
Monitoring Aggregate k-NN Objects in Road Networks

Lu Qin1, Jeffrey Xu Yu1, Bolin Ding1, and Yoshiharu Ishikawa2

1 The Chinese University of Hong Kong, China
{lqin,yu,blding}@se.cuhk.edu.hk

2 Nagoya University, Japan
ishikawa@itc.nagoya-u.ac.jp

Abstract. In recent years, there is an increasing need to monitor k nearest neigh-
bor (k-NN) in a road network. There are existing solutions on either monitor-
ing k-NN objects from a single query point over a road network, or computing
the snapshot k-NN objects over a road network to minimize an aggregate dis-
tance function with respect to multiple query points. In this paper, we study a
new problem that is to monitor k-NN objects over a road network from multi-
ple query points to minimize an aggregate distance function with respect to the
multiple query points. We call it a continuous aggregate k-NN (CANN) query.
We propose a new approach that can significantly reduce the cost of computing
network distances when monitoring aggregate k-NN objects on road networks.
We conducted extensive experimental studies and confirmed the efficiency of our
algorithms.

1 Introduction

With the development of positioning technologies such as the Global Positioning Sys-
tem (GPS), many applications are developed in transportation domains by taking advan-
tages of monitoring object movements in road networks where the position and distance
of objects are constrained by spatial networks. An important type of these queries is a k
nearest neighbor (k-NN) query, which is widely used in location-based services, traffic
monitoring, emergency management. Existing solutions focused on either monitoring
k-NN objects over a road network from a single query point (observation point) [1],
or computing the snapshot k-NN objects over a road network to minimize an aggre-
gate distance function with respect to the multiple query points [2]. In this paper, we
study a new problem that is to monitor k-NN objects over a road network from mul-
tiple query points to minimize an aggregate distance function with respect to multiple
query points. We call it a continuous aggregate k-NN (CANN) query. In brief, it deals
with the network distance instead of Euclidean distance, and it monitors the top-k ob-
jects, where an object is ranked based on an aggregate function value of the distances
between the object and multiple query points. As an example, consider people in n
companies/organizations need to schedule meetings in downtown frequently. The room
availabilities in hotels and restaurants is monitored, and the best place is selected to
reduce the total travel time for people to meet.

The main difficulties for processing CANN query are as follows. First, when there
are a large number of objects in the road network or there are a large number of CANN

B. Ludäscher and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, pp. 168–186, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Monitoring Aggregate k-NN Objects in Road Networks 169

queries, the cost of computing network distances becomes the bottleneck. Second, an
object is ranked in the road network based on an aggregate function value in terms
of the network distances to a set of query points. Unlike computing a CANN query
for a single query point in the road network where the order of visiting edges can be
determined using an expansion tree from the query point, computing the CANN query
from multiple query points makes it difficult to find an order of visiting edges.

The main contributions of this paper are summarized below. (1) We study a new
problem of processing the continuous aggregate nearest neighbor queries (CANN) over
large road network. To the best of our knowledge, this is the first attempt to study
this problem. (2) We propose new approaches that do not need to expand tree to com-
pute CANN queries. Our approach can reduce the cost of computing network distances
significantly. (3) We conducted extensive performance studies, and confirmed the effi-
ciency of our new approaches.

The rest of the paper is organized as follows. Section 2 gives the problem statement.
Section 3 introduces two existing solutions. Section 4.2 discusses our new approaches
followed by discussions on implementations in Section 5. Section 6 shows our experi-
mental results. The related work is given in Section 7. Finally, Section 8 concludes this
paper.

2 Problem Definition

Road Network is an undirected weighted connected graph, G(V, E), where V is a set
of nodes (road intersections), and E is a set of edges (roads). An edge, e ∈ E, connects
two nodes ni and nj . A positive number, len(e), denotes the length of the edge e. (Data
or Query) points lie on edges of road network G. We use pose(p) to denote the position
of a point p on e = (ni, nj) by the distance from point p to node ni on edge e, provided
i < j.

Network Distance: For two nodes ni, nj ∈ V , the network distance d(ni, nj) is the
length of the shortest path between ni and nj in the road network. The network distance
between a point, p that lies on the edge e = (ni, nj), and a node, nk, is computed as
d(p, nk) = min{pose(p) + d(ni, nk), (len(e) − pose(p)) + d(nj , nk)}. For any two
data points p and p′, if p and p′ are on different edges, their network distance is com-
puted as d(p, p′) = min{pose(p) + d(p′, ni), (len(e) − pose(p)) + d(p′, nj)}. Other-
wise, d(p, p′) is min {|pose(p)− pose(p′)|, pose(p)+ d(p′, ni), (len(e)− pose(p))+
d(p′, nj)}.

Figure 1 shows a simple road network. There are 6 nodes and 6 edges. The number in
the brackets under each edge ei denotes its length (len(ei)). For instance, e4 is the edge
that connects nodes n3 and n4, and the length of e4 is len(e4) = 80. In Figure 1, a data
point is indicated by a cross. The position of a data point is marked in the brackets above
it. For instance, p3 lies on edge e3, and its position is pose3(p3) = 70. The network
distance between two nodes, n1 and n6, is d(n1, n6) = 30 + 80 + 30 = 140, along
the shortest path e1 → e4 → e6, the network distance between data point p3 and node
n4 is d(p3, n4) = min{pose3(p3) + d(n2, n4), (len(e3)− pose3(p3)) + d(n6, n4)} =
min{70 + 110, 50 + 30} = 80, and the network distance between two data points, p3



170 L. Qin et al.

p (20)
4

3e (30)1

p (15)5

p (10)1

n p (20) q (40) n

e (80)

p (35) q (50)

e (120)

p (70)
n

q (15)
n

e (30)

1

2

6
3

e (30)6

e (30)

n5

5

4 2 3

3

1

n2

2

4

6

Fig. 1. Road Network

and p2, that are on two different edges e3 and e4, is d(p3, p2) = min{pose3(p3) +
d(n2, p2), (len(e3) − pose3(p3)) + d(n6, p2)} = min{70 + 50, 50 + 90} = 120.

