Gavin Doherty
Ann Blandford (Eds.)

Interactive Systems

Design, Specification,
and Verification

LNCS 4323

13th International Workshop, DSVIS 2006
Dublin, Ireland, July 2006
Revised Papers

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4323

Gavin Doherty Ann Blandford (Eds.)
Interactive Systems

Design, Specification,
and Verification

13th International Workshop, DSVIS 2006
Dublin, Ireland, July 26-28, 2006
Revised Papers

@ Springer

Volume Editors

Gavin Doherty

Department of Computer Science
Trinity College Dublin

Dublin 2, Ireland

E-mail: Gavin.Doherty @cs.tcd.ie

Ann Blandford

UCL Interaction Centre
University College London
London, WCI1E 7DP, U K.
E-mail: a.blandford @ucl.ac.uk

Library of Congress Control Number: 2006939792

CR Subject Classification (1998): H.5.2, H.5, 1.3, D.2, E.3
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-69553-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69553-0 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11971344 06/3142 543210

Preface

We present here the proceedings of the 13th International Workshop on the
Design, Specification and Verification of Interactive Systems, held in Trinity
College, Dublin. The workshop provides a forum where researchers at the inter-
section of software engineering and human—computer interaction can present and
discuss their ideas. The different perspectives and concerns of these two com-
munities were exemplified by the thought-provoking contributions of the invited
speakers Jan Gulliksen, who looked at the nature of contact between developers
and end users (keynote paper included in this volume), and Ian Sommerville,
who looked at construction by configuration as the de-facto paradigm for many
real-world development projects.

All papers were reviewed by at least three reviewers. We present here 19 out of
57 submissions, along with a keynote paper and two working group reports. The
healthy number of submissions reflects the continuing interest and commitment
of researchers in this area. The accepted papers came from a wide range of
locations—Belgium, Canada, France, Ireland, Italy, Norway, Portugal, Spain,
Sweden and the UK.

Model-driven development remains a strong theme, with papers by Penichet
et al., Van den Bergh et al., and Koninx et al. The sophistication and power of
the tools now available compared to those presented at earlier editions of the
workshop were clearly evident from these presentations. Other uses of models
in development are investigated in the papers by Silva et al., which looked at
reverse engineering, Lepreux et al., which looks at the visual design of user inter-
faces, and Potter and Wright, which looks at visualization resource management.
Formal perspectives on cognitive aspects of interaction were explored in papers
by Roast and Khazaei and Ruksénas et al. The design of safety-critical systems
was the subject of several papers this year, both in terms of engineering (Bar-
boni et al.), requirements (Santos et al.), and evaluation (Thimbleby). There
were also two papers on bringing rigorous approaches to bear on the design and
development of haptic and multi-modal interfaces, both in terms of specification
(Smith) and analysis (Faconti and Massink).

Prototyping and evaluation are always a concern in the development of in-
teractive systems, and work in this area was presented by Petrie and Schneider
on mixed fidelity prototyping, by Gonzélez et al., who looked at modelling early
prototype evaluation, and O’Neill et al. who looked at a VR-based approach to
evaluation. On the theme of supporting user interface development, a patterns-
based approach to adaptive user interfaces was presented by Nilsson et al. Con-
sideration of computer games by Graham et al. was a new topic for the event,
and was the subject of a lively working group discussion. The critique of validity
in published HCI research presented by Thimbleby struck a chord with many of
the participants, with discussion continuing in a working group. One concrete

VI Preface

result of this was a strong impetus on presenters to comment on the availability
of their software and repeatability of their results!

The interest in the work presented at this year’s workshop was evident from
the number of questions for each speaker and the many discussions which took
place over the three days. Trinity College provided an attractive setting for
the conference, and the friendly atmosphere of the event helped to make it an
enjoyable as well as an intellectually rewarding experience.

October 2006 Gavin Doherty and Ann Blandford

Programme Chairs

Gavin Doherty
Ann Blandford

Programme Committee

Rémi Bastide
Ann Blandford
Jose Campos
Anke Dittmar
Alan Dix

Simon Dobson
Peter Forbrig
Nicholas Graham
Michael Harrison
Chris Johnson
Joaquim Jorge
Rick Kazman
Panos Markopoulos

Mieke Massink
Laurence Nigay
Philippe Palanque
Fabio Paterno
Chris Roast
Kevin Schneider
Alistair Sutcliffe
Harold Thimbleby

Reviewers

Sophie Dupuy-Chessa
Eduardo Calvillo Gdmez
Yamine Ait-Ameur
Giorgio Faconti

Joelle Coutaz

Organization

Trinity College Dublin, Ireland
University College London, UK

Université Paul Sabatier, Toulouse, France
University College London, UK
University of Minho, Portugal
University of Rostock, Germany
University of Lancaster, UK
UCD Dublin, Ireland
University of Rostock, Germany
Queen’s University, Canada
University of Newcastle, UK
University of Glasgow, UK
INESC-ID, Lisbon, Portugal
SEI, Carnegie Mellon University, USA
Eindhoven University of Technology,
Netherlands
ISTI-CNR, Pisa, Italy
Université Joseph Fourier, France
Université Paul Sabatier, Toulouse, France
ISTI-CNR, Pisa, Italy
Sheffield-Hallam University, UK
University of Saskatchewan, Canada
University of Manchester, UK
University of Swansea, Wales

CLIPS-IMAG, University of Grenoble 1, France

University College London, UK
LISI-ENSMA, University of Poitiers, France
ISTI-CNR, Pisa, Italy

CLIPS-IMAG, University of Grenoble 1, France

VIII Organization

Local Organization

Gavin Doherty Trinity College Dublin, Ireland
Alena Moison Trinity College Dublin, Ireland
Kris McGlinn Trinity College Dublin, Ireland
Simon Dobson UCD Dublin, Ireland

Supporting Organizations

ACM SIGCHI

The British Computer Society HCI Group

IFIP WG 13.5

The Eurographics Association

Department of Computer Science, Trinity College Dublin

Table of Contents

Keynote

How Do Developers Meet Users? — Attitudes and Processes in Software
Development
Jan Gulliksen

HCI Research

Validity and Cross-Validity in HCI Publications......................
Harold Thimbleby

Critical Systems

Model-Based Engineering of Widgets, User Applications and Servers
Compliant with ARINC 661 Specification
Eric Barboni, Stéphane Conversy, David Navarre, and
Philippe Palanque

Usability Requirements for Improving the Infection Module

of a Hospital Intensive Care Unit Information System
Moénica Sara Santos, Joao Falcio e Cunha, and
Altamiro da Costa Pereira

Interaction Walkthrough: Evaluation of Safety Critical Interactive
SYSEEMS ..o
Harold Thimbleby

Model Based Development

Collaborative Social Structures and Task Modelling Integration
Victor M.R. Penichet, Fabio Paterno, J.A. Gallud, and
Maria D. Lozano

Towards Model-Driven Development of Staged Participatory
Multimedia Events
Jan Van den Bergh, Steven Huypens, and Karin Coninz

Integrating Support for Usability Evaluation into High Level Interaction
Descriptions with NIMMIiT i
Karin Coninz, Erwin Cuppens, Joan De Boeck, and
Chris Raymaekers

11

25

39

52

67

81

95

X Table of Contents

Cognitive Aspects of Interaction

An Investigation into the Validation of Formalised Cognitive
Dimensions.

Chris Roast and Babak Khazaei

Formal Modelling of Cognitive Interpretation
Rimuvydas Ruksénas, Paul Curzon, Jonathan Back, and
Ann Blandford

Use of Models

Combining Formal Methods and Functional Strategies Regarding
the Reverse Engineering of Interactive Applications
J.C. Silva, José Creissac Campos, and Joao Saraiva

An Ontological Approach to Visualization Resource Management
Richard Potter and Helen Wright

Visual Design of User Interfaces by (De)composition.
Sophie Lepreuz, Jean Vanderdonckt, and Benjamin Michotte

Haptics and Multimodality

Exploring the Specification of Haptic Interaction.....................
Shamus P. Smith

Analysis of Pointing Tasks on a White Board
G. Faconti and Mieke Massink

Prototyping and Evaluation

Mixed-Fidelity Prototyping of User Interfaces........................
Jennifer N. Petrie and Kevin A. Schneider

A Hybrid Approach for Modelling Early Prototype Evaluation Under
User-Centred Design Through Association Rules
Maria Paula Gonzilez, Toni Granollers, and Jestus Lorés

Rapid User-Centred Evaluation for Context-Aware Systems
Eleanor O’Neill, David Lewis, Kris McGlinn, and Simon Dobson

Supporting User Interface Development

Using a Patterns-Based Modelling Language and a Model-Based
Adaptation Architecture to Facilitate Adaptive User Interfaces
Erik G. Nilsson, Jacqueline Floch, Svein Hallsteinsen, and
Erlend Stav

Table of Contents

Toward Quality-Driven Development of 3D Computer Games..........
T.C. Nicholas Graham and Will Roberts

Group Discussions

Processes: Working Group Report...........
Stéphane Chatty, José Creissac Campos, Maria Paula Gonzdlez,
Sophie Lepreux, Erik G. Nilsson, Victor M.R. Penichet,

Monica Santos, and Jan Van den Bergh

Usability and Computer Games: Working Group Report
T.C. Nicholas Graham, Paul Curzon, Gavin Doherty,
Philippe Palanque, Richard Potter, Christopher Roast, and
Shamus P. Smith

Author Index

How Do Developers Meet Users? — Attitudes and
Processes in Software Development

Jan Gulliksen

Uppsala university, Department of IT/HCI, PO Box 337, SE-751 05 Uppsala, Sweden
Jan.Gulliksen@hci.uu.se

Abstract. This keynote paper argues for an increased understanding of the
various roles involved in the development work to be able to achieve the goal of
developing increased usability. Human Computer Interaction (HCI) has for a
long time been arguing for the sake of the users, but to be able to deliver
methods, tools and processes that better fit the needs of developers we should
study and understand development work to a larger extent. This paper discusses
what HCI and software engineering contributes to each other’s disciplines as
well as what research contributes to practice. This also means an increased
understanding of what research that counts in the academic context. Finally I
argue that research should focus more on real problems of real development
work, rather than on research that is easily publishable.

Keywords: Usability, User-centered systems design, process, attitude.

1 Introduction

Why do we do what we do? How come we started doing research? What do we think
we contribute and who cares?

A couple of years ago I was an opponent on a PhD defense. I asked the defender:
“What is the real objective behind your research?” The thesis was put together in a
standard way, posing research questions in the beginning, examining the state of the
art, setting a methodology for answering the research questions, presenting results and
discussing them in relation to previous research. However, there was no discussion on
the main objective behind the research. I repeated:

What is the main research objective? To make it easier for you, I will give you three
options,

1. You want to change the world

2. You want to contribute new knowledge to the world

3. You want to get your PhD

The defender tried to get out of the situation by proposing a fourth alternative. I said:
“Please do, but if you do that I will show that whatever you propose actually is one of
the three options I have proposed”. So, the defender then claimed that he wanted to
change the world, and my immediate response was to ask him to explain why. During
his explanation as to why his research would change the world it became obvious for

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 1-110]2007.
© Springer-Verlag Berlin Heidelberg 2007

2 J. Gulliksen

him that that was not the main objective of his research. He then said that he wanted
to contribute new knowledge to the world, and of course I asked him to motivate his
contribution. Unfortunately the work he had done had some methodological flaws
meaning that the only conclusions that could be drawn from the work was that if he
had conducted the experiments a bit differently one might have been able to draw
some conclusions over the results. As a consequence of the discussion he finally said:
“I think I want my PhD”.

It is important here to clarify that this story does not have the purpose of making
fun over someone’s work or studies, but rather to have this serve as an illustration of
the utmost importance of this discussion. To clarify, I mean that any of the answers
are equally good. It is excellent if people do want to change the world — that is where
and when we really can make a difference. Also it is very good if people do contribute
new knowledge to the world. HCI is a field with quite a few white spots on the map,
why new knowledge is essential. Also it is very good if people do want there PhD,
because industry has a great need of well educated and experienced HCI researchers
(even if they are not fully aware of it yet). The important thing is that by asking
yourself what your main research objective is before starting you might be able to
focus on the really important questions rather than focusing on what is easy to get
valid results out of.

2 What Research Is Promoted?

What research is promoted? Given that the competition at conferences within the field
has risen tremendously, and given the relative importance of getting publications from
a personal merit value point of view, the research questions that people investigate are
often set to fit publications not necessarily meaning that it focuses on what is
important for the world. Conferences and journals promote quantitative studies before
qualitative, positivist research before hermeneutic studies, experimental research
before case studies and action research, and hence the research questions that people
select are biased towards what easily can be published. Let me take an example.
Defining a new evaluation method is relatively easy to do and to evaluate the validity
and reliability of such a method is also relatively straightforward and can be done in
an experimental setting. But, do we really need a new evaluation method? If the goal
is to increase the overall usability of a product is it really the new method that makes
the difference? Most likely not, it is the work and knowledge of the people involved
in the design and development of the system that makes the difference, and methods
may of course provide the hooks that those professionals can hang their knowledge
upon, but it is most likely that the knowledge and experience of the person doing the
work that makes the difference. On the other hand to really improve a development
process in practice will inevitably pose a much bigger challenge. And it is the
practice, the context it is set in that pose the challenges. To my experience in 9 cases
out of 10 things will happen in research in practice that aggravates the scientific
results, yet there are so much knowledge and experiences to be drawn from such
cases, yet they are much more difficult to get published in a scientific manner. My
argument here is that we should make more efforts of promoting research that actually
contributes to changing (and hopefully improving) the world than what is easily

How Do Developers Meet Users? 3

evaluated and justified. Research should also be judged based on its contribution to
the development of practice or knowledge that is useful for practice.

One of the reasons why this is problematic is that computer science research to its
nature is a positivist type of research and therefore research into computer science
seldom reaches the level in which it becomes important to judge qualitative terms.
One of the most well known professors at my university responded to my discussions
around this problem: “I do not understand your problem. In my research group we
invent a new processor and we can measure that it is 5 % quicker than previous
processors. That is what I call research.” Hence the problem of improving the
practical utility of the research is also a development of the scientific knowledge and
breadth of the knowledge from philosophy of science.

3 How Can Research Contribute to the Development of Practice?

I have for a very long time been cooperating with public authorities to improve their
system usability and computer supported work environment. The common
denominator of a lot of that work is that it is very difficult to specifically point out
what our contribution have been? There is not a particular method, tool or technique
that they adopt today that directly comes out of our research cooperation. But, at the
same time it is clear that our cooperation has had a tremendous impact on the way that
they now perform their development. It is clear that the awareness and knowledge
about usability and various approaches has developed significantly, at all levels in the
organization. But, none of the developed or proposed methods were actually adopted
as they were. Rather the organization needed to fell that they were in control and
hence they invented and developed their own approaches for these things. To a large
extent the approaches were adapted from the approaches proposed from research, or
inspired by research activities, but it was very important that the initiative came from
the organization.

One of the important contributions that the research has on practice is to emphasize
and develop the conceptual framework. This relates both to HCI-related terminology
as well as domain terminology. As we are very well aware of, HCI-related concepts
such as prototypes, design, evaluation, etc. has very different connotation to different
people within the organization. Research can here play an important role in specifying
and elaborating the conceptual framework, but it needs to be based on the practice of
the developers. This means that we must understand how various concepts are
interpreted by the different professionals using it, rather than how the dictionary
defines it. We can also make use of this understanding and base the approaches we
suggest on the commonly agreed upon definitions. Let me take a couple of examples:

One important distinction one can make is between a user test and a use test. User
testing has been used to a large extent to emphasize the importance of letting users
test the products and gather knowledge on how systems can be improved based on
this. On the other hand, others feel that by using the concept of user testing, we might
risk a false understanding that it is about testing the users. Of course this is not the
case, and I doubt that many people misunderstands this. The concept of use test would
of course be much better in this sense, but then on the other hand some people might

4 J. Gulliksen

mistake it for testing where you actually do not need to involve users. As an expert
you might be able to apply a use test.

Another conceptual difference that is often discussed is the variety of concepts
relating to any type of User-centered design (UCD). The ISO 13407 standard calls it
Human-centered design, arguing that human is a much broader concept than users. On
the contrary I have seen examples of the development of cow milking robots that was
developed in a user-centered fashion that definitely did not focus on the humans.
Another commonly used term is usability engineering, but to my experience usability
engineering is much more focused on improving the usability through evaluation
rather than focusing on the design in an iterative fashion. I have in other publications
below elaborated on the conceptual framework at length and will not go into further
detail here. The point is merely that if we want research to improve practice, we need
to focus more on establishing a mutual understanding of the language used in the
organization/project rather than on the academic conceptual discussion on the
definition of various concepts. What practice needs is a common mutual
understanding of the basic constructs among those involved in their development?

In addition to understanding the conceptual framework case studies and action
research provides some of the most interesting examples of success and failures that
we can learn a lot from. Extracting and generalizing the knowledge from various case
studies and reapplying different variants of the approaches in other real life action
research projects can move us towards a more successful development approach.
However, action research and case studies are not very easy to document and publish
and may often be open to critique due to the nature of the research approach. This
must not stop us as researchers from using the practice as our field of research and
generalize and extrapolate from these cases to a more general theory.

Successful UCD requires an understanding of the nature of the work of the people
involved. HCI has for a long time been concerned about the users’ situation, which
has given us several very important studies and theories on the user’s situation.
However, in terms of having this knowledge contribute to development in practice we
have not succeeded very well. Still with a number of user studies, user testing, etc.
developers still continue to develop systems the way they have always done. HCI
activities always become an add-on to the well-established processes that developers
deploy. Therefore I believe that if we want the research to have any impact we need to
focus on the main users of all our research results, namely the developers. We must
understand the nature of software development and the basic values and attitudes
among the developers and how these may be influenced because of the ways in which
we communicate and disseminate our research into practice.

4 Understanding Users

Understanding users, analyzing users, living with users, modeling users have been
issues that over the years have received a lot of attention. Literature on users shows
very different basic values and perspectives of how people view users and their
contribution to the development work. This has lead to a wide variety of different
myths about users and their involvement in the process:

How Do Developers Meet Users? 5

e Users have unrealistic requests; we must manage their expectations. It is
not the question of developing exactly what the users requests. It is more the
issue of interpreting the users wishes and in cooperation with them analyze
what requirements that actually should be put on the system to meet their
needs. And, by involving users on a regular basis you avoid unrealistic
expectation and the need for managing expectations.

e Users are not designers. On the contrary we have experimented with users
as designers of the conceptual design and interaction design of their system,
with tremendously good results both in terms of the results that these design
workshops gave and the efficiency of the process. But, such sessions do not,
and should not, deliver formal specifications of the user interface design.
They produce low-fidelity prototypes and scenarios and storyboards that
show the work with the systems in a way that is understandable to users and
that gives developers knowledge of the work beyond what can be captured in
the formal models.

e Users do not want change. This is partly true — initially the users do not
want change but when you start to work with the users on how they may
develop and improve their work situation, most users are prone to change
and do want to develop the ways in which they work. And if they don’t you
have either selected wrong users, or not given them the feeling that they
actually have the opportunity to contribute.

e Users adapt to everything. True, but this should not be taken as an
argument that the user’s needs and wishes are of less value. Users can adapt
to lousy situations and often do so, but their performance, and sometimes
even the security, may be heavily influenced if you don’t use the user
adaptation as an excuse for producing systems that are easier to develop,
rather than systems that are easy to use.

e Users rarely adapt their systems to their specials needs. Also true, but
mostly because the customization and individualization opportunities of the
systems often are added on after the initial design of the system and not seen
as an integrated part of the system. Careful considerations are required also
in the design of the ways in which users can adapt their systems to their
special needs.

e It is all about education and implementation. Education and a proper
introduction of the system to the work setting is of course very important and
needs to be planned and carefully conducted. But be ware that the
implementation process might reveal a lot of usability problems that should
be dealt with to increase the quality of the product. But far too often this is
not possible due to delays earlier on in the process.

These different myths have also been conserved and emphasized in various processes
and industrial applications. For example in the development of Objectory (the
predecessor to Rational Unified Process — RUP), Ivar Jacobsson changed the concepts
from users to actors in the description of the method. Originally he intended the
methods to focus on the users and their needs, but when this was changed to actors, it
also became the concept for a number of other things, leading to a view on actors
where there didn’t need to be any users available at all. Consequently one of the

6 J. Gulliksen

biggest problems for heavy RUP users is that they risk loosing the perspective that
they are actually developing for users. The process became the goal in itself. Of
course, processes are useful and necessary, but right now we need to fight back the
user perspective in software engineering processes, as this was lost years ago.

Unfortunately this has lead to a deeply rooted basic value of users and what their
role is in development that devalues their knowledge and potential contribution. I
often meet with developers that work hard to not have to meet with users and consider
it as a very tough task when they have to face the actual users of what they have
developed. This has also spread into the research community where several
researchers argue against user involvement, because it becomes unpredictable and
decreases the orderliness of development work. In a personal communication with
Larry Constantine a number of years ago he concluded (sort of in an ironic matter):
“Frankly it’s about keeping the users on an arm lengths distance”

5 Understanding Software Development and Developers

If we want to develop methods, processes, tools and techniques that can help
developers in producing usable systems, we must understand software development
and understand how software developers work. The HCI community has for a long
time been advocating a user-centered approach to the development of applications for
end-users, but have failed to adopt a user-centered perspective when it comes to
looking at what developers need and can make use of to meet the goal of developing
usable systems. I would therefore argue that an immature view on developers is
potentially very harmful to the goal and our views and perspectives on developers
need a much more serious attention.

Over the years in HCI conferences I have heard stories about “technicians”
describing them as asocial individuals that never wash or shave, and that smells. In a
review of a journal paper I wrote, one of the reviewers gave the following comment:

“Don't waste time with the geeks, unless you like hanging out with them. You'll never
get their money. The proper self-assigned job of the authors ought to be to work out
how HCI can make its deserved living from guaranteeing increased operational
effectiveness, i.e. Value For Money - something the programmers don't give the
project.”

I have even heard presentations in an ironic manner referring to software developers
as psychopaths, according to the definition of psychopaths as people who lack the
ability to put themselves in another person’s situation and lacking empathic abilities.
What is the effect of such an attitude towards developers? Will we ever reach the goal
of increasing the usability of systems, if we approach those who actually are going to
construct and build the systems in this way. Of course not, and that is probably why
we see the few researchers within HCI that deal with the practical application of HCI
in practice focusing, not on issues relating to software development, but rather
relating to power relations, such as the work on procurement issues and power
relations as a way to clarify who should be in charge.

I therefore strongly believe that we need to better understand the nature of the work
of software developers. We need to meet the developers in their actual tasks and

How Do Developers Meet Users? 7

provide tools, methods, techniques and processes that contribute to their work. “/t’s
all in a days work of a software developer.”

6 What Does/Can Software Engineering Contribute?

‘... there is a prolonged period of confusion at the start followed by a frantic
scramble to finish on time at the end” (McCoy, 2002)

Many software engineers that I have met act as if the world would have been much
better without people. The ideal software development tool would be a machine that
as input took requirements formulated according to a specific syntax and that
delivered a perfectly functioning and usable system as output. Even if the utopia is
achievable in the future it does not mean that software development in practice in the
future will rely less on the activities of individuals involved in the process.

So, in order to understand what software engineering and software engineers can
contribute, we need to study what it actually does contribute today, and what its major
problems are. What does software engineering contribute (among other things):

e Requirements gathering
e Development processes
e Tools

What does it lack (among other things):

e Ways of facilitating and promoting user involvement
e Ways of supporting informal activities such as design
e Understandable formats for documenting designs

Software engineering is an excellent discipline in bringing orderliness to a
tremendously complex process that lack transparency, since software during
development rarely gives the users an image of the system to be. But software
engineering also lack the humility of seeing its limitations and seeing the vast amount
of HCI knowledge that is available for inclusion, rather arguing that HCI must go
90 % of the way towards the integration into software engineering (personal
communication with Bonnie John). I believe that until the research has changed its
basic values when it comes to these issues, the practice won’t change.

7 What’s the Contribution of HCI and What Should It Be?

I attended a keynote address that Bill Buxton gave at the Local SIGCHI in Toronto in
2002. In his talk he listed the major inventions of HCI and concluded that all of them
were invented before 1982, when the CHI conference was born and when the field
became a field of its own. His ironic conclusion was that the academic field of HCI
had not contributed much to the practice of HCI. I might agree, that most of the
development within the field has taken place outside of academia. However, I doubt
that the development would have happened without the birth and growth of the
academic field of HCI.

8 J. Gulliksen

But, why have we not managed to make a significant contribution to the
development of practice? One well-known example in Sweden is the development of
systems for managing medical records. Despite studies showing the risks involved in
developing medical records without considering the user perspective decades ago,
organizations keep repeating the same problems over and over again. How come
nobody listens to the warnings from researchers within the HCI field? Why have we
not succeeded in getting the authority that is required for others to listen to what we
have to say?

I believe that the field of Human Computer Interaction, as well as the practice of
usability professionals, has a lot of things to contribute to the development process.
For one thing the approaches gathered under the umbrella of User Centered Design
(UCD) provides several methods and techniques for the process of developing
interactive systems with the focus on usability and on the perspective of the users.
However, UCD is not easily achieved, given the problematic contexts in which it
needs to take place. Therefore UCD in itself has some specific requirements. For
successful UCD we need to:

Get the right support from management

Determine the importance of usability in the organization
Actively involve users in the design process

Use understandable design representations in the development
Involve usability designers.

Therefore we need to understand the usability profession as well. After all, these are
people we must not only cooperate with, but also support. The usability profession is
perhaps the most significant impact the HCI community has had on practice. As every
profession they are faced with some problems. Some of the major problems we have
encountered with the usability profession are:

Lacking impact in the development process
Lack of time, resources, knowledge, interest, etc.
Unclear responsibilities

Lack of consistency in naming

These problems are neither new nor unique for a newly established profession.
Rather they are problems that probably would be easy to overcome if dealt with in
the right way. An initial problem with all new roles and professions is that they
need to justify their role to a higher extent than other already existing roles. One
way of doing this is to alter the work more towards contributing to the design rather
than commenting on and evaluating other people’s work. The usability
professionals must have “skin in the game” (Cooper, 1999). UCD professionals
who focus on doing “studies”, as opposed to generating designs and products, will
always be perceived as peripheral.” (Siegel & Dray, 2003). The usability person
must participate in all the user-centered activities, to prevent valuable information
from being lost in the transitions between the activities, in accordance with the
principle of integrated design (Gould et al., 1997).

How Do Developers Meet Users? 9

8 Conclusions

At the end of the road, research in HCI and SE, as well as the work of usability
professionals all deal with the problem of developing usable systems. I strongly
believe that if we want to have any impact on practice, we need to focus more on how
our research is implemented in practice and why it fails, and then make use of that
knowledge to define new research questions. Over the years our research has
produced new methods, tools, processes and roles — yet these have not changed the
world to any larger extent. Very few of the methods that have been developed by
researchers have been applied by anybody else than the inventers themselves. What is
the reason behind this? How come others do not apply the methods to the extent that
they deserve?

I believe that the main reason for this is that the development of such methods
mainly are based on the market of science — by developing these methods you will get
a neight study that is relatively easy to publish. On the other hand a good action
research study or case study may be interpreted as theoryless, unstructured and even
“sloppy”, and hence the opportunities of getting it published is much less. But the
potential utility for practitioners is unquestionable. In other words, if you want to
change the world a new process or a new tool will most likely not change the practice
of developers. The real improvement or development comes when practitioners
change their ways of work and ultimately maybe their view on the work and the
context for which they are developing. Users become a necessary source of
information, not only on the work of today, but also on the potential of the future,
instead of being a source of aggravation and disturbance. Usability doesn’t happen by
accident, but rather comes as a result of a thoughtful and enlightened design process
focusing on usability. And how can we manage such a development process?

We need to work on the attitudes and basic values among everybody involved in IT
development and use. We need to determine how important usability is for everybody?
Further we need to determine who is responsible for usability and how do people
respond to this responsibility? Finally, we need to get an understanding of what type of
management support (project and overall management support) usability do have? To
our experience every developer should get first hand experience from the users using
the system. If practitioners can get immediate and first-hand experience of this
perspective, that is when the people start to develop and when people tend to change.

References

Cooper, A., (1999) The Inmates are Running the Asylum, SAMS, Indianapolis.

Gould, J.D. Boies, S.J., Ukelson, J. (1997) How to design usable systems, in: Helander, M.
Landauer, T.K., Prabhu, P. (Eds.), Handbook of Human-Computer Interaction, Second
revision, Elsevier Science B.V., Amsterdam, pp. 231-254.

Jacobson, 1., Booch, G., Rumbaugh, J., (1999) The Unified Software Development Process,
Addison Wesley Longman Inc., Reading.

McCoy, T. (2002). Usability: Who Cares? In Usability Gaining a Competitive Edge. IFIP
World Computer Congress 2002. Hammond, J., Gross, T., Wesson, J. (Eds), pp 283-294.
Kluwer Academic Publishers.

Siegel, D., Dray, S., (2003) Living on the edges: user-centered design and the dynamics of
specialization in organizations, Interactions, X.5. pp. 19-27.

10 J. Gulliksen

Bibliography

Following are some of the research that I have been involved in that may provide
additional guidance to the issues that this keynote paper is dealing with. I have tried to
order them into categories of fields that may seem relevant to your needs.

User Centred Systems Design

Key Principles for User Centred Systems Design — Jan Gulliksen, Bengt Goransson, Inger
Boivie, Stefan Blomkvist, Jenny Persson & Asa Cajander (2003) Behaviour and Information
Technology, Vol. 22, No. 6, pp.397-409

Usability professionals

Usability Professionals — Current Practices and Future Development — Jan Gulliksen, Inger
Boivie & Bengt Goransson (2006) Interacting with Computers, Vol. 18, No. 4, pp. 568-600.

The Lonesome Cowboy — A Study of the Usability Designer Role in Systems Development —
Inger Boivie, Jan Gulliksen & Bengt Goéransson (2006) Interacting with Computers, Vol. 18,
No. 4, pp. 601-634.

Making a Difference — A Survey of the Usability Profession in Sweden — Jan Gulliksen, Inger
Boivie, Jenny Persson, Anders Hektor & Lena Herulf (2004) In Hyrskykari A. (ed.),
Proceedings of the 3rd Nordic Conference on Human Computer Interaction, NordiCHI
2004, Tampere, Finland, ACM Press, pp. 207-215

Basic values

Management Perspectives on Usability in a Public Authority — Asa Cajander, Inger Boivie &
Jan Gulliksen (2006) Proceedings of the 4th Nordic Conference on Human Computer
Interaction, NordiCHI 2006, Oslo, Norway, ACM Press

Usability And User’s Health Issues In Systems Development - Attitudes And Perspectives —
Asa Cajander, Inger Boivie and Jan Gulliksen (in press) In Effie Law, Ebba Hvannberg,
Gilbert Cockton and Jean Vanderdonckt (eds.) Maturing Usability: Quality in Software,
Interaction and Value. Springer

SE and HCI

Human Centred Software Engineering: Integrating Usability In The Software Development
Lifecycle — Ahmed Seffah & Jan Gulliksen, Michel Desmarias (2005) Kluwer Academic
Publishers.

The Usability Design Process — Integrating User-Centered Systems Design In The Software
Development Process — Bengt Goransson, Jan Gulliksen & Inger Boivie (2003). In the
Special Issue on Bridging the Process and Practice Gaps Between Software Engineering and
Human Computer Interaction edited by Rick Kazman and Len Bass. Software Process
Improvement and Practice, Vol. 8, No. 2. pp. 111-131 Wiley

Usability Design—Extending Rational Unified Process With A New Discipline —Bengt
Goransson, Magnus Lif & Jan Gulliksen. (2003) In LNCS volume 2844 "DSV-IS 2003:
Issues in Designing New-generation Interactive Systems Proceedings of the Tenth Workshop
on the Design, Specification and Verification of Interactive Systems" DSV-IS 2003.

Validity and Cross-Validity in HCI Publications

Harold Thimbleby

Department of Computer Science, Swansea University, Wales
h.thimbleby@swansea.ac.uk

Abstract. Papers in HCI play different roles, whether to inspire, solve
industrial problems or further the science of HCI. There is a potential
conflict between the different views, and a danger that different forms of
validity are assumed by author and reader — deliberately or accidentally.

This paper reviews some of the issues in this complex area and makes
practical recommendations. In particular, the paper introduces the term
“cross-validity” to help make explicit the issues, problems and means to
tackle them.

1 Background

Errors in published scientific papers play different roles. Resolving an error may
advance science, it may uncover fraud, or it may remain undetected and delay
progress or it may (being undetected) cause inexplicable and apparently unavoid-
able problems. At another extreme, an inspiring paper may be no less inspiring
despite manifest errors — researchers will be stimulated to sort out the errors
and inaccuracies they wish to overcome.

Papers can be sound but incomplete; or, a common problem, the analysis
correct, but the data flawed. There seem to be many ways for errors to creep in.
Papers can be valid in at least three different senses: they may be objectively
valid; they may appear valid; or they may be effective for the community (or some
sub-community) of researchers. Philosophers may further argue that objective
validity is unattainable in any case — there is no rational truth to be ‘valid’
about in a paper.

In HCI, we have different sources of confusion or possible confusion over types
of validity:

— Many techniques in HCI are developed to be used on prototypes or approx-
imations, particularly techniques intended for application in system eval-
uation (e.g., cognitive walkthrough). It is then a short step to do scientific
research with prototypes and approximations instead of real, robust systems.

— Doing good HCI (or usability) involves a particular process, typically start-
ing with something like task analysis, progressing through prototyping and
implementation, then evaluation, then iteration. If any HCI publication must
show evidence of this process to be valid, then some sorts of HCI may be be-
ing excluded. This is a particular problem with doctoral work in HCI, where
examiners may expect a three year or longer research project to exhibit all
features of the HCI process.

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 11 2007.
© Springer-Verlag Berlin Heidelberg 2007

12 H. Thimbleby

— HCI is of course multidisciplinary. At worst, one discipline’s validity is an-
other’s irrelevance. Computer scientists may do work ignoring psychology,
and vice versa. Mathematicians may do work that cannot be implemented.
And so on. Grudin covers these issues very well [9].

— Almost all work in HCI involves a complex system, one or more humans, a
task and an environment. Few of these are ever fully defined in a paper, or
understood by an author; in fact, the user and environment rarely can be
defined, and the interactive system itself is rarely available for inspection.
In short, work in HCT is based on approximations — that may compromise
validity.

— Since a goal of HCI is usability, then it has been argued publications should
be usable. If this is believed, then hard papers (e.g., containing mathematical
theory) will be published less.

— Usability is the improvement of specific products, for instance in production,
whereas HCI as the field of research, for instance refining the principles of
design. However the words are defined, there is a conflict on what valid work
is. For example, Wixon [20] claims very strongly that the current HCI liter-
ature fails — probably because he applies a usability perspective to papers
that might not themselves claim to be usability but HCI. Usability profes-
sionals read and referee the HCI literature, and their standards, particularly
concerning rigour, the significance of errors and handling errors is pervasive
in the field. Whether that matters, and if so, from whose point of view, is a
crucial point.

— More generally, HCI is a multidisciplinary subject, with disciplines drawn
from a very wide variety of traditions. Notions of validity are especially hard
to appreciate across disciplinary boundaries, because they are often implicit
in the respective discipline’s traditions. For example, a mathematician may
not appreciate the difficulty in even identifying research questions in a soft
approach; a social scientist may not appreciate the difficulty of programming
correctly; and a programmer may not appreciate the nature of rigorous ex-
perimental methods with human subjects (let alone the ethical issues). A
recent book in activity centred design writes, “Leont’ev (1981) created a for-
mal structure [that is] less a representation of reality than a heuristic aid”
[6]. To a mathematician this makes as little sense as modal logic must to an
activity theorist; yet both can contribute to HCI, and will contribute more
if we can find ways to bridge the disciplines — whilst remaining true to the
disciplinary notions of validity.

Those are brief presentations of deep issues — that we will not resolve in
this short paper! The point is to indicate the nature and depth of the problems.
What the tensions represent is that there are many ways for author and reader
of papers to have differing approaches to validity. Indeed, in HCI this tension
seems inevitable. How can we reduce or resolve the tensions? How can we agree
to differ where differing is appropriate? Some even argue (with the backing of
usability experiments) that validity itself is not a valid notion in HCI [12].

Validity and Cross-Validity in HCI Publications 13

We often have a naive view of validity. “The scientific researcher writes objec-
tively and is devoted to the pursuit of truth, regardless of pressures such as career
progression, financial inducement, fame, or whatever.” If we think or teach this
simplistic view, then dealing with the reality of error in research will be even
harder. Neither readers nor writers of papers will be prepared to guard against
potential problems — because they do not expect them. Indeed, referees will not
be prepared either, and poor papers will slip through. In turn, the next genera-
tion of students will read the poor papers and think that they set the standard
to aspire to; thus the next researchers will likely work to lower standards than
the ideals of the previous generation.

Errors may mislead readers of a paper and waste time as researchers attempt
to reproduce work that has been inaccurately reported. Perhaps worst is when
a community ignores minor errors, and standards drop. Perhaps nobody minds
if science progresses faster because putting less effort into polishing papers for
publication means they can be published faster, but in the long run lowering
standards lowers publishing standards. Again: a vicious cycle ensues: poor pub-
lications are taken to define the standards of acceptable research, and worse work
is then published to appear to be of that standard. New researchers do not learn
or appreciate rigour.

The appearance of validity is a problem: researchers may read a paper, work
from it, but ultimately be wasting their time — does it appear to be valid
because its author thought it was (in which case, researchers are helping correct
the misconception); does it appear to be valid but isn’t because the author was
sloppy (in which case, the author is wasting people’s time — or the referees of
the paper didn’t reject it and should have); or perhaps the paper is in some sense
fraudulent, and the author intended it to be published, sloppy or not.

Arguably, confusion between the different sorts of validity with respect to
the status of a particular paper is the problem, certainly a bigger problem than
errors, or even fraud per se. Confusion in the mind of a reader is worse than
confusion (or ignorance) in the mind of a writer as there are usually many more
readers than writers. For example, being knowingly inspired to do better is dif-
ferent (and far more constructive) than being misled. But this relies on correctly
recognising the status of the paper. Even a fraudulent paper might inspire people.
People wanted to research on cold fusion regardless of validity: they suspected
the Fleischmann and Pons work [5] was fraudulent or exaggerated, but it gave
the area a useful impetus and more funding regardless.

The difficulty of reproducing research will discourage researchers from trying
to build on the foundations of published research; research methods will be
understood less, they will be refined less (as fewer people try to use them), and
new research will be isolated — and it will also be harder to assess.

In short, we should try to reduce errors, from whatever causes. However, as
our knowledge is incomplete, some errors are inevitable: we should also try to
improve the detectability of errors. Of course, our attitudes must be realistic and
appropriate to purpose: in some areas, we want to be inspired, for instance by
futuristic fiction which explores how things might be other than they are, but in

14 H. Thimbleby

other areas, such as flight deck safety in aircraft, we want to be certain, so far
as possible, to avoid errors and to make the detection of non-avoided errors as
easy as possible. In science, also, we want to report results so that potential or
actual errors in our work are as readily detectable as possible.

Notwithstanding Francis Bacon (truth will sooner come out from error than
from confusion) [2] and others, Popper [I3] was the first to present a systematic
argument on the importance of being refutable — and of being clearly refutable
by being sufficiently precise that errors could be spotted, rather than missed or
dismissed. Gray and Salzman’s classic though controversial paper [7I8] was an
exposé of a widespread relaxed attitude to statistics and experimental method
in human-computer interaction. A review of the Journal of Machine Learning
Research suggests that about a third of its programs are not reproducible [17];
Mlodinow [I0] recounts the Nobel Prize winner Richard Feynman’s reaction to
fraudulent physics, namely he was more concerned at its wasting the time of
honest researchers — see also Feynman’s discussion of radical honesty [4], which
emphasises the central importance of doing science so that potential errors and
assumptions are intentionally made clear rather than, as is common, concealed
or ignored. There is a large literature on error in science, with [I9] being a good
review. In computing, tools are available to improve reproducibility [I6], a paper
that also includes substantial discussion of reproducibility in different disciplines.
(I know of no such tools for HCI specifically.)

2 Handling an Error

David Mackay, Alan Blackwell and their colleagues have reported to me that
there is an error in my own paper [I5]. This particular error resulted from my
sloppy proof reading of the paper, which is embarrassing, but I hope that is
mitigated by the fact that the error could be, and indeed was, detected.

The Appendix of the present paper briefly summarises the error, and shows
alternative approaches to how it can be corrected. Although the case is concrete
and (at least to me) interesting, the details have been moved into a self-contained
Appendix. The purpose of the present discussion is to generalise, rather than
dwell on the specific issues of a particular paper, though of course that paper
illustrates the principles.

In terms of the business of science, reporting and correcting a published error
is no more than a footnote to a journal’s wider business. On the other hand, the
paper in question proposes not just a scientific idea advancing research in the
field (e.g., under-pinning [18]), but the theory itself is an approach that can be
developed further for practical user interface design. The detection and correc-
tion of an error in the paper is not just correcting a piece of science publishing,
but can also be seen as a parable of detection and correction of errors in practi-
cal user interface design. Just as we do not want to mislead researchers, we do
not want designers to use methods that allow them to be misled in real design
projects: when researchers are misled, time is wasted; when designers are misled,
bad systems will be built and lives will be risked. In other words, what at first
sight is a criticism of the paper and its author (there was an error) in fact is an

Validity and Cross-Validity in HCI Publications 15

argument providing support for applying the approach (the error was detected),
certainly in safety related applications.

Detailed discussion of the error in the paper is provided in the Appendix [A]
and the discussion and lessons are summarised in Appendix [Bl

3 Different Sorts of Error

Although authors may take steps to disguise an error, or an error may be con-
cealed or ignored by accident, in principle errors can be identified. We may
distinguish between internal errors: errors that can be spotted by the internal
evidence or arguments of paper; errors that can be spotted only by reference
to external information (perhaps locked in lab books, or transient and lost);
and errors of reportage, which can only be spotted, if at all, by reproducing
experiments and collecting more data.

Quite different sorts of problem arise through vagueness and witholding in-
formation. Within these sorts of inadequacy, we can see variations:

— Inadequacy due to brevity. The paper is too short. The simplest solution
here is to make good use of the internet or FTP to provide supplemental
material.

— Inadequacy due to separation. The work was done too long ago (or the paper
is being read by somebody some years after it was written). Details are now
no longer available — particularly computer-based material. The solution
here is to use media like digital libraries and journal repositories that may be
archival, or at least far more likely to be archival than the author’s resources
permit of local storage.

— Due to sloppiness or disregard to standards, the work is vague.

— Due to exaggeration or ‘clarification’ the work as reported is in some ways
better than was actually obtained.

4 Recommendations

This paper has reviewed the role of error in science publication (and has given a
‘worked example’ centred on and exploring the consequences of an error in one
of the author’s own HCI papers). So what?

Lessons can be drawn out of the discussion and example, which lead to rec-
ommendations for better practice.

4.1 Star Rating

First, it is important that there is a close match between the author’s intentions
and the reader’s understanding of the status of the paper. As an extreme exam-
ple: a paper written in jest is humourous if the reader recognises it as funny; and
a serious paper would not be successful if the readers thought it a joke, and wvice
versa (notwithstanding [T4])! A simple idea, then, is that papers should clearly
indicate key features of their claim to validity. For example, a star rating could
be used — as follows.

16 H. Thimbleby

A paper that merely claims to be inspirational might have one star. The paper
would be refereed on the basis of how inspiring it was, not how reliable it was.
Maybe the ideas discussed do not quite work, but nevertheless they are very
interesting. A two star paper claims, further, to have got something to work,
but perhaps not everything. All the way to a five star paper that claims not
only do the ideas work as described, but all background data and programs are
available from a server. The exact definitions of the star ratings would depend
on the journal (or conference) and the field. A mathematics paper, generally,
makes an implicit claim to be five star in this sense — hence the error in my
own paper was an issue, because it betrayed the implicit star rating.

Note that an author can improve the star rating of a paper. They can include
more data or program code, or provide URLSs for readers (and referees) to access
the original information. There are many papers, in journals and conferences,
that describe systems — but the systems are not available. One may wonder
how the actual system implemented and the published paper conform. If we
had a culture of awarding stars to papers, there would be a pressure to make
papers and what they are about correspond more closely — and be more open to
inspection. Indeed, the more stars, the more easily another researcher can build
on or reproduce the original work.

Another way of viewing the star rating is answering the question, “does the
system described work?” Almost everything in HCI is about an interactive sys-
tem and the author’s experience with it (or the author’s experience of a user’s
experience with it), so something should have worked! So: zero stars for things
that do not work; one star for something that almost worked, or worked well
enough for a small experiment; two stars for something that really works — but
has only be used for the purposes of the paper; three stars for something that
not only worked for the paper, but has been developed to work elsewhere as well;
four stars for something that has been rigorously tested elsewhere, on different
platforms; and five stars for something that is supported to work well anywhere.

4.2 Triangulation

Secondly, authors (and editors and referees) should encourage triangulation:
more than one way of justifying a result. If a paper is the only claim to the
result, there is no triangulation. One takes the paper on faith (which may be
expoited). Triangulation requires alternative routes to the same result — the
simplest is that the paper provides URLs so that any reader of the paper can
reconstruct for themselves the same results. The discussion of the matrix error
above gave several ways in which the same result can be found.

In short, publishing and doing research in a way that promotes triangulation
improves the assurance of the results, as well as giving the reader of the paper
more choices in reproducing, understanding, or working from the claims made.

4.3 Data, Formal Argument, Programs, etc, Downloadable

Thirdly, many more formal papers in HCI (and papers aspiring to formality)
present fragments of formal text. Often the fragments or the notations they are

Validity and Cross-Validity in HCI Publications 17

written in are not fully defined. It is of course very hard to abstract out what
needs saying for a paper; a full elaboration may take up excessive space. However,
mostly, it is a reasonable expectation that the author has actually done the work
that the paper abstracts. If so, the work should be available in full, for instance
at a URL.

I know of no journal in HCI that has a working mechanism for reporting cor-
rections to papers, let alone a means for encouraging the detection or correction
of errors. (Conferences are inevitably in an even worse position.) Why don’t
journal web sites have explicit correction threadsT]

As Altman [I] says, if journals are willing to publish subsidiary material on
the web, they should explicitly tell authors. More so, journal articles would
be improved if it was made clear to readers whether and to what extent the
published paper is backed up by subsidiary material; this is a specific form of
star rating.

Who would wish to publish papers that announce near their title banner that
there is no supporting subsidiary material, if the paper clearly has the nature that
there should have been such material (e.g., the paper discusses results obtained
from a program; the program presumably exists and was at least once run)?
No doubt authors would aspire to the greater prestige of having the right boxes
ticked!

4.4 Further Work

Stylistically it is tempting to mix fact and vision. Often fiction is much clearer
than the messy reality. What an author plans to do, planned to do, or would
rather have done may make a lot more sense that what actually happened.
Indeed it is sometimes recommended to write what you want to happen, so that
expressing clear goals will guide experimental work; this obviously leaves open-
ended the obligation to fix up the writing when the experimental work fails to
deliver the original goals neatly.

In some fields, papers fit into standard patterns (e.g., “introduction; previous
work; method; experiment; discussion; conclusion; references”). These standard
patterns do not help factor out fact from wishes. Many papers, then, would be
improved by having a section clearly labelled Further Work, or equivalent, so that
the author can explain the simple vision without risk of misleading the reader.

4.5 Clarification and Communal Practice

Finally, we need to sort out these (or better) ideas, because many authors —
and doctoral students — are working hard to advance our field, but they may
fail in one of two ways:

— They may fail to publish because their notions of validity are not the disci-
plinary notions of their referees’ or examiners’. We will call this the cross-
validity problem.

1 It was the lack of a working facility in the ACM Transactions on Computer-Human
Interaction that stimulated the writing of this paper.

18 H. Thimbleby

— In order to avoid the cross-validity problem (consciously or accidentally)
authors may succeed in publishing invalid work that is hard to tell is invalid
in any discipline.

4.6 Learning from Other Fields

HCT is not unique in its problems of validity; compared to medical fields, the
debate surrounding Gray & Salzman [7] is tame! For example, von Elm and
Egger lament the ‘scandal’ of epidemiological research [3]. Since problems in
medical fields have had a longer history than in HCI, various standards have been
developed such as the Consolidated Standards for Reporting Trials (CONSORT)
and the Standards for the Reporting of Observational Studies (STROBE), etc.
I believe it would be an advance if HCI developed or adopted such standards,
so that they can be used where applicable — and so that authors can aspire to
higher, and explicit, standards in the validity of their work.

Another suggestion from the medical field is post publication peer review [1].
Some HCI journals (such as Interacting with Computers), have had reviews, but
these have not been sustained.

4.7 An Incomplete List ...

This list of recommendations is incomplete. It raises issues, and suggests solu-
tions. There are many other issues, and other solutions. I hope the list stimulates
the HCI community to address the problem of validity, whether incrementally
or radically, whether starting from this list or by introducing new ideas. The
benefits of improved validity are substantial, and the field clearly has the scope
to improve.

5 Conclusions

Theories should be clear and robust enough that errors in their exposition (as in
this case) or in their foundations can be reliably and robustly detected. The error
reported and corrected in this present paper was essentially a typographical error
rather than a conceptual error that needed correction for ‘science to progress.’
Instead, it can be used to make another point, about the practical application
of theory. Had the error or a similar error been made in the design context,
it could have been detected and rectified before a faulty product was put into
production.

HCI is a very difficult and broad discipline. The difficulties we have in doing
good work and reporting it accurately may lead to compromising validity — and
to errors. By discussing errors and their role in publication, this paper also sug-
gested some criteria for improving the detectability of errors, and improving the
author: reader match of expectations of validity: requiring triangulation, and us-
ing a ‘star rating’ system. As well as a list of recommendations, which are of course
of varying value in different subfields of HCI, we introduced the term cross-validity
problem to enable the community to talk about the central issue explicitly.

Validity and Cross-Validity in HCI Publications 19

To make any recommendations (such as the list above in this paper) work,
ways must be found to make the recommendations sustainable. Currently, many
economic and political factors conspire against improving validity. In the UK,
the Research Assessment Exercise attaches no importance to reviewing work for
maintaining or improving quality. Instead, it strongly emphasises the value of
publishing, and therefore it must tend to increase the volume of publication,
and, other things being equal, reduce the standards of validity in publication.

If we do not address validity (and the problem of cross-validity) in HCI we are
losing sight of the point of HCI: to improve the quality of life of users, which will
come about faster and more reliably through pursuing validity in the relatively
abstract realm of research, publication and publication processes.

Acknowledgements

The author thanks David Mackay and Alan Blackwell, Cambridge University, for
pointing out the error, the consideration of which triggered this paper. Jeremy
Gow pointed out that MAUT was already powerful enough to detect the problem.
Harold Thimbleby is a Royal Society-Wolfson Research Merit Award Holder, and
gratefully acknowledges this support, which also supported the original research.

References

1. D. G. Altman, “Poor-quality medical research: What can journals do?” Journal of
the American Medical Association, 287(21):2765-2767, 2002.

2. F. Bacon, Novum Oranum (The new organon or true directions concerning the
interpretation of nature), 1620.

3. E. von Elm & M. Egger, “The scandal of poor epidemiological research,” British
Medical Journal, 329:868-869, 2004.

4. R. P. Feynman, “Cargo Cult Science,” in Surely You’re Joking Mr. Feynman! R.
Hutchings ed., Vintage, 1992.

5. M. Fleischmann & S. Pons, “Calorimetry of the Pd-D20 system: from simplicity
via complications to simplicity,” Physics Letters A, 176:118-129, 1993.

6. G. Gay & H. Hembrooke, Activity-centered design, MIT Press, 2004.

7. W. D. Gray & M. C. Salzman, “Damaged merchandise? A review of experi-
ments that compare usability evaluation methods,” Human-Computer Interaction,
13(3):203-261, 1998.

8. W. D. Gray & M. C. Salzman, “Repairing damaged merchandise: A rejoinder,”
Human-Computer Interaction, 13(3):325-335, 1998.

9. J. Grudin, “Crossing the Divide,” ACM Transactions on Computer-Human Inter-
action, 11(1):1-25, 2004.

10. L. Mlodinow, Some Time with Feynman, Penguin Books, 2004.

11. J. Gow, H. Thimbleby & P. Cairns, “Misleading Behaviour in Interactive Systems,”
Proceedings BCS HCI Conference, 2, edited by A. Dearden and L. Watts, Research
Press International, pp33-36, 2004.

12. G. Lindgaard, “Is the notion of validity valid in HCI practice?” Proceedings 7th
International Conference on Work with Computing Systems, pp94-98, 2004.

20 H. Thimbleby

13. K. Popper, The Logic of Scientific Discovery, Routledge, 2002.

14. A. Sokal, “Transgressing the Boundaries: Toward a Transformative Hermeneutics
of Quantum Gravity,” Social Text, 46/47:217-252, 1996.

15. H. Thimbleby, “User Interface Design with Matrix Algebra,” ACM Transactions
on Computer-Human Interaction, 11(2):pp181-236, 2004.

16. H. Thimbleby, “Explaining Code for Publication,” Software — Practice € Experi-
ence, 33(10):975-1001, 2003.

17. H. Thimbleby, Journal of Machine Learning Research, Times Higher Education
Supplement, 9 May, 2004.

18. H. Thimbleby, “Computer Algebra in User Interface Design Analysis,” Proceedings
BCS HCI Conference, 2, edited by A. Dearden and L. Watts, Research Press
International, pp121-124, 2004.

19. J. Waller, Fabulous Science: Fact and Fiction in the History of Scientific Discovery,
Oxford University Press, 2004.

20. D. R. Wixon, “Evaluating usability methods: why the current literature fails the
practitioner,” Interactions, 10(4):28-34, 2003.

A The Error

Ironically the error in question occurs in the discussion of a safety related in-
teractive device [I5, p217]. The user interface of a commercial Fluke digital
multimeter is being discussed. The meter (like many user interfaces) has modes
that change the meaning of buttons: in different modes, buttons mean different
things. In particular the Fluke multimeter has transient modes entered by press-
ing shift keys: these change the device mode briefly, which is then restored after
the next key press.

It suffices to quote an extract from the original paper as published, along with
its original error:

The Fluke meter has a shift button, which changes the meaning of other buttons if
they are pressed immediately next. (It only changes the meaning of three buttons,
including itself, all of which anyway have extra meanings if held down continuously;
additionally, the shift button has a different, non-shift, meaning at switch on.) In
general if S represents a shift button and A any button, we want SA to be the
button matrix we choose to represent whatever “shifted A" means, and this should
depend only on A.

For any button A that is unaffected by the shift, of course we choose SA = A.
Since the shift button doubles the number of states, we can define it in the usual way
as a partitioned matrix acting on a state vector (unshifted-state : shifted-state).
Since (at least on the Fluke) the shifted mode does not persist (it is not a lockable
shift), all buttons now have partitioned matrices in the following simple form

Austiied 0
0 i Ashifted

Validity and Cross-Validity in HCI Publications 21

and

which (correctly, for the Fluke) implies pressing SHIFT twice leaves the meter
unshifted (since the submatrices are all the same size and SS = I).

The error in the above description is that the matrix written as

Auwnshifiea £ 0
0 i Ashifted

should have been

This could be argued a trivial error for a scientific paper (a rate of 0.5%
error reported per page), and one that is surrounded by context that makes the
intention clear. However, had the same error been made in a real design, then
the specified device would not behave as intended, perhaps catastrophically so.

That Mackay could spot the error is some encouragement that a designer, or a
design team, could equally spot similar errors in an actual design process. How,
then, might the error be detected — and are there more general lessons than the
particular example?

For clarity, hereon we notate the correct matrix A and the erroneous matrix
A. The matrix, in either its correct or incorrect form, is clearly a composite of
an unshifted and a shifted meaning. The differences between A and A appear in
how the shifted meaning persists, or does not persist, as the button is pressed
repeatedly by the user. A allows the shifted meaning to persist, which is incorrect.

We now present three very different ways of seeing this error. One is suitable
for hand calculations; the next more suited to an automatic tool such as MAUI
[11] (which can already detect this problem) or a computer algebra system [18];
finally, we show there is an informal approach to detect the error that would be
open to any designer but (like all such approaches) suffers from the likelihood
of false positive assessments.

A.1 A Straight Forward Calculation

The paper gives a recipe for constructing any matrix A from its shifted and un-
shifted meanings, Agpifted and Aunshifted- Since shift is not supposed to persist, for
any two matrices A and B each constructed in the way suggested, the product AB
should not mention Bgpifted, since a shift before A could only affect A but not B.

If we follow the construction shown in the original paper, unfortunately
Bgpiftea does appear in the product (it is highlighted by an arrow):

22 H. Thimbleby

. AunshiftedBunshifted 0
0 i Ashifted Bshifted

Thus if A is shifted, B must be also, which is incorrect (though of course the
whole matrix is wrong). Compare this result with the correct construction:

AshiftedBunshifted 0

Here, there is no Bgpifteq in the product anywhere; whether A is shifted or
unshifted, the meaning of AB depends on Bypshifted and not on Bgpifteq under
any circumstances. This is what is meant by the shift not being persistent.

As an aside, it is interesting to note that we can examine the meaning of
two consecutive key strokes without knowing what preceded them (or even the
actual state of the device before they are pressed); indeed, in this case we know
what AB means regardless of whether it follows S or not.

A.2 A Mode Based Calculation

The design tool MAUI [I1], which Gow built for exploring properties of interac-
tive systems specified by matrix algebra already has facilities for detecting this
class of error. Here, we show how MAUI works.

It is important to remember that the mathematics is concealed by the tool.
A designer using a suitable tool need not be as mathematically literate as the
exposition here appears to suggest.

MAUT can find device properties automatically (such as the partial properties
discussed above); relations between modes are just another case of the properties
MAUTI can handle. In particular, properties MAUI discovers about a device can
be expressed in terms of modes and mode changes.

MAUI defines modes as sets of states. We would therefore define two modes,
s and u representing the shifted and unshifted modes. The designer would be
told that uA remains in mode u but that sA stays in s. But sA should have
returned to mode u!

Inside MAUI, this is how it is done: A mode is represented as a vector, such
that for all states s in the mode M represented by m, my; = s € M. We define
Oa C b = Vi:a; = b;. It is now a routine calculation to show Oud C u and
OsA C s (which is the error), whereas OuA C u and OsA C u (which is correct).
Our notation is suggestive of counting states in a mode, and this is in fact what
MAUT does.

Validity and Cross-Validity in HCI Publications 23

A.3 Simulation

MAUI allows a device to be simulated (and many other tools can simulate devices
specified by matrices or equivalent formalisms), and it is a simple matter for a
designer to try out a simulated device out in order to satisfy themselves it behaves
as intended.

The problem here is that any hand-driven simulation will likely miss errors
— the designer might have been more worried over some other potential error,
and omitted to test whether the shift key effect was persistent or not; or the
designer might have found that the shift key works, but they have failed to check
every possible combination of key presses. The state spaces of typical devices are
enormous, and way beyond direct human assessment.

Though a simulation is realistic, a designer is really in no better a position
than a user: just because the device appears correct in some or even in a ma-
jority of states, the designer is liable to believe the device correct on incomplete
information. Worse, the areas of the device the designer explores carefully are
likely to be areas of concern and hence are anyway the areas that have been more
rigorously designed; problems may remain undiscovered in areas that no designer
has paid much attention. For safety related devices, therefore, it is crucial that a
tool-based or mathematical analysis is made. Indeed, if a designer ‘plays’ with a
device simulation in MAUI and believes some property true, they can ask MAUI
to confirm this or point out the conditions under which the property fails.

B Discussion

In short, the paper [I5] claimed a property (shifted meanings do not persist) and
showed a matrix that failed the claimed property, as is evident by the straight
forward calculations carried out above. In the design context, perhaps the matrix
A or A would be proposed, and would then be checked against the desired
property or properties. Simply, A would fail the test and would be eliminated
from the design.

Had a similar design issue (or claim in a scientific paper) been treated using,
say, transition diagrams, which are a superficially simpler formalism, it is un-
likely that the design property could have been checked, let alone analysed so
readily. Matrices have the clear advantage of being easy to calculate with. Indeed
the calculations needed above were routine and easy to do by hand (they only
involved 2 x 2 matrices — regardless of the complexity or sizes of the submatrices
Ashifted and Aunshifted)-

Arguably the algebraic formula OsA C s (or its straight forward translation
into words: pressing the button a keeps the device in shifted mode) is a clearer
representation of the error than the earlier result involving AB, but the calcu-
lation using modes relies on being very clear about which states are in which
modes, as well as doing a multiplication involving all states. Such calculations
are better suited to a computer than a human!

In an ideal world, a real designer would probably use a design tool to handle
or hide the details; understanding matrix multiplication and doing hand calcu-

24 H. Thimbleby

lations would be largely and in some cases unnecessary. In a more reasonable,
not so idealised world, the design task would probably be split between differ-
ent people: the specification of design requirements (such as non-persistent shift
meanings) would be formulated by mathematically competent designers once;
then a design tool would be used to automatically check the required properties
continued to hold as the design was developed or iterated — in this case, the
development and continual modifications of the design could be managed by
the tool without any reference to the underlying technical computations, matrix
algebra or otherwise.

Model-Based Engineering of Widgets, User Applications
and Servers Compliant with ARINC 661 Specification

Eric Barboni', Stéphane Conversy'?, David Navarre!, and Philippe Palanque!

I'LIIHS — IRIT, Université Paul Sabatier
118 route de Narbonne, 31062 Toulouse Cedex 4
{barboni, conversy, navarre, palanque}@irit.fr
http://1liihs.irit.fr/{barboni,navarre,palanque}
2 ENAC — DTI/SDER — Ecole Nationale de 1’ Aviation Civile
7, avenue Edouard Belin, 31055 Toulouse
conversy@enac. fr

Abstract. The purpose of ARINC 661 specification [1] is to define interfaces to
a Cockpit Display System (CDS) used in any types of aircraft installations.
ARINC 661 provides precise information for communication protocol between
application (called User Applications) and user interface components (called
widgets) as well as precise information about the widgets themselves. However,
in ARINC 661, no information is given about the behaviour of these widgets
and about the behaviour of an application made up of a set of such widgets.
This paper presents the results of the application of a formal description
technique to the various elements of ARINC 661 specification within an
industrial project. This formal description technique called Interactive
Cooperative Objects defines in a precise and non-ambiguous way all the
elements of ARINC 661 specification. The application of the formal description
techniques is shown on an interactive application called MPIA (Multi Purpose
Interactive Application). Within this application, we present how ICO are used
for describing interactive widgets, User Applications and User Interface servers
(in charge of interaction techniques). The emphasis is put on the model-based
management of the feel of the applications allowing rapid prototyping of the
external presentation and the interaction techniques. Lastly, we present the
CASE (Computer Aided Software Engineering) tool supporting the formal
description technique and its new extensions in order to deal with large scale
applications as the ones targeted at by ARINC 661 specification.

1 Introduction

Interactive applications embedded in cockpits are the current trend of evolution
promoted by several aircraft manufacturer both in the field of civil and military
systems [7, 10]. Embedding interactive application in civil and military cockpit is
expected to provide significant benefits to the pilots by providing them with easier to
use and more efficient applications increasing the communication bandwidth between
pilots and systems. However, this technological enhancement comes along with

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 25-138]2007.
© Springer-Verlag Berlin Heidelberg 2007

26 E. Barboni et al.

several problems that have to be taken into account with appropriate precautions.
ARINC specification 661 (see next section), aims at providing a common ground for
building interactive applications in the field of aeronautical industry. However, this
standard only deals with part of the issues raised. The aim of this paper is to propose a
formal description technique to be used as a complement to ARINC 661 for the
specification, design, implementation and validation of interactive application.

The paper is structured as follows. Next section introduces ARINC 661
specification to define software interfaces for a Cockpit Display System. It presents
informally the content of the specification but also its associated architecture that has
to be followed in order to build ARINC-661-compliant interactive applications.
Section 3 presents the ICO formalism, a formal description technique for the design
of safety critical interactive applications. This description technique has already been
applied in various domains including Air Traffic Control applications, multimodal
military cockpits or multimodal satellite ground segments. Its applicability to cockpit
display system and its compatibility with ARINC specification 661 is discussed and
extensions that had to be added are also presented in section 4. Section 5 presents the
use of the formal description technique on an interactive application called MPIA
(Multi Purpose Interactive Application) currently available in some cockpits of
regional aircrafts. Last section of the paper deals with conclusions and perspectives to
this work.

2 ARINC 661 Specification

This section presents, in an informal way, the basic principles of ARINC 661
specification. The purpose of this section is to provide a description of the underlying
mechanisms of ARINC 661 specification and more precisely how its content
influences the behaviour and the software architecture of interactive applications
embedded in interactive cockpits.

2.1 Purpose and Scope

The purpose of ARINC 661 specification (ARINC 661, 2002) is to define interfaces
to a Cockpit Display System (CDS) used in interactive cockpits that are now under
deployment by several aircraft manufacturers including Airbus, Boeing and Dassault.
The CDS provides graphical and interactive services to user applications (UA) within
the flight deck environment. Basically, the interactive applications will be executed
on Display Units (DU) and interaction with the pilots will take place through the use
of Keyboard and graphical input devices like the Keyboard Cursor Control Unit
(KCCU).

ARINC 661 dissociates, on one side, input and output devices (provided by
avionics equipment manufacturers) and on the other side the user applications
(designed by aircraft manufacturers). Consistency between these two parts is
maintained through a communication protocol:

Model-Based Engineering of Widgets, User Applications and Servers Compliant 27

e Transmission of data to the CDS, which can be displayed to the flight deck
crew.
¢ Reception of input (as events) from interactive items managed by the CDS.

In the field of interactive systems engineering, interactive software architectures
such as Seeheim [14] or Arch [9] promote a separation of the interactive system in at
least three components: presentation part (in charge of presenting information to and
receiving input from the users), dialogue part (in charge of the behaviour of the
system i.e. describing the available interface elements according to the current state of
the application) and functional core (in charge of the non interactive functions of the
system). The CDS part may be seen as the presentation part of the whole system,
provided to crew members, and the set of UAs may be seen as the merge of both the
dialogue and the functional core of this system.

2.2 User Interface Components in ARINC 661

The communication between the CDS and UAs is based on the identification of user
interface components hereafter called widgets. ARINC 661 defines a set of 42
widgets that belong to 6 categories. Widgets may be any combination of “container”,
“graphical representation” of one or more data, “text string” representations,
“interactive”, dedicated to “map management” or may “dynamically move”.

In ARINC 661, each widget is defined by:

e a set of states classified in four levels (visibility, inner state, ability, visual
representation),

e a description in six parts (definition section, parameters table, creation
structure table, event structure table, run-time modifiable parameter table,
specific sections).

The main drawback of this description is the lack of description of the behaviour
itself. Even if states are partially described, dynamic aspects such as state changes are
informally described. As stated in ARINC 661 (section 1.0 introduction), the main
paradigm is here based on this comment:

“A UA should not have any direct access to the visual representations.
Therefore, visual presentations do not have to be defined within the
ARINC 661 interface protocol. Only the ARINC 661 parameter effects on
graphical representation should be described in the ARINC 661 interface.
The style guide defined by the OEM should describe the “look and feel”
and thus, provide necessary information to UAs for their HMI interface
design.”

An additional textual description called SRS (for Software Requirement
Specification), informally defines the look and feel of a CDS (Cockpit Display
System). This SRS is designed by each manufacturer of airline electronic equipment
(we worked with a draft document provided by Thales Avionics). This kind of
document describes both the appearance and the detailed expected behaviour of each
graphical or interactive component.

28 E. Barboni et al.

2.3 Overview of Our Contribution to ARINC 661

One of the goals of the work presented in this paper is to define an architecture that
clearly identifies each part of this architecture and their communication, as shown on
Fig. 1. The aim of this architecture is also to clearly identify which components will
be taken into account in the modelling process and which ones are taken into account
in a different way by exploiting SVG facilities. The architecture has two main
advantages:

1. Every component that has an inner behaviour (server, widgets, UA, and the
connection between UA and widgets, e.g. the rendering and activation functions) is
fully modelled using the ICO formal description technique.

2. The rendering part is delegated to a dedicated language and tool (such as SVG).

CDs ARINC 661

Activation Function
Server
Widget

Renderer « “events UA Behaviour
events N\ £ -
SVG N Widget evemi J—©
¢ \

T© |+ setParometers T
XL T pom | L Rendering Function| QJ

Transformation
\ i
() /

Fig. 1. Detailed architecture to support ARINC 661 specification

Widget

The following section recalls the basics of ICO notation and presents a new
extension that has been required in order to be able to address all the modelling
challenges put forward by interactive cockpit applications compliant with ARINC 661
specification, and then present the connection to SVG. Lastly, a real case study
illustrates this architecture and how modelling all the elements of ARINC 661
specification are addressed using ICOs formal description technique.

3 ICO Modelling of ARINC 661 Components

We use the ICO formalism to describe formally the behaviour of the ARIC
components. This section first briefly recalls the main features of the ICO formalism.
We encourage the interested reader to look at [13, 11] for a complete presentation of
the formal description technique and the environment supporting it. The second part is
dedicated to the extensions that had to be defined in order to address the specificities
of interactive applications compliant with ARINC 661 specifications.

3.1 Overview of the ICO Formalism

The Interactive Cooperative Objects (ICOs) formalism is a formal description
technique dedicated to the specification of interactive systems [4, 11]. It uses concepts

Model-Based Engineering of Widgets, User Applications and Servers Compliant 29

borrowed from the object-oriented approach to describe the structural or static aspects
of systems, and uses high-level Petri nets [8] to describe their dynamic or behavioural
aspects. ICOs are dedicated to the modelling and the implementation of event-driven
interfaces, using several communicating objects to model the system, where both
behaviour of objects and communication protocol between objects are described by
Petri nets. The formalism made up of both the description technique for the
communicating objects and the communication protocol is called the Cooperative
Objects formalism (CO).

ICOs are used to provide a formal description of the dynamic behaviour of an
interactive application. An ICO specification fully describes the potential interactions
that users may have with the application. The specification encompasses both the
"input" aspects of the interaction (i.e., how user actions impact on the inner state of
the application, and which actions are enabled at any given time) and its "output"
aspects (i.e., when and how the application displays information relevant to the user).
Time-out transitions are special transitions that do not belong to the categories above.

An ICO specification is fully executable, which gives the possibility to prototype
and test an application before it is fully implemented [12]. The specification can also
be validated using analysis and proof tools developed within the Petri nets community
and extended in order to take into account the specificities of the Petri net dialect used
in the ICO formal description technique.

3.2 ICO Improvements

Two main issues have been raised while working with ARINC 661 specification that
have not been encountered in previous work we have done in the field of interactive
systems’ specification and modeling.

e The first one is related to the management of rendering information in a
more independent and structured way in order to be able to dissociate as
much as possible the graphical appearance of interactive components from
their behavior. This is one of the basics of interactive cockpit applications
compliant with ARINC 661 specification as (as stated above) these two
sides of the interactive cockpit applications are described in two different
documents (communication protocol and abstract behavior in ARINC 661
specification while presentation and detailed behavior are described in the
SRS (System Requirement Specifications)).

e The second one is related to the fact that ARINC 661 specification does not
exploit current windows manager available in the operating system (as this
is the case for Microsoft Windows applications for instance). On the
opposite, the manufacturer in charge of developing the entire ARINC 661
architecture is also in charge of developing all the components in charge of
the management of input devices, device drivers and to manage the
graphical structure of the interactive widgets. In order to handle those
aspects we have defined a denotational semantics (in terms of High-level
Petri nets) of both the rendering and the activation functions. Beforehand,
these functions were only partly defined (relying on the underlying

30 E. Barboni et al.

mechanisms provided by the window manager) and implemented using a
particular java API thus making much more limited the verification aspects
of theses aspects of the specification. Indeed, the work presented here
addresses at the same level of formality, applications, widgets and user
interface server (also called window manager). Besides, the connections and
communications between these three parts are also formally described.

Next section presents in details the various mechanisms that have been defined in
order to handle the low level management of input devices and focuses on one
specific aspect called picking which correspond to the window manager activating of
finding the interactive component that was the target of the user when an event has
been produced. The case study in section 0 shows on a concrete example how those
elements are combined for describing User Applications, Widgets and User Interface
servers.

4 MPIA Case Study

MPIA is a User Application (UA) that aims at handling several flight parameters. It is
made up of 3 pages (called WXR, GCAS and AIRCOND) between which a crew
member is allowed to navigate using 3 buttons (as shown by Fig. 2). WXR page is in
charge managing weather radar information; GCAS is in charge of the Ground Anti
Collision System parameters while AIRCOND deals with settings of the air
conditioning.

