
Modeling Service Choreographies
Using BPMN and BPEL4Chor�

Gero Decker1, Oliver Kopp2, Frank Leymann2,
Kerstin Pfitzner2, and Mathias Weske1

1 Hasso-Plattner-Institute, University of Potsdam, Germany
{gero.decker,weske}@hpi.uni-potsdam.de

2 Institute of Architecture of Application Systems, University of Stuttgart, Germany
{kopp,leymann,pfitzner}@iaas.uni-stuttgart.de

Abstract. Interconnecting information systems of independent business
partners requires careful specification of the interaction behavior the dif-
ferent partners have to adhere to. Choreographies define such interaction
constraints and obligations and can be used as starting point for pro-
cess implementation at the partners’ sites. This paper presents how the
Business Process Modeling Notation (BPMN) and the Business Process
Execution Language (BPEL) can be used during choreography design.
Step-wise refinement of choreographies to the level of system configu-
ration is supported through different language extensions as well as a
mapping from BPMN to BPEL4Chor. A corresponding modeling envi-
ronment incorporating the language mapping is presented.

1 Introduction

Automated electronic communication between different business partners offers
big optimization potential regarding the overall business process performance.
However, it also comes with certain challenges that have to be tackled. Common
message formats must be agreed upon and the allowed and expected interaction
sequences must be clearly defined. Legal consequences of message exchanges as
well as time constraints must be captured.

Choreography languages provide a means to specify the messages exchanged
between different organizations along with behavioral constraints. The Business
Process Modeling Notation (BPMN [2]) offers a rich set of graphical notations
for control flow constructs and includes the notion of interacting processes where
sequence flow (within an organization) and message flow (between organizations)
are distinguished. Therefore, BPMN is a good candidate for providing a graph-
ical notation for choreography modeling. When it comes to refining such initial
choreography models, details about timing constraints and exception handling
have to be added. Finally, technical configurations are introduced for reaching
unambiguity “on the wire”. In order to express the different levels of details in
BPMN we present several extensions to this language.
� Partially funded by the German Federal Ministry of Education and Research (project

Tools4BPEL, project number 01ISE08).

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 79–93, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

80 G. Decker et al.

The Business Process Execution Language (BPEL [3]) is the de-facto standard
for implementing business processes based on web services. The orchestrated web
services are again exposed as services. BPEL also allows to specify ordering con-
straints on the messages a service accepts and produces. All in all, it only focuses
specifying processes from a single organization point of view, treating the ser-
vices used as opaque entities ignoring their internal structure forming separate
business processes. As a consequence, choreographies cannot be described us-
ing BPEL. Therefore, we have proposed choreography extensions for BPEL in
earlier work [8], adding the notion of participant topologies for gluing together
different participant behavior descriptions (PBDs). PBDs are BPEL processes
describing the behavior of each participant in the choreography. We propose
to use BPEL4Chor as an interchange format supporting the different choreog-
raphy design phases. Therefore, a transformation of BPMN choreographies to
BPEL4Chor is needed.

This paper extends work from Ouyang et al. [18], where BPEL stubs are
generated out of individual BPMN processes. Furthermore, this paper builds
upon previous work from [10], where BPMN extensions for high-level choreog-
raphy modeling were proposed, and [4], where different modeling phases and
choreography viewpoints were identified. The contribution of this paper is to
present the integrated usage of BPMN and BPEL4Chor during choreography
design. Furthermore, we implemented a modeling environment for BPMN where
BPEL4Chor choreographies are produced.

The remainder of this paper is structured as follows. The next section discusses
choreography design and the use of BPMN therein. Section 3 gives an overview of
BPEL4Chor. Section 4 describes the mapping of extended BPMN to BPEL4Chor
and section 5 presents our modeling environment. Section 6 reports on related
work in the literature, before section 7 concludes.

2 Choreography Design Using BPMN

Complex choreographies cannot be created within a single step. Whenever many
different business partners and many interactions are involved, choreography
design must be split up into different phases each addressing different issues of
the model. As reported in [22] and [4], the following phases can be distinguished.

