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Abstract. Most correlation clustering algorithms rely on principal com-
ponent analysis (PCA) as a correlation analysis tool. The correlation of
each cluster is learned by applying PCA to a set of sample points. Since
PCA is rather sensitive to outliers, if a small fraction of these points does
not correspond to the correct correlation of the cluster, the algorithms
are usually misled or even fail to detect the correct results. In this pa-
per, we evaluate the influence of outliers on PCA and propose a general
framework for increasing the robustness of PCA in order to determine
the correct correlation of each cluster. We further show how our frame-
work can be applied to PCA-based correlation clustering algorithms. A
thorough experimental evaluation shows the benefit of our framework on
several synthetic and real-world data sets.

1 Introduction

Finding clusters in arbitrarily oriented subspaces is an important data mining
task for many applications. The motivation behind this task is that in high
dimensional data, one probably cannot find clusters due to several properties
of high dimensional feature spaces. In contrast, clusters can usually be found in
arbitrarily oriented subspaces of the original data space. The points of a subspace
cluster are then located on a common lower dimensional hyperplane and exhibit
a common correlation among a subset of the attributes. The task of finding
clusters in arbitrarily oriented subspaces is also called correlation clustering.

The major challenge of correlation clustering is identifying the correct sub-
space of a cluster. Most correlation clustering algorithms [1,2,3,4,5,6] apply prin-
cipal component analysis (PCA) to a subset of points in order to define the
correct subspace in orientation and weighting of the transformed axes. PCA is
a mature technique and allows the construction of a broad range of similarity
measures grasping local correlation of attributes and, therefore, allows to find ar-
bitrarily oriented subspace clusters. It is easy to see that the more points of this
subset are cluster members that are located on the common hyperplane, the more
accurate the procedure of determining the correct subspace (i.e. hyperplane) will
be. However, a drawback common to all those approaches is the notorious lo-
cality assumption. Since cluster memberships of points are obviously not known

B. Ludäscher and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, pp. 418–435, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.dbs.ifi.lmu.de


A General Framework for Increasing the Robustness 419

beforehand, it is assumed that the local neighborhood, e.g. the ε-neighborhood
or the k-nearest neighbors, of cluster points or cluster centers represents the
correct subspace suitably well in its orientation and variance along axes. This
assumption is widely accepted but it boldly contradicts the basic problem state-
ment, i.e. “find clusters in a high-dimensional space”, because high dimensional
spaces are typically doomed by the curse of dimensionality. The term “curse
of dimensionality” refers to a bundle of problems occurring in high dimensional
spaces. The most important effect in the sight of clustering is that concepts like
“proximity”, “distance”, or “local neighborhood” become less meaningful with
increasing dimensionality of a data set (as elaborated e.g. in [7,8,9]). As a conse-
quence of these findings, the discrimination between the nearest and the farthest
neighbor becomes rather poor with increasing data dimensionality. This is by far
a more fundamental problem than the mere performance degradation of algo-
rithms on high dimensional data: The higher the dimensionality of a data set is,
the more outliers will be placed inevitably in the set of neighboring objects.

As we will see in this paper, PCA is very sensitive to outliers. In other words,
if the local neighborhood of cluster members or cluster centers to which PCA is
applied in order to find the correct subspace of the corresponding cluster con-
tains noise points that do not belong to the cluster, the subspace determination
process will be misled. Thus, in view of the “curse of dimensionality”, to suc-
cessfully employ PCA in correlation clustering in high-dimensional data spaces
may therefore require more sophisticated techniques of selecting a representative
set of neighbors.

In this paper, after shortly reviewing existing approaches to correlation clus-
tering (cf. Section 2), we evaluate the influence of outliers on PCA in general
(cf. Section 3) and propose a general framework to determine the correct local
subspace dimensionality and orientation for cluster members and cluster centers
in a more robust way (cf. Section 4). In Section 5, we show how to apply the
proposed framework for increasing the robustness the subspace determination
process on existing correlation clustering approaches. Section 6 demonstrates
the impact of the increased robustness of PCA on several data sets. The paper
is concluded in Section 7.

2 Related Work

The first approach to generalized projected clustering, called ORCLUS [1], is a
K-means like approach. It picks Kc > K seeds at first and assigns the data base
objects to these seeds according to a distance function that is based on an eigen-
system of the corresponding cluster assessing the distance along the small eigen-
vectors only (i.e., the distance in the projected subspace where the cluster objects
exhibit high density). The eigensystem is iteratively adapted to the current state
of the updated cluster (i.e., based on the current neighborhood of the cluster cen-
ter). The number Kc of clusters is reduced iteratively by merging closest pairs
of clusters until the user-specified number K is reached. The method proposed
in [10] is a slight variant of ORCLUS designed for enhancing multi-dimensional
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indexing. Initially, however, the eigensystems in both methods are based on the
local neighborhood in the Euclidean space.

