The Challenges of Service Evolution*

Mike P. Papazoglou

INFOLAB, Dept. of Information Systems and Mgt., Tilburg University,
The Netherlands
mikep@uvt.nl

Abstract. Services are subject to constant change and variation. Ser-
vices can evolve typically due to changes in structure, e.g., attributes and
operations; in behavior and policies, e.g., adding new business rules and
regulations, in types of business-related events; and in business protocols.
This paper introduces two types of service changes: shallow changes -
where changes are confined to services or the clients - and deep changes -
where cascading effects and side-effects occur. The paper introduces
a theoretical approach for dealing with shallow service changes and a
change-oriented service lifecycle methodology that addresses the effects
of deep service changes.

Keywords: Web services, service versioning, business protocols, regula-
tory compliance, service contracts and policies. service contracts.

1 Introduction

Serious challenges like mergers and acquisitions, outsourcing possibilities, rapid
growth, the need for regulatory compliance, and intense competitive pressures
are overtaxing existing traditional business processes, slowing innovation and
making it difficult for an enterprise to pursue and reach its business strategies
and objectives. Such challenges require changes at the enterprise-level and thus
lead to a continuous business process redesign and improvement effort.

Routine process changes usually lead to possible reorganization and realign-
ment of many businesses processes and increase the propensity for error. To
control process development one needs to know why a change was made, what
are its implications and whether the change is complete. Eliminating spurious
results and inconsistencies that may occur due to uncontrolled changes is there-
fore a necessary condition for the ability of processes to evolve gracefully, ensure
stability and handle variability in their behavior. Such kind of changes must be
applied in a controlled fashion so as to minimize inconsistencies and disruptions
by guaranteeing seamless interoperation of business processes that may cross
enterprise boundaries when they undergo changes.

* The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme under the Network of Excellence S-Cube
- Grant Agreement no. 215483.

Z. Bellahséne and M. Léonard (Eds.): CAIiSE 2008, LNCS 5074, pp. 1 2008.
© Springer-Verlag Berlin Heidelberg 2008

2 M.P. Papazoglou

Service technologies automate business processesEl and change as those pro-
cesses respond to changing consumer, competitive, and regulatory demands. Ser-
vices are thus subject to constant adaptation and variation adding new business
rules and regulations, types of business-related events, operations and so forth.
Services can evolve typically by accommodating a multitude of changes along
the following functional trajectories:

1. Structural changes: These focus on changes that occur on the service types,
messages, interfaces and operations.

2. Business protocol changes: Business protocols specify the external messaging
behavior of services (viz. the rules that govern the service interaction between
service providers and clients) and, in particular, the conversations in which
the services can participate in. Business protocols achieve this by describing
the structure and the ordering (time sequences) of the messages that a service
and its clients exchange to achieve a certain business goal. Business protocols
change due to changes in policies, regulations, and changes in the operational
behavior of services.

3. Policy induced changes: These describe changes in policy assertions and con-
straints on the service, which prescribe, limit, or specify any aspect of a
business agreement that is possible agreed to among interacting parties.
Policies may describe constraints external to constraints agreed by interact-
ing parties in a transaction and include universal legal requirements, com-
mercial and/or international trade and contract terms, public policy (e.g.,
privacy/data protection, product or service labeling, consumer protection),
laws and regulations that are applicable to parts of a business service. For
instance, a procurement processes can codify an approval process in such a
way that it can be instantly modified as corporate policies change. In most
cases existing processes need to be redesigned or improved to conform with
new corporate strategies and goals.

4. Operational behavior changes: These concentrate on analyzing the effects
and side (cascading) effects of changing service operations. If, for example,
we consider an order management service we might expect to see a service
that lists ”place order”, ”cancel-order,” and ”update order,” as available
operations. If now the "update-order” operation is modified in such a way
that it includes available-to-promise functionality that dynamically allocates
and reallocates resources to promise and fulfill customer orders, the mod-
ified operation must guarantee that if part of the order is outsourced to
a manufacturing partner, the partner can fulfill its order on time to meet
agreed upon shipment dates. This requires understanding of where time is
consumed in the manufacturing process, what is normal with respect to an
events timeliness to the deadline, and to understand standard deviations
with respect to that process events on-time performance.