1. At a very high level, the interaction partners are identified. It must also
be captured how many partners of a particular type are involved. E.g. in
a logistics scenario a number of carriers might be involved while only one
breakdown surveillance service takes part. Furthermore, business documents
that are exchanged between the partners are listed and agreement on the
general content of the documents must be reached. E.g. it is defined that a
certain contract must carry two signatures or that a request for quote must
contain the quantity of the desired product. These two first steps lead to a
high-level structural view on the choreography.

2. Choreographies reflect what interactions are needed to fulfill a certain goal.
This goal can typically be divided into sub-goals or milestones that must be

Modeling Service Choreographies Using BPMN and BPEL4Chor 81

High-level
structural view

High-level
behavioral view

Collaboration
scenarios

Fully specified
choreography

Refined collab.
scenarios

Fig. 1. Different artifacts produced in the choreography design phases

reached on the way to the overall goal. This calls for a high-level behavioral
view on the choreography.

3. Once the milestones are defined, collaboration scenarios are a means to cap-
ture how to get from one milestone to another milestone. The required in-
teraction sequences are modeled accordingly.

4. While first versions of collaboration scenario models are likely to only capture
best cases, exception handling must be added subsequently. This leads to
refined collaboration scenarios that also capture timing constraints.

5. All scenario models are aggregated into a big choreography model, including
all interactions and their dependencies. Technical choices must be made, e.g.
whether to use synchronous vs. asynchronous communication. This leads to
the fully specified choreography model.

BPMN supports modeling of choreographies as collaboration diagrams. Pools
model business roles or entities, while message flows represent the communication
between them. High-level structural diagrams can be realized in BPMN by using
empty pools and message flow between them. As it is not possible to represent
that multiple participants of the same type are involved in one conversation, we
added a pool set for this purpose.

Figure 2 is a sample structural diagram illustrating a scenario that will be
used throughout this paper: A customer buys a product from a seller. The seller
in turn handles payment through a payment service. Delivery is outsourced to a
delivery service which in turn does not carry out the delivery by itself but rather
manages the actual delivery done by a set of carriers. In some cases several
carriers are involved covering a part of the overall journey by air, rail or truck.

Customer

Seller

Payment Service

Delivery Service

Carrier

Fig. 2. High-level structural diagram in extended BPMN

82 G. Decker et al.

Product has
been ordered

Product has
been paid for

Carriers have been
selected

Product has been
delivered and paid for

Product has
been delivered

Fig. 3. High-level behavioral diagram in BPMN

The pools (rectangles) in Figure 2 represent the different participant types.
Only one customer, seller, payment service and delivery service are involved
in one conversation, i.e. one choreography instance. The shaded pool for type
carrier represents that there might be more than one carrier involved in one
conversation. The dashed arrows symbolize message flow between participants
of the corresponding types, indicating who potentially sends a message to whom.

High-level behavioral diagrams can be modeled in BPMN as shown in Figure 3.
Untyped events (empty circles) represent milestones which in turn are connected
through control flow constructs. This example shows that the first milestone to be
reached is that the customer has ordered a product. This is the precondition for the
two subsequent milestones “product has been paid for” and “carriers have been
selected”. The first AND-gateway (diamond containing a “+”) represents that the
two succeeding milestones can be reached in any order. The second AND-gateway
synchronizes the two branches and leads to the final milestone.

Collaboration scenarios which show how progress from one milestone to an-
other can be achieved, are modeled as collaboration diagrams. This time, the
pools are not empty but rather the ordering of the message exchanges is ex-
pressed by relating the communication activities (send and receive activities)
using control flow constructs.

In Figure 4 we see how the collaboration scenario connects to other models: Two
milestones from the high-level behavioralmodel appear again. Further connections
to other models are established through the use of link events (circles containing
an arrow). This is the standard BPMN way of modeling off-page connectors.

