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Abstract. Theproblemof summarizingmulti-dimensionaldata into lossy
synopses supporting the estimation of aggregate range queries has been
deeply investigated in the last three decades. Several summarization tech-
niques have been proposed, based on different approaches, such as his-
tograms, wavelets and sampling. The aim of most of the works in this area
was todevise techniques for constructing effective synopses, enabling range
queries to be estimated, trading off the efficiency of query evaluation with
the accuracy of query estimates. In this paper, the use of summarization
is investigated in a more specific context, where privacy issues are taken
into account. In particular, we study the problem of constructing privacy-
preserving synopses, that is synopses preventing sensitive information from
being extracted while supporting ‘safe’ analysis tasks. In this regard, we in-
troduce a probabilistic framework enabling the evaluation of the quality of
the estimates which can be obtained by a user owning the summary data.
Based on this framework,wedevise a technique for constructinghistogram-
based synopses of multi-dimensional data which provide as much accurate
as possible answers for a given workload of ‘safe’ queries, while preventing
high-quality estimates of sensitive information from being extracted.

1 Introduction

In the last three decades, a great deal of attention has been devoted to the prob-
lem of summarizing multi-dimensional data into synopses supporting the estima-
tion of aggregate range queries. Several lossy compression techniques have been
proposed, based on different approaches (such as histograms [11], wavelets [3],
and sampling [7]). These techniques can be profitably applied in several appli-
cation contexts (e.g., On-line Analytical Processing [7], query optimization [15],
statistical and scientific databases [12]), where a high precision of query esti-
mates is not mandatory, and fast query answers (affected by reasonable error
rates) suffice to effectively support the tasks to be accomplished.

Intuitively enough, the experience acquired by the research community in de-
signing effective lossy compression techniques could be applied in a new emerg-
ing scenario, where data should be published to support different analysis tasks,
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with no risk for privacy issues. That is, the compression process could be driven
so that the loss of information is exploited to hide sensitive information, while
‘safe’ information is enabled to be accurately extracted from the synopses. In-
deed, most of summarization techniques proposed in the previously mentioned
scenarios provide no warranty on the privacy preservation of sensitive informa-
tion. In fact, the compression process accomplished by these techniques aims at
reducing as much as possible the loss of information resulting from summariz-
ing data in a limited amount of storage space, paying no attention to the risk
that sensitive information could be extracted from the summarized data with a
high degree of accuracy. This makes the problem of refining traditional compres-
sion techniques to deal with privacy-preserving issues intriguing, also due to its
practical impact in many application contexts.

In this paper we focus our attention on histogram-based summarization tech-
niques, which are widely used in the context of data compression. A histogram
is a synopsis obtained by suitably partitioning the data domain into a set of
blocks and then replacing the set of individual data inside each block with some
aggregate data. First, we introduce a probabilistic framework for evaluating the
quality of the estimates of sensitive information which can be obtained by access-
ing a histogram. Specifically, the quality of estimates is measured by evaluating
the probability associated with confidence intervals of individual-data estimates.
This framework can be used to assign a ‘safety certificate’ to histograms, as it
provides a measure of the privacy threat owing to the summary data published
through a histogram. Thus, we exploit the proposed probabilistic framework to
devise a technique for constructing privacy-preserving histograms. Our technique
is based on a greedy strategy for constructing a partition of data which aims at
two objectives: on the one hand, the resulting histogram should provide as much
accurate as possible estimates for a workload of queries considered ‘safe’; on the
other hand, the resulting histogram should provide low-quality estimates of indi-
vidual data. Finally, we address future directions towards which our work could
be extended.