! 'We shall henceforth use the generic term service to refer to both services and business
process. If there is a need to discriminate between simple services and fairly complex
services, we shall use the terms singular service and business process, respectively.

The Challenges of Service Evolution 3

We can classify the nature of service changes depending on the effects and
side effects they cause. We may thus distinguish between two kinds of service
changes:

Shallow changes: Where the change effects are localized to a service or are
strictly restricted to the clients of that service.

Deep changes: These are cascading types of changes which extend beyond the
clients of a service possibly to entire value-chain, i.e., clients of these service
clients such as outsourcers or suppliers.

Typical shallow changes are changes on the structural level and business protocol
changes, while typical deep changes include operational behavior changes and
policy induced changes.

While shallow changes need an appropriate versioning strategy, deep changes
are quite intricate and require the assistance of an change-oriented service life
cycle where the objective is to allow services to predict and respond appropri-
ately to changes as they occur. A change-oriented service life cycle provides a
foundation for business process changes in an orderly fashion and allow end-to-
end services to avoid the pitfalls of deploying a maze of business processes that
are not appropriately (re)-configured, aligned and controlled as changes occur.
The practices of this methodology are geared to accepting continuous change for
business processes as the norm.

In addition to functional changes, a change-oriented service life cycle must deal
with non-functional changes which are mainly concerned with end-to-end QoS
(Quality of Service) issues, and SLA (Service Level Agreement) guarantees for
end-to-end service networks. The objective is to achieve actual end-to-end QoS
capabilities for a service network to achieve the proper levels of service required
by ensuring that services are performing as desired, and that out-of-control or
out-of-specification conditions are anticipated and responded to appropriately.
This includes traditional QoS capabilities, e.g., security, availability, accessibility,
integrity and transactionality, as well as service volumes and velocities. Service
volumes are concerned with values and counts of different aspects of the service
and its associated transactions, e.g., number of service events, number of items
consumed, service revenue, number of tickets closed, service costs. The general
performance of the service is related to service velocity 1i.e., the time-related
aspect of business operations, such as service cycle-time, cycle-times of individual
steps, round trip delays, idle times, wait-times between events, time remaining to
completion, service throughput, life-time of ticket, and so on. The combination
of these time-related measurements with the value-related ones provides all the
information needed to understand how an enterprise is is performing in terms of
its services.

The issue of service evolution and change management is a complicated one,
and this paper does not attempt to cover every aspect surrounding the evolution
of services. However, it introduces some key approaches and helpful practices that
can be used as a springboard for any further research in service evolution. In par-
ticular, in this paper we shall concentrate only on the impact of functional services
changes as they constitute a precursor to understanding non-functional service

4 M.P. Papazoglou

changes which are still very much an open research problem that also deserves
research scrutiny.

2 Dealing with Shallow Changes

Shallow changes characterize both singular services and business processes and
require a structured approach and robust versioning strategy to support multiple
versions of services and business protocols. To deal with shallow changes we in-
troduce a theoretical approach for structural service changes focusing on service
compatibility, compliance, conformance, and substitutatbility. In addition, we de-
scribe versioning mechanisms developed in [I] to handle business protocol changes.

2.1 A Theory for Structural Changes

Service based applications may typically fail on the service client side due to
changes carried out during the provider service upgrade. To manage changes
as a whole, service clients have to be taken into consideration as well, other-
wise changes that are introduced at the service provider side can create severe
disruption.

In this paper, we use the term service evolution to refer to the continuous
process of development of a service through a series of consistent and unambigu-
ous changes. The evolution of the service is expressed through the creation and
decommission of its different versions during its lifetime. These versions have to
be aligned with each other in a way that would allow a service designer to track
the various modifications and their effects on the service.

A robust versioning strategy is needed to support multiple versions of services
in development. This can allow for upgrades and improvements to be made to a
service, while continuously supporting previously released versions. To be able
to deal with message exchanges between a service provider and a service client
despite service changes that may happen to either of their service definitions (at
the schema-level), we must introduce the notion of service compatibility.