Problem Statement (CANN Query): Given a road network G(V, E) and the set of
data points (moving objects) P = {p1, p2, · · · } over G(V, E). A continuous aggre-
gate nearest neighbor query is denoted as CANN(Q, k, h), where Q = {q1, q2, · · · }
is a set of fixed query points over G(V, E), k is a positive number (> 0), and h is
an aggregate function (sum, min, max). Here, for a data point, pi ∈ P , h(pi) =
h{d(pi, q1), d(pi, q2), · · · , d(pi, q|Q|)}, regarding the query points Q. The CANN (Q,
k, h) query is to monitor the top-k data points in P that has the smallest h function
values while all data points are moving.

Consider a CANN(Q, k, sum) where Q = {q1, q2, q3}, k = 3 against G(V, E) (Fig-
ure 1). Here, sum(p1) = sum{d(p1, q1), d(p1, q2), d(p1, q3)} = 35 + 60 + 60 = 155,
sum(p2) = 155, sum(p3) = 255, sum(p4) = 200, sum(p5) = 280, and sum(p6) =
255. The top-3 result is {p1, p2, p4}.

3 Existing Solutions

While many recent researches have focused on continuous monitoring of nearest neigh-
bors over dynamic objects, we first propose the solution for CANN query in road
networks. Mouratidis et al.’s work in [1] is the one closest to ours. They gave two
algorithms, IMA and GMA, to process continuous nearest neighbor queries over a
road network, when there is a single query point, i.e., CANN(Q, k, h) where |Q| = 1
(a special case of CANN).

The incremental monitoring algorithm (IMA) retrieves the initial top-k data points
using the shortest path expansion tree of the query point for a single CANN query.
The group monitoring algorithm (GMA) groups multiple CANN queries that lie on the
same edge, as a group, to process them together, based on IMA. IMA keeps expanding
the tree and updating the top-k result until the next edge to be expanded has minimal
distance that is no less than the kth distance in the current result. When data points
move, the result for the query is maintained by incrementally expanding or shrinking
the expansion tree.

Figure 2 shows an example to explain the expansion tree for CANN({q3}, k, sum),
where k = 3. Assume the current top-3 result is {p1, p2, p5}, and the edges (called
partial edges) that may partially affect the new top-3 results when data points move are



Monitoring Aggregate k-NN Objects in Road Networks 171

4

e (30)2

e (30)1

e (30)6

n6

5p (15)

e (30)5

n

n

n p (20) q (40)

e (80)

n

n

p (70)p (35)

e (120)

3 2

4

1

4

3

3

5

p (10)1

2

3

Fig. 2. Expansion tree and partial Edges

P = {e1, e2, e5, e6}. Suppose the data point p1 moves out of the partial edges. IMA
needs to expand the expansion tree from nodes n3 and n4 and retrieve all the data points
on the edges in P to obtain the new top-k result {p2, p4, p5}. In summary, when data
points move, IMA does not need to recompute the result from scratch, for a CANN
query, but it needs to retrieve the data points, that lie on the partial edges, which is
time consuming. In this paper, we propose a new approach that does not need to use an
expansion tree for CANN, and allows multiple query points in one CANN query.

4 A New Non-tree-expanding Approach

The high online processing cost for CANN queries dues to the frequent update of the
expansion tree. In this paper, we propose a new approach that does not need an expan-
sion tree. In brief, for a new CANN(Q, k, h) query registered, we construct a query
graph, GQ(VQ, EQ), based on CANN and the road network G. The query graph,
GQ(VQ, EQ), is static when processing CANN(Q, k, h) (no update is needed). It fa-
cilitates computing the value of aggregate function h(p), for a data point p ∈ P . With
the assistance of query graph GQ, we can efficiently monitor the top-k results, when
the data points move.

4.1 Query Graph Construction

The query graph GQ(VQ, EQ) facilitates computing the value of aggregate function
h(p) in CANN(Q, k, h), for a data point, p ∈ P . We require that, given the position of
p on edge e, pose(p), the value of aggregate function h(p) can be computed efficiently.
We first discuss the relationship between the distance function d(q, p) / the aggregate
function h(p) and the position of p.

Distance function w.r.t. pose(p): Consider a data point p on an edge e = (ni, nj) in
GQ, and a query point q ∈ Q. The distance d(p, q) between q and p can be specified as
a function of pose(p), denoted as fe,q: fe,q(pose(p)) = d(p, q). We note that function
fe,q(·) is a continuous piecewise-linear function in the domain [0, len(e)]. We discuss
the main idea behind fe,q(pose(p)) followed by the discussion on how to compute it.

An example is illustrated in Figure 3(a) over the road network G (Figure 1). Take
the edge e4 = (n3, n4) in G as an example. Its three functions, fe4,q1(pose4(p)),
fe4,q2(pose4(p)), and fe4,q3(pose4(p)), for three different query points, q1, q2, and q3,



172 L. Qin et al.

e4

e q,4

q

q

q

130

0 80

3

2

1

x=pos   (p)

f (x)

(a) Single source edge functions
x=pos   (p)e4

e4

235

205

175

135

0 40 50 80

g   (x)

(b) Sum

x=pos   (p)e4

g    (x)e4

130

40
27.5
15

0 12.5 40 80

(c) Min
x=pos   (p)e4

e4

0 50 80

130

100

80
g   (x)

(d) Max

Fig. 3. Edge functions on e4

are shown in Figure 3(a). Note: on x-axis, [0, len(e4)], is pose4(p), the distance from
n3. The curve of fe4,q1(pose4 (p)) suggests that the shortest distance between q1 and
any data points p on e4 should first go to the end node n3 of e4, and then go to p. The
curve of fe4,q2(pose4(p)) suggests that the shortest distance between q2 and any data
points p on e4 may come from two different ends of e4 (from either n3 or n4). When the
data point p is on the left side of [0, len(e4)] before the peak value of fe4,q2(pose4(p)),
the shortest distance between q2 and p should come from the end of n3; when the data
point p is on the right side of [0, len(e4)] after the peak value of fe4,q2(pose4(p)), the
shortest distance between q2 and p should come from the end of n4.