The algorithm 4C [2] is based on a density-based clustering paradigma [11].
Thus, the number of clusters is not decided beforehand but clusters grow from a
seed as long as a density criterion is fulfilled. Otherwise, another seed is picked
to start a new cluster. The density criterion is a required minimal number of
points within the neighborhood of a point, where the neighborhood is ascertained
based on distance matrices computed from the eigensystems of two points. The
eigensystem of a point is based on the covariance matrix of the ε-neighborhood
of the point in Euclidean space.

As a hierarchical approach, HiCO [4] defines the distance between points
according to their local correlation dimensionality and subspace orientation –
thus again based on a local neighborhood query – and uses hierarchical density-
based clustering [12] to derive a hierarchy of correlation clusters.

COPAC [5] is based on similar ideas as 4C but disposes of some problems like
meaningless similarity matrices due to sparse ε-neighborhoods instead taking a
fixed number k of neighbors — which raises the question how to choose a good
value for k but at least choosing k > λ ensures a meaningful definition of a λ-
dimensional hyperplane. Still, the Euclidean neighborhood critically influences
the results.

The latest PCA-based correlation clustering algorithm is ERiC [6], also deriv-
ing a local eigensystem for a point based on the k nearest neighbors in Euclidean
space. Here, the neighborhood criterion for two points in a DBSCAN-like proce-
dure is an approximate linear dependency and the affine distance of the correla-
tion hyperplanes as defined by the largest eigenvectors of each point. In finding
and correctly assigning complex patterns of intersecting clusters, COPAC and
ERiC improve considerably over ORCLUS and 4C.

Another approach based on PCA said to find even non-linear correlation clus-
ters, CURLER [3], seems not restricted to correlations of attributes but, accord-
ing to its restrictions, finds any narrow trajectory and does not provide a model
describing its findings. However, even in this approach the PCA is applied to
the local neighborhood of points in Euclidean space.

Note that the term “correlation clustering” relates to a different task in the
machine learning community, where a partitioning of the data shall correlate as
much as possible with a pairwise similarity function learned from past data [13].

3 Problem Analysis

To the best of our knowledge, all correlation clustering algorithms that use PCA
as the method to determine the correct subspace of a cluster face the following
problem. In order to determine the correct subspace of a cluster, a (considerably
large) number of cluster members needs to be identified first such that PCA can
be applied to them. On the other hand, in order to identify points of a particular
cluster, the subspace of this cluster needs to be determined first. To escape
from this vicious circle all algorithms rely on the locality assumption, i.e. it is
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assumed that the points in the local neighborhood of cluster members or cluster
representatives sufficiently reflect the correct subspace of the corresponding clus-
ter such that applying PCA to those neighboring points reports the cluster hy-
perplane.

As stated above, selecting a meaningful neighborhood becomes more and more
difficult with increasing data dimensionality. A neighboring set of points will al-
most certainly contain outliers, i.e. points that do not belong to the cluster and,
thus, are not located on the hyperplane of the cluster. Obviously, these outliers
are not helpful to assign a meaningful local correlation dimensionality and ori-
entation. On the other hand, all correlation clustering approaches available (cf.
Section 2) rely on an arbitrarily chosen set of neighboring points. We therefore
argue to choose a neighboring set of points in a more sophisticated way to en-
hance the robustness of local correlation analysis and, consequently, to enhance
the robustness of correlation clustering algorithms.

3.1 Impact of Outliers on PCA

Correlation analysis using PCA is a least squares fitting of a linear function to
the data. By minimizing the mean square error, outliers are emphasized in a way
that is not always beneficial, as can bee seen in Figure 1. This data set consists of
5 points in a 2D space that are strictly positively correlated and, thus, are located
on a common 1D hyperplane plus one additional outlier that is not located on
that 1D hyperplane. When applying PCA on these six points and computing
the strongest eigenvector of the corresponding covariance matrix, the resulting
vector is directed towards the outlier (cf. Figure 1). This implies that in certain
situations, adding only one single extra point to the correlation computation can
cause the resulting strongest eigenvector(s) to flip into a completely different
direction. Let us note that if the outlier point would have been closer to the
other points it would, at a certain distance, not have made any difference on the
vector orientation, but this distance threshold for the flip is rather small.

