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Abstract. Increasingly, many data sources appear as online databases, hidden
behind query forms, thus forming what is referred to as the deep web. It is de-
sirable to have systems that can provide a high-level and simple interface for
users to query such data sources, and can automate data retrieval from the deep
web. However, such systems need to address the following challenges. First, in
most cases, no single database can provide all desired data, and therefore, mul-
tiple different databases need to be queried for a given user query. Second, due
to the dependencies present between the deep-web databases, certain databases
must be queried before others. Third, some database may not be available at cer-
tain times because of network or hardware problems, and therefore, the query
planning should be capable of dealing with unavailable databases and generating
alternative plans when the optimal one is not feasible.

This paper considers query planning in the context of a deep-web integra-
tion system. We have developed a dynamic query planner to generate an efficient
query order based on the database dependencies. Our query planner is able to se-
lect the top K query plans. We also develop cost models suitable for query plan-
ning for deep web mining. Our implementation and evaluation has been made
in the context of a bioinformatics system, SNPMiner. We have compared our al-
gorithm with a naive algorithm and the optimal algorithm. We show that for the
30 queries we used, our algorithm outperformed the naive algorithm and obtained
very similar results as the optimal algorithm. Our experiments also show the scal-
ability of our system with respect to the number of data sources involved and the
number of query terms.

1 Introduction

A recent and emerging trend in data dissemination involves online databases that are
hidden behind query forms, thus forming what is referred to as the deep web [13].
As compared to the surface web, where the HTML pages are static and data is stored
as document files, deep web data is stored in databases. Dynamic HTML pages are
generated only after a user submits a query by filling an online form.

The emergence of the deep-web is posing many new challenges in data integration.
Standard search engines like Google are not able to crawl to these web-sites. At the
same time, in many domains, manually submitting online queries to numerous query
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forms, keeping track of the obtained results, and combining them together is a tedious
and error-prone process. Recently, there has been a lot of work on developing deep web
mining systems [6, 7, 14, 15, 19, 31, 38]. Most of these systems focus on query interface
integration and schema matching.

A challenge associated with deep web systems, which has not received attention so
far, arises because the deep web databases within a specific domain are often not in-
dependent, i.e., the output results from one database are needed for querying another
database. For a given user query, multiple databases may need to be queried in an in-
telligent order to retrieve all the information desired by a user. Thus, there is a need for
techniques that can generate query plans, accounting for dependencies between the data
sources, and extracting all information desired by a user.

A specific motivating scenario is as follows. In bioinformatics, Single Nucleotide
Polymorphisms (SNPs), seem particularly promising for explaining the genetic contri-
bution to complex diseases [3, 20, 34]. Because over seven million Single Nucleotide
Polymorphisms (SNPs) have been reported in public databases, it is desirable to de-
velop methods of sifting through this information. Much information that biological
researchers are interested in requires a search across multiple different web databases.
No single database can provide all user requested information, and the output of some
databases need to be the input for querying another database.

We consider a query that asks for the amino acids occurring at the corresponding po-
sition in the orthologous gene of non-human mammals with respect to a particular gene,
such as ERCC6. There is no database which takes gene name ERCC6 as input, and out-
puts the corresponding amino acids in the orthologous gene of non-human mammals.
Instead, one needs to execute this query plan. We first need to query on one database,
such as SNP500Cancer, to retrieve all SNPs located in gene ERCC6. Second, using the
extracted SNP identifier, we query on SNP database, such as dbSNP, to obtain the amino
acid position of the SNP. Third, we need to use a sequence database to retrieve the pro-
tein sequence of the corresponding SNP. Finally, querying on BLAST database, which
is a sequence alignment database, we can obtain the amino acid at the corresponding
position in the orthologous gene of non-human mammals.

From the above example, we can clearly see that for a particular query, there are
multiple sub-goals. These sub-goals are not specified by the user query, because the user
may not be familiar with details of the biological databases. The query planner must be
able to figure out the sub-goals. Furthermore, we can note the strong dependencies
between those databases, which constraint the query planning process.

