
An Ontology-Based Index to Retrieve

Documents with Geographic Information�

Miguel R. Luaces, Jose R. Paramá, Oscar Pedreira, and Diego Seco

Database Laboratory, University of A Coruña
Campus de Elviña, 15071 A Coruña, Spain
{luaces,parama,opedreira,dseco}@udc.es

Abstract. Both Geographic Information Systems and Information Re-
trieval have been very active research fields in the last decades. Lately, a
new research field called Geographic Information Retrieval has appeared
from the intersection of these two fields. The main goal of this field is
to define index structures and techniques to efficiently store and retrieve
documents using both the text and the geographic references contained
within the text.

We present in this paper a new index structure that combines an
inverted index, a spatial index, and an ontology-based structure. This
structure improves the query capabilities of other proposals. In addi-
tion, we describe the architecture of a system for geographic information
retrieval that uses this new index structure. This architecture defines a
workflow for the extraction of the geographic references in the document.

1 Introduction

Although the research field of Information Retrieval [1] has been active for the
last decades, the growing importance of Internet and the World Wide Web have
made it one of the most important research fields nowadays. Many different index
structures, compression techniques and retrieval algorithms have been proposed
in the last few years. More importantly, these proposals have been widely used
in the implementation of document databases, digital libraries, and web search
engines.

Another field that has received much attention during the last years is the
field of Geographic Information Systems [2]. Recent improvements in hardware
have made the implementation of this type of systems affordable for many or-
ganizations. Furthermore, a cooperative effort has been undertaken by two in-
ternational organizations (ISO [3] and the Open Geospatial Consortium [4]) to

� This work has been partially supported by “Ministerio de Educación y Cien-
cia” (PGE y FEDER) ref. TIN2006-16071-C03-03, by “Xunta de Galicia” ref.
PGIDIT05SIN10502PR and ref. 2006/4, by “Ministerio de Educación y Ciencia”
ref. AP-2006-03214 (FPU Program) for Oscar Pedreira, and by “Dirección Xeral
de Ordenación e Calidade do Sistema Universitario de Galicia, da Conselleŕıa de
Educación e Ordenación Universitaria-Xunta de Galicia” for Diego Seco.

B. Ludäscher and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, pp. 384–400, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

An Ontology-Based Index to Retrieve Documents 385

define standards and specifications for interoperable systems. This effort is mak-
ing possible that many public organizations are working on the construction of
spatial data infrastructures [5] that will enable them to share their geographic
information.

During the last decades these two research fields have advanced indepen-
dently. However, many of the documents stored in digital libraries and docu-
ment databases include geographic references within their texts. For example,
news documents reference the place where the event happened and often the
place where the document has been written. Furthermore, the information in a
spatial data infrastructure often includes documents with geographic information
such as construction licences or urban planning information. Finally, geographic
references can also be attached to web pages by using information from the text,
the location of the web server, and many other information elements.

Even though it is very common that textual and geographic information oc-
cur together in information systems, the geographic references of documents are
rarely used in information retrieval systems. Few index structures or retrieval al-
gorithms take into account the spatial nature of geographic references embedded
within documents. Pure textual techniques focus only on the language aspects of
the documents and pure spatial techniques focus only on the geographic aspects
of the documents. None of them are suitable for a combined approach to infor-
mation retrieval because they completely neglect the other type of information.
As a result, there is a lack of system architectures, index structures and query
languages that combine both types of information.

Some proposals have appeared recently [6,7,8] that define new index struc-
tures that take into account both the textual and the geographic aspects of a
document. However, there are some specific particularities of geographic space
that are not taken into account by these approaches. Particularly, concepts such
as the hierarchical nature of geographic space and the topological relationships
between the geographic objects must be considered in order to fully represent
the relationships between the documents and to allow new and interesting types
of queries to be posed to the system.

In this paper, we present an index structure that takes these issues into ac-
count. We first describe some basic concepts and related work in Section 2. Then,
in Section 3, we present the general architecture of the system and describe its
components. The system architecture defines a workflow for constructing a doc-
ument database where both the words and the geographic references in the doc-
uments are considered. The core of the system architecture is an index structure
that enables the system to store and access efficiently the documents using both
their textual references and their geographic ones. Finally, the system architec-
ture includes two different user interfaces: one for final users that can be used
to pose queries to the system and to display the results, and another for sys-
tem administrators that can be used to manage the document collections. After
that, in Section 4, we describe some types of queries that can be answered with
this system and we sketch the algorithms that can be used to solve this queries.

386 M.R. Luaces et al.

Furthermore, Section 5 presents some experiments that we made to compare
our structure with other ones that use a pure spatial index. Finally, Section 6
presents some conclusions and future lines of work.