AIRCOND
VIODE SELECTION: |A OFF
W STDEY
W TST
W wxon
W wxA

¥ ACTIVE ¥ GEARS
murseecmon: [EEETH auto N INHEBIT ¥ FLAPS
STABILIZATION R MSTEEP APR

(..
\95€)

AIRCOND ‘ /" AIRCOND AIRCOND

Fig. 2. Snapshots of the 3 pages of the UA MPIA

In this section, we present the modelling of a simple widget and its link to SVG
rendering, then we briefly present the classical modelling of a user application to
show the extension made to ICOs, and finally we present parts of the server. The
purpose is not here to present the whole specification which is made up of about 40
models, but only to present brief extracts to show all bricks of the modelling.

4.1 Modelling ARINC 661 Interactive Widgets

The whole modelling process of ARINC 661 interactive components using ICO is
fully described in [12]. The additional feature consists in using the rendering process

Model-Based Engineering of Widgets, User Applications and Servers Compliant 31

described above, based on replacing the classical code-based rendering methods with
rendering methods that modify the SVG Document Object Model. Rendering is the
process of transforming a logical description (conceptual model) of an interactive
component to a graphical representation (perceptual model). In previous similar
works, we specified rendering with Java code, using the Java2D API., However,
describing graphics with an imperative language is not an easy task, especially when
one tries to match a particular look. Furthermore, the java code for graphics is
embedded into the model, which makes it hard to change for another look. This is
even more difficult when several components share a common part of the graphical
representation, for instance when components must have a similar style and when this
style has to be changed.

To overcome these two problems, we changed for an architecture that uses
declarative descriptions of the graphical part and that supports transformations from
conceptual models to graphical representations. These two elements exploit XML-
based languages from the W3C: the SVG language for graphical representation, and
the XSLT language for transformation. SVG is an xml-based vector graphics format:
it describes graphical primitives in terms of analytical shapes and transformations.
XSLT is an xml-based format that describes how to transform an xml description (the
source) to another xml description (the target). An XSLT description is called a
“stylesheet”. Due to space constraints this work is not presented in the next section as
we focus on the behavioural aspects of models.

4.2 Modelling User Applications

Modelling a user application using ICO is quite simple as ICO has already been used
to model such kind of interactive applications. Indeed, UAs in the area of interactive
cockpits correspond to classical WIMP interfaces,

As the detailed specification is not necessary to expose the modification of ICO,
we only present an excerpt of the models that have been produced to build the
MPIA application. This excerpt is the first page (WXR) of the application (left part
of Fig. 2).

4.2.1 Behaviour
Fig. 3 shows the entire behaviour of page WXR which is made up of two non
connected parts:

e The upper part aims at handling events from the 5 CheckButtons and the
modification implied of the MODE_SELECTION that might be one of five
possibilities (OFF, STDBY, TST, WXON, WXA). Value changes of token
stored in place Mode-Selection are described in the transitions while variables
on the incoming and outgoing arcs play the role of formal parameters of the
transitions.

o The lower part concerns the handling of events from the 2 PicturePushButton
and the EditBoxNumeric. Interacting with these buttons will change the state
of the application.

32 E. Barboni et al.

-\

<new_ms>

=

<new_ms>

o/
‘ﬁfooe SELECTION>

T T

e \
<ms> <new_ims>
<new_ms> <new_ms>

lm
‘Al@(\‘
[

NOT_ AUTO
F‘td-snnu.lmmnﬁﬂ

= —

@ STABILIZATION_O) WO STABILIZATION_OFF >

<ms> (ms,

<new angle>
<angle>

S

-9 TtLT_@

Fig. 3. Behaviour of the page WXR

4.2.2 Activation Function
Fig 4 shows an excerpt of the activation function for page WXR.

Widget Event UserService ActivationRendering
wxrOFFAdapter off_CheckButton A661_INNER_STATE_SELECT | off setWXRModeSelectEnabled
wxrSTDBYAdapter | stdby_CheckButton A661_INNER_STATE_SELECT | stdby setWXRModeSelectEnabled
wxrTSTAdapter tst_CheckButton A661_INNER_STATE_SELECT | tst setWXRModeSelectEnabled
wxrWXONAdapter | wxon_CheckButton A661_INNER_STATE_SELECT | wxon set WXRModeSelectEnabled
wxrWXAAdapter wxa_CheckButton A661_INNER_STATE_SELECT | wxa setWXRModeSelectEnabled
autoAdapter auto_PicturePushButton | A661_EVT_SELECTION switchAUTO set WXRTiltSelectionEnabled
stabAdapter stab_PicturePushButton | A661_EVT_SELECTION switchSTABILIZATION | setWXRTiltSelectionEnabled
tiltAngleAdapter tiltAngle_EditBox A661_STRING_CHANGE changeAngle setWXRTiltSelectionEnabled

Fig. 4. Activation Function of the page WXR

From this textual description, we can derive the ICO model shown on Fig. 5. The
left part of this figure presents the full activation function, which is made up of as
many sub Petri nets as there are lines in the textual activation function. The upper

Model-Based Engineering of Widgets, User Applications and Servers Compliant 33

right hand side of the figure emphasises on of these sub Petri nets. It describes how
the availability of the associated widget is modified according to some changes in the
WXR behaviour. The lower right hand part of the Figure shows the general pattern
associated to one line of the activation function: It describes the handling of the event
raised par the corresponding widget, and how it is linked to an event handler in the
WXR behaviour.

enableTILT EBN
it tilt_ebn ble (true) ;

-« W’U_% <tilt_ebn>>
. ke
\ - disableTTLT EBN
ﬂiniehmj TILTToDisable ¥ £1le eh (£alse)

<tilt_ebin>

<titt_ebn> changeAngle Disabled T

reqister0FFToTILTEveny

—
N

— { —
e it gg- . mew java.util. 3 mn;‘n—qm_eum—'wm_fsg
e i -2

Fig. 5. Activation Function of the page WXR expressed in Petri nets

The use of Petri nets to model the activation function is made possible thanks to
the event communication available in the ICO formalism. As this kind of
communication is out of the scope of this paper, we do not present the models
responsible in the registration of events-handlers needed to allow the communication
between behaviour, activation function and widgets. More information about this
mechanism can be found in [2].

34

E. Barboni et al.

4.2.3 Rendering Function

The modelling of the rendering function (shown on Fig. 6) into Petri nets (shown on
Fig. 7) works the same way as for the activation function, i.e. for each line in the
rendering function, there is a pattern to express that in Petri nets. This is why we do

not detail more the translation.

ObCSNode name ObCS event Rendering method
modeSelectionAdapter | MODE_SELECTION token_enter <int m> showModeSelection(m)
tiltAngleAdapter TILT_ANGLE token_enter <float a> | showTiltAngle(a)
initAutoAdapter AUTO marking_reset showAuto(true)
autoAdapter AUTO token_enter showAuto(true)
notAutoAdapter AUTO token_remove showAuto(false)
initStabAdapter STABILIZATION_ON | marking_reset showStab(true)
stabAdapter STABILIZATION_ON | token_enter showStab(true)
notStabAdapter STABILIZATION_ON | token_remove showStab(false)

Fig. 6. Rendering Function of the page WXR

e ""@iua_u_w_u
T 3 — i hall ks) P
STREILIGAT. | 0N ToherBemoed T1 '— 1 T
E™ -
STRBILIGATI ON_ON MarkirgReset_T1

el vabie

_wlald vabee

setLabel2Text_TL

value

Java. lang. Steing locliewT=xt = new String();
LocliewText += (char) fr.
LocewText += (chac)
LochiewText += (char)
LocliewText += "OFE";

nstants, AGEL_ASGIT_ESC;
ants, AEEL_ASCII_FORE_(LOR;
ants. AEEL_ASCII_COLOR, ‘REEN2;

)
7 ~—
<labelzvalue> aveizgil ocewText>

setixd
P5_1_7 —<tabelz.vaue JoctiewTexts-» 1abe12. astliabe 1Str ing (LocHeuText]

setLabel2Text_12
tvalus

Java.lang.String locHewText = new String();

natants AGEL_ASCII

locNewText += (char

FRANE_BEGIN;

LocliewText += * of “;
LocliewText += (char) fr.univ_tlsel.a6él.graphics.Constants.AEE1 ASCIT ESC;
locNewText 4= (char] fr.univ tlsel.aél.graphics.Constants.AZEL ASCII PRANE END;

¥

Fig. 7. Rendering Function of the page WXR expressed in Petri nets

Model-Based Engineering of Widgets, User Applications and Servers Compliant 35

4.3 Modelling User Interface Server

The user interface server manages the set of widgets and the hierarchy of widgets
used in the User Applications. More precisely, the user interface server is responsible
in handling:

The creation of widgets

The graphical cursors of both the pilot and his co-pilot

The edition mode

The mouse and keyboard events and dispatching it to the corresponding
widgets

The highlight and the focus mechanisms

As it handles many functionalities, the complete model of the sub-server (dedicated
in handling widgets involved in the MPIA User Application) is complex and difficult
to manipulate without an appropriate tool. As the detailed model is out of the scope of
this paper, Fig. 8 only present an overview of the complete model.

Fig. 8. Overview of the complete model of the user interface server

36 E. Barboni et al.

The rectangle at the bottom of Fig. 8 represents the part of the model of the server
in charge of the interaction technique and input devices management. The rest of the
model corresponds to the management of the widgets.

4.4 Modelling the Complete MPIA User Application

We do not present here the full model of the user application MPIA neither the one of
the user interface server, but the formal description technique ICO has been used to
model in a complete and non ambiguous way all the pages and the navigation
between pages for such user application, and still produces low-sized and readable
models. Modelling Activation functions and Rendering functions using Petri nets,
legitimates the use of the table notation as a readable way to express the connection
between the dialog and the presentation parts.

Another issue is that the models of the user application MPIA can both be
connected to the modelled CDS or to an implemented CDS, using a special API, as it
respects the ARINC 661 specification. As testing an implemented user application is
still a problem that has to be solved, especially when the UA is connected to a real
CDS, a model based approach may support testing at different levels:

1. Test a modelled user application on the modelled CDS.

2. Test the modelled user application on the CDS implemented by the
manufacturer.

3. Code and test the user application on the implemented CDS.

The first step promotes a very iterative prototyping process where both the User
Application and the CDS may be modified, as the second step allows user testing on
the real interactive system (CDS), with classical prototyping facilities provided by the
models expressed in ICO of the User Application.

The MPIA application has been fully modelled and can be executed on the CDS
modelled using the ICO formalism. However, it has also been connected on a CDS
developed on an experimental test bench as shown in Fig. 9.

Fig. 9. The MPIA application modelled using ICO connected to experimental CDS at THALES

Model-Based Engineering of Widgets, User Applications and Servers Compliant 37

5 Conclusions and Perspectives

This paper has presented the use of a formal description technique for describing
interactive components in ARINC specification 661. Beyond that, we have shown that
this formal description technique is also adequate for interactive applications
embedding such interactive components. One of the advantages of using the ICO
formal description technique is that it provides additional benefits with respect to
other notations such as statecharts as proposed in [15]. Thanks to its Petri nets basis
the ICO notations makes it possible to model behaviours featuring an infinite number
of states (as states are modelled by a distribution of tokens in the places of the Petri
nets). Another advantage of ICOs is that they allow designers to use verification
techniques at design time as this has been presented in [3]. These verification
techniques are of great help for certification purposes.

We are currently developing techniques for providing support to certification
processes by allowing verification of compatibility between the behavioural
description of the interactive application and task model describing nominal or
unexpected pilots behaviour. Support is also provided through the verification of
interactive system safety and liveness properties such as the fact that whatever state
the system is in there is always at least one interactive element available.

Acknowledgements

The work presented in the paper is partly funded by DPAC (Direction des
Programmes de 1'Aviation Civile) under contract #00.70.624.00.470.75.96. Special
thanks are due to our colleagues at THALES P. Cazaux and S. Marchal.

References

1. ARINC 661 specification: Cockpit Display System Interfaces To User Systems, Prepared
by Airlines Electronic Engineering Committee, Published by AERONAUTICAL RADIO,
INC, april 22, 2002.

2. Bastide R., Navarre D., Palanque P., Schyn A. & Dragicevic P. A Model-Based Approach
for Real-Time Embedded Multimodal Systems in Military Aircrafts. Sixth International
Conference on Multimodal Interfaces (ICMI'04) October 14-15, 2004 Pennsylvania State
University, USA.

3. Bastide R., David Navarre & Philippe Palanque. Tool Support for Interactive Prototyping
of Safety Critical Interactive Applications. In Encyclopedia of HCI, C. Gaoui (Ed.). ISBN:
1-59140-562-9. Hard Cover. Publisher: Idea Group Reference Pub Date: July 2005. Pages:
650.

4. Bastide R., Ph. Palanque A Petri Net Based Environment for the Design of Event-Driven
Interfaces. 16th International Conference on Application and theory of Petri Nets
(ATPN'95), LNCS, Springer Verlag, Torino, Italy, 20-22 June 1995.

5. Beaudoux O., 2005. XML Active Transformation (eXAcT): Transforming Documents
within Interactive Systems. Proceedings of the 2005 ACM Symposium on Document
Engineering (DocEng 2005), ACM Press, pages 146-148.

38

10.

11.

12.

13.

14.

15.

16.

17.
18.

E. Barboni et al.

Blanch R., Michel Beaudouin-Lafon, Stéphane Conversy, Yannick Jestin, Thomas Baudel
and Yun Peng Zhao. INDIGO : une architecture pour la conception d'applications grap-
hiques interactives distribuées. In Proceedings of IHM 2005, pages 139-146, Toulouse -
France, September 2005.

Faerber R. Vogl T. & Hartley D. Advanced Graphical User Interface for Next Generation
Flight Management Systems. In proceedings of HCI Aero 2000, pp. 107-112.

Genrich H. J.. (1991). Predicate/Transition Nets, in K. Jensen and G. Rozenberg (Eds.),
High-Level Petri Nets: Theory and Application. Springer Verlag, Berlin, pp. 3-43.

Gram C., Cockton G. (Editors). Design principles for interactive software. Chapman et
Hall ed.1995.

Marrenbach J., Kraiss K-F. Advanced Flight Management System: A New Design and
Evaluation Results. In proceedings of HCI Aero 2000, pp. 101-106.

Navarre D., Palanque, Philippe, Bastide, Rémi. A Tool-Supported Design Framework for
Safety Critical Interactive Systems in Interacting with computers, Elsevier, Vol. 15/3, pp
309-328, 2003.

Navarre D., Philippe Palanque & Rémi Bastide. A Formal Description Technique for the
Behavioural Description of Interactive Applications Compliant with ARINC 661
Specification. HCI-Aero'04 Toulouse, France, 29 September-1st October 2004.

Palanque P., R. Bastide. Petri nets with objects for specification, design and validation of
user-driven interfaces. In proceedings of the third IFIP TC 13 conference on Human-
Computer Interaction, Interact'90. Cambridge 27-31 August 1990 (UK).

Pfaff, G. E. (Hrsg.): User Interface Management Systems, Proceedings, Workshop on User
Interface Management Systems, Seeheim,(1. - 3.11.1983); Springer Verlag 1983.

Sherry L., Polson P., Feary M. & Palmer E. When Does the MCDU Interface Work Well?
Lessons Learned for the Design of New Flightdeck User-Interface. In proceedings of HCI
Aero 2002, AAAI Press, pp. 180-186.

Souchon, N., Vanderdonckt, J., A Review of XML-Compliant User Interface Description
Languages, Proc. of 10th Int. Conf. on Design, Specification, and Verification of
Interactive Systems DSV-IS2003 (Madeira, 4-6 June 2003), Jorge, J., Nunes, N.J., Falcao
e Cunha, J. (Eds.), Lecture Notes in Computer Science, Vol. 2844, Springer-Verlag,
Berlin, 2003, pp. 377-391.

UsiXML, http://www.usixml.org/?view=news.

Villard, L. and Layaida, N. 2002. An incremental XSLT transformation processor for
XML document manipulation. In Proceedings of the 11th international Conference on
World Wide Web (Honolulu, Hawaii, USA, May 07 - 11, 2002). WWW '02. ACM Press,
New York, NY, 474-485.

Usability Requirements for Improving the Infection
Module of a Hospital Intensive Care Unit Information
System

Monica Sara Santos', Jodo Falcdo e Cunha?, and Altamiro da Costa Pereira’

! Faculdade de Engenharia da Universidade do Porto / Escola Superior de Tecnologia da
Saude do Instituto Politécnico do Porto, Praca Coronel Pacheco, 15 4050-453 Porto, Portugal
Tel: +351 222061000; Fax: +351 225081390
mss@estsp.ipp.pt
2 Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
jfcunha@fe.up.pt
3 Faculdade de Medicina da Universidade do Porto, Porto, Portugal
altamiro@med.up.pt

Abstract. The Intensive Care Unit (ICU) of Hospitals deals with patients in life
critical conditions. The Intensive Care Information System (ICS) can therefore
provide extremely important information to support medical doctors’ (MDs)
decisions. For instance, it is critical to manage well information about the
evolution of a large amount of infections over time, about the antibiotics
administered to each patient, and the impact on his/her life condition. Good
quality information and interaction in such an extreme environment is therefore
critical for helping MDs target well medicines to patients. This paper describes
the initial stages of a project aiming at improving a real ICS, in particular from
the interaction point of view, taking into account the stringent usability
requirements from the MDs. Through a validated low definition prototype of
the infection module of ICS, the paper proposes innovative active ways of
providing suggestions to MDs on what actions to take.

Keywords: Human Computer Interaction, Requirements Engineering, Medical
Information Systems.

1 Introduction

The Intensive Care Information System (ICS) used in four major hospitals in the
North of Portugal is called intensive.care. 1t is being developed at the Biostatistics and
Medical Informatics Service (SBIM) in the Medicine School of Universidade do
Porto (FMUP) [1].

ICS’ main functions are to register patients’ admission and discharge notes, to
register electronic clinical data such as patients’ antecedents, diary, therapy data,
procedures, diagnosis, complications and infection management, and to calculate ICU
prognostic scoring indicators (see Fig. 1). These scoring techniques are used to obtain
quantitative statements about the patients’ health condition. They include APACHE II

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 39} 51]2007.
© Springer-Verlag Berlin Heidelberg 2007

40 M.S. Santos, J. Falcao ¢ Cunha, and A.d.C. Pereira

(Acute Physiology and Chronic Health Evaluation System), SAPS II (Simplified
Acute Physiology Score), SOFA (Sequential Organ Failure Assessment) and TISS-28
(Therapeutic Intervention Scoring System-28) [2]. TISS-28 is registered by Nurses,
while all other indicators are registered by MDs.

Intensive.care is composed of several modules, which vary in complexity as there
are some basic ones, such as the patients’ admission and discharge notes, and others
that are more complex, such as the infection or complications management.

Intensive.care works with large amounts of data and amongst its stakeholders are
the ICU patients, people that are in a very critical health condition, and the ICU MDs
for whom time is extremely valuable. So there is the need for very high quality data,
good system performance and lack of errors.

& Aplicagao intensive.care Q@E

Ficheim Deentes FProcura fListagens Relatérios Aspecto Gestio C G0 Ajuda
e) | W Processo: g |
Sepsiz | Follow-Up HotaEntrada
® | Antecedentes INternamenteo ¢de 08.09.2005 a
1) Pesquisa Dados | —
" ‘“f - Apache Il e Saps Il a entrada
| Entrada 1 | (estmng Cﬂ"“'” indice “alor Risco de marte
| AnteccaTnieli | Nota da Alta TISS
Peszoal Di TSS28 TISS7E
08092005 35,0 325
" Apache 1/ Saps Il | ‘ Sofa H 09092005 320 296
0092005 28,0 254
[pigie 3 || Tepiutios 4 | 11092005 28,0 254
12.09.2005 43,0 403
|| TISS 28 | ‘ Folha de Admissio 5“ 13.092005 390 368
14.09.2005 39,0 368
a | /
[Frasatment 6 —— .f| EN—— '-'| 15092005 41,0 383
| el ‘ 16092005 320 235
17.09.2005 370 347
‘ | Alta O | ‘
SOFA
Dia Score Pulmonar Hepético SMC Renal
| infecgdo 10 | 08092005 7 2 0 3 0
09.09.2005 7 2 0 3 i
| Follaw-Up | 10082005 7 2 0 4 1]
11092005 7 3 0 3 i
| D | 12092005 & 2 i 3 o :
13092005 & 3 0 3 i 2
14.09.2005 6 3 0 3 i n
15092005 & 3 0 3 i =]
[[*]
Franto | Logout: 6iM 1,

Fig. 1. Starting menu of intensive.care (on the left) where users can navigate through the
existing modules (1 — admission; 2 — antecedents; 3 — diary; 4 — therapeutics; 5 admission chart;
6 — procedures; 7 — diagnosis; 8 — complications; 9 — release; 10 — infection). On the right there
is an overview of prognostic scoring indicators’ evolution for a patient, selected by the fndices
option (central tabs).

Every hospital in Portugal has a central information system that manages patients’
information. This system is called SONHO. Intensive.care connects to SONHO,
automatically getting the patients’ demographic data and storing it in the local patient
record (whenever the person is already known in the hospital central system). Since
every single public hospital in Portugal uses SONHO, intensive.care is prepared to
easily being introduced into a new ICU, requiring nevertheless some customization.

Usability Requirements for Improving the Infection Module 41

Intensive.care has never had a Human Computer Interaction (HCI) development
plan and has not been developed having usability as a main concern. Its development
has always been focused on its functionality rather than its HCI characteristics.
Therefore intensive.care has some notorious HCI problems and its users feel there are
many things about it that could be improved. Moreover, there are some modules of
intensive.care that have never been used, in particular because of their HCI problems.

Meetings with several infensive.care users, reported in the next sections, indicate
that it is a successful application, but still with several problems. The current study
has identified the modules that most need improvements and aims at defining overall
requirements. Since there is an intention of implementing infensive.care in other
ICUs, usability problems need to be addressed, so a formal HCI evaluation is being
conducted in order to propose an improvement plan for intensive.care. This
improvement plan will produce a document containing a set of usability requirements
for the evolution of intensive.care.

Currently infensive.care is implemented in four hospitals in Portugal, but these
units have started using it at different times. Since intensive.care has been gradually
implemented in different units, it has different kinds of users when it comes to their
experience with the application. The users range from those who have three years
experience to those who have been using intensive.care for only a few months.

The next section presents the methodology of the overall study. Section 3 presents
the preliminary results of the interviews with key stakeholders, which led to the
choice of the infection module for a more focused HCI evaluation. In section 4 there
is the definition of some requirements, supported by a prototype, for the improvement
of the infection module. In the final sections there are the proposed future work and
the conclusions.

2 Methodology

An HCI study and evaluation is being conducted in order to produce an HCI evolution
plan for intensive.care. This evolution plan is based on a set of usability requirements
that are being defined, based on the results from the application of well-known HCI
techniques. At different stages of this evaluation, usability requirements will be
specified and evaluated by intensive.care’s stakeholders.

The current project started with the study of the ICS tool and of the ICU
information management problem. This was made to gain some knowledge about the
system and the way it interacts with users’ needs. There were some meetings with the
development team, including the current project manager and the first project
manager of intensive.care.

Several interviews were held with users, which can be divided into two sets. The
first set was composed by three interviews to key users of intensive.care in three
different hospitals. These interviews were intended to collect information about the
most problematic issues about intensive.care. The main objective was to find areas
from intensive.care that most users felt should be improved, and after that to focus the
study in those areas.

42 M.S. Santos, J. Falcao ¢ Cunha, and A.d.C. Pereira

After compiling the results of the interviews, there was a qualitative study that
resulted in the establishment of the main module from intensive.care where the HCI
evaluation would be centred. The focus for the evolution was set to be the infection
module, as will be seen on section 3.

When the focus area was established, the second set of interviews took place. They
happened in two hospitals with experts in infection in ICU. Since the evaluators have
no medical background, these interviews aimed to understand the basis of infection,
its implications and its management. Knowing work methods are not the same in
every hospital, it seemed important to hear what MDs from two different hospitals
had to say about infection itself and their needs for an infection module in their ICU
software.

One of the hospitals where MDs were interviewed has intensive.care installed,
so they are experienced with intensive.care. The other interviewed MD does not
work with intensive.care at all, as it is not installed at his hospital. Since the
current expectations about the improvement of the infection module are that it
will suit every MD that deals with infection, it is important to elicit requirements
from different MDs, even those who are used to working with other applications
and not intensive.care. Only this way can a proposal be reached that will suit all
users.

Intensive.care’s users are mainly MDs and it is very difficult to elicit requirements
from them, as they have such tight and unpredictable schedules. This happens because
they work at ICUs and deal with critically ill patients that might need attention at any
time [3].

Previous to the field observation, there was a quick visit to two ICUs in two
different hospitals. This was intended to provide an overview of the environment and
the existing machines in such units. Later, there was some field observations intended
to understand the users’ real difficulties with infensive.care in general and with the
infection module in particular. As most of the times users do not really know what
they want or even what they think about an interface, observing them is one of the
best ways of finding that out [4]. “Data about people’s actual behaviour should have
precedence over people’s claims of what they think they do” [5].

A prototype was used to create the first proposal for the evolution of the infection
module. Since this is a preliminary requirements specification stage, a low-fidelity
prototype was used, as these prototypes are cheap, simple and quick to create and
modify [4], [6]. This prototype was evaluated and validated by some stakeholders,
including two of the previously interviewed MDs who are experts in infection, and by
several other MDs specialized in Intensive Care.

3 Analysis of Stakeholders’ Preliminary Interviews’ Results

After understanding the overall intensive.care current characteristics, including
functionality and architecture, the study concentrated on understanding the evolution
requirements of the main user stakeholders.

Usability Requirements for Improving the Infection Module 43

The interviews were semi-structured, having only few questions intended to obtain
an overview of the current usage of infensive.care and its users’ satisfaction [7]. The
questions were:

. For how long have you been using intensive.care?

. What are its most important modules?

. What are the most problematic modules?

. What modules would you like to see improved?

. What modules are never used and why?

. What are your favourite modules?

. Have you got any knowledge of or experience with similar systems?
. Have you got any suggestion?

0NN D W~

The interviewed users are MDs specialized in intensive care, with many years of
experience in ICUs, who are the key users of intensive.care in their unit. They are
also ICU managers, so they manage all the MDs in their unit and they have inside
knowledge about their real usage of infensive.care.

One of the interviewed users has been using infensive.care since its beginning and
is the main consultant for its further development. She works with it everyday and
started using it even before every single patient’s data in her ICU started being
registered in intensive.care, which happened in January 2003. One of the other
interviewed users has been using infensive.care since November 2003 and the
remaining one since May 2005.

It is very interesting to have available users that have such different degrees of
experience with infensive.care. More experienced users are expected to have more
ideas of how intensive.care can evolve, because they have been using the system daily
for a few years and have had the time to explore all of its potential. On the other hand,
more recent users are expected to have a different perspective about intensive.care.
This happens because as they have been using it only for a few months, they probably
have only explored its basic functionality. Besides, their memory is fresher to
remember their initial contact with the system and the difficulties they felt when first
using it.

It is also interesting to have users from different ICUs because these units do not
all have the same work methods. Given that, these users’ usage of intensive.care is
not exactly equal from an ICU to another.

After this first set of interviews, there were some coinciding responses about parts
of intensive.care that should be improved.

In a general way its users enjoy working with intensive.care and feel the
application eases their everyday work. Most ICU tasks are covered by infensive.care’s
functionality set. But when it comes to the more complex tasks, such as infection and
complications, users have some resistance in switching from the traditional paper
reports to the electronic version presented in infensive.care. This happens both for
cultural reasons and because of the difficulty for the development team to map the
procedures in intensive.care exactly as they are made on paper. Also, for some of the
most complex tasks there is the need for adjustment in work methods, in order to
make intensive.care a simple and standard system.

44 M.S. Santos, J. Falcao ¢ Cunha, and A.d.C. Pereira

Table 1. Overview of intensive.care’s modules usage in each hospital where intensive.care is
installed. The check sign means the module is used in the respective hospital. The cross sign
means the module is never used in the respective hospital.

H1 H2 H3

Entrance, Admissii\ﬁ? ilﬂteeiedents and Release \/ \/ \/
Diary all\l/[(;) (i‘lillzripeutics \/ \/ X
Prognostil\c/[ggr)llz indicators \/ ‘/ \/
PI;/f)Ocil(lilsris \/ \/ X

Dingnosi v v X

Coll\l/llg(liililzti?)ns X X X

infction v | x| x

Table 1 reflects an overview of the usage of intensive.care’s modules in each of the
three analysed ICU hospitals. We’ll call these hospitals Hl, H2 and H3.
intensive.care’s modules are grouped here into modules, 1 to 7.

Patients’ entrance, admission and release data, and prognostic scoring indicators
are referred to as being easy to register, navigate and use.

When it comes to more intricate tasks, such as registering and managing of
infections, complications, diagnosis, procedures and surgery, the users feel
intensive.care does not provide the best solution, as these tasks are difficult to use in
the system.

In a general way, most of the previously referred to complex tasks are registered in
intensive.care, that is, users find these tasks should be improved, but still use them.
When it comes to infection and complications, things change. The infection module is
being used in only one of the hospitals, the one that has been using intensive.care for
the longest time. The complications are not being registered in any other ICU. In all
cases, users believe these modules are important and should be improved because
they are difficult to use. One of the users who do not register infection data in
intensive.care said, in the interview, that the infection process is complex and that in
his opinion, in intensive.care it is particularly difficult to use.

When questioned about their favourite parts of intensive.care users referred to the
prognostic scoring indicators functionality (see Fig. 2) and the interaction with
SONHO. The prognostic scoring indicators functionality is said to be very easy and
intuitive to use. It is also said to provide very useful information, as it gives a general
perspective of the patients’ health condition evolution since their arrival into the
ICU. intensive.care’s interaction with SONHO is pointed out as being very helpful
because when a new patient arrives into the ICU his demographic data is
automatically imported from SONHO, which saves a lot of time and guarantees the
integrity of this data.

Usability Requirements for Improving the Infection Module 45

Calculo de indices de gravidade Apache Il e SAPS II X

Ajuda
Temperatura Rectal (C=): . Frequéncia Cardiaca:
T. Sistélica (mmHg) T. Diastélica (mmHg): T. Média:
Dados Respiratérios
Frequéncia Respiratiria: pH arterial: . HCO3 (mEqgiL):
Faodz (mmHg): . Fioz: . aalb0z immHa):

FacOz (mmHa):

Doente wentilado ou com monitorizagdo confinua da pressdo da anéria X a
H F O Sim O Mao
pulmenar

|Resu|tados Analiticoz |

Hematécrito (%) R Leucéeitos (x10%puL):
Na+ (mEg/L): . ket (mEqiL):
Creatinina (mgs %) . Ureia (mgidL): .
Bilirrubin as (mg/dL): 5 Doente com Ira) sim () Mo
Débite urindrio (L) : |Tempo débito urinario (h):l |indice de Glasgow:
APACHE Il
Insuficiencia de orgdo efou Doenga Cronica?) sim () Nio
Tipo de admissﬁo:" Médica - |
Diagnéstico na admissEo:| Traumatismo craneano : -0.517 |Idade: | 49

Calcular == Apache I 1} sapsi: D
B Cancelar | & ravar e Teminar |

Fig. 2. The APACHE II /SAPS II prognostic scoring indicators module

From this preliminary analysis, we can gather that the usability requirements to be
specified will cover some different areas of interaction.

Requirements related to the usability of intensive.care’s modules are being
specified, as some ICU tasks are difficult to perform in infensive.care, and therefore
do not have the acceptance they could have otherwise.

Requirements related to mobility might, too, be specified, as usually there are only
two computer terminals with intensive.care in each ICU and a terminal in each MD’s
office. It might be interesting to have a mobility study to determine whether it would
be reasonable to have mobile devices to register patients’ data.

From the first set of interviews, a study focus was established. Due to its
importance to the ICUs and its complexity, the infection module was selected to be
the object of the current HCI evaluation. This is a complex module as infection is not
a simple matter in intensive care. On the contrary, it is one of the main and more
complicated issues in ICUs.

4 User Interface Requirements from the ICU for the New
Infection Module

As referred to on the previous section, a study focus for this HCI evaluation was
settled and the infection module was chosen to be the main object of study.

46 M.S. Santos, J. Falcao ¢ Cunha, and A.d.C. Pereira

There were two interviews with MDs who are experts in infection in ICU, with the
objective of gaining some knowledge about the basis of infection and its implications
in patients. Also there was the need to elicit requirements for the new infection
module.

Microbes in ICUs are extremely resistant to antibiotics, which happens because
they have survived the previously applied antibiotics, have become immune to them
and genetically started spreading ways to become immune to other microbes [8], [9].
To make things even harder, antibiotic consumption in an ICU is about ten times
greater than in other hospital units, which contributes to microbe strengthening [10].

Nosocomial infections are those which are caused by hospital microbes or are a
result of hospital procedures, such as patients’ intubation or catheters. They are a
main problem in an ICU, as they are one of the major death causes and one of the
main sources of complications in patients in ICUs [8], [9].

Nosocomial infection rates are a clinical indicator of quality of care [11]. Results
from hospitals with effective programmes for nosocomial infection surveillance and
control indicate that infection rates can be reduced by about 32% [12], [13].

Death risk in patients in ICUs is much higher than in other hospital units, because
these patients are extremely sick. ICUs’ MDs frequently struggle to keep patients alive.
Helping them achieving this objective should be a main concern of an ICU Information
System. Not only should such a system help MDs to register data, it should also
provide them with knowledge about everything that happens with their patients. Only
that way could a control and surveillance programme be implemented in an ICU.

= o
3 i E
= =
= i
= o
2 m & i
7 g = o 2
‘0 2 £ - 2
c 2 S =3
185 |25 42 R i L
a cle| 42 5k 6z 73
Traqueobron...|N |1 |Sangue - He.. |07/02s2005 (1240272005 |... |Nio lsolado
Traqueobron... [N |1 |Sangue - He... |07/08,/2005 [12/08/2005 |... |Nio Isolada
Traqueocbkron... (N |1 |Aspirade Tra... 070902005 |12/00/2005 |... |Staphylococcus aureus
ITU N |1 |Urina - cultura [07/09/2005 12/09/2005 ... |Enterococcus fascalis
igildneiad... [N |1 |Zaragatoa N... [07/09/2005 |13/02/2005 |... |Staphylococous aureus
Traqueobron... N |1 |Aspirade Tra... [10/08/2005 ... |[N3o lsolade
igilineia d... [N |2 |Zaragatoa M... |08/09/2005 |13/02/2005 |... |Staphylococeus aureus

[E

Infecgdes da Comunidade: § |-- - |

Infecgies Nosocomiais g| i | | Adi

Fig. 3. Partial screen from the infection module in intensive.care (1 — diagnosis; 2 — type of
infection: N for nosocomial or C for community-acquired; 3 — number of infection; 4 —
analysed product: blood, urine, etc.; 5 — exam date; 6 — results date; 7 — microbe; 8 —
community-acquired infections; 9 — nosocomial infections)

Usability Requirements for Improving the Infection Module 47

Intensive.care has an infection module that is being used in only one of the four
hospitals that currently use the ICS tool (see Fig. 3). Users find it difficult and time-
costly to use, so they prefer to use paper to register infection data. Taking into account
what has been said before, this seems like an issue that needs to be addressed
immediately, so a preliminary version of interaction requirements for this module was
created.

A brief summary of the specified requirements will be presented next. A scale was
used to classify each requirement. This scale is composed of three alphabetic values,
L — Low, M — Medium and H — High, that will characterize each requirement in terms
of its importance and its difficulty of implementation.

Table 2. Overview of the specified HCI requirements for the infection module

ID Requirement Imp. | Dif.
1 | Classification of microbes — microbes should be classified | H L
according to their alert level, using colour coding; red for the
ones defined as being the most problematic, orange for the ones
defined as having an average alert level and green for those
which are easy to control.

2 | Overview of the ICU — a map of the ICU should be | H M
represented with colour coding for each bed, indicating alert
levels according to patients’ microbes.

3 | View of patients’ in-days' in ICU — there should be a | H L
graphical way to quickly identify the number of days each
patient has been in the ICU.

4 | View of each patient’s infections, harvested products’ and | H H
antibiotics.
5 | View of microbes’ sensitivity — for each isolated microbe ina | H L

patient’s organism, there should be a list of the antibiotics that
the microbe is sensitive and resistant to.

6 | Registering of product harvest — each time there is a harvest | H H
of a product in a patient, it should be registered in
intensive.care and automatically sent to the analysis laboratory;
the id of the analysis should be stored in intensive.care.

7 | Registering of exam results — for each harvested product there | H H
should be an exam result that should, automatically, be
retrieved from the exams laboratories applications and inserted
in intensive.care.

To evaluate and validate these requirements, a low-fidelity prototype was created
in Microsoft PowerPoint (see Fig. 4) [6]. This prototype was analysed by some
stakeholders, including two MDs who are experts in infection in ICU. After this
evaluation, some changes were made to the initial prototype, so that it became much
approximate to what users really need.

! In-days in the ICU are days patients remain hospitalized at the ICU.
2 E.g.: blood, urine, gastric juice.

48 M.S. Santos, J. Falcao ¢ Cunha, and A.d.C. Pereira

isolation areas

-l] ICU map - -| |.+ Selected patient’s basic data

Mame: Ana Sofia Silva Costa APACHE Il: 68
Age: 39 SAPSIL 73
% « | Bed 04 SOFA 10
E E Hospital Admission Date; 22/02/2006
* % | ICU Admission Date: 24/02/2006
A " | i
(e TR = = T =Tz =T = S=o wf =z 4
B | '
>
Selected patient’s infections, products and microbes Selected patient’s complementary data
Special conditions
+ 8weeks pregnant
o + Diabetic
+ Intubated from 22/02/2006 to 27/02/2006
@* Ak Previous medication
| | %] rH + Cloxacillin
.' - @ D - Cefoxitin -
Day e L2 L3 [4[5 [6 [7 [818 [10[11[12] Hicrob i
Prod h O o microbe faund icrobe sensi ““ty
roduct harvest | & i one found Antibiotic »
S
~
i ¢ ® <|E|c|E|E|e||E|s
S o) ® HHEHHHEBHE
HEEEEHEEEB
® ® ® Microbe alz|Sla|d|E[Z|S|<
Doy LA 12 13[4 [6[6 7819 |10]1T]12] |Proteus mirabilis NIN[NIN[N]N
Antibiotics Staphylococcus aureus S N N|N N
Enterococcus faecium N SIN N N
Cotr Azt Bacillus anthracis N|N|N[ES]TS N
Pen Fen Cotr Imip ESBL S NIN|N N
Day AL 2 [3[4 [5[6[7[8[9[10[11[12] | Streptococcus pneumoniae NN SISIN[N &
> 5|

Fig. 4. Low-fidelity prototype for the patient screen of the new infection module. (! Represents
the red colour; * represents orange and + represents green).

The use of colour provides a fundamental visual aid, so this prototype is based on
colour-coding for quick identification of different situations. For the purpose of this
paper, additional signs have been added to the prototype, because when printed in
black and white, some colours are too similar to be distinguished one from another.

On the upper left part of the prototype (Fig. 4) there is a schematic drawing of the
ICU. Beds are displayed as they are located in the real ICU, they have a number (the
bed number) and a colour coding — red (!), orange (*) or green (+). If a bed is painted
red it means the patient standing in it has an infection by a very hard to control
microbe and might demand isolation and/or particular care. If a bed is orange, the
infection is easier to control but still problematic. If it is green, then the patient has no
infection, or has an infection by a microbe that is easy to control. Each bed is
clickable to switch from a patient to another on this screen, as every other parts of the
screen are related to the chosen patient. According to the ICU MDs, it is very
important to have this global perspective of the unit, as patients’ location is many
times switched as determined by the alert levels.

All other parts of this screen are related to the chosen patient. The upper right part
has patient’s basic data as his/her name, age, admission dates in the hospital and in the
ICU and the latest measure of the prognostic scoring indicators (APACHE II, SAPS I
and SOFA). There is also a graphical view of the in-days, with in-days in the hospital

Usability Requirements for Improving the Infection Module 49

not accounted and marked in light-blue. In this axis the evolution of the alert levels in
the patient is represented with the same colours as explained before.

On the lower left part of the screen is a graphical view of three fundamental issues
in infection in the ICU — infection, product harvest and antibiotics. The in-days are
represented in the same way as explained before and for each day there might be the
diagnosis of an infection by a microbe, product harvests, such as haemoglobin or
bronchial secretions and the administration of antibiotics. Microbes, products and
antibiotics are easily identifiable by abbreviations.

In the infections representation, microbes found are characterized by a colour,
which is related to their alert level. Every time a new microbe is found, there is a new
entry in the respective day.

The harvested products are represented by an abbreviation and a colour coding.
Each product has a different colour code and is examined by the respective
laboratory. The result of this exam might be a microbe isolation or a negative result.
Many times — up to 60% of the times, even though the patient is infected, the results
are negative, as microbes do not always survive through the complete product
analysis process. In this prototype, if a microbe is isolated, the representation of the
product becomes a rhombus; if not, it remains a circle. This way, by just looking at
the screen, infected products are immediately identified.

This circles and rhombuses that represent infections and products are clickable for
details, as are the days and the buttons tagged “Infections”, “Product harvest” and
“Antibiotics”.

The last quadrant is split in two parts. The top is composed by the patient’s
complementary data, such as special conditions and previous medication, which is
fundamental information for the MDs when choosing the antibiotics for each patient.

In the bottom there is the patient’s microbes’ sensitivity to antibiotics. This is
represented by a grid, so the optimal combination of antibiotics can be chosen.
Microbes are represented on the bottom left and antibiotics on the top. When crossing
a microbe with an antibiotic, there is always a result: N — neutral, S — sensitive or R —
resistant.

Whenever all the information in a part of the interface does not fit the screen,
scrollbars are provided. In most of the cases they will not be necessary as usually
patients stay in the ICU for about a week [9], and for that case, the window space is
typically sufficient.

This prototype aims to provide a wider perspective of the ICU’s current status and
each patient’s overview in terms of infection.

When a patient first arrives at an ICU he/she might have some infection symptoms
and need to be immediately medicated, or else he/she might die. Even though several
products are harvested and sent to the analysis laboratories, results from these analysis
are never immediate and most of the times, they take a few days to arrive. So, MDs
need to make a decision on which antibiotics to administer, based on some
information about the patient and their own experience in ICU infection. This
decision is based on several issues such as patient’s background, previously taken
antibiotics and symptoms, amongst many others.

A system like intensive.care should help MDs in their decision making, by not
only showing them all the variables that should be thought about, but also having
algorithms that could evaluate situations and provide advice about possible decisions.

50 M.S. Santos, J. Falcao ¢ Cunha, and A.d.C. Pereira

This prototype is based on the display and introduction of information about the
ICU and its patients. In the future there will also be a decision support system, which
will help MDs on their decisions, based on the patients’ variables and some artificial
reasoning, which takes into account previous cases.

This addition is expected to reduce the amount of time MDs spend analysing all the
variables about a single patient, by displaying patients’ variables in a user-friendly
way and making suggestions on the combination of antibiotics that should or could be
administered to that patient. Wishfully it will help MDs save lives.

5 Future Work

Next, in this study, there will be an iteration over the current low-fidelity prototype,
based on the inputs from several stakeholders. These stakeholders are both from the
development team and from intensive.care’s users. Several MDs have evaluated and
validated the prototype and gave their inputs for its improvement.

Afterwards a focus group will be conducted, that will gather several MDs from
different ICUs. The results of this focus group are expected to be one of the most
important contributors to the final requirements specification for the evolution of
intensive.care, in particular in what concerns interaction. Joining together a group of
MDs for a focus group might be problematic because of constraints such as medical
emergencies or different work schedules [3]. However, such a brainstorming meeting
is expected to collect much valuable information about intensive.care’s usability
problems (and other problems), since MDs are experienced users and their debate of
its problems might bring up some new important issues.

In the final stage of the evaluation, a high-fidelity prototype will be constructed to
support the requirements specification and validation by infensive.care’s main
stakeholders. This prototype will be functional and very similar to the new infection
module final interface. Since it is such a complete and interactive prototype, users
may evaluate and validate it more easily, as they can interact with it and simulate real
actions [6], [4].

6 Conclusions

Intensive.care is a product that meets the majority of the ICU needs, but still has some
unresolved usability problems that need to be addressed. There is a clear objective
from SBIM to expand infensive.care to other ICUs in Portugal, but HCI problems
need to be eliminated first.

One of the most problematic modules of intensive.care is the infection module, as
it is hardly ever used, mainly due to its usability problems. Infections in ICU are a
very serious problem because patients are critically ill and are prone to dying from
several infections. MDs need to be fully supported by an ICS to be able to save more
lives, by taking appropriate decisions on medicines and other treatments.

An easy to use infection module will aid MDs on their everyday tasks, by reducing
the amount of time they spend in registering and analysing infection data, and

Usability Requirements for Improving the Infection Module 51

providing them with advice on which decisions they could take when choosing
antibiotics and other treatments.

Since intensive.care works in such an extreme environment, which deals with life
and death in a daily basis, it is imperative that it provides good quality data and
interaction, which will be the basis for all the decision support algorithms that might
save lives. MDs need to be fully comfortable and confident while working with the
system, so they can take full advantage of it.

The specification of HCI requirements and creation of prototypes based on these
requirements is essential for user validation. At the end of this project a new infection
module will be proposed to substitute the existing one. It is expected to be well
accepted by intensive.care’s users, as it is being built with their help, based on their
real needs. In the end, intensive.care will be a much more effective and pleasant
application to work with, and therefore, a much more successful product.

Acknowledgements. The authors wish to thank Dr. Antonio Carneiro, from Hospital
de Santo Anténio, Porto and Prof. Anténio Sarmento, from Hospital Pedro Hispano,
Matosinhos, for all their help, in particular in the requirements elicitation, prototype
evaluation and validation phases.

References

1. Pereira, A.d.C. and T. Fonseca, intensive.care Reference Manual, SBIM, Editor. 2005.

2. Réanimation, S.F.d.A.e.d., Scoring systems for ICU and surgical patients. 2002.

3. Gosbee, J. and E. Ritchie, Human-Computer Interaction and Medical Software
Development. Interactions (ACM), 1997. nr. 4(4): p. pag. 13-18.

4. Preece, J., Y. Rogers, and H. Sharp, Interaction Design — beyond human-computer
interaction. 2002: John Wiley & Sons, Inc.

5. Nielsen, J., Usability Engineering. 1993: Morgan Kaufman.

6. Rudd, J., K. Stern, and S. Isensee, Low vs. high-fidelity prototyping debate. Interactions,
1996. 3(1): p. 76-85.

7. Ghiglione, R. and B. Matalon, O Inquérito — Teoria e pratica. Third Edition ed. 1997:
Celta.

8. Sarmento, A. and L. Lencastre, Interview about Infection in ICU. 2005.

9. Carneiro, A., Interview about Infection in ICU. 2006.

10. Metha, R.M. and M.S. Niederman, Antibiotic Resistance in the Intensive Care Unit. 2001.

11. Appelgren, P., et al. Risk Factors for Nosocomial Intensive Care Infection: a Long-Term
Prospective Analysis. in Acta Anaesthesiologica Scandinavica. 2001.

12. Haley, R.W., et al., The Efficacy Of Infection Surveillance And Control Programs In
Preventing Nosocomial Infections In US Hospitals. American Journal of Epidemiology,
1985. 121(2): p. 182-205.

13. Misset, B., et al., 4 Continuous Quality-Improvement Program Reduces Nosocomial
Infection Rates in the ICU. Intensive Care Med, 2004.

Interaction Walkthrough:
Evaluation of Safety Critical Interactive Systems

Harold Thimbleby

Department of Computer Science, Swansea University, Wales
h.thimbleby@swansea.ac.uk

Abstract. Usability evaluation methods are a battery of techniques for
assessing the usability of interactive systems or of proposed interactive
systems. This paper describes a new evaluation method, particularly
appropriate for evaluating safety critical and high quality user interfaces.
The method can also be used for informing HCI research. The method
is applied when a specification is available of an interactive system, or
when a system (or prototype) is working.

1 Introduction

Human computer interaction is the science and practice of effective interactive
systems, most often involving people and computers. Usability, more specifically,
is the theory and application of methods to improve the processes and products
of interactive system design. Humans are an object of study (for example, to
advance the science of psychology), and interaction is an object of study (for
example, using usability evaluation methods); interaction can also be arranged
to present users with controlled, novel situations, and hence generate phenom-
ena that demand psychological accounts. The conventional view, then, is that
evaluation of interactive systems focuses on the user.

Less obvious is that the computer (or embedded computer), not just the
human, is a useful object of study in its own right. Despite interactive systems
being fully defined by program, their behaviour is often not fully understood,
particularly when coupled with human use.

One might make an analogy from the well-known story of the Tacoma Narrows
bridge. Human sciences are very interested in the experience, behaviour and
performance of humans, for instance, drivers who use bridges — indeed, drivers
on the Tacoma Narrows bridge reported motion sickness that could perhaps
have stimulated new research. On the other hand, one might think that the
engineering of a finished bridge is not an interesting object for study; after all, it
has been built from specifications, so its design and properties are surely known
in principle. Unfortunately, the Tacoma Narrows bridge experienced catastrophic
failure in 1940 due to wind-induced vibration [I5]. In other words, its engineering
was not fully understood, and moreover, unknown engineering issues had a direct
impact on its usability.

This paper proposes and demonstrates a new ‘usability evaluation method’
but uniquely focussing on the device engineering rather than on the user. The

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 52. 2007.
© Springer-Verlag Berlin Heidelberg 2007

Interaction Walkthrough: Evaluation of Safety Critical Interactive Systems 53

benefits of this method are discussed, particularly for the safety critical domain.
Analysis of the Tacoma Narrows bridge led to advances in dynamical systems,
aerodynamics and so on; one may likewise hope that the methods proposed here
for analysing interactive devices will lead in a similar way to advances in the
theory and science of interactive devices.

1.1 Background

There are many usability evaluation methods, each appropriate to one or more
stages of the design lifecycle. It is conventional to divide methods into three
groups: test, inspection and inquiry. Test methods use representative users to
work on typical tasks, and their performance is measured or otherwise assessed;
testing requires a working system, or a prototype. Inspection methods instead
use experts (typically HCI experts, but possibly software engineers or domain
experts) to inspect a design; inspection can be done at any stage of design, from
prototype to marketplace. Inquiry methods inquire into the users’ preferences,
desires, and behaviour, and try to establish the requirements of a design.

To this list should now be added device methods, such as this paper will
describe below.

Conventional usability evaluation methods (UEMs) can be adjusted to need.
For example think aloud can be used in at least three ways: introspection, nor-
mal think aloud, and cooperative evaluation. A UEM may be applied to the
interactive system, the training material, the user manuals, or to the environ-
ment the user operates in. UEMs can be used in laboratories, in focus groups
(perhaps with no system present), or in the wild. One can further run a UEM
in anything from a purely informal way to an experimentally rigorous way —
depending on whether one wants basic information to help a practical design, or
whether one wants experimentally and statistically respectable information for,
say, a scientific paper.

All UEMs are concerned primarily with the user experience, though they
should be distinguished from user acceptance models [27], which are intended
more to inform management or procurement questions than to improve de-
sign. On the other hand, system evaluation methods focus on the technical
system design and are typically concerned with the reliability, integrity and
safety of the system; such methods range from formal mathematical work (theo-
rem proving, model checking) to informal procedures such as code walkthrough.
There are many schools of software engineering (e.g., extreme programming,
agile development), and many advocate different overall approaches. Neverthe-
less, software engineering methods assume the usability requirements are oth-
erwise established, and evaluate conformance of the implemented system to its
requirements.

UEMs are not without controversy. For example, Wixon [26] believes published
papers on evaluations have failed the needs of usability professionals. Gray and
Salzman [B6] compared many experiments with UEMs and found the standards
of experimental work questionable, in some cases leading to erroneous claims.

54 H. Thimbleby

All evaluation methods take stands on the questions of sampling, satisfic-
ing, frequency, severity and realism. There are other issues: such as obtaining
quantitative or qualitative data. Generally, interactive systems and their use are
complex; a UEM cannot hope to sample all of a system or all of its and its
users’ space of interactive behaviour (nor all users and all user personalities,
etc). UEMs therefore sample a restricted space of the design — typically there-
fore taking some arbitrary or trying, on the other hand, to take some statistically
valid sample of the space. This is of course difficult to do for interfaces intended
to be culturally sensitive, enlarging the space again. Furthermore, the results
of a UEM may be sensitive to the people doing the evaluation; some studies
show little overlap in results when undertaken by different assessors [I1] — in-
terestingly, this paper ([I1]) expresses surprise at assessor sensitivity, but it is
more likely a consequence of the difficulty of sampling a large, unknown space
uniformly.

A UEM may uncover problems in a design (e.g., there is no undo), but may
not know how frequently this problem arises in use; that is, many UEMs cannot
distinguish between risk and hazard. A UEM may identify a potential problem,
but not be clear how severe a problem it is for users. For example, a system
may have no undo, which is a potential problem, but users may have other work
arounds — the user interface without undo may then be usefully simpler than
one with extra features.

The more effort put into using a UEM, in principle the higher quality results
that can be expected; different UEMs have different cost/benefit curves, and
one may thus choose a break-off point, once encountering diminishing returns
on effort. However, there is no guarantee that if a UEM identifies a problem
that it can be fixed, or worse, that fixing it does not introduce other prob-
lems (which of course, at the time of fixing will be unknown and unevaluated
problems).

Finally, there may be questions about realism. A device may be evaluated in
a laboratory, but the conditions of actual use may be very different — this is a
particularly tricky question with safety critical devices, which may be very hard
and often unethical to evaluate under realistic conditions of use (e.g., where the
user is in a state of stress).

1.2 Wider Issues

Any review of UEMs, however brief, would not be complete without mentioning
politics. Designs have many stakeholders, and UEMs generally attempt to pro-
mote the needs and values of users. These values may not be the values intended
to be assessed or optimised by deploying the UEM. For example, in a safety
critical environment, one may be more concerned with political fallout or public
safety than the welfare of the actual operator, or one may be concerned with
legal liability issues (hence, ironically, perhaps wanting an obfuscated design, so
the user rather than the hardware seem to be at fault).

Interaction Walkthrough: Evaluation of Safety Critical Interactive Systems 55

2 A UEM for Safety Critical Systems

We now introduce a new UEM, primarily intended for safety critical systems. It
can of course be used for any interactive system, but the sorts of safety insight
obtained in terms of effort may be too costly for other domains — though the
UEM can be used on parts of systems with less effort, and may thus provide
insight into those parts of the system at reduced cost.

We call the method Interaction Walkthrough (IW) and it may most conve-
niently be contrasted with Cognitive Walkthrough (CW) and Program Walk-
through (PW — it “fills the gap’ between these two approaches.

Cognitive Walkthrough (CW) is a psychological inspection method that can
be used at any stage using a prototype or real system; it does not require a fully
functioning prototype; it does not require the involvement of users. CW is based
on a certain psychological learning theory, and assumes the user sets a goal to
be accomplished with the system. The user searches the interface for currently
available action to achieve their goal and selects the action that seems likely
to make progress toward the goal. It is assumed the user performs the selected
action and evaluates the system’s feedback for evidence that progress is being
made toward the goal.

Assessors start with a general description of who the users will be and what
relevant knowledge they possess, as well as a specific description of representative
tasks to be performed and a list of the actions required to complete each of these
tasks with the interface being evaluated.

The assessors then step through the tasks, taking notes in a structured way:
evaluating at each step how difficult it is for the user to identify and operate the
element relevant to their current goals, and evaluating how clearly the system
provides feedback to that action. Each such step is classified a success or failure.

To classify each step, CW takes into consideration the user’s (assumed) thought
processes that contribute to decision making, such as memory load and ability to
reason.

CW has been described well in the literature (e.g., [25]), and need not be
reviewed further here, except to note that CW has many variants (e.g., [16]).
The gist is that a psychologically informed evaluation is based on the user’s
behaviour.

In contrast, Program Walkthrough (PW) evaluates a design based on the
computer’s behaviour. Instead of psychological models or theories and user tasks
and goals, the PW assessor has programming language theory and walks through
program code to work out what the computer would do. In a sense, then, CW
and PW are duals.

In PW the programmer (more often working in a team) works through pro-
gram code, to convince themselves that the program does what it is supposed
to do, and that all paths are executed under the right conditions. Often a pro-
gram walkthrough will result in improved testing regimes, and of course better
debugged code. Usually, PW is seen as a quality control process rather than an

! In the context of this paper, the alternative name Code Walkthrough might be
confused with CW as Cognitive Walkthrough!

56 H. Thimbleby

evaluation method per se; the assumption is that there is an ‘ideal’ program, that
the current one should aspire to. Various techniques, including PW, are recruited
to move the current implementation towards the ideal ‘bug free’ program.

Neither CW nor PW are concerned with the interaction itself, in the follow-
ing sense. In CW, the concern is on the user, and in PW the concern is on the
execution paths of the program — which may well have little to do with the in-
teraction. That is, interaction is a side effect of running a program. The program
does input and output, with lots of stuff in-between, but the interaction appears
to the user as continuous (except when the computation is slow). If one looks
at a fragment of code, one has to work out what the input and output relation
is. In the worst case, there is a non-computable step from doing PW to knowing
what the interaction is.

Consider the following trivial-looking Java method, which is not even inter-
active in any interesting sense:

void star(long n)

{ while(n > 1) n = n%2 == 07 n/2: 3*n+1;
System.out.println("*");

}

If the user provides a value for n, does the method print a star? The code
fragment runs the Collatz problem, and whether it always prints a star is an
unsolved question (though it will always print a star if n is a Java int). This
example makes a clear, if abstract, demonstration that a program walkthrough
cannot in principle fully determine what the user will see the program doing.
Indeed, real programs are far more complex: they are concurrent, event driven,
and their behaviour is dependent on internal state, and so on.

Instead, we need to start outside the program ...

3 Interaction Walkthrough, IW

Many interactive devices are developed in a process roughly conforming to
ISO13407: a prototype is built, tested and then refined, and then the final sys-
tem is built (which may have further refinements). Typically, the prototype is
developed in an informal way, in some convenient prototyping tool, and then
the final system is developed in a programming language that is efficient on
the target hardware. Sometimes documentation and other training material will
be written, based on the same prototype, and developed concurrently with the
target system development.

Interaction Walkthrough works analogously, but with different goals. From
a working system, whether a prototype or target system, another system is
developed. Thus, a parallel system is developed from the interaction behaviour
of the system being evaluated.

Developing the parallel system requires the assessor to ask numerous ques-
tions, and to go over in detail many of the original design decisions — and
perhaps make some decisions explicit for the first time. To reprogram a system,

Interaction Walkthrough: Evaluation of Safety Critical Interactive Systems 57

the assessor needs to know whether features are instances of a common form,
are different, or are identical ... and so on.

As the parallel system is built, the assessor will program in a new way, and
therefore make independent decisions on the structure of the parallel program.
The assessor makes notes of design questions and issues. Since the assessor is
working independently of the original developers and programmers, new ques-
tions will be raised. For example: why are these two features nearly the same?
Why weren’t they programmed to be identical?

Inevitably, some (but by no means all) of the design issues raised by this phase
of the IW will cover similar ground to a conventional heuristic evaluation [12]
(e.g., noticing, if it is the case, that there is no undo).

The assessor will stop this phase of IW when either sufficient questions, or any
‘killer’ questions, have been raised, or when the rate of discovery has diminished
and the rate of return is insufficient for the purposes of the evaluation. Generally,
such discovery processes follow a Poisson distribution, and modelling the rate of
discovery can inform a rational cut-off point [13].

Reprogramming a system or even a partial system, as required by IW, is not
such a large undertaking as the original programming, since impossible and im-
practical features have already been eliminated. However reprogramming is still
a considerable effort, and the assessor may choose to do a partial implementa-
tion, concentrating on certain features of interest. The assessor may use RAD
tools, such as compiler-compilers, as well as ad hoc tools to both speed up the
process and to ensure consistency.

Typically, it is not possible to determine exactly what the device’s actual
behaviour is merely by experimenting on it. The user manual and help material
must also be used. Thus the assessor will discover discrepancies between the
documentation and the target system. Moreover, the assessor will be using the
user manual material with a keener eye than any user! Typically, user manuals
have definitional problems that IW will expose.

At the end of the reimplementation phase of IW, the assessor has three prod-
ucts: a realistic simulation, a list of questions and/or critiques, and a deep un-
derstanding of the system (typically including a list of formal properties) —
achieved more rapidly that other people on the design team. It is also worth-
while writing a new user manual for the simulation as well as documentation;
writing manuals forces the assessor to work to a higher standard, and may also
provide further insights into the design as a side-effect. It is also standard prac-
tice; if a safety critical device is being evaluated, the success of the evaluation
should not depend on a particular member of staff.

Next the assessor involves users through cooperative evaluation [28]. Are the
issues raised of significance to users in actual practice? Thus the list of questions
and critiques is refined to a prioritised list.

The prioritised list can then be fed back into the iterative design process in
the usual way. The IW implementation may also be iterated and made more
realistic or more useful, for instance, for further cooperative evaluation.

58 H. Thimbleby

3.1 Key Steps of IW
In summary, IW is an UEM based on the following steps:

1. Clean reverse engineering, generally ignoring non-interaction issues, using a
device, its user manual and training material.

2. Development of an accurate simulation.
3. Recording design questions and queries, arising from Steps 1 & 2.
4. Review with domain experts using the original device and/or simulation.

Steps 1-3 iterate until ‘showstopper’ or ‘killer queries’ are found, or the rate of
discovery becomes insufficient. The whole process may be iterated; for example,
working with end users may reveal short-comings in the simulation.

3.2 Variations and Extensions

Once a simulation is available, it can be used for many purposes, such as train-
ing tests, collecting use data (which perhaps is too complex to collect from a
real system), for random simulation, and so on. Other possibilities are to embed
automatic UEMs [§] inside the system built for the IW exercise — many auto-
mated UEMs would interfere with the target system’s operation, and so would
be inappropriate to deploy without a different (in this case, IW) implementa-
tion. We do not consider these additional benefits strictly part of a UEM itself,
but the ‘added value’ implies IW should be viewed as playing a wider part of
the quality control and inquiry methods than merely finding certain types of
usability problem.

An IW simulation can easily be built to generate a formal specification of
the device in question, which can be used for model checking and other rigorous
analyses. Indeed, if methods such as the Chinese Postman [2/22] are used for
reverse engineering, they in any case require an explicit graph of the device.
Figure 2] shows an automatically drawn transition diagram, drawn from the
specification generated by the IW program; the transition network has been
checked for strong connectivity (as it happens, by one of the internal checks
in the program itself, although the analysis could have been done by external
programs). For example, the connectivity analysis in this example makes one
node automatically highlighted as not being in the main component of the graph
— thus showing either the device has a problem, or (as is the case here) the
reverse engineering of it is not complete.

3.3 Relation of IW to Software Engineering

In typical software engineering processes, there is a progression (e.g., the spiral
model or waterfall) from requirements to product. IW creates a parallel path,
which does not start from the explicit specifications used in standard refinement.
Instead, the idea is effectively to ‘rationally reconstruct’ such specifications, in-
sofar as they relate to user interaction, and to do so independently, without the
implementation bias that would inevitably have crept into the original process.

Interaction Walkthrough: Evaluation of Safety Critical Interactive Systems 59

Normal software engineering is concerned with validation and verification
(V&V) of the product, with caveats that normally there are leaps of imagi-
nation connecting what can be formally established and what is actually imple-
mented.For example, a model checking language like SMV does not lend itself
to efficient implementation, so the target system is actually informally imple-
mented, however rigorous its specification might have been. Instead, IW works
from what has actually been implemented (not what should have been imple-
mented), and works out its (interaction) specification, in fact, sufficient to reim-
plement some or all of its user interface. Thus it is likely that IW will bring
rigour into interaction evaluation that, very likely, will have been omitted in the
standard software development process.

4 Worked Example

As an exercise in IW, a Graseby 3400 syringe pump and its user manual [4] was
reverse engineered as a Java program. This worked example raises interesting
design questions that were uncovered by IW — and on the whole, ones that
were very unlikely to have been uncovered by other UEMs — and hence this
example illustrates IW well. The Graseby 3400 is an extremely popular and
established product (hence of some interest to evaluate by a new method) but
this paper does not assess the risks, if any, of the issues mentioned.
This IW exercise developed three products:

— A photorealistic simulation; see Figure [[l The simulation only shows LEDs
and the behaviour of the LCD panel; it does not show syringe activity.

— An automatically generated specification, used in particular to draw a tran-
sition diagram (which in fact is animated as the Java simulation is used); see
Figure 2l This was developed to ensure the completeness of the simulation
for the purposes of IW. In fact, not all of the 3400 was simulated, as it is a
complex device.

— A list of 38 detailed design questions. The list of questions was generated
as the reverse engineering proceeded. The reverse engineering phase was
stopped when the rate of new question generation slowed and the process
appeared unproductive. As will be seen, compared to a typical UEM, the
questions are very detailed and technical, although presenting the full list is
not the purpose of this paper.

Twelve ansesthetists and an NHS Pump Trainer (the person who trains pump
operators) were interviewed, based on the list of 38 design questions generated
during the reverse engineering phase. For reasons of space in this paper, we do
not review all questions here; the paper is introducing IW, not reviewing any
particular device except insofar as it helps illustrate IW.

The ITW assessor then worked with a consultant anaesthetist in a detailed
cooperative evaluation of the 3400, undertaken during a routine 3 hour operation.

60 H. Thimbleby

o o

e 8321 (0) ()

Fig. 1. Screen shot of the Graseby simulation in bolus mode, with the ‘start’ LED
flashing, indicating that the device is infusing. The image was made by holding the
Graseby 3400 over a scanner.

Two incidents during the operation had been anticipated by some of the
design questions. We now briefly summarise the design questions, then briefly
summarise the use (in this case, clinical) perspective.

— The user manual states that the numeric keys are set up like a calculator.
In fact, numbers have a slightly different syntax to an ordinary calculator,
notably: (i) there is a silent timeout; (ii) decimal points zero the decimal
fraction (whereas on a calculator, pressing the decimal point does not lose
significant digits). See Table [I1

— Inaccurate entry of numeric data produces no error warnings (no beeps) and
might (potentially) lead to adverse effects; see Table [I] for a summary.

— Numeric entry has a CANCEL button (which would be called AC or CE on a
calculator), but there is no undo.

— The bolus feature has no explicit method of exit, but has a 10 second time-
out. There are, however, ‘spare’ soft keys which might have been used for
explicitly exiting bolus mode.

— Although there is a CANCEL button, there is no consistent escape from any
mode.

The last case in Table [I] deserves further explanation. Conventional calcula-
tors do not ignore underflow unless a number already has more than (typically)
8 significant figures; in particular entering 0.009 would be handled correctly on
all conventional calculators. Instead, the Graseby has a fixed number of deci-
mal digits (1 or 2 depending on the mode), and always ignores underflow. As
designed: underflow should be avoided by first choosing the correct units. For
example, if the ansesthetist wants to enter 0.009mg/ml, they should instead (as
the device is designed) enter 9ug/ml. This is an example of a design question,
revealed by IW, which can then be presented to users, to see whether it is an
actual (in this case, clinical) issue.

Interaction Walkthrough: Evaluation of Safety Critical Interactive Systems 61

START /START

Infusmg Invalid rate

CHANG! BOLUS <timeout>

Bolus

DOSE ENTE@ ENTER

Bolus rate

Fig. 2. Partial screen shot of the Graseby transition diagram, drawn by Dot. The
diagram is updated after each user action, and it is coloured: the current state is green;
transitions that have been tested are green; states that have been visited are yellow;
undefined states and transitions are red — note that the simulation does not yet define
the actions for changing the infusion rate.

In a typical UEM these issues would easily be overlooked; in IW, they need
examining closely otherwise a program cannot be written.

During the operation, the consultant ansesthetist entered the patient’s weight
incorrectly, as 8kg rather than 80kg.This was caused by a decimal point error.

The patient was infused continuously with Remifentanil, and, because of the
length of the operation, the syringe needed to be changed. After the delay caused
by a syringe change, the anzesthetist used the bolus feature, however he assumed
switching the 3400 off and on again was the only way to get out of bolus mode
and resume the infusion — switching off and on would of course have caused a
further delay. He tried leaving the bolus mode by pressing various buttons, but
of course this activity merely postponed the effect of the timeout which would
have exited the bolus mode.

Neither of these incidents had any clinical significance (and they were not
reported); in fact, they were quite routine issues. The anaesthetist noticed both,
and had work-arounds. Nevertheless redesign of the 3400, along the lines
anticipated in the IW, would have avoided both incidents. Interestingly, such
a redesign would not require any changes to any training material or the user
manual; fizing the cases considered here would just make erroneous use
simpler.

In the larger context of improving the design, an open question is how the
anaesthetist noticed his errors. For instance, an eye tracking experiment would
help establish the relative effects of the LCD display’s feedback to the tactile
feedback of button pressing. Would improving the sound feedback help (in an
already noisy operating theatre)? These are certainly worthwhile questions to
investigate further, beyond the scope of IW, but questions raised by the process
of IW.

62 H. Thimbleby

Table 1. Partial list of potential issues to do with number entry. Column 2 shows
the number displayed if a user presses the sequence of buttons indicated in Column 1
(provided there were no previous numeric buttons pressed in the current state).

Key sequence Effect Comment
9999.42 999.42 Numeric overflow loses digits

e Causes no error report (e.g., no beep)

e Does not stop fraction entry

e The number may seem correct to a quick glance
1.[pause]9 9.00 Timeouts reset number entry

e No indication to user (e.g., no beep)

e Number may be bigger than expected
111.[pause]9 9.00 Timeouts reset number entry

e No indication to user (e.g., no beep)

e Number may be smaller than expected

1.2.3 1.30 Repeated decimals lose digits
e No indication to user (e.g., no beep)
0.009 0.00 Numeric underflow is not rounded

e No indication to user (e.g., no beep)

5 Other Examples

Several devices have previously been evaluated in methods approximating ITW:
microwave cooker [I7]; video recorder [I8]; fax [I9]; mobile phone [20]; ticket
machine [21]; calculator [23].

One might thus argue that IW (or an approximation thereof) gave or sup-
ported useful HCI design insights, of sufficient standard to contribute to these
refereed publications.

There are numerous papers in the literature promoting new UEM or HCI
methods using examples that are based on reverse engineered systems, that
is, they are interpretable as ‘hindsight-IW’ case studies; however, these papers
generally wish to make the claim that their methods should be used from spec-
ifications, not from reverse engineering, which may have been forced on them
because their method was invented after the example product was build, or be-
cause the relevant form of specification was not available. The Palanque and
Paterno edited book [14] is a case in point: it applies many formal HCI methods
to existing browsers and browser features. For IW, the reverse engineering is
integral to the process; it adds value, as explained above; whereas for most of
these papers reverse engineering was used only incidentally, to ensure the pro-
posed method could manage realistic cases (a detailed argument for this point
of view is made in [24]).

6 Further Work

There are several ways to develop the work proposed here.
The simulation was written in Java, but a more structured framework would
be extremely beneficial (e.g., in VEG, Z, SMV etc), particularly for providing

Interaction Walkthrough: Evaluation of Safety Critical Interactive Systems 63

direct support for reverse engineering and output of specification texts for further
analysis in standard tools; on the other hand, the Java included code for checking,
generating Dot diagrams, and the Chinese Postman — in an ideal world, these
would be features in interactive development frameworks.

To what extent are the insights of IW the investigator’s insights, as opposed
to insights derived from the IW process? The IW process should be tested and
used with more analysts. Having a structured framework (as proposed above)
would make TW more accessible to more people.

The recording of design queries should be integrated into the IW framework.
Currently, the issues and questions were simply recorded in a textfile (for the
worked example in this paper, we used BTEX) and in comments in the Java
program, but there was no tool-based management of them. In particular there
was no explicit connection between the list of problems and the state space of
the device — for example, had there been, diagrams like Figure 2 could be very
helpfully annotated with actual and suspected problems.

7 Conclusions

As pointed out by Paul Cairns, IW is a programmer’s version of Grounded The-
ory. Grounded Theory is, briefly, an inductive approach to build social theories
grounded in systematically analysed empirical data [3]. In IW, the ‘theory’ is
the resultant program (or, more precisely, the program is an implementation of
the theory), and the empirical data is derived not from social data but from
program behaviour.

There are six key reasons why IW reveals useful evaluation information that
was unlikely to have been known without it:

1. The assessor is discovering a new specification by reverse engineering. This
is more useful than re-examining the original specification (if there is one!)
because the original specification and program inevitably contain traces of
their development and the sequence of design decisions. For a user of the
final system, the design rationale and its working out is irrelevant: the user
is interested in the working product. Thus the IW assessor works from that
product, and constructs a clean specification, without the ‘historical taints’
that CW would be enmeshed with.