This paper considers query planning in the context of a deep-web integration system.
The system is designed to support a very simple and easy to use query interface, where
each query comprises a query key term and a set of query target terms that the user
is interested in. The query key term is a name, and the query target terms capture the
properties or the kind of information that is desired for this name. We do not need the
user to provide us with a formal predicate-like query. In the context of such a system,
we develop a dynamic query planner to generate an efficient query order based on the
deep web database dependencies. Our query planner is able to select the top K query
plans. This ensures that when the most efficient query plan is not feasible, for examples,
because a database is not available, there are other plans possible.
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To summarize, this paper makes the following contributions:

1. We formulate the query planning and optimization problem for deep web databases
with dependencies.

2. We design and implement a dynamic query planner to generate the top K query
plans based on the user query and database dependencies. This strategy provides al-
ternative plans when the most efficient one is not feasible due to the non-availability
of a database.

3. We support query planning for a user-friendly system that requires the user to only
include query key terms and a set of target terms of interest. Database schemas are
input by an administrator or designer.

4. We develop cost models suitable for query planning for deep web mining.
5. We present an integrated approximate planning algorithm with approximation ratio

of 1/2.
6. We integrate our query planner with a deep web mining tool SNPMiner [37] to

develop a domain specific deep web mining system.
7. We evaluate our dynamic query planning algorithm with two other algorithms and

show that our algorithm can achieve optimal results for most queries, and further-
more, our system has very good scalability.

The rest of the paper is organized as follows. In Section 2, we formulate the dynamic
query planning problem. We describe the details of our dynamic query planner in Sec-
tion 3. In Section 4, we evaluate the system. We compare our work with related efforts
in Section 5 and conclude in Section 6.

2 Problem Formulation

The deep web integration system we target provides a fixed set of candidate terms which
can be queried on. These terms are referred to as the Query Target Terms. A user se-
lects a subset of the allowable Query Target Terms and in addition, specifies a Query
Key Term. Query target terms specify what type of information the user wants to know
about the query key term. From the example in Section 1, we know that for a single
query of this nature, several pieces of information may need to be extracted from var-
ious databases. Furthermore, there are dependencies between different databases, i.e.
information gained from one source may be required to query another source. Our goal
is to have a query planning strategy that can provide us an efficient and correct query
plan to query the relevant databases.

We have designed a dynamic query planner which can generate a set of Top K query
plans. The query plan with shorter length, i.e. the number of databases searched, higher
coverage of user request terms, and higher user preference, are considered to have a
higher priority. By generating K query plans, there can be back-up plans when the best
one is not feasible, for example, because of unavailability of a database.

Formally, the problem we consider can be stated as follows. We are given a universal
set T = {t1, t2, . . . , tn}, where each ti is a term that can be requested by a user. We are
also given a subset T ′ = {t′1, t′2, . . . , t′m}, t′i ∈ T , of terms that are actually requested
by the user for a given query. We also have a set D = {D1, D2, . . . , Dm}, where each
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Di is a deep web database, and each Di covers a set of terms Ei = {e1
i , e

2
i , . . . , e

k
i },

and Ei is a subset of T . Furthermore, each database Di requires a set of elements
{r1

i , r
2
i , . . . , rk

i } before it can be queried, where rj
i ∈ T .

Our goal is to find a query order of the databases D∗ = {D1, D2, . . . , Dk}, which
can cover the set T ′ with the maximal benefit and also makes k as small as possible.
The benefit is based on a cost function that we can choose. We call it a dynamic query
planning problem, because the query order should be selected based on the user speci-
fied target terms, and cannot be fixed by the integration system. This is a variant of the
famous weighted set cover problem, and can be easily proven as NP-Complete [9].

2.1 Production System Formulation

For discussing our algorithm, it is useful to view the query planning problem as a pro-
duction system. A production system is a model of computation that has proved to
be particularly useful in AI, both for implementing search algorithms and for mod-
eling human problem solving [27]. A production system can be represented by four
elements, which are a Working Memory, a Target Space, a set of Production Rules,
and a Recognize-Act control cycle. The working memory contains a description of the
current state in a reasoning process. The target space is the description of the aim.
If the working memory becomes a superset of the target space, the problem solving
procedure is completed. A production rule is a condition-action pair. The condition
part determines whether the rule can be applied. The action part defines the associated
problem-solving step. The working memory is initialized with the beginning problem
description. The current state is matched against the conditions of the production rules.
When a production rule is fired, its action is performed, and the working memory is
changed accordingly. The process terminates when the content of the working memory
becomes a superset of the target state, or no more rules can be fired.

