
Privacy-Preserving Publication of User Locations
in the Proximity of Sensitive Sites

Bharath Krishnamachari, Gabriel Ghinita, and Panos Kalnis

Department of Computer Science
National University of Singapore

{kbharath,ghinitag,kalnis}@comp.nus.edu.sg

Abstract. Location-based services, such as on-line maps, obtain the exact loca-
tion of numerous mobile users. This information can be published for research or
commercial purposes. However, privacy may be compromised if a user is in the
proximity of a sensitive site (e.g., hospital). To preserve privacy, existing meth-
ods employ the K-anonymity paradigm to hide each affected user in a group that
contains at least K − 1 other users. Nevertheless, current solutions have the fol-
lowing drawbacks: (i) they may fail to achieve anonymity, (ii) they may cause
excessive distortion of location data and (iii) they incur high computational cost.

In this paper, we define formally the attack model and discuss the conditions
that guarantee privacy. Then, we propose two algorithms which employ 2-D to
1-D transformations to anonymize the locations of users in the proximity of sensi-
tive sites. The first algorithm, called MK, creates anonymous groups based on the
set of user locations only, and exhibits very low computational cost. The second
algorithm, called BK, performs bichromatic clustering of both user locations and
sensitive sites; BK is slower but more accurate than MK. We show experimentally
that our algorithms outperform the existing methods in terms of computational
cost and data distortion.

1 Introduction

The recent years have witnessed the widespread availability of positioning capabilities
(e.g., GPS) in automobiles, handheld devices, etc. The emergence of novel applications
based on user locations has created the potential for gathering large amounts of location
data from mobile clients. Location data can also be collected from a variety of other
sources. For instance, the Octopus system in Hong Kong, which employs a smart card
for transportation and low-value purchases, can monitor the location where the card was
used.

Location data can benefit a broad range of applications, such as alleviation of traffic
congestion, or optimization of operations in a public transportation network. Neverthe-
less, Hu et al. [9] observed that publishing such data for research or planning purposes
introduces serious privacy concerns. The location data can be joined with external infor-
mation, such as schedules of hospital appointments, in order to reveal sensitive informa-
tion about individuals. Consider the example in Figure 1a (adapted from [9]). Assume
that the published location data for a specific day at 2pm consists of users u1 . . . u4.
Furthermore, hospital h publishes the appointment schedule of Figure 1b; note that the

B. Ludäscher and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, pp. 95–113, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

96 B. Krishnamachari, G. Ghinita, and P. Kalnis

Fig. 1. Privacy violation in location data publishing

schedule is anonymous. Taken in isolation, neither of the two published datasets rep-
resents a privacy threat. However, by combining the two datasets, an attacker can infer
that user u1, who was the only one near the hospital at 2pm, is consulting a cardiologist.

Previous work employed Spatial K-Anonymity (SKA) [10] to preserve privacy in
Location-Based Services (LBS). SKA replaces the exact location of u with an Anonymiz-
ing Spatial Region (ASR), which encloses u as well as K − 1 other users; therefore the
identification probability of u does not exceed 1/K (K is a user-defined parameter called
anonymity degree). The process of replacing exact locations with ASRs is called cloak-
ing. Several algorithms for spatial cloaking have been proposed [5,6,8,10,13]. Most of
the previous work focused on hiding the association between a query sent to an LBS and
the actual querying user; therefore, each time a user u sends a query, a single ASR is
built around u. Our problem, on the other hand, has two characteristics that make it more
difficult: (i) the privacy of all users must be preserved, as opposed to anonymizing only
a single querying user, and (ii) an additional set of sensitive locations must be taken into
account; therefore, anonymization is performed with respect to the external data that an
attacker may have access to (e.g., the hospital schedule).

Continuing the earlier example, let the anonymity degree be K = 2. Figure 1c shows
ASR1,2 that encloses users u1 and u2, as well as the sensitive site h. In the published
data, the exact location of u1 and u2 is replaced by the ASR. From the attacker’s point
of view, u1 or u2 can be anywhere inside the ASR with equal probability. Moreover, the
ASR encloses h, so it is closest to h than any other user. Consequently, the attacker can
only assume that either u1 or u2 is having a cardiologist appointment with probability
at most 1/K = 1/2. Observe that the locations of u3 and u4 do not need to be cloaked,
because these users are further away from the sensitive site (compared to the ASR), so
they would not be associated with h. Note that, while cloaking preserves privacy, it also
reduces the accuracy of the published data: a researcher that studies Figure 1c cannot
know exactly where the users are located. A tradeoff emerges between privacy and the
amount of information that is lost in the process of cloaking. The data distortion is the
sum of areas of all ASRs; this metric must be minimized.

The previous example assumed that the attacker knows the identity of u1, there-
fore the association between u1 and “cardiologist” can be performed. In practice, when
publishing location data, the identity of the mobile users is removed. Nevertheless, as
shown in [4], a number of methods can be employed to infer the identity of a user based
on his location (e.g., through trajectory reconstruction [15]). For the rest of the paper

Privacy-Preserving Publication of User Locations in the Proximity of Sensitive Sites 97

u3

s1

s2

u4
u1

u2

u3

s1

s2

u4
u1

u2

(a) kNN algorithm (b) Our solution

User
Sensitive siteu6u5 u6u5

ASR3,4ASR1,2

ASR1,2

ASR3,4

Fig. 2. The kNN approach may result to excessive data distortion

we assume that an attacker is able, in the worst case, to acquire the identity of the user
associated to each location in the published data.

A naı̈ve solution to generate ASRs in the proximity of sensitive locations is the fol-
lowing: For each sensitive site si, use a k-Nearest-Neighbor (kNN) algorithm to assign
the K nearest users to si. However, the data distortion depends on the order of pro-
cessing the sites. In the example of Figure 2a, s1 is processed first resulting to ASR3,4

since u3 and u4 are the nearest users; then s2 is assigned to ASR1,2. On the other hand,
our solution (Figure 2b) assigns s1 to ASR1,2 and s2 to ASR3,4; clearly the resulting
data distortion is lower. Moreover, we show in our experiments that the kNN solution
is slow. Recently, Hu et al. [9] formulated the problem as a version of the set cover
problem and proposed heuristic algorithms. However, their solution suffers from the
following drawbacks: (i) the approach for generating and publishing ASRs does not
guarantee anonymity, (ii) the data distortion is high and (iii) the computational cost is
very high.