In choreographies where multiple participants of the same type might be in-
volved, it is important to distinguish the individual participants. This is achieved
by the introduction of special data object types, namely participant references
and participant sets, symbolized by (shaded) artifacts with a business card icon
in the upper left corner. Figure 4 illustrates how this is used in the context of
different carriers that must be chosen from.

The semantics of the diagram is as follows. The seller initiates delivery by
sending a delivery request to the delivery service. This service contacts all its
partner carriers, asking them to check availability for the entire route or parts
of the route. Upon receipt of these request, each carrier checks availability. If no
capacity is available the carrier answers with a rejection message. Otherwise the
carrier prepares a quote and sends it back to the delivery service. The delivery

Modeling Service Choreographies Using BPMN and BPEL4Chor 83

C
ar

rie
r

D
el

iv
er

y
S

er
vi

ce

Send
availability
check req.

Select
carriers

Partner
carriers

Cand.
carriers

Selected

carriers

Quote

Rejection

S
el

le
r

Send
delivery
request

C
ar

rie
r

Prepare
quote

Check
availability

Send
quote

Rejection

Notify
selected
carriers

Notify not
selected
carriers

Rejection

Acceptance

Availability
check request

Delivery
request

Not sel.

carriers

Product
has been
ordered

Carriers
have been

selected

Fig. 4. Collaboration scenario in BPMN: Progressing from “product has been to or-
dered” to “carriers have been selected”

service collects the quotes and remembers all carriers that have sent a quote as
“candidate carriers”. Once all carriers have answered, the delivery service selects
one or more carriers and sends notifications to the carriers telling them whether
they were selected or not. After this, the scenario ends by reaching the milestone
“carriers have been selected”.

The diagram illustrates how participant references and participant sets affect
communication activities and multi-instance activities. The set of partner carri-
ers serves as input for the multi-instance subprocess, indicating that one instance
should be spawned for each carrier in this set. Associations from participant ref-
erences to send and receive activities define that the message is sent to the
referenced participant and that only a message from the referenced participant
will be received, respectively.

Figure 4 only covers the best case of our collaboration scenario. It is not spec-
ified yet what happens if the carriers do not respond within a given timeframe.
It is also not specified what happens if no suitable carrier can be found. This
might lead to notifying the customer about a delay in delivery or even completely
canceling the order.

BPMN allows to model timeouts and exceptions by offering corresponding
event types. Intermediate events attached to activities and subprocesses
represent cancellation upon the occurrence of the event. Using these constructs

84 G. Decker et al.

Send
availability
check req.

Partner
carriers

Cand.
carriers

Quote

Rejection

Send can-
cellation msg

MI_Condition = 10

Fig. 5. Termination handlers

participant
reference

data object

participant
set

data object

standard
variable

data object

fault
variable

data object

counter
variable

data object

Fig. 6. Data object types

it is possible to model a wide range of exception scenarios. However, when com-
paring BPMN to BPEL in terms of exception handling, we find that a number of
important concepts of BPEL are missing in BPMN. As we intended to allow the
modeler to refine the choreography model to fully specified models, we adopted
these concepts as BPMN extensions. The following list gives an overview of these
extensions. A detailed discussion on these can be found in [19].

Termination handlers. The termination handler of a subprocess defines re-
actions to forced termination. Especially in the case of forEach constructs with
completion condition, termination handlers are needed. As soon as the comple-
tion condition is fulfilled, all remaining subprocess instances are terminated. We
introduce termination handlers to BPMN. We opted for a similar graphical rep-
resentation as it is used for compensation handlers. Figure 5 shows a refinement
of a part of the scenario from Figure 4.

Different data object types. As already mentioned we introduce participant
references and participant sets as special data object types. Additionally, we
distinguish between fault variable data objects, counter variable data objects
and standard variable data objects. Counter variables represent the counter in
a forEach activity and fault variables hold the data of a fault that was thrown
or caught.