2. Second, IW starts with a system that works. Many UEM inspection — CW
amongst them — can work from prototypes, even non-functional prototypes
such as story boards, which very likely will not have worked out details of
how the real system is going to work, creating the problem Holmquist calls
cargo cult design [7]. In safety critical areas it is crucial that the details get
evaluated and that nothing crucial is left to the imagination of the evaluators,
who may be tempted to gloss details that have not been worked out for a
prototype.

3. A third reason for the effectiveness of IW is that the assessor can choose
any programming language or approach to construct the simulation — thus

64

H. Thimbleby

allowing them to work in a much more suitable programming environment
than perhaps the implementors of the actual target system were able to.
For example, the implementors of the target system may have had to use
assembler or PIC code, whereas the IW assessor can use Java, SMV [9/T0],
or Promela — or any special purpuse GUI languages, such as VEG [I] — as
they wish. Using a ‘nice’ language with powerful abstraction features, par-
ticularly one with model checking, appropriate for the interactive simulation
will highlight inconsistencies in the target design in a way that cannot be
done on the target system.

Fourth, the simulation can embed arbitrary test, diagnostic and debugging
information to help the assessor. For example, it can generate transition
diagrams, diagnostic logs, and so forth: to help the assessor assess how much
of the device has been simulated and tested, but also to give formal insight
into the design, for instance to check properties. Algorithms such as the
Chinese Postman [222] can be used to ensure a complete coverage of the
state space is achieved.

Fifth, the assessor can use a full range of modern model checking and the-
orem proving techniques to check the interface against desirable interaction
properties. Loer and Harrison give persuasive examples [910] of the effec-
tiveness of this approach — indeed, their work is essentially IW, as they
had to reverse engineer systems (though their approach is suited to early
use in software production, on the assumption that formal specifications are
available), and their systems do not have the performance to be production
systems.

Finally, the real success of any UEM lies in its recommendations being
adopted either in the product being evaluated or in some future product
(or perhaps in persuasive argument in published papers — which will, in
turn, affect future products). IW has the advantage over other UEMs that it
is driven by reverse engineering software, and therefore is already half-way
towards offering ideas that can contribute to changing the software of the
product, such as how to refactor it. Other UEMs risk making suggestions
that are superficially appealing (even based on empirical evidence) but which
are too hard to implement and are therefore resisted by the very people who
must make the intended changes.

Arguably, the greatest use of IW would be the software engineering insights

it provides a system developer. Rather than rely on UEMs to identify usability
problems that then need fixing, surely it is better to adopt a system development
process that avoids as many problems as possible? To do so requires using suit-
able quality and quality assurance processes, which of course are often skipped
under the pressures of industrial design. An IW process exploits best software
engineering practice to build an accurate simulation of the system being eval-
uated; it is likely that the IW assessor is an expert programmer, and therefore
brings to their evaluation practices that might be applied in normal design. If so,

Interaction Walkthrough: Evaluation of Safety Critical Interactive Systems 65

then IW can be an agent of change in improving work practice to avoid usability
problems in future devices by encouraging the use of better processes. Indeed,
in a typical industrial environment, identifying problems with today’s product,
which has already shipped, is of less interest than improving future products by
learning from problems with today’s product.

Further work that would be desirable is to compare the efficiency (significant
problems identified per unit effort) of IW with other methods, as well as the
organisational impact of IW (e.g., process improvements) against the impact of
other methods.

Acknowledgements. Harold Thimbleby is a Royal Society-Wolfson Research
Merit Award Holder, and gratefully acknowledges this support. Paul Cairns
(UCL) pointed out the useful analogy between IW and GT. Michael Harrison
(Newcastle) and Matt Jones (Swansea) both provided many useful comments on
the approach.

References

1. J. Berstel, S. Crepsi Reghizzi, G. Roussel & P. San Pietro, “A scalable formal
method for design and automatic checking of user interfaces,” ACM Transactions
on Software Engineerng and Methodology, 14(2):123-167, 2005.

2. W-H. Chen, “Test Sequence Generation from the Protocol Data Portion Based
on the Selecting Chinese Postman Problem,” Information Processing Letters,
65(5):261-268, 1998.

3. B. G. Glaser & A. L. Strauss, The Discovery of Grounded Theory: Strategies for
Qualitative Research, Chicago, 1967.

4. Graseby Medical Ltd., Graseby 3400 Syringe Pump: Instruction Manual, 2002.

5. W. D. Gray & M. C. Salzman, “Damaged merchandise? A review of experi-
ments that compare usability evaluation methods,” Human-Computer Interaction,
13(3):203-261, 1998.

6. W. D. Gray & M. C. Salzman, “Repairing damaged merchandise: A rejoinder,”
Human-Computer Interaction, 13(3):325-335, 1998.

7. Holmquist, L. E., “Prototyping: Generating ideas or cargo cult designs?” ACM
Interactions, 12(2):48-54, 2005.

8. M. Y. Ivory & M. A. Hearst, “The state of the art in automating usability evalu-
ation of user interfaces,” ACM Computing Surveys, 33(4):470-516, 2001.

9. Loer, K. & Harrison, M., “Formal interactive systems analysis and usability inspec-
tion methods: Two incompatible worlds?, Proceedings of the Interactive Systems.
Design, Specification and Verification. 7th International Workshop, DSV-IS 2000,
Palanque, P. & Paterno, F. (eds) Lecture Notes in Computer Science, 1946, 169—
190, Springer-Verlag 2001.

10. Loer, K. & Harrison, M., “Towards usable and relevant model checking tech-
niques for the analysis of dependable interactive systems,” Proceedings of the 17th
IEEE International Conference on Automated Systems Engineering: ASE 2002,
Emmerich, W. & Wile, D. (eds), 223-226, 2002.

11. R. Molich, M. R. Ede, K. Kaasgaard & B. Karyukin, “Comparative usability eval-
uation”, Behaviour & Information Technology, 23(1):65-74, 2004.

12. J. Nielsen, Usability engineering, Academic Press, 1993.

66

13

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

H. Thimbleby

J. Nielsen & T. K. Landauer, “A mathematical model of the finding of usability
problems,” ACM SIGCHI conference on Human factors in computing systems,
206-213, 1993.

Palanque, P. & Paterno, F., eds, Formal Methods in Human Computer Interaction,
London, Springer-Verlag, 1997.

H. Petroski, To Engineer is Human: The Role of Failure in Successful Design,
Vintage Books, 1992.

D. E. Rowley & D. G. Rhoades, “The Cognitive Jogthrough: A Fast-Paced User
Interface Evaluation Procedure.” ACM CHI’92 Proceedings, 389-395, 1992.

H. Thimbleby & I. H. Witten, “User Modelling as Machine Identification: New
Design Methods for HCI,” Advances in Human Computer Interaction, IV, D. Hix
& H. R. Hartson, eds, 58-86, Ablex, 1993.

H. Thimbleby & with M. A. Addison, “Intelligent Adaptive Assistance and Its
Automatic Generation,” Interacting with Computers, 8(1):51-68, 1996.

H. Thimbleby, “Specification-led Design for Interface Simulation, Collecting Use-
data, Interactive Help, Writing Manuals, Analysis, Comparing Alternative Designs,
etc,” Personal Technologies, 4(2):241-254, 1999.

H. Thimbleby, “Analysis and Simulation of User Interfaces,” Human Computer
Interaction 2000, BCS Conference on Human-Computer Interaction, S. McDonald,
Y. Waern & G. Cockton, eds., XIV, 221-237, 2000.

H. Thimbleby, A. Blandford, P. Cairns, P. Curzon and M. Jones, “User Interface
Design as Systems Design,” Proceedings People and Computers, XVI, X. Faulkner,
J. Finlay & F. Détienne, eds., 281-301, Springer, 2002.

H. Thimbleby, “The Directed Chinese Postman Problem,” Software — Practice &
Ezperience, 33(11):1081-1096, 2003.

H. Thimbleby, “Computer Algebra in User Interface Design Analysis,” Proceedings
BCS HCI Conference, 2, edited by A. Dearden and L. Watts, Research Press
International, pp121-124, 2004.

H. Thimbleby, “User Interface Design with Matrix Algebra,” ACM Transactions
on Computer-Human Interaction, 11(2):181-236, 2004.

C. Wharton, J. Rieman, C. Lewis & P. Polson, “The Cognitive Walkthrough
Method: A Practictioner’s Guide,” in J. Nielsen & R. L. Mack, eds, Usability
Inspection Methods, John Wiley and Sons, 1994.

D. R. Wixon, “Evaluating usability methods: why the current literature fails the
practitioner,” Interactions, 10(4):28-34, 2003.

V. Venkatesh, M. G. Morris, G. B. Davis & F. D. Davis, “User acceptance of
information technology: Toward a unified view,” MIS Quarterly, 27(3):425-478,
2003.

P. C. Wright & A. F. Monk, “The use of think-aloud evaluation methods in design,”
ACM SIGCHI Bulletin, 23(1):55-57, 1991.

”

Collaborative Social Structures and Task Modelling
Integration

Victor M.R. Penichet', Fabio Paternd?, J.A. Gallud', and Maria D. Lozano'

"I3A-UCLM, Av. Espaiia s/n, 02007 Albacete, Espafia
{victor.penichet, jose.gallud, maria.lozano}@uclm.es
2ISTI-CNR, via G.Moruzzi 1, 56100 Pisa, Italy
fabio.paterno@isti.cnr.it

Abstract. Interdisciplinary work groups have proved to be one of the best prac-
tices (in terms of efficiency) in modern organizations. Large applications have
many different users who can play different roles with responsibilities and
rights depending on such roles. There are so many roles, groups, relationships
among them, tasks, and collaborations, that it is very difficult to develop an ap-
plication without gathering all this information in a proper way. This paper de-
scribes a modelling approach supported by a graphical notation, which makes
the representation of such information easier to analyse and manage. The goal is
to provide a complete and integrated approach to model collaborative interac-
tive systems.

1 Introduction

Software applications are often used by a large number of user groups who have dif-
ferent features and functions. The availability of high-speed network connections has
contributed to increasing the number of these applications, where many different
types of users participate in a temporally and geographically distributed way.

Such a variety of users, features, tasks, objectives, etc. have to be taken into ac-
count carefully when developing large applications. Designers should be provided
with techniques and tools to gather all this information, which must be considered to
develop multi-user collaborative systems.

This paper presents a modelling approach for collaborative systems to better un-
derstand the organization of the different users, the existing collaborations among
them, and the individual tasks they perform. Such an approach is based on the role
that users play in the system (the role view).

The organizational structure of the users of the system that will be deployed and
the relationships among such users are modelled by means of two diagrams: the Or-
ganizational Structure Diagram (OSD) and the Collaborative Diagram (CD), respec-
tively. The OSD models such a user structure: groups to which users belong, the roles
they play, etc. Several CDs provide a model of the collaborations among users de-
pending on the role they play or the groups to which they belong.

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 67-80] 2007.
© Springer-Verlag Berlin Heidelberg 2007

68 V.M.R. Penichet et al.

The third diagram making up the role view is the Task Diagram (TD). There is
a TD for each role in the system, and it specifies the tasks that a user with such a
role performs.

The organizational structure, collaborative relationships, and tasks a user performs
are modelled thanks to three graphical representations.

Instead of developing a new graphical notation for the TD, we have adopted an ex-
isting one. CTT [10] has been selected for this purpose because it is already widely
accepted and consolidated. This paper also presents the integration between the OSD
and CD diagrams with CTT. These three diagrams provide designers with an easy
way to gather useful information on a system.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 briefly describes the proposed role view to design and analyse collaborative
systems. Section 4 is devoted to the integration between the adopted task diagram
(CTT) with the rest of the diagrams in the role view. Section 5 presents an example to
show the applicability of the proposal. Lastly, Section 6 concludes the work with
some final remarks.

2 Related Work

Some coordination and communication problems appear when many users interact
with the same system. A system that assists distributed developers in maintaining
mutual awareness is presented in [6]. Our proposal is oriented to analysts and design-
ers who develop applications where many users, probably geographically distributed,
collaborate with each other. Software developed taking into account the user’s or-
ganization and collaborations is generally much more usable.

The number of users in collaborative systems and their different features and func-
tions raise specific issues and there is a need to provide designers with specific tech-
niques and methods to model such systems.

In [2], a conceptual model is proposed to characterize groupware [3, 4, 5, 7] sys-
tems. This model describes objects and operations on such objects, dynamic
aspects, and the interface between the system and the users, and amongst users.
This characterization describes a groupware system from its users’ point of view.
Our approach describes the system from the role point of view, because we want to
take advantage of the abstraction of features and functions that roles provide. We
also propose a graphical notation to represent the roles, collaborations, etc. in a
collaborative system.

Role modelling is used in [12] as an enabling technology for framework design
and integration. Class diagrams with some role constraints, which are constraints on
object collaborations, are used in such modelling technique. We propose to specify
the organizational structure of system users , that is, how roles are grouped and
related.

Role modelling is used as a mechanism for separation of concerns to increase the
understandability and reusability of business process models [1]. In some modelling
techniques for developing groupware systems [10, 11, 14], role or actor concepts are

Collaborative Social Structures and Task Modelling Integration 69

also considered when modelling the existing collaboration among the users of a sys-
tem. We propose a notation that provides designers with a flexible way to represent
social structures and interactions. It is a view of the system that facilitates the design
and the analysis of the users’ collaborations and provides a way of classifying, orga-
nizing, and representing the roles and the groups to which the users will belong.

Such methods use these concepts to ease comprehension of the system, and to
allow designers to know who does what, or what kind of features or functions a par-
ticular user performs. In our work, it is also possible to represent the organizational
structure of the system to be built. After modelling the organizational structure of the
users, we suggest a graphical notation to represent the person-computer-person inter-
actions, which provides an easy-to-grasp view of the existing collaborations among
such users.

We use the ConcurTaskTrees (CTT) notation to model individual tasks instead of a
new notation. Therefore, a mapping between different notations is necessary, which is
a common technique to achieve a more complete model of a system (e.g. [9]).

3 The Role View

The Role View provides a way to model collaborative systems, and accordingly,
provides designers with another way to analyse them. The main focus of the Role
View is on the actors, the organizational structure, and the relationships among
them.

This view is described by means of three diagrams: Organizational Structure Dia-
gram (OSD), Collaborative Diagram (CD), and Task Diagram (TD).

The concepts we use to model collaborative applications by means of the OSD and
CD diagrams, as well as the diagrams themselves, are explained in the following sub-
sections, while for the TD, the existing CTT [10] graphical representation has been
adopted. A more extensive example of the notation and the way of modelling collabo-
rative systems through the Role View has been introduced in section 5.

3.1 Basic Concepts

We use some concepts in our approach that are going to be briefly explained in this
sub-section. Regarding organization, we use three concepts that we call organiza-
tional items: actor, role, and group, which are described in Table 1. Other concepts
are used to express relationships and collaborations between the different classifiers:
instantiation, aggregation, and cooperative interaction (Table 2).

3.2 Organizational Structure Diagram (OSD)

It is possible to model the organizational structure of the users by means of actors,
roles, and instantiation relationships, groups, and aggregation relationships. The
main advantage to modelling such structure is the possibility of classifying, organiz-
ing, and representing the users of the system.

70 V.M.R. Penichet et al.

Table 1. Organizational items

Organizational Description Notation
items
Group A group is a set of roles that need to
interact together and to collaborate in ;}.
order to reach a common objective. GROLjP 1
Common objectives would not be reach-
able without such collaboration.
Role A role is a set of actors that share the
same characteristics and perform the LR
same tasks £
ROLE 1
Actor An actor is an element able to perform a
task. We could consider an acfor as an i"'
instance of a role. :
User A user is a person who interacts with the
system, thus s/he is an actor. Some other
things (not users) could be actors.
Table 2. Organizational relationships
Relationship Description Notation
Instantiation =~ Between a role and an actor playing
(structure) such role there is an instantiation
relationship, that is to say, this actor
is an instance of that role.
Aggregation An aggregation relationship is an
(structure) existing association between the
whole and its parts.
Cooperative A cooperative interaction means a Task_role_1
Interaction cooperative task among several ac-
(collaboration) tors, roles, or groups in order to Cooperative_

reach a common objective.