In this paper we propose efficient solutions that do not suffer from the above-
mentioned drawbacks. Our methods map the 2-D user locations to 1-D space. Dimen-
sionality reduction has been acknowledged as a suitable method to achieve privacy for
both relational data [7] and in Location-based services [10]. Figure 3 shows an outline
of our approach: the locations of users and sensitive sites are mapped to the 1-D domain
using the Hilbert [14] space-filling curve. The Hilbert curve has good locality proper-
ties: if two points are close to each other in the 2-D space, with high probability they
will also be close in the 1-D transformation. We devise two methods to generate ASRs:
(i) Monochromatic K-anonymity (MK) is a multi-stage method: first the set of users
is partitioned into groups containing K to 2K − 1 users; the partitioning is optimal

Fig. 3. Using 2-D to 1-D mapping, s1 is assigned to ASR2,1, s2 to ASR3,5, etc.

98 B. Krishnamachari, G. Ghinita, and P. Kalnis

(i.e., lowest possible group extents) in the 1-D space. Then, a greedy approach is used
to assign sensitive sites to user groups. MK is fast because the partitioning phase is
linear to the number of users. However, since the initial partitioning is independent
of the sensitive sites, the resulting data distortion is not optimal. (ii) Bichromatic K-
anonymity (BK) is a one-stage algorithm that performs an optimal assignment (in the
1-D space) of users to sites by simultaneously clustering both users and sensitive sites
(hence “bichromatic”). Although the assignment is not optimal in the 2-D space, the
resulting data distortion is lower compared to MK. The tradeoff is that BK is compu-
tationally more expensive, since the search space of the solution is considerably higher
than for MK. Nevertheless, we show experimentally that both MK and BK are much
faster and achieve lower data distortion compared to existing methods.

The rest of the paper is organized as follows: Section 2 defines formally the problem
and surveys the related work. Section 3 describes the Monochromatic K-anonymity
technique, whereas Section 4 introduces Bichromatic K-anonymity. The experimental
evaluation is presented in Section 5. Finally, Section 6 concludes the paper with direc-
tions for future work.

2 Background and Related Work

This section formalizes the attack on the published location data and defines the
anonymi-zation problem. It also presents the related work on relational databases and
Location-based services.

2.1 Problem Definition

Let U be the set of user locations and S the set of sensitive sites. Both users and sites
may have arbitrary shapes and are represented by their Minimum Bounding Rectangle
(MBR). Consider that U is published in its original form. Then, an attacker can com-
promise privacy by joining U and S. Formally:

Definition 1 (Attack on Location Privacy). Given U , S and the anonymity require-
ment K , an attack is defined as the result of the following spatial join:

SELECT user.id, site.id
FROM U as user, S as site
WHERE distance(user.mbr, site.mbr) =

SELECT MIN(distance(U.mbr, S.mbr))
FROM U, S
WHERE S.id = site.id

An attack is successful iff the probability of distinguishing a particular user u in any
of the resulting tuples of the above query is larger than 1/K .

In the example of Figure 1a, the spatial join will output the tuple 〈u1, h〉, since u1 is
closest to h than any other user. Therefore the attacker can infer that u1 has a cardiology
appointment.

Privacy-Preserving Publication of User Locations in the Proximity of Sensitive Sites 99

Fig. 4. User sharing violates privacy

To achieve anonymity, each sensitive site s is associated with an anonymizing set,
denoted by M(s), of at least K users who are indistinguishable from each other. Instead
of publishing the exact user locations, we publish the ASR, which is the MBR that
encloses s and the users in M(s). Formally:

Definition 2 (Privacy-Preserving Location Publishing Format). A privacy-preserving
publication of U with respect to S is a mapping M : S → 2U (2U is the set of all pos-
sible anonymizing sets). The published format consists of a collection of ASRs, one for
each s ∈ S, where ASR(s) = MBR({s} ∪M(s)).

Based on the attack model and publication format, we define below the K-anonymity
condition for our problem:

Definition 3 (K-anonymous Location Publishing). A privacy-preserving mapping
M : S → 2U is K-anonymous iff (i) ∀s ∈ S, |M(s)| ≥ K and (ii) ∀s1, s2 ∈ S,
M(s1) ∩M(s2) = ∅.

Condition (i) is imposed by the indistinguishability requirement, whereas condition (ii)
specifies that the anonymizing sets of different sites should be disjoint. To demonstrate
the need for the second condition, consider the example in Figure 4, where K = 2.
S consists of sites s1 and s2, but the anonymizing sets of these sites overlap in user
u4. Therefore, only three distinct users are included in M(s1) ∪ M(s2). An attacker
can infer that any of u1, u2 or u4 was present at a sensitive site (either s1 or s2) with
probability 2/3 = 0.66 > 1/K = 0.5; hence, privacy is compromised.

Returning to the example of Figure 1c, the K-anonymity conditions are satisfied,
since |M(h)| = |{u1, u2}| = 2 and M(h) does not share users with any other site.
This can be verified by executing the query of Definition 1. The exact locations of u1

and u2 have been replaced by the ASR, whose distance to h is 0. Therefore the query
returns two tuples: 〈u1, h〉 and 〈u2, h〉; hence the probability of associating u1 or u2

with the cardiology appointment is at most 1/2. Observe that u3 and u4 are not included
in the query results, since their distance to h is larger than that of the ASR. Therefore,
we can publish the exact locations of u3 and u4 without compromising privacy.