2 Related Work

Inverted indexes are considered the classical text indexing technique. An inverted
index associates to each word in the text (organized as a vocabulary) a list of
pointers to the positions where the word appears in the documents. The set of
all those lists is called the occurrences [1]. The main drawback of these indexes
is that geographic references are mostly ignored because place names are con-
sidered words just like the others. If the user poses a query such as as hotels
in Spain, the place name Spain is considered a word, and only those documents
that contain that word are retrieved. A document containing only names of cities
of Spain but not the exact word Spain is not retrieved by the system because
it does not fulfil the textual query. Regarding indexing geographic information,
many different spatial index structures have been proposed along the years. A
good survey of these structures can be found in [9]. The main goal of spatial in-
dex structures is improving access time to collections of geographic data objects.
One of the most popular spatial index structure and a paradigmatic example is
the R-tree [10]. The R-tree is a balanced tree derived from the B-tree which splits
space in hierarchically nested, possibly overlapping, minimum bounding rectan-
gles. The number of children of each internal node varies between a minimum
and a maximum. The tree is kept in balance by splitting overflowing nodes and
merging underflowing nodes. Rectangles are associated with the leaf nodes, and
each internal node stores the bounding box of all the rectangles in its subtree.
The decomposition of space provided by an R-tree is adaptive (dependent on the
rectangles stored) and overlapping (nodes in the tree may represent overlapping
regions). A drawback of spatial index structures is that they do not take into
consideration the hierarchy of space. Internal nodes in the structure are mean-
ingless in the real world, they are just meaningful for the index structure. For
example, imagine that we want to build an index for a collection of countries,
provinces, and cities. These objects are structured in a topological relationship
of containment, that is, a city is contained within a province that is itself con-
tained within a country. If we build an R-Tree with these geographic objects, the
containment hierarchy will not be maintained. The internal nodes of the R-Tree
do not represent provinces or countries, and therefore, the hierarchy of space is
not maintained in the index. It is not possible to associate some information to
the node of a province and have the cities belonging to this province inherit this
information because there is no relation at all between a province and its cities in
the R-Tree index structure. Some work has been done to combine both types of
indexes. The papers about the SPIRIT (Spatially-Aware Information Retrieval
on the Internet) project [11,12,13,14,15] are a very good starting point. In [14],
the authors conclude that keeping separate text and spatial indexes, instead of
combining both in one, results in less storage costs but it could lead to higher

An Ontology-Based Index to Retrieve Documents 387

response times. More recent works can be broadly classified into two categories
depending on how they combine textual and spatial indexes. On the one hand,
some proposal have appeared that combine textual and spatial aspects in an
hybrid index [16,17]. On the other hand, some proposals define structures that
keep separate indexes for spatial and text attributes [6,7,8]. Our index struc-
ture is part of this second group because this division has many advantages [8].
Furthermore, in [7,8], the authors survey the work in the SPIRIT project and
propose improvements to the system and the algorithms defined. In their work
they propose two naive algorithms: Text-First and Geo-First. Both algorithms
use the same strategy: one index is first used to filter the documents (textual
index in Text-First and spatial index in Geo-First), the resulting documents are
sorted by their identifiers and then filtered using the other index (spatial index
in Text-First and textual index in Geo-First). Nevertheless, none of these ap-
proaches take into account the relationships between the geographic objects that
they are indexing.

A structure that can properly describe the specific characteristic of geographic
space is an ontology, which is a formal explicit specification of a shared concep-
tualization [18]. An ontology provides a vocabulary of classes and relations to
describe a given scope. In [19], a method is proposed for the efficient manage-
ment of large spatial ontologies using a spatial index to improve the efficiency of
the spatial queries. Furthermore, in [12,15] the authors describe how ontologies
are used in query term expansion, relevance ranking, and web resource annota-
tion in the SPIRIT project. However, as far as we know, nobody has ever tried
to combine ontologies with other types of indexes to have a hybrid structure
that captures both the topological and the spatial relationships between the
geographic objects indexed.

3 System Architecture

Fig. 1 shows our proposal for the system architecture of a geographic information
retrieval system. The architecture can be divided into three independent layers:
the index construction workflow, the processing services and the user interfaces.
The bottom part of the figure shows the index construction workflow, which,
in turn, consists of three modules: the document abstraction module (described
in Section 3.1), the index construction module (the textual part of this process
is described in Section 3.2 and the spatial part of this process is described in
Section 3.3), and the index structure itself (described also in Section 3.3).

