

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 25 – 38, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Model-Based Engineering of Widgets, User Applications
and Servers Compliant with ARINC 661 Specification

Eric Barboni1, Stéphane Conversy1,2, David Navarre1, and Philippe Palanque1

1 LIIHS – IRIT, Université Paul Sabatier
118 route de Narbonne, 31062 Toulouse Cedex 4

{barboni, conversy, navarre, palanque}@irit.fr
http://liihs.irit.fr/{barboni,navarre,palanque}

2 ENAC – DTI/SDER – Ecole Nationale de l’Aviation Civile
7, avenue Edouard Belin, 31055 Toulouse

conversy@enac.fr

Abstract. The purpose of ARINC 661 specification [1] is to define interfaces to
a Cockpit Display System (CDS) used in any types of aircraft installations.
ARINC 661 provides precise information for communication protocol between
application (called User Applications) and user interface components (called
widgets) as well as precise information about the widgets themselves. However,
in ARINC 661, no information is given about the behaviour of these widgets
and about the behaviour of an application made up of a set of such widgets.
This paper presents the results of the application of a formal description
technique to the various elements of ARINC 661 specification within an
industrial project. This formal description technique called Interactive
Cooperative Objects defines in a precise and non-ambiguous way all the
elements of ARINC 661 specification. The application of the formal description
techniques is shown on an interactive application called MPIA (Multi Purpose
Interactive Application). Within this application, we present how ICO are used
for describing interactive widgets, User Applications and User Interface servers
(in charge of interaction techniques). The emphasis is put on the model-based
management of the feel of the applications allowing rapid prototyping of the
external presentation and the interaction techniques. Lastly, we present the
CASE (Computer Aided Software Engineering) tool supporting the formal
description technique and its new extensions in order to deal with large scale
applications as the ones targeted at by ARINC 661 specification.

1 Introduction

Interactive applications embedded in cockpits are the current trend of evolution
promoted by several aircraft manufacturer both in the field of civil and military
systems [7, 10]. Embedding interactive application in civil and military cockpit is
expected to provide significant benefits to the pilots by providing them with easier to
use and more efficient applications increasing the communication bandwidth between
pilots and systems. However, this technological enhancement comes along with

26 E. Barboni et al.

several problems that have to be taken into account with appropriate precautions.
ARINC specification 661 (see next section), aims at providing a common ground for
building interactive applications in the field of aeronautical industry. However, this
standard only deals with part of the issues raised. The aim of this paper is to propose a
formal description technique to be used as a complement to ARINC 661 for the
specification, design, implementation and validation of interactive application.

The paper is structured as follows. Next section introduces ARINC 661
specification to define software interfaces for a Cockpit Display System. It presents
informally the content of the specification but also its associated architecture that has
to be followed in order to build ARINC-661-compliant interactive applications.
Section 3 presents the ICO formalism, a formal description technique for the design
of safety critical interactive applications. This description technique has already been
applied in various domains including Air Traffic Control applications, multimodal
military cockpits or multimodal satellite ground segments. Its applicability to cockpit
display system and its compatibility with ARINC specification 661 is discussed and
extensions that had to be added are also presented in section 4. Section 5 presents the
use of the formal description technique on an interactive application called MPIA
(Multi Purpose Interactive Application) currently available in some cockpits of
regional aircrafts. Last section of the paper deals with conclusions and perspectives to
this work.

2 ARINC 661 Specification

This section presents, in an informal way, the basic principles of ARINC 661
specification. The purpose of this section is to provide a description of the underlying
mechanisms of ARINC 661 specification and more precisely how its content
influences the behaviour and the software architecture of interactive applications
embedded in interactive cockpits.

2.1 Purpose and Scope

The purpose of ARINC 661 specification (ARINC 661, 2002) is to define interfaces
to a Cockpit Display System (CDS) used in interactive cockpits that are now under
deployment by several aircraft manufacturers including Airbus, Boeing and Dassault.
The CDS provides graphical and interactive services to user applications (UA) within
the flight deck environment. Basically, the interactive applications will be executed
on Display Units (DU) and interaction with the pilots will take place through the use
of Keyboard and graphical input devices like the Keyboard Cursor Control Unit
(KCCU).

ARINC 661 dissociates, on one side, input and output devices (provided by
avionics equipment manufacturers) and on the other side the user applications
(designed by aircraft manufacturers). Consistency between these two parts is
maintained through a communication protocol:

 Model-Based Engineering of Widgets, User Applications and Servers Compliant 27

• Transmission of data to the CDS, which can be displayed to the flight deck
crew.