Besides providing privacy, the distortion (also called generalization cost) of the pub-
lished data must be minimized. Similar to the related work in Location-based services
[5,6,8,10,13], we measure the generalization cost by the sum of the areas of the pub-
lished ASRs. Formally:

100 B. Krishnamachari, G. Ghinita, and P. Kalnis

Definition 4 (Generalization Cost). Given a set U of user locations, a set S of sensi-
tive sites, and a privacy-preserving mapping M : S → 2U , the generalization cost for
site s is:

GC(s) = Area(MBR(M(s) ∪ {s})) (1)

The overall (global) generalization cost of the entire mapping is:

GGC(M) =
∑

s∈S

GC(s) (2)

Recall that for some users we publish their exact locations (e.g., u3 and u4 in Figure 1c);
no generalization cost is incurred for such users. Our problem is formally defined as:

Problem 1 (Optimal K-Anonymous Location Data Publication). Given U , S and
K , determine a K-anonymous mapping M : S → 2U such that the generalization cost
GGC(M) is minimized.

2.2 K-Anonymity in Relational Databases

K-anonymity [16,17] was initially proposed in relational databases for privacy pre-
serving publishing of detailed data (or microdata), such as hospital records. Although
identifying attributes (e.g., name) are removed, microdata contains quasi-identifying at-
tributes (QID) (e.g., 〈Age, Zipcode〉) that can be joined with external information, such
as voting registration lists, to expose the identity of individual records. To address this
threat, K-anonymity requires that each record must be indistinguishable from at least
K − 1 other records, with respect to the QID. Two techniques are commonly used to
achieve K-anonymity: suppression, where some of the attributes or tuples are removed,
and generalization, which involves replacing specific values (e.g., phone number) with
more general ones (e.g., only area code). Both methods lead to information loss. Al-
gorithms for anonymizing an entire relation are discussed in [2,11]. Xiao and Tao
[18] consider the case where each individual requires a different degree of anonymity,
whereas Aggarwal [1] shows that anonymizing a high-dimensional relation leads to un-
acceptable loss of information due to the dimensionality curse. Machanavajjhala et al.
[12] propose �-diversity, an anonymization method that provides diversity among the
sensitive attribute values of each anonymized group. Ghinita et al. [7] employ multi-
dimensional to 1-D transformations to solve efficiently the K-anonymity and �-diversity
problems.

2.3 K-Anonymity for Location Data

Most related work in the area of location K-anonymity focuses on query privacy in
Location-based Services (LBS). Users issue queries such as “find the closest hospital to
my current location”. Typically, there is a trusted Anonymizer Service (AN) between
the users and the LBS. The users constantly update their location with AN. Queries are
also sent through AN, which removes the user id and constructs an ASR that contains
the querying user as well as at least K − 1 additional users. The AN forwards the ASR
to the LBS, which computes the answer based on the ASR, instead of the exact user
location. The result is also routed back to the querying user through the AN. In [8],

Privacy-Preserving Publication of User Locations in the Proximity of Sensitive Sites 101

Fig. 5. Local Algorithm

the anonymizer employs a quad-tree to index user locations. Given a query from u, the
corresponding ASR is the lowest-level quadrant that contains u as well as K − 1 other
users. In [13] a similar structure is used, but two neighboring quadrants are allowed to
form an ASR, before ascending one level up in the quad-tree. In [6] queries from mul-
tiple users form a graph. The graph is searched for cliques (i.e., queries from near-by
users), which are used to form the ASR. Kalnis et al. [10] identify the reciprocity prop-
erty, a sufficient condition to guarantee anonymity. To enforce reciprocity, the users are
split into disjoint buckets based on their 1-D Hilbert ordering; the same transformation
is used in our work. The previous algorithms generate a single ASR independently for
each query. This approach is not applicable to our problem, since we must publish an
anonymized version of the entire dataset U ; furthermore, anonymization depends on
the set of sensitive sites S.

Location publishing in the proximity of sensitive sites was first discussed by Hu
et al. [9]. They formulated the problem as a version of the set cover problem and pro-
posed a heuristic algorithm called Local (see Figure 5). Local is a user-centric method:
for each user u ∈ U (for simplicity the example shows only one user) the location of
u is incrementally enlarged to include sensitive sites in its bounding box. Local con-
sists of four nested loops, corresponding to four directions originating at u (North, East,
South, West), and each loop advances a plane-sweep line in its direction. In Figure 5a,
the North sweeping line dN is fixed, and the East line is advanced from d1

E to d2
E to

cover sites s4 and s3, respectively. Out of all combinations along the four directions,
the bounding box with the optimal coverage (measured as the area of the bounding box
divided by the number of enclosed sites) is retained as the candidate box Ω(u). The
candidate boxes are determined for all u ∈ U , and user u0 with the lowest coverage is
output, at which point a coverage counter of all sites enclosed by Ω(u0) is increased. If
the counter of a site s reaches K , s is removed from S, the candidate boxes of all other
users that enclose s are updated, and the algorithm continues for the remaining sites, un-
til all sites are covered at least K times. The complexity of Local is O(|S|4 ·(|S|+|U |)),
which is very high. [9] proposes an optimization based on the R-Tree spatial index
(see Figure 5b). Instead of performing the plane-sweep with respect to individual sites,
the algorithm considers the nodes of the R-Tree. Each node represents a “super-site”,
which is considered to be situated at the point inside the node that is closest to u,
and has a weight equal to the number of sites rooted in the subtree of that node. It

102 B. Krishnamachari, G. Ghinita, and P. Kalnis

is shown that by using the super-site concept, a lower bound of the actual coverage is
obtained, and the search space of the solution is reduced.

We show in Section 5 that the execution time (even with the R-tree optimization)
and generalization cost of Local are very high. More importantly, Local allows the
anonymizing sets of distinct sensitive sites to share users. Therefore, it does not guar-
antee privacy (recall condition (ii) in Definition 3). Furthermore, the authors of [9] pro-
pose a publication format, further referred to as “2-by-2”, that discloses a collection of
MBRs for each site s: each MBR encloses s and a single user in M(s). However, this
format discloses exact user locations, since each published MBR only contains two lo-
cations, and one of them (i.e., s) is known to the attacker. Figure 5c shows an example:
Local chooses users u3 and u4 as part of M(s), because the two rectangles R1 and R2,
which are very skewed, have small areas (hence, low generalization cost). An attacker
can infer that the users are situated at the opposite extremities of R1, respectively R2,
from s. This is similar to publishing the exact locations of all users, therefore privacy
is compromised. Should we choose a secure publishing format like the one in Defini-
tion 2, i.e. ASR3,4 in the example, the resulting area is very large. We will investigate
this issue further in Section 5.