Modeling Service Choreographies Using BPMN and BPEL4Chor 85

Participant
Topology

Structural aspects

Participant Behavior
Descriptions (PBDs)

Observable behavior

Participant Groundings

Technical configuration

Participant Declaration

List of the participants

Message Links

Connecting PBDs

Fig. 7. BPEL4Chor artifacts

Correlation information. Correlation is the act of relating messages received
to process instances and receive activities within this instance. Typically, corre-
lation is done based on specific message content. E.g. an order id is used to route
an incoming message to the corresponding instance handling the order. While
there are very complex correlation mechanisms thinkable, we opted for a correla-
tion set semantics like it is present in BPEL. Therefore, we added corresponding
attributes to the invoke and receive activities.

3 BPEL4Chor Overview

BPEL4Chor is a language to describe service choreographies in BPEL. It dis-
tinguishes between three aspects: (i) the participant topology, which provides a
global view on the existing participants and their interconnection using message
links, (ii) participant behavior descriptions, i.e. control flow dependencies in each
participant and (iii) participant groundings, i.e. concrete configurations for data
formats and port types.

The high-level structural view can be captured in the participant topology.
The participants are listed in the participants declarations part. Here, partic-
ipants and participant sets are distinguished. Each participant carries a type,
which specifies the behavior of the participant. In the example participant topol-
ogy shown in Listing 1, there exists one participant for participant type Deliv-
eryService. The delivery service knows several partner carriers, therefore the
topology contains the participant set PartnerCarriers. Participant sets can be
used in a forEach construct, in the sense that the forEach construct iterates over
this set. The current participant for the iteration is called currentCarrier in the
listing. The messages exchanged are modeled using message links. A message
link connects two participants and states which message is sent over it. Listing 1
lists an extract of the participant topology for our scenario.

Behavioral aspects are captured in the participant behavior descriptions, ex-
pressed in BPEL. Listing 2 presents the first part of the BPEL process for the
delivery service. The communication constructs are named so that they can be

86 G. Decker et al.

Listing 1. Participant topology
<topology name="DeliveryTopology">
<participantTypes>
<participantType name="Seller"
participantBehaviorDescription="ns1:Seller" />
<participantType name="DeliveryService" ... />
<participantType name="Carrier" ... />

</participantTypes>
<participants>
<participant name="Seller" type="Seller" />
<participant name="DeliveryService" type="DeliveryService" />
<participantSet name="PartnerCarriers" type="Carrier"
forEach="ns2:pcarrierForEach">
<participant forEach="ns2:pcarrierForEach" name="currentCarrier" />

</participantSet>
...

</participants>
<messageLinks>
<messageLink name="orderLink" messageName="order"
sender="Seller" receiver="DeliveryService" />
...

</messageLinks>
</topology>

Listing 2. Participant behavior description for type delivery service
<process name="DeliveryService"
<sequence>
<receive createInstance="yes" name="ReceiveDeliveryRequest" />
<sequence>
<forEach name="pcarrierForEach" parallel="yes">
<scope><sequence>
<invoke name="SendAvailabilityCheckReq." />
<pick>
<onMessage wsu:id="Quote"><empty /></onMessage>
<onMessage wsu:id="Rejection"><empty /></onMessage>

</pick>
</sequence></scope>

</forEach>
<opaqueActivity name="SelectCarriers" />

</sequence>
...

</sequence>
</process>

interconnected. The interconnection is formed by adding the names of the ac-
tivities to message links. While the message links in the sample topology in
Listing 1 have the attributes sender and receiver set, attributes sendActivity

Modeling Service Choreographies Using BPMN and BPEL4Chor 87

Listing 3. Participant grounding
<grounding topology="DeliveryTopology">
<messageLinks>
<messageLink name="orderLink" portType="ds:deliveryService_pt"
operation="getProduct" />
...

</messageLinks>
</grounding>

and receiveActivity must also be set for referring to the communication con-
structs in the participant behavior descriptions.

Technical choices are reflected in the participant grounding, where concrete
port types and operations come in. Each message link is assigned to a port
type and operation. Listing 3 presents the grounding of one message link. The
grounding can then be used to generate abstract BPEL processes which are
subsequently used for executable completion.