The processing services are shown in the middle of the figure. On the left side,
the Geographic Space Ontology Service used in the spatial index construction is
shown. This service is used extensively in the index construction module, and
therefore it is described in Section 3.3. On the right side, one can see the two
services that are used to solve queries. The rightmost one is the query evalua-
tion service, which receives queries and uses the index structure to solve them.
Section 4 describes the types of queries that can be solved by this service, as
well as the algorithms that are used to solve these queries. The other service is

388 M.R. Luaces et al.

Documents

Document

Abstraction
Index Construction

Geographic Information Retrieval Module

Document

Database

Web Map Service

Query User Interface

Geographic

Database

Query Evaluation

Service

Index Structure

Administration User Interface

Text, place

name, text

Geometry Supplier

Service
Gazetteer Service

Geographic Space Ontology Service

Fig. 1. System Architecture

a Web Map Service following the OGC specification [20] that is used to create
cartographic representations of the query results. This service is not described in
this paper. On top of these services a Geographic Information Retrieval Module
is in charge of coordinating the task performed by each service to response the
user requests. The topmost layer of the architecture shows the two user inter-
faces that exist in the architecture: the Administration User Interface and the
Query User Interface. These user interfaces are described in Section 3.4.

3.1 Document Abstraction

Given that the system must be generic, it must support indexing several kinds
of documents. These documents will be different not only because they may
be stored using different file formats (plain text, XML, etc.), but also because
their content schema may be different. A document collection may have a set of
attributes that have to be stored in the index (such as document id, author, and
document text), whereas other document collection may have a different set of
attributes (such as document id, summary, text, author, and source).

To solve this problem, we have defined an abstraction that represents a docu-
ment as a set of fields, each one with a value that is extracted from the document

An Ontology-Based Index to Retrieve Documents 389

text. Each field can either be stored, indexed, or both. If a field is stored, its con-
tents are stored in the index structure and they can be retrieved by a query. If a
field is indexed, then this field is used to build the index structure. Furthermore,
a field can be indexed textually, spatially, or in both indexes. The definition of
a document as a set of fields is similar to the one used in the Lucene text search
engine [21]. We have extended this idea adding the spatial indexing possibility.

In order to support different types of documents and different file formats, the
document abstraction is exposed by the system as a programming interface that
can be extended with particular implementations for different configurations of
file formats and document schemas. In order to support a new configuration, a
developer only has to implement the interface DocumentFactory that defines the
operations that must be implemented in order to create Documents.

As an example for the validation of the system, we have indexed documents
from the Financial Times collection [22]. The document collection is marked
up in SGML (Standard Generalized Markup Language). Each document has a
<DOCNO> tag including the TREC document identifier string and a <TEXT>
tag including the main content of the document. Fig. 2 shows a partial example
of a document in this collection.

<DOC>

<DOCNO>FT941-6371</DOCNO>

<TEXT>

Senior European company executives are being invited to ’vote’

for Europe’s Most Respected Companies . . .

</TEXT>

</DOC>

Fig. 2. Financial Times (TREC) example

To support this document collection, we defined a TRECFTDocumentFactory
that builds documents with two fields. The first field contains the tag DOCNO
content and it is stored but not indexed. The second field contains the tag TEXT
content and it is not stored but indexed in both indexes.

3.2 Textual Indexing

As we said before, the index structure at the core of the system architecture con-
tains both a textual index and a spatial index. We use Lucene [21] to implement
a textual index. Lucene is a high-performance, full-featured text search engine
library written entirely in Java. It is an open source project part of the Apache
project. Lucene uses an object representation of the indexable documents. A
Document in Lucene contains several Fields. A Field in Lucene is a pair (name,
value) and information about whether it is stored and/or indexed. Field values
are set using Analyzers. These analyzers implement several classical information
retrieval techniques to reduce the number of indexed words and to improve the
index performance such as removing stopwords, stemmers, etc. StandardAnalyzer

390 M.R. Luaces et al.

is the most sophisticated analyzer built into Lucene’s core. It is a parser with
rules for email addresses, acronyms, hostnames, floating point numbers, as well
as converting the value to lowercase and removing stop words.

In this stage of the workflow process, the system builds a Lucene index. Each
of the documents built in the previous stage is inserted into the textual index.
The document identifier is stored but not indexed in the textual index, and each
field marked to be indexed in the textual index or in both indexes is indexed
tokenized in the Lucene index but not stored.