3 Monochromatic K-Anonymity (MK)

In this section, we present Monochromatic K-Anonymity (MK). MK is a multi-stage
algorithm: In the first stage, it partitions the set U into groups with K to 2K − 1 users
each. In the subsequent stages, it uses a greedy approach to assign user groups to each
site in S. The first stage of MK employs the 1DAnon algorithm, which was used in [7] to
partition relational data with 1-D quasi-identifiers. Below, we briefly explain 1DAnon.

1DAnon takes as input the set U of user locations sorted according to their 1-D
Hilbert values. We use u to denote a user, as well as his coordinate in the 1-D space.
Furthermore, we denote by |ui −uj| the 1-D distance between users ui and uj . Given a
group of users G = {ubegin, . . . , uend}, where ubegin and uend represent respectively
the user with the minimum and maximum 1-D coordinate in G, we denote the extent
of G in the 1-D space as: 1D Ext(G) = |uend − ubegin|. We refer to begin and end
as the boundaries of G. 1DAnon finds the optimal K-anonymous partitioning U =
{G1, . . . , G|U|} of U , such that the

1D Cost(U) =
∑

G∈U
1D Ext(G) (3)

is minimized. Note that Eq. (3) is the one-dimensional equivalent of the GGC metric
from Eq. (2). To find the optimal anonymous partitioning of U , 1DAnon applies a dy-
namic programming recursive formulation which determines the best grouping for each
prefix {u1, . . . , ui} (where K ≤ i ≤ |U |) of the user sequence. 1DAnon returns a set
of K-anonymous groups, each with size bounded between K and 2K − 1. The com-
putation cost of 1DAnon is O(K · |U |), hence linear to the number of users. In our MK
algorithm, we vary 1DAnon slightly: Instead of 1D Cost, we use the GGC metric. The
user partitioning is not optimal in the 2-D space, but due to the good locality properties
of the Hilbert ordering, the results are adequate in practice.

Privacy-Preserving Publication of User Locations in the Proximity of Sensitive Sites 103

Monochromatic K-anonymity (MK)
Input: sets U [1 . . . n] and S[1 . . . m] sorted in ascending order of 1D Hilbert values
1. U =1DAnon(U, K)
2. while |S| > 0
3. foreach s ∈ S

// assign s to a user group s.t. the resulting area is minimized
4. AS(s) = Gi s.t. ∀j �= i, Area(MBR(Gi ∪ {s})) < Area(MBR(Gj ∪ {s}))
5. foreach G ∈ U
6. if ∃s s.t. AS(s) = G then

// choose the site that minimizes the resulting area
7. choose s0 s.t. AS(s0) = G and ∀s ∈ S|s �= s0 ∧ AS(s) = G,

Area(MBR(G∪ {s0})) < Area(MBR(G∪ {s}))}
8. output MBR(G ∪ {s0})
9. U = U�G
10. S = S�{s0}

Fig. 6. Monochromatic K-Anonymity Pseudocode

Figure 6 shows the pseudocode of MK: the input consists of sets U and S, sorted
in the 1-D Hilbert order of the locations of users and sensitive sites, respectively. The
cardinalities of the two sets are denoted as n = |U | and m = |S|. Initially, MK in-
vokes 1DAnon (line 1) and obtains U , which is the partitioning of U into K-anonymous
groups. Subsequently, MK assigns the sensitive sites to groups of U . At each stage, each
site s ∈ S is assigned to the user group G that minimizes the area of MBR(G ∪ {s})
(lines 3-4). We say that G is the anonymizing set of s, i.e. AS(s) = G. Note that,
multiple sites can be assigned to the same group, whereas some groups may not be
assigned any site. Since sites cannot share users (condition (ii) in Definition 3), colli-
sions are solved (line 7) by choosing for each group the site that minimizes the area
of MBR(G ∪ {s}) (in case of ties, a random site is chosen). For each assigned site,
we output (line 8) the MBR that encloses s0 and its corresponding anonymizing set
M(s0) ≡ G. U and S are updated by eliminating the users and sites that have been
output (lines 9-10). If there still exist unassigned sites (line 2), the algorithm starts a
new stage with the remaining users and sites. Since at most 2K − 1 users belong to
each user group, the algorithm is guaranteed to terminate if the inputs satisfy the con-
dition n ≥ (2K − 1) · m.

In the worst case, at each stage all sites are assigned to the same user group, and the
number of required stages is m. Each stage takes O(m · n) to find the closest group for
each site. Hence, the complexity of MK is O(K ·n+m2·n); the first term corresponds to
1DAnon. In practice, the number of stages is significantly smaller than m; in Section 5
we show that MK is very fast.

Figure 7 illustrates an example of applying MK for U = {u1 . . . u6} and S =
{s1 . . . s3}. Initially (Figure 7b), the 1DAnon algorithm is executed, resulting in anony-
mous groups G1 . . . G3. Then, sites s1 and s2 are assigned to G1, whereas s3 is assigned
to G3. Since the enclosing area of s2 and G1 is larger than that of s1 and G1, MK out-
puts s1 with anonymizing set G1, and s3 with G3. In the next stage (Figure 7c), the
remaining users and sites are {u3, u5} and s2, which are output together. Note that,

104 B. Krishnamachari, G. Ghinita, and P. Kalnis

Fig. 7. Example of MK

it is possible for MK to terminate, even though some users do not have any site as-
signed to them. For those users we publish their exact location, since their privacy is
not threatened (refer to Definition 3).

4 Bichromatic K-Anonymity (BK)

This section introduces the Bichromatic K-anonymity (BK) algorithm. BK also uses the
1-D Hilbert transformation for U and S. However, the process of creating anonymizing
sets considers simultaneously U and S (as opposed to MK, which partitions U inde-
pendently). As a result, BK achieves lower generalization cost.