Function fe,q(pose(p)) can be computed as follows. Assume e = (ni, nj), where
i < j. With Dijkstra’s single-source shortest-path algorithm, we obtain the shortest
distance from q to every node in G. There are two cases.

i) q is not on edge e: If |d(q, ni) − d(q, nj)| = len(e), fe,q(pose(p)) is a 1-piece
linear function of pose(p) ∈ [0, len(e)]. In this case, its 1-piece segment is (0, fe,q

(0))-(len(e), fe,q(len(e))), where fe,q(0) = d(q, ni) and fe,q(len(e)) = d(q, nj).
Otherwise, fe,q(pose(p)) is a 2-piece linear function, and its two linear segments are
(0, d(q, ni))-(x, y), and (x, y)-(len(e), d(q, nj)), where x and y are computed as
follows. {

x = d(q,nj)−d(q,ni)+len(e)
2

y = d(q,nj)+d(q,ni)+len(e)
2

(1)

ii) q is on edge e: Query point q split e into two parts, from ni to q and from q to
nj respectively. Consider q as a node, function fe,q(pose(p)) on each part shares high
similarity to case i), thus, we omit further explanation. The curve of fe4,q3(pose4(p))



Monitoring Aggregate k-NN Objects in Road Networks 173

shows such an example. But notice that function fe,q(pose(p)) of pose(p) ∈ [0, len(e)]
may be a 3-piece linear function here. The 3-piece case happens only if q is on e.

From above discussions, we have the following lemma.

Lemma 1. fe,q(·) is a continuous piecewise-linear function with at most 3 linear pieces
on domain [0, len(e)].

Aggregate function w.r.t. pose(p): Since distance function fe,q(pose(p)) is a continu-
ous piecewise-linear function of pose(p), given CANN(Q, k, h) and Q = {q1, q2, · · · },
the aggregate function value for any data point p on edge e, regarding all query points,
can also be specified as a continuous piecewise-linear function of pose(p), denoted by

ge(pose(p)) = h{fe,q1 (pose(p)), ..., fe,q|Q| (pose(p))} (2)

for pose(p) ∈ [0, len(e)]. Since fe,q(·) has at most 3 linear pieces, ge(·) has at most
O(|Q|) linear pieces.

Lemma 2. ge(·) is a continuous piecewise-linear function with at most O(|Q|) linear
pieces on domain [0, len(e)].

Reconsider the example in Figure 3(a) for the three query points, q1, q2, and q3. The
aggregate function on edge e4 for h = sum, min, and max, are shown in Figure 3(b),
Figure 3(c), and Figure 3(d), respectively.

Constructing the query graph GQ(VQ, EQ): Given a CANN(Q, k, h) query over a
road network G(V, E), we define a query graph, GQ(VQ, EQ), to efficiently compute
the value of h(p) given pose(p), the position of a data point p on edge e. The idea to
construct GQ is to segment edges in G, such that aggregate function ge(·) w.r.t. pose(p)
is a 1-piece linear function within each segment.

Formally, suppose on an edge, e = (ni, nj) in E, ge(·) is a z-piece linear function,
then e needs to be segmented into a sequence of edges, (nk0 , nk1), (nk1 , nk2), · · · ,
(nkz−1 , nkz), where ni = nk0 and nkz = nj , such that ge(·) is a 1-piece linear function
on each segment [pose(nkl−1), pose(nkl

)] (1 ≤ l ≤ z). All such nodes nkl
, for 0 ≤ l ≤

z, will be included in VQ, and all the segmented edges (nkl−1 , nkl
), for 1 ≤ l ≤ z, will

be included in EQ. If ge(·) is a 1-piece linear function, then there is no segmentation
needed over an edge e = (ni, nj) (ni, nj are included in VQ, and e is included in EQ).

We explain how to segment an edge using an example (Figure 3(b)), for a CANN(Q,
k, h) where Q = {q1, q2, q3}, and h = sum. Consider edge e4 = (n3, n4), as shown in
Figure 3(b), its aggregate edge function is a continuous 3-piece-segment linear function.
Therefore, we add two new nodes into query graph GQ, denoted, nk1 and nk2 at position
40 and 50 on the x-axis as shown in Figure 3(b). Note: 40 and 50 are the distance
from n3. e4 = (n3, n4) will be segmented into three edges, (n3, nk1), (nk1 , nk2), and
(nk2 , n4), in GQ. Each of the three edges is associated with a 1-piece linear aggregate
function.

It is important to note that in GQ(VQ, EQ), every edge is associated with a 1-piece
linear function (a piece of ge(·)). We can compute the value of the aggregate function for
any data point in any edge with the help of GQ efficiently. Consider an edge (nkl−1 , nkl

)



174 L. Qin et al.

2b

s1

s2

s8 s10s9

s5s4 s6 s7

s12

s11

s3

n5

n6

n
q

n q n

bbqn

1

1

3 3

1322

4

195

150

175 205 235

285245215165

135

325

265

Fig. 4. Query graph

in GQ, which is an edge segment of an edge e in G. Let xl−1 = pose(nkl−1) and
xl = pose(nkl

). Let yl−1 = ge(xl−1) and yl = ge(xl) be the aggregate function
values at nodes nkl−1 and nkl

. When the position of a data point p, pose(p), is within
[xl−1, xl], since ge(·) is a 1-piece linear function on [xl−1, xl], the aggregate function
value at point p can be computed as:

ge(pose(p)) = yl−1 +
(yl − yl−1) · (pose(p) − xl−1)

(xl − xl−1)
. (3)

Figure 4 shows a query graph, GQ(VQ, EQ) over the road network G (Figure 1),
for a CANN({q1, q2, q3}, k, sum) query. There are totally 12 edges in GQ, and each of
them is marked as si for 1 ≤ i ≤ 12. In addition to the original 6 nodes in G(V, E),
nj , for 1 ≤ j ≤ 6, there are 6 nodes q1 – q3 (for the three query points), and b1 –
b3, which segment edges in E into linear pieces. The number below each node denotes
the ge value. The relationship between the the aggregate edge functions and the two
horizontal edges are illustrated in Figure 4.

Lemma 3. The time complexity for the construction of query graph GQ(VQ, EQ) is
O((n · log n + m · log |Q|) · |Q|), where n = |V | and m = |E|, given graph G(V, E).