3.3 Spatial Indexing

After building the textual index, the spatial index must be built. The spatial in-
dexing is the most complex stage, and it comprises three steps. First, the system
analyses the document fields that are marked as spatially indexable and extracts
candidate location names from the text. In a second step, these candidate loca-
tions are processed in order to determine whether the candidates are real location
names, and, in this case, to compute their geographic locations. There are some
problems that can happen at this point. First, a location name can be ambiguous
(polysemy). For instance, “London” is the capital of the United Kingdom and it
is a city in Ontario, Canada too. Second, there can be multiple names for the
same geographic location, such as “Los Angeles” and“LA”. Finding geographical
references in text is a very difficult problem and there have been some papers
that deal with different aspects of this problem [6,23,24]. Web-a-where [23] uses
“spatial containers” in order to identify locations in documents, MetaCarta (the
commercial system described in [24]) uses a natural language processing method,
and STEWARD [6] uses an hybrid approach. It is not the aim of this paper to
deal with this problem but we describe how we obtain geographic references in
order to complete the architecture description. Finally, the third step consists
in building the spatial index with the geo-referenced locations computed in the
previous step together with references to the documents containing them. We
describe these three steps and the spatial index structure below.

Discovery of Location Names. For the discovery of candidate location names,
all the spatially indexable fields are processed in order to discover the place names
contained within. There are two Linguistic Analysis techniques that are widely
used for this: Part-Of-Speech tagging and Named-Entity Recognition. On the
one hand, Part-Of-Speech tagging is a process whereby tokens are sequentially
labelled with syntactic labels, such as “verb” or “gerund”. On the other hand,
Named-Entity Recognition is the process of finding mentions of predefined cat-
egories such as the names of persons, organizations, locations, etc.

Our Location Names Discovery module uses the Natural Language Tool Ling-
Pipe [25] to find locations. It is a suite of Java libraries for the linguistic analysis
of human language free for research purposes that provides both Part-Of-Speech
tagging and Named-Entity Recognition. LingPipe involves the supervised train-
ing of a statistical model to recognize entities. The training data must be labelled
with all of the entities of interest and their types. In the system validation with

An Ontology-Based Index to Retrieve Documents 391

the Financial Times collection, we use LingPipe trained with the MUC6 corpus
(http://www.ldc.upenn.edu) labelled with locations, people and organizations.
After the LingPipe processing, the module filters the resultant named entities
selecting only the locations and discarding people and organization names.

Geo-referenciation of Location Names. After discovering a collection of
candidate location names, the system must distinguish false candidates and geo-
reference the real ones. In this context, geo-referencing a location name implies
not only to obtain its coordinates in a particular coordinate system, but also
to obtain all the data needed to include the place in a spatial index. We have
developed a system based on an ontology of the geographic space that is built
using a Gazetteer and a Geometry Supplier.

A Gazetteer is a geographical dictionary that contains, in addition to location
names, alternative names, populations, location of places, and other information
related to the location. In our test implementation we use Geonames [26] that
provides a geographical database available under a creative commons attribution
license. This database contains more than two million populated places over
the world with their latitude/longitude coordinates in WGS84 (World Geodetic
System 1984). All the populated places are categorized so that it is possible to
classify them into different administrative division levels (continents, countries,
regions, etc.).

However, Geonames (and Gazetteers in general) does not provide geometries
for the location names other than a single representative point. But for our
spatial index we need the real geometry of the location name (for example,
the boundary of countries). We defined a Geometry Supplier service to obtain
the geometries of those location names. As a base for this service we used the
Vector Map (VMap) cartography [27]. VMap is an updated and improved version
of the National Imagery and Mapping Agency’s Digital Chart of the World. It
supplies first and second level administrative division geometries in a proprietary
format. However, there are free tools that can create shapefiles from that format,
such as FWTools [28]. We have created a PostGIS [29] spatial database with
these shapefiles and we have done several corrections and improvements over
this database.

Even though our test implementation uses Geonames and VMAP, it has been
designed so that these components are easily exchangeable. All accesses to these
components are performed through generic interfaces that can be easily imple-
mented for other components.

This step combines both services in order to geo-reference location names.
First, an ontology of the geographic space is defined. In our test implementa-
tion, the geographic space is divided into three levels of administrative divisions
(continents, countries and regions) and a level of populated places. These four
levels are organized in a hierarchical structure where each level geographically
contains all objects in the next level.

Then, for each candidate location name, an ontology path must be built. This
path will be used in the construction of the spatial index structure. For this task,
a hierarchical structure following the design pattern Chain of Responsibility [30]

392 M.R. Luaces et al.

+obtainGeoreferences()

#useGazetteer()

#useGeometrySupplier()

AdministrativeDivision

Continent Country Region PopulatedPlace

Gazetteer

Geometry

Supplier

<<use>>

<<use>>

-previous 1

-next

1

Fig. 3. Geo-references module

was implemented. Fig. 3 shows a brief class diagram of this component. The
structure is composed of four levels (continent, country, region, and populated
place), one for each level of the ontology, but it is easily extensible. Each level
contains a connection to the gazetteer and to the geometry supplier in order to
retrieve the data needed by the process. Then, an algorithm in two steps obtains
all possible geo-references associated with a location name. In the first step,
each level obtains from the gazetteer all the locations with the requested name.
If the gazetteer does not return any location for a given candidate location name,
the candidate is discarded. In the second step, the system builds the complete
ontology path from bottom to top. For instance, if the requested location name
was London, in the first step the system obtains two locations with this name.
After that, it returns the paths United Kingdom, England, London and Canada,
Ontario, London.

