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Abstract. Random sampling is a popular technique for providing fast
approximate query answers, especially in data warehouse environments.
Compared to other types of synopses, random sampling bears the ad-
vantage of retaining the dataset’s dimensionality; it also associates prob-
abilistic error bounds with the query results. Most of the available sam-
pling techniques focus on table-level sampling, that is, they produce a
sample of only a single database table. Queries that contain joins over
multiple tables cannot be answered with such samples because join re-
sults on random samples are often small and skewed. On the contrary,
schema-level sampling techniques by design support queries containing
joins. In this paper, we introduce Linked Bernoulli Synopses, a schema-
level sampling scheme based upon the well-known Join Synopses. Both
schemes rely on the idea of maintaining foreign-key integrity in the syn-
opses; they are therefore suited to process queries containing arbitrary
foreign-key joins. In contrast to Join Synopses, however, Linked Bernoulli
Synopses correlate the sampling processes of the different tables in the
database so as to minimize the space overhead, without destroying the
uniformity of the individual samples. We also discuss how to compute
Linked Bernoulli Synopses which maximize the effective sampling frac-
tion for a given memory budget. The computation of the optimum solu-
tion is often computationally prohibitive so that approximate solutions
are needed. We propose a simple heuristic approach which is fast and
seems to produce close-to-optimum results in practice. We conclude the
paper with an evaluation of our methods on both synthetic and real-
world datasets.

1 Introduction

With the huge amount of data stored in current data warehouse environments,
it is impracticable to execute queries directly on the database when human
interaction is involved. This applies to explorative queries in data mining and
decision-support tasks, which are used as a precursor to more complex analysis
tasks; the main goal is to determine which methods and parts of data that are
likely to produce interesting results and which will not. It also applies to OLAP
and report design, where approximate query processing is able to significantly
increase the responsiveness of the system and therefore the productiveness of
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its users. In all these scenarios, random sampling has proven to be a valuable
tool for database summarization. Compared to other types of synopses, random
sampling is easy to implement and use, it supports a broad range of queries
(including grouping) and it provides probabilistic error bounds.

The main problem with most of the available database sampling schemes is
that they focus on only a single table in the database; we refer to these schemes as
table-level sampling schemes. Queries that contain joins between multiple tables
are problematic because joins between random samples in general do not result
in a random sample of the join of the respective tables [1,2,3]. To avoid this
problem, it is crucial that relationships between multiple tables be known and
exploited in the sampling process itself. This is accomplished by schema-level
sampling schemes: these schemes sample multiple relations at once in such a
way that it is possible to use the resulting samples to compute results of queries
with joins. In this paper, we restrict attention to foreign-key joins. Such joins
are ubiquitous in data warehouse scenarios, where most queries join a fact table
with multiple dimension tables along predefined foreign-key paths.

The problem of schema-level sampling becomes tractable when only foreign-
key joins are of interest. Indeed, Acharya et al. [2] have shown that it is sufficient
to maintain a single sample per table to support any potential foreign-key join.
The key idea underlying their Join Synopses is to 1) take a sample of each table,
2) join each sample with all tables to which it has foreign keys and 3) store the
joined samples in the synopsis. For example, consider a schema with two tables
R1 and R2, where R1 has a foreign key to R2. Let S1 and S2 be uniform random
samples of R1 and R2, respectively. The Join Synopsis then consists of the two
samples S1 �� R2 and S2. Observe that—by projection on the attributes of R1—
S1 can be reconstructed from S1 �� R2; there is a 1:1 relationship between the
tuples in these two relations. The synopsis can be used to answer queries on R1,
on R2 as well as on R1 �� R2. To reduce the space requirement of the sampling
scheme, [2] also suggest to renormalize the join results. After renormalization,
the synopsis contains three “samples”: S1, R2 � S1 and S2. Observe that both
R2 � S1 and S2 contain tuples from R2. If samples S1 and S2 have a size of, say,
10, 000 tuples each, the entire synopsis consists of up to 30, 000 tuples—a space
overhead of 50%.

In this paper, we develop a new schema-level sampling scheme called Linked
Bernoulli Synopses (LBS), which reduces the space overhead incurred by Join
Synopses. In expectation, the size of LBS is at most as large as the size of the
corresponding Join Synopsis; it is often much smaller. The key idea behind LBS
is to correlate the sampling processes of S1 and S2, while maintaining the uni-
formity of both samples. Intuitively, given a sample of S1, we try to reuse as
many tuples from R2 � S1 as possible for the sample S2. Our synopses are opti-
mal, that is, it is impossible to find a sampling scheme which produces smaller
synopses (with the same sampling fractions for each table) in expectation. For
example, when the cardinalities of R1 and R2 are equal and there is a 1:1 rela-
tionship between both tables (the best case), we require a space budget of 20, 000
tuples to sample 10, 000 tuples from each table; the overhead is reduced to 0%.
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We also address the problem of computing a Linked Bernoulli Synopsis which
fits into a given space budget. The problem is challenging because all the sam-
pling steps are correlated; changing the size of one sample might change the size
of many others. We treat the problem as an optimization problem and show how
it can be solved numerically using results from convex optimization. Finding the
optimum solution requires time exponential to the number of relations and lin-
ear to their size; approximate solutions are therefore key to the practicability of
our methods. In fact, we found that a simple heuristic seems to produce near-
optimal results in practice, so that it might be unnecessary to run the entire
optimization.