We map our query planning problem into the four elements of a production system
as follows. The working memory is comprised of all the data which has already been
extracted. Our query plan is generated step by step, and when a database is added into
our query plan, the data that can be obtained from this database is considered as stored
in the working memory. Initially, the working memory is just the Query Key Term. The
target state is a subset of the Query Target Terms selected by the user.

Each online database has one or more underlying query schema. Those schemas
specify what the input of the online query form of the database is, and what data can
be extracted from the database by using the input terms. The production rules of our
system are the database schemas. Note that one database may have multiple schemas.
In this case, each schema carries different input elements to retrieve different output
results. The database schemas are provided by deep web data source providers and/or a
developer creating the query interface.

The terms in working memory are matched against the necessary input set of each
production rule. Appropriate rule will be fired according to our rule selection strategy,
which will be introduced in Section 3.3. We consider the corresponding database as
queried and the output component of the fired rule is added to the working memory.
We mark the selected rules as visited to avoid re-visiting the same rule. If either of the
following two cases holds, one complete query plan would have been generated. In the
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first case, the working memory has covered all the elements in the target space, which
means that all user requested Query Target Terms have been found. In the second case,
there are still some terms in the target state have not been covered by the working mem-
ory, but no unvisited rules can cover any more elements in the target space. This means
that it is impossible to retrieve all the request terms by using current set of available
databases. This normally occurs when some databases are unavailable.

3 Query Planning Approach and Algorithm

Our approach for addressing the problem stated in the previous section is as follows.
We first introduce a data structure, dependency graph, to capture the database depen-
dencies. Our algorithm is based on this data-structure. Towards the end of this section,
we describe the cost or benefit model that we use.

3.1 Dependency Graph

As we stated earlier, there are dependencies between online databases. If we want to
query database D, we have to query on some other databases in order to extract the
necessary input elements of D first. We use the production rule representation of the
databases to identify the dependecies between the databases and build a dependency
graph of databases to capture the relationship between databases.

Formally, there is a dependency relation DR, ≺DR ⊂ 2D × D, where 2D is the
power set of D. If {Di, Di+1, . . . , Di+m} ≺DR Dj , we have to query on data source
Di, Di+1, . . . , Di+m first in order to obtain the necessary input elements for querying
on the data source Dj . Note that there could be multiple combinations of databases that
can provide input required for querying a given database.

We use hypergraph to represent the dependency relationship. A hypergraph consists
of a set of nodes N and a set of hyperarcs. The set of hyperarcs is defined by ordered
pairs in which the first element of the pair is a subset of N and the second element is a
single node from N . The first element of the pair is called the parent set, and the second
element of the pair is called the descendant. If the parent set is not singleton, the ele-
ments of the set of parents are called AND nodes. In our dependency graph, the nodes
are online databases, and hyperarcs represent the dependencies between databases. For
a particular hyperarc, the parent nodes of the pair are the databases which must be
queried first in order to continue the query on the database represented by the descen-
dent node of the pair.

The dependency graph is constructed using the production rules of each online
database. For two databases Di and Dj , suppose Di has a set of production rules
Ri = {ri1, ri2, . . . , rin} and Dj has a set of production rules Rj = {rj1, rj2, . . . , rjm}.
If any rule in Ri has an output set which can fully cover any of the rules’ input set in Rj ,
we build an edge between Di and Dj . In another case, if any rule in Ri has an output
set which partially covers any of the rules’ input set in Rj , we scan the rules of other
databases to find a partner set of databases for Di together with which can fully cover
any of the rules’ input set in Rj . If the partner set exists, we build a hyperarc from Di
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Fig. 1. Dependency Graph Example

and its partner set databases to Dj . If the production rules of a database are updated,
our dependency graph can also be updated accordingly. Figure 1 shows an example of
hypergraph.

In Figure 1, there are 8 nodes in the hypergraph, and 7 hyperarcs. The first hyperarc
is denoted by a. The first element (parent) of the ordered pair of a is node D1, and the
second element (descendant) of the pair is node D2. This hyperarc implies that after
querying on D1, we can obtain the input elements needed for querying D2. Hyperarcs
b to e are similar to hyperarc a. In hyperarc f , the arc connecting the two edges of f
shows that this hyperarc is a 2-connector. The first element of f is a set comprising of
D5 and D6, and the second element is D8. This shows in order to query on D8, we need
to first query on D5 and D6. Hyperarc g has the same structure as f .

