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Abstract. One of the fundamental challenges that the data mining com-
munity faces today is privacy. The question “How are we going to do
data mining without violating the privacy of individuals?” is still on
the table, and research is being conducted to find efficient methods to
do that. Data transformation was previously proposed as one efficient
method for privacy preserving data mining when a party needs to out-
source the data mining task, or when distributed data mining needs to
be performed among multiple parties without each party disclosing its
actual data. In this paper we study the safety of distance preserving
data transformations proposed for privacy preserving data mining. We
show that an adversary can recover the original data values with very
high confidence via knowledge of mutual distances between data objects
together with the probability distribution from which they are drawn.
Experiments conducted on real and synthetic data sets demonstrate the
effectiveness of the theoretical results.

1 Introduction

Data mining technology proved its success in many areas such as health, life-
sciences, and security. On the other hand, the popularity of data mining ignited
heated debates on the privacy aspects especially after the launch of large scale
projects related to homeland security. In fact, some projects were stopped since
they failed to meet the privacy concerns. According to a very recent article in
Computer World by Jaikumar Vijayan “The chairman of the House Committee
on Homeland Security, has asked Department of Homeland Security Secretary
Michael Chertoff to provide a detailed listing of all IT programs that have been
canceled, discontinued or modified because of privacy concerns” [15]. In addition
to that, the Chairman also asked for information about the measures being taken
to address privacy issues [15].

Measures to address privacy issues can be as simple as not collecting privacy
sensitive information at all. Unfortunately, in many applications this is not pos-
sible. Therefore, advanced protocols based on statistics and cryptography are
proposed to ensure privacy. Privacy preserving data management in general, is
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still an ongoing research topic, and efficient as well as secure methods without
strong assumptions are yet to be proposed. In fact, recent results showed that
the data sets transformed with perturbation based techniques can be recovered
by a principle component analysis based attack[7]. In this paper, we present a
general attack which is applicable in cases where only the pairwise distances
among objects are known.

The main contribution of this paper is to demonstrate that any data trans-
formation, from which an attacker can learn the mutual distances between data
objects may disclose private information: (1) If the attacker knows a few of the
data objects in the database, he can recover all data perfectly, (2) If the attacker
has a-priory knowledge of the probability distribution from which the data is
drawn, he can recover all data with high precision. Our attack is based on an
attack of Liu et al.[7], but is improved so that it is applicable even to the privacy
preserving method which was proposed in [8] to prevent the attack from [7]. Our
attack is also improved in the sense that it is applicable to a wider range of
scenarios than the attack of Liu et al.. We demonstrate the attack with known
probability distribution on the Adult Census dataset from the UCI Machine
Learning Repository [13], which is the same dataset used in [8], and show that
the original data can be recovered with an error as low as 2%.

2 Related Work

Data perturbation is a widely used technique for privacy preserving data mining.
Additive perturbation techniques proposed by Agrawal and Srikant are based on
adding random noise to the original data which can then be filtered to recover
the distribution of the original data[3]. Another scenario is where a group of
organisations would like to perform collective data mining but would not like to
share their data. An encryption based protocol for privacy preserving association
rule mining in distributed environments is proposed in[6]. Similarly, secure multi-
party computation based methods are applied to privacy preserving clustering
in distributed environments[14]. In [2], authors propose an approach for privacy
preserving data mining which maps the original data set into a new anonymised
data set preserving the correlations among the different dimensions.

Security of random perturbation methods against partial disclosure through
successive querying of the database by snoopers is studied in [10]. The effect of
high dimensionality in randomisation was studied by Aggarwal in [1].

