

Lecture Notes in Computer Science 5074
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Zohra Bellahsène Michel Léonard (Eds.)

Advanced Information
Systems Engineering

20th International Conference, CAiSE 2008
Montpellier, France, June 16-20, 2008
Proceedings

13

Volume Editors

Zohra Bellahsène
LIRMM–Laboratoire d’Informatique, de Robotique
et de Microélectronique de Montpellier
UMR 5506 CNRS/Université Montpellier 2
161 Rue Ada, 34392 Montpellier, France
E-mail: bella@lirmm.fr

Michel Léonard
Université de Genève
Centre Universitaire d’Informatique
Département des Systèmes d’Information
24 Rue du Général Dufour, 1211 Genève 4, Switzerland
E-mail: michel.leonard@cui.unige.ch

Library of Congress Control Number: 2008929343

CR Subject Classification (1998): H.2, H.3-5, J.1, K.4.3-4, K.6, D.2, I.2.11

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-69533-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-69533-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12279258 06/3180 5 4 3 2 1 0

Preface

CAiSE 2008 was the 20th in the series of International Conferences on Advanced
Information System Engineering. This edition continued the success of previous
conferences, a success largely due to that fact that, since its first edition, this
series has evolved in parallel with the evolution of the importance of information
systems in economic development. CAiSE has been able to follow, and often
to anticipate, important changes that have occurred since 1978 when the first
CAiSE conference was organized by Arne Sølvberg and Janis Bubenko.

In all these years, modern businesses and IT systems have been facing an
ever more complex environment characterized by openness, variety and change.
Furthermore, enterprises are experiencing ever more variety in their business in
many dimensions. In the same way, the explosion of information technologies
is overwhelming with a multitude of languages, platforms, devices, standards
and products. Thus enterprises need to manage an environment to monitor the
interplay of changes in the business processes, in information technologies, and
at the ontological level, in order to achieve a sustainable development of their
information systems. Enterprises must enter the era of sustainable information
systems to face the important developmental challenges.

During all these years, CAiSE researchers have been challenged by all these
changes, and the CAiSE conferences provide a forum for presenting and debating
important scientific results. In fact, CAiSE is positioned at the core of these
tumultuous processes, hosting new emerging ideas, fostering innovative processes
of design and evaluation, developing new information technologies adapted to
information systems, creating new kinds of models, but always being subject to
rigorous scientific selection.

And so, the previous CAiSE conferences have largely contributed to develop-
ing a sustainable conceptual platform for information systems engineering, well
suited to the era of sustainable information systems. This was the main theme
of this conference.

CAiSE 2008 received 273 full paper submissions from all over the world.
Each submitted paper underwent a rigorous review process by at least three
independent referees. The CAiSE 2008 proceedings represent a collection of
44 excellent research papers: 35 full papers and 9 short papers. The selection
was very hard, due to the very high standard of the submitted papers. Several
high-quality papers were selected for the CAiSE forum to stimulate open dis-
cussions of high-quality on-going research. In addition, the conference program
included three keynote speeches: “Evolvable Web Services” by Mike Papazoglou,
Tilburg University, “Business Entities: Unifying Process and Data Modeling”
by David Cohn, IBM Watson Research Center and “Information Systems in
e-Government” by Jean-Marie Leclerc, Centre des Technologies de l’Information,
of Geneva. Other highlights of CAiSE 2008 were 10 top-quality pre-conference

VI Preface

workshops and a doctoral consortium bringing together PhD students to give
them the opportunity to showcase their research and providing them with feed-
back from senior international researchers. Contact with industry was empha-
sized through a special think tank on advancing innovation skills for intensive
information services in Europe.

As editors of this volume, we would like to express our gratitude to the pro-
gram board, the Program Committee and external reviewers for their efforts in
providing very thorough evaluations of the submitted papers under significant
time constraints. We would like to thank the invited speakers and authors with-
out whom this conference would not have been possible. We would also like to
thank Richard van de Stadt for his very effective support during the paper evalu-
ation and for preparing the proceedings. Moreover, our thanks go out to the local
Organizing Committee who fulfilled with a lot of patience all our wishes. Finally,
many thanks to Google, Microsoft, institutional ERCIM, UM2 and CNRS, local
sponsors Languedoc-Roussillon Region and the city hall of Montpellier for their
sponsorship.

April 2008 Zohra Bellahsène
Michel Léonard

Organization

Advisory Committee Janis Bubenko Jr.
Royal Institute of Technology, Sweden
Colette Rolland
Université Paris 1 Panthéon Sorbonne, France
Arne Sølvberg
Norwegian University of Science and Technology, Norway

General Chair Michel Léonard
University of Geneva, Switzerland

Program Chair Zohra Bellahsène
LIRMM-CNRS/Université Montpellier 2, France

Workshop Chairs Xavier Franch
Universitat Politècnica de Catalunya, Spain
Ela Hunt
ETHZ, Switzerland

Tutorial and Panel Ann Persson
Chairs University of Skovde, Sweden

Camille Salinesi
Université Paris 1 Panthéon Sorbonne, France

Publicity Chair Selmin Nurcan
Université Paris 1 Panthéon Sorbonne, France

Sponsorship Chair Mark Roantree
Dublin City University, Ireland

Forum Chair Carson Woo
University of British Columbia, Vancouver, Canada

Doctoral Consortium Peter McBrien
Chairs Imperial College of London, UK

Farouk Toumani
University of Clermont-Ferrand, France

Organization Chair Rémi Coletta
LIRMM-CNRS/Université Montpellier 2, France

VIII Organization

Local Arrangements Céline Berger
LIRMM-CNRS/Université Montpellier 2, France

Webmaster Fabien Durchateau
LIRMM-CNRS/Université Montpellier 2, France

Program Committee Board

Hans Akkermans, Netherlands
Sjaak Brinkkemper, Netherlands
Eric Dubois, Luxembourg
Johann Eder, Austria
Pericles Loucopoulos, UK
Andreas Opdahl, Norway

Oscar Lopez Pastor, Spain
Barbara Pernici, Italy
Anne Persson, Sweden
Klaus Pohl, Germany
Colette Rolland, France
Pnina Soffer, Israel

Program Committee

Wil van der Aalst, Netherlands
Pär Ågerfalk, Ireland
Jacky Akoka, France
Marko Bajec, Slovenia
Boualem Benatallah, Australia
Nacer Boudjlida, France
Mokrane Bouzeghoub, France
Fabio Casati, Italy
Silvana Castano, Italy
Jaelson Castro, Brazil
Corinne Cauvet, France
Dov Dori, Israel
Marlon Dumas, Australia
David Embley, USA
Joerg Evermann, New Zealand
João Falcão e Cunha, Portugal
Xavier Franch, Spain
Agnès Front, France
Paolo Giorgini, Italy
Claude Godart, France
Jaap Gordijn, Netherlands
Mohand-Said Hacid, France
Terry Halpin, USA
Manfred Hauswirth, Ireland
Patrick Heymans, Belgium
Matthias Jarke, Germany
Manfred Jeusfeld, Netherlands

Paul Johannesson, Sweden
Henk Jonkers, Netherlands
H̊avard Jørgensen, Norway
Roland Kaschek, New Zealand
Marite Kirkova, Latvia
John Krogstie, Norway
Réginene Laleau, France
Marc Lankhorst, Brazil
Julio Leite, Brazil
Kalle Lyytinen, USA
Neil Maiden, UK
Peter McBrien, UK
Isabelle Mirbel, France
Michele Missikoff, Italy
Haris Mouratidis, UK
John Mylopoulos, Canada
Moira Norrie, Switzerland
Andreas Oberweis, Germany
Antoni Olivé, Spain
Jeffrey Parsons, Canada
Michaël Petit, Belgium
Yves Pigneur, Switzerland
Gert Poels, Belgium
Naveen Prakash, India
Erik Proper, Netherlands
Jolita Ralyte, Switzerland
Björn Regnell, Sweden

Organization IX

Manfred Reichert, Netherlands
Mark Roantree, Ireland
Michael Rosemann, Australia
Matti Rossi, Finland
Gustavo Rossi, Argentina
Kevin Ryan, Ireland
Motoshi Saeki, Japan
Camille Salinesi, France
Tony C. Shan, USA
Keng Siau, USA
Guttorm Sindre, Norway
Monique Snoeck, Belgium
Chantal Soulé-Dupuis, France

Janis Stirna, Sweden
David Taniar, Australia
Bernhard Thalheim, Germany
Farouk Toumani, France
Aphrodite Tsalgatidou, Greece
Patrick Valduriez, France
Olegas Vasilecas, Lithuania
Yair Wand, Canada
Mathias Weske, Germany
Roel Wieringa, Netherlands
Carson Woo, Canada
Eric Yu, Canada

Additional Referees

Birger Andersson
Nicolas Arni-Bloch
Yudistira Asnar
George Athanasopoulos
Salah Baina
Salima Benbernou
Fredrik Bengtsson
Nicholas Berente
Sami Bhiri
Devis Bianchini
Aliaksandr Birukou
Ralph Bobrik
Lianne Bodenstaff
Joel Brunet
Volha Bryl
Rui Camacho
Fabrice Camous
Juan P. Carvallo
Samira Si-said Cherfi
Andreas Classen
Anthony Cleve
Antonio Coelho
Fabiano Dalpiaz
Pascal van Eck
Hesam Chiniforooshan Esfahani
Anat Eyal
Jennifer (Chia-wen) Fang
Joao Faria
Carles Farré

Alfio Ferrara
Anna Formica
Benoit Fraikin
M.G. Fugini
Walid Gaaloul
Frederic Gervais
Bas van Gils
Christophe Gnaho
Frank Goethals
Daniela Grigori
Daniel Gross
Adnene Guabtni
Mohammed Haddad
Raf Haesen
Armin Haller
Alena Hallerbach
Sean Hansen
Andreas Harth
Jan P. Heck
Martin Henkel
Stijn Hoppenbrouwers
Siv Hilde Houmb
Stefan Hrastinski
Barbara Weber
Marijke Janssen
Zoubida Kedad
Woralak Kongdenfha
Dimitre Kostadinov
Eleni Koutrouli

X Organization

Algirdas Laukaitis
Dejan Lavbic
Duc Minh Le
Massimiliano de Leoni
Mario Lezoche
Chen Li
Sebastian Link
Deryle Lonsdale
Giusy Di Lorenzo
Davide Lorusso
Nikos Loutas
Jenny Eriksson Lundström
Linh Thao Ly
Bernadette Farias Lóscio
Kreshnik Musaraj
Amel Mammar
Michele Mancioppi
Raimundas Matulevicius
Michele Melchiori
Jan Mendling
Harald Meyer
Wai Mok
Geert Monsieur
Stefano Montanelli
Kafui Monu
Esmiralda Moradian
Joao M. Moreira
Dominic Mueller
Lina Nemuraite
Antonio De Nicola
Moses Niwe
Michael Pantazoglou
Mike Papazoglou
Joan A. Pastor-Collado
Veronika Peralta
Thomi Pilioura

Axel Polleres
Elaheh Pourabbas
Jorge Quiane
Paul Ralph
Zornitza Rasheva
Jan Recker
Nikos Rizopoulos
Lotte De Rore
Seung Ryu
Ana Carolina Salgado
Yacine Sam
Ana Sasa
Germain Saval
Alexander Schutz
Farida Semmak
Carla Silva
Sase N. Singh
Andrew Charles Smith
Mehdi Snene
Carine Souveyet
Nikhil Srinivasan
Richard Berntsson Svensson
Francesco Taglino
Roberto Santana Tapia
Christer Thörn
Yuri Tijerino
Leonardo Tininini
Hubert Toussaint
Jean-Christophe Trigaux
Christina Tsagkani
Damjan Vavpotic
Luis Veiga
Barbara Weber
Krzysztof Wnuk
Maciej Zaremba
Jelena Zdravkovic

Organization XI

Gold Sponsors

Institutional Sponsor

Local Sponsors

Table of Contents

Keynote

The Challenges of Service Evolution . 1
Mike P. Papazoglou

Duality and Process Modeling

Assigning Ontology-Based Semantics to Process Models: The Case of
Petri Nets . 16

Pnina Soffer, Maya Kaner, and Yair Wand

On the Duality of Information-Centric and Activity-Centric Models of
Business Processes . 32

Santhosh Kumaran, Rong Liu, and Frederick Y. Wu

A New Paradigm for the Enactment and Dynamic Adaptation of
Data-Driven Process Structures . 48

Dominic Müller, Manfred Reichert, and Joachim Herbst

Interoperability of IS and Enterprises

An Aspect Oriented Approach for Context-Aware Service Domain
Adapted to E-Business . 64

Khouloud Boukadi, Chirine Ghedira, and Lucien Vincent

Modeling Service Choreographies Using BPMN and BPEL4Chor 79
Gero Decker, Oliver Kopp, Frank Leymann, Kerstin Pfitzner, and
Mathias Weske

Work Distribution and Resource Management in BPEL4People:
Capabilities and Opportunities . 94

Nick Russell and Wil M.P. van der Aalst

Refactoring

Documenting Application-Specific Adaptations in Software Product
Line Engineering . 109

Günter Halmans, Klaus Pohl, and Ernst Sikora

Refactoring Process Models in Large Process Repositories 124
Barbara Weber and Manfred Reichert

XIV Table of Contents

Service-Oriented Information Systems Engineering: A Situation-Driven
Approach for Service Integration . 140

Nicolas Arni-Bloch and Jolita Ralyté

When Interaction Choices Trigger Business Evolutions 144
Guillaume Godet-Bar, Sophie Dupuy-Chessa, and Dominique Rieu

Information Systems in e-Government and
Life-Science

GATiB-CSCW, Medical Research Supported by a Service-Oriented
Collaborative System . 148

Konrad Stark, Jonas Schulte, Thorsten Hampel, Erich Schikuta,
Kurt Zatloukal, and Johann Eder

Strategic Alignment in the Context of e-Services – An Empirical
Investigation of the INSTAL Approach Using the Italian eGovernment
Initiative Case Study . 163

Gianluigi Viscusi, Laure-Hélène Thevenet, and Camille Salinesi

Knowledge Patterns for IS Engineering

Understanding and Improving Collective Attention Economy for
Expertise Sharing . 167

Yunwen Ye, Kumiyo Nakakoji, and Yasuhiro Yamamoto

Exploring the Effectiveness of Normative i* Modelling: Results from a
Case Study on Food Chain Traceability . 182

Alberto Siena, Neil Maiden, James Lockerbie, Kristine Karlsen,
Anna Perini, and Angelo Susi

Towards a Catalogue of Patterns for Defining Metrics over i* Models . . . 197
Xavier Franch and Gemma Grau

Requirements Engineering for IS

Business Process Modelling and Purpose Analysis for Requirements
Analysis of Information Systems . 213

Jose Luis de la Vara, Juan Sánchez, and Óscar Pastor

Supporting the Elicitation of Requirements Compliant with
Regulations . 228

Motoshi Saeki and Haruhiko Kaiya

On the Impact of Evolving Requirements-Architecture Dependencies:
An Exploratory Study . 243

Safoora Shakil Khan, Phil Greenwood, Alessandro Garcia, and
Awais Rashid

Table of Contents XV

The IT Organization Modeling and Assessment Tool for IT Governance
Decision Support . 258

M̊arten Simonsson, Pontus Johnson, and Mathias Ekstedt

Ensuring Transactional Reliability by E-Contracting 262
Ting Wang, Paul Grefen, and Jochem Vonk

Conceptual Schema Modeling

Drawing Preconditions of Operation Contracts from Conceptual
Schemas . 266

Dolors Costal, Cristina Gómez, Anna Queralt, and Ernest Teniente

Decidable Reasoning in UML Schemas with Constraints 281
Anna Queralt and Ernest Teniente

Round-Trip Engineering for Maintaining Conceptual-Relational
Mappings . 296

Yuan An, Xiaohua Hu, and Il-Yeol Song

Service Infrastructure

Capturing and Using QoS Relationships to Improve Service Selection . . . 312
Caroline Herssens, Ivan J. Jureta, and Stéphane Faulkner

KAF: Kalman Filter Based Adaptive Maintenance for Dependability of
Composite Services . 328

Huipeng Guo, Jinpeng Huai, Yang Li, and Ting Deng

SpreadMash: A Spreadsheet-Based Interactive Browsing and Analysis
Tool for Data Services . 343

Woralak Kongdenfha, Boualem Benatallah, Régis Saint-Paul, and
Fabio Casati

Service Evolution

Managing the Evolution of Service Specifications . 359
Vasilios Andrikopoulos, Salima Benbernou, and Mike P. Papazoglou

On the Definition of Service Granularity and Its Architectural
Impact . 375

Raf Haesen, Monique Snoeck, Wilfried Lemahieu, and
Stephan Poelmans

Reasoning about Substitute Choices and Preference Ordering in
e-Services . 390

Sybren de Kinderen and Jaap Gordijn

XVI Table of Contents

Flexible Information Technologies

Message Correlation and Business Protocol Discovery in Service
Interaction Logs . 405

Belkacem Serrour, Daniel P. Gasparotto,
Hamamache Kheddouci, and Boualem Benatallah

Concern-Sensitive Navigation: Improving Navigation in Web Software
through Separation of Concerns . 420

Jocelyne Nanard, Gustavo Rossi, Marc Nanard, Silvia Gordillo, and
Leandro Perez

A Flexible and Semantic-Aware Publication Infrastructure for Web
Services . 435

Luciano Baresi, Matteo Miraz, and Pierluigi Plebani

Metrics and Process Modelling

Measuring Similarity between Business Process Models 450
Boudewijn van Dongen, Remco Dijkman, and Jan Mendling

How Much Language Is Enough? Theoretical and Practical Use of the
Business Process Modeling Notation . 465

Michael zur Muehlen and Jan Recker

On a Quest for Good Process Models: The Cross-Connectivity
Metric . 480

Irene Vanderfeesten, Hajo A. Reijers, Jan Mendling,
Wil M.P. van der Aalst, and Jorge Cardoso

Information Systems Engineering

Information Systems Engineering Supported by Cognitive
Matchmaking . 495

S.J. Overbeek, P. van Bommel, and H.A. (Erik) Proper

On Modeling and Analyzing Cost Factors in Information Systems
Engineering . 510

Bela Mutschler and Manfred Reichert

Computer-Aided Method Engineering: An Analysis of Existing
Environments . 525

Ali Niknafs and Raman Ramsin

Adapting Secure Tropos for Security Risk Management in the Early
Phases of Information Systems Development . 541

Raimundas Matulevičius, Nicolas Mayer, Haralambos Mouratidis,
Eric Dubois, Patrick Heymans, and Nicolas Genon

Table of Contents XVII

IS Development with Ubiquitous Technologies

Probabilistic Entity Linkage for Heterogeneous Information Spaces 556
Ekaterini Ioannou, Claudia Niederée, and Wolfgang Nejdl

Product Based Workflow Support: Dynamic Workflow Execution 571
Irene Vanderfeesten, Hajo A. Reijers, and Wil M.P. van der Aalst

Location-Based Variability for Mobile Information Systems 575
Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini

Modelling, Simulation, and Performance Analysis of Business Processes
Involving Ubiquitous Systems . 579

Patrik Spieß, Dinh Khoa Nguyen, Ingo Weber, Ivan Markovic, and
Michael Beigl

Open Source Workflow: A Viable Direction for BPM? (Extended
Abstract) . 583

Petia Wohed, Nick Russell, Arthur H.M. ter Hofstede,
Birger Andersson, and Wil M.P. van der Aalst

Author Index . 587

The Challenges of Service Evolution�

Mike P. Papazoglou

INFOLAB, Dept. of Information Systems and Mgt., Tilburg University,
The Netherlands
mikep@uvt.nl

Abstract. Services are subject to constant change and variation. Ser-
vices can evolve typically due to changes in structure, e.g., attributes and
operations; in behavior and policies, e.g., adding new business rules and
regulations, in types of business-related events; and in business protocols.
This paper introduces two types of service changes: shallow changes -
where changes are confined to services or the clients - and deep changes -
where cascading effects and side-effects occur. The paper introduces
a theoretical approach for dealing with shallow service changes and a
change-oriented service lifecycle methodology that addresses the effects
of deep service changes.

Keywords: Web services, service versioning, business protocols, regula-
tory compliance, service contracts and policies. service contracts.

1 Introduction

Serious challenges like mergers and acquisitions, outsourcing possibilities, rapid
growth, the need for regulatory compliance, and intense competitive pressures
are overtaxing existing traditional business processes, slowing innovation and
making it difficult for an enterprise to pursue and reach its business strategies
and objectives. Such challenges require changes at the enterprise-level and thus
lead to a continuous business process redesign and improvement effort.

Routine process changes usually lead to possible reorganization and realign-
ment of many businesses processes and increase the propensity for error. To
control process development one needs to know why a change was made, what
are its implications and whether the change is complete. Eliminating spurious
results and inconsistencies that may occur due to uncontrolled changes is there-
fore a necessary condition for the ability of processes to evolve gracefully, ensure
stability and handle variability in their behavior. Such kind of changes must be
applied in a controlled fashion so as to minimize inconsistencies and disruptions
by guaranteeing seamless interoperation of business processes that may cross
enterprise boundaries when they undergo changes.

� The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme under the Network of Excellence S-Cube
- Grant Agreement no. 215483.

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 1–15, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 M.P. Papazoglou

Service technologies automate business processes1 and change as those pro-
cesses respond to changing consumer, competitive, and regulatory demands. Ser-
vices are thus subject to constant adaptation and variation adding new business
rules and regulations, types of business-related events, operations and so forth.
Services can evolve typically by accommodating a multitude of changes along
the following functional trajectories:

1. Structural changes : These focus on changes that occur on the service types,
messages, interfaces and operations.

2. Business protocol changes : Business protocols specify the external messaging
behavior of services (viz. the rules that govern the service interaction between
service providers and clients) and, in particular, the conversations in which
the services can participate in. Business protocols achieve this by describing
the structure and the ordering (time sequences) of the messages that a service
and its clients exchange to achieve a certain business goal. Business protocols
change due to changes in policies, regulations, and changes in the operational
behavior of services.

3. Policy induced changes : These describe changes in policy assertions and con-
straints on the service, which prescribe, limit, or specify any aspect of a
business agreement that is possible agreed to among interacting parties.
Policies may describe constraints external to constraints agreed by interact-
ing parties in a transaction and include universal legal requirements, com-
mercial and/or international trade and contract terms, public policy (e.g.,
privacy/data protection, product or service labeling, consumer protection),
laws and regulations that are applicable to parts of a business service. For
instance, a procurement processes can codify an approval process in such a
way that it can be instantly modified as corporate policies change. In most
cases existing processes need to be redesigned or improved to conform with
new corporate strategies and goals.

4. Operational behavior changes: These concentrate on analyzing the effects
and side (cascading) effects of changing service operations. If, for example,
we consider an order management service we might expect to see a service
that lists ”place order”, ”cancel-order,” and ”update order,” as available
operations. If now the ”update-order” operation is modified in such a way
that it includes available-to-promise functionality that dynamically allocates
and reallocates resources to promise and fulfill customer orders, the mod-
ified operation must guarantee that if part of the order is outsourced to
a manufacturing partner, the partner can fulfill its order on time to meet
agreed upon shipment dates. This requires understanding of where time is
consumed in the manufacturing process, what is normal with respect to an
events timeliness to the deadline, and to understand standard deviations
with respect to that process events on-time performance.

1 We shall henceforth use the generic term service to refer to both services and business
process. If there is a need to discriminate between simple services and fairly complex
services, we shall use the terms singular service and business process, respectively.

The Challenges of Service Evolution 3

We can classify the nature of service changes depending on the effects and
side effects they cause. We may thus distinguish between two kinds of service
changes:

Shallow changes: Where the change effects are localized to a service or are
strictly restricted to the clients of that service.

Deep changes: These are cascading types of changes which extend beyond the
clients of a service possibly to entire value-chain, i.e., clients of these service
clients such as outsourcers or suppliers.

Typical shallow changes are changes on the structural level and business protocol
changes, while typical deep changes include operational behavior changes and
policy induced changes.

While shallow changes need an appropriate versioning strategy, deep changes
are quite intricate and require the assistance of an change-oriented service life
cycle where the objective is to allow services to predict and respond appropri-
ately to changes as they occur. A change-oriented service life cycle provides a
foundation for business process changes in an orderly fashion and allow end-to-
end services to avoid the pitfalls of deploying a maze of business processes that
are not appropriately (re)-configured, aligned and controlled as changes occur.
The practices of this methodology are geared to accepting continuous change for
business processes as the norm.

In addition to functional changes, a change-oriented service life cycle must deal
with non-functional changes which are mainly concerned with end-to-end QoS
(Quality of Service) issues, and SLA (Service Level Agreement) guarantees for
end-to-end service networks. The objective is to achieve actual end-to-end QoS
capabilities for a service network to achieve the proper levels of service required
by ensuring that services are performing as desired, and that out-of-control or
out-of-specification conditions are anticipated and responded to appropriately.
This includes traditional QoS capabilities, e.g., security, availability, accessibility,
integrity and transactionality, as well as service volumes and velocities. Service
volumes are concerned with values and counts of different aspects of the service
and its associated transactions, e.g., number of service events, number of items
consumed, service revenue, number of tickets closed, service costs. The general
performance of the service is related to service velocity i.e., the time-related
aspect of business operations, such as service cycle-time, cycle-times of individual
steps, round trip delays, idle times, wait-times between events, time remaining to
completion, service throughput, life-time of ticket, and so on. The combination
of these time-related measurements with the value-related ones provides all the
information needed to understand how an enterprise is is performing in terms of
its services.

The issue of service evolution and change management is a complicated one,
and this paper does not attempt to cover every aspect surrounding the evolution
of services. However, it introduces some key approaches and helpful practices that
can be used as a springboard for any further research in service evolution. In par-
ticular, in this paper we shall concentrate only on the impact of functional services
changes as they constitute a precursor to understanding non-functional service

4 M.P. Papazoglou

changes which are still very much an open research problem that also deserves
research scrutiny.

2 Dealing with Shallow Changes

Shallow changes characterize both singular services and business processes and
require a structured approach and robust versioning strategy to support multiple
versions of services and business protocols. To deal with shallow changes we in-
troduce a theoretical approach for structural service changes focusing on service
compatibility, compliance, conformance, and substitutatbility. In addition, we de-
scribe versioningmechanisms developed in [1] to handle business protocol changes.

2.1 A Theory for Structural Changes

Service based applications may typically fail on the service client side due to
changes carried out during the provider service upgrade. To manage changes
as a whole, service clients have to be taken into consideration as well, other-
wise changes that are introduced at the service provider side can create severe
disruption.

In this paper, we use the term service evolution to refer to the continuous
process of development of a service through a series of consistent and unambigu-
ous changes. The evolution of the service is expressed through the creation and
decommission of its different versions during its lifetime. These versions have to
be aligned with each other in a way that would allow a service designer to track
the various modifications and their effects on the service.

A robust versioning strategy is needed to support multiple versions of services
in development. This can allow for upgrades and improvements to be made to a
service, while continuously supporting previously released versions. To be able
to deal with message exchanges between a service provider and a service client
despite service changes that may happen to either of their service definitions (at
the schema-level), we must introduce the notion of service compatibility.

Version compatibility: Is when we can introduce a new version of either a provider
or client of service messages without changing the other. There are two types of
changes to a service definition that can guarantee version compatibility [2]:

Backward compatibility: A guarantee that when a new version of a message client
is introduced the message providers are unaffected. The client may introduce new
features but should still be able to support all the old ones.

Forward compatibility: A guarantee that when a new version of a message provider
is introduced the message clients who are only aware of the original version are
unaffected. The provider may have new features but should not add them in a
way that breaks any old clients. The assumption that underlies this definition of
forward-chaining is that there is no implicit or explicit shared knowledge between
the provider and the client.

The Challenges of Service Evolution 5

Some types of changes that are both backwards- and forwards-compatible
include: addition of new service operations to an existing service definition, ad-
dition of new schema elements within a service that are not contained within
previously existing types. However, there are a host of other change types that
are incompatible. These include: removing any existing operations, elements or
attributes, renaming an operation, changing the parameters (in data type or
order) of an operation and changing the structure of a complex data type.

The above definition of backward-compatibility misses the subtle possibility
that a new version of a client might have a requirement to add a new feature
where the client needs to reject messages that might have previously been ac-
ceptable by the previous version of the client. Consider, for instance adding a
security feature for the new version of the client that rejects all messages, even if
they were accepted by its previous version, unless these messages are encrypted
and digitally signed. In addition, the notion of forward-compatibility is so strict
that a new version of the provider is not allowed to produce any new messages
that were not already produced by the old version of the provider to guarantee
version consistency and type safeness!

To alleviate these problems we require an agreement between service providers
and clients in the form of a shared contract.

Service Contracts
For two services to interact properly, before a service provider can provide what-
ever service it offers, they must come must come to an agreement or contract.
A contract formalizes the details of a service (contents, price, delivery process,
acceptance and quality criteria, expected protocols for interaction on behalf of
the client) in a way that meets the mutual understandings and expectations
of both the service provider and the service client. Introducing the notion of a
service contract gives us a mechanism that can be used to achieve meaningful
forward compatibility.

A service contract specifies [3]:

Functional requirements which detail the operational characteristics that define
the overall behavior of the service, i.e., details how the service is invoked and
what results it returns, the location where it is invoked and so on.

Non-functional requirements which detail service quality attributes, such as
service metering and cost, performance metrics, security attributes, (trans-
actional) integrity, reliability, availability, and so on.

Rules of engagement between clients and providers, known as policies, that
govern who can access a provider, what security procedures the participants
must follow, and any other rules that apply to the exchange. A point of clarity
is the difference between contract and policy. A policy is a set of conditions
that can apply to any number of contracts. For example, a policy can range
from simple expressions informing a client about the security tokens that a
service is capable of processing (such as Kerberos tickets or X509 certificates)
to a set of rules evaluated in priority order that determine whether or not a
client can interact with a service provider.

6 M.P. Papazoglou

Given that clients may vary just as much as providers, there might be multiple
contracts for a single service. In what follows and for the sake of clarity we will
focus only on functional requirements. Nevertheless the provided reasoning can
be generalized.

Definition 1. Contract R, is a collection of elements that are common across
the provider P and the consumer C of the service. It represents the mutually
agreed upon service schema elements that are expected by the consumer and
offered by the producer.

1. Let’s denote by P the set of elements (including operations) produced by
the provider where P = {xi, i ≥ 1}

2. Let’s denote by C the set of elements required by the client where C =
{yj, j ≥ 1}

3. Let’s define a partial function θ, called a contract-binding, that maps a set of
P elements and a set of C consumed by the client, θ = {∃xi ∈ P ∧∃yj ∈ C |
(xi, yj)}, which means the client consumes the element yj for the operation
xi provided by the provider and R = Pθ(R) ∪ Cθ(R).

Service Compatibility

Definition 2. Two contracts R and R′ are called backwards compatible iff
∀xi ∈ Pθ(R), ∃yk ∈ Cθ(R′) | (xi, yk).

The previous definition implies that the contract-binding is still valid despite
changes in the client-side.

Definition 3. Two contracts R and R′ are called forwards compatible iff ∀yk ∈
Cθ(R), ∃xi ∈ Pθ(R′) | (xi, yk).

The previous definition implies that the contract-binding is still valid despite
changes in the provider-side.

Definition 4. Two contracts R and R′ are called (fully) compatible iff they are
both forwards and backwards compatible, i.e. it holds that:
{∀xi ∈ Pθ(R), ∃yk ∈ Cθ(R′) | (xi, yk)} ∧ {∀yk ∈ Cθ(R), ∃xi ∈ Pθ(R′) | (xi, yk)}.

Fig. 1 illustrates a contract R and its associated contract bindings.

Service Compliance
Since a version vs

i of a service participates in a number n, n > 0 of relationships
(either as a producer or as a consumer of other services), then it defines with
them n contracts: Ri,k, k = 1, . . . , n. Based on that we can define the notion of
full compliance:

Definition 5. Two versions vs
i and vs

j , j > i of a service are called compliant
iff ∀k, k = 1, . . . , n, Ri,k and Rj,k are compatible.

Compliance as we have defined it takes into account only the contracts for which
the service acts as a producer. That reflects the fact the service can reconfigure
itself as long as its actions do not affect its consumers.

The Challenges of Service Evolution 7

x1

x2

x3

x4

x5

x6

P xi

y1

y2

y3

y4

y5

Y6

y7

C yj

R

Service ProviderService Provider Service ClientService Client

Contract bindingContract binding

Fig. 1. Contracts and contract bindings

Service Conformance
In addition to the notion of contracts service evolution requires dealing with
service arguments and return values. We need to make sure that the new version
of a service can substitute an older version without causing any problems to its
service clients. To guarantee service substitutatbility we rely on the notion of
service conformity.

Informally, a type S conforms to a type T (written S � T) if an object of type
S can always be substituted for one of type T, that is, the object of type S can
always be used where one of type T is expected. For S to be substitutable for T
requires that:

1. S provides at least the operations of T (S may have more operations).
2. For each operation in T, the corresponding operation in S has the same

number of arguments and results.
3. The types of the results of the operations of S conform to the types of the

results of the operations of T. The principal problem to consider is what
happens to the output parameters when redefining a service. To achieve the
desired effect we rely on the notion of result-covariance [4], [5]. Covariance
states that if a method M is defined to return a result of type T, then an
invocation of M is allowed to return a result of any subtype of T. A covariant
rule requires that if we redefine the result of a service the new result type
must always be a restriction (specialization) of the original one.

4. The types of the arguments of the operations of T conform to the types
of the arguments of the operations of S. The principal problem to consider
is what happens to the arguments when redefining a service. To achieve
the desired effect we rely on the notion of argument-contravariance [4], [5].
Contravariance states that if a method M is defined with an argument of type
T, then an invocation of M is allowed with an argument that is a supertype
of T. A contravariant rule requires that if we redefine the argument of a
service the new result type must always be an extension (generalization) of
the original one.

8 M.P. Papazoglou

The core of argument contravariance and result covariance concerns methods
that have a functional type can be explained as follows.

Definition 6. A subtyping relationship between functional types can be defined
as follows [5], [6]: ifT1 ≤ S1 and S2 ≤ T 2 then S1 → S2 ≤ T 1 → T 2, where
we consider the symbol ” → ” as a type constructor.

Assume we expect a function or method f to have type T 1 → T 2 and therefore
consider T 1 arguments as permissible when calling f and results of type T 2.
Now if assume that f actually has type T 1′ → T 2′ with T 1 ≤ T 1′ . Then we can
pass all the expected permissible arguments of type T 1 without type violation;
f will return results of type T 2′ which is permissible if T 2′ ≤ T 2 because the
results will then also be of type T 2 and are therefore acceptable as they do not
introduce any type violations.

Covariance and contravariance are not opposing views, but distinct concepts
that each have their place in type theory and are both integrated in a type-safe
manner in object-oriented languages [6], [5]. Argument contravariance and result
covariance is required for safely substituting older service with newer service
versions.

To be fully substitutable a service must be both compliant and conformant
according the previous definitions. If we now assume without loss of generality
that for k = 1, . . . , m, m < n the service participates in the contracts Ri,k only
as a producer. Then, compliance can be alternativetely defined as:

Definition 7. Two versions vs
i and vs

j , j > i of a service are called fully sub-
stitutable iff ∀k, k = 1, . . . , m, for which the service participates as a producer,
Ri,k and Rj,k are compatible.

Web Service Versioning
Compatible service evolution in WSDL 2.0 limits service changes that are either
backward or forward compatible, or both [7]. In accordance with the definitions
in section-2.1 WSDL-conformant services are backward compatible when the
receiver behaves correctly if it receives a message in an older version of the
interaction language, while WSDL-conformant services are forward compatible
the receiver behaves correctly if it receives a message in a newer version of the
interaction language.

The types of service changes that are compatible are:

– Addition of new WSDL operations to an existing WSDL document. If exist-
ing clients are unaware of a new operation, then they will be unaffected by
its introduction.

– Addition of new XML schema types within a WSDL document that are not
contained within previously existing types. Again, even if a new operation
requires a new set of complex data types, as long as those data types are not
contained within any previously existing types (which would in turn require
modification of the parsing code for those types), then this type of change
will not affect an existing client.

The Challenges of Service Evolution 9

However, there are a host of other change types that are incompatible. These
include: removing an operation, renaming an operation, changing the parameters
(in data type or order) of an operation, and changing the structure of a complex
data type.

With a compatible change the service need only support the latest version
of a service. A client may continue to use a service adjusting to new version of
the interface description at a time of its choosing. With an incompatible change,
the client receives a new version of the interface description and is expected to
adjust to the new interface before old interface is terminated. Either the service
will need to continue to support both versions of the interface during the hand
over period, or the service and the clients are coordinated to change at the same
time. An alternative is for the client to continue until it encounters an error, at
which point it uses the new version of the interface.

2.2 Business Protocol Changes

Business protocol descriptions can be important in the context of change man-
agement as protocols also tend to evolve over time due to the development of
new applications, new business strategies, changing compliance and quality of
service requirements, and so on. Business protocol evolution is considered in [1]
where the authors distinguish between two aspects of protocol evolution:

1. Static protocol evolution which refers to the problem of modifying the proto-
col definition by providing a set of change operations that allow the gradual
modification of an existing protocol without the need of redefining it from
scratch.

2. Dynamic protocol evolution which refers to the issue of changing a long run-
ning protocol in the midst of its execution to a new protocol. In such cases,
there is a clear need for providing mechanisms for a protocol to migrate ac-
tive instances running under a old protocol version to meet the new protocol
requirements.

Fig. 2 illustrates the various aspects of protocol changes. In particular, it shows
the notions of protocol versioning, migration, compatibility and protocol
replaceability.

When evolving a protocol, it is useful to keep track of all protocol versions, re-
visions and variants of the protocolI. Instances of an older protocol version might
still be running and used by clients, which in turn can depend on these instances.
When evolving a protocol, states and transitions may be added to and removed
from an active protocol. A new version of a protocol is created each time its in-
ternal structure or external behavior change. The perception that clients have of
a specific protocol is called a protocol view. Since the client’s view of a protocol is
restricted only to the parts of the protocol that directly involve the client, a client
might have equivalent views on different protocols. In mathematical terms, a view
is a one−to−many mapping from protocols as perceived by the client, to actual
protocols. Protocol views are related to many practices revolving around business

10 M.P. Papazoglou

protocols. For instance, clients whose views on the original and target protocols
are the same, are not affected by migration practices.

Migration [1] defines the strategies adopted to implement protocol evolution,
by guiding the process of changing running protocol instances. The typical op-
tions for a migration are: do not migrate any running instance, terminate all
the running instances, migrate all the running instances to the new protocol,
migrate instances that cannot be migrated to the new protocol, to a temporary
protocol which complies to the new requirements.

Protocol compatibility (see Fig. 2) aims at assessing whether two protocols
can interact, i.e. if it is possible to have a conversation between the two services
despite changes to the protocol. Compatibility of two protocols can be either
complete, i.e., all conversations of one protocol can be understood by the other
protocol, or partial, when there is at least one conversation possible between
the two protocols. Protocol revision takes place when a new protocol version is

Fig. 2. Business Protocol changes

meant to supersede its predecessor. Protocol replaceability (see Fig. 2) deals with
the problem of determining if two protocols are equivalent and which parts they
have in common. The following classes of replaceability can be distinguished [1]:

– Protocol equivalence when two protocols can be used interchangeably;
– protocol subsumption when one protocol can be used to replace the other,

but not vice-versa.

3 Dealing with the Effects of Deep Changes

Deep changes characterize only business processes and require that a business
process be redefined and realigned within an entire business process value chain.

The Challenges of Service Evolution 11

This may eventually lead to modification and alignment of business processes
within a business process value chain associated directly or indirectly with a
business-process-in-scope.This calls for methodologies to provide a sound foun-
dation for deep service changes in an orderly fashion that allow services to be
appropriately (re)-configured, aligned and controlled as changes occur. In Fig. 3
we provide an overview of the major phases in a change-oriented service life
cycle. Different methodologies may subdivide the phases in a different manner,
but the sequence is usually the same.

Scope extent ofScope extent of

changechange

Align & define

Need to evolve

Analyze impact

of service changes

Operational

service

On-going executionOn-going execution

Determine causesDetermine causes

Collect detailedCollect detailed

service metricsservice metrics

DetermineDetermine changes tochanges to

inter-dependentinter-dependent

processesprocesses

Determine whetherDetermine whether

KPIsKPIs are still satisfiedare still satisfied

Determine requiredDetermine required

supporting functionalitysupporting functionality
DetermineDetermine

compliancecompliance withwith

conformance rulesconformance rules

Estimate costsEstimate costs Analyze changesAnalyze changes

Measure alignmentMeasure alignment

with strategywith strategy

Test serviceTest service

interfacesinterfaces

Define interfacesDefine interfaces

&& points of servicepoints of service

integrationintegration

Align resourcesAlign resources toto

servicesservices

Run simulation & monitorRun simulation & monitor

service performanceservice performance

IdentifyIdentify

services-in-services-in-

scopescope

Fig. 3. Change-oriented service life cycle

The initial phase focuses on identifying the need for change and scoping its
extent. One of the major elements of this phase is understanding the causes
of the need for change and their potential implications. For instance, compli-
ance to regulations is major force for change. Regulatory requirements such as
HIPAA and Sarbanes-Oxley provide strict guidelines that ensure companies are
in control of internal, private, public, and confidential information, and audit-
ing standards such as SAS 70 serve as a baseline for regulatory compliance by
verifying that third-party providers meet those needs. All of this may lead to
the transformation of services within a business process value chain. Here, the
affected services-in-scope need to be identified. In addition, service performance
metrics, such as KPIs and SLAs, need to be collected. Typical KPIs include
delivery performance, fill rates order fulfillment, production efficiency and flexi-
bility, inventory days of supply, quality thresholds, velocity, transaction volumes

12 M.P. Papazoglou

and cost baseline. These assist in understanding the nature of services-in-scope
and related services and provide a baseline for comparative purposes and deter-
mination of expected productivity, cost and service level improvements.

The second phase in Fig. 3, called service change analysis, focuses on the
actual analysis, redesign or improvement of the existing services. The ultimate
objective of service change analysis is to provide an in-depth understanding of
the functionality, scope, reuse, and granularity of services that are identified for
change. To achieve its objective, the analysis phase encourages a more radical
view of process (re)-design and supports the re-engineering of services. Its main
objective is the reuse (or repurposing) of existing service functionality in to meet
the demands of change. The problem lies in determining the difference between
existing and future service functionality.

To analyze and assess the impact of changes organizations rely on the existence
of an “as-is” and a “to-be” service model rather than applying the changes
directly on operational services. Analysts complete an as-is service model to
allow understanding the portfolio of available services. The as-is service model
is used as basis for conducting a thorough re-engineering analysis of the current
portfolio of available services that need to evolve. The to-be services model is
used as basis for describing the target service functionality and performance
levels after applying the required changes. One usually begins by analyzing the
“as-is” service, considering alternatives, and then settling on a “to-be” service
that will replace the current service.

To determine the differences between these two models a gap analysis tech-
nique must be used. A gap analysis model is used to help set priorities and
improvements and measure the impact of service changes. Gap analysis is a
technique that purposes a services realization strategy by incrementally adding
more implementation details to an existing service to bridge the gap between the
“as-is” and “to-be” service models. Gap analysis commences with comparing the
“as-is” with the “to-be” service functionality to determine differences in terms
of service performance (for instance, measures of KPIS) and capabilities. Service
capabilities determine whether a process is able to meet specifications, customer
requirements, or product tolerances.

As service changes may spill over to other services in a supply-chain, one
of the determining factors in service change analysis is being able to recognize
the scope of changes and functionality that is essentially self-sufficient for the
purposes of a service-in-scope (service under change). When dealing with deep
service changes, problems of overlapping or conflicting functionality several types
of problems need to be addressed [8] and [3]:

1. Service flow problems : Typical problems include problems with the logical
completeness of a service upgrade, problems with sequencing and duplication
of activities, decision-making problems and lack of service measures. Prob-
lems with the logical completeness of a service upgrade include disconnected
activities and disconnected inputs or outputs. Problems with sequencing and
duplication of activities include activities that are performed in the wrong
sequence, performed more than once, and, in general the lack of rules that

The Challenges of Service Evolution 13

prioritize flows between activities. Decision-making problems include the lack
of information, such as policies and business rules, for making decisions. Lack
of service measures include inadequate or no measures for the quality, quan-
tity or timeliness of service outputs.

2. Service control problems: Service controls define or constrain how a service
is performed. Broadly speaking there are two general types of control prob-
lems: problems with policies and business rules and problems with external
services. Problems with policies and business rules include problems where
a service-in-scope ignores organizational policies or specific business rules.
Problems with external services include problems where external services re-
quire information that a service-in-scope cannot provide. Alternatively, they
include cases where information that a service-in-scope requires cannot be
provided by external services.

3. Overlapping services functionality: In such cases a service-in-scope may (par-
tially) share identical business logic and rules with other related services.
Here, there is a need for rationalizing services and determining the proper
level of service commonality. Overlapping functionality should be identified
and should be factored out. Several factors such as encapsulated functional-
ity, business logic and rules, business activities, can serve to determine the
functionality and scope of services. During this procedure, service design
principles [3] such as service coupling and cohesion need to be employed to
achieve the desired effects.

4. Conflicting services functionality (including bottlenecks / constraints in the
service value stream): During this step the functionality of a service-in-scope
may conflict with functionality in related services. Conflicts also include
problems where a service-in-scope is not aligned to business strategy, where
a service may pursue a strategy that is in conflict with is incompatible with
the value chain of which it is a part, and cases where the introduction of a
new policy or regulation would make it impossible for the service-in-scope to
function. In addition to dealing with problems arising from overlapping and
conflicting service functionality we should also unbundle functionality into
separate services to the extend possible to prevent services from becoming
overly complex and difficult to maintain.

5. Service input and output problems: These problems include problems where
the quality of service input or output is low, and timeliness input or output
problems where the needed inputs/outputs are not produced when they are
needed.

Finally, cost estimation in the second phase involves identifying and weighing all
services to be re-engineered to estimate the cost of the re-engineering project. In
cases where costs are prohibitive for an in-house implementation, an outsourcing
policy might be pursued.

During the service change analysis standard continuous process improvement
practices such as Six Sigma DMAIC practices or Lean Kaizen [9] should be
employed. These determine the services changes and define the new services

14 M.P. Papazoglou

and standards of performance to measure, analyze, control and systematically
improve processes by eliminating potential defects.

During the third and final phase, all of the new services are aligned, inte-
grated, simulated and tested and then, when ready, the new services are put
into production and managed. To achieve this a services integration model [3] is
created to facilitate the implementation of the service integration strategy. This
strategy includes such subjects as service design models, policies, SOA gover-
nance options, and, organizational and industry best practices and conventions.
All these need to be taken into account when designing integrated end-to-end
services that span organizational boundaries.

A service integration model, among other things, establishes integration re-
lationships between service consumers and providers involved in business inter-
actions, e.g., business transactions. It determines service responsibilities, assigns
duties to intermediaries who perform and facilitate message interception, mes-
sage transformation, load balancing, routing, and so on. It also includes steps
that determine message distribution needs, delivery-responsible parties, and pro-
vides a service delivery map. Finally, a service integration model is concerned
with message and process orchestration needs. This part includes steps that es-
tablish network routes; verify network and environment support, e.g., validate
network topology and environmental capacity as well as routing capabilities;
and, employ integration flow patterns to facilitate the flow of messages and
transactions.

The role of the services integration model ends when a new (upgraded) service
architecture is completely expressed and validated against technological specifi-
cations provided by infrastructure, management/monitoring and technical utility
services.

4 Summary

Services are subject to constant change and variation. Services can evolve typi-
cally due to changes in structure, e.g., attributes and operations; in operational
behavior and policies, e.g., adding new business rules and regulations, in types
of business-related events; and in business protocols.

We may distinguish between two kinds of service changes shallow versus deep
service changes. With shallow changes the change effects are localized to a ser-
vice or are strictly restricted to the clients of that service. Deep changes cause
cascading types of changes which extend beyond the clients of a service possibly
to entire value-chain, i.e., clients of these service clients such as outsourcers or
suppliers. Typical shallow changes are changes on the structural level and busi-
ness protocol changes, while typical deep changes include operational behavior
changes and policy induced changes.

Shallow changes characterize both singular services and business processes and
require a structured approach and robust versioning strategy to support multiple
versions of services and business protocols. To deal with shallow changes we intro-
duced a theoretical approach for structural service changes focusing on service
compatibility, compliance, conformance, and substitutability. In addition, we

The Challenges of Service Evolution 15

described versioning mechanisms for handling business protocol changes. The
right versioning strategy can maximize code reuse and provide a more manage-
able approach to the deployment and maintenance of services and protocols. It
can allow for upgrades and improvements to be made to a service or protocol,
while supporting previously released versions.

Deep changes characterize only business processes and require that a busi-
ness process be redefined and realigned within an entire business process value
chain. This may eventually lead to modification and alignment of business pro-
cesses within a business process value chain associated directly or indirectly with
a business-process-in-scope.To address these problems we introduced a change-
oriented service life cycle methodology. A change-oriented service life cycle pro-
vides a sound foundation for deep service changes in an orderly fashion that allow
services to be appropriately (re)-configured, aligned and controlled as changes
occur. A change-oriented service life cycle also provides common tools to reduce
cost, minimize risk exposure and improve development agility. It helps orga-
nizations ensure that the right versions of the right processes are available at
all times, and that they can provide an audit trail of changes across the ser-
vice lifecycle to prevent application failures and help meet increasingly stringent
regulatory requirements.

Acknowledgments. I wish to thank Salima Benbernou for her help and invalu-
able suggestions that have considerably improved the theoretical approach for
structural service changes.

References

1. Ryu, S.H., et al.: Supporting the dynamic evolution of web service protocols in
service-oriented architecturesl. ACM Transactions on the Web 1(1), 1–39 (2007)

2. Orchard, D. (ed.): Extending and versioning languages. W3C Technical Architecture
Group (2007)

3. Papazoglou, M.P.: Web Service: Principles and Technology. Prentice-Hall, Engle-
wood Cliffs (2007)

4. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Engle-
wood Cliffs (1997)

5. Castagna, G.: Covariance and contravariance: conflict without a cause. ACM Trans-
actions on Programming Languages and Systems 17(3), 431–447 (1995)

6. Liskov, B., Wing, J.: A behavioral notion of subtyping. ACM Transactions on Pro-
gramming Languages and Systems 16(6), 1811–1841 (1994)

7. Booth, D., Liu, C.K.: Web services description language (WSDL) version 2.0 part
0: Primer (2007)

8. Meyer, B.: Business Process Change. Morgan Kaufmann, San Francisco (2007)
9. Martin, J.: Lean Six Sigma for Supply Chain Management. McGraw-Hill, New York

(2007)

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 16–31, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Assigning Ontology-Based Semantics to Process
Models: The Case of Petri Nets

Pnina Soffer1, Maya Kaner2, and Yair Wand3

1 University of Haifa, Carmel Mountain 31905, Haifa, Israel
2 Ort Braude College, Karmiel 21982, Israel

3 Sauder School of Business, The University of British Columbia, Vancouver, Canada
spnina@is.haifa.ac.il, kmaya@braude.ac.il, yair.wand@ubc.ca

Abstract. Syntactically correct process models are not necessarily meaningful
or represent processes that are feasible to execute. Specifically, when executed,
the modeled processes might not be guaranteed to reach their goals. We propose
that assigning ontological semantics to process modeling constructs can result
in more meaningful models. Furthermore, the ontological semantics can impose
constraints on the allowed process models which in turn can provide rules for
developing process models. In particular, such models can be designed to be
valid in the senses that the process can accomplish its goal when executed. We
demonstrate this approach for Petri Net based process models.

1 Introduction

Process modeling is a complicated task and, hence, error-prone (e.g., [7][10]). Much
effort has been devoted to the verification of process models leading to methods and
tools for analyzing structural properties of process models and for detecting logical
problems in them. These approaches are applied to already developed models, but do
not provide guidance on how to develop valid models.

The syntax of process modeling languages specifies how to compose their
constructs (which often have graphical notation) into process models. The semantics
is believed to represent some real-world phenomena. These languages are usually
defined textually or mathematically. Textual definitions are typically semi-formal or
informal (e.g., “An event is something that “happens” during the course of a business
process.” [8]). Mathematical definitions can support precise analysis of models.

Syntactically correct process models are not necessarily meaningful or feasible to
execute. This entails the need for checking completed process models for structural
and behavioral properties related to whether they can be successfully executed or not.

Some research evaluated process modeling languages by mapping their constructs
to ontological concepts (which are assumed to convey real-world semantics) [9].
These attempts revealed various deficiencies such as ontological incompleteness,
construct overload, redundancy, and excess. In particular, no ontological meaning was
identified for control flow constructs which exist in practically every process
modeling language (typically manifested as splitting and merging elements).

Recently, the Generic Process Model (GPM) was used to suggest an interpretation
of control flow structures [12]. GPM provides a process specification semantics based

 Assigning Ontology-Based Semantics to Process Models: The Case of Petri Nets 17

on ontological constructs. It is intended as a framework for reasoning about process
models in terms of their real-world meaning. To apply the GPM for this purpose, its
constructs should be mapped to the modeling languages used, which often employ
graphical notation easy for human use. Ontology-based semantics imposes modeling
rules in addition to the language-based syntactical restrictions. We suggest that these
rules can guide the construction of meaningful and feasible process models.

In this paper we demonstrate the use of ontological semantics for Petri net based
process models, or, more precisely, Workflow nets. Petri nets are widely used,
provide a high degree of formality which supports model verification, and have a
graphical notation with a precisely defined mathematical semantics. An extensive
body of work exists on the mathematical, structural, and behavioral properties of Petri
nets and Workflow nets (e.g., [2]). Furthermore, they serve for formalizing and
analyzing models in other modeling languages (e.g., EPC [1]). Petri nets employ a
small set of constructs, yet possess an impressive expressive power and can be used to
represent precisely the entire set of workflow patterns [3].

Petri net analysis addresses the structure of the net rather than the semantics of its
elements. GPM can provide such semantics in terms of state specification and state
transitions of the process domain. In this paper we show that assigning this semantics
to places and transitions can lead to better-designed process models and help avoid
undesired situations (which in turn can be formalized using Petri net properties).

In the following, Section 2 introduces GPM and its control flow interpretation;
Section 3 maps Petri net constructs to GPM. Section 4 explores restrictions on Petri
nets, and introduces additional restrictions based on GPM, and their implications for
Petri net properties. Section 5 is a conclusion.

2 The Generic Process Model (GPM)

The focus of GPM analysis is a domain, which is a part of the world consisting of
interacting things. We describe the behavior of the domain using concepts from
Bunge’s ontology [4][5] and its adaptation to information systems [13][14] and to
process modeling [11][12]. A domain is represented by a set of state variables, each
depicting a property of the domain and its value at a moment in time. A successful
process is a sequence of unstable states of the domain, leading to a stable state, which
is in the set of goal states (simply – goal). An unstable state is a state that must change
due to actions in the domain (an internal event). A stable state is a state that only
changes due to action of the environment on the domain (an external event). Internal
events are governed by transformation (transition) laws that define the allowed (and
sometimes necessary) state transitions (manifested as events in the domain).

We formalize these concepts as follows:

Definition 1: A domain model is a set of state functions D={f1(t)…fn(t)}. The value
of fk(t) at a given time is termed a state variable, denoted xk.

The set of state variables for domain D is denoted by XD={xk; k∈I={1…n}}. The
state of the domain at a given time is s(D)=<x1,…xn> (or simply s). A set of states of
domain D is denoted by S(D).

Definition 2: A transformation law on D is a mapping L:S(D)→S(D)

18 P. Soffer, M. Kaner, and Y. Wand

Definition 3: A domain will be said to be in a stable state if L(s)=s and in an unstable
state if L(s)≠s.

Definition 4: A law will be said to be well-defined iff it is a function.

Often, several domain states can be considered equivalent. Hence, the transformation
law can be represented as a mapping between sets of states. Such a set can be
specified by a predicate C(s). Specifically, the process goal is a set of stable states,
specified by a predicate that manifests business objectives to be fulfilled by the
process. The task of the process designer is to implement a transformation law so that
the process can accomplish its goal.

To model practical situations, we consider a domain as comprising sub-domains,
each represented by a subset of the domain state variables. Changes that occur in a
sub-domain when the domain changes state, are termed the projections of the domain
law (or domain behavior) on the sub-domain. Formally:

Definition 5: A sub-domain is part of the domain described by a subset of XD.

A sub-domain D1 of D is described in terms of XD1⊂XD; XD1={xk ; k∈ I1⊂I}.

The state of D1 is s(D1)=<xk1,…xk|I1|>, kj∈I1
 and kj≠kl for j≠l.

Definition 6: Let the state of D be s=<x1…xn>. The projection of s on the sub-domain
D1 is s/D1=<y1…y|I1|> where yk=xI1(k).

It is possible that several domain states will map on the same state of the sub-domain.
This, in turn, can result in the same sub-domain state changing in different ways,
depending on the state of the whole domain.

Definition 7: Let v be a state of D1. The projecting set for v in D is the set of states of
D that project v in D1: S(v;D1)={s∈S(D) | s/D1=v}

We now define the effect of the domain law (L) on the sub-domain D1

Definition 8: Let v∈S(D1) and let s(v;D1) be the projecting set of v. The law
projection of LD on D1 (denoted L/D1) for v is defined by the mapping LD1: S(D1)

→S(D1) such that L D1 (v)=∪{L(s)/D1 | s∈s(v;D1)}.

In words – the projection of the law is defined as the union of projections of the states
mapped into by the law. We are interested in cases where the projected behavior of
the whole domain on a sub-domain creates a well-defined function in the sub-domain.
In other words, a given unstable state of the sub-domain will always map in the same
way, independent of the state of the whole domain, and hence independent of the
states of other sub-domains. We will then say that the sub-domain behaves
independently. Partitioning of the domain into independently-behaving sub-domains
is often a consequence of different actors acting in the domain. These actors can be
people, departments, machines, computers and combinations of those.

Definition 9: A sub-domain D1 of D will be called an independently behaving (in
short an independent) sub-domain iff the law projection on D1

 is a function.

Corollary: For an independent sub-domain the law projection depends only on state
variables of the sub-domain.

 Assigning Ontology-Based Semantics to Process Models: The Case of Petri Nets 19

Note: a sub-domain might behave independently for only a subset of the state
space of D. Definition 9 can be restricted to a subset of domain states.

As an independent sub-domain changes its state to a stable one, it is possible some
other independent sub-domains will become unstable and will begin transforming.
Thus, a sequence of transformations occurs. This sequence comprises a process.

Process models usually include split and merge points, which reflect either
concurrency or choice between possible alternative paths. We now interpret these in
GPM terms. First, it is possible a set of states arrived at may be partitioned so the next
transformation is defined differently for each subset of states. Such partitioning might
occur because the law becomes “sensitive” to a certain state variable. Consider, for
example, a process where a standard product is manufactured, and then packaged
according to each customer's requirements. Manufacturing does not depend on the
customer (even when the customer is known). When manufacturing is completed,
customer information will determine a choice between packaging actions. This
situation is an exclusive choice (an XOR split). The different actions may lead to
states which are equivalent for determining the next action (the law will not
distinguish between different packaging options), for example, transferring the
products to finished goods inventory. This is the point where the paths merge.

Definition 10: Ssp is an exclusive choice splitting point iff there exist sets of states
S1,S2,..Sn such that Si⊂Ssp, Sj∩Sk=∅, and L(Sj)≠L(Sk), j≠k, j,k=1…n.

The corresponding form of a merge (sometimes termed simple merge) is when a
single set of states is reachable by law from different sets of states.

Definition 11: Let S1, S2, and Sme be sets of states such that S1≠S2, S1,S2≠Sme. Sme is a
simple merge iff L(S1)=L(S2)=Sme.

Also related to splitting and merging is concurrency. Since one domain cannot have
concurrent transformations, concurrency should relate to transformations in different
sub-domains. It means that if each sub-domain proceeds through a sequence of
(projected) states, all combinations of the projected states of the different sub-
domains are possible (in principle).

Lemma 1: Two sub-domains can transform concurrently only if they are
independent.

Proof: Assume that two sub-domains are not independent. Then the transitions in one
can depend on the state of the other. In this case, only some combinations of states of
each sub-domain are possible.

It follows that a split leading to concurrency must be related to a decomposition of the
domain into independently behaving sub-domains. In such a split, for the process to
continue, at least one sub-domain must be unstable with respect to its (projected) law.
If all these sub-domains are in unstable states for all states in the split, then this is a
parallel split. Otherwise, several possibilities exist, depending on the number of the
unstable sub-domains (see [12][11]). In particular, if exactly one sub-domain can be
in an unstable state, then, based on Definition 10, this is an exclusive choice.

Definition 12: Ssp is a parallel split iff there exist at least two sub-domains such that
at Ssp each sub-domain becomes independent and is in an unstable state.

20 P. Soffer, M. Kaner, and Y. Wand

For example, in the process discussed above, once products are ready, the process
domain can be decomposed into two independent sub-domains: one where shipment
is arranged and one where the products are transferred into the warehouse. These two
sub-domains are independent and in an unstable state, thus they operate concurrently.
A decomposable domain may entail different types of merge points (see [12][11]). In
particular, a simple merge - where the completion of action of any sub-domain causes
the process to proceed. Here we define a synchronizing merge, where process
continuation requires that all active sub-domains complete their tasks. Consider a set
of states in a merge point. These states should be unstable to enable the process to
continue. They should be reachable from the split, hence their projection in each sub-
domain should be reachable from the split for the sub-domain. In a synchronizing
merge, each sub-domain becomes stable (“waiting” for the other sub-domains). Once
all the sub-domains reach the merge, the process can continue. Formally:

Definition 13: Let Dk⊂D, k=1...n be independent sub-domains operating concurrently
following a split point Ssp. Let Sme be a set of unstable states in D, reachable from Ssp.
Sme is a synchronizing merge iff ∀s∈ Sme , ∀k, s/Dk is stable.

Finally, the explicit representation of process goal in GPM supports the analysis of
process models for goal reachability. A process whose design ensures its goal will
always be achieved under a certain set of triggering events (which are external to the
domain) is termed valid [11] with respect to this set of events.

3 GPM – Petri-Net Mapping

3.1 Petri-Nets and Workflow Nets

This section provides some definitions of Petri-nets in general and Workflow-nets in
particular, and their properties which are relevant for our discussion.

A Petri-net is a directed bipartite graph with two node types called places (circles)
and transitions (rectangles), connected by arcs. Connections between two nodes of the
same type are not allowed.

Definition 14: A Petri-net is a triple (P, T, F):

- P is a finite set of places;
- T is a finite set of transitions (P∩T = ∅)
- F⊆(PxT)∪(TxP) is a set of arcs.

At any time a place contains zero or more tokens (black dots), and the state of the net
is the distribution of tokens over places. The notations •t, t•, •p, p• indicate the sets of
input and output places of transition t and the sets of transitions of which p is an input

and output place, respectively. Given two states M1 and Mn, M1 Mn denotes that Mn
is reachable from M1 through a firing sequence σ.

Some Petri-nets properties, relevant for our discussion, are defined below.

Definition 15: A Petri net is bounded iff for each place p there is a natural number n
such that for every reachable state the number of tokens in p is less than n.

 Assigning Ontology-Based Semantics to Process Models: The Case of Petri Nets 21

Definition 16: A Petri net is a free choice Petri net iff, for every two transitions t1 and
t2, •t1∩•t2≠∅ implies •t1=•t2.

A Petri net which is not free-choice usually involves a mixture of choice and
parallelism, which is hard to analyze and considered inappropriate. Most of the
mathematically-based properties identified and analyzed with respect to Petri nets
relate to free-choice Petri nets only.

A specific form of Petri net, often used with respect to workflow modeling is
Workflow net (WF net).

Definition 17: A Petri net (P, T, F) is a Workflow net (WF-net) iff:

(i) There is one source place i∈P such that •i=∅.
(ii) There is one sink place o∈P such that o•=∅.
(iii) Every node x∈P∪T is on a path from i to o.

A WF-net represents the life-cycle of a single workflow case in isolation. It has an
initial state following the generation of a case, where only one token exists in place i,
and a final state o after which the case is deleted. The property which is ultimately
sought and verified for WF nets is soundness.

Definition 18: A procedure modeled by a WF-net PN= (P, T, F) is sound iff:

(i) For every state M reachable from state i, there exists a firing sequence
leading from state M to state o.

(ii) o is the only state reachable from state i with at least one token in place o.
(iii) There are no dead transitions in (PN, i).

Soundness means that the modeled procedure will terminate eventually, and properly
(i.e. no further transition will occur). Soundness can be verified in polynomial time
for free-choice WF-nets. Another property, closely related to soundness, is well-
structuredness. In a well-structured WF-net a splitting point and a merging point
which correspond to each other are of the same type, namely, a split at a place
(transition) corresponds to a merge at a place (transition).

 3.2 Mapping Workflow-Nets to GPM

Table 1 presents the GPM interpretation of WF-net basic constructs and combinations
which form control-flow basic building blocks. We focus our discussion on WF-nets,
since these have a distinct termination place, which may correspond to GPM’s goal
concept. Nevertheless, most of the discussion is applicable to Petri nets in general. As
shown in Table 1, every basic WF net construct and building block can be assigned a
GPM-based interpretation. We do not attempt to do a reverse mapping, namely
interpret GPM terms using WF nets, since GPM addresses issues beyond the control
flow of the process, which are not in the scope of WF nets. Nevertheless, considering
the proposed control flow mapping, this interpretation assumes certain domain
semantics assigned to the places and transitions of a WF net. This semantics poses
requirements which do not exist in the WF net syntax. If these requirements are not
met, a WF net cannot be transformed into a meaningful GPM specification. It can
thus be claimed that the expressive power of WF nets exceeds the expressive power
of GPM with respect to control flow. Alternatively, it can be argued that WF net

22 P. Soffer, M. Kaner, and Y. Wand

Table 1. GPM interpretation of WF-Net constructs and basic building blocks

WF-net construct / building block GPM interpretation
Place p A set of states of a sub-domain (the projection

of a set of states over a sub-domain)
Transition t A transformation in a sub-domain
Arc An unstable state leading to a transformation.

A transformation leads to a state.
Initial place i The initial set of states I

Final place o The goal set G

Sequence t1 is a transformation in a sub-domain, from a
set of states p1 into a set of states p2

A parallel split t1 is a transformation after which the domain
becomes decomposable, where p1 and p2 are
state projections over different sub-domains

A synchronizing
merge

t1 is a transformation whose initial set of states
is p1∩p2

1

An exclusive
choice

p1 is a set of states in which one of two sub-
domain transformations is possible

A simple
merge

p1 is a set of states reachable by two
transformations, t1 and t2, separately

syntax, being anchored in mathematical semantics of graphical symbols, allows
structures which are not necessarily possible in reality.

4 Mapping-Based Modeling

4.1 Modeling Requirements

Assigning a GPM meaning to WF-nets imposes additional requirements on the use of
WF-nets for process modeling. In particular, we will use the goal concept of GPM to
form these requirements with respect to WF-nets.

Definition 19: A WF-net is a well-mapped domain representation iff it can be
mapped to a GPM specification.

To make this concept operational, we derive necessary conditions for a WF-net to be
a well-mapped domain representation in the sense of this definition. First, every place
in the net should represent a set of states of some defined sub-domain (xi..xk).

Necessary condition 1: ∀pk∈P, ∃Dk⊆D such that pk is active iff Dk is in a given set of
states S ⊆S(Dk).

We denote the sub-domain as Dpk , its state variables as Xpk and the set of states by
Spk. Spk can be specified by a predicate C(Xpk). pk is active iff C(Xpk) is TRUE.

Regarding condition 1, consider the meaning of several tokens in a place. The
predicate C can be some composite expression, which may assume the value TRUE in

1 GPM merge relates to the states, while Petri-net relates to the transition that follows the states.

t1

t2

t1

i

t1
p2 p1

p1
p2

p1

o

p1

t1 p2

p1 t1

t2

 Assigning Ontology-Based Semantics to Process Models: The Case of Petri Nets 23

more than one situation (each applicable to a subset of states of the sub-domain). In
particular, if the predicate is of the form <Expression OR Expression>, then it may
assume the value TRUE when each of the expressions becomes TRUE. In this case,
each atomic expression may stand for a token. As an example, consider an order
delivery process, where the customer orders several items which can be manufactured
concurrently, and each item is delivered once it is ready. This can be modeled by a
single place prior to delivery, whose predicate would be ((Item A=ready) OR (Item
B=ready) OR…). The arrival of each item is modeled as adding a token to that place,
triggering the delivery transition. The maximal number of tokens in a place is the
number of atomic expressions related by an OR in the predicate that defines it. If the
predicate cannot be decomposed to the form <Expression OR Expression>, then the
maximal number of tokens allowed in that place is 1.

Lemma 2: A WF-net which is a well-mapped domain representation is bounded.

Proof: Directly from the token interpretation. It is not possible to formulate a
predicate composed of an infinite number of expressions.

As a second requirement, every transition should transform the state of a defined sub-
domain (based on its input places). To continue, it must place a new sub-domain in an
unstable state. Hence, the domains that correspond to the set of output places of a
transition should have some common state variables with the domain corresponding
to each of its input places. We denote the sub-domain transformed by transition t as
Dt, and its set of state variables is Xt.

Necessary condition 2: ∀t∈T, pj∈•t, pk∈t•, it must be that Xt⊆∪jX
pj; Xt∩Xpk ≠∅.

In other words, for every transition, the state variables of the sub-domain in which
the transition occurs, should: (a) be a subset of the state variables of all sub-domains
represented by the input places (leading to it), and (b) include some state variable of
every sub-domain represented by places preceding it. For example: assume the
transition represents manufacturing a product. The transition should “use” only state
variables from its inputs (e.g., raw materials and resources), and must affect the state
which triggers the next activity (e.g. packaging or shipping the ready product).

Third, for a transition to act within a sub-domain, the sub-domain law must be
independent (for the set of states represented by the transition’s input place).

Necessary condition 3: ∀t∈T, ∀p∈P, if p=•t then Dt is independent at p.
Fourth, concurrently operating threads operate over sub-domains that do not share

state variables. Note that this is necessary, but not sufficient to guarantee that these
sub-domains behave independently.

Necessary condition 4: Every two transitions t1 and t2 that may operate concurrently,
satisfy Xt1∩Xt2=∅.

In particular, the following two cases can be specified:

Parallel split: Let ts be a transition where a parallel split occurs, so ts•={p1, p2}, and
consider t1=p1• and t2=p2•. Then Xt1∩Xt2=∅.
Synchronizing merge: Let tm be a transition where a synchronizing merge occurs, so
•tm={p1, p2}, and consider t1=•p1 and t2=•p2. Then Xt1∩Xt2=∅.

24 P. Soffer, M. Kaner, and Y. Wand

Note that while necessary condition 4 addresses concurrency situations, we make
no similar requirement with respect to choice-related splits. Since these may relate to
both decomposable and non-decomposable domains, no strict rules can be formed
here. Choice-related splits lead the domain in one of several possible paths, which, in
turn, put the domain in one of possible (alternative) states. As opposed to the path
definition in Petri nets, which relates to any sequence of connected elements, we
relate to domain paths (D-paths), which correspond to selected sequences of states of
the domain. The difference between these terms can be seen with respect to parallel
splits, where the domain is decomposed into independently transforming sub-
domains. In the graphical Petri net representation the sequence of elements in each
sub-domain forms a different “path”. However, since no choice (decision) is made,
we do not address these as separate D-paths.

GPM defines a path as a set of states the domain goes through via a sequence of
transitions determined by the law and by external events. Petri nets (and specifically,
WF-nets) do not explicitly address external events, assuming they will occur as
expected. In a WF-net, considering a sub-domain D, its state is the distribution of
tokens at a given moment in all the places pj that satisfy Xpj⊆ XD. We denote the state
of sub-domain D by MD.

Definition 20: Let D be a sub-domain in a WF-net. A domain path (D-path) of D is a
sequence of states of D <MD

1, M
D

2,…MD
K>, such that a sequence of transitions <t1,

t2,…tk-1> exists that satisfies MD
i MD

i+1 … MD
k, for 1 ≤ i ≤ k-1.

For clarity, we hereafter relate to domain paths as D-paths and to “ordinary” (or
“traditional”) Petri net paths simply as paths.

Fig. 1. D-paths example

D-paths are demonstrated with respect to the Petri net in Fig. 1, which includes
four D-paths: (1) p1→ p6→ p7, (2) p1→ p2+p3→ p4+p5→ p7, (3) p1→ p2+p3→
p2+p5→ p4+p5→ p7, and (4) p1→ p2+p3→ p3+p4→ p4+p5→ p7. These are not
equivalent to the three “ordinary” paths of the net. When examining the four D-paths,
it is clear that three of them (D-paths 2, 3, and 4) relate to different orderings in which
the concurrent transitions can be performed, while D-path 1 specifies a different way
for reaching p7. This can be formalized in the following definition:

Definition 21: Let Ac be the set of places that become active in D-path C. Two D-
paths C1 and C2 are termed distinct iff Ac1-Ac2≠∅ and Ac2-Ac1≠∅.

One of the basic properties of Petri nets is free-choice, which is associated with
“desirable” mathematical properties of nets. Non free-choice Petri nets are associated
with situations of confusion between choice and parallelism, and are considered

p1 p2

p3

p4

p5

p6

p7

 Assigning Ontology-Based Semantics to Process Models: The Case of Petri Nets 25

improper (albeit syntactically possible). We do not require that Petri nets would be
free choice to be well-mapped domain representations. Instead, we have a more
relaxed requirement, which we term relaxed free-choice, specified as Necessary
condition 5. In a free-choice Petri net, if two transitions share input places, then all
their input places must be the same (namely, they have exactly the same triggering
conditions). In contrast, the relaxed free-choice requirement is for the two transitions
to share the same set of inputs (sub-domain state variables), but not necessarily at the
same values (places). In other words, each of them may trigger on different
combinations of values of the same set of state variables. We denote by D•t the
domain of all input places of a transition t: X•t= ∪{Xpk |pk∈•t}.

Necessary Condition 5 (Relaxed free choice): For every two transitions t1, t2, if
•t1∩•t2≠∅ then D•t1=D•t2.

The relaxed free choice requirement is a result of Necessary conditions 2 and 3.
Condition 2 requires Dt to be included in D•t, while condition 3 requires Dt1 and Dt2 to

be independent. If Dt1 and Dt2 partly overlap (since •t1∩•t2≠∅), then they cannot be
independent of each other. In other words, at a given place a sub-domain can either
transform independently or dependently of other sub-domains, both are not possible.

One of the basic concepts in GPM is the goal of a process, which we relate to the
sink place o of a WF-net.

Necessary condition 6: The sink place in a WF net o marks a set of stable states of the
entire process domain.

Two notes should be made. First, this set of stable states must be in the process goal.
Second, a well mapped WF net is constructed so that once o is reached no other part
of the domain can still be active. A particularly interesting case is when concurrent
paths are merged by a simple merge. This structure is in violation of the well-
structuredness property, yet we allow it. When concurrent paths are joined by a
simple merge, the merge place may hold more than one token. The next transition
may have other input places, so it may not be fired even when the merge place has
tokens. For example, consider a process where two teams work concurrently to find a
solution to a problem. When one team finds a solution, the process can continue. The
solution found by the other team is not used. In this process model, the place
representing that a solution exists may have two tokens, but only one token is used by
the following transition. In the final state of the process, the entire domain is in a
stable state. Nevertheless, for one sub-domain there might still be a solution “waiting”
to be used, namely, to trigger additional action. For the entire domain to be stable
with certainty, some action is required to “notify” the unstable sub-domain that no
further transitions will take place. Technically, this can be accomplished by adding a
transition from such nodes to the final place (in our example such transition may
stand for archiving or discarding the “losing” solution).

Another result of Necessary condition 6 is that the net cannot include loops which
action continues in parallel to the continuation of the process, namely, loops whose
exit point is a parallel split, as formulated in Lemma 3.

26 P. Soffer, M. Kaner, and Y. Wand

Lemma 3: Let a WF-net be a well-mapped domain representation, and consider a
transition t and three places p1, p2, and p3, such that p1=•t, •p2=•p3=t. Then p1 is not
reachable from p2 or from p3.

Proof: Assume p1 is reachable from p2. When t fires, p2 and p3 become active, and
while p3 may lead to o, p2 will lead infinitely to the sequence that activates t. This
means that o may be reached while the loop sub-domain is unstable, in contradiction
to Necessary condition 6.

Fig. 2. A complaint processing process

To demonstrate how the necessary conditions can be used, let us examine the example
given in Fig. 2 (taken from [1]). The WF-net representing complaint processing is not a
well-mapped domain representation, for the following reason. The predicate that can be
assigned to c5 is (Questionnaire_status=time_out Xor Questionnaire_status=processed)
Or Complaint_status=processed. It follows that c5 is defined over a sub-domain which
includes at least the Questionnaire_status and the Complaint_status state variables. c5
and c7 are input places of the transition process_complaint (a synchronizing merge),
which transforms the status of a complaint. Such merge violates Necessary condition 4,
which requires the sub-domains joined by a synchronizing merge to be disjoint. The
modified model (Fig. 3) defines c5 over a sub-domain which does not include the
complaint status, thus it is a well-mapped domain representation.

Fig. 3. A modified model of the complaint processing process

i

c2

c4

c7 c9 c10
c11

o

c6

c1 c3

c5

register

send_questionnaire

process_questionnaire

time_out

process_complaint

evaluate

no_processing

processing_required

check_processing processing_OK

processing_NOK

archive_processed

archive_non_processed

i

c2
c4

c7 c8 c9

o

c6

c1 c3

c5

register

send_questionnaire

process_questionnaire

time_out

process_complaint

evaluate

no_processing

processing_required

check_processing
processing_OK

processing_NOK

archive

c8

processing_possible

 Assigning Ontology-Based Semantics to Process Models: The Case of Petri Nets 27

4.2 Process Validity Considerations

Validity of a process model can only be assessed with respect to a set of expected
external events and to a defined goal [11]. How these are determined is outside the
scope of the current analysis. We consider only the reachability of the process
termination state, assuming that it represents the process goal. Assuming that all the
expected external events occur, validity relates to completeness of the internal law
definition (which relates to internal events) and to its consistency with the goal
definition.

Incompleteness reflects potential deadlock situations. Following [6], a process
instance is in deadlock iff it is not in the goal and no transition is enabled. GPM also
allows for a process execution “hanging” when external events fail to occur, but we
assume here no such failure happens. Thus, deadlock means that the process is in a
state for which the law is not defined. In a well mapped domain representation this
may occur when a transition has more than one required input place (i.e., it is a
synchronizing merge which joins different sub-domains) and not all of them are
enabled. Two situations are possible:

(1) Not all sub-domains have been activated at the split point.
(2) At least one of the sub-domains took a D-path which does not lead to the

input place of the merge transition.

We will specify modeling rules to avoid each of these cases. Case (1) is possible if an
exclusive choice is followed by a synchronizing merge. According to [12], such
structure should not appear in a valid process. It also does not appear in a well-
structured WF-net [1], where an exclusive choice is matched by a simple merge and a
parallel split is matched by a synchronizing merge. As discussed above, we do not
require well-structuredness. Instead, we only require that every synchronizing merge
be preceded by a parallel split, leaving the simple merge unconstrained as to the type
of split it should be preceded by. Since in Petri nets a synchronizing merge is in a
transition, it should correspond to a transition in the split point (parallel split). This is
formalized in Modeling rule 1.

Modeling rule (MR)1: Let x and y be two elements (i.e., places or transitions) in a
well-mapped domain representation WF-net, connected by two different elementary
paths leading from x to y. If x is a place then y should be a place too. If y is a
transition then x should be a transition too.

To avoid the second case, the modeler needs to make sure that if two sub-domains
that have alternative distinct D-paths need to synchronize, then every possible
combination of these D-paths has a merging transition defined for it. To illustrate the
idea, consider the examples of Fig. 4.

In Fig. 4(a), the process domain is split in t1 to two concurrently active sub-
domains, and both these sub-domains have different D-paths that can be selected. The
process may clearly deadlock, if one sub-domain takes a D-path leading to p7 while
the other reaches p10, or if one sub-domain reaches p8 while the other takes a D-path
that leads to p9. There are more combinations of D-paths that can be taken than
combinations that lead to the goal of the process. The sub-domain on the left side
has two distinct D-paths: (1) p2→p7, and (2) p2→p8. The sub-domain on the right

28 P. Soffer, M. Kaner, and Y. Wand

Fig. 4. D-path combinations

side has four distinct D-paths: (1)p3→p4→p6→p9, (2) p3→p4→p6→p10, (3)
p3→p5→p6→p9, and (4) p3→p5→p6→p10. To eliminate the possible deadlock, we
need to define action in every possible situation the process may reach. We may look
for a place which is reached from all D-paths. Considering the right side sub-domain,
p6 is reachable in all the distinct D-paths. Hence, it is guaranteed to be reached. Let us
examine a possible correction, where p6 is connected to t11. Then t6, t7, and t11
would share p6 as an input place, while t11 is also preceded by p8 (whose domain is
different). This is in contradiction to Necessary condition 5 (relaxed free choice),
which proscribes a sub-domain from being both independently transforming and
merging at a given place. Following this analysis, p9 and p10, which are reachable in
two distinct D-paths each and together “cover” all the four D-paths, do not represent
states where the sub-domain is independent (since they lead to a merge). A complete
solution, addressing every possible situation, requires the net to include a transition
defined for every possible combination of non-independent places in the two sub-
domains, namely, (p7, p8)x(p9, p10), as shown in Fig. 4(b).

The above analysis is formalized in Modeling rule (MR) 2 that requires that if a
transition depends on a combination of states of two sub-domains, and that
combination is not guaranteed to happen, there must be other transitions specified for
every other possible state combination.

Modeling rule (MR) 2: Let D1, D2 be two sub-domains, and t1 a transition such that
•t1={p1,p2}, where p1∈D1 and p2∈D2. Let PM1 and PM2 be sets of places such that the
domain of each place in PM1 or in PM2 is not independent and for every distinct D-
path in Dk there is a place in PMk, k=1,2. Then for every pair of places pj∈PM1 and
pk∈PM2, there must be a transition t such that •t={pj,pk}.

Note: D1 and D2 can be identified by backtracking paths from p1 and p2 until the first
transition which is included in both paths. For example, it is easily seen that the model
in Fig. 3 is in compliance to MR2.

 Assigning Ontology-Based Semantics to Process Models: The Case of Petri Nets 29

Inconsistency between the law and the goal definition relates to infinite loops. In
WF-nets, since every element must be on a path from i to o, loops must have (at least
one) exit points. These may be parallel splits or exclusive choice splits. According to
Lemma 3, parallel splits cannot be exit points of loops in a well-mapped domain
representation WF-net. We shall hence examine the possible structures in which loops
whose exit point is an exclusive choice may become infinite. When a loop has an
exclusive choice as an exit point at place p, two cases are possible:

(1) The next transition has only one input place (•t={p}). Then the exit depends
on one sub-domain only. Structurally, this is not an infinite loop, and the exit
from the loop depends on the decision criteria defined by the analyst.

(2) The next transition has more than one input place (i.e., it merges a number of
concurrent sub-domains). In this case, if the merge deadlocks, the loop will
continue infinitely. However, merging deadlocks can be eliminated by using
modeling rules 1 and 2. Hence, if the modeling rules are used in a well-
mapped domain representation WF-net, it does not include infinite loops.

Theorem 1: A well-mapped domain representation WF-net which satisfies Modeling
rules 1 and 2 is sound.

Proof: soundness has three requirements. (ii) proper termination – follows directly
from Necessary condition 6, and (iii) no dead transitions – follows from Necessary
condition 2. To prove (i), namely that o is reachable from every state reachable from
i, we will show that for any state M reachable from i there is a transition t that can be
fired. Since all the elements in a WF-net are on a path from i to o and no infinite loops
are possible, if any arbitrary state M transforms, o will be reached.

We will show that in a given state M every transition is either (a) within an
independent sub-domain, or (b) a result of a merge between two (or more) sub-
domains. In the first case, a transition will be fired with certainty. In the second case,
by MR1, all the required sub-domains should be active, and by MR2 there is a
transition defined for every possible combination of D-paths of the sub-domains.
Hence a transition will be fired.

Formally: Let P(M) be the set of active places in M, and consider a place p1∈P(M)
and a transition t1∈p1•. Two cases are possible: (1) •t1⊆P(M), then t1 fires at M. (2)
•t1∩P(M)≠∅, •t1⊄P(M). Then t1 cannot fire at M, but we will show that there exists a
transition t2 that can fire at M. Having more than one input place, t1 merges two or
more independent sub-domains Di. Assume •t1={p1,p2}, where p1 is the projection of
M over Dj, and p2∉P(M). We assume p2 is the projection of some state M’ over a sub-
domain Dk (k≠j). Since, by MR1, Dk is active at M, we denote the projection of M
over Dk by p3 (p3∈P(M)). According to MR2 there exist a transition t2 and a place p4,
such that •t2={p1,p4}, Dp4⊆Dk, and p4 is on a D-path that includes M/Dk. Three cases
should be checked: (1) p3→p4. Then M→M’, thus t2 can fire. (2) p3=p4. Then t2 can
fire. (3) p4→p3.This is impossible due to Necessary condition 5 (relaxed free choice).

In summary, following the necessary conditions and modeling rules, it is possible
to construct a sound WF-net.

30 P. Soffer, M. Kaner, and Y. Wand

5 Conclusion

This paper proposed to use the ontologically-based GPM semantics for existing
constructs of process modeling languages. We demonstrated how this can be done for
WF-nets. We also showed how modeling guidelines, based on this semantics, can
assist in avoiding process modeling problems that traditionally could only be detected
by verification of the completed models. Existing verification algorithms for WF-nets
can analyze in polynomial time only specific classes of models (free-choice or well-
structured). The modeling rules suggested here can lead to sound WF-nets which are
not necessarily free-choice or well-structured. Note that the modeling rules do not
constitute a verification approach. Rather, they form a construction approach, which
yields sound models when applied.

The essence of the analysis is in mapping common situations that can occur when a
domain undergoes state transitions, into a WF-net representation. For a process to be
guaranteed to reach its goal, its definition should fulfill three conditions: (1) no
situations should arise where it “hangs”, (2) completeness: all possible states should
have defined transitions, and (3) no infinite loops. Process “hanging” can happen
when several conditions need to be fulfilled for the process to continue – i.e. in merge
situations. Merges occur because a split has occurred earlier in the process. By
choosing only appropriate combinations of splits and merges, the process can be
guaranteed to proceed. This was the purpose of Modeling Rule 1. Completeness
requires that the process model will specify continuation for all possible states – this
was the purpose of Modeling Rule 2. Both rules and the goal definition ensure the
absence of infinite loops. Constructing models that conform to these two rules,
therefore assures that the process, when executed, can always complete (in the sense
of reaching its goal). It is important to note that the rules guide the actual construction
of process model, rather than being applicable only to complete models.

As GPM concepts are generic, they can be applied to other modeling languages.
We intend to do this in future research. This application would require mapping of
these languages to GPM and deriving appropriate restrictions and modeling rules. In
addition, we plan to empirically investigate the effectiveness of the propositions made
here in contributing to the quality of models produced by modelers. Finally, we will
develop a modeling tool to support the application of the modeling rules when
constructing a model.

References

[1] van der Aalst, W.M.P.: Formalization and Verification of Event-Driven Process Chains.
Information and Software Technology 41(10), 639–650 (1999)

[2] van der Aalst, W.M.P.: Workflow Verification: Finding Control-Flow Errors Using Petri-
Net-Based Techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business
Process Management. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg (2000)

[3] van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow
Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

[4] Bunge, M.: Treatise on Basic Philosophy. In: Ontology I: The Furniture of the World,
vol. 3. Reidel, Boston (1977)

 Assigning Ontology-Based Semantics to Process Models: The Case of Petri Nets 31

[5] Bunge, M.: Treatise on Basic Philosophy. In: Ontology II: A World of Systems, vol. 4,
Reidel, Boston (1979)

[6] Kiepuszewski, B., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Fundamentals of control
flow in workflows. Acta Informatica 39(3), 143–209 (2003)

[7] Mendling, J.: Detection and Prediction of Errors in EPC Business Process Models, PhD
thesis, Vienna University of Economics and Business Administration (2007)

[8] Object Management Group (OMG), Business Process Modeling Notation Specification
(2006), http://www.bpmn.org

[9] Rosemann, M., Recker, J., Indulska, M., Green, P.: A Study of the Evolution of the
Representational Capabilities of Process Modeling Grammars. In: Dubois, E., Pohl, K.
(eds.) CAiSE 2006. LNCS, vol. 4001, pp. 447–461. Springer, Heidelberg (2006)

[10] Sadiq, W., Orlowska, M.E.: On Correctness Issues in Conceptual Modeling of
Workflows. In: Proceedings of the 5th European Conference on Information Systems,
Cork, Ireland, pp. 943–964 (1997)

[11] Soffer, P., Wand, Y.: Goal-Driven Multi-Process Analysis. Journal of the Association of
Information Systems 8(3), 175–203 (2007)

[12] Soffer, P., Wand, Y., Kaner, M.: Semantic Analysis of Flow Patterns in Business Process
Modeling. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
pp. 400–407. Springer, Heidelberg (2007)

[13] Wand, Y., Weber, R.: On the Ontological Expressiveness of Information Systems
Analysis and Design Grammars. Journal of Information Systems (3), 217–237 (1993)

[14] Wand, Y., Weber, R.: Towards a Theory of Deep Structure of Information Systems.
Journal of Information Systems 5(3), 203–223 (1995)

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 32–47, 2008.
© Springer-Verlag Berlin Heidelberg 2008

On the Duality of Information-Centric and
Activity-Centric Models of Business Processes

Santhosh Kumaran, Rong Liu, and Frederick Y. Wu

IBM T.J. Watson Research Center
19 Skyline Dr. Hawthorne, NY 10532, USA
{sbk,rliu,fywu}@us.ibm.com

Abstract. Most of the work in modeling business processes is activity-centric.
Recently, an information-centric approach to business process modeling has
emerged, where a business process is modeled as the interacting life cycles of
information entities. The benefits of this approach are documented in a number
of case studies. The goal of this paper is to formalize the information-centric
approach and derive the relationships between the two approaches. We do this
by formally defining the notion of a business entity from first principles and us-
ing this definition to derive an algorithm that generates an information-centric
process model from an activity-centric model. We illustrate the two models us-
ing a real-world business process and provide an analysis of the respective
strengths and weaknesses of the two modeling approaches.

1 Introduction

The role of information technology (IT) in the enterprise is to support the business
operations of the enterprise. Subject Matter Experts (SMEs) document business op-
erations using business process models which prescribe the activities that need to be
performed as part of a business operation, the sequencing of these activities, and the
input and output data of these activities. While business process models are good for
documenting business operations, creating computer programs that support these op-
erations has always been a challenge. Existing approaches to IT-enabling a business
process take one of the following two paths:

(1) Business process models are used merely as requirement documents. From these,
IT solutions are manually designed and implemented by writing new custom
code, or by customizing and integrating legacy applications and packaged soft-
ware; or

(2) Business process models are automatically converted into workflow definitions
which are deployed on workflow engines and augmented with custom code [26].

The first approach leads to a gap between the business process models and IT solu-
tions resulting in poor quality of the IT solutions with respect to their ability to
support business processes, poor responsiveness of IT to business process changes,
and inefficiency in the overall development processes. The second approach faces a
number of difficulties as well, as enumerated below.

 On the Duality of Information-Centric and Activity-Centric Models 33

As business processes become complex and large, the workflow approach turns out
to be increasingly difficult to implement, as the overall performance of the system de-
grades substantially and the maintenance of the resulting solution becomes extremely
hard. The primary reason for this is that the workflow approach does not lend itself to
componentization in a natural way [3].

Advanced features such as backward navigation, event-driven behavior, and con-
versational client interaction are very difficult to support in workflow models [28].
The cost of supporting these features adds more complexity, which further compli-
cates the first issue. IT solutions often need sophisticated, user-friendly human inter-
faces which are not readily supported by the workflow approach. Expensive manual
tweaking of the code is often needed to integrate function-rich user interfaces with
workflow-based backend systems.

In response to this situation, another process modeling paradigm, which models
business processes as intersecting life cycles of information entities, has been pro-
posed. Appropriately, this approach is called information-centric process modeling.
The information entities that are used to describe business processes in this manner
have been called various names, including adaptive documents (ADoc) [17], adaptive
business objects (ABO) [21], business artifacts [22], and lately business entities. In
this paper, we will refer to them as business entities.

This new paradigm has been successfully tested through customer engagements.
However, several problems remain. First, the concept of business entities is informal
with no theoretical underpinnings. Second, in this paradigm, the key is to discover the
right information entities that describe the business process. The current practice iden-
tifies these entities through intense consulting sessions. Those sessions are time con-
suming and demand consulting skills that typically are not common. Third, there is a
lack of understanding of the relationship between this new paradigm and traditional
activity-centric process modeling used in workflow management systems [26].

The goal of this paper is to formalize the information-centric approach and present
an algorithm for transforming activity-centric process models into information-centric
models. We formally define the concept of business entities and use this definition to
derive an algorithm for the transformation. We use a real-world example to illustrate
this transformation and analyze the respective strengths and weaknesses of the dual
representations of a business process.

The remainder of the paper is organized as follows. Section 2 introduces the formal
definition of business entities and gives the transformation algorithm for creating in-
formation-centric process models from activity-centric process models. A complete
example is provided in Section 3 to illustrate this algorithm. Section 4 presents an
analysis of the two modeling paradigms. In Section 5, we compare our work with re-
lated work. Section 6 concludes with a brief description of future work.

2 Information-Centric Process Modeling

In this section, we give formal definitions of several key notions, including process
scope, domination, business entity, and activity-centric and information-centric proc-
ess models. We start with a brief review of basic concepts of process modeling.

34 S. Kumaran, R. Liu, and F.Y. Wu

A business activity is a logical description of a piece of work that consists of hu-
man and/or automated operations and is often realized in conjunction with informa-
tion processing. A business process links business activities by transforming inputs
into outputs to achieve a business goal. A set of business processes constitutes a busi-
ness function, provisioning a set of business services that defines the external view of
the business function. All of the data used by the business function, including the in-
put and output of the business services, form the information domain of the business
function. The atomic elements that make up the information domain are called infor-
mation entities (or entities for simplicity).

Fig. 1 shows a simple business process. This process clearly describes business ac-
tivities and their execution sequence for handling a claim. In addition, activities in this
process use a set of information entities, for example, claim and loss event, as the dot-
ted lines indicate. We call Fig. 1 an activity-centric process model, as defined below.

Definition 1 (Activity-Centric Process Models). An activity-centric process model
consists of business activities, connectors as control flows describing the execution
sequences of these activities, and optional information entities as inputs or outputs of
the activities.

Notify
Claim

Record
Claim

Validate
Claim

Anayze
Claim

Decide on
Claim

...

Claim

Claim
Line

Loss
Event

Dispute

Payment

Communication
...

Policy

Activities Information

Fig. 1. Activity-Centric Business Process Model – Claim Management

Definition 2 (Process Scopes). A process scope s is a group of business processes,
together providing a well defined end-to-end function to map input I to output O, i.e.

} ..., , ,{ }, ..., , ,{ }, ..., , ,{ ,: 212121 OyOOIxIIn eeeOeeeIpppsOIs ===→ , where each p is a

process and each e is an information entity.

For example, an end-to-end claim management function involves several business ac-
tivities such as record claim and validate claim (see Fig. 1). The input to this process
scope may be a loss event and outputs are a set of information entities including a
closed claim, outgoing payments, and communication documents with the claimant.

Within a process scope, information entities are created or modified through busi-
ness activities to produce the desired outputs as defined in the end-to-end function.
From an information-centric point of view, information entities influence business

 On the Duality of Information-Centric and Activity-Centric Models 35

activities in the sense that the execution of an activity is predicated on the availability
of the right information entities in the right state [1]. For a set of business activities,
there is a corresponding set of information entities that influence the execution of
these activities. But there are differences in the degree to which a specific information
entity influences the execution of the activities in the set. For example, considering
the process shown in Fig. 1, claim information entity influences most business activi-
ties in the process. On the other hand, the influence of claim line is limited to only a
subset of activities that are also influenced by claim. Therefore, we say claim domi-
nates claim line, as formally defined below.

Definition 3 (Domination). Information entity e1 dominates information entity e2 in a
process scope s, denoted as 21 ee , iff:

(1) aeaesa •∈•∈∈∀ 12 then, if ,
(2) •∈•∈∈∀ aeaesa 12 then, if ,
(3) •∪•∉•∪•∈∈∃ aaeaaesa 21 but , s.t. , , where ●a (a●) denotes the input (out-

put) information entities of activity a.

In other words, e1 dominates e2, if (1) for every activity that uses e2 as an input, e1 is
also used as an input, (2) for every activity that uses e2 as an output, e1 is used as an
output, and (3) e1 is used by at least one activity that does not use e2.

If e2 is only used as an input in the process scope, this domination is called referen-
tial domination. With inclusive domination, e2 is used as an output in at least one
business activity. A dominant entity is one that is not dominated by any other entity in
a process scope. Accordingly, a dominated entity is an entity dominated by any other
entity. The domination relationship is transitive, i.e. 313221 then , if eeeeee .

Fig. 2 shows sample domination relationships in an insurance process scope. Claim
entity referentially dominates policy because policy is only a necessary input for the
processing of claim but policy itself is not changed within the process scope. Claim
inclusively dominates claim line, dispute, and communication entities. Some entities,
for example, loss event and payment, are not involved in any domination relationship
in this figure. Fig. 2 is referred to as an entity domination graph, which describes the
domination relationships between entities within a process scope.

From a domination graph, a data model for dominant entities can be derived using
containment data modeling [27]. Each dominant entity can be treated as a

Claim

Claim
Line

Loss
Event

Dispute

Payment

Communication
...

Policy

Referential domination
Inclusive domination

Fig. 2. Examples of Domination

36 S. Kumaran, R. Liu, and F.Y. Wu

"container", each inclusively dominated entity is a "contained member", and each ref-
erentially dominated entity becomes a reference member. A complete example will be
provided shortly to illustrate how to derive data models for entities from domination
relationships.

Definition 4 (Business Entities). A business entity is a dominant information entity
with an associated data model and an associated behavior model in the context of a
process scope. The data model describes the data dependencies between the dominant
entity and the dominated entities as the dominant entity logically containing the domi-
nated entities. The behavior of the business entity is modeled as a state machine
where state transitions are caused by activities acting on the dominant entity.

Fig. 3 shows three business entities in the claim management process scope. Each
business entity has a behavior model shown as a state machine. Business entities can
be thought of as an abstraction that componentizes the information domain of a busi-
ness such that the behavior models associated with these components fully capture the
business process functionality. Moreover, business entities provide the information
context for business activities and processes. Typically, within a process scope, the
provided business functions require customer inputs. The customer inputs may initiate
an instance of a business entity. The outputs of the processes may be represented as
the final state of the business entity and perhaps other business entities created during
the processes. Therefore, the business processes are also the process of business enti-
ties walking through their lifecycles, from their initial states to their final states.

...

Loss Event Claim Payment

Record
Claim

Notify
Claim

Record
Claim

Notify
Claim

Validate
Claim

Record Benefit
Payment

Operate Outgoing
Payment

Pending

Notified

Recorded

Start Start

Created

Recorded

Created

Closed

Fig. 3. Business Entities in Claim Management Process Scope

Definition 5 (Information-Centric Business Process Models). An information-
centric business process model of a process scope is a set of connected business enti-
ties. Two business entities are connected if their behavior models share at least one
business activity.

An information-centric process model of a process scope may contain multiple busi-
ness entities. The lifecycles of these entities are linked through an instance creation
pattern or a synchronization pattern [15]. In the creation pattern, an existing business

 On the Duality of Information-Centric and Activity-Centric Models 37

entity creates a new instance of another business entity as part of a business activity.
For example, in Fig. 3, when notify claim activity is performed on loss event, it cre-
ates a new instance of the claim entity (i.e., the state of claim is changed from start to
created). In the synchronization pattern, two existing business entities exchange in-
formation as part of performing a business activity. The example in Fig. 3 shows loss
event and claim exchanging information as part of the record claim activity.

Using the concept of domination, we can transform an activity-centric process model
into an information-centric process model through the algorithm shown in Fig. 4. The al-
gorithm contains four main steps: (1) Discovering business entities and constructing an
entity domination graph purely based on the definitions of domination and business enti-
ties; (2) Finding input (I) and output (O) business entities of each business activity; (3)
Creating an output state for each output business entity of an activity; and (4) Connecting
an activity to its output business entity states and connecting each output state to the next
activity touched by the business entity to construct a state machine preserving the se-
quence between activities as in the original activity-centric business process model. Note
that an activity-centric process model may include control nodes, such as an OR-SPLIT
node for alternative decisions, in addition to the activities. However, we disregard such
nodes since control flow semantics is implicit in the state machine definition.

This transformation algorithm is very generic. It can be applied to any activity-
centric process model that meets two conditions: (1) each activity has input and output
information entities, and (2) the process model is connected such that each activity is in
at least one path from the start node to the end node. There are no constraints on the
format and content of an information entity. However, with respect to the complete and
correct definition of an information-centric model of a business process, the informa-
tion entities should exhibit the following properties.

• Self-describing: An information entity is self-describing if it contains metadata
that describes its data content. The metadata of a business entity is composed from
the metadata of its constituent information entities.

• Non-overlapping: Information entities partition data in the information domain of
a process scope into disjoint sets.

• Decoupled: An entity is decoupled from others in the sense that it can evolve in-
dependently of others through business activities. Each information entity is used
distinguishably by some business activities. The granularity of information enti-
ties requires that any pair of entities should not always be used by the same busi-
ness activities. If so, these two entities should be merged into one. In other words,
the granularity of information entities is determined by business activities.

If the information entities in a process scope possess these three properties, they are
normalized, formally defined as follows.

Definition 6 (Normalized Information Entities). Let A be the activity set,
}{ 21 n,...,a,aaA = . Let D denote the information domain of a set of processes,

},...,,{ 21 meeeD = . ei is a normalized information entity for mi ≤≤1 , if:

(1)) ,(VSei = , where V is a set of values over attribute set S (self-describing)

(2) For any pair of) ,(), ,(jjjiii VSeVSe == , =∩ ji SS Ø (non-overlapping)

(3) ji ee ≠ and •∪•∉•∪•∈∈∃ aaeaaetsAa ji , .. , (decoupled)

38 S. Kumaran, R. Liu, and F.Y. Wu

where , ,1 , mjiji ≤≤≠)(•• aa denotes the input (output) of activity a, and

Da ⊂• , Da ⊂•

If the original set of information entities does not possess these properties, the result-
ing business entities may have degraded modularity as their behavior models could be
connected at many shared activities. Therefore, it may be necessary to normalize the
information entities by clearly defining their data schema and removing data overlap
and coupling between them (By Definition 6). In addition, incomplete input and out-
put information entities in the original activity-centric model may result in a
poor-quality information-centric process model, characterized by a large number of
business entities with interwoven behavior models.

ii

ii

tsitsi

iii

m

n

eS

eD

sT

rrRennrner

eOI

aaaAA

eeeEsE

n

sC

 entity business of states of set the :

 of entities dominated of set the :

 scope in set entity business the : OUTPUT

 ...} , ,{), ,(, to node from with associated connector :

(output) input as using activities of set the :)(

 in END) START, JOIN,-OR SPLIT,-OR JOIN,- ANDSPLIT,-(AND nodes control :

} ..., , ,{ s, scope process in set activity the :

} ..., , ,{ , scope process of set entity ninformatio the : INPUT

21

21

21

, ==

=

=

 for end

 to save then any for if

/* entities ninformatio dominant find */ Ø and every for

for end

for end

 to save then if

 and every for

/*graph domination entity compute */ every for

BEGIN

TeijDe

DEe

Deee

ijEe

Ee

iji

ii

ijji

j

i

≠∉
≠∈

≠∈
∈

END

for end

 for end

 to " and ' add and , remove

) , ,(" and) , ,(' connectors create

/* connectors update and states create */ to save and state a create

 , where) , ,(connector any for

for end

 to " add), , ,(" create , from ' and remove

/* nodes control remove*/ n where) , ,(' and) , ,(of pair any for

 any for from) , ,(connector remove

 any and any for from activity remove

/*items dominated remove*/ any and any for from activity remove

 every for

 then Ø If

i

i

x

y

Rrrr

ensresnr

Sss

Cnnennr

RrennrRrr

Cennrennr

DeRennr

DeOaOa

DeIaIa

Te

T

iyijiijx

ijij

yxyx

iz

izyiyx

ikkyx

ikkk

ikkk

i

==

∉=

=
∈==

∈=
∈∈
∈∈

∈
≠

Fig. 4. Transformation Algorithm

3 Example – An Insurance Process Model

In this section, we use a real example to illustrate the transformation of business proc-
esses based on the notion of business entities. As an experiment, we examine the process
models in IBM Insurance Application Architecture (IAA) [13]. IAA is a comprehensive
set of best practice process models for the insurance industry. In general, these process

 On the Duality of Information-Centric and Activity-Centric Models 39

models are used for analytical purposes, and thus are called analysis models. In practice,
system analysts manually customize these analysis models case-by-case in order to im-
plement them. This customization involves the redesign of business activities and data
models. We propose to use the transformation algorithm to automatically generate infor-
mation-centric process models which may then be used to implement service-oriented
business process management solutions. Fig. 5 gives an example process for administer-
ing property damage claims. In this process, a claim information entity is created when a
loss event is reported. This claim is validated and analyzed which could lead to one of
three outcomes: rejection of the claim, acceptance of the claim, or postponement of a de-
cision pending additional information. If the claim is accepted, the benefit in this claim is
determined and then a payment is issued. If the claim is pended, arrival of additional in-
formation leads to another round of processing. In addition to activities and entities, this
process contains control nodes (AND-SPLIT, AND-JOIN, OR-SPLIT, OR-JOIN,
START and END) and connectors.

In general, an activity-centric process model can contain both data flows and con-
trol flows. Wang and Kumar [25] classified two types of constraints in process activi-
ties, hard constraints that arise from data dependencies, and soft constraints caused by
business rules or policies. In the absence of hard constraints, control flows become
necessary to sequence activities. The process model shown in Fig. 5 contains both
types of flows, but some of the control flow links are redundant. For example, infor-
mation entity claim is an output of activity notify claim, and it becomes an input of ac-
tivity record claim, implying that record claim has to be executed after notify claim.

We consider this single process as a process scope. This process scope provides an
end-to-end function from creating a claim after a loss event is notified to closing the
claim and managing payment. Also, our investigation shows that information entities
in this process model are self-describing, non-overlapping and decoupled.

Record
Claim

Notify
Claim

Validate
Claim

Analyze
Claim

Decide
on Claim

Offer
Benefit

Prepare Claim
Discharge

Record Benefit
Payment

Close
Claim

Reject
Claim

Review Claim
Rejection

Provide
Addition Data

Operate
Outgoing
Payment

Start

Loss Event

Investigation
Required

Loss Event
Claim

Claim
Loss Event

Claim Claim

Claim Claim

Claim

Claim Claim
Acceptance

Claim
Benefit in Claim

Claim
Benefit in Claim

Claim
Benefit in Claim

Claim
Payment

Claim

Payment

Claim Claim Claim Rejection
Accepted

Claim

Claim

Claim

End

Loss Event

End

Claim Line

Yes

No

End

Dispute
Communication

Dispute

No

Yes

No

Yes

End
Claim

Loss Event

End

Benefit Communication

End

Discharge Communication

Account

End

Claim

End
Payment

Payment
Communication

Check

Choice 1

OR-SPLIT
Choice 2

AND-SPLITAND-JOINOR-JOIN

Data Name
Activity
Name DATA FLOW

CONTROL FLOWACTIVITY

Notations

End
Reserve

Fig. 5. Administering Property Damage Claim

40 S. Kumaran, R. Liu, and F.Y. Wu

Based on the concept of domination, we discover three dominant entities involved
in this process: claim, loss event, and payment. Claim and payment business entities
have several dominated entities, as shown in the entity domination graph of Fig. 6.

Next, based on the entity domination graph, we can create containment data mod-
els [27] for each business entity. Fig. 7 shows the data models. In each data model,
the root container is a business entity. The claim business entity contains claim line,
dispute, dispute communication, reserve, and benefit in claim, which, in turn, contains
discharge communication and benefit communication. The loss event does not contain
any entity, but it may have attributes and child items. In this paper, for simplicity, we
omit the detailed attributes of each entity. In addition, there may be data relationships
between business entities. For example, in Fig. 8, claim is created by loss event
through activity Record Claim.

C la im

C la im
L ine

L oss
E ven t

D ispu te

P aym en t

D ispu te
C om m un ica tion C heck

R eserve

B ene fit
C om m un ica tion

D ischarge
C om m un ica tion

P aym en t
C om m un ica tion

B en e fit in
C la im

A ccoun t

Fig. 6. Business entities – Administer Property Damage Claim

Claim

Dispute

Reserve

Benefit in Claim

Dispute Communication

Claim Line

Discharge Communication

Benefit Communication

Payment

Check

Payment Communication

Account

Containment (by reference)
Containment (inclusion)

Loss Event

Fig. 7. Data Model of Administering Property Damage Claim

With the discovered dominant entities, we can easily construct the behavior model of
each dominant entity and then convert the activity-centric model into an information-
centric model using the algorithm shown in Fig. 4. Fig. 8 shows the information-centric
process model consisting of three connected state machines. The state machine of claim
describes the lifecycle of the claim business entity and it interacts with the other busi-
ness entities, loss event and payment. For example, during claim's state transition from
created to recorded, the loss event business entity also changes its state from notified to
the final state recorded. Similarly, record benefit payment changes the state of the claim
business entity from discharged to closed, while creating a new instance of payment
business entity.

 On the Duality of Information-Centric and Activity-Centric Models 41

The business entity behavior models provide a new perspective from which to reason
about business activities. Ideally, a business activity should produce some meaningful
change to a business entity, resulting in a new milestone in the lifecycle of that entity,
which should be monitored and tracked for performance management. If a business ac-
tivity does not bring such changes, that activity can either be removed or combined with
others. Therefore, business entities actually provide guidelines for determining the right
granularity of activities. For example, in Fig. 8, activity offer benefit is likely to notify a
claimant without providing any actual changes to the claim business entity. This activity
may be merged with the activity prepare claim discharge. Also, if there is a significant
overlap between two behavior models, we may need to re-design the activities to de-
couple the business entities. Note that the algorithm in Fig. 5 does not give any state
naming convention. One can name business entity states based on results produced by
activities, as exemplified by Fig. 8.

Record
Claim

Notify
Claim

Validate
Claim

Analyze
Claim

Decide
on Claim

Offer
Benefit

Prepare Claim
Discharge

Record Benefit
Payment

Reject
Claim

Review Claim
Rejection

Provide
Addition Data

Start Created Recorded Investigation
Required

Analyzed

RejectedReview
needed

Benefit
Offered

Additional Data
Needed

Closed

Additional Data
Added

Discharged

Record
Claim

Notify
Claim

Pending Notified

Provide
Addition Data

Recorded

Provided

Record Benefit
Payment

Created
Operate Outgoing

Payment
ClosedStart

Claim

Loss Event Payment

Investigation Not
Required

Accepted

Fig. 8. Information-centric process – Administering Property Damage Claim

Compared with the original model in Fig. 5, the model in Fig. 8 has the following
features. First, this information-centric process model provides better understandability
because the introduced business entities highlight the focus of the process. Obviously,
the process mainly deals with claim, tracking its behavior through its end-to-end life-
cycle from creation to closure. Understandability is further improved by the decompo-
sition of the process into three streamlined state machines each with fewer activity
nodes. Empirical evidence shows that model size and average connector degree sig-
nificantly affect the understandability of process models [19].

Second, the information-centric model hides IT implementation details and only
describes the business entities that each business activity acts on. In Fig. 5, each busi-
ness activity has detailed input and output entities. However, the information-centric
model only specifies the business entities that each activity reads, updates or creates.
Through the data model, an activity is able to retrieve information of the dominated
entities. In practice, data access can be defined as data views by user roles and by
business activities. By adding data access details for each activity, we can convert the
information-centric process back to the activity-centric model. However, data access

42 S. Kumaran, R. Liu, and F.Y. Wu

details are an IT implementation issue. We prefer to delay the definition of data ac-
cess until implementation for two reasons. First, during implementation, precise data
access may be defined at the attribute level instead of the entity level. Therefore, the
input and output specifications in terms of entities in Fig. 5 are not sufficient. Second,
in reality, data access varies with each implementation. Without data access details,
an information-centric process model can be easily adapted into different process
scopes. As evidence, IBM Insurance Application Architecture [13] contains seven
process models, each describing a particular type of insurance claim, such as medical
expense claim, life claim, and auto claim. Our analysis shows that these models can
be transformed into the same information-centric process as in Fig. 8, with slightly
different data graphs. For example, in the process administering auto claim, benefit in
claim by insurer is one of the final output entities, instead of payment.

Finally, using the Model Driven Business Transformation Toolkit [17], we can
generate business applications automatically from the information-centric business
process models. The development and implementation time can be greatly reduced.
Also, this direct transformation from business process models to IT solutions reduces
the gap between business and IT.

4 Analysis and Discussion

The domination concept reveals the deep structure of the information domain of a
business function. This deep structure is represented as entity domination graphs in
the form of directed acyclic graphs (DAG), with the dominant information entities at
the source nodes of the DAGs serving as the driving force for the process flows that
constitute the business function. The dominated information entities form the non-
source nodes of the DAGs and play a subsidiary role in the execution of business
activities. Usually, the dominated entities are created during the processing of the
dominant entity and their existence depends on the dominant entity. But the domi-
nated entities do play an important role in the lifecycle of the dominant entity. It is
analogous to the growth of a tree in nature, with new branches being added as the tree
progresses through its lifecycle. For example, in the insurance claim process dis-
cussed earlier, dispute, claim line and benefit in claim are created during the process-
ing of the claim entity and their existence depends on the claim entity. And when a
claim is accepted, one can expect to see benefit in claim added to the data graph asso-
ciated with claim.

An intuitive explanation of the domination concept can be derived from the Pareto
principle which states that, for many events, 80% of the effects come from 20% of the
causes. When applied to business process analysis, we observe that a few information
entities serve as key drivers of the flow of most activities. Using our algorithm, we are
able to select the dominant entities and model their behaviors, thus leading to signifi-
cant reduction in model complexity and better understanding of business operations.
For example, we have observed that among 320 information entities used in IBM In-
surance Application Architecture [13], only 90 qualify as dominant entities. We can
also view domination as a special association rule mining [2] for discovering antece-
dent and consequent information entities and establishing associations between them.

 On the Duality of Information-Centric and Activity-Centric Models 43

The algorithm presented in this paper leverages the domination concept to trans-
form an activity-centric business process model into an information-centric model.
There are several advantages to be gained from creating such an information-centric
model as discussed below.

As we have seen above, an activity-centric model of a business process enumerates
all the activities in the process and defines a control flow and a data flow over these
activities. As the processes grow in size and complexity, it becomes increasingly dif-
ficult to understand the business behavior using these models [3]. The traditional ap-
proach to dealing with this complexity is to resort to a hierarchical representation of
business processes. It has been shown that static, hierarchical representations of busi-
ness processes are not conducive to in-depth analysis and prediction of the behavior
of the system under dynamic conditions [20]. The information-centric modeling ap-
proach presents an attractive alternative as it helps to analyze and predict system be-
havior using the lifecycle models of a few business entities in a flat structure.

Designing user-friendly human interfaces from activity-centric models to drive
business process execution has been known to be a challenge [28]. Business users are
knowledge workers who need contextual information to make the decisions needed in
performing a business activity. This contextual information is not part of the activity-
centric models of business processes and thus it becomes hard to design effective
human-interfaces from such models to drive process execution. Information-centric
models help in this regard since the deep structure of the information domain repre-
sented as a DAG holds this contextual information. The lack of contextual informa-
tion in activity-centric process models has business-level implications as well. Since
such models emphasize control flows and look at information usage only within the
context of a single activity, business actors tend to focus on “what should be done in-
stead of what can be done”, hindering operational innovations [1,12].

The issue with interface design to business process execution systems gets more
complex when conversational interfaces are involved. In a conversational interface,
the input to a process has to be defined and refined incrementally as part of the proc-
ess execution [28]. The unpredictability of the input makes it hard to precisely deter-
mine the execution order of activities during the modeling phase. For example,
Zimmermann et al. [28] reported difficulties in designing conversational interfaces in
a large order management process using BPEL [9]. However, an information-centric
model of a process naturally supports such constraints because it models the business
process as business entity lifecycles, and the set of client interactions that move a
business entity though its lifecycle becomes a conversation.

Information-centric models of business processes have important implications with
respect to implementations of business process management systems. Activity-centric
models such as BPEL [9] and Event-driven Process Chains (EPC) [24] are executed
by flow-driven workflow systems. In such systems, the process execution complexity
can be classified into three types: control-flow complexity, data-flow complexity, and
resource complexity [10]. Typically, the complexity increases rapidly as the number
of control nodes (e.g. Pick, Flow and Switch nodes in BPEL) increases [10], thus se-
verely impacting the scalability of this approach. In contrast, information-centric
models enable the execution of the process as a set of communicating finite state ma-
chines, which significantly improves process execution efficiency [21].

44 S. Kumaran, R. Liu, and F.Y. Wu

The advantages of a modular design in building complex systems are well known
[4], but the challenge lies in identifying the right modules. Business entities provide a
natural way to modularize a business process management system. Each module
implements the behavior of a business entity as a state machine and manages the in-
formation entities associated with that business entity. This approach to modulariza-
tion leads to a new way to decompose business processes and implement them using
service oriented architecture (SOA) [11]. With increasing industrialization of services,
companies tend to decompose their business processes for selective outsourcing, se-
lective automation, or restructuring to create decoupled composite business services
which may be flexibly integrated to support end-to-end business processes [16].
Therefore, there is a need for a systematic way for companies to analyze and decouple
their processes. Our algorithm does precisely this analysis and decoupling. Intuitively,
each business entity along with its state machine defines a decoupled, composite
business service [11]. In addition, service interfaces can be derived from the connec-
tions between business entities and the communication between these entities can be
implemented as service invocations. For example, in Fig. 8, a company can define the
claim portion as the core process which drives customer value, but outsource the
payment portion. Both claim and payment may now be implemented using business
entities as composite business services and the end-to-end claim business process can
be realized via service invocations on these entities. The details about implementing
information-centric business processes using SOA principles can be found in [8].

5 Related Work

Recently, information-centric modeling has become an area of growing interest. Nigam
and Caswell [22] introduced the concept of business artifacts and information-centric
processing of artifact lifecycles. Kumaran et al. [17] developed adaptive business
documents as the programming model for information-centric business processes and
this model later evolved into adaptive business objects [21]. Further studies on busi-
ness artifacts and information-centric processes can be found in [6, 7, 8, 15]. [6] de-
scribes a successful business engagement which applies business artifact techniques to
industrialize discovery processes in pharmaceutical research. More engagements using
information-centric modeling can be found in [8]. Liu et al. [15] formulated nine com-
monly used patterns in information-centric business operation models and developed a
computational model based on Petri Nets. [7] provides a formal model for artifact-
centric business processes with complexity results concerning static analysis of the se-
mantics of such processes. While previous work mainly focuses on completing the
framework of information-centric process modeling from theoretical development to
practical engagements, our work bridges the gap between activity-centric and informa-
tion-centric models and shows the duality between them.

Other approaches related to information centric modeling can be found in [1, 25].
[1] provides a case-handling approach where a process is driven by the presence of
data objects instead of control flows. A case is similar to the business entity concept
in many respects. In [25], document-driven workflow systems are designed based on
data dependencies without the need for explicit control flows. In this paper, in addi-
tion to tracking the behavior of data objects, we are interested in their deep structure.

 On the Duality of Information-Centric and Activity-Centric Models 45

Another related thread of work is the use of state machines to model object lifecy-
cles. Industries often define data objects and standardize their lifecycles as state
machines to facilitate interoperability between industry partners and enforce legal
regulations [23]. [18] gives a technique to generate business processes which are
compliant with predefined object lifecycles. Instead of assuming predefined business
objects, our approach discovers business entities from process models and then de-
fines their lifecycles as an alternative representation of process models. In addition,
event-driven process modeling, for example, Event-driven Process Chains (EPC)
[24], also describes object lifecycles glued by events, such as “material in stock”. Our
approach in this regard is also event-driven, as each business entity state can be
viewed as an event. However, EPC is still an activity-centric approach as objects are
added to functions as inputs or outputs and an event can be defined concerning a
group of objects.

Some other notable studies that are related to our work are in the area of process
decomposition and service oriented architecture. Basu and Blanning [5] presented a
formal analysis of process synthesis and decomposition using a mathematical struc-
ture called metagraph. This study gives three useful criteria: full connectivity, inde-
pendence, and redundancy, for examining process synthesis and decomposition.
However, the metagraph approach is not applicable to process models, such as the one
shown in Fig. 6, which contains many cycles when formulated as a metagraph.

6 Conclusion and Future Work

In this paper, we have presented an approach to discovering business entities from ac-
tivity-centric process models and transforming such models into information-centric
business process models. An algorithm was provided to achieve this transformation
automatically. We illustrated this approach with a comprehensive example and tested
it using reference processes from the insurance industry.

Our approach provides an alternative way to implement activity-centric process
models. Instead of transforming them into BPEL processes or workflows, our approach
generates information-centric models from them and implements these models using the
Model-Driven Business Transformation Toolkit [21], thereby improving both the un-
derstandability of process models and their execution efficiency. Additionally, this ap-
proach provides a new way to decompose business processes into connected business
entities, each of which can be implemented as a business service using SOA principles.

We are currently developing a tool based on this algorithm and applying this ap-
proach to best practice processes in the IT service delivery industry. We expect our
future work to extend this algorithm to other types of process models, including
BPEL and EPC models. Another research direction is to relax the concept of domina-
tion so that business entities can be discovered from models with incomplete or incor-
rect specifications of input or output information entities.

Acknowledgments. The authors thank Kumar Bhaskaran, David Cohn, Anil Nigam,
John Vergo and other colleagues for their helpful discussion and comments.

46 S. Kumaran, R. Liu, and F.Y. Wu

Reference

1. Aalst, W.M.P., Weske, M., Grunbauer, D.: Case handling: a new paradigm for business
process support. Data and Knowledge Engineering 53, 129–162 (2005)

2. Agrawal, R., Imielinski, T., Swami, A.: Mining Association Rules Between Sets of Items in
Large Database. In: Proceedings of ACM-SIGMOD 1993, May 1993, pp. 207–216 (1993)

3. Alonso, G., Agrawal, D., El Abbadi, A., Mohan, C.: Functionalities and Limitations of
Current Workflow Management Systems. IEEE Expert 12, 5 (1997)

4. Baldwin, C.Y., Clark, K.B.: Design Rules. The Power of Modularity, vol. 1. MIT Press,
Cambridge (2000)

5. Basu, A., Blanning, R.W.: Synthesis and Decomposition of Processes in Organizations. In-
formation Systems Research 14(4), 337–355 (2003)

6. Bhattacharya, K., Guttman, R., Lyman, K., Heath, I.F.F., Kumaran, S., Nandi, P., Wu, F.,
Athma, P., Freiberg, C., Johannsen, L., Staudt, A.: A model-driven approach to industrial-
izing discovery processes in pharmaceutical research. IBM Systems Journal 44(1), 145–
162 (2005)

7. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards Formal Analysis of Arti-
fact-Centric Business Process Models. In: Alonso, G., Dadam, P., Rosemann, M. (eds.)
BPM 2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

8. Bhattacharya, K., Caswell, N., Kumaran, S., Nigam, A., Wu, F.: Artifact-centric Opera-
tonal Modeling: Lessons learned from engagements. IBM Systems Journal 46(4) (2007)

9. BPEL, Business Process Execution Language for Web Services, version 1.1, joint specifi-
cation by BEA, IBM, Microsoft, SAP and Siebel Systems (2003)

10. Cardoso, J.: Complexity Analysis of BPEL Web Processes. Software Process: Improve-
ment and Practice Journal 12, 35–49 (2007)

11. Ferguson, D.F., Stockton, M.L.: Service-oriented architecture: programming model and
product architecture. IBM Systems Journal 44(4), 753–780 (2005)

12. Hammer, M.: Deep change: How operational innovation can transform your company.
Harvard Business Review, 84–93 (April 2004)

13. IBM Insurance Application Architecture (IAA), version 7.1 (2004), http://www-
03.ibm.com/industries/financialservices/doc/content/solution/278918103.html

14. Kumaran, S.: Model Driven Enterprise. In: Proceedings of Global Integration Summit
2004, Banff, Canada (2004)

15. Liu, R., Bhattacharya, K., Wu, F.Y.: Modeling Business Contexture and Behavior Using
Business Artifacts. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.) CAiSE 2007 and WES
2007. LNCS, vol. 4495, pp. 324–339. Springer, Heidelberg (2007)

16. Karmarkar, U.: Will You Survive the Services Revolution? Harvard Business Re-
view 82(6), 100–107 (2004)

17. Kumaran, S., Nandi, P., Heath, T., Bhaskaran, K., Das, R.: ADoc-oriented programming.
In: Symposium on Applications and the Internet (SAINT), pp. 334–343 (2003)

18. Küster, J.M., Ryndina, K., Gall, H.: Generation of Business Process Models for Object
Life Cycle Compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 165–181. Springer, Heidelberg (2007)

19. Mendling, J., Reijers, H.A., Cardoso, J.: What Makes Process Models Understandable? In:
Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 48–63.
Springer, Heidelberg (2007)

20. Modarres, M.: Predicting and Improving Complex Business Processes: Values and Limita-
tions of Modeling and Simulation Technologies. In: Winter Simulation Conference (2006)

21. Nandi, P., Kumaran, S.: Adaptive business objects – a new component model for business
integration. In: Proceedings of International Conference on Enterprise Information Sys-
tems, pp. 179–188 (2005)

 On the Duality of Information-Centric and Activity-Centric Models 47

22. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification.
IBM Systems Journal 42(3), 428–445 (2003)

23. Ryndina, K., Küster, J.M., Gall, H.: Consistency of Business Process Models and Object
Life Cycles. In: Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 80–90. Springer,
Heidelberg (2007)

24. Scheer, A.W.: Business Process Engineering: Reference Models for Industrial Enterprises,
2nd edn. Springer, Heidelberg (1997)

25. Wang, J., Kumar, A.: A Framework for Document-Driven Workflow Systems. In: Pro-
ceedings of Business Process Management, pp. 285–301 (2005)

26. WfMC, The Workflow Reference Model, Issue 1.1, Document Number TC00-1003,
Work-flow Management Coalition, Winchester, UK (1995)

27. Whitehead, E.J.: Uniform comparison of data models using containment modeling. In:
Proceedings of the thirteenth ACM conference on Hypertext and hypermedia, Maryland,
USA, pp. 182–191 (2002)

28. Zimmermann, O., Doubrovski, V., Grundler, J., Hogg, K.: Service-oriented architecture
and business process choreography in an order management scenario: rationale, concepts,
lessons learned. In: Proc. of the 20th SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications, pp. 301–312 (2005)

A New Paradigm for the

Enactment and Dynamic Adaptation of
Data-Driven Process Structures�

Dominic Müller1,2, Manfred Reichert1,3, and Joachim Herbst2

1 Institute of Databases and Information Systems, Ulm University, Germany
{dominic.mueller,manfred.reichert}@uni-ulm.de

2 Dept. GR/EPD, Daimler AG Group Research & Advanced Engineering, Germany
joachim.j.herbst@daimler.com

3 Information Systems Group, University of Twente, The Netherlands

Abstract. Industry is increasingly demanding IT support for large en-
gineering processes, i.e., process structures consisting of hundreds up to
thousands of processes. Developing a car, for example, requires the co-
ordination of development processes for hundreds of components. Each
of these development processes itself comprises a number of interdepen-
dent processes for designing, testing, and releasing the respective compo-
nent. Typically, the resulting process structure becomes very large and
is characterized by a strong relation with the assembly of the product.
Such process structures are denoted as data-driven. On the one hand,
the strong linkage between data and processes can be utilized for auto-
matically creating process structures. On the other hand, it is useful for
(dynamically) adapting process structures at a high level of abstraction.
This paper presents new techniques for (dynamically) adapting data-
driven process structures. We discuss fundamental correctness criteria
needed for (automatically) detecting and disallowing dynamic changes
which would lead to an inconsistent runtime situation. Altogether, our
COREPRO approach provides a new paradigm for changing data-driven
process structures at runtime reducing costs of change significantly.

Keywords: Process Coordination, Data-driven Process, Process
Adaptation.

1 Introduction

In the engineering domain, the development of complex products (e.g., cars or
airplanes) necessitates the coordination of thousands of processes (e.g., to de-
sign, test and release each product component). These processes and the many
dependencies between them form complex and large process structures. While
the single processes are usually implemented within different IT systems, the

� This work has been funded by Daimler AG Group Research and has been conducted
in the COREPRO project (http://www.uni-ulm.de/dbis)

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 48–63, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A New Paradigm for the Enactment 49

design, coordination, and maintenance of process structures are only rudimen-
tarily supported by current process management technology [1]. In most cases,
the different processes have to be manually composed and coordinated.

Another challenge constitutes the dynamic adaptation of process structures
during runtime. When adding or removing a car component (e.g., a navigation
system), for example, the process structure has to be adapted accordingly; i.e.,
processes for designing, testing and releasing affected product components have
to be manually added or removed. Note that this also might require the insertion
or removal of their synchronization dependencies with respect to other processes
from the total process structure. Manually modeling and adapting large process
structures requires profound process knowledge and is error-prone as well. In-
correctly specified dependencies within a process structure, however, can cause
delays or deadlocks blocking the execution of the whole process structure.

Example 1. To identify practical requirements, we investigated a variety of pro-
cess structures in the automotive industry. As example consider release man-
agement (RLM) processes for electrical systems in a car. The (product) data
structure (or configuration structure) for the total electrical system consists of
up to 300 interconnected components which are organized by using a product data
management system. The goal of RLM is to systematically test and release the
different product components at a specific point in time, for example, when a
certain milestone is reached. To verify the functionality of the electrical system,
several processes (e.g., testing and release) have to be executed for each electrical
(sub-)component and need to be synchronized with the processes of other compo-
nents. This is needed, for example, to specify that an electrical system can only be
tested if all its components are individually tested before. Altogether, more than
1300 processes need to be coordinated for releasing the total electrical system [2].

Interestingly, large process structures often show a strong linkage with the as-
sembly of the product; i.e., the processes to be coordinated can be explicitly
assigned to the different product components (cf. Example 1). Further, process
synchronizations are correlated with the relations existing between the prod-
uct components. In the following, we denote such process structures as data-
driven. COREPRO utilizes the information about a product, its components
and the component relations. In particular, COREPRO provides techniques for
the modeling, enactment, and (dynamic) adaptation of process structures based
on given (product) data structures. For example, the assembly of the (product)
data structure can be used to automatically create the related process structure
[2]. We have shown that COREPRO reduces modeling efforts for RLM process
structures (cf. Example 1) by more than 90% [2].

When changing a (product) data structure at buildtime, the related process
structure can be automatically re-created. However, long running process struc-
tures also need to be adapted during runtime. Then, it does not make sense to
re-create the process structure from scratch and to restart its execution from the
beginning. Instead, in-progress process structures must be adaptable on-the-fly,
but without leading to faulty synchronizations like deadlocks. A particular chal-
lenge is to enable users to adapt complex process structures. When the product

50 D. Müller, M. Reichert, and J. Herbst

structure is changed, we can take benefit from the strong linkage between pro-
cess structure and (product) data structure again. In COREPRO, data structure
changes are automatically translated into adaptations of the corresponding pro-
cess structure. Thus, changes of data-driven process structures can be introduced
by users at a high level of abstraction, which reduces complexity as well as cost of
change significantly. Note that this is far from being trivial considering the large
number of processes to be coordinated and their complex interdependencies.

In this paper we introduce the COREPRO runtime framework, which addresses
the aforementioned requirements. COREPRO enables enactment of data-driven
process structures based on a precise and well-defined operational semantics. We
show how to translate (dynamic) changes of a currently processed data structure
into corresponding adaptations of the related process structure. Finally, we intro-
duce consistency criteria in order to ensure that dynamic adaptations of a pro-
cess structure lead to a correct process structure again. Altogether, COREPRO
addresses the full life cycle of data-driven process structures including modeling,
enactment, and (dynamic) adaptation phases.

Sect. 2 describes the COREPRO modeling approach for data-driven process
structures and Sect. 3 specifies operational semantics for process structures. Sect.
4 shows how to adapt data-driven process structures and presents methods for
detecting invalid changes that would lead to incorrect runtime situations. We
discuss related work in Sect. 5 and conclude with a summary in Sect. 6.

2 COREPRO Modeling Framework

The COREPRO modeling framework allows to create data-driven process struc-
tures (cf. Fig. 1d and f) [2]. For this, we consider the sequence of states a (data)
object goes through during its lifetime. A product component from Example 1
passes states like designed, tested and released. Generally, state transitions are
triggered by executing processes modifying the respective object (e.g., design,
test or release). An object life cycle (OLC) constitutes an integrated and user-
friendly view on the states of a particular object and its manipulating processes
(cf. Fig. 1d and f). Regarding data-driven process structures, OLC state transi-
tions do not only depend on the processes associated with the respective object,
but also on the states and state transitions of other objects. As example consider
a total car, which can be only tested, if all sub-systems (e.g., engine, chassis and
navigation system) are tested before. By connecting the states of different OLCs,
a logical view on a data-driven process structure results (cf. Fig. 1d and f).

Example 2. The total electrical system of a car (cf. Example 1) differs from car
series to car series (e.g., series with and without navigation system). The strong
relationship between data structures and process structures implies that differ-
ent (product) data structures (related to the different series) lead to different
RLM process structures (e.g., process structures with and without development
processes for the navigation system). Each of these process structures then rep-
resents one instance of the total development process for a particular car series.

A New Paradigm for the Enactment 51

Fig. 1. Creation of Data-Driven Process Structures

Modeling OLCs for hundreds of objects (cf. Example 1) and linking them man-
ually would be too expensive. Therefore, COREPRO follows a model-driven (re-
spectively data-driven) approach by differing between model and instance level.
First, for objects with same behavior, we model only one OLC. This OLC can
be instantiated multiple times. Second, we utilize the close relationship between
data and process structure when connecting different OLCs. Our case studies
have shown that semantic relations between data objects can be mapped to
dependencies between particular states of OLCs. Based on object (types) and
relations between them, process structures can be specified at model level and
then be automatically instantiated for every given data structure [2].

2.1 Defining Object Types and Object Life Cycles

Fig. 1 shows the steps necessary to model and instantiate both data and process
structures. Steps 1 + 2 deal with the creation of the model level, Step 3 + 4 with
the definition of the instance level. Step 1 is related to the specification of the

52 D. Müller, M. Reichert, and J. Herbst

data model, which defines object and relation types, and therefore constitutes the
schema for instantiating concrete (product) data structures. In our context, an
object type represents a class of objects within the data model (cf. Fig. 1a), which
then can be instantiated multiples times. Fig. 1e shows a data structure which
comprises one instance of type System and three instances of type Subsystem.

Step 2 is related to the modeling of object life cycles (OLC) and their depen-
dencies. An OLC defines the states through which objects of the respective type
go during their life time. To capture the dynamic aspects of subsystems like
TV tuner and Sound System, the process designer models only one OLC for
the object type Subsystem. COREPRO maps OLCs to state transition systems
whose states correspond to object states and whose (internal) state transitions
are associated with object-related processes. A state transition does not fire im-
mediately when its source state becomes activated, but waits until its associated
process has completed. In Fig. 1b, for example, the OLC for object type System
starts with initial state S, then passes state S1 followed by S2 or S3, and finally
completes in state E. The internal state transition from S to S1 takes place when
finishing process P1. Note that the procedures for modifying the different objects
might slightly differ (e.g., different testing procedures for Sound System and TV
Tuner). If the OLCs are identical for such objects, this behavior can be realized
as variants within the processes to be executed. Non-deterministic state tran-
sitions are realized by associating different internal state transitions with same
source state and process, and by adding a process result as condition (e.g., P2 in
Fig. 1b). This is required, for example, when associating a testing process with
a component, which completes either with result correct or faulty. Depending
on the process result, exactly one internal state transition is chosen and its tar-
get state becomes activated (cf. S2 and S3 in Fig. 1b). The other internal state
transitions are disabled (cf. Sect. 3).

2.2 Modeling Object Relations and OLC Dependencies

Defining the dynamic behavior for each object type by modeling its OLC is
only half of the story. We also have to deal with the state dependencies existing
between the OLCs of different objects types (cf. Example 1). In COREPRO, an
OLC dependency is expressed by external state transitions between concurrently
enacted OLCs. Like an internal state transition within an OLC, an external
state transition can be associated with the enactment of a process; i.e., we do
not only support event-based synchronizations, but also allow for the enactment
of a transition process (e.g., send email or install). Regarding the two OLCs
modeled in Step 2 from Fig. 1b, for example, we associate the external state
transition between state S3 (of the OLC for type System) and state S5 (of the
OLC for type Subsystem) with process P. To benefit from the strong linkage
between object relations and OLC dependencies, external state transitions are
mapped to object relation types. Regarding our example, the aforementioned
external state transition is linked to the hasSubSys relation connecting the two
object types System and Subsystem. This information can later be utilized for
automatically creating process structures out of given data structures.

A New Paradigm for the Enactment 53

The OLCs of all object types and the external state transitions of all relation
types form the Life Cycle Coordination Model (LCM) (cf. Fig. 1b). The LCM
describes the dynamic aspects of the data model and constitutes the scheme
for creating data-driven process structures. This is a unique characteristic of
COREPRO allowing for the data-driven configuration of process structures. In
particular, different process structures (cf. Fig. 1d and Fig. 1f) can be automat-
ically created by instantiating respective data structures (cf. Example 2).

2.3 Generating Data-Driven Process Structures

Picking up the scenario from Example 2, COREPRO allows to instantiate dif-
ferent data structures (cf. Fig. 1c and 1e) and to automatically create related
process structures (cf. Fig. 1d and 1f). A data-driven process structure includes
an OLC instance for every object from the data structure. This can be seen in
Fig. 1e (data structure) and Fig. 1f (related process structure) where the numbers
of objects and OLC instances correspond to each other. Likewise, as specified in
the LCM, for each relation in the data structure external state transitions are
inserted into the process structure; e.g., for every hasSubsystem relation in the
data structure from Fig. 1e, associated external state transitions (with process
P) are inserted. As result we obtain an instantiated executable process structure
describing the dynamic aspects of the given data structure (cf. Fig. 1d and 1f).

To ensure a correct dynamic behavior, created process structures must be
sound. A process structure is considered as being sound iff it always terminates
properly [3]. Termination of the process structure will be guaranteed if every
OLC is sound and there are no cycles caused by external state transitions. An
OLC, in turn, is sound (1) if every state can be activated by firing a sequence
of state transitions beginning with the start state of the OLC and (2) if the
end state of the OLC can be activated by firing a sequence of state transitions
beginning from every state within the OLC; further, no state transition must be
processing when reaching the OLC end state (i.e., no process is running). It is
important to mention that COREPRO allows for checking soundness on model
level, i.e., we can ensure that each process structure derived from a sound LCM
is sound as well [2]. Thereby, efforts for soundness checks do not rise with the size
of the instantiated process structure but only depend on the size of the LCM.

3 Dynamic Behavior of Data-Driven Process Structures

To correctly enact data-driven process structures, a precise and formal opera-
tional semantics is needed. This is also fundamental with respect to the analysis
of the correctness and consistency of process structures when dynamically chang-
ing them (cf. Sect. 4). Therefore, COREPRO uses different markings to reflect
the runtime status of an enacted process structure. We annotate both, states and
(internal as well as external) state transitions with respective markings each of
them representing their current runtime status. Fig. 2 shows an example where
markings describe a possible runtime status of the process structure depicted

54 D. Müller, M. Reichert, and J. Herbst

S EP1 S1 S2 P3
System: Navigation A

S3

P2

P4

[1]

[0]
S4 P5

S E... S5

System: Main Unit

...

P

Disabled

Done

Fired

State
Transition

Skipped

Processing

Activated

Fig. 2. Process Structure from Fig. 1d with Markings During Runtime

in Fig. 1d. By analyzing the state markings from Fig. 2, we can immediately
figure out whether a particular state of a process structure has been already
passed (e.g., state S1), is currently activated (e.g., state S3), has been skipped
(e.g., state S2), or has not been reached yet (e.g., state S4). Transition mark-
ings, in turn, indicate whether the associated process has been started, skipped
or completed. As we will see later, the use of markings eases consistency checks
and status adaptations in the context of dynamic changes of process structures
significantly. Therefore, markings of passed regions are preserved during runtime.

Altogether, the runtime status of a process structure is determined by the
current markings of its constituent OLCs and (external) state transitions. We
first introduce the operational semantics of single OLCs and then the one of the
external state transitions needed to synchronize the different OLCs.

3.1 Operational Semantics of Single OLCs

Each state of an (instantiated) OLC has one of the markings NotActivated,
Activated, Skipped, or Done. Fig. 3a shows the conditions for setting these
markings. Initial marking of a state is NotActivated. An OLC state becomes ac-
tivated after one incoming internal state transition has fired and all external state
transitions are either fired or disabled. To realize this, marking NotActivated
is subdivided into IntActivated and ExtActivated (cf. Fig. 3a). A state will
become Activated if both submarkings, IntActivated and ExtActivated are
reached. At the same time, the preceding state within the OLC is set to Done.
This excludes concurrently activated states within a single OLC.

The dynamic behavior of OLCs is governed by internal state transitions. An
internal state transition enters marking Processing and its associated process
is started, when the marking of its source state switches to Activated (cf. Fig.
3b). When the associated process completes, the marking of the internal state
transition either turns to Fired or Disabled depending on the result of the pro-
cess (cf. Sect. 2.1). At the same time, the target state of the respective transition
enters submarking IntActivated (cf. Fig. 3a).

When a transition is disabled, deadpath elimination takes place. Its target
state is skipped, and succeeding internal state transitions are disabled as well.

A New Paradigm for the Enactment 55

[One Following
State

Activated] Done

Skipped

[Process Structure
Terminated]

[Process Structure
Terminated]

[Matching
process result]

[Source state Activated]

Waiting

Fired

Disabled[Source state Skipped]
[Mismatching

process result]

[Process Structure
Terminated]

Processing

[No Process associated]

[Process
completed]

Activated

NotActivated
[All incoming ext.

transitions
Fired or Disabled]

ExtActivated

[One incoming int.
Transition Fired]

IntActivated
[All incoming int. state
Transitions Disabled]

[Process Structure
Terminated]

[Process Associated]
/ Enable Process

Source
State

[Result 1]Process Target
State 1
Target
State 2

[Result 2]

P State P

...

...

State

Internal State Transition

Outgoing
external state

transitions

P

P

Outgoing
internal state

transition

Incoming
internal state

transition

Internal state transition with
specified process result

Context Markings

Context Markings

Incoming
external state

transitions

a

b

Fig. 3. Behavior of Object States and Internal State Transitions in OLCs

This is continued until the end of the dead path is reached; i.e., until a state
is reached which has at least one incoming internal state transition not marked
as Disabled (cf. Fig. 3b). Deadpath elimination contributes to avoid deadlocks
caused by external state transitions which are waiting for activation (cf. Fig. 2,
external state transition with process P). The described OLC semantics has to
be extended in conjunction with loops. Due to lack of space, however, we cannot
treat loop backs in this paper.

3.2 Synchronization of OLCs

As mentioned, concurrent processing of objects is a fundamental requirement in
engineering processes. At the level of a single OLC, concurrency is encapsulated
within the transition processes (e.g., implemented in a workflow management or a
product data management system). The proper synchronization of concurrently
enacted processes within different OLCs is based on external state transitions.
According to internal state transitions, external state transitions are marked as
Processing (i.e., their processes are started) when their source state becomes
Activated (cf. Fig. 3 and Fig. 4). When the associated process is completed,
in turn, the external state transition is marked as Fired. The target state of
the fired transition can only become Activated if one of its incoming internal
transitions has already been marked as Fired and all external state transitions
are marked either as Fired or Disabled (cf. Fig. 3a and Fig. 4).

[Source state Activated]

Waiting

Fired
[Process Structure

Terminated]

[Process completed]Processing

[No Process associated]

Disabled
[Source state Skipped or target state Skipped]

[Process Structure
Terminated][Target state Skipped]

/ Terminate Process

[Process associated]
/ Enable ProcessSource

State

Target
State

External State Transition

OLC A

OLC B
P

External state
transition

... ...

... ...

Context Markings

Fig. 4. Dynamic Behavior of External State Transitions Between OLCs

56 D. Müller, M. Reichert, and J. Herbst

External state transitions whose source state is Skipped become Disabled.
Otherwise the external state transition would remain marked as Waiting which
could lead to a deadlock within its target OLC. Note that a disabled external
state transition does not cause any state change within its source or target state.

An external state transitions whose target state becomes Skipped, has to
be Disabled as well. First, the external state transition does not influence the
target state because it has already been Skipped. Second, we have to ensure
proper termination of the process structure. It terminates after all OLCs have
reached their end states (cf. Section 2.3). In particular, soundness necessitates
that no constituent process is running (i.e., no transition is processing) then (cf.
Sect. 2.3). Therefore, we have to avoid external state transitions whose processes
might still be enacted while their target OLC have already reached the end state.

4 Changing Data-Driven Process Structures

So far, we have investigated the modeling, instantiation and enactment of data-
driven process structures. To cope with the flexibility requirements of engineering
processes, we further have to look at dynamic process structure changes.

Example 3. The creation, testing and release of the electrical system of a car
takes up to several weeks. Meanwhile, changes of the electrical system, such as
the addition of new objects to the electrical system, occur often (e.g., adding a
new TV Tuner subsystem to the data structure from Fig. 1c). Consequently, the
related process structure needs to be adapted (cf. Fig. 1d); i.e., we have to add
the processes (e.g., testing) for the new component to the process structure and
must synchronize them with the processes of the already existing components.

Directly changing the process structure would not be a good solution due its
size and complexity. Instead, users (e.g., engineers) must be able to perform the
changes at a high level of abstraction. In COREPRO this is accomplished by
adapting the respective data structure (e.g., describing the electrical system)
and by translating these changes into corresponding adaptations of the process
structure. Again we utilize the strong relationship between data and process
structure to realize this. Furthermore, dynamic changes must not violate sound-
ness of the process structure. To ensure this, we have to constrain changes to
certain runtime states (i.e., markings) of the process structure.

First, we provide basic operations for static changes of data as well as pro-
cess structures (i.e., we do not take runtime information into account). That
includes mechanisms for transforming basic change operations applied to a data
structure into corresponding adaptations of the process structure. Second, we
define marking-based constraints for these change operations in order to ensure
soundness of the modified process structure afterwards.

4.1 Static Changes of Data-Driven Process Structures

Basic operations enable the change of existing data and process structures. Con-
cerning data structure changes, COREPRO allows to insert objects and object

A New Paradigm for the Enactment 57

relations into a given data structure as well as to remove them (for an overview
see the left-hand side of Fig. 5). The offered set of operations is complete; i.e.,
it allows the engineer to transfer a given data structure into an arbitrary other
data structure, which constitutes an instance of the underlying data model (cf.
Section 2.1). Regarding adaptations of a process structure, COREPRO provides
basic operations for inserting and deleting OLC instances as well as OLC instance
dependencies (for an overview see the right-hand side of Fig. 5). In particular,
we focus on the coordination and synchronization of different OLC instances
and do not consider (dynamic) changes of the internal behavior of a single OLC
instance. In this paper, we describe only basic operations for adapting data and
process structures and omit a discussion on high-level change operations.

As motivated, data structure changes should be automatically transformed
into corresponding process structure changes in order to adapt the overall engi-
neering process to the new (product) data structure. COREPRO accomplishes
this based on the information specified at the model level; i.e., we use the life
cycle coordination model (LCM) which defines the OLC for each object type
and the OLC dependency for each object relation (cf. Section 2.2 and Fig. 1b).

First, we consider the addition of a new object x (with type ot) to a given
data structure. To realize this change, the addObject operation (cf. Fig. 5a)
can be used. This operation, in turn, is translated into an addOLC operation (cf.
Fig. 5a) which inserts a corresponding OLC instance to the process structure.
The OLC instance to be added is derived from the OLC linked to object type
ot within the life cycle coordination model (LCM). When adding a new object
x to a data structure, its relations to other objects can be specified using the
addRelation operation (cf. Fig. 5b). The newly added relations are then auto-
matically translated into OLC dependencies of the corresponding process struc-
ture. This is realized based on the addOLCDependency operation, which inserts
corresponding external state transitions between the involved OLC instances.
Again, information from the life cycle coordination model is used to correctly
transform the newly added object relation to a corresponding OLC dependency.

To remove an object relation r from a data structure, we provide operation
removeRelation. It is mapped to operation removeOLCDependency for the pro-
cess structure, which removes all external state transitions associated with the
relation r (cf. Fig. 5c). Removal of an isolated object (i.e., relations to other
objects have been already removed) from a data structure is mapped to the
removal of the associated OLC instance from the process structure (cf. Fig. 5d).

4.2 Dynamic Changes of Data-Driven Process Structures

As motivated, data-driven process structures have to be dynamically adapted
when the related (product) data structure is changed. This section considers
dynamic process structure changes and deals with relevant issues.

A key challenge is to preserve soundness of the overall process structure when
dynamically adapting it. As long as we only consider static changes (cf. Section
4.1) soundness of an automatically changed process structure can be ensured if
the underlying LCM (e.g., Fig. 1b), from which the process structure is derived,

58 D. Müller, M. Reichert, and J. Herbst

Object 1

Object 2

Object 1

Object 2

Object 1

Object 2

Object 1

Object 2

NEW

addRelation(objectFrom,
objectTo, relationType)

Inserts a new relation (with the
specified type) between objectFrom
and objectTo to the data structure.

addObject(name, objectType)

Adds a new object (with the
specified type) to the data structure.

removeRelation(objectFrom,
objectTo, relationType)

Removes the relation between
objectFrom and objectTo (with the
specified type) from the data structure.

removeObject(object)

Removes the object from the data
structure.

Data Structure Change Operation Process Structure Change Operation*

NEW

NEWNEWNEW

addOLCDependency(objectFrom,
objectTo, relationType)

Adds the ext. state transitions associated
with the given relation type between the
OLCs for objectFrom and objectTo.

addOLC(object)

Adds an OLC for the given object to the
process structure.

removeOLCDependency(objectFrom,
objectTo, relationType)

Removes the ext. state transitions asso-
ciated with the given relation type between
the OLCs for objectFrom and objectTo.

removeOLC(object)

Removes the OLC for the given object
from the process structure.

NEW

*Processes associated with the transitons are not displayed for the sake of clarity

Mapped to

a

b

c

d

Fig. 5. Data Structure Changes and Related Process Structure Adaptations

is sound. The COREPRO modeling tool always checks this before an LCM can
be released. When adapting data and process structures during runtime, we
have to define additional constraints with respect to the status of the process
structure in order to guarantee soundness afterwards. In particular, the addition
or removal of external state transitions must not result in deadlocks or livelocks.
Note that this problem is related to correctness issues discussed in the context
of dynamic and adaptive workflows [4,5]. Here, one has to decide whether a
structural change can be applied to a running workflow instance or not. One
correctness notion used in this context is compliance [5]. Simply speaking, a
workflow instance is compliant with a structurally modified workflow schema if
its current execution history is producible on the new workflow schema as well.

In principle, the compliance criterion could be applied to process structures as
well. COREPRO logs the events related to the start and completion of the pro-
cesses coordinated by the process structure in an execution history. However, the
compliance criterion is too restrictive for data-driven process structures. Con-
sider, for example, the dynamic removal of an object from a data structure; e.g.,
an already designed component might have to be removed from the electrical sys-
tem when a problem is encountered during testing. Respective runtime changes
often become necessary in practice and must be supported, even if the OLC
instance related to the data object has been already started or completed (i.e.,
corresponding entries were created in the execution log of the process structure).
For this case, compliance would be violated.

COREPRO uses specific correctness constraints to adequately deal with dy-
namic changes. We utilize the trace-oriented markings of OLC states and the
semantics of the described change operations when defining these constraints.

A New Paradigm for the Enactment 59

First, COREPRO allows to delete an already started or finished OLC instance
olc, together with its external state transitions, as long as the execution of other
OLC instances has not yet been affected by olc. This constraint will be satisfied
if the target states of all outgoing external state transitions of olc have not
yet been activated. In particular, this ensures that the removal of olc will not
have any effect on other OLC instances, and therefore does also not influence
soundness of the overall process structure. Note that this exactly reflects reality;
i.e., as long as the removal of a data object has no effects on the status of other
data objects (i.e., on the states of their related OLC instance) the object and its
corresponding OLC (with its external transitions) can be removed.

Second, we constrain the addition of new OLC instances and their depen-
dencies to other OLC instances. In particular, it must not be allowed to add
an external state transition with the new OLC as source if the target state
(of another OLC instance) is already marked as ACTIVATED or DONE. Otherwise
soundness of the overall process structure would be violated. Apart from this,
the constraint makes sense from a practical perspective; e.g., it must not be pos-
sible to insert untested components into a (product) data structure and relate
them to electrical systems which have already been released.

Process structures can become very large. Therefore one goal is to efficiently
check whether a dynamic change can be applied to a given process structure. It
is important to mention that the operations presented in Sect. 4.1 only modify
the process structure itself, but do not affect individual OLC instances (i.e.,
OLC states and internal state transitions are not changed by these operations).
Furthermore, when analyzing the change scenarios sketched above, we can see
that the applicability of a basic runtime change mainly depends on the markings
of the target states of the external state transitions to be added or deleted (either
explicitly or implicitly due to the deletion or addition of an OLC instance). Thus,
we can reduce efforts for constraint checking to the manipulated external state
transitions. More precisely, we consider the change regions defined by each of
these transitions. Such a region comprises the transition itself as well as its source
and target state. In principle, two fundamental issues emerge when dynamically
adding or deleting an external state transition:

1. May an external state transition be added or deleted when considering the
current marking of the states of its change region?

2. Which marking adaptations become necessary with respect to a change re-
gion when adding or removing the respective external state transition?

As example consider Fig. 6a which shows two concurrently executed OLC in-
stances OLC A and OLC B. Assume that an external state transition (with asso-
ciated process P) shall be dynamically added with S1 as source and S2 as target
state. First, COREPRO checks whether this change is possible considering the
current markings of the change region. Since the target state S2 of the respec-
tive external state transition has not yet been activated, the change is allowed
(cf. Fig. 6b). When applying it, in addition, the markings of the change region
have to be adapted to correctly proceed with the flow of control. In the given
example the newly added external state transition is automatically evaluated,

60 D. Müller, M. Reichert, and J. Herbst

Initial situation

OLC B

S2... ...

OLC A

S1... ...

OLC B

S2...

P

...

OLC A

S1... ...

a b

OLC B

S2...

P

...

OLC A

S1... ...

c

Insertion of external state transition
possible since target state is not yet

activated
Adjust status marking of external state

transition after insertion

NEW

Disabled

Done

Fired

State
Transition

Skipped

Processing

Activated

Fig. 6. Dynamic Addition of an External State Transition

which changes its marking from WAITING to PROCESSING; i.e., the process related
with the transition is instantiated and started (cf. Fig. 6c). Note that a dead-
lock would occur in the given scenario if the newly added transition had not
been marked as PROCESSING. As another example consider again Fig. 6a. If we
tried to add an external state transition with source state S2 and target state
S1 the change would be not allowed. Otherwise both OLC A and OLC B might be
completed before the process associated with the new external state transition
completes; i.e., soundness of the resulting process structure would be violated.

Generally, a structure change comprises multiple operations of which either all
or none of them have to be applied to the data and process structure. To enable
change atomicity and isolation, COREPRO allows to group change operations
within a change transaction. Removing an object, for example, might require the
removal of several relations associated with this object and finally the removal
of the object itself. Temporary inconsistencies might occur, but will not become
visible to other change transactions and users respectively.

4.3 Practical Impact

In the automotive domain, electrical systems comprise up to 300 components.
Related process structures have more than 1300 processes and 1500 process de-
pendencies [2]. We have already shown the need for dynamically adapting process
structures in this scenario. In practice, often more than 50 dynamic changes of
a process structure become necessary during its enactment (cf. Example 3). A
software error within a component (e.g., the Main Unit of the navigation sys-
tem), for example, requires the exchange of this component; i.e., a new version of
the component has to be constructed (cf. Fig. 7). When exchanging the compo-
nent, the related OLC has to be exchanged as well to ensure that the associated
processes can be correctly re-enacted. Whether the adaptation is possible or not
depends on the status of the process structure; e.g., if the Main Unit subsystem
has been already installed and the Testdrive process has already started, the
Main Unit subsystem must not be exchanged (cf. Fig. 7). COREPRO enables
engineers to adapt respective process structures by changing the (product) data
structure and by transforming these changes to the process structure.

A New Paradigm for the Enactment 61

Data Structure Data-driven Process Structure

TestS EConstructed...

Subsystem: Main Unit V1.0

Tested ...
Subsystem:

Main Unit V1.1
Subsystem:

Main Unit V1.0

Test S EConstructed...

Subsystem: Main Unit V1.1

Tested ...

Install
Subsystem

1) Removal of
Subsystem V1.0 from

the Data Structure

Install
Subsystem

2) Insertion of
Subsystem V1.1

into the Data Structure

State
Transition

System:
Navigation

TestdriveS Prepare
Prototype

System: Navigation

Tested ...Prepared

Changes Allowed as long as
State Prepared marked as

NotActivated

E

NEW

NEW

NEW

NEW

Data Structure Change Operations
startChanges;
removeRelation(Navigation, Main
Unit V1.0, hasConfiguration);
removeObject(Main Unit V1.0);
addObject(Main Unit V1.1,
Subsystem);
addRelation(Navigation, Main
Unit V1.1, hasConfiguration);
endChanges;

Disabled

Done

Fired

State

Transition

Skipped

Processing

Activated

Fig. 7. Release Management Process: Creation of a System Release

5 Related Work

At first glance, conventional approaches support modeling and coordination of
process structures. Choreography definition languages, for example, allow for the
activity-centered specification of the dependencies between (distributed) pro-
cesses [6]. Changes of process choreographies are discussed in [7,8]. The data-
driven derivation and change of process structures, however, is not considered.

An approach for enacting and adapting data-driven process structures is pre-
sented in [9]. Focus is on simple data structures (e.g., lists, sets). COREPRO,
by contrast, enables the definition and change of arbitrary complex data struc-
tures as well as automated creation of related process structures. Approaches for
deriving process structures from bills of material are described in [10,11]. While
[10] focuses on product-driven (re-)design of process structures based on design
criteria like time or cost, [11] discusses how to coordinate activities based on
object relations. The latter approach constitutes the basis of the Case Handling
paradigm [12]. The idea is to model a process (structure) by relating activities
to the data flow. The concrete activity execution order at runtime then depends
on the availability of data. Further approaches providing support for model-
ing process structures consisting of OLCs are presented in [13,14]. For example,
they enable the generation of activity diagrams from OLCs and vice versa. The
generic definition of data-driven process structures as well as their adaptation,
however, is not covered by the aforementioned approaches.

There exist approaches from the database area for describing object-oriented
data structures and their behavior [15,16]. They provide a rich set of elements
for modeling data structures and for mapping them to OLCs, but neglect en-
actment and dynamic changes. COREPRO does not focus on the data modeling
part for the following reason. In the engineering domain, data modeling (incl.
the expression of constraints and the avoidance of data inconsistencies) is usu-
ally done within a product data management system, which further provides
techniques for versioning and variant handling. Our data model constitutes a
simplified view on the PDM data model capturing the needs for coordinating
and dynamically adapting process structures.

62 D. Müller, M. Reichert, and J. Herbst

6 Summary and Outlook

IT support for enactment and consistent change of data-driven process structures
is a major step towards the use of process management technology in engineering
domains. COREPRO provides a new approach with respect to the automated
creation and data-driven adaptation of process structures during runtime. In par-
ticular, our approach reduces modeling efforts for large process structures and
ensures correct coordination of processes. Further, COREPRO enables adapta-
tions of process structures at both, build- and runtime at a high level of ab-
straction while it disallows dynamic changes of process structures which would
lead to an inconsistent runtime situation. Our case studies have shown that in
real world scenarios it might be necessary to apply changes even if they lead to
inconsistencies. Dealing with such situations requires extensive exception han-
dling techniques (e.g., backward jumps within OLCs) which are addressed by
COREPRO and will be presented in future publications.

References

1. Müller, D., Herbst, J., Hammori, M., Reichert, M.: IT Support for Release Man-
agement Processes in the Automotive Industry. In: Dustdar, S., Fiadeiro, J.L.,
Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 368–377. Springer, Heidelberg
(2006)

2. Müller, D., Reichert, M., Herbst, J.: Data-driven modeling and coordination of
large process structures. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I.
LNCS, vol. 4803, pp. 131–147. Springer, Heidelberg (2007)

3. Aalst, W.: Verification of workflow nets. In: Azéma, P., Balbo, G. (eds.) ICATPN
1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

4. Rinderle, S., Reichert, M., Dadam, P.: Flexible support of team processes by adap-
tive workflow systems. Distributed & Parallel Databases 16(1), 91–116 (2004)

5. Rinderle, S., Reichert, M., Dadam, P.: Correctness Criteria For Dynamic Changes
in Workflow Systems: A Survey. DKE 50(1), 9–34 (2004)

6. W3C: WS-CDL 1.0 (2005)

7. Rinderle, S., Wombacher, A., Reichert, M.: Evolution of process choreographies
in DYCHOR. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275, pp.
273–290. Springer, Heidelberg (2006)

8. Aalst, W., Basten, T.: Inheritance of workflows: an approach to tackling problems
related to change. Theoretical Computer Science 270(1-2), 125–203 (2002)

9. Rinderle, S., Reichert, M.: Data–Driven Process Control and Exception Handling in
Process Management Systems. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS,
vol. 4001, pp. 273–287. Springer, Heidelberg (2006)

10. Reijers, H., Limam, S., Aalst, W.: Product-based workflow design. MIS 20(1), 229–
262 (2003)

11. Aalst, W.: On the automatic generation of workflow processes based on product
structures. Comput. Ind. 39(2), 97–111 (1999)

12. Aalst, W., Berens, P.J.S.: Beyond workflow management: Product-driven case han-
dling. In: GROUP, pp. 42–51 (2001)

A New Paradigm for the Enactment 63

13. Liu, R., Bhattacharya, K., Wu, F.Y.: Modeling Business Contexture and Be-
havior Using Business Artifacts. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.)
CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 324–339. Springer, Heidelberg
(2007)

14. Küster, J.M., Ryndina, K., Gall, H.: Generation of Business Process Models for
Object Life Cycle Compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.)
BPM 2007. LNCS, vol. 4714, pp. 165–181. Springer, Heidelberg (2007)

15. Kappel, G., Schrefl, M.: Object/behavior diagrams. In: ICDE, pp. 530–539 (1991)
16. Dori, D.: Object-process methodology as a business-process modelling tool. In:

ECIS (2000)

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 64–78, 2008.
© Springer-Verlag Berlin Heidelberg 2008

An Aspect Oriented Approach for Context-Aware
Service Domain Adapted to E-Business

Khouloud Boukadi1, Chirine Ghedira2, and Lucien Vincent1

1 Division for Industrial Engineering and Computer Sciences, ENSM, Saint-Etienne, France
2 LIRIS Laboratory, Claude Bernard Lyon 1 University, Lyon, France

{boukadi,Vincent}@emse.fr, cghedira@liris.cnrs.fr

Abstract. This paper proposes an architecture for a high-level structure called
Service Domain which orchestrates a set a of related IT services based on BPEL
specification. Service Domain was developed to enhance the Web service
concept to suit e-business collaboration. Service Domains are developed to be
context aware. Our approach highlights the benefits of bringing Aspect
Oriented Programming to ensure context aware services. Thus, context
awareness is guaranteed by enhancing BPEL execution using Aspect oriented
paradigms. The proposed approach is illustrated with a running example that
shows how Service Domain presents different behaviours according to the
context changes.

Keywords: Web service, service adaptation, context-aware, Aspect Oriented
Programming.

1 Introduction

Today, enterprises are operating in a rapidly changing market characterized by
increasing customer demand for low cost and short time to market. To cope with these
business conditions, enterprises have adopted a two-level solution. The first
alternative is found on the inter-organizational side, in which enterprises collaborate
in e-business scenarios in order to provide the best products or services. Secondly, on
the organizational side, enterprises must be more dynamic, flexible, and context-
aware than ever to survive.

In this endeavor, enterprise information technology (IT) systems play a crucial
role. The challenge for IT infrastructures has been to help companies to respond to
changes that occur in a timely, dynamic, and reliable manner without compromising
organizational flexibility. This brings into focus the role of defining and
implementing flexible business processes supported by corresponding flexible IT
systems, which allow enterprises to collaborate with partners dynamically. Flexible IT
systems are those that are malleable enough to deal with context changes in an
unstable environment [1].

A contemporary approach for addressing these critical issues is the Service-
Oriented Architecture and Web service technology, which offers a suitable technical
foundation to ensure the flexibility required for IT systems [2]. Existing IT
infrastructure can be bundled and offered as Web services with standardized and

 An Aspect Oriented Approach for Context-Aware Service Domain 65

well-defined interfaces. We call Web services arising from applying this process
enterprise IT Web services, or hereafter IT services.

1.1 Limitations of the Traditional IT Service Solution

IT services are published for internal or external use. They can be combined and
recombined into different solutions and scenarios, as determined by business needs.
IT services promote business processes by composing individual IT services to
represent complex processes, which can even span multiple organizations. However,
transforming enterprise IT infrastructure into a large set of published IT services with
different granularity levels has a number of drawbacks. Firstly, it may imply that an
enterprise has to expose service elements, which are in isolation meaningless, to the
outside world. Secondly, service consumers will undertake several low-level service
combinations and this will overburden its task, thereby decreasing the added value of
service provisioning. Thirdly, in this form a service consumer can compose a process
which makes no sense for the service provider. To overcome these limitations, we
believe that an enterprise must re-organize its IT services and presents its
functionalities through a high-level service. In this work we develop a high level
structure called Service Domain (SD), which logically represents a combination of
related IT services as a single service. Service Domain orchestrates a set of IT
services in order to provide a high level functionality and a comprehensible external
view to the end user. Service Domain will be published as a Web service, thus hiding
the complexity of publishing, selecting and combining fine grained IT services.

Furthermore, in order to satisfy enterprise adaptability to context changes, Service
Domain must be more than functions provided through the Web. Indeed, it must have
the capacity to adapt its own behavior by comporting appropriately to accommodate
the situation in which it evolves. To meet to this objective, Service Domain has to
assess its current capabilities, ongoing commitments, and surrounding environment.
As a result Service Domain must be context aware.

1.2 Contribution and Paper Organization

The contribution in this paper is twofold. In the First part, the architecture of a high-
level structure named Service Domain is presented. It orchestrates a set a of related IT
services based on the Business Process Execution Language (BPEL) specification [3].
In the second part, we address our context aware Service Domain. Context awareness
is guaranteed by enhancing BPEL execution using Aspect Oriented Programming [4].

The rest of the paper is organized as follows. The Service Domain architecture is
presented in Section 2. Then, in Section 3, we present our context categorization and
highlight the drawbacks of BPEL in addressing adaptability to the context changes. In
section 4, the Aspect Oriented Programming and how it is used to enhance BPEL
adaptability are introduced. In addition, we present a running example and
implementations. Section 5 details some related work. Finally, a conclusion and
possible further work is proposed.

2 Service Domain Concept (SD)

The motivation behind the Service Domain concept is to achieve manageability when
dealing with a large number of IT services. The Service Domain enhances the Web

66 K. Boukadi, C. Ghedira, and L. Vincent

service concept. In fact, its purpose is not to define new application programming
interfaces (APIs) or new standards, but rather, to provide, based on existing IT
services, a new higher-level structure that can mask complexities from service users,
simplify deployment for service suppliers and provide self-managing capabilities.
Service Domain is based on/uses Web service standards (i.e. WSDL, SOAP and
UDDI).

In the future, our Service Domain will be used as major building block for
implementing enterprises business processes, which will be represented as a
composition of Service Domains that belong to different enterprises (see Fig.1).

Fig. 1. Inter-enterprise collaboration based on Service Domain

The Service Domain orchestrates and manages several IT services as a single
virtual service. It promotes a SOA solution which decreases the intricacy of providing
business applications.

As an example of a Service Domain, consider the "logistic enterprise" that exposes
a "Delivery Service Domain" (DSD), which constitutes a merchandise delivery
service. DSD encapsulates five IT services: "Picking merchandise", "Verifying
merchandise", "Putting merchandise in parcels", "Computing delivery price" and
"Transporting merchandise". Keeping these IT services in one place facilitates
manageability and avoids extra composition work on the client side as well as
exposing non-significant services like "Verifying merchandise" on the enterprise side.

The Service Domain is implemented as a node consisting of an Entry Module,
Context Manager Module (CMM), Service Orchestration Module (SOM) and finally
an Aspect Activator Module (AAM) as presented in Fig. 2.

 An Aspect Oriented Approach for Context-Aware Service Domain 67

Fig. 2. Service Domain architecture

In this last Figure, three of these Modules provide external interfaces to the Service
Domain node: Entry Module, Context Manager Module, and Service Orchestration
Module. The Entry Module is based on Web service standard (SOAP) for receiving
requests and returning responses. Aside from service requests from clients, the Entry
Module also supports administrative operations for managing the Service Domain
node. For example, an administrator can send a register command in order to add a
new IT service with a given Service Domain by registering it in the corresponding IT
service catalogue. The register command can also deal with a new orchestration
schema which could be added in the orchestration schemas registry.

When the Entry Module receives an incoming request, it communicates with the
orchestration schemas registry in order to select a suitable orchestration schema and
identify the best IT service instances to fulfill the request. The selection of the
orchestration schema and IT service instances, takes into account the context of the
incoming request. Orchestration schemas with the set of IT service instances are
delivered to the Service Orchestration Module (orchestration engine). The
orchestration of different IT services belonging to one Service Domain is ensured
using Web service orchestration languages like BPEL [3]. The SOM presents an
external interface called Execution Control Interface (ECI) which enables a user to
obtain information regarding the state of execution of the SD internal process. This
interface is very useful in case of external collaboration since it insures monitoring of
the internal process execution. This is the principal difference between our Service
Domain and the traditional Web service. In fact, with the ECI interface, SD is based
on the Glass box principles in contrast to the Web service which is based on the black
box principles. Finally, the last external interface called Context Detection Interface
(CDI) is used by the CMM to catch context information changes. Context detection is
used to guarantee the SD adaptability. Adaptability of the SD is based on selecting

68 K. Boukadi, C. Ghedira, and L. Vincent

and injecting the right Aspect according to the context change. To fulfill this
requirement, SD uses the AAM to identify the suitable Aspect related to the context
information and inject it in the BPEL process. This guarantees greater flexibility by
quickly adapting the execution of the SD without stopping and redeploying it.

3 Context and BPEL Adaptability

The trend towards context-aware, adaptive and on demand computing requires that
SD be equipped with suitable infrastructure which supports the delivery of adaptive
services with varying functionalities.

Service Domain will be used in a context in which several factors call for dynamic
execution evolution and changes (e.g., changes in the environment and/or unpredictable
events).

SD must meet the requirements of customers' context changes as well as different
service levels expectations. For instance, the Delivery Service Domain could
advertise different behaviors by offering several delivery calculation methods
depending on, for example, change in delivery location or time.