4 Mapping BPMN to BPEL4Chor

Although our extended BPMN and BPEL4Chor have a large overlap in concepts
covered, not all diagrams can be transformed to BPEL4Chor. The following
BPMN elements are not allowed:

– complex gateways
– ad-hoc and transactional subprocesses
– link, rule and multiple start events
– all end events except the non-triggered ones
– cancel, rule, link, multiple or non-triggered intermediate events
– user, script, abstract, manual or reference activities

In [18] three classes of BPMN diagrams are distinguished: (i) those that can be
translated using block-structured constructs only, (ii) those that require the use
of control links and finally (iii) those that require event handlers, fault handlers
and message passing within one process instance for realizing control flow depen-
dencies. For instance, the occurrence of the workflow patterns arbitrary cycles
and multi merge [21] make a diagram be of category (iii), as there is no direct
support for these two workflow patterns in BPEL. We argue that the BPEL
code resulting from (iii) is not usable as starting point for further refining it to
process implementations. Therefore, we do not transform these kind of diagrams.

General Approach. We largely base our transformation on the approach pre-
sented in [18] where a subset of BPMN is transformed to BPEL. This approach
is based on the identification of patterns in the diagram that can be mapped
onto BPEL blocks. One pattern is folded into a new activity, which is associated
with the generated BPEL code. We extend these patterns with the elements

88 G. Decker et al.

<invoke />

<invoke />

<invoke />
<flow>
 <invoke />
 <invoke />
</flow>

<invoke />

<if>
 <condition />
 <flow>
 <invoke />
 <invoke />
 </flow>
 <elseif>
 <condition />
 <invoke />
 </elseif />
</if>

A

B

C

A
B

C

A
B

C

Fig. 8. Dealing with inclusive gateways

used in the extended BPMN described above. Hence, we can use that transfor-
mation for transforming processes located in a pool, pool set or subprocess to
their BPEL4Chor representation. Furthermore, we loosen certain restrictions as
explained in the next subsection.
Multiple start and end events. In [18] it is assumed that there is only one
start event and one end event in each process. We loosen this restriction and allow
certain combinations of start events as well as multiple end events. If e.g. two
start events are followed by a XOR-gateway, we fold this pattern to a BPEL pick
element, where the attribute createInstance is set to “yes”. Also the case if they
are followed by an AND-gateway can be handled and translated to BPEL4Chor.
These scenarios are captured by generalized pick- and flow-patterns. While it
is easy to see for these simple examples how they can be mapped, it is less
obvious why some combinations are not allowed in our transformation. Imagine
e.g. three start events A, B, C where A and B are merged through an AND-
gateway, which in turn is merged with C through a XOR-gateway. Here, C is
an alternative to the combination of A and B. Such behavior is not directly
expressible in BPEL. Multiple end events are resolved by merging the different
branches into an inclusive gateway.
Inclusive gateways. We allow inclusive gateways if they occur in certain com-
binations with other elements and can be rewritten to AND- and XOR-gateways.
In order to capture these combinations, the well-structured and quasi-structured
patterns from [18] are extended. This means that our transformation can handle
inclusive gateways in block-structured settings only.

Figure 8 illustrates an example. It exhibits two steps to transform a BPMN
diagram involving multiple invoke activities to the corresponding BPEL repre-
sentation. In the first step, an AND split gateway is translated to a BPEL flow,
representing concurrent invocations of A and B. In the second step, the XOR
split gateway is translated to an if construct in BPEL, so that either invocations
of A and B are performed concurrently or C is invoked.
Fault, compensation and termination handlers. We introduce a pattern
for activities and subprocesses with attached intermediate events. This leads
to the creation of a BPEL handler for each attached event. To enable direct
transformation to BPEL, we only allow those fault handlers, where the outgoing
control flow from the handler is directly merged with the control flow originating
from the corresponding activity or subprocess.