Spatial Index Construction. Fig. 4 shows a class diagram of the index struc-
ture. The main component of the index structure is a tree composed by nodes that
represent location names. These nodes are connected by means of inclusion rela-
tionships (for instance, Galicia is included in Spain). The tree structure is built
using the ontology paths computed by the process described in the previous sec-
tion. In each node we store: (i) the keyword (a place name), (ii) the bounding box
of the geometry representing this place, (iii) a list with the document identifiers
of the documents that include geographic references to this place, and (iv) a list
of child nodes that are geographically within this node. If the list of child nodes is
very long, using sequential access is very inefficient. For this reason, if the number
of children nodes exceeds a threshold, an R-Tree is used instead of a list.

Two auxiliary structures are used in the index. First, a place name hash ta-
ble that stores for each location name its position in the index structure. This
provides direct access to a single node by means of a keyword that is returned
by the Gazetteer Service if the word processed is a location name. The second
auxiliary structure is the textual index with all the words in the documents that
is used to solve textual queries (this index is described in section 3.2).

An Ontology-Based Index to Retrieve Documents 393

+indexPath()

+executeQuery()

-placeNameHashTable : Map

IndexStructure

+executeQuery()

«interfaz»

TextualIndex
<<use>>

+index()

+executeQuery()

-placeName

-geometry

IndexStructureNode-rootNode

1

-children*

Document RTree

<<use>>

Fig. 4. Class diagram of the index structure

Keeping separate indexes for text and geographical scopes has many advan-
tages. First of all, all textual queries can be efficiently processed by the text
index, and all spatial queries can be efficiently processed by the spatial index.
Moreover, queries combining textual and spatial aspects are supported. Further-
more updates in each index are handled independently, which makes easier the
addition and removal of data. Finally, specific optimizations can be applied to
each individual indexing structure.

However, this structure has two main drawbacks. First, the tree that supports
the structure is possibly unbalanced penalizing the efficiency of the system. We
present some experiments in Section 5. Our intention is to prove that it is not a
very important problem. Second, ontological systems have a fixed structure and
thus our structure is static and it must be constructed ad-hoc.

3.4 User Interfaces

The system has two different user interfaces: an administration user interface
and a query user interface. The administration user interface was developed as a
stand-alone application and it can be used to manage the document collection.
The main functionalities are: creation of indexes, addition of documents to in-
dexes, loading and storing indexes, etc. The main screen of this interface shows
useful information about the loaded index such as the number of documents
indexed, the fields of each of these documents, the number of location names in
the index, etc.

Fig. 5 shows a screenshot of the query user interface. This interface was devel-
oped as a web application using the Google Maps API [31]. This API provides
a number of utilities for manipulating maps and adding content to the map.

In the next section we sketch the types of queries that can be solved with this
system. These queries have two different aspects: a textual aspect and a spatial
aspect. The query user interface allows the user to indicate both aspects. The
spatial context can be introduced in three ways that are mutually exclusive:

– Typing the location name. In this case, the user types the location name
in a text box. This is the most inefficient way because the system has to
obtain all geo-references associated with the typed place name and it is a
time-expensive process.

394 M.R. Luaces et al.

Fig. 5. Query User Interface

– Selecting the location name in a tree. In this case, the user sequentially selects
a continent, a country within this continent, a region within the country, and
a populated place within the region. If the user wants to specify a location
name of a higher level than a populated place, it is not necessary to fill in all
the levels. The operation is very easy and intuitive because the interface is
implemented with a custom-developed component using the AJAX technol-
ogy that retrieves in the background the location names for the next level.
When the user selects a place in the component, the map on the right zooms
in automatically to the selected place.

– Visualizing the spatial context of interest in the map. The user can navigate
using the map on the right to select the spatial context of interest. The
system will use the bounding box of this map as the query window if the
user did not type a place name or did not select a location name.

4 Supported Query Types

The most important characteristic of an index structure is the type of queries
that can be solved with it. The following types of queries are relevant in a
geographic information retrieval system:

– Pure textual queries. These are queries such as “retrieve all documents where
the words hotel and sea appear”.

An Ontology-Based Index to Retrieve Documents 395

– Pure spatial queries. An example of this type of queries is “retrieve all doc-
uments that refer to the following geographic area”. The geographic area in
the query can be a point, a query window, or even a complex object such as
a polygon.