Version compatibility: Is when we can introduce a new version of either a provider
or client of service messages without changing the other. There are two types of
changes to a service definition that can guarantee version compatibility [2]:

Backward compatibility: A guarantee that when a new version of a message client
is introduced the message providers are unaffected. The client may introduce new
features but should still be able to support all the old ones.

Forward compatibility: A guarantee that when a new version of a message provider
is introduced the message clients who are only aware of the original version are
unaffected. The provider may have new features but should not add them in a
way that breaks any old clients. The assumption that underlies this definition of
forward-chaining is that there is no implicit or explicit shared knowledge between
the provider and the client.

The Challenges of Service Evolution 5

Some types of changes that are both backwards- and forwards-compatible
include: addition of new service operations to an existing service definition, ad-
dition of new schema elements within a service that are not contained within
previously existing types. However, there are a host of other change types that
are incompatible. These include: removing any existing operations, elements or
attributes, renaming an operation, changing the parameters (in data type or
order) of an operation and changing the structure of a complex data type.

The above definition of backward-compatibility misses the subtle possibility
that a new version of a client might have a requirement to add a new feature
where the client needs to reject messages that might have previously been ac-
ceptable by the previous version of the client. Consider, for instance adding a
security feature for the new version of the client that rejects all messages, even if
they were accepted by its previous version, unless these messages are encrypted
and digitally signed. In addition, the notion of forward-compatibility is so strict
that a new version of the provider is not allowed to produce any new messages
that were not already produced by the old version of the provider to guarantee
version consistency and type safeness!

To alleviate these problems we require an agreement between service providers
and clients in the form of a shared contract.

Service Contracts

For two services to interact properly, before a service provider can provide what-
ever service it offers, they must come must come to an agreement or contract.
A contract formalizes the details of a service (contents, price, delivery process,
acceptance and quality criteria, expected protocols for interaction on behalf of
the client) in a way that meets the mutual understandings and expectations
of both the service provider and the service client. Introducing the notion of a
service contract gives us a mechanism that can be used to achieve meaningful
forward compatibility.

A service contract specifies [3]:

Functional requirements which detail the operational characteristics that define
the overall behavior of the service, i.e., details how the service is invoked and
what results it returns, the location where it is invoked and so on.

Non-functional requirements which detail service quality attributes, such as
service metering and cost, performance metrics, security attributes, (trans-
actional) integrity, reliability, availability, and so on.

Rules of engagement between clients and providers, known as policies, that
govern who can access a provider, what security procedures the participants
must follow, and any other rules that apply to the exchange. A point of clarity
is the difference between contract and policy. A policy is a set of conditions
that can apply to any number of contracts. For example, a policy can range
from simple expressions informing a client about the security tokens that a
service is capable of processing (such as Kerberos tickets or X509 certificates)
to a set of rules evaluated in priority order that determine whether or not a
client can interact with a service provider.

6 M.P. Papazoglou

Given that clients may vary just as much as providers, there might be multiple
contracts for a single service. In what follows and for the sake of clarity we will
focus only on functional requirements. Nevertheless the provided reasoning can
be generalized.

Definition 1. Contract R, is a collection of elements that are common across
the provider P and the consumer C of the service. It represents the mutually
agreed upon service schema elements that are expected by the consumer and
offered by the producer.

1. Let’s denote by P the set of elements (including operations) produced by
the provider where P = {z;,7 > 1}

2. Let’s denote by C' the set of elements required by the client where C' =
{ijj > 1}

3. Let’s define a partial function 0, called a contract-binding, that maps a set of
P elements and a set of C' consumed by the client, § = {3z; € PAJy, € C'|
(xi,y;)}, which means the client consumes the element y; for the operation
x; provided by the provider and R = Py(R) U Cy(R).

Service Compatibility

Definition 2. Two contracts R and R’ are called backwards compatible iff
Va; € Pp(R), Jyr € Co(R') | (i, yk)-

The previous definition implies that the contract-binding is still valid despite
changes in the client-side.