For a node D, the neighbors of D are the nodes which have an edge coming from D.
The partners of D are the nodes which is connected with D by a hyperarc to a common
descendent. For example, in Figure 1, D5 has a partner D6, as D5 and D6 connect D8.

3.2 Query Planning Algorithm

We now introduce our algorithm. Initially, we define several new terms.
Due to the existence of database dependencies, some databases can be more impor-

tant because it can link us to other important databases. In Figure 1, suppose we are
on node D1, and user requested terms can only be obtained by the database D8. Using
the query key term, we cannot query on D8 at the beginning. We must first query on
other databases, say D3, to gain additional information in order to follow the database
dependencies and finally query on D8. We call databases D2, D3, D4, D5 and D6
hidden nodes.

In order to determine the hidden nodes, we need to come up with a strategy to
find all reachable nodes from a starting node in the dependency graph. This can be
done by adapting the breath-first search method to a hypergraph. We use the algorithm
Find Reachable Node(DG,s) to find all reachable nodes from a starting node s in the
dependency graph DG. We show the sketch of this algorithm in Algorithm 3.1. In the
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algorithm, Q1 is a queue which stores all reachable nodes from starting node s, Q2
stores all reachable nodes from s with the help of its partners, and PS(t) returns the
partner set of t.

Algorithm 3.1: FindReachableNodes(DG, s)

Initialize two queues Q1 and Q2
Add s to Q1, and mark s as visited
while Q1 is not empty

Dequeue the first element in Q1, name it as t
foreach n which is a neighbor of t

if n ∈ unvisited and PS(t) = Φ and rules match
Add n to Q1 and mark n as visited
else if n ∈ unvisited and PS(t) �= Φ
Add n to Q2

while Q2 is not empty
foreach n ∈ Q2

Extract the partner set PS of n
Denote each partner of n as p
if p ∈ Q1

foreach p of n and rules match
Add n to Q1, and remove n from Q2
Mark n as visited

return (Q1)

Next, we introduce a new concept, Database Necessity. Each production rule is as-
sociated with a set of terms which can be extracted by executing the rule. Some terms
can only be provided by one database, while other terms can be provided by multiple
databases. If a requested term can only be provided by a single rule, that rule should
have a higher priority to be executed. Conversely, if the term can be provided by multi-
ple rules, a lower priority can be assigned to this rule. Based on this idea, each term is
associated with a Database Necessity value. Formally, for a term t, if K databases can
provide it, the database necessity value for t is 1

K .
As part of our algorithm, we need to make hidden rules partially visible on the sur-

face. A hidden but potentially useful rule has the following two properties: (1) It must
be executed in order to extract all user requested terms. (2) The necessary input ele-
ments of it are hidden, i.e. either they are not in the Query Target Terms or they can
only be extracted by rules located in the hidden layer.

We make the hidden rules visible in a bottom-up manner as follows. We scan all the
terms in the user provided Query Target Terms, i.e. the initial Target Space. If there is
some term in the initial target space with database necessity value of 1, which means
only one production rule, say R, can provide this term. This rule R is a hidden rule
which must be fired. In order to make rule R visible, we add the necessary input ele-
ments of R into the target space to enlarge the target space. Then, we re-scan the newly
enlarged target space to find new hidden rules and enlarge the target space further. This
procedure continues until there are no more hidden rules of this kind.
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Another important issue in our algorithm is the ability to prune similar query plans.
The dynamic query planner can generate the top K query plans. When one query plan
is generated, the algorithm will trace back from the current point to generate another
query plan. It is highly possible that two generated query plans QP1 and QP2 use the
same set of databases, but differ in the order of querying two or more databases which
do not have any dependencies. In this case, we will consider the two query plan QP1

and QP2 as the same, and the latter one will be deleted.

Algorithm 3.2: Find TopK Query Plans(PR, WS,TS)

while enlargeable(WS)
Enlarge WS

Initialize queue Q and P
while size(Q) ≤ K

if (∃e ∈ TS and e �∈ WS)
and (∃r ∈ PR and ∃o ∈ O(r) and o ∈ TS)
Find candidate rule set CR
foreach r ∈ CR

Compute benefit score according to benefit model
Select r opt, the rule with the highest benefit
if !prunable(P, r opt)

while r opt �= null and (∃e ∈ TS and e �∈ WS)
and (∃r ∈ PR and ∃o ∈ O(r) and o ∈ TS)
Add r opt to P, and update WS
Select next r opt

else Empty queue P
else Add P to Q and re-order Q

if size(P ) > 0
Remove the last rule of P, update WS, trace back

return (Q)

Main Algorithm. Our dynamic query planning algorithm takes the Query Target Terms
and Query Key Term, and dynamically generates K query plans which cover as many
request terms as possible. At the beginning, we enlarge user provided target space to
visualize hidden rules and obtain the enlarged target space. We take the Query Key Term
as the initial working memory. Then, the production system begins the recognize-act
procedure. Each iteration the system selects an appropriate rule according to a benefit
model and updates the current working memory. This procedure terminates when all
terms in the target space are covered or no more rules can be fired.