Collaborative Social Structures and Task Modelling Integration 71

~~~~~ > Receive_inform , Cooperative
Name of the LR L7 Interaction LR
role ==---____ > A& L LN
= AUTHOR CHAIR AUTHOR
Instantiation
Relationship ~~~ """~ >
AGLO/gS = = = == > }-’ nform }.

Fig. 1. Instantiation relationships between a role and an actor and cooperative interactions

Send_doc

R Receive_doc R Send_doc R R
}". } }'. Receive_doc }
WRITER WRITER WRITER WRITER

Receive_doc

Send_doc }. Receive_doc }. }.
Send_doc
1:1 1:M M:1 M:M

Fig. 2. The four fundamental cooperative relationships

Moreover, it allows designers to gain a much more structured, simple and real view
of the role organization and the groups to which the users will belong. It will be the
basis for designing user collaborations.

Once the organizational structure of the system users is represented (in terms
of group, role, actor, and aggregation), the collaborations existing between the
organizational items are established, which describe the different cooperative
tasks performed. These tasks are represented in the CD, which is explained in
Section 3.3.

The Instantiation relationship between role and actor provides a way to represent a
role and an actor playing this role in the same diagram. Fig. 1 shows an example of
Instantiation relationship. It links two organizational items: a role and an actor. This
relation means that the source icon is an instance of the destination icon, that is to say,
an actor performs such a role. Then, this figure represents a set of actors with the
same features and the same functions, and an instance of such a set.

3.3 Collaborative Diagram (CD)

Once the structure of the organization is represented by the OSD, one of the main
advantages is the possibility of modelling the collaborations among actors belonging



72 V.M.R. Penichet et al.

to different roles and groups. The idea is not to model users’ interaction, but to model
the interaction between users through computers and networks.

When structuring the whole system according to different primary objectives, a
CD is made for each objective. Each CD will explain the existing interaction
between the organizational items (groups, roles, actors) that are necessary to
achieve such objectives. The whole set of CDs describes all collaboration in the
system.

Interaction among actors is symbolized by the cooperative interaction relation-
ship, a solid black arrow in the diagram. Such relationships are cooperative tasks,
which are performed by several actors within the system.

Solid black arrows representing cooperative tasks have three labels as shown in
Fig. 1. The source label is the name of the task performed by the actor who starts the
cooperation, and the destination label is the name of the task performed by the actor
who cooperates with the first one. The squared label situated in the centre of the ar-
row is the name of the cooperative task. The arrowhead could be omitted if necessary,
for instance, in a concurrent cooperative task where the order of the tasks is not
important.

A cooperative interaction relationship representing a cooperative task also has an
intrinsic cardinality at the beginning and at the end. This cardinality indicates the
number of actors performing the role tasks.

The source and the destination of the arrow representing a cooperative task deter-
mine the cardinality. Fig. 2 shows an example with every possible cardinality.

4 Integration of the Role View and ConcurTaskTrees

Tasks models are a useful tool to analyze and design applications from the point of
view of the users who are going to interact with such applications.

The role view that we propose provides a new perspective to the designers. Users
are organized in roles and related groups. The result of these relationships between
roles and groups is what we define as organizational structure of the users of an ap-
plication which is graphically represented in the OSD (see section 3).

Traditionally, in order to discover a way to fix large problems, they are divided
into simpler sub-problems which can be modelled separately. We propose the CDs to
identify and model the collaborations between users in every sub-problems (see sec-
tion 3). Different organizational items from the OSD are related in the CDs to repre-
sent such collaborations.

Therefore, this method to design collaborative systems allows designers, first, to
identify and analyse the organizational structure of the system users, and then, it also
provides a way to model the collaborations among the users of such system.

Mapping different notations is a technique already used to obtain a complete model
of the system. For example, [9] shows a mapping approach between ConcurTaskTrees
and UML [13] to include one of the most widely used notation for task modelling into
the Unified Modelling Language.



Collaborative Social Structures and Task Modelling Integration 73

The role view is composed of three different diagrams as it was mentioned before:
OSD, CD, and TD. OSD and CD were detailed in Section 3, while for the TD, the
existing CTT graphical representation has been adopted. The organizational items and
relationships integration within the CTT notation is explained in the next sub-
sections. Such integration is necessary to achieve a coherent model of the system.

4.1 Group and Aggregation Relationship

Group and aggregation concepts do not have a direct mapping from the OSDs and
CDs to the CTT notation. They are concepts used to classify the roles that the users of
the system are going to play.

An OSD represents the set of all the users of the system. These users play roles,
and such roles belong to one or more groups. A user, by himself, cannot directly be-
long to any group.

The group concept was defined in Section 3 as a set of roles whose actors need to
interact together and to collaborate in order to reach a common objective. Hereby, this
common objective could be one of these sub-problems in which the main problem is
decomposed to make it simpler to manage, as mentioned in the introduction of this
section.

Each sub-problem is modelled by means of a CD and several TDs. The CD repre-
sents the existing collaborations among some organizational items of the OSD, while
there is a TD, which is represented by the CTT graphical notation, for each role that
participates in the sub-problem.

4.2 Role

The role organizational item of the Role View (see Table 1) is the one which has the
most direct correspondence in the CTT task model, because the role concept is also
considered in the CTT notation in the same way.

In a CTT cooperative model, every role has an associated task diagram with all the
tasks that are performed by such role. That is, if there is a role item in the Role View,
there will be an associated CTT task diagram for this role, which shows all the tasks
performed by a user playing such role.

4.3 Actor and Instantiation Relationship

Actor and instantiation relationship concepts do not have a direct mapping between
the OSD and the TD. User interactions with the system and collaborations between
users with different roles are considered in CTT. However, collaborations among
users with the same role are not taken into account. Therefore, the introduction of
these concepts provides a way to represent such collaborations.

Actors introduce a new concurrent situation in the typical CTT models because of
this type of collaboration. Fig. 4 and Fig. 5 show the representation of two actors with
the same role who are collaborating with each other. This kind of collaboration is
further explained in the following sub-section.



74 V.M.R. Penichet et al.

[Cooperative_task]

ﬁ Task_role_1

R% 1
f
£

Task_role_1  Task_role_2
(Raolet ) (Rolez )

Fig. 3. The basic correspondence between the CD and TD diagrams

(Chair_Writer : )

Fig. 4. Interaction between actors and roles

u—n/—u

‘k Send_Doc
L=

%1

Send_Doc  Receive_doc
{iriter - 0 iriter - N Hetg_nnt i

a) Cooperative Task Model

b) Task model. Role: Writer

c) Task model. Role: Writer

Fig. 5. Collaboration between actors with the same role




Collaborative Social Structures and Task Modelling Integration 75

4.4 Cooperative Interaction Relationship

Cooperative interaction relationships between the organizational items of a CD have
a direct mapping in the TD.

Every role within CTT has an associated task diagram as mentioned before, but
there is also a cooperative part to structure the cooperative tasks, which are decom-
posed until tasks performed by a single user are reached [10]. These single user tasks
also appear in the corresponding role task diagram as connected tasks (see Fig. 5).

The right part in Fig. 3 shows a cooperative task represented in CTT. The left part
in Fig. 3 shows cooperative interaction relationship between two roles in a CD. As
shown, the mapping of cooperative task, task role, and role concepts between the two
diagrams is a simple matter.

Each diagram shows a different view of the system, hence some information ap-
pears in one but not in the other. In a CD, every cooperative interaction relationship
has an intrinsic cardinality at the beginning and at the end, which indicates the num-
ber of actors performing the role tasks. This aspect is not shown in the TD. On the
other hand, a TD has some other elements that are not in the CD such as: (1) the CTT
task category of each task performed by each role, that is, if they are interaction,
application, or user tasks; and (2) the CTT temporal operator necessary to link the
two role tasks which will constitute the cooperative one, that is, if it is an enabling,
enabling with information passing, etc. operator.

Considering that CDs represent actors and roles in the same diagram, two sorts of
collaborations could occur: collaborations among users with different roles, and col-
laborations among users with the same role. Up to now, CTT has focused on relation-
ships among users in a system playing different roles (Fig. 4). The notation we pro-
pose in this paper (see Fig. 3) allows designers to model relationships among users
playing the same role as well (Fig. 4).

Collaborations among users with the same role can be appreciated more clearly in
CDs. Although the CTT notation could represent this semantic by writing the same
role name in the individual role tasks below the cooperative one (Fig. 4), for the sake
of clarity, we have added double brackets and arrows, as shown in Fig. 5.

S Example

We show a simple example of an application for internal publication of documents in
an organization in order to better explain the approach proposed.

5.1 Brief Problem Description

Some employees elaborate together documents to be published in their organization.
There is interaction among them in order to get a candidate document to be published.
A supervisor (writers’ chair) can send a document to be revised by other members of
the organization. The candidate document is received by a reviewers’ chair who de-
cides what kind of review to apply. There are two possibilities: (AAO) all at once,



76 V.M.R. Penichet et al.

where all the reviewers receive the candidate document at the same time and the chair
waits for their answers to continue; and (OAA) one after another, where the chair
selects an order for review. In the latter case, if any reviewer decides that the candi-
date document is not ready to be published, then is not necessary to continue with the
process. If the candidate document is finally published, then the authors will be in-
formed. Published documents can also be read by readers: a group of people who can
only read and comment documents, not modify them.

5.2 Designing the Collaborative System

When designing a collaborative system, our approach uses the three diagrams intro-
duced in this work. Such diagrams provide designers with a way to gather information
about the organizational structure of the users of the system (OSD), relationships
among them (CD), and the tasks they are going to perform (TD).

The diagram in Fig. 6 shows the OSD of the example considered. Such diagram
represents the organizational structure of the users of the application for internal
publication of documents. The first decision is to make a logical division of the
users into two groups: those who are able to modify, create, etc. (internal), and
those who only have the possibility of viewing the products generated by the mem-
bers of the first group (external). The “external” group is only composed of users
playing the “reader” role.

£

WHOLE SYSTEM

[ |
& &
INTERNAL EXTERNAL
. v : N
& & SR

AUTHORS REVIEWERS READER
R R R R L
) 3 } 3 )4 )3 &
WRITER  CHAIR_WRITER REVIEWER CHAIR_REVIEWER
£ £ £ £

Fig. 6. Organizational Structure Diagram (OSD) of the example



Collaborative Social Structures and Task Modelling Integration 77

‘ Receive_inform

Receive_doc
¢R
Al

CHAIR WRITER

€. Answer_comments

WRITER

_ Inform ‘ Receive_result
F Ay
L Send_to_reyvise
Send_doc| 4% | Ask_for_comments

eR

CHAIR_REVIEWER

7@@@1 to_revise .
AAO_received \ /

Send_result
I

Send_to —H(

A .

Send_notification

—
Jend_to~OAA

OAA_received

Receiwvé€_to/AAO
LR -

Y
REVIEWER LR
A

Ryceive_comments

READER

Allow next . Redeive_notification
¢ 4 Toceive to_ona

& e e f
4 \ OAA_answer &,.

Check_¥pr ~evious
~

Send_comments

Fig. 7. Actor interactions in the internal publication system example: Role View. Note that the
name of the cooperative tasks have been omitted for the sake of simplicity.

The “authors” group is made up of roles with writing features, whereas the “re-
viewers” group is composed of roles with document editing features.

Once the organizational structure of the users has been represented by means of the
OSD, a CD is generated for each main objective in the problem. As the problem we
are studying in this example is not very large, all its collaborations will be represented
in the same CD. Such diagram is shown in Fig. 7.

Lastly, a TD is specified by using the CTT notation for each role in the system. Fig. 8
shows the cooperative model, while Fig. 9 shows an example of a TD which represents
every individual task that a user playing the role “Chair_reviewer” could perform. That
is, an actor playing such role also has to perform the tasks “Select_doc”, “Read_doc”,



78 V.M.R. Penichet et al.

“User_decision”, “Select_ AAO_or_OAA”, “Answer_analysis”, among other tasks in
addition to those tasks that will be connected to constitute a cooperative one.

5.3 Analysis of a Collaborative System

The graphical notation presented in this paper could also be used to analyse an exist-
ing collaborative application in order to improve the way in which users work to-
gether to achieve common objectives.

Groups and roles can be represented and organized in an OSD to study if the cur-
rent organizational structure of the users of the system is the best or, on the contrary,
could be improved by restructuring such organization.

Likewise, CDs facilitate the study of the cooperative tasks performed in the sys-
tem. As our proposed graphical notation provides analysts with additional information
about collaborations among users, and such information is represented in an intuitive
and easy way, then it is possible to analyse whether collaborations are adequate, or
they should be redesigned in some other way.

rafiv

==

—»— 88 — - - §4 — = §4

Sending_to_revise Resulting Infatrd [ Matificating ]

! M ——a
Sharifg drafts Commghting_drafts Infarm Receive_inform
(Chair_\Writer ) (riter )

==

h?"f_}}_I!-! E):f E')H'f

Send_Doc  Receive_doc  Ask_for_comments  Answer_comments
(riter ;0 (riter 0 iriter 0 (riter 0

Fig. 8. Actor interactions in the internal publication system example: Task View

<

o

D B - B
Receiving  Answer_analisys Result  Send_nofification
—

==

I!.!—>>—ﬁ_):f—>>—ﬁ_):f—>>— @ ﬁ_):f_[I::_'F@

Receive_to_reviseSelect_doc  [Read_doc] User_decision Select_AAD_or_0OA%  Doc_sending

Fig. 9. Role task diagram example: “Chair_reviewer”



Collaborative Social Structures and Task Modelling Integration 79

For instance, when the “Chair_reviewer” knows the result of the review, a
notification is sent to the “Chair_writer”, and then the “Chair_writer” informs authors
of the document about the decision. By analyzing the diagram, analysts could detect
that a “Chair_reviewer” could inform actors with the role “Writer” directly, which
would avoid an unnecessary step

6 Conclusions

A new modelling approach for collaborative systems has been presented in this paper.
By means of the proposed graphical notation, the organizational structure of the users
of the system is specified on the basis of the roles they play and the groups to which
they belong.

Likewise, this approach provides designers with a way of representing cooperative
relationships that users must perform to achieve a common objective. Organizational
structure and collaborations among users are easily and intuitively represented by way
of an OSD and one or several CDs.

We have adopted ConcurTaskTrees to represent individual tasks that each user per-
forms because it is one of the more widely accepted notations in task modelling.
Therefore, an integration of the organizational and collaboration models and CTT is
also presented in this work.

Representing tasks, collaborations, and the organizational structure of the users of
a system not only makes its design easier, but also facilitates the study and the analy-
sis of existing systems to propose a new re-design if necessary.

Acknowledgements

We would like to thank the European ADVISES TMR for funding this work, which
was also supported by the Spanish CYCIT project TIN2004-08000-C03-01 and the
grant PCC-05-005-1 from JCCM.

References

1. Caetano, A., Silva, A. R., and Tribolet, J. 2005. Using roles and business objects to model
and understand business processes. In Proceedings of the 2005 ACM Symposium on Ap-
plied Computing.L. M. Liebrock, Ed. SAC '05. ACM Press, New York, NY, 1308-1313

2. Ellis, C., Wainer, J.: A Conceptual Model of Groupware, in Proceeding of CSCW’94,
1994, p. 79-88, ACM Press.

3. Greenberg, S.: The 1988 conference on computer-supported cooperative work: Trip re-
port. ACM SIGCHI Bulletin, 21(1), pp. 49-55, July 1989.

4. Greif, 1.; Computer-Supported Cooperative Work: A Book of Readings. Morgan Kauf-
mann, San Mateo CA, 1988.

5. Grudin, J. CSCW: History and Focus. University of California. IEEE Computer, 27, 5, 19-
26.1994



80

10.

11.

12.

13.

14.

V.M.R. Penichet et al.

Gutwin, C.; Schneider, K.; Penner, R.; Paquette, D.; Supporting Group Awareness in Dis-
tributed Software Development. EHCI/DSVIS 2004, 9th IFIP Working Conference on
Engineering for Human-Computer Interaction, Tremsbuttel Castle, Hamburg, Germany,
July 11-13, 2004, 14 pages. Also to be published in Lecture Notes in Computer Science,
Springer-Verlag, Berlin, 2004

Johansen, R. (1988): Groupware: Computer support for business teams. New York: The
Free Press.

Mori, G., Paterno, F. ,Santoro, C. “CTTE: Support for Developing and Analysing Task
Models for Interactive System Design”, IEEE Transactions on Software Engineering,
pp-797-813, August 2002 (Vol. 28, No. 8), IEEE Press.

Nobrega, L., Nunes, N., Coelho, H.; Mapping ConcurTaskTrees into UML 2.0, 12th Inter-
national Workshop on Design, Specification, and Verification of Interactive System (DSV-
1S2005), July 13—15, 2005, Newcastle upon Tyne, England, Springer-Verlag, 2005
Paterno’, F.; Model-based Design and Evaluation of Interactive Applications. F.Paterno,
Springer Verlag, November 1999, ISBN 1-85233-155-0

Pinelle, D., Gutwin, C., Greenberg, S.: Task analysis for groupware usability evaluation:
Modeling shared-workspace tasks with the mechanics of collaboration. ACM Transactions
on Computer-Human Interaction (TOCHI) Volume 10, Issue 4, Pages: 281 - 311. (2003)
ISSN:1073-0516

Riehle D, Gross T.; Role model based framework design and integration. Proceedings of
OOPSLA '98. ACM Press, 1998; 117-133

Rumbaugh, J.; Jacobson, 1.; Booch, G.: The Unified Modeling Language. Reference Man-
ual. Addison-Wesley. 1999

Van der Veer, G. C.; Van Welie, M. 2000. Task based groupware design: Putting theory
into practice. In Proceedings of the 2000 Symposium on Designing Interactive Systems.
New York, ACM Press, 326-337.



Towards Model-Driven Development of Staged
Participatory Multimedia Events

Jan Van den Bergh, Steven Huypens, and Karin Coninx

Hasselt University — transnationale Universiteit Limburg
Expertise Centre for Digital Media — Institute for BroadBand Technology
Wetenschapspark 2
3590 Diepenbeek
Belgium
{jan.vandenbergh, steven.huypens, karin.coninx}@uhasselt.be

Abstract. The industry nowadays is showing an increasing interest towards an
extended interactive television experience, called participation television. This
increasing interactivity brings the creation of such television events closer to the
creation of regular software as we know it for personal computers and mobile
devices. In this paper we report on our work in model-driven development of
one kind of such interactive television shows, staged participatory multimedia
events. More specifically, this work reports on the domain-specific language we
created to model these events and the generation of abstract prototypes. These
interactive prototypes are built using web-languages and can be used to perform
early evaluation.

1 Introduction

In recent years the entertainment industry has known an increasing focus on interactive
and social programmings. The traditional passive, lay back television medium is getting
more interactive to compete with other popular interactive entertainment devices. Every
day more television shows allow user interaction in one way or another, e.g. well-known
TV-games are being extended to get a new social dimension.

Participation television is the kind of interactive television with the highest degree of
public involvement. The watchers are no longer constrained to merely passive viewing
or anonymous participation, but they can become part of the show if they want to. This
can be accomplished by not only using a remote control and keyboard for interaction,
but by adding devices such as microphones and webcams to create input for the show
and by using cross-medial aspects; e.g. users can view or interact using their remote
control and television set, their PC or even their mobile phone.

The creation of participation television shows is complex, not only regarding the
social, creative and managerial aspects, but the software needed for those shows is
becoming very complex and more similar to traditional software engineering projects
compared to the production of traditional broadcast television shows. Within the IWT
project Participate, we extend existing software engineering techniques for the creation
of interactive desktop applications so they can be applied to participation television.

! http://research.edm.uhasselt.be/kris/research/projects/telebuddies/

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 811941 2007.
(© Springer-Verlag Berlin Heidelberg 2007



82 J. Van den Bergh, S. Huypens, and K. Coninx

In this paper, we report on our results obtained by combining a model-based devel-
opment approach in combination with prototypes in the earliest phases of development.
We show that it is possible to combine high-level models to generate interactive abstract
prototypes of participation television formats.

We will start the remainder of this paper by shortly discussing some related work
within the model-based community and how participation television formats are de-
signed and realised, followed by the introduction of our approach and modeling nota-
tion for high-level participation television specification. This is followed by a discus-
sion of how we use current standards from the World Wide Web Consortium (W3C)
to construct interactive abstract prototypes. Finally, we explain how we generate the
interactive abstract prototypes from the high-level specification and draw some
conclusions.

2 Related Work

At the moment several tools (from companies such as Aircode, Alticast, Sofia, iTVBox
and Cardinal) are commercially available for the development of interactive television
applications. These tools provide a graphical environment enabling a non-technical user
to easily create simple iDTV software or websites. They require no technical knowl-
edge like Java, MHP or DVB-HTML [6] from the designer and thus ease the creation
of iDTV. Most of them also offer an emulator which enables the author to preview
the result of his work on his own PC, rather than deploying his output to a set-top
box.

These environments are however too limited for the development of participation
television. They are mostly centered to designing the graphical layout of various pages
and the addition of some common iDTV modules and components. There is no sup-
port to add the interaction components needed for the participation of the viewer in a
television show.

A number of tools have been created that allow early prototyping based on models.
Canonsketch [2] is a tool that provides synchronized models at different levels; at the
highest level, a UML class diagram is used to represent the structure of a single dia-
logue using the notation proposed in [[10]. The Canonical Abstract Prototypes notation
(CAP) [4] allows to describe the functionality offered by a user interface at an abstract
level using a limited set of icons that are linked to specific areas of the screen. At the
most concrete level, a preview using HTML is provided.

Elkoutbi et al. [[7] use UML diagrams to define user interfaces at an abstract level
using annotated collaboration diagrams and class diagrams from which statechart di-
agrams can be generated. Based on these statecharts, complete functional prototypes
are generated. The approach is concentrating on form-based user interfaces for a single
user. The specifications that are used as input, however, have to be rigorously defined
in comparison to what we want to accomplish.

Pleuss [[12] proposes a methodology that uses UML to model multimedia applica-
tions. A code generator for Flash supporting his methodology is under development.

Several model-based approaches for the development of user interfaces are taking
into account some form of context-sensitiveness. The TERESA-tool [[11/9]] allows the
semi-automatic creation of multi-platform user interfaces (mostly targeted to the web)



Towards Model-Driven Development of Staged Participatory Multimedia Events 83

starting from a task model. Another task-based method is described by Clerckx et al. [13]],
who provide tool support that enables derivation of a context-sensitive dialog model
from a context-aware task-model. In combination with a presentation model, the tool is
able to generate context-aware prototypes.

Other approaches, such as Damask [8]] for low-fidelity prototyping use a purely in-
formal sketch-based interface. Damask uses models, originating from the model-based
design community, in the backend but does not expose the designer to these models to
enable consistent prototyping of multi-device user interfaces. Damask allows interac-
tive testing of the sketched interfaces, but models cannot be reused.

3 Staged Participatory Multimedia Events

Broadband end users currently witness an evolution towards ubiquitous entertainment
being delivered over their High-Speed Internet (HSI) line. As such the broadband pipe
is used to deliver complete experiences to the home. Unfortunately, this enables the
home-based users only to consume more professional content (Hollywood movies on
demand) and to get some low level interaction with the broadcast television: time shifted
viewing, voting, etc.

The goal of Staged Participatory Multimedia Events (SPME) is therefore to actively
engage end-users and turn them into true participators, thus providing a stage for users
to participate in challenging interactive television applications that do not exist today.
Several devices like microphones and webcams will be used in these formats to enable
the different participators with true interactivity. In the future, this will lead to television
shows with thousands of active participants, where complex software is needed to cope
with these new formats.

In the remainder of this paper we will use an auction as an example of a SPME.
The auction SPME could start when a regular auction is being broadcast and at least
one of the viewers has offered an item for sale. When enough interested viewers are
registered, an auctioneer can decide to start the auction. After a short welcome message,
he introduces the seller to the interested viewers. The seller then has the opportunity to
promote the item, after which the auction starts. Any of the registered viewers can then
make a bid on the item or ask questions to its seller. When a satisfactory price is reached,
the auction is concluded. The control flow specification and a prototype implementation
of this scenario are shown in Fig.[Il

It is clear that creating such an interactive show requires establishing and creating
a complicated software infrastructure. It is our intent to facilitate the creation of such
shows by offering a set of models from which the necessary code, targeting a set of pre-
build networked components, can be generated. These models should abstract away a
lot of the details and complexity of such infrastructure. In our approach this abstraction
is reached by using layered models. The models at the highest level of abstraction do
not have a direct relationship with the software infrastructure but relate to the structure
of a SPME and the structure of the user interface that the participants of the SPME
interact with on their television set. These high-level models can be used without the
lower level details to enable early design evaluation using generated prototypes. These
models and prototypes are discussed into more detail in the following sections.



84 J. Van den Bergh, S. Huypens, and K. Coninx

Seller Item l Buyer Seller l End
Introduction Fresentation Question Ans wer — Bidding
T ] T S
.— ——\f Welcome | Bid or (’"L'\J
Start Question ey
L

(a) (b)

Fig. 1. The auctionTV scenario: (a) a high-fidelity prototype implementation (©)Alcatel (with
permission), (b) control flow specification

4 Specification Language

We created a domain-specific modeling language that uses abstractions familiar to those
involved in the creation of participation television. We chose to define a domain-specific
language instead of traditional models used in model-based user interface design or
software engineering because this allows us to create a language that uses concepts
familiar to the target audience, creators of a SPME, and still can be translated into
the required software concepts. The attentive reader will notice that the content of
some models used in model-based design of user interfaces, such as dialog model,
user model and presentation model, is combined in new models in the domain-specific
language.

In this paper we will limit ourselves to those language parts relevant for the creation
of the first high-level models. The first part is the general flow of the show. It is specified
in the scenario model, which is built around the concept of scenes or template instances
and is discussed in section 4.1l The second, and last, relevant part describes the screen
composition for the different roles that are involved within a scene or template as is ex-
plained in section[4.2] Before discussing these two models, we start with the necessary
definitions for the used terminology.

Definition 1. A template is a reusable behavioral artifact containing a flow of actions
in which a specified number of participants having different roles can be involved. A
template can receive data as input and output parameters.

Definition 2. A scene is an instance of a template. The value of all input parameters
of a scene needs to be specified either explicitly in the model or implicitly through
derivation from output parameters of another scene in the scenario diagram.

4.1 Scenario Model

The scenario model describes the structure of a SPME using scenes (see definition [2)).
The overall layout of the diagram is based upon the graphical language used to program
LEGO mindstormsﬁ . The language also features a horizontal bar, the heading, at the
top that serves as a starting point for one or more parallel flowsdd. The flow of a program

2 http://mindstorms.lego.com/
3 QOur current tool support does not take parallel flows into account.



Towards Model-Driven Development of Staged Participatory Multimedia Events
Scenario
Roles
Heading /
Scene
Data
9 Roles [ Auclioneer | (1.1 1“\£ Seller [ (1.1 *‘j
|
( Iltem Presentation 2)
In Out
Data i Data
Roles i® Seller lu..‘l * ...... f Auctioneer | (1..1) *‘
L — 4
Repeat
Unitd priceSatisfactony=1
) am
[ Bidding
In Out
Data Hem
\ Roles i Auctioneer .f(l..l*“ + Buyer (2.7 ! A 23
- Condition:
Choice -/-Buyer.evenfs. 3
& Buyer Question )
In Out
vata | T em
- | e T ] e T W]
Condition: ~ —
Buyer.events.2 fe Seller Answer N
In Dt
owe W I
Roles  |1F "Selier (1 1/ TR Auctioneer (101 WY
- =
End Choice
-
End Repeat
-
( End Bidding N
in Out
Data
Roles f huctoneer (1) WNTEE sener 00T ]
" 4

Fig. 2. An annotated example of a scenario diagram

85



86 J. Van den Bergh, S. Huypens, and K. Coninx

is specified from top to bottom. Each block in the diagram corresponds to one scene
of the scenario whereas in LEGO mindstorms it corresponds to one action. Loops and
conditional behavior are specified using two separate blocks as can be seen in Figure
Pl which shows a scenario model for the auction SPME discussed section 3 The dif-
ferent parts of the scenario-model are marked in the Figure and shortly discussed in the
remainder of this section.

Heading. The heading gives some generic information about the scenario, specified in
that diagram. It contains the name of the scenario as well as all roles that are required
to start the execution of the scenario.

Scenes. A scene is depicted as shown in Fig. 2l The scene representation consists of
three main areas. The upper part specifies the name of the template, while the middle
part specifies the data flowing into the templates (center) and out of the template (right).
The lower part shows the roles that are actively involved in the template. A role is
actively involved when users having that role can cause an event that triggers or ends
part of the behavior specified in a template or can give streamed input to the modeled
system, such as live-video through a webcam.

Roles. The graphical representation of each role in the diagram shows role-specific
information in addition to the role name. The minimum and maximum number of par-
ticipants having that role are shown between parentheses while the events that can be
triggered as well as the required input devices are represented using icons. The icons
for the events correspond to the tools of the Canonical Abstract Prototype notation [4],
while the icons for the input devices are stylized representations of a camera ® and a
microphone # .

Two predefined role types can be used in scenario models: all, representing all partic-
ipants of an SPME, other, all participants except those having roles explicitly specified
in the template.

Data. The only information visible in the diagram about the parameters and the results
of a template, are its name and an indication of the data type. A stick-Figure is shown
for role-related data (e.g. when the role of a participant changes within a template),
a stylized camera for live streaming video, a stylized microphone for live streaming
sound, and a stylized clapper board & for media recorded in advance. For all other
types of parameters no type indication is provided.

4.2 Screen Model

For the screen model, we adopted the Canonical Abstract Prototype notation [4]]. This
notation uses rectangular regions with icons that identify the type of abstract component
that spans this region. Three major types of abstract components exist with different
subtypes: generic abstract tools # (actions, operators, mechanisms or controls that
can be used to operate on materials), generic abstract material O (containers, content,
information, data that is operated upon) and generic abstract active material A (a
combination of both other types).



Towards Model-Driven Development of Staged Participatory Multimedia Events 87

@ - =
- e
B Be
-
= o
1 E]*
EF -
;v"z—‘
+ Auctioneer .!* j‘\ Buyer ;‘“3 A2
e - mae@
T Seller | LR 8880

Fig. 3. An example of a screen model

Our notation is shown in Fig. Bl The differences with the Canonical Abstract Proto-
type notation are driven by the difference in targets. The standard Canonical Abstract
Prototype notation is used to give designers an overview of the functionality that is to
be shown to a user on a screen or in a window on a screen. Depending on the designer’s
creativity, the final screen layout can be entirely different.

The screen model, however, is intended to design user interfaces that target entire
television screens. A single model can describe the different screen compositions that
are used within one or more templates. Therefore each icon is combined with a character
that identifies the component. Each character-icon combination appears within both the
screen layout and the role section establishing the connection between the participants
and the abstract components he can observe. Multiple character-icon combinations can
be placed within one region with each combination visible to participants with a dif-
ferent role. We also introduced two new icons to identify user interface components
that show a participant (participant element &) or a collection of participants of which
zero or more can be emphasized (active participant collection & ). A concrete example
of the latter type of user interface component can be seen in the lower right corner of
Fig.[3

Because involvement of the participants is an important aspect of a SPME, icons re-
ferring to the origin of multimedia materials are added to the icons in CAP-notation [4].
The sources can be either live multimedia streams ® or recorded multimedia & . The
sources are linked to users with a certain role with means identical to the ones used to
link user interface components with participants with a certain role.



88 J. Van den Bergh, S. Huypens, and K. Coninx

5 Interactive Abstract Prototypes Using XML

The dynamic abstract prototypes are expressed using a combination of XHTML,
XForms [5] and CSS. XHTML merely serves as a container for embedding the dynamic
abstract prototype. XForms and CSS are respectively used for expressing the structure
of the dynamic abstract prototype and the styling and positioning of the abstract com-
ponents. This combination was chosen because the tools to display these specifications
are freely available and the specifications are relatively easy to read. Furthermore, the
style and layout, the structure of the show, the user interface and the runtime data are
all cleanly separated. The choice for XForms is also motivated by the fact that it is de-
signed to be embedded in another XML-based language and is completely declarative
(including event handling). This enables reuse for more concrete prototypes, for which
the XForms-structure could be largely reused in for example a SMIL [[I]] document. XS-
miledd is being ported to the MHP platform and will be able to show content expressed
using XForms and SMIL .

& Export whiml - Mozilla Frrefor ===

[Be 62 g G0 podmais ok o
iy B G N BB e bt SV Do B soosErpert b

I

Fig. 4. An example prototype

An example of a prototype corresponding with the Bidding template in the scenario
in Fig. Dl and the screen layout in Fig. Blis shown in Fig. @l It shows a typical screen
during prototype simulation. The upper part contains controls for navigating through
the abstract prototype. At the top left one can select a participant with a certain role. In

* http://www.xsmiles.org



Towards Model-Driven Development of Staged Participatory Multimedia Events 89

this case the participant is Mieke and has the role “bidder”. At the next row, the val-
ues of all parameters of the current template are shown. The next line similarly shows
input fields for the corresponding output, followed by triggers for navigating through
the abstract prototype, including a trigger for restarting a simulation and triggers for all
transitions to other scenes that are possible in the active context (selected participant
and parameter values). The last line of the top part displays the current template and
scene. The rest of the screen shows the actual prototype using the CAP notation. User
interface components in the abstract prototype can show a tooltip when hovering over
them giving concrete information about its function. The tooltip for the abstract com-
ponent Ask Question in Fig. [ shows a button, Question, that triggers a transition to the
corresponding scene.

The remainder of this section provides more detail about how XForms and CSS are
combined to create the dynamic abstract prototypes. The overall structure of a document
describing a prototype is shown in Fig. |5l The document consists of three major parts:
(1) simulation related data, including the participants of the simulated show, scenario
structure and the applicable constraints, (2) the prototype manipulation controls and (3)
the description of the user interfaces associated with the templates.

HTML Document
XForms Model

| Templates and template instances (scenes) |

Simulation-related information

I List of participants |

I Runtime data |

[ binds |

| Prototype manipulation and information centrols |

Prototype (XForms controls)

| Template layout ‘

| Template layout |

I Template layout |

Fig. 5. The document structure of a prototype document

Templates and scenes. The template structure is coded into XForms instances and
is shown in Listing [I]l It lists all templates in the same order as they appear in the
scenario model described in sectiond] Each template has a name and all corresponding
scenes appearing in the scenario are described in nested tags. Each scene also has a
name and a next scene specification. Notice that the elements instances and next are
used because the XForms processor requires an element to only contain one type of
sub-element in order to iterate over them.



90 J. Van den Bergh, S. Huypens, and K. Coninx

Listing 1.1. DTD for template and scenes structure

<!ELEMENT scenario (template+)>

<!ATTLIST scenario name CDATA #REQUIRED>
<!ELEMENT template (instances)>

<!ATTLIST template name CDATA #REQUIRED>
<!ELEMENT instances (inst+)>
<!ELEMENT inst (next?,params?)>

<!ATTLIST inst name CDATA #REQUIRED>
<!ELEMENT next (option+)> <!ELEMENT option EMPTY>

<!ATTLIST option templ CDATA #REQUIRED>

<!ATTLIST option inst CDATA #REQUIRED>

<!ATTLIST option conditional CDATA #REQUIRED>
<!ELEMENT params (param+)>
<!ELEMENT param (#PCDATA) >

<!ATTLIST param name CDATA #REQUIRED>

<!ATTLIST param input (true|false) #REQUIRED>

Choices and iterations are not directly coded into the templates although each in-
stance can have multiple following templates, instead all possible next templates fol-
lowing a specific scene are mentioned. The template Bidding in Fig. 2l for example, can
have both Buyer Question and End Bidding as next scenes. The Figure however only
shows Question as next scene, because no satisfactory bidding is reached yet. Note that
also Bidding is not listed as an option because a navigation element to the currently ac-
tive page can be confusing. Furthermore, this is a prototype that has no link to program
logic. When the current user in the simulation is no buyer, none of the next options
would be shown, because only buyers can trigger a transition to another scene. A warn-
ing (on black background) is displayed whenever some transitions could be hidden due
to unsatisfied constraints (see Fig. 4.

Bind expressions. This section of the document contains mainly bind-tags that indicate
relevancy of navigation controls (the “next triggers” for navigating to other scenes), or
user interface components that are only relevant for a certain role. The generation of
bind-expressions for the “next-triggers” results in a number of bind tags for uncondi-
tional transitions that equals the maximum number of unconditional transitions for a
single scene and in one bind tag for each conditional transition. Additional bind expres-
sions are provided to ensure that input and output values for scenes are always displayed
correctly.

Simulation related information. All simulation-related data, is also encoded using an
XForms instance. The show related information contains all runtime information about
the show and a list of participants (with name, role and other related data such as media
streams). The runtime information includes the information about the currently active
participant, the currently active scene and tags that can be referenced to by controls that
are shown conditionally (such as the possible transitions to another template). Among
these tags there is one tag for each bind related to a “next trigger”. The relevance, com-
bined with a CSS rule indicating that disabled XML-elements should not be displayed,
allows hiding of all irrelevant items.



Towards Model-Driven Development of Staged Participatory Multimedia Events 91

User interface specification. The user interface specification is entirely contained
within one XForms group (from now on referred to as group), representing the screen.
This group contains a set of groups, one for each template. These groups are shown one
at a time, depending on the currently active scene as described in the XForms model.

Each group contains XForms controls for each user interface component in the
screen model. When controls are only visible to a certain role, they are only made
relevant to this role, and consequently only shown to the relevant users. Additional
information is shown when hoovering over the controls in the CAP-notation (using
an ephemeral XForms message). The FormsPlayer plugin for Internet Explorer allows
embedding XForms controls in hints (displayed in most browsers as tooltips) Fig. [l
This enables using XForms outputs, combined with appropriate CSS-rules to show the
CAP-notation of the components in the html-page and to show low-level user inte-
face components in tooltips for establishing real user interaction. In this way, the ab-
straction can be used to spark creativity, while keeping the interactivity of low-level
controls.

6 Generating Dynamic Abstract Prototypes

The prototypes can be automatically generated from the models specified in section [l
We will shortly discuss the main aspects of this algorithm in this section: the generation
of the templates and template instances section in the XForms model, the generation of
a list of participants, and the generation of the prototype’s user interface.

Templates and template instances. For each scene in the scenario, the template is
added. When a scene is followed by a choice-construct, all possible next scenes are
added as options to the list of scenes that can follow the current scene except when
the next scene is the current scene. The generation of the scenes is illustrated in Fig.

—-_—
Repeat
[R——
|
| Bidding

Dt [ e prca

paramss
Param name= TLem_price
“pricesatd

End Bidding I

Fig. 6. Generation of the templates and scenes: (1) template generation, (2) parameter generation,
(3) and (4) generation of next options



92 J. Van den Bergh, S. Huypens, and K. Coninx

Scenario AuctionTV
Roles () Ausoreer 1111 B R L. T Sew
C Welcom
5 T -
e | ® - | e
fcperson namgs= War 1an” rolEe SE1T8r
P E e [0 W amed] asMar1an's wideo</medlas

/parson
—-— </participantss

Fig. 7. Generation of the participants

®- = Ta:
-,
(s ) ~Biaing _
m_ - - 1 1
T 8 e e
- e
Choice — Bl oveets
o 4 Buyer Question
@
-

Fig. 8. Generation of the participants and user interface controls: (1) generation of media links
for participants, (2) generation of repeated elements which contain media from participants with
role buyer (3), and (4) trigger that is only visible to buyers and causes a transition (5)

for the template bidding of the scenario in Fig. 2l When other media are connected to
participants with a certain role, such as the item that the seller offers to the auction, can
be derived from the screen model. Fig.[§] (1) shows an example.

Participants. The initial list of participants is generated based on the roles present in
the scenario heading, while the remaining participants are generated based upon the
roles present in the screen models that are linked to the templates that are used in the
scenario model. In this case, only roles that can add participants are considered. This
means that the following role-types cannot cause the creation of new participants: roles
that are already represented in the list, the meta-role all, and roles that are created during
the scenario (i.e. they are mentioned as output of one or more scenes.) The generation
of the participants can be done completely using the heading (see Fig. [7l because all
roles are actively participating).



Towards Model-Driven Development of Staged Participatory Multimedia Events 93

User interface. Most of the user interface generation process is straight-forward; for
each abstract user interface component in a screen model, an output-control is generated
with the appropriate style and position in CSS. Some triggers can cause a transition
between scenes. Fig. [2l shows how this is marked in the scenario. The event-labels and
the roles that can cause these events are used as a constraint on the transitions leaving
the choice statement. In this case, a XForms trigger has to be generated that causes the
transition (see Fig.[§] (4) and (5) for an example.)

7 Discussion and Conclusions

We presented an approach to make early evaluation of a special kind of participa-
tion television, staged participatory multimedia events (SPME), possible through the
automated creation of abstract prototypes from a limited set of models, defined in a
domain-specific modeling language. The modeling language has been succesfully used
to express a limited set of participation television scenarios. We believe that despite
the abstractness of both the models and the prototype, they are able to express the par-
ticipation aspect using the icons that were added to the Canonical Abstract Prototype
(CAP) [4] notation. Further work will show whether all icons in the original CAP nota-
tion are relevant to participation television and whether additional icons are required.

It is our firm believe that using this kind of high-level models through tools allows
an effective approach to quickly get a good grip on the required functionality of such
an application. We have created proof-of-concept tool support, based on MS Visio and
the corresponding SDK, for the notation and prototype generation. The models shown
in Fig.2land Fig.[Blwere created using this tool support in less than half a day including
filling in a limited amount of previously unspecified details. These models included
enough information to derive a running abstract prototype from those specifications.
Despite the fact that our experience is still very limited, we believe that our approach
can be used to verify whether all required functionality is being thought of and to create
some preliminary results, which do not have to be thrown away, very quickly.

The use of abstraction has the advantage that one is not tempted to spend a lot of time
in perfecting details in the early stages of design. The disadvantage is that the resulting
abstract prototypes do not have the feel of a more concrete prototype and thus one
cannot get feedback about the feel from users. Replacing the CSS-background images
with concrete images provides more concrete information when necessary.

The abstract prototypes can now be completely generated from the presented models.
We are planning to do some more tests with the defined model types and will extend our
model generation approach to incorporate additional models that can provide us with
more details about the timing and the user interactions. We will also investigate the
generation of more concrete and higher-fidelity prototypes from the presented models
complemented with lower-level details and a model providing more information about
the interactions from participants with the SPME infrastructure within a scene.

Acknowledgements. This research was performed in the context of the IWT project
Participate of Alcatel Bell. Part of the research at the Expertise Centre for Digital Media
is funded by the ERDF (European Regional Development Fund), the Flemish Govern-
ment and the Flemish Interdisciplinary institute for Broadband Technology (IBBT).



94

J. Van den Bergh, S. Huypens, and K. Coninx

References

10.

11.

12.

. Dick Bulterman, Guido Grassel, Jack Jansen, Antti Koivisto, Nabil Layaida, Thierry Michel,

Sjoerd Mullender, and Daniel Zucker. Synchronized multimedia integration language (smil
2.1). http://www.w3.0rg/TR/2005/REC-SMIL2-20051213/, December 13 2005.

. Pedro F. Campos and Nuno J. Nunes. Canonsketch: a user-centered tool for canonical ab-

stract prototyping. In Proceedings of EHCI-DSVIS 2004, volume 3425 of LNCS, pages 146—
163. Springer, 2005.

. Tim Clerckx, Frederik Winters, and Karin Coninx. Tool support for designing context-

sensitive user interfaces using a model-based approach. In Proceedings of TaMoDia 2005,
pages 11-18, Gdansk, Poland, September 26-27 2005.

. Larry L. Constantine. Canonical abstract prototypes for abstract visual and interaction de-

sign. In Proceedings of DSV-1S 2003, number 2844 in LNCS, pages 1 — 15, Funchal, Madeira
Island, Portugal, June 11-13 2003. Springer.

. Micah Dubinko, Leigh L. Klotz, Roland Merrick, and T. V. Raman. Xforms 1.0. W3C,

World Wide Web, http://www.w3.0org/TR/2003/REC-xforms-20031014/, 2003.

. DVB. Multimedia home platform. http://www.mhp.org/, 2006.
. Mohammed Elkoutbi, Ismail Khriss, and Rudolf Keller. Automated prototyping of user

interfaces based on uml scenarios. Automated Software Engineering, 13(1):5-40, January
2006.

. James Lin and James A. Landay. Damask: A tool for early-stage design and prototyping

of multi-device user interfaces. In 8th Internation Conference on Distributed Multimedia
Systems (International Workshop on Visual Computing 2002), pages 573-580, San Francisco,
CA, USA, September 26-28 2002.

. Giulio Mori, Fabio Paternd, and Carmen Santoro. Design and development of multidevice

user interfaces through multiple logical descriptions. IEEE Transactions on Sofware Engi-
neering, 30(8):507-520, August 2004.

Nuno Jardim Nunes and Jodo Falcdo e Cunha. Towards a uml profile for interaction design:
the wisdom approach. In Proceedings of UML 2000, volume 1939 of LNCS, pages 101-116.
Springer, October 2000.

Fabio Paterno. Towards a uml for interactive systems. In Proceedings of EHCI 2001, pages
7-18. Springer-Verlag, May11-13 2001.

Andreas Pleuss. Mml: A language for modeling interactive multimedia applications. In
Proceedings of Symposium on Multimedia, pages 465-473, December12-14 2005.



Integrating Support for Usability Evaluation
into High Level Interaction Descriptions
with NiMMiT

Karin Coninx, Erwin Cuppens, Joan De Boeck, and Chris Raymaekers

Hasselt University, Expertise Centre for Digital Media (EDM)
and transnationale Universiteit Limburg
Wetenschapspark 2, B-3590 Diepenbeek, Belgium
{karin. coninx, erwin.cuppens, joan.deboeck, chris.raymaekers}@uhasselt .be

Abstract. Nowadays, the claim that a human-computer interface is user
friendly, must be supported by a formal usability experiment. Due to its
inherent complexity, this is particularly true when developing a multi-
modal interface. For such a rich user interface, there is a lack of support
for automated testing and observing, so in preparation of its formal eval-
uation a lot of time is spent to adapt the programming code itself. Based
on NiMMiT, which is a high-level notation to describe and automatically
execute multimodal interaction techniques, we propose in this paper an
easy way for the interaction designer to collect and log data related to the
user experiment. Inserting 'probes’ and ’filters’ in NiMMiT interaction
diagrams is indeed more efficient than editing the code of the interaction
technique itself. We will clarify our approach as applied during a concrete
user experiment.

1 Introduction

When developing computer applications, a lot of time is spent designing the user
interface. This is especially true when designing (3D) multimodal interfaces. As
there are still a lot of uncertainties when designing this kind of interfaces, a new
application typically has to be evaluated by means of a user experiment. In our
former work we proposed NIMMIT [I], a high level notation to describe interac-
tion techniques in multimodal environments. By describing the user interaction
on a high level diagram, an application framework can automatically execute
the interaction technique. This has as advantage that the designer can quickly
test and tune the interface, by just drawing a diagram, in stead of writing code.
The diagram is then serialized into an XML syntax, allowing the application to
execute the described interaction technique.

In this paper we show how an extension to NIMMiT can be used for debug-
ging and collecting data from a user experiment. Previous usability evaluations
required quite some coding effort to capture the required data. Our proposed
approach allows a designer not only to develop the interaction at a high level,
but also to carry out the evaluation with a minimum of coding.

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 95-{I08] 2007.
© Springer-Verlag Berlin Heidelberg 2007



96 K. Coninx et al.

In a first section, we shortly describe the basic principles of NIMMiT. There-
after we explain how diagrams can be debugged and measured using ‘probes’
and ‘filters’. Next we show our approach using a concrete example, in which we
conducted a real user experiment with the proposed framework. This section
first elaborates on the interaction technique and the NIMMIiT diagrams. There-
after we illustrate how the probes and filters are used in practice, and in the end
we discuss the concrete experiment in order to evaluate our approach. We finish
this paper with our conclusions.

The related work, by which our research has been inspired, will be covered in
the relevant sections throughout this paper.

2 Interaction Modelling in NiMMiT
2.1 NiMMIiT Primitives

NiMMiT (‘Notation for MultiModal interaction Techniqes’) is a diagram based
notation intended to describe multimodal interaction between a human and a
computer, with the intention to automatically execute the designed diagrams.
NiMMIT shares some similarities with Petri-nets [2] and UML Activity Dia-
grams [3], but it is designed to support the special needs for multimodal interac-
tion. In the remainder of this section, we shortly describe the primitives of our
notation. For a more detailed description, we refer to [I].

In NiMMIiT, interaction with the computer is seen as event-driven: users ini-
tiate an (inter)action by their behaviour, which invokes events into the system.
These events can be triggered by different modalities, such as speech recognition,
an action with a pointing device, or a gesture. Interaction is also state-driven,
which means that not in all cases the system responds to all events. The response
to an event, can bring the interaction in a next phase, responding to other events.
Being data-driven is another important property of the notation. It is possible
that data needs to be shared between several states of the interaction. For ex-
ample, a subtask of the interaction can provide data, which has to be used in
a later phase of the interaction (e.g. touching an object to push it). Finally, an
interaction technique can consist of several smaller building blocks, which can
be considered as interaction techniques themselves. Therefore, hierarchical reuse
should be possible within the notation.

Taking the aforementioned considerations into account, NIMMiT defines the
following basic primitives: states, events, task chains, tasks, labels and state
transitions.

State: A state is depicted as a circle. The interaction technique starts in the
start-state, and ends with the end-state. A state defines a set of events to
which the system responds.

Event: An event is generated by the framework, based upon the user’s input. A
combination of events can be multimodal, containing actions such as speech
recognition, gestures, pointer device events and button clicks. A single event
or a specific combination always triggers the execution of a task chain.



Integrating Support for Usability Evaluation 97

- s --=

i SelectProbe
/// \

[ |
—  SeleCt | s—
ALLPOINTERS.BUTTON PRESSED1 | | ALLPOINTERS.MOVE
N—

:

1

highiighted

g
selected Jfe—¢
! g

H

Fig. 1. NiMMiT Diagram of a Click Selection Interaction

Task Chain: A task chain is a linear succession of tasks, which will be executed
one after the other.

Task: A task is a basic building block of the actual execution of the interaction
technique. Typically, tasks access or alter the internal state of the applica-
tion. E.g. when running in a typical 3D environment, a task can be ‘collision
detection’, ‘moving objects’, ‘playing audio feedback’, ... . Tasks can be pre-
defined by the system, but designers can define their own custom tasks, as
well. All tasks can have input and output ports, on which they receive or send
parameters or result values. Input ports are required or optional, indicated
by a black or a grey input port respectively.

Labels: As data can be shared throughout a diagram, NIMMiT needs a system
to (temporarily) store values. This is done in ‘labels’, which can be seen as
high-level variables.

State Transitions: Finally, when a task chain has been executed completely,
a state transition moves the diagram into the next state. A choice between
multiple state transitions is also possible, based upon the value of a certain
label.

2.2 Example

Figure [l shows a simple NIMMIT diagram which describes a click-selection in
3D. More complicated examples are shown in section [ in order to illustrate our
approach to use NIMMIT for a user experiment.

The NiMMiT diagram, shown in the picture, begins in the start-state, here
named ‘Select’. When one of the pointers moves, the event invokes the right-hand



98 K. Coninx et al.

task chain. Here, in a first task, all the highlighted objects are reset, and the
empty list is stored in the label ‘highlighted’. The task chain is built in this
way because in general, tasks are designed to be more generic. Considering the
‘UnhighlightObjects’ task, it can receive an optional parameter to unhighlight
just some of the highlighted objects. In the second task, collision with the pointer
and the entire 3D scene is calculated, and the output objects are sent to the
‘HighlightObjects’ task, which off course highlights the passed objects. The result
is again stored in the label ‘highlighted’. After the last task successfully finishes,
the schema moves on to the next state, which in this case is the ‘Select’-state
again. This loop is repeated each time one of the pointers is moved.

As soon as one of the buttons, connected to the pointing devices, is pressed,
the left-hand task chain is invoked. Here the highlighted objects now become
selected, and the selected objects are put into the ‘selected’ label. This label is
sent to the output port of the interaction technique, ready to be used in other
subsequent interactions. However, if no object is highlighted at the time of the
button press, the execution of the task chain will fail because the ‘SelectObjects’
task requires an object as input parameter.

3 Adding Support for Usability Evaluation to NiMMiT

In our former work, and throughout our current research, we have experienced
the benefits of NIMMIiT. In this section we show how NiMMIiT can also be used to
collect measurement data from a user’s experiment in order to formally evaluate
the designed interaction technique. This is done with minimal or no adaptation
of the original diagram, through the use of probes, filters and listeners. Previous
usability testing required quite some adaptations to the application code, in order
to log the necessary data for our statistical analysis. Ivory and Hearst state that
adding automation to usability evaluation has many potential benefits, as time
efficiency and cost reduction [4].

3.1 Probes

A probe can be seen as a measurement tool that is connected at a certain place in
a NiIMMiT diagram, like an electrician placing a voltmeter on an electric circuit.
Probes can be placed at different places in the diagram: at a state, a task chain,
a task or at an input/output port of a task. An example is given in figure[ll in
which a probe is connected to the ‘Select’-state. The probe returns relevant data
about the place where it is connected to, in a structured way:

State: probes contain all events that occur while the state is active.

Task Chain: probes contain the activation event(s) of the task chain, its status
(executed, interrupted or failed), and the value of the label indicating the
correct state transition.

Task: probes indicate whether or not the execution of the task succeeded.

Port: probes contain the value of the port to which they are connected.



Integrating Support for Usability Evaluation 99

Each loop, the data of all probes of the diagram is returned. If a probe is
connected to a place which was not active in the current phase of the interaction,
it returns empty. In this way, NIMMiT’s probes are a useful tool to debug an
interaction technique. For instance, by placing a probe on all states of a diagram,
one can evaluate the correct order of the states or check for the events that are
recognized. By placing a probe on an output port of a task, the output of the
task can be verified. This can lead to a significant reduction of the time necessary
to find logical errors in a diagram.

3.2 Filters

In order to collect data for a formal evaluation of an interaction technique, the
direct output of a probe is not suitable. Therefore, we have defined the concept
of filters. A filter can be seen as a meta-probe: a probe which listens to the
values of one or more probes. As filters are probes themselves, filters can be
connected to other filters as well. A filter can rearrange or summarize the data
from the probes it is connected to, but it can also just wait until legal data
arrives for the first time, and then start, stop or pause an internal timer. The
latter approach can be used for measuring the time spent between two states
of the interaction. Although the output necessary for a user experiment can be
versatile, very often the same patterns return, such as summarizing a distance,
counting the elapsed time or logging success or not. For these patterns, NIMMiT
contains a standard set of commonly used filters. Of course, experienced users
can still develop custom filters according to their special needs. As filters can be
connected to several probes, even across diagrams, they are not visualized in a
NiMMiT diagram.

3.3 Listeners

Filters and probes do not provide any output; they only collect and structure
data. By connecting a listener to a probe or a filter, the output can be redirected
to the desired output medium. By default, there are listeners that can write
data directly to a file, to a text window, or even send it onto the network to
an external computer which can be dedicated to handle, store or visualize the
collected data. As with the filters, experienced developers can write their own
listeners, if necessary. Listeners have no representation in the NIMMiT diagram,
in order not to complicate the notation.

3.4 Leveraging Evaluation to the Diagram Level

The idea of probes, filters and listeners is not new. Our approach is somewhat
similar to the ‘Logging Services Project’ of the Apache Software Foundation [5].
In this project several APIs are defined that allow the developer to control
which log statements are output. The APIs have three main components: loggers,
appenders and layouts. These three types of components work together to enable
developers to log messages according to message type and level, and to control
at runtime how these messages are formatted and where they are reported.



100 K. Coninx et al.

Compared to NIMMiT, loggers can be mapped onto probes and appenders can
be mapped onto listeners. Filters are defined in NIMMIiT to offer more flexibility
to the evaluation process, because several calculations can be automated and
captured through these filters. The main value of our contribution, however is
the fact that probes and filters can be connected using graphical notations, which
avoids the need to write a lot of code for the capturing of data, which still is
necessary in e.g. the ‘Logging Services Project’.

3.5 Situating NiMMIiT with Respect to Usability Evaluation

Previous usability evaluations required quite some adaptation to the existing
code in order to capture the data. The objective of this paper is to partially
automate the capturing with a minimum of coding, by using probes, filters and
listeners that are integrated into NIMMIiT.

This automated evaluation fits into the taxonomy suggested by Ivory and
Hearst. In their taxonomy, they emphasize the role of automation and group
usability evaluation along four dimensions [4]:

Method Class: Usability Evaluation is classified into five method classes: test-
ing, inspection, inquiry, analytical and simulation.

Method Type: Because of the wide range of evaluation methods within each
of the method classes, they are grouped into related method types. These
types typically describe how evaluation is performed.

Automation Type: The automation type specifies which aspect of the usabil-
ity evaluation method is automated: none, capture, analysis or critique.
Effort Level: The effort level indicates the human effort required for the method

execution.

Figure 2] shows how the NIMMiT evaluation system fits into the suggested tax-
onomy by indicating the values of the different parameters.

/ Method Class
/ Testing
/ Method Type
Performance Measurement
NiMMiIT
Automation Type
Capture

N Effort Level
\ Model Development
\

Fig. 2. Evaluation in NiMMiT according to the taxonomy of Ivory and Hearst

4 Case Study: The Object-In-Hand Metaphor

In this paragraph, we elaborate in detail on a concrete interaction technique
which has been evaluated by a user experiment. Both the interaction technique,



Integrating Support for Usability Evaluation 101

as well as gathering the information for the evaluation are implemented using
the NIMMIiT notation, probes and filters. In the first subsection we describe the
interaction technique and shortly clarify the diagrams. Next we show how the
probes and filters are placed in order to capture relevant data. Finally, although
not the main focus of this paper, we briefly show the results of the experiment
itself.

4.1 The Metaphor

The interaction technique, used as a proof of concept in this paper, is based
on the Object-In-Hand Metaphor, designed in the context of our former work.
This metaphor addresses the problem of accessing an object in a 3D world, by
using a proprioceptive gesture [6]. We refer the interested reader to [7] for more
details upon this metaphor. In what follows, we will shortly point out the main
properties: by bringing the user’s non-dominant hand close to the dominant
hand, the selected object is pulled out of its context and brought to a central
position. The non-dominant hand, which is ‘holding’ the virtual object, creates
a frame of reference for the dominant hand, as in real life [8]. The user can
then manipulate the object with the dominant hand, while the force feedback
provided by the PHANToM device, improves the naturalness. When the non-
dominant hand is released, the object returns to its original position.

In the scope of the research presented in this paper, we have improved the
metaphor with the insights of the results of our former work in which we eval-
uated the performance of a selection task using the dominant and the non-
dominant hand [9]. As the original Object-In-Hand Metaphor shifts the problem
towards the selection [7], an integrated solution for the selection task was neces-
sary. Therefore, before pulling the object out of its context, we propose to select
the object using the aperture selection technique [I0]. This is done by keeping the
thumb and the index of the non-dominant hand to each other. Using this gesture
the aperture (a semi-transparent circle floating onto the projection plane) is ac-
tivated. By moving the hand in space, the desired object can be activated. When
closing the non-dominant hand into a fist, the selection is made permanent. Now
the object can be brought into position with the aforementioned proprioceptive
gesture.

4.2 Diagrams

In this section, we briefly describe the three diagrams which define the entire in-
teraction, starting with figure[3], in which the topmost layer of the interaction is
described. In the first state, ‘Hand Open’, the diagram listens to two events: ‘hand-
close gesture’ and ‘aperture gesture’. When the first gesture occurs (when mak-
ing a fist with the non-dominant hand), there is a state transition to the ‘Hand
Close’-state. When the ‘aperture gesture’ occurs (closing index and thumb), the
selection-task (shown in figuref) is executed. After the selection finishes, we move
back to either the ‘Hand Open’ or the ‘Hand Close’-state, depending on the
‘handOpen’ label, which is the output of the ‘ApertureSelection’ task.



102 K. Coninx et al.

GESTURE.APERTURE

GESTURE HANDCLOSE

GESTURE.APERTUR

handopen

Selecied

Fig. 3. Topmost-Level NIMMIiT Diagram of the Object-In-Hand Metaphor

When in the ‘Hand Close’ state, the ‘grabbing’ of the object is activated by
the ‘Proximity’ gesture. After this task chain finishes, the interaction technique
ends, and we can start the next measurement.

Figure[ shows the hierarchical NIMMIiT diagram for the ‘Aperture Selection’.
Immediately after the start-state, we initialize the interaction and deselect all se-
lected objects (if any). Thereafter, we arrive in the ‘Select’-state. While moving,
the leftmost task chain moves the aperture and calculates a possible collision
with the objects in the world. The object that intersects with the aperture is
stored in the label ‘highlighted’. Still in the ‘Select’-state, we can close or open
our hand. When the hand is opened, the selection is cancelled, and hence we
unhighlight and de-initialize the selection interaction. When the hand is closed,
the selection is confirmed, and the object is selected. While the hand is opened
or closed, the label ‘handOpen’ is respectively set to true or false. This value
is sent to the output port, in order to allow the top-level diagram to make a
transition to the appropriate state.

Finally, figure [0l shows the diagram which controls the non-dominant hand.
As soon a the diagram is activated, an ‘idle’-event is recognised, activating the
top-left task chain. This chain animates the object to a central position and sets
some control labels. After that, we arrive in the OiH-state. Here we listen to a
‘move’-event, a ‘handopen gesture’ or a ‘moveaway gesture’. When the hand is
moved, the bottom left task chain moves the selected object according to the
movements of the hand. When opening the hand, we arrive in the ‘Suspend
OiH’-state, after setting the ‘handOpen’ control variable. This state is basically
the same as the ‘OiH’-state except for the fact that it does not listen to the
‘move’-event. Both the ‘OiH’ and the ‘Suspend OiH’-state activate the bottom
right task chain when the non-dominant hand is moved away. In this task chain,
the object is moved back to its original position, which has been saved in a label
in the very first task chain.



Integrating Support for Usability Evaluation 103

'
' FOINTINGDEVICEZ MOVE

a it

o § uigtlgnotiocs

ChangeApeiture Fighlightod

GESTURE HANDCLOSE

GESTURE.HANDOPEN

Fighighiad

E
H]
____________ ¥ SetBoolLabel F
3 none

“FORTNEDEEE?

\
~ -

.....................................................................................................................

Fig. 4. NiMMiT Diagram of the Aperture Selection

After an object has been selected, and the NIMMiT diagram of the non-
dominant hand is running, the user can manipulate the object with the dominant
hand. The interaction of the dominant hand is also controlled by a NiMMiT
diagram. However, as it plays a less important role in the user experiment we
conducted, we will not to elaborate on this diagram.

4.3 Probing and Filtering

As described in section[3], in stead of adapting the low-level code implementation,
we can place probes, filters and listeners in the diagrams for the evaluation of the
Object-In-Hand metaphor. In this particular case, two parts of the interaction
have to be monitored: we want to measure the time and correctness of both the
selection part and the object manipulation part of the interaction.

As can be seen from figure[d] there are two probes placed in the selection dia-
gram: one probe, ‘Start-A-Timer’ is connected to the ‘Select’ state. The second



104 K. Coninx et al.

g
£
g
H ! Non-dominant Object-In-Hand
A_wm JoLE
s /
=

4

nnnnnnnn

Fig. 5. NIMMiT Diagram of the non-dominant hand

probe, ‘Stop-A-Timer’, is connected to the ‘Deinitialize Aperture’ state. The
probes return the state name and the list of events currently active, as soon as
the state is active. When the state is inactive, the probes return an empty value.

The same is true for measuring the manipulation part of the interaction. To
achieve this, two probes are placed in de diagram depicted in figure The
‘Start-M-Timer’-probe is placed in the ‘OiH’-state. The ‘Stop-M-Timer’ is con-
nected to the task chain responsible for restoring the object to its initial position.
The latter probe returns the task chain’s name and the calling event once the
‘moveaway gesture’ occurs.

The timing of the interaction is measured by using the filters, connected to the
probes as shown in figure 6l A predefined ‘TimeFilter’ is connected to ‘Start-A-
Timer” and “Stop-A-Timer’(figdl). This filter starts a timer when the first probe
contains its first valid data, and it stops measuring as soon as the second probe
has a valid output. The same approach is applied to the probes ‘Start-M-Timer’
and ‘Stop-M-Timer’(fig Bl).

To test the correctness of both the selection and the manipulation, a custom
filter has been created. One filter is connected to the TimeFilter of the selection
diagram, the other to the TimeFilter of the manipulation diagram. Both ‘cor-



Integrating Support for Usability Evaluation 105

Start-A-timer

g Aperture
ApertureTimer I‘Q| Corroct |

p-

Rl
\_, Listener _/

P

Manipulation Manipulation
Timer Correct

Stop-A-Timer

Start-M-Timer

Stop-M-Timer

Fig. 6. Outline of the probes and filters used in the user experiment

rectness filters’ wait until the connected TimeFilter has a valid output. This is
true as soon as the diagram reaches the end-probe and the TimeFilter outputs
its value. At that time, the ‘correctness filter’ executes a small piece of custom
code, checking if the correct object has been selected or the correct manipulation
has been performed. Depending on the result, the filter sets its output to true
or false.

To output the results, we connected a file-listener to the filters. This listener,
as described in section[3.3] sends the output of the registered probes and filters to
a specified file. This tab-separated-file can easily be imported into a spreadsheet
or database in order to do the necessary statistical analysis of the results. An
outline of the relation between the probes and filters, as they are used in the
experiment, is depicted in figure [6l

4.4 Setup of the User Experiment

Although not the main topic of this contribution, we find it important to shortly
clarify the practical test we conducted as a proof of concept of our approach. As
stated before, the aim of the test is to evaluate the performance of the aperture
selection in combination with the Object-In-Hand metaphor, with respect to the
scene complexity, but in the scope of this paper, its goal is mainly to illustrate
the usefulness of our approach.

Twelve volunteer colleagues, all between the age of 23 and 45, eight males and
four females, were asked to participate in the test. All subjects were right handed
so that they could fit our right-handed setup. After reading the instructions,
each user had to select and manipulate a given object in six scenes, increasing
in complexity. The first three scenes were for practicing purposes, the last three
were taken into account for the test. As can be seen from figure[7 the first scene
only contains one box, the second scene contains a box in the middle of other
boxes. In the last scene, the box is halved in size, put on a table and accompanied
by a cylinder on each side. For each scene, the time spent to select the object and
the time necessary to change the texture were logged, together with correctness
of the actions’ outcome. After the users completed the test, they were asked to
fill out a little inquiry, to poll for their subjective impressions.



106 K. Coninx et al.

1 Scene 4 2 Scene 5 3 Scene 6

Fig. 7. Screenshots of three scenes in the test

To recognize the gestures of the non-dominant hand, our subjects wore a
modified pinch-glove equipped with a magnetic tracker. The user’s dominant
hand operates a PHANToM force feedback device to manipulate the objects
in the world. On the basis of the PHANToOM is another tracker to measure
the distance between both hands. The postures of the hand are recognized by
the contactors of the pinch-glove: by closing the thumb and the index, contact is
made and the aperture gesture is recognized. By closing the entire hand, another
contact is made to recognize the fist posture.

After selecting the object using the aperture selection technique, and bringing
it in a central position, the texture of the frontmost face had to be changed by
selecting the face and choosing a texture from the menu. The manipulation of
the object is carried out with the PHANToM device, while ‘holding’ the object
with the left hand.

4.5 Results and Discussion

As described in section 3] the output of the probes and filters is saved into a
tab separated text file. That file, containing the completion times and the success
for each part of the task, has been imported into a database to easily select the
desired results.

Table 1. Results of the user experiment

(a) Average time per scene. (b) Number of errors per scene

Scene Time (ms) Stdev Scene #Correct #Error

Selection Scene 4 3764 1511 Selection Scene 4 14 3
Scene 5 4631 1348 Scene 5 15 10

Scene 6 4437 983 Scene 6 20 5

Total 4304 1287 Total 49 18

Manip  Scene 4 17620 11113 Manip  Scene 4 12 2
Scene 5 14808 7635 Scene 5 12 3

Scene 6 17074 8358 Scene 6 11 4

Total 16484 8996 Total 35 9



Integrating Support for Usability Evaluation 107

Table |1(a)| shows the average time over all correct trials of all users, for both
the selection and the manipulation. Table shows the number of correct
actions in respect to the number of errors.

Although we expected scene 6 to be the most difficult for the selection, the
objective results show that scene 5 causes more troubles. However, when we
compare the values statistically using ANOVA, there is no significance: even
between scene 4 and scene 5 (the lowest and the highest value), we receive a
p-value of 0,11. If we look at the number of errors of the selection, it is true that
scene 5 performs worse than the other, but the chi-square value between scene
4 and 5 is only 0,08, while the overall chi-square of the entire matrix is 0,17.

The same is true for the manipulation part of the interaction. We expected
scene 6 to perform worst, because of the smaller object, but when applying
ANOVA, even between scene 5 and scene 6, the p-value is as high as 0,50.
Moreover, a chi-square test to find significance in the number of errors provides
us with values between 0,40 and 0,70.

After the subjects completed their test, they were asked to fill out a subjective
questionnaire. From the results, we could learn that most subjects were neutral
or slightly positive about the interaction technique. Not surprising, is that most
subjects agree that the interaction is rather tiresome in terms of holding the hand
unsupported in the air in order to select or hold and manipulate the object.

In summary, we can conclude that the complexity of the scene has no sig-
nificant influence on the performance of the selection, nor has a smaller object
an influence on this particular manipulation task. Moreover we learned that one
of the drawbacks of the tested interaction technique is the fatigue caused by
holding the arms in the air. To improve the interaction, we will have to look
for a solution to support the user’s arms, although this is not obvious, since the
PHANToM force feedback limits the possible positions.

5 Conclusions

In this paper, we have shown how probes, filters and listeners are used in NiM-
MiT, a high-level notation to describe multimodal interaction, to provide a flex-
ible and efficient way for collecting data from a user experiment. With the pro-
posed approach, the data can be gathered without having to adapt the code of
the application to be evaluated. We illustrated this by conducting a practical ex-
periment, in which the Object-In-Hand metaphor in combination with aperture
selection was tested with respect to the complexity of the scene. As shown in the
paper, this partially automated user experiment provided us with the necessary
data to draw formal conclusions about the evaluated interface.

Acknowledgments

Part of the research at EDM is funded by ERDF (European Regional Develop-
ment Fund), the Flemish Government and the Flemish Interdisciplinary institute
for Broadband technology (IBBT).



108 K. Coninx et al.

NiMMiT has been developed within the VR-DeMo project (IWT 030284),
which is directly funded by the IWT, a Flemish subsidy organization. The au-
thors also want to thank Tom De Weyer and Lode Vanacken for their valuable
contributions with the implementation.

References

1. Vanacken, D., De Boeck, J., Raymaekers, C., Coninx, K.: NIMMiT: A notation for
modeling multimodal interaction techniques. In: Proceedings of the International
Conference on Computer Graphics Theory and Applications (GRAPPO06), Setbal,
Portugal (2006)

2. Palanque, P., Bastide, R.: Petri net based design of user-driven interfaces using
the interactive cooperative objects formalism. In: Interactive Systems: Design,
Specification, and Verification, Springer-Verlag (1994) 383-400

3. Ambler, S.: Object Primer, The Agile Model-Driven Development with UML 2.0.
Cambridge University Press (2004)

4. Tvory, M.Y., Hearst, M.A.: The state of the art in automating usability evaluation
of user interfaces. ACM Computing Surveys 33 (2001) 470-516

5. Apache Software Foundation: Logging services project @ apache. http://logging.
apache.org| (2006)

6. Mine, M.R., Brooks, F.P.: Moving objects in space: Exploiting proprioception in
virtual environment interaction. In: Proceedings of the SIGGRAPH 1997 annual
conference on Computer graphics, Los Angeles, CA, USA (1997)

7. De Boeck, J., Cuppens, E., De Weyer, T., Raymaekers, C., Coninx, K.: Multi-
sensory interaction metaphors with haptics and proprioception in virtual environ-
ments. In: Proceedings of the third ACM Nordic Conference on Human-Computer
Interaction (NordiCHI 2004), Tampere, FI (2004)

8. Guiard, Y.: Asymmetric division of labor in human skilled bimanual action: The
kinematic chain as a model. In: Journal of Motor Behaviour. Volume 19. (1997)
486-517

9. De Boeck, J., De Weyer, T., Raymaekers, C., Coninx, K.: Using the non-dominant
hand for selection in 3D. In: Proceedings of the first IEEE Symposium on 3D User
Interfaces 2006, Alexandria, Virginia, US (2006)

10. Forsberg, A., Herndon, K., Zeleznik, R.: Aperture based selection for immersive
virtual environment. In: Proceedings of UIST96. (1996) 95-96


http://logging.apache.org
http://logging.apache.org

An Investigation into the Validation of Formalised
Cognitive Dimensions

Chris Roast and Babak Khazaei

Culture and Computing Research Centre,
Faculty of Arts, Computing, Engineering and Science
Sheffield Hallam University
Sheffield, S1 1WB, United Kingdom
c.r.roast@shu.ac.uk

Abstract. The cognitive dimensions framework is a conceptual framework
aimed at characterising features of interactive systems that are strongly influen-
tial upon their effective use. As such the framework facilitates the critical as-
sessment and design of a wide variety of information artifacts. Although the
framework has proved to be of considerable interest to researchers and practi-
tioners, there has been little research examining how easily the dimensions used
by it can be consistently applied. The work reported in this paper addresses this
problem by examining an approach to the systematic application of dimensions
and assessing its success empirically. The findings demonstrate a relatively
successful approach to validating the systematic application of some concepts
found in the cognitive dimensions framework.

Keywords: Cognitive Dimensions Framework, Theory validation, Empirical
methods.

1 Background

The cognitive dimensions framework ([1-3]) has been developed as a simple infor-
mal, broad-brush method for evaluating information artefacts such as: notations,
computer applications, and everyday devices. The essence of its approach is simple, a
number of ‘cognitive dimensions’ are described that are properties jointly of the ‘no-
tation’ and of the environment in which it is used. For instance, the dimension of ‘vis-
cosity’, loosely defined as ‘resistance to change’, is used to characterise the ease or
otherwise with which an environment and a notation allow modifications to be made.
The power of the dimensions framework arises from the claim that it provides a ge-
neric basis for examining qualities that are core to the effectiveness of information
artefacts. For instance, 'viscosity' as a concept can be identified in a variety of infor-
mation artefact uses. Hence, the effort involved in (re-)organising ones' email folders,
sub-folders and email rules can be viewed and the effort involved in, say, marking-up
literary texts for automated processing both can be seen as viscous in character. Al-
though these two examples are distinct their common characterisation enables experi-
ence within one case to be transferred to another, and so facilitating improved, and

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 109 2007.
© Springer-Verlag Berlin Heidelberg 2007



110 C. Roast and B. Khazaei

alternative, design possibilities. Inter-relations between dimensions have also been
illustrated within the framework, for instance, in general the availability of abstraction
mechanisms can relate to viscosity. An abstraction mechanism can often be used to
reduce the effort that characterises high viscosity. Thus for email management the
codification of relevant abstractions may be explored as a means of improving the
process (as with, say, gmail). In the case of email re-organisation, the recognition of
types of email, such as, request, acknowledgement, dissemination and even spam,
may help reduce the effort involved in their management. In the case of literary mark-
up, the very abstractions often embodied by logical mark-up may be explicitly sup-
ported within a tool or environment.

Unlike many frameworks associated with interface assessment and evaluation,
cognitive dimensions are not intended to map out necessary improvements in a de-
sign. The framework recognises that for different problems and activities, different
dimensions may be more or less relevant. The dimensions indicate the related factors
that should not be ignored in design of an information artifact. Hence, whether or not
a particular dimension should be minimised at the expense of another is a decision
that can only be made with detailed knowledge of a particular design context. How-
ever, it is evident that for certain activities, to be successfully pursued, particular val-
ues of certain dimensions are appropriate: thus, high viscosity is not a problem for
search activities, but it can be a considerable problem for modification activities.

The concepts on which the dimensions are based have received broad interest
within a variety of domains where the uptake and complexity of notations and arte-
facts has been seen as a bottleneck in their effective exploitation. There are examples
of applying the dimensions to various information artefacts, in particular: interactive
systems [4], programming languages (textual and visual) [2], programming paradigms
[5] and [6], design notations and specification languages [7] and [8]. In addition, vari-
ous methodological techniques and tools have been developed to support their use,
see [9-12].

The aim of this paper is to show that it is possible to develop formal definitions of
concepts drawn from cognitive dimensions and most importantly validate the defini-
tions with relatively a simple empirical setting.

2 Cognitive Dimensions and Their Uptake

The dimensions and the framework have on the whole been loosely defined. Green’s
original definitions [1] consisted of a thumbnail description followed by an example
or two and this has been the style continued in later papers, such as in [2] and [3]. In
particular some have argued that an informal nature means they are more readily ac-
cessible to practitioners. The ideas can be employed flexibly without demanding that
procedural or semantic constraints are adhered to.

Despite this it is evident that inexperienced users of the dimensions may fail to
understand what is meant by some of the concepts, and that the dimension frame-
work can be difficult to apply in a consistent or reliable fashion. For instance, if the
information artifact is complex, practitioners can be unsure as to whether dimensions
have been examined to a similar level throughout. Different analysts bring a different
emphasis to applying the dimensions and find it hard to systematically distinguish



An Investigation into the Validation of Formalised Cognitive Dimensions 111

between them, especially when focusing upon features and behaviours of a particular
artefact. For some purposes this subjective character of the dimensions may not be a
significant concern, especially if the dimensions are being employed to motivate in-
novative design alternatives [13]. However within the context of researching the
framework and its use, ambiguities and un-certainties limit comparative assessments
of artifacts and their versions, and the inter-relations between dimensions suggested
by the framework.

Blandford et al [14] and Connell et al [15] provide another approach to employing
cognitive dimensions in design. In this case the dimensions provide a basis for the
automated analysis of a system that can be employed with only a limited account of
the features and characteristics of the target system. Although the work reported be-
low is also concerned with the automated cognitive dimensional analysis, it is moti-
vated by the exploration of cognitive dimension definitions and their character as op-
posed to explicitly enabling analysis to be conducted within the context of specific
design activities and case studies. Hence the definitions explored below are aimed at
underpinning the type of conceptual tools that may be available for analysts and de-
signers. The approach we take is to employ these formal definitions in the automated
analysis of small scale simulated systems. With this we are able to experiment, con-
trasting our expectations about the cognitive dimensional character of a simulated
system with those provided by following formal definitions. Experimentation with
alternative definitions can also support the process of pinpointing a more objective
characterisation of the cognitive dimensions and their properties.

3 What We Are Doing in This Paper

With any tool there are questions that can be asked regarding whether or not it serves
its intended purpose, and for cognitive dimensions this is no different. For instance,
we could ask whether or not a dimension concept, such as viscosity, is valid in terms
of the examples cited and the inter-relationships it has with other dimensions. Simi-
larly as a framework we could examine its adequacy, such as whether or not design
flaws that we would like it to capture can be located within the framework, or whether
another dimension is required to capture important examples.

In general the validation of a tool or model involves having to bridge between its
analytic domain and the empirical world in which it is intended to be valid and in
which evidence is normally found. The very character of the analytic domain can
complicate this process, as the analysis concepts may not have strong foundations in
an empirical context. The cognitive dimensions concepts that are the focus of this
work suffer from this problem. The main concepts used by the dimensions are charac-
terised largely by means of examples and illustrations. Take for example the concept
of ‘viscosity’: it is described in terms of the difficulty or effort when a user changes
some feature or property of an interactive system, alternatively it can be viewed in
terms of the systems resistance to some changes and not others. Although examples
can help illustrate what ‘viscosity’ might be like, it is difficult to know if it is particu-
lar to types of change, objective or subjective “measures” of effort, or whether it
should be viewed as absolute or relative to a specific system, activity and so forth.



112 C. Roast and B. Khazaei

The tool that performs the automated analysis is called CiDa - given a simulated
system (expressed as a state based system) and a formal definition of possible user
goals and actions, CiDa performs model checking for a set of propositions about di-
mension properties of a system. Fig 1 outlines the relationships of interest: a simu-
lated target system is available to both users and CiDa (in a form that it can analyse);
the analysis of this system is provided by CiDa for users; and the value of such an
analysis comes from the fact that the user is able to relate the output to their own ex-
perience with, and understanding of, the simulated system. Through experience and
experimentation with the system the informal validation of the properties output by
CiDa can be attempted by users.

_ USERS/SUBJECTS
CiDa
Comprehended as potential
properties of the simulated
system

CiDa analysis of the
simulated system

Simulated
system

Interactively check the
properties of the simulated
system

Fig. 1. The types of questions being asked of CiDa

Since CiDa provides an automated analysis it offers the advantages of being sys-
tematic and consistent in its analysis. Thus within the dimension properties defined
and the potential user goals CiDa places no specific emphasis on any one dimension
property or user goal, over any other.

However the effective use of CiDa for validation presupposes that the output of
such an analysis can be understood and that users can satisfy themselves that it is cor-
rect. Hence in Fig 1 the block arrows should ideally represent non-problematic activi-
ties: (i) getting from CiDa output to an understanding of its output, (ii) users being
able to relate CiDa output to how it is possible to interact and experiment with the
simulated system finding the evidence for that output in system that is simulated, and
(iii) engaging interactively with the system relating experience with the system back
to their understanding of CiDa outputs. In order to assist with this process the experi-
mental design was chosen to be one in which the simulated system was of limited
scale and was represented to subjects in a “lightweight” domain setting.

4 An Overview of CiDa and Some Definitions

CiDa is a prototype model checking tool built to support theory development specifi-
cally for the cognitive dimensions framework. Although dimension formalisation
have been posited [16], [5] and [6], their thorough examination and exploration is



An Investigation into the Validation of Formalised Cognitive Dimensions 113

complex and can be unconvincing for practitioners. CiDa provides a model checking
facility so that given proposed dimension definitions, a target system can be analysed
exhaustively generating a list of dimension instances evident in the target system. The
outcomes are independent of analyst expectations, bias or interests, and thus provide
an objective comparable account of the dimensional features of the target system for
the proposed dimension definitions. This has been of value enabling the “space” of
dimensions to be explored [17] and also for proposed definitions to be enhanced.
CiDa operates with a set of dimension definitions based mainly on temporal logic
expressions, a target system definition (as a state transition system), and a bridge be-
tween the two described in terms of the possible user goals that each state of the target
system may fulfill. Each definition characterises the patterns of potential goal satis-
faction and actions that match the dimension of interest. Below we briefly describe
the three dimensions characterisations employed in the study described.

Knock-on viscosity. Although we have informally referred to ‘viscosity’ in the
introduction, researchers in the area have found it valuable to distinguish two types of
viscosity, ‘knock-on’ and ‘repetitive’ [18]. The first of these is the one examined here,
it refers to the complexity, or effort, resulting from the user of a system having to
make changes that have unwanted side-effects which must then be put right. This
effect can be found when, say, inserting a new section in a word processed document,
and having to subsequently update section number references so that the references
are once again correct. Characterising this, there are two goals (a) to add a new
section, and (b) to have all section references correct, there is also the action that
creates the new section (act). The user’s difficulty occurs when (b) has been met and
now (a) has to be met as well, because adding a new section may disrupt the existing
ordering. This pattern is characterised in general as follows:

In every state that can be reached:
I, goal (b) is met and goal (a) is not,
then applying act achieves goal (a) and negates goal (b)

Premature Commitment. The dimension of premature commitment concerns the
order in which goals can be fulfilled. Informally premature commitment occurs when
a specific order of activity is demanded by a system that is in some sense
inappropriate or unnecessarily constraining from the perspective of the user. More
formally we employ the following concept of premature commitment based on that of
[17], it is defined as a relation between two goals (a) and (b), and an action (act), such
that:

1. Every behaviour leads to the goal (a) involves the action act and the other goal (b)
becoming true

2. Initially neither (a) or (b) are satisfied

3. The system behaviours ensure that (a) never necessarily entails (b) and (b) never
necessarily entails (a)

Secondary Notation. Besides definitions for knock-on viscosity and premature
commitment CiDa also has a definition for the dimension of 'secondary notation'. The
concept of secondary notation is that the user has a degree of freedom that enables



114 C. Roast and B. Khazaei

additional alternative information to be recorded and manipulated. Within CiDa the
definition of secondary notation is based upon assessing the lack of constraints that
enable goals to be jointly satisfied. Fewer constraints mean that there are more poten-
tial goal combinations available to the user to employ as the basis for secondary
notations.

For a primary goal (a) and a set of secondary goals (SG), the level of potential sec-
ondary notation is determined by the number of goals in SG that are formally in-
dependent of satisfying (a).

5 Experiment-Assessing the CiDa Analysis

We now describe the study conducted using the prototype CiDa tool to examine
whether CiDa output can be employed in empirical assessment and whether CiDa
output concurs with subjects' judgments. In order to address the potential difficulties
of interpretation with such a study, the following experimental guides were followed:

e CiDa output should be presented as statements that are simple and consistent in
style

e The target system complexity should be low, so that subjects can in effect become
experts with limited effort

e The target system domain should have familiar elements to lower the complexity
of developing an understanding of it

e The target system domain should be lightweight and not strongly goal oriented so
that subjects do not feel challenged by it, do not suppose that their responses are
being judged, and do not presume a specific use of the system.

e Subjects are encouraged to consider the details of multiple system behaviours. This
is to be encouraged by asking them to make comparative assessments of different
example systems.

Five example target systems were developed and simulated for CiDa analysis. To
allow for cross-system comparisons each provided the same functionality (i.e. the
reachable state space) but differed in terms of their interactive behaviour. Hence, we
were able to compare the differing systems and examine if differences were apparent
in the CiDa analysis of each.

5.1 The Example Systems

The target systems used for the study were based upon the idea of simple easily
explored interactive tool for manipulating the appearance of a comic-book cartoon
face. The comic-book face tools are sufficiently lightweight that novice users could
easily familiarise themselves with them, and would not be unduly challenged by the
domain. In addition, the graphical and direct nature of the cartoon face tools means
that a realistic simulation of each design could be easily generated. All in all five
alternative designs were considered, each allowed the same face configurations to
be obtained, and each differed in terms of the action sequences needed to obtain
face configurations.



An Investigation into the Validation of Formalised Cognitive Dimensions 115

The state space consists of a range of combinations of boolean attributes: awake,
unshaven, listening-to-music and talking/singing (see Fig 2). The five user actions
altered the state attributes in various ways. In this guise the specific actions had no
cartoon face related meaning, so arbitrary symbols with no characterisation were used
(see Fig 3). It was felt the range of alternative actions and states was sufficiently lim-
ited that no authoritative explanation of the actions would be necessary for partici-
pants in the study.

A\ B\
the initial listening to talk-
awake unshaven . . . .
face music ing/singing

Fig. 2. The cartoon face tool with the attributes that can be present or absent

X| > 3

red X > zigzag

VoY
\ 4

blue smile

blue eye

Fig. 3. Action buttons used to control the cartoon face

The potential user goals for this example system are listed below. The first two
goals match single state attributes, the third is the explicit combination of two attrib-
utes and the last two allude to specific combinations of facial attributes.

Possible user goal - Corresponding cartoon-face attributes

Awake - Awake attribute present

Unshaven - Unshaven attribute present

Awake and clean shaven - Both awake and clean shaven attributes present
Listening late at night - headphones on present and unshaven present
Singing along - headphones on present and mouth open present

The appendix gives details of just one of the cartoon-face tools, “Design 17, the
other designs (2 through to 5) are similar but differ in their action pre-conditions. All
five designs are formally defined and individually analysable by CiDa. They can also
be used to simulate their corresponding version of the cartoon-face tool. It should be
noted that the designs were developed to not embody a specific coherent interpretation
of the actions and their effects. On the contrary, the designs were intended to limit the
degree to which subjects may confidently guess at particular behaviours. Fig 4 shows
an example of two of the designs in differing states, paired as used in the study.



116 C. Roast and B. Khazaei

T T w> X
)

Fig. 4. A pair of the interactive cartoon face tools as used in the reported study

5.2 Experimental Design

The experiment was designed to allow subjects to engage in assessing statements
about the nature of the cartoon face tools. Each subject was given the task of experi-
menting with two of the designs and comparatively judging which design fulfilled
specific dimension related statements about them. It was envisaged that providing
each subject with two designs would facilitate the more accurate identification of dis-
tinctive properties and behaviours, and thus assist in their task. The statements were
drawn from the cognitive dimensions instances identified in the CiDa analysis of the
same set of designs. The statements were presented as written propositions largely
following a template form of expression for each dimension. Below are three example
statements corresponding to the three dimensions analysed:

1. If you make him so that he's not listening late (using the blue eye button), he will
not be singing.
This corresponds to an instance of knock-on viscosity, making him not listen re-
sults in him not singing. Hence, if one was trying to achieve both of these, one
might be frustrated by this unnecessary constraint.

2. When trying to make him chatty, you cannot avoid him being just shaved (when
using the eye button).
This corresponds to an instance of premature commitment; he has to be shaved
prior to chatting. Although there is nothing preventing him being unshaved and
chatting.

3. You can make him unshaven and at the same time both listen to music and chat, or
one or the other or neither.
This corresponds to an instance of secondary notation, there is sufficient flexibility
in the system for the face to be unshaven while either chatting and/or listening.

To reduce the number of statements that subjects would have to assess, only a few
of the possible dimension instances from CiDa's output were considered. The state-
ments used were, where possible, ones that could be used to differentiate between the
five designs used in the study. In addition, to avoid possible difficulties with compre-
hension, statements with relatively complex negative constructs were not used on the



An Investigation into the Validation of Formalised Cognitive Dimensions 117

Table 1. Specific cartoon-tool statements associated with knock-on viscosity related to exam-
ple designs

. . Design
Knock-on viscosity statements &

If you make him awake (using the blue eye button) he will be

shaved Y Y

If you make him unshaven (using the red X button) he will be lis- vy v
tening late

If you make him sleep (using the zigzag button) he will be clean vy v

shaved

If you make him so that he's not listening late (using the blue eye
button), he will not be singing

If you make him clean shaven (using the zigzag button) he will not
be singing

Table 2. Specific cartoon tool statements associated with premature commitment related to
example designs

) Design
Premature Commitment statements

When trying to make him unshaven, you cannot avoid him being
shaven (when the blue eye is used)

When trying to make him chatty, you cannot avoid him being just
shaved (when using the blue eye button)

basis that they were likely to be more confusing and complex for subjects to assess.
This resulted in a total of 12 statements for subjects to consider (see tables 1, 2 and 3).

Each subject was asked to experiment with randomly-allocated pairs of designs for
the cartoon face tool with a view to becoming familiar with them and identifying dif-
ferences between them. Fig 4 shows a pair of designs together as a subject may have
seen on their screen. Following the familiarisation, the subjects were given the 12
statements on a paper questionnaire and asked to assess which was valid for which of
the two designs using a five level confidence scale, ranging from definitely not valid
through to definitely valid.

A total of 25 subjects took part in the study; all had just commenced a second year
undergraduate introductory human-computer interaction option, and none had re-
ceived any instruction regarding the cognitive dimensions framework. Familiarisation
with the example system lasted up to ten minutes. The subjects then spent around 25
minutes answering questions set. Throughout the period they were free to experiment
with the two tool designs allotted to them.



118 C. Roast and B. Khazaei

Table 3. Specific cartoon tool statements associated with secondary notation potential related
to example designs

. . S Design
Potential notation flexibility statements &
1|12|3(4]5
You can make him unshaven and at the same time both listen to
i ) Y|Y|Y|Y|Y
music and chat, or one or the other or neither
You can make him unshaven and the same time awake or asleep Y|Y Y
You can make him unshaven and at the same time both listen to
. . Y Y
music and be awake or one or the other or neither
You can make him singing along and at the same time have his vy
eyes open or closed
You can make him not listen late and at the same time both be
X . Y Y
unshaven and be awake, or either or neither

5.3 Results

Informally it was clear from the subjects' reactions to the study that not all the ques-
tions were easily answered, this was mainly evidenced from the group as a whole
taking longer than planned and individuals requiring reassurance regarding details,
such as whether or not their tool designs embodied different interactive behaviour. In
some cases a difficulty in understanding the statements used was indicated by answers
with the confidence value 3 (‘Don't Know’) and occasionally by their failure to an-
swer. Missing values were assigned a rating of 3 in the analysis.

The first question in the analysis must therefore be whether some of the cognitive
dimensions appeared to be harder to comprehend than others. Table 4. summarises the
comparison between question types.

The frequency of answering with a 3, or leaving the question unanswered, varied
little between question types, indicating that each type was equally easy (or hard) to
understand. Analysis of variance showed no significant differences between question
types (F 1,45 = 0.953), no interaction between question type and design (F 4, 45 =
0.337), and no significant difference between design types (F 4, 45 = 0.179). In gen-
eral the overall low degree of indecision is a good indicator of the subjects' confi-
dence in comprehending the questions used.

In the experiment each subject explored two designs with a view to encouraging
the comparative assessment of the specific designs. A secondary element of assess-
ing comprehension is the level of discrimination by subjects between the designs
they examined. The average proportion of question responses in which subjects
differentiated between designs is 0.19 and this does not differ greatly between ques-
tion types: secondary notation 0.23; premature commitment 0.2; and knock-on
viscosity 0.15. This further evidences a consistent level of comprehension of the
questions.



An Investigation into the Validation of Formalised Cognitive Dimensions 119

Table 4. Mean proportion of questions answered with a “3” or left unanswered. Figures in
parentheses show standard deviations. N=50 in each cell.

Question type Mean (sd)

secondary notation 0.108 (0.1576)
knock-on viscosity 0.100 (0.1237)
premature commitment 0.140 (0.2680)

The responses were analysed as a two-factor experiment, with repeated measures
across the three question types (knock-on viscosity, premature commitment, and sec-
ondary notation) and independent groups across Designs 1 though to 5. Subjects’ re-
sponses were classified as either conforming with the CiDa analysis, contrary to the
CiDa analyis or neutral. Table 5 summarises subject agreement with respect to ques-
tion type and indicates the significance of y” tests on confirming and non-confirming
responses (ignoring the neutral responses).

Table 5. Classified responses for each type of question over all designs

Question type Conforming z)(:forming Significance r?si)lgflzles
secondary notation 151 75 p <0.001 17
knock-on viscosity 139 86 p <0.001 21
premature commitment 46 40 p=.52 7
Total 336 201 p <0.001 45

The degree of agreement between subjects responses and CiDa analyses is positive
and significant for two of the question types, secondary notations and knock-on vis-
cosity. The responses to the premature commitment questions show no significant
level of agreement with the CiDa analyses.

The differences in agreement between question types may be influenced by the
differing level of experience and experimentation required by subjects to address par-
ticular questions. The statements associated with knock-on viscosity are more focused
upon causal relations and, as a result, accurately answering them may require consid-
erable investigation on the part of the subject. The statements associated with secon-
dary notation potential are more declarative in character, and are less focused upon
details requiring exhaustive exploration. By contrast the premature commitment type
questions demand a more thorough examination of a design, implying that the subject



120 C. Roast and B. Khazaei

should engage in "trying" to achieve a specific goal. This appears to be evidenced by
premature commitment question type having the highest proportion of neutral re-
sponses (see table 4).

Thus although the techniques for validating CiDa output appear appropriate for
secondary notation and knock-on viscosity, for premature commitment alternatives
are needed, such as: offering subjects more time, re-phrasing the question templates
used, etc..

6 Conclusions

In general, the results support the primary focus of interest, that of validating the
model of the cognitive dimensions embodied in the CiDa analysis tool. The study
demonstrated that employing the available domain of the graphical tools was benefi-
cial in ensuring it was conceptually manageable for novice users, and that the method
of enabling them to contrast distinct tools helped encourage their exploration. By con-
trast, the use of relatively dry and verbose statements relating to instances of CiDa
output appears to have made the task set quite demanding. Overall, the study goes
someway towards dealing with the inherent complexity of validating the effectiveness
and effective use of broad-brush conceptual frameworks such as cognitive dimen-
sions. In addition, although in some design settings formally defined properties may
be viewed as unnecessarily precise, the work demonstrates that those definitions ex-
amined provide largely valid assessments.

We have shown that it is possible, important and beneficial to develop formal defi-
nitions of a usability framework based on cognitive dimensions. The potential exists
to examine alternative or related formalised properties in a similar manner.

Cognitive dimensions promise great potential benefits for the effective assessment
and design of complex interactive tools. There is a wide community interested in the
dimensions, and the CiDa tool and its analysis represents one approach to strengthen-
ing the role of cognitive dimensions. The provision of a more accurate and precise
framework for cognitive dimensions would benefit its employment with design and
development. However, the study described here illustrates that the development and
validation of a framework is not a trivial task. Despite this the results from the study
are a positive step towards the validation of formalised cognitive dimensions.

Future work is to develop this approach to validation further, exploring the appar-
ent weakness of our approach for examining premature commitment, and in general
broadening the range of dimensions considered.

Acknowledgments. The authors are indebted to Thomas Green and Simeon Yates for
their comments on earlier versions of this paper and their assistance in data analysis.

References

1. Green, T. R. G.: Cognitive dimensions of notations. In A. Sutcliffe and L. Macaulay (eds.):
People and Computers V. Cambridge University Press (1989)

2. Green, T. R. G., Petre, M.: Usability analysis of visual programming environments: a
‘cognitive dimensions' framework. In J. Visual Languages and Computing Vol. 7(2)
(1996) 131-174



10.

11.

12.

13.

14.

15.

16.

17.

18.

An Investigation into the Validation of Formalised Cognitive Dimensions 121

Green, T.R.G., Blackwell, A.F.: Design for usability using Cognitive Dimensions. Tutorial
session at British Computer Society conference on Human-Computer Interaction HCI'98
(1998)

Roast, C.R., Dearden, A., Khazaei, B.: Enhancing contextual analysis to support the design
of development tools. In Fincher, S., Markpoulos, P., Moore, D., Ruddle, R. (eds.): People
and Computers X VII - Design for Life. Springer Verlag (2004)

Roast, C. R.: Modelling unwarranted commitment in information artefacts. In Chatty S.
and Dewan P. (eds.): Engineering for Human-Computer Interaction. Kulwer Academic
Press (1998) 77-90

Roast, C., Khazaei, B., Siddiqi, J.: Formal comparison of program modification. In Stasko
J. and Pfeiffer J. J. (eds.): IEEE Symposium on Visual Languages. IEEE Computer Society
(2000) 165-171

Britton, C., Jones, S.: The untrained eye: how languages for software specification support
understanding in untrained users. In Human-Computer Interaction, Vol. 14(1) (1999) 191-
244

Khazaei, B. and Triffitt, E.: Applying Cognitive Dimensions to Evaluate and Improve the
Usability of Z Formalism, Proceedings of the 14th International Conference on Software
Engineering and Knowledge Engineering, ACM (2002)

Blackwell, A.F., Britton, C., Cox, A. Green, T.R.G., Gurr, C.A., Kadoda, G.F., Kutar, M.,
Loomes, M., Nehaniv, C.L., Petre, M., Roast, C., Roes, C., Wong, A., Young, R.M.: Cog-
nitive Dimensions of Notations: design tools for cognitive technology. In M. Beynon, C.L.
Nehaniv, and K. Dautenhahn (eds.): Cognitive Technology 2001 (LNAI 2117). Springer-
Verlag (2001) 325-341

Blackwell, A.F., Green, T.R.G.: A Cognitive Dimensions questionnaire optimised for us-
ers. In Blackwell A.F. and Bilotta E. (eds.): Proceedings of the Twelfth Annual Meeting of
the Psychology of Programming Interest Group. (2000) 137-152

Blandford, A., Green, T.R.G.: OSM an ontology-based approach to usability engineering.
In Representations in Interactive Software Development. Workshop at Queen Mary and
Westfield College, Department of Computer Science (1997)

Lavery, D., Cockton, G., Atkinson, M.: Cognitive dimensions: Usability evaluation mate-
rials. Technical report, Department of Computing Science, University of Glasgow (1996)
Burnett, M., Dagit, J., Lawrance, J., Beckwith, L., Kissinger, C.: Experiences with Cogni-
tive Dimensions presented at Cognitive Dimensions of Notations 10th Anniversary Work-
shop (Dallas 2005)

Blandford, A., Connell, 1., Green, T.R.G.: Concept-based Analysis of Surface and Struc-
tural Misfits (CASSM) Tutorial Notes. September 2004, available at http://www.uclic.ucl.
ac.uk./annb/CASSM.html

Connell, 1., Blandford, A., Green, T.R.G.: CASSM and cognitive walkthrough: usability
issues with ticket vending machines. In Behaviour and Information Technology Vol. 23(5)
(2004) 307-320

Roast, C. R.: Formally comparing and informing design notations. In Thimbleby, H.,
O'Conaill, B. and Thomas, P. (eds.): People and Computers XII. Springer Verlag (1997)
315-336

Roast, C.R.: Dimension driven re-design - applying systematic dimensional analysis, Pro-
ceedings of the 14th Psychology of Programming Interest Group workshop (2002)

Green, T. R. G.: The cognitive dimension of viscosity: a sticky problem for HCI. In D.
Diaper, D. Gilmore, G. Cockton and B. Shackel (eds.): Human-Computer Interaction —
INTERACT ’90. Elsevier (1990)



122 C. Roast and B. Khazaei

Appendix

Design 1 for the cartoon face tool is represented by the state transition diagram below.
The other four designs used in the study shared the same state space, but differed in
terms of transitions.

smile

awake—unshaven-talking awake—unshaven—muX



Formal Modelling of Cognitive Interpretation

Rimvydas Ruksénas', Paul Curzon', Jonathan Back?, and Ann Blandford?

! Department of Computer Science, Queen Mary, University of London, London, UK
{rimvydas,pc}@dcs.qgmul.ac.uk
2 University College London Interaction Centre, London, UK
{j.back,a.blandford}@ucl.ac.uk

Abstract. We formally specify the interpretation stage in a dual state
space human-computer interaction cycle. This is done by extending / re-
organising our previous cognitive architecture. In particular, we focus on
shape related aspects of the interpretation process associated with device
input prompts. A cash-point example illustrates our approach. Using the
SAL model checking environment, we show how the extended cognitive
architecture facilitates detection of prompt-shape induced human error.

Keywords: human error, cognitive architecture, model checking, SAL.

1 Introduction

Interactive systems combine human and computer actors. Their correctness de-
pends on the behaviour of both. It is reasonable, and useful, to say that humans
behave rationally: entering interactions with goals and domain knowledge likely
to help them achieve their goals. Whole classes of persistent, systematic user
errors may occur due to modelable cognitive causes [I]. Often opportunities for
making such errors can be reduced with good design [2]. A methodology for
detecting designs that allow users, when behaving in a rational way, to make
systematic errors will improve such systems.

We previously [3] developed a generic formal cognitive model from abstract
cognitive principles, such as entering an interaction with knowledge of the task’s
subsidiary goals, showing its utility for detecting some systematic user error. Here
we describe a development of it. The cognitive architecture previously identified
device signals with user perception of them: a gross simplification of the complex
process which involves perception, interpretation and evaluation. Similarly, user
actions were identified with their corresponding device inputs. Such simplifica-
tions can hide design flaws. We address this problem by separating the user and
the device state spaces. We also structure the underlying state space of the cogni-
tive architecture to distinguish input signals (originating from user perception),
output signals (consequences of user actions) and internal state (user memory).
The formal version of our generic user model, module User, is outlined in Sect.[2l
Our restructuring introduces intermediate entities, interpretation and effect, re-
lating the now distinct state spaces (see Fig.[l]) and described in detail in Sect.[3
The effect is an abstract view of how user actions are translated into device

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 123-[I36] 2007.
© Springer-Verlag Berlin Heidelberg 2007



124 R. Ruksénas et al.

Device Model
output input

Model
interpretation |::> User Mode |::> effect
input  memory output

Environment Model

world state

Fig. 1. The cycle of interaction

commands. The importance of such translation is evident in interactive systems
involving voice or gesture recognition of user inputs. More detailed modelling of
this is left to future work. The interpretation is an abstract view of the pathways
from device signals and environment objects to the user decision of what they
could mean. Blandford and Young [4] also separate user and device descriptions.
An important difference (apart from the degree of formality) is our explicit in-
clusion of the interpretation and effect stages within the cycle of interaction. To
illustrate the utility of the changes, we focus here on one use: modelling how the
shape (form, size, etc.) of a device prompt affects user (mis)understanding. The
shape of a device prompt may restrict or structure the type of information that
a user is required to provide.

Dillon [B] argued that the “shape” concept assumes both spatial and semantic
characteristics. He found that, as well as using spatial cues, individuals recognise
and respond to content and meaning when interpreting requirements. During an
interaction there is an inter-coupling of spatial and semantic components of
memory. It is therefore likely that the interpretation of a device prompt relies
on both spatial and semantic cues. A device prompt may incorporate both of
these cue types: e.g. a user may be required to use several different passwords
depending on the service required. A fixed digit entry field can act as both a
spatial and semantic cue. The location of the password entry field (spatial cue)
may correspond to the specific service required, while the size of the entry field
(both a spatial and semantic cue) may correspond to the required length of the
password and hence inform the user of which password is required (if passwords
are of different lengths). Semantic cues are hints based on meaning that help
users understand requirements. Dillon and Schaap [6] found that experienced
users could better process these semantics, while novices had to rely solely on
spatial cues. However, not all semantic cues are based on knowledge of the sys-
tem. For example, a user with no knowledge of the system can still use the size
of the entry field as a semantic cue as it only requires knowledge of passwords.

Information appears to be processed automatically without conscious effort [7].
When cognitive operations are underspecified (e.g., when multiple inputs are pos-
sible), humans tend to default to high frequency responses (frequency biasing).
The largest single class of action slip errors are due to strong habit intrusions
that have structural (spatial) and contextual (semantic) elements in common with



Formal Modelling of Cognitive Interpretation 125

planned actions [I]. Detecting cases where device prompt shape can be misunder-
stood may enable certain types of action slip errors to be avoided.

There are several approaches to formal reasoning about usability. One is to
focus on a formal specification of the user interface [8[9]. Most commonly this
approach relies on model-checking tools; investigations include whether a given
event can occur or whether properties hold of all states. An alternative is for-
mal user modelling, as here. It involves writing formal specifications of both the
computer system and the user, then reasoning about their conjoint behaviour.
Both device and user are considered as equally central components of the system
and modelled as part of the analysis. Duke and Duce [10] formally reason about
HCT this way; their approach is well suited to reasoning about interaction that,
for example, combines the use of speech and gesture. However, their framework
lacks tool support, which would make it difficult to apply in practice. Bowman
and Faconti [I1] formally specify a cognitive architecture using the process cal-
culus LOTOS, analysing its properties using temporal logic. These approaches
are more detailed than ours, which abstracts above cognitive processes. Moher
and Dirda [12] use Petri net modelling to reason about users’ mental models
and their changing expectations over the course of an interaction; this approach
supports reasoning about learning to use a new computer system but focuses on
changes in user belief states rather than the analysis of desirable properties.

Rushby et al [13] focus specifically on mode errors and the ability of pilots
to track mode changes. They formalise plausible mental models of systems and
analyse them using the Mur¢ state exploration tool. However, the mental mod-
els are essentially abstracted system models; they do not rely upon structure
provided by cognitive principles. Neither do they model user interpretation.

Campos and Doherty [14] use perception mappings to specify mental models;
no formal model of user behaviour is developed. Instead, they reason about the
properties of representations of information in the interface. Also, perception in
their approach seems to be always deterministic. Bredereke and Lankenau [I5]
reason about user perception of reality using a refinement based approach. Per-
ception is expressed as a relation from environment events to mental events that
could in principle be lossy, corresponding to physical or psychological reasons for
an operator not observing all interface events of a system. However, the authors
note that in practice they use the relation to rename events and so it is not lossy.
This contrasts with our work which explicitly considers imperfect user interpre-
tation. Cerone etal’s [16] CSP model of an air traffic control system includes
controller behaviour. A model checker was used to look for new behavioural pat-
terns, overlooked by the analysis of experimental data. The classification stage
of the interaction cycle of their model is similar to our user interpretation.

2 The Cognitive Architecture in SAL

Our cognitive architecture is a higher-order logic formalisation of abstract prin-
ciples of cognition and specifies cognitively plausible behaviour [I7]. The archi-
tecture specifies possible user behaviour (traces of actions) that can be justified
in terms of specific results from the cognitive sciences. Real users can act outside



126 R. Ruksénas et al.

Table 1. A fragment of the SAL language

x:T x has type T

x =e the new value of x is that of the expression e

{x:T | p} a subset of T such that the predicate p holds

ali] the i-th element of the array a

r.x the field x of the record r

r WITH .x := e the record r with the field x replaced by the value of e

g — upd if g is true then update according to upd

cld non-deterministic choice between c and d

DGE:T): ¢ non-deterministic choice between the c; where i is in range T

this behaviour, about which the architecture says nothing. Its predictive power
is bounded by the situations where people act according to the principles speci-
fied. The architecture allows one to investigate what happens if a person acts in
such plausible ways. The behaviour defined is neither “correct” or “incorrect”. It
could be either depending on the environment and task in question. We do not
attempt to model underlying neural architecture nor the higher level cognitive
architecture such as information processing. Instead our model is an abstract
specification, intended for ease of reasoning.

Our previous formalisation of the cognitive architecture was developed in
a theorem prover. The new version is based on the SAL model checking en-
vironment [I8]. It provides a higher-order specification language and tools for
analysing state machines specified as parametrised modules and composed either
synchronously or asynchronously. The SAL notation we use is given in Table[Il

We rely upon cognitive principles that give a knowledge level description in
the terms of Newell [19]. Their focus is on the goals and knowledge of a user. In
this section, we discuss the principles and the way they are modelled.

Non-determinism. In any situation, any one of several cognitively plausible
behaviours might be taken. It cannot be assumed that any specific plausible
behaviour will be the one that a person will follow. The SAL specification is
a transition system. Non-determinism is represented by the non-deterministic
choice, [1, between the named guarded commands (i.e. transitions). Each de-
scribes an action that a user could plausibly make. For example, in the following,
ReactCommit is the name of a family of transitions indexed by i:ReactRange.

TRANSITION

([J (i:GoalRange): GoalCommit:..) [1 ([](i:GoalRange): GoalTrans:..)
[1 ([](i:ReactRange): ReactCommit:..) [1 ([](i:ReactRange): ReactTrans:..)
[1 Exit:..[1 Abort:..[1 Idle:..

Mental versus physical actions. A user commits to taking an action in a way
that cannot be revoked after a certain point. Once a signal has been sent from
the brain to the motor system to take an action, it cannot be stopped even if
the person becomes aware that it is wrong before the action is taken. Therefore,
we model both physical and mental actions. Each physical action modelled is



Formal Modelling of Cognitive Interpretation 127

associated with an internal mental action that commits to taking it. In the SAL
specification, this is reflected by the pairings of guarded commands: GoalCom-
mit — GoalTrans and ReactCommit — ReactTrans. The first of the pair models
committing to an action, the second actually doing it (see below).

User goals. A user enters an interaction with knowledge of the task and,
in particular, task dependent sub-goals that must be discharged. These sub-
goals might concern information that must be communicated to the device or
items (such as credit cards) that must be inserted into the device. Given the
opportunity, people may attempt to discharge any such goal, even when the
device is prompting for a different action. We model such knowledge as user goals
which represent a pre-determined partial plan that has arisen from knowledge
of the task in hand, independent of the environment in which that task will be
accomplished. No fixed order is assumed over how user goals will be discharged.

To see how this is modelled in SAL consider the following guarded command
GoalTrans for doing a user action that has been committed to:

gcommit’[i] = done; gcommitted’ = FALSE;

gcommit[i] = committed — GoalTransition(i)

The left-hand side of — is the guard of this command. It says that the rule will
only activate if the associated action has already been committed to, as indicated
by the i-th element of the local variable array gcommit holding value committed. If
the rule is then non-deterministically chosen to fire, this value will be changed to
done and the boolean variable gcommitted is set to false to indicate there are now
no commitments to physical actions outstanding and the user model can select
another goal. GoalTransition(i) defines the state update transitions associated
with this particular action 3.

User goals are modelled as an array goals which is a parameter of the User
module. The user model state space consists of three parts: input variable in, out-
put variable out, local variable (memory) mem; environment is modelled by global
variable env. All of these are specified using type variables and are instantiated
for each concrete interactive system. Each goal is specified by a record with the
fields grd, tout, tmem and tenv. The grd field is discussed below. The remaining
fields are relations from old to new states that describe how two components
of the user model state, outputs out and memory mem, and environment env are
updated by discharging this goal. These relations, provided when the generic
user model is instantiated, are used to specify GoalTransition(i) as follows:

out’ € {x:0ut | goals[i].tout(in,out,mem) (x)};
mem’ € {x:Memory | goals[il.tmem(in,mem,out’) (x)};
env’ € {x:Env | goals[i].tenv(in,mem,env)(x) A possessions}

The update of env must also satisfy a generic relation, possessions. It specifies
universal physical constraints on possessions, linking the events of taking and
giving up a possession with the corresponding increase or decrease in the number
of objects possessed. This number is modelled as an environment component.
If the guarded command for committing to a user goal (given below) fires,
it switches the commit flag for goal i to committed thus enabling the GoalTrans



128 R. Ruksénas et al.

command. The predicate grd, extracted from the goals parameter, specifies when
there are opportunities to discharge this user goal. Because we assign done to
the corresponding element of the array gcommit in the GoalTrans command, once
fired the command below will not execute again. If the user model discharges a
goal, without some additional reason such as a prompt, it will not do so again.
gcommit[i] = ready A NOT(gcommitted V rcommited) gcommit'[i] = committed;
A finished = notf A goals[i].grd(in, mem, env) - gcommitted’ = TRUE

Reactive behaviour. A user may react to an external stimulus, doing the action
suggested by the stimulus. For example, if a flashing light comes on a user might,
if the light is noticed, react by inserting coins in an adjacent slot. Reactive
actions are modelled in the same way as user goals but on different variables,
e.g. parameter react of the User module rather than goals. ReactTransition(i) is
specified in the same way as GoalTransition(i). The array element rcommit[i]
is reassigned ready rather than done, once the corresponding action has been
executed, as reactive actions, if prompted, may be repeated.

Goal based task completion. Users intermittently, but persistently, terminate
interactions as soon as their perceived goal has been achieved [2], even if sub-
sidiary tasks generated in achieving the main goal have not been completed. A
cash-point example is a person walking away with the cash but leaving the card.

In the SAL specification, a condition that the user perceives as the main
goal of the interaction is represented by a parameter PerceivedGoal of the User
module. Goal based completion is then modelled as the guarded command FExit,
which simply states that, once the predicate PerceivedGoal becomes true and
there are no commitments to user goals and/or reactive actions, the user may
complete the interaction. This action may still not be taken because the choice
between enabled guarded commands is non-deterministic. Task completion is
modelled by setting the local variable finished to ok:

PerceivedGoal(in,mem) A finished = notf

finished’ = ok
A NOT(gcommitted V rcommitted) T Hinashe °

No-option based task termination. If there is no apparent action that a person
can take that will help complete the task then the person may terminate the
interaction. For example, if, on a ticket machine, the user wishes to buy a weekly
season ticket, but the options presented include nothing about season tickets,
then the person might give up, assuming the goal is not achievable.

In the SAL specification, the no-option condition is expressed as the negation
of predicates EnabledGoals and EnabledReact. Note that, in such a situation, a
possible action that a person could take is to wait. However, they will only do so
given some cognitively plausible reason such as a displayed “please wait”. The
waiting conditions are represented in the User module by predicate parameter
Wait. If Wait is false, finished is set to abort in the guarded command Abort.

3 Formal Specification of User Interpretation for an ATM

The separation of user and device state spaces means connectors are required
to compose the user and device models (recall Fig.[l]). If the state spaces of



Formal Modelling of Cognitive Interpretation 129

CardRemoved

[ErrorMessage]

OtherService
OtherNumber
—~PhoneNumber
~OtherNumber

-OtherService

TimeTick —CardRemoved

PhoneNumber —TimeTick

Inserte
Cardinserted WAIT

AmountSelected

-Cardinserted %

SelectLight SelectMessage PleaseWait IssueReceipt

ReleaseCard

—~AmountSelected

AmountMessage

Fig. 2. ATM specification as finite state machine

both models precisely match, these connectors are simply identity mappings.
This would yield essentially the same situation as with the shared state space.
However, the separated state spaces open up new possibilities for specifying
more complex connectors. These allow the formal modelling of the interpretation
processes that are occurring in the interaction between the user and the device.

In this section, we consider the user interpretation part of a specific interactive
system. Considering such concrete examples will help us to develop in the future
an abstract model (as with the user model itself) of user interpretation. We start
by specifying the machine and user models of this system.

We use here the task of topping-up a mobile phone based on a real ATM. A
finite state machine specification of this device is given in Fig.2l False machine
outputs are omitted. The actual SAL specification, module ATM, is a straightfor-
ward translation of this diagram. Since our focus is the top-up task, we omit
the specification of other services provided (this corresponds to the diagram’s
STOP state). Also, as we are illustrating the modelling of user interpretation, in
this paper we abstract the authentication process by assuming that PIN enter-
ing/verification is a part of the card insertion step.

According to our specification, the ATM initially prompts users to insert a
card. Once this is done, the machine provides several touch screen menu options.
We assume (and specify in the user model later on) that the user chooses the
top-up option. The machine then displays a new menu with several options to
select the top-up value; the user can choose any. In response, the machine dis-
plays an input box and asks for a phone number. The user interpretation of this
request is discussed in detail below. For now it suffices to know that the inter-
pretation can result in two actions: entering a phone number, or entering some
other number (we assume the machine can distinguish these two alternatives).
In the former case, a receipt is issued and the card is released; in the latter,
the machine displays an error message and again prompts for a phone number.
The transactions related to the actual top-up process take time. Thus a “please
wait” message is displayed during processing. Finally, the machine returns to
the initial state once the released card is removed.

The input and output components of the device state space are relevant to
the discussion of user interpretation. The input variables of our specification are



130 R. Ruksénas et al.

CardInserted, TopUp, OtherService, AmountSelected, PhoneNumber, OtherNumber,
and CardRemoved (Fig.2)). The output variables are CardMessage, SelectMessage,
AmountMessage, Inbox, ErrorMessage, PleaseWait, IssueReceipt, and ReleaseCard.
These variables are booleans, except Inbox. It is a record consisting of two fields:
option and size. The former specifies whether the request to enter a phone
number is displayed, the latter is the size of the input box.

The generic user model User was described in Sect.[2l To analyse our interac-
tive system, we now instantiate that model for the concrete task of topping-up
a mobile phone. We start by specifying the state space of our user model.

In general, it is plausible to assume that the specific details of an ATM spec-
ification might be unavailable at the time the concrete user model is developed.
Even if they are, it could be preferable to specify the user state space in more
cognitive terms, not constraining oneself by the existing device specification.
First, we consider user perceptions which are represented in the User module by
the input variable in. We assume that the user is able to perceive the following
signals from the machine: InsertCard, SelectService, SelectAmount, RemoveCard,
WaitMessage, and ErrorMessage (their names should be self-explanatory). The
user can also perceive the shape of the input box, InboxShape. People usually
know their phone numbers, however, they might also have another (different)
number on their top-up cards. It is cognitively plausible that the user may be
uncertain which number is requested. This confusion is represented in the user
model by two distinct components, EnterPhoneNumber and EnterCardNumber. Fi-
nally, the user evaluates the state of the machine deciding whether the requested
service has been received, modelled by ServiceReceived. These components form
a record, In, which is used to instantiate the corresponding type variable in User.

Next, we specify state space components related to the actions users might
take. These correspond to the ATM inputs in Fig.[2land are: CardInserted, TopUp,
OtherService, AmountSelected, PhoneNumber, OtherNumber, and CardRemoved. Like
the user inputs above, these components form a record, Out. For this paper,
the memory component of the User module, Mem, is kept simple. We assume
the user remembers only the actions taken in the previous step. Mem is there-
fore the same record type as Out. Finally, user actions can both affect and
be restricted by the environment of our system; we thus have a record type,
Env. It includes counters, BankCards and PhoneCards, for the user possessions
(cards); values (the balances of the corresponding accounts) of these posses-
sions, BankBalance and PhoneBalance; and the sizes, SizePhone and SizeCard, of
the card numbers.

We assume that user knowledge of ATM transactions includes the need to
(1) provide a payment card, (2) communicate that the top-up option is required
and (3) communicate the top-up value. This knowledge is specified as user goals
(elements of array goals) instantiated by giving the action guard and the updates
to the output component. For the insert-card goal, the guard is that the person
perceives an InsertCard signal and has a bank card. The output action is to set
CardInserted to true (Default is a record with all its fields set to false so asserts
that nothing else is done). We omit the memory and environment updates:



Formal Modelling of Cognitive Interpretation 131

grd := A(in,mem,env): in.InsertCard A env.BankCards > O
tout := A(in,outO,mem): A(out): out = Default WITH .CardInserted := TRUE

Choosing to top-up and communicating the top-up value are modelled similarly.
We assume that the user can reactively respond to device prompts by attending
to either spatial or semantic cues (or both) and enter the phone number. This
may happen only when the machine state is interpreted as signalling to enter the
number by in.EnterPhoneNumber. The number must also not have been entered,
as indicated by the memory, in the previous step, unless the person sees an error
message requesting that repetition. Formally, the action is specified as follows:

grd := A(in,mem,env): in.EnterPhoneNumber A
(NOT (mem.PhoneNumber) V ErrorMessage)
tout := A(in,outO,mem): A(out): out = Default WITH .PhoneNumber := TRUE

However, as discussed earlier, it is plausible that a prompt for the phone number
can be misinterpreted as that for the number on the top-up card instead (a
semantic cue). The corresponding reactive action is analogous to the one above.
Finally, the user can respond to the prompt for taking back their card:

grd := A(in,mem,env): in.RemoveCard A NOT(mem.CardRemoved)
tout := A(in,outO,mem): A(out): out = Default WITH .CardRemoved := TRUE

Goal and wait predicates are the last parameters used to instantiate the User
module. We assume that the user considers receiving the requested service as the
main goal of the interaction. We also assume that seeing a “please wait” message
is the only condition when the user, perceiving no options to act, does not
terminate the interaction. The two predicates are specified in SAL as follows:

PerceivedGoal = A(in,mem): in.ServiceReceived
Wait A(in,mem): in.WaitMessage

Finally, the ATM user model, ATMuser, is defined by instantiating the generic
user model with the parameters (goals, reactive actions, perceived goal and wait
condition) just defined.

So far we have specified an ATM and have developed a formal model of its
user. The state spaces of the two specifications are distinct. This closely cor-
responds to reality, since the state of an ATM and the user interpretation of
it are not necessarily identical. The changing machine state is first attended to
then interpreted by the user. Next we formally specify this interpretation, thus
providing a connector for separate state spaces. The specification is written as
a new SAL module, interpretation. The module, being a connector, has input
variables that are the output variables of ATM, and output variable that is the
input (perception) component of the User module, the record in.

We model user interpretation (below) by the SAL definition construct which
allows one to describe system invariants. Intuitively, this means that the left-
hand side of an equation is updated whenever the value of the right-hand side
changes. Here, we assume that the user model directly perceives some of the ATM
signals such as prompts for inserting a card, selecting amount, a wait message,
etc. Consequently, the first six conjuncts in the definition simply rename the
appropriate fields in the record in to the corresponding variables in ATM. Below
we discuss in more detail the final three conjuncts.



132 R. Ruksénas et al.

Input box:

does not match ‘ ______ ‘ ‘ o ‘
Phone number: /

07123 456789

Fig. 3. User interpretation of input boxes

DEFINITION in € { x:In |
x.WaitMessage = PleaseWait A x.ErrorMessage = ErrorMessage A
x.InsertCard = CardMessage A x.SelectService = SelectMessage A
x.8electAmount = AmountMessage /A x.RemoveCard = ReleaseCard A
x.ServiceReceived = IssueReceipt A x.InboxShape = ... A
definition of x.EnterPhoneNumber and x.EnterCardNumber }

As explained earlier, the field ServiceReceived corresponds to the main goal in
our user model. The definition above identifies it with the machine action issuing
a receipt. Of course, getting a receipt could not plausibly be the actual user goal,
a better candidate for which is to have the mobile phone account increased by
the desired amount. The latter, however, is impossible to observe directly, so,
with this machine, getting a receipt is the best available approximation.

In this paper, we consider what influence the shape of a machine prompt
can have on user interpretation of it. For this, we use input boxes displayed by
ATMs (see Fig.[). There could be many aspects of the shape to investigate; for
simplicity, the shape of an input box is modelled as its size in our case studies. In
general, however, it could represent any relevant aspect of shape. The definition
below identifies shape with size; the condition Inbox.option ensures that this
identification occurs only when an input box is displayed, otherwise, the user
model does not perceive the box at all, as represented by the shape value 0:

x.InboxShape = IF Inbox.option THEN Inbox.size ELSE O ENDIF

The last conjunct in the definition illustrates how shape can affect user inter-
pretation of machine prompts. We present it in four parts below. The first part
(conjunct) specifies the situation when there is nothing in the machine state that
could be interpreted by the user model as a prompt, or spatial cue, for entering
a phone number or the number on a top-up card. This happens when the shape
of the input box (possibly not displayed at all) matches neither of the numbers
the user could consider as relevant to the prompt:

x.InboxShape # env.SizePhone A x.InboxShape # env.SizeCard
= NOT(x.EnterPhoneNumber) A NOT(x.EnterCardNumber)

When the shape (size) of the displayed input box matches the phone number
and is different from the number on the card, we assume that the user model
interprets this as a prompt, or semantic cue, for entering the phone number:

x.InboxShape = env.SizePhone A x.InboxShape # env.SizeCard
= x.EnterPhoneNumber A NOT(x.EnterCardNumber)



Formal Modelling of Cognitive Interpretation 133

Analogously, the user model can interpret the machine state as a prompt for
the number on the top-up card:

x.InboxShape # env.SizePhone A x.InboxShape = env.SizeCard
= NOT(x.EnterPhoneNumber) A x.EnterCardNumber

Finally, the user can be confused as to which of the two numbers is requested.
This may happen when the shape of the displayed box matches both numbers.
We assume that the result of user interpretation in this case is random, but it
can only yield a prompt for one of the numbers (here X0R is exclusive-or):

x.InboxShape = env.SizePhone A x.InboxShape = env.SizeCard
= x.EnterPhoneNumber XOR x.EnterCardNumber

Now we have specified all the components of our interactive system. The whole
system, denoted system, is modelled in SAL as their parallel composition:

(ATMuser [] ATM [] environment) || (interpretation || effect)

Here, [1 denotes asynchronous (interleaving) composition, whereas || denotes
synchronous composition. For brevity, we have not presented the specifications
of the effect and environment modules. Informally, the effect module specifies
how user actions from ATMuser are translated into the machine commands; in
other words, how the output component out is connected to the ATM inputs. In
our case study, this translation is simple renaming, analogous to those given in
the definition of in above. The environment module contains no transitions; it
simply defines constants such as the size of the phone and top-up card numbers.

4 Verification of Interactive Systems

We now present verification examples, focussing on the system aspects influenc-
ing user interpretation. We first introduce system properties to verify. Our ap-
proach is concerned with two kinds of correctness properties. Firstly, we want to
be sure that, in any possible system behaviour, the user’s main goal of interaction
is eventually achieved. Given our model’s state space, this is written in SAL as
the assertion (where F means “eventually”): F(PerceivedGoal (in,mem)). Second,
in achieving a goal, subsidiary tasks are often generated that the user must com-
plete to complete the task associated with their goal. If the completion of these
subsidiary tasks is represented as a predicate, SecondaryGoal, the required condi-
tion is specified as: G(PerceivedGoal(in,mem) = F(SecondaryGoal(in,mem,env)))
(where G means “always”). This states that the secondary goal is always eventu-
ally achieved once the perceived goal has been achieved. Often secondary goals
can be expressed as interaction invariants [3] which state that some property of
the model state, that was perturbed to achieve the main goal, is restored.

In the first example, the ATM design’s displayed input box has shape (size)
larger than strictly needed and it (incorrectly) matches the top-up card number
but not the correct but shorter phone number. Our first attempt is to verify that
the user model eventually achieves the perceived goal of getting a receipt. Unfor-
tunately, the desired property is not true, and the SAL model checker produces



134 R. Ruksénas et al.

a counterexample which shows both the trace of system states and the actions
taken by the user model and the machine. The analysis of the counterexample
indicates that the user model loops on entering the top-up card number. Further
analysis reveals that this is due to the user (mis)interpreting the ATM prompt
for the phone number as that for the card number. This misinterpretation is
caused by the input box shape which matches the card number. Of course, this
does not mean that every real ATM user is prone to such error or would loop
forever. However, the assumptions on which our model of user interpretation is
based are cognitively plausible and this error is a consequence of them. Hence,
some users are liable to such errors and changes in the ATM design are advisable.

Next, we consider a modified ATM design in which the shape of the displayed
box matches the phone number. We assume here that the shape of the card num-
ber is different. Now the first correctness property, the user eventually achieving
the perceived goal, is satisfied by the interactive system. We thus proceed with
the verification of the second property that the user eventually achieves the sec-
ondary goal. This is expressed as an interaction invariant, which states that the
total value of the user possessions (the balance of the account associated with the
payment card plus the top-up card balance) is eventually restored to the initial
value. Unfortunately, the verification of this property fails. The counterexam-
ple produced indicates that the failure is caused by the user model finishing
the transaction as soon as a receipt is issued. Detecting this type of user error,
a post-completion error, with its underlying causes and possible remedies, has
been discussed in our earlier paper [3]. Here, we just note that such errors could
be eliminated by modifying the ATM from Fig.BPlso that a receipt is issued only
when the user has removed the card.

Finally, consider the case when the phone and card number both match the
shape of the displayed box. The verification of the first correctness property
fails. The counterexample produced is as in the first example (when only the
card number matched the displayed box). Further analysis reveals that, unlike
in that example, the user model can now achieve the perceived goal. Within the
SAL environment, this is verified using the assertion EF (PerceivedGoal (in,mem)),
where the operator EF states that there is a path such that the corresponding
formula is eventually true. This indicates that both user interpretations of the
machine prompt are possible, which can lead to the confusion of real ATM users.

5 Summary and Further Work

We have presented a refined version of our cognitive architecture. The state space
of the formal user model has been separated from that of the device. This both
required and facilitated the abstract modelling of user interpretation of device
outputs. We presented a simple case study (available at http://www.dcs.qmul.
ac.uk/~rimvydas/usermodel/dsvis06.zip). It illustrates how such abstract
models can be used within our verification approach to detect problems in inter-
active systems related to shape induced confusion over device signal meaning.
Our abstract model is a simplification of cognitive interpretation, and clearly
not every user of such device will experience the problems our approach reveals.


http://www.dcs.qmul.ac.uk/~rimvydas/usermodel/dsvis06.zip
http://www.dcs.qmul.ac.uk/~rimvydas/usermodel/dsvis06.zip

Formal Modelling of Cognitive Interpretation 135

However, since the abstraction is cognitively plausible, a strong potential for
user confusion is there, and a substantial number of users might experience it.

Our cognitive model was not developed directly from a complete psychological
theory. Rather an exploratory approach was taken, starting with simple princi-
ples of cognition such as non-determinism, goal-based termination and reactive
behaviour. However, even the small set of principles is rich enough for plausible
erroneous behaviour to emerge that was not directly expected [3].

As SAL provides support for higher-order specifications, the new version of the
cognitive architecture remains generic and is instantiated to verify any specific
interactive system. Besides the major restructuring described here, the treat-
ment of the underlying state space is simplified in the SAL version where simple
variables are used instead of the history functions of the original. Since theorem
provers are better for reasoning about abstract properties than concrete ones as
here, the ideal is to have an integrated theorem prover + model checker frame-
work. Being developed as a framework for combining various verification tools,
including the PVS theorem prover, SAL is a very promising environment for the
future development of our verification methodology.

For simple systems as considered here, mechanical verification is unnecessary.
The problems detected could be identified by examining the specification of user
interpretation. Still, writing a formal specification helps to identify problems,
and our framework provides structure to the specification process. Moreover,
a combination of several user interpretation pathways would lead to complex
specifications, requiring mechanical verification. Finally, the verification of spe-
cific systems is only a part of a larger verification framework where the formal
specification of user interpretation could be combined with, say, design rules to
reason about general properties of interactive systems using a theorem prover.

Other aspects of user interpretation remain to be investigated. An ability to
combine information in-the-world with knowledge in-the-head allows individuals
to make interpretations. Mandler [20], amongst others, argues that knowledge
can be accessed directly or indirectly. When interaction relies on novel associa-
tions it is likely to demand more direct attention. However, frequent and familiar
interactions use indirect knowledge that involves interpretation. Further work
needs to identify when user interpretations are made, what types of spatial and
semantic cues are used (see Dillon [5]), and if these can be modelled.

The user interpretation errors detected occur for systematic reasons. A generic
model of user interpretation can capture these systematic reasons, thus helping
to eliminate errors they cause. While the cognitive architecture is generic, the
specification of user interpretation currently is not. It must be written for each
specific system from scratch. Considering other aspects of user interpretation will
facilitate the development of a generic interpretation model. Finally, we will also
investigate the formal modelling of effect, the counterpart of user interpretation.
It is especially relevant for multimedia based interactive systems. We expect that
our changes to and reorganisation of the model will facilitate such modelling, as
evidenced by the aspect of user interpretation considered here.



136 R. Ruksénas et al.

Acknowledgements. This research is funded by EPSRC grants GR/S67494/01
and GR/S67500/01.

References

1. Reason, J.: Human Error. Cambridge University Press (1990)

2. Byrne, M.D., Bovair, S.: A working memory model of a common procedural error.
Cognitive Science 21(1) (1997) 31-61

3. Curzon, P., Blandford, A.E.: Detecting multiple classes of user errors. In: Little,
R., Nigay, L. (eds.): Proc. of the 8th IFIP Work. Conf. on Engineering for Human-
Computer Interaction. Volume 2254 of LNCS. Springer-Verlag (2001) 57-71

4. Blandford, A.E., Young, R.M.: Separating user and device descriptions for mod-
elling interactive problem solving. In: Nordby, K., Helmersen, P., Gilmore, D.,
Arnesen, S. (eds.): INTERACT’95. Chapman and Hall (1995) 91-96

5. Dillon, A.: Spatial-semantics: how users derive shape from information space.
Journal of the American Society for Information Science 51 (2000) 521-528

6. Dillon, A., Schaap, D.: Expertise and the perception of shape in information.
Journal of the American Society for Information Science 47 (1996) 786788

. Tulving, E.: Elements of Episodic Memory. Oxford University Press (1983)

. Campos, J.C., Harrison, M.D.: Formally verifying interactive systems: a review. In:
Harrison, M., Torres, J. (eds.): Design, Specification and Verification of Interactive
Systems ’97. Springer-Verlag (1997) 109-124
9. Markopoulos, P., Johnson, P., Rowson, J.: Formal architectural abstractions for

interactive software. Int. Journal of Human Computer Studies 49 (1998) 679-715

10. Duke, D.J., Duce, D.A.: The formalization of a cognitive architecture and its
application to reasoning about human computer interaction. Formal Aspects of
Computing 11 (1999) 665-689

11. Bowman, H., Faconti, G.: Analysing cognitive behaviour using LOTOS and Mexitl.
Formal Aspects of Computing 11 (1999) 132-159

12. Moher, T.G., Dirda, V.: Revising mental models to accommodate expectation
failures in human-computer dialogues. In: Design, Specification and Verification of
Interactive Systems ’95. Springer-Verlag (1995) 76-92

13. Rushby, J.: Analyzing cockpit interfaces using formal methods. Electronic Notes
in Theoretical Computer Science 43 (2001)

14. Campos, J.C., Doherty, G.J.: Reasoning about dynamic information displays. In:
Jorge, J.A., Nunes, N.J., e Cunha, J.F. (eds.): Interactive Systems. Design, Speci-
fication, and Verification. Volume 2844 of LNCS. Springer-Verlag (2003) 288-302

15. Bredereke, J., Lankenau, A.: A rigorous view of mode confusion. In: Proc. of
SAFECOMP 2002. Volume 2434 of LNCS. Springer-Verlag (2002) 19-31

16. Cerone, A., Lindsay, P.A., Connelly, S.: Formal analysis of human-computer in-
teraction using model-checking. In: Proc. of the Third IEEE Int. Conference on
Software Engineering and Formal Methods (SEFM’05). IEEE Press (2005) 352-362

17. Butterworth, R.J., Blandford, A.E., Duke, D.J.: Demonstrating the cognitive plau-
sibility of interactive systems. Formal Aspects of Computing 12 (2000) 237-259

18. de Moura, L., Owre, S., Ruess, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.:
SAL 2. In: Alur, R., Peled, D.A. (eds.): Computer Aided Verification: CAV 2004.
Volume 3114 of LNCS. Springer-Verlag (2004) 496-500

19. Newell, A.: Unified Theories of Cognition. Harvard University Press (1990)

20. Mandler, G.: Recognizing: the judgement of previous occurrence. Psychological
Review 87 (1980) 252-271

0



Combining Formal Methods and Functional
Strategies Regarding the Reverse Engineering of
Interactive Applications

J.C. Silval2, José Creissac Campos', and Jodo Saraival

! Departamento de Informética/CCTC, Universidade do Minho, Braga, Portugal
{jose.campos, jas}@di.uminho.pt
2 Grupo de Sistemas e Tecnologias de Informacio, IPCA, Barcelos, Portugal
jcsilva@ipca.pt

Abstract. Graphical user interfaces (GUIs) make software easy to use
by providing the user with visual controls. Therefore, correctness of GUI’s
code is essential to the correct execution of the overall software. Models
can help in the evaluation of interactive applications by allowing design-
ers to concentrate on its more important aspects. This paper describes
our approach to reverse engineer an abstract model of a user interface
directly from the GUI’s legacy code. We also present results from a case
study. These results are encouraging and give evidence that the goal of
reverse engineering user interfaces can be met with more work on this
technique.

1 Introduction

Enterprise competitiveness in the information age is very much dependent on the
quality of the graphical user interfaces (GUISs) being used [10]. However, the qual-
ity of large and complex user interfaces is hard to maintain. These very rapidly
originate failures, a problem nowadays identified under the usability heading. A
very large proportion of failures in interactive systems takes place due to er-
roneous human actions [I2]. As pointed out by Leveson [I5], human error in
computer systems use is often due to errors in their user interface design, and
not the sole result of errors performed by the direct users of the systems.

The correctness of the user interface is essential to the correct execution of the
overall software. Regarding user interfaces, correctness is expressed as usability:
the effectiveness, efficiency, and satisfaction with which users can use the system
to achieve their goals [24]. In order for a user interface to have good usability
characteristics it must both be adequately designed and adequately implemented,
having its target users, their goals, and the operating environment in mind.

Tools are currently available to developers that allow for fast development of
user interfaces with graphical components. However, the design of interactive
systems does not seem to be much improved by the use of such tools. Interfaces
are often difficult to understand and use for end users. In many cases users have
problems in identifying all the supported tasks of a system, or in understanding

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 137 2007.
© Springer-Verlag Berlin Heidelberg 2007



138 J.C. Silva, J.C. Campos, and J. Saraiva

how to reach them. The problem seems to lie more on the design of the systems,
than in their actual implementation.

Problems could be largely solved if designers had methods and tools to
provide indications about the most effective interaction and presentation
techniques to support the possible user activities [22].

Traditionally design aspects of user interfaces have been the concern of Human-
Computer Interaction, while software engineers have been mainly concerned with
implementation aspects. Clearly there is a need to enable software engineers to
consider aspects of design when developing interactive systems.

Model-based design helps to identify high-level models which allow designers
to specify and analyse systems. Different types of models can been used in the
design and development of interactive systems, from user and task models to
software engineering models of the implementation. The authors are currently
engaged in a R&D project (IVY — A model-based usability analysis environ-
men) which aims at developing a model-based tool for the analysis of interac-
tive systems designs. The tool will act as a front end to the SMV model checker,
creating an abstraction layer where models of interactive systems can be de-
veloped and analysed. The models used are expressed in the MAL interactors
language [3], and express both the information present at the user interface and
the behaviour of the system in response to user input. In the context of the
project we are investigating the applicability of reverse engineering approaches
to the derivation of user interface’s abstract models amenable for verification of
usability related properties.

In this paper we present the initial results of work on investigating the ap-
plication of strategic programming and slicing to the reverse engineering of user
interfaces. Our goal is to produce a fully functional reverse engineering prototype
tool. The tool will be capable of deriving abstract models of interactive applica-
tions’ user interfaces. This will enable reasoning about the design of the system.
In particular we are interested in applying automated reasoning techniques to
ensure a thorough analysis of all possible behaviours of a given system.

In section 2 we briefly introduce the IVY project. Then in section [ we de-
scribe some related work. Section Ml explains the technique applied in the reverse
engineering of graphical user interfaces. Thus, we describe the model-based tech-
nique used for reverse engineering interactive systems. In section bl we shows the
application of the actual prototype to a simple system. Finally, in section [0l we
present some conclusions and put forward our plans for future work.

2 About the IVY Project
2.1 The Project

IVY follows from the development of 12sMv [3], a compiler enabling the veri-
fication of interactive systems’ models using the SMV model checker [I8]. The

! http://www.di.uminho.pt/ivy



Combining Formal Methods and Functional Strategies 139

X

Ivy tool suite

Model Editor
% Property Editor [ =~
/ $ Reply Visualizer

$ XtrmSwing $ i2smv compiler T

4N

Java/Swing code sSMV

Fig.1. IVY architecture

objective now is to develop, as a front end to SMV, a model based tool for the
analysis of behavioural issues of interactive systems’ designs. This tool will not
only translate the models into the SMV input language, but fully support the
process of modelling and analysis by providing editors, for models and proper-
ties, and a reply visualizer for the analysis of the verification process results (see
figure [T).

A considerable number of tools for model checking have been proposed. In-
teractive systems, however, have specificities that make it difficult to use typical
model checking tools [3]. Two major types of problem can be identified:

— the richness of the interaction between user and system affects the models;
— the assumptions that must be made about the user’s capabilities affects the
analysis of the verification results;

Tools are needed that facilitate modelling, and reasoning about the results of the
verification, from an interactive systems perspective. In IVY we aim at creating
an abstraction layer where models of interactive systems can more easily be
developed and analysed.

Being modular, the tool will also act as a test-bed for different styles of mod-
elling/analysis of interactive systems. One approach we are exploring is the use
of reverse engineering techniques to enable the generation of models from user
interface code. Our goal is to support the verification of existing user interfaces in
a semi-automated manner. This will not only be useful to enable the analysis of
existing interactive applications, but can also be helpful in a re-engineering pro-
cess when a existing application must be ported or simply updated. In this case,
being able to reason at a higher level of abstraction than that of code, will help
in guaranteeing that the new/updated user interface has the same characteristics
of the previous one.



140 J.C. Silva, J.C. Campos, and J. Saraiva

2.2 The Language

Interactors act as a mechanism for structuring the use of standard specification
techniques in the context of interactive systems specification [7]. In IVY the
MAL interactors language from [3] is used.

The definition of a MAL interactor contains a state, actions, axioms and
presentation information:

— The state of an interactor is defined by a collection of attributes.
— Actions correspond to events the system can respond to.
— Axioms allow the expression of what effect actions have on the state. In order
to describe behaviour, a deontic logic is used:
e deontic operator obl(ac): ac is obliged to happen some time in the future;
e deontic operator per(ac): ac is permitted to happen next;
model operator [acjexp: expr is true after action ac takes place;
[lexpr: expr is true in the initial state;
per(ac) — exp: ac is permitted only if exp is true;
exp — obl(ac): if exp is true then action ac becomes obligatory.
— Presentation information allows us to assert that a particular attribute/action
is visible. This is done with a vis annotation on relevant attributes/actions.

This language allows us to abstract both static and dynamic perspectives
of interactive systems. The static perspective is achieved with attributes and
actions abstractions which aggregate the state and all visible components in a
particular instant. The axioms abstraction formalizes the dynamic perspective
from an interactive state to another.

3 Related Work

In the Human-Computer Interaction area, quality is typically addressed by the
use of empirical methods that involve testing (a prototype of) the system. These
methods work by placing users in front of a system in order to assess its usability.
Analytic methods have also been proposed as a means of reducing the effort
of analysis. These approaches work by inspection of the system (or a model
thereof) and range from less structured approaches such as Heuristic Evaluation
[21] to more structured ones such as Cognitive Walkthroughs [16]. In all cases,
these approaches are geared towards the analysis of the design of the interactive
system, and in particular aspects related to its usability.

The use of mathematically rigorous (formal) models of the interactive systems,
as a means of reasoning about usability issues, has also been proposed (see, for
example, [3I23]). One advantage of formal approaches is that they enable the
thorough verification of the validity of the properties/system under scrutiny.
One of their drawbacks is the difficulty in incorporating human considerations
in the analysis process. Approaches such as Syndectic Modelling [§] attempt
to formalize the user but become too complex to be used in practice. Other
approaches have been proposed were specific aspects of human behaviour are
included in the models (see for example, [23|42]).



Combining Formal Methods and Functional Strategies 141

In Software Engineering concerns are more geared towards testing the quality
of the code produced (absence of bugs) and its correctness vis-a-vis the sys-
tem’s specification. Testing of user interface implementations has also attracted
attention.

Testing typically progresses by having the code execute pre-defined test cases
and compare the result of the execution with the result of some test oracle. In
the case of interactive systems, models of the user interface are needed both to
aid the generation of the test cases, and for the test oracle. In this area, the
use of reverse engineering approaches has been explored in order to derive such
models directly from the existing interactive system.

A typical approach is to run the interactive system and automatically record
its state and events. Memon et al. [19] describe a tool which automatically trans-
verses a user interface in order to extract information about its widgets, prop-
erties and values. Chen et al. [5] propose a specification-based technique to test
user interfaces. Users graphically manipulate test specifications represented by
finite state machines which are obtained from running the system. Systa studies
and analyses the run-time behaviour of Java software trough a reverse engineer-
ing process [25]. Running the target software under a debugger allows for the
generation of state diagrams. The state diagrams can be used to examine the
overall behaviour of a component such as a class, a object, or a method.

Another alternative is the use of statical analysis. The reengineering process
is based on analysis of the application’s code, instead of its execution, as in
previous approaches. One such approach is the work by d’Ausbourg et al. [§] in
reverse engineering UIL code (User Interface Language — a language to describe
user interfaces for the X11 Windowing System, see [I1]). In this case models are
created at the level of the events that can happen in the components of the user
interface. For example, pressing or releasing a button.

In the last decade the reengineering of interactive systems has also been inves-
tigated by several authors. Moore [20] describes a technique to partially automate
reverse engineering character based user interfaces of legacy applications. The
result of this process is a model for user interface understanding and migration.
The work shows that a language-independent set of rules can be used to detect
interactive components from legacy code. Merlo [9] proposes a similar approach.
In both cases static analysis is used.

We are using static analysis as in [9[2006]. When compared to their work our
challenges are twofold:

— We are reverse engineering code for graphical user interfaces, as opposed
to character based user interfaces in [0)20]. At the moment we are working
with Java/Swing (however, our long term goal is to develop a more generic
approach).

— We are more interested in models that reflect the design of the user inter-
face and the interaction that it creates, than the actual architecture of the
underlying software implementing it. Hence, we need models that are more
abstract than those produced in, for example, [I9] or [6].



142 J.C. Silva, J.C. Campos, and J. Saraiva

4 A Technique for Reverse Engineering Graphical User
Interfaces

The technique explained in this section aids in identifying a graphical user in-
terface abstraction from legacy code. This includes identifying data entities and
actions that are involved in the graphical user interface, as well as relationships
between user interface components. The goal is to detect components in the user
interface through functional strategies and formal methods. These components
include user interface objects and actions.

4.1 Graphical User Interface Definition

The most usual class of user interfaces are hierarchical graphical front-ends to
software systems. These user interfaces produce deterministic graphical output
from user input and system events. A graphical user interface (GUI) contains
graphical widgets. Each widget has a fixed set of properties. At any time during
the execution of the GUI, these properties have discrete values, the set of which
constitutes the state of the GUIL

This paper focuses on techniques to reverse engineer this first class of user
interfaces. Another class of user interfaces are web-user interfaces that have
synchronization/timing constraints among objects, movie players that show a
continuous stream of video rather than a sequence of discrete frames, and non-
deterministic GUIs in which it is not possible to model the state of the software
in its entirety.

4.2 GUI Slicing Through Strategic Programming

In order to extract the user interface model from a Java/Swing program we need
to construct a slicing function [27J17] that isolates the Swing sub-program from
the entire Java program. The straightforward approach is to define a explicit
recursive function that traverses the Abstract Syntax Tree (AST) of the Java
program and returns the Swing sub-tree. A typical Java grammar/AST, however,
has 105 non-terminal symbols and 239 productions [I]. As a result, writing such
a function forces the programmer to have a full knowledge of the grammar and
to write a complex and long mutually recursive function. We use a different
approach by using strategic programming. In this style of programming, there is
a pre-defined set of (strategic) generic traversal functions that traverse any AST
using different traversal strategies (e.g. top-down,left-to-right, etc). Thus, the
programmer needs to focus in the nodes of interest only. In fact, the programmer
does not need to have a knowledge of the entire grammars/AST, but only of those
parts he is interested in (the swing sub-language in our case).

Strategic programming is a form of generic programming that combines the
notions of one-step traversal and dynamic nominal type case into a powerful
combinatorial style of traversal construction. Strategic programming allows novel



Combining Formal Methods and Functional Strategies 143

Strafunski
Java
AST full_tp
Java/Swing
——— | Parser (GLR) |——> — »  GUI model

Fig. 2. The reverse engineering process

forms of abstraction and modularization that are useful for program construction
in general. In particular when large heterogeneous data structures are involved
(e.g. the abstract syntax tree representing a Java program), strategic program-
ming techniques enable a high level of conciseness, composability, and traversal
control [29/28]. Strategic programming has been defined in different program-
ming paradigms. In this paper we will use the STRAFUNSKI library [14]: a Haskell
[13] library for generic programming and language processing. STRAFUNSKI not
only contains the strategic library, but also a powerful GLR parser generator. It
contains also a set of grammars for most existing programming languages (for
example, a full Java grammar).

In order to explain strategic programming and the STRAFUNSKI library in
more detail, let us consider the following JAVA /SWING code fragment:

addButton = new javax.swing.JButton();
After parsing this code fragment we obtain the following fragment of the AST:

Statement (
StatementWithoutTrailingSubstatement (
ExpressionStatement (
semicolon2(
Assignment(
AssignmentOp(

Name2(Identifier-p(["addButton"])),

equall,

StatementExpression(
ClassInstanceCreationExpression(
new-comma(ClassOrInterfaceTypel(
Name (Identifier-p(["javax","swing","JButton"]))),
(153333350



144 J.C. Silva, J.C. Campos, and J. Saraiva

Having the knowledge of this particular fragment of the Java grammar/AST,
we are able to define a strategic function that given the complete AST extracts
JButton object assignments. First, we need to collect the list of assignments in
a Java program. We define this function in Haskell/Strafunski as follows:

— We begin by identifying the type of strategy needed to collect the desired
information. We make use of the traversal combinator full_tdTU in order
to define a function that traverses the AST in a top-down fashion (although,
in this particular example, we could use a full_bu strategy).

— Next, we need to define the worker function that will do the work while
traversing the AST. This worker function identifies the tree nodes where
work has to be done. In the complete Java AST the nodes of interest corre-
spond to the constructor AssignmentOp (see AST above). Thus, our worker
function simply returns a singleton list with the left-hand side of the as-
signment and the expression. All the other nodes are simply ignored! The
functions applyTU, full tdTU, constTU, and adhocTU are library functions
used to construct the results and apply the traversal combinators. Because
they are not relevant to understand our techniques, we omit their definitions
here.

This function, named getAssignmentIdentifiers, looks as follows:

getAssignmentIdentifiers :: (Term t) => t -> [([Id], [Id])]
getAssignmentIdentifiers ast =

runIdentity (applyTU (full_tdTU worker) ast)]

where

worker = constTU [] ‘adhocTU¢ getexp

getexp (AssignmentOp left op exp) = return [(left,exp)]

Having collected the list of assignments we can now filter that list in order to
produce the list containing all JButtons objects in the JAVA/SWING code.

getJButtons :: (Term t) => t -> [[Id]]
getJButtons ast = jButton
where assignments = getAssignmentIdentifiers e
jButton = [a | (a,b) <- assignments
, (b==["javax","swing","JButton"])]

Functional strategic combinators allow us to construct programs that only
mention those constructors that are strictly relevant to the problem. Further-
more, they work for any abstract syntax tree and not only for the Java AST
under consideration in this paper. As a result, the strategic function we define
not only extracts the Swing fragment from a Java program, but may also be re-
used to slice another GUI toolkit for other languages/ASTs. Observe that in the
Haskell/Strafunski code presented above a small part of it is specific of the Java
language/AST. Obviously, we can easily parameterize these functions with that



Combining Formal Methods and Functional Strategies 145

language specific constructors. It also should be noticed that the basic concepts
of strategic programming are independent of the programming paradigm.

4.3 User Interface Abstraction

In order to define the slicing functions mentioned above, we defined a small set
of abstractions for the interactions between the user and the system. These are
the abstractions that we look for in the legacy code:

— User input: Any data inserted by the user;

— User selection: Any choice that the user can make between several different
options, such as a command menu;

— User action: An action that is performed as the result of user input or user
selection;

— Output to User: Any communication from application to user, such as a user
dialogue;

Through the user interface code of an interactive system and this set of ab-
stractions, we can generate its graphical user interface abstraction. To execute
this step we combine the STRAFUNSKI library with formal and semi-formal meth-
ods, which are mathematically-based languages, techniques, and tools for spec-
ifying and verifying systems. The use of formal methods does not guarantee
correctness. However, they aid in making specifications more concise and less
ambiguous, making it easier to reason about them.

5 An Example

This section shows the application of the prototype to a small example. Basically,
the JClass system is a simple JAVA/SWING "toy” example allowing for marks
management (see figure [)).

Applying the prototype to the application’s code, enables us to extract in-
formation about all widgets presented at the interface, such as JButton, JLabel,
JComboBoz, JTextField, JSlider, JProgressBar, JPanel, etc. To reverse engineer
the graphical user interface of an interactive system it is not necessary to analyse
all of the application’s functionality. Therefore, irrelevant information from the
JClass system is discarded by the tool during the slicing phase in order to make
the representations much more clear.

Once the AST for the application code is built we can apply different slicing
operations as needed. This means we can easily tailor the information (models)
we want to extract from the AST (and, thus, from the code).

Currently the prototype enables the extraction of two types of models:

— Interactors models, which capture a more Human Computer Interaction per-
spective of the system. These models are more oriented towards usability
analysis.

— Event-flow graphs which allow the analysis of the code’s quality from a soft-
ware engineering perspective.



146 J.C. Silva, J.C. Campos, and J. Saraiva

Murnber: | Add
Mame: | Cansult
Markl: R
EITI0E
Markz: o )
Clear
0 5 10 15 20 -
Awerage:| ] Exit

Fig. 3. JClass system

In the first case, applied to the code of the JClass application, the tool auto-
matically generates an interactor specification including the initial application
state and dynamic actions. This interactor contains a set of attributes:

interactor JClass
attributes
number, name: String
markl, mark2, average: Integer
addEnabled, consultEnabled, removeEnabled, clearEnabled,
exitEnabled: Boolean

one for each information input widget, and one for each button’s enabled status.
The names of the attributes are derived from the names of the widget variables
in the code. Note that the String and Integer types must later be defined in
the IVY editor.

The interactor also contains a set of actions:

actions
add, open, close, consult, remove, clear, exit,
setText_name(String), setSelectedItem_mark2(Integer),
setValue_markl(Integer), setValue_average(Integer),
setText_number (Integer)

one for each button, and one for each input widget (representing user input).
And, finally, a set of axioms:

[1 number="" & name="" & mark1=10 & mark2=10 & average=0
[] addEnabled=true & clearEnabled=true & exitEnabled=true &
consultEnabled=false & removeEnabled=false & number="" &

name="" & markl=10 & mark2=10 & average=0

[add] number’=number & name’=name & markl’=markl &

mark2’=mark2 & average’=average & consultEnabled’=true &
removeEnabled’=true & addEnabled’=addEnabled &
clearEnabled’=clearEnabled & exitEnabled’=exitEnabled

[consult] number’=number & name’=7refl? & markl’=7ref2? &
mark2’=7ref3? & average’=7ref4? & addEnabled’=addEnabled &
consultEnabled’=consultEnabled & removeEnabled’=removeEnabled &
clearEnabled’=clearEnabled & exitEnabled’=exitEnabled

[remove] number’=number name’=name & markl’=markl & mark2’=mark2 &
average’=average & addEnabled’=addEnabled &



Combining Formal Methods and Functional Strategies 147

clearEnabled’=clearEnabled & exitEnabled’=exitEnabled

[clear] number’=7ref5? & name’=7ref6? & markl’=7ref7? & mark2’=7ref87 &
average’=7ref9? & addEnabled’=addEnabled &

consultEnabled’=consultEnabled & removeEnabled’=removeEnabled &
clearEnabled’=clearEnabled & exitEnabled’=exitEnabled

[setText_name(a)] name’=a & number’=number & markl’=markl & mark2’=mark2 &
average’=average & consultEnabled’=consultEnabled &
removeEnabled’=removeEnabled & addEnabled’=addEnabled &
clearEnabled’=clearEnabled & exitEnabled’=exitEnabled

The first two axioms define the initial state of the system. The next four define
the effect of the buttons in the interface. The 7refX? expressions represent values
that must be filled in using the IVY editor. To help complete the model, each
expression is a pointer to the Java code which constructs the value to be assign.
Remember that this is a semi-automated process. At least at this stage, we do
not want to go into the semantics of the application’s functional layer. The final
axiom defines the effect of user input in the name text field. Similar axioms are
generated for all other set actions, for brevity we include only one here. We have
not included the rendering annotations in the interactor since all attributes and
actions are visible (i.e. they are all available to users).

ot N ot )

1T

It N ot )

o

Fig. 4. JClass system’s partial GUI event-flow graph



148 J.C. Silva, J.C. Campos, and J. Saraiva

Even incomplete, this interactor already includes considerable information re-
garding the application’s interactive behaviour. For example, the fourth axiom
expresses the interactive state after executing the consult action. We can see
that attributes number, addFEnabled, consultEnabled, removeFEnabled, clearEn-
abled and exitEnabled remain unchanged, and that attributes name, marki,
mark2 and average receive new data. Once fully instantiated the model can
be used in the IVY tool for verification of its behaviour.

Alternatively the prototype is also capable of generating the JClass's partial
event-flow graph (see figure[]). All widgets and their relationship are abstracted
to this graph. As an example, blue nodes specify JButtons abstractions, arrows
specify methods calls from one widget to another.

In this graph, we can see all graphical user interface widgets and their rela-
tionships. Through this particular example, we are able to detect all JCLASS’s
widgets (JButtons, TextFields, ComboBozxs, etc) and interactive methods called
from these widgets (setText, getText, getSelectedItem, setEnabled, etc).

At the same time, the event-flow graph allows us to detect irrelevant widgets
in the JCLASS system. In figure @l these widgets are represented through two dis-
connected nodes. Basically the JCLASS code used to generate the graph contains
two widgets which are not visualized nor manipulated by the system. These are
the open and close nodes in the event-flow graph, which are related to the open
and close actions in the interactor specification actions set.

6 Conclusions and Current Work

In this paper we have shown how strategic programming and slicing techniques
can be combined to reverse engineer user interfaces from application code. The
results of this work are encouraging and give evidence that the goal of reverse en-
gineering user interfaces can be met. A prototype has been developed that allows
us to obtain models of the user interface’s structure and (partially) behaviour in
an automatic manner.

Currently the tool automatically extracts the software’s windows, and a subset
of their widgets, properties, and values. The execution model of the user interface
is obtained by using a classification of its events.

The approach has also proven very flexible. From the Abstract Syntax Tree
representation we are already able to derive both interactor based models, and
event flow graphs. In the first case the models capture a user oriented view of
the interface. In the second case the models capture the internal structure of the
code. This enables us to reason about both usability properties of the design,
and the quality of the implementation of that design.

At the moment only a subset of all SWING widgets are being processed by
the tool. Our objective has been to investigate the feasibility of the approach.
In the future, we will extend our implementation to handle more complex user
interfaces.

We will also explore broadening the scope of the approach, both at the input
and output of the tool. In the first case we plan to experiment with different
programming languages/toolkits, in order to make the approach as generic as



Combining Formal Methods and Functional Strategies 149

possible. In the second case we want to further investigate the possibility of
generating different types of models for analysis. For example, we envisage that
generating Event Matrixes in the style of [26] will be possible.

Acknowledgments

This work is partially supported by FCT (Portugal) and FEDER (European
Union) under contract POSC/EIA /56646 /2004.

References

1.

10.

11.

12.

13.

14.

Tiago Alves and Joost Visser. Metrication of sdf grammars. Technical Report
DI-PURe-05.05.01, Departamento de Informética, Universidade do Minho, 2005.

. Ann Blandford, Richard Butterworth, and Paul Curzon. Models of interactive

systems: a case study on programmable user modelling. International Journal
of Human-Computer Studies International Journal of Human-Computer Studies,
60:149-200, 2004.

. José C. Campos and Michael D. Harrison. Model checking interactor specifications.

Automated Software Engineering, 8(3-4):275-310, August 2001.

. José Creissac Campos. Using task knowledge to guide interactor specifications

analysis. In J. A. Jorge, N. J. Nunes, and J. F. Cunha, editors, Interactive Systems:
Design, Specification and Verification — 10th International Workshop, DSV-IS
2003, volume 2844 of Lecture Notes in Computer Science, pages 171-186. Springer,
2003.

. J. Chen and S. Subramaniam. A gui environment for testing gui-based applica-

tions in java. Proceedings of the 34th Hawaii International Conferences on System
Sciences, january 2001.

. Bruno d’Ausbourg, Guy Durrieu, and Pierre Roché. Deriving a formal model of

an interactive system from its UIL description in order to verify and to test its
behaviour. In F. Bodart and J. Vanderdonckt, editors, Design, Specification and
Verification of Interactive Systems ’96, Springer Computer Science, pages 105-122.
Springer-Verlag/Wien, June 1996.

. D. J. Duke and M. D. Harrison. Abstract interaction objects. Computer Graphics

Forum 12(8), 25-36, 1993.

. D.J. Duke, P.J. Barnard, D.A. Duce, and J. May. Syndetic modelling. Human-

Computer Interaction, 13(4):337-393, 1998.

. Merlo E., Gagne P. Y., Girard J.F., Kontogiannis K., Hendren L.J., Panangaden

P., and De Mori R. Reverse engineering and reengineering of user interfaces. I[EEE
Software, 12(1), 64-73, 1995.

B. Lientz e E. Swanson. Software Maintenance Management. Addison-wesley
edition, 1980.

Dan Heller and Paula M. Ferguson. Motif Programming Manual, volume 6A of X
Window System Seris. O’Reilly & Associates, Inc., second edition, 1994.

E. Hollnagel. Human Reliability Analysis: Context and Control. Academic press
edition, 1993.

Simon Peyton Jones, John Hughes, Lennart Augustsson, et al. Report on the
Programming Language Haskell 98. Technical report, February 1999.

R. Lammel and J. Visser. A STRAFUNSKI application letter. Technical report, CWI,
Vrije Universiteit, Software Improvement Group, Kruislaan, Amsterdam, 2003.



150

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

J.C. Silva, J.C. Campos, and J. Saraiva

Nancy Leveson. Safeware: System Safety and Computers. Addison-Wesley Pub-
lishing Company, Inc., 1995.

Clayton Lewis, Peter Polson, Cathleen Wharton, and John Rieman. Testing a
walkthrough methodology for theory-based design of walk-up-and-use interfaces.
In CHI ’90 Proceedings, pages 235-242, New York, April 1990. ACM Press.
Andrea De Lucia. Program slicing: Methods and applications. IEEE workshop on
Source Code Analysis and Manipulation (SCAM 2001), 2001.

Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

Atif Memon, Ishan Banerjee, and Adithya Nagarajan. GUI ripping: Reverse en-
gineering of graphical user interfaces for testing. Technical report, Department of
Computer Science and Fraunhofer Center for Experimental Software Engineering,
Department of Computer Science University of Maryland,USA, 2003.

M. M. Moore. Rule-based detection for reverse engineering user interfces. Pro-
ceedings of the Third Working Conference on Reverse Engineering, pages 42-8,
Monterey, CA, november 1996.

Jakob Nielsen and Rolf Molich. Heuristic evaluation of user interfaces. In CHI ’90
Proceedings, pages 249-256, New York, April 1990. ACM Press.

Fabio Paterno. Model-Based Design and Evaluation of Interactive Applications.
Springer-Verlag, London, 2000.

John Rushby. Using model checking to help discover mode confusions and other
automation surprises. Reliability Engineering and System Safety, 75(2):167-177,
February 2002.

ISO/TC159 Sub-Commitee SC4. Draft International ISO DIS 9241-11 Standard.
International Organization for Standardization, September 1994.

T. Systa. Dynamic reverse engineering of java software. Technical report, Univer-
sity of Tampere, Finland, 2001.

Harold Thimbleby. User interface design with matrix algebra. ACM Transactions
on HUman-Computer Interaction, 11(2):181-236, June 2004.

Frank Tip. A survey of program slicing techniques. Journal of Programming
Languages, september 1995.

Eelco Visser. Program transformation with Stratego/XT: Rules, strategies, tools,
and systems in StrategoXT-0.9. In Lengauer et al., editors, Domain-Specific Pro-
gram Generation, Lecture Notes in Computer Science. Spinger-Verlag, November
2003. (Draft; Accepted for publication).

Joost Visser. Generic Traversal over Typed Source Code Representations. PhD
thesis, University of Amsterdam, February 2003.



An Ontological Approach to Visualization
Resource Management

Richard Potter and Helen Wright

Department of Computer Science, The University of Hull, Hull, UK
R.Potter@dcs.hull.ac.uk,
H.Wright@hull.ac.uk

Abstract. The desire for increasingly intuitive and immersive visual-
ization systems has created a need for diverse resources that support the
human-computer interface. Visualization laboratories have growing sets
of these specialised resources and managing them has become a compli-
cated and lengthy task. Choosing and utilising resources in a given visu-
alization requires extensive information about each to be available. This
paper presents an ontological approach to the description of resources,
their capabilities, and their software interfaces. Using this ontology, a
software design for the support of resource detection, choice and util-
isation is presented. By breaking the dependency of visualizations on
specific resources, adaptability and portability is improved.