Many techniques for classification such as clustering only relies on the mu-
tual distances between the objects in the database. In consequence several pri-
vacy preservation techniques which preserves mutual distances have been pro-
posed. The authors of [4,5,11] have proposed perturbation techniques based on
geometric transformations such as translation, rotation, and re-scaling of the
dataset. With the exception of rescaling, these operations preserve distances.
Even rescaling, while it does not preserve the exact distances, preserves the rel-
ative distances. Oliveira and Zäıane, propose techniques for securely computing
the distances between each pair of data objects, and only reveal the resulting
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dissimilarity matrix to the third party, who can then perform clustering[12].
Oliveira and Zäıane prove that the dissimilarity matrix alone does not violate
privacy with the assumption that the attacker does not have domain knowledge.
However, in cryptography the well established Kerckhoffs’ principle states that
the security of a system must never rely on keeping the algorithm and/or the
data secret — the only secret should be an easily exchangeable cryptographic
key. The role of this principle in the case of privacy preserving data mining is
well understood in the words of Bruce Schneier [9]:

“Kerckhoffs’ principle applies beyond codes and ciphers to security sys-
tems in general: every secret creates a potential failure point. Secrecy, in
other words, is a prime cause of brittleness and therefore something likely
to make a system prone to catastrophic collapse. Conversely, openness
provides ductility.”

While privacy is preserved in [12] when the adversary has no domain knowledge
at all, it is unclear what happens if the adversary gains partial knowledge of
the domain. A party involved in data mining, for instance, is likely to know
the layout of the tables in the database, and anyone can easily gain access to
national statistics about age, sex, income, e.t.c. Relying on this information to
be kept secret from the adversary is unrealistic, and clearly violates Kerckhoffs’
principle. Notice that knowing the distribution of the data is not the same as
knowing the data. Even though anyone can see the distribution of patients with
cancer according to e.g. age and income, we do not want anyone to learn the
identity of a specific individual with cancer. In this paper we demonstrate that
in a worst case scenario a secret database can be reconstructed very accurately
if the adversary knows the table layout and knows the distribution of the data.

Our attack is based on the work by Liu et al., where the authors point out
that perturbation techniques which preserve distance between data objects can
be attacked if the attacker knows a small set of data selected according to the
same probability distribution as the original data set[7,8]. The attack applies
principal component analysis to the perturbed data, and tries to fit it to the
known data set. Liu et al. also propose an alternative transformation where the
objects in the original data set are projected onto a subspace in a way that
distance is preserved with high probability. They point out that the alternative
approach is secure against the identified attack, but may not be secure against
other attacks. Our attack is applicable to a wider range of scenarios than the
attack of [7], since the attacker does not need the entire perturbed dataset: only
the mutual distances and information about the probability distribution from
which objects are chosen. Our attack is more general since: (1) In many cases the
information about the probability distribution can be obtained from alternative
sources (i.e. national statistical agencies), and (2) only the mutual distances
from the original dataset are needed (not a perturbation of every object). Our
attack also have some improvements in the computational cost: Our attack is
polynomial in the number of attributes, whereas the attack in [7] is exponential
in the number of attributes.
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3 Problem Formulation

Throughout this paper we let n be the number of objects (i.e. rows) in the
target database which is attacked. Each object in the database has d attributes.
In other words, each object can be thought of as a vector in a d-dimensional
vector space. For simplicity we assume that all attributes are from an alphabet
Ω. We model the objects as random variables X1, . . . , Xn. We assume that these
random variables are independent and identically distributed according to a
global probability distribution, and let P (x) denote the probability that Xi = x,
for all i ∈ {1, . . . , n}.

3.1 Distance Preserving Transformations and Dissimilarity
Matrices

In this paper we show how to attack any distance preserving data transformation.
The only thing we need for our attack are the pairwise distances between the
objects in the database. We represent this information by a dissimilarity matrix
as described below. We are not concerned with the actual transformation, or
whether the data is centralised or distributed.

The dissimilarity matrix is an n × n matrix which contains the distances
between each pair of data objects. We can describe the dissimilarity matrix as
random variable D, which depends on the random variables X1, . . . , Xn in that
Dij = |Xi − Xj|, for all i, j ∈ {1, . . . , n}.