The remainder of the paper is structured as follows: In Section 2, we review
Join Synopses in more detail and show how their space consumption can be
reduced with a simple modification. We then analyze the modified sampling
scheme in terms of (expected) space consumption. In Section 3, we introduce and
analyze Linked Bernoulli Synopses. Section 4 discusses the problem of allocating
the available space to the different tables in the schema. Preliminary results of
an evaluation on synthetic and real-world datasets are presented in Section 5.
Section 6 gives a brief overview of related work and we conclude the paper with
a summary of our results in Section 7.

2 Preliminaries

In this section, we review, discuss and analyze Join Synopses. The results pre-
sented in this section drive the design of our Linked Bernoulli Synopsis in
Section 3.

2.1 Notation

We start by summarizing the notation used throughout this paper. Let G =
(V, E) be a schema graph of a relational database with V being the set of vertices
and E being a set of directed edges. In more detail, V is the set of tables in the
database, while the set E ⊆ V ×V describes foreign-key relationships. An element
(R1, R2) ∈ E with R1, R2 ∈ V represents a foreign-key relationship from R1 to
R2. R1 is called parent table or predecessor, while R2 is called child table or
successor. For brevity, we write R1 → R2 whenever (R1, R2) ∈ E. Moreover, we
will use ⇒ to denote the transitive closure over →; � and � denote the inverse
of → and ⇒, respectively. The function pkR(t) determines the primary key of
a tuple t ∈ R, and fkR1→R2(t) determines the foreign key of a tuple t ∈ R1

to table R2. Thus, when R1 → R2, two tuples t1 ∈ R1 and t2 ∈ R2 join if
fkR1→R2(t1) = pkR2

(t2). In this case, we say that t1 references t2.
Figure 1 shows the example database that we will use as our running ex-

ample throughout the paper. The database consists of three tables A, B and
C; foreign keys are defined between A.FK and B.PK as well as B.FK and
C.PK. The foreign-key relationships are graphically encoded using arrows be-
tween matching tuples. Using the notation above, we have V = {A, B, C} and
E = {(A, B), (B, C)}.
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Fig. 1. An example database with 3 tables (A → B and B → C)

We subsequently assume that the schema graph G is free of cycles, that is,
there is no table R with R ⇒ R. The reason is that—when the schema graph
contains cycles—the inclusion of even a single tuple from one of the relations
in the cycle might lead to an explosion of the synopsis size. Fortunately, in the
setting of data warehouses we are concerned with, cycles in the schema graph
do not occur. We also assume that G does not contain multiple edges between
two tables; this is not a limitation of our approach but simplifies explanation.

2.2 Join Synopses Revisited

In the following, we take a slightly different view on Join Synopses by incorpo-
rating them into the more general concept of schema synopses. In more detail,
the schema synopsis ΨG of a schema graph G consists of a table synopsis for
each table in the schema. For brevity, we will omit the schema graph G when
referring to the schema synopsis. The table synopsis ΨR consists of a uniform
sample SampleR and a reference table RefTableR, both containing items from
R. The sample is primarily used for query evaluation, while the reference table
is used to maintain foreign-key integrity. In general, the reference table contains
all tuples from R which (1) are referenced by a table synopsis of a predecessor
of R and (2) are not stored in the sample already. As a matter of notation, we
say t ∈ ΨR whenever t ∈ SampleR ∪RefTableR.

Join Synopses can now be viewed as a special kind of schema synopsis. The
algorithm is as follows [2]:

1. Sample each relation independently using Bernoulli sampling. In Bernoulli
sampling with sampling rate q, each tuple is included into the sample with
probability q and excluded with probability 1 − q; the process is repeated
independently for each tuple. The parameter q essentially controls the desired
sample size; see Section 4.

2. Fill the reference tables so that foreign-key integrity is restored. The tables
are processed top-down, that is, a table R is processed only after all its
predecessors have been processed already. Note that the second step slightly
differs from the original Join Synopses because we do not store the same tuple
in both the sample and the reference table. For large tables, the resulting
space reduction is usually negligible for Join Synopses but sets the foundation
for the space reduction possible with Linked Bernoulli Synopses.
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Fig. 2. Join Synopsis with a sampling rate of 50%

Note that both phases of the above algorithm can be interweaved, that is, we can
compute both the sample and the reference table of each table in a single scan.

An example for a Join Synopsis of our example database is given in Figure 2.
We used a sampling rate of q = 50% for each table. The reference tables are given
below the individual samples. As can be seen, reference tables restore foreign-key
integrity. For example, tuple (a6, b5) ∈ A references (b5, c5) ∈ B, but the latter
is not stored in the sample so that it has been included in the reference table.