Definition 3. Two contracts R and R’ are called forwards compatible iff Yy, €
C@(R), Jz; € PQ(R/) | (achy;g).

The previous definition implies that the contract-binding is still valid despite
changes in the provider-side.

Definition 4. Two contracts R and R’ are called (fully) compatible iff they are
both forwards and backwards compatible, i.e. it holds that:
{Vz; € Py(R), Jyx € Co(R) | (x5, yr)} AN{Vyr € Co(R), Jx; € Py(R') | (w3, yr)}-

Fig. M illustrates a contract R and its associated contract bindings.

Service Compliance

Since a version v; of a service participates in a number n,n > 0 of relationships
(either as a producer or as a consumer of other services), then it defines with
them n contracts: R; i,k = 1,...,n. Based on that we can define the notion of
full compliance:

Definition 5. Two versions v; and vj,j > 1 of a service are called compliant
if Ve, E=1,...,n, R and R} are compatible.

Compliance as we have defined it takes into account only the contracts for which
the service acts as a producer. That reflects the fact the service can reconfigure
itself as long as its actions do not affect its consumers.

The Challenges of Service Evolution 7

P >xi C-yj
) R->6 gw_\

X1 Contract binding y2

x2 S

x3 Y3

x4 y4

X5 ——| yS

6 [T1Y6
___ Y7

Service Provider Service Client

Fig. 1. Contracts and contract bindings

Service Conformance
In addition to the notion of contracts service evolution requires dealing with
service arguments and return values. We need to make sure that the new version
of a service can substitute an older version without causing any problems to its
service clients. To guarantee service substitutatbility we rely on the notion of
service conformity.

Informally, a type S conforms to a type T (written St>T) if an object of type
S can always be substituted for one of type T, that is, the object of type S can
always be used where one of type T is expected. For S to be substitutable for T
requires that:

1. S provides at least the operations of T (S may have more operations).

2. For each operation in T, the corresponding operation in S has the same
number of arguments and results.

3. The types of the results of the operations of S conform to the types of the
results of the operations of T. The principal problem to consider is what
happens to the output parameters when redefining a service. To achieve the
desired effect we rely on the notion of result-covariance [4], [5]. Covariance
states that if a method M is defined to return a result of type T, then an
invocation of M is allowed to return a result of any subtype of T. A covariant
rule requires that if we redefine the result of a service the new result type
must always be a restriction (specialization) of the original one.

4. The types of the arguments of the operations of T conform to the types
of the arguments of the operations of S. The principal problem to consider
is what happens to the arguments when redefining a service. To achieve
the desired effect we rely on the notion of argument-contravariance [4], [5].
Contravariance states that if a method M is defined with an argument of type
T, then an invocation of M is allowed with an argument that is a supertype
of T. A contravariant rule requires that if we redefine the argument of a
service the new result type must always be an extension (generalization) of
the original one.

8 M.P. Papazoglou

The core of argument contravariance and result covariance concerns methods
that have a functional type can be explained as follows.

Definition 6. A subtyping relationship between functional types can be defined
as follows [3], [6]: ifT1 < S1 and S2 < T2 then S1 — S2 < T1 — T2, where
we consider the symbol” — 7 as a type constructor.

Assume we expect a function or method f to have type T'1 — T2 and therefore
consider T'1 arguments as permissible when calling f and results of type T2.
Now if assume that f actually has type T1' — T2’ with T1 < T'1’ . Then we can
pass all the expected permissible arguments of type T'1 without type violation;
f will return results of type T2’ which is permissible if T2 < T2 because the
results will then also be of type T2 and are therefore acceptable as they do not
introduce any type violations.

Covariance and contravariance are not opposing views, but distinct concepts
that each have their place in type theory and are both integrated in a type-safe
manner in object-oriented languages [6], [5]. Argument contravariance and result
covariance is required for safely substituting older service with newer service
versions.

To be fully substitutable a service must be both compliant and conformant
according the previous definitions. If we now assume without loss of generality
that for k£ = 1,...,m,m < n the service participates in the contracts R; j only
as a producer. Then, compliance can be alternativetely defined as:

Definition 7. Two versions v; and vi,j > i of a service are called fully sub-
stitutable iff Vk,k = 1,...,m, for which the service participates as a producer,
R; . and R;j, are compatible.