In our experiments we use databases containing numerical and boolean at-
tributes, since they have well-defined distance measures. We use the Euclidean
distance, and assign the values 1 and 0 to boolean values true and false, respec-
tively. Textual and nominal data requires extra work, and are not addressed in
this paper.

In data mining applications it is common to normalise the attributes before
analysing the data. Normalisation prevents attributes of large magnitudes to
dominate the small scaled attributes. In our work we assume that all attributes
are normalised.

3.2 Motivating Scenario

Dissimilarity matrices of objects having only one attribute is a simple special
case, where the distances between objects are equal to the differences in their
attributes. In this section we will briefly study this special case to get some
intuition.

Suppose we have a database containing the ages of randomly selected individ-
uals within a country. For samples of sufficient sizes, it is acceptable to assume
that the database has the same probability distribution of ages as nationwide.

Suppose we have a database of 5 individuals, x1, x2, x3, x4, x5, with discrete
ages 25, 95, 4, 60, 32, respectively. The corresponding dissimilarity matrix can
be seen in Table 1.

If we know the age of two individuals, x1 and x2, say, we can easily find the
age of all the other individuals: namely the unique age at the given distance
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Table 1. Dissimilarity matrix of the age of 5 individuals

x1 x2 x3 x4 x5

x1 0 70 21 35 7
x2 0 91 35 63
x3 0 56 28
x4 0 28
x5 0

from the two known ages. This corresponds to the “Hyper-lateration” attack
described in Sec. 4 below.

To recover the ages from the dissimilarity matrix only, we start by finding
the biggest distance in the matrix — in this case 91. The two individuals with
biggest distance (x2 and x3) defines the boundaries of the database: one of them
is the youngest, while the other is the oldest. We assign the age zero to any of
the two points, x2, say. Now the age of all the other individuals is their distance
to x2 (since all ages are known to be positive). The resulting ages can be seen
in Table 2.

Table 2. Ages, if x2 is assumed to be 0 years

x2 x4 x5 x1 x3

0 35 63 70 91

Suppose that we know that more than half of the population is younger than
40 years. In that case the ages in Table 2 do not fit the probability distribution of
the population — we have most likely chosen the wrong person as the youngest.
When flipping the ages of x2 and x3 we get the ages seen in Table 3, which fits
the global probability distribution better.

Table 3. Ages, if x3 is assumed to be 0 years

x3 x1 x5 x4 x2

0 21 28 56 91

Now that we have a good candidate dataset, the histogram of the candidate
dataset is compared with the global probability distribution and the statistical
distance between the two is computed (in our example, the dataset is too small to
plot the histogram). By shifting the candidate dataset by small amounts (in this
case by 1 year), and computing the statistical distance of the resulting probabil-
ity distributions to the global probability distribution, we can find the best fitting
candidate dataset. The shift trials are conducted until the oldest individual in
the candidate dataset reaches the maximum possible age the global probability
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distribution (at 120 years, say). The candidate dataset that has the minimum
statistical distance to the global probability distribution is chosen as the winning
set.

In Sec. 5 we give an attack which can rotate a multidimensional candidate
dataset to the true dataset with low error.

3.3 Attack Scenarios

Our underlying model is that a secret data base of n objects is drawn according
to a global probability distribution of d dimensional vectors. An attacker is given
the dissimilarity matrix of the data base. Besides the dissimilarity matrix he has
some extra information available. This information can be:

Known sample. An attacker might be able to learn a few of the objects in the
data base. If he knows at least d + 1 objects (and knows the corresponding
entries in the dissimilarity matrix) he will be able to reconstruct the data
base with high probability, as described in Sec. 4.

Known probability distribution. The probabilitydistribution from which the
objects are drawn may be known to an attacker. In Sec. 5 we show an attack
using this information.