As a consequence, one needs to carefully select the points that are included
into the computation of the cluster hyperplane. In addition, one can consider us-
ing a modified correlation analysis procedure which is less sensitive to the effect
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Fig. 1. Simple data set with 6 points and largest eigenvector after PCA
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of outliers. In fact, there are obviously multiple strategies to handle these issues.
The most obvious one – using outlier detection to remove outliers from the com-
putation – can usually not be applied to this problem because we face the same
vicious circle when searching for outliers as we face when detecting cluster points:
in order to identify outliers that do not belong to any clusters, the subspaces
of the clusters need to be determined first; in order to determine the correct
subspace of a cluster, a (considerably large) number of cluster members needs
to be identified first such that PCA can be applied to them; etc. Instead, we
introduce two ideas to stabilize PCA for correlation clustering. First, we explore
a local optimization strategy that handles the problem of picking appropriate
neighboring points in a way that is easy to integrate in many correlation clus-
tering algorithms. Second we will add a modified correlation analysis to further
stabilize results which is based on the integration of a suitable weighting function
into PCA.

3.2 Statistic Observations on Data Correlation

Without loss of generality, we assume that the points on which PCA is applied
to find the correct subspace of a particular cluster are selected as the k-nearest
neighbors (kNN) of cluster members or cluster representatives. Later, we will dis-
cuss the extension of our ideas to methods like ORCLUS that use neighborhood
concepts other than kNN.

When comparing the relative strength of the normalized eigenvalues (i.e. the
part of the total variance explained by them) computed for the kNN of a par-
ticular point w.r.t. increasing values of k (ranging from 0 to 50% of the data
set), a behavior similar to that shown in Figure 3 can usually be observed. We
used a 3D data set shown in Figure 2, with a set of 200 outlier points (noise), a
correlation cluster of 150 points sharing a common 2D hyperplane (plane), and
a correlation cluster of 150 points that are located on a common 1D hyperplane
(line) that is embedded into the hyperplane of the 2D cluster. In Figure 3 there
are three plots in this graph representing the behavior of the eigenvalues of a
sample noise point, of a sample point on a 2D, and of a sample point on a 1D
line in the data set (embedded within the 2D plane), respectively.
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Fig. 2. Data set with a 2D plane and an embedded 1D line
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(b) Second eigenvector

Fig. 3. Relative strength of eigenvectors

Examining the noise point (green dotted lines in Figure 3) we observe a min-
imum relative strength of the first eigenvalue of about 0.4 for k = 10% − 15%
(cf. Figure 3(a)). Since the minimum possible value for the strongest eigenvector
in a 3D data set is 1/3 = 0.33, the noise point shows approximately no correla-
tion when looking at its kNN with k = 10% − 15% of the data set. The second
eigenvector (cf. Figure 3(b)) shows similar behavior in that particular range of
k confirming our conclusions.

For the point in the 1D cluster (red solid lines in Figure 3), the first eigenvector
(cf. Figure 3(a)) explains 80% of the complete variance at around k = 7%, i.e.
using this value for k, the kNN of the particular point form the 1D line of the
cluster. It is worth noting that the amount of variance explained for the 1D
cluster case drops quickly when increasing k beyond this point. The reason for
this is that – since the line is embedded in a plane – with increasing k more
and more points of the kNN are points from the 2D cluster. As a consequence,
the variance explained by the first eigenvector decreases, whereas the variance
explained by the second eigenvector increases simultaneously (cf. Figure 3(b)).
Then, at k ≈ 10%, we have again a very high strength of the first eigenvector (less
points from the 2D cluster and more points from the 1D cluster are considered),
etc. In other words, depending on the value of k, the kNN of the point form the
1D cluster line or the 2D cluster plane.

For evaluating the 2D cluster, the relevant graph (depicting the behavior of
the second eigenvector) is shown in Figure 3(b). In a 3D data set, a value of
around 1/3 would be typical for uncorrelated data and is observable on noise
points. For the sample point from the 2D cluster it peaks at almost 45% for
about k = 10%. Together with the first graph, this means that the first two
eigenvectors explain almost the complete variance at that particular value for
k. In other words, for k = 10%, the kNN of this point reflect the 2D plane of
the cluster sufficiently. Compared to this observation, the variance of the sample
point from the 1D cluster embedded in the 2D cluster (red dotted line) along
the first two eigenvectors is significantly below the expected value (which is not
surprising, having seen that the first eigenvector reaches 80%).
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These simple examples illustrate that it is essential to select a sufficient set of
points by choosing a suitable value for k. A slight change in k can already make
a large difference. Moreover, we have seen that it is rather meaningful to choose
even significantly different values of k for different points.