Proof. For each query point q in Q, the complexity to find the distances from source q
to every other node in G is O(n · log n+m). In sum, we need O((n · log(n)+m) · |Q|)
time. Moreover, since ge(·) has at most O(|Q|) linear pieces (Lemma 2), |VQ| and |EQ|
are both bounded by O(|Q| ·m). To segment an edge e ∈ E into a sequence of edges in
EQ, we need O(|Q| log |Q|) time (sort all the linear pieces and scan them). Therefore,
the total time complexity is O((n · log n + m · log |Q|) · |Q|). �

4.2 Basic Top-k Monitoring Algorithm

In this subsection, we introduce our basic algorithm to monitor the top-k result for a set
of CANN queries, {C1, C2, · · · }, where Ci = CANN(Qi, ki, hi), over a road network
G with data point set P .

For each query, Ci, the query graph is denoted as GQi(VQi , EQi). Because of the
property of query graphs we discussed in the previous subsection (recall Lemma 2), in



Monitoring Aggregate k-NN Objects in Road Networks 175

Algorithm 1. IRC(Ci)
1: Ci.top← ∅; Ci.k ← +∞;
2: e← head(Ci.E);
3: while e �= ∅ and low(e) ≤ Ci.k do
4: update Ci.top and Ci.k with data points on e;
5: e← next(Ci.E);

the following part, we can assume the aggregate function value at a given data point p
w.r.t. query Ci can be computed in constant time (according to Equation (3)).

All edges in EQi are sorted in the ascending order of the aggregate function lower
bounds within the edges. The sorted edge list is denoted by Ci.E. A pointer is associated
with the ordered list Ci.E, and four operations are defined: i) head(Ci.E) – set the
pointer to the first edge in Ci.E and return this edge; ii) current(Ci.E) – return the
edge pointed by the pointer currently; iii) next(Ci.E) – move the pointer to the next
edge and return this edge (or return emptyset if the pointer points to the end of Ci.E);
iv) prev(Ci.E) – move the pointer to the previous edge and return this edge.

Initial Top-k Result Computation: The algorithm IRC (Algorithm 1) computes the
top-ki data points for a query Ci. In line 1, Ci.top, used to keep the set of the top-ki data
points for Ci, is initialized as empty; Ci.k, used to record the ki-th smallest aggregate
value of the data points kept in Ci.top, is initialized as +∞. In line 2, head(Ci.E)
returns the first edge in Ci.E. In the while statement (line 3-6), it computes the top-ki

data points for Ci by scanning the ordered list Ci.E. In line 3, e �= ∅ means Ci.E
has not been scanned to the end yet, and low(e) denotes the aggregate function’s lower
bound within the edge e.

The case low(e) ≤ Ci.k, called edge e is influenced, indicates that there may be
some data points on e, which can be included in Ci.top. In this case, the top-k list
(Ci.top) and the ki-th smallest aggregate value in Ci.top are updated using all the data
points on the edge e (line 4).

Figure 5 shows an example over the road network G (Figure 1), for the query Ci =
CANN({q1, q2, q3}, 3, sum). The label for each segment, sl, for 1 ≤ l ≤ 12 is illus-
trated in Figure 4. The x-axis shows the aggregate function values and the y-axis shows
the list of edges Ci.E. All edges are listed in ascending order of the aggregate function
lower bound on them, and each data point is marked as a cross in edges. Suppose the
current set of data points is P = {p1, p2, · · · , p7}(p7 that lies on s9 is not drawn on
Figure 1). After visiting edges from s2 to s4, the data points, p1, p2 and p4, are added
to Ci.top. In the next iteration, the edge s9 is visited. Note: s9 is on edge e4 = (n3, n4)
over the road network G from the position 40 to 50. On position 40 and 50, its aggregate
function values are 175 and 205, respectively. This information is recorded in Ci.E.
Here, p7 is over s9, and therefore on e4 in the road network G. Note: pose4(p7) = 45.
IRC computes its value, for p7, 175+ (205−175)×(45−40)

50−40 = 190, which is smaller than
the current Ci.k = 200 for the data point p4. Therefore, p4 is removed from Ci.top and
p7 is added. The value Ci.k is updated to be 190. Then, when visiting the next edge s10,
the smallest value is 205 which is larger than Ci.k = 190, and it stops. The top-3 for
Ci is then Ci.top = {p1, p2, p7}.



176 L. Qin et al.

Algorithm 2. MTR

1: let Pdel be the set of removed data points;
2: let Pins be the set of added data points;
3: for every data point p in Pdel do
4: suppose p lies on edge e;
5: delete p from e (using an object index);
6: for every Ci in that is influenced by e do
7: if p in Ci.top then
8: delete p from Ci.top;
9: Ci.k ← +∞;

10: for every data point p in Pins do
11: suppose p lies on edge e;
12: insert p into e (using object index);
13: for every Ci that is influenced by e do
14: update Ci.top and Ci.k using p;
15: for every Ci do
16: if Ci.k is greater than its previous value then
17: IRC(Ci);

s2

p6

p8

p7

influenced

not influenced

130 180 230 280 330

s3

s8

s1

s4

s9

s10

s5

s12

s11

s6

s7

p

p

1

4

3p

2

p5

p

p9

C .ki

Fig. 5. Example for IRC and MTR

Monitor Top-k Result: Algorithm 2 shows top-k monitoring for a list of CANN queries.
Here, the movement of a data point is considered as: first to delete it from P ; then to
insert a new data point into P . Let the set of deleted data points and the set of newly
inserted data points be Pdel and Pins, respectively. (line 1-2). In Algorithm 2, in the
first for statement (line 3-9), it updates Ci.top if the deleted data points affects the top-
ki results. In the second for statement (line 10-14), it updates Ci.top if the inserted data
points affects the top-ki results. In the first two for-statement, there is no need to scan
Ci.E. In the third for-statement (line 15-17), if Ci.k is changed and is greater than its
previous Ci.k value, it calls IRC(Ci) to recompute the top-ki results.

Reconsider the example (Figure 5) over the road network G (Figure 1), for the query
Ci = CANN({q1, q2, q3}, 3, sum). First, suppose p9 that lies on s5 is inserted. The



Monitoring Aggregate k-NN Objects in Road Networks 177

Algorithm 3. ForwardUpdating(Ci)
1: e← current(Ci.E);
2: while e �= ∅ and low(e) ≤ Ci.k do
3: update Ci.top, Ci.k, Ci.can with data points on e;
4: e← next(Ci.E);

insertion of p9 does not change the current top-3 results for Ci, as shown in Figure 5.
Second, suppose p7 is deleted which is in Ci.top. It leads to invoke IRC(Ci) to recom-
pute the top-k result. The new result is Ci.top = {p1, p2, p4}. Then, suppose p8 (lies
on s4) is inserted, which lies on the influenced edges (solid lines). It does not request
recomputation. The new result is Ci.top = {p1, p2, p8}.