As Service Domain uses BPEL to orchestrate a set of related IT services, its
adaptability to context is closely related to the BPEL support of adaptability features.

In this section, we will present the context paradigm, our context categorization
and finally, discuss the shortcomings of BPEL to address the adaptability to context
requirement.

3.1 Context and Context Categorization

The concept of context has been studied in various fields for quite a long time. There
are a number of different definitions and uses for this term. Context appears in many
disciplines as a meta-information which characterizes the specific situation of an
entity, to describe a group of conceptual entities, partition a knowledge base into
manageable sets, or as a logical construct to facilitate reasoning services [5]. Our
definition of context follows that of Dey's [6] who says that a context is "any
information that can be used to characterize the situation of an entity. An entity is a
person, place, or object that is considered relevant to the interaction between a user
and an application, including the user and the application themselves".
 The categorization of context is important for the development of context aware
applications. Context includes implicit and explicit inputs. For example, user context
can be deduced in an implicit way by the service provider such as in pervasive
environment using physical or software sensors. Explicit context is determined
precisely by entities involved in the context. Bradely et al. depict that a variety of
categorizations of context have also been proposed [7]. As a matter of fact, there are
certain types of context which are, in practice, used more often than others. These
major context categories are location, identity, time, and activity. Nevertheless,
despite the various attempts to develop categorizations for context, there is no generic
context categorization. Relevant information differs from one domain to another and
depends on their effective use [8].

 An Aspect Oriented Approach for Context-Aware Service Domain 69

In this work, we propose a context categorization using an OWL ontology [9]. Fig. 3
depicts our context categorization ontology which is dynamic in the sense that new sub-
categories may be added at any time. Each context definition belongs to a certain
category which can be provider, customer, and collaboration related.

Fig.3. Ontology for categories of context

In the following, we explain the different concepts which constitute our ontology
based model for context categorization:

• Provider-related context deals with the conditions under which providers can
offer their Web services externally. For example, the performance qualities
include some metrics which measure the service quality: time, cost, QoS, and
reputation. These attributes model the competitive advantages that providers
may have over each other.

• Customer-related context represents the set of available information and meta-
data used by service providers to adapt their services. For example, a customer
profile which represents a set of information items characterizing the customer.

• Collaboration-related context represents the context of the business opportunity.
We identify three sub-categories: location, time, and business domain. The
location and time represent the geographical location and the period of time
within which the business opportunity should be accomplished.

3.2 Adaptability to Context in BPEL

BPEL inherited a static view of the world from workflow management systems,
which did not properly support evolutionary and runtime changes [10]. Only by
stopping the running process, modifying the orchestration, and restarting process
execution can one simulate evolutionary and runtime changes. Obviously, this is not a
viable solution, especially for long-running and collaborative processes.

Actually, BPEL is silent in regards to the specification and handling of crosscutting
concerns like context information. Moreover, with BPEL it is difficult to define,

70 K. Boukadi, C. Ghedira, and L. Vincent

modularize and manage context-sensitive behaviors. Traditionally, the
implementation of adaptability extensions in BPEL gets scattered and tangled with the
core functional logic. This in turn negatively impacts the system adaptability and
scalability. These limitations motivate developing new principles for building such
SD, and for extending BPEL capabilities with mechanisms to ease the addressing of
context changes and to facilitate the development of adaptive behavior.

To overcome these shortcomings, we propose to empower BPEL with Aspect
Oriented Programming (AOP) [4] to deal with Service Domain adaptation based on
context. Our approach shows the straightforwardness and benefits of bringing Aspect
Oriented paradigms to ensure context aware services.

4 Service Domain Adaptability Using Aspects

The proposed approach defines and implements a context adaptive Service Domain
using the Aspect oriented Programming (AOP) [4].

4.1 Rationale of AOP

AOP is a paradigm that captures and modularizes concerns that crosscut a software
system into modules called Aspects. Aspects can be integrated dynamically to the
system thanks to dynamic weaving principle [11].

AOP introduces a unit of modularity called Aspects, containing different code
fragments (advice), and location descriptions (pointcuts), to identify where to plug the
code fragment. These points, which can be selected by the pointcuts, are called join
points. The most popular Aspect language is AspectJ [12] which is based on Java.
The pointcut language of AspectJ provides a set of pointcut designators such as call
(for selecting method), execution (for selecting method execution), get and set (for
selecting read/write field access). However, each class of application can have its own
specific Aspect implementation [13]. For instance, in aspect-oriented workflow
languages, the advice language should be the same as the base workflow language
[14] to avoid any paradigm mismatches for the workflow designers. There are some
proposals to introduce some supplemental programming language in the BPELJ [15]
[16], like adding Java code snippets to the BPEL engine.

The rationale behind using AOP is based on two arguments. First, AOP enables
crosscutting concerns, which is crucial for managing context information separately
from the business logic implemented in the BPEL process. This separation of
concerns makes the modification of context information and the related adaptability
action easier. For example, in the Delivery Service Domain, we can define an Aspect
related to the calculation of extra fees when there is a context change that corresponds
to modifying the delivery date. This Aspect can be reused in several BPEL processes.
Besides, we can attach the adaptability action (action executed as response to context
change requirements) to different context information (eg. location context) without
changing the orchestration logic.

 An Aspect Oriented Approach for Context-Aware Service Domain 71

Second, based on dynamic weaving principles, Aspects can be activated and
deactivated at runtime. Consequently, the BPEL process can be dynamically altered at
runtime.

Adding AOP to BPEL is very beneficial. However, AOP is currently used on a
low level language extension [17]. In order to exploit AOP for SD adaptation, AOP
techniques need to be improved to support:

• Runtime activation of Aspects in the BPEL process to enable dynamic adaptation
according to context changes, and

• Aspects selection to enable customer-specific contextualization of the Service
Domain.

4.2 Aspect Service Domain Specification

The core of our approach is a runtime Aspects weaving that can be injected on the
existing SD BPEL process, to achieve adaptable execution based on context changes.
Our key contribution consists of encapsulating context information and the
corresponding adaptation actions in a set of Aspects.

A BPEL process is considered as a graph G(V,E) where G is a DAG (Directed
Acyclic Graph). Each vertex vi ∈ V is a Web service (Web service operation). Each
edge (u, v) represents a logical flow of messages from u to v. If there is an edge (u, v),
then it means that an output message produced by u is used to create an input message
to v.

In this work, we use this definition of BPEL, but it is extended by adding specific
constructs. Three types of vertex were identified: (i) context aware, (ii) non context
aware and (iii) context manager vertexes. Theses vertexes correspond respectively to
Context aware IT Services, Non-Context aware IT Service and Context Manager
Services. Context manager vertexes detect context changes and usually precede the
context aware vertexes.

A Context aware IT Service (CITS) may have several configurations exporting
different behaviors according to the specific context. CITS = {<ID-CITS, Ctx, Asp>}
where ID-CITS is the identifier of CITS, Ctx is the name of a context and Asp is the
Aspect related to this context.

We define an Aspect as Asp=< ID-Asp, Entry-condition, Advice, Join-points>.
Where ID-Asp is the identifier of the Aspect, Entry-condition represents the condition
where the Aspect can be used, Advice addresses the adaptability actions related to
specific context information (add, parameterize and remove IT service(s)) and Join-
points describe the set of vertexes where possible adaptations may be required in the
BPEL process.

Our adaptation approach is a three-step process (see Fig.4):

1. Context detection consists of checking the runtime context information, in
order to detect possible context changes. These tasks are performed by the
Context Manager Service which is developed as a Web service in the BPEL
process.

2. Aspect Activation is responsible for the plug-in and the removal of pre-
defined Aspects into the BPEL process using the Aspect Activator Module.

72 K. Boukadi, C. Ghedira, and L. Vincent

The Aspect Activator Module is conceived as an extension to the BPEL
engine as was done in [18]. When running a process instance, the Aspect
Activator receives the context change information from the Context Manager
Service. Then it chooses and activates the appropriate Aspect that matches
the values of the changed contextual information.

3. Updating original BPEL Process by activating the right Aspect which is
executed in the BPEL process to create a contextualized process.

Fig.4. Aspect injection in BPEL

4.3 Running Example and Implementation

In this section, the proposed approach is applied to the case of a manufacturer of
plush toys enterprise, which receives orders from its clients during the Christmas
period. Once an order is received, this firm proceeds to supply the different
components of plush toys. When supplied components are available, the manufacturer
begins assembly operations. Finally, the manufacturer selects a logistic provider to
deliver these products by the target due date. In this scenario, the focus will be only
on the delivery service.

Assume that an inter-enterprise collaboration is established between the
manufacturer of plush toys (service consumer) and a logistic enterprise (service
provider). The logistic provider delivers parcels from the plush toys manufacturer
warehouse to a specific location. The delivery service starts by picking merchandise
from the customer warehouse (see Fig.5 step (i)). If there is no past interaction
between the two parties involved, the delivery service verifies the shipped
merchandise. Once verified, putting merchandise in parcels service is invoked, and
followed by a computing delivery price service. Finally, the service transports the
merchandise in the business opportunity location at the delivery due date. The
delivery service is considered as a Service Domain orchestrating five IT services:
Picking merchandise, Verifying merchandise, Putting merchandise in parcels,

 An Aspect Oriented Approach for Context-Aware Service Domain 73

Fig. 5. The delivery service internal process

Computing delivery price and Delivering merchandise. Fig.5 depicts the BPEL
process modeled as a graph of the delivery service and the adaptation actions
according to the context changes (step ii and step iii).

Assume that Picking merchandise from customer warehouse, Putting merchandise
in parcels and Delivering merchandise services are context independent while
Verifying merchandise and Computing delivery price are context-aware (i.e., they
have different behaviors according to the current customer and opportunity context).
We suppose that the Verifying merchandise service is aware of the past interactions
with customers (historical relationships). This information corresponds to history
category defined in the context categorization. It may be either "past interaction=No"
or "past interaction=Yes". In the first case, the Verifying merchandise service is
called, but skipped in the second case. The Computing delivery price service is aware
of runtime context changes corresponding to changes in delivery location or date.
When there are changes in the date or the place, extra fees must be added to the total
delivery price.

When the BPEL process (Listing 1) starts, the Context Manager service is invoked
to collect context information (historical context category) about the plush toys
enterprise (Listing 1 line 7). Assuming that the context information indicates that the
plush toys enterprise is a well known customer (i.e., "past interaction=Yes"), delivery
service behavior will be adapted to respond to this context information. The Aspect
Activator will choose a suitable Aspect to be activated from the set of Aspects
attached to the Verifying merchandise service.

74 K. Boukadi, C. Ghedira, and L. Vincent

Listing 1. The delivery process

The selected Aspect is shown in Listing 2. As mentioned before, an Aspect defines
one or more pointcuts and an advice. To implement the advice code, we have chosen
the BPEL specification, because the goal is to adapt the BPEL process. For the
pointcuts language, we have chosen XPath [19], a language specialized for addressing
parts of an XML document (a BPEL process is an XML document).

The advice part of the Aspect is expressed as a before advice activity, which is
executed instead of the activity captured by the pointcut (line 3). The join point,
where the advice is weaved, is the <invoke> activity that calls the Verifying
merchandise service (line 5). The advice code is expressed as a <switch> activity. If
ContextResponse ="1" (i.e., "past interaction=Yes") the advice branches to the
activity <empty>, in order to express that it is not really necessary to perform this
service. After applying the Aspect, the BPEL process of the Delivery service is
depicted in the Fig. 5 (step (ii)).

Before invoking Computing Delivery Price, the Context Manager service checks
the context information to detect possible contextual changes. Let us assume that the
plush toys enterprise has decided to change the delivery date. Hence, the Context
Manager service captures the new date (Listing 1 line 13). Then the Aspect Activator
chooses a suitable Aspect to activate from the set of Aspects related to Computing
Delivery Price service. The selected Aspect is shown in Listing 3. The pointcut of this
Aspect (lines 3-6) selects the delivery price calculation activity in the delivery
process. The context change is implemented using a before advice, which contains a

 An Aspect Oriented Approach for Context-Aware Service Domain 75

Listing 2. Context as an Aspect

switch with a case branch (lines 7-25) for calculating additional fees depending on the
number of days between the initial and the new delivery date. This number will be
multiplied by the daily fees already defined by the logistic enterprise.

The case branch uses an assign activity (lines 14-21) to compute the additional fees
to the part ExtraFees of the variable calculPrice, which will be sent to the Computing
Delivery Price service. The Delivery service BPEL process after applying the Aspect
is depicted in the Fig. 5 (step (iii)).

Listing 3. Managing context change as an Aspect

76 K. Boukadi, C. Ghedira, and L. Vincent

5 Related Work

There are many ongoing research efforts related to the adaptation of Web services and
Web service composition according to context changes [20] [21]. In the proposed
work we focus specially on the adaptation of a BPEL (workflow) process.

Some other research efforts from the Workflow community address the need for
adaptability. They focus on formal methods to make the workflow process able to
adapt to changes in the environment conditions. For example, Casati et al. in [22]
propose eFlow with several constructs to achieve adaptability. The authors use
parallel execution of multiple equivalent services and the notion of generic service
that can be replaced by a specific set of services at runtime. However, adaptability
remains insufficient and vendor specific. Moreover, many adaptation triggers
considered by workflow adaptation, like infrastructure changes, are not relevant for
Web services because services hide all implementation details and only expose
interfaces described in terms of types of exchanged messages and message exchange
patterns.

In addition, Modafferi et al. in [23] extend existing process modeling languages to
add context sensitive regions (i.e., parts of the business process that may have
different behaviors depending on context). They also introduce context change
patterns as a mean to identify the contextual situations (and especially context change
situations) that may have an impact on the behaviour of a business process. In
addition, they propose a set of transformation rules that generate a BPEL based
business process from a context sensitive business process. However, context change
patterns which regulate the context changes are specific to their running example with
no-emphasis on proposing more generic patterns.

There are a few works using an Aspect based adaptability in BPEL. In [10, 24], the
authors presented an Aspect oriented extension to BPEL: the AO4BPEL which allows
dynamically adaptable BPEL orchestration. The authors combine business rules
modeled as Aspects with a BPEL orchestration engine. When implementing rules, the
choice of the pointcut depends only on the activities (invoke, reply or sequence).
However in our approach the pointcut depends on the returned value of the Context
Manager Web service which detects a context changes. Business rules in this work
are very simple and don’t express a pragmatic adaptability constraint like context
change in our case. Another work is proposed in [25] ,in which the authors propose a
policy-driven adaptation and dynamic specification of Aspects to enable instance
specific customization of the service composition. However, they don't mention how
they can present the Aspect advices or how they will consider the pointcuts.

6 Conclusion

This paper presented an architecture of a high-level structure called Service Domain,
which orchestrates a set of related IT services based on BPEL specification. Service
Domain enhances the Web service concept to suit the inter-enterprise collaboration
scenario. Besides, in order to address enterprise adaptability to context changes,
Service Domain is developed to be context aware. Literature review has shown that
BPEL, considered as the de facto standard for Web services orchestration, offers no

 An Aspect Oriented Approach for Context-Aware Service Domain 77

support for dynamic adaptation of the orchestration logic according to context. To
overcome these limitations, we proposed to enhance BPEL execution using the AOP.
We demonstrated that it is a suitable paradigm that enables crosscutting and context-
sensitive logic to be factored out of the service orchestration and modularized into
Aspects. For future endeavors, we are working to improve, extend, and complete the
Service Domain architecture. An empirical study to validate and test the proposed
approach will be at the centre of future research. In addition, close interactions with
industrial partners will be essential to validate the proposed approach.

References

1. Byrd, T.A., Turner, D.E.: An exploratory examination of the relationship between flexible
IT infrastructure and competitive advantage. Information and Management 39, 41–52
(2001)

2. Papazoglou, M.P., van den Heuvel, W.-J.: Service-oriented design and development
methodology. International Journal of Web Engineering and Technology (IJWET) 2(4),
412–442 (2006)

3. Andrews, T., Curbera, F.: Business Process Execution Language for Web Services
(BPEL4WS) version 1.1 (2003),

 http://www-128.ibm.com/developerworks/library/specification/ws-bpel
4. Aspect–Oriented Software Development (2007), http://www.aosd.net
5. Benslimane, D., Arara, A., Falquet, G., Maamar, Z., Thiran, P., Gargouri, F.: Contextual

Ontologies: Motivations, Challenges, and Solutions. In: Fourth Biennial International
Conference on Advances in Information Systems, pp. 168–176. Springer (ED), Izmir
(2006)

6. Dey, A.K., Abowd, G.D., Salber, D.: A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-Aware Applications. Human-Computer
Interaction 16, 97–166 (2001)

7. Bradely, N.A., Dunlop, M.D.: Toward a Multidisciplinary Model of Context to Support
Context-Aware Computing. Human-Computer Interaction 20, 403–446 (2005)

8. Mostetefaoui, S.K., Mostetefaoui, G.K.: Towards A Contextualisation of Service
Discovery and Composition for Pervasive Environments. In: Workshop on Web-services
and Agent-based Engineering (2003)

9. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I.: OWL Web Ontology Language
Reference (2004), http://www.w3.org/TR/2004/REC-owl-ref-20040210

10. Charfi, A., Mezini, M.: An Aspect-oriented Extension to BPEL, World Wide Web, pp.
309–344 (2007)

11. Bockisch, C., Haupt, M., Mezini, M., Ostermann, K.: Virtual Machine Support for
Dynamic Join points. In: Proceedings of the 3rd International Conference on Aspect-
Oriented Software Development - AOSD 2004, Lancaster, UK, pp. 83–92 (2004)

12. The AspectJ Team, The AspectJ Programming Guide, AspectJ 1.2 edition (2007),
http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/aspectj-
home/doc/progguide/index.html

13. Deursen, A.V., Klint, P., Visser, J.: Domain-Specific Languages: An Annotated
Bibliography. ACM SIGPLAN Notices 35(6), 26–35 (2000)

14. Braem, M., Verlaenen, K., Joncheere, N., Vanderperren, W., Van Der Straeten, R., Truyen,
E., Joosen, W., Jonckers, V.: Isolating Process-Level Concerns Using Padus. In: Dustdar,
S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 113–128. Springer,
Heidelberg (2006)

78 K. Boukadi, C. Ghedira, and L. Vincent

15. Courbis, C., Finkelstein, A.: Towards Aspect Weaving Applications. In: Proceedings of
the 27th International Conference on Software Engineering, pp. 66–77. ACM Press, New
York (2005)

16. BEA and IBM, BPELJ: BPEL for Java, Joint White Paper (2004),
 http://www-128.ibm.com/developerworks/library/specification/ws-bpelj/

17. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
Overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, Springer,
Heidelberg (2001)

18. Charfi, A., Mezini, M.: Aspect-oriented web service composition with A04BPEL. In: The
European Conference on web Service, pp. 168–182. Springer, Germany (2004)

19. Clark, J., DeRose, S.: XML Path Language (XPath) 1.0. W3C Recommendation,
November 16 (1999), http://www.w3.org/TR/xpath

20. Maamar, Z., Benslimane, D., Thiran, P., Ghedira, C., Dustdar, S., Sattanathan, S.: Towards
a context-based multi-type policy approach for Web services composition. Data &
Knowledge Engineering, 327–335 (2007)

21. Bettini, C., Maggiorini, D., Riboni, D.: Distributed Context Monitoring for the Adaptation
of Continuous Services. World Wide Web 10(4), 503–528 (2007)

22. Casati, F., Shan, M.-C.: Dynamic and adaptive composition of e-services. Information
Systems 26(3), 143–163 (2001)

23. Modafferi, S., Benatallah, B., Casati, F., Pernici, B.: A Methodology for Designing and
Managing Context-Aware Workflows. Mobile Information Systems II, 91–106 (2005)

24. Charfi, A., Mezini, M.: Hybrid web service composition: business processes meet business
rules. In: The 2nd international conference on Service oriented computing, pp. 30–38.
ACM Press, New York (2004)

25. Erradi, A., Maheshwari, P., Padmanabhuni, S.: Towards a Policy-Driven Framework For
Adaptive Web Services Composition. In: The International Conference on Next
Generation Web Services Practices (NWeSP 2005), Seoul, Korea, pp. 33–38 (2005)

Modeling Service Choreographies

Using BPMN and BPEL4Chor�

Gero Decker1, Oliver Kopp2, Frank Leymann2,
Kerstin Pfitzner2, and Mathias Weske1

1 Hasso-Plattner-Institute, University of Potsdam, Germany
{gero.decker,weske}@hpi.uni-potsdam.de

2 Institute of Architecture of Application Systems, University of Stuttgart, Germany
{kopp,leymann,pfitzner}@iaas.uni-stuttgart.de

Abstract. Interconnecting information systems of independent business
partners requires careful specification of the interaction behavior the dif-
ferent partners have to adhere to. Choreographies define such interaction
constraints and obligations and can be used as starting point for pro-
cess implementation at the partners’ sites. This paper presents how the
Business Process Modeling Notation (BPMN) and the Business Process
Execution Language (BPEL) can be used during choreography design.
Step-wise refinement of choreographies to the level of system configu-
ration is supported through different language extensions as well as a
mapping from BPMN to BPEL4Chor. A corresponding modeling envi-
ronment incorporating the language mapping is presented.

1 Introduction

Automated electronic communication between different business partners offers
big optimization potential regarding the overall business process performance.
However, it also comes with certain challenges that have to be tackled. Common
message formats must be agreed upon and the allowed and expected interaction
sequences must be clearly defined. Legal consequences of message exchanges as
well as time constraints must be captured.

Choreography languages provide a means to specify the messages exchanged
between different organizations along with behavioral constraints. The Business
Process Modeling Notation (BPMN [2]) offers a rich set of graphical notations
for control flow constructs and includes the notion of interacting processes where
sequence flow (within an organization) and message flow (between organizations)
are distinguished. Therefore, BPMN is a good candidate for providing a graph-
ical notation for choreography modeling. When it comes to refining such initial
choreography models, details about timing constraints and exception handling
have to be added. Finally, technical configurations are introduced for reaching
unambiguity “on the wire”. In order to express the different levels of details in
BPMN we present several extensions to this language.
� Partially funded by the German Federal Ministry of Education and Research (project

Tools4BPEL, project number 01ISE08).

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 79–93, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

80 G. Decker et al.

The Business Process Execution Language (BPEL [3]) is the de-facto standard
for implementing business processes based on web services. The orchestrated web
services are again exposed as services. BPEL also allows to specify ordering con-
straints on the messages a service accepts and produces. All in all, it only focuses
specifying processes from a single organization point of view, treating the ser-
vices used as opaque entities ignoring their internal structure forming separate
business processes. As a consequence, choreographies cannot be described us-
ing BPEL. Therefore, we have proposed choreography extensions for BPEL in
earlier work [8], adding the notion of participant topologies for gluing together
different participant behavior descriptions (PBDs). PBDs are BPEL processes
describing the behavior of each participant in the choreography. We propose
to use BPEL4Chor as an interchange format supporting the different choreog-
raphy design phases. Therefore, a transformation of BPMN choreographies to
BPEL4Chor is needed.

This paper extends work from Ouyang et al. [18], where BPEL stubs are
generated out of individual BPMN processes. Furthermore, this paper builds
upon previous work from [10], where BPMN extensions for high-level choreog-
raphy modeling were proposed, and [4], where different modeling phases and
choreography viewpoints were identified. The contribution of this paper is to
present the integrated usage of BPMN and BPEL4Chor during choreography
design. Furthermore, we implemented a modeling environment for BPMN where
BPEL4Chor choreographies are produced.

The remainder of this paper is structured as follows. The next section discusses
choreography design and the use of BPMN therein. Section 3 gives an overview of
BPEL4Chor. Section 4 describes the mapping of extended BPMN to BPEL4Chor
and section 5 presents our modeling environment. Section 6 reports on related
work in the literature, before section 7 concludes.

2 Choreography Design Using BPMN

Complex choreographies cannot be created within a single step. Whenever many
different business partners and many interactions are involved, choreography
design must be split up into different phases each addressing different issues of
the model. As reported in [22] and [4], the following phases can be distinguished.

1. At a very high level, the interaction partners are identified. It must also
be captured how many partners of a particular type are involved. E.g. in
a logistics scenario a number of carriers might be involved while only one
breakdown surveillance service takes part. Furthermore, business documents
that are exchanged between the partners are listed and agreement on the
general content of the documents must be reached. E.g. it is defined that a
certain contract must carry two signatures or that a request for quote must
contain the quantity of the desired product. These two first steps lead to a
high-level structural view on the choreography.

2. Choreographies reflect what interactions are needed to fulfill a certain goal.
This goal can typically be divided into sub-goals or milestones that must be

Modeling Service Choreographies Using BPMN and BPEL4Chor 81

High-level
structural view

High-level
behavioral view

Collaboration
scenarios

Fully specified
choreography

Refined collab.
scenarios

Fig. 1. Different artifacts produced in the choreography design phases

reached on the way to the overall goal. This calls for a high-level behavioral
view on the choreography.

3. Once the milestones are defined, collaboration scenarios are a means to cap-
ture how to get from one milestone to another milestone. The required in-
teraction sequences are modeled accordingly.

4. While first versions of collaboration scenario models are likely to only capture
best cases, exception handling must be added subsequently. This leads to
refined collaboration scenarios that also capture timing constraints.

5. All scenario models are aggregated into a big choreography model, including
all interactions and their dependencies. Technical choices must be made, e.g.
whether to use synchronous vs. asynchronous communication. This leads to
the fully specified choreography model.

BPMN supports modeling of choreographies as collaboration diagrams. Pools
model business roles or entities, while message flows represent the communication
between them. High-level structural diagrams can be realized in BPMN by using
empty pools and message flow between them. As it is not possible to represent
that multiple participants of the same type are involved in one conversation, we
added a pool set for this purpose.

Figure 2 is a sample structural diagram illustrating a scenario that will be
used throughout this paper: A customer buys a product from a seller. The seller
in turn handles payment through a payment service. Delivery is outsourced to a
delivery service which in turn does not carry out the delivery by itself but rather
manages the actual delivery done by a set of carriers. In some cases several
carriers are involved covering a part of the overall journey by air, rail or truck.

Customer

Seller

Payment Service

Delivery Service

Carrier

Fig. 2. High-level structural diagram in extended BPMN

82 G. Decker et al.

Product has
been ordered

Product has
been paid for

Carriers have been
selected

Product has been
delivered and paid for

Product has
been delivered

Fig. 3. High-level behavioral diagram in BPMN

The pools (rectangles) in Figure 2 represent the different participant types.
Only one customer, seller, payment service and delivery service are involved
in one conversation, i.e. one choreography instance. The shaded pool for type
carrier represents that there might be more than one carrier involved in one
conversation. The dashed arrows symbolize message flow between participants
of the corresponding types, indicating who potentially sends a message to whom.

High-level behavioral diagrams can be modeled in BPMN as shown in Figure 3.
Untyped events (empty circles) represent milestones which in turn are connected
through control flow constructs. This example shows that the first milestone to be
reached is that the customer has ordered a product. This is the precondition for the
two subsequent milestones “product has been paid for” and “carriers have been
selected”. The first AND-gateway (diamond containing a “+”) represents that the
two succeeding milestones can be reached in any order. The second AND-gateway
synchronizes the two branches and leads to the final milestone.

Collaboration scenarios which show how progress from one milestone to an-
other can be achieved, are modeled as collaboration diagrams. This time, the
pools are not empty but rather the ordering of the message exchanges is ex-
pressed by relating the communication activities (send and receive activities)
using control flow constructs.

In Figure 4 we see how the collaboration scenario connects to other models: Two
milestones from the high-level behavioralmodel appear again. Further connections
to other models are established through the use of link events (circles containing
an arrow). This is the standard BPMN way of modeling off-page connectors.

In choreographies where multiple participants of the same type might be in-
volved, it is important to distinguish the individual participants. This is achieved
by the introduction of special data object types, namely participant references
and participant sets, symbolized by (shaded) artifacts with a business card icon
in the upper left corner. Figure 4 illustrates how this is used in the context of
different carriers that must be chosen from.

The semantics of the diagram is as follows. The seller initiates delivery by
sending a delivery request to the delivery service. This service contacts all its
partner carriers, asking them to check availability for the entire route or parts
of the route. Upon receipt of these request, each carrier checks availability. If no
capacity is available the carrier answers with a rejection message. Otherwise the
carrier prepares a quote and sends it back to the delivery service. The delivery

Modeling Service Choreographies Using BPMN and BPEL4Chor 83

C
ar

rie
r

D
el

iv
er

y
S

er
vi

ce

Send
availability
check req.

Select
carriers

Partner
carriers

Cand.
carriers

Selected

carriers

Quote

Rejection

S
el

le
r

Send
delivery
request

C
ar

rie
r

Prepare
quote

Check
availability

Send
quote

Rejection

Notify
selected
carriers

Notify not
selected
carriers

Rejection

Acceptance

Availability
check request

Delivery
request

Not sel.

carriers

Product
has been
ordered

Carriers
have been

selected

Fig. 4. Collaboration scenario in BPMN: Progressing from “product has been to or-
dered” to “carriers have been selected”

service collects the quotes and remembers all carriers that have sent a quote as
“candidate carriers”. Once all carriers have answered, the delivery service selects
one or more carriers and sends notifications to the carriers telling them whether
they were selected or not. After this, the scenario ends by reaching the milestone
“carriers have been selected”.

The diagram illustrates how participant references and participant sets affect
communication activities and multi-instance activities. The set of partner carri-
ers serves as input for the multi-instance subprocess, indicating that one instance
should be spawned for each carrier in this set. Associations from participant ref-
erences to send and receive activities define that the message is sent to the
referenced participant and that only a message from the referenced participant
will be received, respectively.

Figure 4 only covers the best case of our collaboration scenario. It is not spec-
ified yet what happens if the carriers do not respond within a given timeframe.
It is also not specified what happens if no suitable carrier can be found. This
might lead to notifying the customer about a delay in delivery or even completely
canceling the order.

BPMN allows to model timeouts and exceptions by offering corresponding
event types. Intermediate events attached to activities and subprocesses
represent cancellation upon the occurrence of the event. Using these constructs

84 G. Decker et al.

Send
availability
check req.

Partner
carriers

Cand.
carriers

Quote

Rejection

Send can-
cellation msg

MI_Condition = 10

Fig. 5. Termination handlers

participant
reference

data object

participant
set

data object

standard
variable

data object

fault
variable

data object

counter
variable

data object

Fig. 6. Data object types

it is possible to model a wide range of exception scenarios. However, when com-
paring BPMN to BPEL in terms of exception handling, we find that a number of
important concepts of BPEL are missing in BPMN. As we intended to allow the
modeler to refine the choreography model to fully specified models, we adopted
these concepts as BPMN extensions. The following list gives an overview of these
extensions. A detailed discussion on these can be found in [19].

Termination handlers. The termination handler of a subprocess defines re-
actions to forced termination. Especially in the case of forEach constructs with
completion condition, termination handlers are needed. As soon as the comple-
tion condition is fulfilled, all remaining subprocess instances are terminated. We
introduce termination handlers to BPMN. We opted for a similar graphical rep-
resentation as it is used for compensation handlers. Figure 5 shows a refinement
of a part of the scenario from Figure 4.

Different data object types. As already mentioned we introduce participant
references and participant sets as special data object types. Additionally, we
distinguish between fault variable data objects, counter variable data objects
and standard variable data objects. Counter variables represent the counter in
a forEach activity and fault variables hold the data of a fault that was thrown
or caught.

Modeling Service Choreographies Using BPMN and BPEL4Chor 85

Participant
Topology

Structural aspects

Participant Behavior
Descriptions (PBDs)

Observable behavior

Participant Groundings

Technical configuration

Participant Declaration

List of the participants

Message Links

Connecting PBDs

Fig. 7. BPEL4Chor artifacts

Correlation information. Correlation is the act of relating messages received
to process instances and receive activities within this instance. Typically, corre-
lation is done based on specific message content. E.g. an order id is used to route
an incoming message to the corresponding instance handling the order. While
there are very complex correlation mechanisms thinkable, we opted for a correla-
tion set semantics like it is present in BPEL. Therefore, we added corresponding
attributes to the invoke and receive activities.

3 BPEL4Chor Overview

BPEL4Chor is a language to describe service choreographies in BPEL. It dis-
tinguishes between three aspects: (i) the participant topology, which provides a
global view on the existing participants and their interconnection using message
links, (ii) participant behavior descriptions, i.e. control flow dependencies in each
participant and (iii) participant groundings, i.e. concrete configurations for data
formats and port types.

The high-level structural view can be captured in the participant topology.
The participants are listed in the participants declarations part. Here, partic-
ipants and participant sets are distinguished. Each participant carries a type,
which specifies the behavior of the participant. In the example participant topol-
ogy shown in Listing 1, there exists one participant for participant type Deliv-
eryService. The delivery service knows several partner carriers, therefore the
topology contains the participant set PartnerCarriers. Participant sets can be
used in a forEach construct, in the sense that the forEach construct iterates over
this set. The current participant for the iteration is called currentCarrier in the
listing. The messages exchanged are modeled using message links. A message
link connects two participants and states which message is sent over it. Listing 1
lists an extract of the participant topology for our scenario.

Behavioral aspects are captured in the participant behavior descriptions, ex-
pressed in BPEL. Listing 2 presents the first part of the BPEL process for the
delivery service. The communication constructs are named so that they can be

86 G. Decker et al.

Listing 1. Participant topology
<topology name="DeliveryTopology">
<participantTypes>
<participantType name="Seller"
participantBehaviorDescription="ns1:Seller" />
<participantType name="DeliveryService" ... />
<participantType name="Carrier" ... />

</participantTypes>
<participants>
<participant name="Seller" type="Seller" />
<participant name="DeliveryService" type="DeliveryService" />
<participantSet name="PartnerCarriers" type="Carrier"
forEach="ns2:pcarrierForEach">
<participant forEach="ns2:pcarrierForEach" name="currentCarrier" />

</participantSet>
...

</participants>
<messageLinks>
<messageLink name="orderLink" messageName="order"
sender="Seller" receiver="DeliveryService" />
...

</messageLinks>
</topology>

Listing 2. Participant behavior description for type delivery service
<process name="DeliveryService"
<sequence>
<receive createInstance="yes" name="ReceiveDeliveryRequest" />
<sequence>
<forEach name="pcarrierForEach" parallel="yes">
<scope><sequence>
<invoke name="SendAvailabilityCheckReq." />
<pick>
<onMessage wsu:id="Quote"><empty /></onMessage>
<onMessage wsu:id="Rejection"><empty /></onMessage>

</pick>
</sequence></scope>

</forEach>
<opaqueActivity name="SelectCarriers" />

</sequence>
...

</sequence>
</process>

interconnected. The interconnection is formed by adding the names of the ac-
tivities to message links. While the message links in the sample topology in
Listing 1 have the attributes sender and receiver set, attributes sendActivity

Modeling Service Choreographies Using BPMN and BPEL4Chor 87

Listing 3. Participant grounding
<grounding topology="DeliveryTopology">
<messageLinks>
<messageLink name="orderLink" portType="ds:deliveryService_pt"
operation="getProduct" />
...

</messageLinks>
</grounding>

and receiveActivity must also be set for referring to the communication con-
structs in the participant behavior descriptions.

Technical choices are reflected in the participant grounding, where concrete
port types and operations come in. Each message link is assigned to a port
type and operation. Listing 3 presents the grounding of one message link. The
grounding can then be used to generate abstract BPEL processes which are
subsequently used for executable completion.

4 Mapping BPMN to BPEL4Chor

Although our extended BPMN and BPEL4Chor have a large overlap in concepts
covered, not all diagrams can be transformed to BPEL4Chor. The following
BPMN elements are not allowed:

– complex gateways
– ad-hoc and transactional subprocesses
– link, rule and multiple start events
– all end events except the non-triggered ones
– cancel, rule, link, multiple or non-triggered intermediate events
– user, script, abstract, manual or reference activities

In [18] three classes of BPMN diagrams are distinguished: (i) those that can be
translated using block-structured constructs only, (ii) those that require the use
of control links and finally (iii) those that require event handlers, fault handlers
and message passing within one process instance for realizing control flow depen-
dencies. For instance, the occurrence of the workflow patterns arbitrary cycles
and multi merge [21] make a diagram be of category (iii), as there is no direct
support for these two workflow patterns in BPEL. We argue that the BPEL
code resulting from (iii) is not usable as starting point for further refining it to
process implementations. Therefore, we do not transform these kind of diagrams.

General Approach. We largely base our transformation on the approach pre-
sented in [18] where a subset of BPMN is transformed to BPEL. This approach
is based on the identification of patterns in the diagram that can be mapped
onto BPEL blocks. One pattern is folded into a new activity, which is associated
with the generated BPEL code. We extend these patterns with the elements

88 G. Decker et al.

<invoke />

<invoke />

<invoke />
<flow>
 <invoke />
 <invoke />
</flow>

<invoke />

<if>
 <condition />
 <flow>
 <invoke />
 <invoke />
 </flow>
 <elseif>
 <condition />
 <invoke />
 </elseif />
</if>

A

B

C

A
B

C

A
B

C

Fig. 8. Dealing with inclusive gateways

used in the extended BPMN described above. Hence, we can use that transfor-
mation for transforming processes located in a pool, pool set or subprocess to
their BPEL4Chor representation. Furthermore, we loosen certain restrictions as
explained in the next subsection.
Multiple start and end events. In [18] it is assumed that there is only one
start event and one end event in each process. We loosen this restriction and allow
certain combinations of start events as well as multiple end events. If e.g. two
start events are followed by a XOR-gateway, we fold this pattern to a BPEL pick
element, where the attribute createInstance is set to “yes”. Also the case if they
are followed by an AND-gateway can be handled and translated to BPEL4Chor.
These scenarios are captured by generalized pick- and flow-patterns. While it
is easy to see for these simple examples how they can be mapped, it is less
obvious why some combinations are not allowed in our transformation. Imagine
e.g. three start events A, B, C where A and B are merged through an AND-
gateway, which in turn is merged with C through a XOR-gateway. Here, C is
an alternative to the combination of A and B. Such behavior is not directly
expressible in BPEL. Multiple end events are resolved by merging the different
branches into an inclusive gateway.
Inclusive gateways. We allow inclusive gateways if they occur in certain com-
binations with other elements and can be rewritten to AND- and XOR-gateways.
In order to capture these combinations, the well-structured and quasi-structured
patterns from [18] are extended. This means that our transformation can handle
inclusive gateways in block-structured settings only.

Figure 8 illustrates an example. It exhibits two steps to transform a BPMN
diagram involving multiple invoke activities to the corresponding BPEL repre-
sentation. In the first step, an AND split gateway is translated to a BPEL flow,
representing concurrent invocations of A and B. In the second step, the XOR
split gateway is translated to an if construct in BPEL, so that either invocations
of A and B are performed concurrently or C is invoked.
Fault, compensation and termination handlers. We introduce a pattern
for activities and subprocesses with attached intermediate events. This leads
to the creation of a BPEL handler for each attached event. To enable direct
transformation to BPEL, we only allow those fault handlers, where the outgoing
control flow from the handler is directly merged with the control flow originating
from the corresponding activity or subprocess.

Modeling Service Choreographies Using BPMN and BPEL4Chor 89

Other constructs. The mapping of activities and events is straightforward.
Variable data objects are not folded because they may be associated with flow
objects in other patterns. Each pool and pool set is mapped to a participant
type. For a simple pool a participant reference with its corresponding type can
be generated directly. Additional references are generated from participant ref-
erence data objects. The mapping of message flows to message links depends on
the connected activities, the participant reference and participant data objects
associated with these activities and the message data objects associated with the
message flows. As the extended transformation removes elements from the model
during the folding of the patterns, the topology has to be created beforehand.

1. Generate participant types in the topology from pools and pool sets
2. Generate participant references and participant sets from the participant

reference and participant set data objects
3. Generate message links from the message flow, the associated participant

reference and message data objects
4. Transform the processes within the pools and pool sets

4.1. Generate the variables from the variable data objects
4.2. Apply the extended transformation starting with the pattern for at-

tached events

5 Choreography Modeling Environment

We have implemented a BPMN editor and the BPMN to BPEL4Chor transfor-
mation based on the Oryx framework developed at the Hasso-Plattner-Institute1.
Oryx is a graphical editing framework written in JavaScript that uses Scalable
Vector Graphics (SVG) as rendering technology. Oryx comes with a set of stencil
sets for modeling pure BPMN, the extended BPMN, workflow nets and other
process modeling languages. Each stencil set defines a set of elements, includ-
ing their attributes, containment relationships and connection rules. The shape
definitions, i.e. the graphical appearance of elements, are defined as SVG files.

Oryx strictly follows the REST (Representational State Transfer [13]) archi-
tectural style. Each process model and each element within it are considered as
resources that are uniquely identified by URIs. By addressing a process model
URI in a web browser, an XHTML representation of the model is retrieved, which
in turn contains all model information as embedded RDF annotations. This web
page also contains links to the Oryx implementation. The browser loads these
scripts which turn the web page into a graphical editor application. If models
are to be imported into other applications, existing XSLT stylesheets can be
applied for retrieving corresponding RDF documents. Figure 9 illustrates the
system architecture using the Fundamental Modeling Concepts notation [16].

The editor provides extensibility through a plugin mechanism. We used this
mechanism to integrate the BPMN to BPEL4Chor transformation functional-
ity into the editor. The transformation plugin serializes the extended BPMN
1 See http://bpt.hpi.uni-potsdam.de/Oryx/

http://bpt.hpi.uni-potsdam.de/Oryx/

90 G. Decker et al.

Browser

User

Oryx Editor

Oryx
Backend

Process
Models

Extended BPMN
Stencil Set

Transformation
Plugin

BPMN Diagram

XPDL4Chor
model

Transformation
Web Service

Topology

PBD 1

PBD n

Fig. 9. Architecture of the modeling environment

diagram into an extended XPDL (XML Process Definition Language [1]) for-
mat, called XPDL4Chor. While XPDL 2.0 is a serialization format for BPMN
standardized by the Workflow Management Coalition (WfMC), XPDL4Chor ad-
ditionally contains the new elements and attributes we added to BPMN.

The actual transformation takes place in a separate web service. This service
takes the XPDL4Chor document as input and produces the different BPEL4Chor
documents. This includes the participant topology as well as the participant
behavior descriptions for each participant type. The plugin offers the possibility
to download these documents or to view them in the browser.

Figure 10 shows a screenshot of the Oryx editor2. On the left side the palette
contains the different language constructs. These can be dragged onto the draw-
ing area in the middle. Attributes of the model elements can be edited in the
properties area on the right. Different editing functionality can be accessed
through the buttons on the top. Output as BPEL4Chor files or output as
XPDL4Chor file can be triggered through two of these buttons.

6 Related Work

There are different language proposals available for modeling choreographies. The
Web Service Choreography Description Language (WS-CDL [15,5]) was released
by the World Wide Web Consortium in 2005. Differences between WS-CDL and
BPEL are discussed in [17]. Let’s Dance [23] is another choreography language.
Like BPMN, it is implementation-independent and comes with a visual notation.
This language was designed to support all Service Interaction Patterns [6], a set
of recurrent choreography scenarios. An assessment of WS-CDL using these pat-
terns can be found in [9]. An earlier and less expressive choreography language
is the Business Process Schema Specification (BPSS [7]). A general introduction
into the different viewpoints found in inter-organizational process modeling can

2 The editor is accessible through http://www.bpel4chor.org/editor/

http://www.bpel4chor.org/editor/

Modeling Service Choreographies Using BPMN and BPEL4Chor 91

Fig. 10. Screenshot of the Oryx editor with the transformation plugin

be found in [12]. Already in [10] we have shown how the addition of the concepts
pool set, participant references and participant sets leads to a significantly higher
suitability of BPMN for choreography modeling. Such extended BPMN even sur-
passes WS-CDL in terms of Service Interaction Pattern support.

There are basically two different modeling styles manifested in choreography
languages. In the case of interconnected models, send and receive activities are
listed for each role and control and data flow dependencies are defined on a per-
role-basis. In contrast to this, interaction models are made up of atomic interac-
tions and control and data flow is defined globally, i.e. it is not directly assigned
to any of the roles. Examples for the first group are BPMN and BPEL4Chor,
but also simpler languages such as Message Sequence Charts (MSC [14]). Exam-
ples for the second group are WS-CDL, BPSS and Let’s Dance. Bridging these
two modeling styles is not trivial and requires for sophisticated transformation
algorithms as presented in [11] for the case of interaction Petri nets and their
corresponding participant behavior descriptions. This is not needed in our case,
as BPMN and BPEL4Chor follow the same modeling style.

There has been some work on comparing BPMN and BPEL and carrying
out transformations. Comparison was done e.g. in [20] on the general concepts
covered in both languages and on the respective Workflow Pattern support: the
authors’ conclusion is that the expressiveness of BPMN has to be restricted if a
full mapping to BPEL is desired.

92 G. Decker et al.

A major challenge in transforming BPMN to BPEL are the differences in
control flow constructs available in the languages. Ouyang et al. [18] restricted
BPMN and mapped that subset completely to BPEL.

Several commercial tools allow to define BPEL-specific configurations for
BPMN-models and implement transformation algorithms. However, typically
only a small subset of BPMN is allowed and then translated. None of the tools
provides a transformation to BPEL4Chor.

7 Conclusion and Outlook

We presented how BPMN can be used as modeling language in the different
choreography design phases. By extending BPMN we reached a higher suitability
of BPMN for modeling choreographies both in early design phases as well as in
late phases, where exceptions and technical configurations are added. We chose
BPMN for modeling choreographies, since it is widely used in the industry and
has a wide tool support.

BPMN does not specify a serialization format. We use BPEL4Chor as inter-
change format for the choreography models at the different levels of detail. BPEL
is the standard language for describing executable workflows. Since BPEL4Chor
is close to BPEL, the gap between design time and runtime is narrowed. We pro-
vided a transformation of BPMN models to BPEL4Chor, extending the trans-
formation from [18]. BPMN elements not having a corresponding notation in
BPEL4Chor are not transformed. However, these details are not required by the
runtime. Finally, we presented Oryx, our graphical modeling environment that
runs on the web, where a transformation plugin was added. We do not provide
support for round-trip engineering: only a one-way transformation from BPMN
to BPEL4Chor is provided. Modifications to the BPEL4Chor artifacts are not
reflected in the BPMN diagram.

Limitations of our approach are the restrictions we impose on the BPMN
models that can be transformed to BPEL4Chor. As part of that, we require that
BPMN models are sound and safe, i.e. deadlock-free and without multi-token
flow. We currently do not check these properties prior to the transformation.
Generally, the fact that only during the transformation we can detect that we
cannot transform a model, can be seen as the biggest limitation of our current
implementation. It is desirable to perform a check prior to starting the transfor-
mation and to give the modeler hints how to resolve the problem. This is subject
to ongoing work. As part of that we are working on integrating Petri-net-based
analysis functionality into the BPMN editor.

References

1. Process Definition Interface – XML Process Definition Language (October 2005),
http://www.wfmc.org/standards/docs/TC-1025 xpdl 2 2005-10-03.pdf.

2. Business Process Modeling Notation (BPMN) Specification, Final Adopted Spec-
ification. Technical report, Object Management Group (OMG) (February 2006),
http://www.bpmn.org/.

http://www.wfmc.org/standards/docs/TC-1025_xpdl_2_2005-10-03.pdf
http://www.bpmn.org/

Modeling Service Choreographies Using BPMN and BPEL4Chor 93

3. Web Services Business Process Execution Language Version 2.0 – OASIS Standard
(April 2007)

4. Barros, A., Decker, G., Dumas, M.: Multi-staged and Multi-viewpoint Service
Choreography Modelling. In: SEMSOA (2007)

5. Barros, A., Dumas, M., Oaks, P.: A Critical Overview of WS-CDL. BPTrends 3(3)
(2005)

6. Barros, A., ter Hofstede, A.H.M., Dumas, M.: Service Interaction Patterns. In:
van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005.
LNCS, vol. 3649, pp. 302–318. Springer, Heidelberg (2005)

7. Clark, J., Casanave, C., Kanaskie, K., Harvey, B., Smith, N., Yunker, J., Riemer,
K.: ebXML Business Process Specification Schema Version 1.01. Technical report,
UN/CEFACT and OASIS (May 2001), http://www.ebxml.org/specs/ebBPSS.pdf

8. Decker, G., Kopp, O., Leymann, F., Weske, M.: BPEL4Chor: Extending BPEL for
Modeling Choreographies. In: ICWS (2007)

9. Decker, G., Overdick, H., Zaha, J.M.: On the Suitability of WS-CDL for Choreog-
raphy Modeling. In: EMISA 2006 (2006)

10. Decker, G., Puhlmann, F.: Extending BPMN for Modeling Complex Choreogra-
phies. In: CoopIS 2007 (2007)

11. Decker, G., Weske, M.: Local Enforceability in Interaction Petri Nets. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 305–319.
Springer, Heidelberg (2007)

12. Dijkman, R., Dumas, M.: Service-oriented Design: A Multi-viewpoint Approach.
International Journal of Cooperative Information Systems 13(4), 337–368 (2004)

13. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. PhD thesis, University of California, Irvine (2000)

14. ITU-T. Message Sequence Chart. Recommendation Z.120, ITU-T (2000)
15. Kavantzas, N., Burdett, D., Ritzinger, G., Lafon, Y.: Web Services Choreography

Description Language Version 1.0, W3C Candidate Recommendation. Technical
report (2005)

16. Knopfel, A., Grone, B., Tabeling, P.: Fundamental Modeling Concepts: Effective
Communication of IT Systems. Wiley, Chichester (2006)

17. Mendling, J., Hafner, M.: From Inter-Organizational Workflows to Process Execu-
tion: Generating BPEL from WS-CDL. In: OTM, Workshops (2005)

18. Ouyang, C., Dumas, M., ter Hofstede, A.H., van der Aalst, W.M.: Pattern-based
translation of BPMN process models to BPEL web services. International Journal
of Web Services Research (JWSR) (2007)

19. Pfitzner, K., Decker, G., Kopp, O., Leymann, F.: Web Service Choreography Con-
figurations for BPMN. In: WESOA 2007 (2007)

20. Recker, J., Mendling, J.: On the Translation between BPMN and BPEL: Concep-
tual Mismatch between Process Modeling Languages. In: EMMSAD 2006 (2006)

21. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

22. Weske, M.: Business Process Management: Concepts, Languages, Architectures.
Springer, Heidelberg (2007)

23. Zaha, J.M., Barros, A., Dumas, M., ter Hofstede, A.: Let’s Dance: A Language for
Service Behavior Modeling. In: CoopIS 2006 (2006)

http://www.ebxml.org/specs/ebBPSS.pdf

Work Distribution and Resource Management in
BPEL4People:

Capabilities and Opportunities�

Nick Russell and Wil M.P. van der Aalst

1 Department of Technology Management, Eindhoven University of Technology
2 GPO Box 513, NL5600 MB Eindhoven, The Netherlands

{n.c.russell,w.m.p.v.d.aalst}@tue.nl

Abstract. The BPEL4People and WS-HumanTask extensions to the
BPEL proposal define the state of the art in resource management and
work distribution in business process execution languages. In this paper,
we use the workflow resource patterns as an evaluation framework to
assess the capabilities of BPEL4People and WS-HumanTask and identify
several areas where there is opportunity for further improvement.

Keywords: BPEL4People, WS-HumanTask, Resource Patterns.

1 Introduction

One of the major objectives of workflow systems (and process-aware information
systems (or PAIS) more generally) is to facilitate the distribution and coordina-
tion of work amongst the group of human resources associated with a process.
There has been explosive growth in the commercial offerings available to support
this objective as organisations seek out more effective ways in which to deploy
their business processes across their workforce in a predictable, reliable and con-
trolled manner. With the rise of the internet came a consequential extension of
the underpinning technologies to embrace cross-organisational processes and the
concept of the web service was born together with the notion of service oriented
architectures which aim to facilitate business processes on the basis of loosely
coupled (and potentially widely distributed) execution capabilities.

BPEL [11] was one of the first standards initiatives that attempted to establish
a common processing framework and language that distinct execution engines
could adopt in order to make the notion of a distributed business process based
on disparate web services a viable possibility. It met with significant commercial
interest and quickly established itself as the major standards initiative in this
area. Developed by an industry consortium, it is perhaps not surprising that it
met with early success as many of its contributors also had specific commercial

� This research is conducted in the context of the Patterns for Process-Aware Informa-
tion Systems (P4PAIS) project which is supported by the Netherlands Organisation
for Scientific Research (NWO).

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 94–108, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Work Distribution and Resource Management in BPEL4People 95

interests that were directly furthered through its publication and broad adop-
tance. It is ironic therefore given the level of commercial input into the overall
development of the BPEL standard that it had two major omissions: (1) a lack of
recognition that business processes are generally hierarchical in form (resulting
in the omission of the notion of subprocesses) and (2) a lack of consideration that
business processes generally have some form of human involvement. Although
these may have been deliberate omissions, they limit the applicability of BPEL
in real-life processes.

The WS-BPEL Extension for Sub-Processes [9] proposal resolved the first of
these issues. In an attempt to address the second, the BPEL4People [4] and
WS-HumanTask [3] proposals have been released. They attempt to provide a
series of extensions to WS-BPEL 2.0 [11] that integrate human resources into
the overall execution of business processes. As these are early stage proposals,
they are still open to comment in order to ensure that they meet with general
acceptance before being finalised as standards. The focus of this paper is to
review the conceptual foundation of BPEL4People and WS-HumanTask using
the resource patterns as an evaluation framework. Through this examination,
we hope to determine where the strengths and weaknesses of these proposals lie
and what opportunities there may be for further improvement.

The resource patterns [12] were selected as the basis for evaluating the BPEL4-
People and WS-HumanTask proposals as they offer a means of examining their
capabilities from a conceptual standpoint in a way that is independent of specific
technological and implementation considerations. The resource patterns were de-
veloped as part of the Workflow Patterns Initiative, an ongoing research project
that was conceived with the goal of identifying the core architectural constructs
inherent in workflow technology. The original objective was to delineate the
fundamental requirements that arise during business process modelling on a
recurring basis and describe them in an imperative way. A patterns-based ap-
proach was taken to describing these requirements as it offered both a language-
independent and technology-independent means of expressing their core char-
acteristics in a form that was sufficiently generic to allow for its application to
a wide variety of offerings. To date, 126 patterns have been identified in the
control-flow [13], data [14] and resource [12] perspectives and they have been
used for a wide variety of purposes including evaluation of PAIS, tool selection,
process design, education and training. The workflow patterns have been en-
thusiastically received by both industry practitioners and academics alike. The
original Workflow Patterns paper [1] has been cited by over 600 academic publi-
cations and the workflow patterns website is visited by more than 300 individuals
each day. Full details can be found at http://www.workflowpatterns.com.

The resource patterns form part of a surprisingly small body of research into
resource and organisational issues in PAIS. Relevant research in the context
of this paper includes early work by Bussler and Jablonski [5] which identifies
a number of shortcomings of workflow systems when modelling organisational
and policy issues. Du and Shan [6] present a design for a resource manager for
a workflow system which includes a high level resource model together with

96 N. Russell and W.M.P. van der Aalst

proposals for resource definition, query and policy languages. Similarly in [8],
Huang and Shan propose a means of facilitating policy-based handling of re-
source assignment in a workflow context. The RBAC (Role-Based Access Con-
trol) model [7] describes a security framework for workflow that allows suitable
users to be determined for a task. In [10] zur Muehlen presents a comprehensive
overview of the organizational aspects of workflow technology. Several researchers
[2,10] have developed meta-models describing the relationships between various
workflow concepts, including aspects of work allocation, however these meta-
models typically do not describe the dynamic aspects of work distribution.

The remainder of this paper proceeds as follows: Section 2 provides an overview
of the BPEL4People and WS-HumanTask proposals. Section 3 presents an as-
sessment of the two proposals using the workflow resource patterns as an evalua-
tion framework. Section 4 discusses the results of the evaluation and identifies a
number of areas where future possibilities exist for strengthening the proposals
and Section 5 concludes the paper.

2 BPEL4People: Overview and Background

In this section we examine the intention and coverage provided by the BPEL4-
People and WS-HumanTask proposals from various perspectives, starting with
their motivation and relationship with related proposals and standards and then
examining their informational and state-based characteristics on a comparative
basis against those described by the workflow resource patterns.

2.1 Motivation and Related Standards

The stated intentions of the BPEL4People proposal and the closely coupled
WS-HumanTask proposal are as follows [4,3]:

– BPEL4People: to support a broad range of scenarios that involve people
within business processes.

– WS-HumanTask: to provide a notation, state diagram and API for human
tasks as well as a coordination protocol that allows interaction with human
tasks in a more service-oriented fashion, and at the same time control task
autonomy.

In order to achieve these objectives, the BPEL4People proposal assumes the
services of a number of related standards. Figure 1 illustrates the relation-
ship between the various standards that are required in order to support the
BPEL4People proposal. It is interesting to note that whilst BPEL4People has
the most visibility, it provides minimal new capabilities from a resource perspec-
tive and essentially acts only to extend the notion of an Activity to that of a
PeopleActivity hence enabling the definition of inline and local tasks carried out
under the auspices of a human resource. The bulk of the new features associated
with work items, work distribution and state management are actually provided

Work Distribution and Resource Management in BPEL4People 97

WS−Policy 1.0XSLT 1.0 Infoset XPath 1.0 WSDL 1.1 XML Schema 1.0 WS−Addressing 1.0 WS−Coordination 1.0

WS−HumanTask 1.0WS−BPEL 2.0

BPEL4People 1.0

Fig. 1. Web services standards hierarchy

by the WS-HumanTask proposal which also introduces the notion of a stan-
dalone task (i.e. a task whose implementation is defined outside of the context
of the BPEL process) that is undertaken by a human resource. Consequently,
much of the remainder of this document will tend to focus on the capabilities
defined by the WS-HumanTask proposal.

2.2 Information Coverage of the BPEL4People/WS-HumanTask
Extensions

Insight into the overall capabilities of the BPEL4People/WS-HumanTask exten-
sion can be obtained by comparing the metamodels shown in Figure 2 in the
form of UML class diagrams. The top model shows the main entities covered by
the BPEL4People and WS-HumanTask proposals and the bottom model shows
the main entities covered by the resource patterns. By comparing the two mod-
els, it is possible to analyze the differences and commonalities. Although much of
the information content is common to both models, there are some noteworthy
distinctions between them.

The resource patterns:

– assume a richer organisational model both to capture relationships between
resources, job and organisational units, and also allow this information to be
used as the basis for work distribution directives (see label (1) in Figure 2);

– include the notion of execution history (where the execution outcomes of
activities in multiple concurrent cases are permanently logged) and allow
this data to be used in work distribution directives (2);

– support the notion of extensible resource descriptions (via capabilities) which
can be used when making decisions about distributing work items (3); and

– provides a comprehensive authorisation framework which strictly defines the
work item privileges available to individual resources at runtime (4).

The BPEL4People/WS-HumanTask proposals:

– distinguish between a series of distinct task implementation strategies (local,
remote, etc.) (5);

98 N. Russell and W.M.P. van der Aalst

FunctionTask Variable

AutomaticTask

ManualTask Query

Role

BPEL Process

Privilege

logicalPeopleGroup

CapabilityExecutionLog Job OrgGroup

Parameter

remoteTask

localTask

deferred distribution

inlineTask

 role based distribution

 org structure

 output
 input input

literal

 output

user−privileges

 reports to

User

expression

possesses

direct distribution

scheduledAction

user−task−privileges

expiration

deferActivation

recipient

separation
of duties

businessAdministrator

taskStakeholder

 retain familiar

taskInitiator

potentialOwners

excludedOwners

fromgenericHumanRolepeopleAssignment

toParts

fromParts

argument

HumanInteractions

Notification
presentationElement

PeopleActivityVariable

startDeadline completionDeadline

Task

delegation

rendering

priority

outcomedeadline

10

6

Resource Patterns

BPEL4People/WS−HumanTask

7

32

9

8

5

14

Fig. 2. Comparison of information coverage in BPEL4People [4] and WS-HumanTask
[3] and the workflow resource patterns [12]

– incorporate facilities for defining commencement and completion deadlines
for tasks along with the actions that should be taken when the deadline is
reached. Similar capabilities exist for specifying escalations (6);

Work Distribution and Resource Management in BPEL4People 99

– support a series of notification capabilities to advise resources of adverse
work item execution circumstances (7);

– include a series of designated roles for each task that describe specific privi-
leges. These include task initiator and task stakeholder (8);

– incorporate the identification of rendering facilities for each task which de-
scribe the potential user interfaces that will be presented to resources un-
dertaking the task (9); and

– include a means of representing data specific to a task instance (although
interestingly, individual task data instances are only referenced by an id field
and it is unclear how data elements are related to specific task instances in
a specific case) (10).

Some of the distinctions outlined above are related to scope, others may in-
dicate potential areas for improvement or enhancement and are discussed at
greater length later in the paper. One observation that can be made at this
point is that the two proposals consider implementation aspects for individual
tasks (e.g. presentation elements, interface details and deadlines) in addition to
issues associated with work distribution. In contrast, the resource patterns op-
erate at a conceptual level and focus strictly on issues of resource management
and work distribution. There is currently no consideration of functional details
associated with task enactment in the workflow patterns framework and this
raises the question of whether there should be further investigations into the
potential for a set of operational patterns describing task implementation.

2.3 Dynamic Coverage of the WS-HumanTask Extension

The state models that underpin the resources patterns and the WS-HumanTask
proposal1 are analogous. Figure 3 illustrates the state transition diagrams for
both of them. A major difference between them is that WS-HumanTask also
includes broader consideration of error states and allows tasks that haven’t yet
started to be suspended (as shown by labels (1) and (2) respectively). In contrast,
the resource patterns differentiate between work items offered to single and mul-
tiple resources (shown by (3)) and support a slight wider range of detour actions
(as illustrated by the bold arcs).

3 Capabilities: An Assessment of Resource Pattern
Support

In the following section, we provide an evaluation of the capabilities of BPEL4-
People and WS-HumanTask from a resource perspective. This assessment utilises
the workflow resource patterns as an evaluation framework thus providing a
technologically agnostic means of examining the capabilities of the two proposals.
There are seven distinct groups of resource patterns as follows:

1 BPEL4People defers state management details to the WS-HumanTask proposal.

100 N. Russell and W.M.P. van der Aalst

no_state

allocated to a
single resource

completed

suspended

failed

R:complete

single resource
offered to a

offered to
multiple

resources

R:allocate

R:startS:create

S:offer_m

S:offer

S:allocate

S:escalate

S:escalate

R:deallocate

R:suspend

R:reallocation_with_state

R:reallocation

R:deallocate

R:start

S:escalate

R:delegate

S:escalate

R:start

S:escalate

R:deallocate

S:escalate
R:deallocate

R:allocate

R:resume

R:skip

started

R:fail

S:escalate

S:escalate

S:escalate

R:redo

Created

Inactive

Closed

Reserved

Ready

In Progress

Completed Failed Error Exited Obsolete

Suspended

Ready

Reserved

InProgress

(activate ||
nomination performed) &&

single potential owner

[Task created, coord context obtained]
Register task with coordinator

(activate || nomination performed) &&
(multiple potential owners || work queue)

WS−HumanTask

1

3

2

Resource Patterns

claim || delegate

created

start

[Skip && isSkippable][WS−HT exit]
ExitSend "WS−HT fault"

[Non−recoverable error]

[Completion with fault response]

revoke || forward

revoke || forward

Send application fault

Send result
[Completion with response]

delegate

stop || delegate

forward
suspend

resume

resume

suspend

start

suspend

resume

Send ¯WS−HT Skipped"

Fig. 3. Comparison of supported states in WS-HumanTask [3] and the workflow re-
source patterns [12]

– creation patterns – which correspond to limitations specified in the design
time model on the manner in which a work item is executed by resources;

– push patterns – which characterise situations where newly created work items
are proactively offered or allocated to resources by the system;

– pull patterns – which correspond to situations where individual resources
take the initiative in committing to and undertaking available work items;

Work Distribution and Resource Management in BPEL4People 101

– detour patterns – which refer to situations where work allocations that have
been made for resources are interrupted either by the system or at the insti-
gation of individual resources;

– auto-start patterns – which relate to situations where the execution of work
items is triggered by specific events in the lifecycle of the work item or the
related process definition;

– visibility patterns – which describe the various scopes in which work item
availability and commitment are able to be viewed by resources; and

– multiple resource patterns – which characterise situations where the corre-
spondence between the resources and work items in a given allocation or
execution is not 1-1.

The following sections describe the support for each of these patterns by the
BPEL4People (B4P) and WS-HumanTask (HT) proposals in detail2.

3.1 Creation Patterns

The intention of the BPEL4People and WS-HumanTask proposals – to support
a broad range of scenarios that involve people within business processes – is
immediately reflected by the range of creation patterns that are supported as
illustrated in Table 1. As the original BPEL proposal provided no guidance in
this area, the relative change is significant.

Resources are identified within the context of a BPEL process and work can
be distributed directly to them by name or indirectly via role-based groupings
or based on the results of queries. Through the use of these queries, separation
of duties and retain familiar constraints can be specified between work items
within a case. Less well-supported however is the ability to specify more precise
work distribution requirements for a task in terms of organisational or history-
based criteria. The organisational model supported with the BPEL4People/WS-
HumanTask framework is relatively simplistic and does not explicitly identify job
roles, reporting lines or relationships between organisational groupings hence
these cannot be used when distributing work. Similarly, it is only possible to
use the execution characteristics of work items in the same case when framing
historical work distribution requirements. There is no support for adding further
descriptive criteria to individual resources (i.e. capabilities) and using these when
distributing work items. An additional shortcoming relates to the limited ability
within BPEL4People/WS-Human-Task to impose an authorisation framework
on resources and the range of actions that they are able to undertake with
respect to overall process execution (other than for delegate and skip actions).
Similarly, it is not possible to constrain the resources that individual tasks can
be distributed to in a guaranteed way (e.g. a work item could ultimately be
delegated to any resource not just one that satisfied the distribution criteria
associated with the task).

2 Details of individual pattern realisations in BPEL4People and WS-HumanTask can
be found in the companion technical report BPM-07-11 at www.BPMcenter.org.

102 N. Russell and W.M.P. van der Aalst

Table 1. Creation patterns support

Nr Pattern Rating Rationale

1 Direct Distribution + Supported by literal assignment of potential/actual task owners (HT)

2 Role-Based Distribution + Supported by logical people group assignment of potential/actual task

owners (HT)

3 Deferred Distribution + Supported by assignment of potential/actual owners based on

expressions (HT)

4 Authorisation +/– Limited support for nominating delegation and skipping on a per task

basis but no general support for user privileges (HT)

5 Separation of Duties + Supported via excluded owners attribute for <peopleAssignment>

elements (HT)

6 Case Handling – No support for case handling

7 Retain Familiar + Supported by assigning actual owner to the same value as the actual

owner of another task (HT)

8 Capability-Based

Distribution

– No support for resources to have additional capability attributes

9 History-Based Distribution +/– Expressions can utilise details associated with task instances for a

given user via the getMyTasks function although its unclear how this

can be generalised to broader history-based queries (HT)

10 Organisational Distribution +/– The organisational model only identifies group membership and role

participation for individual resources (HT)

11 Automatic Execution + Directly supported by BPEL

3.2 Push and Pull Patterns

The work distribution model in WS-HumanTask is based on work being ad-
vertised to individual resources and those resources making a decision on what
work they will commit to undertaking and when they will start it. The degree
of support for specific push patterns is illustrated in Table 2. Work items can
be offered to multiple resources or allocated to one of them, however it is not
possible to offer a work item to a single resource on a non-binding basis. There
is no support for randomly selecting a resource to undertake a work item or for
distributing work on a round robin (i.e. an equitable) basis, however it does ap-
pear that the possibility may exist to distribute work on a shortest-queue basis
where there are multiple potential resources for the same work item (although
the precise means of implementing this using the provided function set is a little
unclear). All work is distributed at the time the task with which it is associated
is enabled. As indicated previously, under the WS-HumanTask proposal, work
is advertised to resources and they commit to undertaking work items of their
choice and can choose the time of commencement. The degree of support for spe-
cific pull patterns is illustrated in Table 2. There is provision for a resource to
execute multiple work items simultaneously and to order and select the content
of their own work queue via queries however it is not possible for the system to
impose a default ordering or content for work queues.

Work Distribution and Resource Management in BPEL4People 103

Table 2. Push and patterns support

Nr Pattern Rating Rationale

Push patterns

12 Distribution by Offer -

Single Resource

– Not supported. If there is only one potential owner for a work item,

then it is allocated to them

13 Distribution by Offer -

Multiple Resources

+ Supported by setting multiple potential owners for a task instance in

the Created or Ready state (HT)

14 Distribution by Allocation -

Single Resource

+ Supported by setting a single potential owner for a task instance in the

Created or Ready state (HT)

15 Random Allocation – Not supported

16 Round Robin Allocation – Not supported

17 Shortest Queue +/– It would appear that this pattern can be supported by using an

expression to set the actual owner for a task instance to the potential

owner with the shortest work list, however its unclear if this can be

implemented with the supported functions (HT)

18 Early Distribution – Not supported

19 Distribution on Enablement + Potential owners are notified of tasks when they are created

20 Late Distribution – Not supported

Pull patterns

21 Resource-Initiated

Allocation

+/– Supported via the claim function providing the work item is offered to

more than one user. It is automatically started if only offered to one

resource (HT)

22 Resource-Initiated Execution

- Allocated Work Item

+ Supported via the start function (HT)

23 Resource-Initiated Execution

- Offered Work Item

+ Supported via the start function (HT)

24 System-Determined Work

Queue Content

– No ability to limit or order the work queue for a resource

25 Resource-Determined Work

Queue Content

+ The simple and advanced query functions provide the ability for

resources to restrict and format the content of their worklists (HT)

26 Selection Autonomy + Resources can choose to start any task instance available available to

them (HT)

3.3 Detour, Auto-Start, Visibility and Multiple Resource Patterns

Detour patterns provide the ability for resources (and potentially the system)
to alter the normal sequence and manner in which work items are distributed
for execution. A variety of distinct “detours” are supported, as illustrated in
Table 3, although there is no ability to undertake work items outside of the
normal execution sequence (i.e. redo/pre-do) or to rollback their execution state
(i.e. stateless reallocation). Auto-start patterns correspond to mechanisms which
attempt to speed up the overall throughput of work in various ways. As indicated
in Table 3, BPEL4People and WS-HumanTask do not provide any capabilities in
this area. Visibility patterns describe mechanisms within the workflow system for
limiting the visibility of upcoming or in progress work items to selected resources.
As indicated in Table 3, WS-HumanTask potentially provides support in this

104 N. Russell and W.M.P. van der Aalst

Table 3. Detour, auto-start, visibility and multiple resource patterns support

Nr Pattern Rating Rationale

Detour patterns

27 Delegation + Supported via the delegate function (HT)

28 Escalation + Escalations can be specified for tasks. Both commencement and

completion deadlines are supported together with logical conditions

that restrict their application (HT)

29 Deallocation + Supported via the release function (HT)

30 Stateful Reallocation + Supported via the the forward function (HT)

31 Stateless Reallocation – Not supported

32 Suspension/Resumption + Supported via the suspend and resume functions (HT)

33 Skip + Supported via the skip function (HT)

34 Redo – Not supported

35 Pre-Do – Not supported

Auto-start patterns

36 Commencement on Creation – Not supported. Task instances must be explicitly started by an owner

37 Commencement on Alloc. – Not supported. Task instances must be explicitly started by an owner

38 Piled Execution – Not supported

39 Chained Execution – Not supported

Visibility patterns

40 Configurable Unallocated

Work Item Visibility

+/– The advanced query function seems to support this but its operation

across process instances and also for querying work items not allocated

to the requesting resource is unclear. Also it is not a mandatory part of

the proposal (HT)

41 Configurable Allocated

Work Item Visibility

+/– The advanced query function seems to support this but its operation

across process instances and also for querying work items not allocated

to the requesting resource is unclear. Also it is not a mandatory part of

the proposal (HT)

Multiple resources patterns

42 Simultaneous Execution + Directly supported (HT)

43 Additional Resources – Not supported. There can only be one resource for a task instance

area, however it is unclear how the query function operates in the context of
multiple concurrent processes. Multiple resource patterns characterise situations
where the work item - resource relationship is not 1-1. As indicated in Table 3,
WS-HumanTask supports the notion of simultaneous execution (i.e. one resource
running multiple work items) but only allows a work item to be allocated to a
single resource.

4 Opportunities

The BPEL4People and WS-HumanTask proposals provide comprehensive sup-
port for incorporating tasks undertaken by human resources within the overall
process execution framework that BPEL provides. There is a broad range of
ways in which human resources can be represented and grouped: individually,

Work Distribution and Resource Management in BPEL4People 105

via roles, groups and also as a result of query execution. These strategies can
also be used as the basis for work assignments. Moreover there are a number
of distinct ways in which human tasks can be implemented, ranging from inline
activities in which both the task definition and the associated work directives
form part of the same node in the process through to standalone tasks (defined
elsewhere) which are coordinated by a PeopleActivity node in a BPEL process.

Nonetheless, the patterns evaluation undertaken in the previous section iden-
tifies a number of potential opportunities that these two proposals could pursue
to further strengthen their ability to support human resource involvement in
business processes. These issues are discussed in the following sections. In order
to give an indication of effort associated with addressing each of them, we have
rated their complexity from * (minimal effort) to *** (significant effort).

4.1 Non-binding Offers to a Single Resource*

There is no ability in the context of WS-HumanTask to offer a work item (i.e.
not allocate) to a single resource. Where a newly created work item is identified
as having a single potential owner, then it is assumed to be allocated to that
resource (i.e. reserved) on a binding basis. There is no option that allows the
resource to decline to undertake the offered work item.

4.2 Automatic Selection of a Resource*

Where multiple potential resources are identified when seeking to distribute a
work item, there is no means of selecting a single resource to whom it should
be allocated. Common means of selecting a suitable resource where several are
identified include round-robin (i.e. distribute work evenly), least busy user (e.g.
shortest queue) and random selection.

4.3 Distinguishing Execution Instances*

There is minimal distinction made between tasks and task instances. Whilst this
is inconsequential when specifying a static process model, many of the elements
in the enhanced BPEL4People/WS-HumanTask proposals require specific ad-
dressing e.g. invoking a remote task requires knowledge of the remote endpoint,
the process name, task name, the specific process instance and task instance
being sought. Similarly, data elements are specific to a process instance (not all
process instances) hence they also need to be named accordingly. Moreover there
seems to be no notion of process instance or task instance identifiers in these
naming schemes that facilitiate navigation to a specific instance that is currently
in progress (e.g. for delivering a notification or data element).

4.4 Richer Resource Descriptions**

There is no support for more detailed definition of specific resources (e.g. via ca-
pabilities) or for the use of resource characteristics when distributing work. This

106 N. Russell and W.M.P. van der Aalst

limits any possibility for differentiating between specific resources on the basis of
characteristics that they possess when distributing work. In effect, all resources
are treated as being identical when making a decision about where to route a
work item. Note that multiple processes and organisations may want to share
information about resource capabilities and requirements. BPEL4People/WS-
HumanTask could play a prominent role here were they able to utilise and me-
diate more detailed resource definitions held in distinct systems (e.g. X.500 style
directory services, ERP/HR systems) for work distribution purposes.

4.5 Inclusion of an Organisational Framework***

The organisational model provided is relatively minimalistic and does not take
common concepts such as jobs, reporting lines, organisational groups etc. into
account nor can these characteristics be used for work distribution purposes or
for identifying or grouping resources in a generic sense. As the relationships be-
tween resources cannot be described in terms of the organisational context in
which they operate, it is not possible to describe a variety of common approaches
to work distribution, e.g. offer the work item to a clerk reporting to the man-
ager. Moreover, work distribution cannot be framed in terms of organisational
positions or jobs. This is a common approach to describing work responsibilities
in many organisations as it minimises the need to change the work distribution
directives associated with a process when staffing arrangements change.

4.6 Work Distribution Based on Historical Information***

Within a process instance, there is minimal access to historical information (and
at that, only that referring to preceding work items in the same case). Moreover
it is not clear to what extent this can be used for work distribution purposes.
This is an obvious area where further clarity can be added to these proposals.
The use of historical information, particularly that based on a multitude of
previously completed process instances, provides a useful means of targetting
suitable resources when distributing work items and allows approaches such as
“allocate to the most experienced resource” or “offer to the person who did it
least recently” to be implemented.

4.7 Resource Privileges**

One notable absence is the ability to specify privileges defining what actions a
resource can undertake. Ideally it should be possible to specify these on a per-
task basis in order to restricting the range of actions that a resource can initiate
in regard to a task (e.g. delegation, reallocation etc.).

4.8 Independent Authorisation Framework***

There is no provision for imposing an authorisation framework over the tasks in
a process to limit the potential range of resources to whom they can be directed

Work Distribution and Resource Management in BPEL4People 107

and that are able to ultimately execute them. This is particularly useful in an
enterprise context in order to limit how a task can be executed, regardless of the
process definition in which it appears or how it is routed.

4.9 User-Initiated Optimization**

In many situations, opportunities that may exist for optimising work throughput
can best be identified by resources involved in the conduct of work associated
with the actual process. There are a number of approaches to expediting the
completion of a process instance, these include automatically starting tasks when
they are created or allocated, automatically starting subsequent tasks and allo-
cating to the resource that completed the preceding task in a process instance,
and allocating all instances of a given task to the same resource regardless of the
process instance in which they occur (i.e. chained and piled execution). None of
these facilities are supported in the BPEL4People or WS-HumanTask proposals.

4.10 Provision of a Worklist Metaphor**

One of difficulties with the proposals is that there is an absence of a clearly
defined user interface that describes how a resource interacts with the process
engine when undertaking work items and what details associated with each work
item are disclosed. Typically in workflow systems, this interface is termed a
worklist handler although other metaphors are possible e.g. work queues. Access
to work items is supported via user-initiated queries, however the operation of
these queries is unclear when requesting work items in multiple process instances.
Moreover the use of such queries also removes any potential for imposing a
uniform view of work distributions to all users.

5 Conclusions

This paper has examined the support that the BPEL4People and WS-HumanTask
proposals provide for extending the BPEL offering to deal with activities that
are undertaken by human resources. It uses the workflow resource patterns as an
evaluation framework to assess the capabilities of these proposals and in doing
so identifies both their strengths and several areas where opportunities exist for
further improvement.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(3), 5–51 (2003)

2. van der Aalst, W.M.P., Kumar, A., Verbeek, H.M.W.: Organizational modeling in
UML and XML in the context of workflow systems. In: Haddad, H., Papadopoulos,
G. (eds.) SAC 2003, pp. 603–608. ACM Press, New York (2003)

108 N. Russell and W.M.P. van der Aalst

3. Agrawal, A., Amend, M., Das, M., Ford, M., Keller, C., Kloppmann, M., König,
D., Leymann, F., Müller, R., Pfau, G., Plösser, K., Rangaswamy, R., Rickayzen,
A., Rowley, M., Schmidt, P., Trickovic, I., Yiu, A., Zeller, M.: Web Services
Human Task (WS-HumanTask), version 1.0 (2007),
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
bpel4people/WS-HumanTask_v1.pdf

4. Agrawal, A., Amend, M., Das, M., Ford, M., Keller, C., Kloppmann, M., König,
D., Leymann, F., Müller, R., Pfau, G., Plösser, K., Rangaswamy, R., Rickayzen,
A., Rowley, M., Schmidt, P., Trickovic, I., Yiu, A., Zeller, M.: WS-BPEL Extension
for People (BPEL4People), version 1.0 (2007),
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
bpel4people/BPEL4People_v1.pdf

5. Bussler, C., Jablonski, S.: Policy resolution for workflow management systems. In:
Proceedings of the 28th Hawaii International Conference on System Sciences, vol. 4,
pp. 831–840. IEEE Computer Society, Wailea (1995)

6. Du, W., Shan, M.C.: Enterprise workflow resource management. In: Proceedings
of the Ninth International Workshop on Research Issues on Data Engineering: In-
formation Technology for Virtual Enterprises (RIDE-VE 1999), Sydney, Australia,
pp. 108–115. IEEE Computer Society Press, Los Alamitos (1999)

7. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM Transactions on Information
and System Security 4(3), 224–274 (2001)

8. Huang, Y.N., Shan, M.C.: Policies in a resource manager of workflow systems:
Modeling, enforcement and management. Technical Report HPL-98-156 (1999),
http://www.hpl.hp.com/techreports/98/HPL-98-156.pdf

9. Kloppman, M., Koenig, D., Leymann, F., Pfau, G., Rickayzen, A., von Riegen,
C., Schmidt, P., Trickovic, I.: WS-BPEL Extension for Sub-Processes: BPEL-
SPE (2005), ftp://www6.software.ibm.com/software/developer/library/ws-
bpelsubproc.pdf

10. zur Muehlen, M.: Organizational management in workflow applications – issues
and perspectives. Information Technology and Management 5, 271–294 (2004)

11. OASIS. Web Services Business Process Execution Language for Web Services ver-
sion 2.0 (2007), http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

12. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow
Resource Patterns: Identification, Representation and Tool Support. In: Pastor,
Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer,
Heidelberg (2005)

13. Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mulyar, N.: Workflow
control-flow patterns: A revised view. Technical Report BPM-06-22 (2006),
http://www.BPMcenter.org

14. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow
Data Patterns: Identification, Representation and Tool Support. In: Delcambre,
L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS,
vol. 3716, pp. 353–368. Springer, Heidelberg (2005)

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/BPEL4People_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/BPEL4People_v1.pdf
http://www.hpl.hp.com/techreports/98/HPL-98-156.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-bpelsubproc.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-bpelsubproc.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.BPMcenter.org

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 109–123, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Documenting Application-Specific Adaptations
in Software Product Line Engineering

Günter Halmans1,∗, Klaus Pohl2, and Ernst Sikora2

1 RDS Consulting GmbH
Mörsenbroicher Weg 200, 40470 Düsseldorf, Germany

guenter.halmans@rds.de
2 Software Systems Engineering, University of Duisburg-Essen

Schützenbahn 70, 45117 Essen, Germany
{klaus.pohl,ernst.sikora}@sse.uni-due.de

Abstract. Software product line engineering distinguishes between two types of
development processes: domain engineering and application engineering. In
domain engineering software artefacts are developed for reuse. In application
engineering domain artefacts are reused to create specific applications.

Application engineers often face the problem that individual customer needs
cannot be satisfied completely by reusing domain artefacts and thus application-
specific adaptations are required. Either the domain artefacts or the application
artefacts need to be modified to incorporate the application-specific adaptations.
We consider the case that individual customer needs are realised by adapting
the application artefacts and propose a technique for maintaining traceability
between the adapted application artefacts and the domain artefacts. The trace-
able documentation of application-specific adaptations is facilitated by an ap-
plication variability model (AVM) which records the differences between the
domain artefacts and the application artefacts of a particular application. The
approach is formalised using graph transformations.

Keywords: product line engineering; variability modelling; application-specific
adaptations; traceability.

1 Introduction

Software-product line development differentiates between two processes [5] [12]:
domain engineering and application engineering. In domain engineering, domain
artefacts (domain requirements, domain architecture, domain components, domain
test cases, etc.) are developed for reuse. In application engineering, domain artefacts
are reused for defining and realising specific applications. Domain artefacts and ap-
plication artefacts are interrelated by traceability links to support the different domain
and application engineering tasks (cf., e.g. [12]). In addition, traceability links are
established between requirements, architecture, components, and test artefacts, both,

∗ The work reported in this paper was performed while Günter Halmans was member of the Software

Systems Engineering Group at the University of Duisburg-Essen.

110 G. Halmans, K. Pohl, and E. Sikora

Application Engineering

Domain Engineering

Domain
Requirements

Domain
Architecture

Domain
Components

Domain
Test Artefacts

Application
Requirements

Application
Architecture

Application
Components

Application
Test Artefacts

Traceability Links

Fig. 1. Overview of domain and application artefacts including traceability links

in domain and application engineering. Fig. 1 provides a schematic overview of the
two processes, the key artefacts and the traceability links.

The second, central characteristic of product line engineering is the distinction be-
tween common and variable artefacts. Common domain artefacts become part of each
application derived from the product line. The product line variability denotes the
variable artefacts and thus defines the possible variations among the products (appli-
cations) of a product line. Variable artefacts may (or may not) be selected for a par-
ticular application. The process of selecting the variable artefacts required for a
specific application during application engineering is called the binding of variability
[3]. The selection (i.e. the binding) is documented in order to ensure, for instance, the
traceability of the application artefacts to the domain artefacts.

In practice, product line applications can typically not be derived 100% from the
domain artefacts. For example, if a customer requirement is not part of the domain
requirements, the application engineers have to create additional artefacts and/or
adapt existing artefacts in order to realise the customer requirement. Thus, in addition
to reusing artefacts from domain engineering, application-specific artefacts have to be
defined (see e.g. [1] [4] [8] [12] [15] [16]). By application-specific artefacts we de-
note all development artefacts (including requirements, architecture, components, and
test artefacts) needed specifically for a particular application. Application-specific
artefacts can be realised either by extending and/or adjusting the domain artefacts and
deriving the required application-artefacts from the adapted domain artefacts or by
adapting the application artefacts directly.

For instance, in [10] application-specific requirements changes are realised by
adapting the domain requirements. In [2], the inclusion of new components in the
domain artefacts is addressed in order to realise application-specific changes. Further
examples of approaches supporting the adaptation of domain artefacts to realise appli-
cation-specific adaptations are [6] and [13].

In contrast, [15] and [16] address the realisation of application-specific adaptations
by adapting the application artefacts. However, these approaches do not provide a
systematic procedure for realising the adaptations. Thus, for instance, no traceability
relationships between the adapted application artefacts and the domain artefacts are
maintained. The KobrA approach foresees the adaptation of application artefacts, yet
does not provide a means to document the adaptations in a traceable manner [1]. The
approach in [8] realises application-specific changes by adapting application artefacts

 Documenting Application-Specific Adaptations in Software Product Line Engineering 111

which are represented as UML diagrams. However, the changes are incorporated in
each diagram, and thus, there is no central, consistent model where the adaptations are
documented. In addition, the approach does not address the issue of providing trace-
ability between the domain artefacts and the adapted application artefacts.

Summarising, none of the stated approaches supports the traceable documentation
of application-specific adaptations of application artefacts throughout different arte-
fact types (requirements, architecture etc.).

In this paper, we argue that application-specific adaptations should be incorporated
at the application engineering level and that the application-specific changes must be
interrelated with the domain artefacts (cf. Section 2). In Section 3, we introduce an
application-specific variability model (AVM) as a means to realise and document
traceable, application-specific adaptations. In Section 4, we sketch the prototypical
realisation of our approach in a tool environment based on typed attributed graph
transformation systems. In Section 5, we illustrate our approach using a simplified
example. Section 6 summarises the paper and provides an outlook on future work.

2 Adjusting Domain Artefacts or Application Artefacts?

As mentioned in the introduction, application-specific adaptations can be realised
either by adapting the domain artefacts (Section 2.1) or by adapting the application
artefacts, i.e. at the application engineering level (Section 2.2).

2.1 Adaptation of Domain Artefacts

Application-specific adaptations can be realised by increasing the variability of the
product line and by adding and/or adjusting domain artefacts in such a way that all
required application artefacts can be derived from the domain artefacts. This approach
is appealing as it simplifies the application engineering process for the specific appli-
cation. However, an adaptation of domain artefacts leads to an evolution of the prod-
uct line. As described, for instance, in [5] and [12], the evolution of a product line
should be determined by the product line strategy of the organisation rather than by
individual customer wishes. Typically, proposed changes of domain artefacts have to
be approved by a change control board before being incorporated in the domain arte-
facts of the product line. The domain artefact change control board enforces the prod-
uct line strategy and takes into account in its decisions the costs and benefits of each
proposed change. For instance, the following “cost drivers” have to be considered,
when deciding about the implementation of individual customer wishes through the
adaptation of domain artefacts:

• Increased complexity of domain artefacts: Incorporating a huge number of individual
customer’s wishes into the domain artefacts increases the complexity of the domain
artefacts as well as the variability of the product line [12]. Realising application-
specific artefacts through variable domain artefacts is thus in conflict with a typical
product line strategy: to facilitate testing of domain artefacts as early as possible,
which requires as little variability as possible [14]. Moreover, an increase of variabil-
ity leads, to a more complex product derivation process for future applications as, for

112 G. Halmans, K. Pohl, and E. Sikora

instance, the application engineer has to take a higher number of decisions to derive a
new application.

• Adjustment of all applications already derived from the product line: The applica-
tions that have already been derived from the product line or are being derived
could be affected by the adaptation of the domain artefacts. One reason for inte-
grating the changes made to the domain artefacts in all existing applications of the
product line is to facilitate future maintenance of these applications (cf., e.g. [11]).
However, some applications might be affected by the adaptation of the domain ar-
tefacts in an unexpected manner. Hence, the effects of the adaptations on each ex-
isting application have to be checked. For implementation artefacts the checking
can be performed by an automatic regression test of the applications. Yet, require-
ments and architectural artefacts typically need to be checked manually which is a
time and resource-intensive process, in particular, when the product line has a large
number of applications.

Several researchers recommend to realise individual customer wishes by adapting
application artefacts directly (cf., e.g. [4] [12] [15]) which avoids the high effort re-
lated to product line evolution. Even if satisfying the individual customer’s wishes
matches well the product line strategy and offers a high benefit for the entire product
line, the product line organisation may decide to develop a lead product before the
proposed changes are incorporated into the domain artefacts. Summarising, there are
strong arguments for maintaining a clear separation between product line evolution
and the realisation individual customers’ wishes. Prior to adapting the domain arte-
facts one has perform a cost-benefit-analysis that takes into account the product line
strategy and the entire set of applications.

2.2 Application-Specific Adaptation of Application Artefacts

The other option, which avoids the high effort of adapting the domain artefacts, is to
realise application-specific artefacts at the application engineering level. In this case
application-specific adaptations are realised by changing and extending the applica-
tion artefacts derived from the domain artefacts. Thus, the adaptations only affect the
application under development instead of all existing or future applications.

When changing the derived application artefacts to incorporate application-specific
requirements, obviously, the resulting application artefacts differ from the domain
artefacts. If the product line organisation does not establish a systematic approach for
dealing with those differences, severe problems may occur that undermine the advan-
tages of product line engineering (cf. [11]). There is thus a need to record the interre-
lations between the domain artefacts and the application-specific adaptations of appli-
cation artefacts. We illustrate this by the following two cases:

• Case A: Assume that a particular domain requirement is selected for the application
and that this requirement is slightly modified to satisfy the customer need. If there is
no documentation of this adaptation and no relation to the original domain artefact,
the application architect may not be aware of the fact that the application-specific
requirement is based on a domain requirement. Thus, the architect might not know
that there are domain components which realise the domain requirement (which the
application-specific requirement is based on) and which could be modified to fulfil

 Documenting Application-Specific Adaptations in Software Product Line Engineering 113

the application-specific requirement. When designing the application architecture,
the architect would assume that the components required for implementing the ap-
plication-specific requirement have to be developed anew. Likewise, the application
tester is not able to identify the domain test artefacts that, with some modifications,
could be reused for testing the application-specific requirement. Summarising, if
there is no adequate traceability information from the specific application require-
ment to the reused domain requirement, it is close to impossible to identify, later on
in the development process, that the application-specific requirement is based on a
particular domain requirement (i.e. that there was a reuse with modifications).

• Case B: Assume that two variable domain requirements exclude each other, for
instance, because each requirement alone causes about 60% system load. One of
the two domain requirements is 100% reused for an application and the other is
adapted for the application. If the application-specific requirement is not linked
with the original domain requirement, it is very difficult for an application architect
to recognise the conflict. Consequently there is a risk that an application is devel-
oped that does not fulfil its performance requirements since the application devel-
opers are not aware of the existing conflict.

We conclude that application-specific adaptations of application artefacts should be
traceable and the application artefacts should be interrelated with the domain arte-
facts. In general, a particular application-specific adaptation most likely influences all
or most types of application artefacts (requirements, architecture, components, test
cases, etc.). For instance, a home security product line might include two authentica-
tion mechanisms for unlocking the front door: to enter a personal identification
number in a key pad or to swipe a personal access card through a card reader. Incor-
porating a new authentication mechanism, for instance, biometric authentication, for a
specific home security system would change the requirements, possibly the architec-
ture, the implementation as well as the test cases. In the following, we discuss two
approaches to tracing adaptations in application artefacts.

• Documenting Adaptations within Application Artefacts: Keeping track of the
differences between application artefacts and domain artefacts can be achieved by
documenting the differences individually for each type of application artefacts. In
this case, application-specific changes in application requirements are interlinked
with the corresponding domain requirements, changes in the application architec-
ture artefacts are interlinked with the domain architecture artefacts and so forth.
Using this approach, the traceability information for a particular change is split
across the various artefact types. The splitting entails that the impact of a particular
application-specific adaptation on the different application artefacts is difficult to
recognise.

• Documenting Adaptations in a Dedicated Model: In order to avoid the splitting of
traceability information across the various artefact types, we suggest to use a dedi-
cated model to document the application-specific adaptations. The key idea behind
this approach is to interpret application-specific changes as variation of the applica-
tion artefacts with respect to the domain artefacts, i.e. to interpret the adaptation as
application-specific variability. For instance, the change of the authentication
mechanism of a specific home security system can be regarded as a variation

114 G. Halmans, K. Pohl, and E. Sikora

between the specific system and the home security product line, regardless which
artefacts have to be adapted in order to realise this change.

We call the dedicated model used to record application-specific variations applica-
tion variability model. The idea of the application variability model is similar to the
orthogonal modelling of the variability at the domain level (cf. [12]). Documenting
the application-specific variations in an application variability model has, essentially,
the same advantages as documenting product line variability in a dedicated model and
not in the domain artefacts themselves (cf. [3]), for instance:

• The application variability model can be used to identify, communicate, and reason
about application-specific changes as opposed to having to consider the adaptations
made in different types of artefacts where each adaptation only provides a partial
view on an application-specific change.

• The application variability model serves as an entry point for navigating to all
application artefacts (requirements, architecture, test cases etc.) affected by an ap-
plication-specific change. This makes it easier to keep the adaptations consistent
across the different artefact types and development phases.

3 Application-Specific Variability Model

This section sketches our solution for documenting application-specific adaptations
using an application variability model (AVM). In Section 3.1, we briefly recapitulate
how product line variability is documented using an orthogonal variability model
(OVM). In Section 3.2, we introduce the application variability model for document-
ing application-specific adaptations.

3.1 Orthogonal Variability Modelling

Product line variability is typically represented by variants, variation points and de-
pendencies between variants and variation points. We use our orthogonal variability
model (OVM) to document product line variability. A detailed description of the
variability modelling language is given in [12]. Fig. 2 depicts a simplified example of
a variability model for a home security system. A variation point is represented as a
triangle. The variation point named door lock mechanism in Fig. 2 is related to the
two variants key card and key pad which are represented as rectangles. The dashed
lines between the variants and the variation point represent optional variability de-
pendencies. A variant with an optional variability dependency can, but does not have
to be selected during the binding of variability. In contrast, a mandatory variability
dependency (represented by a solid line) means that the corresponding variant has to
be selected. The model further indicates by the arc annotated with the cardinality
[1..1] that exactly one of the two variants of the variation point door lock mechanism
must be selected. Selecting the variant key pad means that the resulting home security
system requires the user to enter a personal identification number using a key pad for
authentication. Selecting the variant key card means that the home security system
performs the authentication by checking a key card and the identification number
saved on it. The variants of the variability model are connected with domain artefacts

 Documenting Application-Specific Adaptations in Software Product Line Engineering 115

by so called artefact dependencies, which are represented by dotted lines with arrow
heads. The artefact dependencies depicted in Fig. 2 express that, e.g. the requirements
R 12 and R 13 specify the variant key pad. So called constraint dependencies are used
to model that two variants, two variation points or a variant and a variation point
either exclude each other or that one requires the other.

Orthogonal Variability Model (OVM)

VP

door
lock mechanism

key card

V

key pad

V

[1..1]

…
R 12: The user enters the PIN using the

key pad
R 13: The system reads the PIN

…

R 54: The system identifies the key card
R 55: The system reads the PIN from the

key card
…

Domain Requirements

Fig. 2. Example of an orthogonal variability model

3.2 Application Variability Model

As outlined in Section 2, we propose to document application-specific changes (e.g.
additional variants or additional variation points) in an application variability model
(AVM). As indicated in Fig. 3, an AVM is defined for each application to document
the application-specific adaptations with respect to the domain variability model
(DVM). The AVM captures the application-specific variability of all types of applica-
tion artefacts such as requirements, architecture, etc. As the application engineering
process proceeds, requirements variability is mapped to architecture variability and so
forth (cf. [12]). The traceability between the AVM and the different types of applica-
tion artefacts is established by means of artefact dependency links.

Domain
Variability

(DVM)

Domain
Artefacts

Application
Variability

(AVM)

Application
Artefacts

Traceability

Artefact
Dependencies

Artefact
Dependencies

Traceability

Fig. 3. DVM and AVM

In the following, we outline four main cases of how the AVM supports the trace-
able documentation of application-specific adaptations. The four cases apply to all
types of artefacts. Yet, for simplicity, we use requirements to illustrate the cases.

Case 1 – 100% reuse: The application requirement can be defined completely by
reusing domain requirements. In this case, no application-specific adaptation is re-
quired. Nevertheless, the binding of the selected variant has to be documented. By

116 G. Halmans, K. Pohl, and E. Sikora

selecting a variant, the domain requirements related to this variant are completely
reused. If, e.g., the variant key card (cf. Fig. 2) is selected, the requirements R54 and
R55 become part of the application requirements. The result of this variability binding
is illustrated in Fig. 4: The selected variant, the related variation point door lock
mechanism, and the dependencies to the application requirements R54 and R55 be-
come part of the bound AVM.

VP

door
lock mechanism

key card

V

Bound AVM

…
R 12: The user enters the PIN using the

key pad
R 13: The system reads the PIN

R 54: The system identifies the key card

R 55: The system reads the PIN from the
key card

…

selected

Application Requirements

Fig. 4. Bound AVM with complete reuse

Case 2 – No reuse: In this case, an application requirement cannot be fulfilled by reus-
ing domain requirements and must therefore be developed from scratch. Assume that
an application requirement demands a door locking mechanism with a finger print
scanner, which is not offered by the domain requirements. In this case, a new variant
finger print is introduced in the AVM and related to the corresponding requirements
(cf. Fig. 5). As the variant is required for the application it is also selected for this ap-
plication. When realising the application-specific variant finger print, the application
engineers may either relate the application-specific adaptations of system components,
test cases etc. to the variant finger print, or define additional variants and variation
points that represent the application-specific adaptations in the architecture, test cases
etc. The addition of a variation point for representing architectural adaptations is illus-
trated in Section 5. Since the architectural artefacts, test cases etc. required for the new
functionality are related to the elements of the AVM, the impact of the application-
specific adaptations becomes traceable across the different artefacts types.

VP

door
lock mechanism

Bound AVM Application Requirements

…

R 84: The system scans the finger print
(App.A)

R 85: The system compares the scan with
valid scans (App. A)

…
finger print

V selected

Fig. 5. New variant with related requirements

Case 3 – Partial reuse: In this case, the application requirement can be partially de-
fined by reusing domain requirements. In other words, domain requirements can be
reused but some application-specific adaptations are needed. Assume, for example,

 Documenting Application-Specific Adaptations in Software Product Line Engineering 117

that the application-specific requirement R12a is defined by partially reusing the do-
main requirement R12. R12a contains a restriction of the PIN length whereas R12 has
no such restriction (cf. Fig. 6). To record this adaptation, the artefact dependency
from the variant key pad to R12 is marked as deleted and labelled with the string
App.A to denote that this element is application-specific for the application A. More-
over, the new application requirement R12a is included, and a new artefact depend-
ency is introduced from the variant key pad to R12a. This artefact dependency is also
labelled with App.A, and a reference is added to requirement R12a to record that this
requirement is the partially reused domain requirement R12 (cf. App.A, former R12)
thus providing traceability.

Note that the described solution for the documentation of the specific application
requirement R12a is one of many possible solutions. Alternatively, a new variant
could have been introduced and new artefact dependencies from the new variant to
the application requirements R12a and R13 could have been documented. Since dif-
ferent modelling choices exist to document the same kind of adaptation, the documen-
tation of adaptations cannot be automated. Rather, the engineer has to decide, which
modelling choice is appropriate for the particular case. However, once the engineer
has chosen a particular modelling option, the validity of the resulting AVM with re-
spect to the DVM can be checked automatically.

VP

door
lock mechanism

key pad

V

Application Requirements

…
R 12: The user enters the PIN using the

key pad

R 12a: The user enters the PIN using the
key pad with a minimum length of
8 characters (App.A, former R12)

R 13: The system reads the PIN

…

(App.A)

Bound AVM

(App.A)

(d
el

et
e-

el
em

)

selected

Fig. 6. Partial reuse

Case 4 – Conflict with the product line variability: In this case, the application-
specific extension is in conflict with the variability defined in the DVM. This conflict
must be resolved in order to realise the application-specific adaptation. For example,
assume an application requirement for a specific application requires both door lock-
ing mechanism depicted in the DVM of Fig. 6. In this case, a conflict exists between
the domain variability model and the specific application requirement. In the DVM,
the cardinalities of the alternative group, which encompasses the two variants key
card and key pad, are defined as [1..1] and thus one (and only one) of the two variants
can be selected for an application. To resolve this conflict, the restriction of the vari-
ant selection with respect to the variation point door lock mechanism has to be sus-
pended for the application. Thus, in the AVM the upper bound of the cardinalities is
changed to 2 (cf. in Fig. 7) and thereby the selection of both variants for this appli-
cation is enabled (in terms of the variability model). The label App.A on the alterna-
tive group represented by the arc of a circle makes the adaptation traceable.

118 G. Halmans, K. Pohl, and E. Sikora

VP

door
lock mechanism

key card

V

key pad

V

[1..2]

…
R 12: The user enters the PIN using the

key pad
R 13: The system reads the PIN

…

R 54: The system identifies the key card
R 55: The system reads the PIN from the

key card
…

App.A

Bound AVM Application Requirements

selected selected

Fig. 7. Conflict with DVM

To summarise, we document application-specific adaptations in the AVM (application
variability model) and relate all application artefacts affected by an application-specific
adaptation to the corresponding elements in the AVM. Moreover, if an application-
specific artefact is based on a domain artefact, the application artefact is additionally
related to the domain artefact it is based on thus ensuring traceability. Deleted elements
are marked by appropriate labels. Thus, the AVM facilitates the documentation of all
application-specific adaptations in one central model and thereby facilitates consistency
checks as well as an easier comprehension of the adaptations.

4 The Tool Environment

To support the documentation of the application-specific changes and to ensure the
consistency between the AVM and the DVM we have formalised our approach using
graph transformations. We decided to use the integrated development environment for
graph-transformation AGG (Attributed Graph Grammar System) because, among
others, AGG is well-founded by the theory of categories, has been successfully used
in various settings and provides a comprehensive set of techniques for validating
graphs and graph transformation systems, e.g. parsing, critical-pair-analysis, and
consistency checks (cf. [7] for more details).

4.1 Graph Transformation Systems as a Basis for Adapting and Binding
Variability Models

We realised the following two graph transformation systems in AGG as a basis for
defining variability, recording adaptations of variability models and for binding
variability:

• VM-GTS: The typed attributed graph transformation system VM-GTS provides the
formalism to model and adapt variability models including the needed traceability.
The VM-GTS contains a type graph, which represents the variability meta model.
The type graph defines node types (i.e. variation points, variants, application re-
quirements, etc.) and edge types (i.e. variability dependency, constraint depend-
ency, artefact dependency). Moreover, in the type graph, attributes of nodes and
edges are defined. These attributes are used for the unique identification of nodes
and edges as well as for holding traceability information. In addition to the type

 Documenting Application-Specific Adaptations in Software Product Line Engineering 119

graph, the VM-GTS contains a set of graph transformation rules. These rules repre-
sent the permissible operations on a variability model such as the insertion of new
variants for a given variation point. The rules are generic in the sense that they con-
tain variables for the different attributes that are instantiated during the application
of a specific rule (Section 4.2). Finally, the VM-GTS contains pre- and post-
conditions, which ensure that the variability model is well-formed. The pre- and
post-conditions prohibit, for instance, that two variants are connected by both, an
exclude and a requires dependency.

• BV-GTS: The BV-GTS (Binding Variability Graph Transformation System) sup-
ports the binding of the variability for the application. The BV-GTS uses an AVM
to generate a bound AVM. The input for the BV-GTS is a labelled AVM, i.e. an
AVM where the selected variants are indicated by labels. The derivation of the
BV-GTS results in a bound AVM that includes only selected variants. Derivation
of the BV-GTS means that all graph transformation rules defined in the BV-GTS
are applied until no graph transformation can be applied any more. The BV-GTS
ensures that only valid bindings are performed, i.e., for instance, all variation
points, variability dependencies, and artefact dependencies of the selected variants
as well as variants that are required by the selected variants are bound. The result-
ing AVM is thus a valid variability model.

4.2 Generating an AVM

Based on the VM-GTS we are able to define a graph transformation system specifi-
cally for an application, which documents the adaptations, makes the adaptations
visible in the AVM, and labels the selected variants. The so called Application Vari-
ability Model Graph Transformation System (AVM-GTS) includes the type graph of
the VM-GTS and a set of instantiated rules from the VM-GTS rule-set including the
corresponding pre- and post-conditions. To define an AVM-GTS, firstly, the needed
graph transformation rules from the rule-set of the VM-GTS have to be selected. The
selection is determined by the modeller, since, typically, more than one solution is
available to achieve a required adaptation. Secondly, the selected rules are instanti-
ated. During instantiation, for instance, the generic rule for inserting a variant (from
the VM-GTS) is concretised with values such as the short name for the variant. These
concrete values for specific attributes are also used to find a particular element in the
DVM, e.g. the variation point to which the new variant is related. Third, the AVM-
GTS is derived based on the DVM. Derivation of the AVM-GTS means that the se-
lected and instantiated graph transformation rules of the AVM-GTS are applied until
no rule is applicable anymore. This activity is performed automatically. The output is
an AVM that has been generated from the DVM by applying the transformation rules
defined in the AVM-GTS.

4.3 Evaluation

Our experience in defining the VM-GTS and the BV-GTS in AGG indicates that the
definition of the different graph transformation rules, the type graph as well as the
conditions is fairly simple. We applied our approach to several examples of varying
complexity (in terms of the size of the variability model and the number of adaptations)

120 G. Halmans, K. Pohl, and E. Sikora

for generating and binding AVMs. The performance results obtained for generating
adapted AVMs from two different DVMs are shown in Table 1. The full set of exam-
ples including the performance results has been published in a thesis (cf. [9]). The
experimentation with our prototypical implementation based on AGG supports our
claim that our approach for the traceable documentation of application-specific adap-
tations is feasible. In particular, by using the tool prototype, we gained the following
insights about our approach:

• Our orthogonal variability model in combination with graph transformations pro-
vides a sound basis for the precise documentation of application-specific adapta-
tions in product line engineering.

• The recording and management of inter-model trace links for product line artefacts
can be greatly eased by the use of graph transformation rules.

• The generation of application artefacts from domain artefacts including applica-
tion-specific adaptations and the binding of variability can be accomplished quite
easily by using a graph transformation environment.

The observed increase in runtime between the first and the second example de-
picted in Table 1 can be explained by the complexity of graph matching. The reduc-
tion of the time for generating the AVM is a topic of further investigations.

Table 1. Performance results for the prototypical implementation with AGG (excerpt)

#Variation
points in DVM

#Variants in
DVM

#Artefact
dependencies in

DVM

#Adaptations in
AVM-GTS

Time for
generating the
AVM [seconds]

10 20 60 5 5

20 40 120 15 45

5 Example

In this section, we illustrate the application of our approach on a simplified example from
the e-commerce domain. The example consists of a domain variability model, a domain
use case and an excerpt of a domain components model including the relevant artefact
dependencies between the domain variability model and the other domain artefacts (see
Fig. 8). We omit technical details as these have already been described in Section 4. The
domain variability model depicted in Fig. 8 allows to choose between two payment
methods allowing the application engineer to derive applications either supporting credit
card payment or direct debit payment. The choice affects the example use case (either
step 2 [V1] or step 2 [V2] is selected) and the example components model (either the
credit card payment plug-in or the direct debit payment plug-in is selected).

In the application engineering process, the customer expresses the following re-
quirements that demand application-specific adaptations:

• The application shall offer both payment methods, credit card and direct debit.
• The user shall be able to choose the payment method before entering the required

payment details.

 Documenting Application-Specific Adaptations in Software Product Line Engineering 121

Domain Variability Model Domain Design ArtefactsDomain Requirements Artefacts

payment
method

VP

V1 V2

1..1

The user ...

The system asks the user to
enter the debit account
details.

The system asks the user for
the credit card details and the
security number.

The user proceeds to the
payment form.

3

2
[V2]

2
[V1]

1Main
flow

UC1: Pay items in shopping cart

payment
control

credit card
payment
plug-in

payment interface

direct debit
payment
plug-incredit card direct debit

Fig. 8. Example of a domain variability model with associated domain requirements and do-
main design artefacts (excerpt)

Application Variability Model

Domain Design ArtefactsDomain Requirements Artefacts

payment
method

VP1

V1 V2

The system asks the user for the
preferred payment method.

2

The user proceeds to the payment form.1

The system asks the user for the credit
card details and the security number.

4a

The user ...

The system asks the user to enter the
debit account details.

The user selects direct debit payment.

The user selects credit card payment.

5

4b

3b

3a

Main
flow

UC1: Pay items in shopping cart

payment
control

credit card
payment
plug-in

payment
interface

direct debit
payment
plug-in

credit card direct debit

payment
method selection

VP2

user
selectable

<requires_v-vp>

payment
selection
plug-in

V3

Summary of Recorded Traceability
Information

Adaptations (AVM-GTS)
• removed [1..1] alternative dependency
• added variation point VP2
• added requires_v-vp dependency
• added variant V3
• added artefact dependency to VP2
• added artefact dependencies to V3

Variability Bindings (BV-GTS)
• bound V1
• bound V2
• bound V3

Fig. 9. Example of an application variability model with recorded traceability information (as
natural language text) and application artefacts including modifications

Fig. 9 shows the resulting application variability model and the associated applica-
tion artefacts. In the variability model, variants V1 and V2 have been bound. To
enable the binding of both variants for an application, the alternative dependency
between V1 and V2 had to be deleted. Furthermore, the required adaptations in the
application use case and the application design have been documented in the applica-
tion variability model by inserting the variation point payment method selection and a

122 G. Halmans, K. Pohl, and E. Sikora

single variant user selectable together with the corresponding artefact dependencies.
In addition, variants V1, V2 and V3 have been bound. An informal summary of the
traceability information recorded by our approach is shown on the upper left of Fig. 9.
In our tool, the stated adaptations and bindings are recorded by selecting and instanti-
ating the needed graph transformation rules from the VM-GTS and the BV-GTS re-
spectively as described in Section 4. With the recorded information, the AVM for the
specific application can be generated from the DVM.

6 Summary and Outlook

When developing product line applications, typically not all application requirements
can be fulfilled by reusing domain artefacts designed and developed in domain engi-
neering. Thus, application-specific adaptations of the domain artefacts (including
extensions) are required. We proposed, in this paper, to record application-specific
adaptations in a dedicated model, the application variability model (AVM). Docu-
menting the adaptations in an AVM ensures that the adaptations are defined in a
central location (the AVM) and provides the basis for reasoning about application-
specific adaptations across different artefact types. To facilitate the reasoning about
consistency between the application-specific adaptations and the domain artefacts
(including the product line variability) we have formalised our approach using graph
transformation systems which have been implemented in a prototypical tool environ-
ment. We have applied our prototypical environment to define several applications for
a product line with different complexities, including a product line from the home
automation domain. When defining application-specific adaptations for several appli-
cations, we encountered several inconsistencies which were automatically detected by
our tool environment. Those inconsistencies, especially with respect to the domain
variability model, were in many case not easy to detect, i.e. without an automated tool
support they would have most likely not been detected. In our future work, we will
develop a better graphical visualisation of the AVM together with a graphical editor
which eases the task of documenting application-specific adaptations. We will then
use the extended tool environment in a real case study.

Acknowledgments. This paper was partially funded by the DFG projects PRIME
(Po 607/1-1) and IST-SPL (Po 607/2-1). We would like to thank Prof. Dr. Michael
Goedicke for the fruitful discussions during the elaboration of our approach.

References

1. Atkinson, C., Bayer, J., Bunse, C., Kamsties, E., Laitenberger, O., Laqua, R., Muthig, D.,
Paech, B., Wüst, J., Zettel, J.: Component-Based Product-Line Engineering with UML.
Addison-Wesley, UK (2002)

2. Baum, L., Becker, M., Geyer, L., Molter, G.: Mapping Requirements to Reusable Compo-
nents using Design Spaces. In: Proc. of the 4th Intl. Conference on Requirements Engi-
neering (ICRE 2000), pp. 159–167. IEEE Computer Society, Los Alamitos (2000)

 Documenting Application-Specific Adaptations in Software Product Line Engineering 123

3. Bühne, S., Lauenroth, K., Pohl, K.: Modelling Requirements Variability across Product
Lines. In: Atlee, J.M. (ed.) 13th IEEE Intl. Conference on Requirements Engineering, pp.
41–50. IEEE Computer Society, Los Alamitos (2005)

4. Bosch, J., Ran, A.: Evolution of Software Product Families. In: Van der Linden, F. (ed.)
Software Architectures for Product Families, International Workshop IW SAPF 3, Las
Palmas de Gran Canaria, Spain, pp. 169–183. Springer, Heidelberg (2000)

5. Clements, P., Northrop, L.: Software Product Lines – Practices and Patterns. Addison-
Wesley, Boston (2001)

6. Eriksson, M., Börstler, J., Borg, K.: The PLUSS Approach - Domain Modeling with Fea-
tures, Use Cases and Use Case Realizations. In: Obbink, H., Pohl, K. (eds.) SPLC 2005.
LNCS, vol. 3714, pp. 33–44. Springer, Heidelberg (2005)

7. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Trans-
formation. Springer, Heidelberg (2006)

8. Gomaa, H.: Designing Software Product Lines with UML. Addison-Wesley, Boston
(2004)

9. Halmans, G.: Ein Ansatz zur Unterstützung der Ableitung einer Applikationsanfor-
derungsspezifikation mit Integration spezifischer Applikationsanforderungen (in German).
Doctoral Dissertation, Logos Verlag, Berlin (2007)

10. Mannion, M., Kaindl, H., Wheadon, J.: Reusing Single System Requirements from Appli-
cation Family Requirements. In: Proc. of the 21th Intl. Conference on Software Engineer-
ing (ICSE 1999), pp. 453–462. ACM Press, New York (1999)

11. Mohan, K., Ramesh, B.: Change Management Patterns in Software Product Lines. Com-
munications of the ACM 49(12), 68–72 (2006)

12. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering – Founda-
tions, Principles, and Techniques. Springer, Heidelberg (2005)

13. Padmanabhan, P., Lutz, R.R.: Tool-Supported Verification of Product Line Requirements.
In: Automated Software Engineering, vol. 12(4), pp. 447–465. Springer, Heidelberg (2005)

14. Reuys, A., Kamsties, E., Pohl, K., Reis, S.: Model-Based System Testing of Software
Product Families. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 519–534. Springer, Heidelberg (2005)

15. Raatikainen, M., Soininen, T., Männistö, T., Mattila, A.: Characterizing Configurable
Software Product Families and their Derivation. In: Software Process Improvement and
Practice, vol. 10(1), pp. 41–60. Wiley, Chichester (2005)

16. Weiss, D.M., Lai, C.T.R.: Software Product-Line Engineering, A Family-Based Software
Development Process. Addison-Wesley, Boston (1999)

Refactoring Process Models in

Large Process Repositories

Barbara Weber1 and Manfred Reichert2

1 Quality Engineering Research Group, University of Innsbruck, Austria
Barbara.Weber@uibk.ac.at

2 Institute of Databases and Inf. Systems, Ulm University, Germany
manfred.reichert@uni-ulm.de

Abstract. With the increasing adoption of process-aware information
systems (PAIS), large process model repositories have emerged. Over
time respective models have to be re-aligned to the real-world business
processes through customization or adaptation. This bears the risk that
model redundancies are introduced and complexity is increased. If no
continuous investment is made in keeping models simple, changes are
becoming increasingly costly and error-prone. Though refactoring tech-
niques are widely used in software engineering to address related prob-
lems, this does not yet constitute state-of-the art in business process
management. Process designers either have to refactor process models
by hand or cannot apply respective techniques at all. This paper pro-
poses a set of behaviour-preserving techniques for refactoring large pro-
cess repositories. This enables process designers to effectively deal with
model complexity by making process models better understandable and
easier to maintain.

1 Introduction

Process-aware Information Systems (PAIS) offer promising perspectives for en-
terprise computing and are increasingly used to support business processes at
an operational level [1]. In contrast to data- or function-oriented information
systems (IS), PAIS strictly separate process logic from application code, rely-
ing on explicit process models which provide the schemes for process execution.
This allows for a separation of concerns, which is a well established principle in
computer science to increase maintainability and to reduce cost of change [2].

With the increasing adoption of PAIS large process repositories have emerged.
Over time corresponding process models have to be adapted at different levels
to meet new business, customer and regulatory needs, and to ensure that PAIS
remain aligned with the processes as executed in real world. Typical adapta-
tions include the customization of (reference) process models to specific needs
of a customer [3,4] or – at the operational level – the adaptation of running
process instances to cope with exceptional situations [5]. Like software programs
degenerate when adding more and more code or introducing changes by differ-
ent devlopers [6], process adaptations bear the risk that model repositories are
becoming increasingly complex and difficult to maintain over time.

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 124–139, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Refactoring Process Models in Large Process Repositories 125

In software engineering (SE), refactoring techniques have been widely used
to address related problems and to ensure that code bases remain maintainable
over time [7,8]. Refactoring allows programmers to restructure a software sys-
tem without altering its behaviour. Refactoring is typically used to improve code
quality by removing duplication, improving readability, simplifying software de-
sign, or adding flexibility [9]. Examples of SE refactoring techniques include the
renaming of a class to foster understandability or the extraction of a method
from an existing code block to reduce redundant code fragments.

Process modeling is often referred to as programming in the large [10,11].
Thereby, a process schema is comparable to a software program specifying the
inputs and outputs of activities as well as the control and data flow between
them. Despite these similarities refactoring is not yet established in the field of
business process management (BPM) and existing process modeling tools only
provide limited refactoring support. Consequently, process designers either have
to refactor process models by hand or cannot apply respective techniques at all.

This paper adapts SE refactoring techniques to the needs of process modeling
and complements them with additional refactorings specific to BPM. In partic-
ular, we describe techniques suitable for refactoring large process repositories,
where we can find both collections of inter-related process models and process
variants derived from generic models (e.g., reference process models). The former
consist of a set of models, which may refer to each other (e.g., a parent process
refers to a child process) resulting in model trees. In contrast, process variants
are part of a process model family, and are derived from a generic process model
through a sequence of adaptations. This approach is often referred to as model
customization or configuration [3,4]. Like in SE, tool support is essential as a
refactoring applied to one model might require changes in other models as well.
To avoid the introduction of inconsistencies and errors through refactorings, their
application must be behaviour-preserving and should be accomplished automat-
ically. The final decision whether to apply a refactoring or not, however, is left
to the process designer.

In this paper we focus on refactoring techniques for the control flow aspect of
executable process models. For each proposed refactoring we describe its intent,
give examples for its applicability and use (similar to code smells in SE [8]), and
discuss its effects in respect to process model quality metrics (e.g., measuring
control flow complexity) [12,11].

Section 2 provides background information. Section 3 gives an introduction
into refactorings for process model trees. Section 4 suggests a refactoring to effec-
tively deal with process variants and Section 5 introduces advanced refactorings
for model evolution considering process history data. Related work is discussed
in Section 6. Finally, Section 7 concludes with a summary and an outlook.

2 Background Information

This section describes basic concepts, notions and metrics used in this paper.

126 B. Weber and M. Reichert

2.1 Basic Concepts and Notions

A PAIS is a specific type of information system which provides process support
functions and allows for the separation of process logic and application code. At
build-time process logic has to be explicitly defined in a process schema, while
at run-time the PAIS orchestrates processes according to their defined logic.

For each business process to be supported, a process type represented by a pro-
cess schema S has to be defined. In the following, a process schema corresponds
to a directed graph, which comprises a set of nodes – representing activities
or control connectors (i.e., XOR/AND-Split, XOR/AND-Join) – and a set of
control edges between them. The latter specify precedence relations. Further,
activities can be atomic or complex. While an atomic activity is associated with
an invokable application service, a complex activity contains a sub process or,
more precisely, a reference to a (sub) process schema S′. This allows for the hier-
archical decomposition of schemes resulting in a process model tree (cf. Fig. 1a).
Generally, different schemes S1 . . . Sn may refer to a (sub) process schema S′.
Fig. 1a shows a schema S modeled in BPMN notation consisting of seven nodes.
Thereby, A, B and D are atomic activities, C and E are complex activities referring
to (sub) process schemes S1 and S2 respectively, and XOR-split and XOR-Join
are control connectors. S2 itself refers to schema S3 resulting in a process model
tree with depth three.

Process schemes can either be created from scratch or through configuration,
i.e., customization of a generic process model (e.g., a reference model). From

b) Process Family

a) Model Tree

AND-Split/Join

XOR-Split/Join

Atomic Activity

Complex Activity

Delete G

Insert Y after C
Delete G

Insert Y after C
Delete G

Delete F

G

Fig. 1. Core Concepts

Refactoring Process Models in Large Process Repositories 127

such a generic model several process variants (each with own schema) can be
derived based on a restricted set of change operations [5,13]. Thereby, for a
given variant we denote the set of change operations needed to transform the
generic model into the variant as bias. Usually, the aim is to minimize the number
of operations required in this context. The total set of all variants derived from
a generic process model is called process model family. Fig. 1b shows a generic
process schema SG and four variants V1, . . . , V4 derived from it. For example,
the transformation of SG to V1 requires deletion of Activity G.

Most refactoring techniques are not only applicable to activities, but also to
sub process graphs with single entry and exit nodes (also denoted as hammocks).
We use the term process fragment as generalizing concept for all these granular-
ities; e.g., in Fig. 1a the sub-graph of schema S containing Activities B, C, and
D and the two control connectors constitutes a hammock. Based on schema S,
at run-time new process instances can be created and executed. The latter is
reflected by the execution traces of these instances.

Definition 1 (Execution Trace). Let PS be the set of all process schemes
and let A be the total set of activities (or more precisely activity labels) based on
which schemes S ∈ PS are specified (without loss of generality we assume unique
labelling of activities). Let further QS denote the set of all possible execution
traces producible on schema S ∈ PS. A trace σ ∈ QS is then given by σ =
< a1, . . . , ak > (with ai ∈ A) where the temporal order of ai in σ reflects the
order in which activities ai were completed over S.

For example, σ1 = < A, B, D, C, E, F > and σ2 = < A, B, C, D, E, F > both
constitute traces producible by process variant V1 in Fig. 1b.

Schemes S and S′ are called trace equivalent if and only if the same set of
execution traces can be produced based on S as well as on S′.

Definition 2 (Trace Equivalence). Two process schemes S and S′ are trace
equivalent iff QS = QS′ .

To determine whether two (hierarchically) composed process schemes S and S′

are trace equivalent, the respective process model trees need to be expanded. For
this, each complex activity needs to be replaced by the (sub) process schema it
refers to. Consequently, the trace of an activity does not contain the complex
activity directly, but the trace of the associated sub process. A possible execution
trace for schema S in Fig. 1a is σ1 = < A, B, J, K, M, N >.

Finally, to decide whether a process instance I can be executed according to
a process schema S we use the notion of compliance.

Definition 3 (Compliance). Let I be a process instance with execution trace
σ. Let further S be a process schema. Then: I is compliant with S iff σ is
producible on S.

2.2 Quality Metrics for Business Process Models

In SE, metrics have been used since the 60s to measure software quality. Main
purpose is to improve software design, resulting in better understandable and

128 B. Weber and M. Reichert

maintainable code [14,15]. BPM research has recently started to adopt quality
metrics to specific needs of process modeling [10,11,16,17] and to empirically
validate these metrics [10,12]. Similar to SE our goal is to use refactoring tech-
niques to obtain more comprehensive and better maintainable process models.
In the following we apply popular metrics for measuring process model quality
with the design goal of comprehensive and maintainable models in mind. We use
these metrics to illustrate the effects of the proposed refactorings (cf. Fig. 2).
Note that the latter have effects on many other metrics, which cannot be all
discussed in this paper due to lack of space.

Quality Metrics for Business Processes

Let S = (N, E) be a process model with N denoting the set of nodes and E the set of edges.

Metric Description
Metrics calculated
for Fig. 1

Size
[11, 18]

||)(NSSize measures the number of nodes in process schema S Size(S) = 7

Process Depth [18])(SLevels = number of process levels of the model tree with S as root Levels(S) = 3
Control-Flow
Complexity
[10]

Let ANDSplits, XORSplits and ORSplits denote the node sets of S
comprising respective split nodes. Let further (n) denote the number of
direct successors of node n (number of control edges outgoing from n). Then:

)(SCFC | ANDSplits |)12()()(

ORSplitsc

c

XORSplitsc

c is the sum over all

connectors weighted by their potential combinations of states after the split

CFC(S) = 2

Change Distance
[20]

)2,1(SSDist : Minimal number of high-level change operations (e.g., MOVE
activity) needed to transform schema S1 to schema S2

Dist(SG,V1) = 1

Fig. 2. Selected Quality Metrics for Process Models

Quality metrics can help process designers to identify quality problems and
potential refactoring options, and to measure effects on model quality. However,
what a high or low value for a particular quality metric is cannot be answered
in general, but highly depends on the concrete process model(s). Therefore, like
in SE it is up to the process designer to decide whether applying a particular
refactoring is worthwhile. As the application of a particular refactoring may
affect several schemes it is not sufficient to look only at the quality metrics of a
single schema in isolation, but to apply metrics to the entire collection of schemes
as well. For this purpose we introduce functions sum and avg, which we use later
on for comparing process models before and after refactorings.

sum : 2PS × Metrics × Params �→ N0 with sum(mset, m, p) :=
∑

S∈mset

m(S, p)

avg : 2PS ×Metrics×Params �→ R
+
0 with avg(mset, m, p) :=

sum(mset, m, p)
|mset|

For example, the total change distance for the process family depicted in Fig. 1b
is sum({V1, . . . , V4}, Dist, SG) = 6, while the average change distance is 1.5.

Refactoring Process Models in Large Process Repositories 129

3 Refactorings for Process Model Trees

This paper describes 11 refactoring techniques which allow process designers to
improve the quality of process models (cf. Fig. 3). In our context refactorings
constitute model transformations which are behaviour-preserving if certain pre-
and postconditions are met. Implementation of these refactorings can be based
on the restricted use of change patterns as presented in [13,18]. We use trace
equivalence (cf. Def. 2) as formal notion for most refactorings to ensure that
process model behaviour is not changed due to their application. If for a model
tree with root Si the same trace sets can be produced before and after the
respective refactoring, process behaviour will be preserved.

We divide our refactorings into basic ones, which can be applied to a single
schema, and composed refactorings applicable to a collection of inter-related
process schemes. Basic refactorings transform a schema S into a new schema S′

by applying a refactoring operation op. This transformation might also imply
changes of a model tree, e.g., when a fragment is extracted from a process model
and replaced by a reference to a sub process. Composed refactorings, in turn,
will refer to a collection of process schemes S1 . . . Sn and apply basic refactorings
to them if they meet the respective pre-conditions.

For each of the proposed refactorings we describe its intent, give examples,
provide a description of the refactoring operation (with pre- and postconditions)
and its implementation, and describe their effects on selected quality metrics.
We organize our refactorings into three groups. The first one is introduced in
this section and contains refactorings for process model trees. The second one
suggests a refactoring for process model variants (cf. Section 4). The third group
describes model refactorings, which support model evolution considering process
history data (cf. Section 5).

First, we describe 8 refactorings for process model trees. Refactoring
RF1 (Rename Activity) can be applied when the name of an activity is not in-
tention revealing and RF2 (Rename Process Schema) allows altering the name of
a schema. Using RF3 (Substitute Process Fragment) process designers can sub-
stitute a fragment within a schema by another one which is simpler in structure,
but has the same behaviour. RF4 (Extract Process Fragment) allows extracting
a process fragment into a sub process to remove model redundancies, to fos-
ter reuse, and to reduce the size of a schema. Applying RF5 (Replace Process
Fragment by Reference) a process fragment can be replaced by a complex activ-
ity referring to a (sub) process schema containing the respective fragment. RF6
(Inline Process Fragment) can be applied to collapse the hierarchy by inlining a
fragment. RF7 (Re-Label Collection) is a composed refactoring, which supports
re-labelling of certain activities within an entire process collection. Finally, RF8
(Remove Redundancies) allows for combined use of RF4 and RF5 to remove
redundant fragments from multiple schemes in a model collection at once.

RF1 (Rename Activity). RF1 allows altering the name of an activity x to y if
x is not intention revealing. RF1 is comparable to the Rename Method refactoring
in SE [8]. Renaming an activity does not alter the behaviour of the schema
S as only labels are changed. However, the notion of trace equivalence is not

130 B. Weber and M. Reichert

Refactoring Catalogue

Name Refactoring Operation Short description of refactoring

Refactorings for Process Model Trees

RF1: Rename Activity renameActivity(S,x,y)
Changes the name of an activity from x to y in schema S
Pre-Condition: No activity from S is labelled with y

RF2: Rename Process
Schema

renameSchema(S,S’)
Renames schema from S to S’ and updates all references to S
Pre-condition: There exists no schema with label S’ in the repository

RF3: Substitute Process
Fragment

substituteFragment(S,G,G’)
Substitutes sub-graph G in S by sub-graph G’
Pre-condition: G and G’ constitute hammocks and are trace equivalent

RF4: Extract Process
Fragment

extractFragment(S,G,x,S’)
Extracts sub-graph G in S and substitutes it with complex activity x referring
to S’
Pre-condition: There is no activity with label x in S; G is a hammock

RF5: Replace Process
Fragment by Reference

replaceFragment(S,G,x,S’)
Substitutes sub-graph G in S by complex activity x referring to schema S’
Pre-condition: No activity from S is labelled with x; G is a hammock, and G
and S’ are trace equivalent

RF6: Inline Process
Fragment

inlineFragment(S,x)
Inlines the sub process schema activity x refers to in S and deletes the
respective sub process schema, if it is unused after the refactoring
Pre-condition: Activity x is a complex activity

RF7: Re-label Collection relabelCollection(C,x,y) Applies RF1 to every schema S1,…, Sn in model collection C where x Si

RF8: Remove
Redundancies

removeRedundancies(C,G,x,S’)
Applies RF4 to the first schema Si in model collection C meeting the pre-
conditions and RF5 to all other schemes

Refactoring for Process Variants

RF9: Generalize Variant
Changes

generalizeVariantChanges(S_G,
VariantSet,ChangeSet)

Generalizes variant changes by applying changes from ChangeSet to generic
model S_G and by re-linking all variants from VariantSet to the new generic
model S_G’ (i.e., their biases are re-calculated with respect to S_G’)

Refactorings for Model Evolution

RF10: Remove Unused
Branches

removeUnusedBranch(S,G)
Removes an unused branch G from schema S.
Pre-condition: G constitutes a branch within a conditional branching, which
was not entered when executing instances of S.

RF11: Pull Up Instance
Change

pullUpInstChange(S,InstSet,
ChangeSet)

Pulls frequent changes that happened at the process instance level up to the
type level schema S. Change are described in terms of a set of applied change
operations.

Fig. 3. Refactoring Catalogue

suitable in this context. Instead, we use a correctness notion based on the Replace
Process Fragment change patterns [13,18]. For each trace σ produced on schema
S with an entry of x there exists a respective trace μ on S′ which is identical
to σ, except that for every x in σ a y in μ can be found at the same position.
Applying RF1 does not have effects on the quality metrics described in Fig.
2. However, names which reveal the intention of process designers more clearly
improve understandability of the model and consequently result in decreased
costs of change and reduced errors [19].

RF2 (Rename Process Schema). RF2 allows designers to rename a schema
S to S′. A similar refactoring in SE is Rename Class [20]. To guarantee that RF2
does not alter process behaviour, all references to S are updated. Obviously, trace
equivalence can be used as formal notion for RF2 ensuring that the behaviour
of the model collection remains unchanged. Like RF1 this refactoring does not
affect quality metrics, but improves model clarity.

RF3 (Substitute Process Fragment). RF3 allows substituting a fragment
by another one with simpler structure, but same behaviour. Applying RF3 re-
quires both fragments to contain activities with same labelling. The Substitute
Algorithm refactoring [8] known from SE is comparable to RF3. Scenarios in
which RF3 is useful include unnecessarily complex parallel branchings (cf. Fig.
4a) or unneeded control edges due to transitive relations. RF3 can be imple-
mented based on change pattern Replace Process Fragment [13,18]. As formal
criterion trace equivalence can be used (cf. Def. 2). Substituting a fragment by a

Refactoring Process Models in Large Process Repositories 131

simpler one allows designers to improve model quality along several dimensions:
by removing unnecessary parallel branchings and edges not only model clarity
is increased, but also size and control-flow complexity (CFC) are decreased.

RF4 (Extract Process Fragment). RF4 can be used to extract a process
fragment from schema S, e.g., to eliminate redundant fragments or to reduce
size of S. The fragment to be extracted must constitute a hammock. The in-
tent of RF4 is similar to Extract Method as known from SE [8]. It results in the
creation of a new (sub) process schema S1 containing the respective fragment.
In addition, the fragment is replaced by a complex activity referring to S1. As
formal notion for reasoning about behaviour preservation, trace equivalence is
used. RF4 can be implemented based on change pattern Extract Process Frag-
ment [13,18]. Extracting parts of a schema often results in a reduced CFC (cf.
Fig. 5). Similarly, in SE the Extract Method refactoring is suggested as remedy
for high cyclomatic complexity [21]. RF4 can also be used to reduce size of large
schemes and the overall number of nodes in the process repository by remov-
ing redundancies. Further, removing redundancies reduces cost of future process
changes as same changes do not have to be performed at multiple places.

RF5 (Replace Process Fragment by Reference). RF5 is used to replace a
process fragment by a complex activity referring to a trace equivalent (sub) pro-
cess schema. RF5 is often used in combination with RF4. It can be implemented
based on change pattern Replace Process Fragment [13,18]. Regarding qualitiy
metrics similar considerations hold than for RF4.

RF6 (Inline Process Fragment). RF6 can be used to collapse the hierarchy
of a model by inlining the process fragment, e.g., if it is not justifying its in-
duced overhead. Similarly, in SE Inline Method [8] allows programmers to inline
the body of a method. By inlining a fragment S1 into S the complex activity
referring to S1 is substituted by the fragment corresponding to S1. Again trace
equivalence can be used as formal notion. RF6 can be implemented based on
the Inline Process Fragment change pattern [13,18]. In particular, RF6 allows
designers to collapse the hierarchy of a process model tree resulting in a decrease
of levels. Note that metrics Size and CFC might increase when applying RF6.

RF7 (Re-Label Collection). RF7 is a composed refactoring for re-labelling a
particular activity in all schemes of a model collection. For this, RF1 is applied
to all schemes containing the activities to be re-labelled.

RF8 (Remove Redundancies). RF8 is a composed refactoring based on RF4
and RF5. It can be applied to a collection of schemes S1 . . . Sn to remove redun-
dancies. For this, RF4 is applied to one of these schemes to extract the redundant
fragment. To all other schemes, RF5 is applied for replacing the respective frag-
ment by a reference to the (sub) process schema created before.

Example. Fig. 4 shows the combined usage of the basic refactorings described so
far. For schema S Activity A is renamed to A’ using RF1. RF2 is used to rename
schema S3 to S3′. As process schemes S and S1 contain complex Activity M
referring to S3 the references in M need to be updated to S3′. A further refactoring

132 B. Weber and M. Reichert

option is given by schemes S, S1 and S2, all containing a process fragment with
same behaviour. However, fragment G in schema S has a more complex structure
than G1 in schemes S1 and S2. First, RF3 is used to replace the fragment in
S with the one of S1 or S2. Next, RF4 is applied to either S, S1 or S2 to
extract the redundant process fragment to a (sub) process schema S5. Finally,
RF5 is applied to the two other schemes to replace the respective fragment by a
reference to S5. Instead of RF4 and RF5 the composed refactoring RF8 could be
used alternatively. Schema S4 only consists of a single activity and is therefore
inlined in schema S2 using RF6.

a) Model Repository before Refactoring

b) Model Repository after Refactoring the Model Collection from a)

RF1: RenameActivity(S,A,A‘)

RF2: RenameSchema(S3,S3‘)

RF3: SubstituteFragment(S,G,G1)

RF4: ExtractFragment(S1,G1,L,S5)

RF5: ReplaceFragment(S,G1,L,S5)

RF5: ReplaceFragment(S2,G1,L,S5)

RF6: InlineFragment(S2,K)

Used Refactoring Operations

G G1

G1

XOR-Split

Fig. 4. Refactorings for Process Model Trees (Toy Example)

Effects on Quality Metrics. In the following we show for the refactorings in
Fig. 4 how metrics can be used to measure their effects. Note that Fig. 4 consti-
tutes a toy example, whose purpose is to show the application of the proposed
patterns and its effects on quality metrics. Usually, refactorings are not applied
in isolation, but in combination with other refactorings and to a collection of
models. Consequently, refactoring has an impact on the collection of process
models. In Fig. 4 the combined use of refactorings RF3, RF4, RF5 and RF6
reduces the total number of nodes in the given model collection from 34 to 20
and decreases average CFC of the schemes by factor 1:4 (cf. Fig. 5). In all cases
no changes of model behaviour have been performed. In particular, application
of RF3 allows for the removal of two unnecessary connector nodes, reducing size
by two and CFC by one; RF4 and RF5 remove existing redundancies leading to
an additional saving of 11 nodes. Finally, RF6 reduces size by one.

Refactoring Process Models in Large Process Repositories 133

Before Refactoring (Fig. 4a) After Refactoring (Fig. 4b)

Size CFC Levels Size CFC Levels
S 11 2 2 S 3 0 2
S1 10 1 2 S1 4 0 2
S2 9 1 2 S2 3 0 2
S3 3 0 - S3 3 0 -
S4 1 0 - S4
S5 S5 7 1 -
Sum 34 4 Sum 20 1
Avg. 6.8 0.8 Avg. 4 0.2

Fig. 5. Effects on Quality Metrics (with respect to Fig. 4)

As illustrated in Fig. 5 the proposed refactorings do not only result in smaller
and less complex models, but also decreases costs of future changes by remov-
ing redundancies. For example, assume that Activity D in Fig. 4 shall be re-
placed by a sequence consisting of Activities D1 and D2. Without the described
refactoring this change would require to modify schemes S, S1 and S2 by ap-
plying three change operations to each of these schemes resulting in a total
change distance of 9. In contrast, considering the refactoring only schema S5
needs to be modified (Delete(S5,G), SerialInsert(S5,D1,XOR-Split) and
SerialInsert(S5,D2,D1)) reducing the total change distance by 66,67 % to
3. Removing redundancies does not only result in smaller change distance, but
also reduces the risk of introducing inconsistencies or errors. Finally, the exact
change distance depends on the intended change and the used meta-model.

Due to the very simple nature of Fig. 4a it can be discussed whether much is
gained from applying refactorings. However, for more realistic models refactor-
ings can significantly improve understandability and maintainability as our case
studies in the healthcare and automotive domains revealed. When elaborating
30 process models of a Women’s hospital, for example, we detected redundan-
cies in more than 60% of them [22]. Particularly, larger models with more than
20 activities often contained redundant process fragments (e.g., for making ap-
pointments with medical units or for exchanging medical reports). As we learned,
these redundancies can be abolished using the proposed refactorings.

4 Refactoring for Process Variants

Another challenge is to manage the process variants belonging to a process family
(cf. Fig. 1b). Usually, respective variants are derived from a generic schema SG

by applying a set of change operations to it. In general, configuration of new
variants and adaptation of existing variants can be done most effectively when
the average change distance (cf. Section 2) between generic schema SG and its
variants V1, . . . , Vn is minimal (i.e., the average number of change operations
needed to transform SG to Vi is minimal). However, to keep the average change
distance small, continuous efforts have to be made to evolve the generic model
over time. Otherwise, more and more redundant changes have to be performed
to different variants to keep them aligned with the real-world processes. Though
respective variants are often similar, slight differences make refactorings RF4

134 B. Weber and M. Reichert

and RF5 inapplicable in many situations. Therefore, an additional refactoring
technique is needed, which supports designers in maintaining generic models.

RF9 (Generalize Variant Changes). RF 9 allows designers to pull changes,
which are common to several variants, up to the generic model (similar to Pull
Up Method and Push Down Method in SE [8]). This allows removing redundan-
cies and decreasings costs of future changes. As example consider Fig. 1b, which
shows a generic model SG and variants V1, . . . , V4 derived from it. Analysis of
SG and its variants shows that Activity G has been deleted for 3 of the 4 vari-
ants. Refactoring GeneralizeVariantChanges(SG,{V1, . . . , V4},{Delete(G)})
can be applied to generalize the respective change by pulling the deletion of G
up to the generic model SG (not shown in Fig. 1b). As Activity G is deleted from
the generic model, G needs to be inserted in variant V4 to keep the behaviour of
variant V4 unchanged. This results in a reduction of the total change distance
from 6 to 4 and a decrease of the average change distance from 1.5 to 1.0.

In a case study we did in the healthcare domain we identified 10 variants for
medical order handling with similar behaviour [22]. Though respective variants
were similar, slight differences existed and redundant fragments could not be
extracted to (sub) processes. However, by applying RF9 we are able to reduce
redundancies resulting in easier to configure and better maintainable variants.

Implementing RF9 necessitates a framework for coping with generic schemes
and variants derived from them. First, advanced techniques for analyzing process
variants and for identifying variant changes to be pulled up to the generic model
are needed. In MinADEPT [23], for example, a generic model S′

G can be derived
from a set of variants VariantSet such that the change distance between S′

G and
the variants becomes minimal. Second, when applying RF9 the change operations
in ChangeSet (cf. RF9 in Fig. 1b) are applied to SG resulting in a new versionS′

G of
the generic model. All variants in VariantSet need to be re-linked from SG to S′

G

and for each variant Vi ∈ VariantSet its bias is re-calculated in respect to S′
G [24].

Third, effective techniques are needed for internally representing generic models,
its variants and related biases. Note that RF9 does not alter variant behaviour.
Applying the updated bias of a variant Vi to S′

G results in the same variant-specific
schema as applying the old bias to SG. Thus trace equivalence can be used as for-
mal notion. RF9 bears a high potential for full automation.

5 Refactorings for Model Evolution

This section describes refactoring techniques, which become applicable when pro-
cess models are executed by PAIS and historic data on process instances is avail-
able in execution or change logs [25,26]. These logs can be analyzed and mined
to discover potential refactoring options. In this context RF10 (Remove Unused
Branches) allows process designers to remove unused paths from a process model
and RF11 (Pull Up Instance Change) enables generalization of frequent instance
changes by pulling them up to the process type level. Several mining methods for
discovering such situations already exist [25,23]. We therefore do not look at min-
ing techniques, but use them for realizing refactorings based on historical data.

Refactoring Process Models in Large Process Repositories 135

RF10 (Remove Unused Branches). RF10 allows designers to remove un-
executed process fragments from a schema S. It can be implemented based on
change pattern Delete Process Fragment [13,18] and on standard process min-
ing techniques. Note that trace equivalence is not suitable as formal basis since
the behaviour producible on the respective process schema is altered by RF10.
Therefore we use the notion of compliance (cf. Def. 3). RF10 can be applied to
schema S if the traces of all instances on S are re-producible on the new schema;
i.e., observed behaviour remains unchanged. Obviously, compliance can be guar-
anteed when removing unused execution paths. While unused branches can be
automatically deteced, RF10 is not automatically applied, but the designer has
to ensure that the misalignment between model and log was not caused by de-
sign errors or an execution log not covering all relevant traces. Depending on
the concrete application scenario the time window for which events from the log
are considered can be narrowed. Applying RF10 decreases both model size and
control flow complexity. Fig. 6a shows a schema S with its execution log com-
prising the traces of completed instances. Mining this log reveals that the path
with activities E and F was never executed. RF10 could be applied to remove
the unused fragment. This reduces size of S from 9 to 7 and CFC from 3 to 2.
After removing E and F all instances in the log are compliant with schema S′.

RF11 (Pull Up Instance Change). RF11 can be used to generalize frequently
occurring instance changes by pulling them up to the process type level (similar
to RF9 where variant changes are generalized). Like for RF9 the overall goal is
to reduce average and total change distance between type schema and instance-
specific schemes; e.g., to learn from instance changes and to reduce the need for
adapting future instances [24]. The implementation of RF11 is similar to RF9.

Instance 1: ParallelInsert(X,B), Delete(E)
Instance 2: ParallelInsert(X,B)
Instance 3: ParallelInsert(X,B)
Instance 4: ParallelInsert(X,B), Delete(D)
Instance 5: ParallelInsert(X,B)

RF11: RemoveUnusedBranch(S,{E,F})

Instance 1: A, D, G
Instance 2: A, B, C, G
Instance 3: A, D, G
Instance 4: A, D, G
Instance 5: A, B, C, G

…

Execution Log

unused branch

a) Remove Unused Branch

b) Pull Up Instance Change

Bias before Refactoring (total change distance = 7)

RF12: PullUpInstChange(op1)
op1:= ParallelInsert(X,B)

Instance 1: Delete(E)
Instance 2: -
Instance 3: -
Instance 4: Delete(D)
Instance 5: -

Bias after Refactoring (total change distance = 2)

Fig. 6. Remove Unused Branch and Pull Up Instance Change Refactorings

136 B. Weber and M. Reichert

In contrast to RF9, however, trace equivalence cannot be used to ensure that no
errors are introduced when applying RF11. By pulling changes from the instance
level to the type level behaviour producible on the respective schema is always
altered. Therefore, compliance is used as formal notion like in RF10. Like RF9,
RF11 has the potential for full automation.

Fig. 6b shows a process schema S1 and for each process instance I1, . . . I5
its deviation from S1. Activity X was inserted parallel to B for each of these
instances. For I1, Activity E was additionally deleted and for I4 Activity D
was deleted. To pull up the insertion of Activity X (which is common to all
instances) to the type level and to reduce the need for future instance adap-
tations, RF11 could be applied. Using RF11 reduces the total change distance
from sum({I1, . . . , I5}, Dist, S1) = 7 to sum({I1, . . . , I5}, Dist, S1′) = 2.

6 Related Work

Refactoring techniques for improving software design were first proposed by
Opdyke [7]. He suggested a set of refactorings for C++ which are semantic pre-
serving when certain preconditions are met. The first notable refactoring tool
has been the Refactoring Browser [20] for Smalltalk, which automatically per-
forms the refactorings proposed by Opdyke plus some additionally techniques
[27]. As all refactorings provided by this tool constitute behaviour-preserving
transformations it is ensured that no errors or information losses are introduced.
Tool support for languages like C++ and Java recently emerged. The provided
refactorings are usually not provably behaviour-preserving. Therefore, refactor-
ings need to be backed up by automated regression tests to detect behavioural
changes in the software and to avoid errors [8].

Similar to program refactorings, model refactorings constitute transforma-
tions, which are behaviour-preserving if certain pre-/post-conditions are met.
Existing approaches focus on UML model transformations [28], while refactoring
has not been elaborated in detail for business process models. There exist a few
approaches which provide specific refactorings in a narrow context (e.g., a partic-
ular process modeling formalism). In [29] refactoring techniques for event-driven
process chains (EPCs) are described. Refactoring techniques have been also dis-
cussed in connection with model merging [30]. The proposed transformations aim
at improved process design, but are not necessarily behaviour-preserving. A spe-
cific refactoring technique is described in [31] where algorithms for transforming
unstructured processs models into block-structured models are proposed. Syn-
thesis of Petri Nets, in turn, offers techniques which take a transition system and
generate a Petri net from it [32]. This approach can be used to transform a Petri
Net via a transition system into another behaviour-equivalent Petri net. Respec-
tive techniques allow to elimate unnecessary net elements (e.g., silent activities,
unnecessary places) [32] or to discard OR-joins from process models [33].

This paper complements existing work dealing with process redesign [34] or
process adaptation [5]. Both refactoring and process redesign [34] may require
model transformations. However, scope of process redesign is much broader and

Refactoring Process Models in Large Process Repositories 137

goes beyond structural adaptations. Redesign is primarily business driven and
aims to improve one or more performance dimensions of a process (e.g., time,
quality, costs or flexibility) [34]. Therefore, process redesign often affects exter-
nal quality of a PAIS and its results are visible to the customer. In contrast,
refactoring techniques primarily impact the internal quality of the PAIS, ensure
conceptual integrity, and foster maintainability. Similar to refactorings, process
adaptations [5] refer to structural changes of a process schema (e.g., using change
patterns) [13,18,5]. In contrast to refactorings, process adaptations are usually
affecting the behaviour of a process model. We build upon existing research in
this area and extend it to be applicable for process model refactorings.

Existing BPM tools only provide limited refactoring support. Renaming of
activities and process schemes is supported by most tools (e.g., ARIS). However,
more advanced refactoring support is missing.

7 Summary and Outlook

We proposed 11 refactorings specifically suited for large process repositories.
These techniques allow process designers to better deal with model complexity
and to make process models easier to change and better understandable. With
the increasing adoption of PAIS and the emergence of large process repositories
systematic support for model management is getting increasingly important.
We are currently working on a reference implementation of a tool for refactor-
ing process models to support users in both identifying refactoring options and
applying behaviour-preserving or compliance-ensuring refactorings. We further
plan to integrate this with our previous work on change patterns [13,18], model
evolution [35], and process change mining [23] to provide integrated support for
the management of process models throughout the entire process life cycle.

References

1. Weske, M.: Business Process Management: Concepts, Methods, Technology.
Springer, Heidelberg (2007)

2. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

3. Rosemann, M., van der Aalst, W.: A Configurable Reference Modelling Language.
Information Systems (2005)

4. Rosa, M.L., Lux, J., Seidel, S., Dumas, M., ter Hofstede, A.: Questionnaire-driven
Configuration of Reference Process Models. In: Krogstie, J., Opdahl, A., Sindre,
G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 424–438. Springer,
Heidelberg (2007)

5. Reichert, M., Dadam, P.: ADEPTflex – Supporting Dynamic Changes of Workflows
Without Losing Control. JIIS 10, 93–129 (1998)

6. Parnas, D.L.: Software Aging. In: Proc: ICSE 1994, pp. 279–287 (1994)
7. Opdyke, W.F.: Refactoring Object-Oriented Frameworks. PhD thesis, Univ. of

Illinois (1992)
8. Fowler, M.: Refactoring - Improving the Design of Existing Code. Addison-Wesley,

Reading (2000)
9. Beck, K.: Extreme Programming Explained. Addison-Wesley, Reading (2000)

138 B. Weber and M. Reichert

10. Cardoso, J.: Process Control-Flow Complexity Metrics: An Empirical Validation.
In: Proc. IEEE SCC 2006, pp. 167–173 (2006)

11. Vanderfeesten, I., Cardoso, J., Mendling, J., Reijers, H., van der Aalst, W.: Quality
Metrics for Business Process Models. In: 2007 BPM & Workflow Handbook (2007)

12. Mendling, J.: Detection and Prediction of Errors in EPC Business Process Models.
PhD thesis, Vienna Univ. of Economics and Business Administration (2007)

13. Weber, B., Rinderle, S., Reichert, M.: Change Patterns and Change Support Fea-
tures in Process-Aware Information Systems. In: Krogstie, J., Opdahl, A., Sindre,
G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 574–588. Springer,
Heidelberg (2007)

14. McCabe, T.: A Complexity Measure. IEEE ToSE 2, 308–320 (1976)
15. Yourdon, E., Constantine, L.: Structured Design: Fundamentals of a Discipline of

Computer Program and Systems Design. Prentice Hall, Yourdon Press (1979)
16. Nissen, M.E.: Redesigning Reengineering through Measurement-Driven Inference.

MIS Quarterly 22, 509–534 (1998)
17. Reijers, H., Vanderfeesten, I.: Cohesion and Coupling Metrics for Workflow Process

Design. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080,
pp. 290–305. Springer, Heidelberg (2004)

18. Weber, B., Rinderle, S., Reichert, M.: Change Support in Process-Aware Infor-
mation Systems - A Pattern-Based Analysis. Technical Report TR-CTIT-07-76,
University of Twente (2007)

19. Becker, J., Rosemann, M., Uthemann, C.v.: Guidelines of Business Process Mod-
eling. In: BPM 2000, pp. 30–49 (2000)

20. Brant, J., Roberts, D.: Refactoring Browser:
st-www.cs.uiuc.edu/users/brant/refactoringbrowser/

21. Glover, A.: Refactoring with Code Metrics (2006),
www.ibm.com/developerworks/java/library/j-cq05306/

22. Reichert, M., Dadam, P., Schultheiss, B., Konyen, I.: Modeling and analysis of
healthcare processes in a woman’s hospital. project reports no. dbis-27, dbis-28,
dbis-29, dbis-16, dbis-15, dbis-14, dbis-7, dbis-6, dbis-5 (1996-1997)

23. Li, C., Reichert, M., Wombacher, A.: Issues in process variants mining. Technical
Report TR-CTIT-08-10, CTIT, University of Twente, Enschede (2008)

24. Rinderle, S., Weber, B., Reichert, M., Wild, W.: Integrating Process Learning and
Process Evolution – A Semantics Based Approach. In: van der Aalst, W.M.P.,
Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp.
252–267. Springer, Heidelberg (2005)

25. Van der Aalst, W., van Dongen, B., Herbst, J.: Workflow Mining: a Survey of Issues
and Approaches. Data and Knowledge Engineering, 237–267 (2003)

26. Rinderle, S., Reichert, M., Jurisch, M., Kreher, U.: On Representing, Purging, and
Utilizing Change Logs in Process Management Systems. In: Dustdar, S., Fiadeiro,
J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 241–256. Springer, Hei-
delberg (2006)

27. Roberts, D., Brant, J., Johnson, R.: A Refactoring Tool for Smalltalk. Theory and
Practice of Object Systems, 253–263 (1997)

28. Sunye, G., Pollet, D., Traon, Y.L., Jezequel, J.: Refactoring UML Models. In:
Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 134–148. Springer,
Heidelberg (2001)

29. Fettke, P., Loos, P.: Refactoring von Ereignisgesteuerten Prozessketten. In: EPK
2002, pp. 37–49 (2002)

30. Küster, J., Koehler, J., Ryndina, K.: Improving Business Process Models with Ref-
erence Models in Business-Driven Development. In: BPM 2006 Workshops (2006)

www.ibm.com/developerworks/java/library/j-cq05306/

Refactoring Process Models in Large Process Repositories 139

31. Liu, R., Kumar, A.: An Analysis and Taxonomy of Unstructured Workflows. In:
van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005.
LNCS, vol. 3649, pp. 268–284. Springer, Heidelberg (2005)

32. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving petri nets from
finite transition systems. IEEE Transactions on Computers 47(8), 859–882 (1998)

33. Mendling, J., van Dongen, B., van der Aalst, W.: Getting rid of the OR-Join in
business process models. In: EDOC 2007, pp. 3–14 (2007)

34. Reijers, H.A.: Design and Control of Workflow Processes: Business Process Man-
agement for the Service Industry. Springer, Heidelberg (2003)

35. Rinderle, S., Reichert, M., Dadam, P.: Correctness Criteria for Dynamic Changes
in Workflow Systems – A Survey. DKE 50, 9–34 (2004)

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 140–143, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Service-Oriented Information Systems Engineering:
A Situation-Driven Approach for Service Integration∗

Nicolas Arni-Bloch and Jolita Ralyté

University of Geneva, CUI, 24 rue General Dufour
CH-1205 Geneva, Switzerland

{Nicolas.Arni-Bloch,Jolita.Ralyte}@cui.unige.ch

Abstract. In this work we propose a Metamodel of Information System Service
(MISS) and introduce a situation-driven approach for ISS integration. This ap-
proach is based on situational method engineering principals and is defined as a
collection of inter-related method chunks.

1 Applying SOA to Information System Engineering

The community of IS developers increasingly adopts service-oriented approach to IS
engineering. In this work we consider a particular type of services – IS Services (ISS)
– that have to be integrated into enterprise legacy IS in order to avoid IS fragmenta-
tion. Following the traditional SOA [1, 5], integration of an ISS into an IS would be
limited to the exchange of messages between services. That means that only needs for
services and their capabilities to response would be considered but not the informa-
tion overlap that different services could have. This allows to resolve “point-to-point”
integration and represents a step towards integrated IS but this not allows to resolve
the problem of information overlap management. The overlap supported by data re-
dundancy maintained between services will continue to generate extra cost and bad
quality of data and processes.

Before publishing a service in the registry of the enterprise, it is necessary to guar-
anty the integrity of the data but also the alignment of the rules and processes on the
IS policies. Besides, the impact of ISS integration has to be evaluated taking into
account technical, informational and business aspects. At the technical level it means
to consider the cost of the interoperability between language, framework or hardware
components. The evaluation at the business level consists in analysing the capability
of the enterprise to support new processes and to provide the necessary data. Finally,
at the informational level links between data and the compatibility between processes
and rules has to be considered. Therefore, we argue that the ISS integration cannot be
limited to the exchange of messages between services but has to deal with information
overlap. To enable the integration of ISS, it is necessary to extend service description
with its informational knowledge: (1) the definition of service data structure and
semantics, (2) the definition of service behaviour in terms of actions that can be

∗ This work was partially supported by the Swiss National Science Foundation. N° 200021-

103826.

 Service-Oriented Information Systems Engineering 141

executed by the service and effects that these actions provoke, and (3) the definition
of rules (data integrity and process rules) to be respected when realising the service.
Taking into account the complexity of the integration process is critical and requires
an advanced methodological support. In particular, in order to deal with the diversity
of integration situations, the method for service integration has to be flexible, modular
and configurable.

2 Metamodel of Information System Service (MISS)

We define an Information System Service (ISS) as an autonomous coherent and inter-
operable component of an information system that offers capabilities and owns re-
sources to realize these capabilities. These resources can be technical (hardware or
software), informational (information, behaviour and rules) and organizational (or-
ganizational role, actors). At the informational level, an ISS is considered through
three spaces: static, dynamic and rules. Fig. 1 represents the Metamodel of Informa-
tion System Service (MISS).

Fig. 1. Metamodel of Information System Service: the informational part of an ISS

Static Space. The static space of the MISS represents the data structure of an ISS by
using the following concepts: class, key, attribute, method and object. Besides, we use
the concept of hyperclass [4] in order to define the set of classes required by the ser-
vice to realize its capabilities and to guaranty the completeness and coherence of its
data structure.

Dynamic Space. The dynamic space of an ISS represents the behaviour of the service
capabilities. The main concepts of the dynamic space are: action and effect. An action
is an object that defines a behavior having effects on other objects. An action accepts

142 N. Arni-Bloch and J. Ralyté

parameters that denote objects to be given to the action for its execution. An action is
described by a process to be executed and produces one or more effects that specify
the type of its result. Finally, the execution/enactment of an action is constrained by a
set of preconditions and a set of postconditions. The effects of an action are defined
by using a set of primitives: create, enter, exit, update, read, list and call.

Rule Space. The objective of this space is to preserve the coherence, correctness and
consistency of the ISS during its exploitation. A rule is an expression/algorithm that
returns a boolean value when evaluated. The classes and attributes that participate in
the validation of the rule define its validation context. Rules are used as a basis for the
specification of the integrity constraints and conditions. An integrity constraint is a
rule that has to be verified in each state of the services or at each modification of it. A
condition is a rule that has to be valid at some point of process execution.

3 A Situational Approach for ISS Integration

The process of ISS integration cannot be limited to a simple prescribed set of activi-
ties because of the multitude of integration situations that has to be considered. To be
able to deal with this diversity of integration situations we construct our method fol-
lowing the principles of Situational Method Engineering (SME) and particularly the
chunk-driven SME approach [2]. We define our approach as a collection of inter-
related method chunks each of them addressing some specific activity in the ISS inte-
gration process and organised into a map-based [3] process model.

The ISS integration mainly consists in resolving the information overlap situations
between the selected ISS and the legacy IS. We identify four main intentions that
have to be considered in the ISS integration process:

1. To identify and characterise the information overlap between the ISS and the IS,
2. To adapt the overlap part in the ISS specifications in order to allow their integra-

tion with the IS specification,
3. To integrate the IS specifications and the ISS specifications, and
4. To consolidate the integrated specifications.

Therefore, our process model (Fig. 2) is based on these four intentions and identifies
several strategies that have to be considered in order to achieve these intentions. The
first step consists in identifying overlap situations in the specifications of the ISS and
the IS, analysing these situations, identifying elements to be integrated (e.g. classes to be
merged) and detecting elements that need to be unified before their integration. The
semantic analysis strategy helps to identify naming inconsistencies in the static space of
the IS and the ISS, while the functional analysis strategy focus on the identification of
similar capabilities provided by both IS and ISS and specified in their dynamic space.
The structural, action-driven and rule-driven strategies continue the identification and
characterisation of the overlap in the static, dynamic and rule spaces respectively.

Next, the overlap situations requiring some unification have to be settled by apply-
ing the appropriate semantic unification and/or transformation operators. The third
step consists in selecting the appropriate integration operator for each overlap situa-
tion and applying it. The strategy “with integration operator” in fact represents a
bundle of exclusive strategies each of them dealing with specific static, dynamic or
rules space integration operator.

 Service-Oriented Information Systems Engineering 143

Fig. 2. Process model for ISS integration (Map formalism [3])

Finally, the integrated specification has to be consolidated. The integration of an
ISS into an IS can create new situations which didn’t exist neither in the initial IS nor
in the ISS. Therefore, it can be necessary to add new integrity rules or new actions in
order to guarantee the completeness and the coherence of the integrated specification.

Our approach supporting ISS integration aims to provide one or more method
chunks for each section (a triplet <source intention, target intention, strategy>) of this
map. Currently, we focus our effort on identifying and evaluating different situations
that can occur in the ISS integration process and defining method chunks satisfying
these situations. A tool support is also under development to store and enact the
method chunk knowledge.

References

1. OASIS Reference model for service oriented architecture 1.0. Technical report (2006),
http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.pdf

2. Ralyté, J., Rolland, C.: An Approach for Method Reengineering. In: Kunii, H.S., Jajodia, S.,
Sølvberg, A. (eds.) ER 2001. LNCS, vol. 2224, pp. 471–484. Springer, Heidelberg (2001)

3. Rolland, C., Prakash, N., Benjamen, A.: A Multi-Model View of Process Modelling. Re-
quirements Engineering 4(4), 169–187 (1999)

4. Turki, S., Léonard, M.: Hyperclasses: towards a new kind of independence of the methods
from the schema. In: Proc. of ICEIS 2002, pp. 788–794 (2002) ISBN: 972-98050-6-7

5. Erl, T.: Service-Oriented Architecture (SOA): Concepts, Technology, and Design. Prentice
Hall PTR, Englewood Cliffs (2005)

When Interaction Choices Trigger Business

Evolutions

Guillaume Godet-Bar, Sophie Dupuy-Chessa, and Dominique Rieu

Laboratoire LIG, University of Grenoble
681, rue de la Passerelle – BP 72
38402 St Martin d’Hères, France
firstname.surname@imag.fr

Abstract. In the context of development methods, early collaborations
between specialists (SE, HCI, business, usability experts . . .) allows hav-
ing a broader view of the development possibilities, notably in terms of
user-system interaction. Consequently, in-depth transformations of the
processes and concepts can be considered with minimum financial or
temporal impact. We discuss in this paper the opportunities for business
process evolutions emerging from the application of our collaborative
method, based on the choices made for designing the interaction.

Keywords: Information Systems, Human-Computer Interaction, Col-
laborative Design, Evolution

1 Introduction

The evolution of computer technologies, in terms of communication (wireless
networking) and interaction device (visualization headsets, tactile gloves) deeply
alter the classical, implicit perception of Human-Computer Interaction (HCI).
The user can now evolve in environments blending real and virtual entities. We
shall use the concept of “Augmented Reality system” (AR system) to designate
any interactive system that superimposes virtual data onto the real world. A
classical example of AR system can be found in [1].

These new opportunities sometimes lead HCI specialists to design the fu-
ture application from a totally different, usability-oriented, point of view, and
therefore explore aspects of the future system that are sometimes unforeseen
from a purely ”functional core side”. In order to address these issues, we have
proposed an adaptation of the Symphony development method [2]. While this
method is originally Software Engineering oriented and focuses on the design of
the functional core and business aspects of the system, we have integrated HCI
practices and models for designing classical as well as complex interfaces. This
method is also a medium for showing the impact of HCI choices on business
evolution, from the bottom-most levels of refinement of the specifications, up to
the business definition level.

We summarize in Section 2 the essential notions on which the Symphony
method is based. Then, Section 3 describes the principles for envisaging business
evolution. We conclude this paper by giving some perspectives on future works.

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 144–147, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

When Interaction Choices Trigger Business Evolutions 145

2 The Symphony Method

We use the Symphony method as a medium for merging SE and HCI activities.
It is a user-oriented, business component-based development process originally
proposed by the UMANIS company. It has already been extended by [2] and [3],
mainly in order to improve reusability of components, and lately to integrate the
design of complex interfaces such as Augmented Reality systems.

Symphony is organized into three design branches, similarly to 2TUP, into a
Y-lifecycle: functional aspects are treated in the left branch, technical concerns
in the right branch, and a central branch merges both developments. As this
development process has already been addressed previously, we shall focus on
the aspects pertinent for business evolution, which occurs in the left branch of
the development cycle:

– The functional branch features two essential phases: Specification of require-
ments and Analysis of requirements,

– All phases aim at refining models and scenarios outlined in the previous
phase,

– SE and HCI-oriented activities are realized in parallel, by design actors
specialized either in usability, business expertise, Software Engineering or
Human-Computer Interaction, setting out from common scenarios elabo-
rated during the Inception phase. Therefore it is likely that two different
approaches to the final system will be developed, both valuable in terms of
the aspects they are expected to concentrate on (for instance functionalities
for SE specialists, usability for HCI experts),

– Collaboration points are envisaged at specific stages of development, in or-
der to ensure consistency of adopted design options, synchronize points of
view, establish conceptual links between models or take collegial decisions
on design choices.

The functional branch ultimately produces a set of dynamic and static models
–mostly UML models– for describing the application. We have described in [3]
a specific model type for describing business concepts (Business Objects) and
interactional concepts (Interactional Objects).

The following section details the different stages of business evolution, starting
from the end of the Analysis phase and using Business Objects and Interactional
Objects, up to the Specification of requirements.

3 Different Stages of Business Evolution

We explore in this section how, starting from a coordination activity for modi-
fying the Business Objects model and the Interactional Objects model, an evo-
lution of the business space may be triggered at different levels of refinement of
the Information System.

146 G. Godet-Bar, S. Dupuy-Chessa, and D. Rieu

– Business Objects model evolution
Even though Interactional Objects are generally more complex than most
Business Objects, due to the intrinsic complexity of interactions and in-
terfaces, we have set up a systematic analysis of the structural imbalance
between Interactional Objects and Business Objects.

In particular, we evaluate whether the Interactional Objects model aspects
of the system which in fact correspond to business concerns. Our analysis
aims at deciding whether the Information System would benefit from trans-
ferring and adapting this data to the business space.

For instance, Augmented Reality systems often feature topological data,
usually used for positioning the user or artifacts in tridimensional virtual
environments superimposed on the physical world. A possible transfer of
competences would consist in augmenting the Business Objects managing
location concepts with architectural plans. Subsequently, Interactional Ob-
jects would remain responsible for managing the visual representation of the
architectural plans.

– Activity evolution
In the context of the Symphony method, an essential aspect of the spec-
ification of the business space at the Activity level is the identification of
computerized tasks realized by internal actors, using Use Cases. The latter
are organized into logical packages corresponding to Business Process Com-
ponents (i.e., units representing uninterrupted exchanges between external
actors and the Business Process).

While focus at the Business Objects model level was on transfers of compe-
tences, we concentrate at the Activity level on the way the resulting new data
(in our example, topological data) may be collected, organized and used.

From a development process point of view, Use Cases for carrying these
new activities consequently appear.

– Business Process evolution
At the Business Process level, the Symphony method focuses on describing
the interaction between external actors and the system.

One of the essential activities at this level of description is the identi-
fication of Business Process Components, that is, uninterrupted exchanges
between actors and the Business Process. In order to achieve this, these
interactions are represented using UML sequence diagrams.

Driving business evolution to this level means capitalizing on the new Use
Cases introduced at the Activity level. In particular, use of the new data by
different (or new) Business Processes Components and the intervention of
new external actors, within the Information System, may be envisaged. This
may enable automatization of manual tasks, facilitate certain processes. . .

Concerning our example, topological data could be used for estimates,
providing access to location-related data in situ (using head-mounted display
and positioning technologies), providing location-dependent services etc.

– Business definition evolution
Beyond reorganizing Business Processes, business evolution may be taken
to the point that new services are handled by the Information System, thus

When Interaction Choices Trigger Business Evolutions 147

changing the definition of business. New Business Processes may be added,
that will need their own entire iteration of the development process.

Consequently, new interaction choices will be made for these new processes
and new actors that may also eventually affect the business space.

In our example, integrating topological data into the business space could
be used for organizing virtual tours for potential clients.

4 Conclusion and Perspectives

We have detailed in this paper how describing the interactional aspects of a
system may affect the design of the business space, when an effort for rational-
izing the balance of competences between the two conceptual domains is made.
The design of complex interactive systems puts even more strains on this prob-
lematic, because of their intrinsic requirements for intuitiveness, continuity of
interaction, the numerous inputs they need to integrate. . .

In the context of the Symphony development method, we have proposed a
process for capitalizing on the evolutions induced by interaction choices, from
concepts reorganization to the redefinition of the business.

In the current instance of the Symphony method, we tackle the specifications
evolution, which is closely linked to that of data reorganization, by relying on
the concept of Iteration Plan, from the Rational Unified Process [4]. Thus, we do
not need to identify cluttering ”iteration pathways” for each activity. Instead,
programmed evolutions are progressively added to the coming Iteration Plan.
Final decision on the application of features of the iteration can thus be regularly
discussed with stakeholders.

As is often the case with new constructions in methodology, we need to confirm
our propositions with further experiments. This may be delicate, given that this
method applies to complex interactive systems integrated into larger Information
Systems. Consequently, we shall focus future works on the adequate description of
IterationPlans centeredonbusiness evolution, both in termsofmodels andprocess.

References

1. Ishii, H., Ullmer, B.: Tangible bits: towards seamless interfaces between people, bits
and atoms. In: CHI 1997: Proceedings of the SIGCHI conference on Human factors
in computing systems, pp. 234–241. ACM, New York (1997)

2. Hassine, I., Rieu, D., Bounaas, F., Seghrouchni, O.: Symphony: a conceptual model
based on business components. In: SMC 2002, IEEE International Conference on
Systems, Man, and Cybernetics, vol. 2 (2002)

3. Godet-Bar, G., Rieu, D., Dupuy-Chessa, S., Juras, D.: Interactional objects: Hci
concerns in the analysis phase of the symphony method. In: 9th International Con-
ference on Enterprise Information Systems ICEIS 2007, Funchal, Madeira, June
2007, pp. 37–44 (2007)

4. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process.
Addison-Wesley, Reading (1999)

GATiB-CSCW, Medical Research Supported by

a Service-Oriented Collaborative System

Konrad Stark1, Jonas Schulte2, Thorsten Hampel2, Erich Schikuta1,
Kurt Zatloukal4, and Johann Eder1,3

1 University of Vienna, Dept. of Knowledge and Business Engineering, Austria
2 University of Paderborn, Heinz Nixdorf Institute, Germany

3 University of Klagenfurt, Dept. of Informatics Systems, Austria
4 Medical University Graz, Institute of Pathology, Austria

Abstract. Medical research is a collaborative process in an interdisci-
plinary environment that may be effectively supported by a Computer
Supported Cooperative Work (CSCW) system. Such a system imposes
specific requirements in order to allow flexible integration of data, anal-
ysis services and communication mechanisms. Persons with different ex-
pertise and access rights cooperate in mutually influencing contexts (e.g.
clinical studies, research cooperations). Thus, appropriate virtual en-
vironments are needed to facilitate context-aware communication, de-
ployment of biomedical tools as well as data and knowledge sharing.
We systematically elaborate the main requirements of a medical CSCW
system and present a conceptual model, as well as an architectural pro-
posal satisfying the demands. We design a prototypical virtual workbench
to support research and routine activities in the context of the GATiB
(Genome Austria Tissue Bank) initiative.