Modeling Service Choreographies Using BPMN and BPEL4Chor 89

Other constructs. The mapping of activities and events is straightforward.
Variable data objects are not folded because they may be associated with flow
objects in other patterns. Each pool and pool set is mapped to a participant
type. For a simple pool a participant reference with its corresponding type can
be generated directly. Additional references are generated from participant ref-
erence data objects. The mapping of message flows to message links depends on
the connected activities, the participant reference and participant data objects
associated with these activities and the message data objects associated with the
message flows. As the extended transformation removes elements from the model
during the folding of the patterns, the topology has to be created beforehand.

1. Generate participant types in the topology from pools and pool sets
2. Generate participant references and participant sets from the participant

reference and participant set data objects
3. Generate message links from the message flow, the associated participant

reference and message data objects
4. Transform the processes within the pools and pool sets

4.1. Generate the variables from the variable data objects
4.2. Apply the extended transformation starting with the pattern for at-

tached events

5 Choreography Modeling Environment

We have implemented a BPMN editor and the BPMN to BPEL4Chor transfor-
mation based on the Oryx framework developed at the Hasso-Plattner-Institute1.
Oryx is a graphical editing framework written in JavaScript that uses Scalable
Vector Graphics (SVG) as rendering technology. Oryx comes with a set of stencil
sets for modeling pure BPMN, the extended BPMN, workflow nets and other
process modeling languages. Each stencil set defines a set of elements, includ-
ing their attributes, containment relationships and connection rules. The shape
definitions, i.e. the graphical appearance of elements, are defined as SVG files.

Oryx strictly follows the REST (Representational State Transfer [13]) archi-
tectural style. Each process model and each element within it are considered as
resources that are uniquely identified by URIs. By addressing a process model
URI in a web browser, an XHTML representation of the model is retrieved, which
in turn contains all model information as embedded RDF annotations. This web
page also contains links to the Oryx implementation. The browser loads these
scripts which turn the web page into a graphical editor application. If models
are to be imported into other applications, existing XSLT stylesheets can be
applied for retrieving corresponding RDF documents. Figure 9 illustrates the
system architecture using the Fundamental Modeling Concepts notation [16].

The editor provides extensibility through a plugin mechanism. We used this
mechanism to integrate the BPMN to BPEL4Chor transformation functional-
ity into the editor. The transformation plugin serializes the extended BPMN
1 See http://bpt.hpi.uni-potsdam.de/Oryx/

http://bpt.hpi.uni-potsdam.de/Oryx/

90 G. Decker et al.

Browser

User

Oryx Editor

Oryx
Backend

Process
Models

Extended BPMN
Stencil Set

Transformation
Plugin

BPMN Diagram

XPDL4Chor
model

Transformation
Web Service

Topology

PBD 1

PBD n

Fig. 9. Architecture of the modeling environment

diagram into an extended XPDL (XML Process Definition Language [1]) for-
mat, called XPDL4Chor. While XPDL 2.0 is a serialization format for BPMN
standardized by the Workflow Management Coalition (WfMC), XPDL4Chor ad-
ditionally contains the new elements and attributes we added to BPMN.

The actual transformation takes place in a separate web service. This service
takes the XPDL4Chor document as input and produces the different BPEL4Chor
documents. This includes the participant topology as well as the participant
behavior descriptions for each participant type. The plugin offers the possibility
to download these documents or to view them in the browser.

Figure 10 shows a screenshot of the Oryx editor2. On the left side the palette
contains the different language constructs. These can be dragged onto the draw-
ing area in the middle. Attributes of the model elements can be edited in the
properties area on the right. Different editing functionality can be accessed
through the buttons on the top. Output as BPEL4Chor files or output as
XPDL4Chor file can be triggered through two of these buttons.