‘Web Service Versioning

Compatible service evolution in WSDL 2.0 limits service changes that are either
backward or forward compatible, or both [7]. In accordance with the definitions
in section{2.J] WSDL-conformant services are backward compatible when the
receiver behaves correctly if it receives a message in an older version of the
interaction language, while WSDL-conformant services are forward compatible
the receiver behaves correctly if it receives a message in a newer version of the
interaction language.

The types of service changes that are compatible are:

— Addition of new WSDL operations to an existing WSDL document. If exist-
ing clients are unaware of a new operation, then they will be unaffected by
its introduction.

— Addition of new XML schema types within a WSDL document that are not
contained within previously existing types. Again, even if a new operation
requires a new set of complex data types, as long as those data types are not
contained within any previously existing types (which would in turn require
modification of the parsing code for those types), then this type of change
will not affect an existing client.

The Challenges of Service Evolution 9

However, there are a host of other change types that are incompatible. These
include: removing an operation, renaming an operation, changing the parameters
(in data type or order) of an operation, and changing the structure of a complex
data type.

With a compatible change the service need only support the latest version
of a service. A client may continue to use a service adjusting to new version of
the interface description at a time of its choosing. With an incompatible change,
the client receives a new version of the interface description and is expected to
adjust to the new interface before old interface is terminated. Either the service
will need to continue to support both versions of the interface during the hand
over period, or the service and the clients are coordinated to change at the same
time. An alternative is for the client to continue until it encounters an error, at
which point it uses the new version of the interface.

2.2 Business Protocol Changes

Business protocol descriptions can be important in the context of change man-
agement as protocols also tend to evolve over time due to the development of
new applications, new business strategies, changing compliance and quality of
service requirements, and so on. Business protocol evolution is considered in [1]
where the authors distinguish between two aspects of protocol evolution:

1. Static protocol evolution which refers to the problem of modifying the proto-
col definition by providing a set of change operations that allow the gradual
modification of an existing protocol without the need of redefining it from
scratch.

2. Dynamic protocol evolution which refers to the issue of changing a long run-
ning protocol in the midst of its execution to a new protocol. In such cases,
there is a clear need for providing mechanisms for a protocol to migrate ac-
tive instances running under a old protocol version to meet the new protocol
requirements.

Fig. 2l illustrates the various aspects of protocol changes. In particular, it shows
the notions of protocol versioning, migration, compatibility and protocol
replaceability.

When evolving a protocol, it is useful to keep track of all protocol versions, re-
visions and variants of the protocoll. Instances of an older protocol version might
still be running and used by clients, which in turn can depend on these instances.
When evolving a protocol, states and transitions may be added to and removed
from an active protocol. A new version of a protocol is created each time its in-
ternal structure or external behavior change. The perception that clients have of
a specific protocol is called a protocol view. Since the client’s view of a protocol is
restricted only to the parts of the protocol that directly involve the client, a client
might have equivalent views on different protocols. In mathematical terms, a view
is a one—to—many mapping from protocols as perceived by the client, to actual
protocols. Protocol views are related to many practices revolving around business

10 M.P. Papazoglou

protocols. For instance, clients whose views on the original and target protocols
are the same, are not affected by migration practices.

Migration [I] defines the strategies adopted to implement protocol evolution,
by guiding the process of changing running protocol instances. The typical op-
tions for a migration are: do not migrate any running instance, terminate all
the running instances, migrate all the running instances to the new protocol,
migrate instances that cannot be migrated to the new protocol, to a temporary
protocol which complies to the new requirements.