2 Preliminaries

In this work, we focus our attention on multi-dimensional data defined on a
domain whose dimensions are discrete, and the values associated with the points
of the domain are non-negative real numbers. Specifically, a d-dimensional data
set D is a set of tuples of the form 〈p1, . . . , pd, m〉, where p1, . . . , pd identify a
point in a multi-dimensional space of size n1 × · · · × nd and m is a measure
associated with the point. Thus, D can be viewed as a d-dimensional array of
size n1×· · ·×nd, where ni is the cardinality of the i-th dimension. Given a point
p = 〈p1, . . . , pd〉 of the domain of D, where pi ∈ [1..ni] (∀i ∈ [1..d]), the value
m associated with p will be denoted as D[p] (if D contains no tuple associated
with point p, then D[p] = 0). A range over D is a d-tuple � = 〈�1, . . . , �d〉,
where �i (∀i ∈ [1..d]) is a pair of the form 〈�l

i, �
u
i 〉 such that 1 ≤ �l

i ≤ �u
i ≤ ni.

Basically, a range is a hyper-rectangular subset of the domain of D. We define
the volume of a range � as Πi∈[1..d](�u

i − �l
i + 1) and denote it as vol(�).
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A histogram over D is a synopsis of aggregate values which is constructed by
first partitioning the domain of D into a number of non-overlapping ranges, called
buckets, and then storing, for each bucket, some aggregate data summarizing
the data set underlying it. Histograms can be used to support the estimation of
aggregate range queries, which are evaluated by exploiting the summary data
stored in its buckets. Specifically, we study the case that, for each bucket, the
sum of the values of the points inside it is stored (as it will be clearer in the
following, this allows sum-range queries to be estimated). In this scenario, a
bucket of a histogram over D can be viewed as a pair 〈�, s〉, where � is a range
over D and s =

∑
p∈� D[p]. Given a bucket β = 〈�, s〉, the terms � and s will

be referred to as the range and the sum of β, respectively, and will be denoted
as range(β) and sum(β). Moreover, we will denote the volume of the range
of β as vol(β) and the average value of β (i.e., sum(β)

vol(β) ), as μ(β). This kind of
histogram (where buckets are associated with sums) supports the evaluation of
sum-range queries, that is, queries asking for the sum of the values of the points
of D inside a specified range. A range-sum query over D is an expression of the
form q = sum(�q), where � is a range over D. The actual answer of q is the value∑

p∈�q
D[p]. Given a histogram H = {β1, . . . , βn} over D, the estimated answer

of q over H is q̃ =
∑n

i=1 vol
(
range(βi) ∩ �q

) · sum(βi)
vol(βi)

. Hence, the estimation is
performed adopting linear interpolation, that is, assuming that the points inside
a bucket βi have the same value, namely the average value μ(βi).

A point query on a data set D is a pair q = 〈D,p〉 asking for the value
D[p]. Thus, q can be viewed as a range query where the specified range has
volume 1, then the estimate of its answer obtained from histogram H is given
by sum(β)

vol(β) = μ(β), where β is the bucket of H whose range contains p. In the
following, given a point query q = 〈D,p〉 and a histogram H over D, we denote
the bucket of H whose range contains p as β(q) (observe that β(q) is unique, as
the buckets of H do not overlap).

Example 1. A two-dimensional data set D is shown in Fig. 1(a). A histogram on
D is shown in Fig. 1(c). It has been obtained by first partitioning the domain
of D (as in Fig. 1(b)) and then storing the boundaries and the sum of values of
each block (bucket) of the partition. Consider the point query q = 〈D, 〈3, 4〉〉. In
this case, the bucket involved in the query is β(q) = β1, being the point 〈3, 4〉
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Fig. 1. A two-dimensional data set D (a), a partition of the domain of D (b) and a
histogram H summarizing D (c)
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inside the range of the bucket β1. The estimated answer of q is 24/12 = 2, since
the sum and the volume of β1 are 24 and 12, respectively. �

3 A Probabilistic Framework for Estimating Individual
Values from a Histogram

In this section we present a probabilistic framework supporting the estimation of
individual values based on the summary data stored in a histogram. Specifically,
this framework provides a measure of the quality of the estimates of individual
data which can be obtained by exploiting the aggregate data stored in a his-
togram. The quality measure is given in terms of probability that the estimation
of an individual value is within a confidence interval.

