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Abstract. Data reordering techniques are applied to improve the space and time
efficiency of storage and query systems in various scientific and commercial
applications. Run-length encoding is a prominent approach of compression in
many areas, whose performance is significantly enhanced by achieving longer
and fewer “runs” through data reordering. In this paper we theoretically study
two reordering techniques, namely lexicographical order and Gray code order.
We analyze these two methods in the context of bitmap indexes, which are known
to have high query performances. We take into account the two commonly used
bitmap encodings: equality and range. Our analysis indicates that, when we have
all the possible data tuples, both ordering methods perform the same with equality
encoding. However, Gray code achieves better compression with range encoding.
Experimental results are provided to validate the theoretical analysis.

1 Introduction

Scientific data is mostly read-only and its volume can reach to the order of petabytes,
e.g., astrophysics, genomic and proteomics, high energy physics. The techniques for
maintaining the conventional databases usually do not apply to these applications, which
brings up the need for effective indexing methods for efficient storage and retrieval.
Bitmap indexes are compact index structures and they have been successfully applied
to data warehouses and scientific databases by exploiting the property that scientific
data are enumerated or numerical [6,11]. These structures have also been implemented
in commercial Database Management Systems such as Oracle [1,2], Informix [4,7].

These indexes handle partial match and range queries very efficiently since they
utilize the fast bitwise logical operations, which are directly supported by computer
hardware. However, in order to maintain these advantages in large domains, effective
compression schemes are applied. The most suited and widely used techniques are the
adaptations of run-length based compression [10]. Besides reducing the data size, run-
length compression has the benefit of partially avoiding the overhead of decompres-
sion in query processing for bitmap indexes [1,12]. Since run-length based compression
schemes pack together the consecutive same-value-symbols, the compression ratio de-
pends heavily on the occurrences of such patterns. Data can be reorganized/reordered
to increase the length of the runs and improve the compression performance.
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A common approach is lexicographical sorting, which is used in traditional databases
to preserve locality and avoid disk seeks. Several other reordering techniques have been
successfully applied to increase the performance of compression in different domains
as well [5,9]. For a boolean matrix, the objective of finding an order of data that mini-
mizes the total number of runs in the columns of the matrix was shown to be NP-hard
through a reduction to Traveling Salesperson Problem (TSP) [5]. Gray codes have been
proposed as an efficient alternative to simple lexicographic or expensive TSP heuris-
tics, and shown to achieve comparable compression to TSP, while running significantly
faster than these heuristics [9].

In this paper we examine the effectiveness of (re-)ordering methods on the data
compression performances. We provide the theoretical foundations and performance
analysis of lexicographic and Gray code order in the context of bitmap indexes. Com-
paratively, lexicographic order and Gray code order are investigated for two encoding
techniques that are commonly used in bitmap indices, namely equality and range encod-
ings, and their relative performances are studied with data reordering in consideration.

Compared to their own equality encoding versions, our study reveals that both Gray
code and lexicographic order achieve greater compression performances for range en-
coding. On the other hand, comparison of the two ordering methods leads to the fol-
lowing outcomes. With equality encoding, when we have all the possible data tuples,
lexicographic order and Gray code order perform the same. However, Gray code order
achieves better compression than lexicographic order when range encoding is used. We
also provide experimental results to validate the theoretical analysis.

The organization of the paper is as follows. In Section 2 we briefly cover the back-
ground information about the impact of reordering schemes on the compression perfor-
mance, and provide the preliminaries for the rest of the paper. Section 3 provides the
analysis for the equality encoding bitmap model. We provide the theoretical study on
the range encoding model in Section 4. Experimental results are presented in Section 5,
and finally we conclude in Section 6.

2 Background

In this section, the background information for the data ordering and compression ap-
proaches are provided, and the related work is discussed.

Efficient storage of large boolean tables are achieved by utilizing the run-length
based compression [10], which is the process of replacing the consecutive occurrences
of a symbol by a single instance and a count. We define a run as a sequence of 0’s
followed by (not including) a 1 or end symbol, or a sequence of 1’s followed by (not
including) a 0 or end symbol. For instance, in Figure 1(a) the first column has 2 runs
and the second column has 4 runs. Variations of the run-length compression technique
are utilized in different domains in the literature. For example, for bitmap indexes, the
two most popular compression schemes are BBC [1] and WAH [12]. BBC stores the
compressed data in bytes while WAH stores in words. They are designed not only to
decrease the bitmap index size but also to speed up the query execution performance
while running the queries over the compressed data.
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(a) Lexicographic (b) Gray code

Fig. 1. Example of tuple reordering

For a boolean matrix, long runs of 0 or 1 blocks are necessary for run-length based
compression to be effective. In other words, the performance depends on the number
of runs, therefore reordering techniques are utilized for improvement by packing the
same-value bits together. Adaptations of the traveling salesperson problem (TSP) so-
lutions have been applied to the large boolean matrices in [5]. In order to improve the
bitmap index compression, Gray code ordering (GCO) is proposed as a data reorgani-
zation technique in [9]. GCO based approaches are known to be faster than TSP-based
solutions.