Keywords: Medical Research, CSCW, Service-Oriented Architecture.

1 Introduction

Medical care and medical research are cross-fertilising areas. Courses of disease
may be monitored and analysed from a scientific perspective, whereas treatment
development and medication design benefit from the the results of research. Vast
amounts of patient records containing information about diagnosis, laboratory
tests, radiology images and medications are created continuously. For example,
a medium-sized hospital in Austria provides medical treatment for 512,000 pa-
tients within one year (http://www.klinikum-graz.at). Although most of the data
is recorded in medical information systems, they do not support collaborative
work. Thus, there is a strong need to share, contextualise and annotate data
allowing inter-organisational and interdisciplinary collaboration. A wide range
of biomedical applications have been developed for very specific purposes, e.g.
image processing, gene expression analysis. However, they also lack support for
collaborative processes. In this paper we designed a Computer Supported Cooper-
ative Work (CSCW) system that meets the requirements of the medical research

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 148–162, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

GATiB-CSCW, Medical Research 149

domain, especially out of the field of flexible service integration (SOA) and ob-
ject oriented data integration (integration of persistency layers). Standard “out
of the box“ CSCW systems do not meet these requirements. Therefore, some
new architectural elements had to be developed. Collaboration in the medical
research field is characterised by high complexity and high variation of the col-
laborative situations. Data is distributed over several institutes and underlays
various restrictions in accessibility for different persons (roles). Access to patient
data is for example highly limited by the context or role of application. Data is
collected, restructured, analysed and shared with each other in different settings.
This paper addresses such questions by defining the requirements for a CSCW
system. The resultant architecture of our CSCW system is also presented to
highlight how the requirements can be attained in the field of medical research.
However, in its characteristic as a collaborative knowledge management system
our GATiB-CSCW system can be easily used as an e-learning platform. Our
means of flexible configuration of access rights and the architectures ability to
define contextual views on the presented data allows it to be used as a power-
ful collaborative learning platform. Much work has been done in developing IT
infrastructure for the biomedical research. Some grid-based platforms support
effective co-working of researchers on distributed data sets [1], expose various
data sources on the grid and allow access by web services [2] or enhance in-
teroperability between distributed medical models in a grid portal [5]. Other
approaches provide an infrastructure for collaboratively using distributed com-
putational services and data resources [8,6,12]. Though, few approaches [9,4]
exist to explicitly support collaboration processes in the biomedical context, we
encourage to close the gap by implementing a collaboration-aware biomedical in-
frastructure based on a service-oriented architecture. This work was developed
in the context of the biobank initiative GATiB (Genome Austria Tissue Bank)
which is part of the Austrian Genome Program (http://www.gen-au.at). GATiB
aims at the establishment of a tissue bank which builds on a collection of dis-
eased and corresponding normal tissues representing all diseases at the natural
frequency of occurrence from a non-selected central European population of more
than 700.000 patients. Major emphasis is placed on annotation of archival tissue
with comprehensive clinical data including follow-up. A more detailed descrip-
tion of the biobank initiative is given in [3]. The paper is structured as follows:
To describe the background of the requirements for a CSCW system useable for
medical research, Section 2 presents example collaboration scenarios and sum-
marises the main requirements for such a system. Some practical examples and a
prototypical virtual workbench is presented in Section 3. The conceptual compo-
nents for the GATiB-CSCW system are described in Section 4. The architecture
of the CSCW system is specified in Section 5. Our paper ends with a description
of the current status and an overview of ongoing and future work in Section 6.

2 Scenarios and Requirements

Collaboration in the GATiB project focuses on both the medical research and
routine activities of medical scientists and supporting staff. Data that is locally

150 K. Stark et al.

distributed over institutes and research groups is accessed in manifold ways and
for various purposes. The following three example scenarios describe different
types of collaboration in medical research.

Scenario 1: A patient diagnosed with mamma carcinoma is assumed to suffer
from a rare subtype of breast cancer. A group of expert pathologists are con-
cerned with the correct cancer classification. Each of the experts needs detailed
access to anamnesis data of the patient and her family. Additionally, virtual
slides made from the instantaneous section are used to cooperatively mark and
annotate sections of the image. A set of similar cases as well as selected state-
of-the-art publications are provided for comparative analysis.

Scenario 2: For an extensive evaluation of the course of disease of liver cancer
over the past 20 years information about diagnoses, family anamnesis and follow-
up data (medication, therapy, resection) of relevant cases is needed. Data from
the institutes pathology, oncology and surgery is accessed as well as survival data
in order to support statistical analyses. The distribution of liver cancer subtypes
is calculated and an inventory of the biobank lists all associated tissue samples.
The results are used both in revision reports as well as in a publication.

Scenario 3: Due to a cooperation between the hospital and a pharmaceutical
company a group of suitable human-tissue donors is to be identified to support
a drug discovery study. Therefore, pathological diagnoses, survival data and
tissue images of patients that have signed an informed consent are required.
After searching and structuring the information confidential patient data has
to be protected since an external organisation is involved in the study. Hence,
identifying attributes (name, day of birth) are eliminated and quasi-identifying
attributes are k-anonymised [10,14]. Life style data is included by filling out
questionnaires. Further, a tissue microarray of the relevant cases is made in
order to test candidate tumour markers. The results should be made available
to other research groups.

These scenarios demonstrate the diversity of collaboration types that may
occur. A cooperative system in a biomedical research environment requires a high
degree of flexibility and extensibility. Distributed data is accessed in different
levels of grading considering data privacy issues, it is annotated and analysed.
We use the above-mentioned scenarios to deduce general requirements a CSCW
system has to comply with.

Requirements

– R(1) User and role management. The CSCW has to be able to cope
with the organisational structure of the institutes and research groups of the
hospital. Data protection directives do have to fit in the access right model
of the system. Though, the model has to be flexible to allow the creation of
new research teams and information sharing across organisational borders.

– R(2) Transparency of physical storage. Although data may be stored
in distributed locations, data retrieval and data storage should be solely

GATiB-CSCW, Medical Research 151

dependant on access rights, irrespective of the physical location. That is,
the complexity of data structures is hidden from the end user. The CSCW
system has to offer appropriate search, join and transformation mechanisms.

– R(3) Flexible data presentation. Since data is accessed by persons hav-
ing different scientific background (biological, medical, technical expertise)
in order to support a variety of research and routine activities, flexible ca-
pabilities to contextualise data are required. Collaborative groups should be
able to create on-demand views and perspectives, annotate and change data
in their contexts without interfering with other contexts.

– R(4) Flexible integration and composition of services. A multitude
of data processing and data analysis tools exists in the biomedical context.
Some tools act as complementary parts in a chain of processing steps. For ex-
ample, to detect genes correlated with a disease, gene expression profiles are
created by measuring and quantifying gene activities. The resulting gene ex-
pression ratios are normalised and candidate genes are preselected. Finally,
significance analysis is applied to identify relevant genes [16]. Each func-
tion may be provided by a separate tool; for example by Genespring R©and
Genesis R©[7,15]. In some cases, tools provide equal functionality and may be
chosen as alternatives. Through flexible integration of tools as services with
standardised input and output interfaces a dynamic composition of tools
may be accomplished. From the systems perspective services are technology
neutral, loosely coupled and support location transparency [11]. That is, the
execution of services is not limited to proprietary operation systems and
any service caller does not know the internal structure of a service. Further,
services may be physically distributed over departments and institutes, e.g.
image scanning and processing is executed in an own laboratory where the
gene expression slides reside.

– R(5) Support of cooperative functions. In order to support collabora-
tive work suitable mechanisms have to be supplied. One of the main aspects
is the common data annotation. Thus, data is augmented and shared within
a group and new content is created cooperatively. Therefore, Web 2.0 tech-
nologies like wikis and blogs procure a flexible framework for facilitating
intra- and inter-group activities.

– R(6) Data-coupled communication mechanisms. Cooperative working
is tightly coupled with excessive information exchange. Appropriate com-
munication mechanisms are useful to coordinate project activities, organise
meetings and enable topic-related discussions. On the one hand a seamless
integration of email exchange, instant messaging and voip tools facilitates
communication activities. We propose to reuse the organisational data de-
fined in R(1) within the communication tools. On the other hand, persons
should be able to include data objects in their communication acts. E.g.,
images of diseased tissues may be diagnosed cooperatively, whereas marking
and annotating of image sections supports the decision making process.

– R(7) Knowledge creation and knowledge processing. Cooperative
medical activities frequently comprise the creation of new knowledge. Data
sources are linked with each other, similarities and differences are detected,

152 K. Stark et al.

Fig. 1. TUMour Staging, Age, Survival Plots

and involved factors are identified. Consider a set of genes that is assumed
to be strongly correlated with the genesis of a specific cancer subtype. If the
hypothesis is verified the information may be reused in subsequent research.
Thus, methods to formalise knowledge, share it in arbitrary contexts and
deduce new knowledge are required.

3 Practical Examples and Virtual Workbench

In order to illustrate different types of data and knowledge we have to cope
with in the GATiB project we give some practical examples. A key aspect of
the biomedical collaboration is analysing the data collected about tumours in
multiple ways. In Figure 1 three examples of graphical presentation of patient
records are given. In the top left part of the figure the age distribution of patient
groups is visualised by boxplots. Patients are grouped by tumour staging T
(TNM classification). The top right part illustrates survival periods and age
of female and male patients by a scatterplot. These visualisations may be a
helpful presentation for scientists to formulate new hypotheses. The stratification
tree at the bottom gives a detailed characterisation of the whole data set. This
presentation is useful to survey frequencies of attribute value combinations. The
original stratification tree was augmented with results of statistical tests. Hence,
significant differences among subgroups of the data set are displayed by red

GATiB-CSCW, Medical Research 153

arrows. In our example there is a significant difference of survival periods between
male and female patients under 40. The dependency is obvious when looking
at the scatterplot of Figure 1. Further, the survival period of patients older
than 60 is significantly different from both younger age groups. Various types
of data and knowledge presentation may serve different purposes. A tabular
presentation of knowledge may be useful for final documentation, either to be
exported into publication drafts or into presentations, while the visualisation by
stratification trees may support generation of hypotheses in ongoing research. We
propose to introduce formal representations of detected relationships to capture
knowledge structures that may be reused in similar contexts and constitute the
basis for reasoning in medical decision support systems. The details of knowledge
representation are topics of ongoing research and beyond the scope of the paper.
In Figure 2 a prototypical view of the scientific workbench is given. A group
of persons cooperate in a virtual environment in the context of an annotation
project. All project members currently working in the context of the project
are marked as online. Online persons may communicate immediately by instant
messaging. Additionally, further contact information (phone number or mail
address) may be retrieved by clicking on the second icon. A set of records of
liver cancer patients represents the shared data objects. Individual objects may
be accessed, altered and marked as ’completely annotated’. A set of relevant
functions is displayed to visualise and analyse data. Further, related publications
are presented and discussion forums (data and knowledge topics) are available.

Fig. 2. Scientific Workbench

154 K. Stark et al.

4 Conceptual Model

The example applications show that data used for collaboration has to be differ-
entiated. Furthermore, the environment for a collaboration has to be specified
and the users have to be represented in the CSCW system in a suitable way. We
elaborated a conceptual model in which we specify how the requirements of the
previous section could be met.

4.1 Resource

The example applications described in Section 2 highlight that the same data
can be analysed and visualised in various ways. Our GATiB-CSCW system has
to distinguish between the basic data on which the analyses are performed and
the results of analyses. A resource is either a data or knowledge object that
is accessed in a cooperative process. While data objects consist of restructured
or transformed data, knowledge objects are built by deducing relationships and
conclusions from data objects. Thus, a knowledge object always has at least one
associated data object. Data and knowledge objects have some common char-
acteristics: the content of both data and knowledge objects may be personal.
Access to data objects can be restricted due to legislative regulations to guar-
antee data privacy. Further, the content of knowledge objects is to be protected
in cases of ongoing research work. Moreover, both data and knowledge objects
have to be protected from unauthorised modifications. The CSCW system needs
a user management handling authentication and authorisation before accessing
data. To protect the content of knowledge objects in ongoing research, a version
management is required.

Data Object. We consider a data object as an information that was extracted
from information systems or documents or was entered manually. In the context
of the GATiB project emphasis is put on biomedical data. Biomedical data
consists of data records from medical hospitals and research facilities that are of
interest for collaborative research. It includes patient-specific records extracted
from medical information systems or data manually entered as a result of an
annotation process. Data may originate from clinical studies, anamnesis, lifestyle,
and survival data as well as gene expression profiles. We do not put limits on
the type of data nor on the size. Hence, a data object may consist of a set of
database records that was returned as a result of a specific query linked with
supplemental images as illustrated in Figure 3. Further, a data object may be a
text document containing fragments of a publication. The CSCW system must
not have limitations concerning the data stored and accessed. Since arbitrary
data types have to be supported, applications used to visualise or modify the
data should be made available within the CSCW system. We propose flexible
levels of data granularity to satisfy requirement R(2).

Knowledge Object. A knowledge object is the result of a non-empty sequence
of functions applied to at least one data object. Generally, each knowledge ob-
ject enhances the information that is currently available in data objects. We

GATiB-CSCW, Medical Research 155

Fig. 3. Combined Data Object

distinguish various types of knowledge objects: graphical objects (plots, dia-
grams, etc.), tabular objects presenting summarised information (e.g. the results
of aggregation operations) and knowledge structures (e.g. annotations). Seman-
tic structures may be used to formalise knowledge. Relationships between objects
or groups of objects are stored in a processible way in order to build a knowledge
repository. The repository integrates conclusions from various contexts allowing
the user to explore consolidated knowledge and deduce new knowledge. Making
knowledge persistent and processable allows us to fulfil requirement R(7). The
post-processing of accessible data objects is a specific but also important crite-
rion for a medical CSCW system research. Since there should be no limitations
concerning the data stored and accessed, the CSCW system has to support all
required post-processing steps and must be flexible to integrate new functions.

4.2 Collaboration Context

A collaboration context specifies the type of collaboration. It provides the general
framework of relationships between individuals, data and knowledge. It may be
considered as a basic template defining how data and knowledge is accessed and
modified by individuals in a certain type of collaboration. In our collaborative
medical research system we use three basic types of contexts: patient-centred,
project-centred and disease-centred context. These patterns are applicable
to the scenarios described in Section 2 which correspond to common use cases
of medical routine work as well as medical research activities.

Generally, the patient-centred and project-centred contexts access more sen-
sitive data. A patient-centred context starts with the patients data and will

156 K. Stark et al.

be used for medics working with the patient directly. Hence, involved individ-
uals have to have access rights to original patient-related data. Whereas in the
disease-related context access is given to anonymised and/or summarised data of
the same disease type. As a consequence, instead of focusing on specific patients,
a particular disease type, its related therapies and medications are of main in-
terest for the collaboration act. The project-centred context provides a specific
environment to coordinate collaborative actions (e.g. data sharing and annota-
tion, discussion forums, communication tools etc.). The collaboration context
conforms to an environment which present users a common background for their
work. It presents data needed as background information for their collaboration
since all data available in the context can be assumed as known from the users.
It is obvious that a collaboration context must consider authentication and au-
thorisation in order to limit the user’s capabilities to access and modify data.
Further important is the view on the data available in a collaboration context.
Section 4.5 details the need for different views on the same data. The CSCW
system has to be able to present these three context types. Though, to develop a
flexible system, it has to support the definition and usage of arbitrary contexts.

4.3 Knowledge Spaces

Knowledge spaces are our representation and structure of presenting the different
context types of collaboration situations to the users/actors in the collaboration
process. Users need a knowledge space as a virtual environment for their collab-
oration activities in which they can meet and work. We define a knowledge space
as an actual use case in a collaboration context. In scenario 3, a knowledge space
is set up for those persons participating from the hospital and the pharmaceuti-
cal company, which are therefore a member of this specific collaboration group.
Although knowledge spaces are separate virtual concepts, data and knowledge
exchange between knowledge spaces is encouraged. An important capability is to
upload data or link to remote data which is already available. To suffice the in-
dividual users’ needs for their collaboration, they should organise and structure
the knowledge space completely on their own. Consequently, users are responsi-
ble for the organisation of their knowledge space which implies highest flexibility.
However, reorganisation of one specific knowledge space might be restricted to
a limited group of users in order to avoid unauthorised modifications. Such self-
organisation conforms to the self-organisation forms of knowledge in the Web 2.0
(tagging). Further concepts of the Web 2.0 like annotating available information
are important for a useful CSCW system. Knowledge spaces are extendable in
order to invite other users of the CSCW to join the collaboration.

Communication is the most important criterion to perform a successful col-
laboration: In particular, supporting discussions is crucial for the usability of a
CSCW system since it is an important tool in the context of collaboration be-
tween users located at different places or contributing at different times. To offer
a useable platform for collaborative work, different communication ways have
to be supported. A classical and popular form of synchronous communication

GATiB-CSCW, Medical Research 157

is to use instant messaging. Initially, the chat protocol is only privately accessi-
ble for the participants, however, they can make it accessible for all users of the
knowledge space. In the context of a platform for medical research, discussion fo-
rums for knowledge and data topics are helpful. Furthermore, Web 2.0 concepts
like wikis and blogs should be supported by the CSCW system. Wikis can be
generated for a dedicated collaboration context or be accessible for a subset or
all individuals of the CSCW system. To add comments to knowledge objects or
data objects, the CSCW system offers annotation capabilities. Thereby, data and
knowledge objects can be annotated in the same way and the CSCW system is re-
sponsible for granting access to annotations according to the users’ access rights.
Hence, we may fulfil requirements R(5) and R(6). Realising user-awareness in
the CSCW system is crucial to support communication. User-awareness implies
that users are represented in the virtual world by avatars, photos, or an icon.
This enables other users to see which individuals are registered, are author of a
wiki entry, annotation etc., are currently logged in, and can be contacted.

4.4 Individual

An individual is a person participating in collaborative acts. Individuals may
be for instance researchers from the medical or biological domain, medical stu-
dents or project managers. Individuals are categorised into internal and external
persons in order to differentiate between access to sensitive patient-related and
research-related data and access to anonymised and summarised data. Internal
individuals are for example employees of the Medical University Graz and exter-
nal individuals may be members of companies or research institutes cooperating
with the university. The CSCW system has to ensure that individuals are dis-
tinguished in order to reflect the activities of one individual in the real world as
a one-to-one mapping in the virtual world. This is important in the context of
collaboration (discussions, annotations, . . .) as well as for the data access (au-
thentication and authorisation). The organisational mapping accomplishes the
user and role management specified in R(1).

4.5 Roles

Individuals having the same access rights and using the same set of functions
may be integrated to groups and certain roles may be assigned to users/groups
as illustrated in Figure 4. Roles are used to adjust the access of individuals and
groups to resources. That is, a role is used to bundle access parameters that
are classified into three different categories: view parameters, modification
parameters and extension parameters. Flexible presentation of data and
data annotation capabilities satisfy requirement R(3). Individuals can be part of
several groups and a group can consist of subgroups and roles may be assigned
to both individuals and groups. Further, roles are coupled with knowledge spaces
allowing to access a resource in various contexts.

158 K. Stark et al.

Fig. 4. Role Assignment

4.6 View Parameters

Different knowledge spaces have a different focus on the same data. This implies
that the data is visualised differently according to the selected knowledge space.
View parameters are utilised to specify how the data is presented. Although the
same data is shared among a group of individuals, sometimes part of the data is
to be hidden or presented in an alternative way. For instance, consider sensitive
information like patient name and day of birth. In a clinical study the identifying
attributes of a patient record have to be presented to assign further attributes
like radiology parameters correctly. In order to guarantee data privacy, these
attributes should not be presented to supporting staff like medical students.
Hence, the identifying attributes are suppressed for supporting staff and dis-
played for scientific staff by setting the view properties in the corresponding
roles appropriately. The CSCW system has to support a fine-grained definition
of view parameters. Supporting the self-organisation of the knowledge spaces,
view parameters must be able to be defined by the users themselves. Here, the
definition might be available for a specific group of users that are responsible for
the organisation of the knowledge space.

4.7 Modification Parameters

The content of a resource may be changed during a review, discussion, modifi-
cation or annotation process. Parts of the content may be limited by read-only
access while other parts may be edited to correct or to supplement data. Thus,
we allow to assign read/write properties at the finest granularity level offered by
a resource. In case of a data table structured by attributes, modification prop-
erties may be set for each attribute separately as well as for each table entry.
Consider a clinical data annotation project where a group of medical scientists
creates a data table collaboratively. In order to protect table entries that are as-
sumed to be complete from inadvertent modifications, those entries may be set
to read-only. In addition, some data that was accumulated from a reliable source
(e.g. date of surgery from a clinical information system) is set to read-only to
preserve data integrity. The CSCW system has to offer users the functionality

GATiB-CSCW, Medical Research 159

to set modification parameters. Sensible standard parameters are essential for
the usability. Internally, the system can realise the modification parameters by
disabling all users’ authorisation to write the data. Consequently, the CSCW
system needs to guarantee an exact authorisation method to prevent data from
unauthenticated read-access and unauthorised modifications.

4.8 Extension Parameters

Although well-defined data structures ease and standardise the collaborative
data entry process, they lack flexibility and extensibility. As collaborative work
is an evolutionary process, data may be restructured in order to fit to upcoming
demands. We allow two types of data structure modifications: property addition
at the conceptual level and property addition at the instance level. A shared
data resource may be extended by defining a property template including a
set of (property name, property type) pairs. The original view on the resource is
augmented with these properties and supplementary information may be entered
for each data table entry. Moreover, additional information may be assigned to
a single table entry. Consider the follow-up data of one patient when recorded in
a different hospital. We want to mark the patient with a ’Follow-up data outside
hospital’ information. Thus, we require object extension at the instance level.

5 Architecture Overview

The Wasabi framework enabling collaborative work as described in the previous
sections is a service-oriented architecture [13]. It bases on the JBoss Application
Server (AS) in order to fulfil requirements for enterprise solutions and to provide
the scalability and performance needed for a CSCW system which is used in a
distributed manner like in the GATiB project. Service orientation is an impor-
tant characteristic in the context of flexibility, adaptability and maintainability,
as already mentioned in requirement R(4). Note that the service orientation of
Wasabi can be realised since the underlying JBoss AS is also service oriented.
Service orientation is also an essential characteristic for a CSCW system since the
data stored might be of arbitrary formats and located in arbitrary repositories.
Supporting storing and handling content in a flexible way opens CSCW systems
to a wide field of collaboration activities and is no longer limited to specific
collaborative environments or applications. The Wasabi’s functionality enables
on the one hand data to be stored in databases or in file systems reachable via
the network. On the other hand it can link already existing databases and data
sources to provide users access to those data under consideration of their rights.
This is particularly beneficial for the GATiB project since the data collected in
different hospitals and institutes is thereby available for the whole community
without transferring the data for collaboration to a specific repository. As de-
picted in Figure 5 the server consists of four main components. The core of the
Wasabi enterprise server architecture implements the framework for a CSCW
system and aggregates all services of Wasabi (marked with (4) in Figure 5).

160 K. Stark et al.

Fig. 5. Main Architecture

The event dispatcher and receiver are responsible for handling internal events,
including the arrival of messages, by calling appropriate methods of the inter-
nal EJB services (marked with (3)). These services are responsible for handling
the objects of the Wasabi core, e.g. the UserManager is the service responsi-
ble for handling, modifying, and extracting information of user objects. These
services classify the EJB services as basic services since they implement basic
functionalities on the objects of the Wasabi core. Since their tasks focus on the
modification and provisioning of data stored in the Wasabi core objects, they
can be further classified as data-centric basic services. EJB services are also used
to realise flexible user authentication mechanisms as well as to be adaptable to
various content backends/repositories.

Third, the Remote API provides an interface for client-server communication
(marked with (1)). Therewith a common interface can be used to send requests
to different adapted services, in the case the services expect the same input
data. This simplifies the enhancement of Wasabi Beans by adapting new services
with little effort. The fourth component is responsible for the message exchange
with adapted services (marked with (2)). It generates the outgoing messages
according to the defined interfaces of the remote webservices and processes and
extracts information from incoming messages. After receiving an incoming mes-
sage, appropriate methods of the Wasabi services are called. Internally individ-
uals, groups, and rooms are objects persistently stored in the central database.
Since also the related classes are subclasses of WasabiObject, it is necessary to
assign to each object an unique identifier (UUID). Storing all WasabiObjects in

GATiB-CSCW, Medical Research 161

a central database, supports to generate a unique identifier for a WasabiObject,
i.e. no room or individual can have the same UUID. To provide best pos-
sible adaptability, entities of the Wasabi architecture provide a remote API.
Main classes are entities like WasabiObject, Document, Group, User, Container,
and Room, since these classes realise the data organisation and implement our
concept of virtual rooms. To make objects persistent, it is necessary to im-
plement the EJB services (DocumentManagerService, ObjectManagerService,
and UserManagerService) as data-centred basic services. The EJB services are
data-centred, since they are responsible for data storage and data access. We
support different persistency layers and encapsulate this functionality through
the EJB services. This encapsulation of functionalities into basic services al-
lows modification on the data access and data storage functionalities without
entailing any changes on the server core.

6 Conclusion

In this paper, we presented the main requirements for a CSCW system sup-
porting collaboration in medical environments and outlined a conceptual model
and a system architecture fulfilling the specific demands. We found the Wasabi
framework capable of supporting the cooperation processes in our project, as
it allows the creation and management of knowledge spaces based on a flexible
object model and a service-oriented architecture. Though, there is still adjusting
work left. We have to integrate data resources into persistency layers, map or-
ganisational data, and wrap biomedical applications into services appropriately.
We implemented a workbench to access and anonymise distributed data sources.
We are working on the extension of the workbench in order to implement the
project-centred CSCW client as presented in Figure 2. In our future work we
will focus more intensely on service composition in the biomedical context and
on formalisation of medical knowledge. That is, the functionality of our GATiB-
CSCW will be considerably enhanced and it may be utilised as a virtual platform
for collaborative research.

References

1. Armendolia, S.R., Estrella, F., McClathey, R., et al.: Managing pan-european
mammography images and data using a service oriented architecture. In: IDEAS-
Workshop on Medical Information Systems (2004)

2. Assel, M., Krammer, B., Loehden, A.: Management and access of biomedical data
in a grid environment. In: Cracow Grid Workshop (2006)

3. Asslaber, M., Abuja, P., Stark, K., Eder, J.: The genome austria tissue bank (gatib).
Pathobiology 74, 251–258 (2007)

4. Bouillon, Y., Wendling, F., Bartolomei, F.: Computer-supported collaborative work
(cscw) in biomedical signal visualization and processing. Trans. on Information
Technology in Biomedicine 3 (1999)

5. Chu, X., Lonie, A., Harris, P., Thomas, S., Buyya, R.: A service-oriented grid
environment for integration of distributed kidney models and resources. In: Con-
currency and Computation: Practice and Experience (CCPE) (2007)

162 K. Stark et al.

6. Arbona, A., et al.: A service-oriented grid infrastructure for biomedical data and
compute services. IEEE Trans. on Nanobioscience 6 (2007)

7. GeneSpring. Cutting-edge tools for expression analysis, www.silicongenetics.com
8. Li, W., Krishnan, S., Mueller, K., Ichikawa, K., et al.: Building cyberinfrastructure

for bioinformatics using service oriented architecture. In: Sixth IEEE Int. Sympo-
sium on Cluster Computing and the Grid Workshops (2006)

9. Makris, L., Kamilatos, I., Kopsacheilis, E.V., Strintzis, M.G.: Teleworks: A cscw
application for remote medical diagnosis support and teleconsultation. Trans. on
Information Technology in Biomedicine 2 (1998)

10. Sweeney, L., Samarati, P.: Protecting privacy when disclosing information: k-
anonymity and its enforcement through generalization and suppression. In: Proc.
of the IEEE Symposium on Research in Security and Privacy (1998)

11. Papazoglou, M.P.: Service -oriented computing: Concepts, characteristics and di-
rections. In: wise, vol. 00, p. 3. IEEE Computer Society Press, Los Alamitos (2003)

12. Sartipi, K., Yarmand, M., Down, D.: Mined-knowledge and decision support ser-
vices in electronic health. In: Int. Workshop on Systems Development in SOA
Environments (2007)

13. Schulte, J., Hampel, T., Bopp, T., Hinn, R.: Wasabi framework an open service
infrastructure for collaborative work. In: The third Int. Conference on Semantics,
Knowledge and Grid (2007)

14. Stark, K., Eder, J., Zatloukal, K.: Priority-Based k-Anonymity Accomplished by
Weighted Generalisation Structures. In: Tjoa, A.M., Trujillo, J. (eds.) DaWaK
2006. LNCS, vol. 4081, pp. 394–404. Springer, Heidelberg (2006)

15. Sturn, A., Quackenbush, J., Trajanoski, Z.: Genesis: Cluster analysis of microarray
data. Bioinformatics 18(1), 207–208 (2002)

16. Tusher, V.G., Tibshirani, R., Chu, G.: Significance analysis of microarrays applied
to the ionizing radiation response. In: Proc. Natl. Acad. Sci., vol. 98 (2001)

www.silicongenetics.com

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 163–166, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Strategic Alignment in the Context of e-Services – An
Empirical Investigation of the INSTAL Approach Using

the Italian eGovernment Initiative Case Study

Gianluigi Viscusi1, Laure-Hélène Thevenet2,3, and Camille Salinesi2

1 Department of Informatics, Systems and Communication (DISCo)
Università degli Studi di Milano-Bicocca - Italy

2 Centre de Recherche en Informatique, Université Paris 1 Panthéon-Sorbonne
90 rue de Tolbiac 75013 Paris

3 BNP Paribas, Banque de Détail France – Informatique
41 rue de Valmy 93100 Montreuil Sous Bois

viscusi@disco.unimib.it, laure-helene.thevenet@malix.univ-
paris1.fr, camille.salinesi@univ-paris1.fr

Abstract. Strategic alignment is an issue that is not just met in companies, but
also in governments, governmental agencies and public administrations. This
paper investigates the issues raised by strategic alignment in the context of
eGovernment initiatives focused on e-services. The analysis reports a case
study that explores the strategic alignment issue with the INSTAL method. Two
facets are tackled: (a) the modeling of strategic alignment using a formal ap-
proach, and (b) the elicitation of evolution requirements based on the analysis
of strategic alignment models.

Keywords: alignment model, strategic alignment, e-government, e-services.

1 Introduction

Strategic alignment (SA) of information systems (IS) is a primary concern arising
from the eGovernment objectives in the context of the Italian health service. This pa-
per investigates the INSTAL approach, which aims to model SA, analyse it, and elicit
evolution requirements. The research question is how SA can be tackled in the eGov-
ernment context and how the INSTAL approach can support the planning of e
Government initiatives focused on design and development of e-services. Quality of
services for the citizens is a major issue in the eGovernment context. Furthermore,
quality is rarely considered in the SA perspective. Taking this into account, we ex-
plored the following hypotheses:

<h1: The integration of strategic alignment and quality issues provides insights for the
choice of suitable eGovernment initiatives>;

<h2: Modeling strategic alignment helps eliciting evolution requirements for eGovernment
initiatives>

The paper is organized as follows. Section 2 introduces the case study. Section 3
discusses the case study report. Section 4 concludes and gives perspectives.

164 G. Viscusi, L.-H. Thevenet, and C. Salinesi

2 Case Study Presentation

In the initial situation, the Italian public administration (PA) is composed of central
(e.g. ministries) and local agencies (about 8000). The organization is agency-centric
processes, with little inter-agency, inter-organizational, and cross sector relationships.
In particular, in the context of public health, information is rarely shared between dif-
ferent agencies, front offices and back offices. Citizens must make contact with local
agencies to ask for agency-specific services. We focus in the rest of this paper on the
health services and in particular on the process of changing family doctors.

In the initial situation, health care services faced difficulty in fulfilling users’ de-
mand, due to the bureaucratic procedures and PAs organization. In Italy, any citizen
must have a family doctor. To choose one, citizens have to (i) make the request to the
health PA of residency (at opening time), (ii) exhibit their health card, and (iii) pro-
ceed to the choice of a doctor (in the area). Several certificates are asked. For citizens
who do not live in the area of the health center, a specific committee has to decide.
For foreign citizens with no residency, the choice of doctor can be valid from three
months to a year and renewable; in the case of residents the choice is valid for a year
and automatically renewed. In 2002, a plan was initiated to change the initial PA or-
ganization for service provision, by having a user oriented perspective and developing
online services.

3 Case Study Report

This section reports how the INSTAL (Intentional Strategic Alignment) method [1]
was applied on the case study of the Italian eGovernment.

Fig. 1. INSTAL overview

As shown in Fig. 1, the main characteristics of the INSTAL method are: (1) to
model strategic alignment intentions at an intermediate level (SA maps), and (2) to
define strategic alignment links between strategic and operational elements. In IN-
STAL, only elements that share a same intention can be aligned and thus a SA link
modeled. Metrics (at strategic level) and measures (at operational level) can also be
attached to SA links to provide a quantitative assessment of SA. The map formalism

 Strategic Alignment in the Context of e-Services 165

was used at the intermediate level because (1) it is intentional and (2) it allows tack-
ling the variability within and between the two levels.

As shown in [1], to define SA maps, we searched for public administration issues
(e.g. increasing reliability, decreasing cost; attaining the most users, avoiding redun-
dant activities), qualities (that should be increase, e.g.: availability, accessibility, ease
of use, transparency) and resources (that should be controlled, e.g. dematerialized
data, time, complexity control, competencies) in strategic and operational elements.
The SA map presented in Fig. 5 was first specified, it represents the Italian eGovern-
ment strategy under the perspective of its implementation at the operational level. A
SA map is drawn according to the MAP formalism [3]. Two main goals are presented
in this map: (b) Increase the access quality of service and (c) Maintain data. These
goals are ambivalent. Indeed, they can represent the organization’s strategy but also
tackle the operational level. The goal (b) Increase the access quality to service is an
important goal that justifies the strategy undertaken. Access quality covers availabil-
ity, accessibility, ease of use etc. The other important goal is (c) Maintain data, since
every service is based on data. Data is the main resource specifically provided by
eGovernment to citizens.

a

b

c

d

Fig. 2. SA map “Improve accessibility to Italian Public Administration Services”

For the sake of space, we do not present the eleven SA links attached to the sec-
tions. Each one is named by the section it relates to (i.e. the target goal and strategy
behind the link), and is defined between the eGovernment strategy and the operational
elements in order to detect the cases of good alignment and misalignment. For exam-
ple, elements of the initial business process for changing doctors are involved in some
SA links with a contradictory role. In fact, the SA link relating to the section ab2
(maintain data by data dematerialization) involves the business process with a contra-
dictory role since any exchange of data is paper-based. The analysis of elements roles
as well as the new SA requirements makes emerge evolution requirements. Moreover,
we used three quality level criteria (defined in [2]): the temporal, economic, and pro-
cedural efficiency, to uncover metrics completing the initial SA link models. To each
metric is associated a current and a target value that characterize how the SA should
be reached in the future. For example, the service time available is currently 30 hours

166 G. Viscusi, L.-H. Thevenet, and C. Salinesi

a week, whereas the required value is 72 hours a week. Based on SA models and SA
links analysis (with attached metrics), evolution requirements can be found, such as:

- A health-website at a regional level should provide most important health ser-
vices to citizens and businesses (no more restricted to the services available in
local agencies), even if requests can be made on different channels such as Inter-
net and local agencies.

- A multichannel strategy oriented to users should be adopted (e-mail center, call
center, authoring system). For the change of doctor request, citizens can make re-
quests on the Internet, download certificates if needed, and follow the status of
their request (by status notification, by email) etc.

- Information sharing between all health organizations. For the change of doctor
request, citizens do not have to provide documents. Health system (in local agen-
cies or by internet) can search information (automatically and transparently to
user) by IT services, etc.

4 Conclusion

This paper explored the issue of developing services by analyzing their alignment
with strategic Italian eGovernment objectives. This case study has shown: (i) SA
models enriched with quality issues provide a purposeful view on alignment (confirm-
ing h1), (ii) SA models can be used as a central point to draw and organize complex
SA links between organization elements (confirming h1), (ii) roles of SA links can be
used to analyze initial SA and identify evolution requirements (confirming h2). How-
ever, a more complete evaluation should be carried out, one that more specifically
considers other eGovernment initiatives (in the same and other countries), and also
focuses on the interactions with businesses in the private sector. Future work is to
consider: (i) studying the difference between public and private sector and if needed
adapt the INSTAL method; (ii) integrating a social facet in the SA model to under-
stand the social impact of the new services, and to facilitate their adoptions.

Acknowledgements

The research work has been partially supported by the Italian FIRB project NeP4B.

References

1. Thevenet, L.-H., Salinesi, C.: Aligning IS to Organization’s Strategy: The INSTAL Method.
In: Krogstie, J., Opdahl, A., Sindre, G. (eds.) CAiSE 2007 and WES 2007. LNCS,
vol. 4495, pp. 203–217. Springer, Heidelberg (2007)

2. Viscusi, G., Batini, C., Cherubini, D., Maurino, A.: A Quality Driven Methodology for
eGovernment Project Planning. RCIS:97-106 (2007)

3. Rolland, C.: Capturing System Intentionality with Maps. In: Krogstie, J., Opdahl, A.L.,
Brinkkemper, S. (eds.) Conceptual Modelling in Information Systems Engineering.
Springer, Heidelberg (2007)

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 167–181, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Understanding and Improving Collective Attention
Economy for Expertise Sharing

Yunwen Ye1,3, Kumiyo Nakakoji1,2, and Yasuhiro Yamamoto2

1 SRA Key Technology Laboratory, Inc., 3-12 Yotsuya, Shinjuku, Tokyo 160-0004, Japan
2 RCAST, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan

3 L3D Center, University of Colorado, Boulder, CO80309-0430, USA
yunwen@colorado.edu, kumiyo@kid.rcast.u-tokyo.ac.jp,

yxy@kid.rcast.u-tokyo.ac.jp

Abstract. The importance and benefits of expertise sharing for organizations in
knowledge economy are well recognized. However, the potential cost of exper-
tise sharing is less well understood. This paper proposes a conceptual frame-
work called collective attention economy to identify the costs associated with
expertise sharing and provide the basis for analyzing and understanding the
cost-benefit structure of different communication mechanisms. To demonstrate
the analytical power of the conceptual framework, the paper describes a new
communication mechanism—Dynamic Mailing List (DML)—that is developed
by adjusting certain cost factors.

Keywords: collective attention economy, expertise sharing, socially aware.

1 Introduction

Despite the advance of information systems that makes it easier to store and access
knowledge, knowledge workers who are faced with complex knowledge-intensive
work still routinely rely on their peers for knowledge and expertise [1]. Knowledge
held by its members constitutes one of the most important assets of an organization.
To fully utilize such valuable assets, one of the key challenges in the design of infor-
mation infrastructure for organizations is to facilitate the easy transfer, sharing and
integration of knowledge held by members with computer-mediated communication
mechanisms that connect an expertise seeker, who is looking for specific knowledge
to solve his or her own problem, with an expertise provider, who holds the sought
after knowledge. Much research on expertise sharing has been conducted on provid-
ing support for expertise seekers, through the design of different mechanisms of find-
ing who have the needed knowledge to become expertise providers and who are
available to help [3].

Despite its great importance and benefits, expertise sharing, however, comes with a
cost. When an expertise seeker posts a question, a seeking cost occurs because the
expertise seeker has to spend some time to formulate the question and to decide
whom to ask. When an expertise provider offers an answer, an answering cost occurs
because the expertise provider has to pay attention to read the question and formulate
an answer. The real cost, however, could be far greater than the sum of the seeking

168 Y. Ye, K. Nakakoji, and Y. Yamamoto

cost and the answering cost, depending on the communication mechanisms used. For
example, if a community-wide communication mechanism such as mailing list is used
to post the question, all members of the community who pay any form of attention—
from receiving the question, scanning the subject, skimming the contents, to answer-
ing the request—have paid a cost of attention, which is a scarce resource. Collec-
tively, the cost of expertise sharing could be very high, and even outweighs its
benefits and lower the group productivity [17].

To understand the cost of expertise sharing better, we introduce the notion of col-
lective attention to denote all the attention that is consumed by all parties involved in
a transaction of expertise sharing; and present a conceptual framework called the
economy of collective attention to analyze the cost-benefit structure of communication
mechanisms used for expertise sharing. The framework guides us to articulate design
requirements for information systems in support of situated expertise sharing to im-
prove the utilization of collective attention. We use the term situated expertise shar-
ing to refer to a particular kind of expertise sharing in which a knowledge worker asks
peers questions for the purpose of obtaining the specific knowledge that is needed in
his or her own work. A new communication mechanism called Dynamic Mailing List
(DML) is introduced and its implementation in a system is briefly described.

2 Problem Context: Situated Expertise Sharing

Expertise sharing takes place in many different situations and for different purposes.
Despite many shared aspects, the practice of sharing expertise faces different chal-
lenges when the types of knowledge and the external constraints vary. Our research
focuses on expertise sharing situations in which a group of knowledge workers
engage, under strong pressures of productivity and quality, in the collaborative con-
struction of a common knowledge artifact that is decomposed into parts that have
complicated inter-dependency. The common artifact is made possible through the
integration of distributed work and knowledge of each knowledge worker. Each
worker is responsible for constructing some parts by bringing their unique set of
knowledge. Due to decomposition, each knowledge worker only has partial knowl-
edge of the artifact and of the process; and due to the inter-dependency, each knowl-
edge worker often needs to seek knowledge from peer workers of the same group to
carry out his or her work efficiently and effectively.

This kind of situated expertise sharing is not for the general purpose of learning or
creating awareness in which knowledge is not immediately coupled with the task at
hand. Rather, it is a clearly purposed act that serves the goal of the accomplishment of
an individual worker’s current task, and it arises on an as-needed basis and requires
quick resolution. Software development is one typical example. Programming re-
quires undivided attention, and in general programmers prefer to work in solitary with
long periods of uninterrupted time during which they can concentrate. It is this kind of
solitary work that gets the code written. However, due to the interdependency of their
work, programmers also have to engage in situated expertise sharing with peers to
seek knowledge necessary to accomplish their individual task. A study has shown that
this type of ad hoc and situated expertise sharing takes up to 41% of a programmer’s
time [19].

 Understanding and Improving Collective Attention Economy for Expertise Sharing 169

The above settings entail the following constraining factors that have to be bal-
anced by information systems that support situated expertise sharing:

(1) The collective attention has a limited capacity due to the fixed size of the project
group. This is different from volunteer-based community projects such as
Wikipedia where the number of contributors can be increased through strategies
of turning passive users into active contributors.

(2) Situated expertise sharing is not a one-time affair; it has to be sustainable be-
cause its continuous enactment is required throughout the lifecycle of the project.
A member’s engagement in one sharing act should not result in his or her reluc-
tance to participate in further sharing acts down the road. No absolute experts ex-
ist. Depending on the context, a knowledge worker often assumes the role of
seeker or provider of expertise at different times.

(3) The costs and benefits of situated expertise sharing have to be considered to-
gether with the group productivity. On the one hand, if a knowledge worker is
unable to obtain the knowledge in the head of peers timely, he or she cannot carry
out his or her task effectively, and thus lowers his or her own productivity, which
in turn lowers the productivity of the project group. On the other hand, if a
knowledge worker is frequently interrupted for offering help, the expert’s pro-
ductivity is significantly reduced, resulting in lower group productivity. It has
been observed that such costs could even outweigh its benefits and lower the
group productivity [17].

3 Collective Attention Economy

Attention is directed, involved awareness, and is the intellectual energy invested to-
ward some purpose. Attention is an intrinsically scare resource because everyone has
only a certain stock of supply. In this Internet era full of overwhelming information,
many of us feel short of enough attention. Goldhaber and others have eloquently ar-
gued that we are entering a world where our lives are guided more by the laws of the
economics of attention because attention is quickly becoming the scarcest resource in
our society [9].

Attention economy is concerned with the use or the patterns of allocation of atten-
tion for the best possible benefits. Collective attention economy is concerned with the
effective use of the sum of attentions of members in a group. To improve collective
attention economy within a group is to improve the patterns of attention allocation of
its members for the purpose of achieving better expertise sharing results and increase
the collective attention capacity of the group.

3.1 The Cost of Collective Attention in Situated Expertise Sharing

In an act of situated expertise sharing, both the asker (expertise seeker) and the re-
cipients (those who receive the question asked by the asker) consume attention. Those
recipients who provide answers to the question are helpers. Those recipients who do
not provide answers are onlookers. Helpers consume more attention than onlookers.

170 Y. Ye, K. Nakakoji, and Y. Yamamoto

An asker needs to find out who has the expertise. Previous research has shown that
such awareness of who knows what takes extensive time to develop, and its utilization
consumes intensive attention [13]. We denote the attention cost as CFind.

The question needs to be formulated and articulated, and we denote this attention
cost as CAsk. Rhetorical strategies, linguistic complexity and word choice of the ques-
tion all influence the likelihood of receiving replies to a question [4, 5]. The asker also
needs to make a decision based on social cues whether the potential experts could be
interrupted, and to determine opportune times to interrupt [6].

When the recipients receive the question asked by an asker, all of them are inter-
rupted and distracted from their current work. The cost of attention, denoted as CInter-

rupt, includes not only the attention spent on attending to the interrupting event but the
disruption of flow and the accompanied work resumption efforts [10, 23].

Recipients need to make a conscientious decision to respond to it or not. A number
of factors affect this decision-making process: whether they have sufficient expertise
or interest on the topic [24]; how they value their contributions by answering the
question [16]; how many efforts does it take to post a reply [11]; how they perceive
their relationship with the asker [5]. To make this decision, they at least need to skim
the question by finding out who is the asker and what is the topic [10]. We denote this
attention cost as CSkim, and this cost applies to all recipients.

If a recipient decides to respond to the help request, he or she needs to spend time
and attention in thinking and composing the response. The cost of attention for an-
swering the question is denoted as CAnswer, and this cost is incurred only on helpers.

Upon receiving an answer, the asker needs to evaluate its quality and interpret its
meaning in terms of his or her task. Not all responses are of equal value, and some of
them may not be very helpful. We denote this cost of attention as CEvaluate.

Fig. 1. Cost of Collective Attention (CoCA) in Situated Expertise Sharing

Fig. 1 shows the total cost of collective attention (CoCA for short) for an act of
situated expertise sharing. Suppose the question posted by the asker is sent to N re-
cipients, then all the recipients will have to shoulder a cost of CInterrupt . Among the N
recipients, some of them (we denote the ratio as p) will read the question, and some of
them (we denote the ratio as q) will answer the question.

3.2 Approaches to Improving Collective Attention Economy

Two major variables affect the effectiveness of the total collective attention consumed
for situated expertise sharing. The fist variable is the total number of recipients (N). If
only the experts who can provide helpful answers receives the question, then the

 Understanding and Improving Collective Attention Economy for Expertise Sharing 171

attention is well spent. The second variable is the success rate (denoted as r) of exper-
tise-seeking attempts because only successful expertise sharing acts return benefits.
The two variables are not independent: r tends to increase together with N because
when N increases, the possibility of someone who is able and willing to answer in-
creases. However, when N increases, the CoCA for each act of expertise sharing also
increases.

Improving collective attention economy can be approached from two directions.
First, one can try to raise the success rate r by increasing the ratio of posted questions
that receive timely and high quality replies over the total number of questions that are
asked. Second, one can try to reduce CoCA for each act of expertise sharing. The most
significant waste of attention is that consumed by onlookers: (1-q)*N*CInterrupt+(p-
q)*N*CSkim: the attention spent by those who are interrupted or read the question but
are not interested in providing answers (the darker area in Fig. 1).

One might argue that these attentions are not wasted because by reading only albeit
not actively participating, the onlookers also might learn something useful for the
future. Moreover, such seemingly wasted communication often contributes to increas-
ing shared context and awareness. However, shared awareness comes at the cost of
collective attention cost. In general, knowledge workers “are ‘not interested’ in the
enormous contingencies and infinitely faceted practices of colleagues unless they may
impact our own work ” and workers “routinely expect not to be exposed to the myriad
detailed activities” of others [21].

Our goal is to pursue the right balance among the degrees of awareness, connect-
edness, and the needs for solitary concentration craved by knowledge workers. To
reduce CoCA, our approach is to find a way to reduce N without reducing r. At the
same time, we try to complement the plausible side effect of decreasing shared con-
text and awareness through other means, such as the accumulation of discussion ar-
chives which can be used as a means to provide contexts and as learning materials by
those not directly involved.

4 The Dynamic Mailing List Approach

This section describes the Dynamic Mailing List (DML) mechanism that we has de-
signed to improve the collective attention economy for situated expertise sharing.

4.1 Basic Strategies

Our approach is based on the following strategies:

• Keep CFind to be zero; namely, expertise seekers can ask questions without know-
ing or thinking of to whom it should be sent.

• Reduce the number of those who receive the question with minimal effects on r.
We use heuristic strategies to route questions to the people who are most likely and
willingly to answer the question, and reduce the wasted attention of onlookers.

• Raise the ratio r by reducing the number of unsuccessful expertise sharing acts
through the improvement of the quality of each act of expertise sharing.

172 Y. Ye, K. Nakakoji, and Y. Yamamoto

Due to the wide diversity and fine specialization of knowledge, not all members in
a group have expertise or are interested in all topics discussed in all acts of situated
expertise sharing. The attention (CInterrupt + CSkim) consumed by those members who
receive the question but have no expertise on the specific topic of the question is un-
derutilized. Even if an answer is offered, the answer is often not helpful due to the
lack of matching expertise, and it also increases the cost of attention (CEvaluate) con-
sumed by the asker in evaluating the answers because he or she has to sift through all
answers to find the useful ones. This leads to the first design principle for the DML
mechanism.

Principle 1: Members who do not have matching expertise shall not receive the
question.

Having expertise is only a necessary not a sufficient condition for a peer to share his
or her expertise: the peer has to be willing to share the sought after expertise. Some
knowledge workers might not want to provide expertise on certain topics for various
reasons. Some members might get bored by answering repeatedly questions that they
deem too simple to worth their time and expertise; and some might want to guard
their certain expertise to retain their “market value” in the organization [18]. When
workers are forced into sharing expertise they are not willing to share, they often use
“verbal and intellectual skills as a defense to keep a person with a problem from con-
suming too much of their time,” and their answers are often “impressive-sounding”
but not helpful [5]. As a result, the attention consumed by both the expertise seeker
and the unwilling expertise provider is wasted. These empirical observations lead to
the second design principle.

Principle 2: Members who are not willing to share the matching expertise shall not
receive the question.

Another factor that affects a recipient’s willingness of sharing expertise is his or her
perceived social relationships with the asker and with the group at large. Favorable
inter-personal relationship facilitates expertise sharing due to preexisting trust and
mutual understanding [2]. When an expert chooses to pay attention to an asker, the
social relationship between the two people gets changed. A recipient decides to help
the asker based on his or her perceived existing relationship or desired future relation-
ship with the asker. Given the varieties of human relationships in a group, it is natural
that a member may want to be related only with a certain subset of the whole group.
Because an arduous relationship between an expertise seeker and an expertise pro-
vider often leads to the failure of expertise sharing [5], a recipient who does not like
to work with the asker is not likely to provide help. People have very nuanced prefer-
ences concerning how and with whom they like to share expertise and like to maintain
control of their social interaction [1]. Hence we have the following design principle.

Principle 3: Members shall be able to decide with whom to share expertise.

4.2 Creating Dynamic Mailing Lists for Situated Expertise Sharing

A dynamic mailing list (DML) differs from traditional mailing list in that a new mailing
list is created every time when an asker posts a question, with the recipients decided

 Understanding and Improving Collective Attention Economy for Expertise Sharing 173

dynamically based on the three principles identified in section 4.1. The bottom half of
Fig. 2 shows the general architecture of a server that supports the DML approach. The
top half shows an illustrative use scenario. Suppose Harry has a question about a Java
API method named exec. He first searches the Discussion Archives that store previous
discussion emails exchanged through the DML server. If Harry does not find answers in
archives, he can post a question, and the DML server uses two steps to decide the re-
cipients of the question: expert identification and expert selection.

Based on the Human-Topic Relationship database, which stores the expertise pro-
files for members, the expert identification step creates a list of candidate experts who
have expertise on the topic of the question (exec). The expertise profile of a member
represents what topics on which the member has expertise. A member can manually
specify his or her expertise, but this is usually too costly. In practice, this expertise
profile should be automatically generated using data mining techniques by analyzing
preexisting documents, artifacts and expertise-sharing activities. Following Principle
2, this expertise profile should also include topics on which a member is not willing to
share his or her expertise.

From the list of candidate experts, the expert selection step chooses, based on
the Human-Human Relationship database that represents the social relationships
among members, those who have the highest possibility of helpping the asker
(Harry). A member’s social relationships with other members and the group are rep-
resented by his or her social profile that consists of the following four kinds of basic
relationships:

 help<A, B>: This represents how many times that A has provided answers to
questions posted by B.

 include<A, B>: A states that A is willing to help B if he or she has any level of ex-
pertise on a topic that B asks.

 exclude<A, B>: A states that A is not wiling to share expertise with B on whatever
topics.

 email<A, B>: The represents the number of regular emails that A has sent to B
outside of the DML server. This is extracted by analyzing the mailbox of each
member, and represents the existing social relationships that A and B had before
they started using the DML approach.

With the relationships defined above, the expert selection step in DML uses the
following process to choose from the list of candidate experts a predefined number of
members who are most likely to answer Harry’s question on exec. The selection
process consists of 5 passes, and stops processing the next pass when the predefined
number of experts has been selected.

Pass 1: Based on the preference of unfavorable relation. For each person X in the
list of candidate experts, if exclude<X, Harry> exists, X is removed from the list of
candidate experts because X has indicated no intent to help Harry on whatever topics.

Pass 2: Based on the preference of friendly relation. For each X in the remaining
list of candidate experts, if include<X, Harry> exists, X is selected because X de-
clares his or her willingness to help Harry.

174 Y. Ye, K. Nakakoji, and Y. Yamamoto

Fig. 2. The general architecture of Dynamic Mailing List and an illustrative scenario

Pass 3: Based on the rule of direct reciprocity. For each X in the remaining list of
candidate experts, if Harry has helped X more times than X has helped Harry (i.e.
help<Harry, X> >= help<X, Harry>), X is selected because social norms in general
requires that X reciprocate the favor that he or she has received from Harry in the
past.

Pass 4: Based on the rule of generalized reciprocity. From the remaining list of
candidate experts, this pass chooses those who have been helped more in the whole
group than they have helped others, regardless their direct relations with Harry. Al-
though they may not bear direct social relations with Harry, they should offer help
due to the principle of generalized reciprocity in the whole group.

Pass 5: Based on outside communication. If no sufficient number of experts has
been selected till this pass, the DML mechanism resorts to preexisting social relation-
ships that members have before they started using DML. From the remaining list of
candidate experts, this pass chooses the experts who have sent most emails to Harry
based on email<X, Harry>, because X must know Harry to a certain degree if he or
she has sent emails to Harry, and might be willing to help Harry. Unlike the initial 4
passes that use the relationships resulted from the social interactions within the DML
mechanism, this pass uses the social interaction history outside of the DML mecha-
nism, and this pass is heavily used at the initial stage of the DML mechanism when
there is no sufficient history of interactions within the DML mechanism.

 Understanding and Improving Collective Attention Economy for Expertise Sharing 175

The chosen experts become the participants of the dynamically created mailing list
DynC(Harry, exec), and will receive the question asked by Harry on exec through
emails. If a recipient (X) replies to the question, his or her reply is sent to the same
members of the DynC(Harry, exec), and the DML server automatically increases
help(X, Harry) by 1 to update the social profile of X.

The dynamic mailing list is disposed either manually by the asker when he or she
decides there is no more need for expertise sharing on the topic, or automatically by
the DML server when there is no more email exchanges for a predefined period of
time. The messages are stored in the Discussion Archives.

As a result of this two-step processing by the DML server, only those members
who have both high level of expertise on the topic and high possibility of helping the
asker are chosen to receive the question. By so doing, the success rate r of expertise
exchange can be improved because the intensity of engagement by each expertise
provider is directly related to his or her willingness to actively inquire into and under-
stand the asker’s problem and then shape their answer to the problem in generating
help [5]. This would also translate into a lower cost of CEvaluate on the asker’s side.
Because the list of expert recipients is automatically generated, the CFind remains to be
minimal. CoCA is reduced because those members who do not have the relevant ex-
pertise on the particular question or who are not likely to help the asker do not receive
the question and do not need to consume their attention in receiving and reading the
question. The potential learning benefits of the onlookers can be similarly achieved
through the browsing and searching of the accumulated Discussion Archives.

4.3 Socially Aware Communication

When expertise providers specify their preferences on the kinds of expertise sharing
activities they do not want to participate, they are saying “no” explicitly to their peers.
In a community where social norm expects active collaboration, their decision of no
participation may cause damages to relationships with other members and risk disrup-
tion of group cohesion. Many people who feel guilty when they have to say no loudly
and publicly might choose not to participate in the community all together or be
forced to endure the waste of their attention repeatedly. Both deteriorate the economy
of the collective attention, with the former decreasing the total available resources of
expertise and the latter wasting the attention of onlookers.

Improving the economy of collective attention, therefore, needs to be comple-
mented with socially aware communication mechanisms. Socially aware communica-
tion refers to the transmission of information or signals that does not violate social
norms, and therefore is not punishable by the iron hand of social pressure that estab-
lishes group cohesion through enforcing the required individual behaviors [15]. In
face-to-face communications, many non-linguistic social signals are used to encour-
age or discourage the further occupation of attention in a socially acceptable way,
without causing unwanted damages to social relationships.

Although information and communication technology has advanced greatly in easing
the transmission of non-linguistic social signals to approximating the effects of fact-to-
face communication, it also offers opportunities of devising alternative ways of con-
ducting socially aware communication other than those used by people in face-to-face
communications. The DML approach adopts the following principle of asymmetric

176 Y. Ye, K. Nakakoji, and Y. Yamamoto

disclosure of information to achieve socially awareness: To make the decision of no
participation socially acceptable, DML ensures that an expertise provider’s refusal of
further allocation of attention on unwanted expertise sharing be not known by other
members, and therefore makes the refusal socially plausible.

First, all choices made by an expertise provider regarding his or her preference of
participation in the kinds of expertise sharing must be strictly limited to the eyes of
the expertise provider only. No other members should know the decision. This can be
realized with login names and passwords. Second, when an asker posts a question
through DML, the recipients of the question are not made public. Only the recipient
knows that he or she gets the question. No other members, including the asker and
other members who receive the same question, know who else receives it. On the
other hand, if a recipient replies, his or her name is revealed to all participants of the
DML, and is revealed to all other members in the Discussion Archives. This asym-
metric disclosure of information removes the undesired social implications of no
participation but highlights and encourages cooperative behaviors with explicit ac-
knowledgement of participation. With the existence of such socially aware communi-
cation mechanisms, members can freely say no—actually they do not say it aloud,
they only choose no secretly—if they are unable to help others at any given time.

Each question sent through a DML is associated with two links that allows its re-
cipients to update his or her expertise profile and social profile. As shown in the sce-
nario of Fig. 2, if a member finds that he receives a question on a topic that he or she
does not want to answer any more, he or she can click one link to update his or her
expertise profile so that he or she will no longer receive questions on the same topic in
the future. If a member finds that he or she is receiving questions from a person he or
she does not like to work with, he can click on the link to update his or her social pro-
file to add an exclude relationship so that he or she will not receive any question from
the asker in the future. Both links reduces the burden of maintaining updated expertise
profile and social profile. Updating profiles costs a little bit more attention than just
ignoring the question, but this one-time extra attention cost will lead to the reduction of
future attention cost of dealing with questions that the member does not want.

5 Implementing DML in the STeP_IN System

As a way to illustrate the DML mechanism, we have implemented it in the STeP_IN
system (standing for Socio-Technical Platform for in situ Networking) [25, 26]. A
huge reusable class library is one of the major benefits brought by Java, but it also
poses great challenges for programmers to learn to use those library methods. Most
programmers only know a portion of them, and the expertise of the library is asym-
metrically distributed among programmers. This gives rise to many needs of situated
expertise sharing that often take place in the middle of programming when a pro-
grammer needs to use an unknown API method. An effective way of learning is to ask
those who are experts on the given method. The STeP_IN system implements the
DML mechanism to help programmers to learn from their peers by asking questions
about Java API methods. The system also provides other technical support, but this
paper will focus on the issues related to the DML mechanism, for more details on
other aspects of the system, please see [26].

 Understanding and Improving Collective Attention Economy for Expertise Sharing 177

Fig. 3. Expertise and Social Profiles in STeP_IN

At the core of the DML mechanism is the creation and use of expertise profiles and
social profiles. Because social profiles represents social relationships resulted from
social interactions among members that are domain independent, the social profile in
STeP_IN is defined in the same way as described in Section 4.2. It has four kinds of
relationships: help, include, exclude, email. Expertise profiles are domain dependent.
In STeP_IN, a programmer’s expertise profile has two sets of Java API methods. The
first set is known methods, which include those methods of which the programmer has
expertise. The second set is uninterested methods, which include those methods on
which the programmer does not to share expertise with others.

To use STeP_IN, a user has to register first. Upon a user’s registering to the sys-
tem, an initial expertise profile for the user is automatically created by analyzing all
the Java programs that he or she has written. The number of API method usage is
extracted and stored in his or her initial expertise profile. A user can edit his or her
expertise profile through the expertise profile management interface in STeP_IN
(Fig. 3a). A user can select Expert in the Declare column to add the method to his or
her known methods set no matter whether he or she has ever used it or not, or a user
can select No Knowledge to add the method to the uninterested methods set in his or
her expertise profile so that he or she will not receive questions about the method. As
we have discussed in Section 4.3, such a selection can also be made once he or she
receives a question on the method through DML emails, to ease the task of maintain-
ing updated profiles.

At the registration time, an initial social profile is automatically created by analyzing
the user’s mailbox. It contains the number of emails that the user has received from
other members. The other key element in the social profile is the help history the user
has with other members. The number in the Participation in His/Her DynC column
(Fig. 3b) indicates the number of help that the user has given to the member, whose
name is shown at the first column; and the number in the Participation in My DynC
column indicates the number of help the user has received from the same member.
Through the profile management interface, the user can declare include and exclude
relation with the member by choosing always or never in the Future Participation in

178 Y. Ye, K. Nakakoji, and Y. Yamamoto

His/Her DynC. Similarly to expertise profile, this personal preference can be made
when he or she receives a question form the member through DML.

We will now continue to use the scenario in Fig. 2 to illustrate how a user interacts
with the STeP_IN system for situated expertise sharing. When Harry posts a question
on exec in STeP_IN, the system first creates a list of members whose known methods
include exec and then removes from the list those whose uninterested methods contain
exec. The resulted list is the list of candidate experts on exec.

From the list of candidate experts, STeP_IN chooses 5 members who have estab-
lished social relationship with Harry based on each person’s social profile. It first
excludes those who declared never to participate in Harry’s DynC. For example
Draco would be removed because he have chosen never in his relationship with Harry
(Fig. 3b) although he declared himself an expert on exec in his expertise profile (Fig.
3a). From the remaining list of candidate experts, the DML server in STeP_IN first
chooses those whose social profile includes an always declaration regarding Harry;
and then chooses according to the numbers appeared in the columns 2 and 3 in the
social profile (Fig. 3b), i.e. those who owe Harry because they were helped more of-
ten by Harry than they helped Harry. If the system cannot choose 5 members from
those who directly interacted with Harry, it chooses those who have received more
help from the group. If the above process fails to reach the number 5, it uses the email
relationship and chooses members who have sent most emails to Harry.

The question posted by Harry is then sent to the selected experts (Fleur, Hermione,
Ginny, Cedric and Greg). However, Harry does not know who receives the question.
Each recipient does not know who else receives the question. Greg finds the question
is from Harry whom he is not fond of, so he clicks one of the embedded links that
takes him to his social profile management interface and chooses never regarding
Harry. Cedric, who finds he gets yet another question on exec, decides to change his
expertise on exec to No Knowledge to avoid getting further questions on exec.
Hermione and Ginny replied to the DML. Fleur, who is preoccupied with her own
work, stays silent. Due to the asymmetric disclosure of information, all members
know that Hermione and Ginny have helped Harry, but no one knows that Fleur,
Cedric and Greg have received the question and Cedric and Greg have changed their
preferences.

Harry is satisfied with the help he gets from Hermione and Ginny and goes to
STeP_IN to evaluate the DynC as helpful. The DynC is then discontinued and the
emails exchanged are archived and linked to the method exec.

An evaluation of the STeP_IN system [26] shows that the DML mechanism may
miss some experts who are eager to help others regardless of their social obligations.
This problem can be solved if the eager helpers set their participation preferences to
always for all members so that they will be included in all expertise sharing acts con-
cerning topics on which they have expertise. They can even choose Expert on all
methods so that they will be included in all acts of expertise sharing. The DML
mechanism will act like a traditional mailing list for members with the above gener-
ous settings, but other less eager helpers will still have their choices and options to
control their allocation of attentions.

 Understanding and Improving Collective Attention Economy for Expertise Sharing 179

6 Concluding Remarks

Most of the research on expertise sharing has focused on helping users find the right
expert [2, 7, 12, 13]. Such systems aim to reduce the cost incurred on the asker,
mainly CFind. Reder points out, however, that automated attempts to “pin people
down” may not bring about better communication or enhanced productivity because
successful expertise sharing requires intensive engagement of expertise providers
[17]. Most existing research focuses only on the benefits an asker receives, and ig-
nores the cost that helpers shoulder as well as the potential adverse impacts on group
productivity. However many empirical studies have concluded that the cost of inter-
ruption [10, 14] and the overload of communication brought by ubiquitous connec-
tivity [6] create the “dearth of attention”[22]. We do not have a systematic way to
address the attention cost resulted from communication technologies.

In this paper we attempted to balance the needs of askers and the burdens of help-
ers in expertise sharing. The necessity to balance attention and communication are
recognized in [8], which suggests two strategies to conserve attention resources in
communication by providing information asynchronously and by reducing the fre-
quency of interruption through the aggregation of information. These strategies can be
subsumed in reducing the cost of CInterrupt in the conceptual framework of the collec-
tive attention economy. However, as we can see from our analysis, this cost is only a
portion of the cost of collective attention in collaboration.

We are fully aware that to model concepts as complicated and subjective as atten-
tion should not be taken lightly. The proposed notion of CoCA is not meant to com-
pute the absolute value of attention cost. The main goal is to use this relatively simple
framework to analyze the factors that affect the economic utilization of the collective
attention of all parties involved, either actively or passively, in expertise sharing, and
to use it as a guidance to design alternative communication mechanisms that have
different cost-benefit structure by manipulating some variables in CoCA for different
expertise sharing situations. By trying to change the number N, we devised the DML
mechanism that is neither direct email nor mailing list nor BBS, but something in be-
tween email and mailing list with the feature of persistent storage of discussions. The
comparison is not meant to rank the absolute superiority of communication mecha-
nisms, but gives a clear understanding of each mechanism so that users and organiza-
tions can choose the most appropriate communication channel for their varied and
nuanced communication needs in their specific socio-technical environment.

Among many systems that support expertise sharing [2, 12, 13], Answer Garden 2
[2] is most similar to the DML approach. Both approaches go through the expert iden-
tification and expert selection steps. They differ in the strategies of defining social
relationships. DML defines social relationships based on inter-personal interaction
histories while Answer Garden 2 uses organizational and physical proximities. The
more important difference is the DML approach gives high priority to the individual
preferences of experts, granting experts the full control of allocating their attentions
with the introduction of socially aware communication mechanisms. The availability
of choices and options helps the development of favorable attitudes toward expertise
sharing [20], and this favorable attitude is critical for expertise sharing to become
sustainable in an organization.

180 Y. Ye, K. Nakakoji, and Y. Yamamoto

References

1. Ackerman, M.S., Halverson, C.: Sharing Expertise: The Next Step for Knowledge Man-
agement. In: Social Capital and Information Technology, pp. 333–354. MIT Press, Cam-
bridge (2004)

2. Ackerman, M.S., McDonald, D.W.: Answer Garden 2: Merging Organizational Memory
with Collaborative Help. In: Proceedings of CSC 1996, pp. 97–105 (1996)

3. Ackerman, M.S., Piipek, V., Wulf, V.: Sharing Expertise: Beyond Knowledge Manage-
ment. MIT Press, Cambridge (2002)

4. Arguello, J., Butler, B.S., Joyce, E., Kraut, R., Ling, K.S., Rosé, C., Wang, X.: Talk to Me:
Foundations for Successful Individual-Group Interactions in Online Communities. In: Pro-
ceedings of CHI 2006, Montréal, Canada, pp. 959–968 (2006)

5. Cross, R., Borgatti, S.P.: The Ties That Share: Relational Characteristics That Facilitate
Information Seeking. In: Huysman, M., Wulf, V. (eds.) Social Capital and Information
Technology, pp. 137–161. The MIT Press, Cambridge (2004)

6. Dabbish, L.A., Kraut, R.: Controlling Interruptions: Awareness Displays and Social Moti-
vation for Coordination. In: Proceedings of CSCW 2004, pp. 182–191 (2004)

7. Dieberger, A., Dourish, P., Höök, K., Resnick, P., Wexelblat, A.: Social Navigation: Tech-
niques for Building More Usable Systems. Interactions 7, 36–45 (2000)

8. Fussell, S.R., Kraut, R.E., Lerch, F.J., Scherlis, W.L., McNally, M.M., Cadiz, J.J.: Coordi-
nation, Overload and Team Performance: Effects of Team Communication Strategies. In:
Proceedings of CSCW 1998, Seattle WA, pp. 275–284 (1998)

9. Goldhaber, M.H.: The Attention Economy. First Monday 2 (1997)
10. Jackson, T., Dawson, R., Wilson, D.: The Cost of Email Interruption. Journal of Systems

and Information Technology 5, 81–92 (2001)
11. Lakhani, K.R., von Hippel, E.: How Open Source Software Works: Free User to User As-

sistance. Research Policy 32, 923–943 (2003)
12. McDonald, D.W., Ackerman, M.S.: Expertise Recommender: A Flexible Recommenda-

tion System Architecture. In: Proceedings of CSCW 2000, pp. 101–120 (2000)
13. Mockus, A., Herbsleb, J.: Expertise Browser: A Quantitative Approach to Identifying Ex-

pertise. In: Proceedings of 2002 International Conference on Software Engineering, pp.
503–512 (2002)

14. O’Conaill, B., Frohlich, D.: Timespace in the Workplace: Dealing with Interruptions. In:
Proceedings of CHI 1995 Conference Companion, pp. 262–263 (1995)

15. Pentland, A.: Socially Aware Computation and Communication. Computer 38, 33–40
(2005)

16. Rashid, A.M., Ling, K., Tassone, R.D., Resnick, P., Kraut, R.E., Reidl, J.: Motivating Par-
ticipation by Displaying the Values of Contribution. In: Proceedings of CHI 2006 (2006)

17. Reder, S.: The Communication Economy of the Workgroup: Multi-Channel Genres of
Communication. In: Proceedings of CSCW 1988, pp. 354–368. ACM Press, New York
(1988)

18. Reichling, T., Veith, M.: Expertise Sharing in a Heterogeneous Organizational Environ-
ment. In: Proceedings of 9th European Conference on Computer-Supported Cooperative
Network, pp. 325–345 (2005)

19. Robillard, P.N.: The Role of Knowledge in Software Development. CACM 42, 87–92
(1999)

20. Salancik, G.R., Pfeffer, J.: A Social Information Processing Approach to Job Attitudes and
Task Design. Administrative Science Quarterly 23, 224–253 (1978)

 Understanding and Improving Collective Attention Economy for Expertise Sharing 181

21. Schmidt, K.: The Critical Role of Workplace Studies in CSCW. In: Luff, P., Hindmarsh,
J., Heath, C. (eds.) Workplace Studies: Recovering Work Practice and Informing System
Design, pp. 141–149. Cambridge University Press, Cambridge (2000)

22. Simon, H.A.: The Sciences of the Artificial, 3rd edn. The MIT Press, Cambridge (1996)
23. Szoestek, A.M., Markopoulos, P.: Factors Defining Face-To-Face Interruptions in the Of-

fice Environment. In: Proceedings of CHI 2006, pp. 1379–1384 (2006)
24. von Krogh, G., Spaeth, S., Lakhani, K.R.: Community, Joining, and Specialization in

Open Source Software Innovation: A Case Study. Research Policy 32, 1217–1241 (2003)
25. Ye, Y., Yamamoto, Y., Nakakoji, K.: A Socio-Technical Framework for Supporting Pro-

grammers. In: Proceedings of 2007 ACM Symposium on Foundations of Software Engi-
neering (FSE 2007), pp. 351–360 (2007)

26. Ye, Y., Yamamoto, Y., Nakakoji, K., Nishinaka, Y., Asada, M.: Searching the Library and
Asking the Peers: Learning to Use Java APIs on Demand. In: Amaral, V., Veiga, L.,
Marcelino, L., Cunningham, H.C. (eds.) Proceedings of 2007 International Conference on
Principles and Practices of Programming in Java, pp. 41–50. ACM Press, Lisbon (2007)

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 182–196, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Exploring the Effectiveness of Normative i* Modelling:
Results from a Case Study on Food Chain Traceability

Alberto Siena1, Neil Maiden2, James Lockerbie2, Kristine Karlsen2, Anna Perini1,
and Angelo Susi1

1 Fondazione Bruno Kessler - Irst, Trento, Italy
{siena,perini,susi}@fbk.eu

2 Centre for HCI Design, City University, London
{N.A.M.Maiden@,J.Lockerbie@soi.,
Kristine.Karlsen@soi.}city.ac.uk

Abstract. This paper evaluates the effectiveness of an extension to i* modelling –
normative i* modelling – during the requirements analysis for new socio-technical
systems for food traceability. The i* focus on modelling systems as networks of
heterogeneous, inter-dependent actors provides limited support for modelling
system-wide properties and norms, such as laws and regulations, that also influence
the specification of socio-technical systems. In this paper we introduce an
extension to i* to model and analyse norms, then apply it to model laws and
regulations applicable to European food traceability systems. We report an analysis
of the relative strengths and weaknesses of this extended form of i* with its
traditional forms, and use results to answer two research questions about the
usefulness and usability of the i* modelling extension.

1 Introduction

Analysts are increasingly using i*, the strategic goal modelling approach [21], to
model and analyse requirements. i* has been applied successfully to model
requirements for air traffic management tools [8, 9] and decision support aids in
agriculture [11] as well as to support individuals and groups in the work of charitable
organisations [17]. Reported benefits to our projects have included automatic
requirements generation from i* models [9] and detection of omissions from UML
requirements specifications [8]. However, the focus on modelling systems as
networks of heterogeneous but inter-dependent actors provides limited capabilities for
addressing the broader, system-wide properties and norms that also influence the
specification and design of socio-technical systems. Examples of such norms include
laws and regulations, which constrain and influence how actors in these systems shall
operate. In this paper we report an extension to the i* modelling approach to model
norms in socio-technical systems, then investigate the effectiveness of this extension
through its application to a large-scale case study – introducing new traceability
technologies into two European food chains.

Whilst i* has many strengths that have contributed to its increasing adoption, the
representation of laws and regulations, as well as actors’ adherence to these laws and

 Exploring the Effectiveness of Normative i* Modelling 183

regulations, is recognized as problematic because laws and regulations are difficult to
represent using the standard actor-goals-dependencies metaphor found in the basic
modelling approach – referred to as “basic” i* in this paper. For example, whilst
actors in socio-technical systems might seek to achieve compliance with reported
regulations such as for food hygiene, regulation compliance on its own is often not a
strategic goal or softgoal of actor. Furthermore, inclusion of new actors who generate
and impose laws and regulations detract from the main analytic purpose of i*. As a
consequence, representing laws and regulations is often overlooked in early
requirements work, with consequences for downstream analysis and design of socio-
technical systems.

Previous work has introduced new i* modelling concepts to represent and analyse
norms to represent laws and regulations [15]. However, like all extensions to basic i*,
such as SecureTropos [5], the addition of new modelling semantics and syntax can
increase the complexity and reduce the usability and adoption of the i* modelling
approach. Therefore, studies were needed to explore the coverage, effectiveness and
usability of i* modelling extensions prior to their widespread adoption.

In this paper, we report the extension of i* modelling with norms to investigate
whether such extensions deliver advantages such as the induction of new actor goals
from the adoption of a norm, explanation of existing goals due to the imposition of
norms, and the discovery of new roles/actors due to the imposition of a norm. We
investigated TRACEBACK, a EU-funded Integrated Project seeking to introduce new
technologies to improve traceability in European food chains. We used results to seek
answers to two research questions:

Q1: Were analysts using the extended i* semantics and notation with the norm
concept able to infer new properties of the system being modelled?

Q2: Were analysts using the extended i* modelling approach able to represent
concepts related to norms, such as legislation, rules, etc. in an efficient manner
(compared to basic i*)?

The paper is structured as follows: section 2 reports the basic i* modelling
framework; section 3 introduces the normative i* framework; section 4 reports the
models obtained for the food traceability information system with both basic i* and
normative i*; section 5 evaluates empirically the new framework by comparing the
results of its application and the basic i* models; section 6 discusses the results and
tries to answer the raised questions; finally, section 7 concludes the paper.

2 i* and Redepend

In TRACEBACK we applied the RESCUE requirements process with the i* modelling
approach and REDEPEND tool. RESCUE [6] supports a concurrent engineering process
in which different modelling and analysis processes take place in parallel. Each stream
has a unique and specific purpose in the specification of a socio-technical system:

1. Human activity modelling provides an understanding of how people work, in
order to baseline possible changes to it [14]. In TRACEBACK we observed and
documented the work activities and behaviour of actors in, for example, food
plants producing milk-based products;

184 A. Siena et al.

2. System modelling enables the team to model the future system boundaries, actor
dependencies and most important goals of actors in the dairy food chain using
the i* approach [21] and REDEPEND tool [7];

3. Use case modelling and scenario-driven walkthroughs enable the team to acquire
complete, precise and testable requirements from stakeholders [18]. For
example, we specified the behaviour of how food chain actors would work with
new micro-devices and service-based information systems in improved
traceability practices, then walked through scenarios to discover more complete
requirements on these devices and information systems;

4. Managing requirements enables the team to handle the outcomes of the other 3
streams effectively as well as impose quality checks on all aspects of the
requirements document [13].

In this paper we focus on the second stream using the i* approach to food chains in
terms of actor dependencies and goals.

i* is an approach originally developed to model information systems composed of
heterogeneous actors with different, often-competing goals that depend on each other
to undertake their tasks and achieve these goals. i* can be applied effectively to model
food and food-related information chains, as we will demonstrate. Due to the physical
characteristics of food production, actors and resources generated and consumed later
in the food chain depend on actors and resources earlier in the food chain, which can
be represented using dependency relationships central to the i* approach.

Basic i* modelling supports 2 basic types of model. The first i* model produced
was the Strategic Dependency (SD) model, which describes a network of dependency
relationships among actors. The opportunities available to these actors can be
explored by matching the depender who is the actor who “wants” and the dependee
who has the “ability”. Since the dependee’s abilities can match the depender’s
requests, the system-wide strategic model is developed. For example, in
TRACEBACK, the actor Primary Dairy Producer depends on a second actor Farm to
attain the goal hygiene standards met, achieve the softgoal quality milk received, and
obtain the resource fresh milk. More details of these models are reported in Section 4.

The second type of i* model is the Strategic Rationale (SR) model, which provides
an intentional description of how each actor achieves its goals and softgoals. An
element is included in the SR model only if it is considered important enough to affect
the achievement of some goal. The SR model includes the SD model, so it describes
which actors may be able to accomplish something by themselves, or by depending
on other actors. It specifies goals, tasks, resources and softgoals linked by dependency
links from the SD model, task decomposition links, means-end links, and the
contributes-to-softgoal links [21]. For example in TRACEBACK, the actor Primary
Dairy Producer performs the task undertake contamination recall procedures, which
achieves the softgoal target recall undertaken successfully, which in turn contributes
positively to the actor regulator achieving the softgoal contaminated products
recalled efficiently. Again more details of these models are reported in Section 4.

RESCUE is supported by REDEPEND [7], a tool based on Microsoft Visio and
designed to provide systems engineers with i* modelling and analysis functions. It
provides drag-and-drop capabilities to visually develop i* Strategic Dependency (SD)
and Rationale (SR) models. REDEPEND also provides systems engineers with simple
model verification functions for large-scale SD and SR models. In RESCUE we

 Exploring the Effectiveness of Normative i* Modelling 185

applied basic i* to model essential actors, dependencies, goals and tasks in the dairy
food chain. The next section reports methodological extensions to i* to model
normative contexts in socio-technical systems also applied to the dairy food chain.

3 Normative i*

What distinguishes socio-technical organisations from simple groups of interacting
people are norms [10]. Various types of norms exist in the real world, but, as pointed
out in [16], the one that gains relevance at requirements time is the behavioural norm
– essentially, behavioural norms impose actions to perform, goals to be achieved,
resources to be used or principles to be respected.

Recent studies in requirements engineering address the problem of modelling
regulations for requirements compliance. A survey on current approaches is given in
[12]. Worthy of mention here is a proposal that relies on the analogy between
regulations and requirements documents to model the objectives stated in the
regulations [3]. However, the adopted goal-oriented framework – Kaos [2] – misses
the capability of supporting agency in the models. In [1] the focus is on automatic
extraction of obligations and rights from legal texts, so usefully supporting the
analysts in parsing the law documents, but not in representing them. In [4],
traceability links are used to map i* models of the regulations into the i* models for
the stakeholders. We took these approaches into consideration before introducing a
new modelling framework. However, our need attains principally to supporting the
analyst in the discovery and integration of legal requirements, so none of the
approaches were satisfactory for us in a domain like the food chain.

As with [3], we propose to use a goal-oriented approach, based on i*, for
modelling norms, but in contrast to the above mentioned work we focus on the
interaction of norms, actors and goals during the requirements elicitation process.
More specifically, as introduced in a previous work [15], our idea is to model
contextually and homogeneously, but separately, the normative context of a domain
and its stakeholders with their intentionality. We adopt the definition of “norm” as a
means for communicating standards of behaviour [19], and which acts as an
abstraction for any kind of deontic prescription (such as laws, regulations and so on).
On the basis of this definition, in the present work we derive three properties of norms
that are relevant for the requirements acquisition: i) the normative commitment
relation; ii) the schema of the norm; iii) the compliance intentions.

The normative commitment relation. Intuitively, when we think of laws or
regulations, we think of artefacts, i.e., text documents, that contain prescriptions. It is
interesting to notice that, when a law commits something (the prescription) to
someone, the commitment establishes a relation. The relation involves two subjects:
the one who created the norm – the source of the norm; and the one who is addressed
by the norm – the addressee [19]. So, as depicted in Figure 1, in i* diagrams we
represent laws in a ternary relation that links the source, the addressee and the legal
artefact that contains the prescription. The double arrow represents the commitment
direction, whilst the triangle represents the norm. The link between EU, EC178/2002

186 A. Siena et al.

Fig. 1. Normative i*: the normative commitment relation between two stakeholders and the
schema of the norm

and Food industry operator can be read as follows: the European Union has laid down
the EC178/2002 law, which addresses all the operators that work in the food industry.

The schema of the norm. A norm artefact (e.g. a law’s text) typically imposes some
prescriptions. With the term Schema of the norm we refer to the behavioural pattern
that the norm imposes to the addressee, that is, ways of acting, goals and principles to
be adopted. In Figure 1 the schema of the norm is depicted as a balloon collecting a
set of i* intentions – goals, softgoals and tasks – and, possible relations among them –
like decomposition or means-end. The depicted norm’s schema can be read as
follows: Food industry operators must ensure that the minimum requirements for
food safety are met (hardgoal Safety requirements met), i.e., they must ensure that, in
case of known, unsafe food, the products are recalled, and both the buyers and the
authorities are informed (hardgoals Buyer informed about unsafe food, Authorities
informed about unsafe products, and Unsafe products be recalled). They must label
their products with an identification code (task Identification of products), and
register any transaction (task Identification about transactions); but they must ensure
the traceability of the food products they process, whatever other actions they do
(hardgoal Traceability be guaranteed). While performing these tasks or fulfilling
these goals, the leading principle that should inspire their conduct should always be
the protection of the health of the consumers (softgoal Human health be protected);
i.e., the accomplishment of the hardgoals has to be evaluated with regard to the root
softgoal, and no other interpretations should be accepted.

The compliance intentions. We want to understand the actual impact of the law on
the involved stakeholders, namely what do they put into action – if they do – to
accomplish to the law imposition. In Figure 2, the interleaving between the actor’s
intentions and the law’s schema shows how the Food industry operator intends to
comply with the law. In the example, the law lays down for the actor the
responsibility of recalling products if they are known to be unsafe. However, the lack

 Exploring the Effectiveness of Normative i* Modelling 187

of safety of products is not known a priori by the operator. So it will need to keep its
products monitored, and so is how the goal Products safety be monitored is generated
inside the actor’s rationale. Such a goal is then further decomposed into two specific
tasks (Monitor unsafety of milk and monitor unsafety of dairy products). In the
intention of the food chain operator, the two tasks should ultimately contribute to the
compliancy with the norm. So now we know that the monitoring activities have been
undertaken by the operator for the specific need of complying with a prescription of
the EC178/2002 law.

Fig. 2. Schema of the norm EC178/2002 with the intentional entities inside the balloon
representing the responsibilities established by the law

When performing requirements elicitation, we interleave i* modelling of domain
stakeholders and normative modelling, as described below with the help of Figure 3.
Figure 3(a) depicts a typical scenario that occurs while exploring a regulated domain.
Let us suppose that we observe only Actor1, while Actor2, Actor3 and Actor4 are
hidden. Here hidden means that the interviewed stakeholder(s) did not explicitly
mention any norms, or if they did, they did this without highlighting their role. This is
a typical problem of tacit knowledge. Returning to the example, we know that Actor1
is called to comply with two laws, Norm1 and Norm3, and so we proceed with the
analysis of such laws (Figure 3(b), step 1). If the laws address other actors, they are
added to the domain model (step 2). At this point Actor3 is still hidden. However, by
analysing the source of Norm3 (step 3), we are able to find Norm2 (step 4), which in
turn leads us to Actor3 (step 5). We store all this information in a norm diagram such
as the one in Figure 3(b) for further analysis of the model. So we have discovered
Actor2 and Actor3; but are those actors actually part of the domain? For sure we only
want to model those actors that are relevant for the requirements specification. For
this purpose, the analysis of the norm’s schema allows us to discard those actors that
are irrelevant for the problem under study. For instance, having discovered Norm1,
we could observe that it lays down prescriptions attaining different topics, not in our
interest. So, Actor4 will not enter in the description of the domain.

188 A. Siena et al.

(a)

(b)

Fig. 3. (a) the scope of three norms in a domain with four actors; (b) the process of
norms/actors discovery and representation in the same domain

4 The Traceback Food Traceability Case Study

As Section 2 reports we applied the RESCUE process, i* modelling approach and
REDEPEND tool to the EU-funded TRACEBACK Integrated Project. Assuring the
total traceability of food and feed along the whole chain from production to
consumption is a cornerstone of EU policy on the quality and safety of food. This is a
complex procedure involving identification, detection and processing of a vast amount
of information. Profit margins of food producers and processors are already very tight,
so they require a tracking mechanism that is not only reliable and easy to use, but does
not entail a major cost burden. With a concerted effort and input from expert
institutions, modern technology could provide such a system. TRACEBACK is
developing innovative solutions based on micro-devices and innovative service-based
architectures to provide innovative new information services to actors from primary
food producers to consumers and health authorities. Solutions, which will include new
micro-devices and a service-oriented reference architecture for traceability information
systems (RATIS), are to be trialled on two major product chains – feed/dairy and
tomatoes. In this paper we focus on models developed for one of the selected food
chains – dairy products such as milk-based products.

During application of the RESCUE process a team of 3 analysts, produced i* SD
and SR models describing actors in the dairy food chain. The models were developed
using information from descriptions of current processes and workflows in the dairy
food chains in Europe, one-on-one interviews with stakeholders who fulfil modelled
actor roles in these food chains, i* modelling workshops at project partner sites, and
electronic distribution of SD and SR models to stakeholders for comment and
feedback. Overall the process lasted 6 months. Key results are reported in 4 basic i*
models – 1 SD and 1 SR model each for the 2 TRACEBACK-enhanced food chains
in the European dairy and tomato food chains.

In addition to the RESCUE work, normative i* models were developed by another
analyst following the process sketched in Section 3. The analyst independently
explored the domain with the purpose of both discovering the applicable norms and
finding related stakeholders. Using documentation and information gathered from a

 Exploring the Effectiveness of Normative i* Modelling 189

one-on-one stakeholder interview, 7 models were developed with a drawing tool that
can export to Visio/REDEPEND.

The SD and SR models for the dairy food chain and an excerpt from the normative
i* models are reported in the next section.

4.1 The Basic i* SD and SR Models

The basic i* SD model of actors in the dairy food chain is depicted in Figure. 4, and
the inset shows part of the model in a readable form. The model expresses 79 strategic
dependencies between 13 actors from feed suppliers to transportation and even the
media in a dairy food chain. The inset shows dependencies between the Feed supplier
and Farm actors. For example, the Farms depend on the Feed supplier to achieve the
softgoal feed contamination detected early.

Fig. 4. The basic i* SD model of actors in the dairy food chain, with an inset showing
dependencies between the feed supplier and farm actors

The basic i* SR Model for the same dairy food chain actors is depicted in Figure 5.
The model specifies 251 different process elements and 257 different associations
between these elements. The inset demonstrates part of the SR model, the feed
supplier actor, in a readable form. The feed supplier undertakes the task supply feed to
farms. To do this the feed supplier provides feed traceability data and uses the
resource feed for cows, and seeks to achieve the softgoal quality product stocked.

190 A. Siena et al.

Fig. 5. The basic i* SR model of actors in the dairy food chain, with an inset showing the
expanded food supplier actor

4.2 The Normative i* SD and SR Models

An excerpt of the normative i* models is depicted in Figure 6. The actor Food Safety
Authority has been instituted by the EC178/2002 for monitoring the entire food
market, whilst the Rapid Alert System, which is comprised by the national
governments and the EU bodies, is in charge of receiving and dispatching alerts on
food-related events. In Figure 6 are also depicted the results of the norm’s schema
analysis, based on the same EU178/2002. In the following we discuss the four
elements that are pointed out by the dashed arrows labelled 1, 2, 3 and 4:

1. The Rapid Alert System is devoted to the collection and forwarding of recalls
across Europe, so the Food industry operators depend on it for dispatching
alerts. At the same time, the Rapid Alert System depends on the food operators
for having detailed traceability information to dispatch.

2. Some goals that had emerged as Food industry operator goals did actually
come from EU laws. Recalling unsafe products or warning customer is not a
free choice of producers, but are needed to comply with the law.

3. To minimise the impact that the recalling policy has on the budget, food industry
operators try to discover potential unsafeties as early as possible (softgoal unsafe
products early detected), so they monitor the quality of the raw materials and,
when possible, the production processes of their suppliers. For example, in the
picture we show how operators that work in the dairy production prescribe to the
farmers a sort of non-legislative regulation, the Good Manufacturing Practices
(GMP), to ensure the achievement of internal goals.

4. The farmers, in turn, put into action tasks and generate goals to be able to
comply with the GMP.

 Exploring the Effectiveness of Normative i* Modelling 191

Fig. 6. A snapshot on the domain, with regard to the regulation EC178/2002

5 Empirical Analysis of the i* Basic and Normative Traceback
Models

Whilst undertaking our RESCUE goal modelling process using basic i*, we were
aware of the existence and importance of laws and standards of behaviour but did not
model these explicitly. Instead, we modelled these implicitly through the goals of the
actors – for example, Farms seek to attain the goal sanitary certification obtained.
However, a comparative analysis of the basic i* and normative i* models for the
feed/dairy chain (Figure 5 and Figure 6) revealed that the identification and subsequent
modelling of norms added some useful detail that was either overlooked or not clearly
expressed in the basic i* model. This analysis is described further below and
summarised in Table 1.

Taking the GMP norm for Farms as an example, we can see that the norms
approach leads to 2 new goals being introduced – GMP minimum standards met and
other GMP requirements met. As mentioned before, we touched upon some of the
GMP areas using the basic i* approach such as sanitary certification obtained (goal),

192 A. Siena et al.

Table 1. Summary of the comparative analysis undertaken between the feed/dairy basic i* SR
model and its normative i* equivalent

Normative / i* Actor Matches to
basic i* model

Additions to
basic i* model

Amendments to basic i* model

Food industry operator /
Primary dairy producer

3 softgoals
2 tasks
1 goal

1 task

Farmer/Farms 3 tasks
1 softgoal
1 resource

5 existing goals to be reconciled with
2 new goals

EC178/2002 / Primary
dairy producer

1 goal 3 sub-goals Must review the goal boundary
between the primary dairy producer
and the regulator

EC178/2002 / Regulator 1 softgoal As above
43/93/CEE / Primary
dairy producer

1 goal 4 sub-goals

GMP / Primary dairy
producer

 3 goals 7 goals to be reconciled with 2 new
goals and 2 norms

EC178/2002 (Food
supervision and controls)
/ none specific

 8 goals
3 actors

Primary diary producer and regulator
actors to be reconciled with new
goals and actors

whereas undertaking the task keep sanitary documents catalogued is introduced in
order to meet the high level requirement (goal) of the GMP. From this simple
example we can see that the normative approach can add more precision.

Whilst we believed we had already modelled the strategic elements of the Farms
actor, the introduction of the GMP norm resulted in: 1 new softgoal (10 already in
basic), 2 new goals (6 already in basic), 3 tasks (8 already in basic), and 1 resource (6
already in basic). The resource, softgoal and 3 tasks constitute important additions to
the model, whereas the 2 new goals encompass 5 of the original 6 goals related to
standards, certification, analysis and inspections. Through further analysis of the
GMP these goals could be aligned to the norm or modified accordingly.

Looking at the Primary Dairy Processor/Food Industry Operator actor boundary,
we can see that the GMP norm contributed one additional task – monitor suppliers –
whilst it is apparent that the other elements featured in the norms model were derived
from the original i* model. Under the basic approach, the goals contained within the
GMP boundary should, in theory, feature within the actor boundary of the norm
creator – in this instance the Primary Dairy Processor. A review of this actor
boundary reveals 7 goals related to standards, regulations and requirements. However,
none of these goals explicitly refers to the GMP goals of milk production
authorisations received, cows identified and registered or sanitary documents kept
catalogued, therefore we could argue for their inclusion within the basic i* model.

Returning to the 7 goals relating to standards, regulations and requirements
mentioned above, it is interesting to note that the high level goals hygiene standards
met and safety standards met are elaborated upon in the norms model. The norm
43/93/CEE provides us with the additional detail of 4 hygiene-related sub-goals, whilst
the EC178/2002 norm details 3 additional safety-related sub-goals. EC178/2002 also
provides us with the softgoal human health be protected that is touched upon within
the Regulator actor boundary in the basic i* model by the softgoal public health risk
reduced. This brings us back a limitation of basic i* mentioned earlier, the issue of
whose actor domain the goal belongs to – is it the goal of the regulator, the diary
processor or both? Normative i* provides us with the opportunity to treat the normative

 Exploring the Effectiveness of Normative i* Modelling 193

layer of the domain as a separate concern in domain modelling, hence removing this
issue and supporting more effective analysis.

Another area completely overlooked by the basic i* model was that of collecting
and dispatching risk alerts, as addressed by the norm EC178/2002 (food supervision
and controls). The normative model draws our attention to 3 new actors – Food Safety
Authority, Rapid Alert System and Member State – which provide us with 8 additional
goals. It is possible that overlooking these actors in the basic i* approach may have
had consequences further down the line for the analysis and design of the
TRACEBACK socio-technical systems.

As mentioned earlier, we originally applied our standard RESCUE goal modelling
process to TRACEBACK and did not explicitly model laws and regulations using
basic i*. Therefore, there is clearly an overhead associated with using the normative
i* approach that needs to be analysed with respect to the additional benefits it
provides. We can divide our analysis into four main activities: interaction with
stakeholders, inspection of documents, analysis of norm scope, and building the
models. Such activities were mostly interleaved, but approximately we can estimate a
1-day interview with stakeholders; 3 days for deepening the knowledge on the norms;
7 days for exploring the norms scope and to identify the relevant ones; and finally 5
days to synthesize them and build the actual models. So, in total we can estimate that
16 person-days were spent applying the normative i* approach to TRACEBACK.

6 Discussion

We used results reported in Section 5 to answer the 2 research questions about the i*
normative modelling extension. The answer to Q1, were analysts using the extended
i* semantics and notation, able to infer new properties of the system related to norms
and legislation, is a tentative yes. In purely quantitative terms, 3 new actors and 24
new process elements, including 18 new goals and 1 new softgoal, were expressed
and analysed in models developed for 3 separate pieces of legislature that impacted on
two existing actors – the primary dairy producer and farm actors.

The comparative analysis we undertook showed that applying the normative approach
generally added more detail to the standards-related goals already present in the basic i*
model – such added detail included cow registration and sanitary documentation
cataloguing. In essence, we were able to disambiguate a number of high-level goals and
derive more precise properties of the system being modelled. Furthermore, explicitly
modelling the laws and standards adds richness to the models that can provide benefits
later on in the software development process. As TRACEBACK is developing a service
reference architecture that will provide multiple instantiations of traceability information
systems, knowledge of each individual domain including GMP and EU laws is
important. The normative i* can be used as a reference model from which analysts
explore the finer details to discover important system properties and final specifications.

Another point to note in support of the normative i* approach is its usefulness and
effectiveness where stakeholder access is limited. For example, we did not have the
means to access the farms directly, so we obtained documentation from the dairy
producers about the GMP and used normative i* models to infer, from scratch, the

194 A. Siena et al.

missing knowledge. In this case the norms approach was a useful and effective way to
better understand the domain and capture more detailed requirements.

Results from applying normative i* to TRACEBACK also provided qualitative
evidence to support our initial assertions. The basic i* goal/actor metaphor cannot
support a sufficiently complete representation and exploration of normative contexts
in complex domains such as food traceability. Several problems identified and
addressed subsequently in the project were a further exploration of important goal
boundaries between the primary dairy producer and regulator actors or between the
primary dairy producer and the farmers. Evidence from TRACEBACK indicated that
stakeholders often did not venture knowledge and model feedback beyond the
boundaries of the actors representing them on the i* models, and the modelling of
norms helped us to overcome this limitation of the goal/actor metaphor.

The modelling process applied in TRACEBACK also provides an interesting
insight with which to interpret our answer to Q1. Draft basic i* models were already
available when the normative modelling began. Clearly the basic i* models did not
explicitly model the norms. Instead, with hindsight, stakeholders’ perceptions of
norms can be inferred from the basic models. So for instance, the goal Feed
regulation met in the SR model of the actor Feed Supplier depicted in Figure 6
represents the actor perception of the law EU178/2002.

In contrast to Q1, we were unable to answer Q2 conclusively and determine
whether analysts using the extended i* modelling approach were able to represent
concepts related to norms, such as legislation, rules, etc. in an efficient manner
(compared to basic i*). We estimated the time in TRACEBACK to produce and
analyse the normative models against the advantages reported previously. A crude
quantitative analysis of the number of modelled elements per day revealed a
productivity measure of 1.7 elements/day (27 new model elements divided by 16
person-days). Although this modelling rate is low we also need to take into account
the qualitative benefits of the normative i* approach. Also, further analysis of the data
in Table 1 suggests little overlap between the modelled elements in the two models,
with 9 matches to the basic i* version compared with 27 additions. This result implies
that normative i* complements its basic equivalent giving us benefits that appear
cost-effective.

Overall, our subjective opinion is that our application of normative i* to
TRACEBACK was cost-effective, but further research and a detailed cost benefit
analysis would need to be undertaken to provide a more objective and definitive
answer to this question.

Interestingly, the laws we considered were generally quite clear and readable. It
was apparent that the well-organised structure and unambiguous nature of the
legislature supported the cost-effectiveness of the normative i* approach. In contrast,
scope analysis resulted in being the most time-expensive activity, due to the large
number of laws, several of them cross-referring each other and mostly out of scope.
Building models of the legal documents is also quite time-consuming, but less than
scope analysis, since norms are expressed in natural language, and to reduce
ambiguity they tend to be extremely analytic. In order to get useful information from
them to represent their intentional characteristics, we need to synthesize them.

 Exploring the Effectiveness of Normative i* Modelling 195

7 Conclusions

In this paper we evaluated the effectiveness and efficiency of the normative i*
modelling, an extension to i*, which aims at supporting requirements elicitation in
domains articulated by norms. The analysis was performed on a case study based on a
real project, TRACEBACK, devoted to the improvement of the traceability in
European food chains. We used the normative i* notation for modelling laws and
regulations of the European food supply chain, and the resulting models have been
compared with corresponding models, built previously with the basic i* approach
(basic i*). Along with the comparison we addressed specific questions aimed at
finding evidence of the effectiveness and the efficiency of normative i*. Concerning
effectiveness, from this experience it turned out that using normative i* we were able
to infer about the existence of several new goals and actors strictly related to the
normative context, which were otherwise probably ignored. As for the efficiency of
using normative i*, we tried to characterize it in terms of extra time costs for this
further analysis of the domain, resulting in about 5% of the overall time spent in
modelling-related activities. An extra cost to be contrasted with the gain in modelling
effectiveness. As a concluding remark, we consider our experience significant
towards proving the effectiveness and efficiency of normative i* modelling. Large-
scale applicability could be evaluated through an empirical study, asking two groups
of analysts to perform basic i* and normative i* modelling in parallel [20], but to be
feasible, this type of analysis will require a lab-size case-study.

From this experience we derived some interesting work directions for the future.

 The normative i* framework needs to be supported by a formal semantics. A
conceptual meta-model will complete the framework and make it comparable to
other approaches. Work is currently ongoing in this direction.

 The normative and basic i* could be integrated into one single interleaved
methodology, also in order to minimize the possible model reconciliation effort.

 As pointed out in [12], a major problem in se is the traceability of normative
prescriptions. Being able to separate normative from strategic requirements is the
first step towards supporting traceability along the different phases of the software
development.

Acknowledgements. This work was funded by the EU-funded FP6 TRACEBACK
project FP6-2005-FOOD-036300.

References

1. Breaux, T.D., Vail, M.W., Anton, A.I.: Towards Regulatory Compliance: Extracting
Rights and Obligations to Align Requirements with Regulations. In: Proceedings of the
14th IEEE International Requirements Engineering Conference (RE 2006), pp. 49–58.
IEEE Society Press, Los Alamitos (2006)

2. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-Directed Requirements Acquisition.
Science of Computer Programming 20, 3–50 (1993)

3. Darimont, R., Lemoine, M.: Goal-oriented analysis of regulations. In: International
Workshop on Regulations Modelling and their Verification & Validation (2006)

196 A. Siena et al.

4. Ghanavati, S., Amyot, D., Peyton, L.: A Requirements Management Framework for
Privacy Compliance. In: The 10th Workshop on Requirements Engineering (WER 2007),
pp. 149–159 (2007)

5. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Requirements Engineering meets
Trust Management: Model, Methodology, and Reasoning. In: Proc. of the 2nd
International Conference on Trust Management (iTrust 2004) (2004)

6. Jones, S.V., Maiden, N.A.M.: RESCUE: An Integrated Method for Specifying
Requirements for Complex Socio-Technical Systems. In: Mate, J.L., Silva, A. (eds.)
Requirements Engineering for Socio-Technical Systems, pp. 245–265. Ideas Group (2005)

7. Lockerbie, J.A., Maiden, N.A.M.: REDEPEND: Extending i* Modelling into
Requirements Processes. In: Proceedings 14th IEEE International Conference on
Requirements Engineering, pp. 361–362. IEEE Computer Society Press, Los Alamitos
(2006)

8. Maiden, N.A.M., Jones, S.V., Manning, S., Greenwood, J., Renou, L.: Model-Driven
Requirements Engineering: Synchronising Models in an Air Traffic Management Case
Study. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 368–383.
Springer, Heidelberg (2004)

9. Maiden, N.A.M., Manning, S., Jones, S., Greenwood, J.: Generating Requirements from
Systems Models using Patterns: A Case Study. Requirements Engineering Journal 10(4),
276–288 (2005)

10. North, D.C.: Institutions, Institutional Change, and Economic Performance. Cambridge
University Press, Cambridge (1990)

11. Perini, A., Susi, A.: Designing a Decision Support System or Integrated Production in
Agriculture. An Agent-Oriented approach. Environmental Modelling and Software
Journal 19(9) (September 2004)

12. Otto, P.N., Antón, A.I.: Addressing Legal Requirements in Requirements Engineering. In:
15th IEEE Inter. Requirements Engineering Conference, pp. 5–13 (2007)

13. Robertson, S., Robertson, J.: Mastering the Requirements Process. Addison-Wesley,
Reading (1999)

14. Vicente, K.: Cognitive work analysis. Lawrence Erlbaum Associates, Mahwah (1999)
15. Siena, A.: Engineering Normative Requirements. In: 1st International Conference on

Research Challenges in Information Science (RCIS 2007) (2007)
16. Stamper, R., Liu, K., Hafkamp, M., Ades, Y.: Understanding the Role of Signs and Norms

in Organisations - a semiotic approach to information systems design. Journal of
Behaviour and Information Technology (2000)

17. Sutcliffe, A.G.: Analysing the Effectiveness of Socio-technical Systems with i*, in
Requirements Projects: Some Experiences and Lessons. In: Giorgini, M., Mylopoulos, Y.
(eds.) Social Modeling for Requirements Engineering. MIT Press, Cambridge (2007)

18. Sutcliffe, A.G., Maiden, N.A.M., Minocha, S., Manuel, D.: Supporting Scenario-Based
Requirements Engineering. IEEE Transactions on Software Engineering 24(12), 1072–
1088 (1998)

19. Van Kralingen, R.: A Conceptual Frame-based Ontology for the Law. In: First
International Workshop on Legal Ontologies (1997)

20. Wohlin, C., Runeson, P., Hoest, M., Ohlsson, M., Regnell, B., Wesseln, A.:
Experimentation in Software Engineering - An Introduction. Kluwer Academic Publishers,
Dordrecht (2000)

21. Yu, E., Mylopoulos, J.M.: Understanding “Why” in Software Process Modelling, Analysis
and Design. In: Proceedings, 16th International Conference on Software Engineering, pp.
159–168. IEEE Computer Society Press, Los Alamitos (1994)

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 197–212, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Towards a Catalogue of Patterns for Defining Metrics
over i* Models

Xavier Franch and Gemma Grau

Universitat Politècnica de Catalunya (UPC)
UPC – Campus Nord, Omega building, 08034 Barcelona, Spain
franch@lsi.upc.edu, ggrau@lsi.upc.edu

Abstract. Metrics applied at the early stages of the Information Systems
development process are useful for assessing further decisions. Agent-oriented
models provide descriptions of processes as a network of relationships among
actors and their analysis allows discerning whether a model fulfils some
required properties, or comparing models according to some criteria. In this
paper, we adopt metrics to drive this analysis and we propose the use of patterns
to design these metrics, with emphasis in their definition over i* models.
Patterns are organized in the form of a catalogue structured along several
dimensions, and expressed using a template. The patterns and the metrics are
written using OCL expressions defined over a UML conceptual data model for
i*. As a result, we promote reusability improving the metrics definition process
in terms of accuracy and efficiency of the process.

1 Introduction

Measuring is a central task in the Information Systems (IS) development process.
Some measures are used to evaluate an already built IS, for instance, by establishing
its size according to the number of classes or lines of code, or by checking that the
resulting system accomplishes its non-functional requirements fit criteria. However,
measures can also be taken at the early stages of the IS development process, where
they allow predicting some of the quality factors of the system-to-be, and planning
corrective actions if needed. Therefore, there are many approaches that propose
metrics over specification artefacts such as Statechart Diagrams [14], Use Cases [28]
or OCL expressions [27]. Other metrics focus on the business process using
Workflow Diagrams [26] or propose a mixed approach using Maps for representing
the business process and UML class and transition diagrams for representing the
system [8]. In this paper we are interested in the definition of metrics over a particular
type of specification artefacts, namely goal-oriented models [24] expressed using the
i* framework.

The i* framework [33] is currently one of the most widespread goal-oriented
modelling and reasoning frameworks in IS development. One of its strengths is that it
proposes different kinds of constructs that allow representing in a single model both
the strategic needs of the business process and the operational specification of the IS.
Because of that, it is currently used in different disciplines such as requirements

198 X. Franch and G. Grau

engineering [12], [25], business process modelling and reengineering [32],
organizational modelling [23], or architecture representation [11], among others. As a
consequence of this intensive work, the i* framework has gained a solid position in
the community and several research results can be considered as consolidated such as
ontological issues [20], [21], metamodelling [30], development methods [2], [19], or
reasoning algorithms [15], [29]. But on the other hand, this continuous research issues
many new challenges to overcome, being one of them the analysis of IS represented
with i* models. One way to conduct such an analysis is by using metrics. Having
good suites of metrics allows not only analysing the quality of an individual model,
but also comparing different alternative models with respect to some properties in
order to select the most appropriate alternative. Therefore, we claim that having a
comprehensive catalogue of i* metrics would be a significant contribution to the state
of the art in i* and, therefore, for IS development.

Aligning with this belief, in our group, we are using metrics on i* models from
some time ago [10], [9], [19] and we have formulated several metrics in different
disciplines (see Section 2). One of our current lines of research is constructing a
comprehensive framework of metrics over i* models. During this research, we are
facing two particular problems: (1) for some concepts to be measured, the expression
of the metrics is cumbersome; (2) even in metrics with quite different purpose, there
are some elements in the process that appear over and over, mainly the type and
combination tactic of i* elements to conform the metrics. The purpose of this paper is
to formulate the basis of a catalogue of metrics over i* models that helps to overcome
the two problems mentioned above. With this aim, we are presenting a catalogue of
patterns aimed at supporting the definition of metrics over i* models.

The remainder of the paper is organized as follows. In section 2 we present an
overview of the antecedents on metrics over i* models and in section 3 we present a
metamodel for the i* framework (basic knowledge on i* is assumed). Our final
purpose is to define a catalogue of patterns to be used when defining metrics over i*
models and, for doing this, in section 4 we propose a template for documenting the
patterns. In order to guide their use, patterns can be classified into several categories
by forming a structured catalogue, which we present in section 5. In section 6 we
show an example of application. Finally, we end with the assessment, the conclusions
and future work in section 7.

2 Antecedents

Roughly speaking, we may classify existing proposals for analysing i* models into
quantitative and qualitative depending on the dominant dimension. In the quantitative-
dominant side, we mention the AGORA method [22] that provides techniques for
estimating the quality of requirements specifications with emphasis in the AND/OR
decomposition of goals. Sutcliffe and Minocha [31] propose the analysis of
dependency coupling for detecting excessive interaction among users and systems;
they combine quantitative formulae based in the form of the model with some expert
judgment for classifying dependencies into a qualitative scale. Bryl et al. propose
structural metrics for measuring the Overall Plan Cost of an agent-based system [5].
For qualitative-predominant techniques, we mention Yu’s seminal contribution [33]

 Towards a Catalogue of Patterns for Defining Metrics over i* Models 199

concerning ability, workability and commitment, and also [15], [29], which combine
qualitative assessment with some rules for forward and backward propagation over
AND/OR decomposition graphs in the context goal satisfaction analysis.

Concerning our own work, our first proposal appeared in [11]. In this paper, we
used i* to model component-based software architectures and defined six different
metrics aimed at informing the selection of the most appropriate architecture with
respect to some software requirements: diversity, vulnerability, packaging, data self-
containment, uniformity and connectivity. Then, in [10] we defined a general
framework. We focused on the following metrics: data privacy, data accuracy,
process agility and responsibility dissolution. This framework was formalised in [9],
defining a UML metamodel and using OCL as metrics definition language. We
explored as metrics: predictability of models, and segregation of duties (in the
extended version of [9] as technical report). Finally, in [17] and [18] we applied our
approach in reengineering processes obtained by customization of ReeF, a generic
Reengineering Framework [16]. In [17], we explored reengineering of software
architectures over a documented case study and for this purpose we defined over the
i* framework two classical metrics, coupling and cohesion. In [18], we targeted
reengineering of software processes and we focused mainly on defining the functional
size of a software system in the COSMIC-FFP framework (using then cfsu, COSMIC
functional size unit, as metric); we also included some results about process agility
and ease of communication in the considered organizational alternatives. Other
metrics are not currently available in the form of publications.

From ours and others’ previous research, we observed the following facts:

• i* is a versatile framework to represent concepts at different levels of abstraction
(organizations, processes, architectures, etc.) and allows stating pertinent metrics
over the models built. However, for some metrics, some additional information is
required, as the type of actor, the criticality of a resource or task, etc.

• Purely qualitative or quantitative approaches do not exist, therefore we must be
able to combine techniques of both kinds in the framework to make it usable.

• The process of definition of metrics in i* may be cumbersome. An example is
actors’ predictability as defined in [9], which required six OCL predicates along
with some auxiliary let-expressions for its definition.

• However, even in metrics with quite different purpose, there are some elements
in the process that appear over and over, making thus both feasible and
convenient to define a catalogue of patterns for defining i* metrics.

3 A Metamodel for the i* Framework

The i* framework is both a goal- and agent-oriented framework with the aim of
modelling and reasoning about organizational environments and their information
systems. For doing so, it offers a formal representation of the involved actors and
their behaviour. Actors can be specialized into agents, roles and positions. A position
covers roles. The agents represent instances of actors within the organization and they
occupy positions (consequently, they play the roles covered by positions).

The i* framework proposes two types of models for modelling systems each one
corresponding to a different level of abstraction: the Strategic Dependency (SD) and

200 X. Franch and G. Grau

the Strategic Rationale (SR). An SD model consists of a set of nodes that represent
actors and a set of dependencies that represent the relationships among them.
Dependencies express that an actor (depender) depends on some other (dependee) in
order to obtain some objective (dependum). Depending on the dependum kind, the
depender depends on the dependee to bring about a certain state in the world (goal
dependency), to attain a goal in a particular way (task dependency), for the
availability of a physical or informational entity (resource dependency) or to meet
some non-functional requirement (softgoal dependency).

An SR model allows visualizing the intentional elements into the boundary of an
actor in order to refine the SD model with reasoning capabilities. The dependencies of
the SD model can be linked to the appropriate intentional elements (also classified as
goals, softgoals, tasks and resources) inside the actor boundary. The elements inside
the SR model are decomposed accordingly to three types of links. Means-end links
establish that one or more intentional elements are the means that contribute to the
achievement of an end. The “end” can be a goal, task, resource, or softgoal, whereas
the “means” is usually a task. In Means-endContribution links, with a softgoal as end,
it is possible to specify if the contribution of the means towards the end is negative or
positive. Task-decomposition links state the decomposition of a task into different
intentional elements. We refer to [1] for details about usage of links. Scenario paths
(also called routines in [33]) are composed of tasks and goals. For more details on the
i* framework, we refer to [33].

In Fig. 1 we present a metamodel for the i* framework that represents the explained
concepts that will be used for defining metrics. The metamodel is essentially the same
as in [9] (which in its turn is similar to other existing proposals) but including a

*

**

Fig. 1. A UML class diagram for i* (some specializations are omitted due to the lack of space)

 Towards a Catalogue of Patterns for Defining Metrics over i* Models 201

Table 1. Example of pattern: the Sum pattern

Name Sum

Context
A metric is defined over two types of different model elements such that elements of
one type (aggregated) contain elements of the other (aggregee)

Problem There is a need of computing the aggregated metric in terms of aggregee’s
Solution Define aggregate’s metric, Aggregated::metric, as the sum of aggregee’s
Involved
Classes and
Types

Aggregated: <<Node>> -- aggregated’s class in the i* metamodel
Aggregee: <<Node>> -- aggregee’s class in the i* metamodel
Type: <<DataType>> -- the type of the metric

Assumptions
– The metric ranges onto a numerical data type
– The Aggregated class is an aggregation (either direct or transitive) of Aggregee
– There is a definition of the metric over the Aggregee, Aggregee::metrics

Required
Knowledge

– The relationship of aggregation from Aggregated to Aggregee,
Aggregated::aggregees(): Set(Agregee)

Form
context Aggregated::metric(): Type
post: result = self.aggregees().metric()->sum()

Related
Patterns

– Numerical patterns (e.g., Normalization) to manipulate the result
– Navigational patterns (e.g., All Elements of a Kind) to define aggregees
– Discrimination patterns (e.g., Discrimination By Type) to filter the aggregees

Example of
Use

In the context of summing the size of the resources managed by an actor:

context Actor::size(): Integer
post result = self.allResources().size()->sum()

singleton class for models, types of actors, and the possibility to attach properties that
may influence metrics to model elements, improving thus expressiveness. OCL integrity
constraints are not included for the sake of brevity.

4 The Pattern Template

As mentioned in section 1, when analysing i*-based metrics, we observed some
patterns that appeared over and over. Their identification and classification would
help in metrics definition and reuse. In this section we define the information
enclosed in patterns definition, which yields to a proposal of template.

The structure of the pattern is as follows:

• Name, context, problem, solution, related patterns, and example of use. These
are usual components of every pattern-based proposal such as [13] and have
proven their usefulness for documentation purposes.

• Involved classes and types. Elements from the i* metamodel that appear in the
definition of the pattern. Also, the data types required appear here.

• Assumptions. The concept of assumption as proposed in [4] is included in order
to embody the intuitive knowledge about the pattern. Assumptions provide the
basis over which the metrics are defined.

• Required knowledge. Domain-related information that has to be provided in
order to effectively use the pattern.

• Form. An OCL expression that defines the pattern in terms of the involved
classes and types, the required knowledge and under the stated assumptions.

Table 1 shows an example of the documentation template for the Sum pattern. This
pattern computes the value of a metric applied on a model element (aggregated) in

202 X. Franch and G. Grau

terms of the same metric applied on some other model element (aggregee) which is
related with the former by an aggregation relationship (aggregees). This is one of the
most used patterns when a metric is decomposed top-down, e.g. a model metric as the
sum of the metrics applied to its actors, or an actor metric as the sum of the metrics
applied to its intentional elements. Often, the result is modified with some Numerical
pattern (e.g., the result may be normalized into a given interval). Also, the aggregee’s
metric is sometimes applied just to those aggregees that satisfy some property (e.g.,
software actors, or resource intentional elements) using some Discrimination pattern.
Last, some Navigational templates may be used to generate the aggregates function,
as it would happen for the allResources that appears in Table 1. These types of related
patterns are presented in the next section.

A concept that is fundamental when using the patterns is that of pattern instantiation.
When a pattern is fully instantiated, it becomes an OCL expression completely
determined, ready to be evaluated. A complete and correct instantiation requires
specifying which actual model elements, types and knowledge play the parts identified
in the pattern, which of course must fulfil the stated assumptions. A complete and
correct instantiation of the Sum pattern presented in Table 1, to obtain the metric
defined in the Exemple of Use part of the template, would be declared as:

size ::= Sum[Aggregated ::= Actor, Aggregee ::= SR-element, Type ::= Integer,
 aggregees() ::= allResources()]

5 The Catalogue of Patterns

In order to facilitate the definition and reuse of the proposed patterns, we adhere to
the catalogue definition stated in [13], which includes classification criteria as part of
the pattern. From our experience, we have identified a four-dimension classification
of the patterns, organized into categories and subcategories.

Table 2 presents these main categories and subcategories as well as s representative
sample of patterns (we have near one hundred of such patterns and therefore it is not
feasible to present all of them here). In the process of conforming metrics, several of
these patterns can be instantiated either sequentially or nested. The definitions are
provided below (together with some examples; we skip the Examples of Use clause
since all these patterns are used in the example of section 6):

• Metrics declaration. The first decision to take when conforming metrics is to
decide their concrete form. We have two different criteria to identify patterns:

− The subject of measure. The metrics may apply to the whole model, an
individual model element (e.g., an actor; see Table 3) or in the middle, a set of
model elements (e.g., metrics to analyse pairs of actors). Depending on this
granularity, it is possible to determine the context of the OCL expression used
for the metric.

− The objective of the metrics. Its effect is to determine the OCL expression
return value’s type: enumeration or string; numerical; Boolean; or aggregation
of model elements. It may be a classification instrument (i.e., a nominal
metric), a measuring instrument (from an ordinal, absolute or ratio scale), a
condition-checker (checking if a given domain property is attained) or a

 Towards a Catalogue of Patterns for Defining Metrics over i* Models 203

locator (searching for a model element, or aggregate of model elements, that
satisfy a condition). A measuring instrument may be used as the basis to obtain
instruments or the other type. For instance, a Boolean metric may be defined as
a numerical metric compared to a certain threshold value; or a sequence of
model elements may be ordered with respect to the numerical metric value.

Table 2. Overview of the proposed catalogue of patterns

Category Subcategories Pattern
Model
Set of model elements Subject
Individual Element
Classification Instrument
Measuring Instrument
Condition-Checker

Metrics
Declara-
tion

Result

Locator
By Criterion
Individual Qualitative
Global Information
Sum

Aggregation
Count
By Type

Discrimination
By Type and Value
Actor-Based

Structural

Element-Based
Dependency-Based

Metrics
Definition

Quantitative

Property-Based
Inverse
Average

Metrics
Transfor-
mation

Numerical
Normalization
All Elements of a Kind
Superclass

Metrics
Auxiliary
Elements

Navigational
Transitive Clousure

• Metrics core definition. To define the metrics (i.e., the body of the OCL

expression), the discussion about qualitative and quantitative predominance
issued in section 2 drives our further classification:

− Qualitative-predominant definition. Their use appears when the metric is
strongly domain-dependent, or manages concepts that do not appear explicitly
in the model (e.g., actors’ tacit knowledge). In these cases, a domain expert
must provide the needed knowledge. We have mainly three subcategories:
◊ By criterion. Each model element that satisfies some criterion (e.g., being a

resource dependency, or a human actor) has a given value assigned.
◊ Individual. Each model element has a value assigned (see Table 4).
◊ Global information. A particular item of information which represents global

knowledge that may affect many metrics. This information is considered as
owned by the Model single instance (i.e., it may be considered as an
attribute of the class Model).

− Quantitative-predominant definition. The model encloses all the necessary
information for computing the metrics. We distinguish two big subcategories:

204 X. Franch and G. Grau

◊ Structural. The metric is computed from the form of the model, using its
structure: actors, dependencies, etc. There are quite a lot of patterns
belonging to this category, see Table 2 for some of them. This subcategory
is divided into three. Aggregative patterns generalize the idea explained in
section 3 for the Sum pattern, which in fact is a particular case, as the
Count pattern, which are the two most used aggregative patterns.
Discrimination patterns use some criteria on model elements to compute
the metric (see Table 5). Element-based patterns define a metric on a basic
element of the model, typically dependencies or actors (see Table 6).

◊ Property-based. The metric uses domain properties that are embodied in the
model using the property operation from the Node class.

• Metrics transformation. They modify the value by applying some
transformation, usually numerical. Typical examples are the inverse function and
the average and normalization within a range (see Table 7).

• Metrics auxiliary elements. They capture repetitive situations when defining
metrics. The most significant subcategory is navigational patterns, which provide
OCL expression types to navigate and obtain (an aggregate of) a model element
(e.g., all the tasks that form a routine, or a dependency’s depender).

Categories may have a template bound, which makes possible to implement the
catalogue hierarchy by using the concept of pattern specialization: a subcategory

Table 3. Example of pattern: the Subject->Individual Element pattern

Name Individual element (Metrics Declaration -> Subject)
Context The process of conforming a metric has just started
Problem The metric has no sense for most types of model elements except one
Solution Define the metric with this type of element as context
Involved … Elem: <<Node>> -- class corresponding to this type of element in the i* metamodel
Assumptions N/A
Required … N/A

Form
context Elem::metric(): STILL TO KNOW
post: STILL TO KNOW

Related patterns
– Result patterns (e.g., Locator) to declare the result
– Metrics definition patterns to complete the definition

Table 4. Example of pattern: the Qualitative->Individual pattern

Name Individual (Metrics Definition -> Qualitative)

Context
In the process of defining a metric, a particular type of model element must be
assessed

Problem
– Just the SD model is available (not the SR) and this implies lack of information,

or
– Quantitative analysis may be unacceptably costly or not feasible

Solution Provide individual qualitative assessment for each model element
Involved … Type: <<DataType>> -- the type of the metric
Assumptions N/A
Required
knowledge

function to represent expert judgement on each individual model element of the type,
judgement: String → Type such that domain(judgement) = Node.allInstances().label

Form
context Node::ExpertJudgement(): Type
post: result = judgement(self.label)

 Towards a Catalogue of Patterns for Defining Metrics over i* Models 205

Table 5. Example of pattern: the Discrimination by Type pattern

Name By Type (Metrics Definition -> Quantitative -> Structural -> Discrimination)
Context Some metrics that are defined over one particular type of node (e.g., actor,

dependency, SR-element) have a value that depends on the subtypes of that type (e.g.,
for actor: agent, position and role).

Solution Apply polymorphism on the model, applying e.g. hook strategy:
− Declare an operation for that metric over the type of node which returns that

value (hook version of the pattern)
− Redefine the operation on those subtypes that assign a different value

Involved Clas-ses
and Types

Parent: <<Node>> -- class whose metric’ value is being computed
Type: <<DataType>> -- the type of the metric

Assumptions – Parent is root of a hierarchy, being Heir1, …, Heirk its subclasses
Required
knowledge

A total function assign which maps each subtype to the appropriate value,
ass: <<Node>> → Type, such that domain(assign) = Parent’s subclasses

Assumptions ∀j: 1 ≤ j ≤ k: Heirj::metric is not defined explicitly ⇒ ass(Heirj) = Value
Form – context Parent::metric(): Type post: result = Value

– ∃i: 1 ≤ i ≤ k: [∀j: 1 ≤ j ≤ i: context Heirj::metric(): Type post: result = ass(Heirj)]

Table 6. Example of pattern: the Dependency-Based pattern

Name Dependency-Based (Metrics Definition -> Quantitative -> Structural)
Context Some metrics have sense when applied to dependency links

Problem
The metrics will depend not just on the characteristics of the dependency link itself, but
also on the two actors that act as depender and dependee

Solution
Identify three different factors that influence the metrics: one bound to the dependency
link itself (probably related with the type of its dependum), and the others to the two
actors, depender and dependee

Involved … N/A
Assumptions N/A

Required
knowledge

– The effect of the depender, the dependee and the dependum in the metric,
represented by three functions:

 filter: Dependum → Float
 correctionFactorDepender: Actor → Float, correctionFactorDependee: Actor → Float

Form

context DependencyLink::metric(): Type
 let ownerActor(x: DependableNode): Actor =
 if x.oclIsTypeOf(Actor) then x else x.owner in:
 post: result = self.dependency.dependum.filter() *
 ownerActor(self.dependency.depender).correctionFactorDepender() *
 ownerActor(self.dependee).correctionFactorDependee()

Table 7. Example of pattern: the Normalization pattern

Name Normalization (Metrics Transformation -> Numerical)

Context
Some metrics may have a value that depend on the number of elements of a certain type
that have influenced the metric

Problem Often, the value of the metric should not depend on the number of elements processed
Solution Normalize the value into some interval
Involved … N/A

Assumptions
– The metric ranges onto a numerical data type
– The normalization interval is [0.0, 1.0]

Required
knowledge

– The value to be normalized, Value
– The number of elements used to compute Value, Size

Form
context Element::metric(): Type
post: Size = 0 implies result = 1.0
post: Size > 0 implies result = Value / Size

206 X. Franch and G. Grau

Table 8. Template for the Aggregation category

Name Aggregation (Metrics Definition -> Quantitative -> Structural)

Context
A metric is defined over two types of different model elements such that elements of
one type (aggregate) contain elements of the other (aggregee)

Problem
The value of a metric applied over the aggregate depends on the value applied over the
aggregee

Solution Define aggregate’s metric as the combination of aggregee’s
Involved … Identical to Table 1
Assumptions – Similar to Table 1

Required
knowledge

– The relationship of aggregation from Aggregate to Aggregee,
Aggregate::aggregees(): Set(Aggregee)

– The combination function of aggregee’s values into aggregate’s,
aggregationFunction

Table 9. Example of pattern specialization: from the Aggregation category into the Sum pattern

Name Sum
Subtype-of Aggregation[aggregationFunction ::= sum]
… (rest of the Sum pattern, see Table 1)

specializes its supercategory by adding detail to some of the parts of the template. In
this process, a partial instantiation is possible to bind some of the parameters of the
supercategory pattern. As an example, in Table 8 we show an outline of the template
for the Aggregation category and in Table 9 its specialization into the Sum pattern
presented in Table 1. To make specialization explicit, we add a specialization clause
in patterns. Eventually, we may get rid of some parts of the specialized template if
there is redundancy.

6 Example of Application

In this section we show the applicability of the metrics pattern catalogue to one
particular case, namely predictability as defined in [9].

Predictability is used in [23] as one of the properties of interest when analysing
organizational styles. To obtain the metric as done in [9], we follow the following
process (row’s references in the text refer to Table 10):

• Row 1. From [23], we concluded that predictability is a measuring instrument for
actors, therefore we declare the metric using the Individual Element and
Measuring Instrument patterns. In [9], we defined actor predictability as the sum
of the predictability of its stemming dependencies, including both the
dependencies stemming from the actor itself and the dependencies stemming
from the actor’s intentional elements; to obtain these dependencies we apply a
Navigation pattern. To obtain a normalized measure, between 0 and 1, we apply
the normalization pattern to the value obtained from the sum described above.
The process is described in detail in Fig. 2.

 Towards a Catalogue of Patterns for Defining Metrics over i* Models 207

Table 10. Application of the metric definition process for Predicatibility

Row 1 See fig. 2, where this step is presented in detail and graphically

R
ow

 2

Dependency::predictability = DiscriminationByType[Parent ::= Dependency; Type ::= Float;

 ass ::= dependencyTypePredictability]

context Dependency::predictability(): Float
post: result = 1.0

context GoalDependency::predictability(): Float
post: result = self.goalPredictability()

context SoftgoalDependency::predictability(): Float
post: result = self.softgoalPredictability()

R
ow

 3

SoftgoalDependency::softgoalPredictability =

 Dependency-Based[filter ::= dependency.knowHow; correctionFactorDepender ::=

 dependerExpertise; correctionFactorDependee ::= 1] -- does not affect the result

context SoftGoal::softgoalPredictability(): Float
let ownerActor(x: DependableNode): Actor =
 if x.oclIsTypeOf(Actor) then x else x.owner in

 post: result = ownerActor(self.dependency.depender).dependerExpertise() *
 self.dependency.dependum.knowHow()

R
ow

 4
 Actor::dependerExpertise = ByCriterion[type ::= Float; criterion ::= true; judgement ::= Actor::expertise]

context Actor::dependerExpertise(): Float
post: result = expertise(self.label)

R
ow

 5

context Dependency::knowHow(): Float -- no pattern applied
pre: self.type = Softgoal
let theModel = Model.allInstances()->any() in:
post: result = 1 – theModel.slope / contributionsToSoftgoalDep()+1

Dependency::contributionsToSoftgoalDep = Count[Aggregate ::= Dependency;

 Aggregee ::= DependeeLink; Type ::= Integer; aggregee ::= self.dependeeLink]

context Dependency::contributionsToSoftgoalDep(): Integer
post: result = self.dependeeLink.contributionsToSoftgoalDep()->size()

DependeeLink::contributionsToSoftGoalDep = DiscriminationByTypeAndValue

 [Node ::= DependeeLink; type ::= Boolean; function ::= hasContributionLabel (as defined below)]

context DependeeLink::hasContributionLabel(): Boolean post: result = false
context SoftgoalContribution::hasContributionLabel(): Boolean

post: result = self.contr->notEmpty()

R
ow

 6

GoalDependency::goalPredicatibility = Inverse[Type ::= Integer;

 Value ::= self.nbTaskCombinations(); ResultIfZero ::= 0]

GoalDependency::allTaskCombinations = TransitiveClousure

 [Elem :: = GoalDependency; Result ::= Set(Task); Expr ::= --not shown for the space reasons]

context GoalDependency::goalPredictability(): Float
let nbTaskCombinations(x: GoalDependency): Integer =
 x.allTaskCombinations()->size() in
post: self.nbTaskCombinations() = 0 implies result = 0
post: self.nbTaskCombinations() > 0 implies
 result = 1 / self.nbTaskCombinations()

• Row 2. Yu provides some rationale about the degree of freedom bound to
dependencies [33, p. 15]. Analysing this rationale, we concluded that task and
resource dependencies are totally predictable whilst goal and softgoal ones are
not. Therefore, we define predictability of dependencies in terms of their type
applying the Discrimination By Type pattern.

• Row 3. For softgoal dependencies, since softgoal satisfaction involves a compromise
among depender and dependee, we use the Dependency-Based structural pattern, in
which the depender side expresses the expertise of the depender actor to take
informed decisions, whilst the dependee side measures the available know-how about
that dependency (measured in terms of contributions to softgoals inside the
dependee’s SR). Since we need to refer to the owner actor of a dependency, that may
be established in terms of the actor itself or some intentional element therein, we use a
Navigational pattern to locate that actor.

208 X. Franch and G. Grau

context Actor::predictability(): Float
let actorDependencies(x: Actor): Set(Dependency) =

x.dependency->union(x.boundary.dependency
post: result = actorDependencies(self).predictability()->sum()

context Actor::predictability(): Float

context Actor::predictability(): Float
let actorDependencies(x: Actor): Set(Dependency) =

x.dependency->union(x.boundary.dependency
post: actorDependencies(self)->size() = 0 implies result = 1.0
post: actorDependencies(self)->size() > 0 implies

result = actorDependencies(self).predictability()->sum()
/ actorDependencies(self)->size()

Rationale: Predictability of the actor is a consequence
of the predictability of its stemming dependencies [9]

Sum[Aggregated ::= Actor,
Aggregee := Dependency,
Type ::= Float,
aggregees ::= Navigation[…]]

Rationale: It may be difficult to predict individual actor
characteristics as part of determining organization
behaviour [23]

IndividualElement[Elem ::= Actor];
MeasuringInstrument[Type := Float]

Rationale: Actor predictability should depend not on the
number of dependencies but just on their predictability

Normalization[Value ::= Sum[…]…]

Fig. 2. Application of patterns in the first step of predictability definition

• Row 4. Concerning depender expertise, we considered that this knowledge cannot
be computed from the model and then we apply a Qualitative pattern, namely By
Criterion (of actor). Since the metric is applied to all actors, the criterion predicate
must evaluate always to true.

• Row 5. Concerning know-how, we apply both the Count and Discrimination by
Type and Value patterns to compute the number of dependees that state a
contribution value to the dependum. In this case, however, we need to manipulate
the result in order to create an inverse function as done in [9].

• Row 6. For goal dependencies, predictability was measured as the different ways
of fulfilling the goal, generating all feasible task combinations using a
Navigational pattern and then counting them (row 6). Then the Inverse Numerical
pattern is applied to obtain the final result.

7 Conclusions and Future Work

In this paper we have motivated the need for having a catalogue of patterns for
defining metrics over i* models, proposed the general structure of such a catalogue,
presented some patterns therein and illustrated their use with an example. Our
framework facilitates the objective of analysing and comparing i* models with respect
some giving criteria in different contexts: business process reengineering,
requirements validation, architecture assessment, etc.

 Towards a Catalogue of Patterns for Defining Metrics over i* Models 209

We have validated this proposal using both our work and the related work. We
comment here our own work. We have applied the framework retrospectively (as done
in section 6) to 16 other metrics and obtained the following data: (i) 32 patterns of
metrics definition (16 for Subject and 16 for Result); (ii) 44 for metrics definition, being
Structural Discrimination patterns the most used by far (24 applications); (iii) 18
Numerical patterns applied, most of the times one for pattern as last manipulation to
normalize the result; (iv) 11 Navigational patterns. It must be said that the metrics
analyzed are not so complex as the Predictability studied in this paper. Also, we have
checked with related work the applicability of the metrics with success. For instance, the
metric proposed in [31] is a typical example also of applicability of Structural
Discrimination patterns with qualitative assessment. This also happens with [22]. As an
example, they define completeness as #{i∈InitialGoal|∃f∈FinalGoal·AllPositive(i,f)}
/ #InitialGoal. We may apply the sequence of patterns: Model+Classification Instrument
for definition; Discrimination By Type and Value to apply the metric on goal satisfying
the condition that are initial; Count for counting; Normalization to divide; Navigation to
generate AllPositive. Similar for the others metrics in [22].

As a summary of this assessment, we may remark as fundamental characteristics of
our approach the following:

• Efficiency. The process of defining metrics is greatly improved since the engineer
needs just to identify the prototypical traits of the metrics and choose the
appropriate patterns. The classification schema supports this selection. The
existence of patterns aimed at capturing some time-consuming and cumbersome
behaviour (numerical manipulation, navigational patterns) also supports efficiency.

• Executability. The use of OCL as metrics language allows using different types of
tools, from OCL editors to validators and execution tools.

• Expressivity. Since the framework operates around the i* conceptual data model,
all the model elements may be considered. The addition of the concept of property
allows defining not just structural metrics but also others more domain-oriented.

• Robustness. Using patterns, errors when defining the metrics are reduced once the
patterns are validated. Numerical and navigational patterns are good examples of
that. The use of assumptions in the pattern definition helps to establish explicitly
which are the correctness conditions of the pattern.

• Understandability and uniformity. Using patterns, similar situations in different
metrics are treated the same way, and the resulting metrics look similar, making
easier their understanding.

• Versatility. The catalogue allows designing the metrics according to different
concepts (the classification criteria): type of knowledge available, effort to invest,
predominant model element, etc. Some of the patterns recognize the fact that it
may be necessary to evaluate model elements in an individual basis, with some
kind of qualitative judgement.

In relation to [7], we may say that our proposal helps in overcoming most of the
drawbacks identified therein (at some degree, all, except modularity): refinement,
because metrics can be defined at different levels of abstraction assessing the
development process and helping in choosing between refinement alternatives;
repeatability, because model similarity can be assessed by comparing values on
appropriate metrics; complexity management, using the appropriate metrics (project-

210 X. Franch and G. Grau

oriented metrics) to drive model management; traceability, considered in terms of
what parts of the model correspond to which domain concepts; reusability, because
metrics can be used to decide if one model can be used in some context; scalability,
because metrics help to analyse large models from several points of view; domain
applicability, since not just the plain concepts of a domain may be represented but
also metrics already defined for this domain.

As future work, we mention:

• To complete the catalogue with new, validated patterns and metrics constructed
with them. As part of this goal, we aim at identifying other domains that may
benefit from the existence of such catalogue, e.g. configuration management. Also,
we plan to complement the catalogue with some classification schema to allow
browsing the catalogue in a systematic way.

• To incorporate the catalogue into our current i* modelling tools, REDEPEND-
REACT for modelling component-based system architectures [17] and J-PRiM for
driving business process reengineering processes [19]. Both tools currently allow
defining structural metrics using some forms.

• To generalize the framework from i* to a more general context. Since most of the
concepts presented here are not particular of i*, this is a feasible and logical goal to
abstract the patterns into its metamodel level, in order to obtain a more generic
form to be customized into a particular language and model. We think that this
approach may be applied to the family of modelling languages structurally similar
to i* models, with a graph-oriented form, which includes several goal-oriented and
other proposals. In this line of research, we plan to pay special attention to the
analysis of completeness of the catalogues.

• To improve the definition of patterns by using metamodeling approaches to
software metrics definition as those proposed in [3], [6]. We think that both
approaches are complementary and would benefit from each other: patterns are
methodologically-oriented whilst metamodeling is more foundational-oriented.

References

1. Ayala, C.P., Cares, C., Carvallo, J.P., Grau, G., Haya, M., Salazar, G., Franch, X., Mayol,
E., Quer, C.: A Comparative Analysis of i*-Based Goal-Oriented Modeling Languages. In:
Proceedings 17th SEKE International Conference (2005)

2. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An Agent-
Oriented Software Development Methodology. Journal of Autonomous Agents and Multi-
Agent Systems 8(3) (2004)

3. Franch, X., Burgués, X., Ribó, J.M.: A MOF-Compliant Approach to Software Quality
Modeling. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.)
ER 2005. LNCS, vol. 3716, pp. 176–191. Springer, Heidelberg (2005)

4. Briand, L., Morasca, S., Basili, V.R.: An Operational Process for Goal-Driven Definition
of Measures. IEEE Transactions on Software Engineering 28(12) (2002)

5. Bryl, V., Giorgini, P., Mylopoulos, J.: Designing Cooperative IS: Exploring and
Evaluating Alternatives. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275,
pp. 533–550. Springer, Heidelberg (2006)

 Towards a Catalogue of Patterns for Defining Metrics over i* Models 211

6. Cachero, C., Calero, C., Poels, G.: Metamodeling the Quality of the Web Development
Process’ Intermediate Artifacts. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE
2007. LNCS, vol. 4607, pp. 74–89. Springer, Heidelberg (2007)

7. Estrada, H., Martínez, A., Rebollar, O., Pastor, J.: An Empirical Evaluation of the i* in a
Model-Based Software Generation Environment. In: Dubois, E., Pohl, K. (eds.) CAiSE
2006. LNCS, vol. 4001, Springer, Heidelberg (2006)

8. Etien, A., Rolland, C., Salinesi, C.: Measuring the Business / System Alignment. In:
Proceedings 1st REBNITA International Workshop (2005)

9. Franch, X.: On the Quantitative Analysis of Agent-Oriented Models. In: Dubois, E., Pohl,
K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 495–509. Springer, Heidelberg (2006)

10. Franch, X., Grau, G., Quer., C.: A Framework for the Definition of Metrics for Actor-
Dependency Models. In: Proceedings 12th IEEE RE International Conference (2004)

11. Franch, X., Maiden, N.A.M.: Modeling Component Dependencies to Inform their
Selection. In: Erdogmus, H., Weng, T. (eds.) ICCBSS 2003. LNCS, vol. 2580, pp. 81–91.
Springer, Heidelberg (2003)

12. Fuxman, A., Liu, L., Mylopoulos, J., Pistore, M., Roveri, M., Traverso, P.: Specifying and
analizing early requirements in Tropos. Requirements Engineering Journal (REJ) 9(2)
(2004)

13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading (1995)

14. Genero, M., Miranda, D., Piattini, M.: Defining and Validating Metrics for UML
Statechart Diagrams. In: Proceedings 5th ICEIS International Conference (2003)

15. Giorgini, P., Mylopoulos, J., Nicciarelli, E., Sebastiani, R.: Formal Reasoning Techniques
for Goal Models. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002.
LNCS, vol. 2503, Springer, Heidelberg (2002)

16. Grau, G., Franch, X.: ReeF: Defining a Customizable Reengineering Framework. In:
Krogstie, J., Opdahl, A., Sindre, G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495,
pp. 485–500. Springer, Heidelberg (2007)

17. Grau, G., Franch, X.: A Goal-Oriented Approach for the Generation and Evaluation of
Alternative Architectures. In: Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758, pp. 139–
155. Springer, Heidelberg (2007)

18. Grau, G., Franch, X.: Using the PRiM method to Evaluate Requirements Models with
COSMIC-FFP. In: Proceedings MENSURA International Conference (2007)

19. Grau, G., Franch, X., Maiden, N.A.M.: PRiM: an i*-based process reengineering method
for information systems specification. In: Information and Systems Technology (IST),
vol. 50(1-2), Elsevier, Amsterdam (2008)

20. Guizzardi, R., Guizzardi, G., Perini, A., Mylopoulos, J.: Towards an Ontological Account
of Agent-Oriented Goals. In: Choren, R., Garcia, A., Giese, H., Leung, H.-f., Lucena, C.,
Romanovsky, A. (eds.) SELMAS. LNCS, vol. 4408, pp. 148–164. Springer, Heidelberg
(2007)

21. Jureta, I., Faulkner, S.: Tracing the Rationale Behind UML Model Change Through
Argumentation. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007.
LNCS, vol. 4801, Springer, Heidelberg (2007)

22. Kaiya, H., Horai, H., Saeki, M.: AGORA: Attributed Goal-Oriented Requirements
Analysis Method. In: Proceedings 10th IEEE RE International Conference (2002)

23. Kolp, M., Castro, J., Mylopoulos, J.: Organizational Patterns for Early Requirements
Analysis. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, Springer,
Heidelberg (2003)

24. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In:
Proceedings 5th ISRE International Symposium (2001)

212 X. Franch and G. Grau

25. Maiden, N.A.M., Robertson, S.: Integrating Creativity into Requirements Processes:
Experiences with an Air Traffic Management System. In: Proceedings 13th IEEE RE
International Conference (2005)

26. Reijers, H.A., Vanderfeesten, I.T.P.: Cohesion and Coupling Metrics for Workflow
Process Design. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080,
pp. 290–305. Springer, Heidelberg (2004)

27. Reynoso, L., Genero, M., Piattini, M., Manso, E.: Assessing the impact of Coupling on the
Understandability and Modificaiblity of OCL expressions within UML/OCL combined
models. In: Proceedings 11th METRICS International Symposium (2005)

28. Saeki, M.: Embedding Metrics into Information Systems Development Methods: An
Application of Method Engineering Technique. In: Eder, J., Missikoff, M. (eds.) CAiSE
2003. LNCS, vol. 2681, Springer, Heidelberg (2003)

29. Sebastiani, R., Giorgini, P., Mylopoulos, J.: Simple and Minimum-Cost Satisfiability for
Goal Models. In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 20–35.
Springer, Heidelberg (2004)

30. Susi, A., Perini, A., Mylopoulos, J., Giorgini, P.: The Tropos Metamodel and its Use.
Informatica 29(4) (2005)

31. Sutcliffe, A., Minocha, S.: Linking Business Modelling to Socio-technical System Design.
In: Jarke, M., Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626. Springer, Heidelberg
(1999)

32. Yu, E., Mylopoulos, J.: Understanding Why in Software Process Modelling, Analysis, and
Design. In: Proceedings 16th IEEE ICSE International Conference (1994)

33. Yu, E.: Modelling Strategic Relationships for Process Reengineering. PhD. thesis,
University of Toronto (1995)

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 213–227, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Business Process Modelling and Purpose Analysis for
Requirements Analysis of Information Systems∗

Jose Luis de la Vara, Juan Sánchez, and Óscar Pastor

Department of Information Systems and Computation, Technical University of Valencia,
Camino de Vera s/n, 46022, Valencia, Spain

{jdelavara,jsanchez,opastor}@dsic.upv.es

Abstract. Although requirements analysis is acknowledged as a critical success
factor of information system development for organizations, problems related to
the requirements stage are frequent. Some of these problems are lack of
understanding of the business by system analysts, lack of focus on the purpose
of the system, and miscommunication between business people and system
analysts. As a result, an information system may not fulfil organizational needs.
To try to prevent these problems, this paper describes an approach based on
business process modelling and purpose analysis through BPMN and the
goal/strategy Map approach. The business environment is modelled in the form
of business process diagrams. The diagrams are validated by end-users, and the
purpose of the system is then analyzed in order to agree on the effect that the
information system should have on the business processes. Finally,
requirements are specified by means of the description of the business process
tasks to be supported by the system.

Keywords: Business process modelling, system purpose, BPMN, Map, task
description.

1 Introduction

Requirements analysis has been widely acknowledged as a critical success factor of
software projects [31]. If not properly addressed, requirements can cause a project to
fail. Nevertheless, practical experience proves that problems can easily arise from the
requirements stage of information system (IS) development for organizations. Some
of these problems are lack of understanding of the business by system analysts, lack
of focus on the purpose of the system, and miscommunication between business
people and system analysts. Since these problems can hinder business/IT alignment
[20][25], the IS does not fulfil organizational needs.

Requirements must be defined in terms of phenomena that occur in the business
environment [36]. However, it is common for requirements documentation to be solution-
oriented, to not reflect the business environment, or to only consist of a data model in the

∗ This work has been developed with the support of the Ministry of Education and Science of

Spain under the project SESAMO TIN2007-62894 and the program FPU, and cofinanced by
FEDER.

214 J.L. de la Vara, J. Sánchez, and Ó. Pastor

form of a class or entity-relationship diagram. As a solution, the requirements engineering
community has acknowledged the importance of the use of business concerns to drive
requirements elicitation [29]. More specifically, the importance of organizational
modelling during requirements analysis [18] and the role that system analysts must play as
business analysts [16] have both been acknowledged. Organizational models depict the
structure and behaviour of an organization and are very useful in helping system analysts
to properly understand the business environment and the system requirements. Among
other approaches, business process modelling has been declared as a good approach for
organizational modelling and also as a must for IS development [2][13].

Nevertheless, business process models are not always enough to analyze the
business context. Organizations often decide to introduce or modify an IS to solve a
specific problem or need. These problems or needs correspond to the goal that the
system must fulfil, i.e., the system purpose. Therefore, it is important for system
analysts to explore the goals of different stakeholders and the activities that they carry
out so that they can define purposeful requirements [26]. When the system purpose is
not very complex, it can be directly analyzed on business processes, but sometimes it
requires a deeper analysis. In the latter case, the use of a goal-driven approach that
facilitates purpose analysis helps to better understand the system purpose and,
consequently, to better respond to end-user needs.

Furthermore, good communication between business people and system analysts is
essential at the requirements stage [17]. However, it can be difficult to achieve
because of the existence of a gap between business and computing domains [32] that
can cause mismatches between what end-users say and what system analysts
understand. One reason for miscommunication is that the requirements models used
to interact can be hard to understand and validate by end-users because of their lack of
computing background. Therefore, models that facilitate communication during
requirements analysis should be used. According to the software community [8] and
to cognitive experiments [1], the use of process models when developing an IS can
make human understanding and communication easier, and can help interaction
between system analysts and end-users.

This paper presents a requirements analysis approach based on business process
modelling and purpose analysis in order to try to prevent the problems described
above. It is the result of a project between the Technical University of Valencia and the
company CARE Technologies (http://www.care-t.com). The approach is characterized
by the use of business processes for organizational modelling and as starting point of
requirements analysis, the focus on system purpose, the use of BPMN [23] for business
process modelling, the use the goal/strategy Map approach [27] for system purpose
analysis, the detailed specification of functional requirements, and the involvement of
end-users. This involvement is very positive when modelling an organization [30] and
is a success factor in software development [31].

Organizations are modelled in the form of business process diagrams. The
diagrams are validated by end-users, and the system purpose is then analyzed in order
to come on agreement on the effect that the IS should have on the business processes.
Finally, requirements are specified by means of the description of the business
process tasks to be supported by the IS. These well-defined requirements are the input
of the subsequent development stages.

 Business Process Modelling and Purpose Analysis 215

The paper is organized as follows: section 2 describes the notations of the approach;
section 3 describes the case study; section 4 presents the description of the approach;
subsections 4.1 and 4.2 describe purpose analysis and functional requirements
specification in detail; section 5 describes the practical experience using the approach;
section 6 revises related work; finally, section 7 presents our conclusions and future work.

2 Notations of the Approach

The approach uses two notations: BPMN and Map. This section describes them
briefly and justifies their selection for business process modelling and purpose
analysis. Their joint use is also explained and justified. For further details about
BPMN and Map, see [23] and [27], respectively.

2.1 BPMN

We use BPMN for business process modelling. Its creators argue that it offers a
notation that is understandable by all business process users (process analysts, IS
developers, process managers…). Therefore, BPMN provides a standard that fills the
gap between business models and their implementation.

The notation consists of a diagram, called Business Process Diagram (BPD),
whose aim is to provide a means for the development of graphical models of business
process operations. A BPD is designed from a set of graphical elements that make
diagrams simple to develop and easy-to-understand. The graphical elements are flow
objects (activities, gateways and events), connecting objects (sequence flows,
message flows, and associations), swimlanes (pools and lanes), and artefacts (data
objects, annotations, and groups).

With regard to the choice of BPMN, several surveys have evaluated its adequacy
for business process modelling and have compared it with other notations. These
surveys are based on different criteria, such as workflow patterns (e.g. [34]), quality
principles (e.g. [22]), or the BWW representation model (e.g. [28]). From the result of
these studies and our own experience, BPMN has three main advantages: it is
probably the most expressive notation, it is easy to use and understand, and it is
receiving strong support from practitioners and vendors. As a result, BPMN is
considered the de facto standard for business process modelling.

2.2 Map

Map is a goal-driven approach whose aim is to capture the intentions (goals) of an
enterprise or system and determine the strategies that can contribute to the fulfilment
of these intentions. The emphasis on the concept of strategies as ways to achieve
goals distinguishes Map from other goal-based approaches. This emphasis is
motivated by the fact that stakeholders do not naturally make the distinction between
goals and strategies, and, as a consequence, pitfalls can arise [27]. The size of a goal
model can unnecessarily increase when strategies are expressed as goals, alternative
ways to make the business can be more difficult to discover, and recognizing stable
elements in a business (intentions) versus more versatile ones (strategies) can be more
difficult. In addition, Map promotes variability analysis at the requirements stage.

216 J.L. de la Vara, J. Sánchez, and Ó. Pastor

Start
Make Room

Booking

Accept

Payment
Stop

By customer retraction

Normally

By credit card

By electronic transfer

By visiting a travel agency

On the Internet

Goal

Strategy

Legend

Fig. 1. Example of a map for a booking [27]

Map diagrams consist of a graph (called map) whose nodes are intentions and
whose edges are strategies. An example is shown in Fig. 1. An edge entering a node
identifies a strategy that can be used to achieve the intention of the node, so a map
shows which intentions can be achieved by which strategies. Each map has two
special intentions, Start and Stop, associated with the initial and final state,
respectively. The aggregation of a source intention, a target intention, and a strategy is
called section. Sections can be refined in another map.

Of all the goal-based approaches available within requirements engineering and
business process reengineering, we use Map for the following reasons: it focuses on
strategies to achieve goals; it has only two main concepts (goal and strategy), thus
facilitating its use and understanding; and it does not deal with tasks, which we prefer
to consider on a BPD instead of on a goal diagram.

Map has been used in several projects and in different areas, including business
process modelling (for detailed references, see [27]). An important advantage of Map
is that it encourages customer participation and helps to solve communication
problems between business people and system analysts. However, we think that other
notation should be used for business process modelling. We base this opinion on the
criteria that are usually analyzed when evaluating business process notations, as
described above for BPMN. The use of just two main concepts (goal, strategy) is
useful for purpose analysis, but it is a drawback when addressing business process
modelling because the models are neither detailed nor expressive enough to have a
deep understanding and knowledge of business processes.

In summary, we think that BPMN and Map can complement each other. BPMN is
better suited for business process modelling, but it does not provide any mechanism
for system purpose analysis so that a new business process that fulfils organizational
needs is designed. Map focuses on system purpose, and the use of strategies allows its
graphs to be simpler than the goal diagrams of other approaches. As a result, the
approach benefits from the features of both BPMN and Map.

3 Case Study

As a case study, we will use the business processes for the product development of a
software company (Fig. 2).

The organization develops a software product that is provided to several customers.
The product is standard, so no customer has a personalized product. However,
customers can request improvements in the product, and the requests are included in
future versions of the product.

 Business Process Modelling and Purpose Analysis 217

Define
Product

Workflow

Define Work
Item

Customer
request

Estimate
Activity

Assign
Activities to
Employess

Assign
Version to
Work Item

Create
Product
Version

Check
Version

Development

Carry out
Activity

Solve
Problem

Problem detected

a)

b)

c)

Unable to
finish on time

Legend

Start
Event Task

End
Event

AND
Gateway

Sequence
Flow

Start Event with a
Message Trigger

Intermediate Event
with an Error Trigger

Fig. 2. BPDs for product development: a) definition of product workflow; b) request
management; c) version development

The product manager defines the set of activities that has to be carried out to
develop the product through product workflow. When a customer requests a new
improvement, an employee defines the work item that is necessary to provide the
customer with the request. Next, employees are assigned the activities that are
necessary to develop the work item, and employees have to estimate how long the
activities will take. The product manager is also responsible for the periodical creation
of product versions, which have a strict deadline, and must decide the version in
which a work item will be developed. Afterwards, employees carry out the activities
in order to finish the work item and deliver the requested improvement, and the
product manager checks that version development is correct. However, problems may
arise while developing versions. Employees may not be able to finish the activities
they are responsible for due to time constraints. If a problem arises, the product
manager has to try to solve it.

4 Approach Description

The approach (Fig. 3) consists of three stages: organizational modelling, purpose
analysis, and functional requirements specification. The first one depicts the current
business environment (As-Is), which has a problem or need that could be fulfilled by
an IS. The organization will change to solve the problem (To-Be), and the change will
have an effect on business processes.

In the first stage, the organization for which the IS is going to be developed is
modelled. For this purpose, the information gathered is a glossary, the business
events, the business rules, and a role model. BPDs of the organization are created
from this information. The diagrams must be validated by the end-users in order to
guarantee that the organization has been properly modelled and understood. Several
iterations are usually needed to get the final version.

The organizational problem or need is analyzed during purpose analysis stage. The
aim is to find system strategies that can solve the organization problem, determine
how to operationalize the strategies, and agree on the effect that the development of
the IS may have on the business processes. This effect is the support or control that

218 J.L. de la Vara, J. Sánchez, and Ó. Pastor

ORGANIZATIONAL
MODELLING

PURPOSE ANALYSIS
FUNCTIONAL

REQUIREMENTS
SPECIFICATION

Task Descriptions

Business Events

Business Rules

Role Model

Glossary
Map

Operationalization Table

Labelled BPDs

Organizational

problem or need

solvable by an IS

Validation Agreement

As-Is To-Be

BPDs

REQUIREMENTS ANALYSIS OF INFORMATION SYSTEM

Fig. 3. Approach overview

the IS will have on them. As a result, business process elements are labelled
according to the effect that the operationalization of the strategies will have on them,
and changes in the business process can occur.

Finally, functional requirements are specified by means of the description of the
business process tasks to be supported by the IS. Every task will have a textual
template that describes it. The set of templates will be the starting point of the rest of
the development stages.

For brevity, the organizational modelling stage is not described in the following
sections, so only the purpose analysis and functional requirements specification stages
are detailed.

4.1 Purpose Analysis

After organizational modelling, the system analyst has enough knowledge about the
business processes to properly understand the organization activity. Nevertheless, the
analyst also needs to understand the organizational problem or need. Consequently,
purpose analysis is carried out from the business processes and the organizational
problem or need to be fulfilled.

The introduction or modification of an IS in an organization can cause business
process reengineering. An IS can initiates and supports reengineering before, during
or after a process is designed [3]. In our approach, IS is a facilitator of the changes in
the business processes because its effect is taken into account while designing the new
processes. The new business processes (To-Be) are designed from the original ones
(As-Is), the organizational needs, and the solutions that the IS can provide. IS will
support business processes, and business processes are designed in terms of the IS
capabilities.

Purpose analysis consists of three stages: map construction, map operationalization,
and BPDs creation and labelling.

4.1.1 Map Construction
The organizational problem or need is modelled in a map where the solutions that the
IS can provide are analyzed. The map is created in a participative manner between the
system analyst and end-users, so they can agree on the solution. First, a map is created
to analyze the problem or need. Second, the goals that the end-users want to achieve
in order to solve the problem through the use of the IS are modelled as intentions
(nodes). Third, system features that can fulfil the end-user goals are modelled as

 Business Process Modelling and Purpose Analysis 219

strategies (edges), which link the nodes. Finally, sections are refined if needed. These
guidelines are based on the map construction process [27], but we have adapted them
to the specific use of defining system strategies to fulfil end-user intentions.

The map that corresponds to the case study is shown in Fig. 4. The organization
has been experiencing problems with delivery requests. Lack of knowledge about
version development has caused requests to be delivered later than expected by
customers. As a result, the customers have complained, and the strategic goal “Keep
customer satisfaction” is not met. The main reason for the delay is that activity
development is not always performed as planned because of the great amount of work
that employees have to do. The product manager needs to be able to better project, for
example, if an employee will miss working days, or if an employee has spent more
time than planned on an activity. The product manager needs to foresee problems and
find solutions quickly. In addition, employees need to be able to determine more
accurately the time they have at their disposal to finish the activities that are in their
charge of and how long these activities will take.

To solve these problems, employees wanted the IS to facilitate the work item
development and to improve the knowledge they have about the status of the activities
that they have to carry out. The product manager wanted the IS to improve the
knowledge about the status of the versions and to minimize the time that takes a
request to be delivered. The system analyst proposed system features that could fulfil
these intentions and modelled them in the map in accordance with end-users.

Fig. 4. Map for product development process

4.1.2 Map Operationalization
When the map is finished, the system analyst has to determine how to operationalize
the map strategies, and come to an agreement on the effect that the operationalization
will have on the old business process. Existing BPD elements can be removed or
maintained, and new elements may be introduced. To facilitate this analysis, a table
with three columns is created: a column to list the strategies; a column to list the BPD
elements that will operationalize each map strategy and specify if the element has
been removed (R), maintained (M), or it is new (N); and a column to specify the
participant that will be in charge of the element.

Table 1 shows the BPD elements that operationalize each map strategy for the case
study. There are several new elements: “Start activity” refers to the task in which an
employee begins the performance of an activity and has to receive the necessary
documents to carry out the activity; “Finish Activity” refers to the task in which an
employee finishes an activity and has to share the documents related to the activity

220 J.L. de la Vara, J. Sánchez, and Ó. Pastor

performance; “Manage Calendar” refers to the task in which an employee divides the
time that can spent in a working day; “Need to start activity” refers to the condition in
which an employee must be notified that an activity has to be started in order to finish
the work item before version deadline; “Change Activity Assignment” refers to the
task in which a product manager changes the employee that is responsible for an
activity in order to finish a work item before version deadline; “Change Work Item
Version” refers to the task in which the product manager changes the version of a
work item due to some problem; “Version deadline” refers to the moment in which
the date of version release is reached; “Release Version” refers to the task in which
the product manager releases a finished version.

Table 1. BPD elements that operationalize the map strategies of the case study

Map strategy BPD element Participant
Define product workflow (M)
Assign Activities to Employees (M)

Product Manager

Start Activity (N)
Carry out Activity (M)

By following workflow

Finish Activity (N)

Employee

Start Activity (N) By sharing documents
Finish Activity (N)

Employee

By managing calendar Manage Calendar (N) Employee
Carry out Activity (M) By recording spent time
Finish Activity (N)

Employee

Estimate Activity (M) By anticipating problems
Need to start activity (N)

Employee

By recording activity end Finish Activity (N) Employee
Check Version Development (M)
Problem detected (M)

Product Manager

Carry out Activity (M)

By detecting problems

Unable to finish on time (M)
Employee

By changing activity assignment Change Activity Assignment (N) Product Manager
By changing work item version Change Work Item Version (N) Product Manager

Version deadline (N) By ending version
Release Version (N)

Product Manager

Carry out Activity (M) Employee By removing threats
Notify changes (N) Product Manager

With regard to how the BPD elements operationalize the map strategies, we will

use the map strategy “by following workflow” as example. The BPD elements that
operationalize the map strategy are “Define Product Workflow” because it is the task
in which the activities and documents of the product workflow are defined, and
“Assign Activity to Employee”, “Start Activity”, “Finish Activity” and “Carry out
Activity” because they refer to activities of the product workflow. Therefore, the
workflow is followed because of the execution of these tasks.

4.1.3 BPDs Creation and Labelling
Finally, the system analyst and the end-users agree upon the design of the new
business process. First, changes in the BPDs are modelled, i.e., elements can be
removed or introduced according to the operationalization of the map strategies. Next,

 Business Process Modelling and Purpose Analysis 221

BPD elements are labelled according to the IS support on them. Tasks, events with
triggers, and gateways that depict decisions are labelled as: “O” (out of the system), if
the element will not be part of the IS; “IS” (controlled by the system), if the IS will be
in charge of its control and execution with no human participation; or “U” (executed
by a user), if the element will be executed by a person that interacts with the IS.

For the case study, Fig. 5 shows the new business processes. The business
processes have changed as a result of the introduction of the IS. Several new tasks and
events have been defined, and there is a new business process (calendar management)
and a sub-process (problem resolution). An interesting fact is that, as acknowledged
by other authors [4], the new BPDs (software development-oriented) are more
detailed than the original BPDs (organizational documentation-oriented).

O
rg

an
iz

at
io

n

E
m

pl
oy

ee

Manage
Calendar

Change in
available time

O
rg

an
iz

at
io

n

P
ro

je
ct

 M
an

ag
er

Change
Activity

Assignment

Change
Work Item

Version

Notify
changes

O

U

U

U

IS

b)

e)

O
rg

an
iz

at
io

n

O
rg

an
iz

at
io

n

Pr
od

uc
t M

an
ag

er

Define
Product

Workflow

O
rg

an
iz

at
io

n E
m

pl
oy

ee
P

ro
du

ct
 M

an
ag

er

Define Work
Item

Customer
request

Estimate
Activity

Assign
Activities to
Employess

E
m

pl
oy

ee
P

ro
du

ct
 M

an
ag

er

Assign
Version to
Work Item

Create
Product
Version

a)

c)

d)

Check
Version

Development

Carry out
Activity

Problem detected

Solve
Problem

Need to start activity

Release
Version

Version
deadline

U

IS

IS

IS IS

Start Activity

Finish
Activity

U

U

OU
U

U

U

U

U

O

UU

Unable to
finish on time

Legend

O

IS

UOut of the system Executed by a user

Controlled by the system

ELEMENT LABLES

BPMN ELEMENTS

Collapsed
Sub-Process

Multiple
Instances

Task Looping

Start Event with
a Rule Trigger

Intermediate Event
with a Timer Trigger

End Event with a
Message Trigger

XOR Gateway

Fig. 5. Labelled BPDs for: a) definition of product workflow; b) calendar management; c)
request management; d) version development; e) problem resolution

After labelling, the data objects that are input and output of every task to be
supported by the system are defined. The state of the data objects before and after the
execution of the task is specified. In order to keep Fig. 5 as simple as possible, the
data objects are not shown for this case study.

4.2 Requirements Specification

In the last stage of the approach, functional requirements are specified from the
labelled BPDs. For this purpose, business process tasks to be supported by the system
are described through a textual template.

The content of the template is based on essential use cases [7] and task & support
descriptions [19]. An essential use case is a simplified form of use case that depicts an
abstract scenario for a complete and intrinsically useful interaction with a system
from the perspective of users. A task & support description is a way to express what
the system actors want to perform, including domain-level information and how a

222 J.L. de la Vara, J. Sánchez, and Ó. Pastor

new system could support an activity to solve a problem. Both essential use cases and
task & support descriptions contain the fewest presuppositions about technology.

An example of task template is shown in Table 2. It corresponds to the task “Carry
out Activity” of the case study. A task template includes the business process to
which the task belongs, the name of the task, the role responsible for its execution, the
triggers, preconditions and postconditions of the task, the input and output data and
their states, a specification of the interaction between a user and the IS through user
intention and system responsibility, and the business rules that affect the task.

Table 2. Template for the task “Carry out activity”

Business Process: Version development
Task: Carry out Activity Role: Employee
Triggers
-
Preconditions
-
Postconditions
-

Input Output
Data Object State Data Object State
Activity In progress Activity In progress
 Time register
User intention System responsibility
 1. Show the activities in progress assigned to the

employee
2. Select an activity
3. Carry out activity
4. Indicate performance begin and end
 5. Record time register
 6. Update employee time
Business Rules

• An employee can only carry out an activity at the same time

• An employee can only carry out activities that have been assigned to him

All the information of a task template comes from its BPD. The name of the business

process and the name of the task are the same as in the BPD. The role is the participant
in the business process that is in charge of the task. The triggers correspond to the
events with a trigger that precede the task in the business process and are part of the IS.
The preconditions correspond to the gateways that precede the task, represent decisions,
and are part of the IS. The postconditions correspond either to the gateways that follow
the task, represent decisions that can make the business process iterate and are part of
the IS, or to the end events with a trigger that follow the task and are part of the IS. The
input and output of the task are its data objects in the business process. User intention
and system responsibility are defined from the behaviour of the participant in charge of
the task when executing it and how the system will support it. User intention may
include actions that do not represent interactions with the system, and the system
responsibility must be agreed upon with the end-user. Finally, the business rules
specified in the template correspond to business rules that define or constrain the task,
could not be modelled graphically, and have to be supported by the system.

 Business Process Modelling and Purpose Analysis 223

After every business process task has been described, the subsequent development
stages will be based on the task templates in order to provide the organization with an
IS that fits its needs, its structure, and its behaviour.

5 Practical Experience

As explained above, the approach is the result of a project with a company, CARE
Technologies. The purpose of the project is to solve problems related to the
requirements stage by trying to link business and software domains.

After analyzing the requirements practices of the company, we identified problems
related to business understanding, purpose analysis, and communication with end-
users. The company uses OO-Method [24], a methodology for automatic software
generation based on conceptual modelling. The data conceptual schemas consist
mainly of a class diagram that is enriched with functional information about the result
of class service execution. Analysts just provide some textual description about the
requirements and validate them on the class diagram or on the generated application.

Although analysts feel comfortable with this technique, we think it could be
improved. Some authors have stated that class diagrams alone might not be appropriate
for communicating and verifying requirements, that there are few studies addressing
the ability of end-users to understand class models, and that they can be complex for
people that have not been trained in object-oriented modelling [12]. In addition, objects
might not be a good way of thinking about a problem domain [33].

The approach has been used in four real projects in order to evaluate it and try to
find improvements. It has been refined gradually based on the comments of both
customers and analysts. The organizations for which the systems were developed
were an apartment rental company, a car rental company, the organization of a golf
tournament, and the organization of this case study. They were small/medium size
projects. CARE had developed software for the organizations previously, so both the
technique they usually use and our approach could be compared.

The system purpose was analyzed on the BPDs before the case study project. The
reason for this is that the purpose analysis of the other projects was less complex, and
thus easy to analyze. The introduction of the new IS did not change the business
processes significantly, and the result was automation rather than reengineering.
However, the system analysts said that some technique for purpose analysis would be
helpful for the product development project.

We held between 2 and 5 meetings with end-users to obtain the business process
models of the organizations, 1 meeting for purpose analysis, 1 or 2 meetings to define
the task templates, and 1 meeting to validate the entire requirements specification.
Another meeting was held in order to talk about the experience with end-users and
analysts. Each meeting took approximately 2 hours.

As expected, the end-users stated that they could understand and validate the
requirements models of the approach more easily than the class diagrams, thus
facilitating communication and interaction. They also felt more involved in system
development and claimed that they had a more participative attitude.

When asking analysts about the usefulness of the approach, we obtained different
opinions. Although all the analysts stated that the approach allowed them to better

224 J.L. de la Vara, J. Sánchez, and Ó. Pastor

understand the organizations, the system purpose, and, consequently, the
requirements, there were some analysts who did not think that the approach could
improve their job significantly and would probably not use it.

We do not find these comments about the approach discouraging. The analysts
who did not think that the approach was very useful were senior analysts that are
already very skilled in using OO-Method and interacting with customers. They
usually model the systems while the customer describes what the system should do,
so they can quickly generate it, validate it, and fix it if needed. However, most of the
junior analysts, who have less experience in dealing with customers and, therefore, in
understanding what is needed, considered that the approach could really help them.