Given a histogram H on a data set D and a point query q = 〈D,p〉, we
model the answer of q estimated on H as a random variable q̃s,b defined over the
sample space Ω(q) = [0, s], where s and b are the sum and the volume of β(q).
Basically, q̃s,b can assume all the values inside the interval [0, s] as the actual
value associated with p is non-negative and cannot exceed the overall sum of
the bucket of H whose range contains p. It is worth noting that this random
variable does not depend on parameters other than s and b, as histogram buckets
do not overlap and we assume independence among the values summarized into
different buckets, thus the sum values and the volumes of the buckets different
from β(q) do not affect the estimation of q.

We now characterize the above-introduced random variable q̃s,b.

Theorem 1. Let D be a data set, H a histogram over D, q = 〈D,p〉 a point
query, and s and b be the sum and the volume of bucket β(q) of H, respectively.
The probability density function of the random variable q̃s,b is:

f(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ(0) if s = 0;

δ(s) if b = 1;

b−1
s

· (1 − x
s

)b−2
if b > 1, s > 0, and x ∈ [0, s];

0 if b > 1, s > 0, and x /∈ [0, s];

(1)

where δ(x) denotes the Dirac function, its cumulative distribution function, is:

F (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(0) if s = 0;

H(s) if b = 1;

1 − (1 − x
s

)b−1
if b > 1, s > 0, and x ∈ [0, s];

0 if b > 1, s > 0, and x < 0;

1 if b > 1, s > 0, and x > s;

(2)
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where H(x) denotes the Heaviside step function. The expected value and the
variance of q̃s,b are

E(q̃s,b) =
s

b
(3)

and

σ2(q̃s,b) =
b − 1
b + 1

(s

b

)2

, (4)

respectively.

Proof. We first focus on the expressions for f(x) and F (x). In the case that
s = 0, as the elements of D are non-negative, the actual value associated with
each point inside β is 0. Hence, q̃s,b takes value 0 with probability 1.

In the case that b = 1, β contains a unique element, thus the definition of
f(x) derives from the fact that the value associated with p is exactly s (the sum
associated with β).

We now consider the case that b > 1 and s > 0. In this case, clearly f(x)
is null for x /∈ [0, s], as individual values are assumed to be non-negative and
their sum is s (thus, no individual value can be larger than s). For the same
reason, F (x) = 0 for x < 0 (it is impossible that any individual value is less
than 0) and F (x) = 1 for x > s (it is certain that any individual value is less
than or equal to s). Now we derive f(x) and F (x) for the most interesting case,
that is b > 1, s > 0, and x ∈ [0, s]. We first characterize a discrete random
variable Vj different from q̃s,b, whose probability distribution will be exploited
to derive f(x) and which is defined as follows. Given a real number γ > 0 and
a set S = {k1 · γ, . . . , kb · γ} of cardinality b, where, for each i ∈ [1..b], ki ∈ N ,
and

∑b
i=1 ki · γ = s, Pr(Vj = x) denotes the probability that the value of kj · γ

is equal to x. Intuitively enough, Vj can be viewed as the translation of q̃s,b to
the case that the domain of the values of D is discrete (i.e., the points D can
be assigned only multiples of γ). Thus, Vj is a discrete random variable defined
over the sample space Ω(Vj) = {x|0 ≤ x ≤ s and x is a multiple of γ}. We now
show that

Pr(Vj = x) =

(
s − x

γ + b − 2
s − x

γ

)

(
s
γ + b − 1

s
γ

) . (5)

This formula can be explained as follows. If a value in S is equal to x, then the
sum of the remaining b − 1 elements is s − x. Therefore, Pr(Vj = x) is equal to
the ratio between all the possible value assignments to b− 1 elements such that
their sum is s− x and all the possible assignments to b elements such that their
sum is s. The formula derives from the facts that each element can be assigned
a multiple of γ, and that all the possible value assignments to n elements such
that their sum is y is equal to number of combinations with repetitions of n
objects from which y have to be chosen, that is