Keywords: Visualization, Ontology, Hardware Abstraction, HCI.

1 Introduction

As available visualization hardware diversifies, support of the human-computer
interface becomes increasingly important. Indeed, resources and the users’ in-
teractions with them have been identified by Brodlie et al [I] as two of five key
responsibilities of an ideal visual supercomputing infrastructure. Using a taxo-
nomic approach to manage input devices was suggested when visualization was
still in its infancy (see for example [2]). Since that time the number and variety
of devices has continued to grow, whilst many that were considered by [2] and
at the time were rare have become ubiquitous. Visualization, too, has matured.
Recent work has highlighted the benefits of an ontological approach to visualiza-
tion description [3}4]; in particular [4] notes the superior ability of an ontology
to convey a pre-agreed meaning (compared with taxonomy and terminology),
which in turn renders it processable by machine. Formal (machine-readable)
specification of ontologies is now available via a number of standards, the most
recent of which is the web ontology language (OWL) provided by the World
Wide Web Consortium (W3C) [5]; these standards enable semantic reasoning
over the ontology. This paper proposes a novel approach to managing diverse
visualization hardware by linking these two threads, that is, device description
and ontology.

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 151-[I56] 2007.
© Springer-Verlag Berlin Heidelberg 2007



152 R. Potter and H. Wright

2 A Resource Description Ontology

Our aim is to be able to choose resources dynamically and integrate them into a
visualization as they become available. We thus describe the ontology as compris-
ing a number of inter-referenced taxonomies dealing with visualization hardware
and their software interfaces.

Individual resources are identified in the hardware taxonomy and grouped
under headings such as data-glove, mouse, monitor, joystick, etc. A resource’s
capabilities are described using two further taxonomies. One describes the user
actions which can be detected by the resource, such as vocal action or movement
action. The other taxonomy describes the sensory experience that the resource
stimulates in the user, grouped according to the sense which is stimulated. For
example, joysticks are moved by the user, which is classed as a movement action;
some also have a force feedback component which is classed as a tactile sensory
experience. These capabilities can be thought of as the resource’s inputs and
outputs. A computer monitor, by contrast, supports no user action but its output
stimulates their visual sense.

Software Interface =<=<=<= has sub-class (depicts taxonomy hierarchy)
— T . —> A property linking classes
has interface item (* indicates one-to-many cardinality; otherwise one-to-one)

Software Interface

Item
!
!
3
:‘ —————- Property Interface provides access to
|
!
:\ has parameter *—»
| Semm—mm Method Interface Variable
| has return value—p
|
|
\
S Field Interface ———is variabl

Fig. 1. A depiction of the links between the software interface, software interface item,
and variable taxonomies, used to describe software interfaces

Available software interfaces, such as APIs and device drivers, are listed in
the software interface taxonomy; the operations and values they make avail-
able are described in the taxonomy of software interface items and are grouped
as properties, method calls, and fields (fig. [[l). Each software interface item
has an associated variable of a known type, for example, the ‘5DT data-glove
driver version 1.02’ provides a method call called ‘f{dGetSensorRaw’ which re-
turns a floating point value. Variables are described as enumerations, conditional



An Ontological Approach to Visualization Resource Management 153

variables or value fields. Enumerations are numeric values which represent mem-
bers of a finite set of related objects, e.g. a set of hand gestures. A conditional
variable is used when the result of an operation is dependent on another variable,
usually included as a parameter to a method. The description of a conditional
variable will include references to the possible values that may be returned and
a reference to the value on which it is dependent. A value represents any other
operation result where there is an associated data type. Finally, the ontology
refers back to the interaction and sensory experience taxonomies to describe the
meaning and purpose of the variables; this can be seen in fig. 2

Variable ~4——condition variable

i

|

'

:‘~ ----- Conditional variable

!

! |

| .

| possible results *

: represents experience *

'l\ /// Sensory Experience
S————-— Value

] 7

: represents experience *

|

AN Enumeration represents interaction *
~—————

User Interaction

//

represents interaction *

Fig. 2. A depiction of the links within the variable taxonomy, and between this and
the interaction and sensory experience taxonomies

3 Software Support for the Management of Visualization
Resources

Having developed a machine readable framework for the description of resources,
software support for the management and utilisation of resources can be pro-
vided. This can be considered in three parts: the detection and description of
available resources, choosing appropriate resources for a given visualization, and
integrating the visualization and chosen resources.

The detection of resources and population of the description ontology can, to
some extent, be automated through queries to the operating system. Standards
such as the Human Interface Description (HID) framework [6] provide some
information regarding a device’s interaction with users. Additional information
must be entered manually; community maintenance of the ontology would reduce
this effort.



154 R. Potter and H. Wright

Wright et al [7] describe the factors associated with choosing the right resource
for a given visualization. The ontological approach taken by this project allows
semantic reasoning to be employed to match requests for information (made
by the visualization system) to appropriate resources. This support mechanism
for choosing resources has the advantage of decoupling the visualization system
from the hardware. Interactions between these are facilitated by a proposed ar-
chitecture which uses the factory design pattern [8] to create a dynamic interface
component, as shown in fig.

Systems Interfaces
. - User / N\
Vi | n .
isualizatio Loads P interface
system )
widgets
Requests data of a specified type o
g P yp : User ! 5
Riesmes i interaction & 2
support BTt Creates========= »E hardware = %
system Seeel [ ! s 3]
Chooses H interface H € c
- ceee 9 %
g e N R = |8
perating | . . esource 9 e
system .\l_‘oads appropriate driver- - driver 5 &
.,\\7 E
Detects <
_ ‘Al Resource
_____ Dynamic, outcome dependent
T on environment at runtime \ J L

Fig. 3. The generation of a dynamic interface using the proposed support system

A further abstraction of the visualization from the hardware can be achieved
through an adaptation of the work on direct image interaction for computational
steering by Chatzinikos and Wright [9]. This work involved embedding graphical
user interaction components, or ‘widgets’, into the rendered output of a visual-
ization to enable contextual user interaction. These components can be adapted
to make the necessary calls to the proposed system, completely separating it
from the visualization. Again, this can be seen in fig. [3

4 Conclusions and Future Work

This paper has presented an ontology for the formal description of human-
computer interface resources and proposed a system to abstract visualizations
from these resources using the ontology. Prior work to abstract user interfaces



An Ontological Approach to Visualization Resource Management 155

from core application functionality exists in the software engineering field (for
example [TO/TT]) but the application of semantic technologies to visualization is
unique. Also unique is the equal weight given by the ontology to both aspects
of human-computer interfaces, that is, users’ actions and the experiences that
are delivered to them. This contrasts with current work in the field such as [12]
which focuses on the management of output hardware and [I3] which focuses
on input. Completion of this work will provide a framework for direct image
interaction for computational steering, which adapts to and utilises the diverse
set of available resources.

The current focus of this project is to automate population of the ontol-
ogy using software-based data gathering and inference tools. The importance
of this requirement was highlighted whilst manually entering a description for
the ‘56DT Data-glove 16°. This was a lengthly process exacerbated, firstly, by a
lack of relevant documentation (though it was the most comprehensively docu-
mented device trialled) and, secondly, by difficulties extracting information from
software manually. Automation does however lead to a trade-off regarding the
completeness of resource description. Limiting descriptions to the information
which is machine-extractable reduces the input burden on users but restricts the
information available for choosing appropriate devices. For example, the foot-
print of a device [2] (i.e. space on the user’s desk) may be an important factor
to the user but this detail is unlikely to be available for automatic extraction.

Implementation of the proposed support system will be tested using two case
studies. One is a software simulation of parasite infrapopulation dynamics on
live hosts. This study will test the system on a bespoke visualization based on
a complex scientific model. The other is an extension of the Resource Aware
Visualization Environment (RAVE) project [12] to support input devices as well
as output.

There are two foreseeable factors which will influence the effectiveness of the
support system. Firstly, visualizations are often required to respond to data and
events in real-time; the computations of the support system may affect this.
Secondly, the proposed abstractions will influence the design of visualization
widgets [9] and, whilst it is hoped that the system will simplify widget design,
the possible ramifications must be explored.

Acknowledgements. This work was partially funded by the Department of
Computer Science at the University of Hull. The authors would like to thank
James Ward, Dr James Osborne and Prof Roger Phillips of the Department
of Computer Science at the University of Hull for their role in supporting this
project and for numerous useful discussions. We are grateful to Dr Cock van
Oosterhout of the Department of Biological Sciences at the University of Hull
and Dr Joanne Cable of the University of Cardiff for proposing the host-parasite
dynamics case study. This has been used to generate the requirements for this
project and its conversion to a steered application was supported by the Hull
Environmental Research Institute. Thanks also to Dr Ian Grimstead, University
of Cardiff, for his support regarding the RAVE project.



156 R. Potter and H. Wright
References
1. Brodlie, K., Brooke, J., Chen, M., Chisnall, D., Fewings, A., Hughes, C., John, N.,

10.

11.

12.

13.

Jones, M., Riding, M., Roard, N.: Visual Supercomputing: Technologies, Appli-
cations and Challenges. In: Computer Graphics Forum, Vol. 24(2). Eurographics
(2005) 217245

. Card, S., Mackinlay, J., Robertson, G.: The design space of input devices. In:

CHTI’90, Proceedings of the SIGCHI conference on human factors in computing
systems. ACM Press, New York, NY, USA (1990) 117-124

. Duke, D., Brodlie, K., Duce, D.: Building an Ontology of Visualization. In: VIS’04,

Proceedings of the conference on Visualization. IEEE Computer Society, Washing-
ton, DC, USA (2004) 598607

. Duke, D., Brodlie, K., Duce, D., Herman, I.: Do You See What I Mean? In: IEEE

Computer Graphics and Applications, Vol. 25(3). IEEE Computer Society Press,
Los Alamitos, CA, USA (2005) 6-9

. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.,

Patel-Schneider, P., Stein, L.: OWL Web Ontology Language Reference. W3C,
http://www.w3.org/TR/owl-ref (2004)

. USB Implementers’ Forum: Universal Serial Bus (USB) Device Class Definition

for Human Interface Devices (HID). Usb.org, http://www.usb.org/developers/
devclass docs/HID1 11.pdf (2005)

. Wright, H., Chatzinikos, F., Osborne, J.: Visualization: Choosing the Right Tool

for the Right Job. In: Cox, S. (ed.): AHMO03, Proceedings of 2nd UK e-Science All
Hands Meeting. Nottingham, UK (2003) 318-321

. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software. Professional Computing Series, Addison Wes-
ley (1995)

. Chatzinikos, F., Wright, H.: Enabling Multi-Purpose Image Interaction in Modular

Visualization Environments. In: Erbacher, R., Chen, P., Roberts, J., Groehn, M,
Borner, K. (eds.): VDA’03, Proceedings of SPIE Visualization and Data Analysis.
(2003)

Bodart, F., Hennebert, A., Leheureux, J., Provot 1., Sacr, B., Vanderdonckt, J.:
Towards a Systematic Building of Software Architecture: the TRIDENT Method-
ological Guide. In: Bastide, R., Palanque, Ph. (eds.): DSV-1S’95, Eurographics
Workshop on Design, Specification, Verification of Interactive Systems. Eurograph-
ics (1995) 237-253

Singh, G., Green, M.: Automating the Lexical and Syntactic Design of Graphical
User Interfaces: The UofA* UIMS. In: ACM Transactions on Graphics, Vol. 10(3).
(1991) 213-254

Grimstead, 1., Avis, N., Walker, D.: RAVE: Resource-Aware Visualization Envi-
ronment. In: Cox, S. (ed.): UK e-Science All Hands Meeting 2004. Nottingham,
UK (2004)

Buxton, W.: A three-state model of graphical input. In: INTERACT ’90, Pro-
ceedings of the IFIP TC13 Third International Conference on Human-Computer
Interaction. North-Holland (1990) 449-456



Visual Design of User Interfaces by (De)composition

Sophie Lepreux', Jean Vanderdonckt', and Benjamin Michotte'

"TAG/ISYS, Université catholique de Louvain, Place des Doyens 1,
B-1348 Louvain-la-Neuve (Belgium)
2LAMIH — UMR CNRS 8530, Université de Valenciennes et du Hainaut-Cambrésis,
Le Mont-Houy, F-59313 Valenciennes Cedex 9 (France)
{lepreux, vanderdonckt, michottel}@isys.ucl.ac.be,
sophie.lepreux@univ-valenciennes. fr

Abstract. Most existing graphical user interfaces are usually designed for a
fixed context of use, thus making them rather difficult to modify for other
contexts of use, such as for other users, other platforms, and other
environments. This paper addresses this problem by introducing a new visual
design method for graphical users interfaces referred to as “visual design by
(de)composition”. In this method, any individual or composite component of a
graphical user interface is submitted to a series of operations for composing a
new interface from existing components and for decomposing an existing one
into smaller pieces that can be used in turn for another interface. For this
purpose, any component of a user interface is described by specifications that
are consistently written in a user interface description language that remains
hidden to the designers’ eyes. We first define the composition and
decomposition operations and individually exemplify them on some small
examples. We then demonstrate how they can be used to visually design new
interfaces for a real-world case study where variations of the context of use
induce frequent recomposition of user interfaces. Finally, we describe how the
operations are implemented in a dedicated interface builder supporting
the aforementioned method.

1 Introduction

In most commercial interface builders (e.g., Macromedia DreamWeaver, Microsoft
Visual Studio) and research interface editors (e.g., Glade, TrollTech), the predominant
method for visually building a Graphical User Interface (GUI) consists of dragging
widgets from a palette, dropping them on a working area, and editing their properties
until the results are satisfactory. This method makes sense since the GUI is visual by
nature and direct manipulation of constituting widgets remains natural, flexible, and
modifiable [1,2]. However, when it comes to reusing parts or whole of an existing
GUI to design another one, most interface builders force the designer to produce an
incessant sequence of “copy/paste” operations, if supported, with little or no support
for recomposing a new GUI from these elements. In particular, the designer should
copy widgets one by one and perform relayouting operations (e.g., resizing,
realignment, rearrangement) individually. This situation frequently occurs when an

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 157-]170] 2007.
© Springer-Verlag Berlin Heidelberg 2007



158 S. Lepreux, J. Vanderdonckt, and B. Michotte

existing GUI needs to be adapted for a new context of use, which the GUI was not
designed or thought for. If the context of use is considered as the combination of a
user (or a user stereotype) working on a given computing platform in a specific
environment [3], any variation of one or many of these aspects may lead to a GUI
redesign. In the case of multi-platform GUIs [4,5,6], it is impossible to copy/paste
GUI elements from one interface builder to another one, unless the interface builder is
itself multi-platform. Even in that case, little or no support is provided for reforming a
new GUI from fragments coming from existing GUIs. In the case of multi-language
GUIs, existing tools prevent designers from just translating the resources in one
language and obtain a new GUI for another language.

On the method side, reusability of existing GUIs is often promoted as a desirable
method for ensuring consistency, reducing development effort, fitting a particular
GUI to the purpose of a given task. In particular, users frequently report that they
need to constantly switch from one application to another to fulfill a given task when
it was not possible to re-assemble existing components of existing GUIs to form a
new one. Again, little or no methodological guidance exists in current development
methods to help designers reusing parts or whole of their design to initiate a new
development process.

This paper addresses the lack of support for reusing existing developments of GUIs
by introducing a visual design method based on three concepts: decomposition
disassembles an existing GUIs into individual or composite elements that can be
further reused for other designs; composition assembles individual and composite
elements to form a new GUI that fits the purpose of a given task; recomposition
performs a suite of decompositions and compositions to support re-design of existing
GUISs for new contexts of use.

Various simplified forms of decomposition and composition already exist
as reported in Section 2 devoted to the state of the art, but we are not aware of any
integrated method that is intended to support reusability at a high level of design that
does not force people to constantly apply physical and lexical operations. Section 3
presents a reference framework that will be extensively used in the rest of the paper:
any GUI will be described in the terms defined by this framework to maintain editable
specifications of the GUI of interest. Section 4 defines a series of operators for
decomposition and composition: each operator is logically defined, explained,
motivated and exemplified with a simple example. Section 5 validates the method by
applying these operators on a real-world case study in an interface builder
implemented for this purpose. Section 6 concludes the paper by reporting on the
main advantages and shortcomings of the work and suggesting some avenues for
future work.

2 Related Work
Due to the nature of our problem, the following state of the art is decomposed into
two categories: decomposition and composition.

Decomposition. The Covigo library (http://www.covigo.com) supports a simple form
of decomposition called pagination, where a web page is decomposed into smaller



Visual Design of User Interfaces by (De)composition 159

pieces to be used on a smaller screen: special tags are inserted in a HTML web page
at run-time to decompose it into smaller pieces. Simple heuristics such as breaking
every fifth <tr> or breaking by size are used. Here, the pagination is fully automated,
with the attendant risk that it does not break the UI logically. On the other hand,
RIML [7] supports manual pagination, thus leaving the decomposition quality under
the designer’s control and responsibility: it defines additional mark-up for specifying
the layout and pagination capabilities of web pages that are then rendered through a
dedicated Web adaptation engine. Watters and Zhang [8] segment HTML forms into a
sequence of smaller forms, using partition indicators such as horizontal lines, nested
lists and tables. Complex layout relationships (e.g., use of tables for layout purpose)
probably constitute a bottleneck for such approaches.

To overcome the language restriction, another group of approaches relies on a
generic GUI description in a User Interface Description Language (UIDL) that is at a
higher level than the markup and programming languages. Major UIDLs such as
UIML [4], SunML [9], XIML [10] support decomposition as their UI description can
be split into logically related chunks. Again, the designer is responsible for this
operation without any support. Gébel et al. [6] describe web-based dialogs in a
device-independent way through “DLL dialog”, which is a composition of containers
and elements. Containers whose elements must appear together are called atomic.
Elements are assigned weights indicating their resource requirements in terms of
memory and screen size. Fragments with similar weights are generated, while
respecting the integrity of atomic containers. Navigation elements are added to permit
navigation between dialog fragments. No indication is given on how weights should
be assigned to leaf elements, which is a difficult task, especially for multiplatform
rendering. Ye & Herbert [11] apply similar heuristics for decomposing a XUL UI
description by relying on the hierarchy of widgets and containers, while respecting the
value of a ‘breakable‘ attribute attached to each component, which has to be explicitly
provided by the designer. PIMA [12] also relies on a UIDL, which is converted into
multiple device-specific representations, including a decomposition process. Like
other approaches, PIMA’s algorithm uses grouping constraints as well as information
on size constraints. MORALE [13] is a suite of tools for assembling GUIs with their
associated definitions, but all (de)composition operations are restricted to cut/-
copy/paste primitives.

While the aforementioned decomposition methods mostly work on a hierarchy of
GUI widgets, ROAM [5] consider a tree structure combining a task hierarchy and a
layout structure. The tree nodes are annotated as splittable or unsplittable depending
on the decomposition possibilities. ROAM’s does not really decomposes an existing
GUI as it merely moves the extra widgets that do not fit onto a new GUI. Graceful
degradation [14] addresses the decomposition problem, but only for the purpose of
obtaining GUIs for more constrained platforms, one dimension of the context of use,
but not the only one. AUIT [15] automatically generate code generation for JSP and
servlet implementations depending on parameters from any platform/user/task
combination. A set of XSLT transformation scripts convert the XML-encoded logical
screen design into several GUISs.

Composition. Several environments attempt to compose a new GUI by assembling
fragments coming from the same or different GUIs. They only differ by the level



160 S. Lepreux, J. Vanderdonckt, and B. Michotte

where the composition is performed. Scalable Fabric [16] is a smart environment
where documents associated with interactive applications are grouped depending on
their semantic relationships in the user’s task. Haystack [17] is a platform for
personalizing information spaces and applications for a particular user depending on
her tasks. WinCuts [18] recompose GUIs by duplicating parts or whole of a GUI into
a new one that corresponds to the users’ task. Similarly, Composable Uls [19] define
viewports on GUIs to form a new UI by putting the viewports side by side. A
detachable UI [20] is a GUI portion that can migrate from one computing platform to
another one with re-assembling on the target.

In summary, we observed that major approaches for (de)composition are often
language- or platform-dependent to some extend, do not identify independent high-
level design primitives for recomposition, are usually supported at the physical level
(e.g., as in [18,19,20]) or the application level without any flexibility, are typically
considering decomposition merely for screen constraints or multi-platform support.
Little or no methodological guidance is provided for this purpose, although it is
identified as a major design activity [1,2]. We are not aware of any research that
provides a systematic set of (de)composition primitives applicable to any GUI.

3 Reference Framework

To allow high-level design operations on any GUI, we should rely on a high level
description of the initial user interface. This description will be expressed in the
UsiXML (User Interface eXtensible Markup Language — http://www.usixml.org [21])
UIDL. The principles set out below are, however, generally applicable to any UIDL
such as UIML [4], SunML [9] or XIML [10]. UsiXML is structured according to the
four abstraction levels of the ‘CAMELEON reference framework’ [3] for multi-target
Uls (Fig. 1).

S=Source context of use T=Target context of use

hitp://www.plasticity.org

l Reification
4
i Abstraction

D Reflexion

<—>Translation

ends

Fig. 1. The four abstraction levels used in the framework



Visual Design of User Interfaces by (De)composition 161

A Final User Interface (FUI) refers to an actual Ul rendered either by
interpretation (e.g., HTML) or by code compilation (e.g., Java). A Concrete User
Interface (CUI) abstracts a FUI into a description independent of any programming or
markup language in terms of Concrete Interaction Objects, layout, navigation, and
behavior. An Abstract User Interface (AUI) abstracts a CUI into a definition that is
independent of any interaction modality (such as graphical, vocal or tactile). An AUI
is populated by abstract components and abstract containers. Abstract components
are composed of facets describing the type of interactive tasks they are able to support
(i.e., input, output, control, navigation). The Tasks & Concepts level describes the
interactive system specifications in terms of the user tasks to be carried out and the
domain objects of these tasks. As (de)composition operations will be defined
independently of any context of use (including the computing platform), the CUI level
is the best candidate for a formal definition. Therefore, this level is more detailed in
the subsequent paragraphs.

A CUI may be obtained by forward engineering from the T&C level, the AUI level
or directly. A CUI is assumed to be described without any reference to any particular
computing platform or toolkit of that platform [21]. For this purpose, a CUI model
consists of a hierarchical decomposition of CIOs. A Concrete Interaction Object
(CIO) is defined as any UI entity that users can perceive such as text, image,
animation and/or manipulate such as a push button, a list box, or a check box. A CIO
is characterized by attributes such as, but not limited to [21]: id, name, icon, content,
defaultContent, defaultValue.

4 (De)composition Operations

In this section, (de)composition operations are first defined based on the UsiXML
concepts of a Concrete User Interface. Since the UI is represented in UsiXML terms
and since it is a XML-compliant language, operations could be defined thanks to tree
algebra, with which operations could be logically defined on the XML tree and
directly performed. El-bekai et al. defined a set of operators to comparison (similarity,
equivalence and subsumption) and others operators adapted to database [22]. We
adapt their notation presented in the next part to decomposition and composition goal
in the second part. Then, an implementation is described of a tool that supports a
method based on these operations.

4.1 Relation Between UsiXML, XML and Tree Algebra

Since each GUI is described in UsiXML terms as a Concrete User Interface as
indicated in the previous section, each GUI is internally represented as a tree of XML
elements.

Thus, the correspondence proposed by [22] gives that the basic elements of a
UsiXML UL i.e. a XML tree, could be defined logically:

e XML document = Tree (T)
e Element = Root node (R), parent (P), child (C) node
e Leaf = child (C) node, atomic (A) values



162 S. Lepreux, J. Vanderdonckt, and B. Michotte

Fig. 2 shows the relationships between a GUI (top left), its UsiXML specifi-
cations (top right) and its internal structure as a XML tree in order to perform the

operations.

Root (R)

scuiModel

"AVI2006-cui_2" name="AVI2006-cui">
="window_component_0"
name="window_component_0"

width="400" height="350">

<box id="Hox_1" name="box_1" type="vertical">
button|id="button_component_2"

{ name="button_component_2"

textColor="#000000"/>

defayltContent="1" isVisible="true" isEnabled="true"

Parent (P)
v
Ghild <c>{ o

Atomic values (A)[Avios-cul_2| [Avios-CUI] [W_component 0]

Fig. 2. An U], its UsiXML and its

4.2 Presentation of the Operators

tree representation

A first part presents a few operators associated to the decomposition, whereas a
second part presents a few operators linked with the composition.

4.2.1 Operators Supporting Decomposition

This part defines two basic operators working on the internal structure of the UsiXML
specifications. Other operators such as Cut, Projection, and Complementary are
defined with the same principle but are not presented here.

Selection

o(TYE)—>T

Pre : let T atree and E an Expression

T,(R) =T,(R)|E(R) = true
T,(P)=T,(P)|E(P) = true
T,(C) =T,(C)|E(C) = true

Post: o(T))(E) =T,

)

The Selection operator which works upon tree and an expression is defined in (1).
This operator aims at keeping the node which corresponds to the expression. For
example, Fig. 3 apply the expression E={output} to an UI and its result. The resulting
Ul is the same as in the input UI with only the “output” elements.



Visual Design of User Interfaces by (De)composition 163

wie P review window_compnnent_0 skePraview windmy_compnnent_(
Castemer form Cuslomer Form
Mare | t t —
of , output) =
rame
dizmoarl
save | clcse |

Fig. 3. Example of the selection operator

Intersection
TNT—>T

Pre : let T,,T,trees

IL(R) =T, (R) )
LP)=T(P)+T,(P)-2ATT,(P)

LO=T(O)+TL(O) - AN ()

Post : T,NT, =T,

The intersection operator is defined in (2). It is a binary operator; it takes two trees
as input. The output is new XML data containing elements, root node, parent nodes
and child nodes which are in one of two trees data model. The intersection operator
applied on two similar interfaces will give the interface shown in Fig. 4.

In this algorithm, the different elements are compared. We have stated that two
elements are identical or similar if they have the same type (i.e. button), the same
name in one language (i.e. save) and all the required attributes. As the size and the
color are optional arguments, we consider that they can be different. In this case the
resulting button keeps only the options which are identical in the two tested button.

P review window_component_0

e Preview window_component_0

commerdal Foim

Customar form

Nzme BEEE -

Y = Save | Close |

discourt B

| =]

Save | Closs ‘

Fig. 4. Example of the intersection operator

4.2.2 Operators Supporting Composition

This part defines two basic operators on the internal structure of the UsiXML
specifications. Other operators, such as “Difference” operator are defined with the
same principle but are not presented here. This difference operator takes two trees as
input and gives a tree as output. The output tree is the very first input tree without the
elements which are included in the two input trees.



164 S. Lepreux, J. Vanderdonckt, and B. Michotte

Fusion
T+T—>T

Pre :let T,,T,trees
Post: T, +T, =T, = o %) v
TR TSR e =n) + TP

L(O)=T(O)+T,(O)

The fusion operator is defined in (3). It is a binary operator; it takes two trees as
input. The output is new XML data containing elements, root node, parent nodes and
child nodes which are in the two trees data model. The fusion operator applied on two
interfaces, following the algorithm 1, will give the interface shown in Fig. 5.

%algorithml: The two trees Tl and T2 are merge at the %level
R+1 to form the T3 window.

IF (direction = vertical)
Then Add box (vertical B’)
$Modify the window size:
T3.height = Tl.height + T2.height
T3.width = T1l.width

IF (direction = horizontal)

Then Add box (horizontal B’).
$Modify the window size:
T3.height = T1.height
T3.width = Tl.width + T2.width

Add T1(R+1l) in box B’, Add T2(R+1) in box B’.
o ivion componi 0

4P review win dow_component_0

Customer form Cust Fi Comi I Fe
Fusion( " s B - e B —
dissount 1 =
= = =
Fig. 5. Example of the fusion operator
Union
TUT ->T

Pre : let 7,7, trees
T,(R)=T,(R)

POSUET UL, =T g (py = 1 (P) 4 Ty (P) - (1T, (P)
1,(C) = T,(C)+ T,(C) ~ (T, T,(C))

The output of the union operator consists of new XML data containing elements,
root node, parent nodes and child nodes in the two input trees data model without the
duplication of any elements such root nodes, parent nodes and child nodes. The union
is disjoint: duplicates are purged. This operator is defined in (4). To illustrate this
operator, one example of result is shown in Fig. 6. However, if the two “name”

“



Visual Design of User Interfaces by (De)composition 165

elements are considered as identical then the result could be different. Since the
duplicates are purged, the Area text associated to the name which is present in the
same structure and content in the two input interfaces will be purged in the output
user interface. The result is presented Fig. 7(a). The Union operator does not take into
account the place of the element in the interfaces so the result can be as shown in Fig.
7(b). In this case, we could consider some of the operators as ‘presentation-
independent’, that is they are not sensible to physical aspects of the GUI such as
position, size, arrangement, colors, fonts, style. However, if such a need arises, it is
still possible to incorporate these constraints as conditions.

Customer form o CustomerFom Comme rcial Form
on T |
Normal Union( " , " )
di nt s
= == =1 = e clos ‘

Fig. 6. An example of expected user interfaces from union of the two user interfaces

s Preview window_component_0
CustomerForm
name
dliscount
i i i
s Preview window_component_0 Commercial Form
CustomerFom Commercial Fom —
name Salary ’7
discount Salary
— Save | Close |
Save ‘ Close |
(a) (b)

Fig. 7. The other results expected from the Union operator

4.3 Implementation

Some of the above operations have been directly implemented in GrafiXML,
a graphical interface builder that automatically generates UsiXML specifications as
opposed to final code for other builders. GrafiXML has been implemented in Java 5.0
and today consists of more than 90,000 lines of Java code. It can be freely downloaded
from http://www.usixml.org as it is an open source project regulated by Apache 2.0
open licence and available on SourceForge. GrafiXML is able to automatically
generate code of a Ul specified in UsiXML into (X)HTML or Java. For the purpose
of the examples below, we will rely on the Java automated code generation.

5 Case Studies

The operators defined here above can be used in two cases. At the design time, they
can be used by the designers to create the user interfaces. For example, the user



166 S. Lepreux, J. Vanderdonckt, and B. Michotte

interfaces which are built to one application or to a set of applications of the firm have
to respect a graphic charter. With the operator, the designer can reuse some of the
elements of the user interfaces. This is already illustrated by the examples associated
to the operators. This case is not presented here but is presented in [23]. The second
case of use is at run time. It is integrated in the reuse issue which has introduced the
component idea. The first issue in this domain is the composition of the components.
If we consider the business component as a component with user interfaces, one issue
in the domain of HCI is to compose the user interfaces of the business components.
The using of business components and of their user interfaces brings to the user
interfaces composition issue. If we consider that the user interfaces are specified with
UsiXML, the union operator is particularly interesting for the composition.

R
Postion (9 =

=l

Fig. 8. Initial UI for a tourist application

“Information générale | Résumés | informations spécifiques | Descriptfs | Taris | Périodss fowertures | [viens |
é )

IDénomination en Anglais :
Dénomination en Allemand :
Fue ():

[Code postal (") : 5,000 Localité (') :
“ntité () /ANDENNE |~
Téléphone (1) 320 28me téléphone :
m: 200 2ome GsM:
x: [20)
I URL: fwor ]
0] Position Y (') : n
®oul Date de Rec:
O Non
O En cours
—
—

Fig. 9. Initial Ul for an event management application

Let us now consider another case study taken in the domain of tourism. In this
domain, it happens frequently that some parts of the same information should be
reproduced in different Ul for different events (e.g., hotel information, tourist trip



Visual Design of User Interfaces by (De)composition 167

including hotel booking, booking a hotel, etc.). Fig. 8 reproduces a screenshot of a
Concrete User Interface edited in the editor and its preview in Java (obtained by Java
automated code generation). This view is particularly appreciated by designers and
developers (and even end users) as it combines the design view and the final view,
which is pretty close to the Ul as the end user will see. In order to define a precise
layout, a matrix of lines and guides could be defined to align objects in lines and
columns.

Fig. 9 reproduces another Ul for an event management application, also taken in
the same domain. The two Uls only differ from a few fields, here the dates of the
events in Fig. 8 and the comment in Fig. 9. Therefore, if we want to identify the
common part of these two Uls, the intersection operator performs the operation, as
defined previously, to identify common parts of both trees and then rebuilds a
new tree with the identified elements. This operator re-generates new UsiXML
specifications. This intersection is reproduced in Fig. 10. Note in Fig. 10 that the
designer did not need to do anything: all common elements were identified, a new
layout was produced so as to mimic the initial one and all objects have been laid out
and aligned to preserve the initial constraints. Therefore, there was no need to re-
position, re-align, or re-arrange the widgets.

T
oo

Fig. 10. Intersection of Uls found in Fig. 10 and 11

Editor

D88 XDBE @

Date récurronts: |

Prix infotour (): |gratuit i

Fig. 11. Difference between Fig. 10 and 11

Similarly, Fig. 11 illustrates the application of the difference operator, in this case
Fig. 8 — Fig. 9. Therefore, Fig. 11 only contains those widgets of Fig. 8 that are not



168 S. Lepreux, J. Vanderdonckt, and B. Michotte

present in Fig. 9. Again, these widgets are identified and re-laid out so as to form an
entirely new Ul that is ready to test with the end user. Note that it is even possible to
define new operators or composition of individual operators. As soon as this
intersection is identified, it is possible to submit again this intersection to any other
operation (here, a sequence of global copy/paste) so as to define a new operator by
composition. The composition of Ul operators is inspired from the macro-commands
from the domain of command languages where several individual commands applied
to some objects could be grouped together into a macro-command. In this way, the
designer is able to define her/his own combination of operators and repetitions on
demand. At any time, each operator works on the underlying UI model expressed in
UsiXML. Without this characteristic, it would have been almost impossible to
program these operators in a classical interface builder where all widgets are
physically defined. Instead, they are here logically defined, thus allowing logical
operations. At any time, the code of the final UI can be produced.

The last example showed Fig. 12 concerns the (vertical) union operator. This
operator allows composing two interfaces without repetition. In this case, two parts of
information are repeated, the designation and the piece of information. These common
parts are viewed in the Fig. 10 which presents the intersection. So these elements
are not duplicated by the union operator. All the elements are placed with the respect
of the initials Uls. In this case, if the fusion operator is used, then all the elements of
each interface are laid-out. The common elements will be presented twice.

[ Résumés Descrpits Liens |

Fig. 12. Union of Fig. 8 and 9

6 Conclusion and Future Work

We have described logical operators with which it is possible to manipulate Ul
portions or whole at a large grain than simply with the widget level that is the most
common technique found in classical interface builders. Therefore, instead of
manipulating one widget at time for designing a UI (an activity that is time
consuming and tedious), it is possible to manipulate Ul fragments as such. Then, and
only then, cut/copy/paste operations could be applied. The main difference is that
these operations are logically applied as opposed to a physical application where all
individual widgets need to be re-positioned, re-sized, and re-arranged. Re-positioning,



Visual Design of User Interfaces by (De)composition 169

re-sizing, and re-arrangement are the most frequently executed operations in interface
builders, consequently to redesigning a Ul or reusing a previously designed UI. This
situation also often occurs when Ul templates are used.

The operators which have been introduced are logically defined based on the tree
algebra and adapted to the domain of user interfaces. These operators were described
with an example and more developed in the case study. Using of the operators from
the tree algebra is appropriate because the user interfaces are specified in UsiXML
and because the XML documents can be processed like trees.

Acknowledgments

We gratefully thank the support from the SIMILAR network of excellence (The
European research taskforce creating human-machine interfaces SIMILAR to human-
human communication), supported by the 6" Framework Program of the European
Commission, under contract FP6-IST1-2003-507609 (http://www.similar.cc). The
authors thank also the Nord-Pas de Calais regional authority (Projects MIAOU and
EUCUE) and the FEDER (Fonds Européen de Développement Régional, European
Fund for Regional Development) for supporting a part of this work.

References

1. Brown, J.: Exploring Human-Computer Interaction and Software Engineering
Methodologies for Creation of Interactive Software. SIGCHI Bulletin 29, 1 (1997) 32-35

2. Morch, A.: Tailoring tools for system development. Journal of End User Computing 10, 2
(1998) 22-29

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: A
Unifying Reference Framework for Multi-Target User Interfaces. Interacting with
Computer 15 3 (2003) 289-308

4. Ali MLF., Pérez-Quifiones M.A., Abrams M.: Building Multi-Platform User Interfaces with
UIML. In: Seffah, A., Javahery, H. (eds.): Multiple User Interfaces: Engineering and
Application Framework. John Wiley, Chichester (2004) 95-118

5. Chu, H., Song, H., Wong, C., Kurakake, S., Katagiri, M.: Roam, a Seamless Application
Framework. Journal of System and Software 69, 3 (2004) 209-226

6. Gobel, S., Buchholz, S., Ziegert, T., Schill, A.: Device Independent Representation of
Web-based Dialogs and Contents. In Proc. of IEEE Youth Forum in Computer Science and
Engineering YUFORIC'01 (Valencia, November 2001). IEEE Computer Society Press,
Los Alamitos (2001)

7. Spriestersbach, A., Ziegert, T., Grassel, G., Wasmund, M., Dermler, G.: Flexible
Pagination and Layouting for Device Independent Authoring. In Proc. of WWW’2003
Workshop on Emerging Applications for Wireless and Mobile Access (2003)

8. Watters, C., Zhang, R.: PDA Access to Internet Content: Focus on Forms. In Proc. of the
36™ Annual Hawaii Int. Conf. on System Sciences HICSS'03 (Big Island, January 2003).
IEEE Computer Society Press, Los Alamitos (2003) 105-113

9. Dery-Pinna, A.-M., Fierstone, J., Picard, E.: Component Model and Programming: a First
Step to Manage Human-Computer Interaction Adaptation. In Proc. of 5™ Int. Symposium
on Human-Computer Interaction with Mobile Devices and Services MobileHCI’2003
(Udine, September 8-11, 2003). Lecture Notes in Computer Science, Vol. 2795. Springer-
Verlag, Berlin (2003) 456460



170

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

S. Lepreux, J. Vanderdonckt, and B. Michotte

Eisenstein, J., Vanderdonckt, J., Puerta, A.: Model-Based User-Interface Development
Techniques for Mobile Computing. In Lester J. (ed.): Proc. of 5 ACM Int. Conf. on
Intelligent User Interfaces [UI’2001 (Santa Fe, January 14-17, 2001). ACM Press, New
York (2001) 69-76

Ye, I., Herbert, J.: User Interface Tailoring for Mobile Computing Devices. In Proc. of 8"
ERCIM Workshop « User Interfaces for All » UI4AIl’04 (Vienna, June 28-29, 2004).
Lecture Notes in Computer Science, Vol. 3196, Springer-Verlag, Berlin (2004) 175-184
Banavar, G., Bergman, L.D., Gaeremynck, Y., Soroker, D., Sussman, J.: Tooling and
System Support for Authoring Multi-device applications. Journal of Systems and Software
69, 3 (2004) 227-242

Rugaber, S.: A Tool Suite for Evolving Legacy Software. In Proc. of IEEE Int. Conf. on
Software Maintenance ICSM'99 (Oxford, 30 August-3 Sep. 1999). IEEE Comp. Society
Press, Los Alamitos (1999) 33-39

Florins, M., Vanderdonckt, J.: Graceful Degradation of User Interfaces as a Design
Method for Multiplatform Systems. In Proc. of Int. Conf. on Intelligent User Interfaces
IUI’04 (Funchal, January 13-16, 2004). ACM Press, New York (2004) 140-147

Grundy, J.C., Hosking, J.G.: Developing Adaptable User Interfaces for Component-based
Systems. Interacting with Computers 14, 3 (2001) 175-194

Robertson, G., Horvitz, E., Czerwinski, M., Baudisch, P., Hutchings, D., Meyers, B.,
Robbins, D., Smith, G.: Scalable Fabric: Flexible Task Management. In Proc. of ACM
Conf. on Advanced Visual Interfaces AVI’2004 (Gallipoli, May 25-28, 2004). ACM Press,
New York, (2004) 85-89

Quan, D., Huynh, D., Karger, D.R.: Haystack: A Platform for Authoring End User
Semantic Web Applications. In Proc. of International Semantic Web Conference (2003)
Tan, D.S., Meyers, B., Czerwinski, M.: WinCuts: Manipulating Arbitrary Window
Regions for more Effective Use of Screen Space. In Proc. of ACM Conf. on Human
Aspects in Computing Systems CHI’2004 (Vienna, April 2004). ACM Press, New York
(2004) 1525-1528

Leventhal, E., Grubis, A.: Composable User Interfaces. The MITRE Corporation, Bedford
USA (2004)

Grolaux, D., Vanderdonckt, J., Van Roy, P.: Attach me, Detach me, Assemble me like You
Work. In Costabile, M.-F., Paterno, F. (eds.): Proc. of 10" IFIP TC 13 Int. Conf. on
Human-Computer Interaction INTERACT’2005 (Rome, September 12-16, 2005), Lecture
Notes in Computer Science, Vol. 3585, Springer-Verlag, Berlin (2005) 198-212
Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez, V.: USIXML: a
Language Supporting Multi-Path Development of User Interfaces. In Proc. of 9™ IFIP
Working Conf. on Engineering for Human-Computer Interaction jointly with 11" Int.
Workshop on Design, Specification, and Verification of Interactive Systems EHCI-DSV-
1S°2004 (Hamburg, July 11-13, 2004). Lecture Notes in Computer Science, Vol. 3425.
Springer-Verlag, Berlin (2005) 200-220

El Bekai, A., Nick Rossiter, B.: A Tree Based Algebra Framework for XML Data Systems.
In Proc. of the 7 Int. Conf. on Enterprise Information Systems ICEIS’2005 (Miami, May
25-28,2005) (2005) 305-312

Lepreux, S., Vanderdonckt, J.: Toward a support of the user interfaces design using
composition rules. In Calvary, G., Pribeanu, C., Santucci, G., Vanderdonckt, J. (eds): Proc.
of the 6th International Conference on Computer-Aided Design of User Interfaces
(CADUI2006). (Bucharest, Romania, June 5-8, 2006) Chapter 19, Springer-Verlag,
Berlin, (2006)



Exploring the Specification of Haptic Interaction

Shamus P. Smith

Department of Computer Science,
Durham University, Durham DH1 3LE,
United Kingdom
shamus.smith@durham.ac.uk

Abstract. Visual technologies have directly influenced the specification
and implementation of virtual environments and the user interactions
that can be supported. However, recent advances in haptic devices have
facilitated new levels of virtual environment interaction by the develop-
ment of environments where it is possible to touch and feel virtual ob-
jects. Such environments support a richer set of possible user interactions.

This paper explores haptic specification for virtual environment inter-
action. The aim is to provide a sketch of interaction to enable analysis
of usability requirements in an example haptic technology.

Keywords: Virtual environments, interaction specification, haptic
interaction, design tools, usability.

1 Introduction

Traditionally virtual environments have been visually oriented. A contributing
factor has been the technological constraints on providing a richer sense-based
environment [9]. In the last decade visual technologies have matured and it is
common to find virtual environments using a range of visual-oriented technology,
for example monitors, head-mounted displays, surround-screen displays, work-
benches and hemispherical displays [3].

Interaction in virtual environments, and the potential for complex and realis-
tic interactions, has been driven by the dominance of these visual technologies.
This has limited the veracity of the resulting interaction. Stanney et al. [22] note
that “multimodal interaction may be a primary factor that leads to enhanced
human performance for certain tasks presented in virtual worlds.” To be able to
touch or feel virtual objects has been constrained to bulky and expensive equip-
ment. However, recent advances in technology has meant that haptic devices
are now being used in all manner of applications [23] including medical device
simulation, computer aided design, visualisation and the graphic arts [I]. Virtual
environments using sight and touch are quite feasible, but the effects of sensory
interaction are complex and vary from person to person.

The use of haptic technology has added to the challenge of developing vir-
tual environments that meet the needs of users. In particular the addition of

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 171 2007.
© Springer-Verlag Berlin Heidelberg 2007



172 S.P. Smith

tactile and kinesthetic cued] have implications for the developers of virtual en-
vironments and the tools they use during the specification, design and imple-
mentation phases of such systems. A fundamental difference between visual and
haptic-based interaction is the necessity to explicitly consider physical feedback
to and from the system in haptic interaction, in addition to any visual feedback.
It is important that the additional realism afforded by the haptic feedback is
not at the cost of (i) the user, for example by compromising usability, or (ii) the
designer, for example by biasing the development to particular technologies.

This paper explores how the specification of haptic interaction can clarify
the physical and virtual interactions enabled by haptic technology. Analysis
of such specifications is a fundamental step in supporting the requirements
of both virtual environment users and designers. An existing specification no-
tation for virtual environments, called Flownets [I9], is utilised to investigate
haptic interaction. Willans and Harrison [26] note that such specifications ab-
stract from implementation issues and support a requirement-centered rather
than implementation-centred approach. Designs can be driven by what the user
requires rather than specific technologies. This is clearly advantageous in terms
of usability [I326].

The remainder of the paper is organised as follows. Section [2] overviews the
specification of virtual environment interaction and describes an example graph-
ical notation, called Flownets, in the context of a navigation-based interaction
technique. Next a haptic-oriented case study will be presented and a haptic
specification model produced. In Section [ usability issues as highlighted by the
Flownet specification will be analysed. This will be followed by a discussion of
Flownet use for haptic specification. Some conclusions are drawn in Section [Gl

2 Specifying Virtual Environment Interaction

The very nature of virtual environments makes them difficult to describe and
model. Virtual environments are dynamic environments and due to their con-
tinuous nature, defining salient and useful aspects of them is extremely difficult.
At an initial stage of design it would be desirable if there was a useful way
of sketching the flow of an interaction at a high level of abstraction, for re-
quirements gathering and design specification. This would provide a basis for
pre-implementation evaluation of the environment and could then be developed
into a more detailed model for mapping onto an implementation [19/26].

Previous work has examined virtual environment interaction specification in
order to compare interaction techniques [19] and provide a basis to identify and
discuss issues such as usability [I0]. In addition, formal and semi-formal specifi-
cations (see for example [5l chapt. 17 & 18]) can reduce undesirable interaction
behaviour in the final system by limiting features of the design that may be
ambiguously implemented [6/T2/T9].

1 Tactile cues are perceived as information about surface texture, temperature, pres-
sure and pain. Kinesthetic cues are perceived as information about joint angles and
muscular length and tension [3].



Exploring the Specification of Haptic Interaction 173

Navarre et al. [I2] describe the use of a formalism called Interactive Coop-
erative Objects (ICO) in order to model virtual environment behaviour. They
aim to (i) determine the impact of changing input devices and/or interaction
techniques, (i) detect similarities and dissimilarities in interaction behaviour
and (iii) measure any interaction effects that allow the prediction of user be-
haviour. However, Navarre et al. [12] do not consider the issue of continuity,
as they observe that when it comes to low level modelling the events produced
and processed are always dealt with in a discrete manner. Although this may be
the case for virtual environment technology, the participating user will perceive
continuous feedback [2] in both the visual and haptic, i.e. contact, pressure and
temperature, representations.

Jacob et al. [8] consider the essence of a non-WIMP dialogue, such as in
a virtual environment, as a set of continuous relationships most of which are
temporary. Interaction can be explicitly described by a data-flow component for
describing continuous relationships and an event-based component for describing
discrete interactions. More recently, Shaer and Jacob [I7] consider the need to
model physical interaction, concurrent dialogues and combined intentional and
passive interaction in the next-generation of user interfaces.

Wiithrich [27] examines the use of systems theory to construct a model of a
virtual reality system. The model focuses on 3D input and considers discrete
and continuous input and system state changes. Wiithrich aims to build a de-
terministic view of the system categorising the input by device and action types
in order to provide a mathematical binding between input devices and a virtual
reality development toolkit. Abstracting the discrete and continuous input into
a general model can simplify the software code needed to support interfacing
particular hardware devices to a virtual reality system.

In order to capture the continuous and discrete nature of virtual environ-
ment interaction Smith, Duke and Massink [I9] use a graphical notation, called
Flownets, based on hybrid systems researchd. A Flownet is a graphical descrip-
tion of the dialogue between a user and an interactive system. Such descriptions
are often used to reason about the usability of an interface [26]. One general
principle is that interactive systems should accurately render their state to the
user so that they do not suffer mode confusion [4]. Mode confusion results from
misidentification of an interface’s behaviour, i.e. a difference between the actual
interface behaviour and what was expect by the user [4]. The following sec-
tions will present an overview of the Flownet notation and describe how such
mode issues can be considered in the context of a virtual environment navigation
technique.

2.1 Flownet Example: Navigation Using Two-Handed Flying

Two-handed flying (THF) [I1] is a specialised type of flying which exploits pro-
prioception, the person’s sense of the position and orientation of their body and

2 Hybrid systems are systems consisting of a mixture of discrete and continuous
components.



174 S.P. Smith

limbs. Direction of flight is defined by the vector between the user’s two hands
and the flight speed is specified by the distance between the user’s hands (see
Figure[Il- from [I1]). Flight is stopped by moving the hands into a dead zone, a
minimum hand separation.

Direction of Flight

Fig. 1. Two-handed flying

FigurePlshows a representation of the THF technique in the Flownet notation.
A more detailed description of this notation has been discussed elsewhere [T9125]
but will be illustrated here within an example. Figure [3 shows the components
of the Flownet notation.

In this model there are three unique external plugaﬁ. These are the continuous
flow from the “hand positions” and the Boolean control arcs from the techniques
“enable” and “disable”. A control arc signals a control dependency in the model.
Initially, the user triggers the interaction by some, unspecified, enable mechanism
(1) which is part of the application or the environment in which THF is used.
This enables the “start” transition. This transition also has an inhibitor arc so
that the interaction cannot get restarted while the user is currently flying. The
start transition passes a token to the “not flying” state. The user will remain in
this state until their hands are moved outside the THF dead zone. This condition
is detected by a sensor on the “hand positions” flow (2). The sensor spans
the flow and acts as a function from the continuous flow content to a discrete
boolean.

Once the user’s hands are moved outside the THF dead zone, the active token
is passed to the “flying” state (3). In this state a flow control is activated. The
flow control acts as a valve on the continuous loop for transforming the user’s
current position and speed. The continuous loop in this example is comprised
of three components; the flow control (3), a transformer (4) and a store. A
transformer applies a transformation to a flow to yield a modified content. In
Figure Pl the “update position, speed” transformer takes the current values from
the continuous flow and updates them using the current value on the “hand
positions” flow (4). This is then passed to the store. A store is a source and
repository for information that is consumed or produced by a continuous flow. If

3 The “hand positions” plug is repeated on the diagram for clarity.



Exploring the Specification of Haptic Interaction 175

hand hand
enable positions positions disable
update
position, speed
- position,
> @ e speed

Fig. 2. Two-handed flying Flownet

the user’s hands are moved back into the THF dead zone, a sensor on the user’s
hand positions would trigger a transition (5) back to the stationary position.
Finally, while in either state, if the user wishes to exit the technique, a disable
control arc can be triggered (6) which de-activates all states.

2.2 THF Flownet Analysis

Figure 2l highlights the modes/states of the interaction and the events that cause
the transitions between modes. Also, there is a clear separation of the discrete
processes, the control processes in the bottom of the diagram, and the continuous
processes, the continuous loop in the top of the diagram. When the technique
is active, and the user is flying, the user is receiving continuous visual-feedback
based on their changing position and speed of travel. However, there is no such
feedback when the user’s hands are in the dead zone and the user is stationary.
In this state, it is not clear whether the interaction technique is active or not [26].
If the user was to attempt to use a hand-based gesture, e.g. to point to an ob-
ject or to try and select an object, then they could easily become disorientated
as they fly off in the resulting indicated direction, at possibly great speed. If input



176 S.P. Smith

Ol — — <

state transition control arc inhibitor arc flow control
continuous flow  sensor store transformer external plug

Fig. 3. Flownet notation components

devices based on the user’s hand position and/or gesture are to be overloaded
with interaction techniques for selection, manipulation and navigation, then dis-
covering such usability issues are critical early in a system’s development.

3 Specifying Haptic Interaction

Providing a comprehensive overview of haptic interaction and haptic technologies
is outside the scope of this paper (see [II3I23]). Instead the relevant hap-
tic properties will be highlighted through the specification of haptic interac-
tion in the context of a particular example based on a neurosurgery training
simulator [7].

3.1 Neurosurgery Training Domain

Hansen et al. [7] describe a virtual environment for neurosurgery training where
a user interacts with a virtual brain model using a haptic device to teach the
correlation between brain deformation and applied pressure. The aim of the
system is to provide an environment where doctors can practice using a brain
spatula without endangering human or animal subjects (See Figure @ - from
[15, pg243]).

The system enables a user to apply a rigid virtual spatula onto a deformable
virtual brain while providing suitable haptic and visual feedback. Haptic inter-
action is provided by a ground-referenced force feedback arm (see Figure [ -
from [7]) and in addition to haptic feedback, the system maps forces on the
virtual brain into a colour so that the force distribution in the tissue can be
monitored. The tissue is marked red when forces exceed a certain threshold.

The aim of the system is to allow the user to study the correlation between
tissue deformation and force in order to quickly find the appropriate force needed
in any given situation. In addition, Hansen et al. [7] hope that the user will
learn not to apply too much force which can lead to irreversible and severe brain
damage.



Exploring the Specification of Haptic Interaction 177

Fig. 4. Brain retraction using two spatulas

Shutter
glasses

4 Monitor &
, Force on arm

c—— : Semi transparent Visual feedback
mirror

\

Force
feedback

am - Computer
Position of arm simulation

Fig. 5. Setup for the virtual brain spatula simulator

3.2 Flownet Specification

The interaction supported by this setup has been modelled in two Flownets
(see Figures [0l and [@1). The addition of the haptic dimension to the interaction
requires the modelling of both device-based and virtual interaction. In Figure [G]
the states of the haptic device are modelled. The transition from stationary to
moving states is triggered by appropriate force pressure from the user’s hand on
the device. When in the device moving state, the device’s position and orientation
are transformed by a combination of the force from the user’s hand and any
haptic feedback returned from the virtual component of the system, in this case
contact feedback and deformation feedback. The generation of the virtual feedback
is modelled in Figure [1

4 These figures include an extension to the original Flownet notation [19] by the
addition of a double circle state to indicate the start state of the Flownet.



178 S.P. Smith

hand contact deformation
force feedback feedback

(/

\/\ - device position/

orientation

'

device
moving

force >=
minimum

force <
minimum

Fig. 6. Haptic device Flownet

Biggs and Srinivasan [I] identify a primary classification of haptic interactions
with real and virtual environments based on three elements: “(i) free motion,
where no physical contact is made with objects in the environment; (ii) con-
tact involving unbalanced resultant forces, such as pressing an object with a
fingerpad; (iii) contact involving self-equilibrating forces, such as squeezing an
object in a pinch grasp.” The states in Figure [ are based on this classification
with states for free motion, object contact and object deformation. An additional
state representing excessive force being applied, with the brain tissue suffering
damage, is provided. The transition from free and contact states is determined
by the presence of collision detection events, determined by a sensor on the hap-
tic device’s position and orientationd. When in contact with the virtual object,
the contact feedback is updated by it’s current value modified by a function of
the virtual brain model and the device’s current position and orientation. This
transformer is an encapsulation of the haptic rendering provided by the system.

Once in contact with the virtual brain tissue, deformation occurs when spatula
movement is present. As with the contact feedback, the deformation feedback is
determined by it’s current value and the relative positions of the haptic device

5 The external plug device position / orientation and the store virtual brain model are
unique entities and are duplicated on the diagram for layout clarity.

5 The generation of collision detection events has been simplified as it is outside the
scope of the interaction specification and therefore not modelled further.



Exploring the Specification of Haptic Interaction 179

and the virtual brain model. Also the brain model itself is transformed while in
this state, represented to the user as visual feedback.

If excessive force as determined by some damage threshold function, in this
case a sensor attached to the device position / orientation external plug, the
interaction moves to the damaged state. Haptic feedback is still provided via the
continuous flow from the deformation feedback store and an alternative trans-
formation of the brain model is applied to provide red visual indicators on the
tissue being damaged. The Flownet provides a rich description of the haptic
interaction. In addition, the construction of such a specification highlights the
complex nature of the interaction.

device device device
position/ moving position/

orientation U orientation

» L ]
collision
detecti
e — 1
\/]
A% [
|-
virtual
spatula
contact
feedback |———+ [———(

?X [

d

deformation
feedback

virtual
brain model

damage
threshold

virtual
brain model

Fig. 7. Virtual interaction Flownet



180 S.P. Smith

4 Specification Analysis

Many “what if” questions can be answered in an unambiguous way based on
such a specification [I0]. For example what would happen if, while deforming
the brain tissue, the user suddenly released the haptic device? Answering such
a question from the textual descriptions of the interaction in [7] would be dif-
ficult, if not impossible. Based on the specification in Figure [ such an action
would result in a transition to the contact state and then depending on the na-
ture of the physical device, a possible transition to the free state. If the device
is self-centering, for example like many joysticks, such a transition to the free
state would occur. Such questions are important when developers are required to
make design decisions when mapping interaction requirements to the most ap-
propriate technology [20]. Newman and Lamming [I3] observe that such models
of activity are especially invaluable in making usability predictions. Six usabil-
ity requirements supported by such specifications are the active actors, type of
interaction, mode changes, undo operations, cognitive load and indication of er-
rors [10]. This list is not meant to be complete but serves to show how common
usability requirements of interfaces, see for example [T4I]], can be addressed
using the Flownet specification. These requirements will be considered in the
context of the brain spatula example.

Active actors - How the objects in the specification are changed by the inter-
action is determined by the nature of the connecting arcs. There are four main
actors in this interaction; the user, the haptic device, the virtual representa-
tion of the spatula and the virtual brain model. As seen in Figure [d the user is
represented by the hand force external plug that is continuously applied to the
haptic device during the interaction. The device itself is determined by it’s orig-
inal position and orientation that is transformed, when moving, by the user and
any virtual forces. The representation of the virtual spatula is unchanged during
the interaction and it’s position and orientation are continuously updated when
triggered by the movement of the haptic device. This happens regardless of the
current state of the interaction in Figure[6l The virtual brain model is updated
during deforming and damaging states. In this interaction the main actors are
all transformed by continuous flows triggered by explicit user behaviour. Thus
the virtual environment does not change without user participation, promoting
a desirable user-centered interaction.

Type of interaction - The continuous and discrete parts of the interaction
are clearly indicated in the Flownets. In addition, there is a clear separation
between the generation of haptic feedback via the stores on the left-hand side of
Figure [[ and the visual oriented feedback on the right side of the diagram. The
continuous feedback is triggered by discrete flows from explicitly described state
changes and sensor reading from particular continuous flows.

Mode changes - One problem that can occur in user interfaces are mode
changes that escape the attention of the user and that may lead to confusion.



Exploring the Specification of Haptic Interaction 181

As seen in Figure [l there are four main states to this interaction. However, only
two of the later states have explicit visual feedback on the mode change, via
the visual deformation and damage indication. Therefore the user must rely on
the accuracy of the haptic rendering of collision events and the user’s ability
to notice them. This has implications for the required veracity of the haptic
rendering, specified in the contact feedback transformer, and any physical user
requirements based on human variability in their sensitivity to haptic events. It
may be appropriate, based on the user population, to add explicit mode change
indicators to every state change, for example by visual or audio cues.

Undo operations - An undo feature is not explicitly mentioned in [7]. The
continuous nature of the virtual brain deformation, and the potential damage
from too much force, does not lend itself to undo actions as there are no clear
start and finish points to the interaction. Although, at a low level, computer
systems are clearly discrete with step-by-step programs and users’ actions being
converted into streams of events [5 pg 618], in the brain spatula example an
undo feature may be counter to the pedagogical aims of the simulator. Hence
this will not be considered further here.

Cognitive load - Triggers for mode changes are an important part of a success-
ful interaction. In this example the user has to remember the various modes of
operation that are related to the different phases of brain tissue manipulation.
The majority of triggers are based on the haptic response from the system and
the users’ interpretation of this feedback. It may be appropriate to provide on-
screen information, attached to the activation of the discrete states, to indicate
particular states of the simulation to allow the user to focus on the force/pressure
training and not interface specific issues.

Indication of errors - Hansen et al. [7] note that the simulator can map all
levels of force into colour so that the force distribution in the tissue can be
monitored. However, they observe that “assigning all kinds of colours to the brain
tissue will reduce realism.” Therefore tissue is just marked red when forces exceed
a certain threshold. The indication of red tissue, via inappropriate amounts of
force, is the error indicator in this interaction. In the Flownet this is represented
explicitly in the transformation of the virtual brain model while in the damaged
state.

5 Discussion

It is common for the developers of virtual environments to be concerned with the
use of system resources. Typically there are minimum requirements for response
times for both visual and haptic feedback. Low temporal resolution of a haptic
display can adversely affect quality, causing unintended vibrations and making
virtual objects feel softer than intended [3, pg 71] while slow visual frame rates
can lead to visual lag, which has been linked with cybersickness symptoms [22].



182 S.P. Smith

The resources needed to produce continuous feedback in a virtual environment
can be identified in the Flownet by examining the active transformer nodes as
associated to each state. In Figure [ both the deforming and damaging states
have three active transformer nodes; (i) generating deformation feedback for the
haptic device, (ii) updating the visual feedback via the virtual brain model and
(iii) updating the visual representation of the virtual spatula. In these most active
states, system resources must be distributed between these transformations while
still providing a quality of service. For a designer, this becomes particularly
important if new feedback mechanisms are to be added. For example, if an audio
cue during brain deformation was to be added to the simulation, the designer
must consider how this could be achieved without degradation to the current
system. Such a view of interaction provides a basis for the designer to consider
alternative trade-offs in the feedback configuration of the system.

The complex nature of haptic interaction manifests itself in the complexity
of the Flownet models. In this paper the first use of concurrent Flownet models
has been presented. Concurrency is required to model the physical and virtual
requirements of the haptic interaction. Modelling of concurrency will be required
in systems that have multiple interaction techniques or additional multi-modal
features.

Flownets are a high level representation and, as such, are a simplification of
the final implemented interaction. The aim has been to improve accessibility of
the models to a wider audience. As a result, some information is not explicitly
represented. For example, the exact details of the continuous flow transforma-
tions as represented by the transformer nodes are not specified. In the haptic
example this is the exact details of the haptic rendering, and associated algo-
rithms for the contact feedback and deformation feedback transformers. Similarly,
the internal makeup of the store nodes are not explicitly defined, for example
the graphical transformations of the virtual brain model. The focus has been
on highlighting the modal nature of the interaction and how this may effect us-
ability. If more haptic-oriented issues are to be analysed, then the contents of
the transformer and store nodes could be made explicit in order to model the
continuous tactile cues, such as temperature and pressure, and/or kinesthetic
cues, such as tension. This will not be discussed further here.

Flownets provide the basis for an inspectable design model that can be used
to identify requirements that an implementation must support. The diagrams
provide a mechanism to communicate the specifics of the interaction to devel-
opers. Early in the design process, the exact details of the transformations and
the composition of the stores will be secondary to identifying the interaction
requirements. There are obvious benefits to eliciting as much operational knowl-
edge about a design as early as possible before costly decisions have been made
and need undoing [16/21]. This is a first step in mapping design requirements -
or from retrospective analysis, redesign requirements - onto technology capabili-
ties [20]. If a more formal model is required, Flownets provide a basis for further
refinement, for example to a HyNet [24] model, a hybrid modelling specification
supported by formal semantics (see [10]).



Exploring the Specification of Haptic Interaction 183

6 Conclusions

This paper has described the use of Flownets for the specification of haptic inter-
action to provide a sketch of interaction in a haptic-oriented virtual environment.
The resulting specification is useful in documenting features of the interaction,
the consideration of haptic/visual issues and in identifying questions about the
usability of the haptic technology.

Previous Flownet specifications focused on visually-orientated interaction
techniques, specifically navigation in virtual environments. A haptic interaction
environment has been successfully modelled, including the concurrent physical
and virtual components of the interaction. The resulting specification turned
out to be useful in answering specific questions about the usability of the haptic
interface.

Future work includes producing specifications to analyse additional charac-
teristics of haptic interaction and provide a platform to begin both further, more
detailed, interaction decomposition and general abstractions of the models. The
aim is to provide specification tools for the application of virtual environment
technologies to support the required user-based multi-modal interactions.

References

1. S. James Biggs and Mandayam A. Srinivasan. Haptic interfaces. In K. M. Stan-
ney, editor, Handbook of Virtual Environments, pages 93—115. Lawrence Erlbaum
Associates, New Jersey, 2002.

2. Monica Bordegoni, Umberto Cugini, Piero Mussio, and Maristella Matera. The role
of continuity in haptic interaction systems. In CHI 2000 Workshop: Continuity in
Human Computer Interaction, L’Aia, Netherlands, April 2000.

3. Doug A. Bowman, Ernst Kruijff, Joseph J. LaViola Jr., and Ivan Poupyrev. 3D
User interfaces: Theory and Practise. Addison Wesley, USA, 2005.

4. Asaf Degani, Michael Shafto, and Alex Kirlik. Modes in automated cockpits: Prob-
lems, data analysis and a modelling framework. In 86th Israel Annual Conference
on Aerospace Sciences Conference. Haifa, 1996.

5. Alan Dix, Janet Finlay, Gregory D. Abowd, and Russell Beale. Human-Computer
Interaction. Pearson/Prentice Hall, Harlow, England, third edition, 2004.

6. Emmanuel Dubois, Luciana P. Nedel, Carla M. Dal Sasso. Freitas, and Liliane
Jacon. Beyond user experimentation: notational-based systematic evaluation of
interaction techniques in virtual reality environments. Virtual Reality, 8:118-128,
2005.

7. Kim V. Hansen, Lars Brix, Christian F. Pedersen, Jens P. Haase, and Ole V.
Larsen. Modelling of interaction between a spatula and a human brain. Medical
Image Analysis, 8:23-33, 2004.

8. Robert J. K. Jacob, Leonidas Deligiannidis, and Stephen Morrison. A software
model and specification language for non-WIMP user interfaces. ACM Transactions
on Computer-Human Interaction, 6(1):1-46, March 1999.

9. Roy S. Kalawsky. The Science of Virtual Reality and Virtual Environments.
Addison-Wesley, 1993.



184

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

S.P. Smith

Mieke Massink, David Duke, and Shamus Smith. Towards hybrid interface spec-
ification for virtual environments. In D. J. Duke and A. Puerta, editors, Design,
Specification and Verification of Interactive System 99, Springer Computer Sci-
ence, pages 30-51, New York, 1999. Springer-Verlag/Wien.

Mark R. Mine, Frederick P. Brooks Jr., and Caro H. Sequin. Moving objects
in space: Exploiting proprioception in virtual-environment interaction. In Turner
Whitted, editor, SIGGRAPH 97, pages 19-26. ACM SIGGRAPH, 1997.

David Navarre, Philippe Palanque, Rémi Bastide, Amelie Schyn, Marco Winckler,
Lucianna P. Nedel, and Carla M. D. S. Freitas. A formal description of multimodal
interaction techniques for immersive virtual reality applications. In M. F. Costabile
and F. Paterno, editors, Human-Computer Interaction (INTERACT 2005), volume
LNCS 3585, pages 170-183. Springer, 2005.

William M. Newman and Michael G. Lamming. Interactive System Design.
Addison-Wesley, Harlow, UK, 1995.

Jakob Nielsen. Usability Engineering. AP Professional, Boston, 1993.

J. L. Poppen. An Atlas of Neurosurgical Techniques. W. B. Saunders Company,
Philadelphia, 1960.

Mike Scaife and Yvonne Rogers. Informing the design of a virtual environment to
support learning in children. International Journal of Human-Computer Studies,
55(2):115-143, 2001.

Orit Shaer and Robert J. K. Jacob. Toward a software model and a specification
language for next-generation user interfaces. In ACM CHI 2005 Workshop: The
Future of User Interface Design Tools, April 2005.

Ben Shneiderman. Designing the User Interface: Strategies for Effective Human-
Computer Interaction. Addison-Wesley, third edition, 1998.

Shamus Smith, David Duke, and Mieke Massink. The hybrid world of virtual
environments. Computer Graphics Forum, 18(3):C297-C307, 1999.

Shamus P. Smith and David J. Duke. Binding virtual environments to toolkit
capabilities. Computer Graphics Forum, 19(3):C-81-C-89, 2000.

Shamus P. Smith and Michael D. Harrison. Editorial: User centred design and im-
plementation of virtual environments. International Journal of Human-Computer
Studies, 55(2):109-114, 2001.

Kay M. Stanney, Ronald R. Mourant, and Robert S. Kennedy. Human factors
issues in virtual environments: A review of the literature. Presence, 7(4):327-352,
August 1998.

Steven Wall and Stephen Brewster. Editorial: design of haptic user-interfaces and
applications. Virtual Reality, 9(2-3):95-96, 2006.

Ralf Wieting. Hybrid high-level nets. In J. M. Charnes, D. J. Morrice, D. T.
Brunner, and J. J. Swain, editors, 1996 Winter Simulation Conference, pages
848-855, Coronado, California, USA, 1996.

James S. Willans. Integrating behavioural design into the virtual environment de-
velopment process. PhD thesis, University of York, 2001. Technical Report YCST
2002/02.

James S. Willans and Michael D. Harrison. A toolset supported approach for
designing and testing virtual environment interaction techniques. International
Journal of Human-Computer Studies, 55(2):145-165, 2001.

Charles A. Wiithrich. An analysis and a model of 3d interaction methods and
devices for virtual reality. In D. J. Duke and A. Puerta, editors, Design, Specifica-
tion and Verification of Interactive System ’99, Springer Computer Science, pages
18-29, New York, 1999. Springer-Verlag/Wien.



Analysis of Pointing Tasks on a White Board*

G. Faconti and Mieke Massink

Consiglio Nazionale delle Ricerche, Istituto ISTI, Pisa, Italy
{G.Faconti,M.Massink}@isti.cnr.it

Abstract. We study the variations in two dimensional (2D) pointing
tasks on a traditional white board of a group of subjects by means
of capturing their movement traces in an automatic way with the Mimio
device. Such traces provide detailed insight in the variability of 2D point-
ing relevant for example for the design of computer vision based gestural
interaction. This study provides experimental evidence that for medium
large distances Fitts’ model, and Welfords and Shannons variants, con-
tinue to show a linear relationship between movement time (MT) and
the index of difficulty (ID) with a high correlation for the ranges con-
sidered. The expected increased sensitivity to changes in ID for these
larger distances are confirmed. Nearly all movements show three phases:
a planning phase, a ballistic phase and an adjustment phase. Finally,
we show that the arrival time at the target resembles a log-normal
distribution.

1 Introduction

One of the challenges in Human-Computer Interaction is to let computers sup-
port activities that humans already perform in their daily life with the tools
and environment they are used to work with. The computer support to such
activities should ideally interfere as little as possible with the human activities
but nevertheless provide a real augmented reality.

However, in order to provide real-time and adequate support to the user, the
computing system needs to operate in a tightly coupled, continuous way with the
activities of the user and its environment. The increase of computing power, the
miniaturisation and the enormous developments in devices for data-acquisition
such as video cameras and related image analysis software have stimulated much
research and experimentation with computer vision based gestural interaction
techniques for human-computer interaction [3/4].

Although computer vision based techniques potentially enable a direct and
continuous interaction between user and computer, the tight coupling requires
that the software is able to keep up with user’s movements. This is a challenging
enterprise in particular due to the variability of human behaviour even in simple
and repetitive tasks. Systems that do not manage to keep up sufficiently close
or behave unpredictably may constrain the user’s activities and disturb or even

* Research partially funded by EU Integrated Project Sensoria, contract n. 016004.

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 185-[I98] 2007.
© Springer-Verlag Berlin Heidelberg 2007



186 G. Faconti and M. Massink

interrupt higher-level cognitive activities that are performed in parallel with the
pointing behaviour [2].

One kind of application that has received considerable attention in the liter-
ature is that of finger tracking. Finger tracking is a computer vision technique
that allows a computer in combination with a video camera to follow finger
movements of users when they are working, for example, with a white board.
Used in combination with a projector, finger tracking can be used as part of an
augmented reality application for the white board. In such a setting the user
uses a mix of common physical and virtual devices such as pens and erasers for
the white board and projected virtual buttons for operations such as copy and
paste. A nice experimental example of such a device is the Magic Board [3I11].

Experimental design of the Magic Board required an investigation of the ve-
locity of the natural pointing movements that people perform when using a white
board. At the time of its design experiments were performed to estimate such
velocity using a video camera that captured the position of the user’s finger with
a frequency of 25 images per second. These data have been analysed image per
image in a non-automatised way [3].

There exist also well-known and useful models, such as Fitts’ law and its
many variants that provides us with an estimate of movement times based on an
index of difficulty and an index of performance. However, such models typically
provide only mean movement times and for distances of at most 40 cm. which
involve usually smaller limb groups, such as fingers, wrist and forearm, than
those involved in 2D pointing on a white board. These models have been mainly
developed to predict the time to position a cursor or to select a target employing
devices such as the mouse, a touch pad and numerous other devices that can be
found in traditional desk-top computers [TOT3ITITH]. Some studies suggest that
movements that involve large limbs are more sensitive to changes in the index
of difficulty [TOIT2].

Pointing in the context of a white board involves much larger distances over
which we expected the velocity to vary considerably during single movements.
In this paper we therefore revisit the finger pointing experiment for the white
board, but instead of a video camera we use the Mimio []], a high-resolution
ultrasonic position capturing device that can be attached to a normal white
board and which can be used to register automatically and in real-time the
exact trajectory of a pen that is moved over the white board by the user. This
allows for a much more detailed analysis than was possible with a video camera.
We study the trajectories of adult subjects for simple pointing tasks on a white
board. We investigate to what extend Fitts’ model is appropriate for these larger
movements. We also investigate the maximal velocity of the pen in relation to the
distance from the target and the distribution of the time to reach the target for
various distances. Such distributions provide information about the variability
of the pointing behaviour, which is usually not completely random, but rather
well-approximated by stochastic distributions. Such distributions in their turn
are useful in stochastic models of combined user and system behaviour such as
discussed in some of our earlier work [5].



Analysis of Pointing Tasks on a White Board 187

Sect. [ describes the design of the experiment and in Sect. Bl we analyse the
obtained data. Sect. ] presents a discussion. An extended version of this article
is available as technical report [6].

2 The White Board Pointing Experiment

For the experiments we have asked 18 participants to perform a number of
pointing tasks on a white board with the Mimio device. In this section we provide
more details on the participants and the experimental set-up.

2.1 Participants

18 participants took part in the experiment (12 male and 6 female), aged between
17 and 54 years, with an average age of 40 years. They were students, Researchers
and Professors at University, and teachers at High School. All of them were native
Italian speakers with normal or adjusted to normal vision and right-handed.

2.2 Apparatus

For the experiments a Mimio capture bar device [§] was used for the measurement
of positional data. The capture bar was positioned over a vertically mounted
white board of 1050 mm. high and 1400 mm. wide, positioned at 1200 mm. from
the floor, as illustrated in Fig. [Il It was connected through a Universal Serial
Bus (USB) port to a portable computer equipped with a Pentium IIT 850MHz
processor and 128 Mbytes of memory. x and y co-ordinates of the position of
the tip of a Mimio provided pen, held by the participant while sliding over
the board, were recorded in mm. and time-stamped at the computer. The pen
resembles conventional markers used for writing on white boards. The difference
is that in the Mimio pen the conventional marker is enclosed in a hard plastic
wrapper which is slightly larger than that of the marker pen it contains carrying
infrared and ultrasound transmitters. The device is ergonomically designed to
be held and used by a person as if it was a traditional marker with slightly
increased diameter. When the device is pushed against the board, as normally
happens when writing, a micro-switch is operated and two signals (infrared and
ultrasound) are generated that are sensed by the capture bar. When the device
is released from the board, the micro-switch stops the generation of the signals.
We have used the version of the pen that does not leave an ink-trace on the
board in order not to distract the participants with already drawn lines while
performing the experiment. The Mimio is able to determine the current position
of the device relative to the board by triangulation with a resolution of 0.35 mm.
and a frequency of 87 Hz.

2.3 Stimuli

Two sets of stimuli were presented marked on the board by means of circles
of black ink. Both sets were formed by five circles with diameters measuring



188 G. Faconti and M. Massink

20 mm. and 10 mm. respectively. We have opted for circles rather than squares,
such as in other 2D pointing experiments [15], because of their invariance of the
width to the angle of approach of the target. The targets were placed at the
following positions (measurements are from the bottom-left corner of the white
board): position 1 (150 mm. horizontal, 700 mm. vertical); position 2 (950 mm.,
700 mm.); Centre (600 mm., 450 mm.); position 3 (150 mm., 200 mm.); and
position 4 (950 mm., 200 mm.) - see Fig. [ for illustration. The positions reflect
a reasonably representative set of pointing movements that are likely to occur
when using a normal white board.

yyyyy

1200

Fig. 1. Board with capture bar and position of stimuli (left) and trajectories of a single
subject (right)

2.4 Procedure

The design of the experiment was that of a fully-crossed, within subjects facto-
rial design with repeated measures. The participants were each provided with
a Mimio pen for a practise trial before the beginning of the experiment. The
trial was the same for all subjects and consisted of writing their name on the
board.

The basic task of participants in the experiment was to connect two circles by
pointing to the first with the pen, pushing it slightly on the board and sliding it
to the second circle at a velocity that feels natural to the participant, according
to verbal instructions. The sliding of the pen over the board is needed for the
Mimio device to capture the trajectory. The five circles on the board gave 20
types of movement that a participant could be asked to perform. One response
for each type of movement was obtained during the experiment. The movement
types included both directions between the central circle and each of the four
corner circles and also those between the four corner circles in the horizontal,
vertical, and diagonal planes as shown in Fig. Il on the right where the trajecto-
ries corresponding the 20 movements of a single subject are drawn. Tasks were
presented in a random order for each participant.



Analysis of Pointing Tasks on a White Board 189

Participants were instructed as follows in Italian:

“On the board in front of you five circles are marked. The outer circles are
numbered 1, 2, 3 and 4 (Experimenter demonstrates by pointing to each po-
sition). The central circle is simply denoted by the letter ‘C’. Your task is to
connect to circles with the pen you are holding according to my instructions.
First I will tell you which circle to start at - I will say, for example, “From 1 ...”.
I will then tell you which circle you should move to - I will do this by giving you
the label of the circle, for example “... to C”. You should move your hand at a
speed that feels natural to you sliding the pen across the board. Try to get the
tip of the pen close to the centre of each target.”

3 Data Analysis

The experimental data collected following the process described in the previous
section were classified based on the distance of the two circles to be connected
and the width of the target circle. Consequently, we identified (i) long diagonal
movements (LD) from 1 to 4, from 2 to 3, and vice versa, (ii) middle diagonal
movements (MD) from 1 and 3 to C, and vice versa, (iii) short diagonal move-
ments (SD) from 2 and 4 to C, and vice versa, (iv) horizontal movements (HO)
from 1 to 2, from 3 to 4, and vice versa, (v) vertical movements (VE) from 1 to
3, from 2 to 4, and vice versa (see Fig.[I]). The five classes were replicated for
the large and the small target respectively. This led to the identification of ten
classes consisting of 18 x 4 measurements each. It might have been reasonable
to split each class into two; one for each different direction of movement (i.e. left
to right and right to left or downward and upward). However, given the rather
small number of trials for each movement in this explorative study we decided
to keep the above mentioned classes and examine the results for indications for
the need for further refinement in future experiments.

3.1 Fitts’ Law Analysis of Overall Data

Our analysis started from a consideration of Fitts’ law [7] as one of the rare
quantitative tools available in user interface research and development.

The length of movements studied in this experimental setting exceeds that
usually considered in evaluating devices such as for example mice and tablets.
As a consequence, the participants in our experiments need to use different
limbs and muscles to perform the pointing tasks than in the usual Fitts’ law
experiments. The above observation justifies the potential for validating Fitts’
formal relationship in the case of a white board equipped with a Mimio device
although the main objective of our work aims at finding performance distribu-
tions and variations in pointing behaviour rather than the mean values of human
perceptual-motor performance.

The usual form of Fitts’ law predicts that the movement time MT needed
to point at a target of width W at distance D is logarithmically related to the
inverse of the spatial relative error 2“[,), that is:



190 G. Faconti and M. Massink

MT =a+b log, <§5) (1)

where a and b are empirically determined constants [12].
There exist a number of well-known variations of Fitts’ law such as Welford’s
variation [I8JI9]:

D
MT = a+blog, (W+0.5) (2)

and Shannon’s original theorem [16]:

MT = a+ b log, (é;—i—l) (3)

The logarithmic factor in the formulas, called the index of difficulty ID,
describes the difficulty to achieve the pointing task [12]. The index of perfor-
mance [ P, defined as IP = ( MITD_ a)” gives a measure of the information capac-
ity of the human motor system, analogous to channel capacity C in Shannon’s
theorem [16].

In our analysis we compared all above variants of Fitts’ law. Also, we used
the method described in [I5] to compute the effective target size W, in a two
dimensional space to replace W in the above equations. The effective target size
reflects the actual size of the target based on what the participants really did.
Equation (B]) with W replaced by W, is also used in the new standard for pointing
devices 1S09241-9 [14]. The use of W, instead of W is believed to increase the
accuracy of the model in general.

The overall results obtained from our experiments for all pointing tasks of all
participants is given in Table [[I The table reports the results for the width of
the targets considered (20 mm. and 10 mm.), the effective width W, and the
distance D. The index of difficulty 1D, the mean movement time MT and the
index of performance (or throughput) IP have been calculated using W, for
the three variants of Fitts’ law: Fitts (IDp, IPp), Welford (IDw, IPy) and
Shannon (IDg, IPg). The last column in Table [I] gives the mean velocity for
each combination of target and distance.

The results for Welfords variant are presented graphically in Fig. 2] together
with a first order fit of the data to the logarithmic component of Welfords variant,
the correlation coefficient of 0.98, the regression coefficient of 0.675 s/bit and
its regression constant of -1.658 s. The results for Fitts’ law and Shannon’s
variant are very similar with correlation coefficient 0.98 and 0.99 resp., regression
coefficient 0.667 s/bit and 0.682 s/bit resp. and regression constant -2.274 s.
and -1.711 s. resp. All results show a linear relationship between movement time
and the index of difficulty with a high correlation as has also been observed
in many other Fitts’ law studies involving finger, wrist and forearm muscles in
computer input control [T2/T3]. A difference with the results reported in [I2] on
Fitts’ results for the tapping experiment involving distances of between 2 and
16 inches is the regression coefficient (slope). In Fitts’ experiments the slope



Analysis of Pointing Tasks on a White Board 191
Table 1. Data from experiment with Mimio capture bar and pen

W W. D Mov. IDep IDew IDes MT IPS IPY, IP' Velocity
(mm) (mm) (mm) Type (Bits) (Bits) (Bits) (sec) (Bits/s) (Bits/s) (Bits/s) (cm/s)
20 17.98 430.1 SD 5.58 4.61 4.64 1.518 1.47 1.45 1.44 28.33
20 18.21 500.0 VE 5.77 481 4.83 1.615 1.48 1.47 1.45 30.96
20 18.27 5149 MD 5.82 4.84 4.87 1.637 1.49 1.47 1.45 31.45
20 18.35 800.0 HO 6.45 b5.46 5.48 1.954 1.53 1.51 1.50 40.94
20 19.12 9434 LD 6.62 5.63 5.65 2.138 1.50 1.48 1.47 44.13
10 7.83 430.1 SD 6.78 5.79 581 2.160 1.53 1.52 1.50 19.91
10 825 500.0 VE 6.92 593 595 2295 1.51 1.50 1.49 21.79
10 8.07 5149 MD 6.99 6.01 6.02 2.384 1.50 1.49 1.47 21.60
10 8.28 800.0 HO 7.59 6.60 6.82 2.744 1.51 1.50 1.53 29.15
10 842 9434 LD 7.81 6.81 6.82 3.097 145 1.43 1.42 30.46
Mean 2.152 1.50 1.49 1.47
StDev 0.501 0.02 0.03 0.03
(*) Calculated using IP = ID/(MT — a) where a is the regression constant.

for the experiment in which a stylus of 1 oz was used is 0.1089 s/bit and for
the 1-1b stylus 0.1240 s/bit, which are both much lower than the regression
coefficient found for the white board experiment. So, the index of difficulty has
more influence on the movement time in the case of the white board than in
the case of traditional desktop computer interfaces such as mouse and joy-stick.
This result is in line with an hypothesis made in earlier research by Langolf et
al. [I0] in which it was found that IP decreased as the limb changed from the
finger to the wrist to the forearm, i.e. involving increasingly larger limbs.

The mean velocity presented in Table [I] is much lower than the maximum
velocity reported in [3]. In their experiments a maximum velocity of 200 cm/s
has been observed in pointing tasks where participants were asked to start from
one extreme of the white board, i.e. covering approximately 120 cm., and put a
mark with a pen on the other extreme in a fast way. This shows, as expected,
that the mean movement time and distance is not a satisfactory predictor of
the maximal velocity that may occur in pointing movements over medium large
distances.

In order to get better insight in the variation of the velocity during pointing
tasks on the white board we analyse the obtained trajectories in the following
sections.

3.2 Convergence Patterns

According to Jagacinski et al. [9] researchers have postulated in the past two
classes of models that attempt to explain the movement processes underlying
the relationship between target width and distance. One class postulates that
the movement is composed of a sequence of discrete sub-movements of uniform
duration and uniform relative accuracy as found by Crossman et al. [9]. The



192 G. Faconti and M. Massink

two-phase movements