We think these results are a reflection of common practices in IS development.
Models are only used when they are believed to be useful [10]. In our case, some
senior analysts do not think that the approach can accelerate their job, whereas junior
analysts think that it can improve their performance.

Another interesting subject that arose while discussing the approach was the
viewpoint to use when defining strategies in the map. We recommended the system
analysts to include both system and enterprise strategies in order to better analyze the
problem. However, they argued that the company mission was software development,
not business consultancy. System analysts believed that BPDs and end-users goals
were enough to properly understand the organization. Therefore, they did not consider
business strategies that would not be supported by the IS to be useful for their work.

Finally, this practical experience has some limitations. First, the approach has to be
used in more projects to draw definite conclusions. Second, the opinions of end-users
and the analysts were obtained by discussing with them informally, so we are now
designing a form to survey the next projects. Last but not least, we want to asses the
approach by means of experiments with students and analysts from other companies.

6 Related Work

The need of organizational modelling and system goal analysis has been widely
acknowledged within requirements engineering. Many approaches consider them to
be the first step in software development, and some approaches use business process
modelling. Nevertheless, the approaches usually focus on only one of the issues, and
the use of models and techniques that facilitate the communication is not common.

Goal-oriented approaches have played an important role within requirements
engineering. They try to solve the problem of systems that do not properly respond to
organizational and user needs. Despite the acknowledged contributions of goal-
oriented approaches, they have some weaknesses [26]. In our opinion, the main
weaknesses are that goals might not provide a good starting point for requirements
analysis, goal reduction is not straightforward, and most of the approaches do not pay
enough attention to business concerns and business process reengineering. Apart from
Map, two well-known approaches are i* [35] and KAOS [9].

i* is focused on the modelling of dependencies among the organizational actors in
order to achieve organizational goals. It has been used in several software
development methods, such as Tropos [6] or RESCUE [21]. However, several

 Business Process Modelling and Purpose Analysis 225

weaknesses have been identified by practitioners (e.g. [15]). i* diagrams might be too
complex, and they should better support granularity and refinement.

KAOS requirements models are built from organizational goals. These goals are
systematically refined to operational requirements through refinements patterns.
KAOS also uses an object model, an agent responsibility model, and an operation
model. When comparing the use of KAOS with Map, we have obtained simpler goal
models with Map because of its focus on strategies. In addition, KAOS does not
provide any mechanism to model and analyze business processes.

Among organizational modelling-based approaches, EKD [5] and ARIS [11]
provide ways of analyzing an enterprise by using enterprise modelling. EKD is
composed of a goal model, a business rules model, a concepts model, a business
process model, an actor and resources model, and a technical components and
requirements model. ARIS consists of five views: organizational view, data view,
control view, function view, and product/service view. In our opinion, when using
EKD and ARIS for tailored software development, their requirements specifications
should be more detailed, and they should be more focused on goal analysis. EKD also
lacks tool support that facilitates the development and maintenance of all its models.
In addition, as we have stated above for Map, BPMN is better suited for business
process modelling than the notations that EKD and ARIS propose.

Some approaches use UML for organizational and business process modelling (e.g.
[14]). These approaches use elements that are close to those elements used in the
software development area. This fact is a drawback, because the models are easy to
use and understand by system analysts but might be too complex to be validated by
end-users. In addition, the UML-based approaches do not focus on goal analysis.

7 Conclusions and Future Work

Requirements analysis is still a stage of software development where mistakes are
common. Therefore, it can be the source of problems in subsequent development
stages and can cause an IS not to fulfil the real needs of the organization where the IS
has to be modified or introduced. Some of the mistakes detected in practice are the
lack of understanding of the business by system analysts, the lack of focus on system
purpose, and miscommunication between business people and system analysts.

This paper has described an approach to try to prevent these problems based on the
modelling of an organization by means of BPMN and the goal/strategy Map
approach. The approach allows system analysts to properly understand and analyze
the organization, its needs, and the system goals in a participative way with end-users.
Business people and system analysts share a common language that is understandable
to both of them thanks to BPMN, Map, and task templates. BPDs are the basis for the
end-user to validate that the organization structure and behaviour have been properly
understood so that the system analyst can propose solutions based on the system
purpose. Furthermore, the approach tries to mitigate the weaknesses of a separate use
of BPMN and Map, and benefit from the advantages of their joint use.

Apart from the improvement in the surveys, the next steps in the project are the
development of a tool that supports the approach, the introduction of a technique for
the analysis of non-functional requirements, and the linking of the approach with

226 J.L. de la Vara, J. Sánchez, and Ó. Pastor

OO-Method. In addition, we want to extend the approach by introducing information
about the user interface in the task template in order to derive an abstract description
of the interaction between the users and the IS.

References

1. Agarwal, R., Prabuddha, D., Sinha, A.P.: Comprehending Object and Process Models: An
Empirical Study. IEEE Transactions on Software Engineering 25(4), 541–556 (1999)

2. Alexander, I., Bider, I., Regev, G.: REBPS 2003: Motivation, Objectives and Overview.
Message from the Workshop Organizers. In: CAiSE Workshops (2003)

3. Attaran, M.: Exploring the relationship between information technology and business
process reengineering. Information & Management 41, 585–596 (2003)

4. Becker, J., Kugeler, M., Rosemann, M. (eds.): Process Management. Springer, Heidelberg
(2003)

5. Bubenko, J., Persson, A., Stirna, J.: EKD User Guide (2001), http://www.dsv.su.se/~js
6. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems

engineering: the Tropos Project. Information Systems 27, 365–389 (2002)
7. Constantine, L., Lockwood, L.: Software for Use. Addison-Wesley, Reading (2002)
8. Curtis, B., Kellner, M., Over, J.: Process Modelling. Communications of the ACM 35(9),

75–90 (1992)
9. Dardenne, A., Lamsweerde, A., van Fickas, S.: Goal-directed Requirements Acquisition.

Science of Computer Programming 20, 3–50 (1993)
10. Davis, I., et al.: How do practitioners use conceptual modelling in practice? Data &

Knowledge Engineering 58, 359–380 (2006)
11. Davis, R., Brabänder, E.: ARIS Design Platform. Springer, Heidelberg (2007)
12. Dobing, B., Parsons, J.: Understanding the role of use cases in UML: a review and

research agenda. Journal of Database Management 11(4), 28–36 (2000)
13. Dumas, M., van der Aalst, W., ter Hofstede, A. (eds.): Process-Aware Information

Systems. Wiley, Chichester (2005)
14. Eriksson, H., Penker, M.: Business Modelling with UML. John Wiley and Sons,

Chichester (2000)
15. Estrada, H., Rebollar, A.M., Pastor, Ó., Mylopoulos, J.: An Empirical Evaluation if the i*

Framework in a Model-Based Software Generation Environment. In: Dubois, E., Pohl, K.
(eds.) CAiSE 2006. LNCS, vol. 4001, pp. 513–527. Springer, Heidelberg (2006)

16. IIBA. Business Analysis Body of Knowledge (2006), http://www.iiba.com
17. Holtzblatt, K., Beyer, H.: Requirements gathering: the human factor. Communications of

the ACM 38(5), 31–32 (1995)
18. Kirikova, M., Bubenko, J.: Enterprise Modelling: Improving the Quality of Requirements

Specification. Information Systems Research Seminar in Scandinavia, IRIS-17 (1994)
19. Lauesen, S.: Task Descriptions as Functional Requirements. IEEE Software 20(2), 58–65

(2003)
20. Luftman, J., Raymond, R., Brier, T.: Enablers and Inhibitors of Business-IT Alignment.

Communications of AIS 1(11), 1–33 (1999)
21. Maiden, N., Jones, S.: An Integrated User-Centered Requirements Engineering Process,

Version 4.1 (2004), http://hcid.soi.city.ac.uk/research/Rescue.html
22. Nysetvold, A., Krogstie, J.: Assessing Business Process Modelling Languages Using a

Generic Quality Framework. In: EMMSAD 2005, CAiSE Workshops (2005)

 Business Process Modelling and Purpose Analysis 227

23. OMG: Business Process Modelling Notation (BPMN) Specification (online) (2006),
http://www.bpmn.org

24. Pastor, O., Molina, J.C.: Model-Driven Architecture in Practice. Springer, Heidelberg
(2007)

25. Reich, B., Benbasat, I.: Factors That Influence the Social Dimension of Alignment
Between Business and Information Technology. MIS Quarterly 24(1), 81–113 (2000)

26. Rolland, C., Salinesi, C.: Modeling Goals and Reasoning with Them. In: Engineering and
Managing Software Requirements, pp. 189–217. Springer, Heidelberg (2005)

27. Rolland, C.: Capturing System Intentionality with Maps. In: Conceptual Modelling in
Information Systems Engineering, pp. 141–158. Springer, Heidelberg (2007)

28. Rosemann, M., et al.: A Study of the Evolution of the Representational Capabilities of
Process Modeling Grammars. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS,
vol. 4001, pp. 447–461. Springer, Heidelberg (2006)

29. Sommerville, I., Sawyer, P.: Requirements Engineering: A Good Practice Guide. John
Wiley and Sons, Chichester (1997)

30. Stirna, J., Persson, A., Sandkuhl, K.: Participative Enterprise Modeling: Experiences and
Recommendations. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.) CAiSE 2007. LNCS,
vol. 4495, pp. 546–560. Springer, Heidelberg (2007)

31. The Standish Group. Chaos Reports, http://www.standishgroup.com
32. Taylor-Cummings, A.: Bridging the user-IS gap: a study of major information systems

projects. Journal of Information Technology 13, 29–54 (1998)
33. Vessey, I., Coner, S.: Requirements Specification: Learning Object, Process, and Data

Methodologies. Communications of the ACM 37(5), 102–113 (1994)
34. Wohed, P., et al.: On the Suitability of BPMN for Business Process Modelling. In:

Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 161–176.
Springer, Heidelberg (2006)

35. Yu, E.: Modelling Strategic Relationships for Process Reengineering. PhD Thesis,
University of Toronto (1995)

36. Zave, P., Jackson, M.: Four Dark Corners of Requirements Engineering. ACM
Transactions on Software Engineering and Methodology 6(1), 1–30 (1997)

Supporting the Elicitation of Requirements
Compliant with Regulations

Motoshi Saeki1 and Haruhiko Kaiya2

1 Dept. of Computer Science, Tokyo Institute of Technology
Ookayama 2-12-1, Meguro-ku, Tokyo 152, Japan
2 Dept. of Computer Science, Shinshu University

Wakasato 4-17-1, Nagano 380-8553, Japan
saeki@se.cs.titech.ac.jp, kaiya@cs.shinshu-u.ac.jp

Abstract. This paper presents a technique to check the compliance of require-
ments with regulations while eliciting requirements. In our technique, we seman-
tically represent a regulation with combinations of case frames resulting from
Case Grammar technique. We match a newly elicited requirement sentence with
the case frames of regulation sentences and then check if the requirements in-
clude the obligation acts specified by the matched regulation sentences and if
they do not have prohibited acts. If we find that a requirement sentence does not
follow the regulation, the addition or removal of the illegal acts included in the
requirements are suggested.

1 Introduction

Eliciting requirements from customers and users is a crucial step to develop information
and software intensive systems of high quality. If we fail in eliciting mandatory require-
ments and/or elicit inconsistent requirements, we have developed the systems that are
unsatisfactory to the customers and users, and we should spend much more costs and
labor efforts on developing the systems because of re-developing them.

Recently, more laws and regulations related to information technology (simply, regu-
lations) are being made in order to implement properly business processes and to avoid
the dishonest usage of information systems by malicious users. A typical example is
Japanese Act on the Protection of Personal Information [1] that specifies the proper han-
dling of personal information such as names, addresses and telephone numbers in order
to prevent from making misuse of this information. In this situation, we have to develop
the systems compliant with these regulations. In particular, eliciting the requirements
incompliant with the regulations has large harmful influences on later development ac-
tivities and system release. Suppose that we develop an Internet auction system such as
eBay. In this system, an individual that would like to put her goods up for an auction
needs to register her membership at first. On registering her, the system collects her
personal information such as her name, age, address, telephone number etc. Japanese
Act on the Protection of Personal Information provides that, except special cases, an
entity must notify the person of the purpose of the usage of acquired personal informa-
tion or publicly announce it, when acquiring the personal information. If a requirements
analyst fails to elicit the functional requirements on notifying or announce the purpose

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 228–242, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Supporting the Elicitation of Requirements Compliant with Regulations 229

of the usage of personal information and the system is developed without this function,
we have the system incompliant with Act on the Protection of Personal Information and
should re-develop the system later.

This paper presents a technique to check requirements if a newly elicited require-
ment is legal or not while eliciting requirements, in order to avoid the development of
an information system incompliant with regulations. It is the technique to check se-
mantically a newly elicited requirement against regulations and to give an analyst the
suggestions on modifying the requirements if a compliance failure is detected, during
her elicitation tasks. Usually, regulations and requirements specifications are written in
natural language, and thus we have to develop a kind of semantic processing technique
for natural languages. In our technique, we represent regulations with combinations of
case frames resulting from Case Grammar technique [5]. When a modification on the
current version of requirements occurs to maintain regulatory compliance, it should be
recorded as a modification rationale. Suppose that an analyst modified a requirement
A to B in order to maintain the compliance with a regulation. If she tries to modify
B further, the rationale on the modification of A to B can suggest to her that this fur-
ther modification can violate the compliance with the regulations again. To support the
usage of rationale, we adopt linking mechanism among requirements, regulations and
modification records. The rest of the paper is organized as follows. The next section
presents the technique on the semantic representation of regulations with case frames
in the next section. We show a requirements elicitation process following our technique
and an example in sections 3 and 4 respectively. Section 5 is for listing related work.

2 Representing Regulations

2.1 Structure of Regulation Sentences

According to [4], a regulation sentence consists of 1) the descriptions of a situation
where the sentence should be applied and 2) the descriptions of obligation, prohibition,
permission and exemption of an entity’s acts under the specified situation. For example,
the Article 18, No. 1 of Act on the Protection of Personal Information provides that

When having acquired personal information, an entity handling personal in-
formation must, except in cases in which the Purpose of Use has already been
publicly announced, promptly notify the person of the Purpose of Use or pub-
licly announce the Purpose of Use.

We can consider that “when having acquired personal information, except in cases in
which the Purpose of Use has already been publicly announced” is a situation where this
act should be applied, while “notify” and “announce” represent the acts of “the entity”.
Note that these acts are obligations that the entity should do. Furthermore, we can con-
sider the situation as a logical conjunction (∧) of more atomic situation “having acquired
personal information” and the negation (¬) of “the Purpose of Use has already been pub-
licly announced”. The obligation acts are a logical disjunction (∨) of the two acts “notify”
and “announce”. That is to say, we can represent more complicated regulation sentences
by combining atomic descriptions with logical connectives such as ∧, ∨ and ¬.

230 M. Saeki and H. Kaiya

2.2 Case Frame

Requirements sentences and regulation ones are described in natural language. We need
a technique of their semantic representation We adopt a technique of case frames orig-
inated from Fillmore’s Case Grammar and this technique has been popularly used for
developing specification languages of pseudo natural language [15], modeling concep-
tually information systems [11], and eliciting requirements [14], etc. A case frame con-
sists of a verb and semantic roles of the words that frequently co-occur with the verb.
These semantic roles are specific to a verb and are called case. For example, the case
frame of the verb “get”, having the cases “actor”, “object” and “source”, can be de-
scribed as “get(actor, object, source)”, where “get” denotes the acquisition of the thing
specified by the object case. The actor case represents the entity that performs the ac-
tion of “get” and that will own the thing as the result of the “get” action. The source
case denotes the entity from where the actor acquires the object. By filling these case
slots with the words actually appearing in a sentence, we can obtain its semantic rep-
resentation. In the example of the sentence “an entity handling personal information
acquires from a member her personal information”, we can use the case frame of “get”
and have “get(entity handling personal information, personal information, member)” as
its semantic representation.

Used case frames depend on regulations. In our approach, we use a text-mining tool
[9] to extract words that frequently occur in a regulation document and to find their rela-
tionships. After extracting the words and their relationships, an analyst selects relevant
verbs and their relationships to other words, and composes case frames from them by
manual. Figure 1 illustrates case frames included in Article 18, which is obtained as the
result of applying our text-mining approach to the document of Act on the Protection
of Personal Information. We use class diagram notation in the figure, and a class and an
association correspond to an extracted word and the relationship among words. In the
figure, a verb is depicted as an association and nouns participating in the association
can be considered as case slots of the verb. For example, the verb “get” is an associa-
tion among “Entity”, “Personal Information” and “Person”, and their cases are Actor,
Object and Source in turn.

2.3 Representation of Regulations

Figure 2 depicts the structure of regulations, i.e. a meta model of regulations. A regu-
lation document comprises articles and an article can have a tree structure. An instance
of Base Article expresses a leaf in a tree structure and is a regulation sentence in the
lowest level. Since an article may often refer to the other articles, we has an associa-
tion “refer” between Article Component. As mentioned in section 2.1, each regulation
sentence consists of a situation and an act with modality. In the figure, a situation and
an act are instances of Situation class and Act respectively. They can be represented
with logical combinations of case frames, and a case frame comprises a verb and case
slots relevant to the verb. The case slots are filled with words appearing in a regulation
sentence to represent the meaning of the regulation sentence.

Figure 3 shows an example of Article 18, No.1, which is a part of duties of entities
handling personal information (Articles 15 - 36 of Act on the Protection of Personal
Information).

Supporting the Elicitation of Requirements Compliant with Regulations 231

Case Frame:
handle(actor:Entity, object:Personal Information, purpose:Purpose of use)
announce(actor:Entity, object:Purpose of use)
notify(actor:Entity, object:Purpose of use, destination: Person)
get(actor:Entity, object:Personal Information, source:Person)
conclude(actor:Entity, object:Agreement, destination:Person)
include(actor:Agreement, object: Personal Information)
aggregate(owner:Person, owned: Personal Information)

Fig. 1. Case Frames in Article 18

Fig. 2. A Meta Model of Regulations

3 Requirements Elicitation Process

We assume that requirements are described in natural language and an analyst elicits
a new requirement using a certain method such as goal-oriented analysis and scenario
analysis method, etc. During this elicitation process, our approach monitors if a newly
elicited requirement together with already existing requirements are compliant with reg-
ulations or not, and suggests how to modify the requirements if they can be incompliant
with the regulations.

3.1 Basic Idea

Figure 4 depicts the essential point of our approach. In the figure, the case structure of
the requirement sentence bbb is analyzed and its semantic representation is generated

232 M. Saeki and H. Kaiya

Article 18 (Notice of the Purpose of Use at the Time of Acquisition, etc.)

1. When having acquired personal information, an entity handling personal
information must, except in cases in which the Purpose of Use has already been
publicly announced, promptly notify the person of the Purpose of Use or
publicly announce the Purpose of Use.

Situation:
get(x, Personal_information,y) ∧ ￢ announce(x, Purpose of use)

　　　∧aggregation(y, Personal_information)
　　　∧ handle(x, Personal_information, Purpose of use)

Obligation:
notify(x, Purpose of use,y) ∨ announce(x, Purpose of use)

Fig. 3. An Example of Semantic Representation of a Regulation

Requirement Sentence.

Case Frame Representation of Regulation Sentence

1. aaa
2. bbb
3. ccc

Situation Obligation

a aCase Structure

matching

Assigning words to slots

adding
Act

Fig. 4. Mapping to Semantic Representation

by filling the case slots with words appearing in bbb. We look for a regulation sentence
whose situation part is matched with bbb in their semantic representation level, i.e. the
level of case frames. If we can find a matching, there is a possibility that the requirement
bbb denotes the situation where the matched regulation should be applied, and thus we
pay attention to the modality and the act parts of the matched regulation sentence. In
this example, since the modality is Obligation, we check if the act is included in the
requirement sentences including bbb. If it is not included yet, we are suggested that
the act should be added to the requirements. The information on the words assigned
to the case slots can be used for us to compose the newly added requirement sentence.
The matching process can be automated so as to list up the candidates of the matched
regulations, and it uses a thesaurus such as WordNet in order to deal with synonyms,
near-synonyms, hypernyms and hyponyms.

Supporting the Elicitation of Requirements Compliant with Regulations 233

　The e-shop obtains personal information of members
when they register their memberships.

Adding some actions included in Obligation

Situation:
get(x, Personal_information,y) ∧￢ announce(x, Purpose of use) ∧

aggregation(y, Personal_information)∧ handle(x, Personal_information, Purpose of use)
Obligation:

notify(x, Purpose of use,y) ∨ announce(x, Purpose of use)

The e-shop announces personal information and then obtains
personal information of members when they register their
memberships.

x ← e-shop
y ← member

x ← e-shop

Fig. 5. An Example of Article 18

However, we should decide whether in the requirements we truly have the situation
that the regulation should be applied, and whether we finally add a new requirement
denoting the obligation act. This decision is recorded to support the future additions
and changes of the requirements.

Figure 5 illustrates the application of Article 18, No.1 of Act on the Protection of
Personal Information. This is an example of an Internet shop (simply, e-shop) and the
shop collects personal information of customers when it registers them as shop mem-
bers. Article 18 provides that the shop has an obligation to announce publicly or notify
the person of the purpose of usage of the collected personal information, when it gets
her personal information. The requirement sentence “The e-shop obtains personal infor-
mation of members when they apply to register their memberships”, which our analyst
elicited, is not compliant with the Article 18, No.1. In our approach, the automated tool
extracts its case structure, and then tries to find a regulation having a case frame of the
verb that is a synonym of “obtain” appearing in the sentence as a main verb. Since the
situation part of the semantic representation of Article 18 is the case frame get(x, Per-
sonal information, y) and it is matched with the requirement, an analyst checks if the
article should be truly applied to the requirement or not. For example, she checks if ¬
announce(x, Purpose of use), which is included in the situation part of the article, holds
or not. By the results of checking, she decides that the article should be applied and
adds the obligation act to the current version of the requirement. In the figure, two sug-
gestions, adding “notify” or “announce” act, can be considered and she selects the case
frame announce(x, Purpose of use) from a list of the obligation acts, fills words with its
case slots using the matching information and revise the requirement. As a result, she
assigns “e-shop” to actor slot “x” and adds the description of e-shop’s announcing the
purpose of usage of personal information. In the next sub section, we explain how to
suggest the modification candidates in our approach.

3.2 Generating Suggestions

We assume that an analyst elicits a requirement sentence by sentence. Suppose that the
analyst has got the requirements R1, . . . , Ri−1 in order, and she is eliciting now Ri.

234 M. Saeki and H. Kaiya

The semantic representation of a regulation sentence Lj consists of a situation SLj , a
modality MLj and an act ALj , and the situation and the act are represented with logical
combination of case frames. For simplicity, let a situation be described in conjunctive
form where each conjunct SLi,j (1≤ i ≤ m) is a case frame or a case frame with
negation ¬. That is to say, we have SLj = SL1,j ∧ · · · ∧SLm,j . On the other hand, an
act is represented in disjunctive normal form, i.e. ALj = AL1,j ∨ · · · ∨ ALn,j , where
ALk,j = AL1,k,j ∧ · · · ∧ ALnk,k,j (1≤ k ≤ n) and ALs,k,j (1≤ s ≤ nk) is a case
frame or a case frame with ¬. Although Lj can have more complicated logical connec-
tive structure, we can decompose and rewrite it into a set of the expressions having the
above form. We can have the predicate match for investigating whether a requirement
sentence can match to a case frame existing in the regulation sentences, as follows;

� �
match(Ri, L) � ∃l (CRi,l = L ◦ θ),

where
1) CRi,l is a case structure included in the semantic representation of Ri,
2) L is SLk,j or ALs,k,j ,
3) θ is an assignment of words to case slots, and
4) L ◦ θ is a result of applying the assignment θ to L.

� �
Roughly speaking, match(Ri, SLk,j) presents that Ri can be matched with the situa-
tion part of Lj , while match(Ri, ALs,k,j) is used to show the matching of Ri with the
act part of Lj .

The suggestions provided for an analyst depend on which part of a regulation is
matched and its modality. Table 1 shows the suggestions to the analyst. Suppose the
case that the newly elicited requirement Ri can satisfy the situation part of Lj , i.e.
match(Ri, SLk,j). If Lj presents an obligation (MLj = Obligation), its act ALu,j

(= AL1,u,j ∧ · · · ∧ ALnu,u,j) should be included in some of the requirements. The
second column of the table suggests the addition of AL1,u,j , · · · , ALnu,u,j as one of
the alternatives in order to keep the regulatory compliance, if they are not included. If
Lj presents a prohibition and a conjunct of ALu,j for each u is included in some of the
requirements, it should be excluded or the requirements satisfying the situation of Lj

should be changed so that the situation cannot hold.
When the requirements sentences are changed by reason of regulatory compliance,

additional information such as rationale is attached in the form of links. The suggestions
“Create a link” in the table are for recording the requirements changes. Its detail will be
mentioned in the next sub section.

3.3 Linking to Regulation Sentences

Requirements changes frequently occur by various reasons. For future maintenance ac-
tivities, it is important to record the requirements changes that regulatory compliance
resulted in. Figure 6 depicts the structure to record requirements changes by regula-
tory compliance. Basically, it has links that hold information on the contents of the
changes and the regulations that resulted in the changes. A link from the requirement
to the situation part of a regulation sentence specifies the information on whether their

Supporting the Elicitation of Requirements Compliant with Regulations 235

Table 1. Suggestions to Analysts

MLj = Obligation MLj = Prohibition
match(Ri, SLk,j) If ¬∃u, ∀s,∃l match(Rl, ALs,u,j), If ∀u, ∃s, ∃l match(Rl, ALs,u,j),

1) Select u and add all of the acts
denoted by AL1,u,j , · · · , Anu,u,j as
new requirements Ri+1 or

1) Select u and remove all of the acts
denoted by AL1,u,j , · · · , Anu,u,j

from R1, · · · , Ri, or
2) Re-consider R1, · · · , Ri−1 so that
SL1,j , · · · , SLk−1,j , SLk+1,j , · · · ,
or SLm,j cannot hold, or

2) Re-consider R1, · · · , Ri−1 so that
SL1,j , · · · , SLk−1,j , SLk+1,j , · · · ,
or SLm,k cannot hold, or

3) Re-consider Ri. 3) Re-consider Ri.
Create links according to a selected
suggestion.

Create links according to a selected
suggestion.

match(Ri, ALs,k,j) 4) If ∀u, ∃l match(Rl, SLu,j), If ∀u, ∃l match(Rl, SLu,j),
create a link. 4) Remove all of the acts denoted by

AL1,k,j , · · · , ALsk,k,j from Ri, or
5) Re-consider R1, · · · , Ri so that
SL1,j , · · · , SLk−1,j , SLk+1,j , · · · ,
or SLm,k cannot hold.
Create links according to a selected
suggestion.

MLj = Permission MLj = Exemption
match(Ri, SLk,j) Create a link annotated with “Possi-

ble to add” to ALs,u,j for any s.
If ∃l, ∃u, ∃s match(Rl, ALs,u,j),
create a link annotated with “Possible
to remove” to ALs,u,j .

match(Ri, ALs,k,j) If ∀u, ∃l match(Rl, SLu,j), create
a link annotated with “Possible to
add” to ALs,k,j .

If ∀u, ∃l match(Rl, SLu,j), create
a link annotated with “Possible to re-
move” to ALs,k,j .

situations are satisfied or not (Satisfy or Deny), while a link to the act part presents
that the act is included in the requirement. The requirement changes can be categorized
into addition (Add), removal (Remove) and replacement (Modify) and we can attach
this categorization to a link as well as annotations described with free texts. Since the
requirements changes cause version changes, we have another type of link denoting
the correspondence of a requirement sentence of the older version to the newer one.
The class Version and their association in the figure is for recoding this information,
and the roles +previousVersion and +newVersion express the older version and the
newer one respectively.

Figure 7 illustrates the link structure when the new requirement is added as shown in
Figure 5.

4 Example

The aim of this section is to discuss the feasibility and the limitation of our technique
through the example analysis. We use Japanese Act on the Protection of Personal Infor-
mation [1] and the following example system that our technique is applied to.

236 M. Saeki and H. Kaiya

Add

Delete

Modify

Article Component

ContentsLink

Annotation

Situation

Satisfy or Deny

Requirements Statement

Include

Act

Requirements

Change

Version

+nextVersion

+previousVersion

Fig. 6. Links from Requirements to Regulations

Requirements Statement
The e-shop announces personal information and then obtains personal information of
members when they register their memberships.

Requirements Statement
The e-shop announces personal information and then obtains personal information of
members when they register their memberships.

Requirements Statement
The e-shop obtains personal information of members
when they register their memberships.

Requirements Statement
The e-shop obtains personal information of members
when they register their memberships.

Situation:
get(x, Personal_information,y) ∧￢ announce(x, Purpose of use) ∧

aggregation(y, Personal_information)∧ handle(x, Personal_information, Purpose of use)
Act: Obligation:

notify(x, Purpose of use,y) ∨ announce(x, Purpose of use)

Article Component
Article 18 (Notice of the Purpose of Use at the Time of Acquisition, etc.)

1. When having acquired personal information, an entity handling personal information must, except
in cases in which the Purpose of Use has already been publicly announced, promptly notify the
person of the Purpose of Use or publicly announce the Purpose of Use

Article Component
Article 18 (Notice of the Purpose of Use at the Time of Acquisition, etc.)

1. When having acquired personal information, an entity handling personal information must, except
in cases in which the Purpose of Use has already been publicly announced, promptly notify the
person of the Purpose of Use or publicly announce the Purpose of Use

Satisfy or Deny
Satisfy

Satisfy or Deny
Satisfy

AddAdd

VersionVersion

+previousVersion

+nextVersion

Fig. 7. Recording a Requirements Change

– The system to be developed is a customer management system in a satellite televi-
sion company.

– Each subscriber can receive TV programs by using a television receiving set pro-
vided by the company.

– Each TV receiving set has its own product ID, and the ID is put in front of the set.

Supporting the Elicitation of Requirements Compliant with Regulations 237

– The TV receiving set has a communication interface for Internet or for a telephone
circuit, and it enables the company to maintain the set remotely.

Our requirements analyst starts with them by eliciting requirements stepwise, as shown
in the successive sub sections. Note that this example scenario was written in Japanese
and we directly translate the scenario to English.

Requirements for the system version 0

The current system, say version 0, supports workers in the company to ship a receiving
set to subscribers and to invoice them by postal mail (not by email nor via Internet).
The system includes both customer database and a formatter for postal tags, thus the
requirements for the system are elicited as follows.

– (Req.1) The system gets the information on subscriber’s name and address, when
the worker of the company receives the name and address by postal mail and inputs
them into the system.

– (Req.2) The system shall print a shipping tag for a receiving set.
– (Req.3) The system shall print an invoice for a monthly license fee.

In the same way as shown in Figure 5, our method suggests to a requirements analyst
that she adds the following requirement based on Req.1 and Article 18 in [1], because
the verb “get” in Req.1 is matched with the situation part of the article.

– (Req.4) The system shall print a letter to notify subscribers of the purpose of the
usage of their names and addresses.

In Article 25, an entity, e.g. a company, can be requested to disclose retained personal
data. This article can be written in the following form.

Article 25� �
Situation: retain(x, Personal Information) ∧ request(y, Disclose, x)
Obligation: disclose(x, Personal Information, y) ∨ disclose(x, no information, y)

� �

We have the Req.1 having “get” as a main verb. Although “get” is not a near-synonym
of the verb “retain”, the situation part of Article 25 can be matched with the Req.1 if we
can have the thesaurus such as [6]. In this thesaurus, we have several specific relation-
ships among ontological concepts for software development, and one of the examples
is “cause” relationship which expresses behavioral causality. In the case of Article 25
and Req.1, since it can be assumed that we have the information on “get(x,y) causes
retain(x,y)” in the thesaurus and the inference rule “(verb1 cause v2 ∧ match(R,v1)) →
match(R,v2)”, our analyst can get the matching of Article 25 with Req.1 and then add
the following requirement by using the suggestion 1) for obligation in Table 1.

– (Req.5) The system can print a letter to disclose a name and an address of a sub-
scriber when the subscriber requests the company to disclose them.

238 M. Saeki and H. Kaiya

This example of the requirement addition means that we need additional thesauruses or
ontologies in addition to WordNet, e.g. domain specific ontologies such as [6].

In Article 19, the company must maintain personal information accurate and up to
date. This article can be written in the following form.

Article 19� �
Situation: retain(x, Personal Information) ∧ change(y, Personal Information)
Obligation: maintain(x, Personal Information)

� �
Similar to the above example, Article 19 can be matched with Req.1 and the analyst
finds that a name and an address can be changed from the verb “change” in the article.
Thus the system has to maintain such changes continuously, and more concretely, the
information on subscribers’ names and addresses stored in the system can be updated
when some subscribers request to update their names or addresses. According to Article
19, Req.1 and a suggestion 1) for obligation in Table 1, the analyst adds the following
requirement.

– (Req.6) The system shall update a name and/or an address of a subscriber whenever
she submits a letter to request the change of her name and/or address.

Note that the analyst refines the word “maintain” to “update” during the addition of this
requirement.

Security control is requested by Article 20 if there can be leakage, loss or damage of
personal data.

Article 20� �
Situation: (handle(x, Personal Information, u) ∧ leak(Personal Information))
∨ (handle(x, Personal Information, u) ∧ loss(Personal Information))
∨ (handle(x, Personal Information, u) ∧ damage(Personal Information))

Obligation: takeSecurityMeasure(x, Personal Information)
� �

Note that its situation part is not a form of logical conjunctive formula, because it in-
cludes ∨. However, we can decompose it to several expressions having ∧ only, and for
simplicity, we keep it as above.

Since Req.1 is matched with the situation part of this article through the verb “han-
dle”, our analyst should consider its application. In Req.6, there is no security measure,
especially an authentication measure, for handling personal information, thus a name
and an address can be maliciously changed. This is a kind of damage or loss of the
name and the address. Therefore, the analyst takes some authentication mechanism into
account, and modifies Req.6 according to Article 20 and a suggestion 3) for obligation
in Table 1 as follows.

– (Req.6’) The system shall update a name and/or an address of a subscriber when-
ever she submits a letter to request its change, and the letter should include her
current registered name, address and a product ID of her receiving set as a kind of
PIN (Personal Identification Number) for authentication.

Supporting the Elicitation of Requirements Compliant with Regulations 239

Requirements for the system version 1: introducing Internet

The company decides to use Internet for managing information of subscribers in addi-
tion to the services in the system version 0. The system version 1 is proposed according
to this decision. The initial requirement for the system version 1 is as follows.

– (Req.7) The system shall get subscriber’s name and address via Internet by the
system.

According to the thesaurus, the verb “get” is a hyponym of “handle”. It is well known
that there is no confidential mechanisms for standard Internet communication, thus the
analyst has to take threats such as leakage, loss or damage into account according to
the Article 20. After the analyst considers the usage of SSL that is a kind of security
measures, she updates Req.7 as follows according to a suggestion 1) for obligation.

– (Req.7’) The system shall get subscriber’s name and address via Internet under SSL
protocol by the system.

In the same way as Req.4 and 6’, the following requirements are added according to
Articles 18, 19 and 20.

– (Req.8) The system shall show the purpose of the usage of their names and ad-
dresses just after receiving them via Internet.

– (Req.9) A subscriber can update her name or address when she submits its change
via Internet using her current registered name, address and a product ID of her
receiving set as a kind of PIN (Personal Identification Number) for authentication.

The analyst has to add a requirement corresponding to Req.5, a requirement for disclo-
sure of current information according to Article 20 and a suggestion 1) for obligation.

– (Req.10) The system shall show a name and an address of a scriber when the sub-
scriber requests the company to disclose them via Internet with her name, address
and product ID of her receiving set.

Requirements for the system version 2: reducing costs

The company becomes worrying about the postal costs related to Req.4 and 5 for the
system version 0, and tries to charge postal fee to the subscribers who do not still use
Internet but postal service. The analyst changes Req.4 and Req.5 as follows, i.e. adding
the function of making an invoice for sending letters.

– (Req.4’) The system shall print a letter to notify subscribers of the purpose of the
usage of their names and addresses and print an invoice.

– (Req.5’) The system can print a letter to disclose a name and an address of a sub-
scriber when the subscriber requests the company to disclose them and print an
invoice.

The words “notify” and “disclose” are matched with the situation part of Article 30,
which specifies the permission of entity’s collecting charges for taking her acts, and the
analysts decides the above two requirements are regulatory compliant.

240 M. Saeki and H. Kaiya

Article 30� �
Situation: notify(x, Purpose of use, y) ∨ disclose(x, Personal Information, y)
Permission: charge(x, notify, y) ∨ charge(x, disclose, y)

� �
Note that Reqs.4 and 5 are linked to Articles 18 and 25 respectively, because these
articles force the analyst to add the requirements. The analyst checks the compliance of
these changes with the Article 18 and 25 and finds their compliance.

Requirements for the system version 3: regional services

The company decides to start regional services based on the address of subscribers. For
example, subscribers living in Texas can receive local TV programs such as local news
in Texas and also advertisement promotion. To achieve this decision, the analyst adds
the following requirement.

– (Req.11) The system can retrieve the address of a receiving set by using its product
ID as a retrieval key.

Note that the company can control all TV receiving sets via Internet or telephone by
specifying each product ID.

In Req.11, the product ID is used to identify the region where the TV receiving set
with the ID is located, in other words, the system handles the product ID for region
query. If our thesaurus has the information that “retrieve” is a hyponym of “handle”,
the analyst can get the matching of Req.11 with the following Article 16.1, providing
that using personal information without any consent is restricted.

Article 16.1� �
Situation:
¬ consent(y, Purpose of use, x) ∧ handle(x, Personal Information, Purpose of use)
Prohibition: handle(x, Personal Information, Purpose of use)

� �
However, no subscribers have had consent to this usage of product ID yet. According to a
suggestion 5) for prohibition in Table 1, the following requirement for getting a consent
from a subscriber is added to satisfy “consent(y, Purpose of use, x)” in Article 16.1.

– (Req.12) The system shall print a letter to get subscriber’s consent about regional
services.

5 Related Work

The techniques to develop information systems and software compliant with regula-
tions are being actively studied. Many of them are the approaches to represent regula-
tions with formal expressions and verify their consistency to formal specifications by
using theorem provers or model checkers. The state of the art of this research direc-
tion and some achievements can be found in [10]. However, it stays in the status where

Supporting the Elicitation of Requirements Compliant with Regulations 241

some regulations were described using formal methods yet. Although formal modeling
methods for regulations can be established, we should solve a scalability problem of
consistency checking for formal specifications and regulations of practical size. On the
other hand, our approach is applicable to cases of practical size because 1) it is an in-
cremental checking of compliance whenever a new requirement is elicited and 2) it is a
lightweight method of semantic analysis using case frames.

In [8], regulations are represented as XML documents and a tool to retrieve the rel-
evant regulation sentences using XML tags has been developed. Although the retrieval
process itself can be automated, the appropriateness of tags for semantic retrieval and
the costs of human efforts for tagging regulations may be problematic. In our approach,
since we use a synonym dictionary and case-frame matching technique to retrieve the
relevant regulation sentences, we can automate the retrieval process in a certain degree
using natural language processing techniques.

Katayama proposed a new discipline called Legal Engineering in [7], where pro-
cesses to compose laws are clarified using software engineering technique and comput-
erized supporting tools to enact laws are developed. Its aim is different from ours, but
since it includes the automated analysis techniques of law sentences, it is very useful to
automate the translation of regulation sentences to case frames.

Anton et. al. developed the semantic representation technique called KTL and pro-
posed a methodology to detect ambiguity included in regulation using KTL [2]. They
constructed by hand the KTL semantic representation of rights and obligation parts of
privacy rules included in the regulation U.S. Health Insurance Portability and Account-
ability Act (HIPAA). Since KTL is essentially the same as hierarchical case frame, we
can use their methodology to compose the case frames of regulations as their seman-
tic representation. Differently from their methodology, our approach uses an automated
text-mining technique to reduce the human efforts.

6 Conclusion and Future Work

This paper proposes a technique to elicit regulation-compliant requirements. In this
technique, we represent the meaning of regulations with case frames, and check seman-
tically the regulations against requirements sentences to detect the missing obligation
acts and the prohibition acts in the requirements. The detection results are shown to an
analyst and how to modify incompliant requirements is suggested.

Our technique for matching requirements sentences to regulation ones uses just word
matching with a synonym dictionary and thus more sophisticated approach may be nec-
essary. For example, we can adopt these techniques to detect the regulation sentences
relevant to the requirements, such as structural similarity predicates [12], similarity
measure based on word occurrences [3] and the algorithm to detect overlaps between
specifications [13].

The future work can be listed up as follows.

1. Elaborating the supporting tool and its assessment by case studies,
2. Considering semantic interdependency relationships among the requirements in a

requirements document,
3. Handling with the integration of multiple regulations,

242 M. Saeki and H. Kaiya

4. Combining tightly our approach to requirements elicitation methods such as goal-
oriented analysis and scenario analysis,

5. Managing the requirements that have the potentials for being incompliant with reg-
ulations and developing metrics of measuring compliance,

6. Managing evolution processes of requirements together with version control.

Acknowledgements

The authors are very grateful to anonymous reviewers for their valuable comments in
order to improve the earlier version of this paper.

References

1. Act on the protection of personal information (2003),
http://www5.cao.go.jp/seikatsu/kojin/foreign/act.pdf

2. Breaux, T., Vail, M., Anton, A.: Towards Regulatory Compliance: Extracting Rights and
Obligations to Align Requirements with Regulations. In: Proc. of 14th IEEE International
Requirements Engineering Conference, pp. 49–58 (2006)

3. och Dag, J., Regnell, B., Carlshamre, P., Andersson, M., Karlsson, J.: Evaluating Automated
Support for Requirements Similarity Analysis in Market-Driven Development. In: Proc. of
REFSQ 2001 (2001)

4. Eckoff, T., Sundby, N.: RECHTSSYSTEME (1997)
5. Fillmore, C.: The Case for Case. Rinhehart and Winston, Holt (1968)
6. Kaiya, H., Saeki, M.: Using domain ontology as domain knowledge for requirements elicita-

tion. In: Proc. of 14th IEEE International Requirements Engineering Conference (RE 2006),
pp. 189–198 (2006)

7. Katayama, T.: Legal Engineering – An Engineering Approach to Laws in E-Society Age. In:
Proc. of 1st Workshop on JURISIN (2007)

8. Kerrigan, S., Lawa, K.H.: Logic-based Regulation Compliance-Assistance. In: Proc. of 9th
International Conference on AI and Law, pp. 126–135 (2003)

9. Kitamura, M., Hasegawa, R., Kaiya, H., Saeki, M.: An Integrated Tool for Supporting Ontol-
ogy Driven Requirements Elicitation. In: Proc. of 2nd International Conference on Software
and Data Technologies (ICSOFT 2007), pp. 73–80 (2007)

10. Laleau, R., Lemoine, M. (eds.): International Workshop on Regulations Modelling and Their
Validation and Verification (REMO2V), CAiSE2006 Workshop (2006)

11. Rolland, C., Proix, C.: A Natural Language Approach for Requirements Engineering. In:
Loucopoulos, P. (ed.) CAiSE 1992. LNCS, vol. 593, pp. 257–277. Springer, Heidelberg
(1992)

12. Salinesi, C., Etien, A., Zoukar, I.: A Systematic Approach to Express IS Evolution Require-
ments Using Gap Modelling and Similarity Modelling Techniques. In: Persson, A., Stirna, J.
(eds.) CAiSE 2004. LNCS, vol. 3084, pp. 338–352. Springer, Heidelberg (2004)

13. Spanoudakis, G., Finkelstein, A., Till, D.: Overlaps in Requirements Engineering. Automated
Software Engineering 6(2), 171–198 (1999)

14. Watahiki, K., Saeki, M.: Scenario Patterns based on Case Grammar Approach. In: Proc. of
5th IEEE International Symposium on Requirements Engieenring (RE 2001), pp. 300–301
(2001)

15. Zhang, H.H., Ohnishi, A.: A Transformation Method of Scenarios from Different View-
points. In: Proc. of 11th Asia-Pacific Software Engineering Conference (APSEC 2004), pp.
492–501 (2004)

http://www5.cao.go.jp/seikatsu/kojin/foreign/act.pdf

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 243–257, 2008.
© Springer-Verlag Berlin Heidelberg 2008

On the Impact of Evolving Requirements-Architecture
Dependencies: An Exploratory Study

Safoora Shakil Khan, Phil Greenwood, Alessandro Garcia, and Awais Rashid

Lancaster University, UK
{shakilkh,greenwop,garciaa,marash}@comp.lancs.ac.uk

Abstract. Architecture design plays a significant role in the evolution of
software systems, as it provides the prime realization of the driving
requirements and their inter-dependencies. With the increasing volatility of
software requirements nowadays, it is necessary to understand the correlation
between evolving classical requirements dependencies and their impact on the
architectural decomposition. In the context of this analysis, two questions arise:
(i) what are the conventional categories of requirements dependencies that are
more architecturally significant in terms of change impact? and (ii) to what
extent those evolving dependencies tend to generate ripple effects through
architectural modules and interfaces. In order to address these two questions,
this paper first presents an analysis model that categorizes requirements
dependencies. Second, we have performed an exploratory study, based on the
change history analysis of a real-life Web-based information system, in order to
gather the most architecturally-significant requirements dependencies from our
model. We have systematically analyzed ten system releases, based on some
qualitative and quantitative indicators, with respect to how the requirements-
architecture dependencies and compositions evolved.

Keywords: Dependency analysis, traceability, software architecture, change
impact analysis.

1 Introduction

Software architecture of information systems is the pivotal realization of requirements
and their inter-dependencies as it encompasses the driving design decisions in order to
satisfy stakeholders’ needs [19]. Software architectures are often decomposed into a
set of modules (components) and interfaces, typically designed for future evolution in
order to avoid that the system succumbs in the presence of changes [19][20]. Thus,
architectural design forms the backbone of the target system, and frequent non-
systematic modifications to requirements dependencies can make the architecture
fragile and cause short-term design degeneration [15][16][17]. As a result, software
architects often need to understand, predict and trace the impact of evolving
requirements dependencies on architectural designs [1][2][3].

However, there is not much empirical knowledge on the influence of different
categories of changing requirements on architecture elements [1][2][3] so that
designers can forecast change impact. As a result, they cannot thereafter effectively

244 S. Shakil Khan et al.

trace key problem-solution dependencies. Not surprisingly, requirements-architecture
traceability and change impact analysis techniques are still in its infancy and limited
support is provided to software architects. There is a growing body of traceability
techniques emerging in the literature [15][16][17][22], but they do not provide an
adequate end-to-end tracing between categories of requirements dependencies and
architectural elements. Most of these approaches are based on mapping requirements
to architecture using trace matrix or trace graph [24][25]. There are a few approaches
[2][5][6][8][9] that focus on characterizing requirements dependencies but these
approaches have not been extended to cope with evolving requirements-architecture
relations. Most empirical studies in the literature focus on characterizing architectural
changes [18], keeping architecture and implementation in synchronization [15][17]
[22], or supporting change impact analysis on implementation artifacts [23].

This paper presents a first exploratory study in order to identify the potential
factors associated with evolving requirements dependencies and their corresponding
effects or architectural changes. In order to be able to perform the investigation, we
have defined a requirements dependency model (Section 2); we also discuss how each
category of requirements dependency is likely to affect the architectural
decomposition in the presence of change to it. The dependency model is based on a
systematic analysis of classical requirements engineering techniques [1][2][3][5]. In a
second step, we have undergone a set of experimental procedures (Section 3) in order
to analyze the impact of evolving requirements dependencies and architecture
changes through the releases of a real-life Web-based information system called
Health Watcher (HW). The goal of the analysis was to characterize (Section 4):

(i) how the nature of requirements dependencies can lead to tight or loose
 interconnections with architectural elements;
(ii) the most architecturally-significant requirements dependencies; and
(iii) how the requirements dependencies tend to evolve in a typical Web-based
 information system.

Our analysis was based on qualitative and quantitative indicators. Classical change
impact metrics have also been used to quantify the requirements and architecture co-
relations. We also contrast our findings with related work (Section 5), and provide
some concluding remarks (Section 6).

2 From Requirements to Architecture: A Dependency Model

This section presents a dependency model that provides support to software analysts
to understand how the requirements are being realized to the architecture components
and their compositions. This model assists a number of software evolution tasks, such
as: (i) the identification of dependencies that lead to tight or loose interconnections
among requirements elements and architectural decompositions, and (ii) basic support
for understanding significant architecture implications from the perspective of
requirements changes. We have defined a dependency taxonomy based on a
systematic analysis of conventional requirements engineering approaches [7][14]. The
analyst must keep in mind that more than one dependency can hold between

 On the Impact of Evolving Requirements-Architecture Dependencies 245

requirements to architecture and it may be rare that individual dependency exist due
to requirements characteristics. We have discussed six types of dependencies from
our dependency model:

Goal Dependency. Goal dependency relates system’s quality attributes at problem
domain to their realization in solution domain (architecture and implementation). This
dependency has been adapted from the conventional goal-oriented requirements
engineering approaches [1][2][3] that define characteristics of systems. Dependency
relates to requirements specifying quality of service (security, availability, performance,
etc) and development (compatibility, adaptability, interoperability, etc) to component at
architecture level. Consider the requirement ‘system must be flexible in terms of the
storage format [4]’, i.e., to enhance variability and provide the user with the multiple
options of storing data, such as arrays or different databases. This requirement will be
linked to component providing persistence at the architecture level as it defines the
objective of the system under construction.

Service Dependency. Service dependency relates the requirements expressing
behavioral or functional characteristics of the system to corresponding operations and
functions at architecture. The trace connection among requirements-level operations
to architecture will usually be intricate or fine grained, as it will relate to classes,
operations, or interfaces at the architecture level. A service dependency may coexist
with goal, conditional, temporal, etc., dependency as it provides operation to perform
when certain goal or condition is met. Consider the requirement ‘...system provides
user with the queried data …’ [4], forms a service dependency with architecture.
Operation for searching and retrieving the requested data of a particular query type is
invoked at architecture level.

Conditional Dependency. Conditional dependency defines events that trigger
services, processes, and tasks based on certain conditions, constraints, or decisions
taken at the requirements level to their realization at the architectural level. The
triggering can be autonomous or non-autonomous reaction to a condition, constraints,
or decisions, for example, when smoke is detected the autonomous reaction of the
system is to open the doors. This dependency has been inspired from programming
and Meyer [26] ‘Design by Contract’. Consider the requirement ‘employee can make
changes to when authenticated by the system as an employee [4]’. This requirement
has conditional and service dependency with components of the architecture. The
conditional dependency exists as the employee will not be granted access to perform
restricted operations unless they have been verified as a valid employee.

Temporal Dependency. Temporal dependency relates requirements specifying time
frame of an event to occur, processes to complete, or condition to hold true, to their
realization at architecture. Temporal dependencies manifest often in requirements
associated with real-time systems and distributed systems. Temporal dependency is
closely related to conditional dependency and may usually co-exist. Consider the
requirement ‘terminate user’s request if system does not respond within 5 seconds
[4]’, has temporal and conditional dependency with the architecture. The
dependencies hold as condition needs to be true within the specified time frame for
the system to proceed further.

246 S. Shakil Khan et al.

Task Dependency. Task dependency traces the connection between artifacts which
require response, input, or feedback from user for their completion. Task dependency
forms a medium between user and system, allowing user to request for systems
services. Consider the requirement ‘employee chooses one of the given options
(review, update, delete)’ has task dependency as the system needs users input to
invoke the corresponding service based on users request. The common notion
between conditional and task dependency is that systems halts for response. The
distinguishing notion between the two dependencies is that conditional dependency
depends on input, response or feedback from other operations/services in the system.
Retrospectively, a task dependency depends on input, response or feedback from user.

Infrastructure Dependency. Infrastructure defines the hardware and software of
system. Infrastructure dependency relates the resources, infrastructures (networks,
telecommunications, mobile, etc.), technical standard/details, and compatibility issues
specified in stakeholder’s requirement to the architecture conception/construction.
This dependency has been adapted from Ramesh and Jarke [8] resource dependency
and Grady [9] implementation requirements. Consider the requirement, ‘application
should be accessible via internet’ , it has infrastructure dependency with architecture
components as .the Web service is implemented using servlets.

3 Case Study and Evaluation Procedures

This section describes in detail the requirements and architectural characteristics of
the application used in our exploratory study (Sections 3.1), and the evaluation and
analysis procedures (Sections 4.1 to 4.2). Health Watcher (HW) [10][11][12] is a
typical Web information system and a real-life application that was chosen to support
the empirical analysis in our exploratory study. The reason for selecting the HW case
study is threefold. First, a rich set of HW artifacts and their releases were made
available. For instance, for the analysis we have requirements specification (available
from [13]), both use case descriptions and goal models. The architecture design is
specified according to two fundamental architectural views, the module and
component-connector views. Also, deployment-related decisions are embedded in
these views. As a result, these requirements and architecture artifacts (Sections 3.1)
capture respectively a rich, complementary set of requirements-architecture
dependencies according to our model (Section 2).

Second, the original HW implementation and its ten releases [4] are available in
three programming languages, Java, AspectJ, and CaesarJ. As a consequence, HW
architecture is basically realized according to two architectural designs: a layered OO
version and a layered AO version. None of these artifacts have been specially
prepared or modified for our exploratory study, which in turn makes the analyzed
base of changes more representative from realistic software maintenance scenarios.
Third, this application has been used for implementation-level maintenance analyses
[10][11][12] allowing us to correlate our findings with their results. Finally, in the
investigation reported in [10], additional changes were applied to the HW application
leading to ten implementation releases.

The study is divided as follows: (i) definition of change metrics (section 3.3), (ii)
identification of requirements to architecture dependencies (section 4.1), (iii)

 On the Impact of Evolving Requirements-Architecture Dependencies 247

application of change scenarios to assess change impact (architectural models and
code are visited) and measure change propagation to identify the architecture-level
changes in terms of classes, interfaces and compositions (section 4.2), and (iv)
analysis of the assessments in order to identify the architecturally-significant
dependencies (section 4.3) in the presence of changes.

3.1 Health Watcher Requirements and Architecture

The Health Watcher application is a Web-based information system which allows
online access to register complaints, read health notices, and query regarding health
issues. Employees can record, update, delete, print, search, change the records stored
in the HW repository (in form of tables) after being authenticated as HW employee,
i.e., by providing correct login name and password. Citizen can register complaints
that system registers in the repository and generates a complaint code. The initial
version of the HW system lacked flexibility and incapability to support generic Web
applications as it was bound to specialized Web services. Also, the initial version
provided limited functionality for a limited set of data, for example the system only
allowed to query and update health units and complaints.

Fig.1. Module view of the Health Watcher system [10]

248 S. Shakil Khan et al.

We have analyzed both OO and AO architectures of the HW system. The AO
architecture modularizes concurrency, distribution, and persistence as aspects. Due to
space limitation, our description focuses on the OO architectural design; detailed
discussion about the AO architecture version is available at multiple sources
[4][10][14][21]. Figure 1 shows the module view of the OO version for the HW
system [10] that realizes the layered architectural style. It comprises of four layers:
view, distribution, business, and data. Citizens access Web pages to query and/or
register complaints. Multiple users can access the HW system simultaneously through
Java Servlets, captured by the view layer (Figure 1), which decomposes into two main
modules HWServlet and OpServlets. The Distribution module provides the
interface IFacade to enable the access the HW services implemented in Business
layer. The latter comprises of a number of modules, such as: HealthUnitRecord,
SpecialtyRecord, ComplaintRecord, EmployeeRecord, and Symptom

Record. Each of these modules is invoked for specific operations requested by
citizen/employee. For example, if the citizen has requested to query a health unit then
IFacade provides access to business layer module HealthUnitRecord which
accesses the HW database HealthUnitRep using interface IHealthUnitRep. A
complete description of the HW architecture and implementation is available
elsewhere [4][10][11][12]. Figure 1 also represents the implemented change
scenarios. In particular, it points out the impacted modules for each scenario, which
are sub-scripted by change type and scenario number.

3.2 Change Metrics

Our quantitative assessment is based on a metrics suite to identify propagation of
requirements change on the elements of the OO and AO architecture design. The
architectural views, the module and component-connector views consists of
module/components that have class(es), operation(s), and port(s)/interface(s). The
metrics will give quantitative values to analyze the dependency from perspective of
change and architectural significance. The quantitative metrics to access change at
architecture level are:

Concentration (C): It measures requirements dependency to the architecture
components and their composition. Set of requirements may trace to a layer or more
than one layer comprising of components. In the AO architecture version an aspect
will be treated as a layer. The lowest value of C is one, which is also an indicator that
the change will be occurring at intra-level, i.e., only affecting a layer. The highest
value of C is the total number of layers in the architecture design, which is also an
indicator that the change may cause ripple effect in the architecture.

Dispersion (D): It measures the percentage of components impacted by change in a
layer or multiple layers. In equation 1, Ec: is number of effected classes, operations,
and interfaces in architecture due to change and Tc: is the total number of components
in a layer.

We will calculate D for each layer and then take an average. For example, if change is
concentrated (C) in two layers, then D will individually calculated for each layer and

(1)

 On the Impact of Evolving Requirements-Architecture Dependencies 249

then an average will be taken to calculate the final value of D. If dispersion
percentage is lower than 25% (1/4) it may be considered as a mild dispersion. If inter-
component dispersion percentage is greater than 33% (1/3), even if change is
concentrated in a layer it is considered severe.

Inclusion (I): It measures the number of components added when change is
incorporated. It is not mandatory that each change introduces a new component,
therefore, I can be 0 or any number of components added.

4 Empirical Results and Constraints

This section reports the evaluation outcomes and discussion, based on a systematic
analysis of the nine change scenarios implemented in Java and AspectJ, which has led
to ten releases for the HW architecture (Section 3.1).

4.1 Requirements-Architecture Dependency Analysis

This section provides a summary of requirements-architecture dependency analysis
for HW using the model described in Section 2. This analysis involved the trace of the
requirements to their module and composition counterparts in the architectural
models. Figure 2 shows a representative set of examples on dependencies that are
likely to exist from the HW requirements elements to the architecture components and
their compositions. A few of requirements have been shortened due to space
limitations:

R1 to R5 form goal and infrastructure dependencies with architecture layers of HW
system. For example, R2 have goal and infrastructure dependencies as one of a few
goals of health watcher is ease of access (i.e., available online) and usability, which are
satisfied by implementing health watcher as a Web-based online application and
servlet for GUI. R6, R7, and R9 have task dependency with view layer as user interacts
with the system providing input or feedback to system to proceed further.

R8 forms service dependency with business and data layer. Service dependency
holds as health watcher performs operations to store information entered by the user,
parse the data entered by the user, creates a new instance of the appropriate complaint
type, generates a unique identifier and assigns this to the new complaint, complainers
address is parsed and saved.

R13 forms service dependency with business and data layer as searchComplaint
(int code)and search(String login) classes are invoked to list the
complaints and employees to be updated of HW system. R11 forms conditional and
service dependencies because user can not access the restricted operations: update and
register unless system verifies (user’s login and password) them as valid user.

R15 and R16 are representative example of a few errors occurrence during the
operation of the HW system. Error handling has service and conditional dependencies
with view, distribution, business, and data layer, depending where the error occurred.
Distribution, persistence, and concurrency are modularized as aspects in the AO
architecture. Therefore, the requirements which did not have explicit trace
dependency for OO version form dependencies in AO architecture design. R20 forms
service and conditional dependency with concurrency component (HWManagedSync

250 S. Shakil Khan et al.

and HWTimeStamp). Timestamp provides functionality to avoid data inconsistency
by applying timestamp field on the most recently modified data, storing it in the
persistence mechanism.

Fig. 2. Functional and non-functional requirements of Health Watcher system [13][14]

4.2 Evolving Dependencies’ Impact on the Architecture

Our findings report how changing requirements dependencies (Section 4.1) tend to
entail four categories of architecture-level changes, namely: adaptive restructuring,
perfective modifications, incremental changes, and behavioral modifications. The
analysis was guided by using an existing categorization of architectural modifications
in the OO and AO module view [18]. This reference model systematically
characterizes both the level of impact and severity of each type of architectural change.
However, it provides an investigation on the correlation of requirements dependencies
and architecture change categories, which is the key aim of our analysis.

Adaptive Restructuring of Layers. There were two change scenarios that implied
adaptive restructurings. First, change scenario 1, involved restructuring of HW
software to provide extensibility by separating servlets and promote GUI decoupling.
This scenario evolved goal and infrastructure dependencies of R2 to service
dependency with view layer. The changes only spanned over the inner architectural
elements of the view layer. On the other hand, there was an evidence of high change
dispersion (Table 1) as there were changes in HWServlet and the removal of

Requirements Dependency Architecture
R1: System should be an online Web-based service Goal & Infrast. View
R2: System should have an easy to use GUI Goal & Infrast. View
R3: System must provide flexible storage mechanism Goal & Infrast. Business & Data
R4: System should be capable of running on separate machines Goal & Infrast. Distribution
R5: System must be able to handle 20 simultaneous users Goal & Infrast. Distribution
R6: … to register complaint citizen choose a complaint type:
animal, food, or special

Task View

R7: …user provides complaint details, place, and date/time Task View
R8: …complaint is stored on the server assigning an identification
number to each stored complaint

Service Business & Data

R9: … to query any information user selects query type: healthunit,
specialty, or complaint

Task View

R10: … based on selection of query type system retrieves the list Service Business & Data
R11: … to access restricted operations employee verifies
themselves

Conditional &
Service

View, Business &
Data

R12: … verified employee selects healthunit, specialty, or
complaint to update

Conditional &
Task

View

R13: For particular selection: healthunit, specialty, complaint data
is retrieved

Service Business & Data

R14: updates for healthunit, specialty, or complaint are stored at
server

Service Business & Data

R15: … raise error message if invalid data is entered Cond. & Service View
R16: … if the system does not respond in 5sec raise an exception Temp., Cond., &

Service
View &

Distribution

 On the Impact of Evolving Requirements-Architecture Dependencies 251

OpServlets in view layer. This also led to the inclusion (I) of two components
Command and OpCommand in view layer of the OO architecture.

Second, change scenario 5 led to deployment restructuring of the persistence
mechanism in order to allow data storage in memory or database repository. Goal and
infrastructure dependencies of R3 with business and data layer evolved to goal,
conditional, and infrastructure dependencies in OO architecture, whereas in AO
architecture goal, conditional, and infrastructure dependencies are formed with
persistence (an aspectual component) and data layer. The reason for conditional
dependency to emerge is because the change scenario has introduced a strategic
design choice that altered the architecture design based on storage mechanism chosen
at deployment time.

Table 1. Change scenarios and change assessment

Assessment of
Impacted

Architecture

 Description Type of
Change

Evolving Req.
dependencies

OO/AO C D I
OO 1 50% 2 1 Restructure Web based health

watcher system to improve
extensibility

Adaptive Goal and
Infrastructure AO 2 50% 1

Services OO 1 25% 1 2 Disable multiple updates once
complaint state is CLOSED

Corrective
Conditional and

Service
AO 1 25% 1

Service OO 1 28% - 3 Improve maintainability by
disassociating Update
functionality from HW
functions: health unit,

specialty, and complaint

Perfective
Conditional and

Service
AO 1 33% 1

OO 2 39% - 4 HW system should support use
of different distribution

configurations

Perfective Goal and
Infrastructure AO - - -

OO 2 22% 1 5 System must flexible in term of
data storage

Adaptive Goal and
Infrastructure AO 2 33% 1

OO 1 33% - 6 Ease the process of adding GUI Perfective Service
AO 1 33% -
OO 1 22% 1 7 Generalize distribution

mechanism
Perfective Goal and

Infrastructure AO - - -
Service OO 3 83% 3 8 Provide functionality to query

more data types: symptoms and
disease

Perfective
Conditional and

Service
AO 6 50% -

OO 3 54% - 9 Modularize error handling
strategies and provide better
error recovery mechanisms

Perfective Conditional and
Service AO 4 57% 1

Perfective Modifications of Pivotal Architectural Services. Change scenario 3 is a
perfective change modularizing update function, decoupling it from the rest of HW
system, such as the disassociation of the health unit, specialty, and complaint entities
in business layer. The set of requirement had service dependency with business layer
and data layer. Change is concentrated in business layer with a dispersion of 28%,
decoupling update functionality from HealthWatcherFacade, Employee,
HealthUnit, and Complaint components in business layer. For the AO

252 S. Shakil Khan et al.

architecture, update function formed service and conditional dependencies with
concurrency (aspect) and business layer. The reason to form dependencies with
concurrency (aspect) is to achieve synchronization and maintain data consistency,
which is achieved by applying timestamp field to the retrieved/updated complaint,
health unit, and specialty data.

Change scenario 9, modularizes error and exception handling, decoupling it from
the rest of the health watcher system. Similarly, change scenario 4 performs a
perfective change as it modularizes the distribution mechanism, decoupling it from
the rest of the health watcher system for OO architecture in order to facilitate
deployment of different distribution configurations. But change scenario 4 is not
applicable as distribution mechanism was modularized as an aspect in the initial AO
architecture design.

Incremental Change of Component Interfaces. Change scenario 6 is an increment
of release 2 that implements change scenario 1. It generalizes the request and
response servlet parameters to enable inclusion of new operations and GUI. R2
entails service dependency to the view layer. Dependency remains unchanged due to
the perfective nature of the modifications. Change is concentrated on the view layer
with change dispersion lower than of change scenario 1 as it impacts a few operations
in component interfaces within the view layer.

Change Scenario 7 is an increment of release 5 which implements change scenario 4.
Incorporated change allows number of different distribution mechanisms to be
configured for multiple servlets. Change is concentrated on the business layer of OO
architecture with change dispersion lower than of release 5 (change scenario 4). Change
scenario 7 has no effect/applicable as distribution mechanism was modularized as an
aspect in the initial design of AO architecture.

Behavioral Modifications. Change scenarios 2, 8, and 9 modified/changed the
intended behavior of system functions. Change scenario 2 refined the update
complaint functionality, by allowing the complaint status to be set to close once
complaint had been modified by employee. R14 implied on a service dependency with
business and data layers for OO architecture, in AO architecture it formed service and
conditional dependencies with concurrency (aspect) and business layer. For AO
architecture the dependencies remained the same, whereas for OO architecture the
dependency evolved to conditional and service dependencies, as every time a
complaint is requested for update its status was checked. From the architectural
perspective, a few operations in classes of Complaint component underwent some
impact. In fact, the dispersion percentage was relatively low, i.e. 25%. The change has
also encompassed the introduction of State component in business layer of OO and
AO architecture.

The initial version of HW system only provided the option to query the health unit,
complaint, and specialty. New functionality and querying options are provided with
respect to the symptoms and diseases entities in scenario 8. Querying functionality had
service dependency with business layer in OO architecture. Interestingly, the change has
propagated to 3 layers and rippled through the system. The change added
SymptomRecord class which formed service dependency with business layer and
SymptomRep class which formed goal and infrastructure dependencies with data layer of
OO architecture. While, querying functionality forms service and conditional

 On the Impact of Evolving Requirements-Architecture Dependencies 253

dependencies with concurrency (aspect), persistence (aspect), and business layer of AO
architecture. Change to query behaviour impact 6 layers and added observer pattern.
SymptomRecord and SymptomRepositoryRDB classes were added in AO architecture.

Scenario 9 comprises of two architecture-level changes: a) perfective and b)
behavioral. The changes in scenario 9 had been incorporated in parallel therefore they
were not considered under the incremental change category. The change introduced
new exceptions that were not in the initial intended OO and AO architecture
design: CommunicationException, SQLPersistenceMechanismException,
and RepositoryException.

4.3 On the Architecturally-Significant Dependencies

This section discusses some findings on which types of changing requirements
dependencies (Section 2) are likely to have widely-scoped, moderate or localized
impact at the architecture design. The previous quantitative and qualitative analysis
(Section 4.1) are used as the basis.

Architectural Pull. An analysis of Table 1, externalizes the fact that dependencies
are orthogonal in nature (Section 2) and it is impossible to have strict separation
between the dependencies due to nature of requirements. These dependencies may
form weak or strong interconnection with the architecture elements, which we refer to
as architecture pull. The dependencies pull the architecture in various directions
which may provide an insight of dominant dependencies at architectural level from
perspective of change, as discussed below.

Dominant Dependency for a Particular Type of Change. The orthogonal nature of
dependencies raises some questions: how coexisting dependencies evolve? which
dependency has dominant impact during change? does the impact degree of a
dependency category vary based on heterogeneous change types?

Table 1, shows goal and infrastructure dependencies co-existed, they were impacted
by adaptive change (scenario 1 and 5). The adaptive modifications led to high
dispersion of architecture-level change. It is well understood that a goal dependency is
significant at architecture level [1] but for the specific change infrastructure dependency
was dominant as the changes were focused on the software architecture being adapted to
new standards/techniques in order to improve both server and client performance and
this change did not cause the system to deviate from its original design and objectives
and, as a result, the goal dependency was of limited impact. Change in goal dependency
may lead to significant changes as the system’s objectives are changed which will lead
to degeneration of architecture design.

According to Table 1, usability and service dependencies (scenario 6) were
affected by perfective change. For the specific change scenario usability dependency
played a minimum role in the architectural modifications, the dominant dependency
was service dependency as it refined the operations provided by system. Based on the
assumption of corrective change in scenario 2, dependencies might have equal
importance and may not be dominant over the other from perspective of change.

Many requirements formed conditional and service dependencies with OO and AO
architecture, as seen in Table 1. In our analysis, we observed that service dependency
led to high dispersion when it involved changes in system functionality/behavior. We

254 S. Shakil Khan et al.

have noticed the similar trend for the service dependency co-existing with conditional
dependency. Conditional dependency captures the behavior and structure in form of
architectural design choices, decisions, and constraints, which form core of the
architecture, which are implied on number of architectural elements. When
architectural decisions and/or choices change it may lead to addition of new structure
or behavior in the architecture causing a break down, degradation, or enhancement in
the architecture. Therefore a conditional dependency plays a dominant role and
qualifies as a significant dependency when it co-exists with service dependency as all
the dependant process or services are checked to see if they satisfy the new condition,
decision, or constraint.

Independent Dependencies. Up to this point, we have discussed the orthogonal or
overlapping dependencies. Now the question arises: if it is possible for dependencies
to exist independently. A careful analysis of the outcomes in section 4.1and 4.2 makes
it evident that goal dependency is unlikely to exist independently. Goal dependency
defines the system objectives or quality attributes that are achieved by operations,
services, software, and technical infrastructure, which have clear realization at
architecture.

Dependencies with Minimum Architectural Impact. From analysis of the change
scenarios we identified dependencies that are least likely to impact the architecture.
The least significant dependency is task dependency. As task dependency facilitates
user’s interaction with the system through a medium (e.g., Web-browser, command
prompt, etc.). Even if the backend software is enhanced/ modified (as in scenario 1)
or service is modified/added (scenario 6) the front end remains the same, i.e., a Web
browser. Based on scenario 1, if the GUI is changed, i.e., addition of radio buttons,
drop down list, or check boxes, it will not introduce any change at architecture level,
but at code level.

4.4 Study Constraints

Even though this study fully satisfies our initial goal of providing a first empirical
investigation on the impact of evolving requirements dependencies on architectural
changes, our procedures have some limitations. These limitations will contribute to
further explorations using other experimental procedures and systems as targets.

Our analysis concentrates on the change history of one software system providing a
single point of observation. Our target case study is a representative choice of Web-
based information systems for several reasons: the HW realizes n-tier architecture that
is one of the most common design alternatives implemented by deployed Web
systems [10][21], HW functional and non-functional requirements are consistently
part of applications in this specific domain, changes are heterogeneous and
representative of real change requests within software projects from this nature. More
importantly, the design of the HW system realizes the best design practices [4] and
have being systematically being enhanced through the years [10]. It provides evidence
that the requirements-architecture co-changes are not merely a matter of lack of
systematic design choices.

Of course, strong conclusion can not be drawn by analyzing a single system as
dependencies may (or may not) vary depending based on web-based information

 On the Impact of Evolving Requirements-Architecture Dependencies 255

system’s quality attributes. For example, an online banking system has security and
privacy as its key quality attributes. Similarly an online comparison system has
completeness and correctness as its quality attributes, b) we analyze a single
architectural view, therefore, we are unsure of the dependencies that may exist for
other views, how the architecture will be affected, on incorporating change and will
similar set of dependencies be architecturally significant, and c) we only focused on
analyzing the dependencies that evolved due to incorporated change scenarios. This
does not give us a clear idea on change impact on other dependencies.

5 Related Work

A few conventional requirements modeling languages and methodologies [1][2][3]
explicitly attempt to support a more straightforward derivation of architecture designs.
They rely on the provision of means to enable the requirements engineers to reason
about the system goals and how they are operationalized in terms of architectural
elements. However, the sole use of these approaches is not sufficient to estimate the
impact of requirements changes on the derived architectures. Requirements change is
inevitable and incorporating these changes involve: huge cost and effort, risk of
architecture degeneration, and undesirable system deviation from its original design.

One way to assess effect of change is to apply impact analysis techniques. There
are many code-level change impact analysis approaches, but a scarcity of impact
analysis support targeted at architectural evolution. Only a few authors [15][16][17]
define impact analysis techniques for architecture designs, but their focus is restricted
to the scope of architecture-level changes. They are oblivious to the way changes to
the requirements and their inter-dependencies impact architectural decompositions.
As a consequence, it makes it difficult to architects to estimate how specific change
requests on requirements will affect the architecture elements. For understanding
impact of requirements evolution on architecture it is fundamental to understand the
trace dependencies that may hold between entities of the two artifacts.

Ramesh and Jarke [8] defined requirements trace dependencies: goal, task,
resource, and temporal for trace managing requirements on the basis of nature of
dependency. Grady [9] took a step further to define architectural requirements by
defining design, implementation, interface, and physical requirements, which only
provide a mechanism to analyze how these requirements are realized at architecture.
William and Carver [18] characterized architectural change and specified their affect
on logical and runtime architectural structure. Inspiring from works of Ramesh and
Jarke [8], Chung et. al. [2], William and Carver [18], and Grady [9] we have defined
requirements to architecture dependency model to predict impact of requirements
change based on dependencies and change type (corrective, adaptive, and perfective)
on architecture. This has help predict change impact of dependencies and identify
architecturally significant dependencies.

6 Conclusion and Future Work

This paper presents the outcomes of an exploratory study aimed at assessing the
impact of typical changes in requirements dependencies on architecture design. From

256 S. Shakil Khan et al.

our exploratory study we have externalized the fact that requirement dependencies are
often orthogonal in nature and, in many cases, there is no strict separation between the
dependencies. We have analyzed how co-existing dependencies evolve, which
dependencies have dominant impact during change and led to different “architectural
pulls”. Our study has shown that evolution of co-existing conditional and services
dependencies is architecturally significant as for evolving service dependency it needs
to be checked if the corresponding condition, constraints, and decision are satisfied or
for evolving conditional dependency it needs to be checked if the process or services
correspond to the condition. Similarly, co-existing goal and infrastructure
dependencies are architecturally significant as change to system objectives may lead
to architectural degeneration. Strong conclusion can not be drawn by analyzing a
single system as dependencies may (or may not) vary depending based on Web-based
information system’s quality attributes. In order to validate our dependency model
and identify other architecturally-significant dependencies, other studies should
further analyze applications from different domains.

Acknowledgements. This work was partially supported by the European Commission
grant IST-33710 - Aspect-Oriented, Model-Driven Product Line Engineering
(AMPLE), and the TAO project, funded by Lancaster University Research Committee.

References

1. van Lamsweerde, A.: From System Goals to Software Architecture. In: Bernardo, M.,
Inverardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp. 25–43. Springer, Heidelberg (2003)

2. Chung, L., Nixon, A.B., Yu, E., Mylopoulous, J.: Non-functional Requirements in
Software Engineering. Kluwer Academic Publishing, Dordrecht (1999)

3. Herold, S., et al.: Towards Bridging the Gap between Goal-Oriented Requirements
Engineering and Compositional Architecture Development. In: SHARK-ADI 2007 (2007)

4. Greenwood, P., et al.: Aspect Interaction and Design Stability: An Empirical Study (2007),
http://www.comp.lancs.ac.uk/computing/users/greenwop/ecoop07

5. Jacobson, I., Chirsterson, M., Jonsson, P., Overgaard, G.: Object-Oriented Software
Engineering: A Use Case Driven Approach, 4th edn. Addison-Wesley, Reading (1992)

6. Chitchyan, R., et al.: Semantics-based Composition for Aspect-Oriented Requirements
Engineering. In: AOSD 2007, Vancouver, Canada, pp. 36–48 (2007)

7. Chitchyan, R., et al.: Survey of Aspect-Oriented Analysis and Design. AOSD-Europe
Project Deliverable No: AOSD-Europe-ULANC-9

8. Ramesh, B., Jarke, M.: Towards Reference Models for Requirements Traceability. IEEE
Transactions on Software Engineering 27(1) (January 2001)

9. Grady, R.: Practical Software Metrics for Project Management and Process Improvement.
Prentice-Hall, Englewood Cliffs (1992)

10. Greenwood, P., et al.: On the Impact of Aspectual Decompositions on Design Stability: An
Empirical Study. In: Ernst, E. (ed.) ECOOP 2007. LNCS, vol. 4609, pp. 176–200.
Springer, Heidelberg (2007)

11. Sant’Anna, C., et al.: On the Modularity of Software Architectures: A Concern-Driven
Measurement Framework. In: Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758, pp. 207–
224. Springer, Heidelberg (2007)

 On the Impact of Evolving Requirements-Architecture Dependencies 257

12. Cacho, N., et al.: Composing Design Patterns: A Scalability Study of Aspect-Oriented
Programming. In: AOSD 2006, pp. 109–121 (2006)

13. TAO: A testbed for Aspect Oriented Software Development (2007),
http://www.comp.lancs.ac.uk/~greenwop/tao/

14. Khan, S.S., et al.: Material for On the Impact of Evolving Requirements-Architecture
Dependencies: An Exploratory Study (2007),
http://www.comp.lancs.ac.uk/~shakilkh/caise08

15. Feng, T., Maletic, I.J.: Applying Dynamic Change Impact Analysis in Component-based
Architecture Design. In: 7th ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2006)
(2006)

16. Riebisch, M., Wohlfarth, S.: Introducing Impact Analysis for Architectural Decisions. In:
ECBS 2007, pp. 381–392 (2007)

17. Zhao, J., et al.: Change Impact Analysis to Support Architectural Evolution. Software
Maintenance: Research and Practice 14(5), 317–333 (2002)

18. Williams, J.B., Carver, C.J.: Characterizing Software Architecture Changes: An Initial
Study. In: 1st Intl. Symposium on Empirical Software Engineering and Measurement
(ESEM 2007), pp. 410–419 (2007)

19. Clement, P., et al.: Documenting Software Architectures: Views and Beyond. SEI Series in
Software Engineering. Addison-Wesley, Reading (2002)

20. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice-Hall, Inc., Englewood Cliffs (1996)

21. Soares, S., et al.: Distribution and Persistence as Aspects. Software Practice and
Experience (2006)

22. Murta, G.P.L., et al.: ArchTrace: Policy-Based Support for Managing Evolving
Architecture-to-Implementation Traceability Links. In: ASE 2006, pp. 135–144 (2006)

23. Lee, M., Offutt, J.: Change Impact Analysis of Object-Oriented Software, 193 pages,
George Mason University (1998)

24. Browning, T.R., et al.: Applying the Design Structure Matrix to System Decomposition
and Integration Problems: A Review and New Directions. IEEE Transaction on
Engineering Management 48(3), 292–306 (2001)

25. Sangal, N., et al.: Using Dependency Models to Manage Complex Software Architecture.
In: OOPSLA 2005, San Diego, California, USA (2005)

26. Meyer, B.: Applying Design by Contract. Computer 25(10), 40–51 (1992)

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 258–261, 2008.
© Springer-Verlag Berlin Heidelberg 2008

The IT Organization Modeling and Assessment Tool
for IT Governance Decision Support

Mårten Simonsson, Pontus Johnson, and Mathias Ekstedt

Department of Industrial Information and Control Systems, KTH, Royal Institute of
Technology. Osquldas väg 10, SE 100 44 Stockholm, Sweden

{ms101,pj101,mek101}@ics.kth.se

Abstract. This short paper describes the IT Organization Modeling and
Assessment Tool (ITOMAT) and how it can be used for IT governance decision
making support. ITOMAT consists of an enterprise architecture metamodel that
describes IT organizations. ITOMAT further contains a Bayesian network for
making predictions on how changes to IT organization models will affect the IT
governance performance as perceived by business stakeholders. In order to
make such predictions accurately, the network learns from data on previous
experience. Case studies at 35 companies have been utilized for calibration of
the network.

Keywords: IT governance, IT organization, Enterprise Architecture, modeling,
metamodel.

1 Introduction

One of the most common approaches to IT management today is enterprise
architecture. Enterprise architecture (EA) is a model-based approach to IT
management that encompasses architecture descriptions of business, information,
applications and infrastructure of an organization [1], [9], [11]. The basic idea is that
instead of changing information systems and their surrounding business using trial
and error, models are used to analyze the future behavior of potential scenarios.

IT governance denotes how the IT organization is managed and structured and
provides mechanisms that enable the development of integrated business and IT
plans, allocation of responsibilities within the IT organization, and prioritization of IT
initiatives [3], [6], [7]. It is important to ensure that the IT governance of an
organization is not only designed to achieve internal efficiency in the IT organization,
such as if rights and responsibilities are distributed over the appropriate people in an
explicit manner, if processes formalized for important tasks are implemented, and if
documentation exists. We call this internal IT organization efficiency IT governance
maturity. The final goal of good IT governance is rather to provide the business with
the support needed in order to conduct business in a good manner, which is here
called IT governance performance. Current IT governance frameworks, including the
Weill & Ross framework, ITIL and COBIT, are not explicit with how IT governance
maturity affects IT governance performance [4], [8], [10].

 The ITOMAT for IT Governance Decision Support 259

2 The IT Organization Modeling and Assessment Tool

The IT Organization Modeling and Assessment Tool (ITOMAT) is an IT governance
decision support tool based on enterprise architecture models. It relies partly on the
COBIT framework for IT governance maturity assessments of the IT organization.
ITOMAT is further enhanced with information about statistical correlations to
external IT governance performance [4]. ITOMAT is therefore able to statistically
predict IT governance performance from IT organization scenarios. This section
presents the different steps involved in such IT governance decision making and how
it is supported by the ITOMAT, cf Fig. 1.

Fig. 1. Workflow for IT governance decision making and how the ITOMAT’s supports this
process with enterprise architecture scenario development and assessment

1. Create As-is Model of Current IT Organization
This first step concerns the development of a model of the current IT
organization. The result is an as-is model that follows a predefined
metamodel, c.f. Fig. 1. The metamodel prescribes what entities and relations
that are allowed for IT governance maturity modeling, including processes,
activities, documents, roles & responsibilities, and metrics. It also includes
entities for IT governance performance modeling, including a number of
objectives taken from Weill & Ross [10].

2. Identify Change Scenarios
As a second step, a number of possible future scenarios of the IT
organization are modeled.

260 M. Simonsson, P. Johnson, and M. Ekstedt

3. Predict IT Governance Performance
So far, only descriptive models have been developed. As a third step a
normative evaluation is conducted. The ITOMAT’s assessment and prediction
framework analyses the different change scenarios’ outcome in terms of overall
IT governance performance, c.f. Fig. 1. The predictive ability of the ITOMAT is
made through the use of a Bayesian network [5] taught with the experience
from previous case studies on currently 35 organizations, cf Fig. 2. Fig. 3
exemplifies results from the ITOMAT’s Bayesian network representation of IT
governance performance for an as-is model, and predictions for two change
scenarios that involve ITIL implementation and enhanced project management
respectively.

Fig. 2. The learning Bayesian network for assessment and prediction. In this example, five case
studies are used for learning. The newly calibrated network can then be used to predict the IT
governance performance in a sixth organization.

Fig. 3. IT governance performance predictions for as-is model and two change scenarios. The
performance graphs are created in the GeNIe tool [2] and show probability of each performance
level to occur.

4. Decide on To-Be Scenario
The previous step results in a prediction value of the IT governance
performance of each developed scenario. This thus provides the decision
maker with an estimate of the overall “goodness” of a scenario. Ceteris
paribus the scenario with the highest goodness value is the rational choice.

5. Implement To-Be Scenario
The four steps above describe a strategic planning exercise. In order to achieve
the benefits of the new organization, the to-be scenario of course also has to be
implemented in reality. This is however out of the scope for the ITOMAT.

 The ITOMAT for IT Governance Decision Support 261

3 Discussion and Conclusion

This paper describes an ongoing research project for predicting IT governance
performance, ITOMAT. In essence, the ITOMAT is contributing to academia and
practitioners in two ways. Firstly it formalizes how analysis and assessments of the
quality of IT organizations is to be performed on enterprise architecture models.
Secondly, it makes use of knowledge from previous case studies to make predications
about the IT governance performance, i.e. the impact of the IT on the business, from
enterprise architecture models. It combines model-based decision-making with best
practice from the field of IT governance, and the predictive capabilities of Bayesian
networks. An important factor for achieving credible results from the predictions of
ITOMAT is to have much empirical material so that the underlying Bayesian network
can be further refined. As of today, the predictions are based on data from 35 case
studies ranging from municipalities, large banks, industrial companies and small
consulting firms. Data has been collected through 158 interviews and 60 surveys in 35
organizations. The case study findings have been validated in meetings with 15 IT
governance experts. Altogether, the ITOMAT provides useful support for IT
management decision making on IT organizational changes and it clearly bridges the
void between IT governance and Enterprise architecture.

References

1. DoDArchitecture Framework Working Group: DoD Architecture Framework Version 1.0.
Department of Defense (2003)

2. The GeNIE tool for decision theoretic models, http://genie.sis.pitt.edu/
3. Henderson, J.C., Venkatraman, N.: Strategic Alignment - Leveraging Information

Technology for Transforming Organizations. IBM Systems Journal 32(1), 472–485 (1993)
4. IT Governance Institute: Control Objectives for Information and Related Technology,

4.1th Edition (2007)
5. Jensen, F.V.: Bayesian Networks and decision graphs. Springer, New York (2001)
6. Korac-Kakabadse, N., Kakabadse, A.: IS/IT Governance - Need for an Integrated Model.

Corporate Governance 4(1), 9–11 (2001)
7. Loh, L., Venkatraman, N.: Diffusion of Information Technology Outsourcing: Influence

Sources and the Kodak Effect. Information Systems Research 3(4), 334–359 (1993)
8. Office of Government Commerce: Service Strategy Book. The Stationery Office (2007)
9. TOG, The Open Group: The Open Group Architecture Framework Version 8.1.1,

Enterprise Edition. (2006)
10. Weill, P., Ross, J.W.: IT governance – How Top Performers Manage IT Decision Rights

for Superior Results. Harvard Business School Press, USA (2004)
11. Zachman, J.: A Framework for Information Systems Architecture. IBM Systems

Journal 26(3) (1987)

Ensuring Transactional Reliability by

E-Contracting�

Ting Wang, Paul Grefen, and Jochem Vonk

Information Systems Subdepartment, Department of Technology Management
Eindhoven University of Technology, The Netherlands

{t.wang,p.w.p.j.grefen,j.vonk}@tue.nl

1 Introduction

The increasing complexity of business processes makes reliable execution of such
processes more and more complicated. Thus, execution reliability has long been
a challenge and attracted a lot of attention from both academia and industry.
On the one hand, the demand for reliability from the business world has pushed
IT to advance in transaction management. On the other hand, the progress in
IT has provided more opportunities for the business world to enhance relia-
bility of process execution. Motivated by this observation, we have studied an
e-contracting case from a transactional perspective and discovered a gap between
the business and IT world in their awareness of the transactional reliability. This
gap leads to the inadequacy of transactional agreements between collaborating
parties and exposes the process execution to many potential threats, thus de-
creasing reliability. To bridge the gap, we proposed the TxQoS (Transactional
Quality of Service) approach in [1], by specifying and ensuring transactional per-
formance of services/processes in contracts. In this paper, we continue this line
of research by illustrating with an overview scenario. The focus is the mechanism
of specification, which is essential to realize the contractual approach for trans-
action management. The unique feature is the interpretation of transactional
reliability from a business perspective, which use contracts for specification and
ensuring purposes to bridge the gap. Due to space limitations, we present briefly
the TxQoS scenario and the specification attributes. Interested readers are refer
to [2] for more details.

2 TxQoS Scenario

The TxQoS approach is illustrated in Figure 1. The scenario describes the non-
functional aspects of services that address the QoS and SLA issues. First, a
service provider designs its ‘TxQoS Template’ which can be differentiated into
multiple ‘TxQoS Offers’ based on its transactional reliability performance. Mean-
while, a potential user may also design a ‘Requirement Template’ for each service
� The research reported in this paper has been conducted as part of the eXecution

of Transactional Contracted Electronic Services (XTC) project (No. 612.063.305)
funded by the Dutch Organization for Scientific Research (NWO).

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 262–265, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Ensuring Transactional Reliability by E-Contracting 263

it invokes based on its reliability requirement. Each template is instantiated into
one ‘TxQoS Requirement’ document that may or may not be met by existing
offers. Second, the user looks up in the ‘Performance Repository’ to decide which
TxQoS offer is the best match. Negotiations between the provider and user may
take place if no ready-to-agree ‘TxQoS Offer’ is suitable. Third, after an offer
and a requirement are matched, a TxSLA (Transactional SLA) is established
and the agreed TxQoS specification is enclosed into the service contract. Mon-
itoring of the running transaction performance is then realized by checking the
compliance of the runtime statistics with the specification.

Intermediary: Arbitrator
Intermediary: Rept. Registry

Intermediary: Advertiser

User

Monitor

Provider

Monitor

Intermediary: Monitor

TxQoS
Performance

Report

Performance
Repository

TxQoS
Template

TxQoS
Offer

TxQoS
Statistics

Differentiate

Use

TxQoS
Requirement

Instantiate
Requirements

Template
Requirements

Template
Requirements

Template

Feedback

Provide

Negotiate

Customize

Use

Evaluate

TxSLA

M
atch

Intermediaries

Fig. 1. TxQoS Scenario

The monitoring module is indispensable thus should be provided by at least
one party. If a provider and a user do not trust each other, an intermediary
(i.e. the ‘Monitor’) is delegated. Otherwise the provider or user can host such a
module, which appeared at each party in Figure 1 to show the possible existence.
The other intermediaries (i.e. advertiser, reputation checker, arbitrator) can also
be omitted from the scenario in case a provider and a user are tightly coupled
and sufficient trust between them has been established. In a word, all four types
of intermediaries can either be omitted, or be (partially) used depending on
the trust level between providers and their users. Their functions are realized
by accessing the ‘Performance Repository’ for ‘TxQoS Performance Reports’
generated on the basis of runtime ‘TxQoS Statistics’. In the next section, we
introduce a method to specify transactional reliability performance, which is the
key to realize the TxQoS approach.

264 T. Wang, P. Grefen, and J. Vonk

3 TxQoS Attributes: FIAT

A TxSLA states metrics and measurement of the TxQoS specification. A TxQoS
specifications specifies the transactional reliability of a service. We have designed
the FIAT attributes for this purpose: Fluency, Interferability, Alternation, Trans-
parency. The design is based on our knowledge gained of the related areas (e.g.
transaction management, e-contracting, QoS management) and a real-life case
analysis. The FIAT design meets the following criteria: 1) A TxQoS attribute
should reflect reliability at service level guaranteed by transaction management
mechanisms; 2) A TxQoS attribute should be understandable by the business
world; 3) A TxQoS attribute should be precisely specifiable and monitorable
like other functional attributes (e.g. time, cost, capacity etc.); 4) The use of a
TxQoS attribute should benefit both the service provider and the user. Below
we outlined the definition of the four attributes and use ‘Fluency’ as an example
to show how to use it for contracting purpose.

Fluency indicates the smoothness of service execution and is monitored by
counting the number of unexpected breakdowns, which suspend execution and
demand for a fix to continue. If canceled by a user, it is counted as an expected ex-
ception instead of a breakdown, and therefore belongs to ‘Interferability’. While
monitoring of ‘Fluency’ is easy (by counting), the specification requires compli-
cated calculations based on the past performance statistics to predict future per-
formances. We use the NonHomogeneous Poisson Process (NHPP) model, which
is widely adopted in software reliability engineering [3]. We assume breakdowns
happen stochastically that meet the following two conditions: (1)No simultane-
ous breakdowns can happen at any time; (2)The causes of the past breakdowns
are fixed and do not affect future execution. The probability of exact n break-
downs occurring in the time interval (a, b] is given by

P (n) =

[∫ b

a λ(t)d(t)
]n

e−
∫

b
a

λ(t)d(t)

n!
, for n = 0, 1, . . . (1)

where the past statistics determines λ(t) (breakdown happening rate), and pre-
diction of future ‘Fluency’ can be calculated. For example, suppose there is a
service with its execution time T (T = max(t)). Any execution after T is viewed
as a failure and is excluded in the fluency statistics. During the test, it shows
the rate λ(t) is a constant so that the GO NHPP model [4] is adopted. Then a
fluency function f(n) can be defined as the probability of having no more than
n breakdowns during execution (i.e. within the time interval (0, T]):

f(n) =
∑

[
m(T + e−rT −1

r)
]n

e−m(T+ e−rT −1
r)

n!
(2)

Based on the calculation of f(n), a TxQoS offer can be specified using state-
ment such as ‘we guarantee no more than n breakdowns during the execution’,
or in quantitative values such as ‘Min(Fluency)=n’.

Ensuring Transactional Reliability by E-Contracting 265

Interferability describes the control of users upon a service being invoked.
This property is especially suitable in outsourcing scenarios where different levels
of control are necessary. Note that a user only has interferability to the activi-
ties that are specified as transparent (see ‘Transparency’ below). Interferability
can be interpreted as the set of commands from the users to intervene an ac-
tivity (viewed as a node in execution path), plus the allowed timings to issue
these commands. At runtime, each user command is checked for its validity and
unspecified commands are blocked.

Alternation describes the choices that are pre-defined in case of (expected)
exceptions/errors during execution. At the design phase, ‘Alternation’ is speci-
fied as a set of allowed execution graphs and these predefined graphs that are
grouped as ‘the preferred path’ and its ‘alternatives’. Runtime monitoring is en-
abled by comparing the ongoing execution path with the paths specified under
the ‘Alternation’ attribute.

Transparency describes the visibility of a service and is specified as the set of
activities that are visible to the users at the external level of a process. This is the
only attribute that needs to be specified but does not need runtime monitoring.
Here we assume a log of each instance execution status and parameters is kept
to settle potential disputes.

Besides the FIAT attributes for design-time specification and runtime moni-
toring, a framework consisting of an architecture, a contracting model, and the
monitoring mechanism has also been developed with the details in [2].

4 Conclusions and Future Work

The TxQoS approach ensures transactional reliability by e-contracting for
contract-driven, service-oriented processes, which we believe points out a new re-
search direction in the related areas (e.g. transaction management, e-contracting,
QoS). Our future work falls in two categories. First, we are performing another
case study in the healthcare domain, where exceptions (e.g. not enough ward ca-
pacity, unexpected symptoms) are very likely to occur and reliability of medical
processes is of top priority. Therefore, a methodology to validate and apply the
TxQoS approach will be developed. Second, we are going to extend our approach
by a XML-based specification language for TxQoS and a refined framework.

References

1. Wang, T., Vonk, J., Grefen, P.: TxQoS: A contractual approach for transaction
management. In: Proc. 11th IEEE Int. Conf. Enterprise Computing (EDOC 2007),
pp. 327–338. IEEE Computer Society Press, Los Alamitos (2007)

2. Wang, T., Grefen, P., Vonk, J.: TxQoS: concept, scenario, and framework. Technical
report, Eindhoven University of Technology (2007)

3. Pham, H.: Software Reliability (1999)
4. Goel, A., Okumoto, K.: Time-dependent error-detection rate model for software

reliability and other performance measures. IEEE Trans. Reliability R-28, 206–211
(1979)

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 266–280, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Drawing Preconditions of Operation Contracts from
Conceptual Schemas

Dolors Costal, Cristina Gómez, Anna Queralt, and Ernest Teniente

Departament de Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya
{dolors,cristina,aqueralt,teniente}@lsi.upc.edu

Abstract. Conceptual schemas include the definition of integrity constraints
which must be satisfied in each state of the Information Base. Integrity
constraints have a considerable impact on the specification of operations since
operations should preserve the Information Base consistency. In this paper, we
present an approach that automatically generates the preconditions that basic
operations must include to ensure that a set of predefined integrity constraints is
satisfied after their execution. Our approach is independent of the conceptual
modelling language used. We also describe a prototype tool that implements
our proposal for UML conceptual schemas.

Keywords: conceptual modelling, operation contracts, integrity constraints.

1 Introduction

An information system must include a representation of the knowledge of the domain,
i.e. the Conceptual Schema (CS), and of the state of that domain, i.e. the Information
Base (IB), to perform its functions.

The goal of automating information systems building was already stated in the late
sixties [1]. However, and thanks to the definition and standardization of the MDA [2],
this goal has revived and seems now more feasible than ever. For this reason, there
has recently been a significant amount of work aimed at providing an automatic
generation of (parts of) the software system from its specification.

In this context, we may find several proposals that provide an automatic definition
of the basic operations (such as entity insertion or deletion, attribute modification, etc.)
from a conceptual schema which allow updating the contents of the IB [3, 4, 5, 6].
Their main drawback is that either they do not take into account the integrity
constraints to be preserved during the automatic generation of the operations or they
consider them only up to a limited extent. Nevertheless, the automatic generation of the
software elements required to ensure that the IB always satisfies the constraints of the
CS is a crucial issue in software automation [7].

Our approach in this paper represents a step forward in this direction. Given a set
of basic operations that update the contents of the IB (which may be either manually
or automatically generated), a conceptual schema and a set of predefined integrity
constraints, we are able to automatically determine the weakest precondition that must
be considered for each basic operation so that integrity constraints are never violated
when the operation is executed. Since we only consider adding preconditions,

 Drawing Preconditions of Operation Contracts from Conceptual Schemas 267

integrity enforcement is achieved by avoiding the operation execution when its
precondition is not satisfied. Our approach is independent of the conceptual modelling
language used, although we will use UML and OCL in our examples.

In this way, our approach facilitates the automatic model-driven development of the
information system from its initial specification since it simplifies the manual
computation of the operation preconditions during software development. We have
also developed an implementation of our approach which is integrated in a CASE tool.

As an example, consider the conceptual schema of Figure 1 which contains
information about the employees assigned to projects and their supervisors. The
schema contains three textual and two graphical constraints.

Fig. 1. Conceptual schema of our example application

Figure 2 shows a natural specification of the operation that assigns employees to
projects. We assume that the parameters are provided as objects but their identifiers
could be used as well.

Operation: newAssignment(e: Employee, p: Project, sal: Float)
Pre: --the employee is not assigned to the project

 e.assignedTo -> excludes(p)
Post: --a new instance of Assignment is created

 Assignment.allInstances()->exists(a | a.oclIsNew() and
a.salary = sal and a.project=p and a.employee=e)

Fig. 2. A sample partial contract for the operation newAssignment

It can be easily seen that the previous contract does not take integrity constraints
into account since its precondition does not ensure that all constraints are satisfied.
For instance, it allows assigning an employee to a project even if he is its supervisor.
Therefore, this precondition must be extended to guarantee that the operation
execution always leads the IB to a consistent state. Doing this by hand is time-
consuming and error prone since it is not easy to identify the integrity constraints that
may be violated by the operation execution and the additional required preconditions.

The contract of newAssignment that incorporates all the knowledge provided by the
integrity constraints is shown in Figure 3 and it can be automatically obtained with
our approach.

An automatic computation of the preconditions required to ensure that the
operation contracts do not violate any integrity constraint provides two important
contributions. First, it improves the quality of the specified operations since human

268 D. Costal et al.

Operation: newAssignment(e: Employee, p: Project, sal: Float)
Pre: --the employee is not assigned to the project e.assignedTo -> excludes(p)

--the salary is greater than 100 sal > 100
--the employee does not supervise the project p.supervisor -> excludes(e)
--the employee is not assigned to five projects e.assignedTo -> size()<5

Post: --a new instance of Assignment is created
Assignment.allInstances()->exists(a | a.oclIsNew() and
a.salary = sal and a.project=p and a.employee=e)

Fig. 3. The full contract for the operation newAssignment

mistakes can be completely avoided. Second, software development is accelerated
since integrity-preserving contracts can be automatically obtained.

The rest of the paper is organized as follows. The next section reviews some
preliminary concepts. Section 3 describes a set of basic predefined operations. In
section 4, we describe the conflicts that arise between integrity constraints and
operations and we present our proposal for the automatic generation of preconditions.
Section 5 describes a tool that implements our proposal. Related work is reviewed in
section 6 and, finally, section 7 presents some conclusions and points out future work.

2 Preliminary Concepts

A CS consists of a taxonomy of entity types together with their attributes, a set of
relationship types, and a set of integrity constraints [8]. A relationship type has
several participants, i.e. entity types that play a certain role in the relationship type. In
this paper, we deal with relationship types that have two participants (i.e. binary).
Some relationship types are reified and, thus, they may have attributes and participate
in other relationship types.

An information system maintains a representation of the state of a domain in its IB
[9]. The state of the IB is the set of instances of the entity types and relationship types
defined in the CS. The integrity constraints of the CS define conditions that each state
of the IB must satisfy. Those constraints can have a graphical representation or can be
defined through a particular language.

Additionally, a CS includes a set of operations, and the content of the IB changes as a
result of their execution. The effect of each operation on the IB is specified by an
operation contract. An operation contract is defined by a precondition, which expresses
a condition that must be satisfied when the call to the operation is made, and a
postcondition, which expresses a condition that the new state of the IB must satisfy [10].

Integrity constraints are closely related to operations, since the former must hold in
every state of the IB, and the latter are the ones that change its content. Then, an
operation contract must guarantee that the integrity constraints defined in the schema
hold after its execution. We consider the following predefined integrity constraints (a
more detailed description can be found in [11]).

An identifier constraint specifies a set of properties that uniquely identifies each
instance of an entity type. Let E be an entity type and {p1,...,pn} a set of properties,
which can be attributes or roles. An identifier constraint specifies that a subset
{pi,...,pj} of these properties uniquely identifies the instances of E.

 Drawing Preconditions of Operation Contracts from Conceptual Schemas 269

Recursive relationship type constraints, referred to as ring constraints in [12], are
constraints that apply over recursive binary relationship types to guarantee that the
relationship type fulfils a certain property. We consider five such constraints:
symmetric, asymmetric, antisymmetric, irreflexive and acyclic constraints.

Let E be an entity type and R a recursive relationship type over E. A symmetric
constraint over R guarantees that if a and b are instances of E and a is R-related to b,
then b is R-related to a. An asymmetric constraint guarantees that if a and b are
instances of E and a is R-related to b, then b is not R-related to a. An antisymmetric
constraint over R guarantees that if a and b are instances of E, a is R-related to b and
b is R-related to a, then a and b are the same instance. An irreflexive constraint over R
guarantees that if a is an instance of E then a is never R-related to itself. An acyclic
constraint guarantees that if a and b are instances of E and a is R-related to b, then b
or instances R-related directly or indirectly to b are not R-related to a.

Path comparison constraints restrict how to relate the population of one role or role
sequence (i.e. a path) to the population of another [12]. Path inclusion, path exclusion
and path equality are all examples of this type of constraint and apply to an entity
type A related to an entity type B via two different paths r1...ri, and rj...rn. A path
inclusion constraint guarantees that if a is an instance of A, the set of instances of B
related to a via r1...ri includes the set of instances of B related to a via rj...rn. In a
similar way, a path exclusion constraint ensures that the intersection between the
populations of both paths is empty while a path equality constraint guarantees that
both populations contain exactly the same instances.

Value comparison constraints restrict the values of an attribute by comparing it
with a constant or with another attribute value [13]. Let E be an entity type, let ai be
an attribute of E, let v be either a constant or the value of an attribute accessible from
E, and let op be an operator of type <, >, =, <>, ≤, or ≥. A value comparison
constraint restricts the values of ai with respect to the value of v according to op.

Cardinality constraints for binary relationship types restrict the number of
instances that can be related to another instance through the relationship type. Let R
be a binary relationship type such that entity type E1 plays role p1 and entity type E2
plays role p2 in it. A cardinality constraint from p1 to p2 in R indicates the minimum
and maximum number of instances of type E2 that may be related with any instance of
type E1 through R [14]. Cardinality constraint from p2 to p1 in R is defined similarly.

Disjointness and covering constraints impose restrictions on the population of a set
of entity types. A disjointness constraint for entity types E1,...,En indicates that a
particular entity can be instance of at most one Ei [15]. A covering constraint between
an entity type E and a set of entity types E1,...,En indicates that every instance of E is
instance of at least one Ei [15].

3 Basic Operations

A CS must be complemented with a set of operations that define how the users may
modify the contents of the IB. In this paper, we deal with basic operations. We
describe our basic operations in terms of their postconditions because our approach
only depends on them to generate operation preconditions. We consider the following
set of basic operations which correspond to the categories identified in [16] to

270 D. Costal et al.

describe operation postconditions. For the sake of generality, we use external
identifiers instead of objects in the operation signatures. Therefore, each instance to
be modified is identified by a set of attribute values and not by its object reference.

InstanceCreation. The operation createE(v1,…,vn: Set(String)) creates an
instance of entity type E and gives values v1,…,vn to attributes a1,…,an of E. The
postcondition of this operation can be specified in OCL [17] as follows:

post: E.allInstances()-> exists(e | e.oclIsNew()and e.a
1
=v

1
 and

 … and e.a
n
=v

n
)

As a result of this operation, the new instance belongs to E and all its supertypes.

InstanceDeletion. The operation deleteE(id1,…,idn: Set(String)) deletes an
instance of entity type E identified by parameters id1,…,idn. Its postcondition is:

post: not(E.allInstances()->exists(e|e.p
1
=id

1
and …and e.p

n
=id

n
))

where p1,..,pn are the paths that identify the instances of E. We assume that all the
relationships in which the instance participates are deleted, and that the instance is
deleted from E and all its supertypes.

AttributeValueModification. The operation modifyAfromE(id1,…,idn,nv:

Set(String)) modifies attribute a of an instance of the entity type E. The instance
to modify is identified by parameters id1,…,idn of the operation. The new value for the
attribute is nv. Its postcondition is:

post: E.allInstances()-> select(e |e.p1=id1 and … and
e.pn=idn).a = nv

where p1,..,pn are the paths that identify the instances of E.

RelationshipCreation.The operation createR(id11,...,id1n,id21,...,id2m:
Set(String)) creates an instance of the relationship type R between two instances
i1and i2 playing roles r1 and r2 in R. The instances to relate are identified,
respectively, by the parameters id11,…,id1n and id21,…,id2m, and can be obtained as
follows from them:

let i1: E1 = E1.allInstances()-> select(e| e.p11=id11 and …
and e.p1n=id1n)

let i2: E2 = E2.allInstances()-> select(e| e.p21=id21 and …
and e.p2m=id2m)

The postcondition of this operation is: post: i1.r2->includes(i2)

RelationshipDeletion. The operation deleteR(id11,...,id1n,id21,...,id2m:
Set(String)) deletes the instance of the relationship type R between two instances
i1and i2 playing roles r1 and r2 in R. These instances are identified, respectively, by
the parameters id11,…,id1n and id21,…,id2m, and can be obtained as in the previous
operation. The postcondition of this operation is: post: i1.r2->excludes(i2)

InstanceGeneralization. The operation generalizeEitoE(v1,…,vm:

Set(String)) establishes that an instance of E which is identified by values v1,…,vm
for paths p1,…,pm, respectively, is not an instance of Ei after its execution (although it
has not been deleted from the IB and it is still an instance of E). The OCL
postcondition of this operation is:

 Drawing Preconditions of Operation Contracts from Conceptual Schemas 271

let i1: E = E.allInstances()-> select(e | e.p
1
=v

1
 and …

 and e.p
m
=v

m
)

post: not (i1.oclIsTypeOf(E
i
))

We assume that all the relationships in which i1 participates are deleted.

InstanceSpecialization. The operation specializeEtoEi(v1,…,vm:

Set(String), nv1,…,nvk: Set(String)) establishes that an instance i1 of E is
also an instance of Ei after its execution. Additionally, it takes values nv1,…,nvk for the
attributes a1,…,ak of Ei. The instance is identified by values v1,…,vm for paths p1,…,pm,
respectively. Its postcondition is:

let i1:E=E.allInstances()-> select(e | e.p
1
=v

1
 and … and e.pm=vm)

post: i1.oclIsTypeOf(E
i
) and i1.a

1
=nv

1
 and … and i1.a

k
=nv

k

We consider also other basic operations whose postcondition can be stated as a
combination of those of the basic operations specified so far. They are the following:

WeakInstanceCreation. The operation createW(id1,…,idn: Set(String),

v1,…,vm: Set(String)) creates an instance of entity type W, gives values v1,…,vm
to attributes a1,…,am of W and relates it through a relationship type R to an instance i
of entity type S playing role rs in R. The instance i is identified by the parameters
id1,…,idn and can be obtained as follows from them:

let i:S=S.allInstances()->select(e|e.p
1
=id

1
 and … and e.p

n
=id

n
)

The postcondition of this operation is:

post: W.allInstances()-> exists(e | e.oclIsNew()and e.a
1
=v

1
 and

 … and e.a
m
=v

m
 and e.rs=i)

ReifiedRelationshipCreation. The operation createRR(id11,...,id1n,

id21,...,id2m: Set(String), v1,…,vk: Set(String)) creates an instance
of the reified relationship type R that relates instances i1and i2 playing roles r1 and r2
in R. Additionally, it takes values v1,…,vk for the attributes a1,…,ak of R. The instances
to relate are identified, respectively, by id11,…,id1n and id21,…,id2m, and can be
obtained as described in the RelationshipCreation operation. Its postcondition is:

post: R.allInstances()-> exists(e | e.oclIsNew()and e.r1=i1
and e.r2=i2 and e.a

1
=v

1
 and … and e.a

k
=v

k
)

We define WeakInstanceDeletion and ReifiedRelationshipDeletion in a similar way;
as well as InstanceChangeOfSubclass which mixes InstanceGeneralization and
InstanceSpecialization. We omit their formal definition due to space limitations.

4 Automatic Generation of Operation Preconditions

We describe in this section the approach we propose to automatically generate the
weakest preconditions required by our set of basic operations in order to guarantee
that their execution does not violate any of the predefined integrity constraints. By
weakest we mean the necessary and sufficient conditions that allow ensuring that the
constraints will not be violated after applying just the minimum changes specified by
the postcondition when the operation precondition is satisfied (i.e. without requiring
compensatory actions to restore the IB consistency).

272 D. Costal et al.

It may happen that the execution of a basic operation postcondition always leads to
an integrity constraint violation. Then, no weakest precondition exists. Our approach
is able to identify these situations and it discards the definition of such operations.

We identify in section 4.1 the conflicts that arise between predefined constraints
and basic operations. Then, in section 4.2, we describe how the weakest preconditions
can be automatically obtained.

4.1 Conflicts between Constraints and Operations

The following table summarizes the conflicts that exist between integrity constraints
and operations. Columns correspond to the predefined integrity constraints, and rows
to the basic operations. A cross in a cell represents that there is a conflict between the
corresponding constraint and operation, meaning that the constraint may be violated
when the postcondition of the operation is satisfied. Thus, some preconditions must
be added to the operation to prevent the violation in these cases.

Table 1. Conflicts between predefined constraints and basic operations

Id
en

ti
fi

e
Ir

re
fl

ex
i

Sy
m

m
et

r

A
sy

m
m

A
nt

is
ym

A
cy

cl
ic

P
at

hI
nc

l

P
at

hE
xc

l

P
at

hE
q

V
al

ue
C

o

M
in

.

M
ax

.

D
is

jo
in

t

C
ov

er
in

g

InstanceCreation
InstanceDeletion
AttributeValueModif.
RelationshipCreation
RelationshipDeletion
InstanceGeneralization
InstanceSpecialization
WeakInstanceCreation
WeakInstanceDeletion
ReifiedRelationshipCre
ReifiedRelationshipDel
InstanceChangeOfSubty

The explanation of all marks in the table will be provided in the next section while

identifying the preconditions required by the operations in each case.

4.2 Drawing Preconditions

The preconditions that are generated for each basic operation are the following.

InstanceCreation
The operation createE(v1,…,vn: Set(String)) may violate identifier, value
comparison, minimum cardinality and/or covering constraints.

 Drawing Preconditions of Operation Contracts from Conceptual Schemas 273

Identifier. The violation of an identifier constraint for the entity type E or one of its
supertypes occurs when the values for the identifying properties of the created
instance are equal to those values for an already existing instance. To prevent it, the
following precondition must be added to the operation:

pre: not(E.allInstances()->exists(e| e.a
i
=v

i
 and … and e.a

j
=v

j
))

where ai,…,aj are the identifier attributes and vi,…,vj are the new values of the created
instance for them.

For example, an instance creation operation createEmployee(ei:String,
nm:String) for the conceptual schema shown in Figure 1 requires the following
precondition since there is an identifier constraint which states that employees are
identified by their empid:

pre: not(Employee.allInstances()-> exists(e | e.empid=ei))

Value Comparison. A value comparison constraint ai op v for any attribute ai of E or
one of its supertypes that is initialized by the operation is violated if the specified
comparison is not satisfied by the new instance. Thus, the following precondition is
needed for each such ai attribute:

pre: v
i
 op v

where vi is the value of the created instance for ai.

Minimum Cardinality. Let R be a binary relationship type such that entity type E plays
role p and an entity type E1 plays role p1 in it. A minimum cardinality constraint from
p to p1 in R is always violated by the operation, since it creates an unrelated instance.
The violation cannot be prevented by means of a precondition and, consequently, the
operation cannot be executed in any case. Therefore, the InstanceCreation operation is
discarded in this case.

Covering. Any covering constraint between entity type E and a set of entity types
E1,...,En is violated since the operation creates an instance in a single entity type.
Again, the violation occurs in any case and the operation cannot be executed.

InstanceDeletion
An instance deletion operation, deleteE(id1,…,idn: Set(String)), may induce
the violation of path inclusion, path equality and/or minimum cardinality constraints.

Path Inclusion. A path inclusion constraint which states that a first path includes a
second path can be violated if the operation deletes an instance of one of the entity
types that is traversed by the first path. The violation occurs when, after the deletion,
the set of instances related to an instance i via the first path does not include the set of
instances related to i via the second one. The following precondition is then required:

pre: Start.allInstances()-> forAll(s | newPath1(s)->
includesAll(newPath2(s)))

Start is the origin entity type of both paths. NewPath1(s) and newPath2(s) define the
set of instances that are reached from instance s by the first and second paths,
respectively, assuming that the postcondition of the operation holds.

274 D. Costal et al.

Path Equality. A path equality constraint between two paths can be violated by an
instance deletion if the operation deletes an instance of an entity type in any of the
two paths. The violation occurs when, after the deletion, the set of instances related to
an instance i via the first path is not equal to the set of instances related to i via the
second one. Therefore, the following precondition must be added to the operation:

pre: Start.allInstances()->forAll(s | newPath1(s)=newPath2(s))

where Start, newpath1(s) and newpath2(s) are defined as in the path inclusion case.

Minimum Cardinality. Let E be an entity type such that one of its instances is deleted
by the operation. Let R be a relationship type such that an entity type E1 plays role p1
and entity type E plays role p in it. A minimum cardinality constraint from p1 to p in R
is violated if there is an instance i belonging to E1 that was related to the deleted
instance and that, after the deletion, does not satisfy the minimum cardinality any
more. The violation can be prevented by the precondition:

pre: delInst.p
1
->forAll(e1 | e1.p->size()>min)

where delInst defines the deleted instance.
Note that the previous precondition will always evaluate to false if R has a

maximum and a minimum cardinality constraints restricted by the same value.
Therefore, the operation should be discarded in this case.

For instance, our running example of Figure 1 depicts a minimum cardinality
constraint to ensure that all projects have at least one supervisor employee. Therefore,
the following precondition must be generated for deleteEmployee(ei:String),
aimed at deleting an employee with code ei.

pre: delInst.supervises->forAll(pr| pr.supervisor->size()>1)

where delInst defines the deleted instance:

let delInst : Employee = Employee.allInstances()->
select(e | e.empid=ei)

Assuming that we had a subtype JuniorEmployee of Employee in our example, the
basic operation deleteJuniorEmployee(ei:String) would also require the
previous precondition.

AttributeValueModification
An attribute value modification operation, modifyAfromE(id1,…,idm,nv:

Set(String), may violate identifier and/or value comparison constraints.

Identifier. This operation violates identifier constraints if the values of the updated
instance for the identifying properties are equal to those values for another instance,
after the modification. To avoid it, the following precondition is needed:

pre: not(E.allInstances()-> exists(e | e.p
i
=k.p

i
 and … and

e.a=nv

and … and e.p

j
=k.p

j
))

where pi,…,a,…,pj are the E identifier properties specified by the constraint and k is
defined as the instance updated by the operation.

 Drawing Preconditions of Operation Contracts from Conceptual Schemas 275

Value Comparison. A value comparison constraint for the updated attribute, a op v, is
violated if the specified comparison is not satisfied by the new value. The following
precondition must be added to the operation:

pre: nv op v

RelationshipCreation
The operation createR(id11,…,id1n,id21,…,id2m:Set(String)) creates an
instance of a relationship type R between instances i1 and i2 of entity types E1 and E2
playing roles r1 and r2 in R. As can be seen in table 1, this operation may violate
several constraints, many of them when R is recursive.

Irreflexive. If R has an irreflexive constraint, the violation happens when i1=i2. The
precondition to be added is:

pre: i1 <> i2

Symmetric. If R has a symmetric constraint, the violation happens if i2 is not R-related
to i1, i.e. when an instance that is symmetric to the new one does not exist. Since the
IB must be consistent before the execution of any operation, the symmetric instance
needed will never exist. Thus, the violation cannot be prevented by means of a
precondition and the operation should be discarded.

Antisymmetric. When the relationship has an antisymmetric constraint, the violation
happens when i2 is R-related to i1, unless i1 and i2 are the same instance. In this case,
the following precondition must be added to the operation:

pre: i2.r1->includes(i1) implies i2=i1

Asymmetric. On the contrary, an asymmetric constraint in a recursive relationship
type is violated when i2 is already R-related to i1. The following precondition has to
be added to prevent the previous violation:

pre: i2.r1->excludes(i1)

Acyclic. If the relationship type has an acyclic constraint, it is violated when i2 is R-
related (directly or indirectly) to i1, both of them instances of E1.

pre: i2.successors()->excludes(i1)

where successors() recursively obtains all the instances that are R-related to an
instance of E1. It is defined as follows:

context E1 def:
successors():Set(E1) = self.r1->union(self.r1.successors())

For relationship types that are not necessarily recursive, the constraints that may be
violated are path constraints and maximum cardinality constraints.

Path Inclusion, Equality and Exclusion. A path inclusion constraint that traverses R is
violated when, after the creation, the set of instances related to an instance i via the
first path does not include the set of instances related to i via the second one.
Violations of path exclusion and path equality constraints can be explained
analogously. The preconditions to be added are the same than in the instance deletion
operation.

276 D. Costal et al.

Maximum Cardinality. A maximum cardinality from r1 to r2 is violated when i2 is
already related to max instances of E1. The violation can be prevented by adding the
following precondition:

pre: i1.r2->size() < max

If the maximum cardinality constraint is from r2 to r1¸ the precondition needed is:

pre: i2.r1->size() < max

As before, the operation is discarded if there is a maximum and a minimum
cardinality constraint restricted by the same value.

RelationshipDeletion
When deleteR(id11,…,id1n,id21,…,id2m:Set(String)) operation deletes the
instance of the relationship type R between two instances i1 and i2 of entity types E1
and E2, playing roles r1 and r2 in R, the constraints that may be violated are the
symmetric, path inclusion, path exclusion and minimum cardinality constraints.

Symmetric. If R is recursive and symmetric, this constraint is violated when, after the
deletion, i2 is R-related to i1. This will always happen, since the operation deleteR
deletes a single instance. Thus, this violation cannot be prevented in any case.

Path Inclusion and Equality. A path inclusion constraint that traverses R is violated
when, after the deletion, the set of instances related to an instance i via the first path
does not include the set of instances related to i via the second one. The reason for the
violation of path equality is analogous. The preconditions to be added for these cases
are the same than in the previous operation.

Minimum Cardinality. A minimum cardinality constraint from r1 to r2 is violated
when, after the deletion, i2 is related to less than min instances of E1. The following
precondition must be added:

pre: i1.r2->size() > min

If the minimum cardinality constraint is from r2 to r1, the precondition needed is:

pre: i2.r1->size() > min

Again, the operation is discarded if there is a maximum and a minimum cardinality
constraint restricted by the same value.

InstanceGeneralization
An instance generalization may violate path inclusion, path equality, minimum
cardinality and/or covering constraints.

In some respects, an instance generalization is similar to an instance deletion since,
in both cases, the particular entity affected by the operation is no longer an instance of
an entity type after its execution. Thus, violations of path inclusion, path equality or
minimum cardinality constraints are like those described above for instance deletions
and can be prevented by similar preconditions.

Additionally, an operation generalizeEitoE(v1,…,vm: Set(String)), may
violate a covering constraint between entity type E and a set of entity types E1,...,En
that include Ei. The violation occurs if the involved entity is not an instance of any
E1,...,En after the execution of the operation. We need the following precondition:

 Drawing Preconditions of Operation Contracts from Conceptual Schemas 277

let i1: E = E.allInstances()-> select(e | e.p
1
=v

1
 and …

and e.p
m
=v

m
)

pre: i1.oclIsTypeOf(E
1
) or … or i1.oclIsTypeOf(E

i-1
) or

i1.oclIsTypeOf(E
i+1
) or … or i1.oclIsTypeOf(E

n
)

InstanceSpecialization
It may violate identifier, value comparison, minimum cardinality, disjoint and/or
covering constraints.

An instance specialization is similar to an instance insertion because an entity starts
to be an instance of a certain entity type after the execution of both operations. Thus,
violations of identifier, value comparison, minimum cardinality or covering
constraints are like those described above for instance insertions.

The operation specializeEtoEi(v1,…,vm: Set(String), nv1,…,nvk:

Set(String)), may also violate a disjointness constraint for a set of entity types
E1,...,En that include Ei. This happens if the involved entity is an instance of more than
one E1,...,En after the execution. The precondition that avoids the violation is:

let i1: E = E.allInstances()-> select(e | e.p
1
=v

1
 and …

and e.p
m
=v

m
)

pre: not(i1.oclIsTypeOf(E
1
) or … or i1.oclIsTypeOf(E

i-1
) or

i1.oclIsTypeOf(E
i+1
) or … or i1.oclIsTypeOf(E

n
))

We omit the description of the preconditions that are generated for the rest of basic
operations because those preconditions can be seen as combinations of the cases that
have already been described.

For instance, the operation newAssignment in our example of the introduction is a
ReifiedRelationshipCreation operation whose effect is defined by combining an
InstanceCreation and a RelationshipCreation operations. Then, the preconditions
added to the contract in Figure 3 correspond to a violation of a Value Comparison
constraint of the InstanceCreation and a violation of a Path Exclusion and a Maximum
Multiplicity constraints of the RelationshipCreation.

5 Prototype Tool

We have developed a prototype tool that allows the automatic computation of the
preconditions of the operation contracts, along the ideas developed in this paper, on
top of Poseidon® 4.1 since this CASE tool provides an extension mechanism by
means of Java plug-ins.

The designer may specify an operation as provided by Poseidon®. Then, with our
plug-in, he may make use of the basic operations to state its postcondition. In Figure 4,
we show the specification of an instance creation operation newPerson aimed at
creating instances of the class Persona. Once this is done, he can press the button
Normalize to automatically obtain the preconditions required for the operation contract.
As can be seen in Figure 5, the resulting contract includes a precondition to prevent the
violation of the specified identifier constraint.

Our prototype allows the definition and treatment of most of the basic operations
considered in this paper. In particular, it is able to handle InstanceCreation,
InstanceDeletion, AttributeValueModification, RelationshipCreation, Relationship
Deletion, WeakInstanceCreation and WeakInstanceDeletion.

278 D. Costal et al.

Fig. 4. Specification of an operation contract for newPerson

Fig. 5. Automatic generation of the precondition of newPerson

6 Related Work

The problem of identifying preconditions of an operation is not new. It has been
addressed in the database field and in conceptual modelling of information systems as
part of the checking and integrity maintenance problem (see, among others, [4] and
[18]). [4] automatically generates elementary operations from an extended ER model
of a database application. These operations contain additional manipulations, known as
update propagations, to maintain some integrity constraints defined in the conceptual
model. Preconditions to guarantee cardinality constraints and other general constraints
have to be added to the specification of complex operations (sequence of elementary
ones) by the designer. [18] draws automatically a transaction specification from a
conceptual model and identifies conditions (preconditions) and repair actions to
preserve integrity constraints. This method does not deal with cardinality constraints.

Ackermann and Turowski [13] propose a set of OCL specification patterns that
facilitate the definition of some preconditions (as class instance existence, value
specification of input parameter and so on). The use of these patterns simplifies the
specification of operations although preconditions for each operation must be
identified manually by the designer.

 Drawing Preconditions of Operation Contracts from Conceptual Schemas 279

In [19] an identification process of preconditions for operations to modify
instances of a data model (only a subset of the OMT object model is considered with
classes and relations) is defined. This process is not systematic and requires
interaction with the designer. An initial precondition for an operation must be
provided by the designer and then the Z-EVES theorem prover is used to verify
whether this precondition is needed for the operation.

A goal similar to ours is addressed in [20], that proposes an approach to identify
the weakest preconditions to be added to the operations such that their execution does
not violate any integrity constraint. They consider UML class diagrams but they
assume that constraints and operation contracts are specified in the B language. Our
approach, however, is independent of the conceptual modelling language used. We
have shown how to apply it in OCL, which is the language most frequently used.
Another difference is that their approach is based on performing general reasoning on
the relevant B expressions while we provide an ad-hoc treatment endowed to the
particular semantics of each basic operation and predefined constraint.

7 Conclusions and Future Work

Conceptual schemas usually include an important amount of integrity constraints,
which must be satisfied in each state of the IB. These constraints may have a
graphical representation or can be defined by means of a particular language. The
content of the IB changes due to the execution of operations. The effect of an
operation is defined by means of a postcondition, which expresses a condition that the
IB must satisfy after applying it. Preconditions, which must be satisfied before the
execution of the operation, must guarantee that it leaves the IB in a state satisfying all
the constraints.

Due to the great amount of constraints that a schema may include, the task of
manually determining which preconditions are needed by each operation is time
consuming and error prone. To overcome this limitation, we have presented an
approach to automatically generate the preconditions needed to guarantee that an
operation satisfies the integrity constraints defined in the schema after being executed.
Our approach is able to deal with a set of predefined integrity constraints and basic
operations and allows to determine the weakest precondition which ensures that the
postcondition can be safely applied. As an additional result of this automation,
software development will also be performed faster. We have implemented our
approach and integrated it in a CASE tool.

Future research may involve drawing preconditions from complex non-basic
operations, i.e., operations defined as combinations of the basic ones studied in this
work. Additionally, we plan to deal with other types of frequent general constraints. It
may also be worth studying how the violation of an integrity constraint may be solved
by including some corrective action instead of forbidding the operation execution.

Acknowledgements. We would like to thank Quim Vilà for developing the prototype
and the GMC group for helpful discussions on this paper. We are also grateful to the
anonymous referees for their useful comments. This work has been partially
supported by the Ministerio de Ciencia y Tecnología under project TIN2005-06053.

280 D. Costal et al.

References

1. Teichroew, D.: Methodology for the Design of Information Processing Systems. In: Proc.
Fourth Australian Computer Conference, pp. 629–634 (1969)

2. OMG: MDA Guide Version 1.0.1. (2003)
3. Costal, D., Sancho, M.-R., Olivé, A., Roselló, A.: The Role of Structural Events in

Behaviour Specification. In: Tjoa, A.M. (ed.) DEXA 1997. LNCS, vol. 1308, pp. 673–686.
Springer, Heidelberg (1997)

4. Engels, G., Gogolla, M., Hohenstein, U., Hüllmann, K., Löhr-Richter, P., Saake, G.,
Ehrich, H.-D.: Conceptual Modelling of Database Applications Using an Extended ER
Model. Data & Knowledge Engineering 9, 157–204 (1992)

5. Laleau, R., Polack, F.: Specification of Integrity-Preserving Operations in Information
Systems by Using a Formal UML-based Language. Information and Software
Technology 43, 693–704 (2001)

6. Cabot, J., Gómez, C.: Deriving Operation Contracts from UML Class Diagrams. In:
Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735,
pp. 196–207. Springer, Heidelberg (2007)

7. Olivé, À.: Conceptual Schema-Centric Development: A Grand Challenge for Information
Systems Research. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 1–15. Springer, Heidelberg (2005)

8. Olivé, A.: Conceptual Modeling of Information Systems. Springer, Heidelberg (2007)
9. ISO/TC97/SC5/WG3: Concepts and Terminology for the Conceptual Schema and

Information Base. ISO (1982)
10. Meyer, B.: Object-Oriented Software Construction, 2nd edn. Prentice-Hall, Englewood

Cliffs (1997)
11. Costal, D., Gómez, C., Queralt, A., Raventós, R., Teniente, E.: Improving the Definition of

General Constraints in UML. Software and Systems Modeling (2008) DOI:
10.1007/s10270-007-0078-4

12. Halpin, T.: Information Modeling and Relational Databases: From Conceptual Analysis to
Logical Design. Morgan Kaufmann, San Francisco (2001)

13. Ackermann, J., Turowski, K.: A Library of OCL Specification Patterns for Behavioral
Specification of Software Components. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006.
LNCS, vol. 4001, pp. 255–269. Springer, Heidelberg (2006)

14. Liddle, S.W., Embley, D.W., Woodfield, S.N.: Cardinality Constraints in Semantic Data
Models. Data and Knowledge Engineering 11, 235–270 (1993)

15. Lenzerini, M.: Covering and Disjointness Constraints in Type Networks. In: Proc. ICDE
1987, pp. 386–393. IEEE Computer Society Press, Los Alamitos (1987)

16. Larman, C.: Applying UML and Patterns, 3rd edn. Prentice-Hall, Englewood Cliffs (2004)
17. OMG: UML2.0 OCL Specification, OMG Adopted Specification (2005)
18. Pastor, J.A., Olivé, A.: Supporting Transaction Designs in Conceptual Modeling of

Information Systems. In: Iivari, J., Rossi, M., Lyytinen, K. (eds.) CAiSE 1995. LNCS,
vol. 932, pp. 40–53. Springer, Heidelberg (1995)

19. Ledru, Y.: Idenitfying pre-conditions with the Z/EVES theorem prover. In: Proc. 13th
International Conf. on Automated Software Engineering. IEEE Computer Society Press,
Los Alamitos (1998)

20. Mammar, A., Gervais, F., Laleau, R.: Systematic Identification of Preconditions from Set-
Based Integrity Constraints. In: INFORSID, pp. 595–610 (2006)

Decidable Reasoning in UML Schemas with
Constraints

Anna Queralt and Ernest Teniente

Universitat Politècnica de Catalunya
{aqueralt,teniente}@lsi.upc.edu

Abstract. In this paper we propose an approach to reason on UML
schemas with OCL constraints. We provide a set of theorems to deter-
mine that a schema does not have any infinite model and then provide
a decidable method that, given a schema of this kind, efficiently checks
whether it satisfies a set of desirable properties such as schema satisfia-
bility and class or association liveliness.

Keywords: Conceptual modeling, Reasoning, Decidability.

1 Introduction

A conceptual schema consists of a taxonomy of classes together with their at-
tributes, a taxonomy of associations among classes, and a set of integrity con-
straints over the state of the domain, which define conditions that each instance
of the schema must satisfy. These constraints may have a graphical representa-
tion or can be defined by means of a particular general-purpose language.

The Unified Modeling Language (UML) has become a de facto standard in
conceptual modeling of information systems. In UML, a conceptual schema is
represented by means of a class diagram, with its graphical constraints, together
with a set of user-defined constraints, which are usually specified in OCL.

Due to the high expressiveness of the combination of both languages, checking
the correctness of a UML conceptual schema manually becomes a very difficult
task, specially when the set of textual constraints is large. For this reason, it is
desirable to support the designer in reasoning on a conceptual schema.

There are several reasoning tasks that can be performed to determine the
correctness of a schema, such as satisfiability of the schema, liveliness of a class
or association or reachability of certain states of the information base. Several
efforts have already been devoted to reasoning on conceptual schemas. There are
automatic procedures for the verification of some properties of schemas in De-
scription Logics [1,2] or to reason about different kinds of cardinality constraints
[3,4,5], but they do not deal with general integrity constraints.

Since the problem of reasoning with integrity constraints in its full generality
is undecidable, two different approaches can be followed, either based on de-
cidable procedures for certain restricted kinds of constraints [6,7], or based on
semidecidable procedures for highly expressive constraints [8].

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 281–295, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

282 A. Queralt and E. Teniente

In this work we take a mixture of both directions. In particular, our approach
consists in translating a UML schema, with OCL constraints satisfying mild syn-
tactical restrictions, into a logic representation to reason on it. Then we provide
a set of conditions that guarantee that the schema does not have any infinite
model, so that the problem becomes decidable. In this way, any theorem prover
or reasoning method can be used knowing that any reasoning task performed on
the schema will terminate.

Additionally, once we have determined that all the models of a schema are
finite, and since the logic representation of our UML and OCL schemas follows
a specific syntactical structure, we provide a reasoning procedure that always
terminates and works more efficiently than in the general case.

2 Base Concepts

Throughout the paper, a, b, c, a1, b1,... are constants. The symbols X, Y, Z,
X1, Y1,... denote variables. Sets of constants are denoted by ā, b̄, c̄, ā1, b̄1,...
and X̄, Ȳ , Z̄, X̄1, Ȳ1,... denote sets of variables. Predicate symbols are p, q, r,
p1, q1,... A term is either a variable or a constant. If p is a n-ary predicate and
T1, ..., Tn are terms, then p(T1, ...,Tn) is an atom, which can also be written
as p ¯(T) when n is known from the context. An atom is ground if every Ti is a
constant. An ordinary literal is defined as either an atom or a negated atom, i.e.
¬p(T̄). A built-in literal has the form of A1ωA2, where A1 and A2 are terms,
and the operator ω is either <, ≤, >, ≥, = or �=.

A normal clause has the form

A ← L1 ∧ ... ∧ Lm with m ≥ 0

where A is an atom and each Li is a literal, either ordinary or built-in. All the
variables occurring in A, as well as in each Li, are assumed to be universally
quantified over the whole formula. A is often called the head and L1 ∧ ... ∧ Lm

is the body of the clause. A set of normal clauses is called a normal program.
The definition of a predicate symbol p in a normal program P is the set of all
clauses in P that have p in their head. A normal program P is hierarchical if
there is a partition P = P1 ∪ ... ∪ Pn such that the following condition holds
for i = 1, 2, ..., n: if an atom r(T̄) occurs positively or negatively in the body of
a clause in Pi then the definition of r is contained within Pj with j < i.

Terms, literals and the syntactic structures made of them are expressions. If
E is an expression, then constants(E) and variables(E) are the sets containing
the constants and variables, respectively, occurring in E.

A substitution θ is a set of the form {X1/T1, ..., Xn/Tn}, where each variable
Xi is unique and each term Ti is different from Xi. The term Ti is called a binding
for Xi. θ is called a ground substitution if each Ti is a constant.

Let E be an expression and θ = {X1/T1, ..., Xn/Tn} a substitution. Then Eθ
is the expression obtained from E by simultaneously replacing each occurrence
of the variable Xi in E by the term Ti.

A fact is a normal clause of the form: p(ā) ← , where p(ā) is a ground atom.

Decidable Reasoning in UML Schemas with Constraints 283

Fig. 1. Conceptual schema for an internet forum

A deductive rule is a normal clause of the form: p ¯(T) ← L1 ∧ ... ∧ Lm with
m ≥ 1 where p is the derived predicate defined by the deductive rule.

A condition is a formula of the (denial) form: ← L1 ∧ ... ∧ Lm with m ≥ 1.
A database schema S is a tuple (DR, IC) where DR is a finite set of deduc-

tive rules and IC is a finite set of conditions. Literals occurring in the body of
deductive rules and conditions in S are either ordinary or built-in. The predicate
symbols in ordinary literals range over the extensional database (EDB) predi-
cates, which are the relations that will be stored directly in the database, and
the intensional database (IDB) predicates, which are the relations defined by
the deductive rules in DR. EDB predicates cannot be derived. Conditions in IC
define the integrity constraints of the schema S.

Deductive rules as well as conditions are required to be safe, that is, every
variable occurring in the head or in negated or built-in atoms of their body must
also occur in an ordinary positive literal of the same body.

Our logic representation of a schema has a specific structure, since it is ob-
tained from the translation of a UML conceptual schema, with its constraints
specified using a subset of the OCL. In particular, the only IDB predicates that
appear are those needed to make the conditions safe. Thus, the conditions of
the resulting schema are such that their literals correspond to either (positive
or negative) EDB predicate symbols or negative IDB predicate symbols. Pred-
icate symbols occurring in ordinary literals in the bodies of deductive rules are
positive EDB predicate symbols, i.e. derivation rules do not include derived pred-
icates. To satisfy this restriction, although OCL constraints can include the op-
erations includes, includesAll, notEmpty, exists and one, these specific
operations cannot be recursively combined in an OCL expression.

For a schema S = (DR, IC), a state, instance or model D is a tuple (E, S)
where E is an EDB, that is, a set of ground facts about EDB predicates. DR(E)
denotes the whole set of ground facts about EDB and IDB predicates that are
inferred from a database state D = (E, S). DR(E) corresponds to the fixpoint
model of DR ∪ E.

An instance D violates a condition ← L1 ∧ ... ∧ Ln if there exists a ground
substitution θ such that D |= (L1 ∧ ... ∧ Ln)θ. In other words, when
L1θ, ..., Lnθ ⊆ DR(E). D is consistent when it violates no condition in IC.

We present in this section a simple UML conceptual schema with a set of OCL
constraints. We will use this example to illustrate our approach to determine
the absence of infinite models. For the sake of simplicity we do not specify any
attributes in the classes.

284 A. Queralt and E. Teniente

As can be seen in Fig. 1, each Forum is related to a User that moderates it,
and to a set of users that are its Participants, which can be invited by other
participants. The textual constraints impose that the moderator of a forum
cannot participate in it, and that each forum must have at least one invited
participant, which must be invited by some other participant in the same forum.

The translation of the schema into logic results in the following rules, which
specify the implicit, graphical and textual constraints that appear in the UML
schema. According to our previous work [8], classes are translated into unary
predicates, whereas n-ary predicates represent the associations (or association
classes). Conditions 1 to 6 correspond to the referential constraints of associ-
ations. In this case, since all associations are binary, two such constraints are
needed for each of them (one constraint for each association end). Condition 7
specifies that there cannot be two instances of Participant with the same Forum
and User, which is an implicit constraint of association classes. Conditions 8 to
11 are the cardinality constraints of associations (the upper and lower bounds
of moderator in Moderates, the lower bound of User in the association class
Participant, and the upper bound of inviter in HasInvited). Finally, conditions
12 to 14 are the textual constraints of the schema.
1. ← Moderates(F,U) ∧ ¬Forum(F)
2. ← Moderates(F,U) ∧ ¬User(U)
3. ← Participant(P,F,U) ∧ ¬Forum(F)
4. ← Participant(P,F,U) ∧ ¬User(U)
5. ← HasInvited(P,I) ∧ ¬IsParticipant(P)

IsParticipant(P) ← Participant(P,F,U)
6. ← HasInvited(P,I) ∧ ¬IsParticipant(I)
7. ← Participant(P,F,U) ∧ Participant(P2,F,U) ∧ P�=P2
8. ← Forum(F) ∧ ¬OneModerator(F)

OneModerator(F) ← Moderates(F,U)
9. ← Moderates(F,U) ∧ Moderates(F,U2) ∧ U�=U2
10. ← Forum(F) ∧ ¬OneParticipant(F)

OneParticipant(F) ← Participant(P,F,U)
11. ← HasInvited(P,I) ∧ HasInvited(P2,I) ∧ P�=P2
12. ← Moderates(F,U) ∧ Participates(P,F,U)
13. ← HasInvited(P,P)
14. ← Forum(F) ∧ ¬OneInvited(F)

OneInvited(F) ← Participant(P,F,U) ∧ HasInvited(P,I)
∧ Participant(I,F,U2)

3 Determining the Decidability of Reasoning on a
Schema

In this section we present our method to identify whether a schema is such that
any reasoning task performed on it will terminate, which happens when all its
models are finite.

To determine the absence of infinite models, we obtain a graph from the set of
constraints of the schema that shows the existing dependencies between them.
We formalize the construction of the dependency graph for a given schema in
section 3.1, and in section 3.2. we explain how to analyze the graph in order to
determine whether all the models of a schema are finite.

Decidable Reasoning in UML Schemas with Constraints 285

3.1 The Dependency Graph

As seen in section 2, a condition consists of a set of positive literals, a set of
negative literals and a set of built-in literals. Positive literals are the ones that
may violate the constraint, whereas negative literals repair the constraint in
case it is violated or, in other words, avoid violation in case that all the positive
literals hold in the EDB.

Definition 1. A literal p ¯(X) is a potential violation of a condition ic if it
appears positively in its body. We denote by V(ic) the set of potential violations
of condition ic.

For example, V(ic1) = {Moderates(F,U)} since the existence of a fact Moder-
ates(a,b) in the EDB causes the violation of ic1 if the EDB does not contain the
fact Forum(a).

Definition 2. Given a condition ic, there is a repair Ri(ic) for each negative
literal ¬Li in the body of ic. If Li is base then Ri(ic)= {Li}, otherwise Ri(ic)
= {p1

¯(X1),...,pn
¯(Xn)}, where each pj(X̄j) is a literal that appears positively in

the body of the derivation rule that defines Li.

Each repair of a condition gives an alternative way to avoid its violation. In
our example, all conditions have a single repair. For instance, the repair of con-
dition 1 is R(ic1) = {Forum(F)}, and the repair of condition 14 is R(ic14)
= {Participant(P,F,U), HasInvited(P,I), Participant(I,F,U2)}. There are some
constraints, such as ic7, that cannot be repaired once they are violated, unless
their potential violations are removed from the EDB.

In the proposed approach, the set IC of constraints of a schema is associated
with a directed graph G, that we call dependency graph. This graph shows, for
each condition ici of the schema, which conditions may be violated as a result
of each possible repair of ici.

Definition 3. A dependency graph G is a graph such that each vertex corre-
sponds to a condition ici of the schema. There is an arc from ici to icj, labeled
Rk(ici), if there exists a predicate p such that p ¯(X) ∈ Rk(ici) and p ¯(Y) ∈ V(icj).

Note that G is sometimes a multigraph, since two different repairs of a condition
ici may lead to the violation of a same other condition icj.

Figure 2 depicts the dependency graph built from the conditions of our ex-
ample. For the sake of clarity, conditions 5 and 6 have been collapsed in a single
vertex, since the predicates belonging to their sets of potential violations and
repairs coincide. For instance, it can be seen that the repair of conditions ic5
and ic6 can violate ic4, ic7, ic3 and ic12, since the predicate Participant, which
is a repair for conditions ic5 and ic6, belongs to their sets of potential violations.

However, not all the arcs that appear in the graph represent the violation of
the condition in the terminal vertex when repairing the initial one. Sometimes,
the existence of an arc means the opposite: that the repair of the condition in
the initial vertex guarantees the non-violation of the condition in the terminal

286 A. Queralt and E. Teniente

Fig. 2. Dependency graph. Superfluous arcs are dashed, and cycles are highlighted.

vertex. We say this kind of arcs are superfluous. Examples of superfluous arcs,
which are depicted with dashed lines in Fig. 2, are the ones between conditions
ic1 and ic8. When ic1 is violated due to the insertion of a fact Moderates(a,b) in
the EDB, the insertion of the corresponding repair Forum(a) guarantees that ic8
is fulfilled. Similarly, when the first to be violated is ic8 because of the presence
of a fact Forum(a), the violation is repaired by the insertion of Moderates(a,b),
which guarantees the satisfaction of condition ic1.

Formally, an arc ri from the constraint ici to icj is superfluous when V (icj) =
riθ and there is some repair Rk(icj) such that Rk(icj) = V (ici)θ, where θ is a
unifier of the sets V (ici)∪ri and V (icj)∪Rk(icj) that assigns a different term to
each distinct variable. This guarantees that icj is never violated after the repair
of ici, since although the facts added by ri potentially violate icj , this condition
is always satisfied because its repair also belongs to the EDB. Thus, once these
superfluous arcs are identified, they can be left aside since they indicate the
ending of any sequence of repairs.

Let C = (ic1 r1 ... icn rn icn+1 = ic1) be an alternating sequence of vertices
and arcs that define a cycle in a dependency graph G. The existence of C implies
that the repair ri of a condition ici may violate other conditions whose repairs
could violate ici again.

As can be seen in Fig. 2, there are two cycles in our dependency graph, defined
by the conditions (ic3 ic14) and (ic3 ic14 ic5/6). Since each constraint has a
single repair, an enumeration of vertices suffices to identify each cycle. Note that
the existence of superfluous arcs significantly reduces the number of cycles in
the dependency graph.

3.2 Decidability of Reasoning on a Schema

Our approach to reasoning is aimed at constructing a database state which shows
that a certain property holds. That is, a sample EDB where both the particular
condition that defines the reasoning task and all the integrity constraints in

Decidable Reasoning in UML Schemas with Constraints 287

the schema are satisfied. Therefore, our approach requires to perform integrity
maintenance when trying to build such a sample EDB.

It can be seen that the constraints that form a cycle in a dependency graph
are the only reason for the existence of infinite models. Clearly, a condition that
does not belong to a cycle will not cause an infinite sequence of repairs, since
it will not be violated again when it has been maintained once for a certain set
of facts. On the contrary, constraints that belong to cycles can be violated a
potentially infinite number of times, since once they have been maintained, the
same facts inserted by the repairs may cause new violations and new repairs,
which can result in an infinite model. Then, if we can identify which are the
cycles that do not cause an infinite sequence of violations, we can determine
whether a schema is suitable to perform any reasoning task in finite time.

In this section we study the cycles of the dependency graph to ensure that the
process of integrity maintenance does not loop forever. To do this, we provide
a set of theorems that allow to discard the presence of infinite models in the
constraints that define each cycle. When all the models of a cycle of constraints
are finite we call it a finite cycle.

A first condition that guarantees that a cycle is finite is that it includes a
constraint whose violation requires facts that are not inserted in the EDB by
some repair in the same cycle. This implies that the cycle will not lead to an
infinite sequence of repairs, since there is necessarily a condition in the cycle
that will not be violated at some time. This is formalized in theorem 4.

Theorem 4. A cycle C = (ic1 r1 ... icn rn icn+1 = ic1) is a finite cycle if

n⋃

i=1

⎛

⎝
⋃

p(X̄)∈ri

p

⎞

⎠ ⊂
n⋃

i=1

⎛

⎝
⋃

q(Ȳ)∈V (ici)

q

⎞

⎠

Intuitively, since the union of repairs of the conditions in the cycle is a proper
subset of the union of potential violations, at least one potential violation of
a constraint icj in the cycle is an EDB predicate which is not updated during
maintenance of the rest of the constraints. Therefore, since the set of facts in the
sample EDB at the beginning of the process is finite, icj may always be violated
only a finite number of times.

An example is the following set of constraints, which define a cycle since the
repair of the first one is a potential violation of the second, and viceversa:

← p(X) ∧ q(X) ∧ ¬r(X)
← r(X) ∧ ¬aux(X)
aux(X) ← p(Y) ∧ Y �= X

In this example, the potential violation q(X) in the first condition is not added
by the repair of the second one. Thus, even when the first constraint is violated
because p(X) ∧ q(X) holds in the EDB for some X, the repairs of the second
condition may only lead to new violations of the first one a finite number of
times (one for each fact q(a) contained in the initial EDB when the process of
maintaining the previous constraints started).

288 A. Queralt and E. Teniente

A cycle may be finite although it does not satisfy the previous condition.
Examples can be found such that all the facts that are potential violations are
created inside the cycle and, however, the cycle is not potentially infinite. An
example is the cycle (ic3 ic14), which does not satisfy the previous condition
but is finitely satisfiable. For instance, when a Participant(a,b,c) is added to the
EDB, ic3 requires the insertion of Forum(b) which, in turn, violates ic14. In
order to repair this violation, the facts Participant(a2,b,c2), HasInvited(a2,a3)
and Participant(a3,b,c3) may be inserted, but they will never violate ic3 again.

Definition 5. A variable x is free in a repair Ri(ic) if x ∈ variables(Ri(ic))
and x /∈ variables(V(ic)).

Theorem 6. A cycle C = (ic1 r1 ... icn rn icn+1 = ic1) is a finite cycle if
∀i, 1 ≤ i ≤ n, ∀p such that p(X1,...,Xm) ∈ ri and p(Y1,...,Ym) ∈ V (ici+1),
∀k, 1 ≤ k ≤ m, Xk is free in ri ⇒ Yk /∈ variables(ri+1).

Intuitively, free variables in a repair are the source of infinity since they propagate
the violations to new objects other than the ones that initially violated the
constraints in the cycle. The previous condition guarantees that the free variables
in the repair of the first constraint are not propagated by the repair of the
second constraint. Since such a condition is required for each two consecutive
constraints, it is guaranteed that the cycle will not loop forever since no new
objects will be infinitely introduced by the repairs.

Applying this condition to the cycle consisting of ic3 and ic14 we can conclude
that it is a finite cycle, since the objects added by ic14 (the free variables in its
repair) do not appear in the repair of ic3, which means that the new objects are
not propagated in the cycle.

There is another cycle in our example, defined by the constraints (ic14 ic5/ic6
ic3), that does not satisfy the previous condition. However, this cycle is not
infinite, since the free variables in ic14 are propagated by ic5/ic6 but not by
ic3, which means that the new objects do not cause a new violation of ic14.

We propose another theorem to identify this kind of cycles, which determines
whether all the constraints of a cycle are violated at most once.

Definition 7. Let C = (ic1 r1 ... icn rn icn+1=ic1) be a cycle in G, where each
ri corresponds to some repair Rj(ici). Let V(ici)={p1(X̄1),...,pm(X̄m)}. Then,
Facts(ic1) = (V (ic1) ∪ r1)θ1

Facts(ici) =
t⋃

k=1

riθk ∪ Facts(ici−1), i > 1

where θ1 is a substitution that bounds a distinct constant to each variable, each
θk = θj ∪ θ′j is one of the t possible substitutions such that Facts(ici−1) |=
(p1(X̄1)∧ ...∧pm(X̄m))θj and θ′j assigns a new constant to each variable X such
that X ∈ variables(ri) and X /∈ variables(V(ici)) if θj �= , otherwise θk = .

Theorem 8. C is a finite cycle if, for each possible starting ici, ∃k, 1 ≤ k ≤ n,
such that Facts(ick) = Facts(ick+1).

Decidable Reasoning in UML Schemas with Constraints 289

Intuitively, for each i>1, the set Facts(ici) extends the set Facts(ici−1) by tak-
ing into account the repairs required to satisfy ici. Therefore, the condition
Facts(ick) = Facts(ick+1) guarantees that the constraint ick+1 is not violated
and, hence, the maintenance of the constraints in the cycle will not loop forever.

The previous results allow us to determine whether reasoning on a given con-
ceptual schema will always terminate. Note, however, that this set of theorems
is not complete due to the undecidability of this problem.

4 Reasoning on a Schema

Once we have determined that all the models of a conceptual schema are finite (as
it happens in our example), we can take advantage of the characterization of the
logic formulas obtained from our UML and OCL schemas to define a reasoning
procedure that works more efficiently than in the general case. Reasoning is
concerned with determining the correctness of a schema. Several reasoning tasks
have been considered in the literature, such as satisfiability (i.e. checking whether
the schema admits a non-empty state that satisfies all the constraints), liveliness
of a predicate (i.e. determining whether a certain class or association can have
at least one instance) or reachability of partially specified states (i.e. assessing
whether certain goals conceived by the designer may be satisfied). In general,
each reasoning task can be formulated in terms of a particular goal to attain.

A well-known approach to deal with this problem is to define methods whose
purpose is to construct a database state (i.e. an EDB) for which the tested
property holds. That is, a sample EDB where both the particular goal to attain
and all the integrity constraints in the schema are satisfied. In this way, these
methods can uniformly deal with all reasoning tasks.

In this section we propose a new reasoning procedure based on the previous
approach. We divide it in two different steps: goal satisfaction and integrity
maintenance. These steps are defined in sections 4.1 and 4.2, respectively.

4.1 Goal Satisfaction

Our method is aimed at building a sample EDB which proves that the schema
fulfills a specific property defined in terms of a certain goal G to attain. We
assume that G is a conjunction of (positive and negative) literals corresponding
to EDB predicates and built-in literals; which suffices to handle schema satisfi-
ability, predicate liveliness and reachability of partially specified states [8].

The first step of our method determines the EDB facts that are required
to satisfy G without taking into account whether they violate any integrity
constraint. Positive literals in G define facts that are necessarily required to
satisfy G while negative literals in G identify facts that the sample EDB under
construction must not contain. Built-in literals state conditions over the values
that the variables of positive and negative literals in G may take.

One of the most difficult tasks is the assignment of concrete values to the
variables appearing in G in order to construct the sample EDB. Each possible

290 A. Queralt and E. Teniente

choice defines a different alternative that satisfies G, i.e. a different sample EDB.
We use Variable Instantiation Patterns (VIPs) [9] for this purpose. These VIPs
guarantee that the number of sample EDBs to be considered is kept finite, by
taking into account only those variable instantiations that are relevant for the
schema, without losing completeness. I.e. the VIPs guarantee that if a solution
is not found by instantiating the variables in the goal using only the constants
they provide, then no solution exists. VIPs are selected according to the syntactic
properties of the schema considered in each test:

1. The Simple VIP: for schemas without negation and integrity constraints.
2. The Negation VIP: for schemas with negation and/or integrity constraints.
3. The Dense Order VIP: for schemas with order comparisons over a dense

domain (e.g. real numbers).
4. The Discrete Order VIP: for schemas with order comparisons over a discrete

domain (e.g. integer numbers).

In our example, the appropriate VIP is the Negation VIP, since the schema has
negation and integrity constraints, but not order comparisons. With this VIP,
each variable of the fact to be included in the EDB is instantiated either with
a previously used constant or with a new one. For instance, assume that p(X)
must be instantiated and that the only constant used up this moment is 0. Then,
according to this VIP, the only relevant instantiations are p(0) and p(1).

Step 1: Goal Satisfaction. Formally, the set EDB of facts required to satisfy
G and the set UnwEDB of facts that EDB may never include to fulfill the tested
property are obtained as stated in definition 9. There is a different alternative
EDB for each possible substitution θ provided by the corresponding VIP.

Definition 9. Let G =← P1(X̄1) ∧...∧ Pn(X̄n) ∧¬Q1(Ȳ1) ∧...∧ ¬Qm(X̄m) ∧
B1 ∧ ... ∧ Bs, where Pi, Qj are base predicates and Bk are built-in literals.

Let θ be one of the possible ground substitutions obtained via an instantiation
of variables(G)and such that ∀i, 1 ≤ i ≤ s, Biθ evaluates to true. Then,

– The set of facts required to satisfy G is EDB ={P1θ,...,Pnθ}
– The set of facts unwanted to satisfy G is UnwEDB ={Q1θ,...,Qmθ}

As an example, assume that the designer wants to check the liveliness of the
association Moderates in the conceptual schema of Fig. 1. Moderates will be lively
if the goal G = ← Moderates(F,U) succeeds for some instantiation. Applying the
step 1 of our method we will obtain two different EDBs that satisfy G according
to the Negation VIP: EDB1 = Moderates(0,0) and EDB2 = Moderates(0,1).

4.2 Integrity Maintenance

Once we have determined the set of EDB facts that satisfies the goal G to attain,
the problem of reasoning on the schema may be reduced to that of integrity

Decidable Reasoning in UML Schemas with Constraints 291

maintenance [10]. Note that, in fact, we already know that the property checked
will be satisfied if the EDB resulting from Step 1 does not violate any constraint
of the schema. If this is not the case, we must look for additional base facts (i.e.
repairs) that make the sample EDB being constructed fulfill all constraints.

Unfortunately, we may not rely on existing integrity maintenance methods
to perform this activity. On the one hand, some methods like [11,12] can only
handle restricted types of integrity constraints which do not cover the kind of
constraints we obtain as a result of the translation of the conceptual schema into
logic. On the other hand, most methods do not provide an appropriate treat-
ment to the existential variables that appear in the integrity constraint definition
[13,14,15,16]. The general approach of these methods when instantiating an exis-
tential variable is either asking for a value from the user at run-time or assigning
an arbitrarily chosen value of the corresponding data type. This is not suitable
when using integrity maintenance for reasoning since only a few of the possible
alternatives (just one in most cases) would be taken into account to repair a
violated constraint. Therefore, this approach does not guarantee the correctness
of the result since the impossibility to find a sample EDB would not necessarily
imply that the tested property does not hold.

To our knowledge, the most appropriate method to perform the kind of in-
tegrity maintenance we require is the CQC-Method [9]. However, and in addition
to the decidability drawbacks stated in section 1, the CQC-Method has impor-
tant efficiency limitations that make questionable its use in practical situations.

Thus, we need to build a new reasoning procedure, which can take advantage
both of the dependency graph and the characterization of the logic formulas
obtained from our schemas to work efficiently. Since the graph shows the in-
teractions between the constraints, it provides the order in which they should
be maintained. In principle, all constraints in the graph must be considered for
maintenance since all of them may be violated by the EDB obtained as a result
of Step 1. Vertices with no incoming arcs or whose incoming arcs have already
been maintained are selected with priority so that a constraint is not considered
until all the constraints that may violate it have already been maintained.

An integrity constraint ic must be repaired if its potential violations hold
in the sample EDB. Maintenance of ic results in the inclusion of its repairs in
the sample EDB being constructed. Note that ic may be violated by several
different instantiations of its potential violations. Each of them gives raise to
different repairs to be added in the EDB. If a constraint with an empty set of
repairs is violated, the sample EDB being constructed must be discarded since
it is impossible to make it satisfy such a constraint.

The process of integrity maintenance is formalized as follows. Note that we
also use the VIPs to assign concrete values to the existential variables that appear
in the repairs of a constraint. Backtracking must be performed each time that
the sample EDB under construction reaches a situation where the selected ic
can not be repaired. Such backtracking involves considering a different repair of
one of the constraints that has been maintained before ic.

292 A. Queralt and E. Teniente

Fig. 3. A sample EDB that proves that Moderates is lively

Step 2: Integrity Maintenance. Let ic =← P1(X̄1) ∧ ... ∧ Pn(X̄n) ∧
¬Q1(Ȳ1) ∧ ... ∧ ¬Qm(X̄m) ∧ B1 ∧ ... ∧ Bs be the condition selected for
maintenance from the dependency graph, where Pi, Qj are base predicates and
Bk are built-in literals. Let EDBi be the set of required facts at that moment.
Let EvalV(ic) and EvalR(Ri(ic)) be the set of built-in literals that appear in the
body of ic and in the body of the rule from which Ri(ic) is obtained, respectively.
Then EDBi+1 is computed as follows:

if Ri(ic) = and EDBi |= (P1(X̄1) ∧ ... ∧ Pn(X̄n) ∧ B1 ∧ ... ∧ Bs)θj

then error(ic cannot be repaired)

else EDBi+1 =
t⋃

k=1

Ri(ic)θk ∪ EDBi

if ∃Qi ∈ UnwEDB such that Qi ∈ EDBi+1
then error(ic cannot be repaired)

where each θk = θj ∪ θ′j is a substitution such that EDBi |= (V (ic) ∧
EvalV (ic))θj and θ′j is one of the possible substitutions obtained from an in-
stantiation of all the variables in variables(Ri(ic)) \ variables(V (ic)) such that
EvalR(Ri(ic))θ′j evaluates to true, if θj �= , otherwise θk = .

Figure 3 shows an execution of the integrity maintenance step of our method
for one of the EDBs obtained in Step 1. Each row in the figure shows the in-
tegrity constraint being maintained (as selected through the order defined by
the dependency graph) and the additions to the EDB required to repair the con-
straint, if any. A row contains several constraints when none of them is violated

Decidable Reasoning in UML Schemas with Constraints 293

by the EDB under construction. As a result of the execution, our method obtains
a sample EDB which confirms that the association Moderates is lively.

The constraint ic1 is selected first since it is the only vertex with no incoming
arcs in the graph. It is violated since V(ic1)=Moderates(F,U) holds in the EDB
with substitution θj ={F/0, U/0}. Then, since R(ic1)=Forum(F), the repair
Forum(0) is added to the sample EDB to ensure that it does not violate ic1.

The next constraint to be selected is ic10 since all its predecessors have al-
ready been maintained. Similarly, it is violated since V(ic10)=Forum(F) holds
in the EDB with substitution θj ={F/0}. Since R(ic10) = Participant(P,F,U),
Participant(0,0,1) is added to the sample EDB since we assume that the substi-
tution obtained is θ′j ={P/0, U/1}.

The method proceeds then with ic14 which requires considering two addi-
tional repairs whose concrete values have also been obtained via the application
of a VIP. The rest of the constraints are either not violated or require repairs
which are obtained in the same way than the repairs of ic1.

At the end, the method succeeds and it obtains the sample EDB = {Fo-
rum(0), User(0), User(1), User(2), Participant(0,0,1), Participant(1,0,2), Has-
Invited(0,1), Moderates(0,0)}. Note that seven additional facts have been added
to the EDB to ensure that it does not violate any integrity constraint.

We do not show in this figure the unsuccessful repairs that may have hap-
pened during the execution. For instance, when determining repairs for ic10,
Participant(0,0,0) could have been considered. However, this alternative does
not lead to a valid solution since it violates ic12, which can not be repaired.

5 Related Work

In this section we review how reasoning on conceptual schemas has been ad-
dressed in the literature. As will be seen, the main contribution of our approach
is to deal with more expressive conceptual schemas than previous methods.

The problem of determining the satisfiability of a schema has been widely
studied in ER schemas, mostly regarding strong satisfiability of cardinality con-
straints. This notion was introduced in [5], where the problem was reduced to
solving a linear inequality system. In [17] the problem is solved by means of a
graph theoretic approach, which was extended in [3] to deal with a generaliza-
tion of the concept of cardinality. In [4], satisfiability is checked by building a
minimal sample database satisfying a set of global cardinality constraints.

More expressive schemas are considered in [6,7], where the finite satisfiability
of object-oriented database schemas is determined. The schemas can be anno-
tated only with specific textual constraints to restrict the value of an attribute
by comparing it to another value.

The Alloy language and analyzer [18] provide interesting reasoning capabilities
for more expressive schemas by searching for examples of the tested properties.
However, since the search space must be limited by the user, failure to find an
example does not necessarily mean that one does not exist.

The problem of checking satisfiability has also been addressed for UML concep-
tual schemas. Restricted UML schemas are analyzed in [19], detecting conflicts

294 A. Queralt and E. Teniente

regarding disjointness and covering constraints in hierarchies, and inconsistencies
in the redefinition of inherited cardinality constraints.

A different approach to reason on UML schemas is to translate them into
Description Logics (DL) and perform several reasoning tasks using a DL-based
system. This allows not only checking the satisfiability of the complete schema
but also determining other properties such as class consistency, class equivalence
or class subsumption [1], or checking whether a class is forced to have either
zero or infinite objects [2]. However, OCL constraints, as well as other UML
constructs such as association classes or n-ary associations, are disallowed in
order to guarantee decidability.

An alternative approach is not to restrict the expressiveness of the schema
and consider general constraints, but then reasoning becomes semidecidable.
This direction has been followed in [8], where several reasoning tasks on a UML
schema with textual OCL constraints are performed using the CQC-Method as
a reasoning engine. In addition to the decidability drawback of this approach,
and as far as efficiency is concerned, the reasoning procedure proposed in this
paper represents an important improvement regarding the number of integrity
constraints that are considered for maintenance.

6 Conclusions

We have proposed an approach to reason on UML schemas with OCL con-
straints. Our approach can deal with almost all the operators that can be used
to define an OCL expression (all the boolean operators defined in the OCL stan-
dard, as well as select and size, that return a collection and an integer). Ex-
ceptions are those expressions resulting from recursively combining includes,
includesAll, notEmpty, exists and one. Then, given a conceptual schema
of this kind, our method allows determining whether it satisfies certain desir-
able properties such as schema satisfiability, predicate liveliness or reachability
of partially specified states.

Our approach consists of two different tasks, which are the main contributions
of our work. First, we analyze whether the schema is such that any reasoning task
performed on it will terminate. This is achieved by means of the construction
of the dependency graph of constraints and the definition of a set of conditions
over this graph that ensure that the schema does not have any infinite model,
which are the reason for undecidability.

Second, we define a procedure that allows to efficiently check whether a certain
property holds by constructing a sample EDB in which the property is satisfied.
Moreover, the impossibility of finding any solution implies that the property does
not hold. This procedure is decomposed in two different steps: satisfying the goal
that defines the tested property and maintaining all the integrity constraints of
the schema to ensure that the sample EDB built is consistent.

As further work, we plan to implement the approach defined in this paper
and apply it to practical situations. We would also like to extend our results to
minimize the restrictions on the OCL expressions we can deal with.

Decidable Reasoning in UML Schemas with Constraints 295

Acknowledgements. This work has been partly supported by the Ministerio
de Ciencia y Tecnología under projects TIN2005-06053 and TIN2005-05406.

References

1. Berardi, D., Calvanese, D., de Giacomo, G.: Reasoning on uml class diagrams.
Artificial Intelligence 168(1-2), 70–118 (2005)

2. Cadoli, M., Calvanese, D., Giacomo, G.D., Mancini, T.: Finite model reasoning on
uml class diagrams via constraint programming. In: AI*IA 2007: Artificial Intelli-
gence and Human-Oriented Computing, pp. 36–47 (2007)

3. Hartmann, S.: On the Consistency of Int-cardinality Constraints. In: Ling, T.-
W., Ram, S., Li Lee, M. (eds.) ER 1998. LNCS, vol. 1507, pp. 150–163. Springer,
Heidelberg (1998)

4. Engel, K., Hartmann, S.: Minimal Sample Databases for Global Cardinality Con-
straints. In: Eiter, T., Schewe, K.-D. (eds.) FoIKS 2002. LNCS, vol. 2284, pp.
268–288. Springer, Heidelberg (2002)

5. Lenzerini, M., Nobili, P.: On the satisfiability of dependency constraints in entity-
relationship schemata. Inf. Syst. 15(4), 453–461 (1990)

6. Formica, A.: Finite satisfiability of integrity constraints in object-oriented database
schemas. IEEE Trans. on Knowledge and Data Eng. 14(1), 123–139 (2002)

7. Formica, A.: Satisfiability of object-oriented database constraints with set and bag
attributes. Information Systems 28(3), 213–224 (2003)

8. Queralt, A., Teniente, E.: Reasoning on UML Class Diagrams with OCL Con-
straints. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215,
pp. 497–512. Springer, Heidelberg (2006)

9. Farre, C., Teniente, E., Urpí, T.: Checking query containment with the cqc method.
Data and Knowledge Engineering 53(2), 163–223 (2005)

10. Moerkotte, G., Lockemann, P.C.: Reactive consistency control in deductive
databases. ACM Trans. Database Syst. 16(4), 670–702 (1991)

11. Console, L., Sapino, M.L., Dupré, D.T.: The role of abduction in database view
updating. J. Intell. Inf. Syst. 4(3), 261–280 (1995)

12. Lobo, J., Trajcevski, G.: Minimal and consistent evolution in knowledge bases. J.
Applied Non-Classical Logics 7(1-2), 117–146 (1997)

13. Ceri, S., Fraternali, P., Paraboschi, S., Tanca, L.: Automatic generation of produc-
tion rules for integrity maintenance. ACM Trans. DB Syst. 19(3), 367–422 (1994)

14. Decker, H.: An extension of sld by abduction and integrity maintenance for view
updating in deductive databases. In: JICSLP, pp. 157–169 (1996)

15. Schewe, K.D., Thalheim, B.: Towards a theory of consistency enforcement. Acta
Inf. 36(2), 97–141 (1999)

16. Mayol, E., Teniente, E.: Consistency preserving updates in deductive databases.
Data Knowl. Eng. 47(1), 61–103 (2003)

17. Thalheim, B.: Entity-Relationship Modeling: Foundations of Database Technology.
Springer, New York (2000)

18. MIT Software Design Group: The Alloy Analyzer, http://alloy.mit.edu
19. Kaneiwa, K., Satoh, K.: Consistency Checking Algorithms for Restricted UML

Class Diagrams. In: Dix, J., Hegner, S.J. (eds.) FoIKS 2006. LNCS, vol. 3861, pp.
219–239. Springer, Heidelberg (2006)

http://alloy.mit.edu

Round-Trip Engineering for Maintaining

Conceptual-Relational Mappings

Yuan An, Xiaohua Hu, and Il-Yeol Song

College of Information Science and Technology, Drexel University, USA
{yan,thu,isong}@ischool.drexel.edu

Abstract. Conceptual-relational mappings between conceptual models
and relational schemas have been used increasingly to achieve interoper-
ability or overcome impedance mismatch in modern data-centric applica-
tions. However, both schemas and conceptual models evolve over time to
accommodate new information needs. When the conceptual model (CM)
or the schema associated with a mapping evolved, the mapping needs
to be updated to reflect the new semantics in the CM/schema. In this
paper, we propose a round-trip engineering solution which essentially
synchronizes models by keeping them consistent for maintaining concep-
tual-relational mappings. First, we define the consistency of a conceptual-
relational mapping through “semantically compatible” instances. Next,
we carefully analyze the knowledge encoded in the standard database
design process and develop round-trip algorithms for maintaining the
consistency of conceptual-relational mappings under evolution. Finally,
we conduct a set of comprehensive experiments. The results show that
our solution is efficient and provides significant benefits in comparison
to the mapping reconstructing approach.

Keywords: Round-trip Engineering, Mapping Maintenance.

1 Introduction

Modern data-centric applications increasingly rely on mappings between concep-
tual models and relational schemas, i.e., conceptual-relational mappings (a.k.a.,
object-relational mappings), to achieve interoperability [4] or to overcome the
well-known impedance mismatch problem [13]: the differences between the data
model exposed by databases and the modeling capabilities and programmability
needed by the application. Essentially, a conceptual-relational mapping specifies
a semantically consistent relationship between a conceptual model (hereafter,
CM) and a relational schema. For example, a many-to-one relationship from an
entity E1 to an entity E2 in an Entity-Relationship (ER) diagram can be mapped
using some mapping formalism to a relational table that uses the identifier of
E1 as the key and referring to the identifier of E2 as a foreign key [13]. The key
and foreign key constraints reflect the semantics encoded in the relationship.

However, conceptual models and schemas evolve over time to accommodate
the changes in the information they represent. Such evolution causes the ex-
isting conceptual-relational mappings to become inconsistent. For example, if

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 296–311, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Round-Trip Engineering for Maintaining Conceptual-Relational Mappings 297

the database administrator (DBA) in charge of the aforementioned relational
table has changed the key of the table from the identifier of E1 to the com-
bination of the identifiers of E1 and E2 due to new requirements, then the
many-to-one relationship from E1 to E2 in the ER diagram is semantically in-
consistent with the new table because some instances of the table may violate
the many-to-one relationship. When conceptual models and schemas change,
the conceptual-relational mappings between the conceptual models and schemas
must be updated to reflect the evolution. This process is called conceptual-
relational mapping maintenance under evolution, or mapping maintenance for
short.