There are several ways in which an attacker might recover the necessary in-
formation. To get a known sample of the database, an attacker might get insider
information from a person within the organisation which owns the database, or
he might be able to inject information. In some cases it may even be realistic
to assume that the attacker already knows some entries in the database (he had
an operation in the hospital which has the target database of medical data).
Knowledge of the global probability distribution can, in some cases, be obtained
from national statistical societies. In other cases the attacker could be in posses-
sion of his own database with objects drawn from the same global probability
distribution (a competing hospital).

Finally we assume that an attacker knows the schema of the database. The
schema of the database will often depend on the software which is used by the
organisation, and may be readily available. It may also follow public standards.

3.4 Principal Component Analysis

In the scenario where the attacker does not have a known sample from the
database, but has knowledge about the global probability distribution of the
data, we apply principal component analysis (PCA). PCA is a statistical method
which identifies correlations in a dataset. It takes a dataset of random variables
drawn from the d-dimensional vector space, and creates a vector basis which
is best suited to represent the dataset. The basis is such that when data is
projected onto the subspace spanned by “the most significant” basis vectors,
only little information is lost.

More precisely, PCA computes the covariance matrix of the dataset. On entry
(i, j) ∈ {1, . . . , d}2 the covariance matrix has the covariance

Cov(Xi, Xj) = E((Xi − μi)(Xj − μj)), (1)
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where μi and μj are the expected values of Xi and Xj , respectively. The eigen-
values and the corresponding eigenvectors of the covariance matrix are then
computed. The eigenvectors (i.e. principal components) form the new vector
basis, which we refer to as the eigen-basis. The eigenvectors with the largest
eigenvalues are the most significant components, and point in the direction of
the highest correlation.

The central observation is that the eigenvalues do not change when the dataset
is rotated and/or mirrored. In particular, a dataset which is obtained by hyper-
lateration will have the same eigenvalues as the original dataset, and we expect
that rotating the corresponding eigen-basis to the original eigen-basis will recover
the data.

4 Attacking with Known Sample

In this section we assume that the attacker has a known sample of at least
d + 1 objects from the data base, and knows the corresponding entries in the
dissimilarity matrix.

Given three points in a two dimensional vector space, which do not lie on a line,
a fourth point with known distances to these three points can be placed by tri-
angulation or trilateration. Trilateration generalises to points in a d-dimensional
vector-space, so that we can uniquely place a point with known distances to
d+1 distinct points, which span the vector-space. We call this procedure “hyper-
lateration”. Applying hyper-lateration to our case; if we have a database with
d attributes and n objects, and we are only given the dissimilarity matrix, we
can find the original data if we can correctly place d + 1 distinct points (which
span the full vector-space). In most databases there are considerably more data
objects than attributes. We thus reduce the complexity of guessing all n objects
in the database to guessing or obtaining d + 1 � n objects.

4.1 Hyper-lateration

We now give the algorithm for hyper-lateration. Given d + 1 reference points,
p0, . . . , pd, in R

d the following theorem gives us a point x at distance δi to point
pi, for i = 0, . . . , d.

Theorem 1. Let p0, . . . , pd be d + 1 distinct points which span R
d. Any point x

is uniquely determined by the set of distances {δi}d
i=0, where δi is the distance

from x to point pi, for i ∈ {0, . . . , d}.
Proof. Hyperlateration is the task of solving the equations

δ2
i =

d∑

j=1

(xj − pij)
2 =

d∑

j=1

x2
j − 2xjpij + p2

ij , (2)
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for all i ∈ {0, . . . , d}. These equations are simplified by subtracting the equaiton
δ2
0 =

∑d
j=1 x2

j − 2xjp0j + p2
0j from all the other equaitons:

δ2
i − δ2

0 =
d∑

j=1

2xj(p0j − pij) + p2
ij − p2

0j , (3)

for all i ∈ {1, . . . , d}. The result is a system of d linear equations which we write
as

Mx = d + δ, (4)

where Mij = 2(p0j − pij), and di =
∑d

j=1(p
2
0j − p2

ij) only depend on the known
points, and δi = δ2

i − δ2
0 depends on the distances. This system of equations has

a unique sollution exactly when M is non-singular, which is the case if and only
if p1, . . . , pd are linearly independent.