6 Related Work

There are different language proposals available for modeling choreographies. The
Web Service Choreography Description Language (WS-CDL [15,5]) was released
by the World Wide Web Consortium in 2005. Differences between WS-CDL and
BPEL are discussed in [17]. Let’s Dance [23] is another choreography language.
Like BPMN, it is implementation-independent and comes with a visual notation.
This language was designed to support all Service Interaction Patterns [6], a set
of recurrent choreography scenarios. An assessment of WS-CDL using these pat-
terns can be found in [9]. An earlier and less expressive choreography language
is the Business Process Schema Specification (BPSS [7]). A general introduction
into the different viewpoints found in inter-organizational process modeling can

2 The editor is accessible through http://www.bpel4chor.org/editor/

http://www.bpel4chor.org/editor/

Modeling Service Choreographies Using BPMN and BPEL4Chor 91

Fig. 10. Screenshot of the Oryx editor with the transformation plugin

be found in [12]. Already in [10] we have shown how the addition of the concepts
pool set, participant references and participant sets leads to a significantly higher
suitability of BPMN for choreography modeling. Such extended BPMN even sur-
passes WS-CDL in terms of Service Interaction Pattern support.

There are basically two different modeling styles manifested in choreography
languages. In the case of interconnected models, send and receive activities are
listed for each role and control and data flow dependencies are defined on a per-
role-basis. In contrast to this, interaction models are made up of atomic interac-
tions and control and data flow is defined globally, i.e. it is not directly assigned
to any of the roles. Examples for the first group are BPMN and BPEL4Chor,
but also simpler languages such as Message Sequence Charts (MSC [14]). Exam-
ples for the second group are WS-CDL, BPSS and Let’s Dance. Bridging these
two modeling styles is not trivial and requires for sophisticated transformation
algorithms as presented in [11] for the case of interaction Petri nets and their
corresponding participant behavior descriptions. This is not needed in our case,
as BPMN and BPEL4Chor follow the same modeling style.

There has been some work on comparing BPMN and BPEL and carrying
out transformations. Comparison was done e.g. in [20] on the general concepts
covered in both languages and on the respective Workflow Pattern support: the
authors’ conclusion is that the expressiveness of BPMN has to be restricted if a
full mapping to BPEL is desired.

92 G. Decker et al.

A major challenge in transforming BPMN to BPEL are the differences in
control flow constructs available in the languages. Ouyang et al. [18] restricted
BPMN and mapped that subset completely to BPEL.

Several commercial tools allow to define BPEL-specific configurations for
BPMN-models and implement transformation algorithms. However, typically
only a small subset of BPMN is allowed and then translated. None of the tools
provides a transformation to BPEL4Chor.

7 Conclusion and Outlook

We presented how BPMN can be used as modeling language in the different
choreography design phases. By extending BPMN we reached a higher suitability
of BPMN for modeling choreographies both in early design phases as well as in
late phases, where exceptions and technical configurations are added. We chose
BPMN for modeling choreographies, since it is widely used in the industry and
has a wide tool support.

BPMN does not specify a serialization format. We use BPEL4Chor as inter-
change format for the choreography models at the different levels of detail. BPEL
is the standard language for describing executable workflows. Since BPEL4Chor
is close to BPEL, the gap between design time and runtime is narrowed. We pro-
vided a transformation of BPMN models to BPEL4Chor, extending the trans-
formation from [18]. BPMN elements not having a corresponding notation in
BPEL4Chor are not transformed. However, these details are not required by the
runtime. Finally, we presented Oryx, our graphical modeling environment that
runs on the web, where a transformation plugin was added. We do not provide
support for round-trip engineering: only a one-way transformation from BPMN
to BPEL4Chor is provided. Modifications to the BPEL4Chor artifacts are not
reflected in the BPMN diagram.

Limitations of our approach are the restrictions we impose on the BPMN
models that can be transformed to BPEL4Chor. As part of that, we require that
BPMN models are sound and safe, i.e. deadlock-free and without multi-token
flow. We currently do not check these properties prior to the transformation.
Generally, the fact that only during the transformation we can detect that we
cannot transform a model, can be seen as the biggest limitation of our current
implementation. It is desirable to perform a check prior to starting the transfor-
mation and to give the modeler hints how to resolve the problem. This is subject
to ongoing work. As part of that we are working on integrating Petri-net-based
analysis functionality into the BPMN editor.