A typical solution to the mapping maintenance problem is to regenerate the
conceptual-relational mapping. However, there are two major problems: first,
regenerating the mapping alone sometimes cannot solve the inconsistency prob-
lem because the semantics of the conceptual model and the schema are out of
synchronization, as shown by the previous example; second, the mapping gen-
eration process, even with the help of mapping generation tools [6,5], can be
costly in terms of human effort and expertise, especially for complex CMs and
schemas that were developed independently. A better solution would be to de-
sign algorithms that synchronize the CMs and schemas and reuse the original
mappings to (semi-)automatically update them into a set of new mappings that
are consistent with respect to the new CMs and schemas.

The process for synchronizing models by keeping them consistent is called
Round-Trip Engineering (RTE) [22,17]. RTE offers a bi-directional exchange be-
tween two models. Changes to one model must at some point be reconciled with
the other model. In this paper, we propose a round-trip engineering approach
for maintaining the consistency of conceptual-relational mappings. Notice that
round-trip engineering is not forward engineering, e.g., generating a relational
schema from a CM, plus reverse engineering [16], e.g., generating a new CM
from an existing schema. RTE focuses on synchronization.

1.1 Motivation

To motivate our work, we first consider a number of applications and envi-
ronments in which conceptual-relational mappings are used extensively and
a solution to the mapping maintenance problem will greatly benefit to the
applications.

Database Design. A typical database design process begins with the develop-
ment of a conceptual model such as an ER diagram and ends up with a logical
database schema manipulated by a commercial database management system.
Although the process of generating a logical schema from a CM is mostly au-
tomated, the translation mappings between CMs and logical schemas are not
kept in automated tools, and the CMs and logical schemas may evolve indepen-
dently causing the “legacy data” problem. Saving the mappings between CMs
and logical schemas implied by the database design process and maintaining the
mappings when CMs and schemas evolve will help reduce the “legacy data”.

298 Y. An, X. Hu, and I.-Y. Song

Data-Centric Applications. To increase the productivity of the developers
of these applications, there are a number of middleware mapping technologies
such as Hibernate [9], DB Visual Architect [1], Oracle TopLink [2], and Mi-
crosoft ADO.NET [3]. They provide an ease-to-use environment for generating
conceptual-relational mappings. In these middleware mapping tools, when the
object/conceptual models and the database schemas change, a solution is needed
for maintaining the conceptual-relational mappings.

Data Integration. In data integration, a set of heterogeneous data sources
are queried and accessed through a unified global and virtual view [19]. There
are many ontology-based data integration applications which use ontologies as
their global views. For these applications, the mappings between ontologies and
local data sources are the main vehicle for data integration. Early studies have
been focused on integration architectures, query answering capabilities , and
global view integration. What has been missing is a solution to maintaining
the mappings between ontologies and local data sources when ontologies and
database schemas evolve.

The Semantic Web. On the Semantic Web, data is annotated with ontologies
having precise semantics. For the “deep web” where data is stored in backend
databases, the semantic annotation of the data is achieved through the mappings
between web ontologies and schemas of backend databases. However, maintaining
mappings on the semantic web has not yet been considered.

Although mapping maintenance is important and necessary for many applica-
tions, solutions to the problem are rare. This is due to many challenges involved,
including: how to define consistency of mapping and detect inconsistency of a
mapping; what is a right mapping language; how to capture changes to CMs and
database schemas; how to devise a plan for reconciling the CMs and schemas
according to the intent and expectation of the user; and what are the principles
for systematic reconciliation. In this paper, we address these challenges and offer
a systematic study and comprehensive evaluation of how round-trip engineering
can be applied to solve the mapping maintenance problem.

The rest of the paper presents our principled approach. In summary, we ex-
plore the approach of using correspondences for capturing changes and develop
a novel round-trip engineering approach for mapping maintenance. We demon-
strate the effectiveness and efficiency of our algorithm by conducting a set of
comprehensive experiments.

The remaining content is organized as follows. Section 2 summarizes studies
on schema mapping adaptation, schema evolution for object-oriented databases,
and other related work. Section 3 presents the formal notation used in later
sections. Section 4 introduces our formalism for conceptual-relational mappings.
Section 5 characterizes schema and CM evolution. Section 6 describes a solu-
tion to the problem of mapping maintenance. Section 7 presents our evaluation
results. Finally, Section 8 concludes this paper.

Round-Trip Engineering for Maintaining Conceptual-Relational Mappings 299

2 Related Work

The directly related work is the study on schema mapping adaptation [23,24].
The goal of schema mapping adaptation is to automatically update a schema
mapping by reusing the semantics of the original mapping when the associ-
ated schemas change. Yu & Popa [24] explore the schema mapping composition
approach. Schema evolutions are captured by formal and accurate schema map-
pings, and schema adaptation is achieved by composing the evolution mapping
with the original mapping. On the other hand, the schema change approach in
[23] proposed by Velegrakis et al. incrementally changes mappings each time
a primitive change occurs in the source or target schemas. Both solutions fo-
cus on reusing the semantics encoded in existing mappings for merely adapting
the mappings without considering the synchronization between schemas. This
is due to the nature of their problems where schema mappings are primarily
used for data exchange, i.e., translating a data instance under a source schema
to a data instance under a target schema. If a schema mapping connecting two
schemas which are semantically inconsistent, then the data exchange process
simply does not always produce a target instance. Our approach is different
from these solutions in that we aim to maintain the semantic consistency of
conceptual-relational mappings through model synchronzation.

Other related work is schema evolution [21]. In object-oriented databases
(OODB), the problem of schema evolution is to maintain the consistency of an
OODB when its schema is modified. The challenges are to update the database
efficiently and minimize information loss. A variety of solutions, e.g., [8,11,15]
have been proposed in the literature. Our problem is different from the schema
evolution problem in OODB in that we are concerned with the semantic consis-
tency between a schema and a CM. In AutoMed [10,14], schema evolution and
integration are combined in one unified framework. Source schemas are inte-
grated into a global schema by applying a sequence of primitive transformations
to them. The same set of primitive transformations can be used to specify the
evolution of a source schema into a new schema. In our approach, we do not
ask users to specify a sequence of transformations. The EVE [18] investigates
the view synchronization problem, which supports a limited set of changes. The
work in [12] describes techniques for maintaining mapping in XML p2p databases
which is different from our problem.

Another mapping maintenance problem studied in [20] mainly focuses on de-
tecting inconsistency of simple correspondences between schema elements when
schemas evolve. This problem is complementary to the problem we consider here.

3 Formal Preliminaries

A table or relation in a relational database consists of a set of tuples. The schema
for a table specifies the name of the table, the name of each column (or attribute
or field), and the type of each column. Furthermore, we can specify integrity
constraints, which are conditions that the tuples in tables must satisfy. Here, we

300 Y. An, X. Hu, and I.-Y. Song

consider the key and foreign key (abbreviated as f.k. henceforth) constraints. A
key in a table is a subset of the columns of the table that uniquely identifies a
tuple. A f.k. in a table T is a set of columns F that references the key of another
table T ′ and imposes a constraint that the projection of T on F is a subset of
the projection of T ′ on the key of T ′. A relational schema thus consists of a
set of relational schemes (or tables for short). Formally, we use R=(R, ΣR) to
denote a relational schema R with a set of tables R and a set ΣR of key and f.k.
constraints.

A conceptual model (CM) describes a subject matter in terms of concepts,
relationships, and attributes. In this paper, we do not restrict ourselves to any
particular language for describing CMs. Instead, we use a generic conceptual
modeling language (CML), which has the following specifications. The language
allows the representation of classes/concepts/entities (unary predicates over in-
dividuals), object properties/ relationships (binary predicates relating individu-
als), and datatype properties/ attributes (binary predicates relating individuals
with values such as integers and strings); attributes are single valued in this
paper. Concepts are organized in the familiar ISA hierarchy. Relationships and
their inverses (which are always present) are subject to cardinality constraints,
which allow 1 as lower bounds (called total relationships) and 1 as upper bounds
(called functional relationships). In addition, a subset of attributes of a concept
is specified as the identifier of the concept. As in the Entity-Relationship model,
a strong entity has a global identifier, while a weak entity is identified by an
identifying relationship plus a local identifier. We use C=(C, ΣC) to denote a
CM C with a set C of concepts, attributes, and relationships and a set ΣC of
identification and cardinality constraints.

We represent a given CM as a graph called a CM graph. We construct the CM
graph from a CM by considering concepts and attributes as nodes and relation-
ships as edges. There are also edges between a concept node and the attribute
nodes belonging to the concept. A many-to-many relationship p between con-
cepts C1 and C2 will be written in text as C1 ---p--- C2 . For a functional
relationship q – ones with upper bound cardinality of 1, from C1 to C2, we write
C1 ---q->-- C2 . In a CM graph, we will represent an ISA relationship as a

1:1 functional edge.

4 Conceptual-Relational Mappings

A conceptual-relational mapping specifies a relationship between a CM and a
relational schema. More specifically, a mapping consists of a set of statements
each of which relates a query expression Φ(X, Y) in a language L1 over the CM
with a query expression Ψ(X, Z) in a language L2 over the relational schema,
where the shared variables X give rise to the query results. In this paper, we
consider conjunctive formulas over concepts, attributes, and relationships in a
CM and conjunctive formulas over relational tables which can be translated into
equivalent select, join, and project (SJP) query expressions over a relational
schema. Queries are evaluated as the usual way.

Round-Trip Engineering for Maintaining Conceptual-Relational Mappings 301

In the sequel, we will use the terms “mapping” and “mapping statement”
interchangeably when the context is clear. Generally, we represent a conceptual-
relational mapping (or mapping statement) between a CM and a relational
schema as an expression Φ(X, Y) = Ψ(X, Z), where Φ(X, Y) and Ψ(X, Z) are
conjunctive formulas. The following example illustrates the mapping formalism
using a gene expression database and a conceptual model.

Example 1. A gene expression database contains a biosample table to record
information about a biological sample which can be a tissue, cell, or RNA ma-
terial that originates from a donor of a given species:

biosample(sample ID, species, organ, pathology,..., donor ID),
where the underlined column sample ID is the key of the table and donor ID is a
foreign key to a table called donor.

Biosample
SID: key
species
organ
pathology
diagnosis

Person
PID: key
type
age
gender
autopsy

donation
1..* 1..1

biosample(sample_ID, species, organ, pathology,…, donor_ID)

Fig. 1. A Conceptual-Relational Mapping

Figure 1 shows a mapping be-
tween the biosample table and
a CM containing two concepts
Biosample and Person, and a rela-
tionship donation. The CM is de-
scribed in the UML notation. The
dashed arrows indicate the cor-
respondences between columns of
the relational table and attributes
of concepts in the CM. We represent the conceptual-relational mapping between
the relational table and the CM as the following expression:
Biosample(x1)∧SID(x1, sample ID)∧ species(x1, species)∧ ...∧ Person(x2)∧
donation(x1, x2)∧ PID(x2, donor ID)

= biosample(sample ID, species,..., donor ID),
where the predicates Biosample and Person represent the concepts in the CM, the
predicates SID, species,..., represent the attributes of the concepts and the rela-
tionship, and the shared variables sample ID, species,..., give rise to query re-
sults on both sides. �
Consistent Conceptual-Relational Mappings. We define a consistent con-
ceptual -relational mapping between a CM and a relational schema in terms of
legal instances of the CM and the relational schema. For a CM C= (C, ΣC), a
legal instance I is an instance of C which satisfies the constraints ΣC . We use I
to denote the set of all legal instances of C, i.e., I={I | I is an instance of C and
I |= ΣC}. Likewise, for a relational schema R=(R, ΣR), we use J to denote the
set of all legal instances of R, i.e., J ={J | J is an instance of R and J |= ΣR}.

For a query expression Φ(X, Y) over C, we use IΦ to denote the query results
over the instance I. We use JΨ to denote the query results of the query expression
Ψ(X, Z) over the instance J of R. We say that a pair of legal instances 〈I, J〉
satisfies a mapping statement M :Φ(X, Y) = Ψ(X, Z) between C and R, if and
only if IΦ=JΨ , denoted as 〈I, J〉 |= M .

Definition 1 (Consistent Conceptual-Relational Mapping). For a CM
C=(C, ΣC) and a relational schema R=(R, ΣR), a mapping M :Φ(X, Y) = Ψ(X, Z)

302 Y. An, X. Hu, and I.-Y. Song

between C and R is consistent if and only if for every legal instance I ∈ I, there
is a legal instance J ∈ J such that 〈I, J〉 |= M , and for every legal instance
J ′ ∈ J , there is a legal instance I ′ ∈ I such that 〈I ′, J ′〉 |= M .

Essentially, the consistency of a mapping dictates the “compatibility” of the
constraints in the CM and the schema.

5 Changes to Schemas and CMs

R1: biosample(bsid, species, organ, …, donor_disease)

R2: biosample(bsid, species, organ, …) tissue(bsid, donor_disease)

Fig. 2. Capturing Changes to a Schema

A user can change a schema
(or CM) in different ways: ei-
ther through modifying the
original schema (or CM) or
by generating a new schema
(or CM) directly. It is diffi-
cult to ask the user to pro-
vide a sequence of primitive actions for capturing the changes. It is probably
easier to ask the user to draw a set of simple correspondences between the ele-
ments in the new schema (or CM) and the elements in the original schema (or
CM). In this paper, we use a set of correspondences between columns in schemas
(or attributes in CMs) to capture the commonality/differences between the new
schema (or CM) and the original schema (or CM).

Example 2. Figure 2 shows on the top an original schema R1 consisting of a
single table biosample. On the bottom is a new schema R2 containing two tables
biosample and tissue. R2 evolved from R1. The dashed lines between columns
in R1 and the columns in R2 capture the commonality/differences between the
original schema and the new schema. The open arrow indicates that the column
tissue.bsid is a foreign key referring the key biosample.bsid. �

6 Round-Trip Engineering for Conceptual-Relational
Mappings

We now develop a round-trip engineering solution for maintaining conceptual-
relational mappings under evolution. The primary goal of the maintenance is
to keep the mapping consistent by synchronizing the schema and the CM. To
fulfill the goal, the algorithm must understand the existing semantics in the
original mapping and carry out necessary updates based on sound principles. We
begin with the exploration on the knowledge encoded in the forward engineering
process.

Knowledge about the Conceptual-Relational Mappings in Standard
Database Design Process. In relational database design, a standard technique
(we refer to this as er2rel schema design) which is widely covered in undergradu-
ate database courses [13] derives a relational schema from an Entity-Relationship
diagram. The er2rel design implies a set of conceptual-relational mappings in the

Round-Trip Engineering for Maintaining Conceptual-Relational Mappings 303

form Φ(X, Y)=T (X), where Φ(X, Y) is a conjunctive formula encoding a tree
structure called semantic tree (or s-tree) [7] in a CM, and T (X) is a relational
table with columns X . Such a conceptual-relational mapping is also used in the
middleware mapping technologies.

We choose to design our solution for mapping maintenance in a systematic
manner by considering the behavior of our algorithm on the conceptual-relational
mappings implied by the er2rel design. In our previous work [7], we have care-
fully analyzed the knowledge encoded in the er2rel design. We summarize the
knowledge related to our study in this paper as follows.

1. The er2rel design associates a relational table with a tree structure called
semantic tree (s-tree) in a CM.

2. An s-tree can be decomposed into several subtrees called skeleton trees : a
skeleton tree corresponding to the key of the table, skeleton trees correspond-
ing to f.k.s of the table, and skeleton trees corresponding to the rest of the
columns of the table.

3. Each skeleton tree has an anchor which is the root of the skeleton tree. An
anchor also corresponds to the central object for deriving a table.

4. To satisfy the semantics of the key in a table, the s-tree is connected by
functional paths from the anchor of the key skeleton tree to the anchors of
f.k. skeleton trees and other skeleton trees.

Example 3. In Figure 1, the mapping associates the biosample table with the
s-tree Biosample ---donation-->- Person . The s-tree is decomposed into

two skeleton trees: Biosample with anchor Biosample for the key sample ID of

the table and Person with anchor Person for the foreign key donor ID. (Skeleton
trees for weak entities are more complex; see Example 5). The two anchors are
connected by a functional edge ---donation->--. �

Sketch of the Maintenance Algorithm. We first outline the algorithm for
maintaining mappings which are in the form of Φ(X, Y)=T (X). We develop the
complete algorithm later. Given a relational schema R, a CM C, a set of existing
consistent conceptual-relational mappings M={Φ(X, Y)=T (X)} between R and
C, a new schema R′ (or CM C′), and a set of correspondences M ′ between R
and R′ (or between C and C′), the algorithm works in several steps for fulfilling
the goals of mapping maintenance:

1. Analyze the existing semantics in the original mapping in terms of skeleton
trees and connections between anchors of skeleton trees.

2. Discover changes through the correspondences between the new schema/CM
and the original schema/CM.

3. Synchronize the associated CM/schema and adapt the mapping accordingly.

Illustrative Examples. Before fleshing out the above steps, we illustrate the
algorithms using several examples on schema evolution. Through these examples,
we lay out our principles for mapping maintenance.

304 Y. An, X. Hu, and I.-Y. Song

Example 4 [Adding a Column]. Figure 3 (a) shows a mapping which is
specified as following statement:
Sample(x1) ∧ sid(x1, sid) ∧ Person(x2) ∧ originates(x1, x2) ∧ pid(x2, donor)
= sample(sid, donor).

sid: key
Sample

pid: key
Person

1*
originates

sample(sid,donor)

sid: key
species

Sample

pid: key

Person
1*

originates

sample(sid,species,donor)

(a)

(b)

sample(sid,donor)

Fig. 3. Adding a Column
to Schema

Figure 3 (b) shows that a column species was added to
the table sample(sid, donor). For adding an element
in the schema, our goal of mapping maintenance is to
add a corresponding element in the CM to maximize
the coverage of the schema elements. Since the key
column sid corresponds to the identifier attribute of
the Sample class and the column donor is a foreign key
referring to the key of a table donor(did) (not shown
in the figure) for the Person class, we synchronize
the CM through adding an attribute species to the
Sample class which is the anchor of the skeleton tree
corresponding to the key sid. �

tid: key sid: key
SampleTest

pid: key
Person

screenedIn
1 1

originates

sample(sid,test,donor)

dsid: key

Disease_Stage
1

disease

disease(dsid)

sample(sid,test, disease, donor) disease(dsid)

M:
*

Fig. 4. Adding a Foreign Key Column to
Schema

The first principle for the mapping
maintenance for schema evolution is to
use the key and foreign key informa-
tion in the original and new schemas
through the correspondences to locate
the appropriate elements in the CM for
adding new attributes.

Example 5. Let us consider the case
for adding a foreign key column. Fig-
ure 4 shows an original mapping en-
closed whithin the rectangle:

M :Test(x1) ∧ tid(x1, test) ∧ Sample(x2) ∧ sid(x2, sid) ∧ screenedIn(x1, x2) ∧
Person(x3) ∧ originates(x2, x3) ∧ pid(x3, donor) = sample(sid, test, donor).

In the CM, Sample is modeled as a weak entity with an identifying functional
relationship screenedIn connecting to the owner entity Test. Accordingly, the key
of the table sample(sid,test,donor) is the combination of columns sid and test
with test being a foreign key referring to a table test(tid) for the Test class (not
shown in the figure.) On the bottom of Figure 4, the table sample(sid, test, donor)
was changed to sample(sid,test,disease,donor) with the column disease being a
foreign key referring to the key of the table disease(dsid) (shown as the open
arrow.) To update the mapping between the new sample table and the CM, we
analyze the key and foreign key structure of the table and recognize that Sample
class is the anchor of the skeleton tree Test -<--screenIn--- Sample for
the key. The newly added foreign key disease should indicate that there is a
functional relationship from the Sample class to the Disease Stage class rather
than a functional relationship from the Test class to the Disease Stage class.
Therefore, we add/discover a functional relationship disease in the original CM

Round-Trip Engineering for Maintaining Conceptual-Relational Mappings 305

and update the mapping between the sample(sid, test, disease, donor) and the
new CM. �

Our second principle is to use key and foreign key structure in the schemas
through the correspondences to locate the anchors of the appropriate skeleton
trees for discovering/adding relationships.

Example 6 [Changing Constraints]. The following existing mapping asso-
ciates a relational table treat(tid, sgid) with a CM Treatment ---appliesTo---

Sample Group :

Treatment(x1) ∧ tid(x1, tid) ∧ Sample Group(x2) ∧ appliesTo(x1, x2) ∧ sgid(x3,
sgid) = treat(tid, sgid), where the relationship appliesTo is many-to-many.

Later, the database administrator obtained a better understanding of the ap-
plication by realizing that each treatment only applies to one sample group.
Consequently, the DBA changed the key of the treat table from the combina-
tion of columns tid and sgid to the single column tid. Having the change on the
schema, we update the appliesTo from a many-to-many relationship to a func-
tional relationship Treatment ---appliesTo->-- Sample Group to keep the
mapping consistent. �

The third principle is to align the key and foreign key constraints in the (new)
schema with the cardinality constraints in the (new) CM.

Maintenance Algorithm. In this paper, the maintenance algorithm requires
that each original conceptual-relational mapping statement Φ(X, Y)=T (X) is
consistent and associates a relational table T (X) with a semantic tree Φ(X, Y)
in a CM. For a general consistent conceptual-relational mapping associating a
graph with a conjunctive formulas over a schema, we can first convert the graph
into a tree by replicating nodes (see [4]). Then we either decompose the map-
ping into mappings between semantic trees and single tables or treat the entire
conjunctive formula over the schema as a big table. The details for converting
general mappings into mappings between semantic trees and tables are beyond
the scope of this paper and will be realized in the future work.

The maintenance algorithm has two components. The first component deals
with changes to schemas, and the second component deal with changes to CMs.
We first focus on schema changes. The following Procedure 1 maintains the con-
sistency of conceptual-relational mappings when schemas evolve.

Procedure 1. Maintain Mappings When Schemas Evolve
Input: A set of consistent conceptual-relational mappings M={Φ(X, Y)=T (X)}
between a CM C and a relational schema R; a set of correspondences M ′ between
columns in R and columns in a new schema R′

Ouput: Synchronized CM C′′ and a set of updated mappings M ′′ between C′′

and R′.

306 Y. An, X. Hu, and I.-Y. Song

Steps:

1. Mark skeleton trees: for each mapping statement in M , decompose the se-
mantic tree in the CM into several skeleton trees based on the key and
foreign key structures of the table; mark the associations between keys/f.k.s
and skeleton trees.

2. Apply the principles we have laid out above to each of the following cases for
synchronizing the CM and updating the mapping (we ignore the renaming
change in our algorithm):
– Case 1: A new table evolved from a single table by adding columns,

deleting columns, or changing constraints.
– Case 2: A new table evolved from several tables by adding columns,

deleting columns, or changing constraints.
– Case 3: Several tables evolved from a single table by adding columns,

deleting columns, or changing constraints.

We now elaborate on each case.
Case 1: If a new table evolved from a single table, then columns which are
not foreign key have been changed or a foreign key has been deleted. If a new
column is added, then add a new attribute to the anchor of the key skeleton tree
(see Example 4). If the column becomes part of the key, then the new attribute
becomes part of the identifier of the anchor. If a column is deleted, we only
update the mapping by removing the reference to the deleted column in the
mapping. If the key constraint has been changed, then synchronize the identifier
of the anchor of the key skeleton tree accordingly.
Case 2: If a new table T evolved from several tables {T1, T2, ..., Tn}, then we
connect the semantic trees corresponding to the original tables {T1, T2, ..., Tn}
into a larger semantic tree as follows. Suppose the key of the table T come from
the key of table T1. Let the skeleton trees {S1, S2, ..., Sn} correspond to the
keys of {T1, T2, ..., Tn}. Connect the anchor of S1 to the anchors of {S2, ...,
Sn} by functional edges. The new table is mapped to the larger tree. Example
5 illustrates the case where a new table sample(sid, test, disease, donor) evolved
from two original tables sample(sid, test,donor) and disease(dsid,diagnosis). The
new table is mapped to a larger semantic tree by connecting the two anchors
Sample and Disease Stage using a functional edge ---disease-->-.
Case 3: Several tables {T1, T2, ..., Tn} evolved from a single table T . Without
losing generality, suppose T1 inherit the key of T . We create new concepts {C2,
..., Cn} in the CM for the new tables {T2, ..., Tn}, respectively. Let Ci be the
anchor of the skeleton tree corresponding to the key of Ti. For two tables Ti and
Tj, if there is a foreign key constraint from the column Ti.f to the key of Tj ,
then we connect Ci to Cj by a functional edge in the CM. If the column Ti.f is
also the key of the table Ti, then we connect Ci to Cj by an ISA relationship
(note that nodes could be merged if there are two-way f.k.s between the keys of
two tables.)

Example 7 [Adding New Tables]. In Figure 5, a new schema R2 containing
two tables biosample and tissue evolved from the original schema R1 with a single

Round-Trip Engineering for Maintaining Conceptual-Relational Mappings 307

table biosample. The original mapping associates R1 with the concept Biosample.
On the top of the figure is a new CM, where a new concept Tissue is added and
connected to Biosample by an ISA relationship according to the f.k. constraint
between the keys of tissue and biosample tables in the new schema R2. �

biosample(bsid, species, organ,…, donor_disease)

biosample(bsid, species, organ,…) tissue(bsid, donor_disease)

R1:

R
2
:

Tissue

biosample_ID: key
species
organ
….

biosample_ID: key
donor_disease
….ISA

Biosample

biosample_ID: key
species
organ
donor_disease
….

Biosample

Fig. 5. New Tissue Concept for New tissue Table

We now turn to the proce-
dure dealing with changes to
CMs. Intuitively, synchronizing
schemas when associated CMs
change is more costly than syn-
chronizing CMs when schemas
change because synchronizing
schema often results in data
translation. Two strategies can
be considered for maintaining
mappings when CMs change.
The first strategy is to design
a procedure in the similar fash-
ion as for the Procedure 1. The
second is to adapt mappings
to maintain consistency without
automatic synchronization. We
take the second approach in this
paper and leave the first approach in the future work. The following Procedure 2
updates conceptual-relational mappings when the CMs evolve.

Procedure 2. Maintain Mappings When CM Evolve
Input: A set of consistent conceptual-relational mappings M={Φ(X, Y)=T (X)}
between a CM C and a relational schema R; a set of correspondences M ′ between
attributes in C and attributes in a new CM C′

Ouput: Update M to a new set of mappings M ′′ between R and C′.

Steps:

1. Mark skeleton trees: the same as in the first step of Procedure 1.
2. For a mapping statement in M associating a semantic tree S with a table T

(a) If the skeleton tree corresponding to the key of T has changed such that
identifier attributes of the anchor were added/deleted or a cardinality
constraint in the skeleton tree has changed from one to many, then drop
the mapping. /*changes to the identifier information of either a strong or a
weak entity will result in inconsistent mapping to the original table.*/

(b) Else if a cardinality constraint imposed on a relationship p in S has
changed from many to one or from one to many, then remove from S the
relationship edge p and the rest part connecting to the anchor through
p. Update the mapping so that T is mapped to the new smaller tree.

(c) Else compose the correspondences M ′ with the original mapping M to
generate a new mapping M ′′ between R and C′. /*see [24] for composition
algorithm.*/

308 Y. An, X. Hu, and I.-Y. Song

The following states the desired property of the maintenance algorithm con-
sisting of the steps in Procedure 1 and Procedure 2.

Proposition 1. Let M={Φ(X, Y)=T (X)} be a set of consistent conceptual-
relational mappings between a CM C and a relational schema R. Let R′ (or
C′) be a new schema (or a new CM) that evolved from R (or C). Let M ′ be a set
of identity mappings between columns in R and columns in R′ (or attributes in C
and attributes in C′.) Each mapping in the set of conceptual-relational mappings
returned by the Procedure 1 (or Procedure 2) is consistent.

7 Experience

To evaluate the performance of our round-trip solution for maintaining concep-
tual-relational mappings, we applied the algorithm to a set of conceptual-relatio-
nal mappings drawn from a variety of domains. The purpose of our evaluation
is two-fold: (1) to test the efficiency of the algorithm and (2) to measure the
benefits of mapping maintenance over reconstructing consistent mappings using
mapping discovery tools.

Data Sets. We selected our test data from a variety of domains. Our previ-
ous work [7] on the development of the MAONTO mapping tools generated
conceptual-relational mappings for many of the test data. Subsequently, our
other previous work [4] used the conceptual-relational mappings for improving
traditional tools on constructing direct mappings between database schemas. It
follows naturally to continue on this set of data for measuring the benefits of
mapping maintenance. Table 1 summarizes the characteristics of the test data.
The size of a mapping is measured by the size of the semantic tree - the number
of nodes including attribute nodes.

Table 1. Characteristics of Test Data

Schema #Tables Avg. # Cols CM #Nodes Avg.

Per Table in CM Mapping Size

DBLP 22 9 Bibliographic 75 9

Mondial 28 6 Factbook 52 7

Amalgam 15 12 Amalgam ER 26 10

3Sdb 9 14 3Sdb ER 9 6

CS Dept. 8 6 KA onto. 105 7

Hotel 6 5 Hotel Onto. 7 7

Network 18 4 Network onto. 28 6

Methodology. Our experiments focused on maintaing the consistency of tested
mappings under schema evolution. For each mapping, we applied different types
of changes to the relational table. For each type of change, we ran the mainte-
nance algorithm for measuring (1) execution time and (2) benefits in comparison

Round-Trip Engineering for Maintaining Conceptual-Relational Mappings 309

to the mapping reconstructing approach. The types of changes to a table include:
(a) adding/deleting ordinary columns; (b)adding/deleting key columns; (c) split-
ing a table; (d) merging two tables; (e) add/deleting f.k. columns; (f) moving
columns from one table to another table; and (g) changing existing key and f.k.
constraints.

To measure the benefits of mapping maintenance, we adopt the approach
for measuring how much user effort can be saved when schemas evolved and
a new consistent mapping has to be established. Both Velegrakis et al. in [23]
and Yu & Popa in [24] applied the similar approach for measuring the benefits
of mapping adaptation. Essentially, the user effort for obtaining a consistent
mapping through mapping maintenance after the schema evolved is compared
to the same type of user effort spent for reconstructing the mapping. In our
study, we compared the mapping maintenance approach with the MAPONTO
[7] tool for discovering mappings.

For a mapping Φ(X, Y)=T (X) associating a semantic tree with a relational
table, let T ′ be the new table that evolved from T . For mapping maintenance,
the user specifies a set of simple correspondence bewteen T ′ and T . Then the
maintenance algorithm generates a new mapping between T ′ and, probably,
an updated semantic tree. On the other hand, to reconstruct a mapping using
the MAPONTO tool, the user also needs to specify a set of correspondences
between T ′ and the CM. However, MAPONTO tool may be unable to generate
the expected mappings because the CM is out of synchronization. If the expected
mapping is generated by the maintenance algorithm while it is missing from
the results of MAPONTO, then we assign 100% to the benefit of maintenance.
Otherwise, we use the following quantity to measure the benefit:

1 − #mappingmaintenace

#mapppingMAP ONT O+#correspondences

Because specifying correspondences between a schema and CM is much more
costly than specifying correspondences between an evolved schema and the orig-
inal schama, we omit the effort for specifying evolution correspondences from
the above quantity.

0

20

40

60

80

100

DBLP

M
on

dia
l

Am
alg

am 3S
db

UTCSDB
Hot

el

Net
wor

k

B
en

ef
it

s(
%

)

Fig. 6. Benefits of Mapping Maintenance

310 Y. An, X. Hu, and I.-Y. Song

Results. First of all, the times used by the maintenance algorithm for synchro-
nizing CMs and updating mappings are insignificant. For all the tested mappings,
the maintenance algorithm took less than one second to generate expected re-
sults. This is comparable with the MAPONTO tool for discovering mappings
between schemas and CMs. Next, in terms of benefits, Figure 6 presents the av-
erage benefits for the tested cases. The results show that the round-trip engineer-
ing solution provides significant benefits in terms of maintaining the consistency
of conceptual-relational mappings under evolution.

8 Conclusions

In this paper, we studied the problem of maintaining the consistency of concep-
tual-relational mappings with evolving schemas and CMs. We motivated the
need for synchronizing the CM and relational schema associated by a conceptual-
relational mapping. We presented a novel round-trip engineering framework and
developed algorithms that automatically maintain conceptual-relational map-
pings as schemas/CMs evolve. Our solution is unique in that we carefully compile
the knowledge encoded in the widely covered methodology for database design
into our approach. Experimental analysis showed that the solution is efficient
and provides significant benefits for maintaining conceptual-relational mappings
in dynamic environments.

References

1. Database Visual Architect, http://www.visual-paradigm.com/product/dbva

2. Oracle TopLink, http://www.oracle.com/technology/product/ias/toplink

3. Adya, A., Blakeley, J., Melnik, S., Muralidhar, S.: Anatomy of the ado.net entity
framework. In: SIGMOD 2007 (2007)

4. An, Y., Borgida, A., Miller, R.J., Mylopoulos, J.: A Semantic Approach to Discov-
ering Schema Mapping Expressions. In: Proceedings of International Conference
on Data Engineering (ICDE) (2007)

5. An, Y., Borgida, A., Mylopoulos, J.: Constructing Complex Semantic Mappings
Between XML Data and Ontologies. In: Gil, Y., Motta, E., Benjamins, V.R.,
Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 6–20. Springer, Heidelberg
(2005)

6. An, Y., Borgida, A., Mylopoulos, J.: Inferring Complex Semantic Mappings be-
tween Relational Tables and Ontologies from Simple Correspondences. In: Pro-
ceedings of International Conference on Ontologies, Databases, and Applications
of Semantics (ODBASE), pp. 1152–1169 (2005)

7. An, Y., Borgida, A., Mylopoulos, J.: Discovering the Semantics of Relational Tables
through Mappings. Journal on Data Semantics VII, 1–32 (2006)

8. Banerjee, J., et al.: Semantics and Implementation of Schema Evolution in Object-
Oriented Databases. In: SIGMOD 1987 (1987)

9. Bauer, C., King, G.: Java Persistence with Hibernate. Manning Publications
(November 2006)

http://www.visual-paradigm.com/product/dbva
http://www.oracle.com/technology/product/ias/toplink

Round-Trip Engineering for Maintaining Conceptual-Relational Mappings 311

10. McBrien, P., Poulovassilis, A.: Schema Evolution in Heterogeneous Database Archi-
tectures, A Schema Transformation Approach. In: Pidduck, A.B., Mylopoulos, J.,
Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002. LNCS, vol. 2348, Springer, Heidelberg
(2002)

11. Claypool, K.T., Jin, J., Rundensteiner, E.: SERF: Schema Evolution through an
Extensible, Re-usable, and Flexible Framework. In: CIKM 1998 (1998)

12. Sartiani, C., Colazzo, D.: Mapping Maintenance in XML P2P Databases. In: Bier-
man, G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 74–89. Springer, Hei-
delberg (2005)

13. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 5th edn. Addison-
Wesley, Reading (2006)

14. Poulovassilis, A., Fan, H.: Schema Evolution in Data Warehousing Environments –
A Schema Transformation-Based Approach. In: Atzeni, P., Chu, W., Lu, H., Zhou,
S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 639–653. Springer, Heidelberg
(2004)

15. Ferrandina, F., Ferran, G., Meyer, T., Madec, J., Zicari, R.: Schema and Database
Evolution in the O2 Object Database System. In: VLDB 1995 (1995)

16. Hainaut, J.-L.: Database reverse engineering (1998),
http://citeseer.ist.psu.edu/article/hainaut98database.html

17. Knublauch, H., Rose, T.: Round-trip engineering of ontologies for knowledge-based
systems. In: SEKE 2000 (2000)

18. Lee, A., Nica, A., Rundensteiner, E.: The eve approach: View synchronization in
dynamic distributed environment. TKDE 14(5), 931–954 (2002)

19. Lenzerini, M.: Data Integration: A Theoretical Perspective. In: Proceedings of the
ACM Symposium on Principles of Database Systems (PODS), pp. 233–246 (2002)

20. McCann, R., et al.: Maveric: Mapping Maintenance for Data Integration Systems.
In: VLDB 2005 (2005)

21. Rahm, E., Bernstein, P.: An on-line bibliography on schema evolution. SIGMOD
Record 35(4), 30–31 (2006)

22. Sendall, S., Kuster, J.: Taming model round-trip engineering. In: Proceedings of
Workshop on Best Practices for Model-Driven Software Development (2004)

23. Velegrakis, Y., Miller, R.J., Popa, L.: Mapping Adaptation under Evolving
Schemas. In: Proceedings of the International Conference on Very Large Data
bases (VLDB), pp. 584–595 (2003)

24. Yu, C., Popa, L.: Semantic Adaptation of Schema Mappings when Schema Evolve.
In: Proceedings of the International Conference on Very Large Data bases (VLDB)
(2005)

http://citeseer.ist.psu.edu/article/hainaut98database.html

Capturing and Using QoS Relationships

to Improve Service Selection

Caroline Herssens1, Ivan J. Jureta2, and Stéphane Faulkner2

1 ISYS, LSM, Université catholique de Louvain, Belgium
2 PReCISE, LSM, University of Namur, Belgium

caroline.herssens@uclouvain.be, iju@info.fundp.ac.be,
stephane.faulkner@fundp.ac.be

Abstract. In a Service-Oriented System (SOS), service requesters spec-
ify tasks that need to be executed and the quality levels to meet, whereas
service providers advertise their services’ capabilities and the quality lev-
els they can reach. Service selectors then match to the relevant tasks, the
candidate services that can perform these tasks to the most desirable
quality levels. One of the key problems in QoS-aware service selection
lies in managing tradeoffs among QoS expectations at runtime, that is,
situations in which service requesters specify quality levels that cannot
be simultaneously met. We propose a service selection approach that
can deal with tradeoffs. The approach consists of: (i) rich QoS mod-
els to be used by service requesters when expressing QoS expectations
and service providers when describing services’ QoS, and for representing
preference and priority relationships between QoS dimensions; and (ii) a
multi-criteria decision making technique that uses the models for service
selection.

Keywords: QoS model, service selection, QoS relationships.

1 Introduction

Engineering and managing the operation of increasingly complex information
systems is a key challenge in computing. It is now widely acknowledged that
degrees of automation needed in response cannot be achieved without open, dis-
tributed, interoperable, and modular systems capable of dynamic adaptation to
changing operating conditions. Among the various approaches to building such
systems, service-orientation stands out in terms of its reliance on the World Wide
Web infrastructure, availability of standards for describing and enabling inter-
action between services, attention to interoperability, and uptake in industry.
In a Service-Oriented System (SOS), service providers advertise the tasks that
their services can perform and the Quality of Service (QoS) levels they can meet.
Service requesters indicate tasks to execute and QoS levels to achieve. Service
selectors (i.e., allocation mechanisms in SOS) then proceed to compare available
services and select those that can execute the required tasks while achieving the
most desirable feasible QoS levels.

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 312–327, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Capturing and Using QoS Relationships to Improve Service Selection 313

Service selection is a fundamental issue in SOS because it determines how
well the requests are satisfied [4,12,17,30]. Comparing competing services (i.e.,
services that can execute the same tasks) over the levels of QoS dimensions they
can meet is an appropriate approach to ensuring that quality expectations are
met to the “best” feasible extent.

Contributions. Using QoS dimensions in service selection requires their definition
by way of a QoS model [6]. The QoS model must cover all QoS constructs
needed in service selection. Two models are needed in practice. Although both
the service requester and service provider models must share the primitives for
the representation of QoS dimensions and characteristics, and the definition of
their values, the two models must also differ given the difference in purpose: the
provider model should include relationships for stating dependencies between
QoS dimensions while the requester model must involve relationships for defining
requesters’ priorities over QoS dimensions and preferences over the values of QoS
dimensions. Given such models, the service selector will be able to appropriately
compare services and take better selection decisions. Decision-making in presence
of potentially many QoS dimensions and requests thereon, can be performed
through multi-criteria decision analysis (MCDA). The aim is to rank competing
services according to the values of their QoS characteristics. We propose an
approach to service selection that responds to these considerations. The approach
consists of:

– Rich QoS models used by service requesters when expressing QoS expec-
tations and service providers when describing services’ QoS, and for repre-
senting preference and priority relationships between QoS dimensions. The
models are defined as extensions of the UML QoS framework metamodel [21].

– A multi-criteria decision making technique that uses the models for service
selection. QoS models, and more precisely, the QoS relationships are used in
a fuzzy MCDA approach to build a fuzzy reference set on which interaction
weights are set up, subsequently used for ranking competing services. To
establish a ranking with fuzzy MCDA, the selector proceeds as follows:
1. A reference set of service alternatives is built to compute weights of

interacting criteria. The reference set is set up with help of requester’s
preferences and priorities and with providers’ observed dependencies over
QoS dimensions.

2. Once weights are fixed, the selector applies them to the available services
that correspond to the requested QoS dimensions and levels.

3. Finally, values obtained with the application of fuzzy MCDA allow the
selector to rank possible services and determine the optimal one to each
service request.

Organization. Section 2 introduces the case study used in the remaining of the
paper. Section 3 assesses the UML QoS Profile with our proposed subdivision
into distinct models and our relationships extensions while illustrating their uti-
lizations through the case study. Relationships identified in QoS models are used

314 C. Herssens, I.J. Jureta, and S. Faulkner

in Section 4 for an efficient selection based on fuzzy MCDA. This section also
provides a selection example based on the case study. The Section 5 presents
the related work of existing QoS models and exposes some existing selection
approaches. Finally, Section 6 outlines conclusions and future work.

2 Case Study

In this section, we propose a case study subsequently used throughout the pa-
per. The European Space Agency’s (ESA) program on Earth observation allows
researchers to access and use infrastructure operated and data collected by the
agency.1 Our case study focuses on the information provided by the MERIS
instrument on the Envisat ESA satellite. MERIS is a programmable, medium-
spectral resolution imaging spectrometer operating in the solar reflective range.
MERIS is used in observing ocean color and biology, vegetation and atmosphere
and in particular clouds and precipitation. In relation to MERIS, web services
are made available by the ESA for access to the data the instrument sends and
access and use of the associated computing resources.

Fig. 1. Graphical user interface of the ENVISAT/MERIS MGVI web service

We are interested in the remainder about services able to provide vegetation
indexes for a given region of the globe. A vegetation index measures the amount
of vegetation on the Earth’s surface. Below, we briefly review the functional
requirements that the service satisfies. We then consider quality requirements.

1 http://gpod.eo.esa.int

Capturing and Using QoS Relationships to Improve Service Selection 315

Fig. 2. An illustration of the result provided by the ENVISAT/MERIS MGVI Web
Service (Guinea - Cameroon region)

Functional requirements. Services considered here process MERIS data and are
able to extract the vegetation index. This processing can be selected for any
time range (with the start of the satellite mission as the earliest time point); an
option is available to delimit the region of the world of interest. The graphical
user interface used to access the service is shown in Figure 1. Figure 2 illustrates
the visualization of the output obtained for the Guinea - Cameroon region. The
following are the required inputs of the service: Time range, Bounding box (to
select a region of the globe), Dataset, Publish site, and Projection type.
Quality requirements. Due to the calculations executed by the service and its
parallel use, expected delays and availability are relevant quality considerations
from the user’s perspective. To make an appropriate selection, quality consider-
ations need to be expressed by users and measured and advertised by providers.
We focus on three such considerations, namely availability, reliability, and la-
tency. For now we define them as follows. We then return to each throughout
the paper and illustrate how our proposed extensions to the UML QoS profile
work with this case study.

– Availability indicates the duration when a component is available for queries.
Its value in percent is obtained as follows [24]:

A =
upT ime

upT ime + downT ime

– Reliability is a measure of confidence that the service is free from errors. Its
value is given in percent and calculated as follows:

R =
succeededAttempts

succeededAttempts + failedAttempts

– Latency measures the mean time taken by the platform to return the ex-
pected result. The value is given in minutes.

L =
∑n

1 (networkT ime + selectionT ime + executionT ime)
n

where n is the total number of past executions. Latency of a such service
is situated between 4 and 6 hours by day of the selected period due to the
quantity of data to process. (This range is certified for a service requestor
having network bandwidth of a least 15 mbits/s.)

316 C. Herssens, I.J. Jureta, and S. Faulkner

This basic specification is incomplete. Further explanations are needed. A
quality model will provide a checklist of relevant information and in this respect
assist the requester and the provider in evaluating and managing the quality of
the service.

3 Conceptual Foundations

This section overviews main concepts of the OMG UML QoS Framework and
present our distinct models with our relationships extensions. Once instantiated,
our QoS models are useful to lead service selection in Section 4.

The UML QoS Framework metamodel introduced by the OMG in [21] includes
different modeling constructs describing QoS concepts. It covers submodels aim-
ing at defining different facets of QoS. The QoS Characteristics submodel

OwnesOwner
*0..1

-isInvariant
QoSCharacteristic

0..1

*Groupes

GroupedIn

Template Parent
Derivations Sub*

*
*

1
QoSParameter

Type Parameter
1 *

-unit : string
-statisticalQualifier

QoSDimension

referenced

*

Type
0..1

Typed
*

DimensionOf
1

Quantifier
1..*

-Value
QoSDimensionSlot

Value
Evaluate1*

-Value
QoSValue

Evaluates

Slot
*

1 0..1
ReferencedValue

-isQoSObservation
QoSContext

BasedOn*

*
Context

-Qualification
-EndToEndSource
-EndToEndTarget
-AllowedValues
-LogicalOperator

QoSConstraint

OppositeAssociation
**

Context

Supports
*

1..*

ValidValues
Evaluates*

0..1

QoSContractQoSRequired QoSOffered

Previous

Next

0..1

0..1

ContractContract * *
* *RequireAccorded OfferAccorded

QoSCompoundConstraint

SubConstraints GlobalConstraints
* 0..1

QoSCategory

QoSLevel

QoSCompoundLevel

-AdaptationActions : String
QoSTransition

AllowedSpaces

Levels

0..1

0..1

0..1
GroupOfLevels

LevelsIncluded1..*

AllowedSpace*

CurrentLevel

*

*

To

From

Source
1

1
Destination

QoSPreferenceCondition

QoSCharactDependency

QoSDimDependency

-rules
-direction
-strength

QoSDependency

QoSDependencyCondition

ordinates
*

Subject to

0..1

Subject to 0..1

ordinates
*

Constrains0..1

Subject to *

Fig. 3. UML provider QoS Framework

Capturing and Using QoS Relationships to Improve Service Selection 317

outlines QoS Characteristics that are a description for some quality considera-
tions and QoS Dimensions that are measures quantifying QoS Characteristics.
QoS Categories are used to group together QoS Characteristics related to the
same abstract quality topic. QoS Constraint submodel main constructs are
QoS Constraints that restrict values of QoS Characteristics while stating limi-
tations on modeling elements identified by application requirements and archi-
tectural decisions. The QoS Level submodel provides QoS Levels that specify
the working mode under which the service is executed. Complete description of
constructs of these submodels is given in [21].

To make an explicit distinction between users requirements and providers ad-
vertisements, we split the OMG metamodel into two distinct metamodels. The
service selector task will consist of match instantiation of the user metamodel
with the one from the provider. The provider metamodel is illustrated in Figure 3
while the user metamodel is available in Figure 4. In addition to original mod-
eling constructs, we have added some submodels aiming at express particular
relationships existing over QoS Characteristics and QoS Dimensions:

OwnesOwner *0..1

-isInvariant
QoSCharacteristic

0..1

*
Groupes

GroupedIn

Template Parent

Derivations Sub*
*

*
1

QoSParameter

Type Parameter
1 *

-unit : string
-statisticalQualifier

QoSDimension

referenced

*

Type
0..1

Typed
*

DimensionOf
1

Quantifier
1..*

-Value
QoSDimensionSlot

Value Evaluate 1*

-Value
QoSValue

Evaluates

Slot
*

1 0..1ReferencedValue

-isQoSObservation
QoSContext

BasedOn*

*
Context

-Qualification
-EndToEndSource
-EndToEndTarget
-AllowedValues
-LogicalOperator

QoSConstraint

OppositeAssociation *
*

Context

Supports *

1..*

ValidValues Evaluates
* 0..1

QoSContractQoSRequired QoSOffered

Previous

Next

0..1

0..1

ContractContract * *
* *RequireAccorded OfferAccorded

QoSPriorityCondition

-rules
-strength

QoSPriority
QoSCharactPriority

QoSDimPriority

Subject to

Subject to

Subject to

Constrains

0..1

0..1

0..1

1..n

*

*

ordinates

ordinates

QoSCategory

QoSPreferenceCondition

-rules
QoSPreference

Constrains
1..n

Subject to
0..1

Ordinates*

Ordered by
1..n

Fig. 4. UML user QoS Framework

QoS Priorities submodel. QoS Priorities are used to explicitly represent ser-
vice requester priorities over QoS Characteristics and QoS Dimensions. Rules de-
termine the order at which characteristics or dimensions are considered for opti-
mization when services are being selected. The relative importance of the priority
difference between elements is specified with the strength attribute . QoS Dim-
Priority and QoS CharactPriority are specializations of QoSPriority defining
specific elements for priorities over, respectively, dimensions and characteristics.

318 C. Herssens, I.J. Jureta, and S. Faulkner

QoS PriorityCondition are constraints specifying when priorities hold. The in-
tegration of these modeling constructs in the requester QoS model is illustrated
in bold in Figure 4. An utilization of the QoS Priorities submodel is proposed
in Example 1.

Example 1. In our case study, due to important delays, the requester of the
service awards more importance to the availability characteristic than to the la-
tency characteristic. This particular priority is constraint to a specific condition,
stating that the priority is applied only if the reliability is inferior to 85%. This
priority and its condition are expressed with the UML user QoS Framework in
Figure 5. This example will be used to build the reference set in Subsection 4.3.

Fig. 5. An illustration of QoS Priorities submodel utilization

QoS Preferences submodel. QoS Preferences enable the service requester to
sort values of dimensions. Rules are used to determine a precedence order over
values. The QoS PreferenceCondition indicates conditions for the preference on
values to hold. This submodel is illustrated in bold on the user QoS model in
Figure 4 and an example of utilization is given in Example 2.

Example 2. About the service providing regional vegetation indexes, the user has
some preferences concerning the networkTime, he wishes that its value belongs
to a specific range as illustrated in Figure 6. The instantiation of the prefer-
ences submodel also introduces a specific condition under which the preference
is available.

Fig. 6. An illustration of QoS Preferences submodel utilization

QoS Dependencies submodel. QoS Dependencies allow to express explic-
itly dependency relationships existing over different QoS Characteristics or QoS
Dimensions while specifying the strength and the direction of the link. The direc-
tion indicates that QoS Characteristics (respectively, QoS Dimensions) involved
in the dependency are parallel or opposite, meaning that their direction is corre-
lated or anti-correlated. The strength is represented with a level value between 1
and 10, corresponding to the importance of the correlation. The QoS Dependen-
cyCondition is used to define specific constraints under which a QoS Dependency
is applicable. These extensions to the provider QoS model are available in bold
in Figure 3 while their utilization is illustrated in Example 3.

Capturing and Using QoS Relationships to Improve Service Selection 319

Example 3. The provider of the MGVI/Regional service will use the dependen-
cies submodel to underline interactions between several QoS Characteristics. In
Figure 7, one of these dependencies is illustrated. FailedAttempts is one of the
dimension used to quantify reliability while the downTime is a metric used to
measure the value of the availability. The dependency appears on dimension
level with the downTime inducing the number of failedAttempts. Moreover, as
exposed in the instantiation of the submodel, this dependency is subject to a
particular condition on the availability value.

Fig. 7. An illustration of QoS Dependencies submodel utilization

4 QoS Driven Selection

Our aim is to provide a service selection approach that takes existing relation-
ships identified over QoS Characteristics into consideration. In order to sort
alternative services, we will use a particular class of methods of Multi-Criteria
Decision Analysis (MCDA) [7]: the fuzzy MCDA. Fuzzy MCDA allows to estab-
lish a ranking over alternatives while accounting for multiple criteria, represented
here by QoS Characteristics. Moreover, this technique introduces interaction in-
dexes, able to express relationships over QoS Characteristics. The first step for
the service selector is to build a reference set of alternatives that makes appear
existing relationships over QoS Characteristics. Next, an algorithm is executed
on the reference set in order to fix interaction indexes. Finally, the service se-
lector calculates the score of existing alternatives with these interaction indexes
and their ranking is established. Below, we outline how to obtain these indexes
and how the ranking of available services is established with them.

In subsection 4.1, we introduce fuzzy MCDA concepts and explain how the
utility value of each alternative can be calculated. In subsection 4.2, we describe
how weights of criteria and interacting criteria are determined from a reference
set established by the service selector and how provided services are then ranked.
Finally, we present an example of utilization of our service selection approach in
subsection 4.3.

4.1 Fuzzy Multiple Criteria Decision Analysis: Concepts

Fuzzy MCDA methods [7] are of particular relevance in services selection be-
cause these allow to determine weights related to criteria but also weights related

320 C. Herssens, I.J. Jureta, and S. Faulkner

to interactions between criteria. Indeed, in case of interacting criteria, the usual
weighted arithmetic mean (U(xa) =

∑n
i=1 wix

a
i) is extended with a Choquet

integral such that the utility of alternative a is calculated by U(xa) =
∑n

i=1 xa
(i)[

μ(A(i)) − μ(A(i+1))
]
. With a ∈ A which is the set of all possible alternatives and

n as the total number of criteria considered. We can observe that the weights wi

which are considered as independent in the usual weighted arithmetic mean have
been substituted by the weights μ(i1, ..., ik) in the extended mean. These weights,
related to all possible combinations of criteria, make possible to express depen-
dencies between criteria. For complete description of fuzzy measures, Shapley’s
values and Choquet integrals, see Marichal [15,16] and cited references.

The overall importance of a criterion i ∈ N is not solely determined by the
weight μ(i) but also by all μ(S) such that i ∈ S, S being a subset of criteria
related to the same subject. The importance index (Shapley value) of criterion
i w.r.t. μ is defined by its Shapley’s value, as in Equation 1.

φSh(i) =
∑

T⊆N\i

(n − t − 1)!t!
n!

[μ(T ∪ i) − μ(T)] (1)

To focus on interaction among subsets of criteria, the difference a(ij) = μ(ij) −
μ(i)−μ(j) is used. The difference is 0 when the individual importances μ(i) and
μ(j) add up without interfering. In this case, there is no interaction between
criterion i and criterion j. If the criteria interfere in a positive way, the difference
is positive and the difference is negative in case of overlap effect between i and
j. The interaction indexes of criteria i and j are defined by Equation 2.

I(ij) =
∑

T⊆N\ij

(n − t − 2)!t!
(n − 1)!

[μ(T ∪ ij) − μ(T ∪ i) − μ(T ∪ j) + μ(T)] (2)

With interaction indexes, a problem involving n criteria will require 2n co-
efficients. As the user is not able to specify a such amount of information, we
can confine ourself to the 2-order case that permits to model interactions be-
tween criteria while remaining simple. Only n(n + 1)/2 coefficients are then
required to define the fuzzy measure. Moreover, in a QoS based selection ap-
proach, interactions among more than two quality properties are difficulty in-
terpretable. The coefficients are given by μ(i) = a(i), the interacting coefficients
by μ(ij) = a(i) + a(j) + a(ij), i, j ⊆ N and the Choquet integral of the utility
of alternative x becomes Cμ(x) =

∑
i∈N a(i)xi +

∑
i,j⊆N a(ij)(xi ∧ xj), x ∈ R

n.

4.2 Building the Reference Set and Ranking of Alternative Services

The main step in our selection approach is to derive weights of interacting criteria
to apply them to existing service alternatives. These are computed on the basis
of a reference set. The reference set is build by the service selector which refers on
relationships information provided by the user and the provider QoS models. It
consists of fictitious service alternatives and their respective QoS performances
ranked with a partial order. Service QoS performances must be expressed on

Capturing and Using QoS Relationships to Improve Service Selection 321

the same scale [7]. Indeed, QoS values are usually stated with different units,
according to their respective type or modality. Some QoS Characteristics are
defined in percent, others in levels and some in time unit. Moreover, some tend
to be minimized while other should be maximized, in accordance with their
requester QoS Preferences specification. In the aim to consider all properties
on the same scale [9], a preparatory conversion must be made. This conversion
consists of:

– Unifying the unit. The first step is to choose a common unit to all QoS
considered. E.g.: the marks will be attributed on a 20 mark or in percent.

– Setting the modality. All quality attributes must be optimized on the
same modality, i.e.: increasing or decreasing. If we choose to maximize all
properties, attributes that are usually minimized (e.g.: latency, cost) will
inverse their marks. E.g.: a 100 mark for the latency is the quickest latency
possible.

– Scaling of quality attributes. The last element to consider is the scale,
all attributes need to be expressed on the same basis. This basis is specified
by the unit chosen, properties not directly expressible on this unit must
be transformed. E.g.: if the quality property has a level unit (i.e.: as the
security), the transformation function is actual value × best mark

max value . If the
property is expressed with a time value like the latency, the transformation
function is 1 − actual value−min value

max value−min value expressed with the chosen unit.

In addition to a partial ranking of service alternatives, the reference set contains
specific informations. These informations are detailed here:

– Importance of criteria. The relative importance of criteria in the service
selection approach are compared to the priorities fixed over QoS Character-
istics of each service. As these priorities have been established by the user
with help of its QoS model, the strength of priorities can be integrated in
the reference set with values used. It is also possible to bind these priorities
to particular conditions by making them appear in the ranking of service
alternatives provided by the service selector in the reference set.

– Interaction between criteria. This information refers in our selection ap-
proach to the dependencies specified by the provider with QoS Dependencies
that appear between QoS Characteristics. These appear in the reference set
established by the service selector. Theirs strengths and theirs directions can
easily be expressed in the initial data of the reference set. Likewise, binded
conditions can be included added to the reference set.

– Symmetric criteria. Symmetric criteria refer to criteria that can be ex-
changed without changing the aggregation mode. Characteristics belonging
to the same QoS Category may sometimes appear as being substitutable,
a poor performance in a parameter being compensated by good results in
another. Such information needs to be explicitly attached to the parameters
of the reference set.

322 C. Herssens, I.J. Jureta, and S. Faulkner

Once all identified relationships among QoS Characteristics appear in the ref-
erence set, its corresponding Choquet integrals may be computed thanks to al-
gorithm specified in [15,16]. Next, to establish Shapley’s Value and interaction
indexes, linear programming is made on Choquet integrals. Once these weights
are fixed, these can be used to determine the performance of services made avail-
able by providers. The service selector restricts available services to those that sat-
isfy user functional expectations and constraints on non-functional requirements.
Their QoS score need to have been previously scaled as those of reference set alter-
natives. The ranking of available services is given by the sorting of their respective
performance that provides the best available service satisfying user requirements.

4.3 Motivating Example

To illustrate clearly contributions and advantages of our approach, we refer to the
Example 1 illustrating the utilization of the Priority submodel. Values provided
by the service selector to compose the reference set are available on Table 1.

Table 1. Example: reference set

Alternative Availability Latency Reliability
a 85 90 90
b 90 85 90
c 90 85 80
d 85 90 80

The ranking of alternatives constituent the reference set is given by: a � b �
c � d. b � c and a � d are evident preferences. a � b and c � d are consequences
of the priority condition expressed in Example 1 specifying that the availability
is more important than the latency if the reliability is under 85%. Similarly, the
latency will be favored to availability while reliability is above 85%.

Shapley’s values and interaction indexes obtained with help of linear pro-
gramming on Choquet Integrals associated to the reference set are proposed in
Table 2. δ fixes the indifference threshold and has been set to 0.2.

Table 2. Example: Shapley’s values and interaction indexes

Quality property Shapley’s value
Availability 0.25

Latency 0.25
Reliability 0.5

Latency Reliability
Availability 0 -0.5

Latency - 0.5

The respective performance of alternatives of the reference set are given in
Table 3.

Once Shapley’s values and interaction indexes are known, these can be used
to calculate quality score of providers’ alternatives. Table 3 provides quality
properties of available services and their respective scores. The best alternative
is the service e which proposes a score of 89.50.

Capturing and Using QoS Relationships to Improve Service Selection 323

Table 3. Example: Scores of reference set’s alternatives and available services and
their respective performances

Alternative Score
a 90.0
b 87.5
c 85.0
d 82.5

Alternative Availability Latency Reliability Score
e 77 87 92 89.50
f 94 78 85 76.00
g 75 87 91 89.00
h 78 94 87 87.00
i 97 86 78 87.50

The user of the Meris MGVI service will now consider four characteristics
rather than three. To this aim, he adds to its specification the QoS Charac-
teristic integrity and he specializes this characteristic as belonging to the same
QoS Category than the reliability as illustrated in Figure 8. When character-
istics are in the same category, these may be substitutable, compensating one
characteristic with a poor performance by another with good results.

Fig. 8. Reliability and Integrity belonging to the same QoS Category

Table 4. Example: modified reference set

Alternative Availability Latency Reliability Integrity
a 85 90 90 80
b 90 85 90 80
c 90 85 80 80
d 85 90 80 80

The reference set is modified in Table 4 to account for the integrity charac-
teristic. The indifference threshold has been fixed to 0.01 and the interaction
threshold to 0.05.

The Shapley’s value and interaction indexes obtained with the modified ref-
erence set are given in Table 5.

Table 5. Example: Modified Shapley’s values and interaction indexes

Quality property Shapley’s value
Availability 0.2815

Latency 0.2395
Reliability 0.2395
Integrity 0.2395

Latency Reliability Integrity
Availability 0.05 0.05 0.378998

Latency - 0.378998 0.05
Reliability - -0.05

The performance of alternatives of the modified reference set and those of al-
ternatives advertised by providers are given in Table 6. The best available service
in response to user’s specification is now the service f with a score of 84.60.

324 C. Herssens, I.J. Jureta, and S. Faulkner

Table 6. Example: Scores of reference set’s alternatives and available services and
their respective performances

Alternative Score
a 85.00
b 83.56
c 80.67
d 80.46

Alternative Availability Latency Reliability Integrity Score
e 77 87 92 75 80.69
f 94 78 85 91 84.60
g 75 87 91 86 80.90
h 78 94 87 79 81.91
i 97 86 78 84 82.07

This example illustrates the possibilities given by fuzzy MCDA to service
selection. The reference set is built on user non-functional requirements and
fixed weights reflect its expectations. The obtained ranking of available services
is totally lead by relationships identified over QoS Characteristics.

5 Related Work

In this section, we overview some existing models in subsection 5.1 and we place
our selection approach in existing work in subsection 5.2.

5.1 QoS Models

In attempts to define formally non-functional properties of services, different QoS
models have been proposed. Some introduce a description of some concepts [14,30]
while others provide a complete definition of modeling constructs with a linked
XML specification [6,31]. To reach a compromise between a natural conceptual-
ization and an exhaustive formal definition of non-functional characteristics, some
authors have used the Unified Modeling Language (UML) to enable QoS model-
ing [1,2,11,21,25]. Among them, the Object Management Group (OMG) outlines
in [21] a standard, made of UML Profile extensions, to model quality of services.
Our definition of two distinct models to, respectively, user and provider and their
respective relationships are based on the standard proposed by the OMG.

This standard and most QoS model propositions [14,30] highlight a clear dis-
tinction of QoS characteristics and their quantification. We allow to define qual-
ity relationships at characteristics level as at their quantitative calculation level
to benefit from this separation.

Our identified relationships over QoS characteristics are identified in some
models:

– The preference relationship is introduced in most models with help of a
direction attribute [10,14,20,27,30] indicating if a QoS characteristic has to
be maximized or minimized;

– The priority relationship is defined with means of a weight attribute associ-
ated to QoS characteristics [14,30];

– The dependency relationship has only been summarily addressed in some
QoS models [17,21] without specific attribute.

However, none of the cited models provides QoS constructs needed to account for
all of the considerations defined in our QoS models. We have shown the relevance

Capturing and Using QoS Relationships to Improve Service Selection 325

of these considerations, as they are needed in comparing competing services and
subsequently selecting the most appropriate ones. Although some of the cited
models define constructs, some of which are intended for service providers, others
for service requesters, we separate the two perspectives and thereby make a clear
and explicit distinction between the models of the two parties.

5.2 QoS Driven Selection

The aim of service selection is to affect the most suitable service to each ser-
vice request. If the selection is based on non-functional considerations [5], in
the services instance, it will result on a matching of providers QoS capabilities
and requesters QoS expectations. Different techniques have been proposed to
process this match, among them: multi-criteria decision making [20,26,30]; fuzzy
MCDA [27]; heuristics [10]; Euclidean distances [14] and; reputation models [17].
Some propositions combine several techniques as Vu et al. [28] whose use data-
mining with a reputation model and multi-criteria decision making. Some of
these propositions are integrated in larger approaches that compose Web ser-
vices [8,10,30] while others are confined to the definition of the most adapted
service to user requirements.

Existing service selection approaches do not account for relationships over
QoS Characteristics. However, the priority relationship is threated by means of
weighting in some models [26,28,30]. These weights allow to indicate the relative
importance of each QoS Characteristic considered during the selection step [8].
Fuzzy values are used in [19,29] to fix weights a posteriori, responding to the
decision maker uncertainty. Our proposed selection approach relying on fuzzy
MCDA allow for the integration of all identified relationships over QoS Char-
acteristics. This way, the ranking established with our technique benefits from
advanced concepts specified by providers and requesters.

6 Conclusions and Future Work

In a Service-Oriented System (SOS), service requesters specify tasks that need
to be executed and the quality levels to meet, whereas service providers advertise
their services’ capabilities and the quality levels they can reach. Selecting appro-
priate services among competing ones requires rich QoS models for describing
services’ QoS dimensions and characteristics, as this information is subsequently
needed to inform comparison and decision-making during selection. We intro-
duce an approach that features complete QoS models and a service selection
method that uses the QoS information available in the models. The approach
consists of: (i) rich QoS models to be used by service requesters when expressing
QoS expectations and service providers when describing services’ QoS, and for
representing preference and priority relationships between QoS dimensions; and
(ii) a multi-criteria decision making technique that uses the models for service
selection. The approach therefore allows us to deal with tradeoffs through prior-
ities, and to account for stakeholders’ preferences over values of QoS dimensions
and characteristics.

326 C. Herssens, I.J. Jureta, and S. Faulkner

Future effort will be focused on the automation of the approach. Namely,
automated matching of provider and requester QoS model instances will be pro-
posed in addition to an algorithm for building the reference set while accounting
for existing QoS relationships.

Acknowledgments

We are grateful to Emmanuel Mathot of the European Space Agency, who pro-
vided precise information about the ESA Earth observation program and assisted
our efforts in describing quality information and requirements of services related
to this program.

References

1. Aagedal, J.O., Ecklund Jr., E.F.: Modelling QoS: Towards a UML Profile. In:
Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 275–
289. Springer, Heidelberg (2002)

2. Asensio, J.I., Villagra, V.A., Lopez de Vergana, J.E., Berrocal, J.J.: UML Pro-
files for the Specification and Instrumentation of QoS Management Information In
Distributed Object-based Applications. In: Proceedings of the fifth world multi-
conference on systemics, cybernetics and informatics, pp. 22–25 (2002)

3. Benetallah, B., Casati, F.: Special Issue on Web Services. Distributed and Parallel
Databases 12, 115–116 (2002)

4. Casati, F., Castellanos, M., Dayal, U., Shan, M.C.: Probabilistic, context-sensitive,
and goal-oriented services selection. In: ICSOC 2004: Proceedings of the 2nd inter-
national conference on Service oriented computing (2004)

5. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in
Software Engineering. The Kluwer International Series in Software Engineering,
vol. 5. Springer, Heidelberg (1999)

6. D’Ambrogio, A.: A model-driven WSDL Extension for Describing the QoS of Web
Services. In: Proceedings of the International Conference on Web Services (ICWS
2006) (2006)

7. Figueira, J., Greco, S., Ehrgott, M.: Multiple Criteria Decision Analysis: State of
the Art Surveys. Springer, Heidelberg (2005)

8. Gu, X., Nahrstedt, K.: A Scalable QoS-Aware Service Aggregation Model for Peer-
to-Peer Computing Grids. In: HPDC 2002: Proceedings of the 11th IEEE Interna-
tional Symposium on High Performance Distributed Computing (2002)

9. Hwang, C.L., Yoon, K.: Multi-Attribute Decision Making: Methods and Applica-
tions. Springer, Heidelberg (1981)

10. Jaeger, M.C., Rojec-Goldmann, G., Mühl, G.: QoS Aggregation for Web Service
Composition using Workflow Patterns. In: EDOC 2004: Proceedings of the Enter-
prise Distributed Object Computing Conference, Eighth IEEE International (2004)

11. Jureta, I.J., Herssens, C., Faulkner, S.: A Comprehensive Quality Model for Service-
Oriented Systems. Software Quality Journal (accepted for publication),
http://www.jureta.net/papers/QVDPdraft.pdf

12. Kalepu, S., Krishnaswamy, S., Loke, S.W.: Verity: A QoS Metric for Selecting Web
Services and Providers. In: WISEW 2003: Proceedings of the fourth International
Conference on Web Information Systems Engineering Workshops (2003)

http://www.jureta.net/papers/QVDPdraft.pdf

Capturing and Using QoS Relationships to Improve Service Selection 327

13. Keller, A., Ludwig, H.: The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. Journal of Network Systems Management 11(1)
(2003)

14. Liu, Y., Ngu, A.H., Zeng, L.Z.: QoS computation and policing in dynamic web
services selection. In: WWW Alt. 2004: Proceedings of the 13th international World
Wide Web conference on Alternate track papers & posters (2004)

15. Marichal, J.-L., Roubens, M.: Determination of weights of interacting criteria from
a reference set. European Journal of Operational Research 124, 641–650 (2000)

16. Marichal, J.-L.: Aggregation of interacting criteria by means of the discrete Cho-
quet integral. Studies in Fuzziness and Soft. Computing 97, 224–244 (2002)

17. Maximilien, E.M., Singh, M.P.: Toward autonomic services trust and selection.
In: ICSOC 2004: Proceedings of the International Conference on Service-Oriented
Computing (2004)

18. Menascé, D.A.: QoS Issues in Web Services. IEEE Internet Computing 6(6), 72–75
(2002)

19. Mikhailov, L., Tsvetinov, P.: Fuzzy Approach to Outsourcing of Information Tech-
nology Services. In: SAC 2005: Proceedings of ACM Symposium on Applied Com-
puting (2005)

20. Naumann, F., Freytag, J.C., Leser, U.: Quality-driven Integration of Heterogeneous
Information Systems. In: Proceedings of th 25th VLDB Conference (1999)

21. The Object Management Group. UML Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms. Adopted Specification (2006)

22. O’Sullivan, J., Edmond, D., Ter Hofstede, A.: What’s in a Service? To-
wards accurate description of non-functional service properties. Distrib. Parallel
Databases 12(2-3), 117–133 (2002)

23. Papazoglou, M.P., Georgakopoulos, D.: Service-Oriented Computing. Communica-
tions of the ACM 46(10), 25–28 (2003)

24. Ran, S.: A Model for Web Services Discovery with QoS. ACM Sigecom exchanges
(2003)

25. Salazar-Zarate, G., Botella, P.: Use of UML for modeling non-functional aspects. In:
Proceedings of the International Conference on Software and Systems Engineering
and their Applications (ICSSEA 2000) (2000)

26. Shaikh, S.E., Mehandjiev, N.: Multi-Attribute Negotiation in E-Business Process
Composition. In: WETICE 2004: Proceedings of the 13th IEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises
(2004)

27. Tong, H., Zhang, S.: A Fuzzy Multi-attribute Decision Making Algorithm for Web
Services Selection Based on QoS. In: APSCC 2006: Proceedings of the IEEE Asia-
Pacific Conference on Services Computing (2006)

28. Vu, L.-H., Hauswirth, M., Aberer, K.: QoS-Based Service Selection and Ranking
with Trust and Reputation Management. In: Proceedings of the 13th International
Conference On Cooperative Information Systems (CoopIS 2005) (2005)

29. Xiong, P., Fan, Y.: QoS-aware Web Services Selection by a Synthetic Weight. In:
Proceedings of the International Conference on Fuzzy Systems and Knowledge
Discovery (2007)

30. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., Chang,
H.: QoS-Aware Middleware for Web services composition. IEEE Trans. Softw.
Eng. 30(5), 311–327 (2004)

31. Zhou, C., Chia, L.-T., Lee, B.-S.: Daml-qos ontology for web services. In: ICWS
2004: Proceedings of the International Conference on Web Services (2004)

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 328–342, 2008.
© Springer-Verlag Berlin Heidelberg 2008

KAF: Kalman Filter Based Adaptive Maintenance
for Dependability of Composite Services

Huipeng Guo, Jinpeng Huai, Yang Li, and Ting Deng

School of Computer Science and Engineering, Bei Hang University, Beijing
guohp@act.buaa.edu.cn, huaijp@buaa.edu.cn,

{liyang,dengting}@act.buaa.edu.cn

Abstract. Service composition is fundamental in development of Web service
oriented applications. Dependability of composite services is of significant im-
portance since it directly impacts users' experience. However, dependability of
a composite service may change over time as a result of inevitable changes in
component services. In addition, users may also pose varying dependability re-
quirements to meet different needs. It has become a big challenge to dynami-
cally maintain the dependability of composite services. This paper proposes an
innovative system called KAF that constructs a closed-loop control for adaptive
maintenance of composite services. Modeling the control process as a Markov
decision process (MDP), we further design an efficient Kalman-Filter based al-
gorithm for service state prediction. With the availability of the precise predic-
tion, optimal control decisions can be made. We evaluate the performance
of KAF against other alternative approaches through comprehensive experi-
ments and results demonstrate that KAF is capable for adaptive dependability
maintenance.

Keywords: service composition, dependability, adaptive maintenance, Kalman
filter.

1 Introduction

With the maturity of key standards such as SOAP, WSDL, and UDDI, Web service
has been widely recognized as a promising technology for distributed application
development. Following the service-oriented architecture, Web service supports better
interoperability, higher usability, and increased reusability compared to traditional
middleware technologies such as RMI and CORBA. Service composition is the
fundamental process for Web service based application development, which
constructs a composite service by composing basic Web services that may be
distributed over the world. As this trend continues, more and more composite services
will be deployed in the next few years, serving various sectors of our society.

The dependability property of composite services is of significant importance to
users, which includes many critical factors, such as availability, reliability and so on.
A service with higher availability promises more functional time and a more reliable
service reduces the probability to fail when it is invoked. The trust property of a
service is also important since a user may risk invoking a malicious service.

 KAF: Kalman Filter Based Adaptive Maintenance for Dependability 329

A key issue to service composition is that the dependability of a composite service
may change dynamically over time. Users however, desire that the composite service
delivers stable dependability. A stable dependability makes it possible for the users to
expect the predictable results. This is particularly important when the application is
mission-critical, e.g., a disaster management. When the dependability of the compos-
ite service degrades, the users may severely suffer from the decreased performance.

The intrinsic dynamics of composite services stems from the fact that a composite
service is composed of many component services that potentially belong to different
providers distributed in the open Internet. Each component service is subject to differ-
ent environments and changes, such as varying system load and available bandwidth.
The properties of such a service may therefore change from time to time. In addition,
existing component services may become unavailable or new services may appear to
serve. All these factors lead to the inevitable dynamic changes of the composite ser-
vice. On the other hand, the dependability posed by the users or the applications may
evolve to meet different needs in reality.

To obtain stable composite services with desirable dependability, the system must
provide adaptive control to offset the unpredictable changes in either environments or
application requirements. The Web service and service composition has been studied
and several attempts have been made to construct high dependable composite services
[1-4]. However, they fail to support the adaptive maintenance of dependability. To the
best of our knowledge, there is no successful work for this problem.

In this paper we propose an innovative system called KAF to dynamically maintain
the dependability of a composite service. KAF constructs a closed-loop control for the
maintenance. By continuously monitoring the system status, KAF makes progressive
control over the composition of the component service. We model this as a Markov
decision process (MDP) that facilitates control decision making. Since it is highly
desirable to maintain the dependability of the composite service over the one required
by the users, it becomes imperative to estimate the next status of the service. Exploit-
ing the MDP modeling, we propose a Kalman-Filter Based adaptive maintenance
algorithm that precisely predicts and adjusts the service state.

We have made the following original contributions in this paper.

• We make the attempt to explore the important issue of adaptive maintenance of
composite services. The innovative system KAF is proposed which implements a
closed-loop control over service dependability.

• By modeling the control process as a MDP, we design a Kalman-Filter based algo-
rithm that accurately predicts the state of the composite service such that optimal
control decisions are thereafter made.

• We have preliminarily implemented KAF and conducted comprehensive trace-
driven experiments. The performance of KAF is studied comparatively against
other alternative approaches.

The rest of this paper is organized as follows. Section 2 introduces the background
and problem. Section 3 states the KAF architecture. Section 4 describes the adaptive
control method of service composition dependability maintenance. Adaptive control
mechanism implement of service composition dependability is discussed in Section 5.
In Section 6 we evaluate the proposed approach. And we review the related work in
section 7. At last, conclusions and future work are presented in Sections 8.

330 H. Guo et al.

2 Background and Problem Statement

In this paper, we model a composite service as a tuple (ST, SC), where ST is a collection
of tasks combined according to the four basic service composition modes including
sequence (•), parallel (||), choice (+) and iteration (◦), and SC is the set of component
services for each task in ST.

There are many attributes associated with a Web service. In this paper we particu-
larly focus on four key attributes for component services: availability, reliability, trust
and price. The approach can support more flexible definition of QoS other than these
attributes. As discussed before, dependability can be considered as an aggregate prop-
erty of availability, reliability and trust [4-10]. These attributes of services reflect
from different perspectives the ability of a service providing a specific functionality.
Price directly indicates the cost that a user has to pay and thus is indispensable to be
included for study in a practical setting. Therefore, each component service can be
represented by a tuple (A(t), R(t), T(t), P(t)), where A(t), R(t), T(t) and P(t) represent
the numerical values of availability, reliability, trust and price at time t, respectively.

Service availability is defined as the probability that a service is properly function-
ing in a specified period of time under certain conditions. According to [10], service
availability can be measured as:

() ()
()

, s
ij

a

T t
A s t

T t
= , (1)

where A(sij, t) denotes the availability of service sij in time t; Ts(t) is the total available
time and Ta(t) is the total measurement time.

Service reliability is the ability of executing the specific functionality under certain
conditions and within a particular period. And it can be measured by the ratio of the
unsuccessful execution number and the total number of executing:

() ()
()

, s
ij

a

N t
R s t

N t
= , (2)

where R(sij, t) denotes service reliability; Ns(t) is the number of the successful execu-
tion instances, Na(t) is the total number of execution.

How to calculate the trust value is a hot research topic, and there are many works
[6-8]. Generally, there are two types of trust value: direct trust and recommendation
trust. Based on Beth’s works [6], taking into account practicability and measurability,
we describe trust value of the service mainly with recommendation trust. In this paper
we assume that the trust of a Web service is based on recommendations of the service
information manager (SIM), which collect the feedback results of some selected hon-
est sampling clients. In addition, other trust value calculation methods [7, 8] can also
be supported.

According to [4], the availability of a composite service with redundant services
can be computed given the availability information of its component services. Simi-
larly, we can also compute the reliability and the trust of the composite services.
Given the three attributes computed as above, we are able to compute the dependabil-
ity d as a function of them.

 KAF: Kalman Filter Based Adaptive Maintenance for Dependability 331

Churn Report
Invoke

Sampling Clients

Service
Resources

Dependability
Change

Dependability
Change

Monitor
&Estimator

S-Cache CS-Cache
SIM

Controlled Object

Decision
Maker

Enforcement
Point

Cntroller

Fig. 1. KAF architecture

(1) ,d a rα β α β τ= + + − − α , β , a , r ,τ , d ∈[0,1] . (3)

Hereinto, a, r and τ are the availability, the reliability and the trust of a composite
service in a certain period, respectively. Note that α , β and (1)α β− − are the

weights of availability, reliability and trust. The assignment of weights can be deter-
mined by the users to reflect different emphasis on these attributes.

On the other hand, we take into account maintenance costs of a composite service.
In this paper, based on our previous work [4], the attribute can be dynamically ad-
justed based on the instrument of redundancy provision. It is intuitive that more ser-
vices are used, higher cost are introduced.

The objective of the maintenance for composite services is as follows. For a given
composite service (ST, SC), and the given desired dependability (denoted as O), we
need to keep the instant dependability of the composite service d(t) as close to O as
possible for any time t. Meanwhile, we should minimize the cost of the composite as
much as possible over time.

3 KAF Architecture

In this section we first introduce the system architecture of KAF and then describe the
modeling of the decision making process for dynamic maintenance in KAF.

3.1 System Architecture

The KAF Architecture is shown in Figure 1, which consists of three main compo-
nents. The Monitor and Estimator component monitors the current attributes of all
services and also estimate their further states based on the current and historical in-
formation. The information provides the basis to the Decision Maker that produces
maintenance strategy. The decision output is feed into Enforcement Point that imple-
ments the decision and dynamically adjusts the composition of the composite service.

332 H. Guo et al.

In the KAF, composite service based on redundancy, including component services
cache named S-Cache and composite services cache named CS-Cache, is the con-
trolled object. Guarantee strategy of composite services is the corresponding control-
ler and is performed by Decision Maker and Enforcement Point. Monitor& Estimator,
SIM and sampling clients form a feedback loop. Composite services, guarantee strat-
egy and feedback loop constitute a closed-loop feedback control system.

In figure 1, Ok (0≤k≤N) are the desired value of the dependability in a composite
service system, represents dependable attributes of a composite service. Mk (0≤k≤N)
are feedback values of a composite service, denote actual values of dependability
attribute. Mk are estimated by Estimator based on summarization of SIM from the
report of sampling clients. Ck (0≤k≤N) are control values and are determined by the
difference between expectations and estimating value. Ck denote the dependability
value needed to be adjusted. Based on adjustment strategies, the Enforcement Point
choose candidate services and complete the reconstruction of services composition.

In KAF architecture, the feedback loop is composed of two mechanisms: execution
monitoring and reporting. Execution monitoring gains the services available state
information from the execute engine by the monitor. Reporting mechanism summa-
rizes the using result of sampling clients and sampling clients are some honest client
nodes selected by SIM. Estimator estimates dependability of component service base
on the results of SIM and then computes dependability of composite service.

SIM is an extended service registry supporting the description and update of QoS
information. SIM is responsible for the reporting mechanism, collecting and manag-
ing the information of service. Some function of SIM includes service dependability
value monitoring, service available state detection under different strategies (such as
different frequencies, different incentive incentives, and so forth), evaluation and
statistical functions of sampling client monitoring reports.

To adjust the dependability effectively, the Decision Maker determines service op-
tions and update strategy, such as increasing number of backup service, replacing
service decreased most and so on. In this paper, guarantee strategy is a kind of meta-
strategies. According to a meta-strategy, Enforcement Point runs the APB algorithm
[4] selecting new service and replacing declining or failed services to implement the
composite service’s re-structure. In addition to the dependability of services, we must
also consider the cost of replacement and rewards of expectation, so that to make the
long-term revenue maximize. For the realization of this goal, in this paper we use
Markov decision process theory to support strategy choices.

3.2 MDP Modeling

Due to the dynamic nature of component services, such as verity of load, network
conditions and churn, the dependability of composite service will be affected. In these
conditions, we need selecting some redundant service to ensure the composite service
can still satisfying the desire even dependability of some component services drop.

We design dependability factor f =lnO/lnD, where O is the desired value for de-
pendable properties need to satisfied and D means the design value of dependability.
Dependability factor reflecting the important degree of dependability is used to guide
the choice of component service. Generally f is larger than 1, which means D usually
is larger than O. We can see that, when the dependability of component services de-
clines rarely, low dependability factor can reduce the cost of constructing composite

 KAF: Kalman Filter Based Adaptive Maintenance for Dependability 333

services. When dependability dropped significantly, increasing of dependability factor
can improve the quality of composite service, and the cost may increase.

To adjust the dependability factor of composite service reasonably, we select MDP
(Markov Decision Process)[11] to modeling the composite service maintenance proc-
ess: RSC = , , { () | }, , S A A x x S Q RV〈 ∈ 〉 , where S is the set of all possible states and

A is the set of decision strategies, {A(x)|x∈S} is the strategy when the state is x,
Q(B|x, a) =Q{Xt+1∈B| Xt=x, At=a} specifies the probability to the next state Xt+1
when the state is Xt=x and after strategy At=a is executed, and RV is the reward of
executing the strategy. If we assume that the state of system in moment t was
Xt=x∈S, while the decision is At=a∈A(x), under the decision of transfer function Q,
system transfers to the state Xt+1 with the reward of RV(a,x). After the transfer, the
system has entered a new state, and then choose a new decision to continue decision-
making process. Therefore we establish Markov decision process model of compo-
nent service dependability’s maintenance as follows.

Definition 1. In a period of time, dependability of a composite service CS is

(1) ,d a r tα β α β= + + − − and [0,1] is divided into k parts. When d ∈
-1

[,)
i i

k k
, we

define that the state of the composite service is si , marked as si=
-1

[,)
i i

k k
. And the

state set of composite service dependability is denoted by S={s1, …, sm} .

By dividing [0, 1], we can reduce the state space and reduce the complexity of deci-
sion-making in service composition.

Definition 2. Let Δf be the variety amount of dependability factor, We define the
adjustment strategy set as A={−Δf, 0, +Δf }, where the strategy −Δf and +Δf
mean the amount of reduction or addition values of dependability factor respec-
tively, and the strategy 0 means no changing to the dependability factor.

Definition 3. For a composite service CS, suppose that d, ψ , w and η represent the

dependability, revenue, service adjustment cost and the importance degree of the
CS, where η is a positive real number, we denote by (- ln(1))r d wν η ψ= − + −

the reward of composite service CS.

The definition 3 represents if composite service properties such as availability, reli-
ability and trust are higher or the maintenance cost of composite service is smaller, we
can get more reward. Then composite service developers will be more satisfied with
the composite service, that is, the value of v will be larger. Among them, the income
is related to the number of service execution and the prices of services.

Definition 4. For a composite service CS, at the moment t suppose that CS is in the
state si, we denote by (- ln(1)) (,) t ir d w A sν η ψ= − + − the immediate reward of

composite service CS after adopting strategy At, where (,) t iw A s represents the

cost of dependability adjustment.

While using Markov decision process, if the state transferred probability function and
reward function are known, by dynamic programming methods, we can construct

334 H. Guo et al.

value function and achieve optimal decision strategy. However, in the service-
oriented software development process, it is difficult to observe all the historical
actions of component services. That means that transition probability function and
reward function are unknown, we can not use dynamic programming techniques to
determine optimal decision strategy. Hence we design Kalman-Filter based approach
to estimate systemic state and choose optimal decision strategy.

4 KAF Adaptive Control

In the distributed and dynamic environment, we can not get the parameters of service
state instantly and need estimate them online. So to adjust controller parameters and
to keep the performance satisfying the design demand, we apply Kalman-Filter based
approach to estimation service’s state, then adjust controller following the estimated
value.

4.1 Kalman Filter-Based Estimation

Kalman filter [12] uses the recurrence of the state equation to achieve the optimal
estimate of state variables in the linear dynamic system. The Kalman filter is unbiased
and has the smallest variance. It is easy to realize by computer and be suitable for on-
line analysis. Furthermore, the extended Kalman filter (EKF) can be used in nonlinear
systems. Therefore, this paper introduces the extended Kalman filter to estimating the
dependability of component services in order to implement the adaptive control main-
tenance of composite service’s dependability.

At moment t, the state of a service is a x(t) and represent the dependability of the
service. The state equation of the component service is:

x(t+1)=Φ(t, x(t))+w(t) . (4)

In this equation, Integer t≥0 is discrete-time variable, x(t)∈Rn×1 is the dependabil-
ity of the component service. Φ(t, x(t))is the nonlinear transition matrix of service
state. We suppose that w(t) is the disturbance to the dependability of the component
service.

The measurement equation for the dependability of the component service is:

y(t)=C(t,x(t))+v(t) . (5)

Here, y(t)∈Rm×1(m≤n) is the measurement value of the dependability. C(t,x(t))is
measurement matrix. v(t)∈Rm×1 is the measurement noise.

And assume that w(t) , v(t) and the starting states x(0) have characteristic:
E{w(t)}=0, E{v(t)}=0, E{x(0)}=x0, E{w(t)wT(j)}=Qi(t)δt,j, E{v(t)vT(j)}=Pi(t)δt,j,
E{[x(0)-x0][x(0)-x0]

T}=P0 and E{x(0)wT(t)}=0, E{x(0)vT(t)}=0, E{w(t)vT(j)}=0.

,

1

0 t j

t j

t j
δ

=⎧
= ⎨ ≠⎩

, t, j≥0.

We get State transition matrix:

tx=x(t|y)

(,)
(1,) |

t x
t t

x

∂ΦΦ + =
∂

 . (6)

 KAF: Kalman Filter Based Adaptive Maintenance for Dependability 335

Measurement matrix:

1(|)

(,)
() |

tx x t y

C t x
C t

x −=

∂=
∂

 . (7)

The observation values are y(1),y(2),…,y(t), so optimal predict value of x(t+1) is:

 (1|) (1,) (|)t tx t y t t x t y+ = Φ + .
(8)

Suppose that we have gotten the optimal predictive value (| -1)x t t and the corre-

sponding prediction error covariance K(t|t-1) before getting the dependability measure
value y(t) of the component service. Then we can get the predict

value (1|) x t t+ based on the overall information and the corresponding prediction
error covariance matrix K(t+1|t) at moment t by using Kalman filter and y(t).

The Kalman gain is:

-1
2() (| -1) ()[() (| -1) () ()]T TG t K t t C t C t K t t C t Q t= + . (9)

Assume innovation 1 () () - () (|)tt y t C t x t yρ −= and the optimal predictive value based

on overall information of state x(t) , we can apply ρ(t) to modify the predictive value

x(1| 1)t t+ − :

1 (|) (|) () ()t tx t y x t y G t tρ−= + .
(10)

And the corresponding predict error for the covariance is:

1(1|) (1,) () (1,) ()TK t t t t K t t t Q t+ = Φ + Φ + + . (11)

() [- () ()] (, 1)K t I G t C t K t t= − . (12)

4.2 Adaptive Control Algorithm

According to the aforementioned analysis, we design the adaptive control algorithm
for the dependability maintenance of the composite service. The basic idea is as fol-
lows. First we collect the sampling client’s using report data about service execution,
summarize the state and value of component services and calculate the dependability
of composite services and compare with the expectation value. Then estimate the
value of every selected component service by the Kalman filter formula, compute the
immediate reward of every action and choose corresponding action following the
MDP framework. At last we execute the APB algorithm [4] and the strategy execute
module to select new service and replace some degenerate service.

The input of KAF adaptive control algorithm includes constructed composite ser-
vice, available component services’ properties measure value, expected dependable
value Dk of composite service. The output includes dependability factor and selected
services.

The first part of KAF algorithm (lines 1-4) is initialization, including read the ex-
pectation value Ok of composite services, collect parameter of component services

336 H. Guo et al.

from SIM, calculate the dependable attribute values, and calculate real dependability
of composite service.

Then obtain sampling measure values of component services, and according to
Kalman filter calculation formulas estimate the values in the next period. Afterwards
in the MDP, compute the immediate reward and determine the action of modifying
the dependable factor α (line 5-8).

In the third part (lines 9-13), compute the dependable attribute verity values Δdk
and select new service following the APB algorithm [4]. At last, to measure the com-
ponent services and start another prediction and control process.

5 KAF Implementation

The KAF platform provides environments where (i) composite service developers
may create a new composite service and adaptive control the choice of candidate
services, (ii) Monitor and SIM may get and validate the state and value verity of com-
ponent services, and (iii) Estimator may predict the value of component services with
the Kalman filter and then constructor implement the adaptive strategy of the control-
ler. KAF is the extension of the WebSASE [24]. WebSASE supports Web service
development, deployment, composition and is based on established standards such as
SOAP, WSDL and BPEL. KAF is implemented in Java using IBM eclipse, and im-
plement of middleware is based on the AXIS 2.0.

KAF adaptive control algorithm

input: constructed composite service, available component service
properties measurement value, expected dependable value Dk of com-
posite service.
output: dependability factor, selected services
1. Read the Ok , determine the weight of every attributes;
2. Read the initial dependable attribute values from SIM;
3. Calculate the dependable attribute values for each component ser-

vice respectively;
4. Calculate d*

k of composite service;
5. Collect sampling measure values Mk of component services;
6. Predict the value of the next period by Kalman filter following the

measure values;
7. Compute the immediate reward according to MDP strategy;
8. Determine the action and modify the dependable factor α;
9. Calculate updated dk ;
10. Calculate Δdk = dk − d*

k ; // Δdk is the Ck
11. Select new service following the APB algorithm;
12. d*

k= dk;
13. goto step 5.

 KAF: Kalman Filter Based Adaptive Maintenance for Dependability 337

Q
O

S

 . . .

Composite Service Execute Engine

M
onitor &

 M
anagem

ent T
ools

Service
Information

Manager

 . . . Log
Servcie

Security
Service

Event
Service

System
Service

Service Composition
Adaptive controller

Service Composition
Constructor

C
lient

Java Client

S
ervice

C
om

position
M

odeling
T

ools

S
ervice

D
evelopm

ent
T

ools

Development
Tools

E-Government Intelligent Traffic Geologic App. Sensor Network App.

Web Service Application

Ajax Client C++ Client Portal

Service Attribute Value
Estimator

Fig. 2. The KAF implementation architecture

The KAF system introduces the notion of service composition adaptive control.
The adaptive control is implemented by four main components: the estimator, the
controller, the constructor and the monitor.

The estimator is responsible for estimating the value of services in the next period
with the measure value of the currently period by the Kalman filter formula. The SIM
is implemented as an extension to the UDDI to support the measure and evaluation of
service quality. Through validation of the monitor, SIM chooses some honest clients
as sampling nodes, collects the report of them and summarized as measure value.

According to dependability requirements and estimated value of the next period,
the controller computes the immediate reward of every action and choosing corre-
sponding action following the MDP framework. The amount of action to adjust the
dependable factor can be edited through a visual interface by the composite service
developer. The controller also determines actions to be taken in response to events
such as service fail.

The constructor (Enforcement Point) constructs the composites according to com-
ponent information and quality requirements from the model created by the modeling
tools. Redundant services are selected and component service cache is constructed to
store information of redundant components. Composite service cache is built and the
BPEL documents of backup composites are created. Most important, the constructor
modify the composite service through adding some more services or replace some
services according to the adjustment of dependable factor using APB algorithms pre-
sented in [4].

The monitor performs the task of receiving the sampling measure value of services
from SIM, receiving the event report from the execute engine and validating honesty
of sampling clients. After measure value or other information is received, the monitor
transmits these data to the estimator for the new estimation and control.

338 H. Guo et al.

6 Performance Evaluation

In this section, we introduce experiments we conducted for performance evaluation
and discuss evaluation results.

6.1 Simulation Setting and Metrics

To evaluate the effectiveness of our method, we design a set of simulation experi-
ments to analysis the verity of dependability. First we generate a certain number of
services and queries randomly. Each service is marked by its name, version, type,
availability, reliability, trust and price etc, and these data are updated dynamically.

We adopt the following metrics and strategies: dependability, cumulative reward,
Random strategy and Kalman-Filter based adaptive control strategy.

Dependability denotes an integrative ability of a composite service to provider cer-
tain functionality in a certain period. In this paper we select detailed properties includ-
ing availability, reliability and trust.

Cumulative reward defines the reward of composite service execution in a certain
period of time (Compute following definition 3. And in this paper the time is a day.).

Random strategy: If some component service in the composite service fails, then
we select random another service to replace it.

Kalman-Filter based adaptive control strategy: In execution process of composite
service, we use Kalman filter to estimate the dependability of the component services
and adjust the dependable factor and then reconstruct a composite service.

Base on the above metrics and strategies, we design the adaptive control mecha-
nism of composite service dependability, the execute process is shown in figure 3.
The main function of SIM include service information registering and publishing,
service available state monitoring, service dependability evaluation, service depend-
ability properties analysis adjustment. The main function of Service Provider includes
service information registering, service execution record, service information update
adjustment. The main function of Composite Service Developer includes service
discovery, service modeling, service construction, service execution, service execu-
tion evaluation and redundant service management.

6.2 Results Analysis

In our simulation, 3000 services are generated and distributed into selected nodes. 2.3
percent of the services fail every day, which is based on the observation of [13].

The first simulation is implemented to analyze the effect of adaptive control main-
tenance mechanism. 50 composite services is constructed and the dependability of
execute for 100 days is recorded. The results in figure 4 show that dependability of
composite services without backup services drops to a very low level after some days.

With the help of backup services, the dependability drops slowly. Results also
show that relatively higher dependability can be achieved with the random replace-
ment of failed service. With the help of adaptive maintenance mechanism based on
KAF, the dependability stays steadily in a relatively high level.

 KAF: Kalman Filter Based Adaptive Maintenance for Dependability 339

 1. Service Registry, 2. Service Discovery, 3. User Report,
 4. Service Data Update, New Service Register, Service Fail Message Exchange,
 5. Service Information Adjust Notify, 6. Service Information Update

Fig. 3. Process of services’ dependability information feedback

0 10 20 30 40 50 60 70 80 90 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 No RS
 2 RS
 2 RS & RR
 2 RS & KF_ACM

D
ep

en
da

bi
lit

y

Time(days)

0 10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

120

 No RS
 2 RS
 2 RS & RR
 2 RS & KF_ACM

R
ew

ar
d

Time(days)

Fig. 4. Dependability maintain dynamically Fig. 5. Reward of maintain dynamically

The second experiment is to analyze the effect of adaptive maintenance mechanism

on the Reward of composite service. The results in Figure 5 show that reward of
composites without backup services drops to a very low level after some days. With
the help of backup services, the reward drops slowly. Results also show that relatively
higher dependability can be achieved with the random replacement of failed service.
With the help of adaptive maintenance mechanism based on Kalman filter, the reward
stays steadily in a relatively high level.

The third experiment is to analyze effect of dependability’s important degree on
the Reward of composite service. The results in Figure 6(a) show that cumulative
reward of composites without backup services drops to a very low level after some
days in different important degree. With the help of backup services and adaptive
maintenance mechanism based on Kalman filter, the Cumulative reward stays steadily
in a relatively high level. And the higher important degree is, the reward will be
much.

340 H. Guo et al.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100
R

ew
ar

d

Time(days)

No RS
 n=30
 n=20
 n=10

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

110

120

R
ew

ar
d

Time(days)

 n=30
 n=20
 n=10

2RS & FL_ACM

(a) Reward Without Adaptive Maintenance (b) Reward with KF-based Adaptive Mainte-

nance

Fig. 6. Dependability’s important degree vs. reward

7 Related Work

To achieve dependable composite service, many efforts have been made. Related
work mainly involves dynamic service composition, dynamic adaptation technology,
monitoring and recovery technology, evaluation, replication technology and so forth.

F. Casati and H. Sun et al. [14, 15, 16] proposed a dynamic service composition
method, only required functions are defined in the definition period and component
services bind and instantiate at runtime. Composite service need communicating with
service registry dynamically, find necessary component services according to the pre-
established strategies. Possible strategies include choice based on the QoS [9, 17], or
based on the semantic [18] and so on. This method can improve the flexibility of
composition and dynamic adaptability. But dynamically searching and several remote
interactions with the service registry, the efficiency will be low. And the quality of
services cannot be guaranteed because the existing service registries cannot guarantee
the authenticity of data and the state of registered services.

J. Harney and P. Doshi et al. [1][19] proposed adaptive methods -VOC and VOC ε.
VOC method can avoid unnecessary inquiries and reduce overhead by calculating the
potential value of changed information. VOCε is the improvement of VOC. VOCε only
monitors the service out of expiration time so as to gain better efficiency. They
mainly concerned achieving verify of attributes efficiently and economically. While
in KAF we consider the adaptive adjustment of services selection to meeting desired
dependability steadily and economically in a volatile environment.

S. Guinea et al. [20, 21] proposed a self-healing service composition method
through service state monitoring and recovery of fails. F. Tartanoglu et al. [22] based
on the concept of cooperative atomic action and web service composition action,
proposed a forward error recovery method to achieve fault tolerance and dependable
composite service. K. Birman, et al. [23] proposed an extended WS architecture to
achieve the high dependability of services, to support the error monitoring, reliable
message transferring through components such as health control, reliable message,
event notification and so on. However, these monitoring and recovery technologies do

 KAF: Kalman Filter Based Adaptive Maintenance for Dependability 341

not consider monitoring and recovery efficiency, costs and rewards, and also they do
not assess the effect of the monitoring and recovery in quantitative forms.

P. Godfrey et al. [25] presented the definition and calculating method of Churn, com-
pared and analyzed different failure node replacing strategy based on some real traces. X.
Li and K. Nahrstedt [26] presents a service composition approach with QoS guarantee to
minimize the interference. R. Jurca et al. [2] proposed a reliable service quality monitor-
ing mechanism based on customers’ feedback, reduce lying and anti-conspiracy.

In addition, J. Salas et al. [27] proposed a framework to increase service availabil-
ity. X. Ye and Y. Shen [28] proposed a middleware supporting reliable web services
based on active replication technology. These studies concern availability and reliabil-
ity of service individuals and their methods are qualitative. While KAF considers the
dependability of composite service and supports quantitative assessment.

8 Conclusions and Future Work

In this paper, we have studied the important problem of dynamic maintenance of
desirable dependability of composite services. We have proposed KAF, a system that
provides closed-loop feedback based control over the dependability of composite
services. The adaptive dependability control over a composite service is modeled as a
Markov Decision Process. To maintain the dependability constantly over a given
desirable value, it is particularly imperative to predict the state of the composite ser-
vice. We have designed a Kalman-Filter based algorithm for accurate estimation.
Comprehensive experiments have been conducted and the results have demonstrated
that KAF is able to achieve the dynamic maintenance of dependability. At the same
time, the cost of maintenance is reduced significantly on the long run. As a result,
KAF is viable and valuable for Web service based applications.

Although significant achievements have been made so far, there are several inter-
esting directions in our future work. On the one hand, we will investigate more
comprehensive and finer grained QoS models for composite services, e.g., to define
parameters more specific to Web services in more flexible way. On the other hand,
we will extend to richer composition model other than supporting the general mode of
sequence, parallel, choice and iteration, e.g., more complex relationships, such as
compensation and transaction, will be considered.

Acknowledgments. We would like to thank Yanmin Zhu of Imperial College London
for his fruitful suggestions and kind help in the writing of this paper. We would also
like to thank the anonymous reviewers for their constructive comments and sugges-
tions. This research was supported in part by China NSF grants (No.90412011 and
No.60525209), China 863 High-tech Programme (No.2006AA01Z19A) and China
973 Fundamental R&D Program (No.2005CB321803).

References

1. Harney, H., Doshi, P.: Speeding up Adaptation of Web Service Compositions Using Expi-
ration Times. In: Proc. of WWW (2007)

2. Jurca, R., Binder, W., Faltings, B.: Reliable QoS Monitoring Based on Client Feedback.
In: Proc. of WWW (2007)

342 H. Guo et al.

3. Wu, K., David, J., et al.: The Applicability of Adaptive Control Theory to QoS Design:
Limitations and Solutions. In: Proc. of IEEE IPDPS (2005)

4. Guo, H., Huai, J., et al.: ANGEL: Optimal Configuration for High Available Service Com-
position. In: Proc. of ICWS (2007)

5. Avizienis, A., Laprie, J., et al.: Basic Concepts and Taxonomy of Dependable and Secure
Computing. IEEE Transaction on Dependable and Secure Computing 1(1), 11–33 (2004)

6. Beth, T., Borcherding, M., Klein, B.: Valuation of Trust in Open Networks. In: Proc. of
Conference on Computer Security (1994)

7. Golbeck, J.: Computing and Applying Trust in Web-based Social Networks. PhD thesis,
University of Maryland (2005)

8. Abdul-Rahman, A., Hailes, S.: A distributed trust model. In: Proc. of NSPW (1997)
9. Liu, Y., Ngu, A.H.H., Zeng, L.: QoS Computation and Policing in Dynamic Web Service

Selection. In: Proc. of WWW (2004)
10. Ran, S.: A model for web services discovery with QoS. ACM SIGecom Exchanges (2003)
11. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Programming.

Wiley-Interscience, Chichester (1994)
12. Haykin, S.: Adaptive Filter Theory, 4th edn. Pearson Education, London (2002)
13. Kim, S., Rosu, M.: A survey of public web services. In: Proc. of WWW (2004)
14. Baresi, L., Guinea, S.: Towards Dynamic Web Services. In: Proc. of ICSE (2006)
15. Sun, H., et al.: Research and Implementation of Dynamic Web Services Composition. In:

Zhou, X., Xu, M., Jähnichen, S., Cao, J. (eds.) APPT 2003. LNCS, vol. 2834, pp. 457–466.
Springer, Heidelberg (2003)

16. Mennie, D., Pagurek, B.: An Architecture to Support Dynamic Composition of Service
Components. In: Proc. of WCOP (2000)

17. Casati, F., et al.: eFlow: A Platform for Developing and Managing Composite e-Services.
In: Proc. of AIWORC (2000)

18. Verma, K., et al.: METEOR–S WSDI: A Scalable P2P Infrastructure of Registries for Se-
mantic Publication and Discovery of Web Services. Journal of Information Technology
and management (2005)

19. Harney, J., Doshi, P.: Adaptive Web Processes Using Value of Changed Information. In:
Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp. 179–190. Springer,
Heidelberg (2006)

20. Guinea, S.: Self-healing web service compositions. In: Proc. of ICSE (2005)
21. Baresi, L., et al.: Towards Self-healing Service Compositions. In: Proc. of PRISE (2004)
22. Tartanoglu, F., Issarny, V., et al.: Coordinated forward error recovery for composite Web

services. In: Proc. of SRDS (2003)
23. Birman, K., Renesse, R., Vogels, W.: Adding High Availability and Autonomic Behavior

to Web Services. In: Proc. of ICSE (2004)
24. Ge, S., et al.: WebSASE: A Web Service-based Application Supporting Environment. In:

Proc. of the 5th Northeast Asia Symposium (2002)
25. Godfrey, P., et al.: Minimizing Churn in Distributed Systems. In: Proc. of SIGCOMM

(2006)
26. Li, X., Nahrstedt, K.: Minimum User-perceived Interference Routing in Service Composi-

tion. In: Proc. of INFOCOM (2006)
27. Salas, J., et al.: WS-Replication: A Framework for Highly Available Web Services. In:

Proc. of WWW (2006)
28. Ye, X., Shen, Y.: A Middleware for Replicated Web Services. In: Proc. of ICWS (2005)

SpreadMash: A Spreadsheet-Based Interactive

Browsing and Analysis Tool for Data Services

Woralak Kongdenfha1, Boualem Benatallah1, Régis Saint-Paul1,
and Fabio Casati2

1 CSE, University of New South Wales, Sydney, NSW, 2052, Australia
{woralakk,boualem,regiss}@cse.unsw.edu.au

2 DIT, University of Trento, Via Sommarive 14, I-38050 POVO (TN), Italy
casati@dit.unitn.it

Abstract. Spreadsheets are one of the most popular end-users program-
ming environment. Although spreadsheets provide an interactive inter-
face for data manipulation and analysis, they are mostly used today in
data entry mode and not as interactive browsing tool for data stored
in underlying data sources. In this paper, we present SpreadMash, a
high-level language and tool for interactive data browsing and analysis
for data services. The key innovation of SpreadMash is a repository of
application building blocks called data widgets that characterize various
data importation and presentation patterns in spreadsheets. Data wid-
gets enable the separation of end-users tasks (composing data widgets)
from the tasks of data architects (creating data abstractions and data
widgets). Through a series of examples we illustrate how tasks that would
be challenging in existing environments are facilitated by SpreadMash.

1 Introduction

Interactive data presentation and analysis applications are applications that al-
low users to enter or present information stored in the underlying data sources,
and possibly to perform manipulation operations on these data, such as calcula-
tions or aggregations. Examples of such applications include relational reporting
applications and on-line analytical processing (OLAP) systems. Relational re-
porting tools, such as Crystal Reports [2], enable reporting against relational
databases. They deliver information, but provide very little support for interac-
tive analysis [3,6]. On the other hand, OLAP systems are specialized technologies
that present numerical data in a multidimensional format and provide more pow-
erful analytical capabilities than relational reporting tools. While OLAP systems
deliver advanced analytics, these features exceed the skills and capabilities of the
average PC users. One of the most successful paradigms for data analysis is that
of spreadsheets [3,6,8,16]. The success of spreadsheets comes from:

– an interactive interface that make it easy to view, and interact with the data
[14]. Spreadsheets also provide analysis and manipulation alternatives that
span various application domains such as financial, statistics, etc.;

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 343–358, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

344 W. Kongdenfha et al.

– a flexible data model that does not impose much constraints regarding the
data layout [14]: data can be organized based on criteria such as subjective
importance by placing important data in the top-left corner, or by placing
related data elements next to each other, etc.;

– a simple programming environment that allows users to accomplish their
tasks easily and intuitively. Spreadsheets eliminate many of the stumbling
blocks in traditional programming environments such as data dependencies
or memory management [13];

– an incremental approach for building fairly complex computations while get-
ting immediate feedback (i.e., continuous evaluation) [13];

– a tolerant approach regarding typing and formula consistency (i.e., a spread-
sheet program executes even if it contains some invalid statements) [8].

All of the above elements concur spreadsheets to be a good candidate for de-
veloping interactive data presentation and analysis applications. However, today
spreadsheets are mostly used in data entry mode and not as interactive presen-
tation and browsing tool for data stored in underlying data sources, thereby
using only a fraction of the potential of the spreadsheet model. Recent work
has made progress in this direction. Example of these efforts include OracleBI
[3], SAPBWP [6], XL Report Builder [7] that integrate spreadsheets with both
relational databases and OLAP systems.

While exposing underlying data in spreadsheets is a promising idea, the above
tools still fall short in terms of data browsing and presentation. Specifically, their
presentations are essentially limited to relational tables (for textual data from
relational databases) or pivot tables (for numerical data from OLAP systems).
They thus hinder the flexibility in data presentation as provided by spreadsheets
and required by end-users. As mentioned earlier, a user might want to present
data based on criteria such as subjective importance by placing important data
in the top-left corner. However, this is not possible in such tools.

A further limitation of the aforementioned tools is the difference between the
data model exposed by relational databases and the one required by applica-
tions. This problem, known as impedance mismatch, makes it hard to develop
and maintain data analysis applications. For instance, information about cus-
tomers may be represented in several database tables for normalization and
performance purposes. In this case, if a user is interested to import information
about a specific customer, she may have to specify a join query over these tables.
However, end-users may not necessarily have the skills or the will to understand
the underlying logical database schema and specify such queries. It is desirable
to present underlying data to end-users at the right abstraction level and provide
easy and intuitive data manipulation support.

To address the above issues, we propose SpreadMash, a high-level language
and a tool for developing interactive data presentation and analysis applications.
SpreadMash is interactive, provides high-level data access and enables multiple
data presentation schemes. The key innovation of SpreadMash is a repository
of application building blocks called data widgets that characterize various data
importation and presentation patterns in spreadsheets. We take the view that,

SpreadMash: A Spreadsheet-Based Interactive Browsing and Analysis Tool 345

although concrete data importation and presentation is application-specific, in
many cases it is possible to capture various types of data widgets in a generic
way. Essentially each data widget is associated to a template for importing data
from underlying data sources and a template for presenting query results in a
spreadsheet. The design of SpreadMash embodies several key features:

– SpreadMash is based on spreadsheets to provide an interactive presentation
of data stored in relational databases and web applications. Users can also
use spreadsheets’ built-in functions to explore their analysis.

– SpreadMash decouples end-users from logical models of underlying data
sources. It allows query formulations over high-level concepts, and thus solves
the impedance mismatch. This is facilitated by the integration of data ser-
vices [9,10] into the framework.

– SpreadMash bridges the data services and spreadsheets with a three-layer
framework: data services, data widgets and spreadsheets. The three-layer
framework enables the separation of end-users tasks (composing data wid-
gets) from the tasks of data architects (creating data services and data
widgets).

The rest of this paper is organized as follows. Section 2 introduces the data
and query model used throughout this paper, as well as gives an overview of
SpreadMash. Section 3 presents the SpreadMash language and discusses the
instantiation of data widgets. Section 4 presents how multiple widgets can be
composed to generate complex spreadsheets. Section 5 reviews related work.
Finally, in Section 6, we conclude the paper.

2 SpreadMash: Background and Overview

In this section, we first review the underlying models and systems used by
SpreadMash: the entity-based data access model of data services (Section 2.1)
and an extended spreadsheet data model of SpreadATOR [15] (Section 2.2).
Then, in Section 2.3, we provide an overview of the SpreadMash proposed in
this paper to bridge data services and SpreadATOR.

2.1 Entity-Based Data Access

End-users might want to access data from heterogeneous data sources to enable
their analysis. Over the years, there has been major progress in providing APIs
to simplify access to various types of data sources (e.g., REST, RSS and Atom
for Web data). Data services [9,10] is a recent advent in this direction. They sim-
plify developers’ tasks by wrapping heterogeneous data sources (e.g., relational
databases, XML documents), and provide uniform data access to them.

In addition, data services also provide a conceptual model that describes the
structure of underlying data sources with higher-level constructs, i.e., entities
and their relationships. In our work, we leverage the data services provided by
the ADO.Net Framework, and its conceptual model known as Entity Data Model

346 W. Kongdenfha et al.

(EDM) [9]. An example EDM model for DBLP data source is shown in Figure 1
and will be used throughout this paper. This EDM consists of three entity types:
Publication, Author and Conference. There is a relationship between Publication and
Author entity types, and another between Publication and Conference.

1..*

AuthorToPublication

1 1..*1..*

ConferenceToPublication

Conference

title: string

year: string

booktitle: string

url: string

Publication

title: string

year: string

pages: string

url: string

Author

name: string

address: string

Fig. 1. An example EDM model of DBLP data source

The conceptual model offers high-level access to underlying data sources. For
instance, data related to an author is represented as an entity, rather than being
normalized over multiple tables in the logical model of a database. Developers
can therefore access directly this pre-joined entity. Moreover, the pre-joined re-
lationships also simplify navigation between related entities. For instance, once
entity Author is accessed, the pre-joined relationship AuthorToPublication can be
used directly to access publications that are written by a given author.

2.2 An Extended Spreadsheet Data Model

In Section 2.1, we have seen how professional developers can benefit from the
uniform and high-level data access provided by data services. SpreadMash aims
to bring such benefits to end-users by integrating data services with spreadsheets.
This integration has an important challenge in the mismatch between the data
model exposed by data services and the one provided by spreadsheets.

The traditional spreadsheet model consists of a set of worksheets. A worksheet
is a collection of cells organized in a tabular grid. Each cell can contain either an
atomic value (i.e., string, integer, datetime) or a formula. A formula can be built
from atomic values, functions (e.g., ‘‘+’’, ‘‘/’’), and cell references (e.g., A5).
On the other hand, data services returns composite entities (e.g., an entity of
type publication with four attributes as shown in Figure 1) as query results. To
support the browsing and manipulating of composite entities in spreadsheets,
SpreadATOR [15] has been proposed to make composite entities as first-class
cell values.

SpreadATOR provides spreadsheet-like formula language to support queries
over entities of data services. A SpreadATOR formula, also called a mapping for-
mula, is therefore built from entity references similar to the way traditional spread-
sheet formulas are built from cell references. The syntax of mapping formulas is
based on path expressions. For example, a formula A1=Publication[001] specifies
that cell A1 references an entity of type publication, and A2=Publications spec-
ifies that cell A2 references a collection of publication entities. Cells containing
references to entities will be evaluated by SpreadATOR, which returns a string
representation of the referenced entity (obtained by the default transtyping given

SpreadMash: A Spreadsheet-Based Interactive Browsing and Analysis Tool 347

=A1.pages3

=A1.year

=A1.title

B

2

=Publicaion[001]

A C

4

1

29-533

2007

Data Cube: A Relational

B

2

Data Cube: A Relation.

A C

4

1

SpreadATOR Formulas

Spreadsheet Application

Publication 001

Data Cube: A Relational …

29-53

2007
Publication

title: string

year: string

pages: string

Publication 002

Data Management: Past, …

38-46

2007

Publication 003

A Critique of ANSI SQL …

1-10

2007

Fig. 2. An example of building data presentation with SpreadATOR formulas

by toString()). For example, the mapping formula A1=Publication[001], shown in
cell A1 of Figure 2, returns a string ‘‘Data Cube: A Relational...’’.

By referencing composite entities in a cell, SpreadATOR allows users to build
a presentation of composite entities on a spreadsheet by using cell references.
For example, in Figure 2, a presentation of entity Publication[001] can be built
in cells B2, B3 and B4, which respectively contain references to attributes title,
pages and year of such an entity. When evaluated, the formula in cell B2 results in
a string ‘‘Data Cube: A Relational...’’, which is the value of attribute title of
entity Publication[001]. Similarly, the formulas in cell B3 and B4 return strings
29-53 and 2007, which are values of attributes pages and year respectively.

Although SpreadATOR provides flexibility for users to build presentations of
composite entities, the efficiency of the data presentation is however problem-
atic. The straightforward way of building data presentation implies specifying a
number of formulas for each referenced entity. While this approach is acceptable
for small datasets, it does not scale for larger ones.

SpreadATOR proposes the notion of templates to address the above limita-
tion. Specifically, in SpreadATOR, an entity type is associated with one or several
templates, each of which is a complete worksheet that defines a generic data pre-
sentation pattern for instances of such an entity type. Formulas for templates
are different from typical worksheets as the keyword obj is used instead of entity
references. Consider, for example, a template T1 associated to the entity type
publication. This template consists of the following two formulas: B3=obj.title
and B4=obj.year. It defines that any instances of type publication may have a
presentation in a worksheet, in which cell B3 presents the value of attribute title,
and cell B4 contains the value of attribute year.

To illustrate how the template mechanism works, consider an example of the
worksheet W1 with a formula A1=Publication[001]. From SpreadATOR point of
view, cell A1 references an entity of type publication. SpreadATOR associates
cell A1 with a set of templates defined for type publication. When A1 is selected,
a list of publication’s templates is shown in a combo-box. Assuming that the user
selects a template T1, a new worksheet W2 is shown. The worksheet W2 is an
instantiation of the template T1 by associating the obj with a reference to entity
=Publication[001]. The instantiation of our example template is shown below:

348 W. Kongdenfha et al.

B3=obj.title ⇒ B3=Publication[001].title

B4=obj.year ⇒ B4=Publication[001].year

The implementation of SpreadATOR intends to alter as few as possible ex-
isting spreadsheet applications. Hence, it does not modify spreadsheet formula
language, rather acts as a middleware. Thus mapping formulas are maintained
separately by SpreadATOR. As shown in Figure 2, mapping formulas are in one
spreadsheet (SpreadATOR) and its evaluation in another (spreadsheet applica-
tions). SpreadATOR provides a visual assistant for constructing formulas and
relies on Jscript.Net (.Net implementation of javascript) for formula evaluation.

While the notion of template partially addresses the issue of effective pre-
sentation of entities returned by querying data services, this mechanism is still
limited. Specifically, the instantiation of a template results in a separated new
worksheet. When users want to create a presentation of multiple entities within a
single worksheet, they need to step back to the straightforward way of specifying
presentation for each individual entity. To overcome such a limitation, we there-
fore propose in this paper SpreadMash, a model-driven approach for developing
data presentation and analysis applications.

2.3 An Overview of SpreadMash

SpreadMash proposes a repository of data widgets. Elements of this repository
capture various types of data presentation and importation patterns. End-users
can develop data presentation and analysis applications by instantiating and
composing data widgets. SpreadMash therefore enables the separation of end-
users tasks (composing data widgets) from the tasks of data architects (creating
data abstractions and data widgets).

A data widget is a parameterized specification of how to import data from a
data service and present it in a spreadsheet. To instantiate widgets, users specify
queries over the entities and relationships of a data service, as well as mappings
that specify the presentation of the query results in the spatial layout of spread-
sheets. SpreadMash provides four types of widgets to enable the importation and
presentation of a single entity (content widget), a collection of entities (repeater
widget), collections of entities associated by relationships (hierarchical widget),
an index over entities (index widget).

DBLPSheet AuthorSheet

PublicationSheet

PublicationDetails

ConferenceDetails

AuthorIndex

PubRepeater Pub2Author

PublicationTableAuthorDetails

Fig. 3. An example of SpreadMash specification

SpreadMash: A Spreadsheet-Based Interactive Browsing and Analysis Tool 349

Figure 3 shows an example of an application specified using SpreadMash.
It consists of seven widgets (shown as solid rectangles with different icons).
The content widgets (e.g., PublicationDetails, AuthorDetails, ConferenceDetails), re-
peater widgets (e.g., PubRepeater, PublicationTable) and hierarchical widget (e.g.,
Pub2Author) present the actual content of the entities. On the other hand, an in-
dex widget (e.g., AuthorIndex) presents a list of entities and allows browsing and
accessing to detailed information of a selected entity.

Multiple widgets can be composed by means of links to build composite work-
sheets. For example, the DBLPSheet in Figure 3 is composed of three widgets:
PublicationDetails, ConferenceDetails and AuthorIndex. Links connecting these widgets
are based on the relationships that associate entities from which the widgets im-
port data from. For example, the link between PublicationDetails and AuthorIndex is
based on the AuthorToPublication relationship that connects the entity type Publica-
tion and Author in the underlying data service (see Figure 1). On the other hand,
the link between PublicationDetails and ConferenceDetails is based on the Confer-
enceToPublication relationship. A set of worksheets, whose widgets are connected,
compose an application. The application in Figure 3 consists of three worksheets :
DBLPSheet, AuthorSheet, and PublicationSheet.

SpreadMash specifications are given as input to an automatic code generator,
which generates code necessary for data importation and presentation. The gen-
erated code is in the form of SpreadATOR’s formulas (see Section 2.2). These
formulas are used by SpreadATOR to present data in a spreadsheet.

3 Widgets for Data Importation and Presentation

In this section, we discuss each type of data widgets provided by SpreadMash
and its instantiation, by using the example of EDM in Figure 1.

3.1 Content Widget

Content widgets are used to specify the importation and presentation of a sin-
gle entity. More than one widget can be defined for the same entity, to offer
alternative points of view. The instantiation of a content widget requires para-
metric query and a mapping definition to generate the corresponding spreadsheet
presentation view.

The parametric query allows the specification of a query that retrieves a single
entity from a data service. A parametric query consists of two elements: source
and selector. The source identifies the data service as well as the entity type from
which data is retrieved. The selector is a query used to select a single entity. To of-
fer a spreadsheet-like programming experience, SpreadMash leverages SpreadA-
TOR [15] formula expressions to formulate queries over entities. An example of a
content widget is shown in Figure 4. The user-defined values of the source and the
selector properties are used to create a query =Publication[title=‘‘Data Cube:

A Relational...’’] to retrieve data from the DBLP data service. This query re-
turns a reference to an entity Publication[001], whose value of the title attribute
equals “Data Cube: A Relational...”.

350 W. Kongdenfha et al.

obj.yearYear3

obj.pages

obj.title

B

Pages2

Title

A

1

Mapping Template

Publication

title: string

year: string

pages: string

29-53pages3

PublicationDetails1

year

Title

A

2007

Data Cube: A Relational …

B

4

2

Publication[001].pagespages3

PublicationDetails1

year

Title

A

Publication[001].year

Publication[001].title

B

4

2

Presentation View Spreadsheet Application

Source: DBLP.Publication

Selector: title=`Data Cube: A Relational….’

(a)

(b)

PublicationDetails

Fig. 4. Content Widgets

The role of mapping definition is to specify spatial locations in a spreadsheet
where the query result will be presented. In traditional spreadsheets, spatial lo-
cations can be specified through cell or range expressions. SpreadMash leverages
the notion of template, which defines a generic presentation of instances of a
particular type, for mapping specification. Figure 4(b) shows an example of a
content widget that uses the mapping template defined in Figure 4(a) to present
entity Publication[001] obtained as a query result from a data service. The
mapping template specifies that any instance of type publication will have a
presentation in a worksheet, in which cells A1, A2, A3 contain constants Title,

Pages, Year, and cells B1, B2, B3 contain values of attributes title, pages, year of
such an entity type.

The query result and mapping template are used together to generate a pre-
sentation view of Publication[001] as shown in Figure 4(b). The content widget
also inserts a row at the top of the presentation view, and the widget’s name is
rendered in the leftmost cell of this row.

3.2 Repeater Widget

A repeater widget is used to import and present a collection of entities by repeat-
ing a mapping template over such a collection. Therefore, the selector property

Source: DBLP.Publication

Selector:

AuthorToPublication.name=`Jim Gray’,

year =`2007’

9

5

Publication[001].titleTitle2

Publication[001].pagespages3

Publication[001].yearyear4

Publication[002].titleTitle6

Publication[002].pagespages7

Publication[002].yearyear8

Publication[003].pagespages11

PublicationRepeater1

year

Title

A

Publication[003].year

Publication[003].title

B

12

10

9

5

Data Cube: A Relational…Title2

29-53pages3

2007year4

Data Management: Past,…Title6

38-46pages7

2007year8

1-10pages11

PublicationRepeater1

year

Title

A

2007

A Critique of ANSI SQL…

B

12

10

Presentation View Spreadsheet Application

PubRepeater

Fig. 5. Repeater Widgets

SpreadMash: A Spreadsheet-Based Interactive Browsing and Analysis Tool 351

of a repeater widget is a query used to select a collection of entities. An example
of user-provided source and selector properties for a repeater widget is shown in
Figure 5. These two parameters are used by the repeater widget to create a query
Publication[AuthorToPublication.name = ‘‘Jim Gray’’, year=‘‘2007’’] to re-
trieve its content from the DBLP data service. This query returns three entities
of type publication whose author is “Jim Gray”, and publication year equals to
‘2007’. These entities correspond to Publication[001], Publication[002], and
Publication[003].

A repeater widget presents a collection of entities all together in a single
worksheet by reapplying the definition of a mapping template. It requires two
levels of mappings: (i) entity-level mapping, and (ii) attribute-level mapping.
The entity-level mapping specifies a range in which the details of an entity will
be presented. The attribute-level mapping specifies a cell in which an attribute
value will be presented. The entity-level mapping can be defined by a range
expression such as A2:A10 = Publications to indicate that a presentation of
the publication list is in a range of one column (A), and spanning from row
2 to row 10. This mapping definition is, however, not desirable since the user
needs to know the number of cells to specify the presentation view. One possible
solution for this issue is to use a built-in spreadsheet functions that allows the
indication of a dynamic range of cells without a need to know the exact length.
For example, a user can use Excel’s formula like OFFSET(A2, 0, 0, COUNT(A:A),

1) = Publications. This formula returns a range starting at cell A2 and spanning
1 column. This range is dynamic since the number of rows is computed using
function COUNT(A:A) which returns the number of nonempty cells in column A.

While the above built-in functions are useful, they only allow to specify a
range for the entire collection. A repeater widget however requires a mapping
that specifies also the location in which an individual entity will be presented.
In this case, the user can specify directly a set of ranges, each for presenting one
entity in the collection. In traditional spreadsheets, this can be specified by a
list of noncontiguous ranges e.g., A2:A5, A7:A10, A12:A15. While this may be
acceptable for small datasets, it does not scale well for larger ones.

We therefore leverage extensions proposed by SpreadATOR to allow users to
specify a mapping for a repeater widget. SpreadATOR proposes four functions
for indicating the boundary of a range presenting an entity: top(l), left(l),

right(l), and bottom(l). Assuming that an entity Publication[001] has a pre-
sentation on a range B2:B4, the coordinates of this range can be obtained as
follows: top(Publication[001]) = 2, left(Publication[001]) = 2, right(Publication

[001])= 2, and bottom(Publication[001]) = 4. To illustrate the advantages of
using these extensions, consider the example of mappings below:

A2:A<bottom(Publication[001])> = Publication[001]

A<bottom(Publication[001])+2>:A<bottom(Publication[002])> = Publication[002]

A<bottom(Publication[002])+2>:A<bottom(Publication[003])> = Publication[003]

The first mapping states that the presentation of entity Publication[001]
is a range of one column (A) and spanning from row 2 to the lower-most row
of the range. The user therefore does not need to know the exact boundaries

352 W. Kongdenfha et al.

of the range. The second mapping states that a range presenting entity
Publication[002] has one column (A). This range spans from two rows be-
low the lower-most row of the range presenting entity Publication[001] until
the lower-most row of the range presenting entity Publication[002]. The user
therefore does not need to know exactly the coordinates in which the presenta-
tion of each entity starts. Rather the user can specify the location of each entity
by referencing the others.

In the above example, the user still needs to specify a mapping for each indi-
vidual entity. We therefore leverage another extension of SpreadATOR’s formula
language, i.e., the keyword next, for specifying the coordinates of the first cell of
subsequent ranges. For example, users can specify a mapping for a collection of
entities as follow: A2:A<next=bottom(Publication)+2> = Publication. This map-
ping specifies that each entity is presented by a range of one column (A), and
spanning from row 2 to the lower-most row of the range associated to current
entity of publication. The locations of ranges presenting subsequent entities are
two rows after the last row (bottom) of the range presenting the current entity.
In this case, the user needs to specify only one mapping for a collection of entities
and has flexibility to organize the presentation.

Once an entity-level mapping has been defined, it is used by a repeater widget
to iterate over a collection of entities. For each iteration, a repeater widget also
requires a mapping definition of how attributes of such an entity should be
presented in the range. Figure 5 shows an example of a repeater widget that
uses the mapping template defined in Figure 4(b) to present a collection of
publication entities. The mapping template defines a generic presentation for
any instances of type publication. The repeater widget therefore instantiates
such a mapping template to present the entity of the current iteration.

Repeater widgets have a specialization, namely table widgets, that present a
collection of entities in a table format. A table widget assumes a default template
in which each row presents an entity and each column contains an attribute value.
The only parameter required for the mapping definition of table widgets is a
single cell that will be the upper-leftmost of the table presenting the referenced
entities. The number of cells used by the table depends on the number of entities
returned from the query and the number of attributes comprising that entity.

Figure 6 shows an example of a table widget, with a mapping specifying that
a table presenting the referenced publication entities starts at cell A1. A default
template used by the table widget defines that attributes title, pages and year
of publication entities are presented in columns A, B and C respectively. Each
row of the generated table presents an entity of type publication, whose value

Source: DBLP.Publication

Selector: AuthotToPublication.name=`Jim Gray’, year =`2007’

Mapping Template Spreadsheet Application

obj.pages

B

obj.title

A

obj.year

C

1 PublicationTable1

20071-10A Critique of ANSI SQL …4

38-46

29-53

B

2007Data Management: Past, …3

Data Cube: A Relational…

A

2007

C

2

PublicationTable

Fig. 6. Table Widgets

SpreadMash: A Spreadsheet-Based Interactive Browsing and Analysis Tool 353

of attribute author equals ‘‘Jim Gray’’, and of attribute year equals ‘2007’. The
default template of table widgets can be modified by setting the orientation
property to transpose. The transpose keyword indicates that a table is presented
with attributes as row and entities as columns.

3.3 Hierarchical Widget

A hierarchical widget specifies the importation of a collection of related entities.
For each entity, the widget navigates through a relationship to import another
collection of associated entities. Consider the example in Figure 7, this hierar-
chical widget consists of a query: =Author[address=‘‘microsoft’’]. This query
returns two entities of type author, whose values of the attribute address equals
‘‘microsoft’’, i.e., Author[111] and Author[112].

For each of these author entities, the hierarchical widget uses another query to
import a collection of publications associated to such an author. For instance, the
hierarchical widget in Figure 7 uses a query =Author[111].AuthorToPublication

to retrieve a collection of publication entities that are associated to Author[111]

through a relationship AuthorToPublication. This query returns three publica-
tion entities: Publication[001], Publication[002], Publication[220].

Publication[220]5

Author[111].name2

Publication[001]3

Publication[002]4

Author[112].name6

Publication[220]7

Publication[221]8

Author2PubHierarchy1

A B

Presentation View Spreadsheet Application

Source: DBLP.Author

Selector: address =``microsoft''

NEST

Selector: AuthorToPublication

Science In An Exponential..5

Jim Gray2

Data Cube: A Relational..3

Data Management: Past, ..4

Alex Szalay6

Science In An Exponential..7

The World Wide..8

Author2PubHierarchy1

A BPub2Author

Fig. 7. Hierarchical Widgets

In Section 3.2, we have seen an example of using SpreadATOR functions for
specifying a mapping for a collection of entities of the same type. However, the
entities of type author in our example in Figure 7 cannot be presented one after
the other since there are presentations of entities of different types in between.
In particular, there are publication entities in between presentations of author
entities. A hierarchical widget therefore requires a specific mapping for each
individual collection of entities. In our example in Figure 7, the mapping for en-
tities of type author can be defined as: A1:A<next=bottom(Publications)+1> =

Name. This mapping specifies that the value of the first author name is pre-
sented in cell A1, and then the subsequent author names are presented in
one row below the end of its related list of publication entities. On the other
hand, the mapping for entities of type publication can be defined as follows:
B<Name+1>:B<bottom(Publications)> = Publications. This mapping specifies
that entities of type publication are presented in column B and ranging from
the next row after its corresponding author name until the end of the collection.

354 W. Kongdenfha et al.

3.4 Index Widget

An index widget specifies the importation of a collection of entities that are
presented as a list without detailed information. By selecting a cell referencing
an entity of this list, the user can navigate to another worksheet that contains
detailed information of that given entity. We adopt the template mechanism
proposed by SpreadATOR to enable such a navigation.

The query of an index widget selects a collection of entities. For example,
the query in Figure 8 returns three entities of type publication, whose author is
‘‘Jim Gray’’, and are published in ’’2007’’. The mapping of an index widget
is specified by a range of cells used to present a list of entities. For example,
a mapping A2:A<bottom(Publications)> = Publications specifies that a list of
publications will be generated by this index widget in column A spanning from
row 2 to the lower-most row of a range presenting the publication list.

Source: DBLP.Publication

Selector:

AuthotToPublication.name=`Jim Gray’, year=`2007’

PublicationIndex1

Publication[001].title2

Publication[002].title3

Publication[003].title

A

4

Presentation View
Spreadsheet Application

PublicationIndex1

Data Cube: A Relational..2

Data Management: Past3

A Critique of ANSI SQL …

A

4 2007Year3

29-53

Data Cube: A Rela…

B

Pages2

Title

A

1

Index Worksheet

Detailed Worksheet
AuthorIndex

Fig. 8. Index Widgets

An index widget allows users to see detailed presentation of an entity in the list
by associating each entity with a template defined for its entity type (see Section
2.2). For instance, the index widget in Figure 8 associates to each entity in the
list a publication’s template (as defined in Figure 4(a)). When a user selects
cell A2 on the index worksheet, she can navigate to the detailed worksheet that
presents details of entity Publication[001].

4 Widget Composition

In the previous section, we focused on how to generate a worksheet from a single
widget. In this section, we discuss how multiple widgets can be composed to
generate a composite worksheet.

When composing widgets to generate a composite worksheet, there are two
aspects that need to be considered: data dependency, and spatial dependency.
The data dependency specifies how contents of mashup widgets depend on each
others. On the other hand, the spatial dependency specifies the relative locations
of contents generated from different widgets on the same worksheet.

4.1 Data Dependency

In traditional spreadsheets, the data dependency between cells is specified
through a formula built from cell references. For instance, a data dependency

SpreadMash: A Spreadsheet-Based Interactive Browsing and Analysis Tool 355

between cells A2 and A1 can be built by a formula in cell A2 referencing cell
A1 (see Section 2.2). Then the content of cell A2 will be evaluated by taking
into account the content of cell A1. SpreadMash follows this cell referencing
mechanism. To build data dependencies, we propose the notion of links. When
two widgets are connected by a link, some contextual information is conveyed
from the source widget to the destination widget. This contextual information is
used to determine the entity or set of entities to be presented by the destination
widget.

Consider as an example the DBLPSheet shown in Figure 9. This worksheet is
composed of two widgets: PublicationDetails and AuthorIndex. The link (I) connect-
ing the two widgets conveys, as the contextual information, the identifier of an
entity referenced by the PublicationDetails widget (i.e., Publication[001]). The Au-
thorIndex widget then uses this contextual information to generate its query. For
instance, the index widget takes the contextual information (Publication[001])

together with a user-defined selector property (AuthorToPublication), and gener-
ates a query Publication[001].AuthorToPublication. This query results in three
entities of type author that are related to Publication[001].

Figure 9 also shows an example of a worksheet generated from the DBLPSheet.
This worksheet contains the contents of both the PublicationDetails and AuthorIndex
widgets. The specification of mappings that specify how the contents of these
two widgets can be presented in the spatial layout of spreadsheets is discussed
in Section 4.2.

DBLPSheet AuthorSheet

(I) (II)

PublicationDetails AuthorIndex AuthorDetails PublicationTable

Fig. 9. Widget Composition

A link can also connect two widgets on different worksheets. For example,
consider the link (II) connecting AuthorIndex on DBLPSheet and AuthorDetails on
AuthorSheet. This link specifies that the content of the AuthorDetails widget de-
pends on the content of the selected cell of the index widget. To illustrate the
semantics of this link, suppose that the AuthorIndex widget generates a presen-
tation of two entities of type author: Author[111], Author[112]. When a user
selects a cell referencing Author[111], the link (II) passes some contextual infor-
mation (e.g., identifier of Author[111]) to the AuthorDetails widget. The AuthorDe-
tails widget uses this contextual information to generate a query that retrives
entity =Author[111]. The AuthorDetails widget then build a presentation of entity

356 W. Kongdenfha et al.

Author[111] according to a user-defined mapping definition of the AuthorDetails
widget. Note that composing an index widget with a content widget is different
from the template mechanism described in Section 2.2. In particular, when a cell
in the index is selected, the user can navigate to a new worksheet which does
not necessarly contain only detailed information of an entity. The presentation
of the new worksheet depends on the specification of the widgets composing
that worksheet. For example, in Figure 9, when cell A1 is selected, the user can
navigate to a separated worksheet which consists of the contents of two widgets:
AuthorDetails and PublicationTable.

4.2 Spatial Dependency

In Section 3.4, we have seen how a mapping of an index widget can be defined
(A2:A<bottom(Publications)> = Publications). This mapping specifies that a
range presenting a collection of entities referenced by the index widget corre-
sponds to a fix number of columns (1 column) spanning from row 2 to the
lower-most row of the range. However, when composing multiple widgets in a
single worksheet, the user needs to define the locations in which the contents
of these widgets are placed relatively to each other. We reuse the functions dis-
cussed in Section 3.2 for identifying the spatial locations of composing widgets
by referencing each other. For example, the mapping of the AuthorIndex widget
in Figure 9 can be defined as follows:
<right(PublicationDetails)+2>2:

<right(PublicationDetails)+2><bottom(Publications)> = Publications.
The above mapping specifies that the content of AuthorIndex widget is presented
in a range of one column. This range starts one column after the right-most col-
umn of the PublicationDetails widget, and spanning from row 2 to the lower-most
row of the range.

5 Related Work

We have already reviewed reporting tools and OLAP systems in the introduction.
Related work in the spreadsheet research community include prototype system
like Gencel [8,12]. Gencel proposes a high-level language that allows the definition
of spreadsheet templates. These templates are then translated into spreadsheet
applications as well as a set of update operations, which ensure the correctness of
spreadsheet evolutions. Similar to this proposal, our work introduces high-level
language for specifying the data presentation in spreadsheets based on widgets.
Unlike this approach, our work provides a three-layer framework that bridges the
data services and spreadsheets. Moreover, in Gencel, a generated spreadsheet is
a single worksheet consisting of a single table. Rather we generate a spreadsheet
with a collection of worksheets, and each worksheet consisting of one or more
instantiated widgets.

Efforts in the area of web applications have promoted the use of the web as
the fundamental data interface. Tools such as ASP.Net [1], PHP [5] and JSF [4]

SpreadMash: A Spreadsheet-Based Interactive Browsing and Analysis Tool 357

simplify the generation and deployment of data-intensive web applications by
means of page generators. They typically extract content from data sources and
present it in user-programmed page templates.

Although the above tools improve developers productivity, they require users
to have web development skills. WebML [11] proposed to use data abstraction
and conceptual modeling methods for web application development. However,
WebML targets the delivery of information on a website, and thus provides
very little support for interactive data manipulation. WebML also falls short in
terms of data presentation as the provided units present data using a predefined
layout, and do not support user-defined templates. Our approach overcomes this
inflexibility by allowing users to define mapping definition to specify how data
should be presented.

6 Conclusion and Future Work

In this paper, we have presented SpreadMash, a high-level language for devel-
oping interactive data presentation and analysis applications. SpreadMash is
based on spreadsheets and provides an interactive presentation of data services.
It also enables end-users to focus on their analysis as they are decoupled from
the knowledge of the underlying data sources. They can develop interactive data
presentation and analysis applications by reusing and composing widgets. Then a
spreadsheet is generated as a collection of instantiated widgets. The SpreadMash
has been described through a series of examples, each motivated by challenges
of typical user tasks.

There are several directions for future work. First of all, we plan to support
the transformation of imported data. We are now investigating the operators for
both transforming data values and restructuring. Second, in this paper, we only
provided a basic sets of widgets for importing and presenting data obtained from
a single data service. Often users would like to integrate data from multiple data
services, in which relationships are not pre-built. We plan to expand the widget
repository to capture the data integration aspect. Finally, we plan to carry out
user studies in using SpreadMash. The feedback from such a study would help
us in refining the framework.

References

1. ASP.Net. http://asp.net/
2. Crystal Reports,

http://www.businessobjects.com/products/reporting/crystalreports
3. Exploiting The Power of Oracle Using Microsoft Excel,

www.oracle.com/technology/products/bi/pdf/BI Spreadsheet Addin WP.pdf
4. Java Server Faces, http://java.sun.com/javaee/javaserverfaces/
5. PHP, http://www.php.net/
6. SAP BI Excel Add-in,

www.sap.com/solutions/netweaver/businessintelligence/pdf/BWP BI
Overview.pdf

http://asp.net/
http://www.businessobjects.com/products/reporting/crystalreports
www.oracle.com/technology/products/bi/pdf/BI_Spreadsheet_Addin_WP.pdf
http://java.sun.com/javaee/javaserverfaces/
http://www.php.net/

358 W. Kongdenfha et al.

7. XL Report Builder, http://www.afalinasoft.com/xl-report-builder
8. Abraham, R., Cooperstein, I., Kollmansberger, S., Erwig, M.: Automatic genera-

tion and maintenance of correct spreadsheets. In: Proc. ICSE 2005 (2005)
9. Adya, A., Blakeley, J., Melnik, S., Muralidhar, S.: Anatomy of the ADO.Net entity

framework. In: SIGMOD 2007, pp. 877–888. ACM Press, China (2007)
10. Carey, M.: Data delivery in a service-oriented world: the bea aqualogic data services

platform. In: SIGMOD 2006, Chicago, IL, USA, pp. 695–705. ACM Press, New York
(2006)

11. Ceri, S., Fraternali, P., Bongio, A.: Web modeling language (webml): a modeling
language for designing web sites. In: Proc. WWW 2000, pp. 137–157 (2000)

12. Engels, G., Erwig, M.: Classsheets: automatic generation of spreadsheet applica-
tions from object-oriented specifications. In: Proc. ASE 2005 (2005)

13. Jones, S., Blackwell, A., Burnett, M.: A user-centred approach to functions in excel.
SIGPLAN J 38(9), 165–176 (2003)

14. Pemberton, J., Robson, A.: Spreadsheets in business. IMDS J 100(8), 379–388
(2000)

15. Saint-Paul, R., Benatallah, B., Vayssiére, J.: Data services in your spreadsheet?
In: Proc. EDBT 2008 (2008)

16. Scaffidi, C., Shaw, M., Myers, B.: Estimating the numbers of end users program-
mers. In: Proc. VLHCC 2005, pp. 207–214 (2005)

http://www.afalinasoft.com/xl-report-builder

Managing the Evolution of Service

Specifications�

Vasilios Andrikopoulos1, Salima Benbernou2, and Mike P. Papazoglou1

1 INFOLAB, Dept. of Information Systems and Management, Tilburg University,
The Netherlands

2 LIRIS, Université de Lyon 1, France
{v.andrikopoulos,mikep}@uvt.nl, sbenbern@liris.univ-lyon1.fr

Abstract. The ability to cope with multiple competing stakeholders,
fluid requirements, emergent behavior, and susceptibility to external
pressures that can cause changes across an entire organization, coupled
with the ability to support service diversification, is a key to an enter-
prise’s competitiveness. Web services equip enterprises with the potential
to react to change by addressing two interrelated sets of requirements:
the ability to accommodate service changes that demand rapid response
and to support service variation according to customers’ needs and re-
quirements. In this paper we introduce the concept of service evolution
management, which provides an understanding of change impact, service
changes control, tracking and auditing of service versions, and status ac-
counting. To achieve this, we develop a formal model and theory for ser-
vice evolution that allows multiple active service versions to be created
consistently and co-exist, while executing schema changes effectively.

Keywords: Web services, service versioning, service differentiation, ser-
vice contracts.

1 Introduction

XML-(or Web)-based services are key technologies providing a foundation for a
net-centric services environment, which reacts to change by addressing two in-
terrelated sets of requirements: the ability to accommodate service changes that
demand rapid response, and the ability to support service variation according
to the needs and requirements of customers. These two inter-related sets of re-
quirements place emphasis on the ability of services to co-exist in multiple active
versions and to execute changes effectively and efficiently. They therefore epito-
mize the common need for constant change that challenges service applications
development. Service changes may, for instance, originate from the introduction
of new functionality, the modification of existing functionality to improve per-
formance, or the inclusion of new regulatory constraints that require that the
� The research leading to these results has received funding from the European Com-

munity’s Seventh Framework Programme under the Network of Excellence S-Cube
- Grant Agreement n◦ 215483.

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 359–374, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

360 V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou

behavior services is altered. Such changes should not be disruptive by requiring
radical modifications in the very fabric of services or the way that business is
conducted.

Service evolution is a precursor to successful service adaptation. Service adap-
tation refers to the a posteriori ability of a service to modify itself in order to
interact with other services by detecting potential functional or non-functional
mismatches with its peer services by semi-automated means ([1], [2]). Current
service adaptation approaches assume that services can evolve independently
and do not constrain their mutual inter-dependencies. In contrast to this, ser-
vice evolution attempts to a priori validate and constrain service changes and
ensuing service versions, so that they are consistent and well-behaved.

Routine change increases the propensity for error. To control service develop-
ment one needs to know why a change was made, what are its implications and
whether the change is complete. In a Web services environment, changes only af-
fect the Web service provider’s system. Typically Web service consumers do not
immediately perceive the upgraded process, particularly the detailed changes of
Web services. Hence, Web service based applications may fail on the Web service
client side due to changes carried out during the provider service upgrade. In or-
der to manage changes as a whole, the Web service consumers have to be taken
into consideration as well, otherwise changes that are introduced at the service
producer side can create severe disruption. Eliminating spurious results and in-
consistencies that may occur due to uncontrolled changes is therefore a necessary
condition for the ability of services to evolve gracefully, ensure service stability,
and handle variability in their behavior. Thus, any service evolution management
system has to be able to handle consistently and unambiguously the propagation,
validation, and conformance of any kind of modifications applicable to a service.

Service evolution management requires an understanding of all the points
of change impact, controlling service changes, tracking and auditing all service
versions, and providing status accounting. In summary, service evolution man-
agement exhibits the following characteristics:

– identification of all kinds of permissible changes to services and classifi-
cation of these changes,

– propagation analysis mechanisms that record the status of services,
analyze changes, and gather information about their effects on clients of a
service version,

– validation and conformance mechanisms that maintain the consistency
of a service by ensuring that the service is a well-behaved collection of ser-
vice changes and versions, and ensure conformance with respect to service
updates and version contracts,

– version control mechanisms that control the release of a service and the
changes applied to it throughout its lifecycle, and

– instance migration mechanisms for associating instances of running ser-
vices with new service versions.

In this paper we shall consider all above items except for the topic of instance
migration. This issue is examined by the workflow community (see section 2).

Managing the Evolution of Service Specifications 361

The paper is organized as follows: section 2 discusses related work from a
number of different fields. In section 3 we present a service specification model
that acts as a reference point in the discussion about service evolution. Service
evolution management characteristics are covered in section 4. Finally, we wrap
up the paper with some conclusions and future work (section 5).

2 Related Work

As services grow more complex to compensate for increasing business needs,
valuable lessons and techniques can be drawn from Software Configuration Man-
agement (SCM), the discipline of software engineering that deals with controlling
the evolution of complex software systems [3]. More specifically, the usage of ver-
sions as a representation of incrementally changed software objects (in that case,
services) can be especially useful. The graph models that support the various
versioning schemes [4] provide an intuitive way to manage the history of different
versions.

Current Web services technologies do not directly address the versioning is-
sue, usually requiring developers to solve the problem through the application
of patterns and best practices [5]. Nevertheless, elements of these techniques
can be used for service evolution management, see, for example, [6], [7], [8], and
[9]. The common denominator of all these approaches is that they discuss how
to put a versioning mechanism in place using an existing set of technologies,
without concerning themselves with what constitutes the version of a service.
An application of versioning in XML Schema technology is investigated in [10],
where a number of use cases are presented that describe the desirable behaviors
for XML Schema versioning. This approach provides guidelines for the behavior
of schema processors in face of different versions, but it deliberately avoids dis-
cussing implementation (which is the critical component of that approach) and
does not guarantee change consistency.

Lessons can also be drawn from the work on heterogeneous databases in general,
and in specific from schema mappings between disparate data sources. Changes
to the schemas of the data sources have to be reflected to the mappings between
them. In that case the mappings have to be adapted to compensate for the evo-
lution of the original source material [11], [12]. The evolution of requirements in
information systems, as examined in the requirements engineering domain, is also
a source of useful ideas and techniques. In [13] for example, a similar to ours ap-
proach is presented that combines abstraction from specific models with a generic
typology for gaps (and similarities) in order to express evolution requirements.

Finally, we can also draw on the work of evolution in the field of workflows for
methodologies and ideas. The problem of workflowevolution has two facets: static,
referring to the issue of modifying the workflow description, and dynamic, refer-
ring to the problem of managing running instances of a workflowwhose description
has been modified (instance migration). The work in this field, at least in its con-
ception, draws heavily from the literature on o-o databases evolution for its static
aspects e.g. [14], but focuses mainly on the dynamic aspect [15], [16], [17].

362 V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou

3 Service Specification Reference Model

To be able to identify and study the changes happening to a service during its life-
time we can either choose a specific set of technologies for service description,
like for example WSDL and BPEL, or use a technology-agnostic model that
could easily be translated to the current standards. To abstract away from the
idiosyncracies and syntactic nuances of these standards we chose the second
approach. In particular, we introduce a Service Specification Reference Model
that exhibits the main characteristics of different service description models and
technologies.

More specifically, we define the following three levels for services specification:

Abstract Service Definition Model (ASD): an abstract model containing
generic concepts and their relationships that are common to all service
schemas.

Service Schema Definition (SSD): the schema of a specific service, or in
other words, the service specification. This consists of the elements of the
service and their relationships that are generated by corresponding concepts
and relationships found in the ASD.

Instance of Service Schema Definition (ISD): that is produced from the
instantiation of the SSD during the execution of the service.

Example 1 (Running Example). Consider the case of an (aggregate) service im-
plementing a composite Order-to-Cash (OtC) process. OtC takes care of the
revenue collection after a successful sale and shipping of a product. It involves a
number of sub-processes/steps like purchase order processing, advanced shipping
and delivery notification, invoicing, etc. These sub-processes are themselves ex-
posed as services, offering their functionality to a number of services apart from
the OtC. In that case, the specifications of all of the above services, expressed
for example in WSDL, BPEL, etc., are considered the SSDs of each service. Irre-
spective of which set of standards is used for their description, all these services
share a common reference framework that allows them to interoperate. All of
them for example, allow clients to invoke them - or they are able to invoke back
clients. These fundamental assumptions about how the services work constitute
the ASD. Furthermore, when these services are implemented, deployed and in-
voked by their clients, then a number of instances of them are created based on
their specification (their ISDs).

The following sections discuss only the ASD and SSD, starting with the gen-
eral relationships that connect the building blocks of each level.

3.1 Universal Relationships

In order to show relationships between concepts in the ASD and therefore also be-
tween corresponding elements in the SSD we need to define the formal semantics
of conventional relationships such as composition, aggregation, and association
found in object-oriented languages and in the AI semantic nets. These will be
described using the UML class diagram notation [18]:

Managing the Evolution of Service Specifications 363

Composition (fig. 1(a)) ∀y, ∃!x :
c−→xy: y can belong in exactly one composition

relationship with x. Additionally, deleting x deletes also y (cascading delete).

Aggregation (fig. 1(b)) ∀y, ∃x :
a−→xy: y may participate in more than one aggre-

gation relationships with x. Deletion of x deletes also y, but only if there are no
other relationships of this type in which y participates.

Association (fig. 1(c)) ∃y, ∃x :
s−→xy: No further restrictions on the participation

and the existence of y. We use the notation
r−→xy, r ∈ {c, a, s} to show that ele-

ments x and y have a relationship of type r.

X Y

(a) Composition

X Y

(b) Aggregation

X Y

(c) Association

Fig. 1. Types of Relationships

Furthermore, relationships in UML have multiplicities, denoting the possible
cardinalities of the instances of each class, that is, how many instances of it may
exist at the same time, in each relationship. Putting a 1..* on the y side of the

arrow for the relationship
s−→xy for example means that instance x must always

have one or more associations with instances of y. The notation we introduced
above to show the semantics of the relationships has therefore to be expanded
to accommodate cardinalities with: |cardinalityx||cardinalityy|−1, cardinality
∈ {0| ≥ 0| ≤ 1| ≥ 1} (≥ 0 for * in UML, ≤ 1 for 0..1, and ≥ 1 for 1..*

respectively). For example,
a−→xy |1|| ≥ 1|−1 means there may be more than one in-

stances of y that participate in this aggregation with x. If not specified explicitly,
cardinality values are considered to be equal to 1.

3.2 Abstract Service Definition Model

The Abstract Service Definition Model (ASD) is a collection of concepts com-
mon across service schemas that have a set of parameters and relationships.
Parameters can either be property-domains or attributes. An attribute, e.g. a
string denoting the currency that will be used in the scope of a specific message,
will be assigned a value during the instantiation of the service schema, i.e. the
creation of a running instance of the service from its schema. Property-domain
pdi has a set of values called properties (denoted by pi) that, as we will see in
section 3.3, may restrict some of the relationships of the element generated by
the concept. A specific value pi will be selected from the domain when the SSD
is generated by the ASD.

364 V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou

The ASD spans three layers: Structural, Behavioral, and Regulatory, which
lean on each other in ascending order to fulfill their functionality, and two sec-
tions: Public and Private (denoted by a visibility attribute of the concept defi-
nition). Figure 2 illustrates the ASD using UML class diagram notation.

ASD Notation. The concepts depicted in the figure and their relationships
are partly based on the models discussed in [19] and [20], which describe meta-
models for services. Attributes are not contained in the figure for reasons of
brevity.

Based on the above, the concepts in Figure 2 can be described using the fol-
lowing notation: Concept(property − domain∗, attribute∗, relation∗, visibility).

Example 2. The Message concept as shown in this figure, has two property-
domains: messageRole, and type (that is inherited from concept Role1), and
an one-to-many aggregation relationship with the Information Type concept.

Consequently, it can be written in this notation as: Message(messageRole,

type, attributes∗,
a−−−−−−−−−−−−−−−−−−−−−→

Message InformationType |1|| ≥ 1|−1, public).

Definition 1. ASD Layers The ASD concepts can be perceived horizontally as
in the three distinct layers, viz. structural, behavioral and regulatory (see Figure
2). Each layer Li, i = 1, 2, 3 is defined as Li = {∃!Px ∈ ASD/∀x ∈ Px →
x ∈ Li}, where Px is a partitioning of all concepts into exactly one of the three
layers. Now we can define the notion of horizontal and vertical relationships
based on this partitioning:

Horizontal: [[
rh

−→xy]]hk : x, y ∈ Lk, i.e., all concepts belong to the same layer.

Vertical: [[
rv

−→xy]]vk : x ∈ Lk, y ∈ Lm, m �= k, i.e. concepts are in different layers.

For example, the Policy Profile concept has a horizontal relationship with
Policy Alternative and Service Policy since they belong to the same layer
(the regulatory), and a vertical relationship with the Operation Sequence and
Operation concepts in the behavioral and structural layers respectively (see
Figure 2).

Definition 2. The ASD. The ASD = {(cj
i , Li), i ≤ 3, j ≥ 1 and ∀cn

l |
r−−→

cj
i c

n
l ,

(i = l ∧ r = rh) ∨ (i �= l ∧ r = rv)} where cj
i is a concept cj in the layer Li, i.e.

ASD is the set of all concepts and the layers they belong to.

For this paper we have mainly concentrated on the structural and behavioral
layers of the ASD.

ASD concepts. In the following we briefly present the layers and the concepts
of the ASD:

1 We assume that the inheritance relationship maintains its UML semantics, i.e., all
attributes and parameters (but not relationships) are copied to the inherited concept.

Managing the Evolution of Service Specifications 365

In
te

rf
ac

e
S

pe
ci

fic
at

io
n

O
pe

ra
tio

n

In
fo

rm
at

io
n

Ty
pe

V
er

si
on

ed
 S

pe
ci

fic
at

io
n

S
er

vi
ce

 (n
ot

io
na

l)

M
es

sa
ge

P
ub

lic

P
ro

to
co

l S
pe

ci
fic

at
io

n

O
pe

ra
tio

n
S

eq
ue

nc
e

O
pe

ra
tio

n
C

on
di

tio
ns

C
on

st
ra

in
t

P
ol

ic
y

S
pe

ci
fic

at
io

n

P
ol

ic
y

A
lte

rn
at

iv
e

P
ol

ic
y

A
ss

er
tio

n

P
ol

ic
y

P
ro

fil
e

P
ri

va
te

Re
gu
lat
ory

Be
ha
vio
ral

St
ruc
tur
al

S
er

vi
ce

 P
ol

ic
y

P
ro

ce
ss

E
ve

nt

S
ta

te
S

ta
te

 T
ra

ns
iti

on

A
ct

iv
ity

S
er

vi
ce

 S
pe

ci
fic

at
io

n

E
nd

po
in

t

C
om

m
un

ic
at

io
n

P
ro

to
co

l

C
on

st
ra

in
t S

et

B
us

in
es

s
R

ul
es

et
B

us
in

es
s

R
ul

e

R
ol

e

F
ig

.2
.
L
ay

er
s

o
f
th

e
A

S
D

366 V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou

Structural layer is responsible for the structural description of the concepts that
constitute a service. In that sense it contains: an Interface Specification,
that acts as the access point for the structural signature of the service, ag-
gregating a number of Operations, i.e. specific functions that the service is
performing, defined in an abstract format, and Messages that are exchanged
as part of the operations. A Message is defining the informational content con-
sumed and/or produced by the service in the form of hierarchically organized
Information Types. Furthermore, Endpoints, define specific URIs that the ser-
vice can be reached from. Each endpoint is bound to a number of Communication
Protocols that can be used to access it.

Behavioral layer manages the control and execution aspects of the service busi-
ness logic. It contains for this purpose: a Protocol Specification that ag-
gregates the necessary constructs for specifying business protocol information,
i.e. Operation Sequences (specific sequences that have to be performed in or-
der to achieve a part of the business logic). They aggregate sets of Operation
Conditions that either have to be fulfilled in order for the particular se-
quence to be executed, or are produced by it during its execution, in terms of
pre- and post-executional Constraints (e.g., temporal, spatial, financial, etc.).
Constraints are organized around Constraint Sets that may contain over-
lapping constraints. Constraint Sets and Constraints are for this layer what
Messages and Information Types are for the Structural: a method to express
the signature of services - but this time on protocol level. In order to model the
workflow aspect of the service description, the concept of States of the Process
for which the service is the implementation is used. State Transitions govern
the switch from one state to the other. The switch can either occur as the out-
come of the successful execution of an Activity and/or triggered by an Event.

Regulatory layer contains the necessary elements for describing and managing
both the business decision rules and policies that govern the business logic of
the process, and key performance indicators, e.g., QoS factors, and requirements
set by the service clients and providers. It contains: a Policy Specification
that collects the various policies defined as part of the service operation. Policy
Profiles define the business rules and/or the functional and non-functional
requirements of complete Operation Sequences or atomic Operations through
Policy Alternatives that are expressed as a number of Policy Assertions.
They implement a Business Ruleset, which is defined as a set of Business
Rules specified by the owner of the service. These rules constitute an abstract
Service Policy that all versions of the service have to respect.

Auxiliary concepts Figure 2 also contains a number of auxiliary concepts that do
not belong to a specific layer but are used throughout the ASD. The Role concept
inherits a very important as we will see in later sections property-domain to a
number of concepts. Service (notional) acts as the main reference point for
all versions of the service, expressed as Versioned Specifications - Service
Specifications that aggregate the specifications from each layer, enriched with
versioning information.

Managing the Evolution of Service Specifications 367

Public and Private sections. A vertical distinction of concepts is necessary
in order to distinguish between service elements exposed to the clients of the
service (public specifications) and the private specifications that are solely used
for internal service purposes. The former are the access points for service clients
that want to interact with the specified service. The latter are used for example
to define the workflow of the process implemented by the service, and the service
policies that are common among all versions of the service. Each service uses a
combination of public and private concepts to specify itself; it exposes to its
context only the public ones, but at the same time it incorporates the public
concepts of the services it uses in turn. This implies that a uniform representation
model is used across the network of interrelated services.

3.3 Service Schema Definition

The Service Schema Definition (SSD) consists of a number of elements and their
relationships. In the following we discuss the structure and the properties of the
SSD.

Definition of service schema. The SSD (for a particular service) is generated
from the ASD by evaluating the concepts in it, i.e., by assigning a uniquely
identified name to them, deciding on a specific property pi for each properties-
domain pdi, and instantiating their relationships by replacing concepts with
elements and assigning a value to their cardinality. The SSD is defined as a set
of elements E = {ei}, i = 1, . . . , n and each element e is described by a tuple as
follows in BNF-format:

e := < name, attribute∗, (property?, relation?)∗, visibility >

name := string property := string attribute := string

relation := RTe|c||c|−1

RTe :=
c−→eei |

a−→eei |
s−→eei where i ≥ 1

c := integer visibility := public|private

’*’ means 0-n occurrences and ’?’ means 0-1 occurrences

Example 3. Consider on ASD level the Operation concept defined as2:

Operation(messagePattern, Att∗,
c−−−−−−−−−−−−−−−→

Operation Message |1|| ≥ 1|−1, public).
On SSD level, the evaluation of the concept for the creation of the SSD for

the purchase order processing process from example 1 would e.g. generate:

e1 = < val(Operation), val(messagePattern), Att∗,

val(
c−−−−−−−−−−−−−−−→

Operation Message |1|| ≥ 1|−1), public >

= < processOrder, request − response, Att∗,
c−−→e1e2 |1||1|−1,

c−−→e1e3 |1||1|−1, public >

e2 = < purchaseOrder, Att∗, input, . . . , public >

e3 = < orderAcknowledge, Att∗, output, . . . , public >

2 Note: we are omitting some of the relationships of the concept for brevity.

368 V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou

where val(messagePattern) = request − response means that request −
response is a property in the property domain messagePattern.

Note: since e1 was generated by Operation, it is said to be an Operation ele-
ment. In the same manner e2 and e3 are Message elements. For the remainder of
this paper we shall use this convention to identify elements by the concepts they
are generated from. In the same spirit, the distinction of concepts into layers
(definition 1) also applies to elements. Therefore e1, e2, e3 are said to belong to
the Structural layer.

Constraining the service schema elements. The properties defined previ-
ously may restrict (a) the cardinality of the relationship(s) of the element, and
(b) some of the properties of the related element(s).

Some properties of an element therefore define a number of constraints.
Let’s assume Px the set of the properties assigned to an element x, then

∃p ∈ Px, the relation
r−→xy must satisfy the following:

⎧
⎨

⎩

| |−1 = k
and zero or more of:
pdy = pyx

where the values of the property domain pdy are restricted by the properties pyx

(a subset of the original properties domain py defined by the property x).

Example 4. Consider the relation between Operation and Message elements in
the structural layer. Operation has a property domain pd1 = messagePattern
that takes the following values/properties {one − way,
notification, request−response, solicit−response}, and Message has two prop-
erty domains pd2 = message−role and pd3 = type; the latter takes the property
{required, provided} and the former takes the properties {input, output, fault}.
The property one-way defines the constraints:

| |−1 = 1, and messageRole = input, type = required, i.e. there can only
be one Message element related to the Operation element, and it has to have
the properties input and required. In a similar way, property request-response
defines the constraints:

| |−1 = 2, and
{

Msg1.messageRole = input, Msg1.type = required
Msg2.messageRole = output, Msg2.type = provided

or

| |−1 = 3, and
{

(as above),
Msg3.messageRole = fault, Msg3.type = provided

where Msg1, Msg2, and Msg3 are occurrences of the Message element.

4 Service Schema Evolution

The evolution of the service is taking place through a series of discrete modifica-
tions to elements in its schema that constitute evolutionary acts in the sense that
they are the carriers of change. These acts are expressed as sets of operations
that may have consequences both inside and across the service.

Managing the Evolution of Service Specifications 369

4.1 Operations on the Service Schema

The following list is a minimal classification of operations and their semantics
that we have identified, in the form of primitive changes on the elements of the
SSD and/or their relationships.

1. Insertion of Relationship between Elements [[ADD(ei, ej, r)]] : Rei → Rei ∪
{

r−−→eiej}, where Rei is the set of relationships of element ei.
2. Removal of Relationship between Elements [[DEL(ei, ej , r)]] : Rei → Rei −

{
r−−→eiej}. Bilateral relationships are deleted by performing this operation once

for each direction.
3. Insertion of Element [[ADD(e)]]: E → E ∪ {e} and/or not, ADD(ej , e, r)

Insertion of an element e may be accompanied by the insertion of a relation-
ship between another (preexisting) element ej and e.

4. Removal of Element [[DEL(e)]]: E → E −{e} and if ∃
rj−→eje ∀rj ∈ R, ∀j then

DEL(ej , e, rj),

where R = {
r−−→eiej ∀i, ∀j, ∀r}the set of all relationships for all elements in E .

Removal of element e must always be preceded by the removal of all the
relationships that e is participating in.

5. Replacement of Property [[REP(e,pi, pj)]]:Pe → Pe ∪ {pj} − {pi} A prop-
erty can either be replaced (pi, pj ∈ pdk), added (for pi = �), or deleted
by replacing it with an empty property (pj = �). In case that the proper-
ties constrain the cardinality of (some) relationships, then the appropriate
operations on the relationships of e must be performed too.

This set of operations is complete; it can be easily shown that every SSD can
be constructed from another SSD by a finite sequential application of additions,
deletions, and replacements to it. In that sense, richer typologies of operations
like the ones in [13], [17], and elsewhere, would be more convenient but not
necessary for our approach.

4.2 Service Schema Versioning

The definition of SSD as a set of elements uniquely identified by their name
which is subjected to a number of modifications allows us to draw on versioning
techniques from Software Configuration Management. Based on the terminology
used in [4], we define the spaces of a service:

Definition 3. Service spaces

1. The elements belonging to the SSD are the product space of the service,
denoted by ps, which contains the specifications of the various versions of
the service.

2. The temporal relationships between all the versions of the elements that con-
stitute a service is called version space and is denoted by vs.

370 V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou

3. A version ve represents the state of the evolving element e and it is charac-
terized by the pair ve = (pse, vse), where pse denotes its state in the product
space (i.e. the specification of the element), and vse its position in the ver-
sion space (denoted by a version identifier). A version vs of a service s is
therefore defined as the set of the versions of its elements vs = {ve, ∀e ∈ E}
at a given time (-point in the version space).

Service versioning comprises service specifications as observed at discrete points
in time. These are identifiable by a version identification number; each version is
agnostic of the others and managed individually. Each of the service versions is
created by applying a number of changes to a previous service version, which can
be thought of as the baseline for that version. Information regarding the baseline
of each version, and how a service version differs from its baseline constitutes the
version history of a given service. There might be, for instance, three versions of
the SSD (signified by the version ids ’2.1’, ’2.1.1’, and ’2.1.2’). Each version is a
full-fledged service schema specification and corresponds to different (possible)
active versions of the service. By examining the version space of the service, the
designer is able to infer that versions ’2.1.1’ and ’2.1.2’ use ’2.1’ as a baseline
and additionally what changes where applied to ’2.1’ in order to produce these
two versions. In that respect, the extensional versioning scheme is used to record
version history and is defined as follows:

Definition 4. Extensional versioning

1. Let’s assume a sequence of elementary change operations op1 . . . opm which,
when applied to one version of an element ve, ve

i , yields another version ve
j ,

denoted as ve
i � ve

j .
2. The extensional versioning of an element is the set V e of all versions of e and

is defined by V e = {ve
1, v

e
1 � ve

2, v
e
2 � ve

3 . . . , ve
m � ve

n}, m < n. We therefore keep
track of all versions with the corresponding operation changes. By extension
then, the set of all versions of a service, is defined as V s = {vs

1, . . . , v
s
n}.

3. An evolutionary act can therefore be defined as the set of operations that
transform version vs

i of the service into version vs
j and is denoted by vs

i �
vs

j , i < j.

4.3 Consistency of Service Schema Evolution

The operations and the versioning approach presented in the previous section
are generic enough to cover all possible modifications to service elements; but
they do not make any effort to ensure that these modifications are meaningful -
that is, they are not destructive for the SSD. For example, the DEL(e) operation
removes an element completely from the current version of a service; but is this a
valid operation for all elements of the SSD? In order to preserve the consistency
of an SSD it is necessary to define a set of Invariants, such as those defined in
[21]. These invariants (must) hold at every state of the SSD and ensure that the
SSD is never left in an inconsistent state (i.e. a state that violates any invariant):

Managing the Evolution of Service Specifications 371

INV1: Validity of the SSD. ASD |= SSD: the SSD must always be valid
with respect to the ASD, i.e., every element and relationship in the SSD must
be able to be generated from the respective ASD concepts and relationships.
This also includes the preservation of the semantics of the relationships, as
defined in section 3.1.

INV2: Reachability of Elements. ∀e ∈ E , then ∃ej ∈ E , ∃r ∈ R,
r−→eej: All

elements must participate in at least one (directed) relationship with another
element. If there are elements without any relationships in the schema then
they are automatically deleted.

INV3: Cardinality Constraint Preservation. ∃p ∈ Pe, ∃
r−→eej with |j|−1 =

k then
r−→eej �

r−−→eej′, |j′|−1 = k: If there is a property of the element that
constraints the cardinality of some relationship of the element, then this
constraint must be respected by all versions of the element.

INV4: Existence Constraint on Composition. ∀e ∈ E if
c−→eej

and DEL(e) then DEL(ej), ∀j: If an element with composition relation-
ships is deleted, then all its related elements through composition must be
deleted too. (Note: The case of aggregation is covered by INV1.)

Now we can define the notions of consistency and consistent evolutionary acts :

Definition 5. A version of the SSD is called Consistent iff it respects the set of
obligatory invariants INVo = {INVi, 1 ≤ i ≤ 4}. Consistent evolutionary acts
are therefore the series of operations that preserve the consistency of the SSD.

For example, reducing the payload of a Message element by deleting one of
the Information Type elements that it is related to is considered consistent.
Deleting all of the Information Types though is inconsistent, since it violates
INV1; as shown in Figure 2, this relationship must have cardinality at least 1.
The former then is a consistent evolutionary act, the latter isn’t.