2.3 Analysis of Join Synopses

We now analyze the space consumption of the modified Join Synopses described
above.1 Let R1, R2, . . . , Rk be the direct predecessors of a table R. During Join
Synopses computation, R is processed after the processing of R1, . . . , Rk has
completed. Now, let isRefRi→R : R → {true, false} for 1 ≤ i ≤ k be a function
which evaluates to true if a tuple t ∈ R has been referenced by ΨRi and to false
otherwise. Also set

isRefR(t) = isRefR1→R(t) ∨ isRefR2→R(t) ∨ · · · ∨ isRefRk→R(t) ,

so that isRefR(t) evaluates to true if t is referenced by any predecessor.
To determine the space consumption of the Join Synopsis algorithm, we view

isRefR(t) as a random function (over the choices made when sampling the pre-
decessors). Our goal is to compute the reference probability pRefR(t) that tuple
t is referenced from any predecessor of R. Assume for a moment that pRefR(t)
is known for a tuple t ∈ R. The selection probability pSelR(t) that tuple t is
included into the synopsis—either by acception into the sample or by addition
to the reference table—is then given by

pSelR(t) = P (t ∈ ΨR) = P (t ∈ SampleR ∨ t ∈ RefTableR)
= P (t ∈ SampleR) + P (t /∈ SampleR)P (t ∈ RefTableR |t /∈ SampleR)
= qR + (1 − qR) pRefR(t),

where qR is the sampling fraction used for table R. Here, the final equality fol-
lows from the independence of the sampling step and the event that the tuple
1 The analysis is fair with respect to the original algorithms because our modification

of the Join Synopsis algorithm leads to a decrease of the space required to store the
synopsis.
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is being referenced. We now have all the information we need to compute ref-
erence probabilities. Suppose that table R has predecessor R′ and denote by
pRefR′→R(t) the probability that a tuple t ∈ R is referenced by the synopsis
of R′. Since the tuples in R′ are sampled independently from each other, this
probability is given by:

pRefR′→R(t) = 1 −
∏

t′∈R′
fkR′→R(t′)=pkR(t)

(1 − pSelR′(t′)) .

Note that pRefR′→R(t) can be computed incrementally, that is, with only a
single scan of R′. To see this, suppose that we have already processed a subset
R′

0 of the tuples in R′ and let t+ ∈ R′ \ R′
0 be the currently processed tuple.

If t+ does not reference t, we can simply ignore it. Otherwise, we can use the
following relationship

pRefR′
0∪{t+}→R(t) = 1 −

∏

t′∈R′
0∪{t+}

fkR′→R(t′)=pkR(t)

(1 − pSelR′(t′))

= 1 − (
1 − pSelR′(t+)

) ∏

t′∈R′
0

fkR′→R(t′)=pkR(t)

(1 − pSelR′(t′))

= 1 − (
1 − pSelR′(t+)

) (
1 − pRefR′

0→R(t)
)

(1)

to update the reference probability. If R′ is the sole predecessor of R, then
pRefR(t) = pRefR′→R(t). The discussion of the computation of pRefR(t) for
tables with multiple predecessors is deferred to Section 3.

Figure 3a shows the selection and reference probabilities for Join Synopses
with a sampling fraction of q = 50% for each table. The reference probabilities
are annotated on the arrows, while the selection probabilities are given right
next to each tuple (rounded to one digit after decimal point). As can be seen,
the selection probabilities—which effectively determine the size of the synopsis—
are larger than both the sampling fraction q and the reference probability. The
reason is that the sampling steps for each table are performed independently of
each other.

Given the sampling fraction qR, the expected size of the table synopsis of R
is given by

E[|ΨR|] =
∑

t∈R

pSelR(t) = qR|R| + (1 − qR)
∑

t∈R

pRefR(t).

In expectation, the entire Join Synopsis consists of

E[|Ψ|] =
∑

R∈V

E[|ΨR|] (2)

tuples by the linearity of expected value. In our example, we have E[|ΨA|] = 3,
E[|ΨB|] ≈ 3.88, E[|ΨC |] ≈ 4.16. The expected total synopsis size E[|Ψ|] is 11.04
tuples.
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Fig. 3. Reference and selection probabilities for q = 50%. Reference probabilities are
annotated on the arrows; tuples with no incoming edges have zero reference probability.

3 Linked Bernoulli Synopses

Linked Bernoulli Synopses are based on Join Synopses, but the synopsis com-
putation is entirely different. The key observation leading to our LBS is that
the event of a tuple being referenced by a predecessor already contains some
randomness, which can be exploited for sampling. If a tuple is referenced, we
have to include it into either the sample or the reference table; that is, we have
to store it anyway. A tuple in a sample, however, is more valuable because it can
be used directly for query answering: larger samples lead to better results. The
tuples in the reference tables can be seen as overhead because they are “only”
used to preserve foreign-key integrity. Thus, we would like to bias the sample
towards referenced tuples, so that the overhead in the reference tables is mini-
mized. LBS perform this biasing in such a way that the resulting sample is still
uniform, so that it can be used for query processing as before. In contrast to Join
Synopses, however, the samples in LBS are correlated. This correlation does not
lead to problems at query time because only one sample is used to answer each
query (the sample of the base table of the join) and each sample on its own is a
uniform random sample of the respective table.