4.3 Bidirectional Top-k Monitoring Algorithm

There are two drawbacks in the MTR algorithm. First, it needs to recompute top-k,
for Ci, when Ci.k increases (line 16-17) in MTR, which is time consuming. Sec-
ond, it may scan some edges in Ci.E which is unnecessary. In this section, we intro-
duce a new incremental monitoring algorithm, to avoid the two drawbacks. The new
algorithm keeps an additional structure called candidate list, denoted as Ci.can, for
query Ci, which always stores the points lies on the influenced edges, but not in Ci.top.
These points may be included in Ci.top, when some points in Ci.top are deleted. As
an example, consider Figure 6, for P = {p1, p2, · · · , p10} (here p7 to p10 is differ-
ent from those in Figure 5) for a query Ci = CANN ({q1, q2, q3}, 4, sum). Suppose
Ci.top = {p1, p2, p9, p4} and Ci.can = {p7, p10}. Below, we give two procedures,
namely forward updating and backward updating, followed by the introduction to the
new monitoring algorithm.

Forward Updating: As shown in Algorithm 3, this procedure is similar to that of IRC
(Algorithm 1). The differences are as follows. First, it does not need the initialization

s2

p6

p10p9

iC .k

in top list

in candidate list

not influenced

130 180 230 280 330

s3

s8

s1

s4

s9

s10

s5

s12

s11

s6

s

p

p

1

p
4

3p

2

p8
p7

p5

7

Fig. 6. Example for BUA



178 L. Qin et al.

Algorithm 4. BackwardUpdating(Ci)
1: e← prev(Ci.E);
2: while low(e) > Ci.k do
3: delete data points on e from Ci.can;
4: e← prev(Ci.E);
5: next(Ci.E);

Algorithm 5. BUA

1: let Pdel be the set of removed data points;
2: let Pins be the set of added data points;
3: for every point p in Pdel do
4: suppose p lies on edge e;
5: delete p from e (using an object index);
6: for every Ci where e is influenced do
7: if p in Ci.top or p in Ci.can then
8: update Ci.top, Ci.k, Ci.can by deleting p;
9: for every point p in Pins do

10: suppose p lies on edge e;
11: insert p into e (using the object index);
12: for every Ci where e is influenced do
13: update Ci.top, Ci.k, Ci.can by inserting p;
14: for every Ci do
15: if low(current(Ci.E)) ≤ Ci.k then
16: ForwardUpdating(Ci);
17: else
18: BackwardUpdating(Ci);

step. Second, the candidate list is updated in line 3. The forward updating procedure
repeat updating Ci.top, Ci.k, and Ci.can when not all the influenced edges are visited.

Backward Updating: This procedure, as shown in Algorithm 4, removes from Ci.can
the data points on every edge e in Ci.E, if e is not influenced any more.

The BUA Algorithm: Our new incremental bidirectional updating algorithm (BUA)
is shown in Algorithm 5. We explain it using the example in Figure 6. Suppose initially,
the set of data points is P = {p1, p2, · · · , p8}, for a query Ci = CANN ({q1, q2,
q3}, 3, sum). After ForwardUpdating(Ci) for initialization, we can get the initial
result Ci.top = {p1, p2, p4} and Ci.can = {p7}. Then, suppose Pins = {p10} and
Pdel = {p4}. When inserting p10, it lies on the influenced edge s4 but has an aggregate
function value that is less than Ci.k. So p10 is inserted into the candidate list of Ci,
Ci.can. When deleting p4, it is in the Ci.top. So it is removed from the Ci.top and p7

will be moved from Ci.can to the Ci.top. At this time, the lower bound of the current
edge low(s10) ≤ Ci.k (the aggregate function value of p7). So the forward updating is
invoked, s10 becomes influenced in Ci. The data point p8 that lies on s10 is also added
to Ci.can. The current result becomes Ci.top = {p1, p2, p7} and Ci.can = {p8, p10}.
Note that in case of the MTR algorithm, the result of Ci have to be recomputed because



Monitoring Aggregate k-NN Objects in Road Networks 179

Ci.k increases. In the next time stamp, suppose Pins = {p9} and Pdel = φ. After p9

is used to update the result of Ci, it is added into Ci.top and p7 is moved from Ci.top
to Ci.can. At this time, we have the lower bound of current edge low(s5) > Ci.k (the
aggregate function value of p9). So the backward updating is invoked, and s10 is not
influenced any more. The data point p8 that lies on s10 is also removed from Ci.can.
The result becomes Ci.top = {p1, p2, p9} and Ci.can = {p7, p10}.

4.4 Analysis

Suppose there are n nodes and m edges in the network, for each query CANN(Q, k, h),
there are s segments in the query graph on average, and the average number of objects
on each segment is o, the buffer size for each query is b. The average number of seg-
ments that influence the result of a query is r, we have o · r ≥ k. We assume that the
objects are uniformly distributed on all edges and the portion of objects that changes at
each timestamp is λ(0 ≤ λ ≤ 1). For convenience, we ignore the cost for operations
on the object index, which is not the dominate cost.

Lemma 4. In the IRC algorithm, for each query, the time complexity to compute the
initial results is O(o · r · log k), the memory used is O(k + b) and the I/O cost is O( r

b ).

Proof. To compute the initial top-k result of a query, we need to retrieve all the objects
that lie on the influence segments(i.e., the first r segments in the segment list of the
query). The number of objects to be retrieved is O(o · r). Each object is used to update
the top-k results, which can be implemented as a heap of size k. Each update can be
done in O(log(k)) time, so the total time complexity is O(o·r · log(k)). For the memory
cost, we need O(b) to buffer the segment list, and O(k) to store the results, so the total
memory used is O(k + b). We visit the first r segments in the segment list sequentially,
so the I/O cost is O( r

b ). �

Lemma 5. In the MTR algorithm, with a probability of 0.5, the result of a query is
needed to be recomputed at each timestamp. For the query that does not need to be
recomputed, the time complexity for updating at each time stamp is O(λ · o · r · log k)
and no I/O operation is needed. The memory used for each query is the same as in
IRC.