4.4 Conformance of Service Schema Versions

In summary, consistency ensures that the evolutionary acts are valid transforma-
tions of one version of the service SSD into another version. Taking into account
the fact that services work in a network environment, using each other to achieve
their stated objectives, creates the added necessity for the preservation of the
service execution result. This ensures the seamless substitution of an SSD by a
new version of it, without requiring any modifications by the clients of the ser-
vice (its context); in other words, the conformance of the two versions in terms
of expected results of service execution and not (only) in terms of specification:

Definition 6. Given two consistent versions vs
i and vs

j of a service, they are
called Conformant iff vs

i , v
s
j can be interchangeable without requiring changes in

their context.

Example 5. Consider the case of the owner of the invoicing service wanting to
expand its operations to international marketplaces. For that purpose, a new

372 V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou

version of the service is created. Among other changes, information is added to
the invoice data schema about the currency that the payments are to be made
in, the tax regulations that apply to the specific invoice, etc. As long as the
existing clients of the service can still use the same service specification by simply
ignoring this additional information, the two service versions are considered to
be conformant with respect to this change.

We have identified the following invariants that could ensure conformance:

INV5: Co-Variance of Required Elements. All elements that have the
property required can only be restricted. This implies a restriction in the
data type and the number of arguments (represented as relationships be-
tween elements). It can be stated as follows:

– in the number of relationships: ∃p ∈ Pe = required and if∃
r−→eej then

r−→eej

�
r−−→eej′, |j′|−1 ≤ |j|−1, i.e. the element must have the same number or less

relationships after any change to it,
– in the value domain of its properties: if the property is defined as a range

of values, then this range can only be restricted.
This also holds for all elements in Re, the set of all relationships of e.

INV6: Contra-Variance of Provided Elements. All elements that have
the property provided can only be extended. This implies an extension in
the data type and the number of arguments. It can be stated as follows:

– in the number of relationships: ∃p ∈ Pe = provided and if∃
r−→eej then

r−→eej

�
r−−→eej′, |j′|−1 ≥ |j|−1, i.e. the element must have the same number or more

relationships after any change to it,
– in the value domain of its properties: if the property is defined as a range

of values, then this range can only be expanded.
This also holds for all elements in Re.

INV7: Finality of Cardinality-Constraining Properties. The properties
that constraint the cardinality of (some) relationship of a given service ele-
ment are final, i.e. no such property of any element is allowed to be modified.
Properties with no constraints on relationships can be subjects of change as
long they respect the previous invariants.

For example, increasing the number of Constraints in a Constraint Set (see
Figure 2) is only allowed if it is related to an Operation Conditions element
that has the property provided, but not if it has the property required. The
same applies also to the property valueRange in Information Type: the prop-
erty can only be replaced by a ’smaller’ range in the former case, and by a
’wider’ one in the latter. Modifying the MessagePattern property in any way
is forbidden since it constraints the cardinality of the Operation element with
element(s) Message. Therefore:

Definition 7. Conformance preservation is the property of an evolutionary act
to respect the set INVc = {INVi, 5 ≤ i ≤ 7}. Conformance-preserving evolu-
tionary acts therefore create conformant versions of the service.

Managing the Evolution of Service Specifications 373

Example 6. Assume that the OtC service described in example 1 is used by
a Purchase-to-Pay (PtP) process of another enterprise. PtP takes care of the
procurement of goods process and at a certain step uses the invoice produced by
the OtC to arrange for payments. In that case, the same invoice document (more
accurately, the Information Type element that corresponds to the invoice) is
a provided element for OtC and according to INV6 it can be extended in the
manner described above. However, since PtP uses the same element as an input
(and therefore it is required for it), then INV5 forbids this modification. In
that case, the PtP service can not use the new version of OtC and has to rely
on the previous one to do business (ensuring in that way that there are no
misunderstandings in the currency that the transactions take place).

What is illustrated by the previous example is the fact that INVc is a set of nec-
essary but not sufficient conditions for conformance. That is a by-product of the
loosely-coupled nature of the service-oriented architecture: it is not desirable to be
able to reason explicitly about the effect of a service change at provider side to its
client services. This is due to the fact that client services should be oblivious to the
changes that happen to a provider service. This enforces a modus operandi based
on the separation of concerns: each party will decide from their own perspective
whether a new version and the evolutionary act that created it is conformance-
preserving with respect to their own services. In that sense, two services using each
other have an implicit contract between them, enforced partially by each side us-
ing their interpretation of INVc. Every new version that is issued by a service
proposes the alteration of this contract between them; it is up to the other party
to decide whether the proposed changes are acceptable or not.

5 Conclusions and Future Work

In this paper we have introduced service evolution management facilities that
identify and classify all kinds of permissible changes to services, analyze the propa-
gation effects of changes, introduce version control mechanisms, validate the com-
pleteness of a change, and maintain consistency by ensuring that a service is a
well-behaved collection of service changes and versions. The service evolution
management facilities rely on a service specification reference model that abstracts
away from the idiosyncracies and syntactic nuances of current standards and pro-
vides a theoretical approach to service evolution. The service specification refer-
ence model contains an abstract service definition model (ASD) that comprises
generic concepts and inter-relationships that are common to all service schemas
in three layers. Thus far, we have concentrated on representing and analyzing the
behavior of multiple active service versions that are mutually conformant with re-
spect to a contract from both the perspective of the service provider and the ser-
vice client. In the future, we expect to concentrate on developing formalisms and
proofs for the service regulatory layer and connect them with current work, so as to
be able to prove the completeness and soundness of the overall approach. Another
extension of this work is to focus on relaxed co- and contra-variance mechanisms
for more flexible service evolution purposes, e.g., exception handling.

374 V. Andrikopoulos, S. Benbernou, and M.P. Papazoglou

References

1. Ponnekanti, S., Fox, A.: Interoperability among independently evolving web ser-
vices. In: Middleware, pp. 331–351 (2004)

2. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Developing
adapters for web services integration. In: CAiSE, pp. 415–429 (2005)

3. Tichy, W.F.: Tools for software configuration management. In: SCM, pp. 1–20 (1988)
4. Conradi, R., Westfechtel, B.: Version models for software configuration manage-

ment. ACM Comput. Surv. 30(2), 232–282 (1998)
5. Brown, K., Ellis, M.: Best practices for Web services versioning. IBM developer-

Works White Paper (2005)
6. Russell, M.: Manage message contract changes with versioning. IBM developer-

Works White Paper (2005)
7. Butek, R.: Make minor backward-compatible changes to your Web services. IBM

developerWorks White Paper (2004)
8. Poulin, M.: Service Versioning For SOA. SOAWorld Magazine 6(7) (2006)
9. Kaminski, P., Litoiu, M., Müller, H.A.: A design technique for evolving web ser-

vices. In: CASCON, pp. 303–317 (2006)
10. Hoylen, S.(ed.): XML Schema Versioning Use Cases. W3C XML Schema Working

Group Draft (2006)
11. Velegrakis, Y., Miller, R.J., Popa, L.: Mapping adaptation under evolving schemas.

In: VLDB 2003: Proceedings of the 29th international conference on Very large data
bases, VLDB Endowment, pp. 584–595 (2003)

12. Yu, C., Popa, L.: Semantic adaptation of schema mappings when schemas evolve.
In: VLDB 2005: Proceedings of the 31st international conference on Very large
data bases, VLDB Endowment, pp. 1006–1017 (2005)

13. Salinesi, C., Etien, A., Zoukar, I.: A Systematic Approach to Express IS Evolu-
tion Requirements Using Gap Modelling and Similarity Modelling Techniques. In:
Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 338–352. Springer,
Heidelberg (2004)

14. Casati, F., Ceri, S., Pernici, B., Pozzi, G.: Workflow evolution. In: Thalheim, B.
(ed.) ER 1996. LNCS, vol. 1157, pp. 438–455. Springer, London (1996)

15. Reichert, M., Dadam, P.: ADEPTflex - supporting dynamic changes of workflows
without losing control. J. Intell. Inf. Syst. 10(2), 93–129 (1998)

16. Joeris, G., Herzog, O.: Managing evolving workflow specifications with schema
versioning and migration rules (1999)

17. Weber, B., Rinderle, S., Reichert, M.: Change Patterns and Change Support Fea-
tures in Process-Aware Information Systems. In: Krogstie, J., Opdahl, A., Sindre,
G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 574–588. Springer,
Heidelberg (2007)

18. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference Man-
ual, 2nd edn. Addison-Wesley Object Technology Series. Addison-Wesley Profes-
sional, Reading (2004)

19. Everware-CBDI Inc.: CBDI-SAETM Meta Model for SOA Version 2.0. (2007),
http://www.cbdiforum.com/public/meta model v2.php

20. Dubray, J.J.: WSPER An abstract SOA framework (2007),
http://www.wsper.org/primer.html

21. Banerjee, J., Kim, W., Kim, H.J., Korth, H.F.: Semantics and implementation of
schema evolution in object-oriented databases. In: SIGMOD 1987: Proceedings of
the 1987 ACM SIGMOD international conference on Management of data, pp.
311–322. ACM Press, New York (1987)

http://www.cbdiforum.com/public/meta_model_v2.php
http://www.wsper.org/primer.html

On the Definition of Service Granularity and Its

Architectural Impact

Raf Haesen1,2, Monique Snoeck1, Wilfried Lemahieu1, and Stephan Poelmans2

1 Department of Decision Sciences & Information Management,
Katholieke Universiteit Leuven, Belgium
firstName.lastName@econ.kuleuven.be

2 Hogeschool-Universiteit Brussel, Belgium
firstName.lastName@hubrussel.be

Abstract. Service granularity generally refers to the size of a service.
The fact that services should be large-sized or coarse-grained is often pos-
tulated as a fundamental design principle of service oriented architecture
(SOA). However, multiple meanings are put on the term granularity and
the impact of granularity on architectural qualities is not always clear.
In order to structure the discussion, we propose a classification of ser-
vice granularity types that reflects three different interpretations. Firstly,
functionality granularity refers to how much functionality is offered by
a service. Secondly, data granularity reflects the amount of data that is
exchanged with a service. Finally, the business value granularity of a ser-
vice indicates to which extent the service provides added business value.
For each of these types, we discuss the impact of granularity on a set of
architectural concerns, such as performance, reusability and flexibility.
We illustrate each granularity type with small examples and we present
some preliminary ideas of how controlling granularity may assist in alle-
viating some architectural issues as we encounter them in a large-sized
bank-insurance company that is currently migrating to SOA.

Keywords: granularity, service oriented architecture, component based
development, architectural qualities, impact analysis.

1 Introduction

Service granularity generally refers to the size of a service. The fact that ser-
vices should be large-sized or coarse-grained is often postulated as a fundamental
design principle of service oriented architecture (SOA). This advice is a rather
obvious consequence of the quest for design artefacts that are defined at a high
level of abstraction. Indeed, business people are generally not interested in fine-
grained, implementation-level concepts for the construction of automated sup-
port for their work. Instead, they prefer to use and reuse automated chunks
of functionality (or services) that correspond to units of work as they are used
to handle them. These units are typically broader in scope than units that are
processed in a software program. For example, services that provide support

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 375–389, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

376 R. Haesen et al.

for (parts of) business processes offer a high amount of functionality and are
therefore labelled as coarse-grained.

It is interesting to compare services to other units of software construction that
were proposed earlier, such as objects and components. The transition from ob-
jects to components and then to services is generally associated with an increase
in granularity, i.e. from fine-grained objects, to coarser-grained components and
even more coarse-grained services [1,2]. In what follows we briefly elaborate on
these transitions.

The object oriented paradigm introduced, among others, the idea to create
units of abstraction that are close to real-world concepts. However, the resulting
objects turned out to be too fine-grained and biased towards implementation
to be useful for the development of business applications. These issues were
partly solved with the introduction of component based development (CBD),
which promotes the creation of coarser-grained components. To further stress
the importance of making abstractions that are recognisable for the business,
the difference between generic software components and business components
was made. A business component is generally defined as a software component
that implements functionality from a particular business domain [3,4]. In general,
a business component encapsulates a business-level entity or process. Therefore
business components tend to be defined at higher (and hence improved) levels
of abstraction.

The step towards service oriented computing (SOC) caused a further increase
in granularity. While components are building blocks for applications, services
are access points to an implementation that potentially covers multiple applica-
tions. As already stated, these services encapsulate business-level functionality
that may even cover (parts of) enterprise-wide processes. As a consequence, their
granularity is coarser than that of objects and components.

Instead of merely advocating for coarse-grained services, it is more appro-
priate to firstly acknowledge that the spectrum of possible service granularity
levels has become wider. Indeed, we will show that both coarse-grained and fine-
grained services can have positive impact on the architecture. As a consequence
more refined judgments to control granularity are required. A few unanswered
questions concerning service granularity are:

– What is the impact of service granularity on architectural qualities, such as
performance, reusability and flexibility?

– How can service granularity be measured?
– Is there an upper limit for service granularity? In other words, are there any

criteria that rather favour finer-grained services?

Defining granularity is quite complex since it cannot draw on theoretical
groundings. Indeed, granularity can hardly be measured in terms of absolute
numbers, because of the subjectivity of the related concepts that may deter-
mine the granularity in question. For example, a service may be defined in terms
of an activity that is executed by that service. However, the concept ‘activity’
itself has a vague, hierarchical nature: it can represent a simple state change, the

On the Definition of Service Granularity and Its Architectural Impact 377

work performed by one actor in one unit of time, or even a complete business
process (see e.g. [5]). This makes it far from straightforward to define granularity
in terms of executed activities.

In what follows we attempt to provide initial answers to the above questions
about service granularity. The paper is organised as follows. Section 2 gives an
overview of related work. Section 3 classifies multiple interpretations of service
granularity from an interface point of view. For each granularity type, we present
some small examples and we discuss the impact of granularity on architectural
qualities. In Section 4, we discuss the difference between the interface and realisa-
tion viewpoint on granularity. Section 5 briefly discusses some evaluation tracks
and outlines areas of future research. Finally Section 6 concludes the paper.

2 Related Work

A multitude of scientific papers, industrial papers and web entries touch upon
the topic of service and component granularity. Until now, most attention was
paid to measuring and assessing the impact of granularity of components. As
argued by Herzum and Sims [4, pg. 38], component granularity is defined re-
cursively, since a component can be defined as the composition of finer-grained
components. This recursion can be discrete or continuous, respectively depend-
ing on whether the granularity levels are predefined or not. Herzum and Sims
prefer the discrete form since it caters for reduced levels of design complexity.
They distinguish between system-level components, business components and
distributed components in descending order of granularity. System-level com-
ponents are composed of business components, while a business component is
composed of distributed components.

Since component based development mainly focuses on reuse, the relation-
ship between granularity and reusability is widely discussed. Despite the general
tendency towards design artefacts of increasing granularity levels, some refined
observations were made [6,7]. Firstly, coarse-grained components have high reuse
efficiency (because of a high contribution to the system) but low reusability (be-
cause of highly specific problem solving capabilities). Furthermore, the coarser
the granularity is, the lower the composition cost is because of the fewer num-
ber of components and interactions that are required. Finally, Wang et al. [8]
argue that, if a component cannot absorb requirement changes through config-
uration (e.g. business rules, parameterisation, etc.), then its granularity should
be decreased. Besides the impact on reusability, Vitharana et al. [9] concluded a
negative correlation between granularity and other managerial goals such as cost
effectiveness, customization and maintainability. On the other hand, increasing
levels of granularity tend to ease component assembly.

Sims [10] gives some clues of how service granularity may be measured, i.e. (1)
by counting the number of components invoked through an operation on a ser-
vice interface, (2) by counting the number of function points for a component, or
(3) by counting the number of database tables updated. As an alternative to the

378 R. Haesen et al.

latter, the number of update operations invoked on a component can be counted
or the number of types in the information model if both read and update access
are relevant.

Besides these quantitative results, many authors provide an overview of gen-
eral design principles to optimize service and component granularity. In what
follows we give an overview of some of these principles:

– The ‘right’ granularity of a service or component generally varies over time
[4]. A service or component that seems appropriate nowadays was maybe
unsuited a few years ago because both markets and technology constantly
evolve. For example, since SOA enables searching for services at runtime
(e.g. facilitated by the UDDI standard), registry management and brokering
are typical services that were less important before the introduction of SOA.
Moreover, when particular vertical service or component standards mature,
the corresponding industries can be relieved from searching for appropriate
granularity levels.

– Good candidates for business components or services represent real and in-
dependent concepts to business domain people [4,11,12]. In other words, they
should not be based on implementation concepts and the scope should be
understandable without further context information.

– Herzum and Sims [4] give additional heuristics to identify right-sized business
components: they should be easily marketable, highly usable and reusable;
they should support autonomous development and should correspond to
units of stability. Furthermore they should adhere to several cohesion prin-
ciples, i.e. temporal (provide for development and evolution stability), func-
tional (combine logically related functions), run-time (run e.g. computing-
intensive tasks in the same address space) and actor (users of a given com-
ponent should be similar) cohesion.

– If service granularity is defined in terms of the number of operations delivered
[12], a service should not be too coarse as it will increase the number of
consumers. Hence, a possible service change may impact many consumers.
Furthermore, a huge list of operations does not provide a clear overview of
which functionality is offered.

– A service should contain support for transaction integrity and compensation
[13,14]. Put otherwise, all activities executed by the service should be in the
scope of one transaction. If a service fails during a transaction, it should
provide a compensation mechanism to undo possible changes.

– Finding the right granularity is a matter of balancing between multiple crite-
ria [15]. For example, coarse-grained services require less network roundtrips
as the execution state is contained in the message. On the other hand, small
services generally require uncomplicated input data and are more easily
composed.

This literature overview shows that the existing knowledge about service gran-
ularity is quite fragmented: each author takes a particular view on the subject
to devise criteria for granularity optimisation, without making the considered

On the Definition of Service Granularity and Its Architectural Impact 379

context explicit. In the following section we attempt to consolidate and extend
the insights on service granularity.

3 Service Granularity Types

In order to structure the discussion of service granularity, we propose a classi-
fication of service granularity types that reflects three different interpretations:
firstly, functionality granularity refers to how much functionality is offered by a
service. Secondly, data granularity reflects the amount of data that is exchanged
with a service. Finally, the business value granularity of a service indicates to
which extent the service provides added business value. For each of these types,
we describe the impact of granularity on a set of architectural concerns, such as
performance, reusability and flexibility.

It should be noticed that we define different granularity types only by looking
at the interface of the service. In other words, we describe granularity from the
point of view of a consumer, although we assess the impact for both the consumer
and the provider. In section 4 we briefly describe service granularity from the real-
isation viewpoint, which inspects the implementation of the service. Furthermore
we indicate the differences between the interface and realisation perspectives.

The classification of service granularity is schematically represented in Figure 1.
Concerning data granularity, a distinction is made between data that is sent to the
service (input data granularity) anddata that is returnedby the service (output data
granularity). For functionality granularity, we distinguish between the amount of
functionality that is always offered when calling the service (default functionality
granularity) and the functionality that can optionally be offered (parameterised
functionality granularity).

Data
Granularity

Business Value
Granularity

Functionality
Granularity

Default
Functionality
Granularity

Parameterised
Functionality
Granularity

Output Data
Granularity

Input Data
Granularity

Granularity
Service

Fig. 1. Classification of service granularity types

380 R. Haesen et al.

Table 1 gives an overview of the architectural impact of coarse-grained services
for each of the five granularity types. In the last column we indicate whether the
impact is advantageous or disadvantageous for the consumer and the provider.
In the following sections we go into more detail.

Table 1. Architectural impact of coarse-grained services

granularity type
architectural impact party

of coarseness involved

Input Data Granularity

less communication overhead p+,c+
better transactional support p+

data possibly outdated p-
no state lost p+

better scalability p+
no coordination required c+

Output Data Granularity
less communication overhead p+,c+

higher reusability c+

Default Functionality Granularity

higher reuse efficiency c+
lower reusability c-

stability problems c-

higher reuse efficiency c+
Parameterised Functionality higher reusability c+

Granularity no stability problems c+
difficult implementation p-

Business Value Granularity
clear architecture control points p+

consumer needs satisfied c+

Legend: p = provider, c = consumer,
+ = possitive impact, - = negative impact

3.1 Input Data Granularity

The input data granularity of a service reflects how much data is passed on
to that service by a service consumer. A coarse-grained service requires one
or more business objects as parameters while a fine-grained service has few or
even no input parameters. Not only the number of parameters influences gran-
ularity but also their type. For example, the (data) granularity of insurance
contract is bigger than that of zip code, hence when used as input parameter,
they influence the input data granularity of the service accordingly. In general,
a data element is coarser-grained if it is composed of other data elements and
if the datatypes of its attributes are other data elements instead of primitive
datatypes.

On the Definition of Service Granularity and Its Architectural Impact 381

Example. With respect to input data granularity, the service ValidateContract
(Contract c) is coarser-grained than the service ValidateAddress (Address a).1

Discussion. It is generally recommended to create coarse-grained services of
this type for several reasons: Firstly, if the business objects are transferred by
value, the communication overhead is reduced since the number of network trans-
fers is decreased. Especially in the case of Web services, this overhead is high
since asynchronous messaging requires multiple queuing operations and numer-
ous XML transformations [16]. Moreover, if a service has to update multiple data
elements in one transaction, it is best to pass all data at the same time, since
this approach makes compensation mechanisms unnecessary. On the other hand,
the input data of a coarse-grained service may be outdated if it was collected
during previous service calls (i.e. not in the same transaction). Therefore the
input data should be validated by the service.

It is common practice to make a service document-based, i.e. to include the
entire execution context in the input message of a service, which makes the
service coarse-grained. Since the provider service itself does not maintain state
in this case, it is called stateless [17]. Statelessness is generally considered as
a desired property for many reasons: firstly, the call of a service (operation)
does not depend on previous calls, which eliminates the risk of losing state
between different calls. Secondly, statelessness ensures higher scalability since
more provider instances can be added if demand is high. Finally, the consumer
is relieved from coordinating several fine-grained services if all data can be sent
at once.

3.2 Output Data Granularity

The output data granularity of a service indicates how much data is returned to
the service consumer. A coarse-grained service returns one or more (references
to) business objects while a fine-grained service rather returns nothing or a few
attributes. The above-mentioned remark about granularity of data elements also
applies to output data granularity.

Example. With respect to output data granularity, the service Client SearchCus-
tomer() is coarser-grained than the service Date SearchBirthDate().

Discussion. Generally it is beneficial to create services that are coarse-grained
with respect to output data: similarly as for input data granularity, the number
of consequent calls can be kept small if much data is returned by value. Secondly
a coarse-grained service of this type doesn’t hamper reuse since the superfluous
part can simply be discarded by the service consumer. Although in this case

1 All examples follow the format OutputParameterType ServiceName (InputParameter-
Type name), whereby both the input and output parameter are only specified if they
influence the corresponding level of granularity. Although all service examples are
represented as a single conceptual operation, their interface might consist of multiple
operations that can be invoked.

382 R. Haesen et al.

some network bandwidth might be wasted, this generally doesn’t pose any severe
problems, certainly not for intra-enterprise service interactions.

It is possible to make the output data granularity more dynamic by specifying
a list of data elements that should be returned. However, this increases the
amount of input data and may decrease the comprehensibility of the service.
Alternatively it is possible to develop multiple services with different output
data granularities, whereby a coarser-grained service is composed of the finer-
grained services. These services are called multi-grained in [1, chap. 2].

3.3 Default Functionality Granularity

The default functionality granularity of a service indicates how much functional-
ity is offered in any case, i.e. the amount of functionality that cannot be adjusted
by setting some parameters. A service that performs CRUDS (create, read, up-
date, delete, search) functionality is finer-grained than a service that also ex-
ecutes logic. Moreover, services that aggregate (e.g. orchestrate) other services
are typically coarser-grained than their constituents. For example a service that
supports a business process is coarser-grained that a service that executes a
single activity of that process.

Example. With respect to default functionality granularity, the service Handle-
ClaimProcess() is coarser-grained than the service IdentifyCustomer().

Discussion. This definition of service granularity is usually implied since it di-
rectly reflects the amount of work that is performed by the service. As we already
discussed earlier, business people prefer to use and reuse services that correspond
to units of work as they are used to handle them. These units of work are typi-
cally coarser-grained than the units that are processed in a software program.

The architectural consequences of coarse-grained services are similar to those
of coarse-grained components, which were discussed in section 2. Firstly, the
reuse efficiency is high because of the large contribution that is made by the ser-
vice. Secondly, the reusability of coarse-grained services is low since the service
can only be used to solve specific problems. For example the service HandleClaim-
Process() will only be used in the claims domain, whereas IdentifyCustomer() may
be used in multiple domains. Finally, chances are high that a change to some
of the many functionalities in a coarse-grained service will cause changes to its
interface. In other words, the service is unstable since it has limited capabilities
to adapt to changes. The latter two arguments may be valid reasons to limit the
granularity of a service.

3.4 Parameterised Functionality Granularity

The parameterised functionality granularity of a service defines the amount of
functionality that optionally can be offered by a service. A coarse-grained (fine-
grained) service offers many (a few) facilities to let the consumer configure the
desired functionality, e.g. by means of input parameters. Not only the number of
parameters, but also their type defines the coarseness of the service. For example

On the Definition of Service Granularity and Its Architectural Impact 383

the parameter may be a boolean which represents a binary choice, or it may as
well be a structured file that is being interpreted by the service. With other things
being the same, the former case will yield a service with a smaller parameterised
functionality granularity than the latter.

Example. With respect to parameterised functionality granularity, the service
HandleProcess (Process aProcess) is coarser-grained than the service WriteCredit
(boolean alsoValidate).

Discussion. Since a coarse-grained service of this type makes the service rather
generic, it can easily be used in different contexts. Indeed, each different combina-
tion of input parameters yields a different behaviour of the service and therefore
the service is highly reusable. Schmelzer [18] argues that, if we push this line
of reasoning to the extreme, we would create a service DoSomething() that ful-
fils every possible need. He continues that, despite the apparent advantages of
this service construction method, it has a major drawback in that it shifts the
problem to the implementation of the service. Additionally, the usage tends to
become more complex to the consumers as well, as they need to understand how
the – often complicated – parameterisation mechanism works.

Whereas a small-grained service obviously is not reuse efficient, the consumer
can control the reuse efficiency of coarse-grained services through parameter set-
ting. For example, the service HandleProcess (Process aProcess) is reuse efficient
if a complex process description is provided as input, while a straightforward
process with only a few activities as input will limit the contribution of the
service. Finally, a coarse-grained service is typically protective to changes (or
stable) since these changes can be absorbed through configuration.

3.5 Business Value Granularity

Business value granularity measures the appropriateness of a service for the busi-
ness. In other words, this type of granularity indicates the value being attached
to a service. The analysis of value creation is an essential part of business mod-
elling techniques, such as the e3-value approach [19] or the i∗ framework [20]. In
most general terms, those approaches capture value exchanges or the extent to
which the creation of value (i.e. the execution of services in our case) contributes
to the goals and visions of an organisation. The extent to which a service directly
contributes to a high-level business goal can therefore be seen as a metric for
business value granularity. As an example, consider the goal-oriented derivation
of services as proposed by Rolland et al. [21]. More specifically, each service re-
alises the fulfilment of an intention or goal by following a particular strategy. A
goal can be seen as a state to be reached while a strategy represents an approach
to reach a particular state. Because the resulting services have close ties to busi-
ness goals, they have high levels of business value granularity by construction.

Example. With respect to business value granularity, the service ConcludeInsur-
anceAgreement() is coarser-grained than the service AddClient(), which is coarser-
grained than the service ValidateAccountNumber().

384 R. Haesen et al.

Discussion. The business value granularity obviously is an important indicator
for business people since it gives an overview of which services should receive
most attention. Dreyfus and Iyer argue that, given the complexity of architecture
and limited organisational resources to implement and modify the architecture,
it is indispensable to choose a subset of systems that are deemed important
because of their influence on the emergence of the architecture [22]. These sys-
tems support the business goals of the enterprise and are denoted as architecture
control points (ACP). With respect to business value granularity, coarse-grained
services and their implementing systems are the ACPs of an organisation. Ser-
vices with high business value are beneficial to their consumers as well since
they are more likely to satisfy the needs of those consumers. On the contrary,
the composition of multiple fine-grained services with respect to business value
generally causes more overhead for the consumer. Therefore companies tend to
bundle multiple services into one package with increased business value gran-
ularity. We refer the reader to the work of Baida for more information about
service bundling [23].

One could argue that high levels of functionality granularity automatically im-
ply high levels of business value granularity. For example, a service that supports
insurance claim handling consists of many process steps (i.e. it has high func-
tionality granularity) and that service is highly valued in the insurance domain
(i.e. it has high business value granularity). However, other examples indicate
a negative relationship between these two types of granularity. Firstly, consider
a service that consolidates accounting data from different information systems
once a month, in batch mode. As this service executes multiple steps (data re-
trieval, comparison, cleansing, etc.) it has a high functionality granularity. On
the other hand, the business value granularity is low since it merely corrects (or
even just reports on) inconsistencies between data sources. As a second example,
consider an accurate and zero-latency currency conversion service that is being
used inside the company as well by external clients. Although the service has a
low functionality granularity, its business value granularity is high because of its
high Quality of Service (QoS) and level of reuse.

4 Interface Versus Realisation View on Granularity

In the discussions of the different service granularity types we only took the inter-
face viewpoint into account. In other words, only the externally visible properties
of a service were considered during the evaluation of the influence of service gran-
ularity on both the consumer and the provider. However, this viewpoint does not
reveal all architectural consequences. Indeed, granularity can also be discussed
by looking at how the service is realised in the information system(s). This view-
point is therefore of particular interest to the service provider. In what follows,
we briefly discuss the differences between the interface and realisation view on
the three types of granularity. By means of a few examples, we will show that
both views on granularity are not always in accordance with each other.

On the Definition of Service Granularity and Its Architectural Impact 385

– Data granularity: Many industrial consortia have proposed sets of stan-
dardised messages that can be exchanged between different parties. For ex-
ample, the ACORD (Association for Cooperative Operations Research and
Development) standards define messages for the insurance and related finan-
cial services industries; likewise SWIFT (Society for Worldwide Interbank
Financial Telecommunication) defines messages that are exchanged between
banks and other financial institutions. These messages are typically very
extended since they ought to cover all data that may be relevant during a
particular transaction. Since services in these particular domains may (and
should) rely on standards for their data exchange, these services are coarse-
grained with respect to (input and output) data granularity. Although a lot
of data is exchanged, this does not imply that all data is effectively being
used during the service execution. Hence from the interface viewpoint the
service is coarse-grained while from the realisation point of view it may be
fine-grained.

– Functionality granularity: We argued that an orchestration service is
coarser-grained that its constituents with respect to default functionality
granularity. In fact, the granularity of the former is the sum of the granu-
larities of the orchestrated services plus the granularity of the coordination
logic. From the realisation point of view however, the orchestration service
only implements the coordination logic. Therefore the service can be imple-
mented without much effort, although it is coarse-grained from the interface
viewpoint.

– Business value granularity: The difference between the interface and
realisation viewpoint is particularly relevant to business value granularity.
Suppose that a provider wants to determine how much business value is
attached to the services that are delivered by ICT infrastructure components.
For example, consider a database management system (DBMS) that delivers
data storage, data retrieval and transaction processing services. From an
interface point of view, these services are fine-grained with respect to business
value granularity, since they do not directly contribute to high-level business
goals. Suppose that from a realisation viewpoint, not much business value
would be attached to these services either. This would imply that ICT could
just as well reimplement the data services for each business case that would
require these services. Obviously this inefficient approach would repeatedly
generate pointless ICT costs. Therefore the business should appreciate the
use of a DBMS that is proven to be reliable, reusable and high-performing.
In other words, from a realisation viewpoint, the business value granularity
of ICT infrastructure components is high.

Note that the distinction between the two viewpoints on business value
granularity has far-reaching consequences for the interrelation between busi-
ness and ICT. From the interface viewpoint, business would only be inter-
ested in the fulfilment of their requirements towards ICT without considering
the approach adopted by ICT. From the implementation viewpoint though,
business would appreciate the optimisation strategies that are chosen by
ICT, such as the construction of reusable and flexible infrastructures. In this

386 R. Haesen et al.

case costs should be distributed among all consumers that (will) use these
infrastructures. This may not be a straightforward task if not all consumers
are known in advance.

5 Evaluation and Future Work

The results of this work are currently being validated at KBC Bank & Insurance
Group, one of the top three bankinsurers in Belgium with a key position in
Central-Europe. To have control over granularity is one of the major concerns in
their migration to SOA. The validation of this work consists of two parts: firstly,
the presented classification is in general adopted by KBC. This means that the
impact of each service under development is verified with respect to each type of
granularity. Moreover, to the best of our knowledge, our classification covers all
aspects of granularity that are discussed in the existing literature. The second
part of validation considers each type of the granularity in more detail. Whereas
the validation of functionality and business value granularity are left for future
work, we already focused on data granularity.

In general it can be observed that current services research mainly focuses on
the issue of flexibility because services generally represent “units of functional-
ity” that need to be coordinated. Therefore, too little attention is paid to the
data perspective on services. To alleviate this problem, we elaborated guidelines
to optimise the input data granularity of services. This resulted in the active-
passive hybrid data collection pattern [24], which distributes the responsibility
of collecting data across the service consumer and provider. The decisions are
mainly based on the properties of the data to be collected, such as their avail-
ability, visibility and accessibility.

As part of future research, we will propose concrete metrics for all granularity
types in two different contexts. Firstly, we will define metrics in an event-driven
SOA that is based on the MERODE methodology [25]. Although the architecture
is object based (as a possible service implementation) and therefore of limited
use on enterprise level, all models and concepts are formally defined, which allows
inferring formal metrics as well. Secondly, we will extend our approach in the
context of BECO [26]. BECO itself is an extension to MERODE that defines
the enactment of business processes by means of an event-based coordination of
components. This approach allows incorporating enterprise-class concerns, such
as the integration of legacy and the treatment of business processes as first-class
citizens.

Finally, we perform research on rules to determine which granularity levels are
appropriate in a particular context. At the ICT department of KBC, all projects
are firstly analysed in the ‘work preparation’ stage before they are effectively
being implemented in the ‘work execution’ stage. It is obvious that the concerns
of the people in the two stages are different, and yet, the same service concept
is used by both. For example during work preparation, the problem is firstly as-
signed to a particular service domain, such as the claims domain. Subsequently,

On the Definition of Service Granularity and Its Architectural Impact 387

the architects have to delineate the relevant services that will be implemented
in the scope of the project. Now the services should be defined at such a level
of granularity that changes to the existing service portfolio can be assessed.
For example, the introduction of a service for claim handling will affect other
domains such as accounting, payments, etc. Finally, to enable work execution, the
services must be decomposed into even more fine-grained services. For example,
the service for claim handling will rely on some backend services that contain
business logic, some services that maintain process state, some services that
generate user interfaces, etc. We will verify how the proposed granularity types
can be used to derive appropriate granularity levels in a given context.

6 Conclusion

In this paper we attempted to structure the discussion of service granularity.
Although the importance of coarse-grained services is often stated, we argued
that enterprise architects nowadays have to deal with a broad spectrum of pos-
sible service granularity levels for different granularity types. From an interface
perspective, we distinguished between data granularity, functionality granularity
and business value granularity. By means of some extreme values for each granu-
larity type we discussed the impact on architectural concerns such as reusability,
reuse efficiency, stability, performance, etc. Although the interface perspective
reveals several consequences of granularity for both consumer and provider, the
provider will also be interested in the realisation view on granularity. By means
of some examples, we showed that both views are not always in accordance
with each other. Finally we presented some preliminary ideas of how granular-
ity may assist in alleviating some architectural issues as we currently encounter
them at KBC, such as the data issues around services and a granularity-driven
delineation of services.

Acknowledgements

This work was funded by the KBC-Vlekho-K.U.Leuven research chair on ‘Service
andComponentBasedDevelopment’ sponsoredbyKBCBank& InsuranceGroup.

References

1. McGovern, J., Tyagi, S., Stevens, M., Mathew, S.: Java Web Services Architecture.
Morgan Kaufmann, San Diego (2003)

2. Hanson, J.: Coarse-grained interfaces enable service composition in soa (August
2003), http://articles.techrepublic.com.com/5100-22-5064520.html

3. Fellner, K.J., Turowski, K.: Classification framework for business components. In:
Proceedings of the 33rd Annual Hawaii International Conference on System Sci-
ences (HICSS-33). IEEE Computer Society, Maui (2000)

4. Herzum, P., Sims, O.: Business Components Factory: A Comprehensive Overview
of Component-Based Development for the Enterprise. John Wiley & Sons, Inc.,
New York (2000)

http://articles.techrepublic.com.com/5100-22-5064520.html

388 R. Haesen et al.

5. Goedertier, S., Haesen, R., Vanthienen, J.: EM-BrA2CE v0.1: A vocabulary and
execution model for declarative business process modeling. FETEW Research Re-
port KBI 0728, K.U.Leuven (2007)

6. Mili, H., Mili, A., Yacoub, S., Addy, E.: Reuse-Based Software Engineering: Tech-
niques, Organizations, and Controls. John Wiley & Sons, Chichester (2002)

7. Wang, Z., Xu, X., Zhan, D.: A survey of business component identification methods
and related techniques. International Journal of Information Technology 2, 229–238
(2005)

8. Wang, Z., Zhan, D.C., Xu, X.F.: STCIM: a dynamic granularity oriented and stabil-
ity based component identification method. ACM SIGSOFT Software Engineering
Notes 31(3), 1–14 (2006)

9. Vitharana, P., Jain, H., Zahedi, F.: Strategy-based design of reusable business
components. IEEE Transactions on Systems, Man and Cybernetics, Part C: Ap-
plications and Reviews 34(4), 460–474 (2004)

10. Sims, O.: Developing the architectural framework for SOA - part 2-service granu-
larity and dependency management. CBDI Forum Journal (June 2005)

11. Erradi, A., Anand, S., Kulkarni, N.: SOAF: An architectural framework for service
definition and realization. In: Proceedings of the IEEE International Conference
on Services Computing (SCC 2006), pp. 151–158. IEEE Computer Society, Wash-
ington, DC (2006)

12. Artus, D.J.: SOA realization: Service design principles. IBM Developer Works
(February 2006),
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-
design/

13. Wang, Z., Xu, X., Zhan, D.: Normal forms and normalized design method for busi-
ness service. In: ICEBE 2005: Proceedings of the IEEE International Conference on
e-Business Engineering, pp. 79–86. IEEE Computer Society, Washington, DC (2005)

14. Foody, D.: Getting web service granularity right (August 2005),
http://www.soa-zone.com/index.php?/archives/11-Getting-web-service-
granularity-right.html

15. Wilkes, L., Veryard, R.: Service-oriented architecture: Considerations for agile sys-
tems (April 2004), http://msdn2.microsoft.com/en-us/library/aa480028.aspx

16. Bussler, C.: The fractal nature of web services. IEEE Computer 40(3), 93–95 (2007)
17. Foster, I., Frey, J., Graham, S., Tuecke, S., Czajkowski, K., Ferguson, D., Leymann,

F., Nally, M., Sedukhin, I., Snelling, D., Storey, T., Vambenepe, W., Weerawarana,
S.: Modeling stateful resources with web services (March 2004)

18. Schmelzer, R.: Solving the service granularity challenge (March 2006),
http://www.zapthink.com/report.html?id=ZAPFLASH-200639

19. Gordijn, J., Akkermans, H.: Value based requirements engineering: exploring inno-
vative e-commerce ideas. Requirements Engineering Journal 8(2), 114–134 (2003)

20. Yu, E.S.K.: Towards modeling and reasoning support for early-phase requirements
engineering. In: Proceedings of the 3rd IEEE International Symposium on Require-
ments Engineering (RE 1997), pp. 226–235. IEEE Computer Society, Annapolis
(1997)

21. Rolland, C., Kaabi, R.S., Kräıem, N.: On ISOA: Intentional Services Oriented
Architecture. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.) CAiSE 2007 and WES
2007. LNCS, vol. 4495, pp. 158–172. Springer, Heidelberg (2007)

22. Dreyfus, D., Iyer, B.: Enterprise architecture: A social network perspective. In:
Proceedings of the 39th Hawaii International International Conference on Systems
Science (HICSS-39), January 2006. IEEE Computer Society Press, Kauai (2006)

http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design/
http://www-128.ibm.com/developerworks/webservices/library/ws-soa-design/
http://www.soa-zone.com/index.php?/archives/11-Getting-web-service-granularity-right.html
http://www.soa-zone.com/index.php?/archives/11-Getting-web-service-granularity-right.html
http://msdn2.microsoft.com/en-us/library/aa480028.aspx
http://www.zapthink.com/report.html?id=ZAPFLASH-200639

On the Definition of Service Granularity and Its Architectural Impact 389

23. Baida, Z.: Software-aided Service Bundling - Intelligent Methods & Tools for
Graphical Service Modeling. PhD thesis, Vrije Universiteit, Amsterdam, The
Netherlands (2006)

24. Haesen, R., De Rore, L., Snoeck, M., Lemahieu, W., Poelmans, S.: Active-passive
hybrid data collection. In: Proceedings of the 11th European Conference on Pat-
tern Languages of Programs (EuroPLoP 2006), Irsee, Germany, Universitaetsverlag
Konstanz, pp. 565–577 (2006)

25. Snoeck, M.: Object-Oriented Enterprise Modelling with Merode. Leuven University
Press (1999)

26. Lemahieu, W., Snoeck, M., Goethals, F., De Backer, M., Haesen, R., Vandenbulcke,
J., Dedene, G.: Coordinating cots applications via a business event layer. IEEE
Software 22(4), 28–35 (2005)

Reasoning about Substitute Choices and

Preference Ordering in e-Services

Sybren de Kinderen and Jaap Gordijn

VU University Amsterdam
De Boelelaan 1081

1081 HV, Amsterdam, The Netherlands
{sdkinde,gordijn}@few.vu.nl

Abstract. e-Services are just like normal services, but can be ordered
and provisioned via the Internet completely. Increasingly, these e-services
are offered as a multi-supplier bundle of elementary services. How to au-
tomatically compose and prioritize these multi-supplier e-service bundles
is considered as a key problem. In this paper, we present the e3service on-
tology to represent a multi-supplier e-service catalogue from a consumer
need perspective. Then, we use this ontology to reason about alterna-
tive e-service bundles satisfying a particular need, and to prioritize the
found bundles using the consumer benefits they provide. The ontology
and the reasoning process are illustrated by a case study in the Dutch
telecommunication industry.

Keywords: e-services, ontology, service bundling, consumer needs.

1 Introduction

In recent years, customizable e-service bundles, satisfying complex consumer
needs have gained interest. We understand e-services as commercial services:
economic activities, deeds and performances of a mostly intangible nature. Web
services and web service languages, such as WSDL [6] and others, are a useful
technical implementation platform for e-services but do not really recognize the
commercial perspective on services. Consider e.g. the daily-life example of a
specific consumer need for Internet access and email. Often, the proposition of an
ISP is then a general purpose e-service bundle, consisting of more elementary e-
services such as IP-based access, an email box, space to host a website, telephony,
and access to newsgroups. However, the original, individual, consumer need only
requires the provisioning of an IP-based access/email e-service. The latter bundle
more closely matches the consumer need compared to the -fits for all- full-service
bundle. Additionally, these e-services are increasingly offered by a networked
value constellation, rather than just a single enterprise [18]. By doing so, suppliers
can utilize their core competencies, while still satisfying a consumer need. In
the ISP-example, the offered bundle can be a multi-supplier bundle: IP-access
is then provided by a telecommunication operator, an email box is offered by
a commercial enterprise utilizing economies of scale, as can hold for website
hosting, which may be offered by yet another enterprise.

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 390–404, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Reasoning about Substitute Choices 391

We perceive the automatic composition and provisioning of such a customized,
needs-driven, multi-supplier e-service bundle as a key information system engi-
neering problem as the e-services are provisioned by IT itself. In a future scenario
we foresee that a consumer would ideally state to the web his preferences using a
question-answer dialog, and the web (or some intermediate party) responds with
a list of candidate multi-supplier e-service bundles, which are sorted according
to how well they fit to the stated consumer preferences. After selection of a spe-
cific bundle by the consumer, the e-services in the bundle should be provisioned
automatically. Guidelines on creating customized service bundles have already
been studied in business literature, most notably by [12] and [16]. However, these
guidelines are fairly generic (the focus is on services in general and not specifically
on e-services). More importantly, they lack conceptualization and formalization
so it is difficult to systematically and (semi-) automatically reason about ser-
vice bundles. Such reasoning is important, because e-services, as illustrated by
the ISP example, are bought and provisioned on line, enabled by information
systems. To adequately facilitate this buying and provisioning process, the elic-
itation of needs, as well as the selection of commercial e-services that can be
provisioned to satisfy such needs, should be supported by information systems
as much as possible.

In earlier work [7], we have presented the e3service ontology that allows for
the structured creation of service bundles based upon consumer preferences.
However, since often multiple, and alternative, service bundles are possible, the
next question is then how to rank the bundles according to the consumer need.
Therefore, in this paper we show how to (1) reason about substitute services, and
(2) assign a preference ordering to found service-bundles, based on a consumer-
given prioritization of the benefits (s)he wants to obtain. Additionally, we involve
pricing of the service bundle in the reasoning process about preference ordering.
The contribution of this paper therefore is that we provide a framework allow-
ing semi-automated reasoning about multi-supplier, commercial-service bundles.
Our approach relates to goal modeling, such as i* [19]. Rather we consider goals
as consumer needs, which are problem statements of the consumer. By using
various reasoning mechanisms, we search for e-services that satisfy the stated
need.

This paper is structured as follows. In section 2, we provide a comprehensive
overview of the e3service ontology. In section 3 we apply this ontology to a
case study, to create a consumer-oriented catalogue of e-services. Based upon
this catalogue, we then show how we reason about preference ordering when
creating e-service bundles. Finally, in section 4 we provide a discussion, and in
section 5 we present our conclusions.

2 The e3service Ontology

To make this paper self-contained, we summarize the e3service ontology (see
figure 1, and [7] for more details). This summary is organized by clustering
the concepts in the ontology as follows: (1) the need/demand/want hierarchy,

392 S. de Kinderen and J. Gordijn

Fig. 1. The e3service ontology

(2) benefits, consequences, and value derivations, (3) dependencies between
want/consequence pairs, and (4) services. The ontology is based on established
service marketing literature (e.g. [12] and [16]).

2.1 The Need/Want/Demand-Hierarchy

The need/want/demand-hierarchy emphasizes a gradual transition from a need
- a problem statement - to a set of services that together provide a solution for
that need, called a demand (see [2] and [15]). For the e3service ontology, this
results in the following concepts.

Functional need. A functional need represents a problem statement or goal,
independently from a solution direction [2].

Example. A consumer may have a need to ‘communicate with family abroad’.
This need does not include a notion of a solution yet, as nothing is stated about
how the communication will be done.

Want. A need (problem) can usually be covered by multiple alternative wants
(solutions) [2]. Also, a need may require multiple wants that each satisfy a need
partly, but together do so completely. The separation of problem and solutions
is important to avoid that we overlook alternative wants (solutions) for needs
(problems) during the elicitation process. In doing so, a want does not indicate
a specific (named) supplier satisfying the stated need yet. Thereby, we explicitly
separate the finding of a general solution for a need (a want), from finding a
specific supplier doing so (a demand). However, as a want indicates a solution
available in the market, at least one supplier should be willing to provide the
solution.

Relations. A want has one or more benefit ranges (to be detailed later), which,
in short, are properties of a provided service, which are economically valued by a
consumer. For a want, these properties are defined independently from a specific
supplier.

Reasoning about Substitute Choices 393

Example. A want satisfying the need ‘communicating with family abroad’ is
for example ‘e-mail hosting’. A benefit for ‘e-mail hosting’ is a certain mail-box
size range (eg. 500 MB to 1 GB). An alternative want is ‘instant messaging’.

Problem/solution pair. A want is a (partial) solution for a functional need,
which is stated by a problem/solution pair. Problem/solution pairs can be related
to each other to state that (1) they are alternatives for each other, or (2) together
they form a complete solution for a problem.

Example. ‘e-mail hosting’ and ‘instant messaging’ are alternative wants for
satisfying the need ‘communicating with family abroad’. ‘E-mail hosting’ plus
‘IP-connectivity’ exemplify partial problem/solution pairs, which together sat-
isfy the need ‘communicating with family abroad’.

Demand. A ‘want’ is provisioned by a specific supplier as a demand. A de-
mand differs from a want, as a demand provides supplier-specific values to the
properties for benefits of a want. We use a strict distinction between wants and
demands, because they refer to two different steps in the automated reasoning
process about substitutes and preference ordering. In the first step, we reason
about the required generic benefits, as contained by a want, to satisfy a need,
independently from a supplier. In the second step, we reason about the specific
suppliers who can satisfy a need in terms of a demand, with specific benefits. This
simplifies the reasoning process as the customer first only focuses on choosing
the required benefits (e.g. a mailbox with a small/big size) without a supplier in
mind, and thereafter chooses specific properties benefits as offered by a specific
supplier (eg. a 1MB sized box).

Relations. A demand concretizes a want if: (1) each benefit of the want
matches with a benefit of the demand, meaning that (2) for each benefit, the
supplier-specific benefit of the demand is in the specified range of the correspond-
ing benefit for the want. Usually, a want has one or more demands, meaning that
one or more suppliers can satisfy a want.

Example. ‘Gmail’ (from Google) is a demand that specifies the want ‘e-
mail hosting’. For example, ‘Gmail’ may have a distinguishing benefit ‘mail-box
size=1 GB’ that would be different from the ‘mail-box size=0.5 GB’ as offered
by ‘Hotmail’. However, both benefits fall into the benefit range ‘500 MB to 1
GB’ as specified for the want.

2.2 Benefits, Consequences and Value Derivations

Benefit range and benefits. Benefits describe properties that are of economic
value to the customer in the sense of value-in-use [17]. In other words, bene-
fits provide an increase of economic utility to the customer, through something
functional, social (e.g. status) or otherwise. A benefit is also used to connect
demands, as needed by the customer, to services, as provided by the supplier.
Often, there is a mismatch between the set of benefits as contained by a cus-
tomer demand, and the set of benefits as contained by a supplied service. In our
work, we assume that the customer and the supplier use the same terminology
to represent the customer/supplier benefit itself, so ontologically, these benefits

394 S. de Kinderen and J. Gordijn

are the same (although specific values may differ obviously). Reasoning about
a match between a found consumer demand and available supplier e-services, is
then about finding a multi-supplier e-service bundle with a set of benefits, that
comes closest the required set of benefits as contained by the customer demand.
A benefit range is a more general construct, which specifies a range of values a
benefit may have.

Relations. First, a want has one or more benefit ranges. Since a want exists
independently of a specific supplier, benefits on the want-level do not possess
supplier-specific values. Instead, benefits on the want level have a range of pos-
sible values, within which a supplier-specific benefit could fall. For instance, in
the case of the size of a mailbox, a range could be 500 MB-3 GB. Second, a sin-
gle demand has one or more benefits. Since a demand is specific for a supplier,
benefits of a demand have supplier-specific properties. In the case of the size of
a mailbox, the size could for instance be 2.6 GB for a specific supplier. Third, a
specific benefit is for one benefit range, and a range can have multiple benefits
that fall-in the benefit range.

Consequence. A consequence represents the subjective added value for the end-
customer if he consumes a benefit (falling into a certain benefit range). In the
reasoning process as presented in section 3, deriving consequences from benefits
is based upon the laddering-technique from means-end chaining [13]. In brief,
this is done by asking the question ‘what happens if we consume service X in
which benefit Y is contained? ’.

Relations. A benefit range has one or more consequences. Multiple benefit
ranges can point to the same consequence. A consequence indirectly contributes
to satisfying a need, via the benefit range, demand, and want of that need.

Example. The benefit ‘web-based e-mail access’ has the consequence ‘cost-
effective communication’. ‘Cost-effective communication’ contributes to satisfy-
ing the need ‘communicating with family abroad’. Considering an example of a
benefit with a range of values, we can define the consequence ‘have a large mail
box’ based upon the range 1GB-3GB for the benefit ‘mail box size’.

Value derivation. We reify the relation between ‘benefit range’ and ‘conse-
quence’ by introducing the concept of value derivation. While eliciting a service
catalogue, we reason about value derivation as a result of consuming a certain
benefit, by using a consumer value framework presented by Holbrook et al [14].
This framework, which originates from the field of axiology, is used to explain
how end-consumers derive value while consuming a product/service. Note that a
framework as proposed by Holbrook serves as a ‘plug-in’. In case of business-to-
business services, value derivation will be done entirely differently, and so other
frameworks should be used. Since the focus of this paper is on finding appro-
priate e-service bundles given a certain need, and not on eliciting the e-service
catalogue itself, we do not elaborate further on value derivation.

Example. The benefit ‘customized domain’ from an e-mail service, can be
annotated with the value derivation ‘status’, resulting in the consequence of
’enhancing status through personalized e-mail address’.

Reasoning about Substitute Choices 395

2.3 Dependencies between Want/Consequence Pairs

The notion of service-dependencies (see [3]) indicates that services may depend
on each other. For instance, a service can serve as an option for another service,
or a service may exclude meaningful consumption of another service. In [3], this
relation has only been investigated from a supplier perspective; e.g. a paid e-mail
service cannot be delivered without a billing service. We have found that such
dependencies can also exist from a consumer perspective; e.g. a spam filter adds
value for the customer if it is bundled with an e-mail hosting service.

Adds value and dependency. As benefits of wants have economic value con-
sequences for the customer, the wants themselves also have consequences. In
e3service , this is represented as a reified ’adds-value’ relationship between one
want and one consequence. Obviously, each want and consequence may be in
many of these relationships.

We have found two specific kinds of dependencies, which may exist between
two or more ‘adds value’ relations (so between want/consequence pairs). In
a ‘Core/Enhancing’ (C/E) dependency, a want/consequence pair B provides
added value if bundled with a want/consequence pair A. Pair B cannot be ac-
quired independently from A. In a ‘Optional Bundling’ (OB) dependency, a
want/consequence pair B adds value to a want / consequence A. Yet, in case of
an OB relation, A and B can also be acquired separately.

These dependencies may exist between multiple want/consequence pairs
(‘adds value’), as shown by the concept dependency in the e3service ontology.

Relations. First, an ‘adds value’ relationship contains a single want and a
single consequence. This pair represents a commercially feasible offering, plus
part of the subjective value gained from consuming a benefit contained within
this offering. Second, ‘adds value’ has a relationship with one or more other adds
value relationships, via the ‘dependency’ concept.

Example. The pair ‘e-mail’ (want)/‘local access to mail’ (consequence) is in a
Core/Enhancing dependency with pair ‘spam-filter’ (want)/‘reduction in number
of unwanted e-mails’ (consequence). So, the want ‘e-mail’ is related to the con-
sequence ‘reduction in number of unwanted e-mails’ from the want ‘spam filter’,
where the consequence from latter want indicates why this relationship exists.
Note that a Core/Enhancing relationship is present, because an acquisition of a
spam-filter only makes sense in combination with an e-mail service.

2.4 Service

Service. A service is of economic value to the end customer, and is provisioned
by a supplier. It is the smallest unit that, from a commercial point of view,
can be obtained from a supplier. Services are listed in a service catalogue of
a supplier. The notion of service allows for connecting the customer-oriented
e3service ontology to supplier-oriented ontologies (see e.g. [1]).

Relations. First, a service is supplied by precisely one supplier, since a service
is supplier specific. Obviously, a supplier can supply multiple services. Second,

396 S. de Kinderen and J. Gordijn

a service has one or more benefits. These benefits are the source for matching
supplier-services with benefits that belong to wants.

Example. An ‘e-mail hosting’ service is an is example of a service.

Sacrifice. A sacrifice represents something valuable to the consumer and sup-
plier that has to be given in return, in order to acquire a service.

Relations. A service requires one or more sacrifices. This models that a con-
sumer is not willing to obtain a service against any price, but rather is confronted
with a budget-constraint, and therefore is limited in demands (s)he can have.

Example. Based upon a monthly fee (e.g. 40 e) (sacrifice) that has to be paid
for the service ‘4 Mb/s Internet access’, as well a contract-duration of minimally
one year (also a sacrifice), a consumer may decide to revise his/her demand, such
that a ‘1 Mb/s Internet access’ service for a monthly fee of 10 ewill be selected.

3 A Case Study on e-Service Substitution and Preference
Ordering in the TelCo Industry

3.1 An e-Service Catalogue

We now show, for the need ‘communicating with family abroad’, how e3service
can be used to (1) make a choice between substitute services (different services
that satisfy a similar need (e.g. ‘instant messaging’ and ‘VoIP’)), and (2) make
a choice between similar services (e.g. two similar ‘VoIP’ services but of differ-
ent suppliers). To this end, we first need an e-service catalogue, which is shown
in figure 2. In brief, we create such a catalogue by considering the e-services
as available in the market, and then by deriving the needs these services could
satisfy. For a detailed description of how to create such a catalogue, see [7]. The
catalogue for this case study, which due of lack of space we can only show partly
(see figure 2), has been created by studying service documentation as provided
by our industry partner KPN (the largest Dutch TelCo operator), and by in-
terviewing KPN representatives. Effectively, the catalogue is an instantiation of
the e3service ontology. We have evaluated the catalogue afterwards with a do-
main expert from KPN, who is actively involved in realizing service bundles for
‘VoIP’, for descriptive validity. The catalogue itself is further explained as part
of the following description of the substitution and preference ordering reasoning
process.

3.2 Reasoning about Substitution and Preference Ordering of
e-Services

We now illustrate how to derive telecom e-services from consumer needs, by
considering an average 2.4 household consumer, who wants to communicate with
family abroad but finds that using a traditional phone is too expensive, as a
prototypical example.

Reasoning about Substitute Choices 397

Need Want Demand

KPN

Voice consumer

VoIP
#phone numbers :
<=2

Number recognition

XS4all

VoIP

Location:
location-independent

#phone numbers :
=>1

Number recognition

Microsoft
Instant messsaging
Location:location-
independent

Communication:
in writing

Communication: oral

Communication: oral

VoIP

Instant messaging capability

Communication:
in writing

Location:location-
independent

Location : location-
independent

Communication : oral

#phone numbers => 1

Caller-ID
Avoid unwanted
conversations
[efficiency]

Number recognition

Communicate
directly

Hear voice during
conversation
[excellence]

Get message
across directly
[efficiency]

Make > 1 calls
simultanuously
[efficiency]

Get message
across directly
[efficiency]

Use at any site w/
connectivity
[efficiency]

Use at any site w/
connectivity
[efficiency]

Communication : {oral
in writing}

#phone numbers :
<=2

......

Microsoft ID

Microsoft ID

OR

OR

OR

Legend

Supplier

Consequence
[value derivation]

Benefit

need

want

demand

Number portation

Number portation

Number portation
Number portation

Number portation

Number portation
Keep current
phone number
[efficiency]

C/E

Adds value

Avoid unwanted
conversations
[efficiency]

XOR

Fig. 2. A partial e-service catalogue for the need ‘communicating with family abroad’

Step 1: Select a consumer need, and derive an initial set of wants
satisfying this need.

In the e-service catalogue, we first traverse from a need to (alternative) wants
that can (partly) satisfy this need.

Case: We assume that the consumer starts at the need ‘communicate directly’
since this need-definition comes closest to the need ‘communicating with family
abroad’. By traversing from this need to the want-level, we thus find the initial,
alternative, set of wants [VoIP, instant messaging], because both can satisfy the
need ‘communicate directly’.

398 S. de Kinderen and J. Gordijn

Step 2: Consider dependencies between want/consequence pairs, to
elicit additional wants. The next step is to consider for each ‘want’ as found
in step 1, any additional wants, by checking the reified ‘adds-value’ relation-
ships between want/consequence pairs. If, for a considered want A (with its
consequences), we can find related wants B, C, . . . (with their consequences), we
ask the consumer to decide upon inclusion of wants B, C, . . . , by presenting
him/her the consequence for wants B, C, As such, the consequences provide
the consumer with a rationale to choose.

Case: In our catalogue (figure 2), there is a Core/Enhancing(C/E) reified
‘adds-value’ relationship between ‘VoIP’ and ‘number portation’. Therefore, the
consumer is presented the consequence ‘keep current phone number’ for the
‘number portation’ service. Due to all the hassle involved when changing a phone
number, we assume that the consumer indicates that (s)he would want to keep
her current number. Therefore the want ‘number portation’, which includes the
consequence ‘keep current phone number’, is included as an additional want. So,
the set of wants that is now used for our further reasoning is: [{VoIP, number
portation}, instant messaging] (note that ‘number portation’ is only relevant in
combination with ‘VoIP’, and not with ‘instant messaging’).

Step 3: Ask the consumer to assign a preference ordering to the conse-
quences. In the third step, we ask the consumer to prioritize the consequences
for the benefits of wants found so far. We do so, because consumers are not
really interested in a service itself, but in the specific benefits that a service
possesses and in how these benefits help them to fulfill their needs. Yet, the
consumer might not always be able to assign a preference ordering to a benefit
because the benefit is by definition always stated in objective (and often tech-
nical) terms (recall that a benefit is e.g. the size of mailbox, the bandwidth of
a data-connection, etc.). For this reason, we ask the consumer to assign a pref-
erence ordering to a consequence, which is then propagated to the underlying
benefit. In other words; we present the consumers with the value-in-use or goal
that can be achieved through a benefit, rather than the benefit itself.

The consumer should have a concrete way to express his/her preference.
For this purpose, we use a four-point importance scale which we based on the
MoSCoW-list. The latter is often used in Rapid Application Development (RAD)
software engineering projects [5] to prioritize software requirements. Our scale
consists of the following categories:

– Must have. A consumer can assign a ‘must-have’ priority to one or more
consequences. For a service bundle to be relevant for the consumer, all ‘must-
have’ consequences must be satisfied by the bundle.

– Should have. A ‘should-have’ consequence should be realized by a bene-
fit from a supplier-specific service, but as opposed to a ‘must-have’ conse-
quence’, realization is not a necessity.

– Could have. A ‘could-have’ consequence is something that the consumer
perceives as a nice-to-have feature. A ‘could-have’ consequence is perceived
to be less important than a ‘should-have’ consequence.

Reasoning about Substitute Choices 399

– Does not matter. As implied by name, this last category can be used by
the consumer to indicate that a consequence does not have to be taken into
consideration in the bundling process.

Case: The consumer is presented with the consequences for the wants {VoIP,
number portation}, and {instant messaging}. Examples include ‘hear (natural)
voice during conversation’ and ‘keep current phone number’, each of which can
be assigned an importance ranking. We assume that our consumer assigns the
importance ‘must-have’ to ‘hear (natural) voice during conversation’ because it
gives more character to the conversation. Considering ‘should-have’ preferences,
our consumer assigns such a preference to ‘avoid unwanted conversations’ and
‘keep current phone number’. Lastly, we assume that our consumer assigns a
‘could-have’ preference to the consequence ‘make multiple calls simultaneously’,
because there are multiple members in the household.

Step 4: Present consumer with the set of underlying benefits. Next, the
consumer is presented with the set of benefits that belong to the consequences
for which an importance ranking was done, and with an opportunity to change
these benefits. Of course, these benefits are automatically assigned the same
importance ranking as their consequences have. This step is in particular relevant
if a consumer wants to consider the objective benefits of a service. This often the
case for the more technically oriented consumers who want to specify exactly
the benefits they expect from a service, such as the exact download speed they
desire from an internet connection.

Case: Our consumer has selected the consequence ‘make multiple calls simul-
taneously’ and would therefore be presented with the benefits: ‘#phone numbers:
<= 2’ and ‘#phone numbers: >= 1’. As such, the consumer from our average 2.4
household has the option of specifying how many phone numbers are required.
In our scenario, we assume that the consumer chooses ‘#phone numbers: >= 1’
since there are more than 2 members in the household who each, at some point,
might require their own phone number.

Step 5: Generate alternative service bundles and assign preference
ordering. After all benefits have been prioritized and possibly changed by the
consumer, the next step is to generate the actual e-service bundle that provides
the benefits. To do so, a table is built with the prioritized benefits and the
corresponding consequences on the one hand, and the e-services, taken from the
catalogue, which can provide the requested benefits (see table 1) on the other
hand. The ‘consequences’ are important in the process, since multiple benefits
may have a same consequence. This allows for realizing a particular consequence
in alternative ways, more specifically by providing alternative benefits. As a
result, the service bundle composition problem becomes less constrained, thus
increasing the chance of finding a valid solution. Alternative benefits for a same
consequence are in the catalogue (figure 2) shown by the ‘OR’ label between a
consequence and its benefits.

So, the found table is used to generate the relevant e-service bundles. The bun-
dles are evaluated against the benefits and their preference ordering, as assigned
by the consumer, in the following order.

400 S. de Kinderen and J. Gordijn

Table 1. A preference ordering as done by the average 2.4 household

Consequence Benefit VoIP VoIP VoIP Instant Number Number
(KPN) (XS4all) (skype) messaging portation portation

(Microsoft) (KPN) (XS4all)
Must have
Voice during communication: X X X
conversation oral
Should have
Keep current number portation X X
phone number
Avoid unwanted number recognition X X
conversations caller-ID X

Microsoft-ID X
Could have
Multiple #Phone numbers: X
calls simult. >= 1

1. Service bundles that do not satisfy all ‘must-have’ benefits, are rejected.
2. For the remaining service bundles, the total number of satisfied ‘should-have’

benefits per bundle are used to rank the bundles. If a bundle A satisfies
more ‘should-have’ benefits than bundle B, bundle A will be preferred over
B, independently of the amount of ’could have’ benefits. This corresponds
to how MoSCoW is used in RAD software engineering projects, where first
all ’should-have’requirements are implemented before, and independently of,
the ’could have’ requirements.

3. In case two or more service are ranked equally, the number of ‘could-have’
benefits per bundle are used for ranking.

Case: For our average 2.4 household, consider the generated table 1. Here, the
‘must-have’ benefits are clustered at the top rows, followed by the ‘should-haves’
and thereafter the ‘could-haves’.

‘Must-have’ benefits. The ‘must-have’ benefits lead to the following set of
alternative services [VoIP (KPN), VoIP(Skype), VoIP(Xs4all)], because all these
services each include the benefit ‘communication: oral’. Since all these services
result in the same number benefits (namely one), we can not indicate a preference
ordering yet.

‘Should-have’ benefits. We now consider the ‘should-have’ benefits. In our
table, we have four of such benefits:

– (1) ‘number portation’, which inherited its ‘should-have’ preference from the
consequence ‘keep current phone number’, and

– (2) ‘number recognition’, (3) ‘caller ID’, and (4) ‘Microsoft ID’.

The last three benefits inherited their ‘should-have’ preferences from the ‘avoid
unwanted conversations’ consequence; therefore these benefits are alternatives
for the ‘avoid unwanted conversations’ consequence. In figure 2, this is repre-

Reasoning about Substitute Choices 401

sented by an OR-dependency between ‘avoid unwanted conversations’ (conse-
quence) and the benefits realizing this consequence.

These benefits result in the services [Instant messaging (Microsoft), Number
Portation (KPN), Number portation (XS4All))], to be added to the already
found services as a result of the ‘must-haves’. Note that the other ‘should-have’
benefits (Number recognition (KPN) (XS4All), Caller-ID (Skype)) are already
included in the services found while considering the ‘must-haves’.

‘Could-have’ benefits. We finally consider the ‘could-have’ benefit ‘#phone
numbers: >= 1’. In our consumer specific catalogue, we find that the ‘VoIP’
service of XS4all is the only supplier that can provide this benefit. This service
was already included as a candidate in the service bundle.

Alternative services. We now consider alternative services satisfying the same
need. In other words: we must avoid awkward bundles, such as the bundle [VoIP
(KPN), VoIP (XS4all)] because both services in this bundle act as an alternative
in satisfying the same need: ’communicate directly’. However, we may find [VoIP
(KPN)] and [VoIP (XS4all)] as alternative bundles.

Preference ordering. After checking for alternative services, we arrive at the
following possible bundles, sorted according to their correspondence to the pref-
erence ordering of benefits.

1. [VoIP (XS4all), number portation(XS4all)], [VoIP(XS4all), number porta-
tion(KPN)].

2. [VoIP (skype), number portation(XS4all)], [VoIP(Skype), number porta-
tion(KPN)], [VoIP(KPN), number portation(XS4all)], [VoIP(KPN), number
portation(KPN)].

3. [XS4all].
4. [VoIP(skype)], [VoIP(KPN)].

Preference ordering is done by comparing each possible bundle using the ac-
tual benefits desired by the consumer. So, for instance, the combination [VoIP
(XS4all), number portation(XS4all)] is ranked higher than [VoIP(KPN), number
portation(KPN)] because, supposing that the satisfaction of all other benefits
is equal, [VoIP (XS4all), number portation(XS4all)] satisfies an extra ‘should-
have’ benefit:‘#Phone numbers: >= 1’ . Additionally, any ‘VoIP’ service com-
bined with ‘number portation’ is ranked higher than an individual service. This
is because the number of ‘should-have’ benefits satisfied by such a combination
is higher than the number of ‘should-have’ benefits satisfied by any individual
‘VoIP’ service, since it includes the benefit ‘number portation’. Also, no bundles
are generated that contain an ‘instant messaging’ service. This is because ‘instant
messaging’ does not contain the benefit ‘communication:oral’. Moreover, an ‘in-
stant messaging’ service will not be offered in combination with a ‘VoIP’ service,
because it acts as an alternative in satisfying the same need: ‘communicating with
family abroad’. Finally, note that we only discuss consumer-oriented reasoning
about service bundling in this paper. Therefore, bundles such as [VoIP(Skype),
number portation(XS4all)] are taken into consideration, even though they are

402 S. de Kinderen and J. Gordijn

likely not possible from a supplier-oriented view. Such a bundle would be re-
jected by supplier-oriented bundling analysis. For a more elaborate discussion
on the supplier-view on service bundling, we refer to [3].

Step 6: Present the consumer with the sacrifices of services and an
opportunity to change the importance rankings. Before the consumer
actually chooses one of the possible bundles, (s)he considers the sacrifices of
each alternative bundle. Based on the sacrifices, the consumer may change the
preference orderings assigned to the benefits. We do so because the price of a
service plays a significant role in a consumers’ decision to actually acquire a
service [9]. In our ontology, this issue is represented with the concept ‘sacrifice’
(To represent the pricing of a service itself, we use the pricing models of [8]). If
the consumer is not satisfied with the price for a certain service bundle, (s)he
has an opportunity of changing the preference ordering of consequences and
therefore benefits. Changing the preference ordering of a benefit entails going
back to step 3. If the consumer eventually finds that there is a balance between
benefits received from a bundle and the price that has to be paid for it, (s)he
selects the bundle for provisioning.

Case: Our consumer zooms in on both bundles on top of the preference order-
ing, and finds that acquiring the benefit ‘number portation’ costs 10 e in both
cases. Now, for the sake of argument, say our consumer finds this too expensive
and wants to change the preference of the benefit ‘number portation’. For this,
(s)he is presented with an opportunity to go back to step 3, where all the values
already filled in are still present (such as ‘#Phone numbers: >= 1’.). Now the
consumer changes the preference ordering on ‘number portation’ from ‘should-
have’ to ‘does-not-matter’ and generates the alternative bundles again. A new
set of service bundles is generated, this time with [XS4all] at the top of the list.

4 Discussion

Practical usefulness. The domain expert of KPN considers e3service to be a
useful tool for facilitating communication between marketeers and IT-personnel.
This precedes our own goal, namely automated consumer-oriented e-service
bundling. Marketeers, responsible for designing these bundles, do not always
know whether an e-service bundle is technically feasible. Since e3service relates
benefits of e-services as experienced by consumers to a supplier-oriented cata-
logue of services (see also [1]), e3service contributes to closing this gap.

The domain expert from KPN also pointed out that on-the-fly e-service
bundling as envisioned, brings about problems that need to be considered before
this idea can be realistically implemented. Below, we provide a selection of a few
mentioned problems.
Planning of e-service provisioning. Some e-services take days of preparation
before they can be provisioned to the consumer, often due to contractual and
technical arrangments to be made. Therefore, the provisioning of a bundle has
to be carefully planned. This calls for inclusion of (skeleton) planning techniques
in the reasoning process (see e.g. [10]).

Reasoning about Substitute Choices 403

Single-point-of-contact. Often consumers want to have a single-point-of-
contact in case there are problems with the provisioned service bundle (e.g.
a helpdesk). A dynamic, and on-the-fly generated multi-supplier e-service bun-
dle should have mechanisms to mitigate these single-point-of-contact services.
One solution is to consider such services as e-services themselves, which there-
fore should be part of the e-service composition process. Moreover, the need for
single-point-of-contact services (e.g. to repair service-failures) can be reduced
by allowing for automated reconfiguration of provisioned service-bundles, e.g.
facilitated by platforms for adaptable compositions of web-services [4].

e-Service pricing. In the telecommunication industry, discounts are a frequently
used mechanism to attract consumers. With single-enterprise bundles, pricing
these bundles and deciding on discounts is relatively straightforward. If however
consumers create their own multi-supplier bundles, deciding on discounts is more
difficult, due to supplier-specific pricing schemes and discount-policies.

5 Conclusions

In this paper, we showed how to reason about bundling of e-services, based
upon consumer needs, in a structured and semi-automatic way. Additionally, we
showed how to derive a preference ordering for the found e-service bundles, and
how the pricing of a supplier-specific service - through an influence upon con-
sumer preferences -can influence this preference ordering of bundles. We have also
illustrated how e3service works in practice, for a case study in the telecommuni-
cation industry. Currently, we are working on software support for the e3service
methodology to validate that service bundles can be semi-automatically gener-
ated from a stated consumer need.

For future research directions, we will integrate a supplier perspective on
e-service bundling (specifically e-serviguation, see [1]), to generate e-services
bundles that are not only valid from a consumer perspective, but also from
a supplier perspective. Additionally, we will address the quality (or: non-
functional) attributes of a service more in-depth. This is because quality also
plays an important role in acquiring e-services, especially when considering B-
to-B-environments where such quality aspects usually have to be strictly agreed
upon by means of a SLA (see e.g. [11]).

Acknowledgements. We want to thank Leo Stout and Ron van der Kwaak
from KPN for useful comments on the case presented in this paper. This research
has been partly funded by NWO/STW/Jacquard as the project VITAL.

References

1. Akkermans, H., Baida, Z., Gordijn, J.: Value webs: Ontology-based bundling of
real-world services. IEEE Intelligent Systems 19(44), 2332 (2004)

2. Arndt, J.: How broad should the marketing concept be? Journal of Marketing 42(1),
101–103 (1978)

404 S. de Kinderen and J. Gordijn

3. Baida, Z.S.: Software-aided service bundling. PhD thesis, Free University Amster-
dam (May 2006)

4. Baresi, L., Nitto, E.D., Ghezzi, C., Guinea, S.: A framework for the deployment
of adaptable web service compositions. Service Oriented Computing and Applica-
tions 1(1), 75–91 (2007)

5. Beynon-Davies, Carne, Mackay, Tudhope: Rapid application development (rad): an
empirical review. European Journal of Information Systems 8(3), 211–223 (1999)

6. Booth, D., Liu, C.K.: Web services description language (wsdl) version 2.0 (2007),
http://www.w3.org/TR/2007/PR-wsdl20-primer-20070523/

7. de Kinderen, S., Gordijn, J.: e3service - an ontological approach for deriving multi-
supplier it-service bundles from consumer needs. In: Proceedings of the Forty-
first Hawai’i International Conference on System Sciences (HICSS-41) (CD-ROM),
January 7-10, Computer Society Press (2007)

8. de Miranda, B., Baida, Z., Gordijn, J.: Modeling pricing for configuring e-service
bundles. In: Proceedings of The 19th Bled eCommerce Conference, June 5-7 (2006)

9. Fishbein, M.: Belief, attitude, intention and behavior: an introduction to theory
and research. Addison-Wesley, Reading (1978) (third print)

10. Friedland, P.E., Iwasaki, Y.: The concept and implementation of skeletal plans.
Journal of Automated Reasoning (1), 161–208 (1985)

11. Greiner, U.: Quality-Oriented execution and optimization of cooperative processes:
Model and algorithm. PhD thesis, Univ. Leipzig (2006)

12. Grönroos, C.: Service Management and Marketing. Lexington Books (1990)
13. Gutman, J., Reynolds, T.J.: Laddering theory-analysis and interpretation. Journal

of Advertising Research 28(1), 11 (1988)
14. Holbrook, M.B.: Consumer value; a framework for analysis and research, 1st edn.

Routledge (1999)
15. Kotler, P.: Marketing Management. Prentice-Hall, Englewood Cliffs (2000)
16. Lovelock, C.: Service Marketing - People, Technology, Strategy, 4th edn. Prentice-

Hall, Englewood Cliffs (2001)
17. Ramsay, J.: The real meaning of value in trading relationships. International Jour-

nal of Operations and Production Management 25(6), 549–565 (2005)
18. Tapscott, D., Ticoll, D., Lowy, A.: Digital Capital - Harnessing the Power of Busi-

ness Webs. Nicholas Brealy Publishing (2000)
19. Yu, E.: Towards modelling and reasoning support for early-phase requirements en-

gineering. In: Proceedings of the 3rd IEEE Int. Symp. on Requirements Engineering
(RE 1997), pp. 226–235. IEEE Computer Science Press, Los Alamitos (1997)

http://www.w3.org/TR/2007/PR-wsdl20-primer-20070523/

Message Correlation and Business Protocol

Discovery in Service Interaction Logs

Belkacem Serrour1, Daniel P. Gasparotto1, Hamamache Kheddouci1,
and Boualem Benatallah2

1 Université de Lyon, Laboratoire LIESP, Bât. Nautibus (ex 710), 43, Bd. du 11
novembre 1918, 69622 Villeurbanne Cedex, France

{bserrour,hkheddou}bat710.univ-lyon1.fr, daniel.gasparotto@gmail.com
2 CSE, UNSW, Sedney NSW 2052, Australia

boualem@cse.unsw.edu.au

Abstract. The problem of discovering protocols and business processes
based on the analysis of log files is a real challenge. The behavior of a Web
service can be specified using a Business Protocol, hence the importance
of this discovery. The construction of the Business Protocol begins by
correlating the logged messages into their conversations (i.e. instances
of the business protocol). The accomplishment of this task is easy if we
assume that the logs contain the right identifiers, which would allow us to
associate every message to a conversation. But in real-world situations,
this kind of information rarely exists inside the log files.

Our work consists in correlating the messages present in Web ser-
vice logs into the conversations they belong to, and then generating au-
tomatically the Business Protocol that reflects the messaging behavior
perceived in the log. Contrary to other approaches, we do not assume
the existence of a conversation identifier. We first model logged message
relations using graphs and then we use graph theory techniques to ex-
tract the conversations and finally the Business Protocol. Logs are often
incomplete and contain errors. This induces some uncertainty on the re-
sults. To address this problem, we apply the Dempster-Shafer theory of
evidence. Our approach is implemented and tested using synthetic logs.

Keywords: Web services, business protocols, message correlation, log
analysis, graph theory.

1 Introduction

Every Web service has an interface (specified by the language WSDL1, for ex-
ample). This interface contains the realizable operations, ingoing and outgoing
message types, etc. The interface specified by WSDL is only a functional inter-
face, i.e. it describes only the various invocable methods (the ordered sequences
of these are not described). To assure the dynamic and behavioral aspect of
the Web services, a new interface is proposed in [1][2]: the Business Protocol. A

1 Web Services Description Language.

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 405–419, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

406 B. Serrour et al.

Business Protocol is a specification of all possible conversations that a service
can have with its partners[10]. Recent work shows the importance of specifying
business protocols and also propose models to represent them. The authors used
Final States Machine (FSM) to model the Business Protocol. The motivations
to use FSM are that: (i) FSM is a well-known paradigm with established formal
foundations, (ii) it is simple and suitable for modeling reactive behaviors, (iii) it
embeds the notion of state, which is useful for applications such as monitoring.
Business Protocols provide several advantages: (i) They provide developers with
information on how to program the client to interact correctly with the service.
(ii) They serve as a verification model of behavioral constraints (make sure that
the real service corresponds well to the conception constraints). (iii) A Busi-
ness Protocol is modeled in the form of a Final States Machine (FSM), which is
an easily exploitable visual model by the user (addition of new functionalities,
constraints, etc.)[4][10].

Business Protocol provides several advantages and is important for Web ser-
vices paradigm. In spite of this, a key point is how to reconstitute a protocol
with no prior specification?

The idea proposed in this paper is to analyze log files of Web services to
extract the Business Protocol. The discovery models depend on the size of log
file to analyze. More the log file is long more the probability to have all the
possible exchanges between the service and his clients is great. Otherwise, if the
log to analyze does not contain all the instances of the service, it will validate
at least a part of the model.

Analyze of log files is a delicate task because they are often incomplete, uncer-
tain and contain errors. The first difficulty of this task is the detection of errors
in logs. There are two types of errors:

Log Incompleteness. In practice, conversation logs are very often incomplete
in the sense that they do not contain all the possible conversations allowed
by the service protocol. Incompleteness makes it difficult for a model discovery
algorithm to discover even simple models.

Noises/Errors/Interruptions. Various approaches try to solve the problem
of handling noise in real-world log files, which are often imperfect. In a real-world
web service log file, it is normal to find problems such as omitted/lost entries,
swapped timestamps, random interruption, etc. In a protocol execution instance,
this will add a lot of problematic sequences that should be considered[9]. Below
are some examples that illustrate the issues:

Missing Messages: The logging infrastructure may fail to record one or more
messages of a conversation. For example, for a conversation abcde, we may have
acde captured in the log, inwhich b ismissing.This type of error happens for various
reasons, including bugs in the logging infrastructure or performance degradation.

Swapping Messages: The order of messages as recorded in the log may differ
from the real ordering of messages as exchanged between services. For example,
for conversation abcde, we may find acbde recorded in the log. The order of b and

Message Correlation and Business Protocol Discovery 407

c is swapped. This type of error may be due to the granularity of time stamping,
delays in the network infrastructures, etc.

Partial Conversations: We call partial a conversation that is interrupted
before its completion. For instance, this can be due to network failure, client
abortion or service execution exceptions. For example, if abcd is the message
sequence of a complete conversation, only abc may have been exchanged and
recorded in the log.

The second difficulty of log analysis task is the message correlation, i.e. group-
ing log messages in a set of conversations. This step is the first in the protocol
discovery process (see Figure 1). The message correlation task can be easily ac-
complished if we have an information in logs indicating to which conversation
belongs every message (this information is called conversation identifier or cid).
But in real-world implementation, this information rarely exists in the logs.

Fig. 1. Business Protocol Discovery Process

This paper is structured as follows. In the next section we give some definitions
and we discuss some approaches. Then, in Section 3 we present the details of our
approach. Section 4 discusses implementation aspects. We conclude in Section 5.

2 State of the Art

2.1 Definitions

WS Message Log (ML)

Definition 1. A message log ML is a collection of entries (or events) e =
(cid, s, r, t, m), where cid is the conversation identifier, s and r denote the sender
and the receiver of message m, and t is the timestamp.

At this point, our definition diverges from [10]. The log files that we consider
are slightly different:

A message log ML is a collection of entries e = (s, r, t, m).
Note that a cid is not present as it was in the previous definition. The omission

of the conversation identifier will not let us correlate each message to the conver-
sation that it made part. The log is a sequence of events ordered by timestamp
and with the identifier of the sender and receiver.

408 B. Serrour et al.

Conversation Log (CL)

Definition 2. A conversation log CL is a collection of conversations CL =
{c1, c2, ..., cn}. Each conversation ci ∈ CL is a sequence of messages ci =〈
mi

1, m
i
2, ...m

i
k

〉
.(see Figure 1(b)).

Each client exchanges a set of messages (conversation) to interact with the ser-
vice.

Business Protocol

Definition 3. A Business Protocol, as already defined, specifies the potential
sequencing of messages exchanged by a particular partner with its other partners
to achieve a business goal. It can be modeled as a tuple:

P = (S, s0, F, M, T)

where S is the set of states of the protocol, M is the set of messages supported
by the service, T ⊆ S2 × M is the set of transitions, s0 is the initial state, and
F represents the finite set of final states. A transition from state si to state sj

triggered by the message m is denoted by the triplet (si, sj , m)[10] (see Figure
1(c)).

Note that in the model, conversations may contain markings indicating whether
the message is sent or received by the service. This is easily detected by looking
at the sender attribute of the message (If the sender is the service we say that
the message is outgoing else the message will be marked as ingoing). In our work,
we have not heeded that.

2.2 Approaches

The problem of logs analysis for models discovery relates to several fields. For
instance, the main idea of process mining is the analysis of log files to ex-
tract knowledge that enhance and improve information systems[5][6][13]. To
discover these models, it uses different techniques for the analysis of logs, es-
pecially data mining techniques. Data mining is the extraction of interesting
(non-trivial, implicit, previously unknown) information or patterns from data in
large databases[7].

In the Web services field, the majority of works focus on the process discovery
(workflows) and protocol discovery[9][10][11].

In this paper, we are interested in the protocol discovery problem.
In our research domain, there are two kinds of problems: protocol discovery

using conversation logs (messages log with conversations identifiers) and using
message logs (messages log without conversations identifiers). A lot of efforts
have been put in the resolution of the first problem. On the other hand, the
problem of having message logs without conversation identifiers is a research
field that has been gaining attention recently[11].

Message Correlation and Business Protocol Discovery 409

Protocol Discovery. The solution in [9] uses conversation logs as input (mes-
sages log with conversations identifiers). The conversations are subdivided in
smaller sequences and an automatic bottom threshold is applied taking advan-
tage of the information about the conversations. These sequences are building
blocks of an oriented graph, called Message Graph. It is initially overgeneral-
ized, because of the way it is built, meaning that refinement is needed to reach
expected results. After the removal of erroneous paths (using an enhanced ver-
sion of the splitting method originally), the Message Graph is then converted
into an FSM, minimized using Hopcroft’s algorithm and consumed by final user-
refinement in order to generate an acceptable Discovered Protocol.

Message Correlation. B. Benatallah et al. in [11], bring up this specific prob-
lem of protocol discovery without message correlation information. The authors
define rules (celled Correlation Rules) between messages log to construct conver-
sations. The objective of this work consists in the identification attributes to use
for the correlation. For this objective, they use some heuristics. After this, they
try to specify the rules and composite rules to apply on these attributes. The
authors gave some other directions for solving the problem, and making it the
sole article found by us that deals with the entire process of business protocol
discovery starting from uncorrelated message log files.

Due to difficulty of this task (message correlation in logs), all papers which
treat this problem suppose the existence of cid, which facilitates the conversa-
tions extraction. Our main contribution consists in the correlation of log mes-
sages without assuming the existence of conversation identifiers and then to
generate the Business Protocol.

3 Protocol Discovery Framework

The general architecture of our approach is described in Figure 2. It has as
objective the Finite State Machine (FSM) that describes the protocol that would
have generated the log file.

The log file to be analyzed is generated by the logging infrastructure of the
service. In this log, one can find all messages exchanged by the service and its
clients (sent and received messages). It is assumed that every client begins a
conversation with the service by a single starting message (e.g. login message).

In following, we describe each step in the process of discovery framework.

3.1 Pre-partitioning the Log File

Each message of the log is generated by one partner (client/server) and received
by another (client/server). This step consists of grouping the messages exchanged
between a same pair client/server. New sub-log files containing these groups are
created.

The log partitioning aims to eliminate the conversation overlaps in logs. When
a service begins several simultaneous conversations with different clients causes

410 B. Serrour et al.

Fig. 2. Business Protocol Discovery from Message Log Files

overlaps of conversations (e.g. two messages which follow each other in this log
can belong to different conversations).

Using S and R, it is possible to divide the log into pairs as {Si,Rj} and with
entries ordered by T (see example in Tables 1 and 2).

Table 1. In a first view of a log file, each line is an entry and we observe the Sender
(S), Receiver (R), Timestamp (T) and MessageType (MT) already identified and n
other unknown attributes

Logfile

S R T MT Other Attrib. (unknown meaning yet)

1 C1 S1 12 INIT {A1, A2, ..., An}
2 C2 S1 15 INIT {A1, A2, ..., An}
3 S1 C1 17 WLCM {A1, A2, ..., An}
4 S1 C2 16 WLCM {A1, A2, ..., An}
5 C1 S1 20 REQA {A1, A2, ..., An}

.

Table 2. Partitioned Logs

Log File Divided by {Si,Rj} and Sorted by T
S R T MT Other Attrib. (unknown meaning yet)

Partition {S1,C1}
1 C1 S1 12 INIT {A1, A2, ..., An}
3 S1 C1 17 WLCM {A1, A2, ..., An}
5 C1 S1 20 REQA {A1, A2, ..., An}

.

Partition {S1,C2}
2 C2 S1 15 INIT {A1, A2, ..., An}
4 S1 C2 16 WLCM {A1, A2, ..., An}

.

Message Correlation and Business Protocol Discovery 411

After the grouping, we can order the log by timestamp and observe the mes-
sage flows of each specific client with a specific server.

From now on, a simplification in the notation of the sub-log files will be
used, i.e. {INIT, WLCM, REQA, . . .} and {INIT, WLCM, REQB, . . .}, two
large sequences of messages, each related to particular client and server pair. To
simplify, we use in our examples symbolic sequences as {A, B, C, D, A, B, D, E,
A, . . . }, where each letter is a reference to a message type.

3.2 Message Graph

Once sub-logs are identified, we can now build a graph that represents the transi-
tions between events and their frequency. The oriented weighted graph is denoted
as G(V, E), where:

– V = {v1, ..., vn} is the set of vertices (messages, in this case, with n different
types),

– E = {e1, ..., ek} is the set of edges (correlations) (e = (u, v) marks a correla-
tion between two message types u and v, means that the message v succeed
the message u in the sub-log (not in log file source)).

Both the frequency of vertices f(vi) and edges g(ei) are counted.

– f(vi): number of times that message vi appears in the log file (for example,
in figure 3, f(A)= 49, means that the message A appears 49 times in the
log).

– g(ei): ei = (u, v), number of times that the message v succeed u in the log file
(for example, in figure 3, g(A, B) = 46, means that the message B succeed
A 46 times in log).

Fig. 3. Message Graph

In this graph, there is only one node for each message type. In the Figure 3, the
message graph contains all the messages of the log. The creation of the graph G
is given by Algorithm 1:

412 B. Serrour et al.

Algorithm 1. Message Graph
Require: subLog
Ensure: G

v ← subLog[0]
f(v) ← 1
for i = 0, i < (len(Log) − 1) /*for every event logged*/ do

v ← subLog[i]
v′ ← subLog[i + 1]
if v /∈ V then

add v to V
end if
if v′ /∈ V then

add v′ to V
end if
f(v′) ← f(v′) + 1
if (v, v′) /∈ E then

add (v, v′) to E
end if
g(v, v′) ← g(v, v′) + 1

end for
return G

The union of the various generated message graphs (see Figure 3) represents
the complete information contained in the Log file.

Initial Message Type. The first information that we should extract in message
graph is the Initial Message Type. We must be able to infer which message is used
in the beginning of the protocol execution and which messages end an execution
(always considering noise and interruptions). Log files can always contain errors.
Thus, nothing guarantees that the first message read in log is the initial message
(it can be due to an error at the beginning of the log file or the log to analyze
is only a not complete fragment; Consequently, the first message in this file has
no certainty to be the initial message).

To find the initial message, we should rely on some evidences.
From the graph built in the previous step, we can extract evidences witch

help to discover the initial message of the protocol:

1. P1 : Frequency of the node: Score(Cv) = f(v). Surely, all conversations must
make use of the initial message. It will show a high frequency of observations
when compared to other normal messages. Although, we must consider the
cases of messages loops, that could increase the occurrence of regular mes-
sages when compared to the frequency of the initial message.

2. P2 : Highest sum of frequencies of infrequent edges that arrive to the node.
Score(Cv) =

∑
g(k, v), k ∈ V, g(k, v) < φ(threshold). Another good evi-

dence is that every time there is an interruption in the protocol, the next
message seen from the client will be an initial message (a new instance of

Message Correlation and Business Protocol Discovery 413

protocol execution). We use the sum of the frequency values of all edges ar-
riving to a message node that are below a minimum frequency threshold. In
other words, we take all the weak edges arriving to a node and count their
appearances. The best candidate will be the one with the highest value.

3. P3 : Node with weight degree out higher than weight degree in. The parti-
tioning of the log into subsets avoids returned edges of last messages of var-
ious clients towards the initial node. Score(Cv) = weight degree out(v) −
weight degree in(v).

4. P4 : No Self Loops: We assume that there is no self-loop in the initial message
of a protocol, so every time we find a frequent one, the message will not be
a candidate.

These evidences do not always point to the correct candidate(s) of initial mes-
sage. The criteria have their own situations where the chosen node is not the real
initial message, so we combine the results of the evidences to achieve a better
outcome. To do so, we use Dempster-Shafer’s mathematical theory of evidence,
based on belief functions and plausible reasoning, which is used to combine sepa-
rate pieces of information (evidence) and to calculate the probability of an event.
Detailed explanations this the theory can be found in [12] and a practical use of
it in [3].

Each of the three criteria (P1, P2, P3) to be combined gives a score to the node
in the candidates set (a score function is associated to every criterion).

The set of candidate nodes, U = {C1, C2, ..., Ck}, to be initial node, are all
nodes of the graph except those having self loops.

In order to apply DS’ theory, we need to normalize the scores. The normal-
ization equation is shown in eq. 1:

m(Ci) =
Score(Ci)∑n
i=1 Score(Ci)

× 100 (1)

By the theory, the uncommitted belief (UB) is defined as an amount of belief
that is not assigned to the focal elements by the evidence.

m′(Ci) =
(

m(Ci)∑n
i=1 m(Ci)

)
× (100 − UB) (2)

This equation allows revaluing the amount of belief associated with each cluster
after the introduction of the uncertainty. m(Ci) is an original mass assigned to
the candidate Ci without considering the uncertainty. m′(Ci) is the new mass
that considers for the uncertainty. UB is the uncertainty related to the criterion.∑

m(Ci) is the total amount of belief affected to all the focal elements before
considering the uncertainty. Note that, by the equation 2, after the revaluation∑

m(Ci) + UB = 100 [3].
To calculate the UB for each criterion, it was carried out as follows. We take

a log file of which we know the starting message. For each criterion, we test
if it manages to find the true starting message. We take each criterion alone
and we do 100 simulations on this criterion. For each execution, we look if the

414 B. Serrour et al.

criterion finds the right starting node. The UB associated with this criterion will
the number of time that it fails to find the right node (failure rate to find the
right node). The UB founded by our simulations are these:

– P1: UB = 55,
– P2: UB = 10,
– P3: UB = 15.

The Dempster combination rule is provided by the theory to let us pool evidences
from a variety of sources. This rule aggregates bodies of evidence two by two and
at each run, and gives a new combined one. The combination rule is commutative
and associative.

m(A) = m1 ⊗ m2 =
∑

B∩C=A m1(B) · m2(C)∑
B∩C=φ m1(B) · m2(C)

(3)

Note that the criterion weighting can be considered when combining evidences
in order to prioritize the most significant ones. After combining the criteria and
associating a score to each candidate message, our algorithm selects the highest
value as the initial message of the business protocol.

Final Message Types. Now with the initial message, finding the final messages
that terminate the protocol execution is trivial: we search for all the messages
that have a well supported (above the threshold φ) edge going toward the initial
message, meaning that in the log file, after this specific message, the next one is
most probably the initial message.

3.3 Deriving the Business Protocol from the Message Graph

The Message Graph, after the removal of arcs below a user-defined threshold
φ and those going toward the initial node, is overgeneralized, meaning that it
accepts incorrect paths (see Figure 4).

Fig. 4. (a): Message Graph, (b): Reduced Message Graph

In [10], the chosen solution is to perform a graph splitting. They check all
the possible paths in the Message Graph and see if it appears in the CL. If not,
the path was mistakenly accepted and should be removed from the graph. We
did the inverse by building a overfittet FSM to our ”conversations” and doing a
state merging on it.

Message Correlation and Business Protocol Discovery 415

Candidates to be Conversations. With the information on the initial and
final messages of the protocol, we can now extract from the Message Log what
we can call ”candidates” to conversations.

1. At every occurrence of an initial message, we start extracting the sub-
sequence until finding a next initial message or reaching the end of the log.
After this step we have a ”candidate” conversation log file, see Figure 5(a).

2. At this point, we have to solve the problem of loop generalization: sequences
as {A, B, C, B, C, D} and {A, B, C, B, C, B, C, D} cannot be seen as different
possible executions of the business protocol. To address these situations, we
transform each candidate conversation into a small Message Graph. In a
graph like this, the loops are described as a way that it can be infinitely
executed (see Figure 5(b)).

3. Now the conversations, as message graphs, are somehow generalized, so we
group the now-identical ones and sum their frequencies.

4. It can also be supposed that the conversations {A, B, C, D, E, F, E, F, G}
and {A, B, C, B, C, D, E, F, E, F, G} are identical executions, as they share
the same set and the edges set E of the first is fully contained in the second
and in the same order. So, as an arc will be missing in the graph of the first
conversation (C → B), but the properties are satisfied, we can join them, as
described in Figure 5(c) and is a part of Algorithm 2.

Algorithm 2. Building the NFA
Require: ini,ends,cCL //candidates to be conversations
Ensure: FSM

for all c in cCL do
if last event(c) in ends then

mg(c)=Message Graph(c)
else

del c
end if

end for
for all c in cCL do

for all c′ in cCL do
if c′! = c and (mg(c) == mg(c′) or mg(c′) ⊂ mg(c)) then

f(c) = f(c) + f(c′)
del mg(c′),c′

end if
end for

end for
for all c in cCL do

NFA.append unique(bind to NFA(convert to FSM(mg(c))))
end for
return NFA

Finally, after reducing the number of different conversations in the conver-
sation log, we are going to have a refined conversation log file with frequency
annotation.

Create and convert a NFA into a DFA (Determinization). Every small
Message Graph of every conversation candidate is transformed into a DFA by
doing a simple translation, messages becoming arcs and transitions becoming
states on the DFA. All the DFAs are binded together using an epsilon transition

416 B. Serrour et al.

from an initial state, as depicted in Figure 5(d). With this binding, it becomes
an NFA and will suffer a determinization process to become a DFA with its
similar states merged, while still accepting the same language.

In the theory of computation, the subset construction is a standard method for
converting a nondeterministic finite automaton (NFA) into a deterministic finite
automaton (DFA) which recognizes the same formal language. The algorithm
used to do the conversion is called subset algorithm. Its description and theory
analysis is not in the scope of our work and can be seen in 1979’s work of E.
Hopcroft in [8].

Fig. 5. in (a) we have the list of candidate conversations, in (b) the message graphs of
each conversation, in (c) the process of joining the similar sequences, in (d) the NFA
binding the messages through the state of the initial message and with the ε transitions
highlighted, in (e) the NFA after the determinization (subset algorithm), now a DFA
and in (f) the final DFA (Hopcroft’s minimization)

Ulmann-Hopcroft’s minimization algorithm and cycle detection.
Ullman-Hopcroft’s DFA state minimization algorithm reduces the equivalent
states without modifying the accepted language. In Figure 5(d), we have the
DFA minimized after the execution of Hopcroft’s algorithm.

The idea of the last two algorithms is to minimize the Discovered Protocol
without modifying the accepted executions. The generalization is assured when
the Message Graph for each conversation candidate was created.

3.4 Refining the Discovered Protocol

Mainly, there are two reasons why user-assisted refinements will be needed: In
the presence of noise and, as we use frequency thresholds to separate between

Message Correlation and Business Protocol Discovery 417

noisy and correct conversations, the latter could be rejected and first ones could
be accepted. Also, depending on the desired complexity of the modeled protocol,
user may want to simplify its description.

4 Implementation

The best way to contribute to the already existing effort to formalize Busi-
ness Protocols would be to implement our conversation and protocol discovery
algorithm in a framework for the management and analysis of Web service in-
teractions. However, in the first step, we coded an isolated solution using the
Python language to execute and simulate our ideas.

For the creation of synthetic logs, simulated Business Protocols were used as
inputs, message logs were generated containing multiple clients, the timestamps
of the messages and the message names. Of course, the conversation identifier
attribute was omitted from the log file. We use the following variables to create
the synthetic log:

– Protocol model with probabilities on choices of messages,
– Number of desired conversations,
– Probability of random interruption in an execution of the protocol,
– Probability of random error (swap or omission) in the log file,
– Number of clients and servers of services making part of the log.

The errors were inserted by executing all the desired conversations (with ran-
dom interruptions) and then making another run through the log, swapping and
erasing events in the desired proportion.

Fig. 6. Application of the Dempster-Shafer Theory

Protocol models were taken from the literature so they could be as realistic
as possible.

Once with the synthetic business protocols and their log files generated, we
were able to run our protocol discovery algorithm to analyze it.

4.1 Simulation and Results

As an example of simulation, we take a Business Protocol. 1000 conversations
were generated with 30% of probability of swaps or deletions in a message,
and 10% of the conversations were randomly interrupted. An empirical, user-
defined, general bottom threshold of 25% of the highest arc frequency was used
for deciding if an arc was considerable or not.

418 B. Serrour et al.

Figure 4(a) show the corresponding Message Graph. The results of the
Dempster-Shafter analysis, for finding the initial message, can be seen in Figure
6 (d). Note that the node C does not appear in the set of candidates nodes
because it has self loops. After finding initial message, the message graph is
reduced by removing the infrequent edges (see Figure 4 (b)).

The UB (uncommitted belief) of each Criterion was calculated based on the
observation of the number of times that the criterion had a correct answer, taken
different configurations.

The overall results of the Discovered Protocols were satisfactory: even when
inserting a few interleaving, the results were as expected (Discovered Protocols
very similar to the originals). The overgeneralization versus overfitting issue was
well pondered by the form we did the generalization, and the accepted conver-
sations were at most of the time the same as in the original tested protocols.

5 Conclusion and Perspectives

Message correlation in logs to discover models is a very important step for pro-
tocol discovery. That is why it is necessary to find an automatic way to correlate
messages, without having an information in logs (conversations identifiers) which
groups them in conversations.

Our contribution consists of two parts: Message Correlation in logs into con-
versations, without conversations identifiers, and generating the Business Pro-
tocol in the form of FSM (Final States Machines).

We modeled logs using graphs and we made use of graph theory techniques
to extract the conversations and build the Business Protocol. We have extracted
four evidences to convert our initial message graph into a reduced one. For this,
we apply Dempster-Shafers mathematical theory of evidence.

As perspectives, we intend to consider other attributes for the correlation.
There are yet new problems in this domain that need to be explored: as now
the composition of web services are becoming a popular procedure, it should be
thought about ways to solve the problem when multiple logs with communica-
tions from multiple cooperative services are taken.

References

1. Benatallah, B., Casati, F., Toumani, F.: Analysis and Management of Web Service
Protocols. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004.
LNCS, vol. 3288, pp. 524–541. Springer, Heidelberg (2004)

2. Benatallah, B., Motahari, H.: Servicemosaic project: Modeling, analysis and man-
agement of web services interactions. In: Third Asia-Pacific Conference on Con-
ceptual Modelling (APCCM 2006), vol. 53, pp. 7–9 (2006)

3. Dekar, L., Kheddouci, H.: A cluster based mobility prediction scheme for ad hoc
networks. Ad Hoc Networks 6(2), 168–194 (2008)

4. Devaurs, D., De marchi, F., Hacid, M.S.: Caractérisation des transitions tempo-
risées dans les logs de conversation de services web. In: Extraction et Gestion des
Connaissances (EGC 2007), vol. RNTI-E-9, pp. 45–56 (January 2007)

Message Correlation and Business Protocol Discovery 419

5. Dustdar, S., Gombotz, R.: Discovering web service workflows using web services
interaction mining. International Journal of Business Process Integration and Man-
agement 1(4), 256–266 (2006)

6. Greco, G., Guzzo, A., Pontieri, L.: Discovering expressive process models by clus-
tering log traces. IEEE Transactions on Knowledge and Data Engineering 18(8),
1010–1027 (2006)

7. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. The Morgan Kauf-
mann Series in Data Management Systems (2000)

8. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-
guages, and computation. In: SIGACT News, 2nd edn., vol. 32(1), pp. 60–65
(March 2001)

9. Motahari, H., Benatallah, B., Saint-Paul, R.: Protocol discovery from imperfect ser-
vice interaction data. In: Proceedings of the VLDB 2006 Ph.D. Workshop (Septem-
ber 2006)

10. Motahari, H., Saint-Paul, R., Benatallah, B., Casati, F.: Protocol discovery from
web service interaction logs. In: ICDE 2007: Proceedings of the IEEE International
Conference on Data Engineering (April 2007)

11. Motahari, H., Saint-Paul, R., Benatallah, B., Casati, F., Andritsos, P.: Message
correlation for conversation reconstruction in service interaction logs. Technical
Report, University of Trento and University of New South Wales (2007)

12. Sentz, K., Ferson, S.: Combination of evidence in dempster-shafer theory. Technical
report, Sandia National Laboratories (2002)

13. van der Aalst, W., Weijters, A., Maruster, L.: Workflow mining: Discovering pro-
cess models from event logs. IEEE Transactions on Knowledge and Data Engineer-
ing 16(9), 1128–1142 (2004)

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 420–434, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Concern-Sensitive Navigation: Improving Navigation in
Web Software through Separation of Concerns

Jocelyne Nanard1, Gustavo Rossi2, Marc Nanard1, Silvia Gordillo2,
and Leandro Perez2

1 LIRMM, CNRS/Univ. Montpellier, 161 rue Ada, F34392 Montpellier cedex 5, France
{jnanard,mnanard}@lirmm.fr

2 Facultad de Informática, Universidad Nacional de La Plata and Conicet Argentina
gustavo@sol.info.unlp.edu.ar

Abstract. Traditionally, the use of good techniques to improve software modu-
larity, such as advanced separation of concerns, has no impact in the user ex-
perience, for example while navigating Web software. While the intent of these
techniques is to simplify evolution and maintenance, navigation design quality
is often seen as an unrelated concern. In this paper we present a novel approach
for improving navigation in Web applications by using some of the core appli-
cation’s concerns (called navigational concerns) to derive their navigational
structure. Using some realistic examples we show that, by carefully using these
concerns, we can improve the user experience. Some implementation issues are
discussed and a thorough comparison with related ideas in the Web Engineering
field is presented.

Keywords: Separation of concerns, Concern-sensitive navigation, User
experience.

1 Introduction and Motivation

Web applications have evolved from being simple information repositories to com-
plex and ubiquitous platforms for performing complex business processes or for
publishing and sharing multimedia information. Huge e-commerce sites such as Ama-
zon.com, blogs like Youtube or Flickr or cooperative encyclopedia like Wikipedia are
clear examples of this evolution. As these applications are being constantly modified,
maintenance implies an additional challenge to software development methodologies.
Fortunately the Web engineering community has already discussed and proposed ad-
vanced software techniques to simplify design and evolution (See for example [19],
[14]); most of them are based on variants of the separation of concerns principle [12].

However, these design techniques are usually considered orthogonal to the prob-
lem of application usability. In this way for example, the quality of navigation struc-
tures is considered a completely disparate problem with respect to, for example,
achieving design modularity. In other word, a Web software which has been con-
ceived with high standards regarding evolution and maintenance does not necessary
provide a good navigation experience to the final user.

 Concern-Sensitive Navigation: Improving Navigation in Web Software 421

In this paper we show how a wise separation of application concerns during mod-
eling and design, and the information recorded during those stages can be cleverly
used also towards providing a more flexible navigational structure and thus improving
the user navigation experience. Our work aims at improving the cognitive and rhetoric
access to information, which means providing the user with the needed information in
each concern, and such that it is organized and presented in a more opportunistic way
[13]. Suppose for example an application such as Amazon.com in which users navi-
gate through thousands of products with different concerns (tasks or interests) in
mind. In Fig. 1 we show a typical screen of a book with the corresponding informa-
tion and available functionality.

Fig. 1. A Book in Amazon.com

The page for a book (like in Fig. 1) looks exactly the same independently of the
reason why the user reached it. For example it could have been accessed as a book on
Italy, it could result from an Amazon recommendation according to the user’s buying
history, or it could be also accessed from the shopping cart because the user wants to
be sure about the book’s contents before proceeding to pay for it. This “flat” structure,
in which every object looks equally regarding the context in which it is accessed, di-
minishes usability and might also cause errors [3].

The contents of the book page should be improved by taking into account the
“dominant” concern in which it is being accessed. For example in Fig. 2.a we show
part of a possible Web page for the book when accessed as a recommended item and
in Fig. 2.b, the same book when accessed from the shopping cart. In Fig. 2.a there is a
link to get an explanation of why the book was recommended, and links to the previ-
ous and next recommendations. Notice that these links do not make sense when the
book is accessed with other different concern in mind. In Fig. 2.b meanwhile, there is
an indication that the book is already in the cart and that if added again, it will imply
adding a new unit. In both cases knowing the actual user’s concern helps to enrich the
information on the target page with new contents and links to simplify or clarify the
user’s task.

Some Web Engineering approaches have solved sub-sets of this problem using
specific ad-hoc techniques and/or notations. For example, OOHDM [23] uses the con-
cept of navigational contexts to enrich hypermedia nodes when accessed in a particu-
lar set (for example the set of recommended products). In [24] a similar idea is used to
restrict operations in the context of a business process, i.e. to avoid that the same
product is added once more in the shopping cart while checking-out. Our approach
aims at providing a more systematic context-sensitive navigation.

422 J. Nanard et al.

Fig. 2. (a) Book accessed in the Recommenda-
tion Concern

Fig. 2. (b) Book accessed in the Shopping
Cart concern

This paper has three main contributions:

• We introduce the concept of concern-sensitive navigation (CSN) as a conceptual
and practical tool towards improving the navigational structure of Web applica-
tions as perceived by the user.

• We show how to introduce CSN in Web development methodologies, emphasizing
how the use of techniques for advanced separation of application concerns can be
used not only to improve modularity, but also the user’s navigation experience.

• We show the feasibility of CSN by briefly analyzing implementation alternatives.

The rest of the paper is organized as follows. We first introduce concern-driven
navigation and illustrate the concept with simple examples. We next discuss how to
engineer applications which support concern-driven navigation discussing modeling,
design and implementation issues. Finally we compare our work with related ap-
proaches and present some further research we are pursuing. We show the design and
implementation feasibility of these ideas by providing illustrative examples.

2 Concern-Sensitive Navigation

The main motivation of our research is to show that by separating concerns we can
not only improve evolution and maintenance but also produce better navigation struc-
tures. In this section we explain deeply which are the issues one has to consider to re-
alize CSN.

2.1 Background

According to [17] an application concern is defined by any coherent set of require-
ments, e.g. all requirements referring to a particular theme or behavioral application
feature. More generally [25] defines a concern as a “matter of consideration in a soft-
ware system”. Concerns may reflect functional or non-functional aspects of an appli-
cation such as recommendations and checkout in E-commerce, topic areas such as
history or geography in an Encyclopedia. Concerns may be generic, when they appear
in a broad number of applications (e.g. adaptivity, usability), domain specific when
they only apply to a set of applications (payment in e-commerce), or even application
specific when they only show up in a particular kind of software (e.g. Marketplace in
Amazon.com).

 Concern-Sensitive Navigation: Improving Navigation in Web Software 423

A navigational concern is an application concern that affects navigation, i.e. it
manifests itself in the navigational structure of the application (the exhibited contents
and links), and which therefore impacts in the way users navigate the application. In
this paper we focus on navigational concerns and ignore others which are nevertheless
important but do not affect navigation (such as persistence or security).

Most Web applications deal with a myriad of navigational concerns and usually
(for improving usability though many times only for marketing reasons) they exhibit
information pertaining to more than one concern in the same page, i.e. in the same
page we might find contents, links and functions which belong to different concerns.
Modern software engineering techniques such as aspect-oriented development [9]
promote a clear separation of concerns during specification, design and programming
and their late weaving either during compilation or even execution. In this way one
can diminish the impact of crosscutting concerns during software evolution. However,
and as we showed before, the page in Fig. 1 looks the same independently of the con-
cern the user has in mind when accessing it (searching a product, being recommended
a product, as part of an offer, etc).

Users navigate in Web applications to perform a specific task; mature Web design
methods have already prescriptive approaches and notations to map task descriptions
(e.g. specified as use cases) into conceptual and navigational models [26]. Our ap-
proach complements these ideas with a strategy to enrich the navigation objects with
information specific to the concern that the user is traversing. The mechanics of CSN,
as well as its scope should be defined by the designer according to the user’s need and
convenience. In what follows, we show how to use the information on navigational
concerns to improve the navigation structure of the application. For the sake of con-
ciseness we only focus on navigation aspects.

2.2 Definition

To formalize our notion of CSN we refer to a navigation object type Nj (the realiza-
tion of an atomic or composite hypermedia node type) as comprising a set of proper-
ties; these properties may be further classified in media contents, anchors for links or
operations exhibited by the node and can be divided in two groups:

• properties intrinsic to the object [15] (i.e. which are present regardless the concern
in which an object is accessed). We call them core properties;

• properties which, given a concern Ci, correspond to the set of perceivable proper-
ties of Nj when accessed in the Concern Ci and which is the result of applying a
function P (Ci, Nj).

For each meaningful pair (Ci, Nj) the set of properties should be a superset of the
core properties of Nj. In Fig. 3 we illustrate the definition for the examples in Fig. 1
and 2 using a UML-like notation. Notice that the same node instance exhibits differ-
ent properties according to the concern in which it is accessed. By adjusting the
node’s properties to the concern in which it is being accessed we improve the naviga-
tional structure, by making contents more focused to the actual concern the user is
navigating (i.e. the intended task).

424 J. Nanard et al.

aBook: Book

-Name
-Cover
-Price
-Availability
-Author (Anchor)
-Why (Anchor)
-NextRecomm (Anchor)
-PrevRecomm (Anchor

Recomm Concern

aBook: Book

-Name
-Cover
-Price
-Availability
-Author (Anchor)

Intrinsic Properties

aBook: Book

-Name
-Cover
-Price
-Availability
-Author (Anchor)
-Warning
-AddAnother

Cart Concern

Fig. 3. Intrinsic Properties vs. Properties in Recommendation and Cart Concerns

Regarding this initial definition there are some additional issues to consider:

• Notice that the perceivable properties do not depend on the user profile or identity,
which means that CSN is slightly different from adaptive navigation (See the re-
lated work section).

• Besides the so called intrinsic properties, there might be properties which pertain to
different concerns and which we want to exhibit permanently (e.g. the Add To
Wish List operation), i.e. regardless the navigation path. Though this is a design is-
sue not fully related with concern-driven navigation but with concern composition,
we only give an overview of it (See Section 3.2).

• Defining the concerns which affect a node type requires a clear understanding of
the application concerns, their relationships and the way they reflect in navigation
(See next section).

2.3 Which Categories of Concerns Affect Navigation?

As explained in [25] there are many different kinds of concerns which may arise in
the process of Web software development. For the sake of conciseness we enumerate
here the most important types of concerns which are exposed to the user and therefore
affect navigation:

• Task concerns are the broadest category of navigation concerns; they abstract those
concerns which relate to the different high level actions that the user can perform
in a Web application, for example exploring products, managing the shopping cart,
adding reviews, checking out, managing lists, etc. Some of these tasks are related
with finer grained application features such as services offered by the application;
in the case of Amazon, recommendations, marketplace, lists, etc. Notice that while
involved in a service the user is always performing a task.

• Topics: Pure informational sites might introduce even finer-grained concerns; for
example topics or themes such as in an Encyclopedia. Topic-based concerns are
also present in the context of tasks; for example while searching books in Ama-
zon.com, the genre of the book (thriller, travel, technical) or its theme area (Soft-
ware Engineering, Programming, etc) might itself become a concern.

• “Pure” navigational concerns, like Guided Tours or sets. These are usual abstrac-
tions in navigational design and therefore can be considered also as specific
concerns.

 Concern-Sensitive Navigation: Improving Navigation in Web Software 425

Deciding which is the appropriate level of granularity for choosing concerns during
the modeling stage is, as well as choosing the “right” concerns, part of the designer
job, and it is outside the scope of this paper. However, the reader can find good guide-
lines in the literature on Early Aspects [8], particularly in [2].

2.4 Which Kinds of Concern “Enrichment” Improve the User’s Experience?

Though the answer to this question strongly depends on the specific concern, there are
two broad categories of enrichments:

Basic enrichments. We found three kinds of enrichments, namely:

• New or modified contents: As shown in the cart concern of Fig. 3, we can enrich
the node instance with new attributes

• Anchors and Links: Also in Fig. 3, in the Recommendation concern we added a
new link and the corresponding anchor to improve navigation

• Operations: A node instance might exhibit additional operations when accessed in
a concern; for example we could have added a (deleteFromCart) operation in the
Cart concern in Fig. 3.

Enrichment Patterns. For each of the previously mentioned concern types, the
following patterns are the most recurrent:

• For Task-Based Concern: When the concern is defined by a business process (like
in [24]), and operating on the target node might conflict with the process, it is ad-
visable either to eliminate operations which collide with the concern or to add spe-
cific warnings (e.g. the shopping cart or checkout concerns in Amazon).

• For Thematic concerns: when a node is accessed in that concern, add information
and links specific to the topic which is related with the node. For example the book
in Fig. 1 could be enriched with links to other books on Italy (or related to the
higher level concern, Travel)

• For Pure Navigational Concerns: When the concern can be represented as a set as
in OOHDM navigational contexts [23] (e.g. the set of recommendations, etc.), it is
wise to enrich the node with links to the index of the current set, and to the previ-
ous and next elements of the set. Another example of this kind of enrichment can
be found in tag-based navigation like in Flickr (e.g. by providing links to other
photos with the same tag).

3 Engineering Web Applications Supporting CSN

Web Engineering approaches, like those in [22], support separation of the most out-
standing concerns in this kind of software: requirements’ capture, content or applica-
tion modeling, navigation and presentation design, business process modeling, etc.
(they correspond to methodology-related concerns). Some of them have also intro-
duced elements of advanced separation of concerns (such as aspect-orientation) to deal
with cross-cutting concerns [4]. Even though the kind of application concerns which
might be reflected in CSN structures does not necessarily correspond to “aspects”

426 J. Nanard et al.

(as they may not crosscut in the standard way), we claim that the most relevant identi-
fied concerns (e.g. following the classification in 2.3) should be designed separately.
We next explain how to map concerns into navigational structures. Though we use
OOHDM as the exemplary method, the ideas can be applied to other well-known ap-
proaches like UWE [14], OOWS [19] or WebML [5]. In the following, we discuss
mainly the Requirement, Modeling and Navigational design issues; some Implementa-
tion aspects are then outlined. Presentation issues can be read at [10].

3.1 Requirement and Modeling Issues

In [11] we presented an approach to model navigational concerns in Web applica-
tions; the approach which derives from well-known ideas in the Early Aspect com-
munity [8] helps to elicit, identify and specify the interactions which emerge in each
navigational concern. In our work, each concern is explicitly represented using a
XML-template and for each use case in the concern a User Interaction Diagram (UID)
is built. UIDs show how the interaction proceeds in a high level way. In Fig. 5, we
show part of the definition of the Recommendation concern (on the left) and the cor-
responding UID (on the right). The UID shows in a simple state diagrams which items
are presented to the user, either as simple structures such as Book and its attributes or
as sets of structures (those which begin with “…”) and the transitions corresponding
to user’s actions such as selecting the “Why” option in the right part, or the “Next”
and “Previous” recommendation below state “C”. When comparing the UID in Fig. 4
with one in the core application concern (not shown for conciseness), we will find that
the information exhibited by books is slightly different (See state “C”); this informa-
tion will be used to define CSN as described in Section 3.2.

<Concern name="Recommendation ">

<Requirement id="1">

The system should provide personalized
recommendations according to the user’s

record.

<Requirement id="2">

Recommended products should be
accessible from the home page and ordered

according to the level of certainty of the
recommendation

</Requirement>

<Requirement id="3">

While accessing a recommended product the

user should be able to know why he was
recommended the product and access other

recommendations easily

</Requirement>

</Requirement>

</Concern>

Book (title,

author, cover,

price, availability,

details)

...Book (title,

author, cover,

price)

Home Page

Recommended

Books

A
B

C

1

Why
Explanation

D

Next Previous

Fig. 4. Requirements corresponding to the Recommendation concern

Once the whole set of requirements have been elicited and modeled, a conceptual
OOHDM model is built using the information collected from the UIDs, which as
explained in [23], allow to define the attributes and methods of conceptual classes. Fol-
lowing the Theme approach [7] we propose to partition the conceptual model in sub-
models, one for each of the relevant concerns (See [11]). However, other approaches
(aspects, object decorators, etc) can be also used according to the kind of concern
crosscutting; this discussion is outside the scope of this paper (See for example [16]).

 Concern-Sensitive Navigation: Improving Navigation in Web Software 427

For the sake of conciseness, we will concentrate on navigational concerns and use
as an example a fragment of the e-store shown in previous Figures. In Fig. 5 we pre-
sent a simplified OOHDM conceptual model corresponding to this example. We only
present the conceptual sub-models corresponding to the Core and Recommendation
concerns emphasizing class structure over relationships, as they are sufficient for il-
lustrating the rationale and mechanics for building the concern-sensitive navigational
model. Following [7], each model presents the view of the application classes accord-
ing to the concern. Notice that there are two classes in the Recommendation concern
which do not appear in the Core concern. When these models are weaved some
classes may be transformed in a class containing the union of the definitions of each
model (e.g. Product), others might evolve into aspects, etc.

Store

Product

Customer

Shopping

Cart

Core Concern

Name
Address

Age

Name

Cover

Price

Availability

Author

Contents

ExpirationDate

Store

Product

Customer

Recomm

Engine

Recommendation Concern

Buying

History

Name

Cover

Price

Availability

Author ComputeRecommFor

(customer)

Name
Address

Age
List of Products

rationaleForRecomm

Fig. 5. Conceptual Model for the e-store site

3.2 Navigational Design

Web engineering approaches provide primitives for describing the navigational struc-
ture of the application, i.e. for defining nodes, links, indexes and higher-level structures
such as landmarks, guided-tours, etc. Nodes contents are usually defined opportunisti-
cally to improve usability; for this reason, many times the same node exhibits informa-
tion pertaining to different concerns (See Fig. 1). In OOHDM we do this by defining
the node’s attributes as views on the corresponding conceptual classes (eventually
“viewing” their definitions in the different involved concerns) [23].

We are interested however, in the information and links which are only meaningful
in some specific concerns. As defined in 2.3, CSN allows enriching the contents and
links of a hypermedia node according to the current user’s concern. A navigational
model expressing concern-sensitive navigation should take into account what follows:

Identify which node types are “affected” by existing concerns. The first output of
a navigational diagram (in OOHDM and other methods) is a navigational schema
formed out of node and link types, representing the type of objects the user will per-
ceive with their attributes and the navigable relationships. As said above, these types
are obtained from the conceptual model using a view mechanism [23] which allows
gathering information according to users’ needs. A simplified “flat” navigational
schema for the e-store site is presented in Fig. 6. Again, we emphasize node’s struc-
tures and do not indicate link types’ names.

428 J. Nanard et al.

Home

Product Shopping

Cart

Recomms

RecProducts : Index

Name

Cover

Price

Availability

Author

Reviews

Products: Index

addProduct (P)

Fig. 6. Navigational Schema for the e-store site

The navigational schema shows the specification of “natural” node types (i.e. those
which stand independently of any concern, See [15]), and the links which provide
navigation paths between node instances. For the sake of simplicity we don’t present
the OOHDM navigational contexts model in which indexes are further specified (See
[23]).

By analyzing the requirement model, particularly the specification of concerns and
their realization with UIDs, we can identify which of the node types are affected by
each concern. We do this by building a table (See Table 1) which makes explicit the
function P, described in Section 2.2. Each line corresponds to a concern. For each
concern, we add a new column for each node type affected in this concern.

Define the information, links and services to be added when accessing a node in
each particular concern. For each pair (concern, node type) we indicate the
corresponding enrichment when a node instance is accessed in that concern. This
decision takes into account the nature of the concern (i.e. the current user’s task); for
example we might decide to add more specific information to improve user’s
understanding, links to related information objects (corresponding to the same
concern) to improve the completion of the task, etc. As mentioned in 3.1, UIDs are
the first source for this information as they collect most of the data and possible
interactions corresponding to each concern. Table 1 shows a sketch of the enrichment
corresponding to the Node type Product when accessed in the Recommendation
concern (omitting the anchor’s specification for conciseness).

We represent concern-sensitive navigational diagrams with the notation of role-
enrichment. A role type (indicated as a rounded rectangle) shows, when attached to a
node, the additional information and links that will be shown in the corresponding

Table 1. Table showing the enrichment for each concern and node type

 Nodes
Concerns

Node Type 1 … Product …

Concern 1
…

Recomm Why (Anchor)
Next (Anchor)
Prev (Anchor)

…

 Concern-Sensitive Navigation: Improving Navigation in Web Software 429

concern. Roles of a node type act as decorations adding the concern-specific informa-
tion. In Fig. 7 we show how we enriched the navigational diagram of Fig. 6 with con-
cern information, represented with roles. There are two roles, one for products
accessed from the recommendation list (i.e. in the recommendation concern) and one
for products accessed from the cart (i.e. in the Cart concern); in both cases the role
contains the additional features as part of its specification. Notice for example the two
links defined from the RecommProduct role into itself and the additional Explanation
node type, which reflect the specification in the UID of Fig. 5 and the corresponding
table entry of Table 1. Also the role ProductInCart adds a behavior AddToCart which
possesses a slightly different semantics with respect to the “normal” addToCart be-
havior in Product, asking the user if he really wants to increase the number of units of
the product. The use of roles in Web Engineering has been discussed in our previous
work in [21].

Home

Product Shopping

Cart

Recomms

ProductInCart

RecommProduct

Name

Cover

Price

Availability

Author

Reviews

Products : Index

RecProducts : Index

Explanation
Next : Anchor

Prev: Anchor

Why: Anchor

Message : Text

OtherProducts :Anchor

AddToCart

Fig. 7. A concern-sensitive navigational schema

3.3 Further Issues

An interesting modeling (and also implementation) issue arises when dealing with
families of navigational concerns. There are some concerns which are “atomic” be-
cause there is only one instance of the concern, and as a consequence all nodes
affected by the concern either have the same enrichment or the enrichment only de-
pends on the affected node. The best example of this kind of concerns is the Cart con-
cern: there is only one Shopping Cart and therefore all products navigated from the
Shopping Cart (i.e. in the Cart Concern) will have the same enrichment. Meanwhile,
in the recommendation concern, the enrichment depends on the node instance (the
product) as links to other recommendations are a function of the product. In this case,
in our modeling approach, the corresponding role type can be considered a singleton
(it has only one instance) which adds information somewhat parameterized by the tar-
get node instance. This added information (See Fig. 2 and 7) is obtained by collabora-
tion with the node instance.

Meanwhile, certain concerns, particularly Topic or Thematic concerns have usually
many instances, one for each possible topic. In our example of Fig. 1 and 2, we could
have been exploring books on Italy, and therefore when accessing the book, the actual

430 J. Nanard et al.

concern is Italy (which is a sub-category of the concern Travel). Even though the de-
signer should decide which the suitable level of granularity is, and eventually choose
if Italy is a possible concern (e.g. Travel might be preferred), it is obvious that we ex-
pect different additional information while exploring books on Web Engineering. In
any cases, the most elegant design solution is to consider that the concern role type
(Topic) has many instances, one for each topic; these instances are created dynami-
cally, when accessing the target node instance. If necessary, there might be a hierar-
chy of role types to cope with variants among Travel, Technical Books, Software, etc.
with respect to the specific enrichment for each concern. Fig. 8 shows the e-store
screen with this enrichment and the corresponding role and type specification to cope
with this situation; the parameter in the role specification is used at instantiation time,
i.e. when the corresponding role instance is created.

Fig. 8. Role Type parameterized with the concern instance

3.4 Implementation

We show the feasibility of mapping the previously described navigational structures
onto a running application, by briefly describing two implementation alternatives.

The first alternative consists (as most Web design methods do) in translating the
specification of nodes into XML files which, when being populated, are themselves
translated into final interfaces by using XSL specifications. Similarly, we map the
role types into XML files which are aware of the specifications they enrich. In the
simplest case, producing the intended node instance requires the injection of the role
file into the corresponding node instance. In [10], we described how to use XML
transformations (described using XSLT) to weave two concerns together. Transfor-
mations are easy to specify and only use standard technologies. There might be cases
however, in which the enrichment requires more subtle processing, for example to
compute links which depend on the target node instances (as in the recommendation
concern), or on the combination between the concern and the node instance (as in the
case of topic-based concerns). This processing can be also specified using rules in the
transformation files. Though the details are outside the scope of the paper, we show in
Fig. 9 the simplified XML files for the core and recommendation concern and in Fig.
10 the XSLT transformation to weave them together; finally in Fig. 11 we present a
UML activity diagram illustrating the process from the user’s request to the genera-
tion of the necessary structure to realize concern-sensitive navigation.

 Concern-Sensitive Navigation: Improving Navigation in Web Software 431

<book>
<name>TheMost Beautiful Villages of Tuscany </name>

<cover >TheMostBeautifulVillagesofTuscany .jpg</cover >
<price >40.00</price >

<availability >24 hs</availability >

<author >/search .do?author =JamesBentley </author >
</book>

<recommendation >

<why>/recommendation .do?id=2345</why>
<nextRecomm >/product?id=254</nextRecomm >

<prevRecomm >/product ?id=168</prevRecomm >

</recommendation >

Fig. 9. XML files corresponding to core and recommendation concerns

<xsl: template match ="/book">

<book>
<xsl:copy-of select ="*"/>

<xsl:copy-of select ="document ('recomm .xml ')/ recommendation /*"/>
</book>

</xsl :template >

<xsl: template match ="@*|node()" >
<xsl:copy>

<xsl:apply-templates select ="@*|node()"/ >
</xsl :copy>

</xsl :template >

</xsl :stylesheet >

<book>

<name>TheMost Beautiful Villages of Tuscany </name>
<cover >TheMostBeautifulVillagesofTuscany .jpg</cover >

<price >40.00</price >

<availability >24 hs</availability >
<author >/search .do?author =JamesBentley </author >

<why>/recommendation .do?id=2345</why>
<nextRecomm >/product ?id=254</nextRecomm >

<prevRecomm >/product?id=168</prevRecomm >

</book>

Fig. 10. XSLT transformation and the result of its application

Fig. 11. Activity diagram for weaving a role into the core concern

A more systematic alternative is to use a model-driven approach [26], in which the
semantics of role diagrams, such as the one in Fig. 7, feeds the transformation engine
to produce the intended behavior. In [20] we presented a framework, CAZON, which
injects irregular functionality into node instances. We have used CAZON to incorpo-
rate volatile functionality in node instances; such services are included for short peri-
ods of time (such as draws, promotions, holiday’s offers, etc.). Insofar as CAZON
uses XML files to describe nodes (both core and volatile), its underlying engine uses
the same basic ideas as the previously described transformations, relieving the de-
signer from the job of specifying them. We are currently extending CAZON to pro-
vide role enrichment, by expressing the relationships between role and node types us-
ing CAZON’s built-in mechanisms, to show relationships between base and injected
structures and behaviors.

As a summary of the previous explanation, we stress the importance of specifying
in a declarative way the relationships between role types (as realization of concern en-
richment), and node types. Even though this specification can be done using XML we
think that model-driven approaches are preferable because they relieve us of imple-
mentation details.

432 J. Nanard et al.

4 Related Work

Separation of concerns has been a driving force in Software (and Web) Engineering
for years. As mentioned in Section 1, the main rationale for improving separation of
concerns has been simplifying software evolution and maintenance by achieving
modularity. Treating concerns as “first class” artifacts in the software development
process helps to better understand the underlying domain and produce composable
modules which reflect the requirements in each concern and the relationships between
them. Approaches like Aspect-Oriented Software Development [7], [9] guarantee
modularity and seamless composition of core and aspectual functionality.

All Web Engineering approaches recognize the need to separate the design in lay-
ers which deal with clearly different concerns such as navigation, presentation and
also business processes (We call this horizontal separation of concern) and even ad-
aptation [4]. An interesting example of the use of advanced horizontal separation of
concerns in Web Engineering is [6] which proposes a formal specification of the con-
nections between different models during the development cycle to produce seamless
weaving; the weaving model itself is described as a meta-model. The main difference
between our work and existing approaches in Web engineering, is that we use also a
vertical separation of concerns related to the essence of the application, to systemati-
cally produce better navigational structures and not just to ease evolution. While we
rely on well known separation of concern techniques to specify and design each con-
cern, we use the information collected from requirements to navigational design, to
realize an improvement in the information and links perceived by the user while navi-
gating in the context of a concern. Our work also generalizes some existing ap-
proaches to enhance navigation in specific contexts such as sets of related objects
(called Navigational Contexts in OOHDM [23]) or business processes [24].

CSN has some points in common with the work on adaptive hypermedia [1]. Adap-
tive hypermedia approaches seek to improve user’s navigation by taking into account
the user’s profile and needs. In an adaptive hypermedia application, nodes and links
vary according to the characteristics of the user, his navigation history, etc. Adaptive
hypermedia systems rely on a user model which represents the meaningful user’s fea-
tures and an adaptation model in which the adaptation rules and algorithms are speci-
fied. Our work meanwhile, while also producing an improvement with respect to
“flat” navigation structures, does not pose additional requirements to Web software,
such as recording the user’s features or elaborated rules or algorithms. We rely on the
use of well-known and mainstream software practices (such as separation of con-
cerns) to generate a better navigational experience. Additionally, as the underlying
designs are modular (e.g. by the use of aspects and/or roles), adding new concerns and
their corresponding navigational adaptations is straightforward, as the core functional-
ity is oblivious with respect to the new (and of course the “old”) concerns.

5 Concluding Remarks and Further Work

We have presented an approach to use separation and composition of concerns, not
only to enhance Web software modularity, but also to improve its cognitive and rheto-
ric access. While we recognize the importance of using advanced separation of

 Concern-Sensitive Navigation: Improving Navigation in Web Software 433

concerns techniques to ease application evolution, we claim that these techniques can
be further applied in the context of navigational design to obtain better navigational
models; for this aim we introduced the concept of concern-sensitive navigation. Ap-
plications supporting concern-sensitive navigation can offer the user more focused in-
formation, links and services according to his actual concern. While this idea shares
some of the objectives of adaptive and context-aware hypermedia approaches, it in-
troduces an orthogonal concept: the navigational concern. We have shown, with sim-
ple examples, that producing a concern-sensitive navigational model is rather simple,
and we have provided a proof of concept of its implementation feasibility. For this,
we have relied on standard tools and representation techniques to demonstrate that the
idea can be easily put to work without complex engines or frameworks.

We are now studying several aspects, which belong to finer grained details of con-
cern-sensitive navigation. One of them is dealing with the extent of a concern during
navigation; while the “entrance” to a concern is clearly defined at design time as
shown in the diagram of Fig. 7, many times it is not obvious when the user concern
changes, for example when navigating links which are defined in the core concern.
Related with this issue and with the enrichment patterns (See Section 3), we are also
researching on patterns for concern selection to enrich existing catalogues of Web
patterns such as [27]; in some kinds of concerns, particularly topic-based concerns,
the user can select the actual concern for example when choosing a menu option (e.g.
categories of books, subjects in an encyclopedia, etc). Knowing these patterns can
help the designer to further improve the navigational structure. We are also research-
ing on the concern-based improvement of applications in which most contents are
provided by user, such as Wikipedia. Further usage analysis is necessary to have a
clear understanding of the impact of concern driven navigation in users.

We are also finally researching on different ways of implementing concern-
sensitive navigation; particularly we are using our ideas of XML transformations [10]
and tree transformation through grammar networks [18] to ease the process of con-
cern enrichment both at the navigation and interface levels. Finally we are working in
the process of measuring the improvement provided by CSN; this can be done by ana-
lyzing how user’s tasks are simplified but will also require further experiments with
real users.

References

1. Adaptive Hypermedia Reference Library, http://wwwis.win.tue.nl/ah/publications.html
2. Baniasaad, E., Clarke, S.: Finding Aspects in Requirements with Theme/Doc. In: Proc. of

Workshop Early Aspects 2004, associated to the ACM Conf. AOSD (2004)
3. Baresi, L., Denaro, G., Mainetti, L., Paolini, P.: Assertions to Better Specify the Amazon

Bug. In: Proc. of the 14th Int. Conf. on Software Engineering and Knowledge Engineer-
ing. ACM Int. Conference Proceeding Series, vol. 27 (2002)

4. Baumeister, H., Knapp, A., Koch, N., Zhang, G.: Modelling Adaptivity with Aspects. In:
Lowe, D.G., Gaedke, M. (eds.) ICWE 2005. LNCS, vol. 3579, pp. 406–416. Springer,
Heidelberg (2005)

5. Ceri, P., Fraternali, P., Bongio, A.: Web Modeling Language (WebML), A Modeling Lan-
guage for Designing Web Sites. Computer Networks and ISDN Systems 33(1-6), 137–157
(2000)

434 J. Nanard et al.

6. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: Weaving Concerns in Model Based Devel-
opment of Data-Intensive Web Applications. In: Proceedings of the ACM Symposium on
Applied Computing (SAC 2006), pp. 1256–1261. ACM Press, New York (2006)

7. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design. The Theme Approach.
Object Technology Series. Addison-Wesley, Reading (2005)

8. Early Aspects Home: http://www.earlyaspects.net
9. Filman, R., Elrad, T., Clarke, S., Aksit, M.: Aspect Oriented Software Development. Ad-

dison-Wesley, Reading (2004)
10. Ginzburg, J., Rossi, G., Urbieta, M., Distante, D.: Transparent Interface Composition in

Web Applications. In: Baresi, L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS,
vol. 4607, pp. 152–166. Springer, Heidelberg (2007)

11. Gordillo, S., Rossi, G., Moreira, A., Araujo, J., Vairetti, C., Urbeita, M.: Modeling and
Composing Navigational Concerns in Web Applications. Requirements and Design Issues.
In: Proc. of Latino American Conf. on the WWW (LA-Web 2006). IEEE Computer Soci-
ety Press, Los Alamitos (2006)

12. Harrison, W., Ossher, H., Tarr, P.: General Composition of Software Artifacts. In: Löwe,
W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, pp. 194–210. Springer, Heidelberg
(2006)

13. Horchani, M., Nanard, J., Nanard, M.: Les Hypermédias comme Paradigme d’Interfaces
Adaptatives. In: Saleh, I. (ed.) Les hypermédias. Hermès, pp. 119–146 (2004)

14. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-Based Web Engineering. In: (22)
15. Kristensen, B.B., Osterbye, K.: Roles, Conceptual Abstraction Theory and practical Lan-

guage Issues. Theory and Practice of Object Systems 2(3), 143–160 (1996)
16. Marin, M., Moonen, L., van Deursen, A.: A classification of Crosscutting Concerns. In:

Proc. IEEE Conf. on Software Maintenance (ICSM 2006). IEEE Computer Society Press,
Los Alamitos (2006)

17. Moreira, A., Araujo, J., Rashid, A.: A Concern-Oriented Requirements Engineering
Model. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 293–
308. Springer, Heidelberg (2005)

18. Nanard, M., Nanard, J., King, P.R.: A structural computing approach to the production of
multimedia document series. NRHM 12(2), 165–190 (2006)

19. Pastor, O., Abrahão, S., Fons, J.: An Object-Oriented Approach to Automate Web Appli-
cations Development. In: Bauknecht, K., Madria, S.K., Pernul, G. (eds.) EC-Web 2001.
LNCS, vol. 2115, pp. 16–28. Springer, Heidelberg (2001)

20. Rossi, G., Nieto, A., Mengoni, L., Lofeudo, N., Nuño Silva, L., Distante, D.: Model-Based
Design of Volatile Functionality in Web Applications. LA-WEB, pp. 179–188 (2006)

21. Rossi, G., Nanard, J., Nanard, M., Koch, N.: Engineering Web Applications with Roles.
Journal of Web Engineering 6(1), 19–48 (2007)

22. Rossi, G., Pastor, O., Schwabe, D., Olsina, L. (eds.): Web Engineering: Modelling and
Implementing Web Applications. Springer, Heidelberg (2008)

23. Rossi, G., Schwabe, D.: Modeling and Implementing Web Applications with OOHDM.
In: (22)

24. Schmid, H., Rossi, G.: Modeling and Designing Processes in E-Commerce Applications.
IEEE Internet Computing 8(1), 19–27 (2004)

25. Sutton, S., Rouvellou, I.: Modeling of Software Concerns in Cosmos. In: Proc. of ACM
Conf. AOSD 2002. ACM Press, New York (2002)

26. Valderas, P., Fons, J., Pelechano, V.: Transforming Web Requirements into Navigational
Models: AN MDA Based Approach. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., My-
lopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 320–336. Springer, Heidel-
berg (2005)

27. Van Duyne, D.K., Landay, J.A., Hong, J.I.: The Design of Sites: Patterns for Creating
Winning Websites. Prentice-Hall, Englewood Cliffs (2006)

A Flexible and Semantic-Aware Publication

Infrastructure for Web Services

Luciano Baresi, Matteo Miraz, and Pierluigi Plebani

Dipartimento di Elettronica e Informazione – Politecnico di Milano
Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

{baresi,miraz,plebani}@elet.polimi.it

Abstract. This paper presents an innovative approach for the publica-
tion and discovery of Web services. The proposal is based on two previous
works: DIRE (DIstributed REgistry), for the user-centered distributed
replication of service-related information, and URBE (UDDI Registry
By Example), for the semantic-aware match making between requests
and available services. The integrated view also exploits USQL (Unified
Service Query Language) to provide users with a higher level and ho-
mogeneous means to interact with the different registries. The proposal
improves background technology in different ways: we integrate USQL
as high-level language to state service requests, widen user notifications
based on URBE semantic matching, and apply URBE match making to
all the facets with which services can be described in DIRE. All these
new concepts are demonstrated on a simple scenario.

1 Introduction

The publication and discovery of Web services [1] have been tackled in several
different ways so far. While the community agrees on WSDL and BPEL, as
description and composition languages, respectively, the efficient and effective
exposition and retrieval of Web services are still open problems. For example,
UDDI [2] and ebXML [3] are probably the two most “famous” registry solu-
tions, proposals based description logics and ontologies [4,5,6] try to improve
service discovery, while METEOR-S [7] and Pyramid-S [8] integrate registries
and ontologies to offer semantically-enriched service publication and discovery.
The lack of a winning solution pushed us to further analyze the problem and
concentrate on the distributed publication of services as a way to improve both
exposition and retrieval.

Even if all the main registry standards have moved towards distributed ap-
proaches, we think that this distribution cannot be defined a priori. We think
that the information about available services must be moved closer to their pos-
sible users, and this must be done in a user-centric way. Our proposal lets users
fully control their registries (i) by defining what they want to share with the oth-
ers and (ii) by specifying the services potentially available on external registries
they are interested in. Therefore, the paper concentrates on the distributed user-
centered propagation of service information and on the discovery features that

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 435–449, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

436 L. Baresi, M. Miraz, and P. Plebani

such a distribution enables. The discovery, in particular, is enriched with the
adoption of semantic-aware analysis to improve the responsiveness of the system
and help users with solutions (services) that are close enough to what they would
have liked to get (even if they do not fully match their expectations).

The proposed interaction among registries exploits a publish and subscribe [9]
(P/S, hereafter) communication infrastructure to allow for flexible and dynamic
interactions. This means that each registry can decide the services it wants to
publish, that is, the services it wants to share with the others. Similarly, it can
declare its interests by means of special-purpose subscriptions. The infrastruc-
ture ensures that as soon as a registry publishes the information about one of
its services, this same information is propagated to (and replicated on) all the
registries that had declared their interest. Subscriptions (and unsubscriptions)
can be issued dynamically and thus each registry can accommodate and tailor
its interests (i.e., those of its users) while in operation.

The second key message of the paper is that oftentimes users are not only in-
terested in services that fully and exactly match their requests, but they would
like to know if there are “similar” solutions, that is, services that suitably adapted
can be used instead of the ones part of the original request. This requirement
is tacked in the paper in two different and orthogonal ways. User requests are
formulated in a technology neutral and high-level query language, called USQL
(Unified Service Query Language, [10]), and are then automatically translated
into subscriptions suitably distributed through the communication infrastruc-
ture. On the other hand, the dispatching is powered with matchmaking capabil-
ities to provide the different registries with semantically-enriched notifications,
that is, information about services whose match with the original request (sub-
scription) is within a given threshold.

The work presented in this paper builds on top of two existing proposals: DIRE
(DIstributed REgistry, [11]), as for the communication framework among reg-
istries and the facet -based [12] description of services, and URBE (UDDI Registry
By Example, [13]), for the matchmaking and semantic awareness. The integration
of the two proposals allows us to consider a semantically-enabled replication in-
frastructure that supports different registry technologies (UDDI, ebXML, and the
SeCSE registry1) by means of JAXR (Java API for XML Registries, [14]).

Besides the obvious integration of the two proposals, the novel contributions
of this paper lie in: (i) the use of USQL as high-level language to state service
requests, along with its automatic translation in terms of subscriptions for the
communication infrastructure, (ii) the widening of notifications based on URBE
semantic matching, and (iii) the extension of the URBE matching to all the
facets with which services can be described.

The rest of the paper is organized as follows. Section 2 introduces an exam-
ple scenario to motivate the proposal presented in the paper, while Section 3
summarizes background technologies. Section 4 describes the proposed infras-
tructure, along with the new features. Section 5 surveys some related proposals
and Section 6 concludes the paper.

1 http://secse.eng.it

http://secse.eng.it

A Flexible and Semantic-Aware Publication Infrastructure 437

2 Example Scenario

Even if the UDDI Business Registries by IBM, Microsoft, and SAP are not
operated anymore, alternative “global” Web service registries are still available.
Among the others, XMethods2 and Wsoogle3 are currently used worldwide, host
Web services of any kind, and provide facilities to ease their discovery. Since
the number of available services is always increasing, this section introduces the
approach presented in this paper as a means to better exploit these “global”
registries and increase the effectiveness of service discovery.

The example scenario4 of Fig. 1 assumes the presence of three different (classes
of) users interested in the Web services advertised by these global registries. The
first is a company specialized in software development for healthcare solutions,
which is interested in Web services able to support as many activities as possible
in this application domain. The second is a tour operator willing to improve its
Web site with mash-up services, while the third is a community of chess players
who want to be aware of new opportunities (Web services) to play chess over
the Internet.

Healtcare
SW

developer
company

XMethods.net

wsoogle.com
Touristic
company

Chess
players

community

Internet

servicelist
chess
chessgame
xray
xrayprint
weatherinfo

Public
Service
Registry

servicelist
mychess
zip2code
currExchange
hospitalWS
traintable

Public
Service
Registry

I need a service with this WSDL
<definition>
 ...
 <portType name="zipService">
 ...
 </portType>
 </definition>

<USQLRequest>
 <Where>
 <Service serviceType="WebService GridService">
 <ServiceProvider>
 <name valueIs="contain">xray</name>
 </ServiceProvider>
 <ServiceDomain>
 http://someontologies/healthcare#Healthcare
 </ServiceDomain>
 </Service>
 </Where>
</USQLRequest>

I would like to play
chess on line

Private
Service
Registry

Private
Service
Registry

Private
Service
Registry

I would like to make
my new service

available

Fig. 1. Example scenario

All these three groups of users decide to run their own local registries and
periodically browse XMethods and Wsoogle to find the services of interest and
update their local copies. Each requester is interested in services of different
categories, but also their requirements are stated in different ways. For instance,
on the average, chess players do not know WSDL, and can only express their
requirements using chess- and QoS-related keywords (e.g., chess or free chess

2 http://www.xmethods.net
3 http://www.wsoogle.com
4 This example only aims at exemplifying how our approach works; further technical

considerations behind it are outside the scope of the paper.

http://www.xmethods.net
http://www.wsoogle.com

438 L. Baresi, M. Miraz, and P. Plebani

server). In contrast, the software company wants Web services with particular
WSDL interfaces and is also interested in becoming a quality service provider
for its clients.

All these activities are time consuming and the actual results heavily depend
on the ability of who works on service discovery. Automatic ways to feed the
local registries with no need for period updates would definitively ease their
management, and would also help obtain better results (in terms of discovered
services).

Our solution works in this direction. Each registry, be it global or local, must
be connected to the communication infrastructure described in Section 4, and
only has to declare its interests. The infrastructure grabs relevant services as
soon as they become available directly from where they are published (mainly
the two big repositories, in our example). Similarly, when one of the users (e.g.,
the software company) also holds the role of service provider, the infrastruc-
ture automatically publishes the new services onto the infrastructure and they
(immediately) become available for the other interested registries.

Since Web services can be published, updated, and unpublished, the infras-
tructure is also in charge of updating the proprietary replicas as soon as new in-
formation (services) becomes available. In this scenario, all the services published
in the general purpose registries are public by definition, and these registries are
interested in all the public services in the local registries.

3 Background

This section briefly recalls DIRE, URBE, and USQL to provide the reader with
a self-contained paper, and also highlight those elements that will be used in the
next sections.

3.1 DIRE

DIRE5 (DIstributed REgistry, [11]) provides a common service model for het-
erogenous registries and makes them communicate through a P/S middleware.

DIRE is in line with those approaches that tend to unify the service model
(e.g., JAXR and USQL). Business data are rendered by pre-defined elements
called Organizations, Services, and ServiceBindings, with the meaning that these
elements usually assume in existing registries. Technical data are described by
typed Facets, where each facet addresses a particular feature of the service by
using an XML language. StandardFacets characterize recurring features (for ex-
ample the compliance with an abstract interface), and we assume that they
are shared among services. SpecificFacets describe the peculiarities of the differ-
ent services (for example, particular SLAs or additional technical information).
Users can attach new facets to services, even if they are not their provider, to
customize the way services are perceived by the different registries (users), and

5 http://code.google.com/p/delivery-manager/

http://code.google.com/p/delivery-manager/

A Flexible and Semantic-Aware Publication Infrastructure 439

to let them share this information with the other components attached to the
communication bus.

The communication bus, which is based on a distributed P/S middleware
called ReDS [15], decouples the interactions among components by means of a
dispatcher. Each component can publish its messages on the dispatcher, and de-
cide the messages it wants to listen to (subscribe/unsubscribe). The dispatcher
forwards (notifies) received messages to all registered components. ReDS filters,
which can both refer to shared standard facets and embed XPath expressions
on the content of specific facets, let the different registries declare their inter-
ests for particular services. The goal is to disseminate the information about
services based on interests and requests, instead of according to predefined
rules.

A delivery manager is attached to each registry and acts as facade, that
is, it is the intermediary between the registry and the bus and manages the
information flow in the two directions. The adopted service model is generic
enough to let different vendors create adapters for their registries. The adoption
of the delivery manager does not require modifications to the publication and
discovery processes used by the different users. They keep interacting with the
(local) registry they were used to, but published services are distributed through
the P/S infrastructure, which in turn provides information about the services
published by the others (if they are of interest). In the end, each single registry
is able to notify its users about the new services published in the other registries.

Notice that a registry can connect to the bus and declare its interests at
any time. The infrastructure guarantees that a registry can always retrieve the
information it is interested in by means of lease contracts. The lease period,
which is configurable at run-time, guarantees that the information about services
is re-transmitted periodically. This is also the maximum delay with which a
registry is notified about a service. Moreover, if the description of a service
changes, the lease guarantees that the new data are distributed to all subscribed
registries within the period.

3.2 URBE

URBE6 (UDDI Registry By Example) is an extension of typical UDDI Registries
to support content-based queries, that is, the retrieval of services whose opera-
tions have a given input or output. Users submit the WSDL description of the
requested Web service, and the system returns a ranked list of services whose
signature is similar to the submitted one.

URBE supports service substitutability at both design- and run-time, and also
the top-down design of BPEL processes. Traditional design approaches push the
designer to identify the potential partner services and then design the BPEL
process by exploiting the previously selected WSDL interfaces (bottom-up ap-
proach). URBE allows the designer to start focusing on the definition of the
process before selecting the Web services that fit it.

6 http://black.elet.polimi.it/urbe

http://black.elet.polimi.it/urbe

440 L. Baresi, M. Miraz, and P. Plebani

URBE’s similarity engine compares WSDL descriptions of Web services. As-
suming that users express their queries using WSDL, this component compares
the submitted WSDL with the WSDL of all the Web services in the registry.
Each comparison relies on function WSDLSim : (wsdlq, wsdlp) → [0..1], where
the higher the result is, the higher the similarity between the two Web services
is [16]. This value is obtained recursively by analyzing the overall signature, the
operations, and their parameters. For each operation in wsdlq , the similarity
engine finds the operation in wsdlp with maximum similarity. This similarity
depends on the similarity between the operations’ names (calculated by opSim)
and the similarity of their input and output parameters (calculated by parSim).
Finally, the similarity of parameters depends on the similarity of the parame-
ters’ names and their data types. Figure 2 shows a high level overview of the
similarity evaluation process.

wsdl
q

wsdl
q
.

op
1

wsdl
q
.

op
2

wsdlq.

op1.in1

wsdlq.

op1.out1

wsdlq.

op2.in1

wsdlq.

op2.in2

wsdlq.

op2.out1

wsdl
p

wsdl
p
.

op
1

wsdl
p
.

op
2

wsdlp.

op1.in1

wsdlp.

op1.out1

wsdlp.

op2.in1

wsdlp.

op2.in2

wsdlp.

op2.out1

WSDLSim

opSim

parSim

Fig. 2. Example similarity evaluation

As a consequence, the similarity between two signatures heavily depends on
the names assigned to the whole services, available operations, and exchanged
parameters. The comparison between terms relies on a term similarity function
termSim : (ti, tj) → [0..1]. This function returns a value that reflects how the
two terms ti and tj are semantically close: 1 if ti and tj are synonym, 0 if they
are antonym.

To achieve this goal, termSim relies on two kind of ontologies: a domain
specific ontology and a general purpose ontology. The first includes terms related
to a given application domain. We assume that this ontology can be built by
domain experts who analyze the terms included in the Web services published
in the registry. The latter includes all the possible terms (at this stage we adopt
Wordnet7).

The domain specific ontology offers more accuracy in the relationships among
terms, while the general purpose one offers wider coverage. This happens because
in a general-purpose ontology, a word may have more that one synset, each
corresponding to a different meaning. In contrast, we assume that in a domain-
specific ontology each word has a unique meaning with respect to the domain
itself. URBE can be configured to only use Wordnet to obtain a better coverage,

7 http://wordnet.princeton.edu/

http://wordnet.princeton.edu/

A Flexible and Semantic-Aware Publication Infrastructure 441

to only use the domain specific ontology to obtain better precision, and to use
both of them to gain the two advantages contemporarily.

Name similarity depends on the way two names are connected inside the ontol-
ogy [17]. If we assume that WSDL descriptions are generated automatically, for
example from Java classes, it is possible that the names of operations and param-
eters reflect the naming convention usually adopted by programmers: getData
or currencyExhange are more frequent than the simple names directly included
in the ontology. For this reason, if the terms are composite words, termSim
tokenizes the word and returns the average similarity among the terms.

URBE is built on top of a UDDI implementation only for historical reasons,
but the similarity engine has wider applicability —as we will see in Section 4.
Such a module can also be used as a stand-alone component or be embedded in
complex frameworks.

3.3 USQL

USQL (Universal Service Query Language, [10]) is an XML language to express
service requirements in a technology agnostic way. The language allows users to
abstract the particular protocol and details used by the registry, and focus on
what services are supposed to offer. USQL, like SQL in the database world, is
thus a language for searching services understood by different registry vendors.
Its simplicity, expressiveness, and extensibility make USQL a good solution for
both experts and unskilled users. For example, users without technical skills can
search for services provided by certain organizations, while more skilled users
can search for services that offer particular operations.

A dedicated engine translates both the queries from users into the format
imposed by the particular registry, and the responses from registry-dependent
descriptions into a generic service model (GeSMO). This model adopts a layered
structure: the lowest level contains the concepts common to different services,
while higher layers describe properties specific to particular services. This way,
we have an extensible model able to capture different service types (e.g., Web ser-
vices, Grid services, and P2P services) using orthogonal metrics, like semantics,
QoS, trust and security, and management.

USQL queries can exploit syntactic information about Web services, for exam-
ple, their names or the names of the organizations behind them. They can also
embed semantic data that belong to users’ domain knowledge, and QoS elements
to predicate on the non-functional requirements that the service is supposed to
comply with. Obviously, we can easily mix these data to conceive complex and
sophisticated queries to retrieve the services of interest.

The language is based on a simple XML dialect to describe both required ser-
vices and their QoS properties. In particular, there are elements to select services
with a particular name, with a particular service description, or provided by a
particular service provider. As for semantics, USQL supports different taxon-
omy schemes such as the North American Industry Classification System or the
United Nations Standard Products and Services Code System. The user is able
to specify requirements on the operations the service should provide. USQL also

442 L. Baresi, M. Miraz, and P. Plebani

accepts constraints on the desired quality of service in terms of price, availability,
reliability, processing time, and security. These orthogonal aspects fully support
the user to retrieve services with the required functional and non-functional
properties.

For example, if we want a service to send SMS messages, we might think of
different properties. We can specify that interesting services must contain SMS
in their name. We could also exploit their semantic characterization to discover
only services provided by phone companies, or require that the WSDL interface
of the service we want must have a send method that accepts a phone number
and a short message as inputs. Finally we can also say that we are only interested
in cheap services by setting a maximum price.

4 Proposed Solution

A set of isolated registries would require interested providers to publish their
services on each registry separately to proficiently advertise them and foster
user awareness. This is exactly why we propose a flexible infrastructure that
takes advantage of DIRE, URBE, and USQL to simplify the way services are
published over a set of registries and ease their retrieval.

Once a new Web service becomes available, this information is not only stored
in the registry used by the provider to publish the new service, but it is also for-
warded to all the other registries interested in the same kind of services. This
way, the provider can reduce the set of target registries to ideally a single one.
In turn, even service retrieval becomes more effective: we move from a scenario
where requesters have to browse different registries to find what they want, to a
scenario where requesters only express their needs once, their requirements are
spread around, and the information about interesting Web services is automat-
ically moved onto their registries.

The proposed infrastrcture is shown in Figure 3. Its core is similar to the one
adopted in DIRE, where a communication bus8 connects all the companies that
own a registry. Generally speaking, every registry can be used to both publish
new Web services and retrieve interesting ones. Each registry is connected to the
bus by means of a delivery manager, which is in charge of the different registry
technologies and also manages the information flow in the two directions.

The first significant addition of this paper is that the communication bus also
relies on an extended version of URBE’s similarity engine for the comparisons
between requests (subscriptions) and available services.

The figure also shows how the proposed solution works with our running
example. For the sake of simplicity, we assume that XMethods and Wsoogle
are connected to the communication bus via a delivery manager. Since we are
considering general purpose registries, with a high number of services, the P/S
infrastructure could become the bottleneck of the entire system. If this were the
problem, “thematic” buses (e.g., about games, health, and so on) would help
8 We can easily assume secure and reliable interactions since the P/S communication

infrastructure is in charge of it.

A Flexible and Semantic-Aware Publication Infrastructure 443

Wsoogle.com

Communication bus

XMethods.net

JAXR
compliant
Registry

DIRE
Delivery
Manager

JAXR
compliant
Registry

DIRE
Delivery
Manager

URBE
Similarity
Engine

DIRE
Dispatcher

Touristic co.Healtcare SW developer co.

UDDI

DIRE
Delivery
Manager

ebXML

DIRE
Delivery
Manager

Chess player community

UDDI

DIRE
Delivery
Manager

Main Web service registries

Web service requesters

Fig. 3. Proposed infrastructure exemplified on the example scenario

split the traffic, and therefore manage the performance of the communication
infrastructure. A thematic bus may also be organized around a domain ontology
and, in this case, such an ontology could be used by URBE to compute the
similarity among service interfaces. Said this, the explanation of the approach can
easily consider a single bus without losing any significant detail. In addition, we
also assume that all the three actors (already introduced in Section 2), interested
in new Web services, have a proprietary service registry, along with a delivery
manager properly connected to the communication bus.

The introduction of USQL and URBE aims at (i) affecting the way sub-
scriptions can be expressed and (ii) improving the effectiveness of the filtering
performed by the dispatcher when it has to decide whether to forward the infor-
mation about a new service or not. The next sections illustrate these two aspects
in detail.

4.1 USQL-Based Subscriptions

This section explains how users can interact with the delivery manager using
USQL. As stated before, the main benefits are the independence of any particular
technology and the openness towards non technical users. Our additional goal is
to leverage these features inside our distributed environment, which means trans-
lating USQL queries into appropriate subscriptions to support service lookup.
Since USQL queries are nothing but verbose XML documents, the presentation
in this section is organized around increasingly complex examples.

Moving back to the scenario of Section 2, let us suppose that the chess
players had discovered an interesting set of services provided by an organiza-
tion called AcmeChess. Now, the community is looking for other services, and

444 L. Baresi, M. Miraz, and P. Plebani

given the good reputation, they would like to know whether there are new
services provided by AcmeChess. For example, if we think of a simple facet
with tag serviceprovider, the filter (i.e., the XPath expression) could be:
//serviceprovider = "AcmeChess".

Another example considers the tourist operator that uses USQL in a smarter
way and exploits the semantic facets. If we assume the existence of a standard
facet that represents a shared taxonomy about travels, we can easily select all
the services related to it. The subscription behind this query would predicate
on the relationship between the standard facet traveling and the various ser-
vices to allow the delivery manager to retrieve all the services in the domain of
interest. Otherwise, if the ontology were more dynamic and lightweight, it could
be embedded into a specific facet used to describe a particular service, and the
filter would be: contains(//service/ontology, "traveling").

The third actor, that is, the health-care software development company, selects
services by analyzing the interface they offer. For this reason, the first query they
create analyzes the operations exposed by the different services to select the ones
relevant for their goals. For example, the following USQL query:

<USQL version="1.0" xmlns="urn:sodium:USQL">
<USQLRequest>
<Where>
<Service serviceType="WebService P2PService GridService">
<Operation minDegreeOfMatch="0.75">
<Inputs>
<input>
<type valueIs="contain">integer</type>
<semantics ontologyURI="http://sodium/ontologies/healthcare">
http://sodium/ontologies/healthcare#ssn

</semantics>
</input>
</Inputs>
<Outputs>
<output>
<type valueIs="contain">string</type>
<semantics ontologyURI="http://sodium/ontologies/healthcare">
http://sodium/ontologies/healthcare#surname</semantics>

</output>
</Outputs>
</Operation>
</Service>

</Where>
</USQLRequest>
</USQL>

requires a service that gives the patient’s name knowing his/her social security
number. It also checks that the service only requires an integer, tagged with
taxonomy’s node ssn, and returns a string, tagged with node surname. This
query is transformed into a filter with three parts. The first part is an XPath

A Flexible and Semantic-Aware Publication Infrastructure 445

that analyses the WSDL facet to check whether there is an operation with an
integer input and a string result. The second part checks whether the input
parameter of the operation refers to taxonomy’s node ssn, while the last part
checks the result of the operation, and controls that it represents a surname.

When the query is issued at run-time, probably generated by an application
component in charge of replacing a faulty service, the infrastructure must guar-
antee exact results (i.e., only retrieve services that can replace a previous service
without human intervention). This is what the standard XPath matching tech-
nique provides. When we move the problem at design-time, users create queries
to understand what Web services they can exploit. The results of these queries
are usually not directly plugged in the system and approximate results better
help understand the different alternatives: USQL allows us to specify the de-
gree of matching, and URBE helps the communication bus retrieve services that
match the approximation.

The health-care development company can also decide to include QoS require-
ments in its queries. For example, they can decide to only bind to services with
high availability and low processing time. All these elements can easily be trans-
lated into both XPath queries directly, for full matches, and complete required
facets, then passed to URBE for evaluation, for partial matches.

4.2 Similarity-Based Subscriptions

The extended version of URBE’s semantic matching provides two main func-
tions: termSim, to evaluate the similarity between two terms, and facetSim,
to evaluate the similarity between two facets, which is an extension and gener-
alization of the original match making that was limited to WSDL or SAWSDL
descriptions. The infrastructure we propose exploits these two functions when-
ever users want to move from exact matches to relaxed ones, that is, users are
satisfied even if their requirements are not totally fulfilled.

To notify the publication of a new Web service, the dispatcher was used to
verify that the new description and the subscription had a perfect match. For
example, if the chess player community submits a subscription with an XPath
expression as //service/type="chessgame", their registry will never receive
Web services with a facet whose field type is chess. Since we cannot force all
the actors to use the same terms, we can take advantage of function termSim.
We introduce the clause relaxed[sim], and append it to the XPath expression
included in the subscription, where sim ∈ [0..1] is a threshold that specifies
the minimum admissible similarity. In the example, the subscription could be
//service/type="chessgame"relaxed[0.5] to make the dispatcher notify the
publication of new Web services with termSim(‘chessgame′, ‘chess′) ≥ 0.5. No-
tice that the definition of this similarity threshold is not easy for unskilled users
as the average chess player. For this reason, we assume that the relaxed clauses
can actually be set by transforming a qualitative scale (e.g., high, medium, and
low) into the corresponding threshold values.

Function facetSim can be exploited in case the requester is skilled enough to
know what a facet is (that is, the structure of an XML document used to describe

//service/type="chessgame"
//service/type="chessgame" relaxed[0.5]

446 L. Baresi, M. Miraz, and P. Plebani

a service). Thus, the requester wants a Web service that is not only related to a
given type, but it is described in a very particular and technical way. To make
the substitution possible, the substitute Web service has to expose a facet that
is equal to or at least similar to the facet of the failed service.

Since a WSDL description is nothing but a particular facet, a subscription of
the healthcare software company could be //service/wsdl=‘http://www.hcc.
org/x-rayPrinter’ relaxed[0.8]where the WSDL corresponds to a Web ser-
vice able to print and deliver X-rays to patients. When a company develops a new
service of this kind and publishes it onto one of the general purpose registries,
the dispatcher compares its WSDL with the WSDL at http://www.hcc.org/
x-rayPrinter. If facetSim returns a value greater than 0.8, the Web service is
also published onto the private registry owned by the software company.

5 Related Work

Our proposal can easily be compared with two wide classes of approaches: those
that concentrate on service publication and discovery and those that deal with
term similarity.

As for the first group, Garofalakis et al. in [1] introduce an overview of current
Web service publication and discovery mechanisms and also propose a catego-
rization. Registry technologies support the cooperation among registries, but
they imply that all registries comply with a single standard and the cooperation
needs a set up phase to manually define the information contributed by each
registry. For example, UDDI v.3 [18] extends the replication and distribution
mechanisms offered by the previous versions to support complex and hierarchi-
cal topologies of registries. It also identifies services by means of a unique key
over different registries. The standard only says that different registries can in-
teroperate, but the actual interaction policies must be defined by the developers.
In our approach, the role of the registries and the way in which they cooperate
are clearly defined.

Similarly, ebXML [3] is a family of standards based on XML to provide an
infrastructure to ease the online exchange of commercial information. ebXML
fosters the cooperation among them by means of the idea that groups of registries
share the same commercial interests or are located in the same domain, as the
thematic buses do in our approach. One of such groups can then be seen as a sin-
gle logical entity where all the elements are replicated on the different registries.
With respect to our approach, service retrieval with ebXML registries results
ineffective since users must browse pre-defined taxonomies or submit keywords
to find the desired services.

METEOR-S [7] and PYRAMID-S [8] fall in the family of semantic-aware
approaches for the creation of scalable peer-to-peer infrastructures for the pub-
lication and discovery of services. These works create a federation of registries
using several concrete nodes. Conversely to our approach, the single node become
simply a gateway to the logical registry, ensuring higher availability or better
response time, but loosing its identity. In particular, the usage of a semantic

//service/wsdl=`http://www.hcc.org/x-rayPrinter' relaxed[0.8]
//service/wsdl=`http://www.hcc.org/x-rayPrinter' relaxed[0.8]
http://www.hcc.org/x-rayPrinter
http://www.hcc.org/x-rayPrinter

A Flexible and Semantic-Aware Publication Infrastructure 447

infrastructure allows for the implementation of different algorithms for the pub-
lication and discovery of services, but it also forbids the complete control over
the registries. The semantic layer imposes too heavy constraints on publication
policies and also on the way federations can evolve dynamically. METEOR-S
only supports UDDI registers, while PYRAMID-S supports both UDDI and
ebXML registries. They adopt ontology-based meta-information to allow a set
of registries to be federated with each registry “specialized” according to one or
more categories it is associated with. This means that the publication of a new
service requires the meta-information needed to categorize the service within the
ontology. Services are discovered by means of semantic templates that give an
abstract characterization of the service and are used to query the ontology and
identify the registries that contain significant information.

Term similarity has been tackled in several different ways [17]. These algo-
rithms usually calculate such a similarity by relying on the relationships between
terms defined in a reference ontology (e.g., is-a, part-of, attribute-of). In con-
trast, we compute similarity between terms according to the approach proposed
by Seco et al. [19], where the authors adapt existing approaches with the assump-
tion that concepts with many hyponyms convey less information than concepts
that have less hyponyms or any at all (i.e, they are leaves in the ontology).

About the similarity between whole signatures, our approach is closely related
to the approaches studied for the retrieval of reusable components [20]. In this
field, as stated by Zaremski and Wing, there are two types of methods to address
this problem: signature matching [21] and specification matching [22]. In par-
ticular, signature matching considers two levels of similarity and introduces the
exact and relaxed matching of signatures. As for services, Stroulia and Wang [23]
propose an approach that also considers the description field usually included in
WSDL specifications.

6 Conclusions and Future Work

The paper presents an innovative infrastructure for the distributed publication
of Web services and for their easy retrieval. The proposal leverages previous
experiences of the authors, namely DIRE and URBE, and also other initiatives
(USQL) to provide a holistic solution able to govern the replication of service
information by means of user requests and preferences, and also able to provide
users with partial, but acceptable, solutions whose fitness is defined through
semantic match making techniques. The overall framework provides users with
a wide set of options.

The integrated infrastructure exists as a very first prototype, but more sta-
ble solutions are needed for its deployment in realistic settings and also for a
thorough empirical evaluation of the approach. Both these directions will govern
our future work. The plan is to keep working on a fully functional prototype
implementation and design a complete empirical evaluation of the proposal by
exploiting a distributed set of registries and the usual collections of public Web

448 L. Baresi, M. Miraz, and P. Plebani

services as benchmarks. Such a new prototype will also deal with query opti-
mization and filter maintenance.

Acknowledgments

This work has been supported by the following projects: Tekne (Italian FIRB),
Discorso (Italian FAR), SeCSE (EC IP), and ArtDecò (Italian FIRB).