• Reception of input (as events) from interactive items managed by the CDS.

In the field of interactive systems engineering, interactive software architectures
such as Seeheim [14] or Arch [9] promote a separation of the interactive system in at
least three components: presentation part (in charge of presenting information to and
receiving input from the users), dialogue part (in charge of the behaviour of the
system i.e. describing the available interface elements according to the current state of
the application) and functional core (in charge of the non interactive functions of the
system). The CDS part may be seen as the presentation part of the whole system,
provided to crew members, and the set of UAs may be seen as the merge of both the
dialogue and the functional core of this system.

2.2 User Interface Components in ARINC 661

The communication between the CDS and UAs is based on the identification of user
interface components hereafter called widgets. ARINC 661 defines a set of 42
widgets that belong to 6 categories. Widgets may be any combination of “container”,
“graphical representation” of one or more data, “text string” representations,
“interactive”, dedicated to “map management” or may “dynamically move”.

In ARINC 661, each widget is defined by:

• a set of states classified in four levels (visibility, inner state, ability, visual
representation),

• a description in six parts (definition section, parameters table, creation
structure table, event structure table, run-time modifiable parameter table,
specific sections).

The main drawback of this description is the lack of description of the behaviour
itself. Even if states are partially described, dynamic aspects such as state changes are
informally described. As stated in ARINC 661 (section 1.0 introduction), the main
paradigm is here based on this comment:

“A UA should not have any direct access to the visual representations.
Therefore, visual presentations do not have to be defined within the
ARINC 661 interface protocol. Only the ARINC 661 parameter effects on
graphical representation should be described in the ARINC 661 interface.
The style guide defined by the OEM should describe the “look and feel”
and thus, provide necessary information to UAs for their HMI interface
design.”

An additional textual description called SRS (for Software Requirement
Specification), informally defines the look and feel of a CDS (Cockpit Display
System). This SRS is designed by each manufacturer of airline electronic equipment
(we worked with a draft document provided by Thales Avionics). This kind of
document describes both the appearance and the detailed expected behaviour of each
graphical or interactive component.

28 E. Barboni et al.

2.3 Overview of Our Contribution to ARINC 661

One of the goals of the work presented in this paper is to define an architecture that
clearly identifies each part of this architecture and their communication, as shown on
Fig. 1. The aim of this architecture is also to clearly identify which components will
be taken into account in the modelling process and which ones are taken into account
in a different way by exploiting SVG facilities. The architecture has two main
advantages:

1. Every component that has an inner behaviour (server, widgets, UA, and the
connection between UA and widgets, e.g. the rendering and activation functions) is
fully modelled using the ICO formal description technique.

2. The rendering part is delegated to a dedicated language and tool (such as SVG).

Fig. 1. Detailed architecture to support ARINC 661 specification

The following section recalls the basics of ICO notation and presents a new
extension that has been required in order to be able to address all the modelling
challenges put forward by interactive cockpit applications compliant with ARINC 661
specification, and then present the connection to SVG. Lastly, a real case study
illustrates this architecture and how modelling all the elements of ARINC 661
specification are addressed using ICOs formal description technique.

3 ICO Modelling of ARINC 661 Components

We use the ICO formalism to describe formally the behaviour of the ARIC
components. This section first briefly recalls the main features of the ICO formalism.
We encourage the interested reader to look at [13, 11] for a complete presentation of
the formal description technique and the environment supporting it. The second part is
dedicated to the extensions that had to be defined in order to address the specificities
of interactive applications compliant with ARINC 661 specifications.

3.1 Overview of the ICO Formalism

The Interactive Cooperative Objects (ICOs) formalism is a formal description
technique dedicated to the specification of interactive systems [4, 11]. It uses concepts

 Model-Based Engineering of Widgets, User Applications and Servers Compliant 29

borrowed from the object-oriented approach to describe the structural or static aspects
of systems, and uses high-level Petri nets [8] to describe their dynamic or behavioural
aspects. ICOs are dedicated to the modelling and the implementation of event-driven
interfaces, using several communicating objects to model the system, where both
behaviour of objects and communication protocol between objects are described by
Petri nets. The formalism made up of both the description technique for the
communicating objects and the communication protocol is called the Cooperative
Objects formalism (CO).