Now, we assume our benefit model can select the best rule according to the current
working memory and our goal. We will introduce our benefit model in detail in Sec-
tion 3.3. Algorithm 3.2 shows the sketch of the planning algorithm. In the algorithm,
PR is the set of production rules, WS is the working memory, and TS is the target
space. Q is a queue to store the top K query plans, and P is a queue to store the rules
along one query plan. O(r) returns the output elements of a rule r. prunable() is a
function to test whether a candidate query plan can be pruned as we discussed earlier.
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Our dynamic query planning algorithm is a greedy algorithm which selects the pro-
duction rule with the local maximal benefit according to the benefit model. Each greedy
algorithm has an approximation ratio which measures the performance of the algorithm.
We use |R| to represent the cardinality of the collection of rules R, i.e. the total number
of production rules. We have the following result:

Theorem 1. The approximation algorithm introduced in Algorithm 3.2 has an approx-
imation ratio of |R|+1

2|R| .

The proof is omitted for lack for space.

3.3 Benefit Model

A very important issue in a production system is rule selection, i.e., which rule should
be executed. We have designed a benefit model to select an appropriate rule at each
iteration of the recognize-act cycle. In the algorithm presented earlier in this section,
at each step, each rule is scanned and all the rules which can be fired are put into a set
called the candidate rule set. Then, we compute a benefit score for each of the candidate
rules.

We have used four metrics for rule selection, which are Database Availability (DA),
Data Coverage (DC), User Preference (UP), and Potential Importance (PI).

Database Availability: A production rule R can be executed if the corresponding
database is available. In our implementation, for each rule, we send a message to the
database to test the availability of the database. If the database is not available, we just
ignore this rule for the current iteration.

Data Coverage: Data coverage measures the percentage of required data that can be
provided by a particular rule. Given a rule Rk, the target state TS, and k − 1 rules
R1, R2, . . . , Rk−1 that have already been selected, we want to compute the data cov-
erage of the current rule Rk with respect to TS. We use the number of Query Target
Terms in TS which are also covered by the rule Rk, but have not been extracted by
previous rules for this purpose.

User Preference: Some terms can be extracted from multiple databases, and domain
users may have preference for certain databases for a particular term. We can assign
a user preference value for each term with respect to databases and incorporate user
preference into the benefit function. Consider a particular term t, which can be obtained
from r databases D1, D2, . . . , Dr. A number between 0 and 1 should be assigned to t
for each of the r databases as the preference value, such that the r preference values
sum up to 1. If t can only be obtained from a single database D, the preference value
of t with respect to D is 1 and is 0 for all other databases. The user preference values
should be given by a domain expert.

Suppose we are examining the production rule R, which is associated with the
database D. The following k terms UF1, UF2, . . . , UFk have not been found. For each
term UFi, the user preference with respect to database D is UPi. We use the database
necessity value of each term (DNi for term UFi) as the weight of its user preference
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and we compute the weighted sum of all unfound terms as the user preference value of
the rule, i.e. the user preference of R is

∑k
i=1 DNi ∗ UPi.

Potential Importance: Because of database dependencies, some databases can be more
important due to its linking to other important databases. Figure 1 shows an example. In
the above case, suppose D2 and D3 have the same data coverage and user preference.
Obviously, D3 is potentially more important because D3 can help us link to our final
target D8. As a result, the D3 should be assigned a larger benefit value. Based on the
above idea, we incorporate potential importance to our benefit function.