References

1. Garofalakis, J., Panagis, Y., Sakkopoulos, E., Tsakalidis, A.: Contemporary Web
service discovery mechanisms. Journal of Web Engineering 5(3), 265–290 (2006)

2. UDDU: Universal Description, Discovery, and Integration, http://uddi.xml.org
3. ebXML: Electronic Business using eXtensible Markup Language,

http://www.ebxml.org/
4. Martin, D. et al. (ed.): OWL-S: Semantic Markup for Web Services. W3C Submis-

sion (2004), http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
5. WSMO Working Group: Web Service Modeling Ontology, http://www.wsmo.org
6. Farrel, J., Lausen, H.: Semantic annotations for WSDL and XML schema (2007),

http://www.w3.org/TR/sawsdl/
7. Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., Miller, J.:

METEOR-S WSDI: A scalable p2p infrastructure of registries for semantic publi-
cation and discovery of web services. Information Technology and Management, 6,
17–39 (2005)

8. Pilioura, T., Kapos, G., Tsalgatidou, A.: PYRAMID-S: A scalable infrastructure
for semantic web services publication and discovery. In: RIDE-DGS 2004 14th Int’l
Workshop on Research Issues on Data Engineering, in conjunction with the IEEE
Conf. on Data Engineering (ICDE 2004) (March 2004)

9. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish / subscribe. ACM Comput. Surveys 35(2), 114–131 (2003)

10. Tsalgatidou, A., Pantazoglou, M., Athanasopoulos, G.: Specification of the Unified
Service Query Language (USQL). Technical report (June 2006)

11. Baresi, L., Miraz, M.: A distributed approach for the federation of heterogeneous
registries. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294, pp.
240–251. Springer, Heidelberg (2006)

12. Sawyer, P.: Specification language definition. Technical Report A1.D2.3, EC SeCSE
Project (2006)

13. Plebani, P., Pernici, B.: Web service retrieval based on signatures and annotations.
Technical Report 2007.47, Dipartimento di Elettronica ed Informazione - Politec-
nico di Milano (2007)

14. Najmi, F. (ed.): Java API for XML Registries (JAXR) (2002),
http://java.sun.com/webservices/jaxr/

15. Cugola, G., Picco, G.P.: REDS: a reconfigurable dispatching system. In: Proc. of
the 6th international workshop on Software engineering and middleware, pp. 9–16
(2006)

16. Bianchini, D., De Antonellis, V., Pernici, B., Plebani, P.: Ontology-based method-
ology for e-service discovery. Information Systems 31(4-5), 361–380 (2006)

http://uddi.xml.org
http://www.ebxml.org/
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://www.wsmo.org
http://www.w3.org/TR/sawsdl/
http://java.sun.com/webservices/jaxr/

A Flexible and Semantic-Aware Publication Infrastructure 449

17. Pedersen, T., Patwardhan, S., Michelizzi, J.: WordNet:Similarity - measuring the
relatedness of concepts. In: Proc. National Conf. on Artificial Intelligence, San Jose,
California, USA, July 25-29, pp. 1024–1025 (2004)

18. Clement, L., Hately, A., von Riegen, C. (eds.): T.R.: Universal Description, Dis-
covery and Integration version 3.0.2 (2004), http://uddi.org/pubs/uddi v3.htm

19. Seco, N., Veale, T., Hayes, J.: An intrinsic information content metric for semantic
similarity in Wordnet. In: Proc. Eureopean Conf. on Artificial Intelligence (ECAI
2004), Valencia, Spain, August 22-27, pp. 1089–1090. IOS Press, Amsterdam (2004)

20. Damiani, E., Fugini, M.G., Bellettini, C.: A hierarchy-aware approach to
faceted classification of objected-oriented components. ACM Trans. Softw. Eng.
Methodol. 8(3), 215–262 (1999)

21. Zaremski, A., Wing, J.: Signature matching: a tool for using software libraries.
ACM Trans. Softw. Eng. Methodol. 4(2), 146–170 (1995)

22. Zaremski, A., Wing, J.: Specification matching of software components. ACM
Trans. Softw. Eng. Methodol. 6(4), 333–369 (1997)

23. Stroulia, E., Wang, Y.: Structural and semantic matching for assessing Web-service
similarity. Int’l J. Cooperative Inf. Syst. 14(4), 407–438 (2005)

http://uddi.org/pubs/uddi_v3.htm

Measuring Similarity between Business Process Models

Boudewijn van Dongen1, Remco Dijkman1, and Jan Mendling2

1 Eindhoven University of Technology, The Netherlands
{b.f.v.dongen,r.m.dijkman}@tue.nl

2 Queensland University of Technology, Brisbane, Australia
j.mendling@qut.edu.au

Abstract. Quality aspects become increasingly important when business process
modeling is used in a large-scale enterprise setting. In order to facilitate a storage
without redundancy and an efficient retrieval of relevant process models in model
databases it is required to develop a theoretical understanding of how a degree of
behavioral similarity can be defined. In this paper we address this challenge in a
novel way. We use causal footprints as an abstract representation of the behav-
ior captured by a process model, since they allow us to compare models defined
in both formal modeling languages like Petri nets and informal ones like EPCs.
Based on the causal footprint derived from two models we calculate their simi-
larity based on the established vector space model from information retrieval. We
validate this concept with an experiment using the SAP Reference Model and an
implementation in the ProM framework.

Keywords: Business Process Modeling, Event-driven Process Chains, Similarity,
Equivalence.

1 Introduction

Many multi-national companies use tools such as ARIS Toolset for documenting their
business processes. Due to the operational diversity of such large enterprises, there are
often several thousands of processes modeled and stored in the database of the mod-
eling tool [26]. The sheer number causes serious problems for the management and
maintenance of these model: It is difficult to see the forest because there are too many
trees, as a German proverb puts it. While quality aspects of process models (e.g. [15])
and process modeling languages (e.g. [10]) are quite well understood, there is a notable
research gap on quality issues across models.

The similarity between business process models can be related to several of these
cross-model quality issues. Consider a large organization that wants to identify redun-
dancies in the operations of different divisions. Models are indeed helpful to discuss
the overlap of two processes and the potential for integration, yet it is difficult and
time-consuming to identify similarities in a process database with several thousands of
models. Clearly, there is a need for automatic detection of similarities between process
models to facilitate certain model management activities. There are several model man-
agement activities that would benefit from good tool support. Firstly, similar models
as well as the corresponding business operations can be integrated into one process.
This is interesting not only for refactoring the model database, but also to facilitate the

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 450–464, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Measuring Similarity between Business Process Models 451

integration of business operations in a merger scenario. Secondly, the reference mod-
els of an ERP system vendor could be automatically compared to company processes.
This way, organizations could more easily decide which packages match their current
operations best. Thirdly, multi-national enterprises can identify specialized processes
of some national branch which no longer comply with the procedures defined in the
company-wide reference model using a similarity measurement.

In this paper, we discuss the foundations of detecting and measuring similarity be-
tween business process models. In particular, our contribution is an approach considering
linguistic and behavioral aspects of process models to calculate a degree of similarity.
We validate the approach using the SAP reference model. The results highlight which
benefits organizations can have from tool support for similarity detection.

The remainder of the paper is organized as follows. Section 2 introduces Event-
driven Process Chains (EPCs), a popular process modeling language that we use to il-
lustrate our approach. Furthermore, we discuss one particular redundancy problem that
was identified in the SAP reference model in prior research. Section 3 then presents
our approach to calculate the degree of similarity between two processes based on their
causal footprint. A causal footprint covers extensive behavioral information about a
process without calculating its state space, but requires the identification of matching
functions in the EPCs being compared. Section 4 addresses the problem of matching
functions across different processes, with an emphasis on EPCs. We discuss an ap-
proach to identify matches between functions automatically. In Section 5, the presented
techniques are combined, applied to a large portion of the SAP reference model, and
empirically validated against human interpretations of similarity. Then, Section 6 dis-
cusses related work to our approach before Section 7 concludes the paper.

2 Background on EPCs

In this paper, we will illustrate our argument using Event-driven Process Chains (EPCs).
The EPC is a popular business process modeling language that was introduced in [13].
EPCs are used by most companies that manage their process models with ARIS Toolset.
This way, our results are directly applicable for these organizations.

EPCs capture the control flow of a process in terms of the temporal and logical
dependencies of activities [13]. EPCs offer function type elements to represent these
activities, event type elements describing pre- and post-conditions of functions, and
three kinds of connector types including AND, OR, and XOR. Control flow arcs are
used to link these elements. Connectors have either multiple incoming and one outgoing
arc (join connectors) or one incoming and multiple outgoing arcs (split connectors). As
a syntax rule, functions and events have to alternate on each path through the EPC,
either directly or indirectly when they are linked via one or more connectors.

The informal (or intended) semantics of an EPC can be described as follows. The
AND-split activates all subsequent branches in a concurrent manner. The XOR-split
represents a choice between one of several alternative branches. The OR-split triggers
one, two or up to all of multiple branches based on conditions. For both XOR-splits and
OR-splits, the activation conditions are given in events subsequent to the connector.
The AND-join waits for all incoming branches to complete, then it propagates control

452 B. van Dongen, R. Dijkman, and J. Mendling

to the subsequent EPC element. The XOR-join merges alternative branches. The OR-
join synchronizes all active incoming branches. This feature is called non-locality since
the state of all transitive predecessor nodes has to be considered. For a recent discussion
of formal semantics of EPCs refer to [18].

The following definition formalizes EPC. We need this definition in the section on
behavioral similarity. Furthermore, we define a notion of syntactical correctness that we
check before applying our approach to the SAP reference model.

Definition 2.1. (EPC)
An EPC = (E, F, C, l, A) consists of three pairwise disjoint and finite sets E, F, C, a
mapping l : C → {and, or, xor}, and a binary relation A ⊆ (E∪F ∪C) × (E∪F ∪C)
such that

– An element of E is called event. E �= ∅.
– An element of F is called function. F �= ∅.
– An element of C is called connector.
– The mapping l specifies the type of a connector c ∈ C as and, or, or xor.
– The relation A defines the control flow as a coherent, directed graph. An element

of A is called an arc. An element of the union N = E ∪ F ∪ C is called a node.

In order to be able to discuss the events surrounding a function, or the functions sur-
rounding an event, notations are introduced for paths and connector chains.

Definition 2.2. (Paths and Connector Chains)
Let N be a set of nodes and A ⊆ N × N a binary relation over N defining the arcs.
For each node n ∈ N , we define path a ↪→ b refers to the existence of a sequence of
EPC nodes n1, . . . , nk ∈ N with a = n1 and b = nk such that for all i ∈ 1, . . . , k
holds: (n1, n2), (n2, n3), . . . , (nk−1, nk) ∈ A. This includes the empty path of length
zero, i.e., for any node a : a ↪→ a. If a �= b ∈ N and n2, . . . , nk−1 ∈ C, the path

a
c

↪→ b is called connector chain. This includes the empty connector chain, i.e., a
c

↪→ b
if (a, b) ∈ A.

In this paper, we focus on syntactically correct EPCs, i.e. EPCs with at least one initial
and final events, at least one function and strict alternation of functions and events on
all paths. According to this definition, both example EPCs of Figure 1 are syntactically
correct. Therefore, we can apply the techniques for matching functions that are dis-
cussed later in Section 4. Out of the 604 EPCs in the SAP reference model mentioned
before, 556 are syntactically correct. Please note that we demand a strict alternation of
functions and events, which is not included in all EPC syntax definitions.

Figure 1 gives an example of two EPCs that captures similar processes (cf. [19]).
Both are taken from the aforementioned SAP Reference Model. The EPC on the left-
hand side of Figure 1 stems from the Sales and Distribution branch and its name is
Customer Inquiry. In essence, when a customer inquires about a product (denoted by
the event “Customer inquires about products”), this inquiry is processed and a quotation
is created which results in the fact that a customer project is needed. As an alternative,
the need for a customer project can arise based on plan data which triggers a resource
related quotation. The EPC on the right-hand side of Figure 1 is taken from the Project
Management branch and it is called Customer Inquiry and Quotation Processing. It

Measuring Similarity between Business Process Models 453

Customer
inquiries about

products

Customer
inquiry

processing

Customer
inquiries about

products

Document to
be created
from sales

activity

Quotation to
be created
from inquiry

Quotation to
be created
from inquiry

XOR

Customer
quotation

processing

Quotation
must be

created based
on plan data

Resource
related

quotation

Customer
project

required
XOR

Customer
inquiry is

transmitted

Inquiry items
are rejected

Inquiry is
created

V

XOR

Client inquiry
query

processing

=

=

=

Fig. 1. Customer Inquiry and Customer Inquiry and Quotation Processing EPCs

identifies a sales activity as alternative reason to process a customer inquiry. As a result
the inquiry is created and transmitted. Furthermore, either a quotation is created or the
inquiry is rejected. The processes share two equivalent events and one equivalent func-
tion as depicted in Figure 1 . Since the overlapping part of the models, i.e. the sequence
“customer inquiry”, “inquiry processing”, and “quotation to be created”, can be handled
by both processes, they could easily be integrated into one model, for instance using the
approach defined in [19].

In Section 3, we provide a metric for determining how similar two business processes
are, given that it is known which functions (or activities in the more general sense) in
one model correspond to functions in the other model. In Section 4, we show how to
automatically find the relations between functions of different models.

3 Similarity of Behavior

Comparing the behavior of processes using traditional notions such as bisimulation is
problematic for different reasons. Firstly, most of these notions are defined as a verifi-
cation property which yield as yes or no, but no degree of similarity. Secondly, process
models with concurrency suffer from a state explosion problem. For some process mod-
eling languages a formalization of the reachability graph as a transition system is even
missing. Thirdly, if there are deadlocks or dead transitions in the process model, these
parts are not captured in the behavioral comparison. Motivated by these problems, we
defined the concept of a causal footprint [7] which is a collection of the essential be-
havioral constraints imposed by a process model.1 We will use the causal footprints of
two processes as a basis to calculate their similarity. Section 3.1 describes the deriva-
tion of a causal footprint, then Section 3.2 defines the degree of similarity for causal
footprints.

1 Note that this paper adopts the concept of a causal footprint from [7] where we use it for
verification purposes. In contrast to [7] we use this concept for measuring similarity.

454 B. van Dongen, R. Dijkman, and J. Mendling

3.1 Deriving the Causal Footprint of an EPC

Before defining a causal footprint of an EPC, we first need to introduce the notion of a
case as well as the semantics of look-back and look-ahead links.

A case basically captures the behavior of one particular execution sequence of func-
tions according to the rules of a process model. Consider N as the set of nodes of an
EPC. The behavior of the process ΦEPC is defined as the set W ⊆ N∗, where N∗ is
the set of all sequences that are composed of zero of more nodes from N . A σ ∈ W
is called a case, i.e. a possible execution of the EPC. To denote a function at a specific
index in σ, we use σ[i], where i is the index ranging from 1 to |σ|.

The causal footprint identifies two relationships between nodes in N that are called
look-back and look-ahead links. For each look-ahead link, we say that the execution
of the source of that link leads to the execution of at least one of the targets of that
link, i.e., if (a, B) ∈ Lla, then any execution of a is followed by the execution of some
b ∈ B. A look-ahead link is denoted as a bullet with one or more outgoing arrows.
Furthermore, for each look-back link, the execution of the target is preceded by at least
one of the sources of that link, i.e., if (A, b) ∈ Llb, then any execution of b is preceded
by the execution of some a ∈ A. The notation of a look-back link is a bullet with one
or more incoming arrows. Note that we do not give any information about when in the
future or past executions took place, but only that they are there. This way of describing
a process is related to work on dominance and control dependence in program analysis
(see e.g. [12]), and similar to the work presented in [8]. However, by splitting up the
semantics in the two different directions (i.e. forward and backward), causal footprints
are more expressive. With footprints you can for example express the fact that task A is
always succeeded by B, but that B can also occur before A, which is typically hard to
express in other languages.

Definition 3.1. (Causal Footprint)
We define a causal footprint G = (N, Llb, Lla) as a graph where, where:

- N is a finite set of nodes (activities),
- Llb ⊆ (P(N) × N) is a set of look-back links2

- Lla ⊆ (N × P(N)) is a set of look-ahead links.

For relating the definition of a causal footprint to the behavior of an EPC we define a
notion of consistency based on the cases implied by the EPC process model.

Definition 3.2. (Consistency of Causal Footprint with EPC)
Let N be a set of nodes and EPC = (E, F, C, l, A) be an EPC with behavior W . Fur-
thermore, let G = (N, Llb, Lla) be a causal footprint. We say that G = (N, Llb, Lla) is
consistent with the behavior of EPC, denoted by G ∈ FEPC , if and only if:

1. N = F , i.e. the nodes of the footprint represent the functions of the EPC,
2. For all (a, B) ∈ Lla holds that for each σ ∈ W with n = |σ|, such that there is a

0 ≤ i ≤ n − 1 with σ[i] = a, there is a j : i < j ≤ −1, such that σ[j] ∈ B,
3. For all (A, b) ∈ Llb holds that for each σ ∈ W with n = |σ|, such that there is a

0 ≤ i ≤ n − 1 with σ[i] = b, there is a j : 0 ≤ j < i, such that σ[j] ∈ A,

2 With P(N), we denote the powerset of N , where ∅ �∈ P(N).

Measuring Similarity between Business Process Models 455

a

C B a

C B

a

C B a

C B

Xa

C B

Va

C B

/\a

C BXa

C B

Va

C B

/\a

C B

Fig. 2. Mapping of EPCs to causal footprints

While the different cases of an EPC can explicitly be generated using the seman-
tics formalization defined in [18], there is a more efficient way. The mapping defined
in [7] and depicted in Figure 2 yields a consistent causal footprint for an EPC under
the assumption that no AND-join or OR-join deadlocks. Furthermore, it is clear from
Definition 3.2 that a causal footprint is not unique, i.e., different processes can have
common footprints. For example, G = (N, ∅, ∅) is the causal footprint of any process
having activities F . Therefore, we aim at footprints that are more informative without
trying to capture detailed semantics. In [7] a set of rules for calculating the transitive
closure of a causal footprint are introduced such that the closure is still a causal footprint
that is consistent with the EPC. In Section 5, where we present the application to the
SAP reference model, we used the rules of Figure 2 in combination with the transitive
closure rules of [7] to obtain a causal footprint for all EPCs.

3.2 Similarity of Causal Footprints

In information retrieval the degree of similarity between a document and a query plays a
very important role for ranking the returned documents according to their relevance. For
calculating similarity, we use the well-known vector model [2, 28] which is one of the
basic techniques used for information filtering, information retrieval, and the indexing
of web pages. Its classical application is to determine the similarity between a query and
a document. The original vector space model proposed by Salton, Wong, and Yang in
[28] attaches weights based on term frequency to the so-called “document vector”. We
use a more liberal interpretation, where other weights are possible. However, to explain
the basic mechanism we use terms originating from the domain of information retrieval,
i.e., terms like “document collection”, a set of “terms”, and a set of “weights” relating
to the terms. Later we will provide a mapping of these terms to causal footprints.

The document collection contains a set of documents. Each of these documents is
considered to be a list of terms which are basically the words of the document. The
union of all terms of all documents is then used to describe each document as a vector.
For one specific document an entry in the vector represents that the term associated
with the vector position of this entry is included in the document. In a simple case the
occurrence of a term can be indicated by a one and the non-occurrence with a zero,
however there is also the option to assign weights to terms in order to address the fact
that they differ in relevance. A common choice is to use one divided by the number of
occurrences of a term throughout all documents of the document collection as a weight

456 B. van Dongen, R. Dijkman, and J. Mendling

which has the effect that scarcely used terms get a higher weight. A query can also be
considered as a document, i.e., a list of terms.

The similarity between a query and a document is then calculated based on their
vector representation as the cosine of the angle between the two vectors [2, 28]. Calcu-
lating this degree of similarity for each document provides a mechanism to rank them
according to their relevance for the query.

Our proposal for determining the similarity of two business process models builds on
the vector model and causal footprints. We consider causal footprints of two processes
G1 = (N1, L1,lb, L1,la) and G2 = (N2, L2,lb, L2,la) as input for the calculation. In
order to apply the vector model, we have to define (1) the document collection, (2) the
set of terms, and (3) the set of weights.

The document collection includes two entries, namely the two causal footprints that
need to be compared. We will refer to the first and the second causal footprint as
G1 = (N1, L1,lb, L1,la) and G2 = (N2, L2,lb, L2,la)).

The set of terms is build from the union over nodes, look back, and look ahead links
of the two causal footprints. We define Θ = N1 ∪L1,lb ∪L1,la ∪N2 ∪L2,lb ∪L2,la

as the set of terms and λ : Θ → {1, 2, . . . |Θ|} as an indexing function that assigns
a running number to each term, i.e., the set of all elements appearing in the two
footprints are enumerated. (Note that we implicitly assume all sets of nodes and
links to be disjoint in a single model.)

The relevance of each term is closely related to the number of tasks from which it is
built. Consider for example two look ahead links xla = (a, {g}) ∈ Lla and yla =
(a, {b, c, d, e, f}) ∈ Lla. xla refers to only two tasks: a and g. yla refers to six tasks
(a through f). It seems obvious that the look ahead links with fewer tasks are more
informative and therefore more important. To address this we use weights depending
on the number of tasks involved in a look-ahead/back link.

The weights are determined using the size of the relations. If θ ∈ Θ is a single node
(i.e. θ ∈ N1 ∪ N2), then we define the weight of θ as wθ = 1. Furthermore, since
the number of potential look ahead and look back links depends upon the powerset
of nodes, is seems natural to use exponentially decreasing weights. Therefore, for
all links θ ∈ Θ, we define the weight of a link wθ = 1/(2|θ|−1), where |θ| denotes
the number of tasks in the link.

For the two look ahead links xla = (a, {g}) and yla = (a, {b, c, d, e, f}), we get
wxla

= 1/(22−1) = 0.5 and wyla
= 1/(26−1) = 0.03125 as their weights.

Using the document collection, the set of terms and the weights presented above, we
define the document vectors, which we call footprint vectors.

Definition 3.3. (Footprint vectors)
Let G1 = (N1, L1,lb, L1,la) and G2 = (N2, L2,lb, L2,la) be two causal footprints, with
Θ the set of terms and λ : Θ → IN an indexing function. We define two footprint
vectors, −→g1 = (g1,1, g1,2, . . . g1,|Θ|) and −→g2 = (g2,1, g2,2, . . . g2,|Θ|) for the two models
as follows. For each element θ ∈ Θ, we say that for each i ∈ {1, 2} holds that

Measuring Similarity between Business Process Models 457

gi,λ(θ) =

⎧
⎪⎨

⎪⎩

0 if θ �∈ (Ni ∪ Li,lb ∪ Li,la)

wθ =
1

2|θ|−1 if θ ∈ (Li,lb ∪ Li,la)

wθ = 1 if θ ∈ Ni

Using the two footprint vectors, we can define the similarity between two footprints as
the cosine of the angle between these two vectors.

Definition 3.4. (Footprint similarity)
Let G1 = (N1, L1,lb, L1,la) and G2 = (N2, L2,lb, L2,la) be two causal footprints, with
Θ the set of terms and λ : Θ → IN an indexing function. Furthermore, let −→g1 and −→g2
be the corresponding footprint vectors. We say that the similarity between G1 and G2,
denoted by sim(G1, G2) is the cosine of the angle between those vectors, i.e.

sim(G1, G2) =
−→g1 × −→g2

|−→g1 | · |−→g2 |
=

∑|Θ|
j=1 g1,j · g2,j√∑|Θ|

j=1 g2
1,j ·

√∑|Θ|
j=1 g2

2,j

The value of sim(G1, G2) ranges from 0 (no similarity) to 1 (equivalence). In this
paper, we do not elaborate on this formula. If one accepts the weights that we associate
to the “terms” in a causal footprint, then the cosine of the angle between these two
vectors provides a generally accepted way to quantify similarity [2, 28].

The similarity sim(G1, G2) between footprints can be calculated for any two foot-
prints G1 and G2. However, for the similarity to exceed 0, there should be at least one
node n ∈ N1 ∩ N2.

Property 3.5. (Disjoint footprints have similarity 0)
Let G1 = (N1, L1,lb, L1,la) and G2 = (N2, L2,lb, L2,la) be two causal footprints, with
Θ the set of terms and λ : Θ → IN an indexing function. Furthermore, let −→g1 and −→g2 be
the corresponding footprint vectors. If N1 ∩ N2 = ∅ then sim(G1, G2) = 0.

Proof. It is sufficient to show that −→g1 × −→g2 = 0, i.e. that
∑|Θ|

j=1 g1,j · g2,j = 0. Assume
that for some 1 ≤ j ≤ |Θ| holds that g1,j > 0. Then, from Definition 3.3, we know that
λ(θ) = j with either θ ∈ N1, or θ ∈ (L1,lb ∪ L1,la). Assume θ ∈ N1. Then we know
that g2,j = 0, since θ �∈ Ni. Hence g1,j · g2,j = 0. Assume θ ∈ (L1,lb ∪ L1,la). Since
Definition 3.1 shows that L1,lb ⊆ (P(N1)×N1) and L1,la ⊆ (N1 ×P(N1)), we know

that θ �∈ (L2,lb ∪ L2,la) and hence that g1,j · g2,j = 0. Therefore,
∑|Θ|

j=1 g1,j · g2,j = 0
and hence sim(G1, G2) = 0. �
Property 3.5 shows that for two footprints to be considered similar, we need to iden-
tify nodes that appear in both footprints. For this, we use the notion of an equivalence
mapping defined in Section 4.

4 Matching Functions

When comparing EPCs it is not realistic to assume that equivalent functions and events
have labels that are the same to the letter. Figure 1 illustrates this: the functions “Cus-
tomer inquiry processing” and “Client inquiry query processing” are similar from a
human perspective, but they have different labels.

458 B. van Dongen, R. Dijkman, and J. Mendling

To determine the match between functions from different EPCs, we:

1. determine how similar pairs of functions are on a 0 to 1 scale, based on the equiva-
lence of words in their labels (we call this the semantic similarity score);

2. determine whether a function matches another function on a true/false scale, based
on the semantic similarity score;

3. determine what the best mapping is between all functions from one EPC and all
functions from another, based on the semantic similarity score; and

4. extend this technique by determining the best match by not only looking at the
semantic similarity score of the functions themselves, but also at the semantic sim-
ilarity scores of the events that surround these functions (we call this the contextual
similarity score).

These techniques are explained successively in the following subsections.
We experimented with other techniques for determining function mappings, inspired

by the work of Ehrig, Koschmider and Oberweis [9]. We also experimented with dif-
ferent parameters for these techniques. However, we obtained the best results for the
techniques and parameters explained below. A comparison is presented in the technical
report that accompanies this paper [6].

4.1 Determine the Semantic Similarity Score between Two Functions

Given two functions, their semantic similarity score is the degree of similarity, based
on equivalence between words in their labels. Words that are identical are given an
equivalence score of 1, while words that are synonymous are given an equivalence
score of 0.75, a value that was determined experimentally. We assume an exact match
is preferred over a match on synonyms. Hence, the semantic similarity score is defined
as follows.

Definition 4.1. (Semantic similarity)
Let (E1, F1, C1, l1, A1) and (E2, F2, C2, l2, A2) be two disjoint EPCs. Let f1 ∈ F1 and
f2 ∈ F2 be two functions (and assume that f1 and f2 are sets of words, i.e. we denote
the number of words by |f1|). We define the semantic similarity as follows:

sem(f1, f2) =
1.0 · |f1 ∩ f2| + 0.75 ·

∑
(s,l)∈f1\f2×f2\f1

synonym(s, l)

max(|f1|, |f2|)

Where synonym is a function that returns 1 if the given words are synonyms and 0 if
they aren’t.

For example, consider the functions “Customer inquiry processing” and “Client in-
quiry query processing” from figure 1, which consist of the collections of words f1 =
[“Customer”,“inquiry”,“processing”] and f2 =[“Client”, “inquiry”, “query”, “process-
ing”], respectively. We only need to consider a synonym mapping between f1 \ f2 and
f2 \f1, i.e. between [“Customer”] and [“Client”,“query”]. Therefore, the semantic sim-
ilarity between f1 and f2 equals
sem(f1, f2) = 1.0·2+0.75·(1+0)

4 ≈ 0.69.

Measuring Similarity between Business Process Models 459

When determining equivalence between words, we disregard special symbols, and
we change all characters to lower-case. Furthermore, we skip frequently occurring
words, such as “a”, “an” and “for”. Also we stem words using Porter’s stemming al-
gorithm [23]. Stemming reduces words to their stem form. For example, “stemming”,
“stemmed” and “stemmer” are stemmed into “stem”.

4.2 Determine a Semantic Match between Two Functions

The semantic similarity score of two functions is a value between 0 and 1. However,
when determining equivalence, we require a boolean result stating whether or not two
functions are equivalent, i.e. we need cut-off values that state when the similarity score
exceeds this value then the functions are equivalent. The optimal cut-off value is the cut-
off value for which the syntactic similarity degree most accurately reflects the equiva-
lence judgements of a human.

We conducted experiments to optimize these cut-off values for use in the context of
the SAP Reference Models. In particular, we compared the semantic similarity scores
with human judgement for 210 function pairs from the SAP Reference Model. Their
similarity degrees were evenly distributed over the 0 to 1 range and they were com-
pared against human judgement as to whether these function pairs are equivalent of not.
Based on this experiment, we determined an optimal cut-off for the similarity scores to
decide whether functions match or not. We expect that these cut-off values and correct-
ness score are typical for the SAP reference model, since other data-sets yield different
values [9].

Our experiments determined that for semantic similarity, a cut-off value of 0.89 while
giving synonyms a similarity score higher than 0.75 is optimal. It leads to a prediction
of whether functions are a match according to humans, with a 90% accuracy.

4.3 Determine a Semantic Mapping between All Functions

So far, we only considered the similarity between two functions. However, the behav-
ioral comparison presented in Section 3 requires a symmetric mapping between func-
tions of two process models, i.e. we have to select pairs of functions that we consider a
match, where each pair consists of a function from one model and a function from the
other model.

Definition 4.2. (Equivalence mapping)
Let F1, F2 be two disjoint sets. Furthermore, let s : F1 × F2 → {0..1} be a symmetric
similarity function and let c ∈ {0..1} be a cut-off value. A function m : F1 → F2 is an
equivalence mapping, if and only if:

– m is invertible (m(f1) = f2 implies that m(f2) = f1), and
– m(f1) = f2 implies that s(f1, f2) ≥ c.

In the following section, we evaluate the degree of similarity calculation for the SAP
Reference Model with different approaches to matching functions.
An optimal equivalence mapping mopt : F1 → F2 is an equivalence mapping, such
that for all other equivalence mappings m holds that

460 B. van Dongen, R. Dijkman, and J. Mendling

∑
(f1,f2)∈mopt s(f1, f2) ≥

∑
(f1,f2)∈m s(f1, f2).

When determining an equivalence mapping between the functions of two EPCs, each
mapping satisfying Definition 4.2 is a good mapping, i.e. each element of the mapping
satisfies the criterium that the similarity between the two functions exceeds the cut-off
value. However, many equivalence mappings are possible. Therefore, we define the con-
cept of an optimal equivalence mapping mopt, i.e. the sum of the similarities expressed
by mopt is greater than the sum of the similarities of all other possible equivalence
mappings3. An optimal equivalence mapping can be calculated in a straightforward
way using integer linear programming techniques with binary variables.

4.4 Contextual Similarity

The techniques that we provided so far can be applied when comparing any two business
process models. However, we are specifically considering EPCs, where each function
has a preset and a postset of events. We define a second similarity metric based on this
pre- and postset, which we call the contextual similarity metric. This metric produces
better results than the semantic similarity metric.

Given two functions the contextual similarity technique returns the degree of simi-
larity, based on the similarity of the events that precede and succeed them. We call these
input and output events the input and output context of a function, respectively.

Definition 4.3. (Input and output context)
Let (E, F, C, l, A) be an EPC. For a function f ∈ F , we define the input context f in =
{e ∈ E | e

c
↪→ f} and the output context fout = {e ∈ E | f

c
↪→ e}

Now, we use the concept of equivalence mappings to determine the contextual similarity
between functions.

Definition 4.4. (Contextual similarity)
Let (E1, F1, C1, l1, A1) and (E2, F2, C2, l2, A2) be two disjoint EPCs. Let f1 ∈ F1 and
f2 ∈ F2 be two functions. Furthermore, let mopt

in : f in
1 → f in

2 and mopt
out : fout

1 → fout
2

be equivalence mappings between the input and output contexts of f1 and f2 respec-
tively. We define the contextual similarity as follows:

con(f1, f2) =
|{mopt

in }|
2 ·

√
|f in

1 | ·
√

|f in
2 |

+
|{mopt

out}|
2 ·

√
|fout

1 | ·
√

|fout
2 |

A full implementation of the function matching and the similarity degree calculation
is available in the Process Mining framework ProM, which can freely be downloaded
from www.processmining.org. In the following section we evaluate our approach using
the data generated by this tool.

3 Note that there might be more optimal equivalence mappings, however they all express a good
mapping and we have no way of distinguishing between them, so any optimal equivalence
mapping will suffice.

Measuring Similarity between Business Process Models 461

y = 5,4763x + 1,7809

1,00

2,00

3,00

4,00

5,00

6,00

7,00

0 0,2 0,4 0,6 0,8 1

Similarity Score

H
u
m
a
n
 J
u
d
g
e
m
e
n
t

Fig. 3. Correlation between Similarity Score and Human Judgement.

5 Empirical Validation

We validated our approach to calculate the degree of similarity by computing its corre-
lation with a similarity assessment of process modelers.

We obtained the similarity assessment using an online questionnaire that was dis-
tributed among academic process modelers. This questionnaire consisted of 48 pairs of
process models from the SAP reference model database. For each pair of models, we
asked the participants whether they agreed or disagreed (on a 1 to 7 Likert scale) with
the proposition: ‘These processes are similar.’ To obtain a representative collection of
model pairs, we selected the model pairs to be evenly distributed over the 0 to 1 sim-
ilarity degree range. More details on how a representative collection of processes was
obtained is described in the technical report that accompanies this paper [6].

We computed the correlation of the human assessment with various similarity degree
metrics, which we obtained by varying cut-off values and relative importance of the
syntactic, semantic and contextual similarity. We observed the best correlation for a
similarity score metric that:

– does not consider syntactic similarity,
– uses a cut-off value of 0.89 for semantic similarity of events,
– uses a relative importance of semantic:contextual similarity of 1:2 and a cut-off

value of 0.90 for similarity of functions.

Figure 3 shows the correlation between the similarity degree (computed using the
settings described above) and the similarity assessment as obtained from the question-
naire. Each point in the graph represent a pair of processes, with a similarity degree as
indicated by its x-value and a human similarity assessment as indicated by its y-value.
The confidence intervals are also plotted (with a 90% confidence). For this metric we

462 B. van Dongen, R. Dijkman, and J. Mendling

got a high (Pearson) correlation coefficient of 0.84 with the human judgement. The
correlation is represented as a straight line in the graph. The correlation for two other
metrics that we investigated was lower, i.e. the metric presented here was the best one.
Details on all similarity degree metrics are given in the technical report that accompa-
nies this paper [6].

An important observation is that, within the ‘sales and distribution’ branch of the
SAP reference model (which contains 74 models), there are 124 process pairs with a
similarity score of 1 (this is 50 more than the expected 74 pairs that represent com-
parison of a process with itself). In addition to that there are 52 process pairs with a
similarity score s, such that 0.5 ≤ s < 1.0. These figures show the overlap between
processes in ‘sales and distribution’ branch. This information can be used by people that
are searching the SAP reference model for a suitable process; they can find overlapping
processes based on this information. It can also be used to maintain consistency when
updating a process for which there exists an overlapping process.

6 Related Work

This paper mainly relates to two streams of research, namely (1) similarity of business
process models and (2) quality of business process models.

Existing work in the context of determining similarity between process models can
be assigned to three categories: verification, behavioral similarity, and textual similarity.
There are different notions of equivalence of process models that are subject to verifi-
cation such as trace equivalence and bisimulation. While trace equivalence is based
on a comparison of the sets of completed execution traces, bisimulation also considers
at which point of time which decisions are taken, i.e., bisimulation is a stricter notion
of equivalence. Details on different equivalence notions are given e.g. in [1]. A gen-
eral problem of such verification approaches is that it provides a true-false answer to
the question whether two models are similar. While some work has been done on de-
termining a degree of behavioral similarity that measures the fitness of a set of event
logs relative to a process model [1], we compare causal footprints [7] of two process
models. Since causal footprints capture constraints instead of the state space, this ap-
proach relates to declarative approaches to process modeling and verification [8,17,22].
Beyond that, there are some works on textual or metadata similarity of process models
(e.g. [9,14,20]). In this paper we adapt some concepts from this area for matching func-
tion labels, and we combine this approach with the calculation of behavioral similarity.

While there has been intensive research into quality aspects of process models and
process modeling languages [3, 10, 15], there is little work on quality issues across
models. The guidelines of modeling [3] touch this area by stressing the importance of
a systematic design. The novelty of our approach is that systematic design in terms of
non-overlapping models can now be checked automatically. This might prove valuable
for providing tool support for process model normalization as defined in [21]. Beyond
that, the quantification of a degree of behavioral similarity between process models
could be a useful contribution for the area of process model integration. While there are
several approaches reported on integration issues [5] and regarding how two models are
integrated (e.g. [11,19,24]) the similarity degree gives an answer to the question which

Measuring Similarity between Business Process Models 463

two process models might be good candidates for integration, e.g. in a merger situation.
The redundancies that we identified in the SAP reference model underline the need
for techniques and tools to manage process model variants such as defined in [25, 27].
Furthermore, there is clearly a need for a view concept on business process models in
order to avoid anomalies [4] as they were identified in database research before.

7 Conclusion

In this paper, we presented a novel approach for measuring the degree of similarity
of business process models. This approach builds on the vector model from informa-
tion retrieval, an abstract representation of process behavior as causal footprints, and
an automatic matching of functions across process models. While quality aspects of
single process models and process modeling languages are well understood, this work
contributes to a better foundation of those quality aspects across models that relate to
similarity. Our approach has been validated using the SAP Reference Model, and a
respective implementation is available as part of the ProM framework.

The results that we obtained for the SAP Reference Model clearly highlight the need
for an automatic detection of similarity for supporting refactoring activities of a pro-
cess model database. In future research we will investigate the benefits of our approach
in various case studies. In particular, we aim to use the degree of similarity to detect
operational overlap between companies that engage in a merger. While the application
for the SAP Reference Model could build on a presumably homogeneous vocabulary
of function labels, we assume that synonyms in function labels might play a more im-
portant role in a merger. Furthermore, there are some practical issues with reading the
similarity matrix for a large set of models that need to be addressed. Once there is com-
mercial tool support available, companies will find it easier to maintain large databases
of process models.

References

1. van der Aalst, W.M.P., Alves de Medeiros, A.K., Weijters, A.J.M.M.: Process Equivalence:
Comparing two process models based on observed behavior. In: Dustdar, S., Fiadeiro, J.L.,
Sheth, A. (eds.) BPM 2006. LNCS, vol. 4102, pp. 129–144. Springer, Heidelberg (2006)

2. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press, New
York (1999)

3. Becker, J., Rosemann, M., von Uthmann, C.: Guidelines of Business Process Modeling. In:
van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management. Models,
Techniques, and Empirical Studies, pp. 30–49. Springer, Berlin (2000)

4. Biskup, J.: Achievements of relational database schema design theory revisited. In: Libkin,
L., Thalheim, B. (eds.) Semantics in Databases 1995. LNCS, vol. 1358, pp. 29–54. Springer,
Heidelberg (1998)

5. Dijkman, R.: A Classification of Differences between Similar Business Processes. In: Pro-
ceedings of the 11th IEEE EDOC Conference (EDOC 2007), pp. 37–50 (2007)

6. van Dongen, B.F., Dijkman, R.M., Mendling, J.: Detection of similarity between business
process models. BETA Working Paper 233, Eindhoven University of Technology (2007)

7. van Dongen, B.F., Mendling, J., van der Aalst, W.M.P.: Structural Patterns for Soundness of
Business Process Models. In: Proceedings of the 10th IEEE International EDOC Conference
(EDOC 2006), pp. 116–128. IEEE, Los Alamitos (2006)

464 B. van Dongen, R. Dijkman, and J. Mendling

8. Eertink, H., Janssen, W., Oude Luttighuis, P., Teeuw, W.B., Vissers, C.A.: A business pro-
cess design language. In: Wing, J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS,
vol. 1708, pp. 76–95. Springer, Heidelberg (1999)

9. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic business
process models. In: Roddick, J.F., Hinze, A. (eds.) Proceedings of the Fourth Asia-Pacific
Conference on Conceptual Modelling (APCCM 2007), pp. 71–80 (2007)

10. Green, P., Rosemann, M.: Integrated Process Modeling. An Ontological Evaluation. Infor-
mation Systems 25(2), 73–87 (2000)

11. Grossmann, G., Ren, Y., Schrefl, M., Stumptner, M.: Behavior based integration of composite
business processes. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.)
BPM 2005. LNCS, vol. 3649, pp. 186–204. Springer, Heidelberg (2005)

12. Johnson, R., Pearson, D., Pingali, K.: The program structure tree: Computing control regions
in linear time. In: Proceedings of the ACM SIGPLAN’94 Conference on Programming Lan-
guage Design and Implementation. SIGPLAN Notices, vol. 29(6), pp. 171–185 (1994)

13. Keller, G., Nüttgens, M., Scheer, A.-W.: Semantische Prozessmodellierung auf der Grund-
lage Ereignisgesteuerter Prozessketten (EPK). Heft 89, Institut für Wirtschaftsinformatik,
Saarbrücken, Germany (1992)

14. Klein, M., Bernstein, A.: Toward high-precision service retrieval. IEEE Internet Comput-
ing 8(1), 30–36 (2004)

15. Krogstie, J., Sindre, G., Jørgensen, H.D.: Process models representing knowledge for action:
a revised quality framework. Europ. J. of Information Systems 15(1), 91–102 (2006)

16. Levenshtein, I.: Binary code capable of correcting deletions, insertions and reversals. Cyber-
netics and Control Theory 10(8), 707–710 (1966)

17. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specifica-
tion. Springer, New York (1991)

18. Mendling, J., van der Aalst, W.M.P.: Formalization and Verification of EPCs with OR-Joins
Based on State and Context. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.) CAiSE 2007 and
WES 2007. LNCS, vol. 4495, pp. 439–453. Springer, Heidelberg (2007)

19. Mendling, J., Simon, C.: Business Process Design by View Integration. In: Eder, J., Dustdar,
S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 55–64. Springer, Heidelberg (2006)

20. Momotko, M., Subieta, K.: Process query language: A way to make workflow processes
more flexible. In: Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.) ADBIS 2004. LNCS,
vol. 3255, pp. 306–321. Springer, Heidelberg (2004)

21. Pankratius, V., Stucky, W.: A formal foundation for workflow composition, workflow view
definition, and workflow normalization based on petri nets (2005)

22. Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-based work-
flow models: Change made easy, pp. 77–94 (2007)

23. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
24. Preuner, G., Conrad, S., Schrefl, M.: View integration of behavior in object-oriented

databases. Data & Knowledge Engineering 36(2), 153–183 (2001)
25. Recker, J., Mendling, J., Rosemann, M., van der Aalst, W.M.P.: Model-driven Enterprise

Systems Configuration. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp.
369–383. Springer, Heidelberg (2006)

26. Rosemann, M.: Potential pitfalls of process modeling: part b. Business Process Management
Journal 12(3), 377–384 (2006)

27. Rosemann, M., van der Aalst, W.: A Configurable Reference Modelling Language. Informa-
tion Systems 32, 1–23 (2007)

28. Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Automatic Indexing. Commu-
nications of the ACM 18(11), 613–620 (1975)

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 465–479, 2008.
© Springer-Verlag Berlin Heidelberg 2008

How Much Language Is Enough?
Theoretical and Practical Use of the
Business Process Modeling Notation

Michael zur Muehlen1 and Jan Recker2

1 Stevens Institute of Technology, Howe School of Technology Management,
Castle Point on Hudson, Hoboken, NJ 07030 USA
Michael.zurMuehlen@stevens.edu

2 Queensland University of Technology, Faculty of Information Technology, 126 Margaret
Street, Brisbane QLD 4000, Australia

j.recker@qut.edu.au

Abstract. The Business Process Modeling Notation (BPMN) is an increasingly
important industry standard for the graphical representation of business proc-
esses. BPMN offers a wide range of modeling constructs, significantly more
than other popular languages. However, not all of these constructs are equally
important in practice as business analysts frequently use arbitrary subsets of
BPMN. In this paper we investigate what these subsets are, and how they differ
between academic, consulting, and general use of the language. We analyzed
120 BPMN diagrams using mathematical and statistical techniques. Our find-
ings indicate that BPMN is used in groups of several, well-defined construct
clusters, but less than 20% of its vocabulary is regularly used and some con-
structs did not occur in any of the models we analyzed. While the average
model contains just 9 different BPMN constructs, models of this complexity
have typically just 4-5 constructs in common, which means that only a small
agreed subset of BPMN has emerged. Our findings have implications for the
entire ecosystems of analysts and modelers in that they provide guidance on
how to reduce language complexity, which should increase the ease and speed
of process modeling.

Keywords: BPMN, Language Analysis, Process Modeling.

1 Introduction

The Business Process Modeling Notation (BPMN) [1] is emerging as a standard lan-
guage for capturing business processes, especially at the level of domain analysis and
high-level systems design. A growing number of process design, enterprise architec-
ture, and workflow automation tools provide modeling environments for BPMN. The
development of BPMN was influenced by the demand for a graphical notation that
complements the BPEL standard for executable business processes. Although this
development gives BPMN a technical focus, the intention of the BPMN designers
was to develop a modeling language that can equally well be applied to typical busi-
ness modeling activities. This is clearly visible in the specification document, which

466 M. zur Muehlen and J. Recker

separates the BPMN constructs into a set of core graphical elements and an extended,
more specialized set. BPMN’s developers envisaged the core set to be used by busi-
ness analysts for the essential, intuitive articulation of business processes in very easy
terms. The full set of constructs would then enable users to specify even complex
process scenarios with a level of detail that facilitates process simulation, evaluation
or even execution. This separation mirrors an emerging tendency in industry to sepa-
rate business-focused process modeling from implementation-oriented workflow
implementation.

The evolution of BPMN closely mirrors the emergence of another modeling stan-
dard, UML [2]. Both have been ratified by the standardization body OMG. Both con-
tain a larger set of constructs in contrast to competing languages, and offer a multitude
of options for conceptual modeling. Both have been found in analytical studies to be
not only semantically richer but also theoretically more complex than other modeling
languages, [e.g., 3, 4]. And, in UML’s case, this complexity motivated users to deliber-
ately reduce the set of constructs for system analysis and design tasks. Related studies
found that frequently not even 20% of the constructs are used in practice [5, 6].

The apparent complexity of the BPMN standard seems to be similar to the UML
standard, which raises a number of questions: Are BPMN users able – and willing –
to cope with the complexity of the language? Does the separation into core and
extended constructs provided by the specification hold in modeling practice? And –
really – how exactly is BPMN used in practice?

While BPMN has been receiving significant attention not only in practice but also
in academia, virtually all contributions have been made on an analytical or conceptual
level, [7, 8]. There are only few empirical insights into how BPMN is used in practice
– exceptions are reported in [9] and [10].

Accordingly, our research imperative has been to provide empirical evidence on
the usage of BPMN in real-life process modeling practice. The aim of this paper is to
examine, using statistical techniques, which elements of BPMN are used in practice.
We collected a large set of BPMN diagrams from three different application areas
(i.e., consulting, education, process re-engineering) and analyzed the models regard-
ing their construct usage. This study is a first step to determine the most commonly
used set of BPMN constructs and to provide the ecosystem of process modelers with
specific advice which elements of BPMN to use when. BPMN training programs
could benefit from a structure that introduces students to the most commonly used
subset first before moving on to advanced modeling concepts.

We proceed as follows: The next section briefly introduces the background of our
research, viz., BPMN and our data sources, and presents our research design. Section
3 presents the analysis results and discusses them. Section 4 concludes this paper with
a discussion of contributions, implications and limitations, and provides an outlook to
future research.

2 Background

2.1 Introduction to BPMN

The Business Process Modeling Notation [1] is a recently published notation stan-
dard for business processes. Its development has been based on the revision of other

 How Much Language Is Enough? 467

notations including UML, IDEF, ebXML, RosettaNet, LOVeM and Event-driven
Process Chains.

BPMN was developed by an industry consortium (BPMI.org), whose constituents
represented a wide range of BPM tool vendors but no end users. The standardization
process took six years and more than 140 meetings, both physical and virtual. The
BPMN working group developed a specification document that differentiates the
BPMN constructs into a set of core graphical elements and an extended specialized set.
The complete BPMN specification defines 50 constructs plus attributes, grouped into
four basic categories of elements, viz., Flow Objects, Connecting Objects, Swimlanes
and Artefacts. Flow Objects, such as events, activities and gateways, are the most basic
elements used to create BPMN models. Connecting Objects are used to inter-connect
Flow Objects through different types of arrows. Swimlanes are used to group activities
into separate categories for different functional capabilities or responsibilities (e.g.,
different roles or organizational departments). Artefacts may be added to a model
where deemed appropriate in order to display further related information such as proc-
essed data or other comments. For further information on BPMN refer to [1].

Existing research related to BPMN includes, inter alia, analyses and evaluations,
[e.g., 9, 11], use in combination with other grammars, especially BPEL [7], or its
support for workflow concepts and technologies [8]. This and other research is mostly
analytical in nature. Few insights exist into the practical use of BPMN, which has
motivated our study.

2.2 Data Sources

In order to arrive at an informed opinion about the use of BPMN in practice we col-
lected BPMN models from three types of sources: A search using Internet search
engines for “BPMN model” resulted in 57 BPMN diagrams, obtained from organiza-
tions’ web sites, from practitioner forums and similar sites. These diagrams were
labeled in a variety of languages, but since our study focuses on the modeling con-
structs and not their content this was no hindrance. We collected an additional 37
BPMN diagrams from consulting projects to which we had access. These diagrams
depicted as-is and to-be processes from business improvement projects or software
deployment projects. An additional 26 diagrams were collected through BPMN edu-
cation seminars taught by the authors. These diagrams were created by seminar par-
ticipants and depicted business processes from the participants’ organization. Overall,
our data set consists of 126 BPMN models approximating the use of BPMN for a
variety of purposes including process (re-) design, education, consulting, and software
and workflow engineering. 6 models were excluded from the analysis because they
explicitly illustrated nonsensical diagrams or were duplicates.

While by no means do we claim our data set to be statistically representative of the
overall use of BPMN in practice, it nevertheless gives us an informed opinion about the
real use of BPMN beyond the examples typically given by developers or tool vendors.

2.3 Research Design

Having obtained a large set of BPMN models, our next step was to prepare these
models for analysis. We created an Excel spread sheet counting the type of BPMN

468 M. zur Muehlen and J. Recker

constructs in use per model. Each occurrence of a BPMN construct was marked as 1,
otherwise 0. This coding allowed us to treat the individual models as binary strings
for further analysis. In our coding effort, we kept track of the data sources for each
model, which, for analysis purposes, we labeled ‘web’ (those models that we obtained
from Internet search engines), ‘consulting’ (those that we obtained from consulting
engagements) and ‘seminar’ (those obtained from educational seminars).

The resulting tables provided the basis for the application of statistical techniques
such as cluster analysis, frequency analysis, covariance analysis and distribution
analysis. We employed analysis techniques available in Excel (frequency counts),
Mathematica (covariance matrices, Hamming distances) and R (cluster analysis). The
following sections provide further details about the exact application of the various
techniques used, and discuss the results we obtained.

3 Analysis and Discussion

3.1 Overall Use of BPMN Constructs

BPMN offers 50 modeling constructs, ranging from Task and Sequence Flow to
Compensation Associations and Transaction Boundaries. Our first question was:
Which of these symbols are used in practice and how frequently?

Fig. 1 shows the frequency distribution of the individual BPMN constructs, sepa-
rated by the three sample sets and ranked by overall frequency. Generally speaking,
the distribution of constructs follows a power-law distribution, with only four con-
structs being common to more than 50% of the diagrams: Sequence Flow, Task, End
Event, and Start Event. Notably, these constructs all belong to the originally specified
BPMN core set [1].

Fig. 1 shows that every model contained the Sequence Flow construct, and nearly
every model contained the basic Task construct (the diagrams that did not contain the
Task construct used the Subprocess construct). The majority of Web and Seminar
models contained Start and End Events, while the Consulting models replaced these
with more specific event types (e.g., Message or Timer Events for Start Events, Termi-
nate, Message, or Link, for End Events). The other BPMN constructs were unevenly
distributed. A visual inspection of Fig. 1 leads to a number of interesting observations:

While the majority of consulting models contained Data-based XOR Gateways
(77%), Pools (81%) and Lanes (69%), these constructs were much less frequent in the
other two sample sets (57%, 30%, 21% and 23%, 56%, 16% respectively for web and
seminar models). This indicates that the consulting models depict organizational
structure in more detail than the random web sample. The majority of consulting
models contained detailed Gateway constructs, whereas only ¼ of the seminar models
did not used them. This implies that beginning modelers tend to create diagrams with
few alternative or parallel flows.

The Web diagrams use (non-specific) Gateways frequently (observed in 55% of
the models), whereas the consulting and seminar sets make much less use of this
symbol (5% and 12%, respectively). Models in the web sample express the control
flow logic of the diagrams in plain text (which can be inserted into the basic Gate-
ways), rather than the more formal XOR, AND, and Inclusive OR constructs.

 How Much Language Is Enough? 469

Fig. 1. Occurrence Frequency of BPMN Constructs

A sizable fraction of seminar models contain Intermediate Message constructs
(41%) whereas only 7% of web models and 12% of consulting models contain this
construct. This indicates that this construct is emphasized in BPMN classes but not
very common in practice. A potential explanation may stem from the underlying de-
sign paradigm for process choreography in BPMN, which typically requires a lot of
time to explain in classrooms. Practitioners in general may not be fully confident in

470 M. zur Muehlen and J. Recker

the use of these choreography concepts, which could be explain the less frequent
usage of the related constructs.

3.2 Frequency Distribution of BPMN Constructs

The ranked frequency distribution of BPMN constructs generally follows an exponen-
tial (power-law) distribution, similar to long-tailed distributions that have been ob-
served as a result of preferential attachment [12]. This particular shape has been ob-
served previously in studies of natural languages, [e.g., 13, 14]. Fig. 2 shows a plot of
the frequency distribution of the BPMN elements in the three sample sets compared
with the Zipfian distribution [14].

Fig. 2. Frequency Plot of BPMN Constructs by Rank

Zipf’s Law states that the frequency of words in natural languages is inverse to
their rank (in other words, the second most frequent word is used 1/2 the time of the
first, the third most frequent word 1/3 of the time, and so on) and has been observed
in numerous contexts [see, for instance, 13]. While not a perfect fit, the BPMN sub-
sets exhibit a distribution that is very close to the distribution of word usage in natural
languages. This suggests that the use of BPMN constructs to design (graphical) state-
ments about organizational or system processes mirrors the use of natural languages.

This finding is of importance for future research on the way users learn, retain, and
use BPMN constructs, and – really – any other graphical modeling language. For
instance, linguistics research could be used to formulate conjectures about appropriate
modeling training programs – a still under-researched aspect of modeling research in

 How Much Language Is Enough? 471

IS. In general terms, the distribution of BPMN constructs shows that BPMN – as
many natural languages – has a few essential constructs, a wide range of constructs
commonly used, and an abundance of constructs virtually unused. Based on this ob-
servation, training and usage guidelines can be designed to reduce the complexity of
the language to inexperienced analysts and to deliberately build such models that can
safely be assumed to depict the core essence of a process without adding too much
complexity.

3.3 BPMN Construct Correlations

Having determined the most frequent set of BPMN constructs in use, we turn to some
related questions: Which of the BPMN constructs are typically used in combination?
Which are used in alternation? In order to answer these questions, we used Mathe-
matica to generate covariance matrices, which allowed us to examine pairs of BPMN
constructs with regard to their combined or alternative use. Those pairs of constructs
with negative covariance (p < -0.05) indicate alternatively used constructs while those
with positive covariance (p > 0.05) indicate constructs used in combination. Table 1
summarizes the results.

Table 1. Combined and alternative use of BPMN constructs

Constructs with p > 0.05 Constructs with p < -0.05
Data Object Association Start Event Start Message
Pool Message Flow Gateway Data-based XOR
Start Event End Event Text Annotation Message Flow
Start Message Data-based XOR Start Message End Event
Start Message Intermediate Message Start Message Gateway
Start Message End Terminate Start Event Data-based XOR
Pool Lane End Event Data-based XOR
Lane Message Flow

Our findings present some interesting implications regarding BPMN modeling
practice. Looking at the combined use of BPMN constructs (left column in Table 1),
most correlations confirm that BPMN modeling practice obeys the grammatical rules
of BPMN. For instance, Data Objects need to be linked to flow objects via the Asso-
ciation constructs, Pools can only communicate with other Pools via message flow,
Lanes require Pools, and BPMN models require both Start and End Event. However,
at least two interesting observations emerge. First, the positive correlation of Start
Message events with End Terminate events indicates a more sophisticated level of
BPMN modeling, suggesting that when users start using the differentiated event con-
structs, they tend to use a variety of these. Similarly, the combined use of Start Mes-
sage events with the Data-based XOR constructs indicates an advanced use of the
language for models in which different types of messages lead to different variants of
a process, depending on the actual content of the arriving message.

Looking at the alternative use of BPMN constructs (right column in Table 1), we
can identify additional interesting patterns of BPMN use. For instance, the negative
correlation between Gateway and Data-based XOR suggests that when modelers refine
the semantics of their models they choose the data-based XOR over the unspecific

472 M. zur Muehlen and J. Recker

Gateway in order to clarify the control flow semantics of their models. The negative
correlation between Text Annotation and Message Flow suggests that at initial stages,
modelers avoid choreography concepts and instead use free-form text to indicate mes-
sage exchange. More advanced modeling relies on the provided semantic constructs
instead of simple textual additions. Similarly, the negative correlations between Start
Message event and the Gateway construct, and the Start/End Event and the Data-based
XOR imply that modelers who refine the event constructs have achieved a level
of sophistication of language use at which they avoid the use of the non-descriptive
gateways altogether and instead rely on the more differentiated gateway and event
subtypes.

3.4 BPMN Construct Clusters

In addition to identifying pairs of constructs that are used alternatively or in combina-
tion, we were also interested in uncovering whether clusters of BPMN constructs can
be found in practice. To that end, we performed a hierarchical cluster analysis using
the Euclidian distance measure in order to classify the set of BPMN constructs into
distinct subsets. Fig. 3 shows the resulting dendrogram.

Fig. 3. Cluster Dendrogram of BPMN Constructs

In Fig. 3 six construct clusters are highlighted. First, the Task and Normal Flow
cluster depicts the core of process modeling – the orchestration of activities that con-
stitute a business process. Together with start and event conditions (through the use of
events), these clusters indicate the simplest form of depicting the essence of a process
in a graphical model. A third cluster is comprised of elements that are used to embel-
lish and explain such process models through the use of text annotations, gateways
(that specify control flow conditions of sequences of tasks) and data processing in-
formation. Clusters four and five essentially denote additions to these core modeling
concepts by adding information about the organizational task allocation schemes,

 How Much Language Is Enough? 473

required roles and responsibilities as well as choreography information in collabora-
tive scenarios, or refinements to the orchestration of the flow of the process through
different types of event and gateway constructs. The sixth cluster we found denotes
the set of constructs that are very simply not used at all (e.g., compensation associa-
tion, end message, etc).

The clustering of BPMN constructs provides a promising starting point for a com-
plete ecosystem of BPMN users – vendors, consultants, coaches and end users alike.
These users can be guided in their efforts to learn and apply BPMN in an effective
and efficient manner. Training programs, for instance, could focus on the ‘basic mod-
eling’ clusters first before teaching advanced concepts such as organizational model-
ing and control flow orchestration. Coaches and consultants in charge of modeling
conventions are guided by delineating the most common – and most frequently
avoided – BPMN constructs.

3.5 Core or Extended Set?

According to the BPMN specification, BPMN modelers are envisaged to choose ei-
ther the core set of ten BPMN constructs, or an extended set in which these core con-
structs are modified (i.e., revised and extended). Our questions are: Do modelers use
core or extended constructs? Do they comply with the differentiation?
In order to answer these questions we split the modeling constructs into 10 sets:

• Tasks are split into Basic Tasks and an extended task set which contains the con-
structs for Subprocesses (collapsed and expanded) as well as Tasks with additional
semantics, such as Multiple Instance Tasks, Compensations, or Transactions.

• Sequence flow constructs are split into a basic set (the Normal Flow) and an ex-
tended set (consisting of Default Flow, Conditional, and Exception flow).

• Gateways are split into the Basic (blank) XOR Gateway, and an extended Gateway
set, which comprises Data- (X-labeled) and Event-based XOR, Inclusive-OR, and
Parallel Gateways. We contrast these two sets with the representation of routing in-
formation through the Conditional Sequence Flow construct.

• Events are split into the Basic Events, and an extended Event set including con-
structs such as Messages, Rule Events, Links, etc.

• In addition we distinguished from these constructs Layout elements such as off-
page connectors and the Grouping construct.

For these sets, we performed three separate frequency counts, for each of the three
data sets. The results are shown in Fig. 4.

The usage patterns exhibited in Fig. 4 shed some light on when users turn to ele-
ments from the extended set of BPMN constructs. First, while users tend to employ
basic task and sequence flow constructs, they mostly employ an extended set of gate-
way constructs. Especially the sequence flow extensions are rarely used in practice. In
terms of event constructs, basic and extended sets appear to be equally utilized. The
following additional observations can be made from the frequency analysis:

• Consultants especially avoid extended task constructs and use mainly basic tasks.
On the other hand, they largely utilize the set of specialized gateway constructs.

474 M. zur Muehlen and J. Recker

Fig. 4. Use of Core and Extended BPMN Constructs

• Decision Sequence Flow constructs are very rarely used. This would suggest that
BPMN users prefer the explicit decision routing representation capacity of Gate-
ways over the alternative, rather implicit way of annotating sequence flows.

• Basic Gateways are dominant on the web. However, neither consulting nor seminar
models use them in large numbers. This suggests that formal training (as exercised
through seminar courses or trained consultants) leads to the use of precise seman-
tics for articulating process orchestration.

• Layout constructs are very rarely used. This suggests two things. First, language
users often use tool functionality to annotate diagrams (e.g., meta-tags, free form
tags, navigation capacity). Second, it may be worthwhile externalizing such con-
structs from a modeling language in order to reduce their complexity.

3.6 Complexity of BPMN Models

Previous studies on the usage of UML [5, 6] uncovered that the theoretical complex-
ity of a language (as measured by the number of constructs originally specified) often
considerably differs from the practical complexity (the number of constructs actually
used in a model). We are interested in whether a similar situation exists in the case of
BPMN. In other words, while the theoretical complexity of BPMN is standardized by
its specification [1], we wanted to measure the practical complexity of BPMN (i.e.,
the vocabulary used in practice). To that end, we contrasted the semantic complexity
of the BPMN models we obtained (i.e., the size of the models) with their syntactic
complexity (i.e., the number of semantically different BPMN constructs used in these
models). Fig. 5 illustrates the results of this analysis.

 How Much Language Is Enough? 475

Fig. 5. Syntactic Complexity of BPMN Models

While the 50 BPMN constructs theoretically allow for 250 permutations, the actual
number of usable subsets is much smaller. All BPMN models obviously require the
use of Tasks and Sequence Flow. Since the majority of models we observed used a
BPMN vocabulary of between 6 and 12 constructs, the number of possible BPMN

vocabulary subsets in practice is between =194,580 and = 6,540,715,896.
Given that 9 constructs in our sample were used by fewer than two models we can

exclude these from the search space and arrive at a theoretical range from =

82,251 to = 635,745,396. On average, we found the average number of semanti-
cally different BPMN constructs to be 9 (consulting), 8.78 (web), and 8.7 (seminar),
respectively. However, while this finding indicates the size of the average BPMN
vocabulary used in practice, it does not mean that every model with 9 BPMN con-
structs uses the exact same BPMN subset. In fact, a pair wise comparison of the 120
models revealed only 6 pairs of models that shared the same BPMN subset between
each pair (i.e., there were 6 identical pairs of construct sets).

3.7 Variety of BPMN Subsets

In order to determine the variety of BPMN subsets, we computed the Hamming Dis-
tance [15] for each model vocabulary. Originally, the Hamming distance between two
strings of equal length is the number of positions for which the corresponding sym-
bols are different. In other words, it measures the minimum number of substitutions
required to change one into the other. In the case of BPMN, we treated each model
vocabulary as a 50-bit binary string, where a positive bit at position i signals the usage
of BPMN construct [i]. The Hamming Distance between two model vocabularies then
indicates the number of bits that differ between the two vocabularies, in other words
the discrepancy between the BPMN constructs used in the creation of two models.
The results are visualized in Fig. 6.

476 M. zur Muehlen and J. Recker

Fig. 6. Hamming Distance of BPMN Vocabularies

The average Hamming distance for the three subsets was 7.6 (web), 7.5 (consult-
ing), and 8.8 (seminar), indicating a slightly more diverse use of BPMN constructs by
novice modelers, whereas the web and consulting sets were slightly more homogene-
ous (but not by much). These metrics indicate that the average dissimilarity between
two BPMN subsets is 7-8 constructs. A common scenario would be that one model
uses 4 BPMN constructs that the other model does not exhibit and vice versa. As
BPMN becomes more prevalent we plan on observing this metric over time, to see
whether the commonly used vocabularies become more homogeneous over time.
Annotating these BPMN subsets with context information (e.g., the process modeling
purpose), in turn, could provide a starting point for deriving the most suitable BPMN
subsets for a variety of application areas.

3.8 The Common Core of BPMN

Our evaluation thus far has focused on the individual elements and their grouping into
core and extended constructs. However, one of our questions relates to the subset of
BPMN constructs that are shared by different models. While we found six pairs of
models that each share a complete set of constructs, there are subsets that are shared
by more than two models. Figure Fig. 7 shows a Venn diagram of different BPMN
construct combinations. The number in the corner of each grouping indicates the
number of models that contained this specific subset of the language. We included
combinations of constructs that were shared by more than 10 models.

The most apparent subset is the combination of Tasks and Sequence Flow – 97%
of the models we analyzed shared this subset, and those that did not used a representa-
tion for tasks from the extended BPMN set (e.g., Subprocess). The addition of Start
and End Events is the next most common subset – used by more than half of the mod-
els we analyzed. The following subsets show an interesting pattern: Either modelers
focus on process orchestration through by adding gateways and their refinement to
their models, or they focus on process choreography and add related organizational
constructs, such as Pools and Lanes. While the addition of Pools leads to a subset that
is common in nearly 30% of all models, the addition of Lanes halves this fraction.

 How Much Language Is Enough? 477

Adding Basic Gateways or Parallel Gateways to the core set leads to a subset that is
shared by 20% of all models. The popularity of the Data-based XOR Gateway and the
Parallel Gateway construct indicate that they are a core element in many modeler
vocabularies, even though the BPMN specification places them in the extended set of
the language. The same situation holds for Message and Timer Events (both Start
Events and Intermediate Events). While other event types were used very infre-
quently, these two event types were the most popular addition to the core modeling
set in lieu of unspecified events.

Fig. 7. Most popular BPMN Vocabulary Subsets

Overall, BPMN models appear to fall into two main sets (indicated in Fig. 7 by ho-
rizontal versus vertical grouping). The horizontal groups contain tasks, basic events
plus constructs for separating organizational duties and responsibilities (Pools and
Lanes). Consultants will use these types of models will most likely for organizational
(re-)engineering and process improvement. The vertical groups add to this set of con-
structs refined constructs for specifying the exact control flow of processes (through
various gateway types) as well as the exact event conditions pertaining to a process
(i.e., various event construct types). This is not shown in Fig. 7 in the interest of clar-
ity. Overall, this set of BPMN construct combinations can be expected to be favored
by designers and analysts seeking to articulate the precise flow conditions, for in-
stance, in the context of workflow engineering or process simulation rather than the
organizational responsibilities (depicted by Lanes or Pools).

An interesting property of the BPMN subsets is their frequency distribution. The
ranked frequency distribution again follows an exponential distribution, mirroring the
behavior of individual BPMN constructs. This suggests that modelers use blocks or
subsets of BPMN constructs in a similar fashion as they use individual constructs.

478 M. zur Muehlen and J. Recker

Combinations of BPMN constructs can thus be treated as metawords and be analyzed
as such.

4 Contributions, Limitations, and Outlook

In this paper we studied the use of BPMN in actual process modeling practice. We
obtained 126 (120 considered) BPMN models and used a wide range of statistical
techniques to shed light onto the practical complexity afforded by the use of BPMN.
Our paper makes a key contribution to the growing area of process modeling by re-
flecting on empirical data about the use of a rising industry standard. The most impor-
tant finding is that the complexity of BPMN in practice differs considerably from its
theoretical complexity. This, in turn, suggests that future research should take this
distinction into account when considering BPMN’s expressive power, complexity or
other features or characteristics. Our study shows that the frequency of BPMN con-
structs follows an exponential distribution, both at the elementary level and the subset
level. This means that the practical use of a formal modeling language shows similari-
ties to the use of natural language, and suggests that linguistic techniques can be ap-
plied to better understand the formation and use of languages in conceptual modeling
overall. We see an opportunity for replicating our study with other standardized mod-
eling approaches (e.g., UML) to obtain further evidence for this conjecture.

Our findings have major implications, both for language developers and the organ-
izational ecosystems in which modeling languages are used. Our findings point to
some areas of concern in current language standardization practices, which appear to
prefer language extensions (more expressive languages) to language revision (more
lean languages). Our findings indicate that this may be to some extent contradictory to
practical usage. Also, our findings motivate organizations to invest resources into
conventions management in order to be able to manage and limit the complexity
brought to bear by the languages employed for process modeling.

The presented research findings have to be contextualized in light of some limita-
tions. First, the source of empirical evidence is limited to three sets of data sources
and 126 BPMN models overall. We also did not consider any longitudinal data (e.g.,
the evolution of BPMN models through various iterations). However, we made an
effort to collect data from multiple application areas and to consider these in our
analysis. While we grouped the models by origin, we did not have sufficient informa-
tion about the model content to analyze the models based on their intended use. We
performed a hierarchical cluster analysis on the models themselves, but did not iden-
tify significant clusters. While this supports the random nature of our sample, it con-
tradicts one of our expectations – that there is a clear differentiation between BPMN
models depending on their intended use.

In future research, we will continue our data collection and extend it with more
context-related information, e.g., for what purpose were the models created, what
types of modelers created the models etc. This will allow us to triangulate our find-
ings with contextual variables so as to arrive at informed opinions about BPMN usage
across a wide range of application areas. In a related stream of research, we will apply
a number of complexity metrics [e.g., 16] to the identified BPMN clusters to make a
statement about how complex the frequently used BPMN constructs subsets are.

 How Much Language Is Enough? 479

References

1. BPMI.org, OMG: Business Process Modeling Notation Specification. Final Adopted
Specification. Object Management Group (2006), http://www.bpmn.org

2. Fowler, M.: UML Distilled: A Brief Guide To The Standard Object Modelling Language,
3rd edn. Addison-Wesley Longman, Boston, Massachusetts (2004)

3. Siau, K., Cao, Q.: Unified Modeling Language: A Complexity Analysis. Journal of Data-
base Management 12, 26–34 (2001)

4. Rosemann, M., Recker, J., Indulska, M., Green, P.: A Study of the Evolution of the Repre-
sentational Capabilities of Process Modeling Grammars. In: Dubois, E., Pohl, K. (eds.)
CAiSE 2006. LNCS, vol. 4001, pp. 447–461. Springer, Heidelberg (2006)

5. Siau, K., Erickson, J., Lee, L.Y.: Theoretical vs. Practical Complexity: The Case of UML.
Journal of Database Management 16, 40–57 (2005)

6. Kobryn, C.: UML 2001: A Standardization Odyssey. Communications of the ACM 42,
29–37 (1999)

7. Ouyang, C., Dumas, M., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Pattern-based
Translation of BPMN Process Models to BPEL Web Services. International Journal of
Web Services Research 5, 42–61 (2008)

8. Recker, J., Rosemann, M., Krogstie, J.: Ontology- versus Pattern-based Evaluation of
Process Modeling Languages: A Comparison. Communications of the Association for In-
formation Systems 20, 774–799 (2007)

9. Recker, J., Indulska, M., Rosemann, M., Green, P.: How Good is BPMN Really? Insights
from Theory and Practice. In: Ljungberg, J., Andersson, M. (eds.) Proceedings of the 14th
European Conference on Information Systems. Association for Information Systems,
Goeteborg, Sweden, pp. 1582–1593 (2006)

10. zur Muehlen, M., Ho, D.T.-Y.: Service Process Innovation: A Case Study of BPMN in
Practice. In: Sprague Jr., R.H. (ed.) Proceedings of the 41th Annual Hawaii International
Conference on System Sciences, Waikoloa, Hawaii (2008)

11. Wahl, T., Sindre, G.: An Analytical Evaluation of BPMN Using a Semiotic Quality
Framework. In: Siau, K. (ed.) Advanced Topics in Database Research, vol. 5, pp. 102–
113. Idea Group, Hershey, Pennsylvania (2006)

12. Barabási, A.-L., Bonabeau, E.: Scale-Free Networks. Scientific American 288, 50–59
(2003)

13. Li, W.: Random Texts Exhibit Zipf’s-Law-Like Word Frequency Distribution. IEEE
Transactions on Information Theory 38, 1842–1845 (1992)

14. Zipf, G.K.: On the Dynamic Structure of Concert Programs. Journal of Abnormal and So-
cial Psychology 41, 25–36 (1946)

15. Hamming, R.W.: Error Detecting and Error Correcting Codes. Bell System Technical
Journal 26, 147–160 (1950)

16. Rossi, M., Brinkkemper, S.: Complexity Metrics for Systems Development Methods and
Techniques. Information Systems 21, 209–227 (1996)

On a Quest for Good Process Models:

The Cross-Connectivity Metric

Irene Vanderfeesten1, Hajo A. Reijers1, Jan Mendling2,
Wil M.P. van der Aalst1,2, and Jorge Cardoso3

1 Technische Universiteit Eindhoven,
Department of Technology Management,

PO Box 513, 5600 MB Eindhoven, The Netherlands
{i.t.p.vanderfeesten,h.a.reijers,w.m.p.v.d.aalst}@tue.nl

2 Queensland University of Technology,
Faculty of Information Technology,

Level 5, 126 Margaret Street, Brisbane, Australia
j.mendling@qut.edu.au

3 SAP Research CEC, SAP AG
Chemnitzer Strasse 48, 01187 Dresden, Germany

jorge.cardoso@sap.com

Abstract. Business process modeling is an important corporate activ-
ity, but the understanding of what constitutes good process models is
rather limited. In this paper, we turn to the cognitive dimensions frame-
work and identify the understanding of the structural relationship be-
tween any pair of model elements as a hard mental operation. Based on
the weakest-link metaphor, we introduce the cross-connectivity metric
that measures the strength of the links between process model elements.
The definition of this new metric builds on the hypothesis that process
models are easier understood and contain less errors if they have a high
cross-connectivity. We undertake a thorough empirical evaluation to test
this hypothesis and present our findings. The good performance of this
novel metric underlines the importance of cognitive research for advanc-
ing the field of process model measurement.

Keywords: business process modeling, quality metrics, connectivity,
EPCs.

1 Introduction

Business process models are widely used for a variety of purposes, such as sys-
tem development, training, process enactment, costing and budgeting. In many
business applications their primary purpose is to act as a means of communica-
tion such that a process model facilitates the understanding of complex business
processes among various stakeholders [16,19,26]. A process model may be used
towards this end much as an architect will use a model to ascertain the views
of users, to communicate new ideas, and to develop a shared understanding
amongst participants. Beyond that, process models are also used as a formal

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 480–494, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On a Quest for Good Process Models: The Cross-Connectivity Metric 481

specification for the development of information systems. Altogether, it is highly
desirable that process models do not contain execution errors such as deadlocks
and that they are easy to understand for the involved stakeholders.

Even though theoretical quality frameworks [18] and practical modeling guide-
lines [2] are available for quite some time, it is only a very recent development
that empirical insights emerge into the factors that influence the quality of pro-
cess models. For instance, recent studies suggest that larger, real-world process
models tend to contain more formal flaws (such as e.g. deadlocks) than smaller
models [22,24]. The other study worth mentioning supports the notion that when
model size is kept constant (i) a higher density of arcs between the nodes in a
model and (ii) a larger number of paths through a model’s logical connectors
negatively affect its understandability [23].

These results are important stepping stones to what we think is a highly de-
sirable asset for process modelers: Concrete guidelines on how to create process
models in such a way that they are easy to understand for people while reduc-
ing the risk on errors. It is important to realize that a reengineering project
within a multinational company may already involve the creation of thousands
of process models [30]. This implies that effective modeling guidelines may lead
to substantial economic benefits. This is of particular importance since most
modelers are non-experts and hardly familiar with sophisticated design issues
[29]. It is a considerable problem for these application areas of process model-
ing in practice that the current situation in understanding measurable factors
of process model quality is still immature. While the mentioned experiments
have progressed process model measurement, existing metrics tend to explain
not more than half of the variability in a subject’s understanding of process
models [23]. Clearly, there is a need for a more theoretical stance to advance
the design of process model metrics. In this paper, we build on insights from
cognitive research into visual programming languages for the development of a
new metric, the Cross-Connectivity (CC) metric, that aims to capture the cog-
nitive effort to understand the relationship between any pair of process model
elements.

The structure of the paper is as follows. In the next section, we will provide
the motivation for the CC metric and its formalization. In Section 3 we will
describe the empirical evaluation of this metric. Then, we will give an overview
of related work, before giving reflections and conclusions in the final section.

2 The Cross-Connectivity Metric

Up to now, little work exists on measuring business process models that considers
the cognitive effort of a model user for understanding it. One of the few examples
is the research on the Control Flow Complexity (CFC) metric. In its motivation
Cardoso refers to the mental states that may be generated by a process model
and the different types of routing elements [7]. Beyond that, a recent survey into
complexity metrics identifies the cognitive motivation as a potential backbone
[9]. Most other existing model metrics, however, are adaptations of software

482 I. Vanderfeesten et al.

artifact quality metrics that do not dig too deep into cognitive foundations. In
such cases, the theoretical basis for their application on process models is indirect
at best.

To break away from this tendency, we draw inspiration from the Cognitive
Dimensions Framework, as first introduced in [11]. The motivation behind this
framework is to use research findings from applied psychology for assisting de-
signers of notational systems. Designers can use the framework to evaluate their
designs with respect to the impact that they will have on the users of these de-
signs. Since its introduction, it has gained widespread adoption in the evaluation
and design of information artifacts; for an overview of results, see [4].

For the purpose of this paper, the most important dimension of this frame-
work consists of the hard mental operations that may be incurred through a
particular notation, i.e. the high demand on a user’s cognitive resources. Read-
ing a process model implies some hard mental operations in this regard that
behavioral relationships between model elements have to be constructed in the
mind of the reader. In particular, it is quite difficult – even for experts – to
understand whether pairs of activities in a model with lots of parallelism and
choices are exclusive or not. Furthermore, even if activities are on a directed
path, it is not directly clear on which other elements they depend if there are
lots of routing elements in between them. The Cross-Connectivity (CC) metric
that we define below aims to quantify the ease of understanding this interplay
of any pair of model elements. It builds on the weakest-link metaphor assuming
that the understanding of a relationship between an element pair can only be as
easy, in the best case, as the most difficult part. Therefore, we identify suitable
weights for nodes and arcs along a path between two model elements. Our as-
sertion then is that a lower (higher) CC value is assigned to those models that
are more (less) likely to include errors, because they are more (less) difficult to
understand for both stakeholders and model designers.

Below a set of definitions is given, which together form the basis of the
Cross-Connectivity metric. The term ‘Cross-Connectivity’ is chosen because the
strength of the connections between nodes is considered across all nodes in the
model. To appreciate the formalization below, it is important to note firstly that
the CC metric expresses the sum of the connectivity between all pairs of nodes in
a process model, relative to the theoretical maximum number of paths between
all nodes (see Definition 5). Secondly, we assume that the path with the highest
connectivity between two nodes determines the strength of the overall connectiv-
ity between those nodes (see Definition 4). Thirdly, the tightness of a path (i.e.,
degree of connectivity) is determined by the product of the valuations of the
links connecting the nodes on the path (see Definition 3). So, a single weak link
has its effect on the entire connection. Finally, differences in the types of nodes
that a path consists of determine the tightness of the arcs connecting nodes (see
Definitions 1 and 2). For example, an AND connector on a path gives a stronger
relation than an XOR connector. At the end of the formalization, illustrative
example are given of the application of the CC metric for small process models,
showing how the metric can be used to select from alternatives.

On a Quest for Good Process Models: The Cross-Connectivity Metric 483

Definition 1 (Weight of a Node)
Let a process model be given as a graph consisting of a set of nodes (n1, n2, ... ∈
N) and a set of directed arcs (a1, a2, ... ∈ A). A node can be of one of two types:
(i) task, e.g. t1, t2 ∈ T , and (ii) connector, e.g. c1, c2 ∈ C. Thus, N = T ∪ C.
The weight of a node n, w(n), is defined as follows:

w(n) =

⎧
⎪⎪⎨

⎪⎪⎩

1 , if n ∈ C ∧ n is of type AND
1
d , if n ∈ C ∧ n is of type XOR

1
2d−1 + 2d−2

2d−1 · 1
d , if n ∈ C ∧ n is of type OR
1 , if n ∈ T

with d the degree of the node (i.e. the total number of ingoing and outgoing arcs
of the node).

There are three remarks we would like to make. In the first place, note that the
definition above assumes that the process model consists of tasks and connec-
tors. Tasks have at most one input and output arc while connectors can have
multiple input and output arcs. A connector of type AND with multiple input
arcs is a so-called AND-join, i.e., it synchronizes the various flows leading to
the join. The OR-split connector has a behavior in-between an XOR-split (one
output arc is selected) and AND-split (all output arcs are chosen). A connector
can be both a join and a split (i.e. having multiple input and multiple output
arcs), provided that both are of the same type. Secondly, note that we treat all
model nodes as unique elements, even though their (business) semantics may be
the same. In this way, for example, we support the inclusion of duplicate tasks.
Finally, Definition 1 does not correspond to a concrete process modeling lan-
guage with well-defined semantics. It captures those routing elements that can
be expressed with standard process modeling languages such as EPCs, UML
Activity Diagrams, Petri nets, BPMN, or YAWL [1].

Most of the values for w(n) in Definition 1 are straightforward given the intent
of this metric, e.g., arcs connected to an AND connector will have a higher weight
than arcs connected to an XOR connector because the latter involves considering
optionality. The only value that requires some explanation is the value for the
OR connector. For the OR connector it is not clear upfront how many of the arcs
will be traversed during an execution of the process, e.g., in case of an OR split
with two outgoing arcs either one of the arcs can be traversed, or both of the
arcs might be used. This behavior is reflected in the definition of the weight for
an OR connector. The number of all possible combinations of d arcs is: 2d − 1.
Only one of those combinations (i.e. 1 out of 2d − 1) is similar to the situation
in which the node would have been an AND, namely the situation in which all
arcs are traversed. This particular combination gets a weight of 1 (since that is
the weight for an AND connector from Definition 1). Therefore, the first part of
the formula for the OR connector is: 1

2d−1 · 1 = 1
2d−1 . All other combinations of

arcs can be seen as separate XOR nodes with weight 1
d . Thus, in 2d − 2 out of

2d − 1 combinations a weight of 1
d is added, which leads to the second part of

the formula.

484 I. Vanderfeesten et al.

The following definition shows that the weight of an arc is based on the weight
of the corresponding nodes.

Definition 2 (Weight of an Arc)
Let a process model be given by a set of nodes (N) and a set of directed arcs (A).
Each directed arc (a) has a source node (denoted by src(a)) and a destination
node (denoted by dest(a)).
The weight of arc a, W (a), is defined as follows:

W (a) = w(src(a)) · w(dest(a))

Definition 3 (Value of a Path)
Let a process model be given by a set of nodes (N) and a set of directed arcs (A).
A path p from node n1 to node n2 is given by the sequence of directed arcs that
should be followed from n1 to n2: p =< a1, a2, ..., ax >. The value for a path p,
v(p), is the product of the weights of all arcs in the path:

v(p) = W (a1) · W (a2) · ... · W (ax)

Definition 4 (Value of a Connection)
Let a process model be given by a set of nodes (N) and a set of directed arcs (A)
and let Pn1,n2 be the set of paths from node n1 to n2. The value of the connection
from n1 to n2, V (n1, n2), is the maximum value of all paths connecting n1 and
n2:

V (n1, n2) = max
p∈Pn1,n2

v(p)

If no path exists between node n1 and n2, then V (n1, n2) = 0. Also note that
loops in a path should not be considered more than once, since the value of
the connection will not be higher if the loop is followed more than once in the
particular path.

Based on the above valuation of connectivity (i.e., tightness of the connection
between two nodes), we define the Cross-Connectivity metric.

Definition 5 (Cross-Connectivity (CC))
Let a process model be given by a set of nodes (N) and a set of directed arcs (A).
The Cross-Connectivity metric is then defined as follows:

CC =

∑
n1,n2∈N V (n1, n2)
|N | · (|N | − 1)

Example 1. To illustrate the use of the CC metric an example is elaborated.
Figure 1 contains a process model with five tasks (i.e. T = {A, B, C, D, E}),
three connectors (i.e. C = {XOR, AND, OR}) and seven directed arcs (i.e.
A = {a1, a2, a3, a4, a5, a6, a7}). To calculate the value for Cross-Connectivity
the weight for each node is calculated first (see Table 1).

On a Quest for Good Process Models: The Cross-Connectivity Metric 485

Table 1. The degrees and weights for the nodes in the process model of Figure 1

Node (n) Degree (d) Weight (w(n))

A 1 1
B 1 1
C 1 1
D 1 1
E 1 1

XOR 3 1
3

AND 3 1

OR 3 1
23−1 + 23−2

23−1 · 1
3 = 3

7

Then, the weight for each arc is calculated:

W (a1) = w(A) · w(XOR) = 1 · 1
3

=
1
3

W (a2) = w(B) · w(XOR) = 1 · 1
3

=
1
3

W (a3) = w(XOR) · w(AND) =
1
3

· 1 =
1
3

W (a4) = w(C) · w(AND) = 1 · 1 = 1

W (a5) = w(AND) · w(OR) = 1 · 3
7

=
3
7

W (a6) = w(OR) · w(D) =
3
7

· 1 =
3
7

W (a7) = w(OR) · w(E) =
3
7

· 1 =
3
7

C A B

V

XOR
a1 a2

a4

a3

a5

V

D E

a7a6

AND

OR

Fig. 1. A simple example with five tasks and three connectors. T = {A, B, C, D, E},
C = {XOR, AND, OR}, A = {a1, a2, a3, a4, a5, a6, a7}.

486 I. Vanderfeesten et al.

The paths between each pair of nodes are determined and the value for the con-
nection between the pair of nodes is computed. For example node A and node D
are connected through the path < a1, a3, a5, a6 >. In this case, this is the only
path from A to D. Thus, the value of this path is the maximum value over all
paths from A to D:

V (A, D)=v(< a1, a3, a5, a6 >)=W (a1)·W (a3)·W (a5)·W (a6) =
1
3
·1
3
·3
7
·3
7

=
1
49

.

Similarly, the value for the connection from the XOR-node to the OR-node is
computed:

V (XOR, OR) = v(< a3, a5 >) = W (a3) · W (a5) =
1
3

· 3
7

=
1
7
.

For all values, see Table 2.

Table 2. Table showing the values for the connections between all pairs of nodes

A B C D E XOR AND OR Total

A 0 0 0 1
49

1
49

1
3

1
9

1
21

235
441

B 0 0 0 1
49

1
49

1
3

1
9

1
21

235
441

C 0 0 0 9
49

9
49 0 1 3

7
88
49

D 0 0 0 0 0 0 0 0 0
E 0 0 0 0 0 0 0 0 0
XOR 0 0 0 3

49
3
49 0 1

3
1
7

88
147

AND 0 0 0 9
49

9
49 0 0 3

7
39
49

OR 0 0 0 3
7

3
7 0 0 0 6

7

Finally, the CC value is determined as the sum of the values for all connections,
divided by the number of nodes times the number of nodes minus one:

CC =
235
441 + 235

441 + 88
49 + 0 + 0 + 88

147 + 39
49 + 6

7

8 · 7
=

2255
441

56
≈ 0.09131

Now the mechanics behind the CC metric have been dealt with, it is worthwhile
to explore how it can help to distinguish models that are preferable. This will
clarify that our interest at this point is rather with a model’s CC value relative
to that of another model.

Consider the two models that are shown in Figure 2. Both models express
the same business logic as the initial model in Figure 1, but their CC values are
different. The model at the left-hand side in Figure 2 is block-structured, i.e.,
it differs from the initial model in the sense that the AND-join and XOR-join
at the top of the model are matched by corresponding splits. Intuitively, one
may expect that a block-structure will positively affect model comprehension.
Indeed, as the links between the various nodes become tighter, this is expressed
by a higher CC value of 0.12486 versus a value of 0.09131 of the initial model.

The model at the right-hand side in Figure 2 is different from the initial
model of Figure 1 in the sense that it reorders the top connectors: It expresses

On a Quest for Good Process Models: The Cross-Connectivity Metric 487

C A C B

V V

XOR

V

D E

Start

V

C A B

XOR

V

XOR

V

D E

AND

AND

OR

AND AND

OR

Fig. 2. Two alternatives to the example of Fig. 1

(C AND A) XOR (C AND B) instead of C AND (A XOR B), the former being the
more elaborate expression with a duplicate for task C.1 So, the model at the
right-hand side can be expected to be slightly more difficult to understand than
the initial model, which is supported by a lower CC value of 0.08503 versus the
initial model’s CC value of 0.09131.

3 Evaluation

In this section, we report on how the CC metric has been subjected to a thorough
empirical evaluation. First, we will describe the evaluation with respect to the
metric’s capability to predict error probabilities in process models. Next, we will
present on its suitability to explain which process models are easier to understand
than others.

3.1 Validation for Error Prediction

An indication for a metric’s predictive power is that it can accurately distinguish
between models with errors and without errors. Because this evaluation uses a
1 Recall that in the computation of the CC metric all model elements are treated as

unique elements.

488 I. Vanderfeesten et al.

large set of Event-driven Process Chains (EPCs), we use the EPC soundness
criterion as defined in [21] for determining whether an involved model has errors
or not and assume that a decrease in CC is likely to result in more errors.
Therefore, our hypothesis is:

H1: A decrease in CC implies an increase in error probability.

To evaluate this hypothesis, the EPCs of the SAP Reference Model are used.
The development of the SAP reference model started in 1992 and first models
were presented at CEBIT’93 [17, p.VII]. Since then, it was developed further
until version 4.6 of SAP R/3, which was released in 2000. The SAP reference
model includes 604 non-trivial EPCs. The advantage of considering this set of
models is that there is extensive literature available that explains its creation,
e.g., [17]. Furthermore, it is frequently referenced in research papers as a typical
reference model and used in previous quantitative analyses, as e.g. reported in
[20,22,24]. This way, our results can be compared to these related works.

As a first step, we use correlation analysis. In particular, we investigated to
what extent the CC metric is capable to rank non-error and error models. This
capability can be estimated using the rank correlation coefficient by Spearman.
For CC it is -0.434. For this metric there is a strong and 99% significant corre-
lation, which matches the expectation of the hypothesis, i.e. H1 holds.

In a second step, we use multivariate logistic regression. This approach esti-
mates the coefficients B of a linear combination of input parameters for predict-
ing event versus non-event based on a logistic function. In our case, we predict
error versus non-error for the EPCs in the SAP reference model based on the CC
metric and a constant. The accuracy of the estimated model is assessed based on
the significance level of the estimated coefficients, the percentage of cases that
are classified correctly, and the share of the variation that is explained by the re-
gression. This share is typically measured using the Nagelkerke R2 ranging from
0 to 1 (1 being the best possible value). The estimated coefficient should have a
Wald statistic that is below 5% signalling that it is significantly different from
zero. For technical details of logistic regression we refer to [13]. For applications
in predicting errors in process models see [20,22,24].

We calculated a univariate logistic regression for CC first. Table 3 shows that
CC alone already yields a high Nagelkerke R2 of 0.586. The negative coefficient
matches the expectation of hypothesis H1. Furthermore, we stepwise introduced
other metrics to the model. We used those metrics that were found in [22] as the
best combination to predict errors in EPCs. In this context, it is interesting to
note that adding these metrics yields quite similar coefficients for them as in the
predicting function of [22]. This suggests that the CC metric indeed measures a
process model aspect that is orthogonal to metrics that have been defined before.

3.2 Validation for Understandability

To evaluate the capability of the CC metric to explain which process models
are easier to understand than others, we used the empirical data described in

On a Quest for Good Process Models: The Cross-Connectivity Metric 489

Table 3. Multivariate Logistic Regression Models with CC

Parameter Coefficient Std.Error Wald Sig. Nagelkerke Classification

Step 1 CC -13.813 1.229 126.386 0.000 0.586 0.791

. .

Step 5 CC -10.478 2.931 12.783 0.000 0.847 0.916
Structuredness -9.500 1.028 85.328 0.000

Diameter 0.139 0.032 18.829 0.000
Cyclicity 6.237 1.857 11.281 0.001

CNC 5.541 0.935 35.145 0.000

[23]. This data was obtained in a project that aims at the analysis of the impact
of both model and personal characteristics on the understandability of process
models. In particular, a set of 20 model characteristics were investigated, which
have been proposed and formally defined in [20].

In total, 73 students filled out a questionnaire in the fall of 2006. A set of 12
process models from practice, each having the same number of tasks (25), formed
the basis of the questionnaire. As part of the models’ evaluation, students were
asked to answer questions like “If task K is executed for a case, can task L be
executed for the same case?” The evaluation of the 12 models by the 73 students
led to a total of 847 complete model evaluations. On this basis, a score variable
could be calculated per model as the mean sum of correct answers it received.
This score variable served as a way to make understandability operational.

From the earlier analysis of these results [23], the following main conclusions
were drawn with respect to model characteristics:

1. From the 20 factors considered, five model factors exhibited the hypothe-
sized relation with score, i.e. (1) #or-joins, (2) density, (3) average

connector degree, (4) mismatch, and (5) connector heterogene-

ity.
2. From these five model characteristics, only the correlations between density

(the ratio between the actual number of arcs and the theoretical maximal
number of arcs) and score (-0.618) and between average connector de-

gree (the average number of input and output arcs of the routing elements
in a model) and score (-0.674) correlated significantly, with respective P-
values of 0.032 and 0.016.

3. From all linear regression models on the basis of a combination of these five
model factors, the regression model that only used average connector

degree displayed the best explanatory power for the variability in score,
with an adjusted R2=45% (Nagelkerke’s coefficient of determination).

To evaluate the CC metric, it was incorporated in the above analysis. We
arrive at the following conclusions:

– Just like the five model factors that emerged from the original analysis, the
CC metric displays the expected relation with score.

490 I. Vanderfeesten et al.

– Unlike the density and average connector degree factors, the correlation be-
tween score and the CC metric (0.549) is not significant at a 95% confidence
interval as the P-value of 0.065 slightly exceeds the 0.05 confidence interval.

– A regression model with a much better explanatory power for the variation in
score could be developed by including the CC metric: the adjusted R2 from
the original model increased from 45% to 76% in the new regression model. In
particular, by combining the #or-joins, density, average connector

degree, mismatch factors and the CC metric this result could be achieved.
A visualization of this regression model can be seen in Figure 3.

Fig. 3. Linear regression model explaining the mean SCORE for the 12 process models

What this analysis suggests is that CC on its own is slightly less powerful as
an indicator for process model understandability than the two best candidate
metrics available, but that it can deliver a superior explanation of the variation
in understandability across models when combined with existing metrics.

4 Related Work

This section briefly describes the related work for business process metrics. In
essence, related work can be organized in two categories: process model met-
rics inspired by software measurement and experimental work on process model
metrics. In this section, we focus in particular on metrics that consider overall
structural aspects of the process model beyond simple count metrics. For an
overview of process model metrics in general refer to [9,12,20,33].

The early development of process model metrics is greatly inspired by and
based on software quality metrics. These metrics aim at obtaining program de-
signs that are less error-prone, easier to comprehend and easier to maintain. A
survey of existing software metrics can be found in e.g. [14,35]. A number of stud-
ies demonstrate the significant correlation of software quality metrics with errors
in the software design (e.g. [3,5,15,31,32]). In the tradition of this work, there are
some works in the 1990s that are mainly rooted in software quality measurement.

On a Quest for Good Process Models: The Cross-Connectivity Metric 491

Daneva et al. [10] introduce a set of complexity indicators for EPCs based on the
visual attributes of the model: function cohesion, event cohesion and cohesion of
a logical connector. From their validation with 11 EPCs they conclude that their
metrics help to identify error-prone model fragments. Morasca proposes a set of
simple metrics for software specifications designed with Petri-nets [25]. He iden-
tifies size, length, structural complexity, and coupling as interesting attributes of
a design without striving for an empirical validation. The works by Reijers and
Vanderfeesten extend this research stream by introducing a coupling-cohesion
metric for guiding the design of a workflow process [27,28]. This approach is
based on the data flow in a business process and uses the network structure of
the product as a starting point rather than the process model. In [34], Vander-
feesten, Cardoso, and Reijers propose a weighted coupling metric, which puts a
weight to the different types of connections between two activities in the process
model. While this metric lacks a thorough cognitive motivation, it was used as
a blueprint for the CC metric. Cardoso has developed a Control Flow Complex-
ity (CFC) metric [7] which was validated against Weyuker’s complexity axioms
[6] and tested with respect to their correlation with perceived complexity [8]. In
contrast to the CC metric, it does not consider the connections between different
model elements, but focuses on routing elements in isolation.

Mendling et al. take an experimental approach towards process model met-
rics that is driven by the explanatory power of a metric in an empirical setting.
In [20,22] Mendling et al. have tested 28 business process metrics (including
size, density, structuredness, coefficient of connectivity, average connector de-
gree, control flow complexity, and others) as error predictors on a set of over
2000 process models from different samples. All metrics, except for density and
the maximum degree of a connector, are confirmed to be correlated to error-
proneness as expected. Another result of this study is a logistic regression model
is able to classify 90% of the process models correctly. Finally, a survey on un-
derstandability of process models is reported by Mendling, Reijers and Cardoso
in relation to the set of metrics mentioned in the previous study [23]. The main
results of this survey are already described in Section 3.2.

While the metrics used in these experiments are motivated theoretically, most
of them are not explicitly rooted in cognitive research. The CC metric considers
hard mental operations as defined in the cognitive dimensions framework [11] as
the main factor that drives understanding a process model.

5 Conclusion

In this paper, we motivated, formalized, and validated the Cross-Connectivity
metric for process models. The metric expresses how tightly the nodes in a
process model are connected building on a weakest-link metaphor. The definition
of the metric builds on the assumption that a higher value is associated with an
easier understanding of the model, which implies as a consequence a lower error-
probability. As follows from our evaluation of this metric for both these aspects,
it performs similarly well as the best available alternative model metrics. On top

492 I. Vanderfeesten et al.

of that, our results suggest that the CC metric adds a new cognitive perspective
on process model quality, which helps to deliver a better explanatory power when
it is combined with the existing ones.

In reflecting on the development of business process model metrics, it is fair
to say that it is a research area in development. Initially, proposals for process
model metrics were highly conceptual, on the basis of the perhaps tempting
idea that if metrics are useful to analyze software programs it should be equally
applicable for process models. By now, we have progressed to the stage where
model metrics are put to the test for determining their effectiveness in reality.
The good performance of the CC metric clearly shows that a more cognitive
theoretical stance is needed to advance the field of process model measurement.

Overall, feedback from empirical validations has improved the quality of pro-
cess model metrics: The metrics proposed in recent works, e.g. [20,22] and this
paper, perform much better in explaining the variation of understanding and
occurrence of errors in process models. In our future work, we will continue to-
wards further improvements. In particular, we aim at evaluating model quality
metrics on a wider scale, by considering larger sets of real-world models. In order
to achieve that, we are collaborating with consultancy companies that practice
process modeling on a day-to-day basis for their clients. Since most empirical
research has been done with EPC models, we are very much interested in BPMN
and Petri-net process models. Furthermore, we are investigating additional fac-
tors that contribute to a comprehensive understanding of process model quality
as, for example, the visual layout a process model graph and the importance
of preliminary knowledge about the domain that is captured in the model. As
the ultimate goal of our research, we envision the development of a set of con-
crete guidelines for process modelers, substantiated by solid theoretical founda-
tions and empirical evidence, which will help to create better process models in
practice.

Acknowledgement

This research is partly supported by the Technology Foundation STW, applied
science division of NWO and the technology programme of the Dutch Ministry
of Economic Affairs.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow Patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

2. Becker, J., Rosemann, M., von Uthmann, C.: Guidelines of Business Process Mod-
eling. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process
Management. LNCS, vol. 1806, pp. 30–49. Springer, Berlin (2000)

3. Bieman, J.M., Kang, B.-K.: Measuring Design-level Cohesion. IEEE Transactions
on Software Engineering 24(2), 111–124

4. Blackwell, A.F.: Ten Years of Cognitive Dimensions in Visual Languages and Com-
puting. Journal of Visual Languages and Computing 17(4), 285–287 (2007)

On a Quest for Good Process Models: The Cross-Connectivity Metric 493

5. Card, D.N., Church, V.E., Agresti, W.W.: An Empirical Study of Software Design
Practices. IEEE Transactions on Software Engineering 12(2), 264–271

6. Cardoso, J.: Control-flow Complexity Measurement of Processes and Weyuker’s
Properties. In: Proceedings of the 6th International Enformatika Conference (IEC
2005), pp. 213–218. International Academy of Sciences (2005)

7. Cardoso, J.: How to Measure the Control-flow Complexity of Web Processes and
Workflows. In: Fischer, L. (ed.) Workflow Handbook 2005, Future Strategies, Light-
house Point (2005)

8. Cardoso, J.: Process Control-flow Complexity Metric: an Empirical Validation.
In: IEEE International Conference on Services Computing (IEEE SCC 2006), pp.
167–173. IEEE Computer Society Press, Los Alamitos (2006)

9. Cardoso, J., Mendling, J., Neumann, G., Reijers, H.A.: A Discourse on Complexity
of Process Models. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS,
vol. 4103, pp. 115–126. Springer, Heidelberg (2006)

10. Daneva, M., Heib, R., Scheer, A.-W.: Benchmarking Business Process Models. IWi
Research Report 136, Institute for Information Systems, University of the Saarland,
Germany (1996)

11. Green, T.R.G., Petre, M.: Usability Analysis of Visual Programming Environ-
ments: A ’Cognitive Dimensions’ Framework. Journal of Visual Languages and
Computing 7(2), 131–174 (1996)

12. Gruhn, V., Laue, R.: Complexity Metrics for Business Process Models. In: Pro-
ceedings of the 9th international conference on business information systems (BIS
2006). Lecture Notes in Informatics, vol. 85 (2006)

13. Hosmer, D., Lemeshow, S.: Applied Logistic Regression, 2nd edn. Wiley & Sons,
Chichester (2000)

14. Kafura, D.: A Survey of Software Metrics. In: ACM 1985: Proceedings of the 1985
ACM annual conference on The range of computing: mid-80’s perspective, pp.
502–506. ACM Press, New York (1985)

15. Kang, B.-K., Bieman, J.M.: A Quantitative Framework for Software Restructuring.
Journal of Software Maintenance 11, 245–284 (1999)

16. Kawalek, P., Kueng, P.: The Usefulness of Process Models: A Lifecycle Description
of how Process Models are used in Modern Organisations. In: Siau, K., Wand, Y.,
Parsons, J. (eds.) Proceedings of the Second CAiSE/IFIP8.1 International Work-
shop on Evaluation of Modelling Methods in Systems Analysis and Design, pp.
1–12 (1997)

17. Keller, G., Teufel, T.: Sap R/3 Process Oriented Implementation: Iterative Process
Prototyping. Addison-Wesley Longman Publishing Co., Inc, Boston (1998)

18. Krogstie, J., Sindre, G., Jørgensen, H.: Process Models Representing Knowledge
for Action: a Revised Quality Framework. European Journal of Information Sys-
tems 15(1), 91–102 (2006)

19. Lindsay, A., Downs, D., Lunn, K.: Business processes: attempts to find a definition.
Information and Software Technology 45(15), 1015–1019 (2003)

20. Mendling, J.: Detection and Prediction of Errors in EPC Business Process Models.
PhD thesis, Vienna University of Economics and Business Administration, Vienna,
Austria (May 2007)

21. Mendling, J., van der Aalst, W.M.P.: Formalization and Verification of EPCs with
OR-Joins Based on State and Context. In: Krogstie, J., Opdahl, A., Sindre, G.
(eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 439–453. Springer, Berlin
(2007)

494 I. Vanderfeesten et al.

22. Mendling, J., Neumann, G., van der Aalst, W.M.P.: Understanding the Occurrence
of Errors in Process Models based on Metrics. In: Meersman, R., Tari, Z. (eds.)
OTM 2007, Part I. LNCS, vol. 4803, pp. 113–130. Springer, Heidelberg (2007)

23. Mendling, J., Reijers, H.A., Cardoso, J.: What Makes Process Models Understand-
able? In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
pp. 48–63. Springer, Berlin (2007)

24. Mendling, J., Verbeek, H.M.W., van Dongen, B.F., van der Aalst, W.M.P., Neu-
mann, G.: Detection and Prediction of Errors in EPCs of the SAP Reference Model.
Data and Knowledge Engineering 64(1), 312–329 (2008)

25. Morasca, S.: Measuring Attributes of Concurrent Software Specifications in Petri-
nets. In: Proceedings of the 6th International Symposium on Software Metrics, pp.
100–110. IEEE Computer Society, Los Alamitos (1999)

26. Ould, M.A.: Business Processes: Modelling and Analysis for Re-engineering and
Improvement. Wiley, Chichester (1995)

27. Reijers, H.A.: A Cohesion Metric for the Definition of Activities in a Workflow Pro-
cess. In: Proceedings of the 8th CAiSE/IFIP8.1 International workshop on Evalu-
ation of Modeling Methods in Systems Analysis and Design (EMMSAD 2003), pp.
116–125 (2003)

28. Reijers, H.A., Vanderfeesten, I.T.P.: Cohesion and Coupling Metrics for Workflow
Process Design. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS,
vol. 3080, pp. 290–305. Springer, Berlin (2004)

29. Rosemann, M.: Potential Pitfalls of Process Modeling: Part A. Business Process
Management Journal 12(2), 249–254 (2006)

30. Rosemann, M.: Potential Pitfalls of Process Modeling: Part B. Business Process
Management Journal 12(3), 377–384 (2006)

31. Selby, R.W., Basili, V.R.: Analyzing Error-Prone System Structure. IEEE Trans-
actions on Software Engineering 17, 141–152 (1991)

32. Shen, V.Y., Yu, T.-J., Thebaut, S.M., Paulsen, L.R.: Identifying Error-Prone Soft-
ware. IEEE Transactions on Software Engineering 11, 317–324 (1985)

33. Vanderfeesten, I., Cardoso, J., Mendling, J., Reijers, H.A., van der Aalst, W.M.P.:
Quality Metrics for Business Process Models. In: Fischer, L. (ed.) BPM and Work-
flow Handbook 2007, Future Strategies, USA, May 2007, pp. 179–190 (2007)

34. Vanderfeesten, I., Cardoso, J., Reijers, H.A.: A Weighted Coupling Metric for Busi-
ness Process Models. In: Eder, J., Tomassen, S.L., Opdahl, A., Sindre, G. (eds.)
Proceedings of the CAiSE 2007 Forum, CEUR Workshop Proceedings, vol. 247,
pp. 41–44 (2007)

35. Xenos, M., Stavrinoudis, D., Zikouli, K., Christodoulakis, D.: Object-Oriented Met-
rics - A Survey. In: Proceedings of the FESMA 2000, Federation of European Soft-
ware Measurement Associations, pp. 1–10 (2000)

Information Systems Engineering Supported by

Cognitive Matchmaking

S.J. Overbeek1, P. van Bommel2, and H.A. (Erik) Proper2,3

1 e-office B.V., Duwboot 20, 3991 CD Houten, The Netherlands, EU
Sietse.Overbeek@e-office.com

2 Institute for Computing and Information Sciences, Radboud University Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands, EU

P.vanBommel@cs.ru.nl
3 Capgemini Nederland B.V.,

Papendorpseweg 100, 3528 BJ Utrecht, The Netherlands, EU
E.Proper@acm.org

Abstract. In daily practice, discrepancies may exist in the suitability
match of actors and the tasks that have been allocated to them. Formal
theory and the prototype of a cognitive matchmaker system are intro-
duced as a solution to improve the fit between actors and tasks. A case
study has been conducted to clarify how the proposed cognitive match-
maker system can be utilized in information systems engineering. The
inductive-hypothetical research strategy has been applied when perform-
ing the case study.

Keywords: cognitive characteristics, matchmaking, task allocation.

1 Introduction

Globalization, the emergence of virtual communities and organizations, and
growing product complexity has an impact on how actors (i.e. a human or a
computer) fulfill tasks in organizations. Notably due to these developments, an
actor working on a task may experience an increase in cognitive load while task
performance decreases [1,2]. The system discussed in this paper matches cogni-
tive characteristics supplied by actors and the cognitive characteristics required
to fulfill tasks. This may achieve a better fit between actors and tasks. Cognitive
characteristics can be the willpower to fulfill a task or maintaining awareness
of the requirements to fulfill a task for example. These characteristics are also
referred to as volition and sentience, respectively in cognitive literature [2,3].
Within the enterprise, the benefits of cognitive matchmaking can be found in at
least three areas: Multi-agent systems, workflow management and business pro-
cess reengineering (BPR). (1) Multi-agent systems incorporate several software
agents that may work together to assist humans in performing their tasks [4].
One way of providing assistance is to match tasks with human actors to un-
derstand which tasks fit best with which human actors. (2) The primary task
of a workflow management system is to enact case-driven business processes by

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 495–509, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

496 S.J. Overbeek, P. van Bommel, and H.A. Proper

joining several perspectives [5]. One of these perspectives is the task perspective.
This perspective describes the elementary operations performed by actors while
executing a task for a specific case. An example of a case is a tax declaration.
Integration of cognitive matchmaking in a workflow management system may
prescribe which available actors fit best with the tasks that are part of a case.
This may improve the allocation of tasks to actors while enacting a business
process. (3) BPR consists of computer-aided design of processes and automatic
generation of process models to improve customer service [6]. The design and
creation of processes and process models may be improved if the business process
modeler knows beforehand which available actors best fit the tasks that need to
be fulfilled as part of a newly designed business process.

The focus of the research reported in this paper, however, is to analyze how
cognitive matchmaking can provide support for a project during which an in-
formation system is engineered. Therefore, a case study has been carried out at
e-office, a company specialized in providing computer-aided support for human
actors to assist them during office work. First, the framework for cognitive match-
making that has been developed in earlier work [7] is introduced in section 2.
Section 3 discusses the prototype, that has been developed proceeding from the
framework. The conducted case study is explained in section 4. Section 5 briefly
compares our study with other approaches in the field and outlines the benefits
of our approach. Section 6 concludes this paper and gives an overview of future
work.

2 Framework for Cognitive Matchmaking

The main goals of this paper are to discuss the prototype and the case study.
However, it is necessary to briefly introduce the framework for cognitive match-
making as is elaborated in [7]. First, the framework is illustrated in figure 1.

Supply

Demand

CharMatch MatchWeigh

∈

∈

Normalize
Proximity

Metric

CharWeigh ⊕⊗

Fig. 1. Framework for cognitive matchmaking

The different concepts shown in figure 1 are functions that are necessary to calcu-
late the eventual suitability match of an actor fulfilling a task. Even though the
formal signature of these functions are not exhaustively repeated in this section,
we will show some examples for clarification. First, the supply function shows
the level on which an actor type, that is characterized by certain cognitive char-
acteristics, offers a characteristic during task execution. The levels on which an
actor type supplies a cognitive characteristic may vary over the natural numbers

Information Systems Engineering Supported by Cognitive Matchmaking 497

from 0 up to and including 10. These levels are part of the characteristic rank
domain indicated by the set CRN . This ranking domain includes the rank values
that can be used to indicate the level on which a characteristic can be supplied
by an actor or demanded by a task. The demand function depicted in figure 1
shows the level on which a task of a certain type requires a certain cognitive
characteristic if an actor wishes to fulfill the task.

The characteristic match or CharMatch function shown in figure 1 matches
supply and demand of a specific characteristic. There is an optimal characteristic
match if an actor offers a cognitive characteristic at the same level as a certain
task requires the characteristic. A characteristic match is calculated for every
cognitive characteristic that is supplied by an actor type and demanded by a
task type. The result is part of the match rank domain, which may vary over
the real values from 0 up to and including 1. An optimal characteristic match is
indicated by the match rank value 0.5. This is because 0 indicates complete un-
derqualification (an actor is not able to supply a certain characteristic at all) and
1 indicates complete overqualification (the supply of a certain characteristic is
not necessary at all for a task whilst an actor supplies that certain characteristic
at the highest level).

The weighed characteristic match function or Weigh function weighes the
result of the characteristic match function. The user of the system may pro-
vide a weigh value to give more importance to a characteristic match result
than another. The result is part of the suitability rank domain, which may vary
over the real values from 0 up to and including 10. The results of the weigh
function are then summated by the Match function which shows the suitability
match. This suitability match is also expressed by a value from the suitabil-
ity rank domain. To show how we have formalized the functions of the frame-
work, the formal signature of e.g. the match function is modeled as follows [7]:
Match : AT × TT → SRN . Note that the set AT contains actor types, the set
TT contains task types and the set SRN contains suitability rank values. This
function can be defined using the aforementioned functions:

Match(expert, synthesis) �
⊕

c∈CC
Weigh(c, CharMatch(expert, synthesis))

For this example the suitability match of the expert actor type [7] and the syn-
thesis task type [8] has been calculated. The expert uses his own knowledge to
solve a problem. The expert is also able to combine and modify knowledge while
solving a problem and is able to learn from that. A researcher often acts as an ex-
pert. A synthesis task is related with the actual utilization of acquired knowledge.
An example is a student who utilizes knowledge (acquired by reading a book)
while performing an exam. The definition of the match function shows that for
every characteristic the weighed characteristic match function is executed and
the results are then summated. The latter is shown by the ⊕ operator. This op-
erator is used instead of the large Sigma because soft (linguistic) suitability rank
values can also be used instead of hard (numerical) values. The match function
can be expressed as follows: Match(expert, synthesis) = 4.25, which shows that
the numerical suitability match of the expert fulfilling the synthesis task is 4.25.
This is a fairly good result, knowing that 5 is the best suitability match that

498 S.J. Overbeek, P. van Bommel, and H.A. Proper

Graphical User Interface
(Microsoft .NET Framework 2.0 Web UI)

Data Layer
(Microsoft Enterprise Library 3.0)

Project-specific
Database

(Microsoft SQL
Server 2005)

Abstract
Database

(Microsoft SQL
Server 2005)

Kernel

Functions

...

Ranking
Domains

Matching
Factory

Project-specific profile
Project-specific

Project-specific

actor types

task types

Project-specific
cognitive characteristics

Abstract profile
Abstract actor types

Abstract task types

Abstract
cognitive characteristics

Business Layer

Fig. 2. Cognitive matchmaker system architecture

can be achieved. Section 3 contains a screen shot of the prototype in which this
match result is shown. An implementation of the match function is shown as a
code snippet in section 3. This is to illustrate that the formalisms mentioned in
figure 1 are implemented in program code. The program code has been tested
by means of unit tests after the implementation of all the formalisms included
in the framework. This is to make sure that individual methods in the code are
working properly.

Finally, a function has been introduced to determine the degree of certainty
that an actor is suitable to fulfill a task [7]: μ : R → [0, 1]. A linear certainty
degree function can be defined as follows:

μ(u) �
{ 2

min+max
· u min ≤ u ≤ min+max

2
−2

min+max · u + 2 min+max
2 ≤ u ≤ max

In the implementation of the prototype the minimum and maximum values of a
suitability match are equated to 0 respectively 10. Thus, min = 0 and max = 10.
The degree of certainty that the expert is suitable to fulfill the synthesis task is:
μ(4.25) = 2

0+10 · 4.25 = 0.85. This can be interpreted as being 85% sure that the
expert is suitable enough to fulfill the synthesis task. It might be a good choice
to let this actor fulfill the task, unless an available actor provides a better match.

3 Prototype of the Cognitive Matchmaker System

The prototype of the cognitive matchmaker system has been designed as a Web
application according to the three tier software architecture depicted in figure 2.
The graphical user interface is based on the Microsoft .NET Framework 2.0
Web UI namespace that provides classes and interfaces to create user inter-
face elements. The business layer includes the main components of the appli-
cation. The most important one is the kernel, which is an implementation of

Information Systems Engineering Supported by Cognitive Matchmaking 499

the formal functions shown in figure 1 and in [7]. Furthermore, the ‘matching
factory’ instantiates all the objects involved when a suitability match should be
calculated and enables the application to follow the flow of the matchmaking
process as depicted in figure 1. The business layer also includes an implemen-
tation of the possible ranking domains that can include characteristic ranks,
match ranks and suitability ranks. The data layer includes code to interact with
connected databases. The architecture shows that it is possible to include a
project-specific database as well as a database including abstract types and
characteristics. This signifies that the cognitive matchmaker system can com-
pute matches between project-specific actor types and task types as well as
between the abstract actor types and task types we have defined in [7]. Project-
specific actor types and task types can be defined to categorize all the actors
and tasks that are part of a specific project. For instance, a person called ‘John
Doe’ can be categorized as a project-specific actor type ‘developer’, meaning
that he acts as a software developer in a specific project. Section 4.1 includes
the project-specific actor types and task types as part of the elaborated case
study. On the contrary, the abstract types categorize actors and tasks based
on the supplied respectively demanded cognitive characteristics. These types
are explained in section 4.2. Dependent of the choice the user of the cognitive
matchmaker system makes, the system communicates with one of the available
databases to calculate matches. The data layer is based on the Microsoft En-
terprise Library 3.0 that contains chunks of source code for e.g. data access.

The user of the system has to walk through six steps to calculate a suitability
match. In the first step, the user should select an actor type and a task type
for which a suitability match should be calculated. Suppose that the user selects
the expert actor type and the synthesis task type. This causes the application
to generate a list of all the cognitive characteristics that have been used to
characterize the expert actor type and the synthesis task type. In the following
step, the application displays on which level the expert supplies the involved
characteristics and on which level the synthesis task demands the characteris-
tics for successful task fulfillment. The next part shows the characteristic match
results for all cognitive characteristics. Then, the user can provide the weigh
values for the cognitive characteristics by entering them for each characteristic
involved. Figure 3 shows the eventual suitability match result with the corre-
sponding graph. Due to space limitations a screen shot of the suitability match
screen is shown only. The resulting graph shows that in this case the suitability
match of the expert fulfilling the synthesis task is 4.25. The certainty that the
expert is able to fulfill the synthesis task is 85%. The implementation of the
prototype is based on the framework shown in figure 1. For example, the code
implementation of the suitability match function depicted in section 2 is shown
in figure 4. The code implementation obviously shows that the match function
takes an actor type and a task type as input parameters and a suitability rank
value as output parameter just like the formal match function in our framework
prescribed. Then, the results of the weighed characteristic match function are
summated for each cognitive characteristic involved in the process of computing

500 S.J. Overbeek, P. van Bommel, and H.A. Proper

Fig. 3. Suitability match screen

public static SuitabilityRank Match(TaskType taskTypeObject, ActorType actorTypeObject) {

SuitabilityRank SuitabilityRankObject = new SuitabilityRank();

foreach (Characteristic CharacteristicObj in _matching.RetrieveCharacteristics()) {
SuitabilityRankObject.RankValue += Weigh(CharacteristicObj,
CharMatch(actorTypeObject, taskTypeObject,
CharacteristicObj)).RankValue;

}

return SuitabilityRankObject;
}

Fig. 4. Source code of the suitability match function

the suitability match. This also corresponds with the definition of the suitability
match function as shown in section 2.

4 Case Study and Evaluation

The case study that has been conducted is related with a recently completed in-
formation systems engineering (ISE) project at ‘e-office’. This project has been
concerned with the development of an ‘Action Reporting Tool’ (ART for short)
for an international provider of banking and insurance services. ART is a software
application that can generate risk reports for the user. This tool should assist risk
management to better monitor and control insurance risks. The research strategy

Information Systems Engineering Supported by Cognitive Matchmaking 501

for the case study has been derived from the inductive-hypothetical research
strategy [9], which consists of five phases. Empirical knowledge of the problem
domain is elicited in the initiation phase. Elicited empirical knowledge is applied
in a descriptive conceptual model in the abstraction phase. The theory formula-
tion phase is necessary to make the descriptive conceptual model prescriptive.
The prescriptive conceptual model is empirically tested in the implementation
phase. A comparison of phase 1 with the prescriptive empirical model of phase 4
is needed to fulfill the evaluation phase. The derived research strategy includes
the following steps. (1) Description of the project phases in which the ISE project
has been divided. The description includes project-specific actor types and task
types and relations between them. (2) Abstraction of the results of phase 1 of
the research strategy to our abstract cognitive model of actor types and task
types. (3) Formulation of how the cognitive matchmaker system can be utilized
in every project phase related to the actor types and task types involved in the
project. (4) Analysis to identify the benefits if the system had been applied in
the studied ISE project. (5) Evaluation by comparing phase 1 with phase 4.

4.1 Initiation

The ART project is based on the Microsoft Solutions Framework (MSF) informa-
tion systems engineering method. The resulting tool is a Web application running
on the Microsoft Office SharePoint Server 2007 platform (MOSS 2007 for short).
Applications based on this platform are aimed to facilitate organizational collab-
oration, content management and business process management. The following
project phases are determined as part of the ART project: The definition phase,
the development phase, the acceptance phase and the implementation phase.
The definition phase incorporates requirements engineering by means of inter-
views with the future users of the tool and conducting interactive workshops.
The requirements engineering process is proceeded by the creation of several use
cases to determine the interactions between the users and the tool. These use
cases can be used as input to create screen mockups. The tool is developed in an
iterative way during the development phase. The results after every iteration are
tested before proceeding to the next iteration. The tool is integrally tested dur-
ing the acceptance phase in conformity with a test plan. The acceptance test has
been carried out by the banking and insurance service provider. Eventually, the
final version of the tool is implemented at the service provider during the imple-
mentation phase. The actors participating in the project have been categorized
into several project-specific actor types based on the MSF method. First, an in-
tegrated program management (IPM) officer can be identified. The IPM officer is
responsible for organizational scheduling, planning and resource allocation. The
project manager develops project plans, iteration plans and status reports. The
project manager also mitigates risks. The product manager monitors the budget
and the realization of the business case. The infrastructure architect focuses on
server deployment and the services which run on them. Furthermore, the so-
lution architect is responsible for defining both the organizational and physical
structure of the application. Finally, the lead developer and the developer actor

502 S.J. Overbeek, P. van Bommel, and H.A. Proper

types can be identified. The lead developer lends experience and skills to fellow
developers. The developer is mainly responsible for building the product. The
project manager of the ART project has created breakdowns of the tasks to be
fulfilled. Using this documentation a project-specific task type categorization can
be described together with the fulfilled tasks. Analysis of the project documen-
tation also reveals which project-specific actor type performs a project-specific
task type. The results of this analysis are shown in table 1.

Table 1. Project-specific actor types and task types

Task instance Project phase Project-specific task type Project-specific actor type

Conduct interview with stakeholder Definition Elicitation task Project manager
Development Product manager

Solution architect
Conduct workshop with stakeholders Definition Elicitation task Project manager

Development Product manager
Solution architect

Design use case Definition Design task Solution architect
Development Developer

Design mockup Definition Design task Developer
Design risk report Definition Design task Lead developer

Developer
Write technical tool description Definition Documentation task Developer

Development
Write project initiation document Definition Documentation task Project manager

Product manager
Determine hardware requirements Definition Documentation task Infrastructure architect
Write security plan Definition Documentation task Infrastructure architect

Development
Write project plan Definition Documentation task Project manager

Development
Attend project meeting All phases Meeting task All actor types
Attend steering committee meeting All phases Meeting task IPM officer
Set up MOSS 2007 environment Development Code development task Infrastructure architect
Build custom Web part Development Code development task Developer
Configure Web part Development Code development task Developer
Create risk report Development Code development task Lead developer

Developer
Implement security for tool Development Code development task Infrastructure architect
Commit partial system test Acceptance System test task Lead developer

Developer
Commit integral system test Acceptance System test task Lead developer

Developer
Deploy completed tool Implementation Deployment task Lead developer

Developer

4.2 Abstraction

When performing the second phase of the inductive-hypothetical research strat-
egy, it is possible to abstract the project-specific actor types and task types.
First, it is shown how the project-specific task types can be abstracted to the
abstract task types mentioned in [8]. Second, this section discusses how the
project-specific actor types can be abstracted to the actor types mentioned in [7].

The distinguished abstract task types are the acquisition, synthesis and test-
ing types. The project-specific task types depicted in table 1 can be abstracted
to these types as follows. The mentioned elicitation tasks are typical knowledge
acquisition tasks. The actors executing an elicitation task acquire knowledge
by means of interviews or workshops. Design tasks can be abstracted as syn-
thesis tasks. In a design task, the actor applies already acquired knowledge
when designing a use case, mockup or risk report. Documentation tasks can also
be classified as synthesis tasks. The documentation tasks mentioned in table 1

Information Systems Engineering Supported by Cognitive Matchmaking 503

are related with the application of knowledge when writing a technical tool de-
scription, project initiation document, hardware requirements report, security
plan and project plan. Next, meeting tasks are abstracted to acquisition tasks.
During project meetings and steering committee meetings it is intended to ac-
quire knowledge about e.g. project planning, project status and the remaining
budget. Code development tasks can be viewed as synthesis tasks. These tasks
are necessary to build the action reporting tool itself. The build process con-
sisted of setting up the programming environment, and the creation of Web
parts and risk reports. Web parts are the visual components that are part of
a Microsoft SharePoint application which include functionality, such as: Listed
announcements, a calendar, a discussion part, etc. Testing tasks are related with
the project-specific system test tasks. In a testing task, earlier applied knowl-
edge is thoroughly examined inducing an improvement of the specific knowledge
applied. The partial and integral system tests are needed to identify and correct
flaws in the action reporting tool. Finally, the deployment task can be abstracted
to a synthesis task. Here, all relevant knowledge that is applied is related with
a successful deployment of the system.

The distinguished abstract actor types are the collaborator, experiencer, ex-
pert, integrator and the transactor. Only the expert type has been mentioned
up till now. The other types are explained as follows. The collaborator has the
ability to exert an influence on state changes of knowledge involved during task
fulfillment. During task fulfillment the collaborator is also able to improve its
own cognitive abilities. However, a collaborator does not have complete aware-
ness of all required knowledge to fulfill a task and requires others. An experiencer
is aware of all the knowledge requirements to fulfill some task. An integrator is
able to fulfill a task by working together and is able to initiate state changes
of knowledge involved during task fulfillment. An integrator primarily wishes
to acquire and apply knowledge of the highest possible quality. A transactor
can fulfill a task without collaborating with others and is not required to cause
modifications in the knowledge acquired and applied during task fulfillment. A
project-specific actor can be classified as a certain abstract type while performing
an abstract task. For instance, a project manager may be classified as a collabo-
rator when fulfilling an acquisition task. However, if a project manager executes
a synthesis task he may act differently and may be classified as a transactor
instead. These abstractions materialize in the following phase of the research
strategy.

4.3 Theory Formulation

The results of the previous phase of the research strategy are discussed through-
out this section. The cognitive matchmaker system can be utilized in the four
phases of the ART project. However, only the definition phase is elaborated in
this section to understand how ISE can be supported by cognitive matchmak-
ing. The approach can be used for the remaining phases in an identical manner.
Based on sections 4.1 and 4.2 it is now possible to calculate the certainty that
the actors involved in the definition phase of the ART project can successfully

504 S.J. Overbeek, P. van Bommel, and H.A. Proper

Table 2. Cognitive matchmaking in the definition phase

Project-specific actor type Task type Actor type Weigh values Suitability match Certainty

IPM officer Acquisition Collaborator 2, 1.5, 0.5, 3, 3 4.3 86%
Project manager Acquisition Collaborator 2, 1, 1, 3, 3 4.4 88%

Synthesis Transactor 1, 1.5, 1.5, 3, 3 4.85 97%
Product manager Acquisition Collaborator 2, 1, 1, 3, 3 4.4 88%

Synthesis Transactor 1, 1.5, 1.5, 3, 3 4.85 97%
Infrastructure architect Acquisition Experiencer 4, 3, 3 3.5 70%

Synthesis Expert 1.5, 1, 1, 1, 1.5, 2, 2 4.575 91.5%
Solution architect Acquisition Collaborator 1.5, 2, 1.5, 3, 2 4.4 88%

Synthesis Expert 1, 1.5, 1, 0.5, 1, 2, 3 4.8 96%
Lead developer Acquisition Experiencer 4, 3, 3 3.5 70%

Synthesis Expert 1, 2, 1, 1.5, 1, 1.5, 2 4.6 92%
Developer Acquisition Experiencer 3, 4, 3 3.3 66%

Synthesis Collaborator 2, 1.5, 2.5, 2, 2 4.4 88%

fulfill the tasks allocated to them. The results are depicted in table 2. The system
can be utilized to calculate the matches between the actor types and task types
involved in the definition phase. For this purpose, the way to abstract the project-
specific actor types and task types as discussed in section 4.2 should be applied.
The results of table 2 can be explained as follows. The solution architect, for
instance, acts as a collaborator when working on an acquisition task and acts
as an expert when working on a synthesis task respectively. In the definition
phase, the solution architect conducts interviews and workshops, and attends
project meetings. These tasks can be regarded as knowledge acquisition tasks.
Five weigh values have to be provided by the user of the cognitive matchmaker
system when calculating the suitability match of the collaborator fulfilling an ac-
quisition task. The weigh values express the importance of the involved cognitive
characteristics. The following weigh values are provided for the five characteris-
tics involved: 1.5, 2, 1.5, 3 respectively 2. The cognitive characteristics used to
characterize actor types and task types are further explained in [7,8]. At the
moment, the weigh values have to be provided manually by the user. However,
the next version of the prototype should include an algorithm that determines
these weigh values dependent of how important a cognitive characteristic is in a
certain combination of an actor type and a task type. The highest weigh value
of 3 has been applied to the satisfaction characteristic. This is to make abso-
lutely sure that the solution architect is pleased with the knowledge acquired and
that no additional need for knowledge remains [8]. The cognitive matchmaker
system then sums up the resulting weighed characteristic matches resulting in
a suitability match of 4.4. The certainty that the solution architect acting as a
collaborator can successfully fulfill an acquisition task is: μ(4.4) = 2

0+10 ·4.4 = 0.88

or 0.88 · 100% = 88%. The solution architect acts as an expert when working on
a synthesis task during the definition phase. These synthesis tasks are related
with the design of use cases. The solution architect should be able to use his
own knowledge about use cases to correctly design them. The architect should
also be able to combine and modify his own knowledge while designing use cases
and he should also be able to learn from that process. The expert actor type
matches very well with the synthesis task, because the result of the suitability
match calculation is 4.8. This results in a certainty of 96%.

Information Systems Engineering Supported by Cognitive Matchmaking 505

4.4 Implementation

The results from the theory formulation phase are now utilized to describe how
ISE can be supported by cognitive matchmaking. The utilization of the system in
ISE is described using three viewpoints. (1) The design time viewpoint embraces
the situation before the project is initiated (before the definition phase starts).
First, the project-specific actor types and the project-specific task types need
to be conceived. If this is done, there are two options to choose from: Use the
project-specific profile as a starting point or the abstract profile. The latter has
been done in the case study as is elaborated in section 4.2. When using a project-
specific profile as input for the system, a project-specific profile of actors and
tasks should be generated. This has also been done in section 4.1. If not already
entered in the project-specific database as is shown in figure 2, the actor and task
data should be provided as a next step. The person who needs to allocate tasks
to actors, the project manager for instance, can now calculate the suitability
matches. Based on these results he can allocate tasks to actors before starting the
project. (2) The runtime viewpoint is related to the recalculation of suitability
matches if changes to task allocations are necessary during the enactment of an
ISE project. This may be the case if a different actor needs to work on a task
than the one specified in the project plan. The cognitive matchmaker system can
then be used again to recalculate the suitability match. New tasks may also be
introduced during the project that need to be allocated to actors. This may entail
the need to calculate additional suitability matches during project enactment.
(3) From a post-mortem point of view, task allocations in the project as a whole
can be analyzed. The suitability matches for every actor / task combination in
the ISE project may be compared to the actual results brought forward by the
actors. Lessons learned should be recorded for future projects. This may help to
better decide which actor types are suitable to work with which types of tasks.

4.5 Evaluation

In this section, the results of the initiation phase are compared with the results of
the implementation phase. The evaluation of the initiation phase is related to the
three viewpoints of the implementation phase. At design time, the choices lead-
ing to the project-specific actor types as shown in table 1 have not been argued
in the ART project documentation. Recall that the project-specific actor types
originate from the Microsoft Solutions Framework ISE method. Entering the ac-
tor types that MSF distinguishes in the project-specific database of the cognitive
matchmaker system enables a better argued decision of which actor types to use
in a project. For instance, the system test tasks shown in table 1 are performed
by the (lead) developer actors. However, the MSF method also distinguishes the
tester and test manager types. Including these actor types in the ART project
may have improved the suitability matches related with the system test tasks.
A difficulty is that the MSF method does not provide a clear description of the
cognitive characteristics that characterize an actor type. The MSF method, how-
ever, provides a natural language description of each actor type included in the

506 S.J. Overbeek, P. van Bommel, and H.A. Proper

method. Proceeding from these descriptions the administrator of the cognitive
matchmaker system should be able to characterize the project-specific actor types
by adding or reusing cognitive characteristics to the project-specific database.

At runtime, the results of the theory formulation phase included suitability
matches for every actor / task combination differentiated to a specific project
phase. These suitability matches may be reviewed after every project phase. The
lowest certainty percentages shown in table 2 deserve special attention to dis-
cover the reasons of the lowest match results. For instance, table 2 shows that
the developer acting as an experiencer has a certainty of 66% to successfully
fulfill an acquisition task. When viewing table 1 it can be interpreted that the
acquisition task performed by the developer in the definition phase is related
with the attendance of project meetings. This may be caused in case a meeting
is not very relevant for a developer. For instance, when a large part of a cer-
tain meeting is about project management issues a developer may not have a
satisfied feeling after the meeting. Letting developers attend the most relevant
meetings may increase the suitability matches for these acquisition tasks. In the
same way, the other calculated matches can be analyzed for every project phase.

For instance, the testing tasks shown in table 1 deserve attention when com-
paring the actual project results with the suitability matches from a post-mortem
viewpoint. According to table 1 the partial and integral system tests are con-
ducted by the developer and lead developer types. Assume that it is 78.5% certain
that the developer can successfully fulfill these testing tasks. The MSF method
includes the tester actor type that may be more suitable to fulfill testing tasks
in general. According to the MSF, a key goal for the tester is to find and report
the significant bugs in the product by testing the product. Obviously, more bugs
could have been found and solved after testing each iteration and the overall
product by the tester actor type. In the current project situation, the developer
has the responsibility for code development and testing as well. Usability issues
also arose during the system test tasks. What can be seen in table 1 is that the
developer is also responsible for designing the mockups. The responsibility of
the developer to design, develop as well as test the system may have contributed
to the existence of some usability problems. The MSF advocates the addition of
a user experience architect in the project to increase the usability of the tool.
According to the MSF, the user experience architect is responsible for the form
and function of the user interface, its aesthetics and the overall product usability.
Recall that designing mockups is a synthesis task. Assume the certainty that the
developer can successfully fulfill a synthesis task in the definition phase is 88%.
This is not a low percentage, but may further increase when the main focus of
a developer is on developing code. For future projects it may be a smart idea to
introduce a tester and a user experience architect.

5 Discussion

Literature indicates that cognitive matchmaking can be found in several areas
of computer science. One of these initiatives is Cognitive Match Interface Design

Information Systems Engineering Supported by Cognitive Matchmaking 507

(COMIND) [10]. COMIND is the designing of system processes so that they pro-
ceed and interact with the user in a manner that parallels the flow of the user’s
own thought processes. It consists of several principles, such as: The user should
be able to express his needs to the computer with constructs which mirror the
user’s own thought processes. Another principle is the readiness of a computer
to solve problems of the user in his / her area of need. Also, the computer should
sanction flexibility just like the mind. The mind is regarded as a versatile and
flexible problem solver. The authors tried to apply these principles when design-
ing a medical information system. Unfortunately, a method for interface design
that incorporates COMIND is not introduced. Only the medical information
system case is elaborated. Creation of a COMIND framework including the pro-
posed cognitive principles for user interface design would have possibly enabled
reuse of COMIND in different areas. The existence of our cognitive matchmaker
system framework does enable its specific application in many different areas.

Another interesting study is the cognitive matchmaking of students with e-
learning system functionality [11]. A way of working is presented to design e-
learning systems that better adapt to the cognitive characteristics of students.
First, a taxonomy of learning styles is selected to classify the user. Next, tech-
niques should be developed to introduce the adaptation into the system that fits
the learning styles. The designed adaptation is then implemented on a computer.
Finally, a selection of the technologies is made that are adequate for the adapta-
tion. Besides this described way of working, a cognitive method or a system to
match students and e-learning systems is not proposed. The mentioned concept
of reflection can be very useful for our own work, though. Reflection is defined as
the capability of a computational system to adjust itself to changing conditions.
This can be seen on e.g. http://maps.google.com. The process of adaptation is
made stronger since it is possible to create specific code depending on the sup-
plied characteristics of the user when using the system. Adding reflection to our
system may take situational elements into account when determining a match,
for instance. Concretely, the actual availability of actors during the ART project
may be included when allocating tasks to actors.

Jaspers et al. [12] argue that early involvement of cognitive matchmaking in
ISE may be of importance to design systems that fully support the user’s work
practices. From this perspective, cognitive matchmaking is used for requirements
engineering to match system requirements with the user’s task behavior. To un-
derstand the task behavior of future users of a clinical system, the think aloud
method has been applied [12]. Think aloud is a method that requires subjects
to talk aloud while performing a task. This stimulates understanding of the
supplied cognitive characteristics when performing a task. Unfortunately, the
method has only been utilized to design a user interface for a clinical informa-
tion system. The study lacks a more abstract framework that can be reused to
design interfaces in general that better match task behavior of its users. Task-
analysis methods such as the think aloud method can be useful when refining
our research. For instance, these methods may be very valuable to improve the
way we have characterized the abstract actor types and task types based on

http://maps.google.com

508 S.J. Overbeek, P. van Bommel, and H.A. Proper

cognitive characteristics. Jaspers et al. [12] also included a simplified model of
the human cognitive system. Studying that model may further improve the way
we interpret cognitive matchmaking processes.

6 Conclusions and Future Work

This paper describes how actors and tasks can be matched based on cognitive
characteristics. Therefore, the framework for cognitive matchmaking developed
in earlier work is mentioned. Proceeding from this framework the prototype im-
plementation of a cognitive matchmaker system is demonstrated. An information
systems engineering project provided the breeding ground for the case study in
which the system has been evaluated. The ISE project has been concerned with
the development of an ‘Action Reporting Tool’ for an international provider of
banking and insurance services. This tool is a Web application that can gener-
ate risk reports. The suitability matches of the tasks allocated to the actors in
the definition project phase have been determined using the cognitive match-
maker system. It can be concluded that the system can provide support for task
allocation in at least three different ways: Before project initiation (at design
time), during project enactment (at runtime) and after the project has finished
(post-mortem). At design time, the person that needs to allocate tasks to actors
can calculate the suitability matches. Tasks can be allocated to actors before
starting the project based on these results. At runtime, suitability matches can
be recalculated if changes to task allocations are necessary. The system can also
be utilized to evaluate task allocations after every project phase. The calculated
suitability matches can be compared with actual task performance. From a post-
mortem point of view, the suitability matches for every actor / task combination
in the project can be compared to the actual task results. Lessons learned may
help to better decide which actor types are suitable to work with which task
types. In this case, the cognitive matchmaker system is related with ISE. The
system may also be usable in other areas, such as: Multi-agent systems, workflow
management and BPR. Future work is concentrated on improving the theory as
well as the prototype and further evaluation in case studies. More efforts of how
the prototype could prove the usefulness of the framework can be called for.
This may include testing the prototype in real settings with real users. At this
moment, it is only possible to calculate a match based on one actor type and
one task type. However, there are situations imaginable that multiple actors are
working together to fulfill a set of tasks. It might be interesting to determine a
match based on the total amount of actors and the total amount of tasks that
the actors are fulfilling as a group. Besides these additions, the future system
may consider situational elements. This may include the availability of actors as
well as personal preferences and goals. Finally, the notion of human knowledge
can be considered to determine which aspects of human knowledge, its develop-
ment and its synergy in team work can be taken into consideration in the current
version of the framework and the system.

Information Systems Engineering Supported by Cognitive Matchmaking 509

References

1. Staab, S., Studer, R., Schnurr, H., Sure, Y.: Knowledge processes and ontologies.
IEEE Intelligent Systems 16(1), 26–34 (2001)

2. Weir, C., Nebeker, J., Bret, L., Campo, R., Drews, F., LeBar, B.: A cognitive task
analysis of information management strategies in a computerized provider order
entry environment. Journal of the American Medical Informatics Association 14(1),
65–75 (2007)

3. Kako, E.: Thematic role properties of subjects and objects. Cognition 101(1), 1–42
(2006)

4. Shakshuki, E., Prabhu, O., Tomek, I.: FCVW agent framework. Information and
Software Technology 48(6), 385–392 (2006)

5. van der Aalst, W., ter Hofstede, A.: Verification of workflow task structures: A
Petri-net-based approach. Information Systems 25(1), 43–69 (2000)

6. R-Moreno, M., Borrajo, D., Cesta, A., Oddi, A.: Integrating planning and schedul-
ing in workflow domains. Expert Systems with Applications 33(2), 389–406 (2007)

7. Overbeek, S., van Bommel, P., Proper, H., Rijsenbrij, D.: Matching cognitive char-
acteristics of actors and tasks. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part
I. LNCS, vol. 4803, pp. 371–380. Springer, Heidelberg (2007)

8. Overbeek, S., van Bommel, P., Proper, H., Rijsenbrij, D.: Characterizing knowl-
edge intensive tasks indicating cognitive requirements – Scenarios in methods for
specific tasks. In: Ralyté, J., Brinkkemper, S., Henderson-Sellers, B. (eds.) Pro-
ceedings of the IFIP TC8 / WG8.1 Working Conference on Situational Method
Engineering: Fundamentals and Experiences., Geneva, Switzerland, vol. 244, pp.
100–114. Springer, Boston, USA (2007)

9. Sol, H.: Simulation in Information Systems. PhD thesis, University of Groningen,
The Netherlands, EU (1982)

10. Coll, R., Coll, J.: Cognitive match interface design, a base concept for guiding the
development of user friendly computer application packages. Journal of Medical
Systems 13(4), 227–235 (1989)

11. Ruiz, M., Dı́az, M., Soler, F., Pérez, J.: Adaptation in current e-learning systems.
Computer Standards & Interfaces 30(1–2), 62–70 (2008)

12. Jaspers, M., Steen, T., van den Bos, C., Geenen, M.: The think aloud method: A
guide to user interface design. International Journal of Medical Informatics 73(11–
12), 781–795 (2004)

On Modeling and Analyzing Cost Factors
in Information Systems Engineering

Bela Mutschler1,2 and Manfred Reichert2,3

1 Daimler AG, Group Research, P.O. Box 2360, 89013 Ulm, Germany
bela.mutschler@daimler.com

2 Information Systems Group, University of Twente, The Netherlands
m.u.reichert@utwente.nl

3 Institute of Databases and Information Systems, University of Ulm, Germany
manfred.reichert@uni-ulm.de

Abstract. Introducing enterprise information systems (EIS) is usually associated
with high costs. It is therefore crucial to understand those factors that determine or
influence these costs. Though software cost estimation has received considerable
attention during the last decades, it is difficult to apply existing approaches to EIS.
This difficulty particularly stems from the inability of these methods to deal with
the dynamic interactions of the many technological, organizational and project-
driven cost factors which specifically arise in the context of EIS. Picking up this
problem, we introduce the EcoPOST framework to investigate the complex cost
structures of EIS engineering projects through qualitative cost evaluation models.
This paper extends previously described concepts and introduces design rules
and guidelines for cost evaluation models in order to enhance the development of
meaningful and useful EcoPOST cost evaluation models. A case study illustrates
the benefits of our approach. Most important, our EcoPOST framework is an
important tool supporting EIS engineers in gaining a better understanding of the
critical factors determining the costs of EIS engineering projects.

Keywords: Information Systems Engineering, Cost Analysis, Evaluation Mod-
els, Simulation.

1 Introduction

While the benefits of enterprise information systems (EIS) are usually justified by im-
proved process performance [1], there exist no approaches for systematically analyz-
ing related cost factors and their dependencies. Though software cost estimation has
received considerable attention during the last decades [2] and has become an essen-
tial task in information systems engineering, it is difficult to apply existing approaches
to EIS, particularly if the considered EIS shall provide active business process sup-
port. This difficulty stems from the inability of these approaches to cope with the
numerous technological, organizational and project-driven cost factors which have to
be considered in the context of process-aware EIS (and which do only partly exist in
data- or function-centered information systems) [3]. As an example consider the signif-
icant costs for redesigning business processes. Another challenge deals with the many
dependencies existing between different cost factors. Activities for business process

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 510–524, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

On Modeling and Analyzing Cost Factors in Information Systems Engineering 511

redesign, for example, can be influenced by intangible impact factors like available
process knowledge or end user fears. These dependencies, in turn, result in dynamic ef-
fects which influence the overall costs of EIS engineering projects. Existing evaluation
techniques [4] are typically unable to deal with such dynamic effects as they rely on too
static models based upon snapshots of the considered software system.

What is needed is an approach that enables project managers and EIS engineers to
model and investigate the complex interplay between the many cost and impact fac-
tors that arise in the context of EIS. This paper presents the EcoPOST methodology,
a sophisticated and practically validated, model-based methodology to better under-
stand and systematically investigate the complex cost structures of EIS engineering
projects. Specifically, this paper extends our previous work on EcoPOST [5] by intro-
ducing model design rules and modeling guidelines, which enhance the development of
meaningful and useful evaluation models.

Section 2 summarizes the EcoPOST methodology. Section 3 introduces rules for
designing evaluation models and Section 4 describes modeling guidelines. Section 5
summarizes results from one of our case studies in order to illustrate the benefits of
the EcoPOST approach. It further discusses issues related to validation research from a
more general perspective. Section 6 concludes with a summary.

2 The EcoPOST Cost Analysis Methodology

Our EcoPOST methodology was designed to ease the realization of process-aware EIS
in the automotive industry (and was, consequently, also validated and piloted in several
EIS engineering projects in this domain). The EcoPOST methodology comprises seven
steps (cf. Fig. 1). Step 1 concerns the comprehension of an evaluation scenario. This
is crucial for developing problem-specific evaluation models. The following two steps
(Steps 2 and 3) deal with the identification of two different kinds of Cost Factors repre-
senting costs that can be quantified in terms of money (cf. Table 1): Static Cost Factors
(SCFs) and Dynamic Cost Factors (DCFs).

Step 4 deals with the identification of Impact Factors (ImFs), i.e., intangible factors
that influence DCFs and other ImFs. We distinguish between organizational, project-
specific, and technological ImFs. ImFs cause the value of DCFs (and other ImFs) to

Table 1. Cost Factors

Description

SCF Static Cost Factors (SCFs) represent costs whose values do not change during an EIS engineering project (except
for their time value, which is not further considered in the following). Typical examples: software license costs,
hardware costs and costs for external consultants.

DCF Dynamic Cost Factors (DCFs), in turn, represent costs that are determined by activities related to an EIS engineer-
ing project. The (re)design of business processes prior to the introduction of EIS, for example, constitutes such an
activity. As another example consider the performance of interview-based process analysis. These activities cause
measurable efforts which, in turn, vary due to the influence of intangible impact factors. The DCF ”Costs for Busi-
ness Process Redesign” may be influenced, for instance, by an intangible factor ”Willingness of Staff Members
to Support Process (Re)Design Activities”. Obviously, if staff members do not contribute to a (re)design project
by providing needed information (e.g., about process details), any redesign effort will be ineffective and result in
increasing (re)design costs. If staff willingness is additionally varying during the (re)design activity (e.g., due to a
changing communication policy), the DCF will be subject to even more complex effects. In the EcoPOST frame-
work, intangible factors like the one described are represented by impact factors.

512 B. Mutschler and M. Reichert

change, making their evaluation a difficult task to accomplish. As examples consider
factors such as ”End User Fears”, ”Availability of Process Knowledge”, or ”Ability to
(re)design Business Processes”. Also, ImFs can be static or dynamic (cf. Table 2).

Table 2. Impact Factors

Description

Static ImF Static ImFs do not change, i.e., they are assumed to be constant during an EIS engineering project; e.g., when
there is a fixed degree of user fears, process complexity, or work profile change.

Dynamic
ImF

Dynamic ImFs may change during an EIS engineering project, e.g., due to interference with other ImFs.
As examples consider process and domain knowledge which is typically varying during an EIS engineering
project (or a subsidiary activity).

It is important to mention that – unlike SCFs and DCFs – the values of ImFs are not
quantified in monetary terms. Instead, they are ”quantified” by experts1 using qualita-
tive scales describing the degree of an ImF. As known from software cost estimation
models, such as Boehm’s COCOMO [2], the qualitative scales we use comprise differ-
ent ”values” (typically ranging from ”very low” to ”very high”). These values are used
to express the strength of an ImF on a given cost factor (just like in COCOMO).

Generally, dynamic evaluation factors (i.e., DCFs and dynamic ImFs) are difficult to
comprehend. In particular, intangible ImFs (i.e., their appearance and impact in EIS en-
gineering projects) are not easy to follow. When evaluating the costs of EIS engineering
projects, therefore, DCFs and dynamic ImFs constitute a major source of misinterpre-
tation and ambiguity. To better understand and to investigate the dynamic behavior of
DCFs and dynamic ImFs, we introduce the notion of evaluation models as basic pil-
lar of the EcoPOST methodology (Step 5; cf. Section 2.2). These evaluation models
can be simulated (Step 6) to gain insights into the dynamic behavior (i.e., evolution) of
DCFs and dynamic ImFs (Step 7). This is important to effectively control the design
and implementation of EIS as well as the costs of respective projects.

Impact Factors (ImF)

Dynamic Cost Factors (DCF)

Static Cost Factors (SCF)

Steps 2 - 4 Step 5 Step 6

Design of
Evaluation

Models

Step 1 Step 7

Deriving
Conclusions

Simulation of
Evaluation

Models

Evaluation Context

Fig. 1. Main Steps of the EcoPOST Methodology

2.1 Evaluation Models

In EcoPOST, dynamic cost/impact factors are captured and analyzed by evaluation
models which are specified using the System Dynamics [6] notation (cf. Fig. 2). An
evaluation model comprises SCFs, DCFs, and ImFs corresponding to model variables.
Different types of variables exist. State variables can be used to represent dynamic
factors, i.e., to capture changing values of DCFs (e.g., the ”Business Process Redesign

1 The efforts of these experts for making that quantification is not explicitly taken into account
in EcoPOST, though this effort also increases information system development costs.

On Modeling and Analyzing Cost Factors in Information Systems Engineering 513

Costs”; cf. Fig. 2A) and dynamic ImFs (e.g., ”Process Knowledge”). A state variable
is graphically denoted as rectangle (cf. Fig. 2A), and its value at time t is determined
by the accumulated changes of this variable from starting point t0 to present moment t
(t > t0); similar to a bathtub which accumulates – at a defined moment t – the amount
of water poured into it in the past. Typically, state variables are connected to at least
one source or sink which are graphically denoted as cloud-like symbols (except for
state variables connected to other ones) (cf. Fig. 2A). Values of state variables change
through inflows and outflows. Graphically, both flow types are depicted by twin-arrows
which either point to (in the case of an inflow) or out of (in the case of an outflow) the
state variable (cf. Fig. 2A). Picking up again the bathtub image, an inflow is a pipe that
adds water to the bathtub, i.e., inflows increase the value of state variables. An outflow,
by contrast, is a pipe that purges water from the bathtub, i.e., outflows decrease the
value of state variables. The DCF ”Business Process Redesign Costs” shown in Fig.
2A, for example, increases through its inflow (”Cost Increase”) and decreases through
its outflow (”Cost Decrease”). Returning to the bathtub image, we further need ”water
taps” to control the amount of water flowing into the bathtub, and ”drains” to specify the
amount of water flowing out. For this purpose, a rate variable is assigned to each flow
(graphically depicted by a valve; cf. Fig. 2A). In particular, a rate variable controls the
inflow/outflow it is assigned to based on those SCFs, DCFs, and ImFs which influence
it. It can be considered as an interface which is able to merge SCFs, DCFs, and ImFs.

A) State Variables & Flows

Costs

Business
Process

Redesign

Controls
the Inflow

Controls
the Outflow

DCF

Cost
Increase

Cost
Decrease

Auxiliary Variables

Rate Variables

Dynamic Cost Factors Sources and Sinks

Dynamic Impact Factors

Text

Static Cost Factor [Text]

Static Impact Factor (Text)

B) Auxiliary Variables

Cost Increase Cost Decrease

Adjusted
Process Analysis

Costs

-

-

+

Analysis Costs
per Week]+

Water
Tap

Water
Drain

[SCF1]

[SCF2]

(ImFS)

Auxiliary
Variable

+
+

--

Business Process
Redesign Costs

Ability to Redesign
Business

Processes

[Planned

Notation:
Flows

Links [+|-]

Process
Knowledge

Domain
Knowledge

Fig. 2. Evaluation Model Notation and initial Examples

Besides state variables, evaluation models may comprise constants and auxiliary
variables. Constants are used to represent static evaluation factors, i.e., SCFs and static
ImFs. Auxiliary variables, in turn, represent intermediate variables and typically bring
together – like rate variables – cost and impact factors, i.e., they merge SCFs, DCFs,
and ImFs. As an example consider the auxiliary variable ”Adjusted Process Analysis
Costs” in Fig. 2B, which merges the three dynamic ImFs ”Process Knowledge”, ”Do-
main Knowledge”, and ”Ability to Redesign Business Processes” and the SCF ”Planned
Analysis Costs per Week”. Both constants and auxiliary variables are integrated into an
evaluation model with links (not flows), i.e., labeled arrows. A positive link (labeled

514 B. Mutschler and M. Reichert

with ”+”) between x and y (with y as dependent variable) indicates that y will tend in
the same direction if a change occurs in x. A negative link (labeled with ”-”) expresses
that the dependent variable y will tend in the opposite direction if the value of x changes.
Altogether, we define:

Definition 2.1 (Evaluation Model). A graph EM = (V, F, L) is denotes as evaluation
model, if the following holds:

– V := S ∪̇ X ∪̇ R ∪̇ C ∪̇ A is a set of model variables with
• S is a set of state variables,
• X is a set of sources and sinks,
• R is a set of rate variables,
• C is a set of constants,
• A is a set of auxiliary variables,

– F ⊆ ((S × S)∪ (S × X)∪ (X × S)) is a set of edges representing flows,
– L ⊆ ((S × A × Lab)∪ (S × R × Lab)∪ (A×A×Lab)∪ (A ×R×Lab) ∪

(C × A × Lab)∪ (C× R × Lab)) is a set of edges representing links with
Lab := {+,−} being the set of link labels:

• (qi,q j,+) ∈ L with qi ∈ (S ∪̇ A ∪̇ C) and q j ∈ (A ∪̇ R) denotes a positive link,
• (qi,q j,−) ∈ L with qi ∈ (S ∪̇ A ∪̇ C) and q j ∈ (A ∪̇ R) denotes a negative link.

The EcoPOST evaluation models presented so far are already useful for EIS engineers
and project managers. However, the evolution of DCFs and dynamic ImFs is still dif-
ficult to comprehend. Thus, we have added a simulation component to our evaluation
framework for analyzing this evolution (cf. Step 6 in Fig. 1).

2.2 Understanding Model Dynamics through Simulation

To enable simulation of an evaluation model we need to formally specify its behavior by
means of a simulation model. We use mathematical equations for this purpose. Thereby,
the behavior of each model variable is specified by one equation (cf. Fig. 3), which
describes how a variable is changing over time from simulation start.

Fig. 4A shows a simple evaluation model.2 Assume that the evolution of the DCF
”Business Process Redesign Costs” (triggered by dynamic ImF ”End User Fears”) shall
be analyzed. End user fears can lead to emotional resistance of users and, in turn, to
a lack of user support when redesigning business processes (e.g., during an interview-
based process analysis). For model variables, which represent an SCF or static ImF,
the equation specifies a constant value for the model variable; i.e., SCFs and static
ImFs are specified by single numerical values in constant equations. As example con-
sider EQUATION A in Fig. 4B. For model variables representing DCFs, dynamic ImFs,
or rate/auxiliary variables, the corresponding equation describes how the value of the
model variable evolves over time (i.e., during simulation). Thereby, the evolution of
DCFs and dynamic ImFs is characterized by integral equations [7]. This allows us to

2 It is the basic goal of this toy example to illustrate simulation of evaluation models. Generally,
evaluation models are much more complex. Due to lack of space we do not provide a more
extensive example.

On Modeling and Analyzing Cost Factors in Information Systems Engineering 515

Constant
Equations

Integral
Equations User-defined Equations

SCF, Static ImF DCF, Dynamic ImF Rate Variables Auxiliary Variables
Elements of an
Evaluation Model

Elements of a
Simulation Model

Part I Part II Part III Part IV

Fig. 3. Elements of a Simulation Model

capture the accumulation of DCFs and dynamic ImFs from the start of a simulation run
(t0) to its end (t):

Definition 2.2 (Integral Equation). Let EM be an evaluation model (cf. Definition 2.1)
and S be the set of all DCFs and dynamic ImFs defined by EM. An integral equation for
a dynamic factor v ∈ S is defined as follows:

v(t) =
∫ t

t0
[in f low(s)− out f low(s)]ds+ v(t0) where

– t0 denotes the starting time of the simulation run,
– t represents the end time of the simulation run,
– v(t0) represents the value of v at t0,
– in f low(s) represents the value of the inflow at any time s between t0 and t,
– out f low(s) represents the value of the outflow at any time s between t0 and t.

A) Evaluation ModelNotation

Flows

Auxiliary Variables
Rate Variables

Dynamic Cost Factors

Links

Sources and Sinks

Dynamic Impact Factors

[Text]

[+|-]

Static Cost Factor [Text]

Static Impact Factor [Text]
TABLE FUNCTION

EQUATION

Business Process
Redesign Costs

End User
Fears

Fear Growth
Rate

Cost Rate

Impact due to
End User Fears

BPR Costs
per Week

Fear Growth

B) Simulation Model

Equations:
A) BPR Costs per Week[$] = 1000$
B) Cost Rate[$] =
 BPR Costs per Week[$] * Impact due to End User Fears[Dimensionless]
C) Business Process Redesign Costs[$] = Cost Rate[$]
D) Fear Growth = 2[%]
E) Fear Growth Rate[%] = Fear Growth[%]
F) End User Fears[%] = Fear Growth Rate[%]
G) Impact due to End User Fears = LOOKUP(End User Fears/100)

Initial Values:
A) Business Process Redesign Costs[$] = 0$
B) End User Fears[%] = 30%

CONSTANT

CONSTANT
EQUATION

EQUATION
EQUATION

Normalization

+ + +

+

Fig. 4. Dealing with the Impact of End User Fears

As example consider EQUATION C in Fig. 4B which specifies the increase of the DCF
”Business Process Redesign Costs” (based on only one inflow). Note that in Fig. 4B the
equations for the DCF ”Business Process Redesign Costs” and the dynamic ImF ”End
User Fears” are presented in the way they are specified in Vensim [8], the tool we use
in EcoPOST, and not as real integral equations.

Rate and auxiliary variables are both specified in the same way, i.e., as user-defined
functions defined over the variables preceding them in the evaluation model. In other
words, rate as well as auxiliary variables are used to merge static and dynamic cost/im-
pact factors. During simulation, values of rate and auxiliary variables are dynamic, i.e.,
they change along the course of time. Reason is that they are not only influenced by
SCFs and static ImFs, but also by evolving DCFs and dynamic ImFs. The behavior of
rate and auxiliary variables is specified in the same way:

516 B. Mutschler and M. Reichert

Definition 2.3 (User-defined Equation). Let EM be an evaluation model (cf. Def. 2.1)
and X be the set of rate/auxiliary variables defined by EM. An equation for v ∈ X is a
user-defined function f (v1, ...,vn) with v1, ...,vn being the predecessors of v in EM.

As example consider EQUATION B in Fig. 4B. The equation for rate variable ”Cost
Rate” merges the SCF ”BPR Costs per Week” with the auxiliary variable ”Impact due
to End User Fears”. Assuming that activities for business process redesign are sched-
uled for 32 weeks, Fig. 5A shows the values of all dynamic evaluation factors of the
evaluation model over time when performing simulation. Fig. 5B shows the outcome of
the simulation. As can be seen there is a significant negative impact of end user fears
on the costs of business process redesign.

A) Computing a Simulation Run

TIME Change ($) BPR Costs ($)

00 - 0
01 1000 1000
02 1010 2010
03 1020 3030
04 1030 4060
05 1040 5100
06 1050 6150
...
30 1840 38300
31 1900 40200
32 2020 42220

Business Process Redesign Costs

60,000

45,000

30,000

15,000

0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Time (Weeks)

Business Process Redesign Costs : without User Fears

Cost Rate ($)

1000
1010
1020
1030
1040
1050
1060

...
1900
2020
2140

Change (%)

-
2
2
2
2
2
2
...
2
2
2

User Fears (%)

30
32
34
36
38
40
42
...
90
92
94

B) Graphical Diagramm illustrating Simulation Outcome

Business Process Redesign Costs : with User Fears

Costs

Fig. 5. Dealing with the Impact of End User Fears

2.3 Sensitivity Analysis and Reuse of Evaluation Information

Generally, results of a simulation enable EIS engineers to gain insights into causal
dependencies between organizational, technological, and project-specific factors. This
helps them to better understand resulting effects and to develop a concrete ”feeling” for
the dynamic implications of EcoPOST evaluation models. To investigate how a given
evaluation model ”works” and what might change its behavior, we simulate the dynamic
implications described by it – a task which is typically too complex for the human mind.
In particular, we conduct ”behavioral experiments” based on series of simulation runs.
During these simulation runs selected simulation parameters are manipulated in a con-
trolled manner to systematically investigate the effects of these manipulations, i.e., to
investigate how the output of a simulation will vary if its initial condition is changed.
This procedure is also known as sensitivity analysis. Simulation outcomes can be fur-
ther analyzed using graphical charts.

Designing evaluation models can be a complicated and time-consuming task. Evalu-
ation models can become complex due to the high number of potential cost and impact
factors as well as the many causal dependencies that exist between them. Taking the
approach described so far (cf. Section 2), each evaluation and simulation model has to
be designed from scratch. Besides the additional efforts, this results in an exlusion of
existing modeling experience, and prevents the reuse of both evaluation and simula-
tion models. In response to this problem, in [5,9] we have introduced a set of reusable
evaluation patterns (EP). EPs do not only ease the design and simulation of evaluation

On Modeling and Analyzing Cost Factors in Information Systems Engineering 517

models, but also enable the reuse of evaluation information. This is crucial to foster the
practical applicability of the EcoPOST framework.

3 Model Design Rules

Overall benefit of EcoPOST evaluation models depends on their quality. The latter,
in turn, is determined by the syntactical as well as the semantical correctness of the
evaluation model. Maintaining correctness of an evaluation model, however, can be a
difficult task to accomplish. This section picks up this problem.

3.1 Modeling Constraints for Evaluation Models

Rules for the correct use of flows and links are shown in Fig. 6A and Fig. 6B. By
contrast, Fig. 7A – Fig. 7F show examples of incorrect models.

B) Use of Links

SCF
DCF
ImFD

ImFS

A

A R

Dependent Variable

SCF DCF ImFD ImFS X

x xxx x
x xx x
x xxx x
x xxx x

xxx x x
correct link

incorrect link

A) Use of Flows

DCF
ImFD

X

SCF DCF

In
de

pe
nd

en
t

Va
ria

bl
e*

Dependent Variable

ImFD ImFS X

xxx x
xxx

x xxx

xcorrect flow incorrect flow

A R

x x
x

x

* SCF, ImFS, A and R do not have to be considered here. Flows are only con-
nected to dynamic evaluation factors (i.e., DCF and ImFD) and Sources/Sinks.

ImFD = Dynamic ImF ImFS = Static ImF

ImFD = Dynamic ImF

ImFS = Static ImF

*

*

* such links are only allowed if the dependent SCF and ImFS are constants which consist
themselves of subsidiary constants.

Fig. 6. Using Flows and Links in our Evaluation Models

Dynamic evaluation factors, for example, may be only influenced by flows and not by
links as shown in Fig. 7A. Likewise, flows must be not connected to auxiliary variables
or constants (cf. Fig. 7B). Links pointing from DCFs (or auxiliary variables) to SCFs
or static ImFs (cf. Fig. 7C and Fig. 7D) are also not valid as SCFs as well as static ImFs
have constant values which cannot be influenced. Finally, flows and links connecting
DCFs with dynamic ImFs (and vice versa) are also not considered as correct (cf. Fig.
7E and Fig. 7F).

Several other constraints have to be taken into account as well when designing evalu-
ation models. In the following let EM = (V, F, L) be an evaluation model (cf. Definition
2.1). Then:

Design Rule 1 (Binary Relations). Every model variable must be used in at least one
binary relation. Otherwise, it is not part of the analyzed evaluation context and can be
omitted:

∀v ∈ (S ∪̇ X) : ∃q ∈ (S ∪̇ X)∧ ((v,q) ∈ F ∨ (v,q) ∈ F) (1)

∀v ∈ (A ∪̇ C) : ∃q ∈ (A ∪̇ R)∧∃ (q,v, [+|−]) ∈ L (2)

518 B. Mutschler and M. Reichert

A) Incorrect LinkNotation

Flows

Auxiliary Variables

Rate Variables

Dynamic Cost Factors

Links

Sources and Sinks

Dynamic Impact Factors

Text

[+|-]

Static Cost Factor [Text]

Static Impact Factor (Text)

B) Incorrect Flow C) Incorrect Link

D) Incorrect Flow E) Incorrect Flow F) Incorrect Link

DCF

[SCF]
+ Auxiliary

Variable

(ImFS)

ImFD

(ImFS)
+ ImFD DCF

ImFDDCF

ImFD DCF

ImFDDCF +

+

DCF

[SCF]
+

Caption: ImFS - Static Impact Factor ImFD - Dynamic Impact Factor

Fig. 7. Examples of Incorrect Modeling

Design Rule 2 (Sources and Sinks). Every state variable must be connected to at least
one source, sink or other state variable. Otherwise it cannot change its value and there-
fore would be useless:

∀v ∈ S : ∃q ∈ (S ∪̇ X)∧ ((v,q) ∈ F ∨ (q,v) ∈ F) (3)

Design Rule 3 (Rate Variables). Every rate variable is influenced by at least one link;
otherwise the variable cannot change and therefore is useless:

∀v ∈ R : ∃q ∈ (S ∪̇ A ∪̇ C)∧∃ (q,v, [+|−]) ∈ L (4)

Design Rule 4 (Feedback Loops). There are no cycles consisting only of auxiliary
variables, i.e., cyclic feedback loops must at least contain one state variable (cycles of
auxiliary variables cannot be evaluated if an evaluation model is simulated):

¬∃ < q0,q1, ...,qr >∈ Ar+1 with (qi,qi+1, [+|−]) ∈ L f or

i = 0, . . . ,r − 1 ∧q0 = qr ∧ qk
= ql f or k, l = 1, . . . ,r;k
= l (5)

Design Rule 5 (Auxiliary Variables). An auxiliary variable has to be influenced by at
least two other static or dynamic evaluation factors or auxiliary variables (except for
auxiliary variables used to represent table functions [9]):

∀v ∈ A : ∃p,q ∈ (A ∪̇ S ∪̇ C)∧ ((q,v, [+|−]) ∈ L∧ (p,v, [+|−]) ∈ L) (6)

These modeling constraints provide basic rules for EcoPOST users to construct syntac-
tically correct evaluation models.

3.2 Semantical Correctness of Evaluation Models

While syntactical model correctness can be ensured, this is not always possible for the
semantical correctness of evaluation models. Yet, we can provide additional model de-
sign rules increasing the meaningfulness of our evaluation models.

On Modeling and Analyzing Cost Factors in Information Systems Engineering 519

Design Rule 6 (Transitive Dependencies). Transitive link dependencies (i.e., indirect
effects described by chains of links) are restricted. As example consider Fig. 8. Fig.
8A reflects the assumption that increasing end user fears result in increasing emotional
resistance. This, in turn, leads to increasing business process costs. Consequently, the
modeled transitive dependency between ”End User Fears” and ”Business Process Re-
design Costs” is not correct, as increasing end user fears do not result in decreasing
business process (re)design costs. The correct transitive dependency is shown in Fig.
8B. Fig. 8C illustrates the assumption that increasing process knowledge results in an
increasing ability to (re)design business processes. An increasing ability to (re)design
business processes, in turn, leads to decreasing process definition costs. The modeled
transitive dependency between ”Process Knowledge” and ”Process Definition Costs”,
however, is not correct, as increasing process knowledge does not result in increasing
process definition costs (assuming that the first 2 links are correct). The correct transi-
tive dependency is shown in Fig. 8D.

A) Incorrect Transitive Dependency

C) Incorrect Transitive Dependency

B) Correct Transitive Dependency

(Process
Knowledge)

(Ability to redesign
Business Processes)

+
[Process

Definition Costs]

-

+

D) Correct Transitive Dependency

(Process
Knowledge)

(Ability to redesign
Business Processes)

+
[Process

Definition Costs]

-

-

(End User
Fears)

(Emotional
Resistance)

+
[Business Process
Redesign Costs]

+

-

(End User
Fears)

(Emotional
Resistance)

+
(Management

Pressure)

+

+

E) Incorrect Transitive Dependency F) Correct Transitive Dependency

(Communication) (End User
Fears)

-
(Ability to redesign

Business Processes)

-

+
(Communication) (End User

Fears)

-
(Ability to redesign

Business Processes)

-

-

Fig. 8. Transitive Dependencies (Simplified Evaluation Models)

Finally, Fig. 8E deals with the impact of communication (e.g., the goals of an EIS
project) on the ability to redesign business processes. Yet, the transitive dependency
shown in Fig. 8E is not correct. The correct one is shown in Fig. 8F.

Altogether, two causal relations (”+” and ”-”) are used in the context of our evalua-
tion models. Correct transitive dependencies can be described based on a multiplication
operator. More precisely, transitive dependencies have to comply with the following
three multiplication laws for transitive dependencies (for any x,y ∈ {+,−}):

+∗y = y (7)

−∗− = + (8)

x ∗ y = y ∗ x (9)

The evaluation models shown in Fig. 8A and Fig. 8C violate Law 1, whereas the model
shown in Fig. 8E violates the second one. Law 3 states that the ”*” is commutative.

Design Rule 7 (Dual Links I). A constant cannot be connected to the same auxiliary
variable with both a positive and negative link:

520 B. Mutschler and M. Reichert

∀v ∈ C,∀q ∈ A : ¬∃ l1, l2 ∈ L withl1 = (v,q,−)∧ l2 = (v,q,+) (10)

Design Rule 8 (Dual Links II). A state variable cannot be connected to the same aux-
iliary variable with both a positive and negative link:

∀v ∈ S,∀q ∈ A : ¬∃ l1, l2 ∈ L withl1 = (v,q,−)∧ l2 = (v,q,+) (11)

Design Rule 9 (Dual Links III). An auxiliary variable cannot be connected to another
auxiliary variable with both a positive and negative link:

∀v ∈ A,∀q ∈ A : ¬∃ l1, l2 ∈ L withl1 = (v,q,−)∧ l2 = (v,q,+) (12)

Finally, there exist two additional simple constraints:

Design Rule 10 (Representing Cost Factors). A cost factor cannot be represented both
as SCF and DCF in one evaluation model.

Design Rule 11 (Representing Impact Factors). An impact factor cannot be repre-
sented both as static and dynamic ImF in one evaluation model.