4 A General Framework for Robust Correlation Analysis

The above presented considerations induce two important aspects. First, since
PCA is a least square fitting and we cannot assume that there are no outliers
in the kNN of a point, adjusting the weighting of the points during PCA should
improve the results. Second, the selection of points to which PCA is applied can
be improved by both micro-adjusting the value of k (to avoid sudden drops in
the explained variance) as well as choosing significantly different k for different
points in the data set. In the following, we will discuss both aspects in more
detail. In fact, our framework for making PCA-based correlation analysis more
robust uses both ideas.

4.1 Increasing the Robustness of PCA Using Weighted Covariance

As mentioned above, PCA is a common approach to handling correlated data.
It is also commonly used for dimensionality reduction by projecting onto the
λ strongest (i.e. highest) components. In correlation clustering, PCA is a key
method to finding correlated attributes in data.

PCA operates in two steps. In the first step, for any two attributes, i.e. di-
mensions, d1 and d2 the covariance Cov(Xd1 , Xd2) of these two dimensions is
computed. In the second step, the eigenvectors and eigenvalues of the resulting
matrix (which by construction is positive, symmetric and semi-definite) are com-
puted. The computation of eigenvectors and eigenvalues on a symmetric matrix
is a standardized procedure which cannot be altered to make the overall process
more robust. Instead, the stabilization has to be implemented during the first
step.

Given an attribute X , we can model the values of k points in that particular
attribute, denoted by xi for the i-th point, as a random variable. Then, the
covariance between two attributes X and Y is mathematically defined as

Cov(X, Y ) := E((X − E(X)) · (Y − E(Y ))), (1)

where E is the expectation operator. Usually, one uses the mean of all values of
the corresponding attribute as expectation operator, i.e.

E(X) =
1
k

k∑

i=1

xi =: x̂, (2)

so we have

Cov(X, Y ) :=
1
k

k∑

i=1

(xi − x̂)(yi − ŷ). (3)
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Obviously, all data points are treated equally in this computation. But given
that we want to reduce the effect of outliers, it is more appropriate to use a
different expectation operator. Given arbitrary weights ωi for all points i (1 ≤
i ≤ k and Ω :=

∑k
i=1 ωi), we can define a new expectation operator

Eω(X) :=
1
Ω

k∑

i=1

ωixi =: x̂ω . (4)

With this new expectation operator, we can give each point in kNN a different
weight. In particular, we can give potential outliers a smaller weight. Using
Eω(X), we can compute the covariance as given below.

Covω(X, Y ) :=
1
Ω

n∑

i=1

ωi(xi − x̂ω)(yi − ŷω). (5)

Steiner’s translation still applies, which leads to the following slightly simpler
equation.

Covω(X, Y ) = (
1
Ω

n∑

i=1

ωixiyi) − (
1
Ω

n∑

i=1

ωixi) · ( 1
Ω

n∑

i=1

ωiyi). (6)

This form is particularly nice for computation. It is also trivial to prove that if
ωi = 1 for all i, we have Cov(X, Y ) = Covω(X, Y ). If a point i is assigned the
weight ωi = 2, the result would be the same as if we had two points with the
same coordinates as i. If a point i is weighted by ωi = 0, the result is the same
as if point i had not been included in the computation at all.

We can now use arbitrary weighting functions to calculate the weights to be
used. Obviously, we again have the dilemma that we do not know which points
are outliers and need to get assigned a lower weight. However, since all algorithms
use the locality assumption, we can make the following considerations: On the
one hand, it is usually very likely that taking the local neighborhood of points
includes a lot of outliers. But on the other hand, the neighbors that are near to
the query point will more likely be cluster members than the neighbors that are
farther apart from the query point. So a distance-based weighting function will
most likely weight cluster points higher and outliers lower.

Some examples of distance-based weighting functions are given in Figure 4.
We have chosen parameters such that the value at x = 0.0 is about f(0.0) ∼ 1.0
and at x = 1.0 it is about f(1.0) ∼ 0.1. Weights too close to 0.0 are not very
useful, because then, these points are not considered for the computation at all.
The example weighting functions we have used in our experiments (cf. Figure
4) include a constant weighting of 1.0 (solid red line in Figure 4), a linearly
decreasing function ranging from 1.0 to 0.1 (dashed blue line in Figure 4), an
exponential fall-off (green dashed line in Figure 4), a sigmoid-curved fall-off
(violet dotted line in Figure 4), a Gauss function (green dashed-dotted line in
Figure 4), and the complementary Gauss Error Function Erfc (red dashed-dotted
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Fig. 4. Some weight functions

line in Figure 4). The last one is a function well-known from statistics related to
normal distributions and, thus, probably the most sound choice.