Protocol compatibility (see Fig. 2 aims at assessing whether two protocols
can interact, i.e. if it is possible to have a conversation between the two services
despite changes to the protocol. Compatibility of two protocols can be either
complete, i.e., all conversations of one protocol can be understood by the other
protocol, or partial, when there is at least one conversation possible between
the two protocols. Protocol revision takes place when a new protocol version is

WERSIONING II

Yersion
(actual version)

Y

rmay influence

Compatibility

change creates
NEW Vi

v Evalution

may change
through QoS

View
(perceived version)

change create s
new view

Replaceahility

Migratian

Fig. 2. Business Protocol changes

meant to supersede its predecessor. Protocol replaceability (see Fig.[2)) deals with
the problem of determining if two protocols are equivalent and which parts they
have in common. The following classes of replaceability can be distinguished [IJ:

— Protocol equivalence when two protocols can be used interchangeably;
— protocol subsumption when one protocol can be used to replace the other,
but not vice-versa.

3 Dealing with the Effects of Deep Changes

Deep changes characterize only business processes and require that a business
process be redefined and realigned within an entire business process value chain.

The Challenges of Service Evolution 11

This may eventually lead to modification and alignment of business processes
within a business process value chain associated directly or indirectly with a
business-process-in-scope.This calls for methodologies to provide a sound foun-
dation for deep service changes in an orderly fashion that allow services to be
appropriately (re)-configured, aligned and controlled as changes occur. In Fig.[3]
we provide an overview of the major phases in a change-oriented service life
cycle. Different methodologies may subdivide the phases in a different manner,
but the sequence is usually the same.

On-going execution

Operational
service

~ Determine causes

7
Test service ~~" Run simulation & monitor N

interfaces /~ service performance AN Scope extent of

, / change
/
/
Define interface\ /

& points of service Identify
integration services-in-
scope
/ .
/ Collect detailed
/ service metrics
/
Align resources to AN Measure alignment ya
services N with strategy yd
\

Analyze impact

Estimate costs .
of service changes

Analyze changes

Determine
compliance with
conformance rules

Determine required
supporting functionality

Determine whether Determine changes to
KPIs are still satisfied inter-dependent
processes

Fig. 3. Change-oriented service life cycle

The initial phase focuses on identifying the need for change and scoping its
extent. One of the major elements of this phase is understanding the causes
of the need for change and their potential implications. For instance, compli-
ance to regulations is major force for change. Regulatory requirements such as
HIPAA and Sarbanes-Oxley provide strict guidelines that ensure companies are
in control of internal, private, public, and confidential information, and audit-
ing standards such as SAS 70 serve as a baseline for regulatory compliance by
verifying that third-party providers meet those needs. All of this may lead to
the transformation of services within a business process value chain. Here, the
affected services-in-scope need to be identified. In addition, service performance
metrics, such as KPIs and SLAs, need to be collected. Typical KPIs include
delivery performance, fill rates order fulfillment, production efficiency and flexi-
bility, inventory days of supply, quality thresholds, velocity, transaction volumes

12 M.P. Papazoglou

and cost baseline. These assist in understanding the nature of services-in-scope
and related services and provide a baseline for comparative purposes and deter-
mination of expected productivity, cost and service level improvements.

The second phase in Fig. B called service change analysis, focuses on the
actual analysis, redesign or improvement of the existing services. The ultimate
objective of service change analysis is to provide an in-depth understanding of
the functionality, scope, reuse, and granularity of services that are identified for
change. To achieve its objective, the analysis phase encourages a more radical
view of process (re)-design and supports the re-engineering of services. Its main
objective is the reuse (or repurposing) of existing service functionality in to meet
the demands of change. The problem lies in determining the difference between
existing and future service functionality.

To analyze and assess the impact of changes organizations rely on the existence
of an “as-is” and a “to-be” service model rather than applying the changes
directly on operational services. Analysts complete an as-is service model to
allow understanding the portfolio of available services. The as-is service model
is used as basis for conducting a thorough re-engineering analysis of the current
portfolio of available services that need to evolve. The to-be services model is
used as basis for describing the target service functionality and performance
levels after applying the required changes. One usually begins by analyzing the
“as-is” service, considering alternatives, and then settling on a “to-be” service
that will replace the current service.