– Textual queries with place names. In this type of queries, some of the words
are place names. For instance, “retrieve all documents with the word hotel
that refer to Spain”.

– Textual queries over a geographic area. In this case, a geographic area of
interest is given in addition to the set of words. An example is “retrieve all
documents with the word hotel that refer to the following geographic area”.

Inverted indexes can solve pure textual queries by retrieving from the inverted
index the lists of documents associated to each word and then performing the
intersection of the lists. Pure spatial queries can be solved by spatial indexes by
descending the structure and taking into consideration only those nodes whose
bounding box intersects with the geographic area of the query. This operation
returns a set of candidate documents that has to be refined with the actual
geographic reference in order to decide whether the document is part of the
result or not.

Pure textual queries can be solved by our system because a textual index is part
of the index structure. Similarly, pure spatial queries can also be solved because
the index structure is built like a spatial index. Each node in the tree is associated
with the bounding box of the geographic objects in its subtree. Therefore, the same
algorithm that is used with spatial indexes can be used with our structure. How-
ever, the index structure that we propose can be used to solve the third and fourth
types of queries, which cannot be easily solved using a textual index and a spatial
index. For the case of the query with place names, our system can discover that
Spain is a geographic reference by querying the Gazetteer service and then we can
use the place name hash table in the structure to retrieve the index node that rep-
resents Spain. Thus, we save some time by avoiding a tree traversal. Fig. 6 shows
how these type of queries can be solved by the index structure. The textual index
of the structure can be seen on the right part of the figure, whereas the spatial in-
dex can be seen on the left part. When the user poses a query with the text sunny
places and the place name Spain, the textual index is used to retrieve the list of
documents that contain the words, and the index structure is used to compute the
list of documents that reference the geographic area. These two lists can be seen
at the bottom part of the figure. Then, the result to the query is computed as the
intersection of both lists.

Regarding the fourth type of query, the textual index is used to retrieve the
list of documents that contain the words and the ontology-based index structure
is used to compute the list of documents that reference the geographic area.
Then, the intersection of both lists is the result to the query. We analyze the
performance of our structure to solve this type of queries in comparison with
other proposals using a pure spatial index in Section 5. The conclusion of these
experiments is that the performance of our structure is acceptable in comparison
with index structures using pure spatial indexes.

396 M.R. Luaces et al.

Fig. 6. Example of the index structure

Another improvement over text and spatial indexes is that our index structure
can easily perform query expansion on geographic references because the index
structure is built from an ontology of the geographic space. Consider the fol-
lowing query “retrieve all documents that refer to Spain”. The query evaluation
service will discover that Spain is a geographic reference and the place name
index will be used to quickly locate the internal node that represents the geo-
graphic object Spain. Then all the documents associated to this node are part
of the result to the query. Moreover, all the children of this node are geographic
objects that are contained within Spain (for instance, the city of Madrid). There-
fore, all the documents referenced by the subtree are also part of the result of
the query. The consequence is that the index structure has been used to expand
the query because the result contains not only those documents that include the
term Spain, but also all the documents that contain the name of a geographic
object included in Spain (e.g., all the cities and regions of Spain).

5 Experiments

In the previous section we showed that our structure has a qualitative advantage
over systems that combine a textual index with a pure spatial index because
query expansion can be performed directly with our index structure (e.g. retrieve
all documents with the word hotel that refer to Spain). Hence, our index structure
supports a new type of query that cannot be implemented with a pure spatial
index. However, unlike pure spatial index structures, our index structure is not
balanced and therefore, the query performance can be worse.

In this section we describe the experiments that we performed to compare our
structure with other ones based on a pure spatial index. We used the TREC FT-
91 (Financial Times, year 1991) document collection [22], which consists of 5,368
news documents. Then, we built two indexes over this collection: one using our
index structure as described in this paper, and another one using a textual index

An Ontology-Based Index to Retrieve Documents 397

Fig. 7. Example of randomly generated query windows

and an R-Tree [10]. Furthermore, we developed an algorithm to generate random
spatial query windows. This algorithm is based on the performance comparisons
of the R*-Tree in [32] and it generates query windows where the ratio of the
x-extension to the y-extension uniformly varies from 0.25 to 2.25 and the centres
of the query rectangles are uniformly distributed all over the world. Fig. 7 shows
several query windows generated using this algorithm.

We compared the structures with respect to four different query window areas,
namely 0.001%, 0.01%, 0.1% and 1% of the world. We generated 100,000 random
query windows for each area, and we averaged the computing time of each query
execution. Table 1 shows the results of this experiment.