The original Gray code for binary numbers is an encoding such that two adjacent
numbers differ only by one bit (Hamming distance is equal to 1). For instance (000,
001, 011, 010, 110, 111, 101, 100) is a binary reflected Gray code. One can achieve
a Gray code recursively as follows: i) Let S = (s1, s2, ..., sn) be a Gray code. ii)
First write S forwards and then reflect S by writing it backwards, so that we have
(s1, s2, ..., sn, sn, ..., s2, s1). iii) Append 0 to the beginning of first n numbers, and 1
to the beginning of last n numbers. For instance, take the Gray code (0, 1). Write it
forwards and backwards, and we get: (0, 1, 1, 0). Then we add 0’s and 1’s to get: (00,
01, 11, 10).

Figure 1 illustrates the effect of running the GCO algorithm. On the left is the nu-
meric (or lexicographic) order of a boolean matrix with 3 columns. In the rest of the
paper, we refer to the lexicographic order shortly as Lexico order. GCO of the same
matrix is presented on the right. As the figure illustrates, the aim of GCO is to produce
longer and thus fewer runs than Lexico order. Figure 1(a) produces 14 runs (2 on the
first column, 4 and 8 on the following columns) whereas Figure 1(b) has 10 runs (2 on
the first column, 3 and 5 on the following columns).

We call a data set that has all the possible combinations of tuples as full. Table 1
is an example of a full data. Recall that the aim of GCO is to reorder the data so that
the Hamming distances between the consecutive tuples will be 1. For a set of tuples
there can be more than one order that have such property. Therefore, Gray codes are
not unique. In this paper, to simplify the analysis, only the reflected GCO is taken into
account.

Equality Encoding is the basic encoding scheme for bitmap indices, which is also
known as Value-List index [8]. For an equality encoded bitmap index, data is partitioned
into several bins, where the number of bins for each attribute could vary. If a value falls
into a bin, this bin is marked “1”, otherwise “0”. Since a value can only fall into a
single bin, only a single “1” can exist for each row of each attribute. Table 1 shows a
two-attribute example such that the first attribute has 2 bins and the second attribute has



520 T. Apaydin, A.Ş. Tosun, and H. Ferhatosmanoglu

Table 1. Encoding example for two attributes with 2 and 3 bins

Equality Encoding Range Encoding
Tuple Attribute 1 Attribute 2 Attribute 1 Attribute 2

a b 1 2 3 a b 1 2 3
t1 = (b, 3) 0 1 0 0 1 0 1 0 0 1
t2 = (a, 2) 1 0 0 1 0 1 1 0 1 1
t3 = (a, 3) 1 0 0 0 1 1 0 0 0 1
t4 = (b, 2) 0 1 0 1 0 0 1 0 1 1
t5 = (b, 1) 0 1 1 0 0 0 1 1 1 1
t6 = (a, 1) 1 0 1 0 0 1 1 1 1 1

3 bins. The first tuple t1 falls into the second bin of the first attribute and the third bin
of the second attribute.

Another prominent encoding scheme is called Range encoding [3], which is also
presented in Table 1. In this encoding, if a value falls into a bin bi, all the greater
bins and also bi are marked “1”; and “0” otherwise. Range encoding performs better
especially for single-sided range queries compared to equality encoding. For details we
refer the reader to [3].

3 Equality Encoding

In this section, we investigate the behaviors of Lexico order and GCO schemes using
equality encoding. Our main goal is to derive a formula for the total number of runs
with full data. For the remaining of the paper, we use the terms cardinality and number
of bins of an attribute interchangeably and they basically refer to the same value.

Define F (x) as F (x) = 3x−2. This function will be used to find the number of runs
of an attribute as a function of its cardinality. The total number of attributes is denoted
by A, and the cardinality of attribute i is denoted by Ci. For A attributes, where A ≥ 2,
following theorem presents the total number of runs for the full data using Lexico order.