Before presenting BK, we will study a restriction of the problem to the 1-D space.
We seek to find an optimal K-anonymous mapping M that assigns sites to user groups,
such that the 1-D cost is minimized. In the 1-D domain the generalization cost of a
mapping is:

1D Cost(M) =
∑

s∈S

1D Ext({s} ∪M(s)) (4)

In Section 4.1we identify three properties of an optimal 1-D mapping: (i) each anonymiz-
ing set contains exactly K users, (ii) each anonymizing set consists of users that are con-
secutive in the 1-D domain, and (iii) the extents of any two anonymizing sets do not
overlap in the 1-D domain. Based on these properties, in Section 4.2 we present the BK
algorithm, which employs dynamic programming to solve the problem in the 2-D space.
Although the 2-D solution is not optimal, due to the good locality properties of the Hilbert
ordering, BK achieves very low generalization cost in practice.

4.1 Properties of an Optimal 1-D Mapping

The following theorem states that there exists an optimal 1-D mapping where the
anonymizing set of each site contains exactly K users.

Theorem 1. Consider a set of user locations U and a set of sensitive sites S. Then,
there exists an optimal mapping M : S → 2U such that, ∀s ∈ S, |M(s)| = K .

Proof. Let M′ be the optimal mapping for U and S, and assume that ∃s0 ∈ S such that
G = M′(s0) and |G| > K . Let G′ be the anonymizing set obtained by retaining only

Privacy-Preserving Publication of User Locations in the Proximity of Sensitive Sites 105

Fig. 8. Anonymizing sets consist of consecutive users in the 1-D sequence

K users from G. Define mapping M such that M(s0) = G′, and ∀s �= s0,M(s) =
M′(s). Then the K-anonymity condition for M is satisfied, according to Definition 3.
Furthermore, since G′ ⊂ G, we have that 1D Ext(G′) ≤ 1D Ext(G), hence the
generalization cost of M does not exceed that of M′. By applying the same reasoning
for all groups with size larger than K , we obtain an optimal mapping M such that
∀s ∈ S, |M(s)| = K . ��
We further show that the anonymizing set of every site s consists of users that are
consecutive in the user sequence. Formally:

Theorem 2. There exists an optimal mapping M such that ∀s ∈ S, if ui, uj ∈ M(s)
and i < j, then ∀ul with i < l < j, ul ∈ M(s).

Proof. Assume optimal mapping M′ and that ∃s ∈ S such that ui, uj ∈ M′(s), i < j,
and ∃ul, i < l < j, such that ul /∈ M′(s). This situation is depicted in Figure 8. Then,
we can replace M′(s) with either G′ = M′(s)�{ui}∪{ul} or G′′ = M′(s)�{uj}∪
{ul}. The privacy condition is still satisfied, since |G′| = |G′′| = K; furthermore,
1D Ext(G′) ≤ 1D Ext(G) and 1D Ext(G′′) ≤ 1D Ext(G). Therefore, we obtain
a new K-anonymous mapping M with generalization cost not exceeding that of M′,
hence optimal. ��
We also prove that there exists an optimal 1-D mapping, where the extents of the
anonymizing sets do not overlap. Formally:

Theorem 3. There exists an optimal mapping M such that, ∀s1, s2 ∈ S, and G1 =
M(s1), G2 = M(s2), the 1-D extents of G1 and G2 do not overlap.

Proof. Denote by M′ the optimal mapping for U and S, and assume that ∃s1, s2 ∈ S,
G1 = M′(s1) and G2 = M′(s2), such that G1 and G2 overlap in their 1-D extents.
Let ui1 , ui2 be the start boundaries and uj1 , uj2 be the end boundaries of groups G1

and G2, respectively. Without loss of generality, consider that ui2 < uj1 , a situation
depicted in Figure 9. We build anonymizing groups G′

1 = G1 ∪ {ui2}�{uj1} and
G′

2 = G2 ∪{uj1}�{ui2}, that is, we swap the end user of G1 with the start user of G2.
Since |ui2 − ui1 | + |uj2 − uj1 | ≤ |uj1 − ui1 | + |uj2 − ui2 |, the generalization cost of
the mapping is not enlarged. Furthermore, sets G′

1 and G′
2 have the same cardinality as

G1 and G2, hence the privacy requirement is satisfied. Therefore, the new mapping M
obtained by replacing G1, G2 with G′

1, G
′
2 is optimal. By applying the same reasoning

for every pair of overlapping groups, the theorem is proved. ��

106 B. Krishnamachari, G. Ghinita, and P. Kalnis

Fig. 9. Anonymizing sets do not overlap in their 1-D extent

4.2 The BK Algorithm in the 2-D Domain

BK is a dynamic programming algorithm, which is based on the properties of the 1-
D ordering. BK finds the best mapping M by minimizing the 2-D GGC metric from
Eq. (2). Recall that BK is not optimal in the 2-D domain.

Let AS(s) be the anonymizing set of site s. Each AS has cardinality K (Theorem 1)
and consists of consecutive users in the 1-D order (Theorem 2). Therefore, we can
uniquely identify a particular AS by its start boundary i (i.e., the group starting at i
consists of users ui . . . ui+K−1).

BK determines recursively the optimal mapping for each sub-problem corresponding
to prefixes Ui = {u1 . . . ui+K−1} of U and Sj = {s1 . . . sj} of S. Intuitively, Ui con-
tains all users that may be part of anonymizing sets starting at boundary at most i. BK
tabulates the values of a cost matrix Cost[1 . . . n][1 . . .m], where element Cost[i][j]
contains the optimal solution to the sub-problem with inputs Ui and Sj .

According to Theorem 3, the users in AS(sj) must be after those in AS(sj−1);
therefore, not all start boundaries are acceptable for a given j. Let a(j) be the minimum
and b(j) the maximum allowable start boundary for AS(sj). There must be enough
users before AS(sj) to build AS for sites s1 . . . sj−1. Similarly, sufficient users must
remain after AS(sj), to form AS for sj+1 . . . sm. Formally:

a(j) = (j − 1) · K + 1, b(j) = n + 1 − (m − j + 1) · K (5)

Figure 10 illustrates the Cost matrix and the possible choices of the start boundary for
AS(j).

