validate a theory of mechanics of SPI based on a certain maturity model.

6 Summary and Conclusion

Our research has been motivated by the challenges faced by companies, especially
SMEs, in implementing CMMI based process improvement programs. Moreover,
there have also been calls to understand business drivers and relative ‘perceived
value’ of different practices of a process improvement model (Such as CMMI) in
order to make SPI methods and technologies widely used [5]. We believe that a better
understanding of the relative value of SPI practices perceived by practitioners should
be taken into consideration while designing and implementing a SPI program.

Other researchers have also conducted a study to identify the relative value of the
each of the practices of CMMI level 2 process areas with the aim of helping practitio-
ners to pay more attention to the “high perceived value” practices [6]. The relative
“perceived value” of CMMI practices can act as a guide for SPI program managers
when designing and implementing SPI initiatives. The assertion behind this argument
is that it will be easier to encourage the use of those SPI practices that are commonly
used elsewhere and known to be perceived of high value by practitioners.

This paper reports an empirical study aimed at identifying and understanding the
relative ‘value’ of different practices of CMMI level 2 process areas. Our results are
based on the analysis of self-reported data gathered to explore the experiences, opin-
ions, and views of Malaysian software development practitioners. In order to describe
the notion of perceived value of SPI practices, it is important to decide on the “criti-
cality” of a perceived value. For this purpose, we used the following definition:

• If the majority of respondents (≥ 50%) perceive that a SPI practice has high
value then we treat that practice as critical.

Based on this criterion and perceptions of all Malaysian practitioners:
• We have identified four ‘requirements management’ practices (SP1.1-1,

SP1.2-2, SP1.3-1, and SP1.4-2) as having a ‘high’ perceived value.
• Our study has not identified any frequently cited ‘process and product quality

assurance’ practice which has a ‘high’ perceived value.
• We have not identified any practice in ‘configuration management’ process

area which has a ‘high’ perceived value.
Moreover, we have also found that:
• All specific practices of the ‘requirements management’ process area have

been reported as ‘high value’ practices by Malaysian managers. However,
only one practice, (SP1.1-1) of this process area has been reported as ‘high
value’ by Malaysian developers.

• None of the practice of ‘process and product quality assurance’ process area
has been perceived as ‘high value’ by Malaysian developers and Malaysian
managers.

 An Empirical Study Identifying High Perceived Value Practices 439

• Four ‘configuration management’ practices (SP1.2-1, SP1.3-1, SP3.1-1, and
SP3.2-1) can be considered as having ‘high perceived value’ for Malaysian
managers. However, none of the practice can be considered as having ‘high
perceived value’ for the Malaysian developers.

Our long-term research goal is to build an empirically tested body of knowledge of
different aspects of SPI initiatives and assessment. We are approaching this by firstly
focusing on complementing and/or extending the current understanding about practi-
tioners’ attitudes toward and opinions of different aspects of software process
improvement models and programs. We plan to develop appropriate support mecha-
nisms and tools to facilitate the design and implementation of suitable SPI strategies.
In this study, we have gained important insights into the relative “perceived value” of
each practice of the three process areas of the CMMI level 2 maturity. We found that
practitioners view certain practices are of “high value” and should be paid more atten-
tion in any SPI program initiative. From the findings of this study, we have identified
following goals that we plan to follow in future:

• Collect additional data on the perceived value of different SPI practices by
exploring the basis of practitioners’ perceptions through more in-depth inter-
views and case studies.

• Conduct empirical studies to determine the relationship between the relative
“perceived value” of each practice and how its implementation is justified by
return on investment.

• It is also important to determine the mechanics of encouraging practitioners
to support those practices which have been perceived of “low value” but are
required to achieve a certain level of process maturity.

Acknowledgements

We are grateful to the participants and their companies for participating in this study.
Lero is funded by Science Foundation Ireland under grant number 03/CE2/I303-1.

This research is also funded by Science Foundation, vot no. 79276 (UTM-RMC)
under the Malaysian Ministry of Science, Technology and Innovation (MOSTI).