In our experiments, all of the alternative weighting functions (except the con-
stant weight) lead to similar improvements so there is no reliable measure or
significance to establish a ranking between the different weighting functions. In
fact, it is plausible that different functions are appropriate for different under-
lying causes in the data or assumptions in the clustering process (e.g. clustering
algorithms assuming a Gauss distribution might benefit best from a Gaussian
weighting function).

For distance-based weighting functions, several tasks arise. We have chosen
to scale distances such that the outermost point has a distance of 1.0, i.e. a
weight of 0.1, ensuring that this point has still some guaranteed influence on the
result. This choice is somehow arbitrary, but it has at least the benefit of fairness.
On the other hand, this fairness comes at the cost that all weights depend on
the outermost point. When points are selected using a range query, the query
range could offer a better normalization. When an incremental computation is
desired, a completely different choice might be appropriate. Additionally, we are
computing weights based on the distance to a query point. This is appropriate
for situations where the data is obtained via kNN or ε-neighborhoods. When
computing the correlation for an arbitrary set of points, the distance might need
to be computed from the centroid or medoid of that set.

In the above described toy example of five cluster points plus one outlier
(cf. Figure 1), the observed sensitivity to that outlier is significantly decreased,
given that the outlier will only be weighted at around 0.1. Applying the weight-
ing function to the 3D example data set of Figure 2 we also observe an increased
robustness of the correlation analysis. Figures 5(a) and 5(b) depict the effect of
a weighted covariance on the relative strength of the first eigenvector and the
normalized sum of the first two eigenvectors, respectively, using the Erfc weight-
ing. Compared to Figures 3(a) and 3(b) we can derive that many of the sudden
drops have been erased, while the overall shape is well preserved. Especially
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Fig. 5. Relative strength of eigenvectors (with Erfc weight)

for higher values of k, sudden jumps have mostly disappeared. Therefore, this
measure is useful to avoid choosing a particularly bad value of k, i.e. a k where
the kNN of the particular point do not reflect the correct subspace of the cor-
responding cluster, by somewhat averaging with neighbors. Peaks usually are
shifted towards a slightly higher value of k. This is natural since the added
points are weighted low at first.

4.2 Auto-Tuning the Local Context of Correlation Analysis

Graphs such as Figure 3(a) show that even small differences in k can lead to
significantly different results. Therefore, it is reasonable not to use a fixed value
of k, i.e. a fixed number of neighboring points, but rather to adjust the value of
k for each point separately. For example, one can use a globally fixed number
of neighbors kmax and then individually select for each point the k ≤ kmax

neighbors that are relevant for the particular point. As far as kmax is sufficiently
large, we should in general be able to select a reasonable k, so that this strategy
produces accurate results. Of course there are different strategies of selecting k.
Since there are O(2kmax) subsets of the given kmax points that could be used,
simply trying all combinations of subsets of k points (1 ≤ k ≤ kmax) is not
feasible. Probably the easiest strategy of O(kmax) complexity is to test for any
k (1 ≤ k ≤ kmax) only the k nearest points, resulting in kmax tests. The next
question that arises is how to evaluate the results of the kmax tests in order to
report the best value for k. The obvious strategy of returning the result that
maximizes the relative strength of eigenvalues has shown to be not very reliable
because of jitter: one particular k value could result in a “perfect” hyperplane
consisting mainly of points that form a subspace completely different to the
subspace of the cluster. Figure 6 illustrates this effect: using only the three
points in the red ellipsoid, we will hardly find the correct hyperplane of the
cluster although all those three points are cluster members because they do not
fit the subspace perfectly. Rather, the three points perfectly form a different line
so the relative strength of the first eigenvalue will be very high (appr. 100%).
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Fig. 6. Problems with jitter

In fact, we are more interested in a range of k values where we have a high and
stable relative strength of eigenvalues, so we need a more elaborate filtering.

In our evaluations, we have chosen the strategy to use the k nearest points
for correlation analysis, with kmin ≤ k ≤ kmax, where kmin is a minimum
number of points such that the PCA is at least somewhat sensible at this data
set dimension. The motivation behind the introduction of the lower bound kmin

is that we need at least λ points to span a λ-dimensional hyperplane and 3 · λ
has been considered as a lower bound of points such that the detection of a λ-
dimensional hyperplane by PCA is trustworthy rather than arbitrary. To avoid
jitter and outlier effects, we use a sliding window to apply a dimensionality filter
and average the variance explained by the largest eigenvalues.