4.2 The Hyper-lateration Attack

If an attacker knows a sample of d+1 objects from the database, he may be able
to recover the entire database if he sees the dissimilarity matrix. The success of
this attack depends on two things: (1) the known objects should be represented
by distinct points which span the full vector-space, and (2) the attacker must
know the corresponding entries in the dissimilarity matrix (i.e. he must know
the distances between the known objects and any other object). If these two
conditions are met, the attacker will be able to fully recover the database without
any error.

The attack consists of the following steps:

1. Pre-compute the matrix M , it’s inverse, and the vector d from Eq. 4.
2. For each row in the dissimilarity matrix, which corresponds to an unknown

object, compute the vector δ from Eq. 4, and solve the system of linear
equations.

The first step can be done in time O(d3), while the second step (assuming
that n > d) requires time O((n − d)d2). The overall time is O(d2n).

5 Attacking without Known Sample

If the attacker does not have a known sample of the target database, he can
still attack the dissimilarity matrix if he knows the “shape” of the data. In this
section we show how the attacker can map a candidate dataset obtained from the
dissimilarity matrix into the real data. The attacker obtains a candidate dataset
by randomly fixing d+1 points so that they are consistent with the dissimilarity
matrix. This gives a candidate dataset where the relative position of all points
is true (up to mirroring in any axis) — in other words: a perturbation of the
original data in the target database. By applying a principal component analysis
attack, similar to the one presented by Liu et al.[7], to the candidate dataset,
we show how the candidate dataset can be mapped to a dataset which fits well
to the real data of the target database.
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5.1 The PCA Attack

In the PCA attack the attacker is given only two pieces of information:

– The dissimilarity matrix of the database.
– A representation of the global probability distribution from which the data

is drawn.

Given this data, the goal of the attacker is to reconstruct the secret database.
Generating a candidate dataset, which is consistent with the dissimilarity ma-

trix, is straightforward by hyper-lateration as described in Sec 4.1. Unfortunately
the candidate dataset found by hyper-lateration can be an arbitrarily rotated
and mirrored version of the real data. Such a rotation and mirroring of a dataset
can be seen as a perturbation of the dataset. Liu et al. proposed using PCA to
rotate and mirror a perturbed dataset back to its original position by comparing
the principle components of a known sample from the same global probability
distribution with the perturbed data’s principle components and then generate
a rotation matrix which rotates the perturbed data to the actual position by
a simple matrix multiplication[7]. The principle components generated by PCA
are very good representatives of the general shape of the probability distribu-
tion, as they directly depend on the variances and covariance values of individual
attributes. As the distance matrix we are attacking is assumed to be of a data
mining application, the correlations between variables will most likely gener-
ate strong principle components. The results of [7] can directly be applied to
our case, since the result of our hyper-lateration process is special case of data
perturbation.

Although one of the main uses of PCA is to project data to lower dimensions
without loosing statistical information, we only use it to find principle compo-
nents of both the candidate dataset and the known probability distribution, and
try to construct a rotation matrix to match the principle components of these
two probability distributions.

One limitation of PCA is that it is invariant under mirroring of the data. In
other words: when using PCA to rotate the candidate dataset, we may end up
with a dataset which is mirrored along any of the principal components. There
are 2d possible mirror images of which we have to find the one that matches
the global probability distribution best. To test the quality of a candidate we
compute the statistical distance between the probability distribution which can
be computed from the candidate dataset to the real probability distribution. For
a candidate dataset C and global probability distribution P we compute

δ(C, P ) =
∑

v∈Ωd

∣∣∣∣
#v

‖C‖ − P (v)
∣∣∣∣ , (5)

where #v is the number of occurrences of v in C (this can be computed efficiently
by only summing over v which occur in C).