ICOs are used to provide a formal description of the dynamic behaviour of an
interactive application. An ICO specification fully describes the potential interactions
that users may have with the application. The specification encompasses both the
"input" aspects of the interaction (i.e., how user actions impact on the inner state of
the application, and which actions are enabled at any given time) and its "output"
aspects (i.e., when and how the application displays information relevant to the user).
Time-out transitions are special transitions that do not belong to the categories above.

An ICO specification is fully executable, which gives the possibility to prototype
and test an application before it is fully implemented [12]. The specification can also
be validated using analysis and proof tools developed within the Petri nets community
and extended in order to take into account the specificities of the Petri net dialect used
in the ICO formal description technique.

3.2 ICO Improvements

Two main issues have been raised while working with ARINC 661 specification that
have not been encountered in previous work we have done in the field of interactive
systems’ specification and modeling.

• The first one is related to the management of rendering information in a
more independent and structured way in order to be able to dissociate as
much as possible the graphical appearance of interactive components from
their behavior. This is one of the basics of interactive cockpit applications
compliant with ARINC 661 specification as (as stated above) these two
sides of the interactive cockpit applications are described in two different
documents (communication protocol and abstract behavior in ARINC 661
specification while presentation and detailed behavior are described in the
SRS (System Requirement Specifications)).

• The second one is related to the fact that ARINC 661 specification does not
exploit current windows manager available in the operating system (as this
is the case for Microsoft Windows applications for instance). On the
opposite, the manufacturer in charge of developing the entire ARINC 661
architecture is also in charge of developing all the components in charge of
the management of input devices, device drivers and to manage the
graphical structure of the interactive widgets. In order to handle those
aspects we have defined a denotational semantics (in terms of High-level
Petri nets) of both the rendering and the activation functions. Beforehand,
these functions were only partly defined (relying on the underlying

30 E. Barboni et al.

mechanisms provided by the window manager) and implemented using a
particular java API thus making much more limited the verification aspects
of theses aspects of the specification. Indeed, the work presented here
addresses at the same level of formality, applications, widgets and user
interface server (also called window manager). Besides, the connections and
communications between these three parts are also formally described.

Next section presents in details the various mechanisms that have been defined in
order to handle the low level management of input devices and focuses on one
specific aspect called picking which correspond to the window manager activating of
finding the interactive component that was the target of the user when an event has
been produced. The case study in section 0 shows on a concrete example how those
elements are combined for describing User Applications, Widgets and User Interface
servers.

4 MPIA Case Study

MPIA is a User Application (UA) that aims at handling several flight parameters. It is
made up of 3 pages (called WXR, GCAS and AIRCOND) between which a crew
member is allowed to navigate using 3 buttons (as shown by Fig. 2). WXR page is in
charge managing weather radar information; GCAS is in charge of the Ground Anti
Collision System parameters while AIRCOND deals with settings of the air
conditioning.

Fig. 2. Snapshots of the 3 pages of the UA MPIA

In this section, we present the modelling of a simple widget and its link to SVG
rendering, then we briefly present the classical modelling of a user application to
show the extension made to ICOs, and finally we present parts of the server. The
purpose is not here to present the whole specification which is made up of about 40
models, but only to present brief extracts to show all bricks of the modelling.

4.1 Modelling ARINC 661 Interactive Widgets

The whole modelling process of ARINC 661 interactive components using ICO is
fully described in [12]. The additional feature consists in using the rendering process

 Model-Based Engineering of Widgets, User Applications and Servers Compliant 31

described above, based on replacing the classical code-based rendering methods with
rendering methods that modify the SVG Document Object Model. Rendering is the
process of transforming a logical description (conceptual model) of an interactive
component to a graphical representation (perceptual model). In previous similar
works, we specified rendering with Java code, using the Java2D API., However,
describing graphics with an imperative language is not an easy task, especially when
one tries to match a particular look. Furthermore, the java code for graphics is
embedded into the model, which makes it hard to change for another look. This is
even more difficult when several components share a common part of the graphical
representation, for instance when components must have a similar style and when this
style has to be changed.