Fig. 10. BK: Cost matrix tabulation

Privacy-Preserving Publication of User Locations in the Proximity of Sensitive Sites 107

Bichromatic K-anonymity (BK)
Input: sets U [1 . . . n] and S[1 . . . m] sorted in ascending order of 1D Hilbert values
0. min val = ∞, best start value = −1

/* populate first column */
1. for i = 1 to n − m · K + 1 do /* for every allowed start boundary of AS(s1) */
2. if GC(ui, . . . , ui+K−1, s1) < min val then
3. min val = GC(ui, . . . , ui+K−1, s1)
4. best start value = i
5. solution[i][1] = best start value
6. Cost[i][1] = min val

/* populate remaining columns */
7. for j = 2 to m do
8. min val = ∞, best start value = −1
9. for i = (j − 1)K + 1 to n + 1 − (m − j + 1)K do /*for every start boundary of AS(sj)*/
10. if (Cost[i − K][j − 1] + GC(ui, . . . , ui+K−1, sj)) < min val then
11. min val = Cost[i − K][j − 1] + GC(ui, . . . , ui+K−1, sj)
12. best start value = i
13. solution[i][j] = best start value
14. Cost[i][j] = min value

/* output solution */
15. group start = solution[n − K + 1][m]
16. output M(sm) ≡ AS(sm) = (ugroup start . . . ugroup start+K−1)
17. for j = m − 1 downto 1 do
18. group start = solution[group start − K][j]
19. output M(sj) ≡ AS(sj) = (ugroup start . . . ugroup start+K−1)

Fig. 11. Bichromatic K-Anonymity Pseudocode

Note that some users may not be included in any AS, hence there may be “gaps” left
in the user sequence when forming an AS. As mentioned earlier, Cost[i][j] stores the
best cost of the solution for sub-problem Ui, Sj . According to Eq. (5), the AS of the
last site in Sj can start at any value between a(j) and i. Hence, Cost[i][j] contains the
minimum cost over all choices of start boundary i′, a(j) ≤ i′ ≤ i. The Cost value is
recursively determined as:

Cost[i][j] = min{Cost[i−1][j], Cost[i−K][j−1]+GC(ui, . . . , ui+K−1, sj)} (6)

If the first element of the min function is smaller, it signifies that choosing to start
AS(j) at i is more costly than if we start it at i − 1, or earlier. Hence, i should not be
the start of AS(sj). Otherwise, AS(sj) should begin at i, and the value of Cost[i][j] is
updated as the sum of the immediate generalization cost associated to the area enclosing
{sj} ∪ {ui . . . ui+K−1}, and the recursive component Cost[i − K][j − 1]. The latter
corresponds to the best cost obtained for the sub-problem Ui−K , Sj−1 (the i − K is
dictated by the requirement that AS(sj−1) must end before i, hence must have start
boundary at most i − K).

Figure 11 shows the BK pseudocode. The values in the first column of the ma-
trix (i.e., Cost[∗][1]) are determined directly (lines 1-6) by computing all possible
anonymizing sets associated to sensitive site s1. Formally:

Cost[i][1] = min
1≤i′≤i

GC(ui′ , . . . , ui′+K−1, s1), a(1) ≤ i ≤ b(1) (7)

108 B. Krishnamachari, G. Ghinita, and P. Kalnis

In addition to the minimum cost value, we also need to retain the i′ value that minimizes
the above cost, to reconstruct the solution once the tabulation is completed. For this
purpose we use an additional table solution[1 . . . n][1 . . .m], which contains at element
solution[i][j] the start boundary of AS(sj) of the best solution to sub-problem Ui,
Sj .

The main loop (lines 7-14) tabulates the contents of Cost and solution in increasing
value of j (i.e., by columns), and in increasing value of i within each column, based on
the best solution obtained previously for column j−1. Finally, the mappingM(sj), 1 ≤
j ≤ m, is obtained in lines 15-19 with the help of the solution table. The cost of the
best mapping corresponds to the minimum value in the final column m (recall that each
entry in column j of Cost stores the accumulated cost of the solution to subproblem
Ui, Sj). Formally:

BestCost = min
(m−1)·K<i≤n−K+1

Cost[i][m] (8)

From Eq. (5), it results that the number of actual entries in each column j (i.e., the
number of allowable i values) is b(j)− a(j) + 1 = (n + 1−m ·K). The total number
of tabulated entries becomes (n + 1−m ·K) ·m ≡ O(m · n). However, the tabulation
proceeds column-by-column, and only the last column of Cost needs to be retained at
any time. Hence, the space complexity of storing Cost is O(n). Still, we need to store
the entire solution table. Nevertheless, only a constant O(n) fraction (i.e., the current
column) must be stored in main memory, while the rest can be saved to secondary
memory and read one more time when the output is performed.

In terms of computational cost, BK needs to tabulate O(n · m) entries of Cost, and
each entry requires O(K) computation for determining the base-case cost of GC in
Eq. (6) (line 10). The total cost is O(m · n · K). Although this is asymptotically lower
than MK, we show in Section 5 that BK is more expensive in practice, since the actual
number of stages in MK is much smaller than the worst case analysis. Nevertheless, the
generalization cost incurred by BK is considerably lower.

5 Experimental Evaluation

We implemented C++ prototypes of the proposed MK and BK algorithms, as well as the
Local technique from [9]. We also implemented a benchmark method based on nearest
neighbor search, referred to as KNN. KNN picks sensitive sites in random order, and
for each s ∈ S and a given K , it includes in M(s) the K nearest users of s. Those
users are then eliminated from U , to ensure that users are not shared among sites. For
efficiency, in the KNN method we index the users with an in-memory R*-Tree [3].