Without providing model design rules, incorrect evaluation models can be quickly mod-
eled. This, in turn, does not only aggravate the derivation of plausible evaluations, but
also hampers the use of the modeling and simulation tools [5] which have been devel-
oped as part of the EcoPOST framework.

4 Modeling Guidelines

To further facilitate the use of our methodology, governing guidelines and best practices
are provided. This section summarizes two categories of EcoPOST governing guide-
lines: (1) guidelines for evaluation models and (2) guidelines for simulation models.

In general, EcoPOST evaluation models can become large, e.g., due to a potentially
high number of evaluation factors to be considered or due to the large number of causal
dependencies existing between them. To cope with this complexity, we introduce guide-
lines for designing evaluation models (cf. Table 3). Their derivation is based on expe-
riences we gathered during the development of our approach, its initial use in practice,
and our study of general System Dynamics (SD) guidelines [10]. As example consider
guideline EM-1 from Table 3. The distinction between SCFs and DCFs is a fundamen-
tal principle in the EcoPOST framework. Yet, it can be difficult for the user to decide
whether a cost factor shall be considered as static or dynamic. As example take an evalu-
ation scenario which deals with the introduction of a new EIS ”CreditLoan” to support
the granting of loans at a bank. Based on the new EIS, the entire loan offer process
shall be supported. For this purpose, the EIS has to leverage internal (i.e., within the
bank) and external (e.g., a dealer) trading partners as well as other legacy applications
for customer information and credit ratings. Among other things, this necessitates the
integration of existing legacy applications. In case this integration is done by external
suppliers, resulting costs can be represented as SCFs as they can be clearly quantified

On Modeling and Analyzing Cost Factors in Information Systems Engineering 521

Table 3. Guidelines for Designing Evaluation Models

GL Description

EM-1 Carefully distinguish between SCFs and DCFs.
EM-2 If it is unclear how to represent a given cost factor represent it as SCF.
EM-3 Name feedback loops.
EM-4 Use meaningful names (in a consistent notation) for cost and impact factors.
EM-5 Ensure that all causal links in an evaluation model have unambiguous polarities.
EM-6 Choose an appropriate level of detail when designing evaluation models.
EM-7 Do not put all feedback loops into one large evaluation model.
EM-8 Focus on interaction rather than on isolated events when designing evaluation models.
EM-9 An evaluation model does not contain feedback loops comprising only auxiliary variables.
EM-10 Perform empirical and experimental research to generate needed data.

based on a contract or service agreement. If integration is done in-house, however, inte-
gration costs should be represented as DCFs as costs might be influenced by additional
ImFs in this case. Other guidelines are depicted in Table 3.

To simulate EcoPOST evaluation models constitutes another complex task. The
guidelines from Table 4 are useful to deal with it. Guideline SM-7, for example, claims
to assess the usefulness of an evaluation model and related simulation results always
in comparison with mental or descriptive models needed or used otherwise. In our ex-
perience, there often exists controversy on the question whether an evaluation model
meets reality. However, such controversies miss the first purpose of a model, namely to
provide insights that can be easily communicated.

Table 4. Guidelines for Developing Simulation Models

GL Description

SM-1 Ensure that all equations of a simulation model are dimensionally consistent.
SM-2 Do not use embedded constants in equations.
SM-3 Choose appropriately small time steps for simulation.
SM-4 All dynamic evaluation factors in a simulation model must have initial values.
SM-5 Use appropriate initial values for model variables.
SM-6 Initial values for rate variables need not be given.
SM-7 The validity of evaluation models and simulation outcomes is a relative matter.

The sketched governing guidelines and best practices represent a basic set of clues
and recommendations for users of the EcoPOST framework. They support the modeler
in designing evaluation models, in building related simulation models, and in handling
dynamic evaluation factors. Yet, it is important to mention that the consideration of
these guidelines does not automatically result in better evaluation and simulation mod-
els or in the derivation of more meaningful evaluation results. Notwithstanding, taking
the guidelines increases the probability of developing meaningful models.

5 Case Study

In previous work, we already showed how experimental [?] and empirical research
[?,13,14,15] contributes to the derivation of good quality evaluation models. This sec-
tion summarizes results from an additonal case study, this time focusing on the overall
applicability of the EcoPOST framework. We also discuss model validation from a more

522 B. Mutschler and M. Reichert

general viewpoint. Due to space limitations we cannot decsribe the complete case study
in detail (for details see [9]).

5.1 Research Design

We apply the EcoPOST framework to a complex EIS engineering project from the
automotive domain in which we participated. We investigate cost overruns observed
during the introduction of a large information system for supporting the development
of electrical and electronic (E/E) systems (e.g., a multimedia unit in the car). Based
on real project data, interviews with project members (e.g., requirements engineers,
software architects, software developers), online surveys among end users, and practical
experiences gathered in the respective EIS engineering project, we develop a set of
EcoPOST evaluation models and analyze these models using simulation.

An initial business case for the considered EIS engineering project is developed prior
to project start in order to convince senior management to fund the project. This busi-
ness case is based on data about similar projects provided by competitors (evaluation
by analogy) as well as on rough estimates on planned costs and assumed benefits of
the project. The business case comprises six main cost categories: (1) project manage-
ment, (2) process management, (3) IT system realization, (4) specification and test, (5)
roll-out and migration, and (6) implementation of interfaces.

In a first project review (i.e., measurement of results), it turns out that originally
planned project costs are not realistic, i.e., cost overruns are observed – particularly
concerning cost categories (2) and (3). In our case study, we analyze cost overruns in
three cost categories in detail using the EcoPOST methodology (cf. Table 5).

To be able to build evaluation and simulation models for the three analyzed cost
categories, we need to collect data. This data is based on four information sources (cf.
Table 6), which allow us to identify relevant cost and impact factors, i.e., evaluation
factors that need to be included in the evaluation models to be developed. Likewise, the
information sources also enable us to spot important causal dependencies between cost
and impact factors and to derive evaluation models.

Table 5. Analyzed Cost Categories

Description

1 Process Management Costs: This category deals with costs related to the (re)design of the business processes to be
supported. This includes both the definition of new and the redesign of existing processes. As example of a process to
be newly designed consider an E/E data provision process to obtain needed product data. As example of an existing
process to be redesigned consider the basic E/E release management process. Among other things, process management
costs include costs for performing interview-based process analysis and costs for developing process models.

2 IT System Realization Costs: This category deals with costs for implementing the new EIS on top of process manage-
ment technology. In our case study, we focus on the analysis of costs related to the use of the process management
system, e.g., costs for specifying and implementing the business functions and workflows to be supported as well as
costs for identifying potential user roles and implementing respective access control mechanisms.

3 III. Online Surveys among End Users: We conduct two online surveys among two user groups of the new EIS (alto-
gether 80 survey participants). The questionnaires are distributed via a web-based delivery platform. They slightly vary
in order to cope with the different work profiles of both user groups. Goal of the survey is to confirm the significance
of selected ImFs like ”End User Fears” and ”Emotional Resistance of End Users”.

IV Specification and Test Costs: This cost category sums up costs for specifying the functionality of the EIS as well as
costs for testing the coverage of requirements. This includes costs for eliciting and documenting requirements as well
as costs for performing tests on whether requirements are met by the EIS.

On Modeling and Analyzing Cost Factors in Information Systems Engineering 523

Table 6. Data Collection

Description

I Project Data: A first data source is available project data; e.g., estimates about planned costs from the initial business
case. Note that we did not participate in the generation of this business case.

II Interviews: We interview 10 project members (2 software architects, 4 software developers, 2 usability engineers, and
2 consultants participating in the project). Our interviews are based on a predefined, semi-structured protocol. Each
interview lasts about 1 hour and is accomplished on a one-to-one basis. Goal of the interviews is to collect data about
causal dependencies between cost and impact factors in each analyzed cost category.

III Online Surveys among End Users: We conduct two online surveys among two user groups of the new EIS system
(altogether 80 survey participants). The questionnaires are distributed via a web-based delivery platform. They slightly
vary in order to cope with the different work profiles of both user groups. Goal of the survey is to confirm the signifi-
cance of selected ImFs like ”End User Fears” and ”Emotional Resistance of End Users”.

IV Practical Experiences: Finally, our evaluation and simulation models also build upon practical experiences we gath-
ered when participating in the investigated EIS engineering project. We have worked in this project as requirement
engineers for more than one year and have gained deep insights during this time. Besides the conducted interviews,
these experiences are the major source of information when designing our evaluation models.

5.2 Lessons Learned

Based on the derived evaluation models and simulation outcomes, we have been able to
show that costs as estimated in the initial business case are not realistic. The simulated
costs for each analyzed cost category exceed the originally estimated ones. Moreover,
our evaluation models provide valuable insights into the reasons for the occurred cost
overruns, particularly into causal dependencies and resulting effects on the costs of the
analyzed EIS engineering project.

Table 7. Lessons Learned

LL Description

LL-1 Our case study confirms that the EcoPOST framework enables EIS engineers to gain valuable insights into causal
dependencies and resulting cost effects in EIS engineering projects.

LL-2 EcoPOST evaluation models are useful for domain experts and can support IT managers and policy makers in
understanding an EIS engineering project and decision-making.

LL-3 EIS engineering projects are complex socio-technical feedback systems which are characterized by a strong nexus
of organizational, technological, and project-specific parts. Hence, all evaluation models include feedback loops.

LL-4 Our case study confirms that evaluation models can become complex due to the large number of potential SCFs,
DCFs and ImFs as well as the many causal dependencies existing between them. Governing guidelines (cf. Section
4) help to avoid too complex evaluation models.

LL-5 Though our simulation models have been build upon data derived from four different data sources, it has turned out
that it is inevitable to rely on hypotheses to build simulation models.

Regarding the overall goal of the case study, i.e., the investigation of the practical
applicability of the EcoPOST framework and its underlying evaluation concepts, our
experiences confirm the expected benefits. More specifically, we can summarize our
experiences by means of five lessons learned (cf. Table 7).

6 Summary

This paper summarizes the EcoPOST cost analysis methodology, a practically
approved, model-based methodology to better understand and systematically investi-
gate the complex cost structures of EIS engineering projects. We sketch our qualitative

524 B. Mutschler and M. Reichert

EcoPOST methodology, introduce model design rules and describes modeling guide-
lines. We also summarize a case study illustrating the benefits of our approach.

Currently, our methodology is used in various information system engineering pro-
jects, mainly in the automotive domain. In future, we want to further validate our ap-
proach and aim at increasing the number of EcoPOST evaluation patterns [9].

References

1. Reijers, H.A., van der Aalst, W.M.P.: The Effectiveness of Workflow Management Systems
- Predictions and Lessons Learned. Int’l. J. of Inf. Mgmt. 25(5), 457–471 (2005)

2. Boehm, B., Abts, C., Brown, A.W., Chulani, S., Clark, B.K., Horowitz, E., Madachy, R.,
Reifer, D., Steece, B.: Software Cost Estimation with Cocomo 2. Prentice-Hall, Englewood
Cliffs (2000)

3. Mutschler, B., Reichert, M., Bumiller, J.: Designing an Economic-driven Evaluation Frame-
work for Process-oriented Software Technologies. In: Proc. 28th ICSE, pp. 885–888 (2006)

4. Mutschler, B., Zarvic, N., Reichert, M.: A Survey on Economic-driven Evaluations of Infor-
mation Technology. Technical Report, TR-CTIT-07, University of Twente (2007)

5. Mutschler, B., Reichert, M., Rinderle, S.: Analyzing the Dynamic Cost Factors of Process-
aware Information Systems: A Model-based Approach. In: 19th CAiSE, pp. 589–603 (2007)

6. Richardson, G.P., Pugh, A.L.: System Dynamics - Modeling with DYNAMO (1981)
7. Forrester, J.W.: Industrial Dynamics, Industrial Dynamics. Productivity Press (1961)
8. Ventana Systems, Inc.: Vensim (2006), http://www.vensim.com/
9. Mutschler, B.: Analyzing Causal Dependencies on Process-aware Information Systems from

a Cost Perspective. PhD Thesis, University of Twente (2008)
10. Sterman, J.D.: Business Dynamics. McGraw-Hill, New York (2000)
11. Mutschler, B., Weber, B., Reichert, M.: Workflow Management versus Case Handling: Re-

sults from a Controlled Software Experiment. In: Proc. ACM SAC, Special Track on Coor-
dination Models, Languages and Architectures, pp. 82–89 (2008)

12. Mutschler, B., Reichert, M., Bumiller, J.: Unleashing the Effectiveness of Process-Oriented
Information Systems: Problem Analysis, Critical Success Factors, and Implications. IEEE
Transactions on Systems, Man, and Cybernetics—Part C: Applications and Reviews 38(3),
280–291 (2008)

13. Mutschler, B., Rijkpema, M., Reichert, M.: Investigating Implemented Process Design: A
Case Study on the Impact of Process-aware Information Systems on Core Job Dimensions.
In: Proc. 8th Int’l. BPMDS Workshop, pp. 379–384 (2007)

14. Mutschler, B., Reichert, M.: A Survey on Evaluation Factors for Business Process Manage-
ment Technology. Technical Report, TR-CTIT-06-63, University of Twente (2006)

15. Mutschler, B., Reichert, M., Bumiller, J.: Why Process-Orientation is Scarce: An Empirical
Study of Process-oriented Information Systems in the Automotive Industry. In: Proc. 10th
IEEE EDOC, pp. 433–438 (2006)

http://www.vensim.com/

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 525–540, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Computer-Aided Method Engineering: An Analysis of
Existing Environments

Ali Niknafs and Raman Ramsin

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
niknafs@ce.sharif.edu, ramsin@sharif.edu

Abstract. Analogous to Computer-Aided Software Engineering (CASE), which
aims to facilitate Software Engineering through specialized tools, Computer-
Aided Method Engineering (CAME) strives to support a wide range of activities
carried out by method engineers. Although there is consensus on the importance
of tool support in method engineering, existing CAME environments are incom-
plete prototypes, each covering just a few steps of the method engineering proc-
ess. This paper summarizes the history and the state of the practice in CAME
technology, and provides criteria-based critique on existing CAME environ-
ments, thus highlighting their strengths and weaknesses.

Keywords: Software Development Methodologies, Method Engineering, Com-
puter-Aided Method Engineering, Criteria-Based Analysis.

1 Introduction

“If it says one size fits all, it doesn’t fit anyone”: Although it is safe to assume that
every methodology fits at least one project situation, this variant of the Murphy’s Law
stresses the fact that there is no general-purpose methodology applicable to all differ-
ent situations. This motivates the development of project-specific methodologies,
using an approach known as Situational Method Engineering (SME) [1], a complex
and error-prone process that cannot be properly performed without automated sup-
port. The automated support required is provided by Computer-Aided Method Engi-
neering (CAME) environments [1, 2, 3, 4, 5, 6]. A CAME environment is composed
of a set of correlated tools aiming to facilitate, in its ideal form, the entire SME proc-
ess. CAME technology dates back to the early days of method engineering, when
several academic prototypes were first introduced.

A method is composed of two parts: The product part which captures the product-
related knowledge, and the process part encompassing the activity-related aspects of
the method. Due to this division, two types of method fragments can be defined:
Product fragments are artifacts such as models, diagrams, and documents, whereas
activities, stages, and tasks are considered Process fragments. To enable computer-
ized support for SME, method fragments need to be stored in a repository called the
Method Base. They thus need to be described in a formal way. Several method repre-
sentation languages have been proposed for this purpose, which are either textual or
graphical, or both. Graphical languages are called meta-modeling languages, e.g.
GOPPRR in MetaEdit+ [7]. Object Z [8] is a textual language, whereas the Method

526 A. Niknafs and R. Ramsin

Engineering Language (MEL) [9] is both textual and graphical. Meta-modeling lan-
guages are more popular than textual ones. This popularity is mainly because they are
easier to use, learn, and implement.

As shown in Fig. 1, CAME environments are made up of two parts: The CAME
part provides facilities for method engineering, whereas the CASE part offers means
for the generation of CASE tools and process support environments. The set of
Method Engineering Tools and the Method Base form the main elements of the
CAME part. The Method Engineering Toolset offers tools for facilitating the work of
method engineers, e.g. for extracting components of existing methods and storing
them in the Method Base. The Method Base upon which a CAME environment is
built is the kernel of the CAME environment. The method obtained from the CAME
part will be fed as input to the CASE part. The CASE Generator gets the product part
of methods and generates the project specific CASE tool. Process-centered Software
Engineering Environments (PSEEs) are used for generating process support environ-
ments based on the process part of methods.

Method Engineering
Tools

Method
Engineer

CASE
Generator

Project-specific Method Application
Engineer

PSEE

CASE Tool

Process
Support

Environment

Existing
Methods

Uses

Method Base

RetrievesStores

Product Model

Process ModelMethod
Requirements

CAME Part CASE Part

Generates

Generates

Guides

Uses

Feedback

GeneratesAnalyzes

Extracts

Fig. 1. General architecture of CAME environments

In [10], three distinct approaches to SME are proposed. The assembly-based
approach is the most common and consists of three steps: specifying method require-
ments, selecting method fragments, and assembling them into a method. Extension-
based SME aims at adapting and extending an existing method with new features;
whereas in the paradigm-based approach a new method is developed by instantiating,
abstracting or adapting an existing meta-model. As we will see in the following sec-
tions, almost all the existing CAME environments support the assembly-based ap-
proach, and other approaches are almost completely overlooked.

CAME environments can be classified as product-oriented and process-oriented,
depending on the way they facilitate the enactment of the method engineering proc-
ess. Those that focus on modeling the product-related issues of methods, and provide
less support for the method’s process model and its enactment, are classified as prod-
uct-oriented CAME environments. Process-oriented CAME environments deal with
the process-related issues of methods and support the enactment of the process model.

 Computer-Aided Method Engineering: An Analysis of Existing Environments 527

Most of the existing CAME environments fit into the first class, due to their emphasis
on modeling the product part of methods.

Coverage of the method engineering process is one of the major shortcomings of
existing CAME environments. Several method engineering processes have been pro-
posed in the literature [10, 11, 12, 13], yet they can all be considered as consisting of
the following generic phases:

1. Method Requirements Analysis (MRA): focuses on the identification of important
features of the method under construction. Method requirements are those features
that are expected to be present in an Information Systems Development (ISD)
method, such as traceability to requirements or support for umbrella activities [14].
In the MRA phase, the method requirements should be defined in a formal way,
and should therefore precisely describe the features that the desired method needs
to offer.

2. Method Design (MD): focuses on determining a blueprint for the method, based on
the requirements defined in the previous phase.

3. Method Implementation (MI): focuses on selecting suitable method fragments and
assembling them, instantiating an existing meta-model or process pattern, or modi-
fying or extending an existing method. The result of this phase is a set of CASE
tools providing means to support the method’s product model, and process support
environments to guide the application engineer during the ISD project.

4. Method Test (MT): focuses on the verification and validation of the newly devel-
oped method. The results of the MRA phase are fed as input to this phase. Testing
a newly developed ISD method is similar to testing any other type of system: de-
velop test cases (in this case, sample systems), perform verification and validation,
and correct the defects detected. Testing the resulting ISD method is a weak point
of existing CAME environments: CAME environments do not offer adequate
means for determining whether a newly developed method realizes the predefined
method requirements or not.

The aim of this paper is to present a brief overview of past research conducted on
CAME environments and the state of the practice as reported and documented by
researchers, identifying the shortcomings and thereby offering suggestions for future
research. The remainder of the paper is structured as follows: in section 2, several
existing CAME environments will be briefly described; these will be analyzed in
section 3, based on analysis criteria adapted from the attributes presented in the
ISO/IEC 9126 quality model; section 4 contains the conclusions, and outlines our
plans for furthering this research.

2 CAME Environments

Several CAME environments have been proposed, yet even though the achievements
of these environments have been remarkable, none of them provide a comprehensive
set of means for enacting the method engineering process. In this section, we provide
concise descriptions for several existing CAME environments, limiting our review to
those environments for which adequate documentation is available.

528 A. Niknafs and R. Ramsin

All the environments discussed come from research communities, with very little
support from the industry. This is the reason why most of them do not have a long
history of usage, even though they enjoy extensive documentation and many years of
investigation. There exist tools and environments, such as Rumi [15], that because of
little or no available documentation, are very hard to assess and have therefore not
been included in this research.

2.1 MERET

The Methodology Representation Tool (MERET) is a forerunner of present-day
CAME environments, and focuses on method engineering in a product-oriented fash-
ion, dealing with the adaptation and customization of existing methods. MERET pre-
sents a comprehensive methodology representation model [16] used for the specifica-
tion of methods. This representation model uses a semantic data-model called ASDM
[16] for representing method knowledge. ASDM provides a powerful means for mod-
eling objects and their interrelationships. The root concept used in the methodology
representation model is the so-called MERET object, which provides the attributes
common to all other objects (e.g. name). A MERET object can be a methodology
object or a guideline object: the former consists of all the objects needed for method
specification, whereas the latter describes the rules, constraints and experiences relat-
ing to the former. Rules are represented in a formal way by means of Horn clauses.
Methodology objects are partitioned into Methods and Techniques, where a method
consists of techniques used to develop products. The process model is described by
means of actors, milestones, processes and deliverables. A process can be either a
phase or an activity. A technique consists of several resources, which are non-human
requirements such as any CASE tool feature, and representation types, which define
the representation of deliverables (e.g. text or a special diagram such as a DFD).
MERET provides means for automatic application of consistency checks on the
method specification, and the integration of different methods, and the customization
of the method produced to specific projects.

2.2 MethodBase

MethodBase is one of the first academic CAME prototypes introduced. The aim of
this environment is to facilitate method customization, rather than assembly-based
SME. MethodBase assists the method engineer in the selection of a method that best
fits the project at hand [1].

The MethodBase system’s database consists of complete methods. Therefore,
methods can be selected and be customized to fit a project situation. Its data model is
divided into product and process parts. The product part consists of the concepts
State, Event, Data, Entity, and Association, whilst the concepts Activity and Activity-
relationship, constitute the process part. By means of the process part, the method
engineer can define guidelines to support the enactment of the method process model.

2.3 MetaEdit+

MetaEdit+ is the result of the MetaPHOR project initiated in 1990, and was originally
developed as a metaCASE environment. A commercial version of MetaEdit+ has also

 Computer-Aided Method Engineering: An Analysis of Existing Environments 529

been released. MetaEdit+ uses techniques similar to those used in assembly-based
method engineering. It uses the GOPPRR [7] conceptual data model as its method
specification language, which is an evolutionary extension of the OPRR and GOPRR
models [17]. The basic constructs of the GOPPRR model are Graph, Object, Port,
Property, Relationship, and Role. Graph is the top-level structure of the meta-model,
which is an aggregate concept, composed of objects and their relationships. Object
types are the design objects that typically appear as shapes in diagrams. Examples of
objects are Class in Class Diagrams and Entity in Entity Relationship Diagrams. As-
sociations between objects are regarded as their relationships. Each object has a role
in the relationships in which it participates. Ports allow additional semantics or con-
straints on how objects can be connected. Ports can be used as parts of objects, to
which roles can be attached. Properties are the characterizing attributes attached to
each of the types. MetaEdit+ incorporates a specialized tool for creating and maintain-
ing each of these basic types.

The OPRR meta-modeling language and its extensions – GOPRR and GOPPRR –
only deal with the product aspects of methods. However, a process meta-modeling
language called GOPRR-p [18, 19] has also been proposed as an extension to
GOPRR; this language provides concepts and integration rules for defining different
Process Modeling Languages (PML).

MetaEdit+ consists of several tool families, among which are Method Management
Tools [17], aiming at providing CAME functionalities. This tool family consists of the
following main parts:

• The Method Base: consists of method fragments, symbols needed for representing
object types, and generic reports used by the report generator tool to deliver several
reports on methods.

• The Method Assembly System: consists of tools needed for method assembly, such
as Meta-model Editors, which provide various tools for specifying the GOPPRR
constructs and their connections. The resulting method will be checked for incom-
pleteness and inconsistency by means of the Consistency Checking System. The
Symbol Editor is a drawing tool used for specifying symbols for each object type.
A number of reports on the newly developed method can be generated using the
report generator tool included in the Metrics & Statistics System. Metrics reports
are used for analyzing the properties of methods (e.g. the number of objects
therein).

• The Environment Generation System: is the CASE part of MetaEdit+ offering
several generators for delivering a CASE tool, an online help, and a number of re-
ports on the models.

2.4 Decamerone

Decamerone extends the Maestro II metaCASE environment with CAME capabilities,
taking advantage of the features already present in Maestro II. Decamerone uses the
Object Management System (OMS) [1, 21], which is the online object-oriented DBMS
of Maestro II. The architecture of Decamerone is shown in Fig 2. As expected, the
Method Base is the central repository containing method fragments and their relation-
ships. The Selected Method Fragments Repository (SMFR) is a subset of the Method
Base, containing the selected method fragments for integration into a new method.

530 A. Niknafs and R. Ramsin

The Situational Method Database is another subset of the Method Base containing the
assembled method. The CASE tool repository stores all the products used and pro-
duced during the project.

At the core of Decamerone is the Method Base Management System (MBMS) [21],
which provides facilities for the specification, storage and selection of method frag-
ments and their assembly into a new method. The MBMS is an interface for accessing
the OMS databases. This will help the method engineer avoid the low-level complexi-
ties of actually accessing an OMS database.

The novel feature of Decamerone is the Method Engineering Language (MEL) [9],
which is not only used for the representation of method fragments, but also offers
constructs for their manipulation operations. Thus, MEL supports the administration,
selection and manipulation of fragments. As mentioned before, MEL is both textual
and graphical; however, its textual form is much more powerful than the graphical
form. Decamerone’s user interface consists of three parts: The MEL Command Line
Interface, which is a text editor used for the selection and manipulation of method
fragments in a high-level method engineering language; the graphical editors of the
Concept Structure Diagram (CSD) and the Process Structure Diagram (PSD), which
aid in the specification and assembly of product and process fragments respectively;
and the MEL Editor, which aids in creating MEL specifications for the graphical
forms of the method fragments produced, in order to construct finer grained method
fragments.

Fig. 2. Architecture of Decamerone

Consistency and completeness of method fragments are checked by the MEL Edi-
tor and the CSD/PSD Editors. The MEL Interpreter acts as an interface for MBMS
and gets user commands and translates them into MBMS function calls. Thus, the
MBMS is only called by, and returns values to the MEL interpreter. The newly devel-
oped method will be given to Maestro II for CASE tool generation. The Project and
Configuration Management System (PCMS) is a part of Maestro II used for defining

 Computer-Aided Method Engineering: An Analysis of Existing Environments 531

Process Managers, which enact the method’s process model. PCMS offers function-
alities for configuration management, project scheduling and estimation. The Reposi-
tory Generator takes the product part of the method as input and generates the CASE
tool repository. Notational symbols of the elements manipulated through diagram
editors are specified using the Tool Customizing Interface (TCI).

Decamerone provides facilities for defining the semantics of method fragments. An
ontology is defined for product fragments, as well as a process classification system
[1] for all method fragments, thereby specifying the semantic aspects of the method
fragments. The proposed ontology is called the Methodology Data Model (MDM) [1]
which consists of the basic concepts of ISD products and the associations between
them. The process classification system employs the notion of goal, which is repre-
sented as a tuple (Action, Measure, Product). Goals are taken from a process classifi-
cation, consisting of a set of basic actions in ISD, a set of measures, and a set of prod-
uct types required in ISD. Basic actions are those actions in ISD which have the same
effect; a product type is a class of products in ISD with the same purpose; and a
measure is a qualifier of a product, to indicate temporal state, level of detail, or level
of abstraction.

2.5 MENTOR

The core component of MENTOR is its Guidance Engine [22] which provides guid-
ance to both method engineers and application engineers; MENTOR is therefore a
guidance-centered environment. MENTOR uses the NATURE contextual approach to
describe method fragments. In the NATURE approach, a method is viewed as a set of
method fragments which can either be a forest, a tree or a context. A forest is a set of
trees where trees are hierarchies of contexts. Contexts are pairs of the form <situation,
decision>, where decision states the intention of the method engineer, and the state of
the product that the decision can be taken on forms the situation. Method fragments,
or method chunks, are of two kinds: Components, which are parts of the prod-
uct/process model of methods; and generic method construction Patterns [23, 24],
which can be instantiated to new method fragments. The main components of MEN-
TOR are:

• The Method Engineering Environment, which consists of a set of tools, editors,
and browsers for facilitating the work of method engineers [25]. The product edi-
tor and the process editor allow the graphical specification of the product model
and the process model respectively. The method generator aids in the automatic in-
stantiation of predefined generic patterns stored in the method base. Browsers are
also provided to help retrieve the necessary method fragments.

• The Application Engineering Environment, which constitutes the CASE part of
MENTOR, providing tools for supporting the enactment of methods.

• The Guidance Engine, which advises the method engineer in his method engineer-
ing activities and guides the application engineer by executing the resulting process
model.

• The Repository, which is organized in three interrelated levels [25]: The Applica-
tion Knowledge level, which is the lower level consisting of the process model and
the products under development; the Method Knowledge level, which is composed

532 A. Niknafs and R. Ramsin

of method fragments; and the Method Meta Knowledge level, which deals with the
semantics of the method fragments. Product and process meta-models are placed in
the Method Meta Knowledge level, whereas product models and process models
are placed into the Method Knowledge level. These two latter levels constitute the
Method Base of MENTOR.

2.6 MERU

The main feature of Method Engineering Using Rules (MERU) that distinguishes it
from other existing CAME environments, is a technical document describing method
requirements called the Method Requirements Specification (MRS) [11]. MRS is im-
plementation-independent and only expresses the nature of an ISD method. MRS is
based on a meta-model called MVM. In MVM, method concepts, which are called
things, are partitioned into links, constraints and product elements. A link is any thing
of the product that connects two product entities together. Constraints are those things
that can be used by application engineers to specify properties of links and product
entities. Finally, any thing that is not a link or constraint is a product entity. The inter-
relationship between concepts are captured through two relationships: is composed of,
which identifies concepts that are made up of other concepts; and is mapped to, which
relates together concepts of two different models. The meta-model proposes to parti-
tion things into product entities, constraints and links. The procedure of ME per-
formed by means of MERU consists of 3 main steps. In the first step, called the
Method Requirements Engineering (MRE) phase, the method engineer expresses the
preferred method requirements in the form of an MRS. A language based on the
MVM meta-model, called Method Requirements Specification Language (MRSL), is
developed to express the MRS. In contrast to other CAME environments, in which a
specification language is developed to express the method fragments, MRSL is used
only for describing the MRS made by the method engineer. This step is supported by
the MRS Creator. The MRS thus obtained will then be checked for inconsistencies
such as incompleteness and non-conformity with the MVM; this is performed through
the Method Analyzer. The analysis results are used to provide guidance for refining
the MRS. After obtaining the desired MRS, Method Design is performed as the next
step. Method Design focuses on the translation of the MRS into an instantiation of the
MVM. In order to perform this instantiation, for every concept of the given MRS,
decisions need to be made as to the type, relationships, and attributes of the concept.
The output of this step is called a plan of instantiation, which can be modified by the
method engineer to obtain the preferred instantiation.

The Method Construction and Implementation (MCI) step is then commenced, in
which method fragments are created by means of the Component Builder. In the
method assembly approach used in MERU, method fragments are generated auto-
matically, based on the given MRS. Method fragments are described in terms of MRS
Components (MRSCs), which only consider the product part of the methods. The
Component Builder uses several predefined rules to identify MRSCs by retrieving the
appropriate method fragments from the method base (hence the tool’s name). The step

 Computer-Aided Method Engineering: An Analysis of Existing Environments 533

is concluded by giving the resulting method description to a metaCASE called
RAPID, which generates the appropriate CASE tool.

2.7 Method Editor

Method Editor takes advantage of UML as its meta-modeling technique for express-
ing the method fragments [3]. Class diagrams are used for the specification of product
fragments, while process fragments are described by means of activity diagrams. The
process part of a method is attached to each corresponding product fragment, i.e. each
product fragment and its development procedure will be shown as a pair of diagrams,
a class diagram and an activity diagram.

Method Editor is complemented by a CASE part, so that the Method Editor’s out-
put, the resulting ISD method, is fed to the CASE part as input. The CASE part con-
sists of a Diagram Generator as the CASE generator, and a Navigator Generator
which develops a Navigation Browser guiding the application engineer through the
process of software development. An OCL checker [26] is provided as a part of the
resulting CASE tool to check method fragments against the predefined constraints.
Any inconsistency seen in the development process will affect the continuation of the
whole process, i.e. the process part of methods will be controlled dynamically, forcing
adherence to the predefined rules of the method.

The recent version of Method Editor is extended by means of a Version Control
System [26], thereby supporting version control and change management of methods
or their parts.

3 Analysis of Existing CAME Environments

In this section, we examine the CAME environments introduced in the previous sec-
tion. Table 1 is a summary of the major features and characteristics of existing CAME
environments. In Table 2, the environments have been analyzed and compared with
each other based on a few general criteria. In analyzing the environments based on
their Number of Features, environments with numerous implemented features, par-
tially implemented features, and very few implemented features have been marked as
High, Average and Low respectively. The number and importance of the innovations

Table 1. Summary of existing CAME environments

Environment

Coverage of ME
Process

SM
E

A
pp

ro
ac

h Method Representation
Language

 P
ro

ce
ss

 E

na
ct

m
en

t
 S

up
po

rt

 C
A

SE
 T

oo
l

 G
en

er
at

or

 P
ro

du
ct

-
 O

ri
en

te
d

 P
ro

ce
ss

-
 O

ri
en

te
d

 M
R

A

 M
D

 M
I

 M
T

 Textual
Language Meta-model

Semantic
Data-
Model

Decamerone Assembly-based MEL MDM MDM
MENTOR Assembly-based,

Paradigm-based - NATURE -

MERET Method
Customization

Methodology
Representation

Model
ASDM ASDM

MERU Assembly-based MRSL MVM -
MetaEdit+ Assembly-based - GOPPRR -
MethodBase Method

Customization Object Z - -
Method Editor Assembly-based MEL UML -

534 A. Niknafs and R. Ramsin

that each CAME environment has offered is evaluated and rated as its Contributions.
We have also strived to provide a measure of the documentation available on each
environment: If more than one author have published more than one paper on a CAME

environment at different levels of detail, its Available Literature is marked as High; if
more than one author have published papers on a CAME environment but they do are
not much different as to their span and/or level of detail, it has been marked as Aver-
age; and if available publications on a CAME environment are rare or do not have the
needed level of detail, it has been marked as Low.

In order to provide a more detailed analysis of CAME environments, we propose
the ISO/IEC 9126 quality model [27] as a useful evaluation framework. ISO/IEC
9126 is one of a large group of internationally recognized standards applicable across
a wide range of applications. We have instantiated the model to fit the CAME
domain, and the CAME environments described above have been evaluated based on
this adapted model, with the results tabulated for enhanced legibility.

Table 2. General analysis and comparison of existing CAME environments

Environment Use Number of Features Contributions Available Literature Year of Introduction

Decamerone Research High High Average 1995
MENTOR Research Average Average Average 1996
MERET Research Low Average Low 1992
MERU Research High High Low 2001

MetaEdit+ Research and
Commercial High Average High 1994

MethodBase Research Low Average Low 1992
Method Editor Research Average Average Average 2003

3.1 The ISO/IEC 9126 Quality Model

ISO/IEC 9126 was originally developed in 1991 by the International Organization of
Standards to provide a framework for the evaluation of software quality. However,
ISO/IEC 9126 does not provide requirements for software, but defines a quality
model which is applicable to any kind of software. This model defines six product
characteristics which are further subdivided into a number of sub-characteristics (See
Table 3). These characteristics and sub-characteristics constitute a detailed model for
evaluating any software system. To be able to take different requirements of different
systems into account, the model needs to be instantiated for each concrete domain by
weighing the different characteristics and sub-characteristics accordingly.

3.2 A Quality Model for CAME Environments

Our quality model for CAME environments is an adaptation of ISO/IEC 9126; i.e. we
have applied the model to the domain of method engineering. Table 4 illustrates our
CAME quality model. The three characteristics of Functionality, Usability and Port-
ability of the original quality model can be assessed based on the available literature;
we have therefore focused on these characteristics. We use these quality characteris-
tics and sub-characteristics to evaluate the CAME environments discussed earlier in
this paper.

 Computer-Aided Method Engineering: An Analysis of Existing Environments 535

Table 3. ISO/IEC 9126 characteristics and sub-characteristics [27]

Characteristic Sub-Characteristics Definition
Suitability The presence of the required functions
Accurateness The correctness of the results
Interoperability Ability of software to interact with other systems

Functionality

Security The ability of software to prevent unauthorized access
Maturity The frequency of failure by faults in the software
Fault Tolerance The capability of software to maintain its level of performance under stated

conditions for a stated period of time

Reliability

Recoverability The capability of software to resume working and recover the data after failure
Understandability The effort needed for use the software
Learnability The easiness of learning how the software works
Operability The effort needed for operating the software

Usability

Attractiveness The quality of the user interface
Time Behaviour The response and processing times Efficiency
Resource Utilisation The resource utilisation
Analysability The effort needed for diagnosis of faults
Changeability The effort needed for modification
Stability The risk of modification effects

Maintainability

Testability The effort needed for testing the modified software
Adaptability The opportunity for moving the software to other environments
Installability The easiness of software installation
Co-existence The ability of software to coexist with other software systems in a common

environment

Portability

Replaceability The effort needed for replacing other software
All characteristics Compliance The compliance of software with regulations and rules

Table 4. The CAME Quality Model

Characteristic Sub-Characteristics Criteria Description
Suitability Evaluates if the CAME environment offers a suitable toolkit for the

development of project-specific CASE tools.
 Evaluates if the CAME environment supports various SME approaches.
 Evaluates if the CAME environment supports process enactment.
 Evaluates if the CAME environment offers facilities to define semantics of
method fragments.

Accurateness Evaluates if ample knowledge is available as to the results of own tests or
tests published by third parties that indicate the degree of effectiveness of
the CAME environment.

Functionality

Functionality
compliance

 Evaluates if the CAME environment supports standards and techniques
such as: UML, XML …

Understandability Evaluates the level of understandability and usability of the interfaces.
 Evaluates the level of understandability and usability of the method
representation language.

Learnability Evaluates if the CAME environment has adequate documentation.
 Evaluates the level of learnability of the method representation language.

Operability Evaluates if the CAME environment has graphical tools that facilitate the
development of Method fragments.

Usability

Attractiveness Evaluates if the CAME environment has attractive graphical design.

Installability Evaluates if the provider provides technical support and online help for the
installation of the CAME environment.

Portability

Co-existence Evaluates the capacity of the CAME environment to coexist with other
independent CAME or MetaCASE environments in a common
environment sharing common resources. For example, whether other
MetaCASE tools can be installed to satisfy the CASE generation
functionality.

536 A. Niknafs and R. Ramsin

3.3 Evaluation Results

The results are summarized into a matrix relating the characteristics and sub-
characteristics to the features offered by the CAME environments reviewed (See
Table 5) Deficiencies identified during the evaluation are indicated by a number, and
an explanation is given in the legend below of how the system failed to meet the crite-
ria in these cases.

Table 5. Evaluation of the CAME environments using the CAME Quality Model

Quality Characteristics
Functionality Usability Portability

Environments

Su
ita

bi
lit

y

A
cc

ur
ac

y

Fu
nc

tio
na

lit
y

co
m

pl
ia

nc
e

Si
m

pl
ic

ity

L
ea

rn
ab

il
it

y

O
pe

ra
bi

li
ty

A
ttr

ac
tiv

en
es

s

In
st

al
la

bi
li

ty

C
o-

ex
is

te
nc

e

Decamerone 3,4 7
MENTOR 4
MERET 1,2,3,5 - -
MERU 3,4 -
MetaEdit+ 3,4,5
MethodBase 2,3,4 6 - - -
Method Editor 3,4 -

Legend:
 Supported to a good extent
 Not supported

- Inadequate information to assess
1. Lack of CASE tool generation facilities
2. Partial coverage of the ME process
3. Inadequate support for SME approaches
4. Lack of semantic definition features for method fragments
5. Poor process support
6. Does not provide graphical meta-modeling language
7. Poor graphical meta-modeling language

4 Conclusion and Future Work

In this paper, we have summarized the main efforts performed in the development of
CAME environments. Although CAME technology dates back to the early days of
method engineering, it is not mature enough to support the whole process of situ-
ational method engineering. Each current CAME prototypes has its own advantages
and shortcomings. In the following, the main shortcomings that current CAME tech-
nology suffers from are listed:

• Weak process enactment support: Even though product-related issues of ISD
methods are fully considered and have been provided with computerized support,
the process-related issues still need to be researched in order to find suitable ways
for representing method process models. Process Modeling Languages (PML) [28,
29, 30] can be considered as suitable means for process representation; however,
guidelines should be attached to a process described in a PML in order to support
process enactment in actual ISD projects.

 Computer-Aided Method Engineering: An Analysis of Existing Environments 537

• Lack of support for situational method engineering approaches: The assembly-
based approach is the only one adequately addressed. Paradigm-based and Exten-
sion-based approaches should also be supported by CAME environments.

• Partial coverage of method engineering process: Although method design and
implementation phases are properly supported, there are still severe shortcomings
as to support for method requirements analysis and method test.

• Method verification: Verifying the newly built method may be the last phase of the
method engineering process, but it is never the least. Method verification requires a
criterion set which a method can be checked against. But the difficult part of the
task is determining how to perform the evaluation. Due to this difficulty, method
verification is one of the hardest to automate. Current CAME prototypes perform
method test through prompting feedback from the users of the method. Therefore,
the newly developed method would not be verified until it is tested in an actual
project situation.

• Weak method representation mechanisms: As mentioned in [31], there is no ulti-
mate method representation language. Therefore, method representation languages
are composed of fragments originating from several languages in a bid to obtain a
purpose-fit language. This leads to a situation which is called Method Engineering
of Method Engineering Languages. New method engineering languages need to be
developed to support method verification.

• Lack of support for semantic definitions of method fragments: We believe that
semantic meta-models should be an integral part of any CAME environments’
Method Base, but few of the existing CAME environments address this issue. The
lack of means for capturing and specifying the semantic aspects of method frag-
ments leads to complications; examples are the selection and assembly of method
fragments that may not be semantically composable into a method [32]. Describing
the semantics of method fragments is one of the major problems in SME. To over-
come this problem, method fragments need to be described in a complete and un-
ambiguous way. However, as stated in [1], since methods and their semantics are
interpreted differently by different human beings, there is no unique meaning for a
method fragment. Nevertheless, method fragments can be anchored, i.e. described
in terms of unambiguously defined concepts and relationships between those con-
cepts, in a system for which the meaning is defined. Such systems are defined as
ontologies in Decamerone and MERET.

Our future work focuses on the development of a CAME environment supporting the
Hybrid Methodology Design approach [14]. This approach to methodology design
uses alternative method engineering approaches for different parts of the process and
at different levels of abstraction. It also provides an iterative and incremental frame-
work allowing flexible application of four method development approaches, namely:

• Instantiation approach: with the focus on instantiating an already available process
meta-model.

• Artifact-oriented approach: devising a seamless complementary chain of artifacts
and building the process around it.

• Composition approach: using one of the already available libraries of process
patterns.

538 A. Niknafs and R. Ramsin

• Integration approach: integrating features, ideas and techniques from existing
methods.

Two of these approaches, Instantiation and Composition, are analogous to the Para-
digm-based and Assembly-based approaches of method engineering, whereas the
Integration and Artifact-oriented approaches are relatively novel in this context. The
Integration approach is particularly nonconformist in comparison to usual method
engineering practices, in that it promotes integrating ideas and techniques directly
from existing methods, instead of first dissecting the methods into method fragments
and then storing them in a method repository (as is common practice in the assembly-
based method engineering approach); the motivation behind this stance is the observa-
tion that “breaking down the methods into fragments may result in loss of synergy
and functional capacity” [14].

Acknowledgments. We wish to thank the Research Vice-Presidency of Sharif
University of Technology and Iran Telecommunication Research Center (ITRC) for
sponsoring this research. Also, special thanks to the anonymous reviewers of this
paper for their helpful feedback.

References

1. Harmsen, A.F.: Situational Method Engineering. Moret Ernst & Young, Utrecht (1997)
2. Rolland, C.: A Primer for Method Engineering. In: Proceedings of the INFormatique des

ORganisations et Systèmes d’Information et de Décision (INFORSID 1997), Toulouse
(1997)

3. Saeki, M.: CAME: The First Step to Automated Method Engineering. In: Workshop on
Process Engineering for Object-Oriented and Component-Based Development, Anaheim,
CA (2003)

4. Arni-Bloch, N.: Towards a CAME Tools for Situational Method Engineering. In: Proceed-
ings of the 1st International Conference on Interoperability of Enterprise Software and
Applications, Geneva (2001)

5. Dahanayake, A.N.W.: Computer-Aided Method Engineering: Designing CASE Reposito-
ries for the 21st Century. Idea Group Publishing, Delft (2001)

6. Kumar, K., Welke, R.J.: Methodology engineering: a proposal for situation-specific meth-
odology construction. In: Cotterman, W.W., Senn, J.A. (eds.) Systems Analysis and De-
sign: A Research Agenda, pp. 257–268. John Wiley & Sons, Chichester (1992)

7. MetaCase Consulting: Method Workbench User’s Guide, MetaCase Consulting, Jy-
väskylä, Finland (2005),
http://www.metacase.com/support/40/manuals/mwb40sr2a4.pdf

8. Saeki, M., Wenyin, K.: Specifying software specification and design methods. In: Wijers,
G., Wasserman, T., Brinkkemper, S. (eds.) CAiSE 1994. LNCS, vol. 811, pp. 353–366.
Springer, Heidelberg (1994)

9. Brinkkemper, S., Saeki, M., Harmsen, F.: A Method Engineering Language for the De-
scription of Systems Development Methods. In: Dittrich, K.R., Geppert, A., Norrie, M.C.
(eds.) CAiSE 2001. LNCS, vol. 2068, pp. 473–476. Springer, Heidelberg (2001)

10. Ralyté, J., Deneckère, R., Rolland, C.: Towards a Generic Model for Situational Method
Engineering. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 95–110.
Springer, Heidelberg (2003)

 Computer-Aided Method Engineering: An Analysis of Existing Environments 539

11. Gupta, D., Prakash, N.: Engineering Methods from Method Requirements Specifications.
J. Requirements Engineering 6(3), 135–160 (2001)

12. Leppanen, M.: Conceptual Analysis of Current ME Artifacts in Terms of Coverage: A
Contextual Approach. In: 1st Workshop on Situational Engineering Processes, Paris
(2005)

13. Prakash, N., Goyal, S.B.: Towards a Life Cycle for Method Engineering. In: 12th Work-
shop on Exploring Modeling Methods in Systems Analysis and Design (2007)

14. Ramsin, R.: The Engineering of an Object-Oriented Software Development Methodology.
Ph.D. Thesis, University of York (2006),
http://www.cs.york.ac.uk/ftpdir/reports/YCST-2006-12.pdf

15. Tekinerdoğan, B.: Synthesis-Based Software Architecture Design. Ph.D. Thesis, Univer-
sity of Twente (2000)

16. Heym, M., Osterle, H.: A Semantic Data Model for Methodology Engineering. In: 5th
Workshop on Computer-Aided Software Engineering, pp. 142–155. IEEE Press, Los
Alamitos (1992)

17. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+ A Fully Configurable Multi-User and Multi-
Tool CASE and CAME Environment. In: Constantopoulos, P., Vassiliou, Y., Mylopoulos,
J. (eds.) CAiSE 1996. LNCS, vol. 1080, pp. 1–21. Springer, Heidelberg (1996)

18. Tolvanen, J.P.: Incremental Method Engineering with Modeling Tools. Ph.D. Thesis, Uni-
versity of Jyväskylä (1998)

19. Koskinen, M., Marttiin, P.: Process Support in MetaCASE: Implementing the Conceptual
Basis for Enactment Process Models in MetaEdit+. In: Ebert, J., Lewerentz, C. (eds.)
Software Engineering Environments, pp. 110–123. IEEE Computer Society Press, Los
Alamitos (1997)

20. Koskinen, M.: Beyond Process Modelling Languages: A Metamodelling Approach to Cus-
tomizable Concepts and Enactability in MetaCASE. In: Proceedings of the 4th Doctoral
Consortium on Advanced Information Systems Engineering, Barcelona (1997)

21. Brinkkemper, S., Harmsen, F.: Design and Implementation of a Method Base Management
System for a Situational CASE Environment. In: Proceedings of the 2nd Asia-Pacific
Software Engineering Conference, pp. 430–438. IEEE Computer Society, Los Alamitos
(1995)

22. Si-Said, S., Rolland, C., Grosz, G.: MENTOR: A Computer Aided Requirements Engi-
neering Environment. In: Constantopoulos, P., Vassiliou, Y., Mylopoulos, J. (eds.) CAiSE
1996. LNCS, vol. 1080, pp. 22–43. Springer, Heidelberg (1996)

23. Plihon, V., Rolland, C.: Genericity in Method Construction. In: Proceedings of the 4th
Asia-Pacific Software Engineering Conference, pp. 302–311. IEEE Computer Society,
Washington, DC (1997)

24. Rolland, C., Plihon, V.: Using Generic Method Chunks to Generate Process Model Frag-
ments. In: Proceedings of the 2nd International Conference on Requirements Engineering
(ICRE 1996), pp. 173–181. IEEE Computer Society, Colorado (1996)

25. Plihon, V.: MENTOR: An Environment Supporting the Construction of Methods. In: Pro-
ceedings of the 3rd Asia-Pacific Software Engineering Conference, pp. 384–392. IEEE
Computer Society, Washington, DC (1996)

26. Saeki, M.: Configuration Management in a Method Engineering Context. In: Dubois, E.,
Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 384–392. Springer, Heidelberg (2006)

27. International Organization for Standardization (ISO), International Electrotechnical Com-
mission (IEC): ISO/IEC: 9126: Software engineering - Product quality; Parts 1-4. Geneva
(2004)

540 A. Niknafs and R. Ramsin

28. Cugola, G., Ghezzi, C.: Software processes: a retrospective and a path to the future Soft-
ware Process. J. Improvement and Practice 4(3), 101–123 (1998)

29. Zamli, K.Z., Lee, P.A.: Taxonomy of process modeling languages. In: ACS/IEEE Interna-
tional Conference on Computer Systems and Applications, pp. 435–437. IEEE Computer
Society, Washington, DC (2001)

30. Zamli, K.Z.: Process Modeling Languages: A Literature Review. Malaysian Journal of
Computer Science 14(2), 26–37 (2001)

31. Harmsen, A.F., Saeki, M.: Comparison of Four Method Engineering Languages. In: Pro-
ceedings of the IFIP TC8, WG8.1/8.2 working conference on method engineering: princi-
ples of method construction and tool support, pp. 209–231. Chapman & Hall, London
(1996)

32. Brinkkemper, S., Saeki, M., Harmsen, F.: Meta-modeling based assembly techniques for
situational method engineering. J. Information Systems 24(3), 209–228 (1999)

Adapting Secure Tropos for Security Risk

Management in the Early Phases of Information
Systems Development

Raimundas Matulevičius1, Nicolas Mayer1,2, Haralambos Mouratidis3,
Eric Dubois2, Patrick Heymans1, and Nicolas Genon1

1 PReCISE, Computer Science Faculty, University of Namur, Belgium
{rma,phe,nge}@info.fundp.ac.be

2 CRP Henri Tudor - CITI, Luxembourg
{nicolas.mayer,eric.dubois}@tudor.lu

3 School of Computing and Technology, University of East London, UK
H.Mouratidis@uel.ac.uk

Abstract. Security is a major target for today’s information systems
(IS) designers. Security modelling languages exist to reason on security
in the early phases of IS development, when the most crucial design deci-
sions are made. Reasoning on security involves analysing risk, and effec-
tively communicating risk-related information. However, we think that
current languages can be improved in this respect. In this paper, we dis-
cuss this issue for Secure Tropos, the language supporting the eponymous
agent-based IS development. We analyse it and suggest improvements in
the light of an existing reference model for IS security risk management.
This allows for checking Secure Tropos concepts and terminology against
those of current risk management standards, thereby improving the con-
ceptual appropriateness of the language. The paper follows a running
example, called eSAP, located in the healthcare domain.

Keywords: Risk management, information system, security, Secure
Tropos.

1 Introduction

Information systems (ISs) undoubtedly play an important role in today’s society
are more and more at the heart of critical infrastructures. ISs are also facing an
increasing complexity because of their interoperability with other systems and of
their operation in open, distributed and mobile environments. In such contexts,
secure issues are vital and are still reinforced in many sectors with the intro-
duction of new regulations, such as Basel II [1] or SOX [2]. Risk management
is considered as central by IS professionals. The risk management does not only
support security officers in the handling of security vulnerabilities but it also
provides a framework that allows evaluation of the return on investment of the
security solutions against the economic and business consequences of not imple-
menting them. There are more than 200 risk management methods making it a

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 541–555, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

542 R. Matulevičius et al.

challenge to select the most adequate one. In a previous analysis [3] we identified
some important points for possible improvements. Firstly, elements are related
to the nature of the artefacts produced with such methods. These artefacts are
largely informal and typically consist of natural language documents, comple-
mented with tables and ad hoc diagrams for structuring the information. The
powerful abstraction mechanisms and visualisations offered by conceptual mod-
elling techniques are thus underexploited. Secondly, they are often designed for
assessing the way existing systems handle risk in an auditing mode. This view
is no longer sustainable in the context of todays ISs that need to constantly
adapt to new environments and handle evolution with minimum human inter-
vention. This is an additional argument for the use of more formal languages
supporting the reasoning, evolution, monitoring and traceability of risk related
information.

In this paper we report on a research related to the design of a suitable
modelling language for supporting security risk management (SRM) activities.
Central to this research is to first achieve a deep understanding of the SRM
domain, then to design an adequate language with suitable constructs and asso-
ciated semantics for that domain. A central focus of risk management methods
is to consider security issues from the very early phases, a.k.a. requirements en-
gineering (RE), of ISs development. The associated scientific literature features
a number of modelling languages specifically dedicated to security sensitive con-
texts; however the risk concepts are only partially supported. This advocates
for the design of ‘yet another’ modelling language. However, defining a new and
complete notation does not appear to us as a viable option from a sustainability
perspective for the modelling community. As demonstrated for example with
UML in software engineering, a consensus over unified and common notations
has been proven to be a big push for the adoption of modelling practices in
public and private companies. At the RE level we plead for a similar approach
and rather than to develop a totally new language we improve existing lan-
guages, offering an ontological basis sufficiently close to the risk management
domain.

With respect to the above objective, we have identified Secure Tropos [4],
which uses the concept of security constraint and methods such as security attack
scenarios to analyse security requirements, as a suitable candidate language. The
selection of Secure Tropos results from a detailed analysis of the adequacy of its
concepts to the information system security risk management (ISSRM) reference
model [3]. This reference model defines the fundamental concepts of ISSRM as
gathered from a quantity of standards and other sources, e.g., [5] [6] [7]. The
overall approach is illustrated throughout this paper reusing the example of the
electronic Single Assessment Process (eSAP) [8].

The structure of the paper is as follows: in Section 2 we provide theoretical
background for our research. In Section 3 we outline our research method and
apply Secure Tropos in the running example. In Section 4 we describe how
Secure Tropos is aligned with the concepts of the ISSRM reference model. Finally
Section 5 discusses the findings and presents conclusions of the study.

Adapting Secure Tropos for Security Risk Management 543

2 Theory

2.1 Security Risk Domain

The ISSRM Reference model [3] presented in Fig. 1 results from a consolida-
tion of existing security standards, e.g., [5], [6], [7]. In this section we summarise
some core definitions of ISSRM concepts.

Fig. 1. The ISSRM Reference Model [3] [9]

Asset-related concepts describe assets and the criteria which guarantee asset
security [3] [9]. An asset is anything that has value to the organisation and is
necessary for achieving its objectives. A business asset describes information,
processes, capabilities and skills inherent to the business and core mission of the
organisation, having value for it. An IS asset is a component of the IS supporting
business assets like a database where information is stored. A security criterion
characterises a property or constraint on business assets describing their security
needs, usually for confidentiality, integrity and availability.

Risk-related concepts present how the risk itself is defined [3] [9]. A risk is the
combination of a threat with one or more vulnerabilities leading to a negative
impact harming the assets. An impact describes the potential negative conse-
quence of a risk that may harm assets of a system or an organisation, when a
threat (or the cause of a risk) is accomplished. An event is the combination of a
threat and one or more vulnerabilities. A vulnerability describes a characteristic
of an IS asset or group of IS assets that can constitute a weakness or a flaw in
terms of IS security. A threat characterises a potential attack or incident, which
targets one or more IS assets and may lead to the assets being harmed. A threat
agent is an agent that can potentially cause harm to IS assets. An attack method
is a standard means by which a threat agent carries out a threat.

544 R. Matulevičius et al.

Risk treatment-related concepts describe what decisions, requirements and
controls should be defined and implemented in order to mitigate possible risks
[3] [9]. A risk treatment is an intentional decision to treat identified risks. A
security requirement is the refinement of a treatment decision to mitigate the
risk. Controls (countermeasures or safeguards) are designed to improve security,
specified by a security requirement, and implemented to comply with it.

Like the Tropos Goal-risk framework [10], the ISSRM reference model ad-
dresses risk management at three different levels, combining asset, risk, and risk
treatment views. However the ISSRM reference model focuses on the IS security
while the Tropos Goal-risk framework supports risk in general.

Security risk management process. The ISSRM activities follow the general
risk management process [3] [9]. This process originates from the risk manage-
ment standards (e.g., [5], [6], [7]) and consists of six steps. It begins with a
(a) definition of the organisation’s context and the identification of its assets.
Next one needs to determine the (b) security objectives (confidentiality, integrity
and/or availability), based on the level of protection required for the assets. Dur-
ing (c) risk assessment one elicits which risks are harming assets and threatening
security objectives. Once risk assessment is performed, decisions about (d) risk
treatment are taken. Decisions might include risk avoidance, risk reduction, risk
transfer and risk retention. Security requirements (e) on the IS can thus be
determined as security solutions to mitigate the risks. Requirements are instan-
tiated into (f) security controls, i.e. system specific countermeasures, which are
implemented within the organisation. The risk management process is iterative.
Each step can be repeated to obtain an outcome of higher quality. Furthermore,
after determination of the security controls new risks, that overcome or are not
addressed by these security controls, can emerge.

2.2 Security Modelling Languages

At different IS development phases, security can be addressed using various
modelling languages. Abuse frames [11] suggest means to consider security during
the early RE. Abuse cases [12], misuse cases [13], and mal-activity diagrams [14]
address security concerns through negative scenarios executed by the attacker.
SecureUML [15] and UMLsec [16] consider security during system design.

Goal modelling languages have also been adapted to security. Secure i* [17]
addresses security trade-offs. KAOS [18] was augmented with anti-goal models
designed to elicit attackers’ rationales. In [19] [20] Tropos has been extended
with the notions of ownership, permision and trust. Here we investigate Secure
Tropos [4] that models security using security constraints and attack methods.

All these languages are candidates for supporting largely or partially the SRM
activities. In this paper we specifically target security risk management in the
early IS development. Thus, we have chosen Secure Tropos, which incrementally
introduces security concerns from the requirements phases. However, the final
analysis of the security concerns takes place only during the design phases [21].
Therefore by aligning Secure Tropos with the ISSRM reference model, we suggest
improvements needed for the SRM in the early (requirements) IS phases.

Adapting Secure Tropos for Security Risk Management 545

2.3 Secure Tropos

Secure Tropos enriches a set of Tropos [22] [23] constructs (actor, goal, softgoal,
plan, resource, and belief) with security constructs such as security constraint,
and threat. An actor (see Fig. 3) describes an entity that has strategic goals
and intentions within the system or within the organisational setting [22]. A
hardgoal or simply goal hereafter (see Fig. 3), represents an actor’s strategic
interests. A softgoal (see Fig. 5) unlike a goal, does not have clear criteria for
deciding whether it is satisfied or not and therefore it is subject to interpretation
(goals are said to be satisfied while softgoals are said to be satisficed). A plan(see
Fig. 4) represents a way of doing things. A resource (see Fig. 3) represents an
informational or physical entity. A belief (see Fig. 7) is the actor’s knowledge of
the world. All these constructs are present in both Tropos [22] [23] and Secure
Tropos [8] [21] [24]. In addition Secure TROPOS introduces security constraints
and threats. A security constraint represents a restriction related to security
that the system must have and actors must respect (see Fig. 3) [4] [24]. A threat
(see Fig. 6) “represents circumstances that have the potential to cause loss or
problems that can put in danger the security features of the system” [4].

Constructs are combined using relationships: dependency, decomposition,
means-ends, contribution, restricts and attacks. In the actor model one repre-
sents the network of relationships between actors. The relationships are captured
using the dependency links. Dependency between two actors indicates that one
actor (the depender) depends for some reason (dependum) on another actor (the
dependee) in order to achieve a goal, to execute a plan, or to deliver a resource
[22]. Secure dependency introduces security constraint(s) that must be respected
by actors for the dependency to be satisfied [25]. This means that “the depender
expects from the dependee to satisfy the security constraint(s) and also that the
dependee will make effort to deliver the dependum by satisfying the security
constraint(s)” [24]. The goal model allows a deeper understanding of how the
actors reason about goals to be fulfilled, plans to be performed and available
resources [23]. The goal model uses the means-ends, decomposition and contri-
bution relationships. The means-ends relationship (see Fig. 4) permits to link a
means (plan/goal/resource) with an end (goal). The decomposition relationship
(see Fig. 4) permits to define a finer structure of a plan. A contribution link
(see Fig. 5) describes a positive or negative impact that one element has on
another. To facilitate security analysis Secure Tropos introduces restricts and
attacks. The restricts relationship (see Fig. 3) describes how goal achievement
is restricted by security constraints. The attacks link (see Fig. 7) shows what is
the target of an attacker’s plan.

3 Research Method

3.1 Method for Aligning Secure Tropos and ISSRM

In order to align Secure TROPOS with the ISSRM reference model, the method
shown in Fig. 2 is applied. Our approach is based on the definition of the Secure

546 R. Matulevičius et al.

Fig. 2. Research Method

Tropos language as it is derived from the Secure Tropos meta-model and the
description of the language in the literature [4] [8] [21] [24] [25].

In this paper we use a running example to explain our analysis of the align-
ment of Secure Tropos and the ISSRM. The running example is initially used
to illustrate the use of the language. We then consider the concepts of Secure
Tropos wrt how they were used to address ISSRM. The outcome of this compar-
ison is the concept alignment between Secure Tropos and the ISSRM reference
model. We document the final results of our alignment artefacts in Fig. 9. At the
same time, an “ISSRM-oriented” Secure TROPOS meta-model is produced. By
“ISSRM-oriented”, we mean a meta-model [26]1 aligned on the ISSRM reference
model and thus showing only concepts and relationships semantically equivalent
to those of the ISSRM reference model.

3.2 Running Example

To demonstrate the applicability of our work in a practical and realistic environ-
ment we use it to analyse the electronic Single Assessment Process (eSAP) [27].
The eSAP is an IS to support integrated assessment of the health and social
care needs of elderly. It is based on the Single Assessment Process, which is part
of the National Service Framework for Older People Services of the English De-
partment of Health. The eSAP is suitable to demonstrate our work for two main
reasons: (i) security and risk are two important factors in its development and
implementation; (ii) the security of the system have been successfully analysed
using the Secure Tropos methodology [28]. Therefore, by revisiting the running
example, we are able to identify the exact contributions of this paper. Due to
space limitations, we focus on one of the most important aspects to make the
eSAP: the Patient personal information.

(a) Context and asset identification. A Social Worker is in charge of the
health care to patients. In order to fulfill her work, she needs the Patient per-
sonal information. In Fig. 3 the Social Worker depends on a goal Collected care

1 Due to space requirements we did not include the Secure Tropos meta-model nor
the ISSRM-oriented Secure Tropos meta-model.

Adapting Secure Tropos for Security Risk Management 547

Fig. 3. Actor model

information held by the eSAP system. As the information is a valuable business
asset, achievement of the goal Collected care information is restricted by a secu-
rity constraint assuring that the consent has to be obtained before the personal
information can be sent. The goal Collected care information can be achieved by
executing the plan Collect info about treatment, which needs to gather the Patient
personal information and to perform the Manage care plan, see Fig. 4.

(b) Security objective determination. The plan Check data for consent con-
tributes positively to the security constraint Share info only if consent obtained
(Fig. 5). This plan also realises the goal Consent has been obtained. In our exam-
ple we strive for privacy of the Patient personal information, thus the goal Consent
has been obtained takes part in the decomposition of the plan Perform authorisa-
tion checks. The latter plan is the means to fulfill the goal System privacy ensured
and contributes positively to the security constraint Keep system data privacy.

(c) Risk analysis and assessment. Fig. 6 focuses on a possible risk event.
We identify an Authentication attack (modelled using the threat construct). It
describes a situation where a threat agent fakes his identity to pass himself off
as a trusted actor in order to damage the business assets (e.g., Patient personal
information). The Authentication attack has a negative impact on Privacy. On the
other hand the constraint Keep system data privacy mitigates the possible risk
difficult to realise. Note that the Authentication attack does not depend on the
existence of an actor whose assets are threatened.

In Fig. 7 we present the view of an Attacker whose aim is to get the Patient
personal information. The Attacker poses a threat (the goal Info about patient
received and plan Collect info about breaking the system in Fig. 7). The plan
is decomposed into two parts: (i) the attacker has to get the consent for the

548 R. Matulevičius et al.

Fig. 4. Analysis of “Obtain care information”

Fig. 5. Constraint for information sharing

Patient personal information; and (ii) he needs to find the authentication code
for the system. To get the consent, the attacker can Steal data from a social
worker or Buy data from the untrusted social worker. Here, belief Possible to check
eSAP access repeatedly corresponds to a vulnerability, known by the attacker.

Adapting Secure Tropos for Security Risk Management 549

Fig. 6. Identification of an authentication risk

The vulnerability contributes positively to the decomposition between two plans
Collect info about breaking the system and Check eSAP access repeatedly. Fig. 7
can be seen as the refinement of the cause of the risk identified in Fig. 6.

Fig. 7. Potential attack scenario

(d) Risk treatment. Several risk treatment decisions are suggested in [29]. In
the example we apply goal/plan substitution, meaning that we choose different
goals to be fulfilled and plans to be executed to mitigate the risk. This produces
a different system design but allows avoiding the Authentication attack.

(e) Security requirements definition. The next step is the elicitation of the
countermeasures that help to mitigate the actual risk. With respect to Fig. 5,

550 R. Matulevičius et al.

we try to find an alternative means to achieve the goal System privacy ensured.
Our solution is to Perform cryptographic procedures (Fig. 8). To realise the coun-
termeasure, Encrypt data and Decrypt data are performed at a certain time. Our
countermeasure avoids the Authentication attack because now the eSAP system
is designed so that it does not require the authentication information. However
this might result in other events of the risk (e.g., Cryptographic attack) which
need to be analysed as well.

Fig. 8. Analysis of a countermeasure

(f) Control selection and implementation. Softgoals can be used to rea-
son on the differences between control alternatives. This step takes place after
controls are defined, that usually happens during the design phase.

4 Contribution

The contribution of the analysis is with the semantic alignment between ISSRM
and Secure Tropos. We illustrate how we can use the Secure Tropos approach
to analyse possible attack scenarios and how derive countermeasures from at-
tack scenarios. We summarise the discussion on alignment in Fig. 9. First two
columns list the concepts of the ISSRM reference model, the third column pro-
vides synonyms of the ISSRM concepts found in the Secure Tropos literature [4]
[8] [21] [24] [25]. The fourth column lists the Secure TROPOS constructs used to
address the ISSRM concepts. The last column illustrates the Secure TROPOS
concepts used in the running example in Section 3.2.

Asset-related concepts describe what assets are important to protect, and
what criteria guarantee asset security [3]. In Secure TROPOS we identify that the
actor, goal, resource and plan constructs (and appropriate relationships among
them) are used to model both business and IS assets. For instance, on the one

Adapting Secure Tropos for Security Risk Management 551

Fig. 9. Alignment between the ISSRM reference model and Secure Tropos. * – litera-
ture includes [8] [4] [21] [25]; ** – look for discussion about belief in Section 4.

hand the actors Patient and Social worker (see Fig. 3), the goals Obtain care infor-
mation and Info provided and the plans Collect info about treatment and Manage
care plan (see Fig. 4) describe the process necessary for the organisation (health
care centre) to achieve its objectives. On the other hand the resource Patient
personal information characterises the valuable information. All the mentioned
examples are identified as business assets with respect to the ISSRM reference
model [3].

The business processes and information management are supported by the IS,
which in our example is the eSAP. In more details (see Fig. 5) the support for
the business assets is described by the goals System privacy ensured and Consent
has been obtained and the plans Perform authorisation check, Check authentication
and Check data for consent. The concepts which describe how a component or
part of the IS is necessary in supporting business assets, are called IS assets.

The ISSRM security criteria are properties or constraints on business assets
characterising their security needs [3]. In Secure Tropos softgoals (e.g. Privacy)

552 R. Matulevičius et al.

can help identify higher level security criteria, like privacy, integrity and avail-
ability. Depending on the context it might be necessary to specify other security
criteria, like we do by using the security constraints Share info only if consent
obtained and Keep system data privacy (see Fig. 5).

Risk-related concepts present how the risk itself is defined, and what major
principles should be taken into account when defining the possible risks [3]. Risk
is described by the event of the risk, corresponding to the Authentication attack in
Fig. 6. The potentional negative consequence of the risk, identified by a negative
contribution link between the Authentication attack and the security constraint
Privacy is called impact of the risk. Here the impact negates the security criteria
and compromises the business asset private.

In Fig. 7 a combination of the goal Info about patient received and the plan
Collect info about breaking the system corresponds to the threat describing the
potential attack targeting the business asset Patient personal information. The
threat is triggered by the threat agent Attacker who knows about the possibility
to check the eSAP access repeatedly as identified by the belief in Fig. 7. To
break into the eSAP system the Attacker carries an attack method consisting of
the plans Check eSAP access repeatedly and Steal data from a social worker.

Note that in Fig. 9 belief only partially corresponds to ISSRM vulnerabil-
ity. Firstly, the fact that the actor (who has the role of the attacker) thinks
he knows, might be true. In this case the belief will correspond to vulnerability
in the sense of the ISSRM. However, it does not allow lining to a system de-
sign solution because this solution might not exist in the early IS development
phase. Secondly, facts known by the attacker might be wrong: in this case there
is no corresponding concept in the ISSRM. Finally, belief does not represent
vulnerabilities which exist in the system but is not known by the attacker.

Risk treatment-related concepts describe what decisions, requirements
and controls should be defined and implemented in order to mitigate possible
risks [3]. According to [18] [29] in our example we use goal/plan substitution
which leads to a different eSAP design avoiding the identified threat. New se-
curity requirements (see Fig. 8) that mitigate the risk are identified as plans
Perform cryptographic procedures, Encrypt data, and Decrypt data. We illustrate
the countermeasure only using the Secure Tropos plan construct, however we
must note that, depending on the selected risk treatment decision, the combina-
tion of actor, goal, resource and plan might result in different security control
systems.

5 Discussion and Conclusion

In this paper we have analysed how Secure Tropos can be applied to analyse
security risks at the early IS development. Based on an illustrative example, we
showed how a Secure Tropos model can be created following the security risk
management process. Our purpose was not to develop the example in detail (for
instance we do not detail how the plan Check data for consent in Fig. 5 has
to be performed), but rather to investigate how different language constructs

Adapting Secure Tropos for Security Risk Management 553

can be used to model security risks. We focus on the early phase (early and
late requirements) of IS development. This means that the analysis of Secure
Tropos is not complete wrt the late development, for instance we do not consider
capabilities which are the notion used during IS design.

We know that our research method and results could hold a certain degree of
subjectivity regarding the selection of the Secure TROPOS language’s constructs
at the modelling stage, their application and their comparison with ISSRM. To
deal with the subjectivity within the team we (i) looked at the Secure Tropos
meta-model, clarified unclear use of language constructs; (ii) collectively agreed
on decisions made when creating the running example; (iii) discussed and rea-
soned about the Secure Tropos and ISSRM alignment.

The alignment suggests a number of improvements for Secure Tropos in the
context of security risk management activities:

– Secure Tropos has to provide guidelines as to when and how to use each
constructs in order to avoid misinterpretations of the ISSRM concepts. One
improvement could be inclusion of tags in the label of a construct. For exam-
ple, the plan construct can be used to model business assets, IS assets, threats
and security requirements. Thus, labels such as [BS] could indicate business
assets; [IS]– IS assets; [Th]– threat ; and [SR]– security requirements. In our
running example we deal with this limitation by decomposing the model into
separate diagrams: we use the plan construct to represent business assets in
Fig. 4, IS assets in Fig. 5, threats in Fig. 7, and security requirements in
Fig. 8.

– Secure Tropos could be improved with additional constructs to better cover
the concepts of ISSRM. Fig. 9 indicates that several concepts such as risk,
risk treatment, and control are not in the Secure Tropos approach.

– The semantics of individual modelling constructs should be adapted so that
they adequately represent ISSRM concepts. For example, as discussed, the
belief construct only partially covers vulnerability. A possible improvement
is recently suggested in [17] by introducing vulnerable points in the modelled
IS. But some future research is needed to answer if a relationship between
vulnerable points and belief is possible.

Note that the research method used for alignment between language con-
structs and the ISSRM reference model can be used to evaluate of any security
modelling language. In addition to Secure Tropos we also investigated KAOS
extended to security [26] and misuse cases [9]. We envision that after analysing
a number of security languages it will be possible to facilitate model transfor-
mation and language interoperability. This would allow representing ISs using
different perspectives, also ensuring IS sustainability.

Acknowledgment. This work is partially funded by the Interuniversity At-
traction Poles Programme, Belgian State, Belgian Science Policy. We also thank
A. Classen for proofread of the paper.

554 R. Matulevičius et al.

References

1. Basel Committee on Banking Supervision: International Convergence of Capital
Measurement and Capital Standards. Bank for International Settlements (2004)

2. United States Senate and House of Representatives in Congress: Sarbanes-Oxley
Act of 2002. Public Law 107-204 (116 Statute 745) (2002)

3. Mayer, N., Heymans, P., Matulevičius, R.: Design of a Modelling Language for
Information System Security Risk Management. In: Proceedings of the 1st Inter-
national Conference on Research Challenges in Information Science (RCIS 2007),
pp. 121–131 (2007)

4. Mouratidis, H., Giorgini, P.: Secure Tropos: A Security-oriented Extension of the
Tropos Methodology. International Journal of Software Engineering and Knowledge
Engineering (IJSEKE) 17(2), 285–309 (2007)

5. DCSSL: EBIOS–Expression of Needs and Identification of Security Objectives
(2004)

6. ENISA: Inventory of Risk Assessment and Risk Management Methods (2004)
7. ISO: Information Technology–Security Techniques–Information Security Man-

agement Systems–Requirements, International Organisation for Standardisation
(2005)

8. Mouratidis, H., Giorgini, P., Manson, G.: Using Tropos Methodology to an Model
Integrated Health Assessment System. In: Proceedings of the Fourth International
Bi-Conference on Agent-oriented Information Systems (AOIS 2002) (2002)

9. Matulevičius, R., Mayer, N., Heymans, P.: Alignment of Misuse Cases with Secu-
rity Risk Management. In: Proceedings of the ARES 2008 Symposium on Require-
ments Engineering for Information Security (SREIS 2008), pp. 1397–1404. IEEE
Computer Society, Los Alamitos (2008)

10. Asnar, Y., Giorgini, P.: Modelling Risk and Identifying Cuntermeasure in Organi-
zations. In: Proceedings of the 1st Interational Workshop on Critical Information
Intrastructures Security, pp. 55–66. Springer, Heidelberg (2006)

11. Lin, L., Nuseibeh, B., Ince, D., Jackson, M.: Using Abuse Frames to Bound the
Scope of Security Problems. In: Proceedings of the 12th IEEE international Con-
ference on Requirements Engineering (RE 2004), pp. 354–355. IEEE Computer
Society, Los Alamitos (2004)

12. McDermott, J., Fox, C.: Using Abuse Case Models for Security Requirements Anal-
ysis. In: Proceedings of the 15th Annual Computer Security Applications Confer-
ence (ACSAC 1999), p. 55 (1999)

13. Sindre, G., Opdahl, A.L.: Eliciting Security Requirements with Misuse Cases. Re-
quirements Engineering Journal 10(1), 34–44 (2005)

14. Sindre, G.: Mal-activity Diagrams for Capturing Attacks on Business Processes.
In: Sawyer, P., Paech, B., Heymans, P. (eds.) REFSQ 2007. LNCS, vol. 4542, pp.
355–366. Springer, Heidelberg (2007)

15. Lodderstedt, T., Basin, D.A., Doser, J.: SecureUML: A UML-based Modeling Lan-
guage for Model-driven Security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.)
UML 2002. LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002)

16. Jurjens, J.: UMLsec: Extending UML for Secure Systems Development. In:
Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp.
412–425. Springer, Heidelberg (2002)

17. Elahi, G., Yu, E.: A Goal Oriented Approach for Modeling and Analyzing Security
Trade-Offs. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER
2007. LNCS, vol. 4801, pp. 87–101. Springer, Heidelberg (2007)

Adapting Secure Tropos for Security Risk Management 555

18. van Lamsweerde, A.: Elaborating Security Requirements by Construction of Inten-
tional Anti-models. In: Proceedings of the 26th International Conference on Soft-
ware Engineering (ICSE 2004), pp. 148–157. IEEE Computer Society, Los Alamitos
(2004)

19. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling Security Require-
ments Through Ownership, Permision and Delegation. In: Proceedings of the 13th
IEEE International Conference on Requirements Engineering (RE 2005). IEEE
Computer Society, Los Alamitos (2005)

20. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modelling social and in-
dividual trust in requirements engineering methodologies. In: Proceedings of the
3nd International Conference on Trust Management. LNCS, pp. 161–176. Springer,
Heidelberg (2005)

21. Mouratidis, H., Jurjens, J., Fox, J.: Towards a Comprehensive Framework for Se-
cure Systems Development. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS,
vol. 4001, pp. 48–62. Springer, Heidelberg (2006)

22. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: TROPOS:
an Agent-oriented Software Development Methodology. Journal of Autonomous
Agents and Multi-Agent Systems 8, 203–236 (2004)

23. Castro, J., Kolp, M., Mylopoulos, J.: Towards Requirements-Driven Information
Systems Engineering: The TROPOS Project. Information Systems 27, 365–389
(2002)

24. Mouratidis, H., Giorgini, P., Manson, G.A.: When Security Meets Software En-
gineering: a Case of Modelling Secure Information Systems. Information Sys-
tems 30(8), 609–629 (2005)

25. Mouratidis, H., Giorgini, P., Manson, G.: Integrating Security and Systems En-
gineering: Towards the Modelling of Secure Information Systems. In: Eder, J.,
Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 63–78. Springer, Heidelberg
(2003)

26. Genon, N.: Modelling Security during Early Requirements: Contributions to and
Usage of a Domain Model for Information System Security Risk Management.
Master thesis, University of Namur (2007)

27. Mouratidis, H., Philp, I., Manson, G.: A Novel Agent-Based System to Support
the Single Assessment Process of Older People. Journal of Health Informatics 9(3),
149–162 (2003)

28. Mouratidis, H.: A Security Oriented Approach in the Development of Multiagent
Systems: Applied to the Management of the Health and Social Care Needs of Older
People in England. PhD thesis, Department of Computer Science, University of
Sheffield, UK (2004)

29. van Lamsweerde, A., Letier, E.: Handling Obstacles in Goal-oriented Requirements
Engineering. Transactions on Software Engineering 26(10), 978–1005 (2000)

Probabilistic Entity Linkage for Heterogeneous

Information Spaces

Ekaterini Ioannou, Claudia Niederée, and Wolfgang Nejdl

L3S Research Center/Leibniz Universität Hannover
Appelstr. 9a, 30167 Hannover, Germany

{ioannou,niederee,nejdl}@L3S.de

Abstract. Heterogeneous information spaces are typically created by
merging data from a variety of different applications and information
sources. These sources often use different identifiers for data that de-
scribe the same real-word entity (for example an artist, a conference,
an organization). In this paper we propose a new probabilistic Entity
Linkage algorithm for identifying and linking data that refer to the same
real-world entity.

Our approach focuses on managing entity linkage information in het-
erogeneous information spaces using probabilistic methods. We use a
Bayesian network to model evidences which support the possible object
matches along with the interdependencies between them. This enables
us to flexibly update the network when new information becomes avail-
able, and to cope with the different requirements imposed by applications
build on top of information spaces.

Keywords: entity linkage, data integration, metadata management.

1 Introduction

Many applications rely on rich information spaces - collections of data from
a variety of different applications and information sources. Information spaces
are found in various systems of different research areas. For example Semantic
Web with applications analyzing social networks such as identifying conflicts of
interests [1], or researcher’s influence in a community [16]. Also, Personal Infor-
mation Management (PIM) with systems such as Beagle++ [8], and Haystack1,
as well as information integration approaches for Information Systems [19]. The
success of these applications depends on a clear picture about the data and their
relationships that the underling information spaces provide.

When compiling information spaces from heterogeneous sources, data refer-
ring to the same real-world entity (for example to a researcher or an artist, a
conference or an organization) often use different identifiers. Different attribute
sets (e.g. ‘hasName’, ‘author’), the use of naming variants (e.g., ‘Wolfgang Ne-
jdl’, ‘Nejdl W.’), and most importantly, the lack of a global coordination for
identifier assignment, forces each source to create and use its own identifiers.
1 http://haystack.lcs.mit.edu/

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 556–570, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Probabilistic Entity Linkage for Heterogeneous Information Spaces 557

Furthermore, each source describes entities in a way most adequate for its pur-
pose. A publication will describe a person using name and affiliation, whereas an
email will use the email address. It is the goal of Entity Linkage to identify data
describing the same real-world entity, and link their corresponding identifiers.

In order to cope with uncertainties inherent in entity linkage, in this paper we
propose a new probabilistic entity linkage algorithm, which is able to compute
the probability for each possible match between data according to the evidences
currently available in the information space. Our approach addresses the special
characteristics and resulting challenges of entity linkage in information spaces
for PIM:

– We can distinguish two main directions for identifying possible matches in
information spaces. The first is based on observing similarities between text
values of the data participating in a potential match. The second direction re-
lies on identifying relationships between the data. C1�−→ Entity linkage should
be able to follow both directions, and incorporate the observed evidences.

– Information spaces for PIM constantly change and evolve through interac-
tions of the user with his/her desktop. This changes the information avail-
able to the entity linkage algorithm. C2�−→ An entity linkage solution should
support incremental computation and adaptation of entity matching infor-
mation. Also, since entity linkage results are never finalized, the original data
of the information space should not be modified.

– A wide variety of applications can be executed on top of integrated infor-
mation spaces. Each application might have different requirements for the
entity linkage solution. For example, one application might need only certain
matches, whereas other applications might accept uncertain matches based
on only few evidences. C3�−→ Matches should be accompanied with a metrics,
indicating the belief we have that the corresponding identifiers refer to the
same real-world entity, based on the evidences in the current information
space.

The strong interconnections in information spaces are a valuable source of
entity matching evidence. Previous approaches operating in such information
spaces, such as [10] and [3], did not restrict themselves to entity attributes but
also systematically exploit the context of the entity, taking into account associa-
tions with other entities. In particular, [10] uses association properties of entities
in combination with normal attributes for computing record linkage. Also, [3]
exploits the link structure of Web pages about persons as an indicator for entity
(person) relationships. Our approach is most similar to the approach presented
in [10], which uses entity context in the form of relationships and propagation
of matching evidence information. However, we go further by also addressing
the other two PIM characteristics described above, while achieving comparable
precision and recall performance.

The main contribution of our work is an innovative entity linkage algorithm,
that addresses all three challenges listed, by: (i) clearly separating data of the

558 E. Ioannou, C. Niederée, and W. Nejdl

information space with data representing decisions for matches, (ii) enabling in-
cremental update of matches, when new information becomes available in the
information space, and (iii) associating each match with a probability indicating
the belief (confidence) we have for the existence of the specific match. Our al-
gorithm receives entity metadata and computes matching probabilities by con-
structing and maintaining a Bayesian network with matching evidences. As a
further contribution, we introduce and explain the problem as it appears in het-
erogeneous PIM information spaces, as a set of requirements to be addressed by
our algorithm.

The rest of the document is organized as follows. Section 2 gives an overview
over related work. Section 3 provides a formal formulation of the entity link-
age problem for PIM, and Section 4 presents our algorithm. Section 5 presents
our evaluation experiments, showing good precision and recall on real-life test
collections. Finally, Section 6 concludes and discusses future extensions.

2 Related Work

Variants of the problem we address in this paper have been investigated in differ-
ent research areas. Traditionally, the database community proposed algorithms
to detect database tuples that refer to the same real-world entity [20,12]; a prob-
lem known as record linkage, data integration, and merge/purge. More recently,
algorithms in the data mining community propose identifying real-world entities
as a way to perform data cleaning, and clustering tasks. These algorithms try
to identify the data that describe the same real-world through interconnections.
Merging objects is done by calculating the distance between data that possi-
bly describe the same real-world entity [5,6], or computing the interconnection
strength of their alternative connection paths [15,14].

The most relevant algorithms related to our approach are the ones that iden-
tify entities through interconnections between objects found in a given dataset.
Ananthakrishna et al. [2] exploit dimensional hierarchies to detect fuzzy du-
plicates in dimensional tables. The hierarchies are build by following the links
between the data of one table to data of other tables. Entities are matched
when the information along these generated hierarchies is found similar. The
most recent algorithm, motivated by a Personal Information Management sce-
nario, is the Reference Reconciliation algorithm by Dong et al. [10]. The authors
use interconnections to identify and merge data that possibly describe the same
real-world entity. Information about these merges is propagated into the rest of
the dataset (reconciliation propagation), along with the exchange of information
between the two merged references (reference enrichment). A modified version
of this algorithm [1] is used for detecting conflict of interests in paper reviewing
processes.

The DBLP system2 faces a similar problem with author names. To solve
it, they construct a co-author graph (nodes show authors, links show common
publications). Merging authors is done using edit distance algorithms, based on
2 http://dblp.uni-trier.de/

Probabilistic Entity Linkage for Heterogeneous Information Spaces 559

comparisons such as Levenshtein distance and soundex. The TAP system [11]
uses a Semantic Negotiation process through which the common descriptions (if
any) between the different resources are identified. These common descriptions
are then used to create a unified view of a given data set. Swoosh [4] is another
related system. Here, the authors focus on identifying the different properties
that affect the efficiency of such algorithms, and introduce different approaches
to address the possible combinations of the found properties.

3 Problem Formulation

Entity linkage is concerned with relations of objects described in heterogeneous
information spaces, with corresponding entities existing in the real-world. We
start with an information space consisting of metadata describing resources, for
example emails or publications. The metadata include descriptions of objects
such as persons or conferences. Objects that refer to the same real-world entities
will often have different identifiers. Relating objects of the information space to
entities of the real-world allows us to discover the objects which should have the
same identifier. We will give a formal definition of this problem in the following
paragraphs, and provide a summary of the used notation Table 1.

Table 1. A summary of the algorithm’s notation

Symbol Description
D The heterogeneous information space
r A Resource (for example an email, a publication)

M(r) The metadata describing resource r
e(ti, tj , φ) Evidence showing the similarity of ti with

tj , as given by function φ
repr,k The representation of object k in resource r

d(repr,k) The entity mapping for representation repr,k

P(d(repri,k)=d(reprj,m)) A match between two entity mappings

Definition 1. The information space D, on which we execute our algorithm, is a
set of metadata describing resources RD. It is defined as D = {M(ri) | ri ∈ RD},
where M(ri) denotes the metadata describing an individual resource ri.

Definition 2. Metadata for resource ri is represented as a set of tuples t. These
tuples describe the resource along with the objects found in the context of the
resource. It is defined as M(ri) = { tj | j ≤ sizeof(tri)}.

In this paper, we assume that D complies with the RDF data model, and thus
a tuple ti is a triple of the form 〈u, p, o〉. Symbol u denotes a URI, p denotes
a property, and o an RDF-object which can either be a literal, or a URI. URIs
are used as identities of resources. Ideally, the same identity would be used
whenever describing the same object. However, since the URI assignment is not
globally coordinated, multiple URIs are used for single real-world entities (see

560 E. Ioannou, C. Niederée, and W. Nejdl

Fig. 1. (a) Metadata for desktop resources, and (b) corresponding Bayesian network

[7] for more details). Therefore, even if URIs provide an appropriate formalism
for unique identifiers, the entity linkage problem is still present.

Definition 3. Let object representation repr,k denote the subset of the tuples
from M(r) which refer to/describe the same object k in r. It is defined as repr,k =
{t | t = 〈idk, p, o〉∨t = 〈s, p, idk〉}, where idk is the local identifier (URI) assigned
to object k.

Figure 1 (a) shows some example metadata describing three desktop resources
together with several representations for the contained objects. Two examples
of object representation are:
– repr77,a 1 = {〈 file:///P77/a 1, name, K. Marriott〉}, and
– repr127,a 1 = {〈 file:///P127/a 1, name, ‘Marriott, K’〉}

Definition 4. The entity mapping d(rep) semantically maps an object repre-
sentation rep to the corresponding real-world entity.

Obviously, D may consist of different representations repri,k, . . . , reprj ,m which
semantically refer to the same real-world entity, i.e., d(repri,k)= . . . = d(reprj ,m).
The challenge is that the mapping d is not known to the entity linkage algorithm.
To overcome this, we have to compute the match, P(d(repri,k) = d(reprj ,m)),
for pairs of object representations. Each match expresses the probability with
which specific entity mappings refer to the same real-world entity.

Definition 5. The probability of each match depends on the supporting informa-
tion in D. We represent each such supporting information item with an evidence
e(ti, tj , φ), where ti and tj denote metadata tuples of the entity mappings in our
match, and φ the function which reports similarity between ti and tj.

Going back to our example, the previous representations correspond to the real-
world entities d(repr77,a 1) and d(repr127,a 1). To decide whether these corre-
spond to the same entity we apply our algorithm and calculate the probability
of match P(d(repr77,a 1) = d(repr127,a 1)), based on evidences for this match

Probabilistic Entity Linkage for Heterogeneous Information Spaces 561

from the information space. An evidence for this match can be obtained using a
string similarity function. For example:
e(〈...P77/a 1, name, K. Marriott〉, 〈...P127/a 1, name, ‘Marriott, K’〉, StringSim).

4 The Entity Linkage Algorithm

4.1 A Brief Reminder of Bayesian Networks and Inference

Bayesian networks [18,13] are probabilistic graphical models for reasoning un-
der uncertainty, using cause-effect relationships modeled as a directed acyclic
graphs. Each node in the graph represents a variable with two or more possible
states. Each edge from parent node X to child node Y , represents a cause-effect
relationship with X being the cause and Y the effect, whenever the state of Y is
directly influenced by the state of X . Each node X is accompanied with a local
probability distribution P (X | U1, .., Um), showing the conditional probability of
all states in X given the states of its parents U1,...,Um. Nodes without parents
are associated with an unconditional P (X), representing prior probabilities.

Bayesian networks represent the joint probability distribution over all vari-
ables, defined as the product of all local probability distributions, as follows:

P (X1, X2, ..., Xn) =
n∏

i=1

P (Xi | parent(Xi)),

where P (Xi | parent(Xi)) corresponds to the local probability distribution of
node Xi, and parent(Xi) to the parent nodes of Xi.

Bayesian networks successfully determine the conditional probabilities of cause
nodes based on the current probabilities of the effect nodes, a task called prob-
abilistic inference. Given any new effects (evidences), probabilistic inference re-
computes the probability of the cause nodes which are responsible for these
effects. One well-known algorithm for probabilistic inference is message-passing
by Pearl [18]. Pearl’s algorithm is iterative, and in each iteration calculates the
belief of a node based on messages exchanged by the node X with its parents
U1, ..., Um and its children Y1, ..., Yn. When node X is activated, and receives all
messages πX(Ui) from its parents, and λYj (X) from its children, it calculates its
own belief as:

BEL(X) = αλ(X)π(X), where α is a normalization constant,

π(X) =
∑

U1,...,Um

P (X |U1, ..., Um)
m∏

i=1

πX(Ui), and λ(X) =
n∏

j=1

λYj (X) .

After calculating its belief, node X computes and sends new messages λX(Ui)
to its parents, and πYj (X) to its children. These messages are:

πYj (X) = α π(X)
∏

k �=j

λYk
(X)

λX(Ui) =
∑

X

λ(X)
∑

Uk:k �=i

P (X |U1, ..., Uk)
∏

k �=i

πx(Uk)

562 E. Ioannou, C. Niederée, and W. Nejdl

4.2 Structure of Our Bayesian Network

The goal of our algorithm, is to compute the probability of each match. We
perform this task using a Bayesian network constructed from information related
to the matches. The information is encoded using the following node types:

Entity Nodes. These nodes represent a match, e.g., P(d(repr77,a 1) =
d(repr127,a 1)). As explained in Section 3, D does not have the information to
directly compute matches, thus we can not specify the states of entity nodes.
The probability of their states is computed through probabilistic inference
based on the cause-effect relationships in the network.

Evidence Nodes. These nodes represent evidences for entity nodes. It is the
first type of nodes we use to represent evidence for entity nodes. Each ev-
idence node represents an evidence e(ti, tj , φ), with ti and tj being tuples
from the two representations constructing the match. Evidence nodes form
the prior probabilities in our network, since they have no parent nodes upon
which they depend. The unconditional probability distribution is determined
by the similarity function φ used for creating them. In our current approach,
we rely on the comparison of literals from ti and tj to measure compatibil-
ity between the corresponding properties. An extension of our approach for
operation in more heterogeneous contexts is the inclusion of a comparison
of the properties themselves and the inclusion of these similarities into the
aggregation of the matching probabilities.

Direct-Relation Nodes. These nodes rely on the fact that two resources are
related when their descriptions contain the same object. It is the second
type of nodes that influence the states of entity nodes. For example, match
P(d(repr77,a 1) = d(repr127,a 1)) implies a relation between resources r77 and
r127, which we encode in the direct-relation node dir-rel(r77, r127). Finding
evidences for more shared objects between these resources (e.g., additional
common authors) increases the belief for the relation of r77 with r127, and
consequently the belief in the corresponding matches. Direct-relation nodes
are the effect we can observe for entity nodes and for deductive-relation
nodes (explained bellow). The local probability distribution of their states
is directly influenced by their relationships with these node types.

Deductive-Relation Nodes. These nodes represent the indirect relation be-
tween two resources, inferred by combining the information of two nodes,
either direct-relation or deductive-relation. Combining direct-relation nodes
dir-rel(r77, r127) and dir-rel(r77, r128) for example, implies a new relation
between r127 with r128 (due to the common resource r127), which we encode
in deductive-relation node del-rel(r127, r128).

An important aspect of the Bayesian network is the cause-effect relationships
between the nodes. We have already explained these together with the different
types of nodes. Table 2 gives a summary.

Probabilistic Entity Linkage for Heterogeneous Information Spaces 563

Table 2. The possible cause-effect relationships used in our Bayesian network

Effect Nodes: (1) Evidence (2) Dir.-Rel. (3) Ded.-Rel.

Cause (1) Entity
√ √

Nodes: (2) Ded.-Rel.
√ √

4.3 Incremental Computation of the Network

To compute the probability of matches we collect evidence, positive and nega-
tive. Then, we calculate the probability of matches by constructing a Bayesian
network, modeling matches and related evidence. Starting point for this compu-
tation is an incrementally growing metadata set, which are added to D. We have
to update the Bayesian network incrementally, after addition of new metadata.

Upon addition of a new set of metadata, the algorithm performs the following
four steps: (a) Process the object representations contained in the metadata
added. By comparing the new representations with previous representations, the
algorithm identifies similarities, and updates the network with new evidence and
entity nodes. (2) Create direct-relation nodes to represent the effects we observed
which could cause these new entity nodes. (3) Analyze the updated network
and generate new information about the relation of resources, represented using
deductive-relation nodes. (4) Perform probabilistic inference on the Bayesian
network, and generate the updated probabilities for the matches. The remaining
paragraphs of this section describe these steps in more detail.

Step 1 - Adding Entity & Evidence Nodes. The new metadata contain
one or more object representations. In the first step, the algorithm updates the
Bayesian network with new evidences generated using these representations. We
start with similarity computations to identify resemblance between tuples from
the new representation rep(rnew , k) with compatible tuples from the existing
representations rep(rexists, m). In the current version of our algorithm, similar-
ities are detected using two functions. The first algorithm is String Similarity,
detecting string resemblance between literals of tuples3. The second algorithm is
Soundex Similarity, which detects the resemblance in pronunciation between lit-
erals4. Whenever similarity is above a given threshold, we consider it as evidence
for the match P(d(rep(rnew,k))=d(rep(rexists,m))).

An evidence node is created for each similarity identified. Since the current
version of our algorithm includes two similarity algorithms, we create one or
two evidence nodes for each match. All evidence nodes have three states, Good,
Moderate, and Poor, which we set based on computed similarity.

An entity node is created to represent the identified match P(d(rep(rnew,k))
= d(rep(rexists,m))), if such node does not yet exists. The relation between the
newly created evidence nodes with the entity node is represented by introducing
cause-effect relationships. All entity nodes have two possible states, Exists to

3 For String Similarity we use the JaroWinkler method from the SecondString API [9].
4 For Soundex Similarity we use the Apache Codec API.

564 E. Ioannou, C. Niederée, and W. Nejdl

indicate that the corresponding match exists, and Exists Not to indicate that
the match does not exist. The probabilities of these states are computed by
probabilistic inference.

Step 2 - Adding Direct-Relation Nodes. Direct-relation nodes represent the
observed effect that entity nodes could cause. They are created using only infor-
mation from the matches. For each match P(d(rep(rnew,k))=d(rep(rexists,m)))
we extract its resources, and use them to create a direct-relation node del-
rel(rnew,rexists), if this node does not yet exist. If there is more than one match
referring to the same two resources, we represent this through a cause-effect rela-
tionships created between the entity nodes and the corresponding direct-relation
node. The direct-relation nodes have two possible states, Yes to indicate that the
two resources are related, and No to indicate that the resources are not related.
The probabilities of these states are again computed by probabilistic inference.

Step 3 - Adding Deductive-Relation Nodes. This step analyzes the cur-
rent status of the network to extract indirect relations between the resources.
The underlying idea is similar to the one represented by the direct-relation
nodes. To identify possible indirect relations, our algorithm inspects the direct-
relation and deductive-relation nodes. Each node is considered as a transitive,
binary relation (b-relation) between the two participating resources. For ex-
ample, dir-rel(r77,r127) corresponds to b-relation (r77,r127), and dir-rel(r77,r128)
to b-relations (r77,r128). The algorithm extracts more relations by transitively
combining b-relations. For example, b-relation (r127,r127) is the transitive com-
bination of our two previous b-relations. We encode the new b-relation using a
ded-rel node, for example del-rel(r127,r127).

Since computing transitive b-relations is a recursive process, we need an ap-
propriate stopping criterium. In the current version of our algorithm, we enforce
a fixed ratio between entity nodes and deductive-relation nodes. This approach
allows us handle specific characteristics possibly present in D. If D contains only
few matches, the algorithm will be forced to search for evidence by incorporat-
ing many deductive-relation nodes. On the other hand, if D contains a relatively
big number of matches, the algorithm will include only a small subset of them,
enough to increase the belief for the specific node without overloading the net-
work with nodes.

Step 4 - Updating the Matches. Once the network is updated with nodes
representing new matches and evidences, we need to recalculate the probability
for the states of each node. This task is performed through probabilistic inference
which updates all nodes according to the current status of the network. To
minimize the time needed for doing this, we execute probabilistic inference only
on the newly added nodes and nodes related to them.

As explained in Section 4.1, computing the probability of a node requires in-
formation from its neighbor nodes. Computed results are propagated back to
the neighbor nodes to allow them to recompute their probability. For example,
consider node R from the Bayesian network of Figure 1 (b). Once node R is acti-
vated, and receives messages λr1(R), λr2(R), πR(e1), and πR(e2) from its parent

Probabilistic Entity Linkage for Heterogeneous Information Spaces 565

and children nodes, it computes: (i) its own belief as BEL(R) = αλ(R)π(R)
(marked as eq. 1 in the following equation list), and (ii) new messages to send
to its parent nodes (eq. 2), and children nodes (eq. 3). These messages are as
follow:

λ(R) = λr1(R)λr2(R), and π(R) = P (R|e1, e2)πR(e1)πR(e2) (1)

λR(e1) = P (R|e1, e2)πR(e2)λ(R) (2)

πr2(R) = π(R)λr1(R) (3)

The message computation in this example shows the main benefit of using cause-
effect relationships between nodes. Although node e1 is not directly connected
to node e2, the algorithm is able to propagate information from one node to
the other, through their cause-effect relationships with node R. Consequently, a
high belief of node e2 affects the belief of node R (eq. 1), which is reflected in
the message node R sends to node e1 (eq. 2). Finally, node e1 is affected when
it recomputes its belief using the message sent to it by node R.

Entity Linkage information for M(r127):
〈 el:///E1, object rep, file:///P127/a 2 〉,
〈 el:///E1, object rep, file:///P128/from 〉,
〈 el:///E1, belief, 0.96 〉, ...

Fig. 2. Part of the entity linkage information generated by our algorithm, for the
metadata of Figure 1

After executing probabilistic inference, we have an updated set of matches that
reflect the metadata present in the information space. Different representations of
the results matches are possible (i.e., include or do not include the probability of
each match), and the selected representation depends on the needs of the specific
system. Figure 2 shows one possible representation for part of the results of the
metadata from Figure 1. In this example, additional metadata are generated to
represent each match in the Bayesian network using the corresponding object
representations and belief.

5 Experimental Evaluation

We evaluated our approach using a JAVA implementation of the entity linkage
algorithm, including all features we described in the previous sections. For per-
forming probabilistic inference5on the Bayesian network we used the jSMILE
API6, and for creating a database to store internal information we used MySQL
5.07. The following paragraphs present the effectiveness of our algorithm on two
datasets, the Cora and a PIM dataset.
5 For efficiency reasons we use the ‘Backward simulation’ algorithm; a modified version

of Pearl’s algorithm that performs approximate inference.
6 http://genie.sis.pitt.edu/
7 http://www.mysql.com/

http://genie.sis.pitt.edu/
http://www.mysql.com/

566 E. Ioannou, C. Niederée, and W. Nejdl

5.1 Cora Dataset

The Cora dataset8 is a collection of publications collected from CiteSeer. Each
publication contains title and author names, using different forms for the names
(e.g., ‘J. Antonisse’, ‘Antonisse , H. J.’, ‘Antonisse’, ‘Jim Antonisse’). The
dataset was manually processed to accompany each publication author with an
identifier that indicates the corresponding real-world entity.

We processed the Cora dataset and converted each publication into RDF
triples. Our process generated 14392 triples describing title and authors for 1563
resources (publications). A total of 2882 triples described authors, with 9768
matches between these authors. Following the definitions of Section 3, we use as
object representation repAi,Ck

, the triples describing author Ai as given in the
triples generated for publication Ck. The task of our algorithm is then to compute
the probability of entity mappings of author Ai from publication Ck with author
Aj from publication Cn, represented by P(d(repAi,Ck

)=d(repAj ,Cn)).
The goals of our Cora dataset experiments were twofold: (i) evaluate the

effectiveness of our algorithm in identifying the entities, and (ii) compare the
effectiveness of our algorithm with the one given by the basic similarity functions
we use for generating the evidence nodes. We measured effectiveness, as usual in
information retrieval, by computing precision and recall. These measures were
calculated in respect to the actual real-world entities, as specified by the unique
identifier given for the authors of each publication in the Cora dataset.

We executed the experiments, by adding the triples generated from the Cora
dataset incrementally into an information space, which uses our algorithm for
entity linkage. After adding triples for 100 publications, we performed probabilis-
tic inference on the Bayesian network generated by our algorithm. The following
table shows the number of the matches that correspond to the different numbers
of publications.

Publications 1000 1100 1200 1300 1400 1563
Matches 4129 4620 5050 6036 7337 9774

Entity Linkage Effectiveness. Figure 3 shows the plots for precision and
recall under different probability thresholds, for several publications groups. The
plots do not include groups that contain less than 1000 publications because the
number of the corresponding matches is too small. Small values of the probability
threshold (θ <0.4) are not included in the plots since the results are similar to
θ=0.4.

As shown in Figure 3, our algorithm is able to maintain the same values for
precision and recall for the different probability thresholds. For lower proba-
bility thresholds (i.e., θ=0.4, and θ=0.5) we see that recall is very high and
precision is already quite satisfactory (around 0.9). Moving toward higher prob-
ability thresholds (i.e. θ=0.6, θ=0.7,) we see precision values increasing and, as
expected, decreasing recall values. Precision does not ‘automatically’ increase
with groups that have more publications —more data, and thus entities are
available— but rather reflects our belief for the entities in the current data.
8 We used the version from http://www.cs.umd.edu/∼indrajit/ER/index.html

http://www.cs.umd.edu/~indrajit/ER/index.html

Probabilistic Entity Linkage for Heterogeneous Information Spaces 567

(a) (b)

Fig. 3. (a) Precision, and (b) Recall vs. different thresholds

The results of these plots follow exactly the behavior explained in the anal-
ysis of our algorithm. It is clear that external algorithms are able to control
the precision/recall of the entities by selecting an appropriating value of the
probability threshold. For example, an application that needs only very certain
matches will choose a high probability threshold, whereas an application that
accepts uncertain matches a lower.

We also used our Cora dataset experiments to compare with previous ap-
proaches described in the literature. The authors of [10] reported precision 0.994
with recall 0.985, the authors of [17] had precision 0.842 with recall 0.909. To
compare these numbers with our results, we considered only matches gener-
ated by our algorithm that exceed a preselected low probability threshold (e.g.,
θ=0.5). As shown in our two plots, these matches have high precision and high
recall, similar to the ones given by these other algorithms. Our algorithm offers
two additional advantages: (i) identified matches do not alter original metadata,
(ii) our algorithm is able to further classify these matches according to the belief
we have for their existence.

Comparison with basic similarity functions. In this experiment we per-
formed a comparison of the effectiveness of our algorithm with the basic similar-
ity functions used for generating evidence nodes. The algorithms we considered
were Soundex Similarity and String Similarity, as described in Section 4.3.

Table 3 shows precision and recall values given by the two similarity functions
on different publications groups. In all cases we assume that the real-world enti-
ties are the ones those probability is above threshold 0.7. Our evaluation shows
our entity linkage clearly outperforms the effectiveness of the basic similarity
functions.

Table 3. Precision/Recall of the entity linkage, and the basis similarity functions we
used for generating the evidence nodes (θ=0.7)

Publications Entity Linkage String Similarity Soundex Similarity

200 0.219/0.969 0.892/0.081 0.482/0.362
400 0.218/0.977 0.422/0.065 0.246/0.346
600 0.358/0.982 0.329/0.05 0.181/0.220

568 E. Ioannou, C. Niederée, and W. Nejdl

Fig. 4. (a) Precision, and (b) Recall vs. different thresholds

5.2 PIM Dataset

As a second dataset for evaluating our algorithm we use metadata generated
in a personal information management environment, for desktop resources. As
there is no publicly available PIM dataset, we created a suitable collection of
metadata by simulating the behavior of a PIM application. Our PIM dataset
included metadata describing desktop resources from three groups:

– The first group contains publications randomly selected from the DBLP
system, to simulate arbitrary publications downloaded from the Web. This
group resulted in metadata describing 700 imported resources, with 1326
triples corresponding to authors.

– The second group contains publications imported into the PIM environment
from the DBLP system for which one of the authors is our co-worker at L3S.
The results of this import were metadata for 250 resources, with 480 triples
describing authors.

– The third group contains personal emails from one of the author’s email
client. Our goal was to identify and link authors from the publications with
the corresponding person sending emails. The entity linkage problem in this
case is somehow limited since persons are usually accompanied with email
addresses which can act as unique identifiers for them. For this reason, we ap-
plied our entity linkage algorithm only on the existing email address, person
name pairs. To capture the connections between these people, we randomly
selected a small portion of available emails. The result was metadata for 200
resources, with 400 triples describing people. This group contains the most
heterogeneous data, since each person has various email addresses and name
variants.

We evaluated our algorithm on this PIM dataset, by adding metadata incre-
mentally into an information space, which uses our algorithm for entity linkage.

Probabilistic Entity Linkage for Heterogeneous Information Spaces 569

We performed probabilistic inference on the Bayesian network generated by our
algorithm, after adding the metadata of these three groups. Figure 4 shows the
precision of the results generated by our algorithm. As shown, adding emails
does not reduce the precision of the generated results, which is what we would
have excepted since the emails contain the most heterogeneous data. As such, the
results indicate that our algorithm is able to handle the heterogeneous instances
of persons referenced in emails, and successfully link them with the author in-
stances gained from the publications.

6 Conclusions

In this paper, we addressed the problem of identifying and linking heterogeneous
data referring to the same real-world entity. This problem appears in a variety
of situations, where we have to merge and integrate heterogeneous data from
different information sources. Our algorithm uses a Bayesian network to explic-
itly model evidences supporting possible matches between different references,
along with interconnections between these matches. The algorithm runs incre-
mentally and does not modify existing data. Our evaluations showed that our
algorithm successfully achieves our goal of efficiently and effectively linking data
in heterogeneous information spaces.

We are currently investigating several directions for additional improvements
and extensions of our entity linkage algorithm. First, we want to continue our
experiments with other data sets and information sources. This will also include
more general scenarios including unknown data schemes and data extracted from
the Web. Finally, we will examine the use of other similarity functions for gener-
ating evidence nodes, and investigate the possibility of using different similarity
functions for different data scenarios.

Acknowledgements

This work was supported by the NEPOMUK project, funded by the European
Commission under the 6th Framework Programme (IST Contract No. 027705).

References

1. Aleman-Meza, B., Nagarajan, M., Ramakrishnan, C., Ding, L., Kolari, P., Sheth,
A.P., Arpinar, I.B., Joshi, A., Finin, T.: Semantic analytics on social networks:
experiences in addressing the problem of conflict of interest detection. In: WWW
2006 (2006)

2. Ananthakrishna, R., Chaudhuri, S., Ganti, V.: Eliminating fuzzy duplicates in data
warehouses. In: VLDB (2002)

3. Bekkerman, R., McCallum, A.: Disambiguating web appearances of people in a
social network. In: WWW 2005 (2005)

4. Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S.E., Widomr,
J., Jonas, J.: Swoosh: A generic approach to entity resolution. Technical report,
Stanford InfoLab (2006)

570 E. Ioannou, C. Niederée, and W. Nejdl

5. Bhattacharya, I., Getoor, L.: Deduplication and group detection using links. In:
Workshop on Link Analysis and Group Detection, ACM SIGKDD 2004 (2004)

6. Bhattacharya, I., Getoor, L.: Iterative record linkage for cleaning and integration.
In: DMKD (2004)

7. Bouquet, P., Stoermer, H., Mancioppi, M., Giacomuzzi, D.: OkkaM: Towards a
Solution to the “Identity Crisis” on the Semantic Web. In: Italian Semantic Web
Workshop, SWAP (2006)

8. Brunkhorst, I., Chirita, P.A., Costache, S., Julien Gaugaz, E.I., Iofciu, T., Minack,
E., Nejdl, W., Paiu, R.: The beagle++ toolbox: Towards an extendable desktop
search architecture. In: Semantic Desktop Workshop, ISWC (2006)

9. Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string distance metrics
for name-matching tasks. In: Workshop on Inf. Integration on the Web (2003)

10. Dong, X., Halevy, A.Y., Madhavan, J.: Reference reconciliation in complex infor-
mation spaces. In: SIGMOD Conference (2005)

11. Guha, R.V., McCool, R.: Tap: a semantic web platform. Computer Networks (2003)
12. Hernández, M.A., Stolfo, S.J.: Real-world data is dirty: Data cleansing and the

merge/purge problem. Data Min. Knowl. Discov. (1998)
13. Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, New York (2001)
14. Kalashnikov, D.V., Mehrotra, S.: Domain-independent data cleaning via analysis

of entity-relationship graph. ACM Trans. Database Syst. (2006)
15. Kalashnikov, D.V., Mehrotra, S., Chen, Z.: Exploiting relationships for domain-

independent data cleaning. In: SDM (2005)
16. Li, J.-Z., Tang, J., Zhang, J., Luo, Q., Liu, Y., Hong, M.: Eos: expertise oriented

search using social networks. In: WWW (2007)
17. Parag, Domingos, P.: Multi-relational record linkage. In: MRDM (2004)
18. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible in-

ference. Morgan Kaufmann Publishers Inc., San Francisco (1988)
19. Weis, M., Manolescu, I.: Declarative xml data cleaning with xclean. In: CAiSE

(2007)
20. Winkler, W.E.: The state of record linkage and current research problems. Tech-

nical report (1999)

Product Based Workflow Support:

Dynamic Workflow Execution

Irene Vanderfeesten, Hajo A. Reijers, and Wil M.P. van der Aalst

Technische Universiteit Eindhoven, Department of Technology Management,
PO Box 513, 5600 MB Eindhoven, The Netherlands

{i.t.p.vanderfeesten,h.a.reijers,w.m.p.v.d.aalst}@tue.nl

Abstract. Product Based Workflow Design (PBWD) is a successful new
approach to workflow process support. A description of the product, the
Product Data Model (PDM), is central to this approach. While other
research so far has focused on deriving a process model from the PDM,
this paper presents a way to directly execute the PDM. This leads to a
more dynamic and flexible support for the workflow process.

Keywords: Workflow Management, Product Data Model, Process Mod-
eling, Process Execution Strategies.

1 Introduction

Product Based Workflow Design (PBWD) [1,4,5] is a successful new approach to
workflow process design in which a description of the workflow product is central.
So far, PBWD research has mainly focused on generating process models from
a product structure, either manually or automatically. The manual derivation of
a process model has turned out to be very time consuming [4]. Experiences with
the automatic generation of process models [7] triggered a new idea to provide
flexible and dynamic support for process execution directly on the basis of the
product structure, i.e. without first deriving a process model that describes the
desirable flow of work. We will refer to this concept as Product Based Workflow
Support (PBWS).

2 Product Based Workflow Support

The product of a workflow process is usually an informational product, e.g. the
decision on an insurance claim or the allocation of a subsidy. The structure of
the workflow product can be described by a tree-like structure similar to a Bill-
of-Material from manufacturing [2]. Such a description of a workflow product is
called a Product Data Model (PDM). Figure 1(a) shows a very small example of
a PDM. Because of space limitations we refer to [7] for the complete explanation
of this example.

In general, a PDM consists of a number of data elements (depicted as cir-
cles) that are linked to each other through operations (depicted as arcs). Each

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 571–574, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

572 I. Vanderfeesten, H.A. Reijers, and W.M.P. van der Aalst

operation can have one or more input data elements and produces exactly one
output data element. The operation on the input elements can be e.g. a cal-
culation, an assessment by a human, or a rule-based decision to determine the
output element. An operation is executable when all of its input elements are
available. Moreover, several operations can have the same output element while
having a different set of input elements. These operations represent alternative
ways to produce the output product. Finally, operations can have a number of
attributes such as the execution cost, processing time, failure probability and
execution conditions.

The basic idea of PBWS is that dynamically, during each step of the process
execution, all data elements are determined that are available for a case. At run
time, it can then be decided what would be the most proper next step in the
execution of the process, considering the information available for the specific
case, the underlying product specification, and the desired performance.

2.1 Runtime Execution of a PDM

When the workflow process is executed for a particular case some data elements
are initially provided by the client or can be retrieved from other systems. Based
on these available data elements, new information is produced step-by-step by
executing enabled operations. Figure 1 illustrates how the runtime execution of
our example PDM works. Suppose that at the start of the process input data
elements B, E, and F are available (see Figure 1(b)). The operations that are
now enabled for execution are Op1 and Op2, since all of their input elements are
available (Figure 1(c)). Operation Op3 is not executable because data element
C is not available yet and Op4 is not executable since D is not present. Now,
we have to choose which of the two executable operations (Op1, Op2) we select.
Suppose we select Op1. Then, data element C is produced (Figure 1(d)). The
executable operations are calculated again: Op2 and Op3. And one of those oper-
ations is selected. Suppose we select Op3. Then, the end product A is determined
and the process ends.

In many situations more than one operation is executable, e.g. in the first step
of the example we could have chosen for Op2 in stead of Op1, which would have
led to the end product immediately, but also could have had different outcomes
in terms of performance (e.g. cost, throughput time). For example, when the
processing time of Op2 is less than the processing time of Op1, selecting Op2 as
a next step would perhaps be a better decision. Now, the question arises how to
select the best operation from the set of executable operations to proceed. We
define ‘best’ with respect to the single case, i.e. the performance goal of the case
in isolation (e.g. cost, total processing time) is optimized.

2.2 Execution Strategies

We have identified several selection strategies to find the best candidate from
the set of enabled operations. These strategies are related to the attributes and

Product Based Workflow Support: Dynamic Workflow Execution 573

Op1 Op2

Op4Op3

(a)

Op1 Op2

Op4Op3

(b)

Op1 Op2

Op4Op3

(c)

Op1 Op2

Op4Op3

(d)

Op1 Op2

Op4Op3

(e)

Op1 Op2

Op4Op3

(f)

Fig. 1. The execution of a PDM: (a) The PDM, (b) Input data elements (B, E,F) are
available, (c) Executable operations in the first step, (d) Data element C is produced,
(e) Executable operations in step two, (f) The end product (A) is determined

properties of the operations. We drew inspiration from sequencing and scheduling
rules in the field of logistics and production planning [3,6]:

– Random - The best candidate is randomly selected (cf. Random [3]).
– Lowest cost - The best candidate is the operation with the lowest cost.
– Shortest processing time - The operation with the shortest duration is chosen

(cf. SPT [3]).
– Distance to root element - The distance of an operation to the root element

is the ‘shortest path’ from this operation to an operation that produces
the root element. The distance to the root element can be measured as the
minimal number of operations to the root element (cf. FOPNR [3]).

– Shortest remaining processing time - The shortest remaining processing time
is another form of the distance to the root element. In this case the processing
times of the operations on the path to the root element are added up (cf.
SR (shortest remaining processing time) [3]).

These execution strategies have been implemented in a prototype of a PBWS
system. The system is able to load a PDM and generate case execution recom-
mendations based on the PDM and the selected strategy. More details of this
prototype are described in [7].

574 I. Vanderfeesten, H.A. Reijers, and W.M.P. van der Aalst

3 Conclusion

This paper presents Product Based Workflow Support: a dynamic approach to
workflow execution on the basis of a product data model. In contrast to conven-
tional workflow management support, there is no need for a process model that
guides the execution. Therefore, a more dynamic and flexible support is possible.
Based on the data elements readily available for a specific case on the one hand
and a selected strategy (i.e. lowest cost, shortest processing time, etc.) on the
other hand, this approach recommends the next step that should be performed
for the case. In contrast to conventional languages there is a clear separation of
concerns: the product data model is based on functional requirements while the
selected strategy focuses on performance (e.g., minimize costs).

Using the strategies presented, the selection of the best candidate is only
optimized locally (i.e. within the set of executable operations); the effect of
the selected operation on future steps is not taken into account. Thus, such a
strategy does not necessarily lead to the best overall path to the end product.
To overcome this problem of local optimization, the use of the theory on Markov
Decision Processes is a promising direction. With this analytical method, it is
possible to completely compute the optimal strategy.

Acknowledgement

This research is supported by the Technology Foundation STW, applied sci-
ence division of NWO and the technology programme of the Dutch Ministry of
Economic Affairs.

References

1. van der Aalst, W.M.P.: On the Automatic Generation of Workflow Processes based
on Product Sstructures. Computers in Industry 39, 97–111 (1999)

2. Orlicky, J.A.: Structuring the Bill of Materials for MRP. Production and Inventory
Management, 19–42 (December 1972)

3. Panwalkar, S.S., Iskander, W.: A Survey of Scheduling Rules. Operations Re-
search 25, 45–61 (1977)

4. Reijers, H.A.: Design and Control of Workflow Processes. LNCS, vol. 2617. Springer,
Berlin (2003)

5. Reijers, H.A., Limam Mansar, S., van der Aalst, W.M.P.: Product-based Workflow
Design. Journal of Management Information systems 20(1), 229–262 (2003)

6. Silver, E., Pyke, D.F., Peterson, R.: Inventory Management and Production Plan-
ning and Scheduling. John Wiley and Sons, Chichester (1998)

7. Vanderfeesten, I., Reijers, H.A., van der Aalst, W.M.P.: Product Based Workflow
Support: A Recommendation Service for Dynamic Workflow Execution. BPM Cen-
ter Report BPM-08-03, BPMcenter.org (2008)

Location-Based Variability for

Mobile Information Systems

Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini

University of Trento - DISI, 38100, Povo, Trento, Italy
{raian.ali,fabiano.dalpiaz,paolo.giorgini}@disi.unitn.it

Abstract. Advances in size, power, and ubiquity of computing, sensors,
and communication technology make possible the development of mobile
or nomadic information systems. Variability of location and system be-
havior is a central issue in mobile information systems, where software
behavior has to change and re-adapt to the different location settings.
In this paper, we motivate the need for integration of variable location
and variable software behavior. We adapt the goal-oriented framework
i*/Tropos to model and analyze the alternative goal satisfaction strate-
gies and the location where each alternative can be adopted. We intro-
duce analysis techniques for the proposed location-based models.

1 Introduction

Advances in computing and communication technology have recently led to the
growth of interest in Mobile Information Systems (hereafter MobIS). MobISs em-
phasize mobility concerns (space, time, personality, society, environment, and so
on) often not considered by traditional desktop systems [1]. Technology advances
do not necessarily imply the easiness of exploiting it, rather more challenges are
introduced. Nomadic user expects smarter information systems, able to adapt
their behavior without human intervention. MobIS has to reason about the sur-
rounding location, including user itself, and adapt autonomously their behavior
to location settings. Consequently, we need to model and analyze the variable
location and the variable behavior and define how location influences behavior.

Behavioral and location variability are complementary. Supporting two al-
ternative behaviors, without specifying when to adopt each of them, arises the
question “why do we support two alternatives and not just one?”. Conversely,
considering location variability without supporting alternative behaviors arises
the question “what can we do if location changes?”. We use i*/Tropos [2,3] goal-
oriented framework to model alternative strategies for MobIS to satisfy a goal,
and specify location properties that apply to each alternative. This allows us
to support the decision making process when deriving a location-tailored MobIS
instance and make possible different kinds of reasoning. The intended automated
reasoning allows to answer questions like: “are all MobIS objectives achievable
in a given location?”, “what is the optimal alternative to achieve an objective in
a given location?”, and “what is the optimal modification that is needed in one
location to satisfy some MobIS objectives?”.

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 575–578, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

576 R. Ali, F. Dalpiaz, and P. Giorgini

2 Location-Based Goal Models

In i*/Tropos, the system is modeled as a set of inter-dependent actors having
goals, and that can commit to strategies to satisfy their goals. Autonomous
selection among goal satisfaction strategies requires criteria an actor builds its
decision upon. One alternative can be recommended in a certain location, while
it can be even unapplicable in others. The criteria to select among alternatives

Fig. 1. A location-based goal model

is not explicitly modeled in the current i*/Tropos goal model. Fig.1 shows a
partial goal model of a PDA MobIS intended for a client in a shopping mall.
As a step to support location-based variability, i*/Tropos can attach location
properties to its following variability points:

1. Location-based Or-decomposition: Or-decomposition is the basic variability
construct; in current i*/Tropos the choice of a specific Or-alternative is
left to actor intention, without considering location properties that can in-
hibit some alternatives. E.g. (from Fig. 1): goal Establish connection can be
achieved using Wireless Connection only if the mall has a wireless network
and client is authorized to access it, and client’s PDA supports WiFi (L1).

2. Location-based contribution to soft-goals : the value of contributions to soft-
goals can vary from one location to another. E.g. the contribution from goal
Wireless Connection to soft-goal Reliable Connection changes depending on
the level of received signal: if user is in a location where the signal coming
from the WiFi access point is high (L2), the contribution will be positive,
while if the client is far from the WiFi access point and the signal level is
poor (L3), the contribution will be negative.

3. Location-based dependency: in certain locations, an actor is unable to satisfy
a goal using its own strategies. In such case, the actor might delegate this
goal to another actor that is able to satisfy it. E.g. the MobIS can satisfy
goal Provide Answer by fulfilling Query Mall DB ; while if the database is
offline and a mall website exists and has a mobile devices version (L4), the
MobIS can delegate the goal to Mall Website browsing that website.

Location-Based Variability for Mobile Information Systems 577

4. Location-based goal activation: an actor, when location settings change,
might find necessary or possible triggering (or stopping) the desire of satisfy-
ing a goal. E.g. if the MobIS has adopted the alternative Wired Connection
to establish a connection, and while the client is getting to one cable-based
terminal, the PDA detects a wireless signal (L5), the goal Wireless Connec-
tion could be triggered to better satisfy the soft-goals.

5. Location-based And-decomposition: a sub-goal might (or might not) be
needed in certain location, that is some sub-goals are not always manda-
tory to fulfill the top-level goal in And-decomposition. E.g. to satisfy the
goal Wired Connection, the MobIS has first to show a demo to client only if
the client is using the system for the first time (L6).

3 Defining, Eliciting and Modeling Location

We refer by “location” to an environment with high degree of commonality, like
shopping malls, museums, or airports. The commonality concerns location con-
structs: resources (physical and informational); actors having responsibilities,
objectives, and relations with resources and other actors; and rules that coor-
dinate the interaction among actors and the use of resources. Using i*/Tropos
concepts, we define location from the perspective of an actor as: “the set of
available actors and resources that can be employed to achieve actor goals”.
Goal analysis will capture location properties that are needed at each variability
point, and this in turn will enable us to construct location model. In our broad
vision, location will be the input that guides MobIS derivation process: MobIS
will be instantiated according to the location model instance as shown in Fig. 2.

Fig. 2. The process of instantiating a location-tailored MobIS instance

4 Analysing Location-Based Models

The proposed location-based goal model has two components: (1) the goal model
that describes how a goal can be satisfied and (2) the location properties that
constrain each alternative. Location properties are predicates specified over a lo-
cation model, whose truth values can be either true or false at a certain location.
By formalizing location model and location-based goal model, we can do several
analysis. We outline now three types of such automated analysis:

1. Location-based goal satisfiability (LGS): it verifies whether a goal is achiev-
able through one alternative in a specific location.

578 R. Ali, F. Dalpiaz, and P. Giorgini

2. Location properties satisfiability (LPS): this analysis checks if the current
location structure is compliant with the MobIS goals. It is exploited to iden-
tify what is missing in a particular location where some top-level goals have
been identified as unsatisfiable by LGS. When a goal cannot be satisfied,
LPS will identify the denying conditions and find ways to solve the problem.

3. Preferences analysis (PA): this type of analysis requires the specification of
preferences over alternatives. Preferences can be specified using soft-goals
as in [4]. We need this analysis in two cases: 1) when there are several al-
ternatives to satisfy a goal: the selection will be based on the contributions
to preferred soft-goals. 2) when there is no applicable alternative: in this
case, LPS might provide several proposals about the needed location mod-
ifications. The adopted modifications are those leading to better satisfying
preferences expressed over soft-goals.

5 Discussion and Future Work

We have briefly shown how to integrate goal satisfaction strategies with the
concept of location, and what kind of analysis we can do over the location-based
models. More details and a concrete example can be found in our technical report
([5]). For the future, we need to define a modeling language for location, and
to study how to capture location model and integrate it with system behavior
variability at different levels (goal satisfaction is one of them). Formalization is
a basic need, since location is perceived and needed to perform reasoning. We
will look for an appropriate formalism to automate the analysis techniques.

Acknowledgement

This work has been partially funded by EU Commission, through the SEREN-
ITY project, by MIUR, through the MEnSA project (PRIN 2006), and by the
Provincial Authority of Trentino, through the STAMPS project.

References

1. Krogstie, J., Lyytinen, K., Opdahl, A.L., Pernici, B., Siau, K., Smolander, K.: Re-
search areas and challenges for mobile information systems. International Journal
of Mobile Communications 2(3), 220–234 (2004)

2. Yu, E.: Modelling strategic relationships for process reengineering. Ph.D. Thesis,
University of Toronto (1995)

3. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8(3), 203–236 (2004)

4. Liaskos, S., McIlraith, S., Mylopoulos, J.: Representing and reasoning with prefer-
ence requirements using goals. Technical report, Dept. of Computer Science, Uni-
versity of Toronto (2006), ftp://ftp.cs.toronto.edu/pub/reports/csrg/542

5. Ali, R., Dalpiaz, F., Giorgini, P.: Location-based variability for mobile information
systems. Technical Report DISI-08-008, DISI, University of Trento,
http://eprints.biblio.unitn.it/archive/00001351/

ftp://ftp.cs.toronto.edu/pub/reports/csrg/542
http://eprints.biblio.unitn.it/archive/00001351/

Modelling, Simulation, and

Performance Analysis of Business Processes
Involving Ubiquitous Systems

Patrik Spieß1, Dinh Khoa Nguyen1, Ingo Weber1,
Ivan Markovic1, and Michael Beigl2

1 SAP Research, CEC Karlsruhe, Germany
{patrik.spiess,dinh.khoa.nguyen,ingo.weber,ivan.markovic}@sap.com

http://sap.com/research/
2 IBR, Braunschweig, Germany

http://www.ibr.cs.tu-bs.de/dus/

Abstract. A recent trend in Ubiquitous Computing is that embedded
software (e.g. in production machines, wired or wireless networked sen-
sors and actuators, or RFID readers) directly offers Web Services. This
allows it to directly participate in IT business processes. Our work sug-
gests an approach to assess and compare the performance of such hybrid
process models. It critically evaluates BPEL, the standard instrument for
creating executable process descriptions, for its support of the dynamic
nature of ubiquitous services, e.g. due to device mobility and unreliable
wireless communication. 1

1 Introduction

The near future vision of industrial production (which we see merely as a special
case of Ubiquitous Computing) is moving towards an Internet of things, in which
smart machinery and smart semi-finished products are integrated into enterprise
business processes, to enable more flexibility and adaptability by including some
business intelligence already at a very low, technical level.

Following a SOA concept, we argue that the functionalities of those devices
should be made available as Web Services, which could be consumed by other
devices or composed into higher-level Web Services. As the shop-floor devices
are now powerful enough regarding hardware resources such as computing power
and memory, they can be designed to host Web Services (SOA-ready devices)
and hence can easily be accessed from within business processes.

Given a completely service-oriented device landscape, the next challenges are
how to describe business processes orchestrating such hybrid systems using ex-
ecutable process description languages like BPEL [1] and what are appropriate
metrics to assess the operational performance of a given process model. In this
1 The authors would like to thank the European Commission and the partners of

the European IST projects SOCRADES (www.socrades.eu) and SUPER (www.ip-
super.org), for their support.

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 579–582, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

580 P. Spieß et al.

paper, we propose the modelling and simulation approaches for standard, exe-
cutable business process descriptions together with ubiquitous systems. We ex-
plain also how to use simulation results for performance analysis of such hybrid
business processes.

2 Modelling and Simulation Approach

In order to evaluate the performance of an executable process description in a
ubiquitous environment, we suggest explain the benefits an problem when using
the BPEL standard, introduce a model of the heterogeneous device landscape
and lay out our simulation approach.

2.1 Business Process Description and Execution

For the modelling of an executable business process, we suggest to use BPEL as
the de-facto industry standard. A BPEL process description contains references
to all services that it interacts with. This limitation is against the nature of a
ubiquitous environment, where devices (and consequently, the services hosted
on them) can appear and disappear unpredictably at run-time. Our solution to
overcome this problem is to extend the BPEL engine, providing the ability to
resolve generic partner link descriptions with concrete endpoints stored in the
device landscape model at run-time.

Another deficiency of BPEL, mentioned by Wohed et. al. in [5], is the missing
support for broadcasting a message to several partners through partner links.
Constrained, embedded devices, especially when using a wireless link, would
benefit from this functionality. We mitigate this limitation by suggesting and
supporting modifications in BPEL and the engine executing it. Our work is
based on the engine presented in [3] where Hackman et al. introduced a new
BPEL element called Partner Group. During run-time, a BPEL engine support-
ing partner groups features addition and removal of partner links to a partner
group, as well as binding and unbinding a partner link dynamically at run-time.
For instance, when a message from a previously unknown service is received,
its endpoint is mapped (bound) to a currently unbound partner link and this
partner link can be added to a partner group. After that, the partner link can
be unbound again and is ready for the next incoming messages. Reply messages
can be sent to a whole partner group.

2.2 Modelling the Service Landscape

The service landscape model is a data structure, designed in XML, that describes
a landscape containing hierarchical layers, groups of nodes, nodes, and services
hosted on a node. Each service is specified by a service endpoint and a service
type. By discovering the service type of a BPEL partner link, the simulation
engine can map this partner link to an existing endpoint in the landscape.

Using simulated services generated from the service landscape definition is
useful in the following situations: A process model should be tested with more

Modelling, Simulation, and Performance Analysis 581

devices than physically available, or a process needs to be repeated many times
to get a stable average assessment which might take too long. Our simulation
approach is straightforward: Replacing the ubiquitous devices with a web appli-
cation server and letting the server provide the services instead of the devices. If
left uncompensated, this would however lead to unrealistically high performance
measurements. To compensate, we introduce technical virtual costs for service
invocations.

The virtual costs of service invocations that cross the boundary between stan-
dard PC-based back-end subsystem and the embedded subsystem should be set
considerably higher than communications within these subsystems. The cost for
interactions within the embedded subsystem should be set higher than the cost
for interactions within the back-end subsystem. For more complex systems, more
than two layers may exist, each with its own cost of internal service interactions.
For convenience, a default access cost can be assigned at each level of the land-
scape: on the whole landscape, on a layer, on a group of nodes, and on a node.
Each service on a node can have a specific extra cost. The costs defined for a
simulation must reflect the resources that are used for each step of the process
execution (in the best case known by measurements) and their priority for the
individual application. A time critical application would e.g. assign a higher cost
to high-latency steps; an application that uses a volume-based 3G subscription
would assign high cost to steps that send large messages over the 3G link.

Instead of measuring the performance of the simulated devices, we let the
simulation engine sum up the virtual cost of each service invocation. The total
cost (and other statistical meta data) of each process instance (from instantia-
tion to termination) under varying environmental conditions (i.e. varying return
values of simulated services) is summed up during the simulation. We assume
the estimation to be Gaussian distributed, thus we are able to compute a reliable
averaged performance indicator by averaging the results over many runs.

2.3 Simulation Approach

For simulating the process model on top of virtual devices and services (modelled
in a landscape definition document) we need a business process engine that
supports the following non-standard features. (1) Dynamic mapping of a partner
link at runtime with a service binding stored in the device landscape. (2) Reusing
a partner link at runtime, i.e., unbinding a partner link and then rebinding it to a
new device. (3) Using the landscape definition to get cost values of cross-layered
service invocations in order to calculate the total cost of process instance.

As a basis for our implementation, we chose the Sliver [4] open source BPEL
engine, which can parse and execute a BPEL process description and covers most
of the BPEL concepts. It stores all partner links in a hash map, and provides
getter and setter methods to modify them at runtime. That means partner links
can be mapped (or bound), unbound, and reused dynamically at runtime. We
extended the engine for many other purposes, especially to link it with the
device landscape in order to resolve partner links at run-time and to calculate
invocation costs during process execution.

582 P. Spieß et al.

To simulate the connection and disconnection of devices, we modify the device
landscape while a process instance is running. New devices can join or leave the
device landscape providing new or taking away existing services. At the end of
the simulation, when the process ends successfully or in an erroneous state, the
calculated total cost is returned to a GUI for users to evaluate the process. The
simulation engine can be instructed to repeat this process n times and return
the average costs.

3 Conclusion and Future Work

In this paper we briefly described our analysis of the suitability of BPEL to sup-
port processes that interact with ubiquitous systems and sketch the suggestions
for extensions to that standard. We also introduced an approach for estimating
and comparing the performance of the execution of a process description. The
concepts presented in this paper are based on an ongoing implementation by
extending an experimental, open source BPEL engine.

This work is part of a larger project that is intended to facilitate the modelling
of the behaviour of a hybrid system including services provided by both enter-
prise applications and ubiquitous systems. Process modelling experts should be
enabled to model freely without the need to care for the resource constraints
of ubiquitous systems. An automatic optimization step will partition the pro-
cess and deploy the connected fragments e.g. on small execution engines running
on the ubiquitous devices themselves [2]. The distributed version of the process
will feature more locality during its execution and will use less system resources
although it shows the same behaviour as the original one. The work presented
in this paper will be used to evaluate the performance gain of the automatic
optimization.

References

1. Web Services Business Process Execution Language Version 2.0 (OASIS Standard)
(April 2007), http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

2. Spieß, P., Karnouskos, S.: Maximizing the business value of networked embedded
systems through process-level integration into enterprise software. In: Proc. Second
Intl. Conf. on Pervasive Computing and Applications (July 2007)

3. Hackmann, G., Gill, C., Roman, G.-C.: Extending BPEL for interoperable pervasive
computing. In: Proceedings of the 2007 IEEE International Conference on Pervasive
Services, pp. 204–213 (2007)

4. Hackmann, G., Haitjema, M., Gill, C.D., Roman, G.-C.: Sliver: A BPEL Workflow
Process Execution Engine for Mobile Devices. In: ICSOC, pp. 503–508 (2006)

5. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Pattern based
analysis of bpel4ws. Technical Report Technical Report FIT-TR-2002-04, Faculty
of Information Technology, Queensland University of Technology (December 2002)

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

Open Source Workflow: A Viable Direction for BPM?
Extended Abstract

Petia Wohed1, Nick Russell2, Arthur H.M. ter Hofstede3,
Birger Andersson1, and Wil M.P. van der Aalst2,3

1 Stockholm University/KTH, Stockholm, Sweden
{petia,ba}@dsv.su.se

2 Eindhoven University of Technology, Eindhoven, The Netherlands
{n.c.russell,w.m.p.v.d.aalst}@tue.nl

3 Queensland University of Technology, Brisbane, Australia
a.terhofstede@qut.edu.au

With the growing interest in open source software in general and business process man-
agement and workflow systems in particular, it is worthwhile investigating the state
of open source workflow management. The plethora of these offerings (recent sur-
veys such as [4,6], each contain more than 30 such systems) triggers the following
two obvious questions: (1) how do these systems compare to each other; and (2) how
do they compare to their commercial counterparts. To answer these questions we have
undertaken a detailed analysis of three of the most widely used open source work-
flow management systems [1]: jBPM1, OpenWFE2, and Enhydra Shark3. Another obvi-
ous candidate would have been the open-source workflow management system YAWL
(www.yawlfoundation.org). However, given the authors’ close involvement in
the development of YAWL, we did not include it in our evaluation.

This analysis was based on the workflow patterns framework [2]. This framework
provides a collection of generic constructs which recur in a workflow context. It is di-
vided into control-flow, data, and resource patterns based on the process perspectives
outlined in [3]. A patterns-based analysis is guided by explicit evaluation criteria which
are identified for each pattern. It aims to investigate the ability of a workflow system to
support each of the patterns that have been identified and is based on the premise that
each pattern describes a feature that it is desirable to support in a business process con-
text. Hence, the workflow patterns framework is not concerned with expressive power,
but rather with suitability (see e.g. [5]).

We choose to use the workflow patterns as the basis for our investigation because it is
a well established framework that is widely used for WFMS evaluations (as evidenced
by the numerous references to it). There are already a substantial number of evaluations
of contemporary offerings based on the patterns and they provide an effective means of
comparing the capabilities of differing systems on a neutral basis. For the purposes of
this analysis, the results from some of these earlier evaluations (i.e., Staffware, Web-
Sphere MQ and Oracle BPEL PM) are added to the results from the analysis of open
source systems summarized here.

1 www.jboss.com/products/jbpm
2 www.openwfe.org
3 www.enhydra.org/workflow

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 583–586, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

www.yawlfoundation.org
www.jboss.com/products/jbpm
www.openwfe.org
www.enhydra.org/workflow

584 P. Wohed et al.

Table 1. Support for the Control-flow Patterns in A–Staffware 10, B–WebSphere MQ 3.4, C–
Oracle BPEL PM 10.1.2, 1–JBOSS jBPM 3.1.4, 2–OpenWFE 1.7.3, and 3–Enhydra Shark 2.0

Basic Control–flow A B C 1 2 3 Termination A B C 1 2 3
1. Sequence + + + + + + 11. Implicit Termination + + + + + +
2. Parallel Split + + + + + + 43. Explicit Termination – – – – – –
3. Synchronization + + + + + + Multiple Instances
4. Exclusive Choice + + + + + + 12. MI without Synchronization + – + + + +
5. Simple Merge + + + + + + 13. MI with a pri. Design Time Knl + – + – + –
Advanced Synchronization 14. MI with a pri. Runtime Knl. + – + – + –
6. Multiple Choice – + + – +/– + 15. MI without a pri. Runtime Knl. – – +/– – – –
7. Str Synchronizing Merge – + + – – – 27. Complete MI Activity – – – – – –
8. Multiple Merge – – – + – – 34. Static Partial Join for MI – – – – + –
9. Structured Discriminator – – – – + – 35. Static Canc. Partial Join for MI – – – – + –
28. Blocking Discriminator – – – – – – 36. Dynamic Partial Join for MI – – – – – –
29. Cancelling Discriminator – – – – + – State-Based
30. Structured Partial Join – – – – + – 16. Deferred Choice – – + + – –
31. Blocking Partial Join – – – – – – 39. Critical Section – – + – – –
32. Cancelling Partial Join – – – – + – 17. Interleaved Parallel Routing – – – – +/– –
33. Generalized AND-Join – – – + – – 40. Interleaved Routing – – – – + –
37. Local Sync. Merge – + + – +/– – 18. Milestone – – +/– – – –
38. General Sync. Merge – – – – – – Cancellation
41. Thread Merge – – +/– +/– – – 19. Cancel Activity + – +/– + – –
42. Thread Split – – +/– +/– – – 20. Cancel Case – – + – +/– +
Iteration 25. Cancel Region – – +/– – – –
10. Arbitrary Cycles + – – + + + 26. Cancel MI Activity + – + – – –
21. Structured Loop – + + – + – Trigger
22. Recursion + + – – + + 23. Transient Trigger + – – + + –

24. Persistent Trigger – – + – – –

The investigation was undertaken as follows. Solutions for each of the 126 patterns
were sought in each of the tools evaluated. Where successfully identified, they were
deployed and tested. The initial results were summarised and each of the system ven-
dors/developers was invited to provide feedback on their accuracy. On the basis of these
responses, a final set of results were agreed upon and they were comprehensively doc-
umented in the form of a technical report [7]. Tables 1- 3 summarise the main findings.

Overall, one can conclude that the range of constructs supported by the three systems
is somewhat limited, although OpenWFE tends to offer a considerably broader range of
features than jBPM and Enhydra Shark.

From a control-flow standpoint, jBPM and Enhydra Shark support a relatively lim-
ited set of control-flow operators (offering little support for patterns other than those re-
lated to basic control-flow). OpenWFE offers broader support for variants of the partial
join and discriminator constructs and also for controlled task concurrency (i.e. multiple
instance tasks).

For the data perspective, all three offerings support a limited range of data element
bindings and rely heavily on case-level data elements. However, whilst simplistic, the
data passing strategies employed in all three systems are reasonably effective and in-
clude consideration of important issues such as inline data manipulation when data
elements are being passed. There are limited capabilities for handling external data in-
teraction without utilising programmatic extensions. Another area of concern relates
to shortcomings when dealing with parallelism of data manipulation (i.e. data is lost
either because parallel updates on it are ignored, or because some of the updates are
overwritten).

Open Source Workflow: A Viable Direction for BPM? 585

Table 2. Support for the Data Patterns in A–Staffware 9, B–WebSphere MQ 3.4, C–Oracle BPEL
PM 10.1.2, 1–JBOSS jBPM 3.1.4, 2–OpenWFE 1.7.3, and 3–Enhydra Shark 2.0

Data Visibility A B C 1 2 3 Data Interaction-External (cont.) A B C 1 2 3
1. Task Data – +/– +/– +/– – +/– 21. Env. to Case–Push +/– +/– – – – –
2. Block Data + + – – + + 22. Case to Env.–Pull – – – – – –
3. Scope Data – – + – +/– – 23. Workflow to Env.–Push – +/– – – – –
4. MI Data +/– + +/– – + + 24. Env. to Process–Pull +/– – – – – –
5. Case Data +/– + + + + + 25. Env. to Process–Push – +/– – – – –
6. Folder Data – – – – – – 26. Process to Env.–Pull + + – – – –
7. Global Data + + + – + – Data Transfer
8. Environment Data + +/– + +/– + +/– 27. by Value–Incoming – + + – – +/–
Data Interaction-Internal 28. by Value–Outgoing – + + – – +/–
9. Task to Task + + + + + + 29. Copy In/Copy Out – – + + + +
10. Block to Subpr. Dec. + + – – + + 30. by Reference–Unlocked + – + – – –
11. Subpr. Dec. to Block + + – – + + 31. by Reference–Locked – – – – + –
12. to MI Task – – +/– – + – 32. Data Transf.–Input +/– – – + + +
13. from MI Task – – +/– – – – 33. Data Transf.–Output +/– – – + + +
14. Case to Case +/– +/– – +/– +/– +/– Data-based Routing
Data Interaction-External 34. Task Precond.–Data Exist. + – – – + –
15. Task to Env.–Push + +/– + +/– + + 35. Task Precond.–Data Value + – + – + –
16. Env. to Task–Pull + +/– + +/– + + 36. Task Postcond.–Data Exist. +/– + – – – –
17. Env. to Task–Push +/– +/– + – – – 37. Task Postcond.–Data Val. +/– + – – – +/–
18. Task to Env.–Pull +/– +/– + – – – 38. Event-based Task Trigger + +/– + – – –
19. Case to Env.–Push – – – – – – 39. Data-based Task Trigger – – – – – –
20. Env. to Case–Pull – – – – – – 40. Data-based Routing +/– + + +/– +/– +

Table 3. Support for the Resource Patterns in A–Staffware 9, B–WebSphere MQ 3.4, C–Oracle
BPEL PM 10.1.2, 1–JBOSS jBPM 3.1.4, 2–OpenWFE 1.7.3, and 3–Enhydra Shark 2.0

Creation Patterns A B C 1 2 3 Pull Patterns, continuation A B C 1 2 3
1. Direct Allocation + + + + – + 24. Sys.-Determ. WL Mng. + – – – – –
2. Role-Based Allocation + + + – + + 25. Rrs.-Determ. WL Mng. + + + – – –
3. Deferred Allocation + + + + + + 26. Selection Autonomy + + + + + +
4. Authorization – – – – – – Detour Patterns
5. Separation of Duties – + – – – – 27. Delegation + + + – – –
6. Case Handling – – + – – – 28. Escalation + + + – + –
7. Retain Familiar – + + + – – 29. Deallocation – – + – + +
8. Capability-based Alloc. – – + – – – 30. Stateful Reallocation +/– + + – + –
9. History-based Alloc. – – +/– – – – 31. Stateless Reallocation – – – – – –
10. Organizational Alloc. +/– + +/– – – – 32. Suspension/Resumption +/– +/– + + – –
11. Automatic Execution + – + + + + 33. Skip – + + – – –
Push Patterns 34. Redo – – – – +/– –
12. Distr. by Offer-Single Rsr. – – + – – + 35. Pre-Do – – – – – –
13. Distr. by Offer-Multiple Rsr. + + + – + + Auto-start Patterns
14. Distr. by Alloc.-Single Rsr. + + + + – – 36. Comm. on Creation – – – – – –
15. Random Allocation – – +/– – – – 37. Comm. on Allocation – + – – – +
16. Round Robin Alloc. – – +/– – – – 38. Piled Execution – – – – – –
17. Shortest Queue – – +/– – – – 39. Chained Execution – – – – – –
18. Early Distribution – – – – – – Visibility Patterns
19. Distribution on Enablement + + + + + + 40. Config. Unalloc. WI Vis. – – – – +/– –
20. Late Distribution – – – – – – 41. Config. Alloc. WI Vis. – – – – +/– –
Pull Patterns Multiple Resource Patterns
21. Rsr.-Init. Allocation – – – – – – 42. Simultaneous Execution + + + – – –
22. Rrs.-Init. Exec.-Alloc. WI + + + + – – 43. Additional Resources – – + – – –
23. Rsr.-Init. Exec.-Offered WI + + + – + +

For the resource perspective, only simple notions of work distribution are supported
and typically only one paradigm exists for work item routing in each offering. There is
no support for any form of work distribution based on organizational criteria, resource
capabilities or execution history. All three offerings provide relatively simple facilities
for work item management e.g., (for two of them) there is no ability to configure work

586 P. Wohed et al.

lists at resource or system level, no notion of concurrent work item execution and no fa-
cilities for optimizing work item throughput (e.g. automated work item commencement,
chained execution). One area where OpenWFE demonstrates noticeably better facilities
is in terms of the range of detour patterns (e.g. deallocation, reallocation) that it supports.

When it comes to comparing the state-of-the-art in open source workflow systems
to that in proprietary systems, the results in Tables 1- 3 show that none of the offer-
ings stands out as being clearly superior to the others, although it can be argued that
Oracle BPEL PM demonstrates a marginally wider range of features, whilst Enhydra
Shark and jBPM clearly lag behind in terms of overall patterns support. Oracle BPEL
PM and OpenWFE tend to demonstrate broader pattern support in their corresponding
tool classes (i.e. open-source vs proprietary), especially in the control-flow perspec-
tive. Moreover, it can also be observed that the proprietary tools are generally better
equipped in the resource perspective and better able to support interaction with the
external environment, whereas the open-source systems essentially rely on their users
having programming experience (e.g., Java) to achieve the required integration with
other systems. In the data perspective jBPM clearly lags behind the other offerings.

Overall one can conclude that the open source systems are geared more towards
developers than towards business analysts. If one is proficient with Java, jBPM may
be a good choice, although if not, choosing jBPM is less advisable. Similarly, whilst
OpenWFE has a powerful language for workflow specification in terms of its support
for the workflow patterns, we postulate that it will be difficult to understand by non-
programmers. Finally, Endydra Shark’s minimalistic support for the workflow patterns
may require complicated work arounds for capturing nontrivial business scenarios.

Acknowledgement. We would like to thank John Mettraux for prompt and helpful re-
sponses through the OpenWFE help forum and Saša Bojanic for constructive and valu-
able feedback on Enhydra Shark.

References

1. Harmon, P.: Exploring BPMS with Free or Open Source Products. BPTrends 5(14) (July 2007)
2. Workflow Patterns Initiative. Workflow Patterns - homepage.

www.workflowpatterns.com, (last accessed September 27, 2007)
3. Jablonski, S., Bussler, C.: Workflow Management: Modeling Concepts, Architecture and Im-

plementation. Thomson Computer Press, London, UK (1996)
4. Java-source.net. Open Source Workflow Engines in Java.

java-source.net/open-source/workflow-engines, (last accessed September
27, 2007)

5. Kiepuszewski, B.: Expressiveness and Suitability of Languages for Control Flow
Modelling in Workflows. PhD thesis, Queensland University of Technology, Bris-
bane, Australia (2003) http://www.workflowpatterns.com/documentation/
documents/phd bartek.pdf

6. Manageability. Open Source Workflow Engines Written in Java.
www.manageability.org/blog/stuff/workflow in java, (last accessed
September 27, 2007)

7. Wohed, P., Andersson, B., ter Hofstede, A.H.M., Russell, N.C., van der Aalst, W.M.P.:
Patterns-based Evaluation of Open Source BPM Systems: The Cases of jBPM, OpenWFE,
and Enhydra Shark. BPM Center Report BPM-07-12, BPMcenter.org (2007)

www.workflowpatterns.com
java-source.net/open-source/workflow-engines
http://www.workflowpatterns.com/documentation/documents/phd_bartek.pdf
http://www.workflowpatterns.com/documentation/documents/phd_bartek.pdf
www.manageability.org/blog/stuff/workflow_in_java

Author Index

Aalst, Wil M.P. van der 94, 480,
571, 583

Ali, Raian 575
An, Yuan 296
Andersson, Birger 583
Andrikopoulos, Vasilios 359
Arni-Bloch, Nicolas 140

Baresi, Luciano 435
Beigl, Michael 579
Benatallah, Boualem 343, 405
Benbernou, Salima 359
Bommel, P. van 495
Boukadi, Khouloud 64

Cardoso, Jorge 480
Casati, Fabio 343
Costal, Dolors 266

Dalpiaz, Fabiano 575
de la Vara, Jose Luis 213
Decker, Gero 79
Deng, Ting 328
Dijkman, Remco 450
Dongen, Boudewijn van 450
Dubois, Eric 541
Dupuy-Chessa, Sophie 144

Eder, Johann 148
Ekstedt, Mathias 258

Faulkner, Stéphane 312
Franch, Xavier 197

Garcia, Alessandro 243
Gasparotto, Daniel P. 405
Genon, Nicolas 541
Ghedira, Chirine 64
Giorgini, Paolo 575
Godet-Bar, Guillaume 144
Gómez, Cristina 266
Gordijn, Jaap 390
Gordillo, Silvia 420
Grau, Gemma 197
Greenwood, Phil 243

Grefen, Paul 262
Guo, Huipeng 328

Haesen, Raf 375
Halmans, Günter 109
Hampel, Thorsten 148
Herbst, Joachim 48
Herssens, Caroline 312
Heymans, Patrick 541
Hofstede, Arthur H.M. ter 583
Hu, Xiaohua 296
Huai, Jinpeng 328

Ioannou, Ekaterini 556

Johnson, Pontus 258
Jureta, Ivan J. 312

Kaiya, Haruhiko 228
Kaner, Maya 16
Karlsen, Kristine 182
Kheddouci, Hamamache 405
Kinderen, Sybren de 390
Kongdenfha, Woralak 343
Kopp, Oliver 79
Kumaran, Santhosh 32

Lemahieu, Wilfried 375
Leymann, Frank 79
Li, Yang 328
Liu, Rong 32
Lockerbie, James 182

Maiden, Neil 182
Markovic, Ivan 579
Matulevičius, Raimundas 541
Mayer, Nicolas 541
Mendling, Jan 450, 480
Miraz, Matteo 435
Mouratidis, Haralambos 541
Muehlen, Michael zur 465
Müller, Dominic 48
Mutschler, Bela 510

Nakakoji, Kumiyo 167
Nanard, Jocelyne 420
Nanard, Marc 420

588 Author Index

Nejdl, Wolfgang 556
Nguyen, Dinh Khoa 579
Niederée, Claudia 556
Niknafs, Ali 525

Overbeek, S.J. 495

Papazoglou, Mike P. 1, 359
Pastor, Óscar 213
Perez, Leandro 420
Perini, Anna 182
Pfitzner, Kerstin 79
Plebani, Pierluigi 435
Poelmans, Stephan 375
Pohl, Klaus 109
Proper, H.A. (Erik) 495

Queralt, Anna 266, 281

Ralyté, Jolita 140
Ramsin, Raman 525
Rashid, Awais 243
Recker, Jan 465
Reichert, Manfred 48, 124, 510
Reijers, Hajo A. 480, 571
Rieu, Dominique 144
Rossi, Gustavo 420
Russell, Nick 94, 583

Saeki, Motoshi 228
Saint-Paul, Régis 343
Salinesi, Camille 163
Sánchez, Juan 213
Schikuta, Erich 148

Schulte, Jonas 148
Serrour, Belkacem 405
Shakil Khan, Safoora 243
Siena, Alberto 182
Sikora, Ernst 109
Simonsson, Mårten 258
Snoeck, Monique 375
Soffer, Pnina 16
Song, Il-Yeol 296
Spieß, Patrik 579
Stark, Konrad 148
Susi, Angelo 182

Teniente, Ernest 266, 281
Thevenet, Laure-Hélène 163

Vanderfeesten, Irene 480, 571
Vincent, Lucien 64
Viscusi, Gianluigi 163
Vonk, Jochem 262

Wand, Yair 16
Wang, Ting 262
Weber, Barbara 124
Weber, Ingo 579
Weske, Mathias 79
Wohed, Petia 583
Wu, Frederick Y. 32

Yamamoto, Yasuhiro 167
Ye, Yunwen 167

Zatloukal, Kurt 148

	Title Page
	Preface
	Organization
	Table of Contents
	The Challenges of Service Evolution
	Introduction
	Dealing with Shallow Changes
	A Theory for Structural Changes
	Business Protocol Changes

	Dealing with the Effects of Deep Changes
	Summary

	Assigning Ontology-Based Semantics to Process Models: The Case of Petri Nets
	Introduction
	The Generic Process Model (GPM)
	GPM – Petri-Net Mapping
	Petri-Nets and Workflow Nets
	Mapping Workflow-Nets to GPM

	Mapping-Based Modeling
	Modeling Requirements
	Process Validity Considerations

	Conclusion
	References

	On the Duality of Information-Centric and Activity-Centric Models of Business Processes
	Introduction
	Information-Centric Process Modeling
	Example – An Insurance Process Model
	Analysis and Discussion
	Related Work
	Conclusion and Future Work
	Reference

	A New Paradigm for the Enactment and Dynamic Adaptation of Data-Driven Process Structures
	Introduction
	COREPRO Modeling Framework
	Defining Object Types and Object Life Cycles
	Modeling Object Relations and OLC Dependencies
	Generating Data-Driven Process Structures

	Dynamic Behavior of Data-Driven Process Structures
	Operational Semantics of Single OLCs
	Synchronization of OLCs

	Changing Data-Driven Process Structures
	Static Changes of Data-Driven Process Structures
	Dynamic Changes of Data-Driven Process Structures
	Practical Impact

	Related Work
	Summary and Outlook

	An Aspect Oriented Approach for Context-Aware Service Domain Adapted to E-Business
	Introduction
	Limitations of the Traditional IT Service Solution
	Contribution and Paper Organization

	Service Domain Concept (SD)
	Context and BPEL Adaptability
	Context and Context Categorization
	Adaptability to Context in BPEL

	Service Domain Adaptability Using Aspects
	Rationale of AOP
	Aspect Service Domain Specification
	Running Example and Implementation

	Related Work
	Conclusion
	References

	Modeling Service Choreographies Using BPMN and BPEL4Chor
	Introduction
	Choreography Design Using BPMN
	BPEL4Chor Overview
	Mapping BPMN to BPEL4Chor
	Choreography Modeling Environment
	Related Work
	Conclusion and Outlook

	Work Distribution and Resource Management in BPEL4People: Capabilities and Opportunities
	Introduction
	BPEL4People: Overview and Background
	Motivation and Related Standards
	Information Coverage of the BPEL4People/WS-HumanTask Extensions
	Dynamic Coverage of the WS-HumanTask Extension

	Capabilities: An Assessment of Resource Pattern Support
	Creation Patterns
	Push and Pull Patterns
	Detour, Auto-Start, Visibility and Multiple Resource Patterns

	Opportunities
	Non-binding Offers to a Single Resource*
	Automatic Selection of a Resource*
	Distinguishing Execution Instances*
	Richer Resource Descriptions**
	Inclusion of an Organisational Framework***
	Work Distribution Based on Historical Information***
	Resource Privileges**
	Independent Authorisation Framework***
	User-Initiated Optimization**
	Provision of a Worklist Metaphor**

	Conclusions

	Documenting Application-Specific Adaptations in Software Product Line Engineering
	Introduction
	Adjusting Domain Artefacts or Application Artefacts?
	Adaptation of Domain Artefacts
	Application-Specific Adaptation of Application Artefacts

	Application-Specific Variability Model
	Orthogonal Variability Modelling
	Application Variability Model

	The Tool Environment
	Graph Transformation Systems as a Basis for Adapting and Binding Variability Models
	Generating an AVM
	Evaluation

	Example
	Summary and Outlook
	References

	Refactoring Process Models in Large Process Repositories
	Introduction
	Background Information
	Basic Concepts and Notions
	Quality Metrics for Business Process Models

	Refactorings for Process Model Trees
	Refactoring for Process Variants
	Refactorings for Model Evolution
	Related Work
	Summary and Outlook

	Service-Oriented Information Systems Engineering: A Situation-Driven Approach for Service Integration
	Applying SOA to Information System Engineering
	Metamodel of Information System Service (MISS)
	A Situational Approach for ISS Integration
	References

	When Interaction Choices Trigger Business Evolutions
	Introduction
	The Symphony Method
	Different Stages of Business Evolution
	Conclusion and Perspectives

	GATiB-CSCW, Medical Research Supported by a Service-Oriented Collaborative System
	Introduction
	Scenarios and Requirements
	Practical Examples and Virtual Workbench
	Conceptual Model
	Resource
	Collaboration Context
	Knowledge Spaces
	Individual
	Roles
	View Parameters
	Modification Parameters
	Extension Parameters

	Architecture Overview
	Conclusion

	Strategic Alignment in the Context of e-Services – An Empirical Investigation of the INSTAL Approach Using the Italian eGovernment Initiative Case Study
	Introduction
	Case Study Presentation
	Case Study Report
	Conclusion
	References

	Understanding and Improving Collective Attention Economy for Expertise Sharing
	Introduction
	Problem Context: Situated Expertise Sharing
	Collective Attention Economy
	The Cost of Collective Attention in Situated Expertise Sharing
	Approaches to Improving Collective Attention Economy

	The Dynamic Mailing List Approach
	Basic Strategies
	Creating Dynamic Mailing Lists for Situated Expertise Sharing
	Socially Aware Communication

	Implementing DML in the STeP_IN System
	Concluding Remarks
	References

	Exploring the Effectiveness of Normative i* Modelling: Results from a Case Study on Food Chain Traceability
	Introduction
	i* and Redepend
	Normative i*
	The Traceback Food Traceability Case Study
	The Basic i* SD and SR Models
	The Normative i* SD and SR Models

	Empirical Analysis of the i* Basic and Normative Traceback Models
	Discussion
	Conclusions
	References

	Towards a Catalogue of Patterns for Defining Metricsover i* Models
	Introduction
	Antecedents
	A Metamodel for the i* Framework
	The Pattern Template
	The Catalogue of Patterns
	Example of Application
	Conclusions and Future Work
	References

	Business Process Modelling and Purpose Analysis for Requirements Analysis of Information Systems
	Introduction
	Notations of the Approach
	BPMN
	Map

	Case Study
	Approach Description
	Purpose Analysis
	Requirements Specification

	Practical Experience
	Related Work
	Conclusions and Future Work
	References

	Supporting the Elicitation of Requirements Compliant with Regulations
	Introduction
	Representing Regulations
	Structure of Regulation Sentences
	Case Frame
	Representation of Regulations

	Requirements Elicitation Process
	Basic Idea
	Generating Suggestions
	Linking to Regulation Sentences

	Example
	Related Work
	Conclusion and Future Work

	On the Impact of Evolving Requirements-Architecture Dependencies: An Exploratory Study
	Introduction
	From Requirements to Architecture: A Dependency Model
	Case Study and Evaluation Procedures
	Health Watcher Requirements and Architecture
	Change Metrics

	Empirical Results and Constraints
	Requirements-Architecture Dependency Analysis
	Evolving Dependencies’ Impact on the Architecture
	On the Architecturally-Significant Dependencies
	Study Constraints

	Related Work
	Conclusion and Future Work
	References

	The IT Organization Modeling and Assessment Tool for IT Governance Decision Support
	Introduction
	The IT Organization Modeling and Assessment Tool
	Discussion and Conclusion
	References

	Ensuring Transactional Reliability by E-Contracting
	Introduction
	TxQoS Scenario
	TxQoS Attributes: FIAT
	Conclusions and Future Work

	Drawing Preconditions of Operation Contracts from Conceptual Schemas
	Introduction
	Preliminary Concepts
	Basic Operations
	Automatic Generation of Operation Preconditions
	Conflicts between Constraints and Operations
	Drawing Preconditions

	Prototype Tool
	Related Work
	Conclusions and Future Work
	References

	Decidable Reasoning in UML Schemas with Constraints
	Introduction
	Base Concepts
	Determining the Decidability of Reasoning on a Schema
	The Dependency Graph
	Decidability of Reasoning on a Schema

	Reasoning on a Schema
	Goal Satisfaction
	Integrity Maintenance

	Related Work
	Conclusions

	Round-Trip Engineering for Maintaining Conceptual-Relational Mappings
	Introduction
	Motivation

	Related Work
	Formal Preliminaries
	Conceptual-Relational Mappings
	Changes to Schemas and CMs
	Round-Trip Engineering for Conceptual-Relational Mappings
	Experience
	Conclusions

	Capturing and Using QoS Relationships to Improve Service Selection
	Introduction
	Case Study
	Conceptual Foundations
	QoS Driven Selection
	Fuzzy Multiple Criteria Decision Analysis: Concepts
	Building the Reference Set and Ranking of Alternative Services
	Motivating Example

	Related Work
	QoS Models
	QoS Driven Selection

	Conclusions and Future Work

	KAF: Kalman Filter Based Adaptive Maintenance for Dependability of Composite Services
	Introduction
	Background and Problem Statement
	KAF Architecture
	System Architecture
	MDP Modeling

	KAF Adaptive Control
	Kalman Filter-Based Estimation
	Adaptive Control Algorithm

	KAF Implementation
	Performance Evaluation
	Simulation Setting and Metrics
	Results Analysis

	Related Work
	Conclusions and Future Work
	References

	SpreadMash: A Spreadsheet-Based Interactive Browsing and Analysis Tool for Data Services
	Introduction
	SpreadMash: Background and Overview
	Entity-Based Data Access
	An Extended Spreadsheet Data Model
	An Overview of SpreadMash

	Widgets for Data Importation and Presentation
	Content Widget
	Repeater Widget
	Hierarchical Widget
	Index Widget

	Widget Composition
	Data Dependency
	Spatial Dependency

	Related Work
	Conclusion and Future Work

	Managing the Evolution of Service Specifications
	Introduction
	Related Work
	Service Specification Reference Model
	Universal Relationships
	Abstract Service Definition Model
	Service Schema Definition

	Service Schema Evolution
	Operations on the Service Schema
	Service Schema Versioning
	Consistency of Service Schema Evolution
	Conformance of Service Schema Versions

	Conclusions and Future Work

	On the Definition of Service Granularity and Its Architectural Impact
	Introduction
	Related Work
	Service Granularity Types
	Input Data Granularity
	Output Data Granularity
	Default Functionality Granularity
	Parameterised Functionality Granularity
	Business Value Granularity

	Interface Versus Realisation View on Granularity
	Evaluation and Future Work
	Conclusion

	Reasoning about Substitute Choices and Preference Ordering in e-Services
	Introduction
	The $e^{3}$$service$ Ontology
	The Need/Want/Demand-Hierarchy
	Benefits, Consequences and Value Derivations
	Dependencies between Want/Consequence Pairs
	Service

	A Case Study on e-Service Substitution and Preference Ordering in the TelCo Industry
	An e-Service Catalogue
	Reasoning about Substitution and Preference Ordering of e-Services

	Discussion
	Conclusions

	Message Correlation and Business Protocol Discovery in Service Interaction Logs
	Introduction
	State of the Art
	Definitions
	Approaches

	Protocol Discovery Framework
	Pre-partitioning the Log File
	Message Graph
	Deriving the Business Protocol from the Message Graph
	Refining the Discovered Protocol

	Implementation
	Simulation and Results

	Conclusion and Perspectives

	Concern-Sensitive Navigation: Improving Navigation in Web Software through Separation of Concerns
	Introduction and Motivation
	Concern-Sensitive Navigation
	Background
	Definition
	Which Categories of Concerns Affect Navigation?
	Which Kinds of Concern “Enrichment” Improve the User’s Experience?

	Engineering Web Applications Supporting CSN
	Requirement and Modeling Issues
	Navigational Design
	Further Issues
	Implementation

	Related Work
	Concluding Remarks and Further Work
	References

	A Flexible and Semantic-Aware Publication Infrastructure for Web Services
	Introduction
	Example Scenario
	Background
	DIRE
	URBE
	USQL

	Proposed Solution
	USQL-Based Subscriptions
	Similarity-Based Subscriptions

	Related Work
	Conclusions and Future Work

	Measuring Similarity between Business Process Models
	Introduction
	Background on EPCs
	Similarity of Behavior
	Deriving the Causal Footprint of an EPC
	Similarity of Causal Footprints

	Matching Functions
	Determine the Semantic Similarity Score between Two Functions
	Determine a Semantic Match between Two Functions
	Determine a Semantic Mapping between All Functions
	Contextual Similarity

	Empirical Validation
	Related Work
	Conclusion

	How Much Language Is Enough? Theoretical and Practical Use of the Business Process Modeling Notation
	Introduction
	Background
	Introduction to BPMN
	Data Sources
	Research Design

	Analysis and Discussion
	Overall Use of BPMN Constructs
	Frequency Distribution of BPMN Constructs
	BPMN Construct Correlations
	BPMN Construct Clusters
	Core or Extended Set?
	Complexity of BPMN Models
	Variety of BPMN Subsets
	The Common Core of BPMN

	Contributions, Limitations, and Outlook
	References

	On a Quest for Good Process Models: The Cross-Connectivity Metric
	Introduction
	The Cross-Connectivity Metric
	Evaluation
	Validation for Error Prediction
	Validation for Understandability

	Related Work
	Conclusion

	Information Systems Engineering Supported by Cognitive Matchmaking
	Introduction
	Framework for Cognitive Matchmaking
	Prototype of the Cognitive Matchmaker System
	Case Study and Evaluation
	Initiation
	Abstraction
	Theory Formulation
	Implementation
	Evaluation

	Discussion
	Conclusions and Future Work

	On Modeling and Analyzing Cost Factors in Information Systems Engineering
	Introduction
	The EcoPOST Cost Analysis Methodology
	Evaluation Models
	Understanding Model Dynamics through Simulation
	Sensitivity Analysis and Reuse of Evaluation Information

	Model Design Rules
	Modeling Constraints for Evaluation Models
	Semantical Correctness of Evaluation Models

	Modeling Guidelines
	Case Study
	Research Design
	Lessons Learned

	Summary

	Computer-Aided Method Engineering: An Analysis of Existing Environments
	Introduction
	CAME Environments
	MERET
	MethodBase
	MetaEdit+
	Decamerone
	MENTOR
	MERU
	Method Editor

	Analysis of Existing CAME Environments
	The ISO/IEC 9126 Quality Model
	A Quality Model for CAME Environments
	Evaluation Results

	Conclusion and Future Work
	References

	Adapting Secure Tropos for Security Risk Management in the Early Phases of Information Systems Development
	Introduction
	Theory
	Security Risk Domain
	Security Modelling Languages
	Secure Tropos

	Research Method
	Method for Aligning Secure Tropos and ISSRM
	Running Example

	Contribution
	Discussion and Conclusion

	Probabilistic Entity Linkage for Heterogeneous Information Spaces
	Introduction
	Related Work
	Problem Formulation
	The Entity Linkage Algorithm
	A Brief Reminder of Bayesian Networks and Inference
	Structure of Our Bayesian Network
	Incremental Computation of the Network

	Experimental Evaluation
	Cora Dataset
	PIM Dataset

	Conclusions

	Product Based Workflow Support: Dynamic Workflow Execution
	Introduction
	Product Based Workflow Support
	Runtime Execution of a PDM
	Execution Strategies

	Conclusion

	Location-Based Variability for Mobile Information Systems
	Introduction
	Location-Based Goal Models
	Defining, Eliciting and Modeling Location
	Analysing Location-Based Models
	Discussion and Future Work

	Modelling, Simulation, and Performance Analysis of Business Processes Involving Ubiquitous Systems
	Introduction
	Modelling and Simulation Approach
	Business Process Description and Execution
	Modelling the Service Landscape
	Simulation Approach

	Conclusion and Future Work

	Open Source Workflow: A Viable Direction for BPM?
	References

	Author Index