Let

ex(E, λ) :=
∑λ

i=1 ei∑d
i=1 ei

(7)

be the relative amount of variance explained by λ eigenvalues E = {ei} repre-
senting a hyperplane of dimensionality λ. Most correlation clustering algorithms
rely on a level of significance α ≤ 1 to decide how many eigenvectors explain
a significant variance and, thus, span the hyperplane of the cluster. Intuitively,
the eigenvectors are chosen such that the corresponding eigenvalues explain more
than α of the total variance. The number of those eigenvectors is called local di-
mensionality (of a cluster), denoted by λE , formally

λE = min
λ∈{1...d}

{λ | ex(E, λ) ≥ α} . (8)

Let us note that almost all correlation clustering algorithms use this notion
of local dimensionality. Typical values for α are 0.85, i.e. the eigenvectors that
span the hyperplane explain 85% of the total variance along all eigenvectors.

As indicated above, for filtering out the best value of k, we are intuitively
interested in a value where (i) the local dimensionality λ is stable, i.e. increasing
or decreasing k by a small degree does not affect the value of λ, and (ii) ex(E, λ)
is maximal and stable, i.e. increasing or decreasing k by a small degree does not
affect the value of ex(E, λ). The motivation behind these considerations is that
the value of k that fulfills both properties leads to the determination of a robust
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hyperplane, that maximizes the variance along its axis. In other words, using
the neighbors determined by k, the hyperplane reflects all of these neighbors in
a best possible way and there are most likely only very few neighbors that are
outliers to this hyperplane. In addition, increasing or decreasing k, i.e. adding
or deleting few neighbors, does not affect the correlation analysis.

To find the value of k that meets both properties, we determine ex(E, λ) for
all kmin ≤ k ≤ kmax. We then use a sliding window W = [kl, ku] and choose k =
(kl + ku)/2 such that for all k′ in W (i.e. kl ≤ k′ ≤ ku) the local dimensionality
λ is the same and the average of ex(Ek′ , λ) is maximized. Additionally, if this
maximum is at the very beginning or end of our search range (i.e. kl = kmin or
ku = kmax), we discard it. We can still obtain multiple maxima, one for each
dimensionality λ. In this case we pick the lowest like all correlation clustering
algorithms aiming at finding the lowest dimensional subspace clusters. Those are
the most interesting ones since they involve the largest set of correlations among
attributes.

5 Application to Existing Approaches

In the following, we discuss how our concepts can be integrated into existing
correlation clustering algorithms in order to enhance the quality of their results.
Exemplarily, we show this integration with two different types of algorithms,
the latest density-based algorithm ERiC and the k-means-based algorithm OR-
CLUS.

5.1 Application to Density-Based Correlation Clustering
Algorithms

The integration of our concepts into ERiC is rather straightforward. ERiC de-
termines for each data point p the subspace of the cluster to which p should be
assigned (hereafter called the subspace of p). The subspace of p is computed by
applying PCA to the kNN of p where k needs to be specified by the user.

Using our concepts, we can simply replace the parameter k by the global
maximum kmax of neighbors that should be considered. Both the weighting and
the auto-tuning can then be applied directly when computing the subspace of p.
First, from the kmaxNN of p, the optimal kp ≤ kmax for detecting the subspace
of p is determined as described in Section 4.2 based on a weighted covariance
as described in Section 4.1. Second, the subspace of p is computed by applying
PCA using a weighted covariance on the kpNN of p (cf. Section 4.1).

The integration of our concepts into other density-based algorithms like CO-
PAC, HiCO, and 4C can be done analogously.

5.2 Application to Partitioning Correlation Clustering Algorithms

ORCLUS determines the subspace of each cluster C by applying PCA to the
local neighborhood of the center of C, denoted by rC . The local neighborhood
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of rC includes the set SC of all points that have rC as their nearest cluster
representative.

Using our concepts, we can simply consider SC as the maximum set of points
that should be considered for PCA, i.e. kmax = |SC |. Both the weighting and
the auto-tuning can then be applied directly when computing the subspace of
C. First, from the SC , the optimal kC ≤ kmax for detecting the subspace of
C is determined as described in Section 4.2 based on a weighted covariance as
described in Section 4.1. Second, the subspace of C is computed by applying
PCA using a weighted covariance on the kC points in SC that are closest to rC

(cf. Section 4.1).

6 Experiments

6.1 Evaluation Methodology

In order to evaluate the results of our novel concepts integrated into ERiC and
ORCLUS, we generated artificial data sets with a well-defined gold standard, i.e.
we defined certain data distributions and all points in our data set are assigned to
the distribution with the maximum density in that particular point. Since both
ERiC and ORCLUS have different properties and, here, we are not interested
in judging which algorithm is better for which data set, we generated different
data sets for each algorithm.