(
y+n−1

y

)
.
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We denote the cumulative distribution function of Vj as FV (x), and derive a
formula for FV (x):

FV (x) = Pr(Vj ≤ x) =
� x

γ �
∑

k=0

Pr(Vj = k · γ) =

= 1 −
s
γ∑

k=
�
x
γ
�
+1

Pr(Vj = k · γ) = 1 − 1
(b+ s

γ −1
s
γ

)

s
γ∑

k=
�
x
γ
�
+1

(
b + s

γ − k − 2
s
γ − k

)

Let i = s
γ − k. We obtain:

s
γ∑

k=
�
x
γ
�
+1

(
b + s

γ − k − 2
s
γ − k

)

=

s
γ −� x

γ 	−1
∑

i=0

(
b − 2 + i

i

)

and by adopting the identity

k∑

j=0

(
n + j

j

)

=
(
n + k + 1

k

)

we obtain:

FV (x) = 1 −

⎛

⎝
b − 2 + s

γ −
⌊

x
γ

⌋

s
γ −

⌊
x
γ

⌋
− 1

⎞

⎠

(
b + s

γ − 1
s
γ

) . (6)

The cumulative distribution function F (x) = Pr(q̃s,b < x) of q̃s,b can be obtained
as F (x) = limγ→0 FV (x). In fact, as γ tends to 0, the elements of set S can be
assigned any real value in [0, s] (under the constraint that their sum is s), thus
at the limit the distribution functions F and FV coincide. Then, we obtain:

F (x) = lim
γ→0

FV (x) = 1 − lim
γ→0

(
b − 2 + s

γ −
⌊

x
γ

⌋)
! ·
(

s
γ

)
! · (b − 1)!

(
s
γ −

⌊
x
γ

⌋
− 1
)
! ·
(
b + s

γ − 1
)
! · (b − 1)!

=

= 1 − lim
γ→0

b–1 factors
︷ ︸︸ ︷

(s −
⌊

x
γ

⌋
· γ) + (b − 2) · γ

γ
× · · · ×

(s −
⌊

x
γ

⌋
· γ)

γ
s + (b − 1) · γ

γ
× · · · × s + 1 · γ

γ
︸ ︷︷ ︸

b–1 factors

=
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= 1 − lim
γ→0

(s −
⌊

x
γ

⌋
· γ)b−1 + o(γ)

sb−1 + o(γ)
= 1 −

(
1 − x

s

)b−1

From definition of probability density function of a continuous random variable,
we have that the probability density function f(x) and the cumulative distribu-
tion function F (x) are related as follows:

F (x) =
∫ x

0

f(u)du.

By resolving the latter and exploiting the boundary condition F (s) = 1, we
obtain the expression for f(x) reported in the statement.

We now derive the expected value of q̃s,b. From definition of expected value,
we obtain:

E(q̃s,b) =
∫ s

x=0

f(x) · x · dx =
b − 1

s

∫ s

x=0

(
1 − x

s

)b−2

· x · dx =

=
b − 1

s

[

−
(
1 − x

s

)b−1

· s

b − 1
·x
]s

x=0

+
b − 1

s

∫ s

0

(
1 − x

s

)b−1

· s

b − 1
dx =

=
b − 1

s

[
s

b − 1

(
1 − x

s

)b s

b

]s

x=0

=
s

b
.