To determine the differences between these two models a gap analysis tech-
nique must be used. A gap analysis model is used to help set priorities and
improvements and measure the impact of service changes. Gap analysis is a
technique that purposes a services realization strategy by incrementally adding
more implementation details to an existing service to bridge the gap between the
“as-is” and “to-be” service models. Gap analysis commences with comparing the
“as-is” with the “to-be” service functionality to determine differences in terms
of service performance (for instance, measures of KPIS) and capabilities. Service
capabilities determine whether a process is able to meet specifications, customer
requirements, or product tolerances.

As service changes may spill over to other services in a supply-chain, one
of the determining factors in service change analysis is being able to recognize
the scope of changes and functionality that is essentially self-sufficient for the
purposes of a service-in-scope (service under change). When dealing with deep
service changes, problems of overlapping or conflicting functionality several types
of problems need to be addressed [§] and [3]:

1. Service flow problems: Typical problems include problems with the logical
completeness of a service upgrade, problems with sequencing and duplication
of activities, decision-making problems and lack of service measures. Prob-
lems with the logical completeness of a service upgrade include disconnected
activities and disconnected inputs or outputs. Problems with sequencing and
duplication of activities include activities that are performed in the wrong
sequence, performed more than once, and, in general the lack of rules that

The Challenges of Service Evolution 13

prioritize flows between activities. Decision-making problems include the lack
of information, such as policies and business rules, for making decisions. Lack
of service measures include inadequate or no measures for the quality, quan-
tity or timeliness of service outputs.

2. Service control problems: Service controls define or constrain how a service
is performed. Broadly speaking there are two general types of control prob-
lems: problems with policies and business rules and problems with external
services. Problems with policies and business rules include problems where
a service-in-scope ignores organizational policies or specific business rules.
Problems with external services include problems where external services re-
quire information that a service-in-scope cannot provide. Alternatively, they
include cases where information that a service-in-scope requires cannot be
provided by external services.

3. Owerlapping services functionality: In such cases a service-in-scope may (par-
tially) share identical business logic and rules with other related services.
Here, there is a need for rationalizing services and determining the proper
level of service commonality. Overlapping functionality should be identified
and should be factored out. Several factors such as encapsulated functional-
ity, business logic and rules, business activities, can serve to determine the
functionality and scope of services. During this procedure, service design
principles [3] such as service coupling and cohesion need to be employed to
achieve the desired effects.

4. Conflicting services functionality (including bottlenecks / constraints in the
service value stream): During this step the functionality of a service-in-scope
may conflict with functionality in related services. Conflicts also include
problems where a service-in-scope is not aligned to business strategy, where
a service may pursue a strategy that is in conflict with is incompatible with
the value chain of which it is a part, and cases where the introduction of a
new policy or regulation would make it impossible for the service-in-scope to
function. In addition to dealing with problems arising from overlapping and
conflicting service functionality we should also unbundle functionality into
separate services to the extend possible to prevent services from becoming
overly complex and difficult to maintain.

5. Service input and output problems: These problems include problems where
the quality of service input or output is low, and timeliness input or output
problems where the needed inputs/outputs are not produced when they are
needed.

Finally, cost estimation in the second phase involves identifying and weighing all
services to be re-engineered to estimate the cost of the re-engineering project. In
cases where costs are prohibitive for an in-house implementation, an outsourcing
policy might be pursued.

During the service change analysis standard continuous process improvement
practices such as Six Sigma DMAIC practices or Lean Kaizen [J] should be
employed. These determine the services changes and define the new services

14 M.P. Papazoglou

and standards of performance to measure, analyze, control and systematically
improve processes by eliminating potential defects.

During the third and final phase, all of the new services are aligned, inte-
grated, simulated and tested and then, when ready, the new services are put
into production and managed. To achieve this a services integration model [3] is
created to facilitate the implementation of the service integration strategy. This
strategy includes such subjects as service design models, policies, SOA gover-
nance options, and, organizational and industry best practices and conventions.
All these need to be taken into account when designing integrated end-to-end
services that span organizational boundaries.