Suppose we are considering production rule corresponding to the database D. By us-
ing Algorithm 3.1, we find a set of databases Dreachable = {D1, D2, . . . , Dm}, which
can be queried by using the data extracted from database D exclusively. We have k
term which have not been found, denoted by UF1, UF2, . . . , UFk. For term UFi, its
database necessity value is DNi, which means the term UFi can be obtained by 1

DNi

number of databases and we denote this set of databases as NecessaryDi. We want
to know the number of Necessary Databases of UFi which can be reached by the cur-
rent rule R. We count the number of databases in NecessaryDi, which are also in the
set Dreachable, i.e. we compute the cardinality of the set {d|d ∈ NecessaryDi, d ∈
Dreachable}. Suppose the cardinality is ri for term UFi. The potential importance for

UFi with respect to rule R and corresponding database D is
ri∗ 1

DNi

|Dreachable | = ri

m∗DNi
.

Finally, the potential importance for the rule R is

k∑

i=1

ri

m ∗ DNi

For each candidate rule, a benefit score is computed according to the three metrics, data
coverage, user preference and potential importance. The value of the three metrics are
closely related to the database necessity values of all unfound terms when a rule is being
examined, as a result, if a rule is considered as a candidate multiple times, each time the
benefit score must be different, because each time the set of unfound terms is different.
As a result, the benefit score of a production rule is dynamically related to the current
working space of the production system.

The benefit function of a rule R with respect the current working space WS can be
represented as follows:

BF (R, WS) = DC ∗ α + UP ∗ β + PI ∗ γ, α + β + γ = 1

There are three parameters α, β and γ associated with each metric term. These three
parameters scale the relative importance of the three metric terms.

3.4 Discussion: System Extendibility

Extendibility is an important issue for any deep web mining system, as new data sources
can emerge often. We now briefly describe how a new data source can be integrated
with our system. First, we need to represent the database query schemas of the new data
source into the form of production rules. Then, a domain expert assigns or changes user
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preference values for the terms appearing in the newly integrated data sources. We have
developed simple algorithms for automatically integrating the new data source into the
Dependency Graph and updating the database necessity values. The algorithms pro-
posed are scalable to larger numbers of databases. Furthermore, because the design of
our dependency graph and query planning algorithm is based on the inherent character-
istics of deep web data sources, such as database dependencies and database schemas,
our system is independent of the application domain, i.e., the system can be applied on
any domains of application.

4 Performance

This section describes the experiments we conducted to evaluate our algorithm. We ran
30 queries and compared the performance of our algorithm with two other algorithms.

4.1 Experiment Setup

Our evaluation is based on the SNPMiner system [37]. This system integrates the fol-
lowing biological databases: dbSNP1, Entrez Gene and Protein2, BLAST3,
SNP500Cancer4, SeattleSNPs5, SIFT6, and BIND7. SNPMiner System provides an in-
terface by which users can specify query key terms and query target terms. We use
some heuristics to map user requested keywords to appropriate databases. SNPMiner
uses Apache Tomcat 6.x to support a web server. After a query plan is executed, all
results are returned in the form of HTML files. We have a web page parser to extract
relevant data from the files and tabulate the data.

We created 30 queries for our evaluation. Among these 30 queries, 10 are real queries
specified by a domain expert we have collaborated with. The remaining 20 queries were
generated by randomly selecting query keywords. We also vary the number of terms in
each query in order to evaluate the scalability of our algorithm. Table 1 summarizes the
statistics for the 30 queries.

Table 1. Experimental Query Statistics

Query ID Number of Terms
1-8 2-5
9-16 8-12
17-24 17-23
25-28 27-33
29,30 37-43

1 http://www.ncbi.nlm.nih.gov/projects/SNP
2 http://www.ncbi.nlm.nih.gov/entrez
3 http://www.ncbi.nlm.nih.gov/blast/index.shtml
4 http://snp500cancer.nci.nih.gov/home 1.cfm
5 http://pga.gs.washington.edu/
6 http://blocks.fhcrc.org/sift/SIFT.html
7 http://www.bind.ca
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Our evaluation has three parts. First, we compare our production rule algorithm with
two other algorithms. Second, we show that enlarging the target space improves the
performance of our system significantly. Finally, we evaluate the scalability of our sys-
tem with respect to the number of databases and the number of query terms. In all our
experiments, the three scaling parameters are set as follows: α = 0.5, β = 0.3 and
γ = 0.2.

In comparing planning algorithms or evaluating the impact of an optimization, we
use two metrics, which are the mumber of databases involved in the query plan and
the actual execution time for the query plan. We consider a query plan to be good if
it can cover all user requested terms using as few databases as possible. A query plan
that involves more databases tends to query redundant databases, and cause additional
system workload.