Our attack can be described in the following steps:

1. Perform hyper-lateration on the dissimilarity matrix, to get a candidate
dataset.
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2. Compute the covariance matrices of the global probability distribution, and
the candidate dataset.

3. Find eigenvalues and eigenvectors of the two matrices.
4. Match the eigenvectors of the two covariance matrices pairwise, and find a

rotation which will rotate the eigen-basis of the candidate dataset to the
eigen-basis of the global probability distribution.

5. For each eigenvector, measure the statistical distance between the known
probability distribution and the candidate dataset obtained from both di-
rections of the eigenvector — choose the one that is closest to the known
distribution, and continue to next eigenvector.

Steps 2 and 3 comprises the PCA. Notice that since the target database is
drawn from the global probability distribution, the covariance matrix made from
target database should match the covariance matrix of the global probability
distribution fairly accurately.

Our attack differs from the attack of Liu et al. on two points:
– Liu et al. do an exhaustive search amongst all 2n possible mirroring of the

eigenvectors, whereas we find the direction of eigenvectors one at the time.
– Liu et al. use multivariate two-sample hypothesis test to find the best can-

didate dataset. We compute the statistical distance defined in Eq. 5. The
approach by Liu et al. requires time O((n + d)2), whereas our approach can
be done in time O(n log n) (sort the vectors in the candidate dataset and
count their frequencies).

Step 1 has time complexity O(d2n). Step 2 also takes time O(d2n) (we assume
that the covariance matrix of the global probability distribution has been pre-
computed) and Step 3 takes time O(d3). Finding the rotation in Step 4 takes
O(d2n). The final step has time complexity O(dn log n). In total our attack has
time complexity O(d3 + d2n + dn log n) (which is O(n3) when d < n).

5.2 Characteristics of Vulnerable Datasets

While our attack is based on a statistical method for mapping the hyper-latereted
data to the global probability distribution, the characteristics of data can change
the accuracy of the output considerably. For example, a dataset with a circu-
lar shape (no correlation between attributes) in 2-dimensional space cannot be
mapped to its original position by using PCA.

The covariance matrix is the main identifier of the success of our attack, as it
is the only input to PCA. Its eigenvalues and eigenvectors define the alignment
of data and are the basis for finding the rotation which maps a candidate dataset
to the real data of the target database. We therefore study the connection be-
tween the properties of the covariance matrix and the success of the attack. The
covariance matrix contains the covariance values between each pair of attributes
and the variances of single variables in its diagonal.

In order to see the effect of the covariance values, we implemented an algo-
rithm that constructs a multivariate Gaussian distribution which has a given
covariance matrix (see Sec. 5.2 below). By using this tool, we can observe error
rates with different configurations of the covariance matrix.
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Fig. 1. Effect of eigenvalue differences (synthetic data)

Recall that the PCA-based attack works by finding the eigen-basis of the
candidate dataset, and comparing it to the eigen-basis of the known properties
distribution. In order to match the eigenvectors pairwise, all the correspond-
ing eigenvalues must be different. We thus expect that the attack works best,
when there is a large average difference between the eigenvalues of the covari-
ance matrix (so that they are easily paired with the eigenvalues of the known
probability distribution). To test this, we constructed data with difference co-
variance matrices, and plotted the average distance between eigenvalue versus
the error percentage of the output of the attack. As can be seen from the result
of the tests given in Fig. 1, there is a clear relationship between the eigenvalue
difference and the error percentage. When the difference between the eigenvalues
grows, the error drops. On the other hand, when the eigenvalues are very similar,
the error percentage increases dramatically.

A dataset has a high average difference between eigenvalues of the covariance
matrix when the correlations between different pairs of attributes differ. In other
words: datasets where some attributes are highly correlated, while others are only
weakly correlated are more vulnerable to the PCA attack.