To evaluate the quality of the clustering, we employ a pair-counting F-measure,
considering the noise points to be a cluster on its own. This means that any two
points in the data set form a pair if they belong to the same cluster (or noise).
Let C = {Ci} be a clustering (with Ci being the clusters in C, including the noise
cluster). Then PC := {(a, b) | ∃Ci : a ∈ Ci∧b ∈ Ci} is the set of pairs in clustering
C. The F-measure to evaluate how good a clustering C matches the gold standard
D is then defined as

F (C, D) :=
2 · |PC ∩ PD|

2 · |PC ∩ PD| + |PC \ PD| + |PD \ PC | .

Obviously, F (C, D) ∈ [0, 1], where F (C, D) = 1.0 means that the clustering C
is identical to the gold standard D.

6.2 Synthetic Data

For evaluating the influence of our novel methods on both ORCLUS and ERiC,
we used several synthetic data sets ranging from 3 to 100 dimensions. In the
following discussion, we focus on some lower dimensional data sets for a clear
presentation.

ERiC. We first focus on two 3D synthetic data sets that can be seen in Figure 7.
Figure 8(a) gives the results for data set DS1 shown in Figure 7(a). We plot-
ted the F-measure of the compared algorithms along the y-axis and varied the



A General Framework for Increasing the Robustness 431

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  0
 0.1

 0.2
 0.3 0.4

 0.5
 0.6

 0.7
 0.8 0.9

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

(a) DS1: a 1D lines (150 points) embed-
ded within a 2D plane (150 points) plus
200 points noise
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(b) DS2: five 1D lines (100 points each)
plus 200 points noise

Fig. 7. 3D synthetic data sets used for evaluating ERiC
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Fig. 8. Results of ERiC with different weight functions and auto-tuning

parameters k and kmax along the x-axis. The blue line represents the results of
the unmodified ERiC algorithm. Obviously the choice of k is nontrivial, a value
of about k = 34 gives the best results. The violet dotted line is the result when
using the Erfc weight in PCA. Obviously, the results are significantly better,
and any k in 35 < k < 65 gives good results. Therefore choosing a good k has
become a lot easier using only the weighting approach. The green line with the
short dash-dot pattern depicts the result of ERiC using a Gauss weight. As it
can be seen, the results using a simple Gaussian weighting do not significantly
differ from the Erfc weighting results.

The remaining three lines show the results of ERiC when using the auto-
tuning of the parameter k, i.e. for each point the optimal k ≤ kmax is determined
separately (for these graphs, the x-axis represents the chosen kmax value). The
red line is using the traditional PCA without any weighting, while the dashed
green and the orange line with the long dash-dot pattern represent the results
using the Erfc and Gauss weights, respectively. The results show that kmax simply
needs to be chosen high enough in order to achieve reasonably good results. While
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Fig. 9. Results of ERiC with different weight functions and auto-tuning on a sample
10D synthetic data set

these results do not reach the results of choosing the optimum k (which is not
possible without knowing the gold standard), they approach the optimal value
quite well. This observation dramatically simplifies the choice of the k/kmax

parameter.
Figure 8(b) depicts the results on DS2 shown in Figure 7(b). Overall, the

results on DS1 and DS2 are comparable. However, given that every point has
just one “sensible” dimensionality – the other data set had points that had both
a sensible 1D and 2D context – and the noise level is not as high, the effect of
the weighted PCA on DS2 is not as high as on DS1. Since increasing the noise
level will increase the difference between the non-weighted and weighted graphs,
the weighting is especially interesting for noisy (e.g. higher dimensional) data.

All observations that could be made for the two 3D data sets could also
be made for higher dimensional data sets. For example, Figure 9 shows the
results of ERiC with different extensions for a sample 10D data set. Again, the
version of ERiC using an Erfc weighted PCA in combination with the auto-tuned
selection of k achieved the best overall F-measure. Also, as long as kmax is chosen
sufficiently high, we get rather accurate results.

In summary, we observed that in all cases, the combination of the Erfc weighted
PCA and the auto-tuned selection of k considerably increased the F-measure of
the resulting clustering and significantly reduced the complexity of selecting suf-
ficient input parameters compared to the original ERiC algorithm.

ORCLUS. The results of ORCLUS are harder to evaluate, because the results
of ORCLUS depend on the order in which the data points are processed. There-
fore, we generated 100 permutations of the original data, applied ORCLUS with
optimal parameters to all of them, and averaged the results. The data set used
in these computations was a 10-dimensional data set, containing 10 clusters of
dimensionalities 2 to 5. The results are given in Table 1.