References

1. Process Definition Interface – XML Process Definition Language (October 2005),
http://www.wfmc.org/standards/docs/TC-1025 xpdl 2 2005-10-03.pdf.

2. Business Process Modeling Notation (BPMN) Specification, Final Adopted Spec-
ification. Technical report, Object Management Group (OMG) (February 2006),
http://www.bpmn.org/.

http://www.wfmc.org/standards/docs/TC-1025_xpdl_2_2005-10-03.pdf
http://www.bpmn.org/

Modeling Service Choreographies Using BPMN and BPEL4Chor 93

3. Web Services Business Process Execution Language Version 2.0 – OASIS Standard
(April 2007)

4. Barros, A., Decker, G., Dumas, M.: Multi-staged and Multi-viewpoint Service
Choreography Modelling. In: SEMSOA (2007)

5. Barros, A., Dumas, M., Oaks, P.: A Critical Overview of WS-CDL. BPTrends 3(3)
(2005)

6. Barros, A., ter Hofstede, A.H.M., Dumas, M.: Service Interaction Patterns. In:
van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005.
LNCS, vol. 3649, pp. 302–318. Springer, Heidelberg (2005)

7. Clark, J., Casanave, C., Kanaskie, K., Harvey, B., Smith, N., Yunker, J., Riemer,
K.: ebXML Business Process Specification Schema Version 1.01. Technical report,
UN/CEFACT and OASIS (May 2001), http://www.ebxml.org/specs/ebBPSS.pdf

8. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL for
Modeling Choreographies. In: ICWS (2007)

9. Decker, G., Overdick, H., Zaha, J.M.: On the Suitability of WS-CDL for Choreog-
raphy Modeling. In: EMISA 2006 (2006)

10. Decker, G., Puhlmann, F.: Extending BPMN for Modeling Complex Choreogra-
phies. In: CoopIS 2007 (2007)

11. Decker, G., Weske, M.: Local Enforceability in Interaction Petri Nets. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 305–319.
Springer, Heidelberg (2007)

12. Dijkman, R., Dumas, M.: Service-oriented Design: A Multi-viewpoint Approach.
International Journal of Cooperative Information Systems 13(4), 337–368 (2004)

13. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine (2000)

14. ITU-T. Message Sequence Chart. Recommendation Z.120, ITU-T (2000)
15. Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.: Web Services Choreography

Description Language Version 1.0, W3C Candidate Recommendation. Technical
report (2005)

16. Knopfel, A., Grone, B., Tabeling, P.: Fundamental Modeling Concepts: Effective
Communication of IT Systems. Wiley, Chichester (2006)

17. Mendling, J., Hafner, M.: From Inter-Organizational Workflows to Process Execu-
tion: Generating BPEL from WS-CDL. In: OTM, Workshops (2005)

18. Ouyang, C., Dumas, M., ter Hofstede, A.H., van der Aalst, W.M.: Pattern-based
translation of BPMN process models to BPEL web services. International Journal
of Web Services Research (JWSR) (2007)

19. Pfitzner, K., Decker, G., Kopp, O., Leymann, F.: Web Service Choreography Con-
figurations for BPMN. In: WESOA 2007 (2007)

20. Recker, J., Mendling, J.: On the Translation between BPMN and BPEL: Concep-
tual Mismatch between Process Modeling Languages. In: EMMSAD 2006 (2006)

21. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

22. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, Heidelberg (2007)

23. Zaha, J.M., Barros, A., Dumas, M., ter Hofstede, A.: Let’s Dance: A Language for
Service Behavior Modeling. In: CoopIS 2006 (2006)

http://www.ebxml.org/specs/ebBPSS.pdf

	Modeling Service Choreographies Using BPMN and BPEL4Chor
	Introduction
	Choreography Design Using BPMN
	BPEL4Chor Overview
	Mapping BPMN to BPEL4Chor
	Choreography Modeling Environment
	Related Work
	Conclusion and Outlook

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