Our experiments were run on a P4 3.0 Ghz machine with 1GB of RAM and Linux
OS. We measured the execution time and the generalization cost GGC. GGC is ex-
pressed as the percentage of the sum of areas of all generalized locations, over the area
of the entire dataspace (intuitively, this measures how much of the dataspace area is
covered by the published locations). Formally:

Privacy-Preserving Publication of User Locations in the Proximity of Sensitive Sites 109

 0.1

 1

 10

 100 200 300 400

G
G

C
 (

%
 o

f D
at

as
pa

ce
)

Sensitive Sites (m)

MK
BK

LOCAL
KNN

(a) Generalization Cost

 0.1

 1

 10

 100

 1000

 10000

 100000

 100 200 300 400

E
xe

cu
tio

n
T

im
e

(s
ec

)

Sensitive Sites (m)

MK
BK

LOCAL
KNN

(b) Execution Time

Fig. 12. Variable m, K = 5, 10000 Users

GGC(M) = 100 ·

∑

s∈S

Area(MBR(M(s) ∪ {s}))

DomainArea
% (9)

We used the NA1 real dataset, consisting of 569, 120 locations on the North-American
continent. We generated U and S sets of various sizes through random sampling from
NA. In Section 5.1 we compare all algorithms for small input sizes, because of the very
high overhead of Local, whereas in Section 5.2 we evaluate MK, BK and KNN for large
inputs.

5.1 Comparison Against Local

In this experiment we set the number of users to 10, 000, K = 5, and vary the number
of sensitive sites m. Figure 12a shows that even for such a small value of K , the GGC
incurred by Local is one order of magnitude worse than that of other methods (roughly
10% of the dataspace). As discussed in Section 2.3, Local tends to include in M(s)
users that are very close to site s in one of the x or y coordinates, but they may be far
away in actual distance. Therefore, the resulting MBR is very large. We also measured
GGC using the publication method proposed in [9] (recall from Section 2 that this
format has serious privacy drawbacks). For m = 200, for instance, Local achieves
a GGC value of 0.25, compared to 0.78 for KNN. However, Local performs poorly
when a secure publishing format is used. Among the other methods, BK obtains the
best GGC. In terms of execution time, Figure 12b shows that Local is several orders of
magnitude slower than the other techniques. For 400 sites the absolute value is 18 hours.
The results do no utilize the R*-Tree-based optimization described in [9]. However, a
preliminary implementation that included that improvement did not show significant
gains. Among the other algorithms BK and MK are very fast, outperforming KNN.

Figure 13 presents the results for variable K; n = 10, 000 users and m = 200 sites.
The only value for which Local achieves low GGC is K = 2. For this value, it is likely
that a site s includes in its M(s) two users with close-by x or y coordinates, resulting

1 http://www.rtreeportal.org

110 B. Krishnamachari, G. Ghinita, and P. Kalnis

 0.01

 0.1

 1

 10

 100

 2 4 6 8 10

G
G

C
 (

%
 o

f D
at

as
pa

ce
)

K

MK
BK

LOCAL
KNN

(a) Generalization Cost

 0.1

 1

 10

 100

 1000

 10000

 2 4 6 8 10

E
xe

cu
tio

n
T

im
e

(s
ec

)

K

MK
BK

LOCAL
KNN

(b) Execution Time

Fig. 13. Variable K, 200 Sensitive Sites, 10000 Users

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2000 3000 4000 5000 6000 7000 8000 9000 10000

G
G

C
 (

%
 o

f D
at

as
pa

ce
)

Sensitive Sites (m)

MK
BK

KNN

(a) Generalization Cost

 0

 200

 400

 600

 800

 1000

 2000 3000 4000 5000 6000 7000 8000 9000 10000

E
xe

cu
tio

n
T

im
e

(s
ec

)

Sensitive Sites (m)

MK
BK

KNN

(b) Execution Time

Fig. 14. Variable m, K = 20, 569120 Users

in an MBR with small area. As K increases, the resulting MBR becomes less skewed,
and its area grows considerably.

5.2 Comparison of MK and BK Versus KNN

Below, we compare MK, BK and KNN for large input sizes that are relevant for practi-
cal applications (we exclude Local due to its excessive running time). Unless otherwise
specified, U consists of the entire NA dataset (i.e., 569K users). Figure 14 compares
the three algorithms for variable m and K = 20. There is a clear tradeoff between MK
and BK: GGC is up to 2 times lower for BK compared to MK, but MK is up to 8 times
faster. The execution time of MK is 42 seconds for the largest input. KNN is worse than
BK in terms of GGC and it is also much slower.

In Figure 15, we vary K for m = 4, 000 sensitive sites. BK maintains its advan-
tage over KNN in terms of GGC, while being up to ten times faster. MK is the fastest
method. Observe that the execution time of BK decreases with K , because the number
of tabulated entries in the dynamic programming formulation is (n + 1 − m · K) · m.
Intuitively, less candidate start boundaries need to be considered as K increases. For
MK, there are two contrary effects as K increases: the initial cost of 1DAnon is linear

Privacy-Preserving Publication of User Locations in the Proximity of Sensitive Sites 111

 0

 2

 4

 6

 8

 10

 10 15 20 25 30 35 40 45 50

G
G

C
 (

%
 o

f D
at

as
pa

ce
)

K

MK
BK

KNN

(a) Generalization Cost

 0

 200

 400

 600

 800

 1000

 10 15 20 25 30 35 40 45 50

E
xe

cu
tio

n
T

im
e

(s
ec

)

K

MK
BK

KNN

(b) Execution Time

Fig. 15. Variable K, 4000 Sensitive Sites, 569120 Users

 0

 2

 4

 6

 8

 10

 12

 14

500k400k300k200k100k

G
G

C
 (

%
 o

f D
at

as
pa

ce
)

Users (n)

MK
BK

KNN

(a) Generalization Cost

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

500k400k300k200k100k

E
xe

cu
tio

n
T

im
e

(s
ec

)

Users (n)

MK
BK

KNN

(b) Execution Time

Fig. 16. Variable n, 2000 Sensitive Sites, K = 20

to K . However, fewer groups are generated and this reduces the user-to-site assignment
phase of MK. As a result, the execution time remains almost constant.

Finally, in Figure 16 we fix m = 2, 000, K = 20 and vary the number of users
n. As n increases, the density of the users in the dataspace also increases, and more
compact anonymizing sets can be formed. Therefore, GGC decreases with larger n for
all methods. The execution time of KNN grows considerably with n, as more users
need to be considered in the nearest-neighbor search. The execution time of both BK
and MK is linear to n.