3.1 Algorithmic Description

We are now ready to describe the computation of Linked Bernoulli Synopses in
full detail. The general procedure is as follows:
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1. Scan the tables in top-down order, that is, whenever a table R is processed,
all its predecessors must have been processed already.

2. For each tuple t, decide whether or not the tuple is included into either
the sample or the reference table. This decision is based on (1) the refer-
ence probability pRefR(t) of the tuple and (2) the fact of whether or not the
tuple is referenced by a predecessor (isRefR(t) is true). Simultaneously, com-
pute (or update) the reference probabilities for every successor of R using
equation (1).

The crux of LBS lies in step 2, where we make use of pRefR(t) and isRefR(t)
to drive the sampling process. We now discuss this step in more detail. The key
idea is to compare the reference probability pRefR(t) with the desired sampling
fraction qR. For each tuple t, there are three cases:

Case 1: pRefR(t) = qR, that is, the reference probability and the sampling
fraction are equal. In this case, we add the tuple to the sample if and only if
it is referenced. Otherwise the tuple is ignored. It follows immediately that
P (t ∈ SampleR) = qR.

Case 2: pRefR(t) < qR, that is, the reference probability is smaller than the
sampling fraction. We directly add t to the sample whenever it is refer-
enced. When t is not referenced, we add it to the sample with probability
(qR − pRefR(t)) / (1 − pRefR(t)) or ignore it otherwise. The probability that
t is included into the sample is given by:

P (t ∈ SampleR) = P (isRefR(t) = true) + P (isRefR(t) = false)
qR − pRefR(t)
1 − pRefR(t)

= pRefR(t) + (1 − pRefR(t))
qR − pRefR(t)
1 − pRefR(t)

= qR.

Case 3: pRefR(t) > qR, that is, the reference probability is larger than the sam-
pling fraction. If t is not referenced, we can safely ignore it. If t is referenced,
we add it to the sample with probability qR/ pRefR(t) or to the reference
table otherwise. The probability that t is added to the sample is:

P (t ∈ SampleR) = P (isRefR(t) = true)
qR

pRefR(t)
= pRefR(t)

qR

pRefR(t)
= qR.

This case is the “bad case” because there is a non-zero probability that t is
added to the reference table.

To sum up, the tuple is included into the sample with the desired probability
of qR in each of the three cases. Since both the inclusion/exclusion decisions
as well as the event of being referenced are independent among the tuples, the
algorithm produces a Bernoulli sample with sampling rate qR. The selection
probability pSelR(t), that is, the probability that a tuple t is stored in either the
sample or the reference table, is given by:

pSelR(t) = max {q, pRefR(t)} .

The reference probabilities for LBS are computed from the selection probabilities
as before.
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Fig. 4. Linked Bernoulli Synopsis with a sampling rate of 50%

3.2 Example and Analysis

Figure 3b shows the selection and reference probabilities for LBS with a sampling
rate of q = 50% for each table. By inspection, one finds that—for tables B and
C—the selection probabilities for LBS are lower than the selection probabilities
of Join Synopses; we will formalize this observation below. The expected synopsis
sizes are: E[|ΨA|] = 3, E[|ΨB|] = 2.75, E[|ΨC |] = 3 and therefore E[|Ψ|] = 8.75
(instead of 11.03).

A potential LBS is shown in Figure 4. Compared to Join Synopses (Figure 2),
there is no difference in the sample of table A because A does not have any prede-
cessors (all tuples trivially belong to case 2). When sampling table B, we compare
the desired sampling rate of 50% with the reference probabilities given in Fig-
ure 3b. Tuples b1 through b4 all belong to case 1 above, that is, they are included
if and only if they are referenced. In the example, this holds true for only b1 and
b3; b2 and b4 are ignored. Note that—given the sample of table A—this process
is entirely deterministic. For tuple b5, the reference probability of 75% is larger
than the desired sampling fraction; this is case 3 and—since b5 is referenced—it is
accepted into the sample with probability 2/3 (as in the example) or in the refer-
ence table with probability 1/3. Continuing with table C, both c1 and c5 belong
to case 3. Both tuples are referenced; c1 has been added to the reference table
(probability of acceptance into sample: ≈ 52%) and c5 to the sample (≈ 53%).
Tuples c3 and c4 belong to case 1, but only c3 is referenced and therefore added
to the sample. Finally, tuple c2 belongs to case 2 because it has a reference
probability of zero. It is accepted into the sample with a probability of 50%.