4.2 Comparison of Three Planning Algorithms

We compare our Production Rule Algorithm (PRA) with two other algorithms, which
are the Naive Algorithm (NA) and the Optimal Algorithm (OA).

Naive Algorithm: As the name suggests, this algorithm does query planning in a naive
way. The algorithm selects all production rules which can be queried at each round,
until all keywords are covered. This algorithm can quickly find a query plan, but the
query plan is likely to have a very low score and a long execution time.

Optimal Algorithm: This algorithm searches the entire space to find the optimal query
plan. Because we only had 8 databases for our experiments, we could manually deter-
mine the optimal query plan for each query. Such a plan is determined based on the
number of databases involved in the query plan and the expected response time of the
databases involved. This means that the optimal query plan has the smallest estimated
execution time, though the measured execution time may not necessarily be the lowest
of all plans.

In Figure 2, sub-figures (1a) and (1b) show the the comparison between PRA and
NA. In sub-figure (1a), the diamonds are the ratios between the execution time of the
query plans generated by PRA and NA, annotated as ETRatio. We can see that all di-
amonds are located below the ratio = 1 line, which implies that for each of the 30
queries, the query plan generated by production rule algorithm has a lesser execution
time than that of the plan generated by naive algorithm. In the sub-figure (1b), the rect-
angles are the ratios of the number of databases involved in the query plan generated by
PRA and NA, denoted as DRatio. We observe that the same pattern, i.e. the query plans
generated by the production rule algorithm use fewer data sources.

Sub-figures (2a) and (2b) show the the comparison between PRA and OA. From the
sub-figure (2a), we can observe that all the diamonds are distributed closely around the
ratio = 1 line. This shows that in terms of the execution time of generated query plans,
the production rule algorithm has close to the optimal performance. We also observe
from the sub-figure (2b) that in terms of the number of databases involved in query
plans, the production rule algorithm obtains the optimal result, with an exception of
query 11. We examined the query plans generated by PRA, and found that most of the
query plans are exactly the same as the optimal query plans. For other cases, we note
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(1a) (1b)

(2a) (2b)

Fig. 2. Comparison among PRA, NA and OA: (1a) Comparison between PRA and NA on Plan
Execution Time; (1b) Comparison between PRA and NA on Plan Length;(2a) Comparison be-
tween PRA and OA on Plan Execution Time;(2b) Comparison between PRA and OA on Plan
Length

that the optimal algorithm uses some databases with lower response time. However, this
did not necessarily result in lower actual execution time. We can see from the sub-figure
(2a) that some of the execution time with PRA are actually smaller than the execution
times of the plans generated by the optimal algorithm.

4.3 Impact of Enlarging Target Space

In this experiment, we compare the number of databases involved and the execution
time for different query plans generated using the system without enlarging target space
and the system with enlarged target space. We select 8 queries which contains many
terms with database necessity value smaller than 1, because these query plan results
can better show the usefulness of enlarging the target space. The results are shown in
Figure 3.

We have the following observations. From the sub-figure (a) in Figure 3, we can
observe that the number of databases involved for most of the query plans is much
shorter for the enhanced system than that of the system without enhancement. From
the sub-figure (b) in Figure 3, we can also observe that the execution time reduces
very significantly for the enhanced system. The above results show that enlarging target
space can effectively improve our system to generate query plans with fewer databases
and less execution time.
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(a) (b)

Fig. 3. System Enhancement Test: (a) Comparison of Number of Databases Involved; (b) Com-
parison of Execution Time

(a) (b)

Fig. 4. System Scalability Test: (a) System Scalability with respect to Number of Databases In-
volved; (b) System Scalability with respect to Number of Terms in Queries

4.4 Scalability of Production Rule Algorithm

Our last experiment evaluated how the query planning time scales with increasing num-
ber of databases and query terms. From Figure 4, in sub-figure (a), we can observe that
in terms of the average planning time, there is a sharp increase in going from 2 data
sources to 4 data sources. Then, the planning time increases only moderately with re-
spect to the increase in the number of data sources. In the sub-figure (b), we can see
that the average planning time increases very slowly with the increase in the number of
terms in the queries. This shows that our system has good scalability.

5 Related Work

We now compare our work with existing work on query planning, deep web mining,
and keyword search on relational databases.