Each of these values was obtained by running ORCLUS and its variants on
the same 100 permutations of the input data set and averaging the resulting F-
measure values. The standard deviation over the 100 resulting F-measure values
is given to show the dependence of ORCLUS on picking good seeds. It can
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Table 1. Impact of the integration of our novel concepts into ORCLUS

Variant Average F-measure Standard Deviation

ORCLUS 0.667 0.046

ORCLUS + Gauss weight 0.684 0.055

ORCLUS + Exponential weight 0.676 0.054

ORCLUS + Erfc weight 0.683 0.061

ORCLUS + Linear weight 0.686 0.056

ORCLUS + Auto 0.751 0.070

ORCLUS + Auto + Gauss 0.763 0.069

ORCLUS + Auto + Exponential 0.754 0.075

ORCLUS + Auto + Erfc 0.754 0.075

ORCLUS + Auto + Linear 0.771 0.078

Table 2. Results on NBA data using ERiC with autotuning and Erfc weighting

cluster ID dim Description

1 4 “go-to-guys”

2 4 guards

3 4 reserves

4 5 small forwards

be observed that the benefits of using a weighted PCA are smaller (≈ 0.02)
than those of using an auto-tuning PCA (≈ 0.09) and the combination of both
actions further improves the results. Interestingly, in this experiment, a linear
weighting function is slightly better (by up to 0.02) than a Gaussian or Erfc
weighting. However, in general on different data sets, there is no significant
difference observable comparing different weighting functions. In summary, using
our novel concepts, the F-measure on this data set is improved by approximately
0.1 corresponding to a 10% quality boost.

6.3 Real-World Data

We applied the enhanced version of ERiC (using autotuning and Erfc weighting)
on a data set containing average career statistics of current and former NBA
players1. The data contains 15 features such as “games played” (G), “games
started” (GS), “minutes played per game” (MPG), “points per game” (PPG),
etc. for 413 former and current NBA players. We detected 4 interesting clusters
each containing players of similar characteristics (cf. Table 2). In addition, several
players were assigned to the noise set. Cluster 1 contains active and former
superstars like Michael Jordan, Allen Iverson, Larry Bird, Dominique Wilkins,
and LeBron James, etc. The second cluster features point and shooting guards.
A third cluster contains only very few players that are not so well-known because

1 Obtained from http://www.nba.com

http://www.nba.com
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Table 3. Results on Metabolome data using ERiC with autotuning and Erfc weighting

cluster ID dim Description

1 10 PKU

2 10 controll

3 11 PKU

4 12 PKU

5 13 PKU

they are usually reserves. The fourth cluster consists of small forwards. Let us
note that we also applied the original ERiC algorithm (without the extensions)
to the NBA data set but could not get any clear clusters. In summary, using
our novel concepts, the algorithm ERiC is now able to detect some meaningful
clusters on the NBA set.

In addition, we applied our novel concepts in combination with ERiC to the
Metabolome data set of [14] consisting of the concentrations of 43 metabolites in
20,391 human newborns. The newborns were labelled according to some specific
metabolic diseases. The data contains 19,730 healthy newborns (“control”), 306
newborns suffering from phenylketonuria (“PKU”), and 355 newborns suffering
from any other diseases (“other”). The results are depicted in Table 3. As it
can be seen, we could separate several of the newborns suffering from PKU
from the other newborns. Again, the original version of ERiC could not find any
comparatively good results.

7 Conclusion

Almost all correlation clustering algorithms suffer from an arbitrary selection of
points in the local neighborhood of cluster members or cluster representatives
from which the subspace of a cluster is determined by applying PCA. Choosing
the local neighborhood, is a heuristics that is usually more meaningfull than ran-
dom sampling. However, due to outliers in this selection, the process of finding
the correct subspace is often misled because PCA is rather sensitive to outliers.
In this paper, we discuss general concepts to enhance the robustness of PCA for
finding the correct subspace in order to increase the effectiveness of any PCA-
based correlation clustering algorithm. Thereby, we do not solve the problem of
making a more suitable selection rather than the local neighborhood but try to
ease the influence of outliers in this local neighborhood by a two-step approach:
First, a weighting function is applied to the points when computing the covari-
ance matrix for PCA in order to weight points that are potential outliers lower
than points that are potential cluster members. Second, a method for selecting
a suitable number of neighbors for each cluster member or cluster representative
separately is presented. We further discuss how our general method can be inte-
grated into existing correlation clustering algorithms based on different cluster
paradigms. Our experiments show that the quality of the corresponding results
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can be significantly enhanced when using our new methods. In addition, the
experiments show that our approach remarkably simplifies the selection of critical
parameters. In summary, our method considerably enhances the robustness and
usability of correlation clustering algorithms.
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LNCS, vol. 4721. Springer, Heidelberg (2007)
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