We now compare formally the selection probability of a tuple using Join Syn-
opses with the selection probability using LBS when using the same sampling
rate qR for both. Assuming that the reference probabilities are the same for both
approaches, we have

pSelJS
R (t) − pSelLBS

R (t) = q + (1 − q) pRefR(t) − max {q, pRefR(t)}
= (1 − q) pRefR(t) − max {0, pRefR(t) − q}

=

{
(1 − q) pRefR(t) pRefR(t) ≤ q

q(1 − pRefR(t)) otherwise

≥ 0.

For 0 < q, pRefR(t) < 1 the inequality becomes strict. In general, the reference
probabilities for Join Synopses and Linked Bernoulli Synopses will be different.
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(b) Split pattern (c) Merge pattern (d) Diamond pattern(a) Chain pattern

Fig. 5. Reference patterns

Using the argument above, it is straightforward to show that the reference prob-
ability of Linked Bernoulli Synopses is always smaller than or equal to that of
Join Synopses.

3.3 Handling Multiple Predecessors

Until now, we have assumed that every table has at most one predecessor. This
assumption is clearly too restrictive in practice. In this section, we discuss how
to handle tables with multiple predecessors. The key question we are going to
answer is how to compute the reference probability pRefR(t) from the reference
probabilities pRefRi→R (with Ri being a predecessor of R). To that extent, we
distinguish the 4 possible patterns shown in Figure 5. As before, we assume that
the schema graph is free of cycles.

In a chain pattern, each table has at most one predecessor and at most one
successor. This is exactly the situation we looked at in the preceding sections.
In a split pattern, each table has at most one predecessor but arbitrarily many
successors. Again, the formulas established in the preceding sections can be
used directly. In a merge pattern, each table has arbitrarily many predecessors
and at most one successor. Fix a table R and denote by R1, . . . , Rk the direct
predecessors of R. Since the schema graph is free of cycles, tables R1, . . . , Rk do
not have any common predecessor. They are therefore sampled independently
of each other. It follows that the reference probabilities from each of the Ri to
table R are independent and thus

pRefR(t) = 1 −
k∏

i=1

(
1 − pRefRi→R(t)

)
. (3)

Finally, in a diamond pattern, at least two of the predecessors R1, . . . , Rk of R
share a common predecessor, say R1 and R2. In this case, the event that a tuple
from R is referenced from R1 and the event that the same tuple is referenced from
R2 are not necessarily independent. As a consequence, equation (3) cannot be
used. In the remainder of this section, we have a closer look at the dependencies
introduced in diamond patterns and propose possible workarounds.

We will use the example in Figure 6 for illustration purposes. The example
shows 4 tables A, B, C and D, which are arranged in a diamond pattern. The
sampling rate has been set to 50% for all tables. Suppose that tables A, B and
C have been sampled already and that table D is about to be processed. There
are two problems which might occur in this setting:
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Fig. 6. Reference probabilities for a 50%-sample, dependent references

– Reference probabilities. The references to a tuple t might be dependent. In
the example, tuple d1 is referenced whenever either b1 or c1 is included
into the synopses. The selection probabilities of b1 and c1 are 50% each,
so that the application of formula (3) indicates that d1 is referenced with a
probability of 75%. However, since in a LBS the samples are correlated, both
b1 and c1 are included into the sample of tables B and C, respectively, if
and only if a1 has been included in the sample of table A. This event occurs
with 50% probability, so that the true reference probability of d1 is given by
pRefD(d1) = 50%.

– Joint inclusion probabilities. A more subtle problem is that of joint inclusion
probabilities. In the example, both d2 and d3 are referenced with a probabil-
ity of 75%. The references from tables B and C to tuple d2 are independent,
as are the references to tuple d3. However, if one looks at both d2 and d3

simultaneously, one finds that d2 is referenced whenever d3 is and vice versa.
As a consequence, the sample is biased towards the cases where (1) both
d2 and d3 are sampled and (2) neither d2 nor d3 is sampled. For example,
if we ignore the dependencies between the references and proceed as in the
previous sections, the joint inclusion probability of d2 and d3 is ≈ 44% but
should be 25%.

A trivial way of handling the above problems would be to store table D in its
entirety. Though simple, this approach is viable in scenarios where table D is very
small. For instance, in the schema of the TPC-H benchmark, the only table which
is referenced in a diamond pattern is NATION, and this table consists of only 25
tuples. Otherwise, if table D is too large to store it in its entirety, we see two pos-
sible solutions: (1) switch back to Join Synopses for table D and all its successors
and (2) decide on a per-tuple basis whether to switch back to the Join-Synopses
way of sampling or not. The first solution might work well if table D does not have
large successors; its main advantage is its simplicity. The second solution is more
sophisticated and requires more bookkeeping, but it may reduce the overall space
consumption significantly. We omit further details due to lack of space; a detailed
description of the second solution can be found in [4].