Proof. The result of a query needs to be recomputed iff after the deletion and insertion
steps, the new top-k result expires, or Ci.k value for the query Ci increases. This case
happens when, for the two sets Pdel and Pins, Pdel contains more objects with cost
smaller than the former Ci.k. The probability of this situation is 0.5 for the uniformly
distributed objects. For each query that does not need re-computation, the time cost is
the updates of λ ·o ·r objects that lie on the influence segments, each update cost log(k)
time as the same in the IRC algorithm, so the total time complexity for updating at
each timestamp is O(λ · o · r · log k). The influence segments keeps the same after the
updating steps, so no I/O operation is needed on the segment list. The memory cost is
also the same as the IRC algorithm. �

Lemma 6. For the BUA algorithm, no re-computation is needed to update the result of
a query at each timestamp, the time complexity for each query is O(λ ·o · r · log (o · r)).
The memory used for each query is O(o·r+b). The I/O cost is O(λ·r

b ) in the worst case.



180 L. Qin et al.

Proof. For the BUA algorithm, it uses an extra candidate list for each query to record
the candidate objects that lie on the influence segments but not in the top-k result of a
query. For the λ · o · r changed objects that lie on the influence segments, the cost for
updating each object is O(log o · r) by using a heap to record all the objects that lie on
the influence segments(i.e., all the objects in the top-k result and candidate list). The
total time complexity is O(λ · o · r · log (o · r)). For the memory cost, in addition to the
O(b) buffer size, we need O(o · r) cost to record all the objects that lie on the influence
segments. The total memory cost is O(o · r + b). For the I/O cost, consider the worst
case, when λ · o · r objects move out of the influence segments and no object moves in,
or λ ·o · r objects move into the influence segments and no object moves out. In the first
case, we need to visit O(λ·o·r

o ) = O(λ · r) segments which cost O(λ·r
b ) I/O operations

for the forward updating. In the second case, we also need to visit O(λ · r) that cost
O(λ·r

b ) I/O operations for the backward updating. So the I/O cost is O(λ·r
b ) in the worst

case. �

For the I/O cost of the BUA algorithm, in the average case, the number of objects that
move into the influence segments is almost the same to the number of objects that move
out, so the average I/O cost is very small in practice.

5 Implementation Details

In this section, we introduce the details for implementation including the data struc-
tures used and the storage model.We introduce three types of data structures that are
constructed over the road network, data objects and queries respectively.

Edge Table. For every edge e in the road network, we store in the edge table two part
of information. The first part is about the network structure, i.e., the edge e.id, the two
nodes ni and nj it connects, the length of the edge len(e), and the lists of edges to
ni and nj , this part can be used to construct the query graph GQ of a CANN query.
The second part is the influence list of e maintaining a set of queries that e influence
along with the set of influence edges in GQ. Using this part of information, we can fast
retrieve all queries that is influenced by e.

Object Index. Each object point p in the network can be represented as (e.id, pos),
where e.id is the id of the edge it lies on, and pos is its position on e, i.e., pos = pose(p).
We use a index of a balanced tree to store all the object points in the network. It allows
to retrieve all the objects that lies in a certain interval on a given edge e, or retrieve
all the objects that over a certain edge s in a query graph of a CANN query. When the
size of objects are large, the index can be stored external and a B+ tree can be used for
storage.

Query Table. The query table stores the set of queries. For every query Ci in the query
table, tree parts of information are stored. The first part is the query descriptor, i.e.,
Ci.id, Q, k and h. The second part is the list of top-k objects Ci.top along with Ci.k and
the candidate list Ci.can. The third part is the sorted edge list in the query graph Ci.E,
which is a external data structure on which only sequential access and read operation is
allowed. Each edge in the list is represented as s = (e.id, x1, y1, x2, y2), where e is the



Monitoring Aggregate k-NN Objects in Road Networks 181

...

B+ Tree

In
tern

al

e.id  x  y  x  y1 1 2 2

Edge Table

Query Table

... ...
...

E
xtern

al

...
...

...

......

... ...

Influence Lists
...

......

...
...

...
...

p.id e.id pos

Query GraphsObject Index

adj edgs to n
adj edgs to ni

j

e.id  len  n   ni j

p.id  aggregate value

Q

C .top C .can

C .id  influence edges in G

C .id Q k hi

C .Ei

i

i i

Fig. 7. Internal and External Structures

edge on the original graph G, x1 and x2 are the start and end positions of s on e, y1 and
y2 are the aggregate values on x1 and x2 respectively. Based on the sequential property,
a buffer can be used for each query when processing.

The main internal and external data structures used for processing are illustrated in
Figure 7.

6 Experimental Studies

We conducted extensive experimental studies to test the performance of our algorithms.
All algorithms are implemented using C++. We use the road-map in the Maryland State

Table 1. Parameters

Parameter Default Range

Number of edges 25K 10, 15, 20, 25, 30 (K)
Number of nodes 20K 5, 10, 15, 20, 25 (K)
Number of queries 5K 1, 3, 5, 7, 10 (K)
Number of query points 20 1, 10, 20, 30, 40
Number of objects 100K 10, 50, 100, 150, 200 (K)
Query distribution Uniform Gaussian, Uniform
Object distribution Uniform Gaussian, Uniform
Top-k 50 1, 25, 50, 100, 200
Object agility 10% 5, 10, 15, 20, 25 (%)
Buffer size 2K 1, 2, 3, 4, 5 (K)
Function SUM MIN, MAX, SUM



182 L. Qin et al.

Table 2. Time to construct query graph

|E|(K)/T(ms) 10/114 15/214 20/319 25/408 30/505
|N |(K)/T(ms) 5/64 10/155 15/254 20/336 25/437
|Q|/T(ms) 1/26 10/178 20/343 30/506 40/675

in US extracted from US Census Bureau 2005 TIGER/Line.1. All the parameters in-
cluding default values and ranges are listed in Table 1. Here, number of query points
means the number of points in Q (i.e., |Q|) for each query, the query distribution is
distribution of all query points, and the object agility is the percentage of objects that
is changed per time stamp. The default graph is a subgraph of the above network with
20K nodes and 25K edges. When number of nodes varies, we use a subgraph of the
network with the provided node number. When number of edges varies, we fix the node
number to be 10K and generate a graph with the provided edge number. For each test
that is to monitor the k-NN result, we process for 100 time stamps by generating the
moving objects using the generator proposed in [3].We record the average performance
for every time stamp. For the IRC algorithm, we mean to recompute the top-k result
from scratch for every time stamp. Unless specified, we will use the default value for
testing. All tests are conducted on a 2.8GHz CPU/1G memory PC running XP.