Similarly, from the definition of variance, we obtain:

σ2(q̃s,b)
∫ s

x=0

f(x) ·
(
x − s

b

)2

dx =
b − 1

s

∫

x=0

s
(
1 − x

s

)b−2

·
(
x − s

b

)2

dx =

=
b − 1

s

[

−
(
1 − x

s

)b−1 s

b − 1

(
x− s

b

)2

+
2s

b − 1

∫ (
1−x

s

)b−1 (
x − s

b

)
dx

]s

x=0

=

=
(s

b

)2

+ 2
[

−
(
1 − x

s

)b s

b

(
x − s

b

)
+

s

b

∫ (
1 − x

s

)b

dx

]s

x=0

=

=
(s

b

)2

− 2
(s

b

)2

+ 2
2s

b

[

−
(
1 − x

s

)b+1 s

b + 1

]s

x=0

=

= −
(s

b

)2

+
2s

b

s

b + 1
=

b − 1
b + 1

(s

b

)2

. �

The characterization of random variable q̃s,b can be exploited to determine the
quality of the point-query estimates which can be obtained by accessing the
summary data stored in H . In fact, a user owning the histogram can estimate
the answer of a point query q as the expected value of q̃s,b (which corresponds to
performing linear interpolation), and evaluate the quality of this estimate as the
probability that the actual answer of q lies inside an interval containing E(q̃s,b)
as wide as desired. For instance, consider the data set D and the histogram H
shown in Fig. 1, as well as the point query q = 〈D,p〉, with p = 〈3, 4〉. If only the
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aggregate data stored in the histogram is available, the answer of q is estimated as
E(q̃24,12) = 2, since the sum and the volume of the bucket β1 of H containing the
point 〈3, 4〉 are 24 and 12, respectively, as seen in Example 1. A user owning the
histogram cannot infer the actual value associated with p, but she can evaluate
the probability associated to any confidence interval. For instance, a user could
be interested in evaluating the probability that the value associated with p is
inside [1.8, 2.2], that is a ‘narrow’ range centered at the expected value. Using
the results provided in Theorem 1, the user obtains that the probability that the
actual answer is in [1.8, 2.2] is F (2.2) − F (1.8) = (1 − 1.8

24 )11 − (1 − 2.2
24 )11.

1

0.5

0

24181260

f

x

1

0.5

0

24181260

F

x

(a) (b)

Fig. 2. Probability density (a) and distribution (b) functions of q̃24,12

Fig. 2 depicts the probability density function (a) and the distribution function
(b) of the random variable q̃24,11.

Intuitively enough, as our framework can be used to measure the quality
of estimates of queries asking for sensitive information, it can be exploited to
determine whether a histogram can be considered safe or not w.r.t. a privacy
standpoint. This matter is investigated in the following section.

3.1 Privacy and Histograms

Given a histogram H over a data set D, a privacy breach occurs if an adversary
can retrieve from H “high”-quality estimates of individual data, that is she can
reveal sensitive information by establishing with a high confidence level that an
individual value is within a certain interval.

In the following we will devise a histogram construction technique which aims
at preventing any user owning a histogram from establishing that the actual value
associated with a point is “close” to its estimate with a probability higher than
a certain threshold. This is tantamount to requiring that the estimated value of
every individual data must be affected by a certain error with a probability at
least equal to a certain threshold. For instance, a company publishing summary
data about the incomes of its employees would like to impose that the estimate
of the the income of a single employee evaluated by accessing the summary data
is affected by at least 50% error with a probability greater than 70%.
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In this example, we used the relative error to define the threshold guaranteeing
the safeness of the summary data. However, different metrics could be used, such
as the absolute error. In the following, we will consider the relative error as it is
quite intuitive and it has been largely stressed in literature [6,8] that it represents
a significant measure of the quality of the estimates. On the basis of this idea,
we introduce the notion of privacy preserving bucket and privacy preserving
histogram.

Definition 1. Given a data set D, a histogram H on D, and two real numbers
ε,P ∈ (0, 1), a bucket β of H is said to be 〈ε,P〉-privacy-preserving if, for every
point query q = 〈D,p〉, where p is a point laid inside the range of β, it holds
that:

Pr
(|q̃s,b − E(q̃s,b)| ≤ ε · E(q̃s,b)

)
< P, (7)

where s and b are the sum and the volume of β. �

Definition 2. Given a data set D, a histogram H on D, and two real numbers
ε,P ∈ (0, 1), H is said to be 〈ε,P〉-privacy-preserving if every bucket of H is
〈ε,P〉-privacy-preserving. �

According to Definition 2, a histogram H on a data set D is not privacy preserv-
ing (w.r.t. a pair 〈ε,P〉) if it does not protect the privacy of at least one point
p, that is the value associated with p is summarized in a bucket with sum s and
volume b such that

Pr
(|q̃s,b − E(q̃s,b)| ≤ ε · E(q̃s,b)

) ≥ P ,

where q is the point query asking for the value of p.
Hence, a pair 〈ε,P〉 defines a privacy constraint, and the values assigned to ε

and P must be chosen according to the specific context where privacy must be
guaranteed.

As Pr
(|q̃s,b − E(q̃s,b)| ≤ ε · E(q̃s,b)

)
= F

(
s
b · (1 + ε)

) − F
(

s
b · (1 − ε)

)
, where

F (·) is the cumulative distribution function of q̃s,b derived in Theorem 1 (see
Equation 2), under the assumption that s > 0, we find that1:

Pr
(|q̃s,b − E(q̃s,b)| ≤ ε · E(q̃s,b)

)
=
(

1 − 1 − ε

b

)b−1

−
(

1 − 1 + ε

b

)b−1

. (8)

Interestingly, from Equation 8, it turns out that the probability associated with
a confidence interval of an estimate does not depend on the sum of the bucket
summarizing the value to be estimated. Thus, in the following, we will refer to
Pr
(|q̃s,b − E(q̃s,b)| ≤ ε · E(q̃s,b)

)
simply as P (b, ε).

In Fig. 3, the diagrams of P (b, ε) against ε and b are shown. It is worth
observing that P (b, ε) is monotone increasing w.r.t. ε and monotone decreasing
w.r.t. b. This means that a privacy constraint 〈ε,P〉 implies a lower bound on
1 The case s = 0 can be disregarded, as it implies that every individual value inside

the bucket is 0 with probability 1.
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Fig. 3. P (b, ε) vs. ε, for different values of b (a), and vs. b for different values of ε

the volume of the buckets of a histogram: in order to satisfy the constraint
P (b, ε) < P , a histogram must consist of only buckets having at least volume
bmin = �b� + 1	, where b� is the solution of the equation

P (b�, ε) = P . (9)

Solving Equation 9 is not possible through analytical methods, but the value of
bmin can be efficiently computed2 starting from b = 1 and iteratively increment-
ing b by one and computing P (b, ε), by adopting Equation 8, until P (b, ε) < P
holds.

The monotonicity of P (ε, b) w.r.t. b is at the basis of the property stated in
the following proposition.

Proposition 1. If a histogram H summarizing a data set D is not 〈ε,P〉-
privacy-preserving, then there is no split-sequence of its buckets that can yield a
〈ε,P〉-privacy-preserving histogram.

Proof. If a histogram is not 〈ε,P〉-privacy-preserving, then it has at least a
bucket β of volume b with P (ε, b) ≥ P . Any split of β yields new buckets with
volume b′ < b. It is easy to see that ∂P

∂b < 0, thus P (ε, b′) > P (ε, b) ≥ P holds
too. This implies that any histogram obtained from H by splitting β is not 〈ε,P〉-
privacy-preserving. �

The result is quite intuitive after considering that a privacy constraint 〈ε,P〉, as
discussed above, is satisfied only if each bucket of the histogram has volume not
less than bmin, where bmin can be computed by solving Equation 9. Thus, if a
bucket β has volume b < bmin, any sub-bucket of β will have volume less than
bmin.

In the following section we will introduce a greedy algorithm for constructing
privacy preservinghistograms,which exploits the property stated in Proposition1.
2 The time needed to compute bmin for one million different combinations of ε and P

is only 2.7 seconds with a Pentium IV 3.2 GHz.
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4 A Greedy Algorithm for Constructing
Privacy-Preserving Histograms

In many practical cases, summarized data can be effectively exploited for per-
forming statistical analysis. Several summarization techniques have been devised
to support an efficient query evaluation, aiming at providing query answers af-
fected by the least possible error. When privacy-constraints are defined over
published data, the summarization has to take them into account. That is, on
the one hand, answers of queries should be accurate enough to enable statisti-
cal analysis to be performed. On the other hand, published data must prevent
sensitive information from being inferred.