Linked Bernoulli Synopses: Sampling along Foreign Keys 17

4 Computing a Synopsis with a Memory Bound

In the previous section, we assumed that the desired sampling rate for each table
is given beforehand. In practice, however, it might be difficult to decide on the
values of the individual sampling fractions. A more realistic approach is to start
with a space budget and to automatically set the sampling fractions so that the
space budget is not exceeded and the sample sizes are maximized. To simplify
the ongoing discussion, we assume that the space budget is given in number
of tuples. That is, for a given budget M , the goal is to find sampling fractions
which ensure that |Ψ| ≤ M with high probability.

4.1 An Optimization Problem

Suppose that the schema contains tables R1, . . . , Rn. Denote by q1, . . . , qn the
sampling fraction used for each respective table, and let q = (q1, . . . , qn) denote a
vector of these sampling fractions. There are many possible choices for q and we
have to quantify which choices are considered good and which are not. Suppose
that there is a function f so that f(q) > f(q′) whenever the sampling rates in q
are considered more valuable than those in q′. We can now treat the problem as
an optimization problem, that is, we want to find a vector q∗ which maximizes
the objective function f(q) with respect to the constraint g(q) ≤ M , where g(q)
encodes the (expected) space budget. Using these two functions, the optimization
problem can be stated as:

Maximize
f(q1, . . . , qn)

with respect to
0 < q1, . . . , qn ≤ 1
g(q1, . . . , qn) ≤ M.

The function f can be derived from workload information or from information
about the intended usage of the synopsis. In the absence of such information, a
suitable choice for f is the geometric mean of the individual sampling fractions
or, even simpler, its n-th power:

fGEO(q1, . . . , qn) = q1q2 · · · qn.

Some insight into this choice for f is given in the next section. In any case, we
make the assumption that both f and g are monotonically increasing functions
of q. In other words, for any Δq = (Δq1, . . . , Δqn) with Δqi ≥ 0, we assume that

f(q + Δq) ≥ f(q) and g(q + Δq) ≥ g(q).

This assumption virtually always holds in practice because larger sampling
rates lead to larger samples (f) which in turn lead to a larger synopsis size (g).
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The monotonicity of f and g introduces structure into the optimization problem,
which can be exploited for solving it. In [5], Tuy proposes an outer-approximation
algorithm for monotonic optimization called the polyblock algorithm. The time
complexity of the polyblock algorithm is exponential in the number of tables, so
that it can only be used when the number of tables is not too large. But even
when the number of tables is small, the polyblock algorithm requires frequent
evaluations of the constraint function g. Exact computation of g according to
equation (2) is expensive because a table scan of every table in the schema is
required. Therefore, for large problem sizes, it is impractical to compute the
optimum solution and approximate algorithms are needed.

4.2 A Heuristic Solution

Our heuristic solution is based on two simplifications. First, we do not compute
g exactly but make use of a lower bound gl for which a closed-form expression
exists and which can be evaluated quickly without accessing the database. It is
easy to see that

gl(q1, . . . , qn) = |R1|q1 + · · · + |Rn|qn

provides the desired lower bound; we simply ignore the size of the reference table.
As a consequence, replacing g by gl will produce oversized synopses. Depending
on the data, this may or may not be significant; we show below that the size of the
reference tables is often negligible when fGEO is used as the objective function.
Second, the optimum solution can be computed analytically for the combination
of gl and fGEO. To see this, consider an n-dimensional hypercube with edges
of length q1|R1|, . . . , qn|Rn|. Then, fGEO is proportional to the volume of the
hypercube, which in turn is maximized when all edges have equal length. It
follows the fGEO is maximized when

qi ∝ 1
|Ri|

for 1 ≤ i ≤ n.2 We refer to this allocation scheme as equi-size allocation
because—when the reference tables are ignored—the same number of tuples
is sampled from every table in expectation. For traditional Join Synopses, the
equi-size allocation scheme is known to produce good results [2].

In the following, we argue that the size of the reference tables is often negligible
for equi-size allocation. To see this, consider two tables R1 and R2 with R1 → R2

and set r = |R1|/(|R1| + |R2|). For a space budget of M tuples and equi-size
allocation, we set q1 = rM/|R1| and q2 = (1 − r)M/|R2|. There is no reference
table for R1, so that we focus on R2. Recall that a tuple t ∈ R2 is added to
the reference table if and only if pRefR2

(t) > q2 (case 3 in Section 3). Perhaps
surprisingly, all tuples from R2 that are referenced up to k = |R1|/|R2| times
will not be added to the reference table. To see this, start from the Bernoulli

2 When one of the qi exceeds 1, we set it to 1 and repeat the process for the remaining
sampling fractions.
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inequality (1 + x)k > 1 + kx and set x = −q1 = −q2/k. It immediately follows
that 1−(1−q1)k < q2. The expression on the left hand side is equal to pRefR2

(t)
when t is referenced exactly k times; the inequality also holds when t is referenced
fewer than k times. Thus, only tuples which are referenced k + 1 or more times
have a non-zero chance of being included in the reference tables. There are at
most |R1|/(k + 1) such tuples and only some of them are added to the reference
table. Since dependent tables are typically smaller than their parents, the number
of tuples in the reference table is expected to be low.