Theorem 1. For full data, number of runs in Lexico order using equality encoding is

F (C1) +

A�
i=2

�
	F (Ci)

i−1

j=1

Cj −
�
�(Ci − 2)

�
	(

i−1

j=1

Cj) − 1

�
�
�
�
�
�

Proof. Number of runs for the first attribute is F (C1). With full data ith attribute can be
considered as

∏i−1
j=1 Cj separate chunks where the tuples in a chunk have the same value

for the attributes A1, ..., Ai−1. An example is given in Figure 2. In the example first
attribute has a single chunk, second attribute has 2 chunks (C1 = 2) and third attribute
has 4 chunks (C1 ·C2 = 2·2 = 4). Since there are

∏i−1
j=1 Cj chunks and an attribute with

Ci produces F (Ci) runs, there are F (Ci)
∏i−1

j=1 Cj runs in attribute i. However, this
assumes that runs finish and start at chunk boundaries and can not be combined. Runs
for the first and last columns of an attribute can not be combined. However, runs for
other columns can be combined since runs are of the form: 0’s followed by 1 followed
by 0’s. Trailing runs of 0’s for one chunk can be combined with leading 0’s of next
chunk. There are Ci − 2 inner columns in each attribute and there are

∏i−1
j=1 Cj − 1 run
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Fig. 2. Example of chunks with 3 attributes each having 2 bins

merges for each inner column. Total number of run merges is (Ci − 2)(
∏i−1

j=1 Cj − 1)
and we subtract this to find the exact number of runs. �
For equality encoding with the full data, we next show that Lexico order and GCO
produce the same number of runs.

Theorem 2. For full data, the number of runs in GCO using equality encoding is equal
to the number of runs in Lexico order, which is given in Theorem 1.

Proof. Number of runs for the first attribute is F (C1). With full data, ith attribute can
be considered as

∏i−1
j=1 Cj separate chunks where the tuples in a chunk have the same

value for the attributes A1, ..., Ai−1. Since there are
∏i−1

j=1 Cj chunks and an attribute

with Ci produces F (Ci) runs, there are F (Ci)
∏i−1

j=1 Cj runs in attribute i. For odd
numbered attributes, binary numbers in a chunk appear in increasing order and for even
numbered attributes, binary numbers in a chunk appear in decreasing order. In either
case, number of runs for a column is the same. Above analysis assumes that runs finish
and start at chunk boundaries and can not be combined. Rest of the proof is similar to
the proof of Theorem 1. �

4 Range Encoding

In this section, we focus on range encoding and discuss the behaviors of Lexico order
and GCO. Our main goal again includes deriving the total number of runs. In addition,
we compare the compression performances of Lexico order and GCO both for equality
and range encodings. Note that conversion of an equality encoded tuple Ti to its range
encoded version R(Ti) is a 1-1 transformation (see Table 1).

Total Runs for Lexico: Define function E(x) as E(x) = 2x − 1, which will help
deriving the number of runs of range encoding for both Lexico order and GCO. The
formula for lexicographic order is given by the following theorem.

Theorem 3. For full data, the number of runs in Lexico order of A attributes, where
A ≥ 2, using range encoding is

E(C1) +
A�

i=2

�
	E(Ci)

i−1

j=1

Cj −
�
�(

i−1

j=1

Cj) − 1

�
�
�
�

Proof. The number of runs for the first attribute is E(C1). With full data, ith attribute
can be considered as

∏i−1
j=1 Cj separate chunks where the tuples in a chunk have the
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same value for the attributes A1, . . . , Ai−1. Since there are
∏i−1

j=1 Cj chunks and an

attribute with Ci produces E(Ci) runs, there are E(Ci)
∏i−1

j=1 Cj runs in attribute i.
However, this assumes that runs finish and start at chunk boundaries and can not be
combined. Runs for the last column can be combined since all the entries are 1’s. Runs
for other columns can not be combined since they all have a number of 0’s followed by
a number of 1’s. There are

∏i−1
j=1 Cj − 1 run merges for the last column of the attribute.

We subtract the number of run merges (
∏i−1

j=1 Cj − 1) to find the exact number of runs.
�

Equality Lexico vs. Range Lexico: For Lexico order, range encoding achieves better
compression than equality encoding as shown by the following corollary.

Corollary 1. For Lexico order of full data, range encoding produces fewer runs than
equality encoding.

Proof. Follows from the comparison of Theorems 1 and 3 using E(Ci) < F (Ci) and�
(
�i−1

j=1 Cj) − 1
�

<
�
(Ci − 2)

�
(
�i−1

j=1 Cj) − 1
��

. �

Total Runs for GCO: The total number of runs is given below. Tricky part of the
derivation is again to find out how many of the runs merge. Since runs can cross the
chunk boundaries (see Figure 2), we should avoid overcounting.