References

1. Chrissis, M., Konrad, M., Shrum, S.: CMMI Guidelines for Process Integration and Prod-
uct Improvement. Addison-Wesley, Reading (2003)

2. Brodman, J.G., Johnson, D.L.: What Small Businesses and Small Organizations Say
About the CMMI. In: Proceedings of 16th International Conference on Software Engineer-
ing (ICSE 1994). IEEE Computer Society Press, Los Alamitos (1994)

3. Batista, J., Dias, d.F.: Software Process Improvement in a Very Small Team: a Case with
CMM. Software Process-Improvement and Practice (5), 243–250 (2000)

4. Paulk, M.: Using the Software CMM in small organizations. In: The Joint 1998 Proceed-
ings of the Pacific Northwest Software Quality Conference and the Eighth International
Conference on Software Quality, Portland, pp. 350–361 (1998)

440 M. Niazi, M. Ali Babar, and S. Ibrahim

5. Conradi, R., Fuggetta, A.: Improving Software Process Improvement, July/August (2002),
pp. 92–99. IEEE Software (2002)

6. Wilkie, F.G., McFall, D., McCaffery, F.: An Evaluation of CMMI Process Areas for Small
to Medium-sized Software Development Organisations. SOFTWARE PROCESS IM-
PROVEMENT AND PRACTICE 10, 189–201 (2005)

7. Niazi, M., Babar, M.: Ali: De-motivators for software process improvement: An Analysis
of Vietnamese Practitioners’ Views. In: Münch, J., Abrahamsson, P. (eds.) PROFES 2007.
LNCS, vol. 4589, pp. 118–131. Springer, Heidelberg (2007)

8. Niazi, M., Babar, M.: Ali: Motivators of Software Process Improvement: An Analysis of
Vietnamese Practitioners’ Views. In: International Conference on Evaluation and Assess-
ment in Software Engineering (EASE 2007), pp. 79–88 (2007)

9. Rainer, A., Hall, T.: Key success factors for implementing software process improvement:
a maturity-based analysis. Journal of Systems & Software 62(2), 71–84 (2002)

10. Niazi, M., Wilson, D., Zowghi, D.: A Maturity Model for the Implementation of Software
Process Improvement: An empirical study. Journal of Systems and Software 74(2), 155–
172 (2005)

11. Coolican, H.: Research Methods and Statistics in Psychology. Hodder and Stoughton,
London (1999)

12. Trewin and D: Small Business in Australia: 2001. Australian Bureau of Statistics report
1321.0 (2002)

13. El Emam, K., Madhavji, H.N.: A Field Study of Requirements Engineering Practices in In-
formation Systems Development. In: Second International Symposium on Requirements
Engineering, pp. 68–80 (1995)

14. Standish-Group: Chaos: A Recipe for Success. Standish Group International (1999)
15. Hall, T., Beecham, S., Rainer, A.: Requirements Problems in Twelve Software Compa-

nies: An Empirical Analysis. In: IEE Proceedings - Software, August 2002, pp. 153–160
(2002)

16. Jobserve.com: UK Wasting Billions on IT Projects (21/4/2004),
http://www.jobserve.com/news/NewsStory.asp?e=e&SID=SID2598

17. Sommerville, I.: Software Engineering, 5th edn. Addison-Wesley, Reading (1996)
18. Rauterberg, M., Strohm, O.: About the Benefits of User-Oriented Requirements Engineer-

ing. In: Proceedings of the First International Workshop on Requirements Engineering:
Foundation of Software Quality (REFSQ 1994) (1994)

19. DeBillis, M., Haapala, C.: User-Centric Software Engineering. IEEE Expert 10(1), 34–41
(1995)

20. Niazi, M.: An empirical study for the improvement of requirements engineering process.
In: The 17th International Conference on Software Engineering and Knowledge Engineer-
ing, Taiwan, Republic of China, July 14-16, 2005, pp. 396–399 (2005)

21. Niazi, M., Shastry, S.: Role of Requirements Engineering in Software development Proc-
ess: An empirical study. In: IEEE International Multi-Topic Conference (INMIC 2003),
pp. 402–407 (2003)

22. Niazi, M., Cox, K., Verner, J.: An empirical study identifying high perceived value re-
quirements engineering practices. In: Fourteenth International Conference on Information
Systems Development (ISD 2005), Karlstad University, Sweden, August 15-17 (2005)

23. Sommerville, I., Ransom, J.: An empirical study of industrial requirements engineering
process assessment and improvement. ACM Transactions on Software Engineering and
Methodology 14(1), 85–117 (2005)