5 Experiments

We ran a variety of experiments in order to evaluate the effectiveness of Linked
Bernoulli Synopses. Most of the experiments directly compare Join Synopses
(JS) with Linked Bernoulli Synopses (LBS); the main issue we are trying to
address is the extent to which LBS are able to reduce the overhead for stor-
ing reference tables. We also evaluate how close the equi-size allocation scheme
comes to optimum allocation in terms of resulting sample sizes and query
accuracy.

5.1 Experimental Setup

We implemented JS and LBS on top of DB2 using Java 1.6. The experiments
were conducted on an Athlon AMD XP 3000+ system running Linux with 2 GB
of main memory.

We make use of both synthetic and real-world data. The synthetic datasets
are based on the TPC-H database of 1GB size. We used a Zipfian distribution
for both values (prices, quantities, etc.) and foreign keys. We fixed the skew
parameter for values to z = 0.5; the skew parameter for foreign keys is modified
across the experiments. For our real-world experiments, we make use of the
CDBS database3. The database contains information about radio and television
broadcast services in the United States; only the 14 radio-related tables (without
comment tables) were used in our experiments. The sizes of the tables range from
28, 000 to 1.4 million tuples.

5.2 Space Consumption

In a first set of experiments, we evaluated the effectiveness of LBS in comparison
to JS on both synthetic and real-world datasets. We computed both synopses
for various sampling fractions and datasets and recorded the space overhead
required for the reference tables. The space overhead is defined as the size of the
reference tables with respect to the size of just the samples, that is, we determine
how much space is used for non-sample tuples. We used the equi-size allocation
scheme throughout all the experiments.

3 http://www.fcc.gov/mb/cdbs.html

http://www.fcc.gov/mb/cdbs.html
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Synthetic Data. Our experiments on synthetic datasets try to determine the
key factors that influence the overhead of JS and LBS. We generated several
TPC-H datasets with different parameters to examine the impact of skew in
the foreign-key columns. We also experimented with varying synopsis sizes. For
simplicity, we define the synopsis size as the size of just the sample part of the
synopsis with respect to the size of the original tables.

Data skew. In a first experiment, we only consider the orders (O) and customer
(C) table of the TPC-H schema. We varied the skew parameter of the foreign
keys (O → C) from 0 (uniformly distributed) to 1 (heavily skewed); each tuple
of C is referenced at least once. We used a sampling fraction of 0.55% for O and
5.5% for C; these settings correspond to equi-size allocation with a synopsis size
of 1%. The results are shown in Figure 7a. JS have a high overhead on uniformly
distributed keys, but the overhead decreases with increasing skew. The reason
for this behavior is that, when the skew is low, almost every tuple in the sample
of O corresponds to a different customer, which in turn has to be added to the
reference table. When the skew is high, however, a large subset of the orders are
placed by only a small subset of the customers; the number of distinct foreign
keys in the sample of O therefore decreases in expectation. The overhead of LBS
is consistently smaller than the overhead of JS. For a skew value of z = 0, no
reference tables are needed at all; see the discussion at the end of Section 4.2.
With increasing skew, some tuples are referenced with a higher probability than
their desired sampling rate (case 3), so that they are added to the reference
tables from time to time. If the skew increases further, the number of referenced
tuples decreases rapidly and the same effect as for JS can be observed.

Number of unreferenced tuples. In the next experiment, we proceeded as before
but modified the fraction f of unreferenced customers. A fraction of f = 40%
means that 40% of the customers did not place any order. For the remaining
customers, we used a skew parameter of z = 0.5. Figure 7d plots the space
overhead for various choices of f . For JS, the space overhead decreases as the
f increases. The reason is that the number of distinct customers in the sample
of O drops as f increases so that less space is required for reference tables. LBS
performs better when the values of f are not too extreme. When the value of
f increases, so does the space overhead because more and more customers are
referenced with probability larger than the sampling fraction (case 3).

Number of tables. We next evaluated the impact of the number of tables. We
started with just lineitem and orders and subsequently added customer, part-
supp, part and supplier (in this order). The total size of the synopsis was set to
1%. The skew parameter was set to z = 0.5. The results are shown in Figure 7b.
As can be seen, LBS outperform JS, especially when the number of tables is
high. The reason is that an increasing number of tables lead to an increasing
number of transitive references, which have to be stored in the reference tables.
For Linked Bernoulli Synopses, this effect is reduced to a minimum.

Synopsis size. In a final experiment, we evaluated the impact of the synopsis size
when sampling the 6 tables mentioned above. Figure 7c plots the space overhead
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Fig. 7. Space overhead for Linked Bernoulli Synopses and Join Synopses

in dependency of the size of the sample part of the synopsis. As can be seen, the
overhead decreases with increasing sample size because more and more tuples
qualify for the sample and therefore do not have to be stored in the reference
tables. Especially for small synopses, LBS have a significantly smaller overhead.