To overcome these two problems, we changed for an architecture that uses
declarative descriptions of the graphical part and that supports transformations from
conceptual models to graphical representations. These two elements exploit XML-
based languages from the W3C: the SVG language for graphical representation, and
the XSLT language for transformation. SVG is an xml-based vector graphics format:
it describes graphical primitives in terms of analytical shapes and transformations.
XSLT is an xml-based format that describes how to transform an xml description (the
source) to another xml description (the target). An XSLT description is called a
“stylesheet”. Due to space constraints this work is not presented in the next section as
we focus on the behavioural aspects of models.

4.2 Modelling User Applications

Modelling a user application using ICO is quite simple as ICO has already been used
to model such kind of interactive applications. Indeed, UAs in the area of interactive
cockpits correspond to classical WIMP interfaces,

As the detailed specification is not necessary to expose the modification of ICO,
we only present an excerpt of the models that have been produced to build the
MPIA application. This excerpt is the first page (WXR) of the application (left part
of Fig. 2).

4.2.1 Behaviour
Fig. 3 shows the entire behaviour of page WXR which is made up of two non
connected parts:

• The upper part aims at handling events from the 5 CheckButtons and the
modification implied of the MODE_SELECTION that might be one of five
possibilities (OFF, STDBY, TST, WXON, WXA). Value changes of token
stored in place Mode-Selection are described in the transitions while variables
on the incoming and outgoing arcs play the role of formal parameters of the
transitions.

• The lower part concerns the handling of events from the 2 PicturePushButton
and the EditBoxNumeric. Interacting with these buttons will change the state
of the application.

32 E. Barboni et al.

Fig. 3. Behaviour of the page WXR

4.2.2 Activation Function
Fig 4 shows an excerpt of the activation function for page WXR.

Widget Event UserService ActivationRendering
wxrOFFAdapter off_CheckButton A661_INNER_STATE_SELECT off setWXRModeSelectEnabled
wxrSTDBYAdapter stdby_CheckButton A661_INNER_STATE_SELECT stdby setWXRModeSelectEnabled
wxrTSTAdapter tst_CheckButton A661_INNER_STATE_SELECT tst setWXRModeSelectEnabled
wxrWXONAdapter wxon_CheckButton A661_INNER_STATE_SELECT wxon setWXRModeSelectEnabled
wxrWXAAdapter wxa_CheckButton A661_INNER_STATE_SELECT wxa setWXRModeSelectEnabled
autoAdapter auto_PicturePushButton A661_EVT_SELECTION switchAUTO setWXRTiltSelectionEnabled
stabAdapter stab_PicturePushButton A661_EVT_SELECTION switchSTABILIZATION setWXRTiltSelectionEnabled
tiltAngleAdapter tiltAngle_EditBox A661_STRING_CHANGE changeAngle setWXRTiltSelectionEnabled

Fig. 4. Activation Function of the page WXR

From this textual description, we can derive the ICO model shown on Fig. 5. The
left part of this figure presents the full activation function, which is made up of as
many sub Petri nets as there are lines in the textual activation function. The upper

 Model-Based Engineering of Widgets, User Applications and Servers Compliant 33

right hand side of the figure emphasises on of these sub Petri nets. It describes how
the availability of the associated widget is modified according to some changes in the
WXR behaviour. The lower right hand part of the Figure shows the general pattern
associated to one line of the activation function: It describes the handling of the event
raised par the corresponding widget, and how it is linked to an event handler in the
WXR behaviour.

Fig. 5. Activation Function of the page WXR expressed in Petri nets

The use of Petri nets to model the activation function is made possible thanks to
the event communication available in the ICO formalism. As this kind of
communication is out of the scope of this paper, we do not present the models
responsible in the registration of events-handlers needed to allow the communication
between behaviour, activation function and widgets. More information about this
mechanism can be found in [2].

34 E. Barboni et al.

4.2.3 Rendering Function
The modelling of the rendering function (shown on Fig. 6) into Petri nets (shown on
Fig. 7) works the same way as for the activation function, i.e. for each line in the
rendering function, there is a pattern to express that in Petri nets. This is why we do
not detail more the translation.