Query Planning: There are a number of research efforts on query planning. Raschid
and co-workers have developed a navigational-based query planning strategy for mining
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biological data sources [5,21,22,23,28,36]. They build a source graph representing inte-
grated biological databases and an object graph representing biological objects in each
database. The navigational links (hyperlink) between the database objects are assumed
to be pre-fetched. Extending their work [23, 28], they allowed each physical link to
carry a semantic meaning to enhance their algorithm. The key differences in our work
are as follows. First, we focus on deep web database dependencies, not the physical
links between database objects. Further, in their work, a user query needs to specify
source and target databases.

A lot of work has been done in SQL-based query planning [1,12,18,26,32]. In [18],
new SQL operators were introduced to reduce repetitive and unnecessary computations
in query planning. In [12, 26], a set of pre-defined plans were represented in the form
of grammar production rules. For a SQL query, the algorithm first built plans to access
individual tables, and then repeatedly refered grammar rules to join plans that were
generated earlier. Other work has focused on query planning using database views and
multiple databases sharing the same relational schema [1, 32].

Much work on query planning is based on the well known Bucket Algorithm [10,
11, 17, 24, 25, 29, 30]. In the above work, they assume that the user query specifies the
databases or relations need to be queried, and the task of the work is to find a query
order among the specified relations or databases. Based on user specified relations or
sub-goals, a bucket is built containing all the databases which can answer the corre-
sponding sub-goal. But in our work, the user query only contains keyword and will not
specify any databases or relations of interest. Our system selects the best data sources
automatically, i.e. our system figure out sub-goals by itself. At the same time, query
planning is performed.

In [35], a query planning algorithm minimizes the query’s total running time by opti-
mally exploits parallelism among web services. The main difference between our work
and theirs is, they assume that one attribute can only be provided by exactly one data
source which is a unrealistic assumption in real application, but we allow the present of
data redundancy.

Deep Web Mining: Lately, there has been a lot of work on mining useful informa-
tion from the deep web [6, 7, 14, 15, 19, 31, 38]. In [19], a database selection algorithm
based on attribute co-occurrence graph was proposed. In [31], Nie et al. proposed an
object-level vertical searching mechanism to handle the disadvantages of document-
level retrieval. QUIC [38] was a mining system supporting imprecise queries over in-
complete autonomous databases. In [14, 7, 6], Chang et al proposed an E-commerce
domain deep web mining tool MetaQuerier. MetaQuerier translated user query into
several local queries by schema matching. WISE-Integrator [15] was another deep web
mining tool similar to MetaQuerier. The key difference in our work is that none of the
above systems consider database dependencies.

Keyword Search on Relational Databases: Recently, providing keyword based search
over relational databases has attracted a lot of attention [2,4,16,33]. The major technical
issue here is to efficiently search several keywords which co-occur in the same row, in
a table obtained by joining multiple tables or even databases together, and rank them
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based on different measures. In addition, the keywords may appear in any attribute or
column. This is very different from the problem studied in this paper.

Select-Project-Join Query Optimization: There has been extensive work in query
optimization, especially SPJ type query optimization since the early 1970s [8]. A query
optimizer needs to generate an efficient execution plan for the given SQL query from a
space of possible plans based on a cost estimation technique which is used to measure
the cost of each plan in the search space. Our work has some similarities with the above
research efforts in that we both do selection as earlier as possible. Two major differences
between our work and SPJ query optimization are as follows. First, in traditional query
optimization, any join-order is allowed, but for our work, due to deep web properties,
the allowable join operations are restricted. Second, in traditional databases, redundant
columns seldom occur, so it is impossible to have options to take one project or column
from several alternative databases, but redundant data exists in our deep web databases,
and we can take different paths. As pointed out above, our problem is different from
traditional SPJ query and new techniques are needed.

6 Conclusion

In this paper, we formulated and solved the query planning and optimization problem
for deep web databases with dependencies. We have developed a dynamic query plan-
ner with an approximation algorithm with a provable approximation ratio of 1/2. We
have also developed cost models to guide the planner. The query planner automatically
selects best sub-goals on-the-fly. The K query plans generated by the planner can pro-
vide alternative plans when the optimal one is not feasible. Our experiments show that
the cost model for query planning is effective. Despite using an approximate algorithm,
our planning algorithm outperforms the naive planning algorithm, and obtains the op-
timal query plans for most experimental queries in terms of both number of databases
involved and actual execution time. We also show that our system has good scalability.
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