24. Barry, E.J., Mukhopadhyay, T., Slaughter, S.A.: Software Project Duration and Effort: An
Empirical Study. Information Technology and Management 3(1-2), 113–136 (2002)

 An Empirical Study Identifying High Perceived Value Practices 441

25. Zowghi, D., Nurmuliani, N.: A study of the impact of requirements volatility on software
project performance. In: Ninth Asia-Pacific Software Engineering Conference, pp. 3–11
(2002)

26. Stark, G., Skillicorn, A., Ameele, R.: An Examination of the Effects of Requirements
Changes on Software Maintenance Releases. Journal of Software Maintenance: Research
and Practice 11, 293–309 (1999)

27. Zowghi, D., Nurmuliani, N., Powell, S.: The Impact of Requirements Volatility on Soft-
ware Development Lifecycle. In: Proceedings of Software Engineering Conference, Aus-
tralian, pp. 28–37 (2004)

28. Verner, J., Evanco, W.M.: In-house Software Development: What Software Project Man-
agement Practices Lead to Success? IEEE Software 22(1), 86–93 (2005)

29. Kobitzsch, W., Rombach, D., Feldmann, R.L.: Outsourcing in India. IEEE Software, 78–
86 (2001)

30. Jarvis, A., Crandall, V.: INROADS to software quality. Prentice-Hall, Inc., Englewood
Cliffs (1997)

31. Beecham, S., Hall, T., Rainer, A.: Software Process Problems in Twelve Software Com-
panies: An Empirical Analysis. Empirical software engineering 8, 7–42 (2003)

32. Niazi, M., Wilson, D., Zowghi, D.: A Framework for Assisting the Design of Effective
Software Process Improvement Implementation Strategies. Journal of Systems and Soft-
ware 78(2), 204–222 (2005)

Appendix A: Demographics

ID Company
Age (yrs)

Size Primary function

1 >5 20-199 In-house development
2 >5 20-199 In-house development
3 >5 20-199 In-house and outsourced development
4 3-5 20-199 In-house and outsourced development
5 >5 20-199 IT service provider
6 >5 20-199 In-house development
7 >5 20-199 In-house and outsourced development
8 3-5 20-199 In-house and outsourced development
9 >5 20-199 In-house development
10 >5 20-199 In-house development
11 >5 20-199 In-house development
12 >5 20-199 In-house development
13 >5 <20 In-house development
14 3-5 <20 In-house and outsourced development
15 >5 20-199 Outsourced development
16 >5 20-199 In-house development
17 >5 20-199 In-house and outsourced development

18 >5 20-199 Other
19 >5 20-199 In-house development
20 >5 20-199 In-house development
21 >5 20-199 In-house development
22 >5 20-199 In-house development
23 >5 20-199 In-house development

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, p. 442, 2008.
© Springer-Verlag Berlin Heidelberg 2008

2nd International Workshop on Measurement-Based
Cockpits for Distributed Software and Systems

Engineering Projects (SOFTPIT 2008)

Marcus Ciolkowski1, Jens Heidrich1, Marco Kuhrmann2, and Jürgen Münch1

1 Fraunhofer IESE, Fraunhofer Platz 1, 67663 Kaiserslautern, Germany
{marcus.ciolkowski, jens.heidrich,
juergen.muench}@iese.fraunhofer.de

2 Technische Universität München, Arcisstrasse 21, 80333 München, Germany
kuhrmann@in.tum.de

In order to successfully conduct global development projects, one crucial success
factor is the existence of well-specified and coordinated distributed development
processes. Therefore, it is necessary to have efficient management and controlling
mechanisms in place. Many companies are currently establishing so-called software
cockpits for systematic quality assurance and management support. A software cock-
pit is comparable to an aircraft cockpit, which centrally integrates all relevant infor-
mation for monitoring, controlling, and management purposes. In practice, a variety
of simple dashboards approaches for project control exists. However, approaches
supporting advanced management techniques and allowing for organization-wide data
collection, interpretation, and visualization are rarely implemented. The goal of this
workshop is to discuss techniques, methods, and tools for the measurement-based
management of globally distributed software development projects and to share ex-
periences among researchers and practitioners. Efficiently managing distributed de-
velopment projects (multi-sited and multi-organizational) implies many challenges
that need to be addressed by software engineering research. Typical research ques-
tions address the problems of how to cope with different cultures or heterogeneous
organizational structures, platforms, measurement systems, and process maturities.
Other research areas include the establishment of data security, transparency, confi-
dence in integrated data and interpretation models, and well-coordinated development
processes and interfaces.