Table 1. Ontology-based index versus R-Tree

Query area 0.001% 0.01% 0.1% 1%

Our index 0.013 0.017 0.052 0.360
R-Tree 0.010 0.016 0.057 0.370

The first row of the table shows the results obtained with our structure (in
milliseconds), and the second one shows the results obtained with the structure
using an R-Tree. Both index structures have similar performance. The perfor-
mance of our structure is a bit worse than the R-Tree when the query window is
small but, surprisingly it is a bit better than the R-Tree when the query window
is bigger. In order to explain this surprising result, we analyzed the performance
in particular zones. We distinguished two relevant types of zones and we repeated
the experiment generating random queries in both zones. First, we studied the

398 M.R. Luaces et al.

Table 2. Ontology-based index versus R-Tree (zones of high document density)

Query area 0.001% 0.01% 0.1% 1%

Our index 0.03 0.11 1.05 9.84
R-Tree 0.07 0.22 1.64 12.85

Table 3. Ontology-based index versus R-Tree (zones of low document density)

Query area 0.001% 0.01% 0.1% 1%

Our index 0.02 0.03 0.09 0.4
R-Tree 0.02 0.03 0.07 0.2

performance of the structures when the document density is high (see Table 2).
In this case, the performance of our structure is higher than the R-Tree perfor-
mance. We believe this is because our structure stores a list of documents for
each location while the R-Tree uses a node for each one document.

Second, we studied the performance when the documents density is low (see
Table 3). In this case, the R-Tree performance is better because the number
of nodes in both structures is similar and the R-Tree is balanced whereas our
structure may be unbalanced. For this reason, in the general case, when the query
window is small the probability of that query window being in a high document
density zone is small and, therefore, the R-Tree performance is better. However,
when the query window is bigger that probability is higher and, therefore, the
R-Tree performance is lower.

6 Conclusions and Future Work

We have presented in this paper a system architecture for an information retrieval
system that takes into account not only the text in the documents but also
the geographic references included in the documents and the ontology of the
geographic space. This is achieved by a new index structure that combines a
textual index, a spatial index and an ontology-based structure. We have also
presented how traditional queries can be solved using the index structure. Finally,
new types of queries that can be solved with the index structure are described
and the algorithms that solve these queries are sketched.

Future improvements of this index structure are possible. We are currently
working on the evaluation of the performance of the index structure, partic-
ularly we are performing experiments to determine the precision and recall.
Moreover, Toponym Resolution techniques must be implemented to solve am-
biguity problems when we geo-reference the documents. Another line of future
work involves exploring the use of different ontologies and determining how each
ontology affects the resulting index. Furthermore, we plan on including other
types of spatial relationships in the index structure in addition to inclusion (e.g.,

An Ontology-Based Index to Retrieve Documents 399

adjacency). These relationships can be easily represented in the ontology-based
structure, and the index structure can be extended to support them. Finally, it
is necessary to define algorithms to rank the documents retrieved by the system.
For this task, we must define a measure of spatial relevance and combine it with
the relevance computed using the inverted index.

References

1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley,
Reading (1999)

2. Worboys, M.F.: GIS: A Computing Perspective. CRC, Boca Raton (2004)
3. ISO/IEC: Geographic Information – Reference Model. International Standard

19101, ISO/IEC (2002)
4. Open GIS Consortium, Inc.: OpenGIS Reference Model. OpenGIS Project Docu-

ment 03-040, Open GIS Consortium, Inc.(2003)
5. Global Spatial Data Infrastructure Association: Online documentation (Retrieved

May 2007), http://www.gsdi.org/
6. Lieberman, M.D., Samet, H., Sankaranarayanan, J., Sperling, J.: STEWARD: Ar-

chitecture of a Spatio-Textual Search Engine. In: Proceedings of the 15th ACM
Int. Symp. on Advances in Geographic Information Systems (ACMGIS 2007), pp.
186–193. ACM Press, New York (2007)

7. Chen, Y.Y., Suel, T., Markowetz, A.: Efficient query processing in geographic web
search engines. In: SIGMOD Conference, pp. 277–288 (2006)

8. Martins, B., Silva, M.J., Andrade, L.: Indexing and ranking in Geo-IR systems. In:
GIR 2005: Proceedings of the 2005 workshop on Geographic information retrieval,
pp. 31–34. ACM Press, New York (2005)

9. Gaede, V., Günther, O.: Multidimensional access methods. ACM Comput.
Surv. 30(2), 170–231 (1998)

10. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In:
Yormark, B. (ed.) SIGMOD 1984, Proceedings of Annual Meeting, Boston, Mas-
sachusetts, June 18-21, 1984, pp. 47–57. ACM Press, New York (1984)

11. Jones, C.B., Purves, R., Ruas, A., Sanderson, M., Sester, M., van Kreveld, M.,
Weibel, R.: Spatial information retrieval and geographical ontologies an overview
of the SPIRIT project. In: Proceedings of the 25th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, pp.
387–388 (2002)