In some scenarios it may not be realistic to assume that an attacker has access
to statistical data which contains the correlations between attributes. If, for
instance, the attacker can only obtain statistics for each attribute independently,
he will not be able to apply the PCA attack, since his description of the global
probability distribution does not contain the correlations necessary for the PCA
attack to work. In this case, however, other methods may be applies. Recall that
PCA is only used to recognise “geometrical characteristics” of the dataset which
can be used to rotate the candidate dataset to the real data. Since we know that
our hyper-latereted candidate dataset has the same shape as the original data
— up to rotation, displacement, and mirroring, any technique which can give a
simple representation of the shape of a dataset, can be used to find a rotation
from the candidate dataset to the real data. Instead of using PCA an attacker
may try to recognise each attribute independently in the candidate dataset. We
leave it to future work to find alternatives to PCA.



90 E.O. Turgay et al.

Generating Synthetic Datasets. To characterise the vulnerable datasets, we
generated synthetic datasets with a given covariance matrix, V . We do this as
described in this section.

A d-dimensional data set, described by a d-dimensional random variable X =
(X1, . . . , Xd) has the covariance matrix:

⎡

⎢⎢⎢⎣

E[(X1 − μ1)(X1 − μ1)] · · · E[(X1 − μ1)(Xd − μd)]
E[(X2 − μ2)(X1 − μ1)] · · · E[(X2 − μ2)(Xd − μd)]

...
...

E[(Xd − μd)(X1 − μ1)] · · · E[(Xd − μd)(Xd − μd)]

⎤

⎥⎥⎥⎦ ,

where μi = E[Xi] is the expected value of the ith attribute. This matrix can be
rewritten as

Covd(X) = E
[
(X − E[X ])(X − E[X ])T

]
. (6)

We now see, that for an d-dimensional random variable X , and orthogonal
matrix U :

Covd(UX) = E
[
(UX − E[UX ])(UX − E[UX ])T

]

= E
[
U(X − E[X ])(X − E[X ])T UT

]

= UE
[
(X − E[X ])(X − E[X ])T

]
UT

= UCovd(X)UT .

We can now create a data set with the given covariance matrix V . Since V is
self-adjoint it can be diagonalised. In other words, we can find orthogonal matrix
U , and diagonal matrix D such that:

V = UDUT . (7)

The matrix U will have the ith eigenvector of V as the ith row, and the matrix
D will have the ith eigenvalue in Dii.

We now see that if Covd(X) = D then

Cov(UX) = UCov(X)UT = UDUT = V. (8)

In other words — by generating X with independently distributed variables,
where XI has variance Dii, then the random variable UX has the desired co-
variance matrix.

6 Experimental Results

To demonstrate the potential power of our attack we apply it to both real and
synthetic datasets. We use the “Adult Census” and “Auto-MPG” datasets from
the UCI Machine Learning Repository [13]. For our experiments we use a 1.6 GHz
Pentium Notebook with 2 MB cache and 512 MB RAM running the Windows XP
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operating system. The implementation of our attack is programmed using ruby
1.8.6 with rb-gsl (gnu scientific library) bindings for mathematical operations.

The Adult Census dataset contains 48842 objects. The objects have 14 at-
tributes, of which we are only using the attributes “age”, “education-num”,
“sex”, and “hours-per-week” (Liu et al. apply their attack to the attributes
“age”, “education-num”, “hours-per-week”).

The Auto-MPG dataset contains information on car brands, their engines,
and their gas consumption. The dataset contains 398 objects with 8 attributes.
We apply our attack to the attributes “mpg”, “displacement” (engine volume),
“horsepower”, “weight”, and “acceleration”.

Before the attack is applied, we compute the global probability distributions,
which is to be known to the attacker. To this end each test first selects a subset
from the given dataset, and computes the statistics on that subset. The attack is
subsequently applied to the dissimilarity matrix of another subset of objects (the
target database). When the target database is overlapping with the data used for
computing the probability distribution, the computed probability distribution
fits closely to the target database. This may make the attack seem better than
it is. We have selected non-overlapping sets, where possible. Unfortunately the
Auto-MPG dataset only contains 398 objects, so some overlap is unavoidable.