The workshop will discuss techniques, methods, and tools that support the effec-
tive management of distributed development projects. Topics of interest include, but
are not limited to: data-driven management of distributed development projects,
strategies for distributed management and controlling, key performance indicators and
success factors for managing distributed projects, introduction and application of
distributed control mechanisms, cultural, technical, social, and organizational issues
for distributed project management, efficient mechanisms for aggregation and drill-
down of distributed data, innovative visualization mechanisms and stakeholder-
specific views for distributed control centers, goal-oriented measurement, and
process-/tool integration and harmonization in distributed environments.

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, p. 443, 2008.
© Springer-Verlag Berlin Heidelberg 2008

10th International Workshop on:
Learning Software Organizations

–Methods, Tools, and Experiences–

Raimund L. Feldmann1 and Martin Wessner2

(Workshop Chairs)
1 Fraunhofer Center for Experimental Software Engineering, Maryland (FC-MD)

4321 Hartwick Road, Suite 500, College Park, MD 20742-3290, USA
rfeldmann@fc-md.umd.edu

2 Fraunhofer Institute for Experimental Software Engineering, (IESE)
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
martin.wessner@iese.fraunhofer.de

Abstract. Ten years ago, the LSO workshop series was designed as a commu-
nication forum that addresses the questions of organizational learning from a
software point of view. Today this topic is still current and in high demand. The
workshop focuses on existing work on knowledge management and organiza-
tional learning as well as on newer developments such as Web 2.0 or Enterprise
2.0. It brings together practitioners and researchers for an open exchange of ex-
perience with successes and failures in organizational learning and provides an
opportunity to learn about new ideas. Fostering interdisciplinary approaches is
one key concern of this workshop series.

Keywords: Continuous Process Improvement, Knowledge Management.

Scope

More and more, software is not only a highly innovative and economically important
sector on its own but software is also an important driver of innovation for most other
industry sectors. In this context, knowledge – the experience, insights, understand-
ings, and practical know-how of highly educated, skilled and experienced employees
– is one of a company's most important assets, enabling individual and organizational
intelligent behavior and, thus, the development and delivery of high-quality products
and services. Therefore, the ability to share and leverage knowledge on individual,
team and organization levels becomes critical to its competitive advantage. To maxi-
mize productivity and quality gains methods and tool support, organizational, team
and individual perspectives need to be fostered and balanced.

The goal of LSO is to discuss all aspects of learning organizations and
knowledge management solutions in the Software Engineering domain. LSO aims at
the discussion of existing applications in practice, the examination of problems and
limitations experienced in practice, and the search for innovative approaches to over-
come problems, improve existing approaches and enable the wide-spread establish-
ment of learning organizations in practice.

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, p. 444, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Implementing Product Line Engineering in Industry:
Feedback from the Field to Research

Davide Falessi1 and Dirk Muthig2

1 University of Roma Tor Vergata, DISP, Rome, Italy
2 Fraunhofer Institute for Experimental Software Engineering, Kaiserslautern, Germany
falessi@ing.uniroma2.it, dirk.muthig@iese.fraunhofer.de

Software product line engineering refers to methods (tools and techniques) for creat-
ing sets of similar software systems by taking advantage of their commonalities and
predicted variabilities. After successfully installing product line engineering in
practice, organizations typically experience a great improvement with respect to pro-
ductivity or quality. Product line engineering is a proactive and strategic approach
towards software reuse that requires the involvement of whole organizations to be
successful. Implementing product line engineering in practice thus corresponds to
identifying a strategy that transforms an existing organization into an organization
that is fully centered around their product line(s), Although this transformation im-
pacts nearly everything in an organization, it is often realized in an incremental way
to manage risks and to ensure that production continues during the change process.

This workshop aims at a great collection of experience reports in implementing
product line engineering in practice. The reports should expose best practices and
typical challenges of transferring product line technology into practice. During the
workshop we will also try to identify proven first steps that make a first, successful
step towards the ultimate vision of product line engineering.