12. Jones, C.B., Abdelmoty, A.I., Fu, G.: Maintaining ontologies for geographical in-
formation retrieval on the web. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.)
CoopIS 2003, DOA 2003, and ODBASE 2003. LNCS, vol. 2888, pp. 934–951.
Springer, Heidelberg (2003)

13. Jones, C.B., Abdelmoty, A.I., Fu, G., Vaid, S.: The SPIRIT Spatial Search En-
gine: Architecture, Ontologies and Spatial Indexing. In: Egenhofer, M.J., Freksa,
C., Miller, H.J. (eds.) GIScience 2004. LNCS, vol. 3234, pp. 125–139. Springer,
Heidelberg (2004)

14. Vaid, S., Jones, C.B., Joho, H., Sanderson, M.: Spatio-Textual Indexing for Geo-
graphical Search on the Web. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino,
E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 218–235. Springer, Heidelberg (2005)

15. Fu, G., Jones, C.B., Abdelmoty, A.I.: Ontology-Based Spatial Query Expansion
in Information Retrieval. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS,
vol. 3761, pp. 1466–1482. Springer, Heidelberg (2005)

http://www.gsdi.org/

400 M.R. Luaces et al.

16. Zhou, Y., Xie, X., Wang, C., Gong, Y., Ma, W.Y.: Hybrid index structures for
location-based web search. In: CIKM 2005: Proceedings of the 14th ACM interna-
tional conference on Information and knowledge management, pp. 155–162. ACM,
New York (2005)

17. Hariharan, R., Hore, B., Li, C., Mehrotra, S.: Processing Spatial-Keyword (SK)
Queries in Geographic Information Retrieval (GIR) Systems. In: Proceedings of
the 19th Int. Conf. on Scientific and Statistical Database Management (SSDBM
2007). IEEE Computer Society, Los Alamitos (2007)

18. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowl-
edge Acquisition 5(2), 199–220 (1993)

19. Dellis, E., Paliouras, G.: Management of Large Spatial Ontology Bases. In: Pro-
ceedings of the Workshop on Ontologies-based techniques for DataBases and In-
formation Systems (ODBIS) of the 32nd International Conference on Very Large
Data Bases (VLDB 2006) (September 2006)

20. Open GIS Consortium, Inc.: OpenGIS Web Map Service Implementation Specifi-
cation. OpenGIS Project Document 01-068r3, Open GIS Consortium, Inc. (2002)

21. Apache: Lucene (Retrieved October 2007), http://lucene.apache.org
22. National Institute of Standards and Technology (NIST): TREC Special Database

22, TREC Document Database: Disk 4 (Retrieved November 2007),
http://www.nist.gov/srd/nistsd22.htm

23. Amitay, E., Har’El, N., Sivan, R., Soffer, A.: Web-a-where: geotagging web content.
In: SIGIR 2004: Proceedings of the 27th annual international ACM SIGIR confer-
ence on Research and development in information retrieval, pp. 273–280. ACM,
New York (2004)

24. Rauch, E., Bukatin, M., Baker, K.: A confidence-based framework for disambiguat-
ing geographic terms. In: Proceedings of the HLT-NAACL 2003 workshop on Anal-
ysis of geographic references, Morristown, NJ, USA, pp. 50–54. Association for
Computational Linguistics (2003)

25. Alias-i: LingPipe, Natural Language Tool (Retrieved October 2007),
http://www.alias-i.com/lingpipe/

26. Geonames: Gazetteer (Retrieved September 2007), http://www.geonames.org
27. National Imagery and Mapping Agency (NIMA): Vector Map Level 0 (Retrieved

September 2007), http://www.mapability.com
28. FWTools: Open Source GIS Binary Kit for Windows and Linux (Retrieved Septem-

ber 2007), http://fwtools.maptools.org
29. Refractions Research: PostGIS (Retrieved June 2007),

http://postgis.refractions.net

30. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley, Reading (1996)

31. Google: Google Maps API (Retrieved November 2007),
http://www.google.es/apis/maps/

32. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an efficient
and robust access method for points and rectangles. SIGMOD Rec. 19(2), 322–331
(1990)

http://lucene.apache.org
http://www.nist.gov/srd/nistsd22.htm
http://www.alias-i.com/lingpipe/
http://www.geonames.org
http://www.mapability.com
http://fwtools.maptools.org
http://postgis.refractions.net
http://www.google.es/apis/maps/

	An Ontology-Based Index to Retrieve Documents with Geographic Information
	Introduction
	Related Work
	System Architecture
	Document Abstraction
	Textual Indexing
	Spatial Indexing
	User Interfaces

	Supported Query Types
	Experiments
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