As measure of success, we compute the average distance between the recovered
data and their real values. The tests are repeated 30 times, and their average is
taken. In the following graphs the distances are reported in percentage of the max-
imum distance1, which is referred to as distance error, to make comparison easy.

In Fig. 2 the results of the attack on the Auto-MPG dataset is shown. Since
the dataset is small, we use 200 objects for computing the known probability
distribution. We attack target datasets of sizes from 50 to 400 in steps of 50.
In the tests where the target database has less than 200 objects, we use non-
overlapping sets. However, in the tests with more than 200 objects there is an
overlap between the data used for computing the probability distribution and

Fig. 2. Error percentage in Auto-MPG dataset with 5 attributes

1 Since we normalise all data, the maximum distance of d-attribute objects is
√

d.
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Fig. 3. Error percentage in adult census dataset with 4 attributes

Fig. 4. Error percentage in adult census dataset with and without our speed optimisation

the target dataset. Even for a dataset as small as 50 objects, we can recover the
data with an error of only 6.5%. When the size of the dataset grows, the error
drops to approximately 2%, and therefore our attack becomes more effective.

In Fig. 3 the results of the attack applied to the Adult Census dataset is
illustrated. The global probability distribution is computed from a set of 5000
objects, and the target datasets contain between 2000 and 40000 objects in steps
of 2000. Since the Adult Census dataset contains 48842 objects the dataset used
for computing the global probability distribution and the target dataset are non-
overlapping. The tests show that in this very realistic scenario, we are able to
recover the secret data with an error of only 3%, and on some cases as low as
2%. In terms of privacy this means that we can recover the age of individuals to
a precision of 3 years; this is clearly a violation of privacy.

Since our attack does not do exhaustive search for the best mirroring of the
dataset, but iteratively try to mirror in one direction at the time it will clearly not
be as precise as when exhaustive search is used. To see how much the precision
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Fig. 5. Time of the attack on 1000 objects with and without our speed optimisation

suffers when using our optimisation we also make the above test on the Adult
Census dataset. In Fig. 4 it is seen that the speed improvement reduces the
precision of the attack, as expected.

To demonstrate the effect of our improvement on the speed of the attack, we
perform a series of timings both with and without our improvement. The tests
are performed on synthetic datasets of 1000 objects with 4 – 12 attributes. As
can be seen from Fig. 5 our approach greatly reduces the time of the attacks.

For databases with many attributes our improved attack offers a realistic
attack, where the original attack becomes infeasible.

7 Conclusions

Privacy preserving data mining is still an ongoing research topic where off-the-
shelf software solutions are yet to be developed. Two of the main reasons for
the lack of software solutions are the strong assumptions made by the existing
methods, and possible privacy breaches. In this work we showed that distance
preserving data transformation techniques proposed for privacy preserving data
mining (1) make too strong assumptions for real life scenarios, and (2) com-
promise the privacy of individuals. Current distance preserving transformations
assume that the adversary does not have background information about the re-
leased data. To prove that this is not a realistic assumption, we showed how
an adversary can utilise public data sets to obtain statistics about the trans-
formed data. We further demonstrated how this background information can be
used in conjunction with the distance values to obtain the original data set. We
conducted experiments on US census and Auto MPG data obtained from UCI
[13] to show that the actual data can be recovered with very high accuracy. Our
attack is an improvement of the attack of Liu et al. since it is applicable to any
distance preserving map (including the projection map proposed in [8] which is
secure against the attack from [7]).
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It is still an open problem to quantify how much information can be disclosed
from the dissimilarity matrix of a given dataset. We argued that, when the PCA
attack is applied, the amount of disclosed information is related to the charac-
teristics of the eigenvalues of the correlation matrix, but for other techniques
other properties may govern the amount of leakage. It is an interesting problem
to find alternatives to PCA.
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