Therefore, we are particularly interested in discussing industrial experiences gained
in the following areas:

• Initiating product line adoption.

• Estimating or monitoring the ROI of product line technology

• Managing organizational changes and issues while adopting product line
technology

A. Jedlitschka and O. Salo (Eds.): PROFES 2008, LNCS 5089, p. 445, 2008.
© Springer-Verlag Berlin Heidelberg 2008

What to Learn from Different Standards and
Measurement Approaches?

Is a Pragmatic Integrative Approach Possible?

Fabio Bella and Horst Degen-Hientz

KUGLER MAAG CIE GmbH, Leibnizstr. 11, 70806 Kornwestheim, Germany
{fabio.bella, horst.degen-hientz}@kuglermaag.com

Several measurement approaches such as Balanced Score Cards (BSC), Six Sigma, or
Goal Question Metrics (GQM), can be applied to set up and embedd measurement
programs within the scope of software projects. Different approaches may highlight
different aspects of the measurement process or address different organizational lev-
els. They may also show complementary aspects and provide a maximum of benefit
when jointly applied. Often different approaches are applied by different groups
within one same organization and effort has to be spent to integrate different meas-
urement initiatives. To maximize the information gain and minimize the effort to be
spent in measurement-related activities, informed decisions have to be made and the
right approaches must be chosen when setting up a measurement program. The aim of
this workshop is to present single measurement approaches currently available, share
experience gathered from their application, and sketch a map to assist preliminary
decision making when defining measurement programs.

Author Index

Ackermann, Christopher 158
Ahmad, Rashid 143
Ahonen, Jarmo J. 258
Alexandre, Simon 189
Ali Babar, Muhammad 143, 400, 427
Ardimento, Pasquale 289
Ast, Stefan 304

Baldassarre, Maria Teresa 415
Bella, Fabio 133, 445
Bertolino, Antonia 1
Birkhölzer, Thomas 304
Boffoli, Nicola 415
Brito e Abreu, Fernando 330
Buglione, Luigi 75

Caivano, Danilo 415
Caldeira, João 330
Catal, Cagatay 244
Cimitile, Marta 289
Ciolkowski, Marcus 442
Concas, Giulio 386
Conradi, Reidar 158, 400
Cruzes, Daniela 158

Daneva, Maya 90
Degen-Hientz, Horst 2, 445
Demirors, Onur 105
Deprez, Jean-Christophe 189
Di Francesco, Marco 386
Dı́az-Ley, Maŕıa 19
Dickmann, Christoph 304
Diri, Banu 244

Eteläperä, Matti 174

Falessi, Davide 444
Feldmann, Raimund L. 443
Fukazawa, Yoshiaki 45

Garćıa, Félix 19
Gencel, Cigdem 75, 105
Giachetti, Giovanni 215
Gupta, Anita 158

Hanssen, Geir Kjetil 371
Harjumaa, Lasse 230
Heidrich, Jens 4, 442
Hickman, Charles 143
Hiraguchi, Hiroki 45
Holz, Wolfgang 34
Hörmann, Klaus 133

Ibrahim, Suhaimi 427

Jäntti, Marko 317

Kaur, Arvinder 204
Klein, Harald 304
Kuhrmann, Marco 442

Land, Rikard 117
Landre, Einar 158
Li, Jingyue 400
Lindgren, Markus 117
Liukkunen, Kari 174

Magazinovic, Ana 61
Malhotra, Ruchika 204
Marchesi, Michele 386
Maŕın, Beatriz 215
Markkula, Jouni 230
Meyer, Ludger 304
Mishra, Alok 273
Mishra, Deepti 273
Moe, Nils Brede 345
Moser, Raimund 360
Münch, Jürgen 4, 442
Muthig, Dirk 444

Niazi, Mahmood 143, 427
Norström, Christer 117

Öhman, Peter 61
Oivo, Markku 174, 230
Ozcan Top, Ozden 105
Ozkan, Baris 105

Pastor, Oscar 215
Pedrycz, Witold 360
Pellikka, Mika 174

448 Author Index

Pernst̊al, Joakim 61
Piattini, Mario 19
Pinna, Sandro 386
Premraj, Rahul 34
Pylkkänen, Niko 317