5.3 Discussion

Our two proposed methods, BK and MK, provide a clear tradeoff between generaliza-
tion cost and execution time: BK is the best in terms of GGC out of all considered
algorithms. It is also much faster than KNN and Local, but it is slower than MK. MK
is faster at the expense of higher GGC (roughly 2 times worse than BK). Neverthe-
less, MK remains a good choice for applications where speed is essential; for instance,
publishing real-time traffic updates.

Local cannot be used for any input size of practical value, due to its extremely high
computational overhead. Furthermore, Local incurs very high generalization cost, if a

112 B. Krishnamachari, G. Ghinita, and P. Kalnis

secure location publishing format is used. Finally, the KNN method is outperformed by
BK in terms of both GGC and execution time.

6 Conclusions

The collection of location data from mobile users has received considerable attention re-
cently. To enable users with low-end communication devices (i.e., even without GPS) to
access location-based services, certain LBS providers (e.g., GoogleMaps) have devised
systems that calculate the user location from the identifiers of cellular network tow-
ers. As huge amounts of location data are becoming available, their privacy-preserving
publication emerges as an important concern. In this paper we proposed two methods
for the anonymous publishing of location data, which are fast and achieve low data
distortion. Our methods are significantly better, compared to existing work.

In the future, we plan to study more complex attacks, based on traces of locations. By
correlating information published at consecutive timestamps, an attacker may be able to
gain additional knowledge and compromise the privacy of certain users. We also plan to
address the scenario where the input location data is not entirely available before-hand,
but instead it is generated in a streaming manner. This setting is more difficult, since
data must be output before their expiration deadline; therefore, computational efficiency
becomes a primary concern.

References

1. Aggarwal, C.C.: On k-Anonymity and the Curse of Dimensionality. In: Proc. of VLDB, pp.
901–909 (2005)

2. Bayardo, R., Agrawal, R.: Data Privacy through Optimal k-Anonymization. In: Proc. of
ICDE, pp. 217–228 (2005)

3. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*-Tree: An Efficient and Ro-
bust Access Method for Points and Rectangles. In: Proc. of ACM SIGMOD, pp. 322–331
(1990)

4. Bettini, C., SeanWang, X., Jajodia, S.: Protecting Privacy Against Location-Based Personal
Identification. In: Jonker, W., Petković, M. (eds.) SDM 2005. LNCS, vol. 3674, pp. 185–199.
Springer, Heidelberg (2005)

5. Chow, C.-Y., Mokbel, M.F.: Enabling Private Continuous Queries for Revealed User Lo-
cations. In: Papadias, D., Zhang, D., Kollios, G. (eds.) SSTD 2007. LNCS, vol. 4605, pp.
258–275. Springer, Heidelberg (2007)

6. Gedik, B., Liu, L.: Location Privacy in Mobile Systems: A Personalized Anonymization
Model. In: Proc. of ICDCS, pp. 620–629 (2005)

7. Ghinita, G., Karras, P., Kalnis, P., Mamoulis, N.: Fast Data Anonymization with Low Infor-
mation Loss. In: Proc. of VLDB, pp. 758–769 (2007)

8. Gruteser, M., Grunwald, D.: Anonymous Usage of Location-Based Services Through Spatial
and Temporal Cloaking. In: Proc. of USENIX MobiSys, pp. 31–42 (2003)

9. Hu, H., Xu, J., Du, J., Ng, J.K.-Y.: Privacy-Aware Location Publishing for Moving Clients.
Technical report, Hong Kong Baptist University (2007),
http://www.comp.hkbu.edu.hk/∼haibo/privacy join.pdf

10. Kalnis, P., Ghinita, G., Mouratidis, K., Papadias, D.: Preventing Location-Based Identity
Inference in Anonymous Spatial Queries. IEEE TKDE 19(12), 1719–1733 (2007)

http://www.comp.hkbu.edu.hk/~haibo/privacy_join.pdf

Privacy-Preserving Publication of User Locations in the Proximity of Sensitive Sites 113

11. LeFevre, K., DeWitt, D.J., Ramakrishnan, R.: Incognito: Efficient Full-Domain K-
Anonymity. In: Proc. of ACM SIGMOD, pp. 49–60 (2005)

12. Machanavajjhala, A., Gehrke, J., Kifer, D., Venkitasubramaniam, M.: l-Diversity: Privacy
Beyond k-Anonymity. In: Proc. of ICDE (2006)

13. Mokbel, M.F., Chow, C.Y., Aref, W.G.: The New Casper: Query Processing for Location
Services without Compromising Privacy. In: Proc. of VLDB, pp. 763–774 (2006)

14. Moon, B., Jagadish, H., Faloutsos, C.: Analysis of the Clustering Properties of the Hilbert
Space-Filling Curve. IEEE TKDE 13(1), 124–141 (2001)

15. Reid, D.: An algorithm for tracking multiple targets. IEEE Transactions on Automatic Con-
trol 24, 843–854 (1979)

16. Samarati, P.: Protecting Respondents’ Identities in Microdata Release. IEEE TKDE 13(6),
1010–1027 (2001)

17. Sweeney, L.: k-Anonymity: A Model for Protecting Privacy. Int. J. of Uncertainty, Fuzziness
and Knowledge-Based Systems 10(5), 557–570 (2002)

18. Tao, Y., Xiao, X.: Personalized Privacy Preservation. In: Proc. of ACM SIGMOD, pp. 229–
240 (2006)

	Privacy-Preserving Publication of User Locations in the Proximity of Sensitive Sites
	Introduction
	Background and Related Work
	Problem Definition
	K-Anonymity in Relational Databases
	K-Anonymity for Location Data

	Monochromatic K-Anonymity (MK)
	Bichromatic K-Anonymity (BK)
	Properties of an Optimal 1-D Mapping
	The BK Algorithm in the 2-D Domain

	Experimental Evaluation
	Comparison Against Local
	Comparison of Metapost and BK Versus KNN
	Discussion

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