Query Graph Construction: We first test the time to construct the query graph for each
query. We vary the number of edges, number of nodes and number of query points, and
record the time to construct the query graph in each test. The result is shown in Table 2,
the time to construct query graph is small (less than 0.7 second) for all tests. As each of
the three parameters increases, the response time will increase steadily.

IMA,GMA vs BUA: With |Q| fixed to be 1, we test the efficiency for IMA, GMA, and
BUA algorithms. For each algorithm, we combine the different distributions(i.e., Gaus-
sian and Uniform distribution) for queries and objects (e.g., U/G means the queries are
uniformly distributed and the objects are in Gaussian distribution) with all other param-
eters setting to be the default values. As illustrated in Figure 8(a), our BUA algorithm
always performs best and changes for distribution of both the queries and objects will
not influence the efficiency of BUA algorithm much.

Network: We vary the number of edges and number of nodes for the network with
an average of 4 objects on each edge and test the average processing time for IRC,
MTR and BUA algorithms in each time stamp. We report our result in Figure 8(b)
and Figure 8(c). For each test, the MTR algorithm is about 2-3 times faster than the IRC
algorithm, and the the BUA algorithm is 2-4 times faster than the MTR algorithm. When
the number of edges increases, the processing time for all three algorithms will increase,
because as the network becomes denser, the number of influence edges will increase.
When the number of nodes increases, the processing time for all three algorithms do
not change much, because both the density of network and density of objects will not
change as the network increases.

1 Topologically Integrated Geographic Encoding and Referencing system:
http://www.census.gov/geo/www/tiger/



Monitoring Aggregate k-NN Objects in Road Networks 183

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

G/GG/UU/GU/U

T
im

e 
(s

ec
)

IMA
GMA
BUA

(a) IMA,GMA vs BUA

 0

 0.5

 1

 1.5

 2

30K25K20K15K10K

T
im

e 
(s

ec
)

IRC
MTR
BUA

(b) Vary Edges

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

25K20K15K10K5K

T
im

e 
(s

ec
)

IRC
MTR
BUA

(c) Vary Nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

25%20%15%10%5%

T
im

e 
(s

ec
)

IRC
MTR
BUA

(d) Vary Object Agility

 0

 0.2

 0.4

 0.6

 0.8

 1

200K150K100K50K10K

T
im

e 
(s

ec
)

IRC
MTR
BUA

(e) Vary Objects

 0

 0.5

 1

 1.5

 2

 2.5

20010050251

T
im

e 
(s

ec
)

IRC
MTR
BUA

(f) Vary k

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

10K7K5K3K1K

T
im

e 
(s

ec
)

IRC
MTR
BUA

(g) Vary Queries

 0

 0.2

 0.4

 0.6

 0.8

 1

403020101

T
im

e 
(s

ec
)

IRC
MTR
BUA

(h) Vary Query Points

 0

 0.5

 1

 1.5

 2

SUMMAXMIN

T
im

e 
(s

ec
)

IRC
MTR
BUA

(i) Vary Functions

100K

10K

1K

100

10

1
5K4K3K2K1K

N
um

be
r 

of
 I

/O
s

IRC
MTR
BUA

(j) Vary Buffer Size

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

10K7K5K3K1K

M
em

or
y 

(M
B

yt
es

) IRC
MTR
BUA

(k) Vary Queries

 0

 10

 20

 30

 40

 50

20010050251

M
em

or
y 

(M
B

yt
es

) IRC
MTR
BUA

(l) Vary k

Fig. 8. Experimental Results

Objects: Figure 8(d) and Figure 8(e) shows the average processing time per time stamp
for IRC, MTR and BUA algorithms when the object agility or the number of objects
varies. When the object agility increases, the processing time for both MTR and BUA
will increase steadily while IRC is not influenced because it will always computes
each query from scratch at every time stamp. When the number of objects increases, the
density of objects becomes larger, which increases the processing time. But the number
of influenced edges will decrease, which decreases the processing time. We can see
from Figure 8(e) that when the object number is larger than 50K , the processing time
for all the three algorithms all increase slowly.

Queries: There are mainly 4 parameters for the query: the top-k value, number of
queries, number of query points in each query(i.e., |Q|), and the type of aggregate func-
tion for the query. In Figure 8(f) and Figure 8(g), when k increases or the number



184 L. Qin et al.

of queries increases, the processing time for IRC, MTR and BUA algorithms will
increase steadily. In Figure 8(h), when the number of query points in each query in-
creases, the processing time for all three algorithms will not influence much, because
at one hand, the number of edges in each query’s query graph in will increase which
raise the complexity of algorithm; at the other hand, the length of edges in each query’s
query graph becomes shorter, and the objects lies on the influence edges become less,
which lower the complexity. In Figure 8(i), we see that the MIN function consumes
more for all three algorithms. It is because for MAX and SUM function, the best ob-
jects retrieved is more centralized for each query, while in the MIN function, each query
point in a query can be considered as a center for the distribution of the top objects.

Total I/Os: We vary the buffer size used for every query C in the corresponding edge
list C.E, and study the number of I/Os for IRC, MTR and BUA algorithms for each
time stamp. As shown in Figure 8(j), as the buffer size increases, the number of I/Os will
decrease steadily. The MTR costs about 1

5 I/Os of IRC while BUA costs about 1
20 of

MTR, which is rather small, because the pointer for each query only moves forward of
backward incrementally.

Memory: We finally test the memory used for algorithms of IRC, MTR and BUA.
When the number of queries and top-k value vary, the result is shown in Figure 8(k)
and Figure 8(l). As the query number or k increases, the memory used will increase
steadily, for all three algorithms. The memory cost of IRC and MTR is the same as
analyzed in Section 4.4. The memory cost for BUA is about 1.1 to 2.4 times of IRC.

7 Related Work

In this section, we survey k-NN search over road networks in two categories, namely,
snapshot approaches and continuous monitoring approaches.