Quaresima, Roberta 386

Rønneberg, Harald 158

Schneider, Kurt 3
Shull, Forrest 158
Sillitti, Alberto 360
Singh, Yogesh 204
Slyngstad, Odd Petter Nord 400
Šmite, Darja 345
Soininen, Juha-Pekka 174

St̊alhane, Tor 371
Succi, Giancarlo 360

Torkar, Richard 345
Turetken, Oktay 105

Valtanen, Anu 258
Vanamali, Bhaskar 133
Vaupel, Jürgen 304
Visaggio, Giuseppe 415

Wall, Anders 117
Washizaki, Hironori 45
Wessner, Martin 443

Zeller, Andreas 34
Zimmermann, Thomas 34

	Title Page
	Preface
	Organization
	Table of Contents
	Software Testing Forever: Old and New Processes and Techniques for Validating Today's Applications
	Culture of Error Management “Why Admit an Error When No One Will Find Out?”
	Supporting Experience and Information Flow in Software Projects
	Goal-Oriented Setup and Usage of Custom-Tailored Software Cockpits
	Introduction
	Related Work
	The Specula Approach
	Cockpit Concepts
	Mapping Cockpit Concepts to GQM
	Composing Control Components

	Empirical Evaluation and Usage Example
	Conclusion and Future Work
	References

	MIS-PyME Software Measurement Maturity Model-Supporting the Definition of Software Measurement Programs
	Introduction
	Related Work
	MIS-PyME
	MIS-PyME Measurement Maturity Model
	MIS-PyME Measurement Maturity Model - Case Study
	Conclusions and Further Research
	References

	Predicting Software Metrics at Design Time
	Introduction
	Background
	Data Collection
	Input Features
	Output Features
	Data Format

	Experimental Setup
	Support Vector Machine
	Procedure
	Evaluation

	Results and Discussion
	Threats to Validity
	Conclusions and Consequences
	References

	A Metrics Suite for Measuring Quality Characteristics of JavaBeans Components
	Introduction
	Component-Based Development and JavaBeans
	JavaBeans Technology
	JavaBeans Public Information

	Component Quality Metrics
	Comprehensive Investigation of Basic Metrics
	Selection of Basic Metrics
	Construction of Quality Metrics Suite

	Verifying the Validity of the Metrics Suite
	Standard Assessment Criteria
	Comparison with Conventional Metrics

	Conclusion and Future Work

	Software Cost Estimation Inhibitors - A Case Study
	Introduction and Related Work
	Methodology
	Case Selection
	Data Collection
	Data Analysis

	Analysis
	Analysis of the VCC Results
	Validation of Lederer and Prasad Top Issues [6]
	Comparison to Other Literature

	Discussion of Results and Validity
	Discussion of Results
	Validity Discussion

	Summary
	References

	Impact of Base Functional Component Types on Software Functional Size Based Effort Estimation
	Introduction
	Related Work
	Data Preparation
	Statistical Data Analysis and Results
	Total Functional Size - Effort Relationship
	Functional Sizes of BFC Types – Size-Effort Relationship

	Conclusions and Prospects
	References

	Managing Uncertainty in ERP Project Estimation Practice: An Industrial Case Study
	Introduction
	Thinking of ERP Systems from Effort Estimation Perspective
	Sources, Approach and Related Work
	COCOMO II
	The Monte Carlo Simulations
	The Portfolio Management Concept
	How It Fits Together?

	The Case Study
	Application of the Method
	Results

	Evaluation of Validity Concerns
	Conclusions
	References

	The Effect of Entity Generalization on Software Functional Sizing: A Case Study
	Introduction
	Related Work
	The Case Study
	FSM Methods Utilized
	Description of the Case Project and the Software Application
	Case Study Conduct

	Findings and Conclusions
	References

	Towards a Capability Model for the Software Release Planning Process — Based on a Multiple Industrial Case Study
	Introduction
	Related Work
	Research Method
	Improving the Release Planning Process
	Elicit Needs
	Make Release Decision
	Realize Needs

	Application of the Capability Model
	Improvement Proposals

	The Problem into Context
	Future Work
	Conclusion

	From CMMI to SPICE – Experiences on How to Survive a SPICE Assessment Having Already Implemented CMMI
	Introduction
	Excursus: CMMI, ISO/IEC 15504, Automotive SPICE
	An Approach for Surviving Automotive SPICE Assessment Having Already Implemented CMMI
	Discussion of Differences between the Models
	Lessons Learned
	Conclusions
	References