 ObCSNode name ObCS event Rendering method

modeSelectionAdapter MODE_SELECTION token_enter <int m> showModeSelection(m)

tiltAngleAdapter TILT_ANGLE token_enter <float a> showTiltAngle(a)

initAutoAdapter AUTO marking_reset showAuto(true)

autoAdapter AUTO token_enter showAuto(true)

notAutoAdapter AUTO token_remove showAuto(false)

initStabAdapter STABILIZATION_ON marking_reset showStab(true)

stabAdapter STABILIZATION_ON token_enter showStab(true)

notStabAdapter STABILIZATION_ON token_remove showStab(false)

Fig. 6. Rendering Function of the page WXR

Fig. 7. Rendering Function of the page WXR expressed in Petri nets

 Model-Based Engineering of Widgets, User Applications and Servers Compliant 35

4.3 Modelling User Interface Server

The user interface server manages the set of widgets and the hierarchy of widgets
used in the User Applications. More precisely, the user interface server is responsible
in handling:

• The creation of widgets
• The graphical cursors of both the pilot and his co-pilot
• The edition mode
• The mouse and keyboard events and dispatching it to the corresponding

widgets
• The highlight and the focus mechanisms
• …

As it handles many functionalities, the complete model of the sub-server (dedicated
in handling widgets involved in the MPIA User Application) is complex and difficult
to manipulate without an appropriate tool. As the detailed model is out of the scope of
this paper, Fig. 8 only present an overview of the complete model.

Fig. 8. Overview of the complete model of the user interface server

36 E. Barboni et al.

The rectangle at the bottom of Fig. 8 represents the part of the model of the server
in charge of the interaction technique and input devices management. The rest of the
model corresponds to the management of the widgets.

4.4 Modelling the Complete MPIA User Application

We do not present here the full model of the user application MPIA neither the one of
the user interface server, but the formal description technique ICO has been used to
model in a complete and non ambiguous way all the pages and the navigation
between pages for such user application, and still produces low-sized and readable
models. Modelling Activation functions and Rendering functions using Petri nets,
legitimates the use of the table notation as a readable way to express the connection
between the dialog and the presentation parts.

Another issue is that the models of the user application MPIA can both be
connected to the modelled CDS or to an implemented CDS, using a special API, as it
respects the ARINC 661 specification. As testing an implemented user application is
still a problem that has to be solved, especially when the UA is connected to a real
CDS, a model based approach may support testing at different levels:

1. Test a modelled user application on the modelled CDS.
2. Test the modelled user application on the CDS implemented by the

manufacturer.
3. Code and test the user application on the implemented CDS.

The first step promotes a very iterative prototyping process where both the User
Application and the CDS may be modified, as the second step allows user testing on
the real interactive system (CDS), with classical prototyping facilities provided by the
models expressed in ICO of the User Application.

The MPIA application has been fully modelled and can be executed on the CDS
modelled using the ICO formalism. However, it has also been connected on a CDS
developed on an experimental test bench as shown in Fig. 9.

Fig. 9. The MPIA application modelled using ICO connected to experimental CDS at THALES

 Model-Based Engineering of Widgets, User Applications and Servers Compliant 37

5 Conclusions and Perspectives

This paper has presented the use of a formal description technique for describing
interactive components in ARINC specification 661. Beyond that, we have shown that
this formal description technique is also adequate for interactive applications
embedding such interactive components. One of the advantages of using the ICO
formal description technique is that it provides additional benefits with respect to
other notations such as statecharts as proposed in [15]. Thanks to its Petri nets basis
the ICO notations makes it possible to model behaviours featuring an infinite number
of states (as states are modelled by a distribution of tokens in the places of the Petri
nets). Another advantage of ICOs is that they allow designers to use verification
techniques at design time as this has been presented in [3]. These verification
techniques are of great help for certification purposes.

We are currently developing techniques for providing support to certification
processes by allowing verification of compatibility between the behavioural
description of the interactive application and task model describing nominal or
unexpected pilots behaviour. Support is also provided through the verification of
interactive system safety and liveness properties such as the fact that whatever state
the system is in there is always at least one interactive element available.

Acknowledgements

The work presented in the paper is partly funded by DPAC (Direction des
Programmes de l'Aviation Civile) under contract #00.70.624.00.470.75.96. Special
thanks are due to our colleagues at THALES P. Cazaux and S. Marchal.

References

1. ARINC 661 specification: Cockpit Display System Interfaces To User Systems, Prepared
by Airlines Electronic Engineering Committee, Published by AERONAUTICAL RADIO,
INC, april 22, 2002.

2. Bastide R., Navarre D., Palanque P., Schyn A. & Dragicevic P. A Model-Based Approach
for Real-Time Embedded Multimodal Systems in Military Aircrafts. Sixth International
Conference on Multimodal Interfaces (ICMI'04) October 14-15, 2004 Pennsylvania State
University, USA.