5.0

5.0

O Observed Data

Ist Order Fit

40| o - Standard Deviation . ]
. ---- + Standard Deviation T 40 F

O Observed Data
—— 1st Order Fit
-~ + Standard Deviation
-- - Standard Deviation

w
o

30+

Mean time (sec)
Mean time (sec.)

Correlation coefficient: 0.98 - Correlation coefficient: 0.992
Regression coefficient: 0.675 -7 Regression coefficient: 0.614
Regression constant:  ~1.966

Regression constant:  ~1.658

4.0 5.0 6.0 7.0 T40 50 6.0 70
log2 (0.5+D/W) log2 (0.5+D/W)

Fig. 2. Welford’s variant of Fitts’ law in the case of aggregate data (left) and consid-
ering only the ballistic and planning phases (right)

other class argues for the existence of two basic structural components; an ini-
tial impulse or ballistic component and a sequence of finer adjustments when
approaching the target such as proposed by Welford [19]. Welford suggested
based on these ideas that Fitts’ index of difficulty should be reformulated into
two terms in which the first term corresponds to an open-loop initial approach to
the target, and the second term to a visually feedback controlled final alignment
with the target. However, in experiments performed by Jagacinski et al. [9] with
movements performed with a joystick between targets projected on a display
of 38 cm by 28 cm the data collected were insufficient to establish conclusively
whether the first sub-movement was regulated by an open- or closed-loop con-
trol. MacKenzie reports however that experiments have shown that movements
that take less than 200 ms are ballistic and those with a duration over 200 ms
are controlled by visual feedback [12] at page 118. This result has been obtained
in the context of traditional Fitts’ law experiments, so for amplitudes of at most
40 cm.

Fig. Blshows some examples of the velocity (top) and of the distance (bottom)
profiles computed from trajectory and time-stamp data for different subjects and
trials. From the graphs on the left, three phases are clearly identifiable during a
movement:

— an initial planning phase characterised by a low velocity profile followed by

— a ballistic phase characterised by a high increase and subsequent decrease of
the velocity profile followed by

— an adjustment phase characterised by a low velocity.

The graphs on the right show different examples of the velocity and distance
profiles which have only two phases: a ballistic phase and an adjustment phase.
In other words, in many trajectories the planning phase is not visible. The most
likely explanation for this difference is the set-up of the experiment. In fact, par-
ticipants have a view of the starting and target candidate circles for a trajectory
on the board before they start operating the marker. That way, they might build



Analysis of Pointing Tasks on a White Board 193

a mental image of the board in advance and work on that image directly during
the performance; that is, the planning phase is implicitly performed and the
pointing task starts with the ballistic movement. Control over the position and
size of the target is put in place at the end of the ballistic phase when adjustment
is necessary. This requires a refresh of the mental image and the focusing on the
image of the target. Consequently, the behaviour of participants doesn’t show
significant qualitative variations once the performance is started. It is interesting
to note that each participant always adopts the same behaviour across multiple
tasks (i.e. the presence/absence of the planning phase is invariant with respect
to tasks for a subject). Apparently, a learning effect from previous knowledge
of the position of the targets in the board is not appreciated. This may be
due to the small number of tasks each subject is asked to perform together
with the focusing on the current task only. However, two different strategies of
operation are clearly revealed at this stage of our analysis. Further experiments
are needed to study this phenomenon in a more controlled way. However, all
subjects showed a trajectory with a ballistic phase followed by an adjustment
phase when approaching the target.

If we correct the obtained data for the planning phase, i.e. we leave out the
part of the trajectory that clearly concerns the planning phase, we obtain an
even better fit of Welford’s variant presented in Fig. [ (right).

A further observation shown in Fig. [l is that the velocity of the movement
varies considerably as a function of the distance to the target. Moreover, veloci-
ties of more than 2 to 3 times as high as that of the average velocities based on
Fitts’ model can be observed. We discuss issues related to velocity in more detail
in Section B4l In the next section we first look in more detail to the different
phases of the pointing movements.

3.3 Distance Covered and Time Spent in the Movement Phases

The bar charts on the left of Fig. @ show the mean percentage of the distance
covered within the three distinguished phases of a movement, and the bar charts
on the right show the mean percentage of time spent in those phases, for each
of the indicated trials. It is evident that almost all of the distance was covered
within the ballistic phase, while in the planning and the adjustment phases
the distance covered is negligible. This occurred uniformly across all trials with
minimal variations.

Considering the time spent to perform a complete movement, the variation
across phases changes significantly. While the ballistic phase keeps taking most
of the time, both planning and adjustment phases cannot be neglected.

The figure shows that the variation across target sizes of the percentage
covered both in distance and in time during the planning phase is minimal.
On the contrary, the adjustment phase duration depends on the size of the tar-
get both for distance and time: the bigger the target the shorter is the duration
of the adjustment.



194

G. Faconti and M.

Massink

1500 ¢ 1500
5 1000 5 1000
] ]
E E
E E
2 2
2 2
3 3
Z 500 Z 500 ff
00 - ; 00 — ]
4.0 50 20 30
Time (sec) Time (sec)
1500 1500
1000 F 1000 |
El El
a a
500 b 500 b
00 - - ] 0.0 - ]
00 30 40 5.0 00 20 3.0

Time (sec) Time (sec)

Fig. 3. Velocity (top) and distance (bottom) sample profiles with planning (left) and
without planning (right) phases

Percent of distance

Percent of distance

Fig. 4. Percent distribution of movements

100.0 -
750
500 - B - N
PP N S N S O N
10 |
0.0 - - - -
FEC & &
\ﬁ “ \“‘\ “‘W&V\ S e
%«& *C’ & & (@\‘w Rty 6“§b o
o
100.0
750 |
SRR R N
10|
0.0 - - - - e e
& &9 O P 9
& \“&x\"ﬂ\\be“;
& o N
S s“ NS o & &
o & & > Ay

Planning
Ballistic
Adjustment

& S

Ballistic
Adjustment

1000
750
2 Planning
‘é Ballistic
S 500 Adjustment
5
£
250
00 —F/ S AR E R -
S & S & O R
Rt o $5 e & s
%« @ e\\ & o 6;‘“ o
1000 ¢
750 b
g Ballistic
b Adjustment
Z soof
&
250 b
[
& v & &S
RO QS\V s\‘“‘@&”& $ w°°‘?
& o N O VY ¥ $ 2
o %@“} & D Y @

in distance (left) and time (right) per test



Analysis of Pointing Tasks on a White Board 195

3.4 Observed Maximal Velocity

Table [2 shows the maximal velocities that have been observed for each distance
and each target width. It also shows the mean of the maximal velocities reached
by the participants and the standard deviation. The highest velocity of 196.69
cm/s has been reached for the target of 20 mm. and the horizontal movement
of 80 c¢cm in a movement from point (1) to point (2) on the board. This is
slightly less than the maximal velocity reported in [3] which was 200 cm/s. The
latter however was obtained for a larger distance (120 cm.) and no clear target
size. It can also be observed from this table that the highest mean mazximal
velocity is reached for the long diagonal and that this mean velocity decreases
with the distance, with a minor exception for the short diagonal and the vertical
movements for the small target.

Interestingly, from the same table we can also observe that the maximum
velocity reached is not only depending on the distance that needs to be covered
but also on the target size. Apparently, the ballistic movement is performed more
cautiously and slower if a smaller target needs to be reached.

Table 2. Maximal observed velocity for each type of movement

Target Movement Max Velocity Mean Velocity St. Dev.

(mm.) Type (cm/s) (cm/s)

20 Long diagonal 178.47 95.29  33.12
20 Horizontal 196.69 91.41  30.80
20 Mid diagonal 162.69 79.18  31.01
20 Vertical 149.58 76.18  30.84
20 Short diagonal 171.07 69.56  26.99
10 Long diagonal 109.66 67.35 18.81
10 Horizontal 102.66 67.16 19.27
10 Mid diagonal 99.94 54.25  17.66
10 Vertical 95.68 48.95  15.11
10 Short diagonal 92.79 49.22  14.85

3.5 Variability of Arrival Times

Fitts’ law studies typically do not address the distribution or variability of move-
ment times but are aiming at the development of a valid model for the prediction
of average movement times for different indices of difficulty and performance. Al-
though Fitts’ law has many important applications, there are situations in which
the variability of the movement times is an important factor, such as in the case
of direct interaction via computer vision techniques. It is well-known that hu-
man behaviour is quite variable, even in case of simple tasks, however, it is not
completely random. Swain and Goodman [I7], among others, observed for ex-
ample that reaction times are rather well described by log-normal probability
distributions. These are similar to normal distributions but skewed somewhat to
the faster end of the distribution.



196 G. Faconti and M. Massink

Il SVERT

[C1sHo

M BVERT
OsHo
[IBsD
[EevD
Oso

[]ssp

‘. SMD
Osto

Percentage (stacked)
3
Percentage (stacked)
g
|

UL R AR R R R AR R R R RN 0 RN E R RRRERRERERERERE]
0 05 1 15 2 25 3 35 4 45 5 55 6 65 0 05 1 15 2 25 3 35 4 45 5 55 6

025 075 125 175 225 275 3.25 3.75 425 475 525 575 625 025 075 125 175 225 275 325 375 425 475 525 575

Arrival times in seconds for small target Arrival time in seconds for big target

Fig. 5. Distribution of arrival time for small (left) and big (right) target for the different
types of movement

In Fig. Bl the distribution of the arrival times for the two sizes of the tar-
get and the various types of movements are shown. On the horizontal axes the
arrival time (in seconds) is shown. The vertical axes shows the percentage of
trajectories that reached the target by that time in a stacked way. The numbers
have been obtained by grouping the trajectories in slots of 0.25 seconds each.
All trajectories have been renormalised by removing potential planning phases
from the trajectories. Fig. [flshows non-stacked distributions for the long diagonal
trajectories for the small and the big target as an example.

It can be observed that the distributions are indeed skewed to the faster part
of the distribution and resembles somewhat a log-normal distribution. However,
in a number of cases a second, lower, peak can be observed toward the slower part
of the distribution. This could be explained by the fact that movements of the
same length, but in different directions have been grouped together. For example,
moving from left to right might be much easier (and thus faster) for most people
than moving from right to left. A further factor is that the number of movements
considered in this study has been relatively limited. Further experimentation is
needed to find out whether these distributions will be reproduced and would fit
more closely to a log-normal distribution as these first data are suggesting.

4 Discussion

We have studied the pointing behaviour of adults performing simple pointing
tasks on a white board. Such tasks involve movements over larger distances, and
thus involving different limbs and body muscles than are usually considered in
Fitts’ law studies.

Although the study was limited in its set-up for what concerns the number
of participants, and the number of trials that they were asked to perform, the
use of an ultrasonic high-resolution movement capturing device provided inter-
esting and detailed data on the structure of the movements and the variation of
the velocity over each trajectory. Our results show a linear relationship between



Analysis of Pointing Tasks on a White Board 197

Percentage of traces

LI s e O B B O A
o os 3 4 a5 s

025 075 125 175 225 275 325 375 425 475 525 575 625

Arrival time in seconds

Fig. 6. Distribution of arrival time for small target, long diagonal (SLD) and big target,
long diagonal (BLD)

movement time and the index of difficulty with a high correlation as in most
Fitts’ law studies for traditional pointing and tapping tasks. The main differ-
ence is that the regression coefficient was found to be much higher for pointing
movements on the white board than in traditional Fitts’ law experiments. This
is in line with earlier findings that movements involving larger limbs are more
sensitive to the index of difficulty. Furthermore, the obtained trajectories showed
a clear number of phases in the structure of the movements. An initial planning
phase, followed by a ballistic phase and an adjustment phase could be distin-
guished, although in some trajectories the planning phase was missing. This last
aspect is most likely due to the way the experiments have been set-up. We plan
to conduct further experiments in order to control this aspect as well as other
aspects that seem relevant for the results, such as arm-length (reach), person’s
length and direction of movement.

The ballistic phase of the movements showed that velocities were reached that
were significantly higher than the average velocity derived from the measured
distance and movement times. Moreover, the velocity is clearly influenced by the
size of the target. Furthermore, the data seems to suggest that the arrival times
for each combination of distance and target follow a log-normal distribution.
Further experimentation is needed to investigate this hypothesis in more detail.

For what concerns the design of vision based tracking techniques, the re-
sults of the experiments show that the velocity of the pointing movement varies
considerably. Such knowledge could be used for improvement of the adaptive
tracking techniques. For example, it could be investigated whether the initial
part of the ballistic movement could be used to predict with a good accuracy in
which direction and where the movement is heading.

Although limited in scope and number of participants, the current experiment
shows nevertheless a number of interesting phenomena that would be worth
to investigate further within the context of a larger experiment which we are
currently carrying out.



198 G. Faconti and M. Massink
References
1. J. Accot and S. Zhai. Beyond Fitts’ law: models for trajectory-based HCI tasks.

2.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

In S. Pemberton, (Ed.), CHI-Conf. on Human Fact. in Comp. Sys.. ACM, 1997.
P. Barnard and J. May. Representing cognitive activity in complex tasks. Int.
Journ. on Human-Computer Interaction, 14:92-158, 1999.

. F. Bérard. Vision par ordinateur pour linteraction homme-macine fortement

couplée, 1999. Ph.D. thesis.

. R. Cipolla and A. E. Pentland. Computer Vision for Human-Machine Interaction.

Cambridge Univ. Press, Cambridge, UK, 1998.

. G. Doherty, M. Massink, and G. Faconti. Reasoning about interactive systems with

stochastic models. In C. Johnson, (Ed.), DSVIS . Springer, 2001. LNCS 2220.

. G. Faconti, and M. Massink. Analysis of pointing tasks on a white board — Ex-

tended version. CNR-ISTI Technical report 2006-TR-24, CNR, 2006.

. P. M. Fitts. The information capacity of the human motor system in controlling

the amplitude of movement. Journ. of Ezp. Psychology, 47:381-391, 1954.

. Mimio interactive whiteboard, 2005. http://www.mimio.com.
. R. J. Jagacinski, D. W. Repperger, M. S. Moran, S. L. Ward, and B. Glass. Fitts’

law and the microstructure of rapid discrete movements. Journ. of Exp. Psychology:
Human Perception and Performance, 6(2):309-320, 1980.

G. D. Langolf, D. B. Chaffin, and J. A. Foulke. An investigation of Fitts’ law using
a wide range of movement amplitudes. Journ. of Motor Behav., 8:113-128, 1976.

F. Letessier, J. Bérard. Visual tracking of bare fingers for interactive surfaces. In
ACM Symposium UIST, Santa Fe, NM, USA, 2004.

I. S. MacKenzie. Fitt’s law as a research and design tool in human-computer
interaction. Int. Journ. of HCI, 7:91-139, 1992.

I. S. MacKenzie and R. Balakrishnan. Performance differences in the fingers, wrist,
and forearm in computer input control. In S. Pemberton, (Ed.), ACM-CHI Conf.
on Human Factors in Comp. Sys.. ACM Press, 1997.

I. S. MacKenzie and W. Soukoreff. Card, english, and burr (1978) — 25 years later.
In Extended Abstracts of the ACM-CHI Conf. on Human Factors in Computing
Systems, pages 760-761. ACM, 2003.

A. Murata. Extending effective target width in Fitts’ law to a two-dimensional
pointing task. Int. Journ. of Human-Computer Interaction, 11(2):137-152, 1999.

C. E. Shannon and W. Weaver. The mathematical theory of communication, 1949.
A. D. Swain and H. E. Guttmann. Handbook of human reliability analysis with
emphasis on nuclear power plant applications - final report, 1983. Technical Re-
port NRC FIN A 1188 NUREG/CR-1278 SANDS&0-0200. Prepared for Division of
Facility Operations; Office of Nuclear Regulatory Research; Nuclear Regulatory
Commission; Washington D.C. 20555.

A. T. Welford. The measurement of sensory-motor performance: survery and reap-
priasal of twelve years’ progress. Ergonomics, 3:189-230, 1960.

A. T. Welford. Fundamentals of skill, 1968.



Mixed-Fidelity Prototyping of User Interfaces

Jennifer N. Petrie and Kevin A. Schneider

Department of Computer Science, University of Saskatchewan,
Saskatoon, SK S7N 5C9, Canada

Abstract. We present a new technique for user interface prototyping, called
mixed-fidelity prototyping. Mixed-fidelity prototyping combines and supports
independent refinement of low-, medium-, and high-fidelity interface elements
within a single prototype. Designers are able to investigate alternate, more inno-
vative designs, and are able to elicit feedback from stakeholders without having to
commit too early in the process. The approach encourages collaboration among
a diverse group of stakeholders throughout the design process. For example, in-
dividuals who specialize in specific fidelities, such as high-fidelity components,
are able to become involved earlier on in the process.

We developed a conceptual model called the Region Model and implemented
a proof-of-concept system called ProtoMixer. We then demonstrated the mixed-
fidelity approach by using ProtoMixer to design an example application.

1 Introduction

User interface prototyping is a process for creating mock-ups representing the user in-
terface of the final software system. Prototypes serve as a common language between
stakeholders, offering a way for designers to explore design ideas and elicit feedback
from stakeholders prior to committing to designs. Prototypes aid in refining require-
ments and may be used as a specification for developers. Prototyping is important in
arriving at a well-designed user interface.

Different fidelities of prototypes can be explored during the prototyping process:
low-, medium-, and high-fidelity. Fidelity refers to how closely the prototypes resemble
the final product in terms of visual appearance, interaction style, and level of detail [17].
Each fidelity of prototype uses different techniques and mediums and each is important
at specific stages in the design process [14]. The commonly accepted best practice of
prototyping encourages starting with low-fidelity prototypes then moving to medium-
and finally to high-fidelity, refining whole prototypes at each fidelity prior to advancing
to a higher-fidelity.

We have identified some shortcomings with this current best practice. Designers
typically only work on one fidelity at a time and, while prototyping is often termed °“it-
erative’, designers often only iterate within a specific fidelity. These shortcomings force
designers to make decisions on some design issues earlier than desired as well as un-
desirably delay investigating other more pressing issues. Also, because different fideli-
ties are performed on different mediums and tools, there is a lack of traceability in the

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 1991212, 2007.
© Springer-Verlag Berlin Heidelberg 2007



200 J.N. Petrie and K.A. Schneider

process and transitioning back or forth between fidelities requires significant effort. Fur-
thermore, this practice does not encourage novel designs to be explored. Also, current
practice lacks collaboration between various stakeholder groups, such as end users and
software developers. These shortcomings are evident in and reinforced by the existing
support tools.

To address these shortcomings we have developed the mixed-fidelity prototyping
approach. Mixed-fidelity prototyping involves combining multiple fidelities within a
single prototype. This allows designers to independently explore and refine individual
elements within a prototype, while maintaining the element within the context of the
overall design. By mixing fidelities, we aim to enhance the collaboration throughout
the prototyping process by bringing together various stakeholder groups earlier on and
allowing for more active participation. We utilize a large interactive display workspace
in this research to further encourage collaboration.

In the remainder of this paper, we discuss related work on prototyping techniques
and tools as well as collaborative large display projects. Next, we describe the mixed-
fidelity prototyping approach further and include a conceptual model we developed,
called the Region Model, for supporting the approach. We also provide an overview
of a proof-of-concept system called ProtoMixer. Finally, an example design session is
presented where ProtoMixer is used to design an example application to illustrate the
approach.

2 Background

Low-fidelity prototypes are best used early in the design process when trying to under-
stand user requirements and expectations [14]. Low-fidelity prototypes are created on
physical mediums such as paper, whiteboards, or chalkboards. Freehand sketching is
one of the most common techniques for low-fidelity prototyping as it allows for ideas
to be left intentionally vague and informal [[11] and it encourages thinking [16].

Medium-fidelity prototypes are refined versions of the low-fidelity prototypes and
are created on the computer. Medium-fidelity prototypes are commonly created using
multimedia design tools, interface builders, or scripting languages such as tcl/tk [12]].

High-fidelity prototypes are refined versions of the medium-fidelity that typically
have some level of functionality implemented and may link to some sample data. High-
fidelity prototypes are computer-based prototypes that are often developed using in-
terface builders or certain scripting languages to speed up the process. High-fidelity
prototypes are particularly useful for performing user evaluations as well as for serv-
ing as a specification for developers and as a tool for marketing and stakeholder
buy-in [14].

The majority of prototypes are developed using some type of support tool. One of the
most widely used class of tools is Interface Builders, such as Microsoft® Visual Basic®,
Borland® Delphi™, and Metrowerks™ Code Warrior™. Interface Builders aid designers
in creating and laying out interfaces by allowing for interface components to be dragged
into position on the desired screen. Interface Builders may be used for high-fidelity



Mixed-Fidelity Prototyping of User Interfaces 201

and, to a lesser extend, medium-fidelity prototyping. Interface builders are restrictive in
terms of what designs designers can build as well as the order in which designers have
to build it and they require significant time and effort to create a prototype.

Another widely used class of tools is Multimedia Design tools, which includes com-
mercial tools such as Macromedia® Director® and Flash® as well as Apple® Hyper-
Card® and tools from the research community such as DEMAIS [1] and Anecdote
[S]. Multimedia design tools are useful in creating and demonstrating storyboards in
medium-fidelity prototyping as they allow for creation of images that can represent
user interface screens and components as well as for playing out navigational transi-
tions from one screen to the next. On the negative side, the interactivity supported by
multimedia design tools is very limited, usually to only basic mouse clicks, and so is
support for creating functionality and tying in data.

A number of tools support freehand sketching. SILK [9], one of the first tools to
support informal sketching of user interfaces, also provided support for transitioning
to a higher-fidelity through automatic interface component transformation to working
components. DENIM [10] is a tool aimed at supporting the early stages of web design
through informal sketching and provides for creating and running designs of different
levels of granularity (from sitemap to storyboards to individual pages) [[10].

In recent years, researchers have shown considerable interest in attempting to bridge
the gap between interface and software design through a series of workshops [[6/718].
Gurantene et al. [4] argue for using high-fidelity prototypes as a bridging artifact. How-
ever, prototyping tools lack support for the diverse roles of user interface designers,
graphic artists, software engineers, and end users.

Design workspaces and, more specifically, work surfaces influence collaboration
[2415]. For instance, work surfaces help focus designers attention and aid in express-
ing creativity. Furthermore, workspaces provide a medium for designers to communi-
cate through with actions such as drawing, writing notes, and gesturing to emphasize or
reference previously made points. For these reasons, design teams must have suitable
workspaces. We use large displays in our research as large display workspaces are con-
ducive to collaboration, allowing for multiple people to simultaneously work directly
at the surface while allowing for everyone in the room to be aware of the workspace
content.

3 Mixed-Fidelity Prototyping

Mixed-fidelity prototyping involves combining multiple fidelities within a single pro-
totype. As an example, consider having a sketched screen design that contains various
sketched elements. The sketch may also contain images in place of sketched elements
and also could have one or more interface elements presented as high-fidelity work-
ing components. The sketched elements or images may also be given some form of
behavior similar to what they would possess at traditional higher-fidelities.
Mixed-fidelity prototyping allows designers the opportunity to focus on a specific
interface issue, by exploring it at higher-fidelities and making refinements as needed. In



202 J.N. Petrie and K.A. Schneider

the mean time, other aspects of the prototype may be left at a lower-fidelity, delaying
decisions while allowing designers to redirect their time and efforts to the more pressing
design issue(s). Also, by leaving other elements at lower-fidelities, designers are able
to explore the higher-fidelity elements while keeping them within the context of more
complete screen designs.

Mixed-fidelity prototyping varies from the traditional process, which limits iteration
to occur within the current fidelity. Also, traditional practice does not encourage ad-
vancing to the next higher-fidelity until ideas have been refined at the current fidelity
and does not encourage skipping fidelities. Finally, traditional practice discourages it-
erating to a higher-fidelity at the element level, rather only once the whole prototype
is ready for advancement. Figure [[ldepicts the limited iterative nature of the traditional
prototyping process.

N ry M

Low mmp Medium msmp High

A R O

Fig. 1. Traditional prototyping process with limited iteration opportunities

Mixed-fidelity prototyping is a fully iterative process. Designers may advance to
any higher-fidelity at any point in time as well as revert back to any earlier fidelity as
desired. Also, mixed-fidelity prototyping allows iterative refinement at the element level
rather than only for the overall design. Figure [2] show the iterations possible with our

mixed-fidelity approach.
Cg\/i ediu mg
High

Fig. 2. Mixed-fidelity prototyping as a fully iterative process

Prior to developing our model and prototype we designed several collaborative pro-
totyping scenarios. We used these scenarios to discover unique issues that could be
addressed with mixed-fidelity prototyping. We identified the following novel or key
concepts: (1) mixing elements of multiple fidelities in a single prototype, (2) transi-
tioning between the fidelities as ideas are refined, (3) integrating domain-specific data
and functionality, (4) exploring novel interactive elements, (5) comparing alternative
designs, and (6) recording the design process. These issues are not easily possible or
supported under current practice and with existing tools.



Mixed-Fidelity Prototyping of User Interfaces 203

4 The Region Model for Mixed-Fidelity Prototyping

We developed a conceptual model, called the Region Model, to support mixed-fidelity
prototyping. Prototypes are composed of multiple elements on the design space. Proto-
types are composed using the region metaphor by overlaying regions on other regions to
arrive at a desired design. Overlaid regions are related in a parent-subregion hierarchy.
The root region is also referred to as the design space. Figure [3lillustrates how regions
can be used to compose prototypes.

[ (Overlaid on A) ] [ ]

(Overlaid on A)

150000 145000 148000

6000
155000 150000 154000

12000 14000 16000

72000 75000 77500
Profit (Pre-tax) 83000 75000 77500
.

A B1 B
(Overlaid on Roof) (Overlaid on B) (Overlaid on Roof)

Fig. 3. Using the concept of regions to compose prototypes

Regions have both visual properties as well as associated behaviors. The visual pre-
sentation or form that a region takes is represented as assets, where assets may be
sketches, images, or high-fidelity widgets, for example. A region have spatial and visual
attributes, such as x, y, and z coordinates, width and height, as well as color and trans-
parency. A region may be associated with a layout algorithm to automatically position
its subregions. Finally, regions have a history list, which are clones of themselves over
a period of time.

Behavior is represented as scripts that are bound to regions, where the scripts perform
manipulations on regions. Scripts are made up of commands, which are used to perform
basic manipulations on regions such as modifying their size or position.

Regions may be connected through relationships. Relationships specify that a change
in one region’s properties affect other regions. Relationships may exist for two main
purposes: to bind behaviors and to indicate navigational flow.

The Region Model can be used to describe the current and historical state of the pro-
totypes being designed as well as the design space itself and how alternative prototypes
are arranged within the design space. Figured]is a UML Class Diagram illustrating the
major concepts in the Region Model.



204 J.N. Petrie and K.A. Schneider

DesignSpace Relationship

name : String
1 sourceProperty : String
targetProperty : String

Vhas root show : Boolean
i 0.* 1
. 0.%* Region i
has sub-regions a = 1 is part of »
1| x : Integer .
oY ¢ Integer 2 4exists between
2 = 1z : Integer
hasvermonSA[::::; width : Integer
height : Integer
0.1 colgr : Colorg L 4has | Command
has parenta alpha : Integer target | parameters :
17 1 1 Set <String>
& Sas 1%
® has So,..
N layout G a has
0% » 4 a command
Asset 0.1 0.1 ‘]
Layout Script

type : String
location : URL

Fig. 4. Region Model illustrated as a UML Diagram

An XML[3]] based notation was developed for specifying the Region Model. Below
is an example XML document describing the design space in Figure

<DesignSpace>
<Region name="Root" x="..." y="..." ... parentRegion="null">
<Region name="A" x="..." y="..." ... parentRegion="Root">
<Asset type="Image" location="..."/>
<Region name="A1" x="..." y="..." ... parentRegion="A">
<Asset type="Image" location="..."/> </Region>
<Region name="A2" x="..." y="..." ... parentRegion="A">
<Asset type="Image" location="..."/> </Region>
</Region>
<Region name="B" x="..." y="..." ... parentRegion="Root">
<Asset type="Image" location="..."/>
<Region name="B1" x="..." y="..." ... parentRegion="B">
<Asset type="Image" location="..."/> </Region>
</Region>
</Region>
</DesignSpace>

5 ProtoMixer: Software Support for Mixed Fidelity Prototyping

ProtoMixer, shown in Figure[3] is a proof-of-concept system developed to support the
mixed-fidelity prototyping approach. ProtoMixer is implemented in Java and the graph-
ics rendering is with Java2D. ProtoMixer is intended to be an easy to use, lightweight
system, much in the same manner as a basic drawing editor. All objects may be po-
sitioned anywhere on the workspace, which is the same as the canvas in a drawing



Mixed-Fidelity Prototyping of User Interfaces 205

. statementview

Business Forecasting ool
[ —]

Tope of Statement

Income Shdeart
(T ar 2905)

Fig. 5. Screenshot of ProtoMixer

editor; placement of objects is not restricted by frames and borders as with other tools
like Interface Builders. Also, there are no menu bars; all system operations are either
performed directly on the object or through a simple command panel (cf. Figure[G)).

ProtoMixer supports the integration of elements of any fidelity through the use of
assets. In the current version of ProtoMixer, assets may be of these types: sketch, image,
and widget, where each of these types clearly corresponds to a fidelity. These assets
can then be created outside of ProtoMixer using tools and mediums that designers are
accustomed to. For example, sketches can be created on paper and then be scanned as
images and imported into ProtoMixer. As well, images can be created in the designers’
favorite multimedia application. High-fidelity components can be coded in an Interface
Builder or from scratch and be imported into our system. These components may be
any of Java’s pre-built widgets, such as high-level control components (like JTables and
JTextFields) as well as lower-level general purpose container objects such as JPanel
and JscrollPane. ProtoMixer also allows for custom-built components, as long as they
extend from JComponent class. ProtoMixer also provides limited support for sketching
directly within the tool.

Prototypes are composed in ProtoMixer by overlaying regions on top of other re-
gions. Visual properties can then be adjusted for regions by specifying new values in the
command panel. Then prototypes and/or their elements can be given behavior through
a few different approaches: constraints, animation, and bindings. ProtoMixer supports
generic binding between high-fidelity elements using the observer design pattern.

ProtoMixer offers a variety of features, too many to discuss in this paper (see
for further details). For example, it supports automatic layout of prototypes and/or
their elements. It also supports prototype storyboarding through animating the naviga-
tional flow between the prototype screens by either highlighting the screens in order of



206 J.N. Petrie and K.A. Schneider

ene Palette
| Co +
Go All Show Rel |
S el
Load File ) Draw
Name
X: A&
Width Height
Parent
Asset

Update | Add Region

undo redo

Fig. 6. Screenshot of ProtoMixer’s command panel

navigation or by laying screens out on top of one another and flashing through in se-
quence. Also, ProtoMixer supports logging of design activities for undoing actions and
supports importing and exporting of the design space contents.

A set of commands is built in to ProtoMixer to manipulate properties of regions.
For example, there are commands to scale, move, select, clone and animate regions.
Manipulating properties is important in constructing prototypes as well as in managing
the design space. Commands can be grouped into scripts, stored and later recalled.

ProtoMixer utilizes a large display workspace, currently running on four 30” Apple
Cinema Displays® each at a resolution of 2560x1600 pixels for a total of 16 megapixels.
The high-resolution workspace allows for multiple designs to be worked on and for
multiple designers to participate in the design session.

6 Example Mixed Fidelity Design Session

In this section, to illustrate the mixed fidelity prototyping approach, we look at an ex-
ample design session for prototyping a business forecasting tool, used by businesses
for estimating their revenue and expenses and ultimately profit for some future period.
Forecasting involves estimating a number of factors and with so many factors and pos-
sible values for each factor, it is most effective to take a visual approach where users
can play through different situations and have the effects visualized in charts on the fly.
In this example application, adjusting the factor value (x axis value) on charts causes a
shift in the corresponding chart’s profit curve as well as causes the underlying financial
statements to be updated. Note that this application is for illustrative purposes and the
mixed-fidelity approach is intended to generalize beyond this domain.

We start by sketching designs using an external drawing application. Note that we
also could have drawn the designs on paper and then scanned them in as images. We
then import these sketches into ProtoMixer as images and specify them as regions’
assets (done through an XML input file). All of the sketches are then displayed in Pro-
toMixer in the Repository Region. Refer to Figure [/l for the initial state of ProtoMixer.



Mixed-Fidelity Prototyping of User Interfaces 207

== .

—

Chart View [ Financial Statement View J

Fig. 7. Initial sketches of two views of forecasting data

(1) Mixing multiple fidelities in a single prototype. We proceed with prototyping by
adding further details to the sketches such as labels for the chart axes and pull-down
menus for selecting cost and revenue drivers as well as the desired time period.

Next we want to give the sketched charts a more refined look, so we create medium-
fidelity images of the charts using an external tool. We import these assets and overlay
them on top of the sketched versions on the Chart View.

Now we turn to working on refining the table element in the Financial Statement
View. We sketch out example data to put into the table and then import that new sketch.
As we are confident the table will be used in the final design, we move it to high-fidelity.
Specifically we create a new region and set its asset to be a JTable widget. This region
is then overlaid on top of the sketched table. The prototypes created thus far are shown
in Figure[8]

(2) Transitioning between the fidelities as ideas are refined. After reviewing the pro-
totypes at that point, we come up with a new design for more interactive charts which
involves changing the appearance of the charts. Rather than starting from scratch, Pro-
toMixer allows us to turn off a layer to hide the images of the charts, thus reverting to
the original sketched charts. Using ProtoMixer’s built-in sketching feature, we update
the sketches to include a vertical guide bar, to emphasize which x value the user has
specified. Then we create and import medium-fidelity images matching these refined
charts and overlay them onto the sketches. The resulting designs are shown in Figure[0l

(3) Integrating domain-specific data and functionality. We now make some high-
fidelity updates to give the users a better appreciation for what the final software
will be. First off, we add real data to the high-fidelity data component by setting the
JTable’s data and updating the region’s asset to point to the new table. Then we insert
a high-fidelity text field on top of the low-fidelity version. Next we connect the table’s
data to the profit field, as the profit’s value is calculated based on the table data. This
connection is done using the high-fidelity binding feature. From now on, modifying
the table automatically updates the profit text field. The resulting design is shown in
Figure



208 J.N. Petrie and K.A. Schneider

Busimess Horecasting Jos|

Bsness Forecasting Tol

! | Tpe of Shbemert [T

Revenues ‘ Costs
|

Pofid Pk
i Rof,

ol

N
2

e
|
|
|
=
|
|
|
i

A
H
I}

[

r

0

Images with
vertical bars

= added
[:;;‘ ok B B - | (medium-fidelity)

i

Fig. 9. ‘Chart View’ after adding updated images of charts

(4) Exploring novel interactive elements. Next we further explore the charts’ behavior
and interactivity. We want the x-axis of the chart to behave like a slider bar so the user
can then slide through the different x-values and have the effects on the other chart
visualized immediately by shifting the curve. Such a design is rather unique and is not
implemented in any standard toolkit.

We start off by creating a series of medium-fidelity images that illustrate their ap-
pearance at some instance in time. Next we set these new charts as the assets of the
most recent charts. We are careful to add the charts in sequential order to allow for ani-
mation of the chart’s behavior. We now animate the charts by using the flash animation
feature to see the resulting effects of moving sliders.

Now we need to move to a higher-fidelity design with these chart components, giving
them some actual behavior. We work on the main chart area first. As Java’s standard
toolkit does not offer a chart widget, we implement a simple one on our own to look
like the sketched charts. Then we need to use a slider widget for specifying an active
x-axis value, so we make use of the JSlider from Java’s standard toolkit. We overlay the
chart on the sketched chart and then position the slider along the chart’s x-axis.

Now that we have the key elements to create our novel chart component, we need to
connect them together so a slider’s value modifies the other chart’s curve. We do this by



Mixed-Fidelity Prototyping of User Interfaces 209

fofit | .. .
- -..| JTextField added
—l | (high-fidelity)

Q‘ income
) Sales 150000 145000 148000
Investments 5000 5000 6000
Total 155000 150000 154000
) JTable filed with
= Material 12000 14000 16000
Labour 60000 61000 65000 exam'?'e d,ata_added
o Total 72000 75000 77500 (high-fidelity)
u Profit (Pre-tax) 83000 75000 77500

Fig. 10. ‘Financial Statement View’ after adding the high-fidelity text field and table with data

Interactive chart Kevenu i
added Al
(high-fidelity) | ’
JSlider added | [z
(high-fidelity)

Fig. 11. ‘Chart View’ after composing a lightweight novel chart element

)

Eeiee]

()

binding the high-fidelity chart and slider components, again using the binding feature.
Now we can see that dragging one chart’s slider modifies the other chart and this can
be demonstrated to other stakeholders. The resulting design is shown in Figure [Tl

(5) Comparing alternative designs. Now we want to explore an alternative layout
for the prototype. We sketch out an alternate layout idea, which tries to incorporate
the charts and financial statements in the same view so no details are hidden from the
user. We import this sketch as well as a sketched version of our current layout and use
the automatic layout feature to position the two designs side-by-side. We then want to
annotate the two designs with pros and cons of each. We annotate them by creating
two high-fidelity JTextArea widgets and type the annotations into the text areas. These
annotations can then be associated with a particular design and hidden and unhidden as
desired. The resulting state of ProtoMixer is shown in Figure

6) Recording the design process. Later on assume that a software developer is working
on the full implementation of the chart components. As no standard component exists,
the developer needs to get a thorough understanding of what this chart does and how
evolved into the current chosen design. The developer uses ProtoMixer to look back



210 J.N. Petrie and K.A. Schneider

Alternative#1 Alternative#2

= \ e

B

lternative #2
ternative #1 - lets user see how financial statements
- less crowded screen re impacted by changing cost & revenug
- room for more graphs drivers
- abstracts details away - less room for more charts

[ JTextAreawith )
“| annotations added |’
(high-fidelity)

Fig. 12. Annotating the two alternate layouts with pros and cons

Charts historical |
versions displayed

Fig. 13. Center region displays historical versions of the Revenue Chart

at previous versions, or more specifically, the evolution of the chart using the view
versions feature. ProtoMixer then pops up a new region next to the specified chart with
all of the versions. This state is shown in Figure[13l

7 Conclusion

This research presented a new approach to user interface prototyping called mixed-
fidelity prototyping. Mixing fidelities allows designers the flexibility to focus on one
specific aspect of a prototype at a time, by exploring that aspect in the various fidelities.
In turn, our approach allows for designers to defer the exploration of less urgent issues,
unlike current techniques and tools that heavily restrict designers in their workflow. For
example, with Interface Builders designers are immediately forced to choose a layout
and specific component types when composing a prototype. Our approach also allows
individuals with expertise in a specific fidelity to be involved in that fidelity earlier on.
For example, a software developer can begin implementing a high-fidelity component
for the prototype at an early stage.



Mixed-Fidelity Prototyping of User Interfaces 211

Our approach also addresses some of the issues or shortcomings with the current pro-
totyping practice: multiple fidelities may be explored at any given time, iteration may
occur between any of the fidelities, user interface designers may better collaborate with
each other and with other stakeholders, and potentially more innovative user interface
designs may follow. Also, our approach adds continuity and traceability to the process
by offering a single unified tool for prototyping in while allowing for designers to still
take advantage of paper and whiteboard-based designs that they are familiar with.

ProtoMixer has several benefits over other existing prototyping tools. With Pro-
toMixer, prototypes can be composed of multiple fidelities, and elements are easily
refined and transitioned between different fidelities. Individual elements can be tied into
data and functionality, and can be executed inside prototypes. As well, traditional infor-
mal practices such as sketching and storyboarding are supported on the mediums that
designers are accustomed to. Furthermore, ProtoMixer aids the designers by recording
the history of the design process. Finally, ProtoMixer is designed for collaborative use
on a high-resolution, large display workspace.

A secondary aspect of this research was to enhance the collaborative nature of proto-
typing by utilizing a large display workspace. Previous work has shown the benefits of
using large displays in collaborative settings and in design settings in particular. Large
displays seem ideal for this domain of prototyping, a visually rich, team-based domain.
While we did not formally evaluate the benefits of using a large display workspace,
it is evident that exploring multiple designs at once, whether it be exploring alterna-
tives or exploring more than one screen design at once, requires more resolution than
available on traditional-sized displays. Using tiled high-resolution displays to create a
large-display workspace is conducive to our Regions Model and supports our approach
well.

Preliminary use of the prototype has been positive, however, a next step in this re-
search is to perform a field study to further evaluate mixed-fidelity prototyping using
ProtoMixer. It may be interesting to compare the results of expert versus novice design-
ers, and to evaluate the usefulness of ProtoMixer as a single-user versus a collaborative
tool.

References

1. BAILEY, B. P., KONSTAN, J. A., AND CARLIS, J. V. Demais: designing multimedia appli-
cations with interactive storyboards. In Proceedings of the ninth ACM international confer-
ence on Multimedia (2001), ACM Press, pp. 241-250.

2. BLY, S. A. A use of drawing surfaces in different collaborative settings. In Proceedings of
the ACM conference on Computer-supported cooperative work (1988), ACM Press, pp. 250—
256.

3. BrRAY, T., PAOLI, J., SPERBERG-MCQUEEN, C. M., MALER, E., AND YERGEAU, F.
Extensible markup language (XML) 1.0 (third edition). W3 Recomendation available at:
http://www.w3.0rg/TR/2004/REC-xml-20040204 - Accessed on November 3, 2005.

4. GUNARATNE, J., HWONG, B., NELSON, C., AND RUDORFER, A. Using evolutionary
prototypes to formalize product requirements. In Bridging the Gap 1I Workshop at ICSE
(2004).



212

10.

11.

12.

13.

14.

15.

16.

17.

J.N. Petrie and K.A. Schneider

. HARADA, K., TANAKA, E., OGAWA, R., AND HARA, Y. Anecdote: a multimedia story-

boarding system with seamless authoring support. In Proceedings of the fourth ACM inter-
national conference on Multimedia (1996), ACM Press, pp. 341-351.

. JoHN, B. E., BAss, L., KAZMAN, R., AND CHEN, E. Identifying gaps between hci, soft-

ware engineering and design, and boundary objects to bridge them. In Workshop at CHI'04
(2004).

. KAzZMAN, R., BASs, L., AND BOSCH, J. Bridging the gaps between software engineering

and human-computer interaction. In Workshop at ICSE’03 (2003).

. KAzZMAN, R., BASS, L., AND JOHN, B. E. Bridging the gaps ii: Bridging the gaps between

software engineering and human-computer interaction. In Workshop at ICSE’04 (2004).

. LANDAY, J. A., AND MYERS, B. A. Interactive sketching for the early stages of user

interface design. In Proceedings of the SIGCHI conference on Human factors in computing
systems (1995), ACM Press/Addison-Wesley Publishing Co., pp. 43-50.

LIN, J., NEWMAN, M. W., HONG, J. I., AND LANDAY, J. A. Denim: finding a tighter fit
between tools and practice for web site design. In Proceedings of the SIGCHI conference on
Human factors in computing systems (2000), ACM Press, pp. 510-517.

LIN, J., THOMSEN, M., AND LANDAY, J. A. A visual language for sketching large and
complex interactive designs. In Proceedings of the SIGCHI conference on Human factors in
computing systems (2002), ACM Press, pp. 307-314.

OUSTERHOUT, J. K. Tcl and the Tk toolkit. Addison-Wesley Longman Publishing Co., Inc.,
1994.

PETRIE, J. Mixed fidelity prototyping of user interfaces. Master’s thesis, University of
Saskatchewan, 2006.

RUDD, J., STERN, K., AND ISENSEE, S. Low vs. high-fidelity prototyping debate. interac-
tions 3, 1 (1996), 76-85.

TANG, J. C., AND LEIFER, L. J. A framework for understanding the workspace activity
of design teams. In Proceedings of Conference on Computer-supported cooperative work
(1988), ACM Press, pp. 244-249.

TVERSKY, B. What does drawing reveal about thinking? In Proceedings of Visual and
spatial reasoning in design (1999), pp. 93—-101.

WALKER, M., TAKAYAMA, L., AND LANDAY, J. A. High-fidelity or low-fidelity, paper
or computer medium? In Proceedings of the Human Factors and Ergonomics Society 46th
Annual Meeting (2002), pp. 661-665.



A Hybrid Approach for Modelling Early
Prototype Evaluation Under User-Centred
Design Through Association Rules

Maria Paula Gonzalez, Toni Granollers, and Jesus Lorés

Departament of Computer Science — Universitat de Lleida
C/Jaume II, 69 — 25001 Lleida, Spain
{mpg,toni, jesus}@diei.UdL.es

Abstract. One of the main activities in User Centred Design (UCD)
is prototype evaluation, which is traditionally performed by means of
an Evaluation Stage that looks for the redefinition of the prototype re-
quirements, involving quantitative and qualitative usability testing tech-
niques. This paper describes a new approach in which the traditional
methodology for performing the Evaluation Stage under UCD is embed-
ded in a framework with capabilities for mining association rules. This
allows to minimise the impact of the interpretation bias of the evaluation
team when analysing ambiguous user statements in natural language.

Keywords: UCD — Evaluation Stage — Data mining — Association Rules.

1 Introduction and Motivations

During the last decade, User-Centred Design (UCD) principles have proven to
be successful cutting costs in software development and increasing user satisfac-
tion and productivity [I]. When a software system is iteratively produced under
UCD a number of intermediate prototypes P, ..., P, are developed. Between
a prototype P; and its successor P;;; several intermediate stages are involved,
such as the Fvaluation Stage(ES whose main goal consists in contrasting the
usability@ features of the prototype P; against its requirements in order to refine
them. The main components for performing the ES for a prototype P; are shown
in full lines in Fig. [l Given the design of P; and its requirement specification
R;, different usability evaluation techniques are applied by the software devel-
opment team (DT) with an active user role. The aim of such techniques is to
refine the current set of requirements R; transforming it into a new requirement
definition R;;1 for a new (still undeveloped) prototype P;41. This redefinition

! In what follows we assume that the Evaluation Stage is always performed early
during the software development process (i.e. we focus on early prototypes) and
under a UCD perspective.

2 Usability is defined by the ISO 9241-11 norm as “the extent to which a product can
be used by specified users to achieve specified goals with effectiveness, efficiency and
satisfaction in a specified context of use”.

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 213 2007.
© Springer-Verlag Berlin Heidelberg 2007



214

1 attributes present I‘

equirements
redefinition

©

M.P. Gonzélez, T. Granollers, and J. Lorés

_____ = -
Users + - T om |§ Association Rules
Context L= % ' Engine b L. .
Documen- < 4 —.- —‘ Minimum Support:0.8 Confidence: 0.9
tation \ Number of cycles performed: 10
\\ Generate set of Large Itemset:
Size of Set of Large Itemset: L(1):11
LTI & Size of Set of Large Itemset: L(2): 14
o * Queries in~ — Size of Set of Large Itemset: L(2): 1
s MsaL 7
neg-=t Best 10 rules found:
1
_--L__ 1. prof=SoftDevelopment --> e=yes conf (0.98)
esign Pis S~
,* Ai(setof DB AN 2.sex=M --> e =yes conf (0.96)

AN inS) /) 3. sex=F -->e=yes conf (0.93)
uco N~ -7
Evaluation ? 4. prof=Psycology, [..] ——> e=no conf (0.9)
Techniques L
5. prof=HCI, [..] ——> e=yes, sex=M, [..] conf(0.93
S (usability P o L] yes, o L] ( )
— roblems for Pi) 6. prof=student, sex=M, [..]-—> e=yes, [..] con£f(0.93)
P; usability
metrics + 7. prof=teacher, [..] —-—> e=yes, [..] conf(0.93)
statistical
< results 8. prof=Engineering, [..]-—> e=yes, sex=F conf (0.92)

. prof=Informatics, [..]-—> e=yes conf (0.92)

10.prof=WebDesign —--> e=yes, [..] conf (0.9)

Fig. 1. Left: Schema of the Evaluation Stage for a prototype P; (full lines represent
the traditional approach whereas dotted lines stand for the new components introduced
for integrating association rule mining). Right: Ranked list RAR; of association rules
(best 10 out of 50 found) for the experiment in Section [] ([...] means that more at-
tributes were present in the rules, but without direct relation with this experiment).

is carried out by performing both a quantitative and a qualitative usability esti-
mation of P; to make explicit its usability features and problems, which will be
then contrasted against R; [I].

Qualitative usability estimation of a prototype P; is commonly carried out by
techniques based on the interpretation of the DT when analysing user statements
expressed in natural language [7]. The output of such techniques is a a set S; =
{s1,..., s} of usability problems (statements in natural language) that are used
to contrast the current requirements of P; against its design (as the usability
problems in S; express the problematic features in the design of P;) in order to
redefine those current requirements [I] (arrow (1) in Fig. ). As a result, a new
requirement definition R, is generated to be considered in the next cycle of the
iterative software production, where a new prototype P;;1 will be designed on
the basis of R;11. The interpretation bias of the DT when analysing ambiguous
user assertions leads to some lack of objectiveness. For this reason, one of the
most significative challenges in the ES is to define a usability testing process
that combines high expressiveness, minimum risk and a maximal objectiveness
level.

This paper describes the main features of a new, hybrid approach in which
the traditional methodology of the ES for prototypes is embedded in a frame-
work with capabilities for mining association rules. These rules will allow to
automatically find unbiased cause-effect relationships in data coming from the
definition of the requirements of P;. As a result, the DT will be able to use these
relationships to reinforce their understanding of qualitative usability problems



A Hybrid Approach for Modelling Early Prototype Evaluation 215

detected during the ES of P; in order to improve the requirement definition for
the next prototype Piy1.

2 Mining Association Rules: Fundamentals

Datamining involves a collection of techniques for the analysis of large data sets
in order to discover patterns of interest and extract potentially useful infor-
mation [6]. This extraction can be formalised as a process in which data from
(possibly) heterogenous sources are normalised and combined into a transac-
tional database, in which features or attributes are identified, and onto which
different techniques are performed to mine the available data.

Association rule mining [6] is a powerful datamining technique which allows
to find hidden relationships among attributes in a transactional database. Every
transaction consists of a set of items I = {i1,...,%,} and a transaction identi-
fier. Association rules (AR) are implications of the form A = B, where A C I,
B c I, and AN B = (). In addition to the antecedent A (the ”if” part) and the
consequent B (the "then” part), an AR has several interestingness measures that
express the quality of the rule. One relevant measure is called the support for
the rule, which is simply the number of transactions that include all items in the
antecedent and consequent parts of the rule. (i.e., the percentage of transactions
in D that contain AUB). Other important measure is known as the confidence of
the rule, and corresponds to the ratio of the number of transactions that include
all items in the consequent as well as the antecedent (namely, the support) to
the number of transactions that include all items in the antecedent. (i.e. the per-
centage of transactions in D containing A that also contain B). Computing ARs
is computationally complex task, and several efficient algorithms (e.g. APRIORI
or FP-GROWTH [6]) have been developed. The AR mining process generates
usually a huge number of rules, making it necessary to provide powerful query
primitives to post-process the generated rulebase, as well as for performing selec-
tive, query based generation [I4]. Several specialised query languages have been
proposed in the literature such as MSQL [14] and DMQL [6], among others.

3 Enhancing Early Prototype Evaluation Through ARs

We have developed an hybrid approach for modelling Qualitative Evaluation in
which the elements detailed in Section [I] are integrated with new components
for carrying out association rule mining. These new components are depicted
in dotted lines in Fig. [ (left). The traditional use of the results coming from
the qualitative usability testing of the prototype (arrow 1 in Fig. [I]) is comple-
mented by an AR-based approach (arrow 2). This new hybrid approach intents
to generate a more objective and expressive output set of usability problems by
minimizing the impact of the interpretation bias of the DT when interpreting
ambiguous user statements expressed in natural language that were generated
during the Qualitative Evaluation process.



216 M.P. Gonzélez, T. Granollers, and J. Lorés

In the proposed framework the input for the process is similar as before (an
early prototype design P;, and its requirement specification R;). Both quantita-
tive and qualitative usability problems are measured by UCD Evaluation Tech-
niques. Qualitative results are compiled in a set S; = {s1,..., s} of usability
problems expressed as natural language sentences. At the same time, all the het-
erogeneous information coming from the development of the current prototype
(e.g. data from the definition of context of use, user profiles or organisational
requirements specifications for Py) are collected in a database DB

In the new, extended framework the DT can now formulate queries which
will provide them with additional information (a list of ranked association rules
RAR;). These ARs express hidden cause-effect relationships among attributes
present not only in the set S; of usability problems but also in the information
provided by users during the specification of R;, stored in DB. This new ranked
list RAR; will help to cope with the impact of the interpretation bias of the DT
when analysing ambiguous elements in S; to redefine R; into R;41. In particular,
those attributes from DB present in S; are included in a set A; and used by the
DT members to pose queries expressed in a MSQL language. These queries are
processed by a front-end module linked with with the actual DM engine which
provides the algorithms required for processing the database DB and obtaining
ARs from it. As an output, the front-end module provides a ranked list RAR;
for the prototype P;. Every item in RAR,; represents a non trivial and hidden
cause—effect relationship present in the DB. Adding RAR; to the original us-
ability problem list .S; provides a new perspective to interpret ambiguous user
statements in natural language when contrasting the design of P; with the con-
clusions coming from the qualitative usability measure. It must be noted that
as the DB collects information coming from users, the UCD perspective of our
hybrid approach is reinforced.

4 Experimental Results

In this Section we will summarise the results obtained after using the proposed
approach for the development of a web site under a UCD perspectiveE The web
site is intended for educational purposes. The development team DT was formed
by two CS students, one usability expert, one CS professional with experience
in DM techniques and an interdisciplinary group of six university students (final
users). The WEKA [] platform was available for performing datamining, and
its interface was used as a basic MSQL front-end for posing queries.

Experiment (sketch): Following the first part of the methodology shown in
Fig. M (dotted lines) a first prototype P; was developed. An exhaustive poll
was carried out on the Web to specify the context of use and the user profiles.

3 Notice that spreadsheets and databases used to compute the quantitative usability
can be used when constructing the database DB.

* The final version of this web can be found at http://www.mpiua.net. It was devel-
oped in the GRIHO Labs at the Universitat de Lleida (Spain).



A Hybrid Approach for Modelling Early Prototype Evaluation 217

More than 200 results were compiled in a relational database and used to define
the requirement specifications Ry for P;. Then the prototype P, was designed,
including a wide spectrum of resources (such as information, bibliography, etc.),
the possibility of registering as a user and having a discussion forum, and re-
stricted access to examples (depending on features provided in the registration,
e.g. profession). Next the ES was performed. The design of P; was confronted
against its requirements R; by evaluating the usability of the design P;. The ex-
tended approach proposed in this paper was used to perform the redefinition of
requirements in R;. Quantitative results were summarised into statistical graph-
ics . Qualitative results were compiled as a set S; = {s1,..., 55} generated by
means of a Focus-Group [9] and a Stakeholders Meeting [7]. Five elements in Sy
were problematic as different members in the DT had conflicting opinions about
their relevance and no clear evidence could be found based on the statistical
information. Four of these problems (80%) could be treated with our approach.
We will summarise the analysis made by the DT during the contrast between
the requirement r; = {The web must include a resource called “examples”} and
the usability problem s, = {There is no agreement with the necessity of hav-
ing an hyperlink called “examples”: should it be available only for determinate
users?}. As the most relevant issue present in the usability problem s; was the
DB attribute “examples” and this attribute was one of the elements in Sy, the
methodology presented in Section Bl could be used this case. The DT defined the
following query in MSQL language: GetRulesD B where [Antecedent has {prof=*
or sex=*} and Consequent has {e=*} and support > 0.8 and confidence > 0.9] In
this query “prof” and “e” stand for “profession” and “examples”, resp. The query
was adapted for the basic front-end interface provided by the WEKA platform
and solved by the WEKA datamining engine using the APRIORI Algorithm [6].
As shown in the above query, the ranking function was a combination of a par-
ticular threshold for support and confidence. The final result was the list RAR;
depicted in Fig. [ (right). Finally, the DT confronted the usability problem s, as
well as the elements of the ranked list RAR; against the requirement r;. The ev-
idence provided by RAR; was strong enough to disregard the usability problem
s4 and avoid the redefinition of the requirement r;. The iterative development of
the final web continued with the design of next prototype P> on the basis of Rs.

5 Related Work. Conclusions

To the best of our knowledge, there is no similar approach to integrate datamin-
ing techniques (such as association rules) for performing the Evaluation Stage
within other models for software development related to UCD [TJ2J9UTOITTIT2T3]
as presented in this paper. Indeed, there are other proposals where association
rules are used for assessing usability, but always on fully developed, executable
software products (i.e., when the prototype design is no longer an issue), par-
ticularly in the context of user interfaces [8]. Datamining techniques have been
successfully integrated for interface development in web sites. For example, the

® To consult quantitative results see http://www.alzado.org/articulo.php?id art=417).



218 M.P. Gonzélez, T. Granollers, and J. Lorés

Awusa framework [I5] presents an automatic tool for evaluating usability in
web sites by combining logging techniques and datamining along with the static
structure of the web site. Another example is described in [B], where logging
techniques are applied based on browsing activities performed by users.

In this paper we have presented a novel approach for integrating association
rule mining with the traditional formulation for Prototype Evaluation under
UCD. Our experiments have shown that our proposal can be successfully applied
to early stages in the life cycle of software developmentcontributing to a better
understanding of results from qualitative usability testing for P;, allowing a
more accurate redefinition of its requirements for the next prototype P;41. Part
of our future work is focused on using the proposed approach in professional
usability evaluations. In this respect, a prototype of an electronic newspaper
related with the ELIN Pro jectﬁ and a prototype of a new website for the EPS of
the Universitat de Lleida are under evaluation. We are also interested on testing
different ranking functions for association rules, evaluating their applicability in
early prototyping. In particular, we are interested in rule prioritization by taking
into account the cost associated with software development, as suggested in [3].
Research in this direction is currently being pursued.

Acknowledgments. We thank the reviewers for their comments which helped
to improve the original version of this paper. This work was partially supported
by Cicyt Project ADACO (TIN2004-08000-C03-03), and Project SGR-00881
(Generalitat de Catalunya, Spain).

References

1. Sutcliffe A. User-Centred Requirements Engineering. Springer, 2002.

2. Sydner C. Paper Prototyping: The Fast and Easy Way to Design and Refine User
Interfaces. M. Kaufmann, 2003.

3. Choi D., Ahn B., and Kim S. Prioritization of association rules in DM: Multiple
criteria decision approach. Ezpert Systems with Applications, 29:867-878, 2005.

4. Witten 1. and Eibe F. Data Mining: Practical machine learning tools and tech-
niques. M. Kaufmann, 2005.

5. Alipio J., Pocas J., and Azevedo P. Recommendation with Association Rules: a
web mining application. Data Mining and Warehouses Conf. 1S-2002, 2002.

6. Han J. and Kamber M. Data Mining. M. Kaufmann, 2001.

7. Dumas J.S. and Redish J. C. A Practical Guide to Usability Testing. Intl. Special-
ized Book Service Inc, 2000.

8. Hornbaek K. Current practice in measuring usability: Challenges to usability stud-
ies and research. Int. Journal of Human-Computer Studies, page (in press), 2005.

9. Constantine L. and Lockwood L. Software for Use. A practical Guide to the Models
and Methods of Usage-Centered Design. Addison-Wesley, 1999.

10. Ivory M. Y. and Hearst M. A. The state of the art in automating usability evalu-
ation of user interfaces. ACM Comput. Surv., 33:470-516, 2001.

11. D. J. Mayhew. The Usability Engineering Lifecicle. A practioner’s handbook for
user interface desing. M. Kaufmann, 1999.

5 See European IST-2000-30188 ELIN Project at http://elin.grupoalamo.com/



12.

13.

14.

15.

A Hybrid Approach for Modelling Early Prototype Evaluation 219

M. Rosson and J. Carroll. Usability Engineering: scenario-based developement of
HCI. M. Kaufmann, 2002.

Granollers T., Perdrix F., and Lores J. Usability Engineering Process Model.
Integration with Software Engineering. ACM HCI’03, 2003.

Imielinski T. and Virmani A. Msql: A query language for database mining. In
Springer Science and Business Media B.V., editors, Data Mining and Knowledge
Discovery, volume 3, pages 373-408, 1999.

Tiedtke T., Méartin C., and Gerth N. Awusa. a tool for automated website usability
anlaysis. 9th Int. Workshop DSVIS, 2002.



Rapid User-Centred Evaluation for Context-Aware
Systems

Eleanor O’Neill', David Lewis', Kris McGlinn', and Simon Dobson®

! Department of Computer Science, Trinity College Dublin IE
2 Systems Research Group, School of Computer Science and Informatics, UCD Dublin IE
Eleanor.ONeill@cs.tcd.ie

Abstract. This paper describes a platform for the user-centred design and
evaluation of adaptive, context-aware services in the wireless, mobile and
pervasive computing markets. It focuses on evaluating the user interactions with
context-aware adaptive systems while synchronising the control of the
environmental context that drives adaptivity and the user’s perception of that
environment. The platform uses a 3D virtual reality simulation to present the
environment to the user and to drive the generation of simulated environmental
context. The platform thereby delivers repeatable, instrumented, context-
dependent evaluations of adaptive services over a range of contexts. It aims to
reduce development costs and facilitate the development of more effective,
user-empowering services.

Keywords: User-centred design and evaluation, usability, context-aware
services, adaptive services, 3D virtual environment.

1 Introduction

More so than other distributed systems, pervasive computing services and other
context-aware mobile services must dynamically adapt to the needs of the user and to
the current physical, social and task context in which those needs are formed. For
instance a weather forecast service may localize its content based on the user’s current
location. Alternatively, a news notification service on a user’s PDA may adapt the
volume of its alerting tone based on the level of ambient noise detected or mute itself
if the user’s calendar indicates she is in a meeting.

The effectiveness of the exhibited adaptive behaviour is highly dependent on the
subjective experience which is influenced by their perception of and interaction with
the environmental and social context of the task they are currently attempting. For
example, too little adaptivity does not offer any significant benefits; too much means
that users cannot predict how the system will behave in a given situation. Developing
an effective context-aware adaptive service therefore requires extensive user-centred
design and testing as the proposed adaptive functionality for the service evolves.

To produce successful services, developers must be able to exercise services prior
to deployment, and to incrementally add (or remove) adaptive behaviours in response

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 220 2007.
© Springer-Verlag Berlin Heidelberg 2007



Rapid User-Centred Evaluation for Context-Aware Systems 221

to feedback from users experiencing that behaviour in a range of context spaces.
Developing and testing context-aware services is extremely challenging since there
are few effective ways to carry out on-going user evaluation with a controlled,
repeatable profile of context-change. It is the large number and type heterogeneity of
the independent variables associated with such real-world context, e.g. physical,
social and task contexts, that makes testing expensive and thus problematic to
integrate into the overall engineering process.

At present mobile service developers address these issues through unit testing and
final integration testing. In the case of large systems, integration testing typically
occurs immediately prior to deployment without realistic user assessment and ruling
out possibility for major change. However progress in rapid prototyping methods and
tools has been identified as central to overcoming the barriers to widespread
development and deployment of ubiquitous computing applications, according to
Davies et al [23].

Here we present a platform for the user-centred evaluation of context-aware
services which provides a 3D simulated pervasive computing environment. The
simulated environment is sufficiently realistic to accurately convey changing physical
and social context to the user through the virtual representation of the environment.
In conjunction, the adaptive system under test also receives a simulated electronically
sensed view of the environment based on the configuration of embedded simulated
sensors in the virtual environment. The service can thus create its own view of the
physical and social setting of the user.

The problem of controlling synchronized user and system views of context is
addressed through the simulated virtual reality environment An adaptive service
model will express the relationship between a service’s core behaviour and variation
in that behaviour in response to context changes. Ultimately this model will drive the
rapid prototyping of the service itself, together with the configuration of the usability
evaluation instruments.

In this paper we describe the initial implementation of our platform and report on
its usability from the point of view of the experimenter. In section 2 we discuss the
state of the art in the evaluation of context-aware adaptive services and in the related
use of 3D simulations. We then discuss the current implementation of the platform in
section 3. In section 4 we report on our experiences in configuring a complex
simulation for evaluating a composite set of adaptive services. In section 5 we
describe how we aim to extend the platform to support usability testing for context-
aware services, using ontology-based semantics.

2 Relation to State of the Art

Currently, user acceptance testing of mobile services involves expensive field trials
where the usage context and the user’s experiences may be hard to instrument. Usage
tests of pervasive computing services that integrate with situated sensors have been
largely lab-based and thus are a poor representation of the variety of real-world



222 E. O’Neill et al.

context users will encounter in the course of their every day lives. For larger location-
aware or pervasive computing applications the cost of user-testing a full service
deployment quickly becomes prohibitive [2], especially where the interaction between
context variation and the behaviour of the service is still being explored, thereby
making effective experimental design problematic.

Groups such as the Future Computing Environments Group at Georgia Institute of
Technology working on the “Aware Home” [19] and Tatsuya Yamazaki of National
Institute of Information and Communications Technology, Japan working on the
“Ubiquitous Home” [18] have completed real-life test home environments for
accurate simulation of the home environment. Both groups aim to perfectly emulate a
real domestic environment and intend to have test-subjects spend significant periods
of time in these simulated home environments carrying out domestic activities.
However, such live usage testbeds are expensive and difficult to reconfigure to
emulate a wide range of different contexts.

Kerttula and Tokkonen [16] have identified “the total user experience” as an area
of concern and aim achieve it through early product and system simulations. This idea
moves away from testing in isolation and moves towards a simulation where services
are tested in parallel and valued over longer periods of time. This approach uses
accurate simulation/prototyping of services focussing on features such as the user
interface, audio properties and product behaviour, but not including the user’s
surrounding physical environment.

Similar to our platform, Huebscher and McCann [17] aim to allow initial testing of
context-aware applications without requiring a physical deployment. However
Huebscher and McCann are working to simulate sensor data e.g. temperature,
humidity or location, from a description of context or a simulation model of contexts.
This in turn will be used to test the context-logic of a context-aware application.

In the past, virtual reality simulation of pervasive computing environments has
been used in a small number of research efforts, specifically QuakeSim [5] and HP
Lab’s UbiWise [6]. These have demonstrated that 3D virtual reality computer game
engines potentially provide a cost effective platform for simulating pervasive
computing environments with sufficient realism to accurately test human interaction
with pervasive computing software systems.

More recently Shirehjini and Klar have been developing 3DSim[20], a 3D tool for
rapidly prototyping Ambient Intelligence building blocks e.g. situation-recognition,
goal-based interaction. 3DSim aids the development of human-ambient-interaction
systems such as PDA based control systems, adaptive user interfaces, multimedia
output coordination or goal-based interaction systems. During a simulation, sensor
data is derived from a 2D GUI and gesture elements which are the result of an avatar
can pointing at devices.

The team at GIST U-VR Lab, S. Korea have been working on creating a unified
context model and a method for the integration of contexts for unified context-aware
applications. To loosen the coupling between services and context, they have
developed a unified context that represents user-centric contextual information in



Rapid User-Centred Evaluation for Context-Aware Systems 223

terms of SW1H (Who, What, Where, When, How and Why) [21]. To demonstrate
user-centric integration of contexts for a unified context-aware application model (the
ubi-UCAM), they created a simple 3D simulated environment [22]. By using the
simulator they were able to test the effectiveness of the Context Integrator when there
were multiple users working with the service simultaneously. The simulated
environment allowed them to assess the capabilities of their Context Integrator before
bringing it into a real world situation (ubiHome).

Overall, our platform is distinguished from existing ubiquitous computing
simulation approaches in that we focus on providing a flexible and easy to configure
platform for the tester/experimenter with the target of integrating seamlessly into a
wider rapid prototyping process.

3 An Evaluation Platform for Context-Aware Services

The overall goal of the platform is to provide for the rapid user-centred evaluation of
adaptive context-aware services by effectively and efficiently testing and evaluating
usability and thus increasing productivity in the development of these services. The
platform must support the rapid prototyping of adaptive service behaviour through
ease of use in the design, execution and instrumentation of user acceptance tests.

Elements, collectively referred to as contextors, must be provided to sense context
both from the physical world (sensors) and gather data from personal and other
information (data mining). Individual adaptive behaviours for services, must be
provided, the most visible being the user interface [3] but also including adaptive
information storage and retrieval and operation of actuators in the pervasive
computing environment. A service’s behaviour must be verified as remaining within a
well-defined behavioural envelope across its exhibited adaptivity [4].

The net effect of the tool is to increase the effectiveness of services by
incrementally maximizing user acceptance and thus reducing the risk involved in full
scale field trials or deployment.

3.1 Interactive Context Simulator

The interactive context simulator has been implemented to allow a researcher rapidly
configure and run an experiment for a prototype of their software, using simulated
context generated at runtime. The context generator features a multi-user 3D
simulation component, a proxy gateway which interfaces services to the simulated 3D
world, the under-lying network infrastructure and a real time execution environment.
With many users interacting with the service under conditions set by the tester, this
provides the service developer with a sophisticated method for experimenting with
collaborative, context-aware systems.

The 3D simulation component of the platform is provided by the Half-Life 2 (HL2)
game engine [7] which has been modified to enable extraction of information from
the environment in XML encoded messages. The game engine has been further
tailored towards a pervasive computing environment through the addition of
pervasive computing sensor models. Creating a new simulated pervasive computing



224 E. O’Neill et al.

environment uses existing HL2 modelling tools to place sensors in the virtual world
so that at run-time user activity and movement in the virtual world activates the
sensors in accordance with experimental objectives. On activation, a sensor model
responds by generating an XML encoded message containing information related to
the event e.g. username or location data.

Simulated sensors have been modelled to be visible or invisible. We use visible
simulated sensors to represent physical devices e.g. pressure mats or wireless access
points. Invisible simulated sensors are used to model the field of view or signal range
of these devices where required. Supplementary simulators have also been interfaced
to the platform to support this approach by providing realistic simulation of RF signal
propagation and location information through triangulation [15].

The sensors are programmed to be event-driven, polling or a combination of the
two. For instance, a pressure mat responds to the event of a user stepping on it, where
as a Bluetooth master polls to detect new slaves. Using a game engine allows
flexibility in the type and quantity of sensors featured by the test environment. For the
most part, this is not yet realisable in the real-world where the expense and logistics
are prohibitive.

Fig. 1. Multiplayer Virtual Environment

Interfacing the system-under-test (SUT) to the simulator is done via a Java
application or Proxy. The platform can host and manage the connections between
multiple services and multiple test environments simultaneously. This allows multiple
services to access a single environment, or vice versa, a single service to access
multiple environments. Services are not obliged to subscribe to all simulated
environments and only receive information about relevant experiments.



Rapid User-Centred Evaluation for Context-Aware Systems 225

Prior to connection, the experiment designer will have created or adapted an
already existing 3D map. Hammer 4, a map editor provided as part of the Half-Life 2
SDK (HL2 SDK), is the tool that developers currently use to do this. The flexibility of
the HL2 SDK means a wide variety of environments and sensor types can be
modelled. These sensors can then be deployed into a map, in the positions, densities
and numbers that are required for a particular experiment.

Although developing a large map takes some effort, considerable productivity can
be achieved by using a blank version of an existing environment to outline an
experiment. The effort to populate blank maps with sensors is minimal by comparison
to developing a map of a new environment from scratch. The experimental design and
set-up process makes use of reusable resources in keeping with the iterative and
incremental approach required by rapid development, testing and experimentation.
Among these reusable resources are the map files that define the experimental
environment, the sensors and the experiment definition XML profiles for a service.

A new experiment commences when a service contacts the simulator with an
experiment configuration file. This configuration file contains an experiment ID, a
map name, a game-server address and data subscription information. The service is
registered and the simulator creates a new database [8] collection using sensor
information parsed from the map file. The simulator invokes a new game-server on
the remote host and subsequently establishes a connection with the simulation for
experimental data transfer.

At run-time, messages flow between the virtual environment and the adaptive
service. Data leaving the simulator becomes the contextual information on which
services base their decisions and thus respond to the user’s needs. In response,
services send asynchronous instructions to alter the state of the environment through
device or entity actuation, e.g. opening a door or switching on a light. Only a single
connection to game-server hosting the experiment is required since underlying game
infrastructure ensures game-clients are also updated in a time that is imperceptible to
the player/developer. Ultimately, the sensors will send their information to the
services under test via a contextual services layer.

4 Experiences in Configuring Experiments on the Platform

Here we report on our experience to date with the Interactive Context Simulator in
setting up experiments with a collaborative context-aware service that had been
developed as a research prototype by colleagues in our department.

4.1 Modelling the Physical Environment

We have had experience both in successfully importing existing 3D maps and in
building maps from scratch. Prior to the experiments described here, a three story
office building model was constructed which was an accurate representation of a
portion of the Computer Science Department at Trinity College Dublin. The model



226 E. O’Neill et al.

features 104 rooms comprised of offices, computer labs and lecture rooms. In total
these rooms are furnished with 520 desks, 352 chairs and 257 replica desktop
computers. An undergraduate intern, untrained in the Hammer map editor, completed
this map in 22 working days. The resulting model is a substantial resource, supporting
experiments where users can roam on a scale that dwarfs that of indoor lab-based
emulations used elsewhere.

We also opted for an accurate population of office furniture over more sparsely
furnished rooms, since we wanted to replicate as closely as possible the user’s
experience of the real spaces so that we could conduct comparative experiment in the
real world building at a future date. In the process we gained experience in how to
produce such maps more efficiently in future, for instance in the use of overlapping
polygons and transparent textures.

4.2 Experimenting with Context-Aware Services

We have uncovered some of the merits and difficulties in using this platform for the
evaluation of pervasive computing services under development, by observing
colleagues using it to configure usability experiments on context aware systems they
have developed. In this context, the system under test is an Instant Messaging (IM)
application that can display the location of other users as part of their presence
information, but only when permitted through a sophisticated policy-based access
control mechanism.

Community Service Interlocutor
Actuations Context Context
Proxy {
Logs, Filters & Routes Messages CMJ—ME_&’C—:'\) RF
Simulator
Ac1uo1lons{} ﬁ ﬁConiexi

Interactive Context Generator Game Client

(Game Server)

“Simulation
—Events

Fig. 2. Experimenting with Context Aware Services



Rapid User-Centred Evaluation for Context-Aware Systems 227

This Location-aware Instant Messaging system extends an existing standard IM
server infrastructure, based on JABBER, with a decentralised communications
infrastructure employing content-based routing. This adds an additional level of
flexibility, allowing applications to subscribe to events of interest based on the event’s
content rather than overall message type [23]. The IM application allows online users
only to view the locations of fellow online members under access control based on
policies employing concepts of Community and Trust.

The simulation platform is beneficial as it supplies context in a more dynamic and
unanticipated manner since its events are user-invoked and user-controlled. The IM
service was tested on an environment where six users were interacting with the
environment and service. To enhance location-aware testing, the simulation platform
has interfaced to an RF simulator to provide simulated signal propagation values and
location information through triangulation of signals [15].

4.3 Experimenting with Policy-Based Access Control

Community Based Policy Management [24] models an organisation’s structure as
a set of communities. Networks of collaborating users can self-organise because
the framework supports dynamic definition of sub-community structure and
operational rules. This provides for autonomous sub-communities and allows
migration of decision making responsibility to the most appropriate communities in
the organisation.

A policy based access control system for the dissemination of location
information has been incorporated into the Instant Messaging application above. The
policy-based system is characterised by allowing communities of users to agree on
policies for the formation of buddy lists, or rosters, in the application. The system
also allows policies to be created for determining who is able to monitor the physical
location of other users and, in addition, which users can access particular locations
(or rooms) in a building. This latter facility was enabled by linking a decision to lock
or unlock a door to a request to the access control decision function in this system
under test - thus also linking actuation in the simulated environment to the system.
The researcher in question wished to determine the ease with which users could
collaboratively configure complex access control policies and be satisfied with the
operation of those policies as they collectively engaged with the pervasive
computing environment.

To evaluate this in situ would only be possible over a long period of use in a
location aware environment however the platform provided quick and easy means
to designing an experiment to accelerate the usually ponderous interaction of users
with policy authoring systems under controlled conditions. This was achieved
through experiments where users engage in team games, e.g. catch the flag, in the
simulated environment, but using the policy management interface between
games/experiments to investigate different rules for the games by changing access
control policies for viewing the location of other via the IM application and for
enabling room access to the user’s avatars. Though the situation is somewhat



228 E. O’Neill et al.

artificial, the simulator provides a low cost but never-the-less engaging environment
for the user in which they can be stimulated into interacting with the adaptive
aspects of an application.

4.4 Platform Usability

Based on their experiences, researchers are very receptive to the experimental
approach proposed by this tool. The findings from the researchers’ use of the platform
outline the researchers’ opinions on the simulator’s usefulness and usability.

Setting up the first version of an experiment, in a new iteration sequence requires
the most overhead in terms of time and effort. However, subsequent adjustment to
the files is minimal or even non-existent when an experiment is well-defined and
fine-tuned. During interviews, researchers reported installation of the simulator,
and its accompanying tools, taking on average 30-45 minutes. Further, to initially
populate a basic map with sensors and make the XML file associations an
additional 60-90 minutes were required. This step partially depends on how
powerful the user’s computer is. On the grounds that researchers were not at the
time familiar with the toolset, i.e. the Hammer map editor, it is expected that these
times will improve.

Using the platform, the developer of the location-aware instant messaging service
was able to test and debug the system from his desk during the design and
development cycle. In particular, it greatly eased the testing of the interaction between
the IM application and various configurations of simulated location sensors which the
developer confirmed would otherwise have been virtually impossible due primarily to
budget constraints. However, even with a substantial equipment budget, the developer
would still have faced logistical hurdles regarding deployment of sensors in campus
buildings within the college which would be insurmountable at the proof-of-concept
stage of development.

A further benefit for the developer meant that it was not necessary to enlist a group
of volunteer test users to use a real-deployment of the service. Instead the developer
was helped by lab partners to manipulate the location of virtual users in the virtual
environment. Since the virtual environment is based on a game engine and very
intuitive, the learning curve for new users is minimal. As a result, to run a multi-user
experiment required little organisational effort and reduced planning and scheduling
of testers and timeslots. These experiments could be run regularly and at short-notice,
which was helpful for the debugging process.

S Extending the Platform

Ultimately, our aim is to combine user-centred design and evaluation. This requires
extending the platform as has been implemented to date. Our next steps are to
integrate into the platform: support for more sophisticated context processing; more
realistic simulation of sensors and adaptive user instrumentation. These extensions are
discussed in more detail below.



Rapid User-Centred Evaluation for Context-Aware Systems 229

5.1 Context Services Layer

As is clear from above, one may not treat sensor information as fact but only as
evidence of fact, to do otherwise would expose applications directly to all the noise in
the environment [9]. This implies that sensor information must be combined with
information from other sensors, users models etc, in order to arrive at a stable model
of the environment.

A number of approaches to such sensor fusion have been reported in the literature,
[10], [11], and [12]. It is not clear that any single approach has yet demonstrated
superiority, and within the platform we are experimenting with four complementary
approaches; Bayesian networks, fuzzy logic, Dempster-Shaffer evidence theory, and
machine learning. Early explorations suggest that each is a plausible candidate for
performing high-level context fusion. It is worth noting that, while machine learning
may prove extremely useful for adjusting the prior probabilities of sensor events to
match observed conditions, these probabilities are functions of context themselves, as
mentioned above, and the only criteria for deciding on the accuracy of a sensor
observation is the fused result of other sensor observations; a result which itself may
not have a strong confidence level.

Our solution to supporting sensor fusion is to run adaptive service tests on top of a
contextual services layer based on Construct [13]. Construct provides a highly
scalable, distributed platform for collecting and managing contextual information
represented using the World Wide Web Consortium Resource Description Framework
(RDF). Contextual fusion is supported at the model level, with applications either
querying the model or being driven by a truth-maintenance framework. The use of
RDF abstracts the details of the sensors underlying a particular installation; sensors
write information to the knowledge base under the appropriate ontology, which may
be accessed by applications without being aware of the detailed sensor population.
This improves the robustness of applications to individual sensor failures and
simplifies the addition of new sensor capabilities.

Overall the services under test can be isolated from the fact that their inputs are
coming from a virtual environment, they are simply given access to a contextual
model to which they can react. The behaviour of the service is less well-abstracted at
present, in that some behaviour is targeted directly at devices which must be
simulated within the virtual world. Since the models of sensors and their fusion are
expressed within the Construct framework, it is straightforward to change the
parameters of the simulation to, for example, cause sensors to fail or exhibit more
inaccuracy. We conjecture that this will assist in the development of applications that
are more robust to sensor noise, sensor failure and uncertain information in general.

The design consists of a closely integrated set of tools and accompanying
methodologies, Fig.3. Experimental design involves the tester building a simulation
model of the physical environments encountered by the human test subject and
populating it with simulated sensors that would provide user driven excitation of the
region of context space being investigated. The accurate propagation of realistic
context information to the adaptive service under test is mediated by the contextual
services layer. The adaptive service model is used to help identify and generate the
simulated environment through the identification of experimental goals, test cases and
the required control of contextual services. It is also used in generating the user and



230 E. O’Neill et al.

service evaluation instruments for a test, i.e. which user and service behaviour
parameters to monitor and log, along with the structure of user evaluation
questioning.

( Evaluating User(s) )

T 1 oo 1 Sttt |

| User 1 | Service User | [ Virtual |

| Instrumentation j | Interface : : Environment :

__________ | SRR A e o s ey sk s i i
() Evaluation
Instruments

Service Behaviour

Adaptive Context Aware Service

Fused Context Actuates

Contextual Services Layer

%} Simulated Context {}

Interactive Context Generator

Test Engineer

Adaptive Service, Context and

Experimental Model

b LA AL

Fig. 3. Overview of Platform Architecture

5.2 Sensor Simulation

Sensors in the platform are implemented as objects in the virtual world, as mentioned
above, which expose certain facets of that world to the services under test. The simple
approach currently taken in the simulator defines the range and capabilities of a
particular sensor, which would then be used by the virtual world to generate sensor
events. We recognise, however, that such an approach is naive for two reasons.

Firstly, all sensors include significant noise components. These manifest
themselves as inaccuracies (i.e. a location sensor reporting the presence of the wrong
person) and imprecision (i.e. a location being an area rather than a point). Evaluating
a service against such sensors might lead to services that function well in the presence
of correct and precise information but which fail when exposed to real-world
inaccuracies and imprecision.

Secondly, sensors are themselves sensitive to the context in which they are
installed. Two examples illustrate this:

e A wireless communications system will encounter signal reflections and
attenuations in buildings with substantial amounts of metal in the walls. These
reduce the effective range and bandwidth of the communications channel.



Rapid User-Centred Evaluation for Context-Aware Systems 231

e RFID tag readers frequently fail under heavy load, such as when several people
move past a reader in quick succession. This manifests itself as the reader only
observing a fraction of the tags that actually come into range.

These two constraints mean that the characteristics of a sensor must take account
of both the static and dynamic context into which it is deployed. This is essentially the
same problem as encountered in modelling the larger adaptive service, and means that
we must provide ‘user models’ of sensors together with context-aware behaviour,
which are then used to generate the information for the services under test.

5.3 User Instrumentation

Integrated user evaluation instruments will be used to conduct tests by allowing
the user to roam within and interact with the virtual physical environment. This
system will provide task instructions to user test subjects based on context change or
adaptive service notification received from the Simulation Infrastructure. It will
present the user with evaluation instruments, such as questions or prompts for free
style comment.

Responses will be logged aligned to the activities the user has performed in the
simulator, the context changes and the adaptive behaviour to which the user has just
been exposed. In this way users may interact with the simulation in a non-linear way,