	A Model for Requirements Change Management: Implementation of CMMI Level 2 Specific Practice
	Introduction
	Background
	Study Method
	Results
	Findings from Literature
	Finding from Companies
	Our Requirements Change Model (RCM)

	Model Evaluation
	Conclusion
	References

	Experience Report on the Effect of Software Development Characteristics on Change Distribution
	Introduction
	Related Work
	The StatoilHydro ASA Setting
	Software Change Data in StatoilHydro ASA

	Research Questions
	Research Methodology
	Results
	Threats to Validity
	Conclusion and Future Work
	References

	Virtual Prototypes in Developing Mobile Software Applications and Devices
	Introduction
	Related Work
	Virtual Prototyping
	System Simulation

	Research Approach
	UI Simulation Approach
	HW Simulation Approach

	Empirical Experiences
	City of Oulu – Rapid Concept Design Process of Mobile Applications
	Ouman – User Experiences of Web-Based Application Simulation
	Virtual Platform Model of a Mobile Device

	Conclusions and Future Work
	References

	Comparing Assessment Methodologies for Free/Open Source Software: OpenBRR and QSOS
	Introduction
	Description of QSOS and OpenBRR
	QSOS
	OpenBRR

	Comparison Approach
	Comparing QSOS, OpenBRR
	Comparison of the Overall Approaches
	Comparison of the Scoring Procedures
	Coverage of the Evaluation Criteria and Quality of Wording

	Advantages and Disadvantages of QSOS and OpenBRR
	Related Work
	Future Work
	References

	Predicting Software Fault Proneness Model Using Neural Network
	Introduction
	Related Work
	Research Background
	Dependent and Independent Variables
	Empirical Data Collection

	Research Methodology
	Outlier Analysis
	Logistic Regression (LR) Modeling
	Artificial Neural Network Modeling
	Evaluating the Performance of the Model

	Analysis Results
	Logistic Regression (LR) Analysis
	Artificial Neural Network (ANN) Method

	Model Evaluation
	Cross Validation of Models Using ROC Analysis

	Threats to Validity
	Conclusions
	References

	Automating the Measurement of Functional Size of Conceptual Models in an MDA Environment
	Introduction
	The COSMIC Functional Size Measurement Method
	The OO-Method Approach
	OOmCFP: A Measurement Procedure for the OO-Method Conceptual Model
	A Measurement Example

	The Automation of the OOmCFP Procedure
	Using the OOmCFP Tool
	A Comparative Analysis of COSMIC and FPA

	Conclusions and Further Work
	References

	How Does a Measurement Programme Evolve in Software Organizations?
	Introduction
	Research Setting
	Success Factors for a Measurement Programme
	Success Factors
	Factor Grouping

	Involvement in Different Phases of Measurement Implementation
	Viewpoints to Measurement Case Studies
	Measurement Evolution

	Discussion
	Conclusion
	References

	A Fault Prediction Model with Limited Fault Data to Improve Test Process
	Introduction
	Related Work
	Semi-supervised Learning
	Modeling Approach
	Immune Based YATSI Algorithm
	Artificial Immune Recognition Systems
	Random Forests

	Experimental Study
	System Description
	Experimental Setting
	Evaluation Criteria
	Results and Analysis

	Conclusions and Future Work
	References

	Big Improvements with Small Changes: Improving the Processes of a Small Software Company
	Introduction
	Research Problem
	The Improvement Technique
	The Wall-Chart Sessions
	Process Descriptions and Their Analysis

	The Target Company and the Current State of the Process
	Problems Found
	Improving the Process
	Resources Needed
	Discussion

	Software Process Improvement Methodologies for Small and Medium Enterprises
	Introduction
	Related Works and Rationale of SPI in SMEs
	Software Process Improvement Models for SMEs
	A Methodology for Self-Diagnosis for Software Quality
	Software Process Matrix (SPM) Model
	An Approach for Software Process Establishment in Micro and Small Companies (ASPE-MSC)
	PRISMS: An Approach to Software Process Improvement for Small toMedium Enterprises [3]
	MESOPYME [10]

	Discussion
	Conclusion
	References

	An Empirical Study on Software Engineering Knowledge/Experience Packages
	Introduction
	Previous Work
	Paper Motivation and Research Questions
	Preliminary Empirical Work
	Attributes of the Acceptability Software Measurement Model
	Components of the Acceptability SMM