3. Bastide R., David Navarre & Philippe Palanque. Tool Support for Interactive Prototyping
of Safety Critical Interactive Applications. In Encyclopedia of HCI, C. Gaoui (Ed.). ISBN:
1-59140-562-9. Hard Cover. Publisher: Idea Group Reference Pub Date: July 2005. Pages:
650.

4. Bastide R., Ph. Palanque A Petri Net Based Environment for the Design of Event-Driven
Interfaces. 16th International Conference on Application and theory of Petri Nets
(ATPN'95), LNCS, Springer Verlag, Torino, Italy, 20-22 June 1995.

5. Beaudoux O., 2005. XML Active Transformation (eXAcT): Transforming Documents
within Interactive Systems. Proceedings of the 2005 ACM Symposium on Document
Engineering (DocEng 2005), ACM Press, pages 146-148.

38 E. Barboni et al.

6. Blanch R., Michel Beaudouin-Lafon, Stéphane Conversy, Yannick Jestin, Thomas Baudel
and Yun Peng Zhao. INDIGO : une architecture pour la conception d'applications grap-
hiques interactives distribuées. In Proceedings of IHM 2005, pages 139-146, Toulouse -
France, September 2005.

7. Faerber R. Vogl T. & Hartley D. Advanced Graphical User Interface for Next Generation
Flight Management Systems. In proceedings of HCI Aero 2000, pp. 107-112.

8. Genrich H. J.. (1991). Predicate/Transition Nets, in K. Jensen and G. Rozenberg (Eds.),
High-Level Petri Nets: Theory and Application. Springer Verlag, Berlin, pp. 3-43.

9. Gram C., Cockton G. (Editors). Design principles for interactive software. Chapman et
Hall ed.1995.

10. Marrenbach J., Kraiss K-F. Advanced Flight Management System: A New Design and
Evaluation Results. In proceedings of HCI Aero 2000, pp. 101-106.

11. Navarre D., Palanque, Philippe, Bastide, Rémi. A Tool-Supported Design Framework for
Safety Critical Interactive Systems in Interacting with computers, Elsevier, Vol. 15/3, pp
309-328, 2003.

12. Navarre D., Philippe Palanque & Rémi Bastide. A Formal Description Technique for the
Behavioural Description of Interactive Applications Compliant with ARINC 661
Specification. HCI-Aero'04 Toulouse, France, 29 September-1st October 2004.

13. Palanque P., R. Bastide. Petri nets with objects for specification, design and validation of
user-driven interfaces. In proceedings of the third IFIP TC 13 conference on Human-
Computer Interaction, Interact'90. Cambridge 27-31 August 1990 (UK).

14. Pfaff, G. E. (Hrsg.): User Interface Management Systems, Proceedings, Workshop on User
Interface Management Systems, Seeheim,(1. - 3.11.1983); Springer Verlag 1983.

15. Sherry L., Polson P., Feary M. & Palmer E. When Does the MCDU Interface Work Well?
Lessons Learned for the Design of New Flightdeck User-Interface. In proceedings of HCI
Aero 2002, AAAI Press, pp. 180-186.

16. Souchon, N., Vanderdonckt, J., A Review of XML-Compliant User Interface Description
Languages, Proc. of 10th Int. Conf. on Design, Specification, and Verification of
Interactive Systems DSV-IS'2003 (Madeira, 4-6 June 2003), Jorge, J., Nunes, N.J., Falcao
e Cunha, J. (Eds.), Lecture Notes in Computer Science, Vol. 2844, Springer-Verlag,
Berlin, 2003, pp. 377-391.

17. UsiXML, http://www.usixml.org/?view=news.
18. Villard, L. and Layaïda, N. 2002. An incremental XSLT transformation processor for

XML document manipulation. In Proceedings of the 11th international Conference on
World Wide Web (Honolulu, Hawaii, USA, May 07 - 11, 2002). WWW '02. ACM Press,
New York, NY, 474-485.

	Introduction
	ARINC 661 Specification
	Purpose and Scope
	User Interface Components in ARINC 661
	Overview of Our Contribution to ARINC 661

	ICO Modelling of ARINC 661 Components
	Overview of the ICO Formalism
	ICO Improvements

	MPIA Case Study
	Modelling ARINC 661 Interactive Widgets
	Modelling User Applications
	Modelling User Interface Server
	Modelling the Complete MPIA User Application

	Conclusions and Perspectives
	References