exploring the environment and deviated from tasks as the might to in the real world,
but the instrumentation of their experience will be recorded in context to assure
accurate analysis of the results.

6 Conclusions and Summary of Further Work

To date this Platform has largely been used as a simulator of pervasive computing
environments and context generator for experimenting with context aware services.
We aim to build on this by exploring the capture of a fuller semantic model for the
adaptive behaviour exhibited by a service, beginning with the integration of the
contextual service layer with the Interactive Context Simulator. The model will map
the context space within which an adaptive service operates to the behaviour space
that the service can exhibit. This model will be used both to provide abstractions for
rapid, script-based prototyping of new adaptive behaviour, which will thus be
integrated, with the ontology-driven experimental design and configuration.

This will lead to improvement in the productivity of the testing and evaluation
phase of the rapid development cycle for context-aware adaptive services. This
improvement will be achieved through the model-driven configuration of test cases,
shorter test development life-cycles, more targeted and relevant user evaluation, a
low-cost test infrastructure and the facility for on-line user testing, thereby resulting in
a lower overall cost for the test portion of the development cycle.

In line with the range of behaviour exhibited by adaptive services, the aim in
evaluation will not be to verify correctness of system behaviour, but to confirm that it
operates within a well defined behavioural envelope given for specific regions of the
possible context space that corresponds to the overall testing goals. The adaptive
service model will be used to identify these experimental goals as well as to identify



232 E. O’Neill et al.

test cases, and context and control variables. It will also assist in the generation of the
simulated environment and user and service evaluation framework through a set of
closely integrated tools and methodologies.

Additionally, future development work will fully integrate a set of user evaluation
instruments into the simulator to allow online, runtime questioning of users. Usability
Engineering offers a number of techniques for evaluating ease of use and user
acceptance. Though tool support for the former in mobile services is maturing, in
focusing on the latter we address an area where effectiveness remains elusive as
evidenced by high-profile failures in mobile data services.

Recent developments allow adaptation of hypermedia documents to be based on
the selection of narrative, content and user meta-data [18]. This will be applied to
adaptively assemble different evaluation instruments based on questioning style (e.g.
factual, opinion, attitude, open/closed ended or Likert style), instrument topic (e.g.
adaptive behaviour experienced) and user data (e.g. demography, previous responses).

Extensions to the simulation element of the platform are planned to include
integration with a wireless indoor signal propagation simulator. This will allow us to
factor in communication performance degradation for both context and service
delivery, as well as location sensing inaccuracies for WLAN signal strength based
location system. We have performed some initial integration tests with wireless
simulators capable of modelling RF reflection and absorption characteristics of
different structural materials as well as of the human occupants themselves as they
move in the space [15].

Acknowledgements

This work has been partially supported by the Irish Higher Education Authority under
the M-Zones programme and by Enterprise Ireland under the PUDECAS [TD 2005
217-A/B] project.

References

1. Czarkowski, M. and Kay, J., (2003). Challenges of Scrutable Adaptivity. In Proceedings of
AIED Conference, 11th International Conference on Artificial Intelligence in Education,
IOS Press 404 - 407.

2. Yamazaki, T, (2005). Ubiquitous Home: Real-Life Testbed for Home Context-Aware
Service. Proceedings of IEEE 1st International Conference on Testbeds and Research
Infrastructures for the DEvelopment of NeTworks and COMmunities (Tridentcom 2005).

3. Calvary G., Coutaz, J., Thevenin, D., (2004). A unifying reference framework for the
development of plastic user interfaces. In Proceedings of EHCI/DSVIS’04.

4. Dobson, S., Nixon, P. (2004). More principled design of pervasive computing systems. In
Proceedings of EHCI/DSVIS’04.

5. Bylund, M., Espinoza, F., (2002). Testing and Demonstrating Context-Aware Services
with Quake III Arena. Communications of the ACM, Vol. 45, No 1, pp46-48.

6. Barton, J., Vijayaraghavan. V., (2002). UbiWise, A Ubiquitous Wireless Infrastructure
Simulation Environment. HP technical report.

7. Half-Life 2, Valve Corporation (2004). http://www.half-life2.com/



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Rapid User-Centred Evaluation for Context-Aware Systems 233

eXist, Open Source Native XML Database. http://exist.sourceforge.net/

Dobson, S., (2005). Hybridising events and knowledge in an infrastructure for context-
adaptive systems. Proceedings of the IJCAI’05 Workshop on Artificial Intelligence and
Autonomic Communications.

Gonzalez, A. and Ahlers, T., (1999). Context-based representation of intelligent behaviour
in training simulations. Transactions of the Society for Computer Simulations International
15(4). March 1999.

Henrickson, K. et al, (2002). Modelling context information in pervasive computing
systems. Proceedings of Pervasive’02. LNCS 2414. Springer Verlag.

Ranganathan, A., Al-Muhtadi, J. and Campbell, R., (2004). Reasoning about uncertain
contexts in pervasive computing environments. IEEE Pervasive Computing 3(2). April-
June 2004.

Stevenson, G., Nixon, P. and Dobson, S., (2005). Towards a reliable wide-are
infrastructure for the context-based self-management of communication. Proceedings of
the 2nd IFIP Workshop on Autonomic Communications. LNCS. Springer Verlag. 2005.
To appear.

Dagger, D., Wade, V., Conlan, O., (2004). Developing Active Learning Experiences for
Adaptive Personalised eLearning, Third International Conference on Adaptive
Hypermedia and Adaptive Web-Based Systems, AH2004, LNCS3137 p55-64

O’Neill, E. et al, (2005). A Testbed for Evaluating Human Interaction with Ubiquitous
Computing Environments. Proceedings of IEEE 1st International Conference on Testbeds
and Research Infrastructures for the DEvelopment of NeTworks and COMmunities
(Tridentcom 2005).

Kerttula, M. and Tokkonen, T., (2001). The Total User Experience — How to make it
Positive in Future Wireless Systems and Services. WWRF Annual Workshop in Paris
2001.

Huebscher, M. and McCann, J., (2004). Simulation Model for Self-Adaptive Applications
in Pervasive Computing. 2" International Workshop on Self-Adaptive and Autonomic
Computing Systems (SAACS ’04).

Yamazaki, T., (2005). Ubiquitous home: real-life testbed for home context-aware service.
Proceedings of IEEE Ist International Conference on Testbeds and Research
Infrastructures for the DEvelopment of NeTworks and COMmunities (Tridentcom 2005).
Abowd, G., (2000). Living laboratories: The future computing environments group at the
Georgia institute of technology. ACM Conference on Human Factors in Computing
Systems, 2000.

Nazari Shirehjini, Ali A., Klar, F., (2005). 3DSim: Rapid Prototyping Ambient
Intelligence. Joint sOc-EUSAI conference.

Seiie Jang, Eun-Jung Ko, and Woontack Woo (2005) Unified User-Centric Context: Who,
Where, When, What, How and Why. UbiPCMM: Personalized Context Modelling and
Management for Ubicomp Applications.

Yoosoo Oh, Woontack Woo (2005). User-centric Integration of Contexts for a Unified
Context-aware Application Model. Joint sOc-EUSAI conference.

Kenny, A., Lewis, D., O’Sullivan, D., (2006). Interlocutor: Decentralised Infrastructure for
Adaptive Interaction. To appear in proceedings of 3rd International Workshop on
Managing Ubiquitous Communications and Services (MUCS), 2006.

Feeney, K., Lewis, D., Wade V., (2004). Community Based Policy Management for Smart
Spaces. Proceedings of 5™ IEEE International Workshop on Policies and Distributed
Systems and Networks, IEEE, 2004.



Using a Patterns-Based Modelling Language and
a Model-Based Adaptation Architecture to
Facilitate Adaptive User Interfaces

Erik G. Nilsson, Jacqueline Floch, Svein Hallsteinsen, and Erlend Stav

SINTEF ICT, Norway
{Erik.G.Nilsson, Jacqueline.Floch, Svein.Hallsteinsen,
Erlend.Stav}@sintef.no

Abstract. To design usable mobile applications, exploiting context
changes is of vital importance. The rapid context changes in a mobile
setting cause the need for flexible and adaptive user interfaces that are
multitasking and possibly exploiting multiple modalities. Implementing
adaptive user interfaces requires expensive application-specific solutions.
Reuse of this type of solutions is difficult or impossible. To make it viable
to implement adaptive user interfaces for a broader range of applications,
there is both a need for new architecture and middleware, and ways of
constructing applications. In this paper, we show how a combination of a
patterns-based modelling language using compound user interface com-
ponents and mapping rules as building blocks, and a generic adaptive
architecture based on components with ports and utility functions for
finding the optimal configuration in a given situation, facilitates imple-
mentation of applications with adaptive user interfaces. First we briefly
present our modelling approach, and the adaptive architecture including
the generic middleware exploiting architecture models at runtime. With
this as a background we show how the presented modelling approach
may be combined with the adaptive architecture to facilitate model-
based user interface adaptation. Finally, we compare our approach with
other approaches for realizing adaptive user interfaces, and we give some
conclusions and directions for future research.

Keywords: Model-based design. Interfaces for mobile devices. Adaptive
and customizable systems. Patterns-based approaches. Adaptive
architecture.

1 Introduction

Limited screen size and interaction mechanisms on mobile equipment make it
challenging to design user interfaces on this type of equipment [15, 16]. Compared
to a stationary user, the context of a user exploiting a mobile solution changes
more often [15, 22]. The context changes are multidimensional, sometimes rapid,
and comprise position, light, sound, network connectivity, and possibly biomet-
rics. For example, communication bandwidth changes dynamically in wireless

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 234 2007.
© Springer-Verlag Berlin Heidelberg 2007



Using a Patterns-Based Modelling Language 235

communication networks and power is a scarce resource on battery powered de-
vices when outlet power is not available. Furthermore, user interface preferences
change when on the move, because light and noise conditions change, or because
hands and eyes are occupied elsewhere. Dynamic adaptation is required in order
to retain usability, usefulness, and reliability of the application under such cir-
cumstances. An important means for enhancing the user experience for mobile
users is to exploit information about the changing context in the user interface
design [1, 15, 22]. To cater for this, the user interfaces on such solutions need to
be adaptive in many cases.

Within model-based user interface research, there has been some interest in
mobile user interfaces the last years [e.g., 1, 2, 3, 8,9, 11, 13, 18, 19, 23, 24]. The
focus in most of this work is on using models at design time for specifying either
purely mobile Uls or having models that act as specifications across mobile and
stationary Uls. If adaptation is present, it is often focusing on adapting the Ul
to a given platform as part of a code/UI generation process.

Traditionally, adaptive features of a UI have been considered part of the func-
tionality of a UT [1, 17, 20, 21, 22], i.e., it has been the responsibility of the UI
itself to find out what kind of changes to perform, and to perform the changes
when needed. In our work, we investigate solutions where the adaptation is man-
aged and handled by independent, generic mechanisms, grouped together to an
adaptation middleware. By using this model, the adaptation middleware is both
responsible for finding out when to perform an adaptation and for doing the
actual adaptation. As the middleware is generic, it is made once, and may be
used by any application conforming to certain requirements, thus giving clear
saving for developers. The price for obtaining this saving, is that the application
must be built in a specific way, and that the middleware require some additional
specifications for the application.

2 A User Interface Modelling Approach Based on
Modelling Patterns and Compound User Interface
Components

In this section we give a brief presentation of the modelling approach presented
in [13] with focus on the motivation for the modelling approach and its main
principles, concepts and features. Below, we will show how this modelling ap-
proach together with the adaptive architecture presented in the next section can
be used to realize adaptive behaviour at run-time, and how the approach makes
development of adaptive user interfaces easier.

Most model-based languages and tools suffer from a combination of two con-
nected characteristics: the languages offer concepts on a too low level of abstrac-
tion, and the building blocks are too simple. The building blocks available may
be on a certain level of abstraction (like a choice element concept that is an
abstraction of radio group, drop-down list box, list box, etc.), but are still fairly
basic building blocks when a user interface is to be specified. A user interface



236 E.G. Nilsson et al.

specification is an instance hierarchy of the given modelling constructs (building
blocks). This works well as long as the same instance hierarchy is applicable on
all the platforms. If the specification is to work across platforms with a certain
level of differences, e.g., with large differences in screen size, having only fairly
simple building blocks causes a need to have different instance hierarchies on
each platform.

This is often handled by dividing the specification of a given Ul in two parts,
one describing the commonalities across the platforms and one describing the
specialities on each platform. This division must usually be done at a quite
early stage in a user interface specification [12]. Furthermore, the amount of
specification code for the platform-specific parts tends to be more voluminous
than for the common part. In such a situation, it may be just a efficient to
develop the user interface on each platform from scratch [14].

Unlike most other model-based languages, the modelling approach presented
in [13] uses a combination of compound components and modelling patterns [6,
26]. Compound (or composite) user interface components are used to be able to
have equal or similar model instances on platforms with significant differences
(including traditional GUI, Web user interfaces and user interfaces on mobile
equipment). Modelling patterns are used partly to obtain the necessary level of
abstraction to facilitate common models across different platforms, and partly
to render it possible to define generic mapping (or transformation) rules from
the patterns-based, abstract compound components to concrete user interfaces
on different platforms. A mapping rule is a generic and operational description
of how a modelling pattern instance should be transformed to a running UI on
a given platform, and mapping rules are an important part of the modelling
framework. As a modelling pattern usually involves a number of objects, a user
interface supporting a modelling pattern must be a composition of different user
interface components (each being simple or composite). The transformation rules
describe how the modelling patterns are to be realized on various platforms. This
means that the transformation rules must be instantiated with the same concrete
classes that the patterns are instantiated with.

To utilize the potential of the modelling approach, it also includes a number
of different mapping rules to concrete representations for each abstract com-
pound user interface component on each platform, based on preferences, desired
user interface style, modalities, etc. Fig. 1 shows how the different main parts
of the modelling approach are connected, expressed using a Unified Modelling
Language (UML) class model.

Using this modelling approach, a user interface specification consists of a num-
ber of model pattern instances (the abstract representation of the compound UT
components), a chosen number of mapping rule instances for each of the pattern
instances and additional properties specified for all of these. By mapping rule
instance we mean applying a mapping rule to a pattern instance, resulting in
a set of Ul components (instance hierarchy of concrete Ul components) that
together constitute the running UI. A specification may also include instances



Using a Patterns-Based Modelling Language 237

Modelling|1 has| Mapping |x
Pattern L.nf  Rule
instantiates |] instantiates | | uses 1
_ Implementation
is-used-to-produce Platform
# l1.n
. runs-on 1
Pattern has|  Mapping
Instance 1..n|Rule Instance|*
1.n
’L.n
Running 1.1 Ul

Ul Componenﬁ
*

Fig. 1. Main concepts in the modelling approach

of patterns and/or mapping rules that are specified by the systems developer
himself/herself. In addition, the modelling framework has features like extensi-
bility (e.g., the possibility to add new building blocks and mapping rules easily)
and recursive modelling (e.g., the possibility to construct new building blocks
by combining existing ones).

The number of abstract components is limited, to make the modelling lan-
guage comprehensible and to limit the amount of work needed to define all
appropriate mappings. Yet the set is sufficiently comprehensive to render it pos-
sible to use the modelling language to specify an arbitrary user interface.

In the section below where we couple the modelling approach and the adaptive
architecture we present an example showing how the modelling language may
be used to describe two variants of a user interface for mobile users.

3 Adaptive Architecture

To achieve adaptive Uls using the modelling approach just presented, we use the
support for handling adaptive applications in the context of mobile computing
that we have developed in the FAMOUYY project [4, 7]. This work is based on
an architecture centric approach where we exploit architecture models to rea-
son about and control adaptation at runtime. To realize the adaptation mecha-
nisms we use generic middleware components [7]. The middleware has three main
functions:

! FAMOUS (Framework for Adaptive Mobile and Ubiquitous Services) is a strategic
research programme at SINTEF ICT funded by the Norwegian Research Council.



238 E.G. Nilsson et al.

1. Detect context changes.

2. Reason about these changes and make decisions about what adaptation to
perform.

3. Perform the chosen adaptation.

To fulfil these functions, the adaptation middleware requires knowledge of the
application structure and constraints, meaning that it should understand the ar-
chitecture of the software system in question. The architecture models available
at runtime describe the information needed by the middleware. Fig. 2 illustrates
the middleware architecture (the numbers refer to the three functions just men-
tioned). The architecture is specified as a component framework [25], allowing
middleware services to be composed in a flexible manner.

find plans, derive and
evaluate variants

Context II> Adaptation E:> .
Configurator
manager manager

notify reconfigure to

ye/ selected variant
Framework Instance
Context . .
architecture architecture
model
model model

Fig. 2. Middleware architecture and the runtime models

The context and adaptation managers and the configurator are the central
components of the adaptation middleware. Below we describe the different parts
of the middleware architecture indirectly through the available functionality (the
three main functions mentioned above). Before doing this, we explain the run-
time models (the boxes in the bottom row in fig. 2) involved.

3.1 Run-Time Models

The Context model in fig. 2 represents the current context in terms of relevant
context entities and their properties. Context includes execution platform con-
text elements such as network and memory resources, the environment context
elements such as light and noise, and user context elements such as location and
stress level. The Framework architecture model captures the application architec-
ture in terms of component types with alternative implementations annotated
with properties and connected together in a possibly hierarchic structure. This
model is used do derive application variants best suited for the current context.



Using a Patterns-Based Modelling Language 239

Application variants can differ in a number of ways, for example user interface,
functional richness, quality properties provided to the user, how the components
are deployed on a distributed computing infrastructure, and what resources and
quality properties they need from the platform and network environment. The
Instance architecture model is a run-time representation of the variant that is
currently running. This model is used during reconfiguration to perform the
transition from the current running variant to a new variant.

The different models are based on a common conceptual model, which is
presented in fig. 3. We view a software system and its context as a system of
interacting entities. In this case, entities may represent context entities or soft-
ware components. Entities interact with other entities by providing and making
use of services through ports. A port represents a service offered by an entity
or a service needed by an entity. Entities may be composed of smaller entities,
allowing for a hierarchic structure.

To model variation, both in the application and in its context, we introduce
the concept of entity type. An entity type defines a class of entities with equiv-
alent ports which may replace each other in a system. With these concepts we
are able to model an adaptive application architecture as a possibly hierarchic
composition of entity types, which defines a class of application variants as well
as a class of contexts in which they may operate.

Property Port Entity
def type type
. i[anE/I'I\WEIﬂS implements
| I
| connecled to |
1 |

User s
environment 1 User
entity * . .
influence

Fig. 3. Adaptation conceptual model

What we need in addition is a way to enable the derivation of the variant that
best fits a given context. Our approach is based on property annotations associ-
ated with ports. For example, a property annotation might denote the response
time of a service provided by an application, the latency of a communication
link, the maximum latency tolerated by an application, or the noise level at the
current location of the user.



240 E.G. Nilsson et al.

Property annotations allow us to reason about how well an application variant
matches its context, by comparing the properties of the services provided by the
application with the properties required by the user and the properties expressing
the resource needs of the application with the property annotation describing
the resources provided by the current computing infrastructure. The match to
user needs is expressed in a utility function. By default the utility function is
a weighted mean of the differences between properties representing user needs
and properties describing the service provided by the application, where the
weights represent priorities of the user. However, the developer may also provide
a tailored utility function for an application.

3.2 Context Change Detection

The Context manager represents the active part of the middleware architecture.
It is responsible for maintaining an up to date context model and detecting
context changes. Context includes execution platform context elements such as
network and memory resources, the environment context elements such as light
and noise, and user context elements such as location and stress level. This in-
formation is collected, represented, and stored using Context sensors. There are
three main kinds of context sensors: context probes that sense context directly,
context reasoners that aim to aggregate, predict and derive new context infor-
mation, and resource sensors that use resource management services to monitor
the resources of the execution platform. Context elements are delivered to the
Adaptation Manager component when appropriate. Further details on the con-
text management framework can be found in [10].

3.3 Reasoning About Context Changes

The Adaptation manager is responsible for reasoning on the impact of context
changes on the application, determining when there is a need to trigger adapta-
tion, and for selecting an application variant that best fits the current context.
Based on the framework architecture model it generates all possible variants
that can be accommodated with the available resources and selects the one with
the highest utility. Then it uses the Configurator to implement the new config-
uration. The adaptation management is described in more detail in [4].

3.4 Application Reconfiguration

The Configurator is responsible for the configuration and reconfiguration of an
application. By reasoning on the difference between the instance architecture
model of the currently running application variant and the model of the new
variant, the Configurator is able to derive the necessary configuration steps to
get to the new application variant.



Using a Patterns-Based Modelling Language 241

4 Using Modelling Patterns and Compound User
Interface Components to Facilitate Adaptive User
Interfaces

The adaptive architecture uses models at run time to facilitate any type of adap-
tive behaviour in an application. In this section we will show how the patterns-
based modelling approach may wutilize the adaptive architecture specifically to
ease development of adaptive Uls, facilitating fairly advanced Ul adaptation
mechanisms at run time.

Normally, a model-based systems development tool does the mapping from
the user interface models to concrete user interfaces in the design phase (e.g., as
a code generation process), i.e., before the system is deployed to the users. The
adaptation mechanism may exploit that the modelling approach offers a number
of different mapping rules for each modelling pattern. The adaptive functionality
is obtained by making the choice of which mapping rule to use at run time, i.e.,
after the system is deployed to the users.

4.1 Using the Adaptive Architecture

As seen above, the adaptive architecture facilitates mechanisms for component
based systems to be adapted at run time. To utilize this architecture for the
presented modelling approach, a number of mapping rules must be applied at
design time, so that the adaptation mechanisms have a number configuration to
choose from. This may be done automatically by a code generation facility (at
design time). A user interface at run time will thus consist of a number of user
interface components arranged in a structure that the adaptation middleware
may exploit.

To make both the modelling approach and how it is used for run-time adap-
tation more concrete, we present an example. In [13] we presented an example
focusing on how the modelling approach facilitates cross-platform development.
The example in [13] shows how two instantiations of the composite design pat-
tern (file system and system for managing department structure and human
resources in an organization) may be mapped to PC and PDA platforms using
two different mapping rules on each platform. As we focus on adaptation in this
paper, we present a variant of the same example, using only one instantiation of
the composite pattern (human resource management) that is mapped to PDA
platform using two different mapping rules. Fig. 4 below shows the Composite
pattern and the instantiation of it.

The example shows two similar mapping rules for PDA platform, both using a
GUI interaction style. The first mapping rule [13] (top part of fig. 5) is optimized
for overview, i.e., it will present as many instances as possible on the screen at
the same time, and also facilitates flexible navigation. The resulting Ul requires
that the user utilizes a stylus when operating it. The second mapping (bottom
part of fig. 5) is optimized for users focusing on details and not using stylus,
i.e., all elements are larger, and the facilities for navigation are on the one side
more accessible, but on the other side less flexible. The mapping rule is therefore



242 E.G. Nilsson et al.

* * Org.
Component Tiort
Composite Leaf Orga;ljl;z;tlon Employee

Fig. 4. The Composite Pattern (left) and the Department structure/Human resource
mgmt. instantiation of it (right)

Selection

populdles @ropdown list box of Compos.
[ Selection of

¥ Composite populates
in same view

Detail View

List View oPLeaf

of Component

Selection of
Leaf opens

Selection
populates~  Button view
of Composite

" F Tabbed detail
election of R
Composite populates View of Leaf

in same view

Detailed list Vie
of Componen

Selection of [ [ [ [

Leaf opens
N Selection

returns

Fig. 5. Stylus (top) and finger (bottom) usage mapping schemes for PDA presentation

designed so that the need for navigation is reduced, e.g., by providing more
information in the list view.

The developer chooses that the two mapping rules should be available at run
time. This causes the model transformation mechanism that normally would
generate one running Ul per platform to generate the necessary Ul components
for both the mapping rules. These Uls would look like figs. 6 and 7.

Each of these Uls consists of an instance hierarchy of concrete Ul com-
ponents. These two instance hierarchies are registered as alternatives in the
adaptive architecture. The choice of which variant to use could be determined



Using a Patterns-Based Modelling Language 243

¢11:39 fy|start
k Sales Europel] ~
Car Sales Europe
IE Car Sales Asia Car Sales

[E Car Sales America Sales

[& Car Sales Africa oS opany,
& Car Sales Australia K Crawson, Tom
(3 Bernard Carter k@ Gray, Nelly

) Harold Johnson Jackson, Maria
=) Penelope Smith Johnson, Carl

London, Allison
Monroe, MNorma
Melson, Henry
Olson, Allan
Parson, Tom

12 preston, Karl

& Reynolds, Tim
¥ Simson, Christian

=] ([
ﬁ|5lalt +£ 12:08 @; fy Maria Jackson o< 8:46 @
Car Sales Euro  + Employee #: [51338
& Anderson, Clair
K2 Attenbourogh, Brian Last Name:
@ Bell, Arnold
@ Cluney, Stella . O
k@ Crawson, Tom First Name: Intials: |:|
k@ Gray, Nelly

Jackson, Maria Address: 25, Left Street
Johnson, Carl
London, Allison
o Monroe, Norma
Melson, Henry

12 Glson, Allan

% Sallary:
1€ parson, Tom Iy 937639
Preston, Karl
K& Reynolds, Tim Department:

X2 Simson, Christian

Car Sales Europe vl

&= =R

Fig. 6. Stylus usage optimized instantiation of the example application - second view
shows navigation to ancestors

by a combination of the users location (obtained from a GPS or RF-ID location
sensor), the users task (obtained from the users calendar), and the temperature
(obtained from a sensor). For the middleware, this rule is described in the util-
ity function, prescribing when the middleware should choose each alternative.
Above, we stated that the utility function is specified by the developer. This
is normally the case, but in this special situation where the mapping rules are
generic, knowledge about the utility of the individual mapping rules should be
available, i.e., describing a mapping rule may include describing (as a utility
function) the factors that make the mapping rule best suited. Thus, the de-
veloper of the application may be given (i.e., it is generated) a default utility
function for each mapping that he may refine for the specific needs of this in-
stantiation. Once the versions are registered in the middleware and the utility
function is in place, the application may be started. Which version that will be
used at a given time, is depending on the information obtained by the context
manager with regards to the utility function, and how the adaptation manager
reasons about this information.



244 E.G. Nilsson et al.

| Company | > | Sales | > | Company I > | Sales | - Employee #:

| Car Sales I > Far Sales Europe| First Name;  [Maria

@ 51320 Crawson, Tom Last Name:  [’2kson

8 Car Sales Europe
33, High Road 528450

E i
p=3
m
]
]

@ 51660 Gray, Nely Initials:

143, Flower Lane 625450

B Car Sales Asia

Narne l Addr. |Sa|ary | Dep 4] »

% 51338 Jackson, Maria
25, Left Street 937639

B Car Sales America

51112 Johnson, Carl
a llrnar Aw WA

B Car Sales Africa Ba

H

Fig. 7. Finger usage optimized instantiation of the example application

What the adaptation mechanism does at a conceptual level is choosing which
mapping rule to apply while an application is running. Of course, the total num-
ber of mapping rules to apply (two in the example above) must be decided by
the developer. What is appealing with the combination is that it requires almost
no additional effort from the developer to offer adaptive features compared to
having just one alternative per platform. This is of course only true as long as
appropriate mapping rules already exist. If this is not the case, and the devel-
oper chooses to make his own mapping rules, the work involved will increase
significantly.

4.2 Types of Adaptation

The example above shows a moderate size adaptation, i.e., having two versions
of a Ul that are similar, but also have significant differences. It is easy to see
that adding a third mapping rule changing the UI to a speech driven one, fits
easily into the scheme, given that such a mapping rule exists. For the user, this
type of adaptation, i.e., one involving a different modality, is more radical.

The most obvious types of adaptations that this approach facilitates are radi-
cal changes, i.e., changes regarding the main principles for how the user interface
behaves, e.g., changes in the main modality to use or change in the user interface
style (e.g., from a forms-based to one using icons and drag-and-drop to a wizard-
based one). The reason why these types of changes are most obvious is that this is
the most natural aspects to cover in different mapping rules when used for cross-
platform development purposes (i.e., to have a set of mapping rules that causes
the resulting user interfaces to be different from each other to a certain degree).

As the example above shows, the approach also fits very well for moderate
changes. The mapping rules mechanism may also be used to facilitate changes
on even a lower level of granularity. Obviously, when the differences between
the variants are smaller, the mapping rules become more similar, e.g., different
versions of a mapping rule for one modality using a given style. This latter



Using a Patterns-Based Modelling Language 245

use of the mapping rules mechanism to facilitate smaller differences in the user
interface may cause the number of mapping rules to become larger, and if the
degree of overlap between the different rules is large, changing one of them may
cause the need for doing the same type of change on the parts of the mapping
rule that are shared by other mapping rules. A way of handling this is to have a
sub typing mechanism that lets different mapping rules inherit from a common
ancestor.

In addition to using different mapping rules as a means for adaptation, some
low level changes may be done using the pattern instantiation mechanisms (e.g.,
use a different icon, table headings, sorting of lists, menus, toolbars), this may be
viewed as a different way of using the mapping rule, or as an adaptation of the
mapping rule, i.e., the changes will not influence the instance hierarchy that the
mapping rule was used to generate. This type of adaptation should normally not
involve the adaptation middleware, except possibly the context manager that
can be used as a trigger mechanism.

5 Related Work

There are three main approaches for adaptive user interfaces, taking a model-
based approach more or less into account. The first approach is to handle adap-
tation at design time [5, 8,9, 11, 18, 19, 23, 24]. This is the most common way of
handling adaptation in model-based Ul development environments. The Uls are
adapted to different platforms as a part of a Ul generation process. This may also
be done at run time [2], but still with one UI per platform. This differs from our
approach in the way that we also provide adaptation on the individual platforms.

A second approach is to provide some kind of transformation mechanism at
run-time [17], i.e., a mechanism that transforms at UI designed for one platform
to a fit to a different one. The effect is thus similar to the first approach, only
using different means.

A third approach is to provide adaptation mechanisms in the UT itself [1, 20,
21, 22]. As discussed in the introduction, this may cause the same effects as our
approach, but requires more efforts for developers, as the adaptation is not han-
dled by generic middleware components. In our work, we investigate solutions
where the adaptation is managed and handled by independent, generic mecha-
nisms, grouped together to an adaptation middleware. By using this model, the
adaptation middleware is both responsible for finding out when to perform an
adaptation and for doing the actual adaptation. Repo et al. [20, 21] also use an
independent middleware in their approach, but it is neither based on component
frameworks nor a model-based approach for describing the variants of a user
interface.

6 Conclusions and Future Work

To design usable mobile applications, exploiting context changes is of vital impor-
tance. The rapid context changes in a mobile setting cause the need for flexible



246 E.G. Nilsson et al.

and adaptive user interfaces that are multitasking and possibly exploiting mul-
tiple modalities. In this paper we have briefly presented a patterns-based mod-
elling approach based on abstract, compound components and mapping rules
to various target platforms. As the number of such components (i.e., supported
modelling patterns), the number of mappings for each pattern, and the num-
ber of target platforms are limited, it is possible to optimise the mappings with
regard to usability and exploiting special features on each platform.

We have presented a middleware centric approach to supporting the building
of applications capable of adapting to a dynamically varying context as is typical
of mobile use. The proposed approach builds on the idea of achieving adaptability
by building applications as component frameworks from which variants with
different properties can be built dynamically.

In the paper we have shown how the modelling approach may be extended to
cover adaptable user interfaces at run time exploiting the adaptation middleware.

At the current stage, the adaptation middleware is more mature than the
modelling approach (e.g., we have implemented the adaptation middleware).
Still, there are a number of challenges for both. For the adaptation middleware,
making the optimization process connected to the utility function more efficient,
especially for applications with many components, is both challenging and im-
portant. Also the architecture needs further development and experimentation.
The modelling approach needs further refinement and details, both regarding
the modelling patterns and mapping rules and how they should be used at de-
sign time, and how the mapping rules should be used to exploit the adaptation
middleware to facilitate adaptive user interfaces at run time.

Acknowledgements. The work on which this paper is based is supported by
the projects FAMOUS and UMBRA funded by the Norwegian Research Council.

References

1. G. Calvary et al.: Plasticity of User Interfaces: A Revised Reference Framework.
Proceedings of TAMODIA 2002

2. T. Clerckx et al.: Generating Context-Sensitive Multiple Device Interfaces from
Design. Proceedings of CADUI 2004

3. J. Eisenstein et al.: Applying Model-Based Techniques to the Development of Uls
for Mobile Computers. Proceedings of IUI 2001

4. J. Floch, et al.: Using architecture models for runtime adaptability. IEEE Software
- special issues on SW architecture., 2006. 23(2): p. 62-70

5. E. Furtado: KnowiXML: a knowledge-based system generating multiple abstract
user interfaces in USIXML. Proceedings of TAMODIA 2004

6. E. Gamma et al.: Design Patterns FElements of Reusable Object-Oriented Software.
Addison-Wesley, 1995

7. S. Hallsteinsen et al.: A Middleware Centric Approach to Building Self-Adapting
Systems. Revised Selected Paper from Software Engineering and Middleware: 4th
International Workshop, SEM 2004

8. V. Lpez Jaquero et al.: Model-Based Design of Adaptive User Interfaces through
Connectors. In Proceedings of DSV-IS 2003



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Using a Patterns-Based Modelling Language 247

. K. Luyten et al.: Migratable User Interface Descriptions in Component-Based De-

velopment. Proceedings DSV-IS 2002

M. Mikalsen et al.: Putting Context in Context: The Role and Design of Context
Management in a Mobility and Adaptation Enabling Middleware. Proceedings of
International Workshop on Managing Context Information and Semantics in Mo-
bile Environments (MCISME), Nara, Japan, 2006

N. Mitrovic and E. Mena: Adaptive User Interface for Mobile Devices. Proceedings
of DSV-IS 2002

E. G. Nilsson: Modelling user interfaces challenges, requirements and solutions.
Proceedings of Yggdrasil 2001

E. G. Nilsson: Combining compound conceptual user interface components with
modelling patterns a promising direction for model-based cross-platform user in-
terface development. Proceedings of DSV-IS 2002

E. G. Nilsson: User Interface Modelling and Mobile Applications Are We Solving
Real World Problems? Proceedings of TAMODIA 2002

E. G. Nilsson and O.-W. Rahlff: Mobile and Stationary User Interfaces Differences
and Similarities Based on Two Examples. Proceedings of HCI International 2003
E. G. Nilsson: Design guidelines for mobile applications. SINTEF Report STF90
A06003, ISBN 82-14-03820-0, 2005

S. Nylander et al.: Ubiquitous service access through adapted user interfaces on
multiple devices. Personal and Ubiquitous Computing 9(3), May 2005, p 123- 33
F. Patern and C. Santoro: One Model, Many Interfaces. Proceedings of CADUI
2002

C. Pribeanu et al.: Task Modelling for Context-Sensitive User Interfaces. Proceed-
ings of DSV-IS 2001

P. Repo and J. Riekki: Middleware support for implementing context-aware multi-
modal user interfaces. Proceedings of the 3rd international conference on Mobile
and ubiquitous multimedia, 2004

P. Repo: Facilitating user interface adaptation to mobile devices. Proceedings of
NordiCHI 2004

A. Schmidt et.al.: Sensor-based Adaptive Mobile User Interfaces. Proceedings of
HCI International 1999

A. Seffah and P. Forbrig: Multiple User Interfaces: Towards a Task-Driven and
Patterns-oriented Design Model. Proceedings of DSV-IS 2002

N. Souchon et al.: Task Modelling in Multiple Contexts of Use. Proceedings of
DSV-IS 2002

C. Szyperski: Component Software: Beyond Object-Oriented Programming. 2nd ed,
Addison-Wesley. 2002

H. Traetteberg: Dialog modelling with interactors and UML Statecharts - A hybrid
approach. Proceedings of DSV-IS 2003



Toward Quality-Driven Development of 3D Computer
Games

T.C. Nicholas Graham and Will Roberts

School of Computing, Queen’s University, Kingston, Canada, K7L 4L5
graham@cs.queensu.ca, wildwilhelm@gmail.com

Abstract. The development of video games is a complex software
engineering activity bringing together large multidisciplinary teams under
stringent constraints. While much has been written about how to develop
video games, there has been as yet little attempt to view video game
development from a quality perspective, attempting to enumerate the quality
attributes that must be satisfied by game implementations, and to relate
implementation techniques to those quality attributes. In this paper, we
discuss desired quality attributes of 3D computer games, and we use the
development of our own Life is a Village game to illustrate architectural
tactics that help achieve these desired qualities.

1 Introduction

Gaming software sales grew to $24.5 billion world wide in 2004 [6], while in the
United States alone, 228 million computer games were sold in 2005 [4]. The gaming
industry has become a significant part of the software development world.

Games are challenging to develop. They involve complex algorithms in graphics,
artificial intelligence, database and distributed systems, have stringent performance,
usability and correctness requirements, and at the same time, are developed under
aggressive delivery schedules. Game development teams are multidisciplinary, and
for top titles include 100 or more people.

As yet, the software engineering literature has had little to say about how to
develop games. In this paper, we discuss aspects of why developing games is
different from developing other forms of software, and, motivated by a framework
suggested by Bass et al. [1], we propose a set of architectural tactics that are helpful
in game development. These tactics provide guidelines for how to structure games
to address their quality requirements. The tactics are motivated and illustrated by
our experience with the development of Life is a Village, a 3D computer-aided
exercise game.

The paper is organized as follows. We first introduce Life is a Village, from which
our examples will be drawn. We then discuss quality attributes of interest to games.
Finally, we introduce our architectural tactics for game development and relate them
to those quality attributes.

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 248 2007.
© Springer-Verlag Berlin Heidelberg 2007



Toward Quality-Driven Development of 3D Computer Games 249

W OUET R ey Winedow

Currest FFR I 80

Fig. 1. Life is a Village game and player

2 Life Is a Village

Life is a Village is an experimental game testbed intended for exploration of
computer-aided exercise [12], in which physical exertion is part of the game play.'
The goal of the game is to gather resources from a large exterior landscape and use
them to build an interesting village. The player traverses the landscape in search of
resource nodes (such as wood, stone, etc.) When a node has been found, the player
dispatches a villager from his/her village to start harvesting the resource. Once
sufficient resources of the correct type have been collected, the player can add a new
structure to the village.

The player uses a recumbent exercise bicycle to control the game (figure 1).
Players navigate the terrain on their bicycle in the obvious way: pedaling moves
forward; pedaling quickly moves forward quickly. Going uphill makes cycling harder;
going downhill makes cycling easier. The player uses a handheld, wireless PS2
controller to steer, change gears, and provide button-based commands to the game.
Exercise is an integral part of the game; the more players pedal, the faster they find
resource nodes, the faster their villagers work, and therefore, the faster they can add to
their village.

The core game framework has been implemented, but more work is to be done to
make it a “fun” and playable game, such as adding additional village structures and
additional resource types. The development of this game motivates the tactics
described in the remainder of this paper.

' More information on Life is a Village can be found at http:/dundee.cs.queensu.ca/wiki/
index.php/Life_is_a_Village



250 T.C.N. Graham and W. Roberts

3 Quality Attributes for 3D Games

In this section, we review a number of quality attributes that are important to game
development. This list is far from exhaustive, but serves as a representative set of
qualities most important to game developers. Drawing from the presentation of Bass
et al. 1], we select attributes divided into business time, development time and
runtime. In section 4, we will then show how our architectural tactics address these
quality attributes.

3.1 Business Qualities: Time to Market

Game developers face significant pressures to bring their products to market quickly.
This pressure derives from a number of sources.

Games are often tied to events such as the release of a movie or the start of a sports
season. For example, this year’s Olympic Winter Games were accompanied by the
Torino 2006 game; recent films such as King Kong, Spider-Man 2 and the Lord of the
Rings trilogy have all been supported by video game releases. Each year sees the
release of a profusion of football, hockey and soccer games featuring that season’s
players. Games must be released on schedule for the event with which they are
associated, or risk losing their appeal.

Games that take a long time to develop risk falling behind the technology curve,
leading to a spiral of further delays as artwork and special effects are updated to avoid
appearing dated upon release. Additionally, console platforms have an expected
lifetime of about five years, meaning that late releases risk catching their chosen
platform on the decline.

Finally, the cost to develop a game for the next generation of consoles is estimated
at $15-25 million [5]. Given such outlays, publishers face intense pressure to release
quickly and begin recouping their investment.

3.2 Development-Time Qualities: Testability, Modifiability, Reusability

Modern computer games are complex and detailed, typically requiring tens of hours
to complete. Games are highly graphical, and necessarily have non-deterministic
behaviour. Some games have such complex artificial intelligence that their behaviour
is “emergent”, or unpredictable. All of these factors make games difficult to test.
Games have stringent correctness requirements. Console games are distributed and
played from a disk, so patches cannot be issued after the game’s release. PC games,
on the other hand, are routinely supported by patches, costing the publisher significant
post-release development resources and distribution costs, as well as damaging its
reputation. For example, the game Battlefield 1942, released in 2002, is currently
supported by over 270 MB of patches; Rome: Total War, released in 2004, requires
over 130 MB of patches for correct play.

Modifiability is an important quality attribute of games. Games may evolve
significantly during their development in the search for the elusive “fun” quality.



Toward Quality-Driven Development of 3D Computer Games 251

Games are often extensively modified after their release as game expansions are
developed. Massively multiplayer games evolve considerably over their online life,
sometimes completely changing their character. Modifiability is a pre-cursor to
reusability; the success of projects often relies on reuse of code from earlier
projects.

3.3 Runtime Qualities: Usability, Performance

Usability of games differs significantly from that of other kinds of software. The main
task of someone playing a game is to be entertained (or simply, to have fun.) Fun
games routinely violate all normal rules for the design of usable systems. Games often
provide players with information in inefficient forms, provide overly complex
command interfaces and force players to perform low-level tasks that could quite
reasonably be automated. However, a first-person shooter game that provided the
player with the location of all enemies, a racing game that prevented players from
losing control of their car, or a Tetris game that automatically chose the best location
for a falling block would not be fun. Game usability must therefore balance the ease
of learning and use of the game’s interface with the fun that using the interface
provides.

The primary performance metric in video games is frame rate, measured in frames
per second (fps). A minimal value ensuring smooth animation is approximately 30
fps. A maximal value would match the refresh rate of the player’s monitor; modern
CRT monitors have a refresh rate of 75-85 Hz. Game players claim to be able to
perceive the difference of frame rates up to 200 Hz, meaning that high frame rates
may be necessary for marketing reasons even in cases where the benefit to game play
is not clear.

Both measures of average frame rate and worst frame rate are important. Average
frame rate gives a sense of how well the game is performing in general. Worst frame
rate indicates how well the game does when under stress, perhaps the very time that
player’s require best performance.

4 Tactics for Game Development

Architectural choices can greatly influence a game’s quality attributes. The trade
literature provides diverse advice on how to architect games (e.g., for sports games
[15], for massively multiplayer online games [13] and for real-time strategy games
[11]). There is, however, little to help game developers choose broad architectural
strategies in a principled manner. We advocate the use of architectural tactics [1] to
help developers make informed architectural choices. Architectural tactics provide
high-level advice for how to structure a software system. Tactics are not code or
design patterns, but are higher-level, more generic techniques. Tactics influence
quality attributes: a given tactic may improve one attribute while worsening
another.



252 T.C.N. Graham and W. Roberts

Table 1. Architectural tactics for game development and quality attributes that they influence.
>+ indicates a positive influence on the quality attribute, -’ a negative influence, and *©@’ a

tuneable influence.

—~
&
k3 SEENS
)
& e o & £
S &£ 5 § S o
L 3 8 F & £
o £ 5 ¢ §
£ ¥ & & & o
IS ~ S & S a
Create tools allowing non-programmers to
i + + | + | -
engage in development
Decompose application into independent +l+ 1+ _
components
Structure application around existing
components + + @ @
Use .s.crlp.tlng languages to allow rapid + |+ + @ +
modification of game
Avoid blocking actions in main frame loop +
Identify opportunities for parallel execution +

An architect can therefore analyze which tactics best meet the trade-offs required
for his/her project. The approach of linking architectural tactics to software quality
attributes has already been applied to human-computer interaction more broadly
[2, 7], but not to game development.

Table 1 shows the tactics we propose for game development. This list should be
viewed as a starting point; ultimately, our goal is to provide a rich set of tactics that
developers can study before committing to a concrete architecture. These tactics were
identified as a result of our experience with developing the Life is a Village game as
well as consulting the game development trade literature. Developing a more
complete set of will require the expertise of a wide group of game developers.

In sections 4.1 through 4.6, we review the six tactics presented in table 1, and show
how they influence the quality attributes discussed in section 3. The tactics are
illustrated with examples from the development of the Life is a Village game.

4.1 Tactic: Create Tools Allowing Non-programmers to Engage in Development

To understand how games are developed, it is useful to consider the structure of game
development teams. Table 2 shows the composition of the teams that developed five



Toward Quality-Driven Development of 3D Computer Games 253

Table 2. Breakdown of development teams for five popular computer games

Battlefield World of  Civilization  Battle for F.E.A.R.
1942 Warcraft 4 (2005) Middle (2005)
(2002) (2004) Earth
(2005)

Producer 2 6 3 8 14
Designer 3 29 2 11 9
Writer 5 2
Artist 12 41 34 39 18
Programmer 11 29 18 33 24
Audio 3 14 6 9
Video 35 7 3
Quality 51 114 26 73 56
Assurance
Actor 18 36 1 16
Total 100 304 97 179 149

popular video games between 2002 and 2005. (The table was produced by consulting
the credits released by the games’ publishers. For consistency, all people appearing in
development roles in the credits are included in the table; no attempt was made to
distinguish between part-time and full-time roles.)

Table 1 reveals three interesting points. First, game development teams for
premiere (known as “AAA”) games are large, involving upwards of 100 people.
Second, these teams are highly interdisciplinary, involving design, story writing,
creation of artwork, music, sound effects, voice acting, creation of video cut-scenes,
programming and quality assurance. Programmers represent only 10%-20% of the
development team. Third, the role of quality assurance is enormous, ranging over
25%-50% of the team’s personnel.

The tasks of artists and designers include creating and animating entities that
appear in the game world, designing the physical structure and appearance of game
“levels” (interior or exterior), and scripting encounters between the players and the
environment.

Since all of these tasks involve programming-like activities, one approach is to
have the artists/designers specify the behaviour they desire, leaving programmers
realize the specification. It is far better to allow non-programmers on the
development staff to perform these tasks directly, without the involvement of
programmers: artists can get faster turn-around on their ideas, and programmers
cease to be a bottleneck in the process. All game development studios purchase at
least some commercial tools to help empower artists, for example tools for modeling
entities (e.g., Maya and Softlmage XSI) and tools for animation (e.g., Alias
MotionBuilder). Larger studios can afford to build custom tools helping with other
aspects of development.

This tactic helps with time to market by allowing artists/designers to be more
productive. It helps reusability, since once developed, the tools can be used in future



254 T.C.N. Graham and W. Roberts

[ OGRE Render Window

Generated
Terrain

Texture
(water)

(rock)

% eV

Detail fext]re

Base Texture

Fig. 2. A terrain consists of a polygon mesh with an overlaid base texture and detail texture

projects. Usability is enhanced, since designers can more quickly iterate between
development and testing. Performance may be hindered as high-level tools may
produce less optimized output than hand-crafted code.

4.1.1 Illustration: Landscape Generation in Life Is a Village

We applied this tactic in Life is a Village by developing a tool for procedural
generation of landscapes. This allows people without programming skill to quickly
develop rich 3D worlds. In 3D games, exterior landscapes are typically represented as
a polygon mesh covered in a texture. The polygon mesh is covered in a base texture,
an image that is stretched over the terrain’s area. Often, a detail texture is blended
with the base texture to give additional detail in the neighborhood close to the camera,
reducing blurriness (figure 2).

Terrains can of course be created manually by a programmer by writing the
appropriate DirectX or OpenGL commands to create and texture the terrain geometry.
More realistically, artists use tools such as Leveller’ and Terragen® to draw the 3D
model of the terrain and to paint it with the desired texture. Such tools export a
heightmap and a texture. The heightmap is a matrix specifying the height y of the
terrain at each (x, z) point, and is used to generate the features of the terrain during the
game’s runtime. Terrain modeling tools such as these can lead to beautiful results, at
the cost of significant manual labour.

2 Leveller: http://www.daylongraphics.com/products/leveller
3 Terragen: http://www.planetside.co.uk/terragen



Toward Quality-Driven Development of 3D Computer Games 255

<terrain name="hill" mapcolour="07ab0b">
<edge bleed="30" crumble="5" />
<height scale="0.03" bottom="0.01" top="0.20" />
<noisycolour scale="0.02" offset="10" >
<colour value="(95,150,16)" />
<colour value="(82,111,58)" />
</noisycolour>
</terrain>

Fig. 3. Landscapes are generated from a terrain map, a simple bitmap image showing where
each type of terrain is located

For Life is a Village, we took an alternative approach of generating landscapes
procedurally from a high-level description. This approach allows developers to
quickly generate landscapes of arbitrary size, reducing time to market. Landscapes
consist of numerous terrain types (e.g., hills, mountains, forest), each with differing
properties such as height and coloration.

Figure 3 shows the inputs that a developer must provide to the terrain generation
tool. The developer uses a paint program to create a bitmap representing where each
terrain type appears. In the bitmap, terrain types appear representing mountains, hills,
forest, plain, river and lake.

The properties of the terrain types are defined in XML. (Future plans involve
building a simple GUI editor for terrain types.) Attributes of terrain types include the
range of colours that can appear in the terrain, the height range of the terrain, the
“noisiness” of the terrain (e.g., smooth, rolling hills vs jagged peaks), and properties
allowing shadows to be pre-computed. The result of running the tool is a heightmap
and a base texture. Figure 2 shows the result of running the inputs shown in figure 3,
and an example of the rendered terrain.

4.2 Tactic: Decompose Application into Independent Components

This tactic represents one of the fundamental lessons of software engineering, that it
is important to decompose software system into components with well-defined
interfaces that can be developed by different people. While this tactic is important to
all large software products, it is of particular interest to the development of games,
where large teams work under intense time pressure. Adopting this tactic, most
modern games are based on a well-understood set of core components.

This tactic aids time to market by allowing parallel work, testability by providing
hooks for unit testing, modifiability through localization of change, and reusability
through the provision of components that may be modified for use in other games.
Performance may be negatively impacted by rigid component interfaces or by
components’ information hiding, but may also be improved by algorithmic insights
afforded by separation of concerns.



256 T.C.N. Graham and W. Roberts

| i
3 [ |
| - Graphicsj E
1 Display Engine  &— !
1 (OGRE) Physics !
| 1
1 :
i 12 1 0 '
1 17 User Data ]
i L Bicycle > 17— O [ '?/ !
‘ \__# 7 i
i Input Il '
: Manager &7 Game i
1 | 2 G |
} Joystick™ 17— | Ny Game n !
3 - tl: World Data !
i ;
1 :
] Sound Al J ]
3 Speakers Engine & ” i
; (OpenAL) i
3 I . :
; i
‘ |

Fig. 4. The architecture of Life is a Village, in Workspace Architecture notation [9]

4.2.1 TIllustration: Architecture of Life Is a Village

Figure 4 shows the architecture of the Life is a Village game. This shows how the
game is decomposed into high level components that can be given to different
development teams. The components present in this architecture are typical of modern
3D games. The architecture is expressed in Workspace Architecture notation [9]. The
core of the application is the Game, which runs in its own thread. The game takes
input from various input devices, such as the bicycle and joystick. The input manager
runs asynchronously in its own thread. Output is provided by calls to a Graphics
Engine, which in turn updates the Display, and to a Sound Engine, which sends data
to the Speakers.

The Al component is responsible for villager behaviour. The Physics component
deals with collision detection and realistic behaviour of the player and non-player
characters when jumping and falling.

The User Data and Game World Data components represent data about the
player’s state and the state of the game world itself.

4.3 Tactic: Structure Application Around Existing Components

A critical strategy for quickly developing complex games is the re-use of components
from other projects, or the purchase of third-party components. Examples of highly
successful third-party components include the Unreal game engine* and the Havok
physics engine’. Reuse is critical to game development due to the importance of time
to market; there simply isn’t time to build all components of a game from scratch. A

* Unreal Engine: http://www.unrealtechnology.com/html/technology/ue30.shtml
> Havok Physics Engine: http://www.havok.com



Toward Quality-Driven Development of 3D Computer Games 257

significant part of the value of game development companies is the base of software
they have available allowing them to develop new games quickly.

Reuse of components can help fime to market by reducing code that has to be
written, but can also increase time to market if the time to adapt the component to its
new use is excessive, or if the component ultimately is a poor match with its
requirements. Reuse helps with testability if the component has already been
extensively tested in other contexts. As above, modifiability may be helped through
localization of change, and performance may be either improved or worsened
depending on the details of the components. Reuse may negatively impact usability
through locking the developers into a particular style of gaming, or may improve
usability by supporting varied and complex interaction styles that would be
prohibitive to program from scratch.

4.3.1 Illustration: Use of Open-Source Components
Life is a Village relies heavily on third-party components:

e The Object-Oriented Graphics Rendering Engine (OGRE)® is an open-source 3D
graphics rendering engine that clearly illustrates the trade-offs of component use.
While OGRE abstracts the low-level details of DirectX and OpenGL, dramatically
reducing the effort of developing 3D graphics code, it has an incomplete feature
set, third part add-ons of mixed quality, and difficulty integrating with commercial
modeling tools.

e The Open Dynamics Engine (ODE)’ is an open-source physics engine. ODE
supports collision detection and correct physical behaviour of objects acting under
force.

e OpendL?® is an open-source 3D sound engine adopted by such well-known titles as
Doom 3 and Quake 4.

The gaming world has seen a strong convergence on what predefined components
should be used and a perhaps surprisingly strong list of open-source tools.
Additionally, an increasing number of companies have created strong niches in the
development of third party tools for game development.

4.4 Tactic: Use Scripting Languages to Allow Rapid Modification of Game

Scripting languages have become a common technique for reducing the time to
develop games and for reducing the skill level required of game developers. Games
almost uniformly use C/C++ for core graphics, low-level Al and networking.
Scripting languages such as Python or Lua [8] can then be used to encode the game
play itself. Development of custom languages may be appropriate when domain
information can be encoded in the language [10], but the cost of developing and
maintaining custom languages may exceed their value [14]. Some games open their
scripting languages to their player base, leading to a profusion of game enhancements
produced and made available by players.

® OGRE 3D Graphics Engine: http://www.ogre3d.org
" Open Dynamics Engine: http://www.ode.org
8 OpenAL: http://www.openal.org



258 T.C.N. Graham and W. Roberts

IF at_tree AND NOT chop AND NOT drop_off_ wood
THEN chop AND NOT move

IF at_tree AND chop AND chop_timeout
THEN NOT chop AND switch_targets
AND reverse_path AND drop_off_wood AND move

IF drop_off_wood AND at_wood_drop_off
THEN NOT drop_off_wood AND drop_wood
AND switch_targets AND reverse_path
AND go_to_tree AND move

IF NOT chop AND NOT drop_off_wood
THEN go_to_tree AND move

Fig. 5. Al rules for a villager chopping wood and returning it to the village

Scripting languages may improve time to market, as it is quicker to write and
debug code in high-level languages. Time may be lost, however, to working around
an awkward or poorly designed scripting framework, or one that is poorly supported
by debugging tools. The festability of code may be improved, as scripting languages
typically provide more runtime checking than raw C++ code. Scripts are typically
high-level and interpreted, therefore more modifiable than low-level code. Since they
support a fast code-execution cycle, scripts allow quicker refinement of gameplay
mechanics, which may increase the usability of the final product. Scripting languages
are typically slower than compiled code, so excessive use of scripting in time-critical
areas may reduce performance.

4.4.1 Ilustration: AI Scripting
Life is a Village uses a simple scripting language (adapted from Champandard [3]) to
define villager behaviour. This allows behaviour to be quickly defined and changed,
supporting rapid, experimental development. Figure 5 shows the rules specifying the
behaviour of a villager whose job is to walk from the village to a tree, chop wood
until his bag is full, then return to the village and drop off the wood.

The language is based on rules specified using propositional logic. A rule is
triggered if its antecedent holds. Once triggered, the rule engine ensures that the rule’s
consequent holds. For example, the rule

IF NOT chop AND NOT drop_off_wood
THEN go_to_tree AND move

will be triggered if the villager is not currently chopping wood or dropping off wood
in the village. If triggered, the rule ensures that the villager is walking to the tree.

Rules are bound to the application via semantic actions; atoms in the antecedent
query the game state, while atoms in the consequent may modify game state in order
to make the consequent true.

This language helps collect Al decisions into one place, and allows villager Al to
be modified without recompilation of the program. It also, however, illustrates
problems with the scripting approach. When developers attempted to add more
resources to the game, they discovered difficulties in generalizing the rules, since
there is no facility for parameterizing the resource being collected. The possible
solutions included making many slightly modified copies of the rules, or burying the



Toward Quality-Driven Development of 3D Computer Games 259

problem in the application through more powerful semantic actions. Neither approach
was satisfactory, so the scripting language itself must be modified.

4.5 Tactic: Avoid Blocking Actions in Main Frame Loop

Games are driven via a main loop responsible for computing the display for the next
frame. The time taken to compute each frame is directly related to the time required to
compute each iteration of this loop; e.g., to maintain a frame rate of 20 frames per
second, frames must be computed within 50 ms. To optimize worst frame rate, this 50
ms must be treated as a soft real-time bound for each frame rather than an average to
be achieved over the execution of the program.

In order to increase the game’s frame rate, it is important to architect the main
frame loop to contain no excessively lengthy computations, and particularly, no
computations of unpredictable length.

4.5.1 Illustration: Input Handling

In traditional graphical user interfaces, input is handled via an event mechanism,
where user inputs such as keystrokes and mouse button clicks are transmitted to the
application via a callback mechanism (e.g., as provided by Java Swing’s listener
architecture.) Continuous inputs such as mouse motion are converted into a discrete
set of events. In 3D games, inputs are instead handled by polling the input devices
within the main frame loop. Thus if a game controller button is depressed or a
joystick moved, the game will be able to react to the input within the main frame
loop, and modify the game state appropriately. This approach of course requires a
sufficiently high frame rate that the devices are polled often enough to provide
responsive input.

In Life is a Village, one of our input devices is a Tunturi E6R recumbent bicycle.
The bicycle can be polled for inputs representing the speed at which the user is
cycling, the current tension of bicycle, what (if any) buttons the user is pushing, and
the user’s heart rate. Polling is performed via a proprietary protocol via a COM port
link between the bicycle and computer.

Polling the bicycle takes a variable amount of time, ranging between 5 ms and 20
ms. Assuming the bicycle is polled once per frame, this time is added to the frame
computation cost, unacceptably impacting frame rate. The solution, as shown in
figure 4, is to run the input manager in its own thread. The input manager
continuously polls the bicycle (and other input devices) in its own thread. When the
main frame loop checks the input state, the input manager provides the last value
obtained from the input device. Values from the bicycle may therefore be a few
milliseconds out of date, but the result can be provided without blocking, and
therefore without impacting frame rate.

4.6 Tactic: Identify Opportunities for Parallel Execution

Modern gaming platforms support extensive parallelism. Microsoft’s Xbox 360 game
console provides three 3.2 GHz dual core PowerPC processors, or six cores in total, in
a shared memory environment. Sony’s forthcoming PlayStation 3 is built around a 3.2
GHz Cell Processor consisting of seven Synergistic Processing Elements (SPE’s),



260 T.C.N. Graham and W. Roberts

each a 128 bit SIMD RISC processor, all connected by a 10 GBps bus. Desktop PC’s
are following the trend towards parallel architectures, with both Intel and AMD
having scheduled quad-core CPU’s for release in 2007. The challenge of
programming this next generation of consoles is how to distribute the computation
required in the game amongst these many processing elements.

The benefit of parallelism is a potential improvement in performance. Parallel
programs are harder to write and debug, and therefore may negatively impact time fo
market and testability.

4.6.1 Illustration: Pathfinding

Pathfinding involves finding a reasonable path for agents in the game world that have
to move from one location to another. For example, if a villager has to move from the
village to a tree selected by the player, the game needs to first compute the route that
the villager will follow. Path computations can be time-consuming, especially if there
are many to do at the same time, and so make a good candidate for parallel execution.
Additionally, path computation is not time-sensitive, in that a brief delay in
computation will simply cause the villager to wait, playing an idle animation, before
moving towards the tree. Pathfinding is mediated via a CAXVillagerPathManager
component, which maintains a pool of threads that are assigned to a queue of path
computation requests.

The six tactics presented in this section have shown how high-level approaches to
architecting games can help meet quality requirements. The tactics each address one
or more of the quality attributes identified in section 3, sometimes positively, and
sometimes negatively. Relating tactics to quality attributes helps developers make
reasoned architectural decisions.

5 Conclusion

In this paper, we have discussed quality attributes of interest to 3D video games, and
proposed six tactics for addressing these quality attributes. The collection of tactics
allows game developers to consider broad approaches to development in the context
of how design choices affect game qualities. We illustrated the tactics through
examples drawn from the development of the Life is a Village computer-aided
exercise game.

Future work includes expanding the list of tactics and the quality attributes
addressed. For example, we plan to consider tactics useful in the development of
multi-player games.

Acknowledgements

We gratefully acknowledge the support of the National Science and Engineering
Research Council in performing this work. The Life is a Village game benefited from
the hard work of Irina Skvortsova, Rob Fletcher, Kevin Grad, Kevin Kassil, Joseph
Lam, Banani Roy, Paul Schofield, and Sean Richards.



Toward Quality-Driven Development of 3D Computer Games 261

References

10.

11.

12.

13.

14.

15.

. Len Bass, Paul Clements and Rick Kazman, Software Architecture in Practice, second

edition, Addison-Wesley Professional, 2003.

Len Bass, Bonnie E. John, Natalia Juristo Juzgado, Maria Isabel Sanchez Segura,
Usability-Supporting  Architectural Patterns, in Proceedings of the International
Conference on Software Engineering, pp. 716-717, 2004.

Alex J. Champandard, A/ Game Development, New Riders Publishing, 2003.
Entertainment Software Association, Top 10 Industry Facts, 2005, Available at
http://www.theesa.com/facts/top_10_facts.php

John J. Geoghegan, The Console Transition: A Publisher’s Perspective, BusinessWeek
Online, December 14, 2005.

Ronald Grover, Cliff Edwards, lan Rowley and Moon Ihlwan, Game Wars, BusinessWeek
Online, February 28, 2005.

Bonnie E. John, Len Bass, Maria Isabel Sanchez Segura and Rob J. Adams, Bringing
Usability Concerns to the Design of Software Architecture. In Proceedings of
EHCI/DSVIS, pp. 1-19, 2004.

Matthew Harmon, Building Lua into Games, in Game Programming Gems 5, pp. 115-128,
Charles River Media, 2005.

W.G. Phillips, T.C.N. Graham and C. Wolfe, A Calculus for the Refinement and Evolution
of Multi-User Mobile Applications In Proceedings of Design, Specification and
Verification of Interactive Systems, Lecture Notes in Computer Science, pp. 137-148,
2005.

Falco Poiker, Creating Scripting Languages for Nonprogrammers, A/ Game Programming
Wisdom, Charles River Media, pp. 520-529, 2002.

Bob Scott, Architecting an RTS Al, Al Game Programming Wisdom, Charles River
Media, pp. 397-401, 2002.

Brian K. Smith, Physical Fitness in Virtual Worlds, /EEE Computer, pp. 101-103, October
2005.

Shea Street, Massively Multiplayer Games using a Distributed Services Approach, in
Massively Multiplayer Game Development 2, Charles River Media, pp. 233-241, 2005.
Paul Tozour, The Perils of Al Game Scripting, A Game Programming Wisdom, Charles
River Media, pp. 541-554, 2002.

Terry Wellmann, Building a Sports Al Architecture, in A1 Game Programming Wisdom 2,
Charles River Media, pp. 505-514, 2004.



Processes: Working Group Report

Stéphane Chatty, José Creissac Campos, Maria Paula Gonzéalez,
Sophie Lepreux, Erik G. Nilsson, Victor M.R. Penichet, Mo6nica Santos,
and Jan Van den Bergh

1 Automatic Generation?

It has often been suggested that model-driven development of user interfaces
amounted to producing models of user interfaces then using automatic code
generation to obtain the final result. However, this may be seen as an extreme
interpretation of the model-driven approach. There are examples where that
approach is successful, including mobile computing and database management
systems. But in many cases automatic generation may be either impossible or
may limit the quality of the final interface.

This debate raises the question of where information comes from in the design
process:

— at one extreme is straightforward model translation or compilation: all the
design information is contained in the model, and the automatic generation
just produces the executable code.

— at the other extreme is a fully automated system that incorporates rules able
to make the appropriate design choices: adapation to the task, the context
and the available hardware.

— in between are more complex situations in which designers must bring addi-
tional knowledge and know-how. The process is thus a mix of human design
and automated model translation.

Some authors suggest, following the second case above, that one can automati-
cally translate a task model to a concrete user interface. However, task modelling
languages currently are not capable of expressing all of the design information
that is found in a concrete Ul For instance, some user interfaces rely heavily on
the concept of sequence (wizards, for instance) when task modelling languages
do not all have such a concept. Consequently, the information must either be
encoded in a very rich set of rules, or added by a human designer. Therefore,
until such very rich sets of rules are built, processes will most often consist of
automatic translations interspersed with additions by human designers.

2 Fitting Ul into Larger Scale Processess

The success of big industries relies on their processes, which have to be optimized
for return on investment, efficiency and risk management. If one proposes to
change existing processes by relying on user-centered methods, one will have

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 262-264] 2007.
© Springer-Verlag Berlin Heidelberg 2007



Processes: Working Group Report 263

to provide satisfactory answers to the following questions at least: what is the
return on investment? How is the risk added by such methods managed?

— most decision makers are now convinced about the issue of return on invest-
ment, thanks to the success of the Web. The Web has been proved to them
how better user interfaces yield more traffic, and they are ready to accept
that they can improve their business too.

— as for risk, perception depends on the size of companies. Small companies are
used to managing larger risks in their projects; therefore they are more open
to accepting the potential risk brought by iterative design. Larger companies
accept much smaller margins of risk; therefore, one needs to demonstrate
that the proposed iterative processes improve the risk margin rather than
degrade it.

Among the hurdles identified for integrating UI processes into larger develop-
ment processes are:

— the fact that in classical software engineering, the architecture of the software
is often designed before the analysis of user interface requirements, when
there is a strong relationship between software architecture and the type of
user interface that can be produced.

— the fact that the business logic is often developed before the user interface
is designed, despite the fact that the implementation choices often impose
severe constraints on user interaction

3 Communicating with Users

Although an abundant literature is dedicated to the role of users in design pro-
cesses, there still appears to be a debate as to whether users are able to partici-
pate efficiently in the design process. Two opposed schools of thought emerge:

- some group participants consider that users bring a major risk to the design
process because they keep changing their minds; these participants advocate
processes that are user-centered but not with the actual participation of users;

- other participants contend that users are able to reason about abstract con-
siderations when those have been properly introduced, are able to contribute
efficiently to the design solutions when the appropriate prototyping and com-
munication supports are used, and are no more difficult to manage than other
actors of a development process.

These two schools of thought lead to very different views of the role of design
managers. However, whatever the chosen design process it is important that this
process is “self-evident” in that the customer or user knows what is the current
phase of the process. In other domains (building architecture for instance), there
is no ambiguity between the mock-up phase and the building phase. It should be
the same in user interface design, using different levels of fidelity of prototypes.



264 S. Chatty et al.

4 Conclusions

Based on the above discussions, the working group agreed that:

— there is no “silver bullet” process for developing user interfaces, especially
not with full automation;

— HCI is about building new objects and not reproducing or evolving existing
objects, which means that creativity will always play an important role;

— models should be used only when needed;

— models for communicating within the design and development groups and
with users are essential;

— product design is a key activity in software development and its relationship
to code development should be clarified.



Usability and Computer Games: Working Group Report

T.C. Nicholas Graham, Paul Curzon, Gavin Doherty, Philippe Palanque,
Richard Potter, Christopher Roast, and Shamus P. Smith

1 Introduction

Computer games are intended to be fun to play. While they are also interactive
systems with sophisticated user interfaces, standard concepts of usability do not
necessarily apply to games. In this workshop, we explored the relationship between
usability and fun. Our central conclusion was that applying standard usability design
guidelines, such as those proposed by Nielson [4], may improve or reduce the fun of a
game, but that for many standard usability guidelines, there exist equivalent
guidelines addressing fun in games.

2 Motivating Examples

Jumpgate [3] and Eve Online [1] are both massively multiplayer online games in
which players pilot through space, mine asteroids for resources, and engage in combat
with other players. While superficially similar, the games provide completely
different user experiences. Jumpgate provides a faithful simulation of Newtonian
physics. Due to conservation of momentum, if a player wishes to slow his ship, he
must rotate it by 180 degrees, and engage his thrusters. Landing a ship in a space
station is a complex and difficult experience. Jumpgate violates many principles of
user-centered design, high among them that the interface does a very poor job of
engineering for errors. Eve Online, on the other hand, provides a very simple
interface: to dock, the player right-clicks that station, and selects the “dock™ option
from a menu. The Eve approach does well on the usability scale — there is little
opportunity for error; no memorization is required; and the operation is highly
optimized. The trouble is, it is also thoroughly boring — in Eve, a player can sit for
minutes on end watching the game pilot his ship through space. What makes for good
usability in this case makes for poor gameplay.

Red Alert [2] is a real time strategy game that was released in 1996. Its sequel,
Red Alert 2, was released four years later. In Red Alert, players must attend to a
map in which units fight over territory. At the same time, the player must manage
his production of new units. Some units, such as basic infantry, take only a second
or two to build, making it difficult for the player to multi-task, managing
production and battles at the same time. In Red Alert 2, the concept of a
production queue was introduced, allowing players to issue a lengthy sequence of
production commands to be carried out in sequence. All modern real time strategy
games have adopted this production queue mechanic. In this case, improving the
user interface (by optimizing operations) had a beneficial effect on players’
enjoyment of the game.

G. Doherty and A. Blandford (Eds.): DSVIS 2006, LNCS 4323, pp. 265 2007.
© Springer-Verlag Berlin Heidelberg 2007



266 T.C.N. Graham et al.

Ul Design Game Design Guidelines
Guidelines

Penalties should be proportional

Engineer for errors ) )
Don’t break immersion

Minimize
memorization

Provide suitable pacing of memorization

Optimize operations Appeal to players’ sense of fantasy

Avoid forced mode Don’t bore player

changes
9 Provide explicit reward structure

Don’t surprise user , ,
Pace emotional response; don’t overuse

Provide guidance and emotional techniques

feedback
Don’t make the game a job

Fig. 1. Pairing usability design guidelines with game design guidelines

From these two examples, we can see that there is no simple relation between
usability and enjoyment. Slavishly following usability design guidelines can lead to a
tedious gameplay, as ironically, the challenge of games is often the result of poor
usability. Alternatively, providing a poor user interface is not a recipe for creating an
enjoyable game.

3 Usability Guidelines for Games

User interface design guidelines are commonly used to evaluate the usability of
interactive systems. While the above examples motivate that these guidelines are not
necessarily applicable to games, we conclude that Ul design guidelines can be
matched to related game design guidelines. The game design guidelines indicate how
UI design guidelines can be reinterpreted in the context of making the game fun.
Figure 1 shows examples of this approach of pairing guidelines. We now walk
through the guidelines shown in this figure to illustrate the approach.

Engineer for errors: Systems should be engineered to prevent errors where possible,
and to allow users to easily recover from the errors they do make. Errors are a
fundamental part of games, however — the game should not prevent the player from
driving into a wall, attacking an enemy that’s a little too tough, or passing the football
to the wrong player. When the player does make such an error, the penalties should be
proportional to the error made. Games have many ways of softening the penalties for
errors: crashing a car might lead to a time penalty as opposed to fiery death; death
from fighting a too-powerful enemy might to a modest experience point reduction as



Usability and Computer Games: Working Group Report 267

opposed to having to start the game again. Making the penalty for an error too harsh
increases frustration, and encourages players to be overly cautious.

Similarly, when errors occur, they should not break immersion. A typical approach
to player death is to require re-loading the game from a saved checkpoint. The player
then replays the failed scenario over and over until finally he solves it. This breaks
immersion, as the player interacts with an out-of-game mechanic to resolve the in-
game event. The approach of experience point penalty is more immersive, as the
player never leaves the game world.

Minimize memorization: This guideline encourages the provision of information
where it is required, so that users do not have to memorize information from earlier
interactions. Memorization is often key to the fun of a game. Card games often rely
on memorization of what cards have already been played; role-playing games often
require players to remember earlier situations. Instead, games should suitably pace
memorization to be fun rather than overwhelming.

Optimize operations: User interfaces should allow frequent tasks to be performed
efficiently. Applying this guideline in games can lead to the effect of travel in Eve
Online, where the interface is so optimized that the game almost plays itself.
Conversely, failing to optimize operations can lead to annoying repetitiveness. Games
should optimize sufficiently to avoid boredom, and should counter tedium by
providing an explicit reward structure that encourages the player to continue. Over
all, the game should appeal to players’ sense of fantasy — players should feel that they
are piloting a space ship (or race car or horse), not operating a user interface. Finally,
failure to optimize operations can lead to so much repetition that the game feels like a
job. Effective game design will require balancing these conflicting guidelines.

Avoid forced mode changes: Mode changes cause confusion and interrupt users’
flow. This guideline applies equally well to games: a player running towards a local
town should not receive a pop-up informing him that the terrain is too rocky to pass
through. Such information should be conveyed directly within the game (e.g., through
not permitting the player to move in the rocky direction) in order to not break
immersion.

Don’t surprise the user: While an excellent guideline for traditional systems, games
often rely on surprise: a trap door may suddenly open, a monster may jump out from
hiding, or cresting a hill may reveal a beautiful landscape. Surprises should be
plausible and consistent with the game world to avoid breaking immersion. Use of
surprise should be paced; overuse of the same technique will lessen its impact.

Provide guidance and feedback: A well-designed user interface will give the user
information about how to proceed, and provide feedback to indicate that operations
have been performed correctly. Many games make good use of this principle,
providing tutorial modes, or in-game help options. Providing too much guidance can
remove the challenge or sense of exploration from a game. One way of giving
feedback to players is through an explicit reward structure that indicates when
progress is being made.



268 T.C.N. Graham et al.

4 Conclusions

The fundamental conclusion of the workshop is that while many usability guidelines
are not directly applicable to games, the underlying problems that the guidelines
address do exist in some form in games. New game design guidelines help us
understand the tradeoffs of applying usability guidelines, providing game-specific
interpretations.

The game design guidelines presented here should be considered a first step.
Future research would include refining these guidelines, and exploring their tradeoffs
in more depth using concrete examples from games.

References

CCP. Eve Online. http://www.eve-online.com

Electronic Arts. Red Alert 2. http://www.ea.com/official/cc/redalert2/english/features.jsp
. NetDevil. Jumpgate. http://www.jossh.com

J. Nielsen. Usability Engineering. Morgan Kaufmann, 1994.

B



Author Index

Back, Jonathan 123
Barboni, Eric 25
Blandford, Ann 123

Campos, José Creissac 137, 262
Chatty, Stéphane 262

Coninx, Karin 81, 95

Conversy, Stéphane 25
Cuppens, Erwin 95

Curzon, Paul 123, 265

De Boeck, Joan 95
Dobson, Simon 220
Doherty, Gavin 265

Faconti, G. 185
Falcdo e Cunha, Jodo 39
Floch, Jacqueline 234

Gallud, J.A. 67

Gonzéilez, Maria Paula 213, 262
Graham, T.C. Nicholas 248, 265
Granollers, Toni 213

Gulliksen, Jan 1

Hallsteinsen, Svein 234
Huypens, Steven 81

Khazaei, Babak 109

Lepreux, Sophie 157, 262
Lewis, David 220

Lorés, Jesus 213

Lozano, Maria D. 67

Massink, Mieke 185
McGlinn, Kris 220
Michotte, Benjamin 157

Navarre, David 25
Nilsson, Erik G. 234, 262

O’Neill, Eleanor 220

Palanque, Philippe 25, 265
Paterno, Fabio 67

Penichet, Victor M.R. 67, 262
Pereira, Altamiro da Costa 39
Petrie, Jennifer N. 199
Potter, Richard 151, 265

Raymaekers, Chris 95
Roast, Christopher 109, 265
Roberts, Will 248
Ruksénas, Rimvydas 123

Santos, Monica Sara 39, 262
Saraiva, Joao 137
Schneider, Kevin A. 199
Silva, J.C. 137

Smith, Shamus P. 171, 265
Stav, Erlend 234

Thimbleby, Harold 11, 52

Van den Bergh, Jan 81, 262
Vanderdonckt, Jean 157

Wright, Helen 151



	Title
	Preface
	Organization
	Table of Contents
	How Do Developers Meet Users? – Attitudes and Processes in Software Development
	Introduction
	What Research Is Promoted?
	How Can Research Contribute to the Development of Practice?
	Understanding Users
	Understanding Software Development and Developers
	What Does/Can Software Engineering Contribute?
	What’s the Contribution of HCI and What Should It Be?
	Conclusions
	References
	Bibliography

	Validity and Cross-Validity in HCI Publications
	Background
	Handling an Error
	Different Sorts of Error
	Recommendations
	Star Rating
	Triangulation
	Data, Formal Argument, Programs, etc, Downloadable
	Further Work
	Clarification and Communal Practice
	Learning from Other Fields
	An Incomplete List ...

	Conclusions
	The Error
	A Straight Forward Calculation
	A Mode Based Calculation
	Simulation

	Discussion

	Model-Based Engineering of Widgets, User Applications and Servers Compliant with ARINC 661 Specification
	Introduction
	ARINC 661 Specification
	Purpose and Scope
	User Interface Components in ARINC 661
	Overview of Our Contribution to ARINC 661

	ICO Modelling of ARINC 661 Components
	Overview of the ICO Formalism
	ICO Improvements

	MPIA Case Study
	Modelling ARINC 661 Interactive Widgets
	Modelling User Applications
	Modelling User Interface Server
	Modelling the Complete MPIA User Application

	Conclusions and Perspectives
	References

	Usability Requirements for Improving the Infection Module of a Hospital Intensive Care Unit Information System
	Introduction
	Methodology
	Analysis of Stakeholders’ Preliminary Interviews’ Results
	User Interface Requirements from the ICU for the New Infection Module
	Future Work
	Conclusions
	References

	Interaction Walkthrough: Evaluation of Safety Critical Interactive Systems
	Introduction
	Background
	Wider Issues

	A UEM for Safety Critical Systems
	Interaction Walkthrough, IW
	Key Steps of IW
	Variations and Extensions
	Relation of IW to Software Engineering

	Worked Example
	Other Examples
	Further Work
	Conclusions

	Collaborative Social Structures and Task Modelling Integration
	Introduction
	Related Work
	The Role View
	Basic Concepts
	Organizational Structure Diagram (OSD)
	Collaborative Diagram (CD)

	Integration of the Role View and ConcurTaskTrees
	Group and Aggregation Relationship
	Role
	Actor and Instantiation Relationship
	Cooperative Interaction Relationship

	Example
	Brief Problem Description
	Designing the Collaborative System
	Analysis of a Collaborative System

	Conclusions
	References

	Towards Model-Driven Development of Staged Participatory Multimedia Events
	Introduction
	Related Work
	Staged Participatory Multimedia Events
	Specification Language
	Scenario Model
	Screen Model

	Interactive Abstract Prototypes Using XML
	Generating Dynamic Abstract Prototypes
	Discussion and Conclusions

	Integrating Support for Usability Evaluation into High Level Interaction Descriptions with NiMMiT
	Introduction
	Interaction Modelling in NiMMiT
	NiMMiT Primitives
	Example

	Adding Support for Usability Evaluation to NiMMiT
	Probes
	Filters
	Listeners
	Leveraging Evaluation to the Diagram Level
	Situating NiMMiT with Respect to Usability Evaluation

	Case Study: The Object-In-Hand Metaphor
	The Metaphor
	Diagrams
	Probing and Filtering
	Setup of the User Experiment
	Results and Discussion

	Conclusions

	An Investigation into the Validation of Formalised Cognitive Dimensions
	Background
	Cognitive Dimensions and Their Uptake
	What We Are Doing in This Paper
	An Overview of CiDa and Some Definitions
	Experiment-Assessing the CiDa Analysis
	The Example Systems
	Experimental Design
	Results

	Conclusions
	References

	Formal Modelling of Cognitive Interpretation
	Introduction
	The Cognitive Architecture in SAL
	Formal Specification of User Interpretation for an ATM
	Verification of Interactive Systems
	Summary and Further Work

	Combining Formal Methods and Functional Strategies Regarding the Reverse Engineering of Interactive Applications
	Introduction
	About the IVY Project
	The Project
	The Language

	Related Work
	A Technique for Reverse Engineering Graphical User Interfaces
	Graphical User Interface Definition
	GUI Slicing Through Strategic Programming
	User Interface Abstraction

	An Example
	Conclusions and Current Work

	An Ontological Approach to Visualization Resource Management
	Introduction
	A Resource Description Ontology
	Software Support for the Management of Visualization Resources
	Conclusions and Future Work

	Visual Design of User Interfaces by (De)composition
	Introduction
	Related Work
	Reference Framework
	(De)composition Operations
	Relation Between UsiXML, XML and Tree Algebra
	Presentation of the Operators
	Implementation

	Case Studies
	Conclusion and Future Work
	References

	Exploring the Specification of Haptic Interaction
	Introduction
	Specifying Virtual Environment Interaction
	Flownet Example: Navigation Using Two-Handed Flying
	THF Flownet Analysis

	Specifying Haptic Interaction
	Neurosurgery Training Domain
	Flownet Specification

	Specification Analysis
	Discussion
	Conclusions

	Analysis of Pointing Tasks on a White Board
	Introduction
	The White Board Pointing Experiment
	Participants
	Apparatus
	Stimuli
	Procedure

	Data Analysis
	Fitts' Law Analysis of Overall Data
	Convergence Patterns
	Distance Covered and Time Spent in the Movement Phases
	Observed Maximal Velocity
	Variability of Arrival Times

	Discussion

	Mixed-Fidelity Prototyping of User Interfaces
	Introduction
	Background
	Mixed-Fidelity Prototyping
	The Region Model for Mixed-Fidelity Prototyping
	ProtoMixer: Software Support for Mixed Fidelity Prototyping
	Example Mixed Fidelity Design Session
	Conclusion

	A Hybrid Approach for Modelling Early Prototype Evaluation Under User-Centred Design Through Association Rules
	Introduction and Motivations
	Mining Association Rules: Fundamentals
	Enhancing Early Prototype Evaluation Through ARs
	Experimental Results
	Related Work. Conclusions

	Rapid User-Centred Evaluation for Context-Aware Systems
	Introduction
	Relation to State of the Art
	An Evaluation Platform for Context-Aware Services
	Interactive Context Simulator

	Experiences in Configuring Experiments on the Platform
	Modelling the Physical Environment
	Experimenting with Context-Aware Services
	Experimenting with Policy-Based Access Control
	Platform Usability

	Extending the Platform
	Context Services Layer
	Sensor Simulation
	User Instrumentation

	Conclusions and Summary of Further Work
	References

	Using a Patterns-Based Modelling Language and a Model-Based Adaptation Architecture to Facilitate Adaptive User Interfaces
	Introduction
	A User Interface Modelling Approach Based on Modelling Patterns and Compound User Interface Components
	Adaptive Architecture
	Run-Time Models
	Context Change Detection
	Reasoning About Context Changes
	Application Reconfiguration

	Using Modelling Patterns and Compound User Interface Components to Facilitate Adaptive User Interfaces
	Using the Adaptive Architecture
	Types of Adaptation

	Related Work
	Conclusions and Future Work

	Toward Quality-Driven Development of 3D Computer Games
	Introduction
	Life Is a Village
	Quality Attributes for 3D Games
	Business Qualities: Time to Market
	Development-Time Qualities: Testability, Modifiability, Reusability
	Runtime Qualities: Usability, Performance

	Tactics for Game Development
	Tactic: Create Tools Allowing Non-programmers to Engage in Development
	Tactic: Decompose Application into Independent Components
	Tactic: Structure Application Around Existing Components
	Tactic: Use Scripting Languages to Allow Rapid Modification of Game
	Tactic: Avoid Blocking Actions in Main Frame Loop
	Tactic: Identify Opportunities for Parallel Execution

	Conclusion
	References

	Processes: Working Group Report
	Automatic Generation?
	Fitting UI into Larger Scale Processess
	Communicating with Users
	Conclusions

	Usability and Computer Games: Working Group Report
	Introduction
	Motivating Examples
	Usability Guidelines for Games
	Conclusions
	References

	Author Index