Real-world Data. We now report our results on the CDBS data. We modified
the synopsis size between 0.1% and 10%. As can be seen in Figure 7f, the space
overhead decreases with increasing synopsis size for both JS and LBS. The differ-
ence between the two is not as dramatic as it has been in the synthetic datasets
because the CDBS tables contain large numbers of unreferenced tuples (up to
90%). Figure 7e shows the influence of the number of tables for a synopsis size
of 1%. Again, LBS has lower overhead than JS.

5.3 Memory Bounds

In a final experiment, we computed synopses that fit into a prespecified amount
of space. We used all tables of the TPC-H database; the nation and region table
have been sampled entirely. The foreign-key skew was set to z = 0.5 and fGEO

was used as objective function. We ran three different combinations: JS with
equi-size allocation (JS-ES), LBS with equi-size allocation (LBS-ES), and LBS
with polyblock allocation (LBS-PB). In the latter case, we restricted the number
of steps of the optimization algorithm to 1, 000; this corresponds to 1 − 2 days
of computation. In contrast, synopsis computation with equi-size allocation is a
matter of minutes. The memory bound (samples and reference tables) was varied
from 1% to 5%.

Figure 8 plots the objective function fGEO for each combination and memory
bound (log plot). The value of the objective function increases with an increas-
ing synopsis size because more space is available for samples. In all cases, the
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LBS-based approaches achieve significantly larger values of the objective func-
tion than JS; they are between 8.9 to 20.8 times larger. Comparing LBS-ES and
LBS-PB, one finds that both approaches perform similarly. In an additional ex-
periment, we allowed 14, 000 optimization steps for LBS-PB with a 1% memory
bound (16 days) and found that the resulting value of the objective function
was roughly 50% above the one achieved by LBS-ES. Thus, there is room for
improvement, but the high computational cost of LBS-PB renders it impractical.

A different view of the results for a 1% memory bound is given in Figure 8b,
where we compare the estimation error achieved by both JS and LBS with
equi-size allocation. The resulting per-table sample size was 7, 407 tuples and
12, 296 tuples, respectively. The columns denote the average relative error of the
approximate answer for four different queries (over 1, 000 independent runs). Q1

determines the average order value of customers from Germany (O � C � N),
Q2 the average balance of these customers (C � N), Q3 the turnover generated
by European suppliers (L � PS � S � N � R), and Q4 computes the average
retail price of a part (P ). As can be seen in the figure, the increase in sample
size for LBS is directly reflected in the precision of the estimates.

6 Related Work

There exists a variety of sampling techniques for approximate query process-
ing. These techniques can be divided into table-level and schema-level sampling
schemes.

Table-level sampling. A table-level sample represents a single table (or view)
of a database. Most research focuses on sampling techniques which produce good
or optimal samples for a specific purpose such as aggregation queries [6,7] or
group-by queries [8,9]. It might be possible to combine some of these techniques
with the ideas presented in this paper. For example, a combination of LBS with
the weighted sampling scheme in [6] requires an appropriate adjustment of the
reference probabilities.

Schema-level sampling. Schema-level samples summarize more than one table
as well as the relationships between them. The difficulty of joins over random
samples is examined in [3,2]. Acharya et al. [2] also propose the Join Synop-
sis algorithm from which our Linked Bernoulli Synopses have been derived. In
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contrast to Join Synopses, Linked Bernoulli Synopses correlate the individual
samples so that the space consumption of the synopses is minimized.

Other schema-level synopses. Apart from sampling, other synopses have
been proposed for approximate query processing over joins. In [10], Spiegel and
Polyzotis propose the Tuple Graph as a data structure which is able to repre-
sent complex relations between tables. Probabilistic Relational Models [11] also
exhibit statistical dependencies between attributes of multiple tables. Both tech-
niques focus on selectivity estimation of complex queries but are not applicable
to approximate query processing.

7 Conclusion

In this paper, we introduced a novel schema-level sampling scheme called Linked
Bernoulli Synopses. The scheme computes a uniform sample of every table in
the database; foreign-key integrity is maintained for all sampled tuples. Our ap-
proach is based on Join Synopses but correlates the sampling processes of the
individual tables. As a consequence, the size of the resulting synopsis is signif-
icantly reduced without affecting the quality of approximate answers. Indeed,
the saved space can be used to store larger samples, which in turn decreases the
estimation error.
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4. Gemulla, R., Rösch, P., Lehner, W.: Linked Bernoulli Synopses: Sampling Along
Foreign Keys (Full Version). Technical report (2007),
http://wwwdb.inf.tu-dresden.de/publications

5. Tuy, H.: Monotonic optimization: Problems and solution approaches. SIAM J. on
Optimization 11(2), 464–494 (2000)

6. Chaudhuri, S., Das, G., Datar, M., Narasayya, R.M.V.R.: Overcoming Limitations
of Sampling for Aggregation Queries. In: ICDE, pp. 534–544 (2001)
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