Theorem 4. For full data, the number of runs in GCO of A attributes, where A ≥ 2, in
range encoding is

E(C1) +

A�
i=2

�
	E(Ci)

i−1

j=1

Cj − Ci

�
�(

i−1

j=1

Cj) − 1

�
�
�
�

Proof. Number of runs for the first attribute is E(C1). With full data, ith attribute can
be considered as

∏i−1
j=1 Cj separate chunks where the tuples in a chunk have the same

value for the attributes A1, . . . , Ai−1. Since there are
∏i−1

j=1 Cj chunks and an attribute

with Ci produces E(Ci) runs, there are E(Ci)
∏i−1

j=1 Cj runs in attribute i. This anal-
ysis assumes that runs finish and start at chunk boundaries and can not be combined.
However, the runs for all the bins of an attribute can be combined. Since there are Ci

bins in the attribute and there are
∏i−1

j=1 Cj − 1 run-merges for each inner column, we

subtract total number of run-merges of the attribute given by Ci(
∏i−1

j=1 Cj − 1) to find
the exact number of runs. �

Equality GCO vs. Range GCO: Range encoding using GCO produces fewer runs. In
other words, the conversion from equality encoding into range encoding reduces the
number of runs for full data. Since the conversion is 1-1, range encoding can be used as
a way to achieve further compression, which is an open research question.

Corollary 2. For GCO of full data, range encoding produces fewer runs than equality
encoding.

Proof. Follows from comparison of Theorems 2 and 4 using E(Ci) < F (Ci) and�
(
�i−1

j=1 Cj) − 1
�

<
�
Ci

�
(
�i−1

j=1 Cj) − 1
��

. �
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Range Lexico vs. Range GCO: For range encoding, finally we compare Lexico order
and GCO in the following corollary.

Corollary 3. GCO produces fewer number of runs than Lexico for range encoding.

Proof. Follows from comparison of Theorems 3 and 4. �

5 Experimental Results

For our experiments, we used full data sets with varying number and cardinality of at-
tributes. In Figure 3(a), we present the total runs in log scale as a function of the attribute
cardinality. The larger the cardinality, the higher the number of runs. (Recall that Lex-
ico and GCO have the same number of runs for equality encoding.) We also repeated
the experiment with different number of attributes (7, 8 and 9). Again, increasing the
number of attributes leads to higher number of runs. For example, 7 attributes each with
5 bins produce 195,331 number of runs, 8 attributes each with 5 bins produce 976,584
runs, and 9 attributes produce 4,882,837 runs.

(a) Equality Encoding (b) Equality vs. Range

Fig. 3. Experimental results with different number of attributes with different cardinalities

For a comparison between equality and range encodings, we present Figure 3(b)
where each attribute has 5 bins. Since Lexico and GCO perform the same for equality
encoding, we simply combined them and named that as Equality Lexico & GCO. Note
that, among the three approaches (namely Equality Lexico & GCO, Range Lexico, and
Range GCO), the best performance is achieved by Range GCO. For an example in
Figure 3(b), the values for 9 attributes are as follows: Equality Lexico & GCO produces
4,882,837 runs. Range Lexico has 3,906,257 runs, and Range GCO produces 1,953,169
runs. For range encoding, note that the number of runs for Lexico is about twice the
number of runs for GCO.

6 Conclusion

In this paper we studied the effectiveness of reordering methods that are applied for
better compression performances in databases. High energy physics, astrophysics, ge-
nomic and proteomics are some of the applications that produce large data sets, which
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bring up the need for effective indexing techniques for efficient storage and querying.
Bitmap indexes are practical structures that are prominently used for querying scien-
tific data. In the literature, in order to reduce the sizes of these indexes, run-length
based compression schemes are developed whose performances are improved by data
reordering approaches.

We provided the theoretical foundations and performance analysis of lexicographic
order and Gray code order in the context of bitmap indexes. Comparatively, lexico-
graphic order and Gray code order are investigated for two encoding techniques that
are commonly used in bitmap indices, namely equality and range encodings, and their
relative performances are studied with data reordering in consideration.

Our study reveals that both Gray code and lexicographic order achieve greater com-
pression performances for range encoding compared to their own equality encoding
versions. On the other hand, comparison of the two ordering methods leads to the fol-
lowing observations. With equality encoding, when we have all the possible data tuples,
lexicographic order and Gray code order perform the same. However, Gray code order
achieves better compression than lexicographic order when range encoding is used. We
also provided experimental results to validate the theoretical analysis.
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