Snapshot approaches: Shahabi et al. in [4] applied an embedding technique to trans-
form a road network to a high dimensional space, and used the Minkowski metrics for
distance measurement in the embedded space. Jensen et al. in [5] proposed a founda-
tion data model and a system prototype for k-NN queries in road networks. Shekhar
et al. in [6] addressed the problem of finding the in-route nearest neighbor (IRNN).
Papadias et al. in [7] proposed an architecture that integrates network and Euclidean
information for query processing in spatial network databases. Tao et al. in [8] studied
the time-parameterized k-NN queries when query points and objects change in certain
speed and directions. Kolahdouzan et al. in [9] proposed to find the nearest points of
interest to all the points on a path over road networks. They also performed k-NN over
spatial networks in [10] based on the pre-computed first order Voronoi diagram. Yiu et
al. in [17] first studied the aggregate nearest neighbor query in road networks, which
explored the network around the query points until the aggregate nearest neighbors are
discovered. UNICONS [11] developed a search algorithm which answers NN queries
at any point of a given path. Huang et al. in [12] presented a versatile approach to k-NN
computation in spatial networks using the island which is a sub-network in a certain
area. Hu et al. in [13] proposed an approach that indexes the network topology based



Monitoring Aggregate k-NN Objects in Road Networks 185

on a set of interconnected tree-based structures. Huang et al. in [14] focused on caching
the query results in main memory and subsequently reusing these for query process-
ing when there are multiple k-NN queries over a road network. Almeida et al. in [15]
proposed a storage schema with a set of index structures to support Dijkstra based algo-
rithms for k-NN queries in road networks. Deng et al. in [16] considered the problem
of efficient multi-source skyline query processing in road networks.

Continuous monitoring approaches: In recent years, more works focused on continu-
ous monitoring of NN queries over road networks. Ku et al. in [17] studied the adaptive
NN queries in travel time networks. It developed a local-based greedy nearest neighbor
algorithm and a global-based adaptive nearest neighbor algorithm that both utilize real-
time traffic information to maintain the search results. Mouratidis et al. in [1] focused
on monitoring nearest neighbors in highly dynamic scenarios.

8 Conclusion

In this paper, we studied a new problem (CANN query) that is to monitor k-NN ob-
jects over a road network from multiple query points to minimize an aggregate distance
function with respect to the multiple query points. In order to reduce the cost of network
distance computing, we proposed a new approach that computes a query graph offline
for a CANN query. With the help of the query graph, the cost of computing aggregate
function values for any possible data points on the road network is significantly reduced.
In addition, we proposed two algorithms to monitor CANN queries. We conducted ex-
tensive experimental studies over large road networks and confirmed the efficiency of
our algorithms.

Acknowledgment. This work was supported by a grant of RGC, Hong Kong SAR,
China (No. 418206).

References

1. Mouratidis, K., Yiu, M.L., Papadias, D., Mamoulis, N.: Continuous nearest neighbor moni-
toring in road networks. In: VLDB, pp. 43–54 (2006)

2. Yiu, M.L., Mamoulis, N., Papadias, D.: Aggregate nearest neighbor queries in road networks.
IEEE Trans. Knowl. Data Eng. 17(6), 820–833 (2005)

3. Brinkhoff, T.: A framework for generating network-based moving objects. GeoInformat-
ica 6(2), 153–180 (2002)

4. Shahabi, C., Kolahdouzan, M.R., Sharifzadeh, M.: A road network embedding technique for
k-nearest neighbor search in moving object databases. In: ACM-GIS, pp. 94–100 (2002)

5. Jensen, C.S., Kolárvr, J., Pedersen, T.B., Timko, I.: Nearest neighbor queries in road net-
works. In: GIS, pp. 1–8 (2003)

6. Shekhar, S., Yoo, J.S.: Processing in-route nearest neighbor queries: a comparison of alter-
native approaches. In: GIS, pp. 9–16 (2003)

7. Papadias, D., Zhang, J., Mamoulis, N., Tao, Y.: Query processing in spatial network
databases. In: VLDB, pp. 802–813 (2003)

8. Tao, Y., Papadias, D.: Spatial queries in dynamic environments. ACM Trans. Database
Syst. 28(2), 101–139 (2003)



186 L. Qin et al.

9. Kolahdouzan, M.R., Shahabi, C.: Continuous k-nearest neighbor queries in spatial network
databases. In: STDBM, pp. 33–40 (2004)

10. Kolahdouzan, M.R., Shahabi, C.: Voronoi-based k nearest neighbor search for spatial net-
work databases. In: VLDB, pp. 840–851 (2004)

11. Cho, H.J., Chung, C.W.: An efficient and scalable approach to cnn queries in a road network.
In: VLDB, pp. 865–876 (2005)

12. Huang, X., Jensen, C.S., Saltenis, S.: The islands approach to nearest neighbor querying in
spatial networks. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005.
LNCS, vol. 3633, pp. 73–90. Springer, Heidelberg (2005)

13. Hu, H., Lee, D.L., Xu, J.: Fast nearest neighbor search on road networks. In: Ioannidis, Y.,
Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T.,
Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 186–203. Springer, Heidelberg (2006)

14. Huang, X., Jensen, C.S., Saltenis, S.: Multiple k nearest neighbor query processing in spa-
tial network databases. In: Manolopoulos, Y., Pokorný, J., Sellis, T.K. (eds.) ADBIS 2006.
LNCS, vol. 4152, pp. 266–281. Springer, Heidelberg (2006)

15. de Almeida, V.T., Güting, R.H.: Using dijkstra’s algorithm to incrementally find the k-nearest
neighbors in spatial network databases. In: SAC, pp. 58–62 (2006)

16. Deng, K., Zhou, X., Shen, H.T.: Multi-source skyline query processing in road networks. In:
ICDE (2007)

17. Ku, W.S., Zimmermann, R., Wang, H., Wan, C.N.: Adaptive nearest neighbor queries in
travel time networks. In: GIS, pp. 210–219 (2005)


	Monitoring Aggregate k-NN Objects in Road Networks
	Introduction
	Problem Definition
	Existing Solutions
	A New Non-tree-expanding Approach
	Query Graph Construction
	Basic Top-k Monitoring Algorithm
	Bidirectional Top-k Monitoring Algorithm
	Analysis

	Implementation Details
	Experimental Studies
	Related Work
	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