	Synthesizing the Acceptability SMM
	Pilot Experiment
	Data Presentation and Analysis
	Discussion
	Validity Evaluations

	Conclusions and Future Work
	References

	Customized Predictive Models for Process Improvement Projects
	Introduction
	Model
	Structure
	Interval Arithmetic

	Instantiating a Customized Model
	Results of the Study at Siemens
	Discussion
	Summary
	References

	Improving Customer Support Processes: A Case Study
	Introduction
	Our Contribution

	Research Methods
	The Case Organization and Data Collection Methods
	Data Analysis Method

	The Role of Problem Management in Customer Support
	The Improved Customer Support Model
	The Relation between Problem Management and Customer Support
	Improving Customer Support Processes: Case Alfa

	Analysis
	Discussion and Conclusions

	Influential Factors on Incident Management: Lessons Learned from a Large Sample of Products in Operation
	Introduction
	Motivation

	Related Work
	Categorization Process
	Review of Related Work
	Review Summary

	The Empirical Study
	Process and Instrumentation
	The Sample
	Descriptive Variables
	Research Questions
	Hypotheses Identification and Testing

	Conclusions and Future Work
	Conclusions
	Threats to the Validity
	Future Work

	References

	Pitfalls in Remote Team Coordination: Lessons Learned from a Case Study
	Introduction
	Related Research Overview
	Coordination of Software Work
	Coordination of Distributed Software Work

	Research Design and Methodology
	Study Context
	Data Sources and Analysis

	Coordination of Work in a Distributed Project
	Standardization
	Direct Supervision
	Mutual Adjustment

	Discussion
	Pitfalls in Remote Team Coordination
	The Effect of Coordination Mechanisms on Remote Team Performance
	Implications for Practitioners
	Implications for Future Research

	Conclusions
	References

	A Model to Identify Refactoring Effort during Maintenance by Mining Source Code Repositories
	Introduction
	A Model for Computing “Refactoring Activity”
	An Implementation of the Model
	Two Case Studies
	Threats to Validity and Future Work
	Conclusions
	References

	The Application of ISO 9001 to Agile Software Development
	Introduction
	Related Work
	Agile Development
	The ISO 9001 Requirements
	Comparing ISO 9001 with Agile Development
	What Can Be Done to Achieve Conformance
	Threats to Validity
	Have We Understood ISO 9001
	Have We Touched All Relevant ISO 9001 Items
	Have We Understood Agile Development
	Our Claims to Validity

	Conclusion and Future Work
	References

	Study of the Evolution of an Agile Project Featuring a Web Application Using Software Metrics
	Introduction
	Agile Practices
	Agile Practices and Software Quality

	The Measured Software Metrics
	The Project and Its Phases
	Results and Discussion
	Conclusions
	References

	Identifying and Understanding Architectural Risks in Software Evolution: An Empirical Study
	Introduction
	Background and Related Work
	Research Design: Context, Motivation and Research Questions
	Data Collection and Analysis
	Results
	Discussion
	Comparison to Related Work
	Observations on Key Architectural Risks and Promising Risk Management Strategies
	Threats to Validity

	Conclusion and Future Work
	References1. Bass, L., Clements,

	A Hands-On Approach for Teaching Systematic Review
	Introduction
	Searching Evidence through a Systematic Review
	Systematic Review Concepts

	The Hands-On Approach
	Qualitative Assessment
	Conclusions
	References

	An Empirical Study Identifying High Perceived Value Practices of CMMI Level 2
	Introduction
	Perceived Value
	Study Design
	Findings
	Requirements Management Practices
	Process and Product Quality Assurance Practices
	Configuration Management Practices
	Comparing Developers’ and Managers’ Perceptions

	Limitations
	Summary and Conclusion
	References

	2^{nd} International Workshop on Measurement-Based Cockpits for Distributed Software and Systems Engineering Projects (SOFTPIT 2008)
	10th International Workshop on: Learning Software Organizations–Methods, Tools, and Experiences–
	Implementing Product Line Engineering in Industry: Feedback from the Field to Research
	What to Learn from Different Standards and Measurement Approaches? Is a Pragmatic Integrative Approach Possible?
	Author Index