A service integration model, among other things, establishes integration re-
lationships between service consumers and providers involved in business inter-
actions, e.g., business transactions. It determines service responsibilities, assigns
duties to intermediaries who perform and facilitate message interception, mes-
sage transformation, load balancing, routing, and so on. It also includes steps
that determine message distribution needs, delivery-responsible parties, and pro-
vides a service delivery map. Finally, a service integration model is concerned
with message and process orchestration needs. This part includes steps that es-
tablish network routes; verify network and environment support, e.g., validate
network topology and environmental capacity as well as routing capabilities;
and, employ integration flow patterns to facilitate the flow of messages and
transactions.

The role of the services integration model ends when a new (upgraded) service
architecture is completely expressed and validated against technological specifi-
cations provided by infrastructure, management/monitoring and technical utility
services.

4 Summary

Services are subject to constant change and variation. Services can evolve typi-
cally due to changes in structure, e.g., attributes and operations; in operational
behavior and policies, e.g., adding new business rules and regulations, in types
of business-related events; and in business protocols.

We may distinguish between two kinds of service changes shallow versus deep
service changes. With shallow changes the change effects are localized to a ser-
vice or are strictly restricted to the clients of that service. Deep changes cause
cascading types of changes which extend beyond the clients of a service possibly
to entire value-chain, i.e., clients of these service clients such as outsourcers or
suppliers. Typical shallow changes are changes on the structural level and busi-
ness protocol changes, while typical deep changes include operational behavior
changes and policy induced changes.

Shallow changes characterize both singular services and business processes and
require a structured approach and robust versioning strategy to support multiple
versions of services and business protocols. To deal with shallow changes we intro-
duced a theoretical approach for structural service changes focusing on service
compatibility, compliance, conformance, and substitutability. In addition, we

The Challenges of Service Evolution 15

described versioning mechanisms for handling business protocol changes. The
right versioning strategy can maximize code reuse and provide a more manage-
able approach to the deployment and maintenance of services and protocols. It
can allow for upgrades and improvements to be made to a service or protocol,
while supporting previously released versions.

Deep changes characterize only business processes and require that a busi-
ness process be redefined and realigned within an entire business process value
chain. This may eventually lead to modification and alignment of business pro-
cesses within a business process value chain associated directly or indirectly with
a business-process-in-scope.To address these problems we introduced a change-
oriented service life cycle methodology. A change-oriented service life cycle pro-
vides a sound foundation for deep service changes in an orderly fashion that allow
services to be appropriately (re)-configured, aligned and controlled as changes
occur. A change-oriented service life cycle also provides common tools to reduce
cost, minimize risk exposure and improve development agility. It helps orga-
nizations ensure that the right versions of the right processes are available at
all times, and that they can provide an audit trail of changes across the ser-
vice lifecycle to prevent application failures and help meet increasingly stringent
regulatory requirements.

Acknowledgments. I wish to thank Salima Benbernou for her help and invalu-
able suggestions that have considerably improved the theoretical approach for
structural service changes.

References

1. Ryu, S.H., et al.: Supporting the dynamic evolution of web service protocols in
service-oriented architecturesl. ACM Transactions on the Web 1(1), 1-39 (2007)

2. Orchard, D. (ed.): Extending and versioning languages. W3C Technical Architecture
Group (2007)

3. Papazoglou, M.P.: Web Service: Principles and Technology. Prentice-Hall, Engle-
wood Cliffs (2007)

4. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Engle-
wood Cliffs (1997)

5. Castagna, G.: Covariance and contravariance: conflict without a cause. ACM Trans-
actions on Programming Languages and Systems 17(3), 431447 (1995)

6. Liskov, B., Wing, J.: A behavioral notion of subtyping. ACM Transactions on Pro-
gramming Languages and Systems 16(6), 18111841 (1994)

7. Booth, D., Liu, C.K.: Web services description language (WSDL) version 2.0 part
0: Primer (2007)

8. Meyer, B.: Business Process Change. Morgan Kaufmann, San Francisco (2007)

9. Martin, J.: Lean Six Sigma for Supply Chain Management. McGraw-Hill, New York
(2007)

	The Challenges of Service Evolution
	Introduction
	Dealing with Shallow Changes
	A Theory for Structural Changes
	Business Protocol Changes

	Dealing with the Effects of Deep Changes
	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