In this work, we focus our attention on constructing privacy-preserving his-
tograms which can be profitably exploited for statistical data analysis. Specif-
ically, we consider the problem of constructing a privacy preserving histogram
which aims at providing as much accurate as possible estimates of sum range
queries considered ‘safe’. More formally, given a privacy constraint 〈ε,P〉 and
a query workload W consisting of m sum range queries defined over a mul-
tidimensional data set D, we consider the problem of constructing a 〈ε,P〉-
privacy-preserving histogram H summarizing D which minimizes the error over
the queries in W . In order to measure the error over a workload we consider
the sum of squared errors of the range queries in the workload. That is, if
W = {sum(ρ1), . . . , sum(ρm)}, being qi the exact answer of the sum range
query in W over the range ρi and q̃i the approximate one, the overall estimation
error w.r.t. W is defined as:

SSE(D, H, W ) =
m∑

i=1

(qi − q̃i)
2 .

Constructing the optimal histogram for a query workload over a multi-
dimensional data set has been proved to be an NP-hard problem (in [14], Muthukr-
ishnan et al. showed that constructing the optimal histogram of a two-dimensional
data set is NP-hard when the query workload consists of all the possible point
queries). Thus, we show how our probabilistic framework can be exploited in a
greedy algorithm for building (possibly non-optimal) histograms for a given query
workload.

Our algorithm (see Fig. 4) works as follows. It takes as input a data set D, a
query workload W , and a privacy constraint 〈ε,P〉, and returns a 〈ε,P〉-privacy-
preserving histogram summarizing D. It starts from a histogram consisting of
a unique bucket (corresponding to the whole data domain), and it iteratively
refines the current histogram by taking a bucket and splitting it into two smaller
buckets. Being H ′ and H ′′ the histogram at the beginning and at the end of
the current iteration, respectively, the choice of the most suitable split for a
bucket β of H ′ is accomplished by function bestSafeSplit, which returns, among
all the splits yielding two privacy preserving sub-buckets of β, the split which
maximizes the difference SSE(D, H ′, W ) − SSE(D, H ′′, W ), where H ′′ is the
histogram obtained from H ′ by replacing β with the pair of buckets resulting
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Input: A data set D, a query workload W , and a privacy constraint 〈ε,P〉
Output: An 〈ε,P〉-privacy-preserving histogram summarizing D

begin
Histogram definitive=new Histogram();
Histogram refinable=new Histogram();
Bucket β=new Bucket(range(D), sum(D));
refinable.add(β);
while (!refinable.isEmpty()) do begin

β=refinable.remove();
〈β′, β′′〉=β.bestSafeSplit(D,W,ε,P);
if (〈β′, β′′〉==null) then

definitive.add(β);
else begin

refinable.add(β′);
refinable.add(β′′);

end;
end;
return definitive;

end;

Fig. 4. A greedy algorithm for constructing privacy preserving histograms

from the split. If no split exists for β yielding two privacy preserving buckets,
then β is considered as a definitive bucket, and will be not considered for further
splits in the subsequent iterations. In fact, from Proposition 1 we have that, if
a non-privacy-preserving bucket were created by splitting β, at least one non-
privacy-preserving bucket would exist at every subsequent iteration, and then the
final histogram would not be privacy-preserving. The algorithm ends when there
is no bucket of the current histogram which can be safely split. In the pseudo-
code implementation shown in Fig. 4, buckets which can be still considered for
being split are maintained in the histogram refinable, while definitive buckets are
put in the histogram definitive. Thus, at each iteration, the current histogram is
the union between the sets of buckets stored in refinable and definitive.

Observe that any bucket of refinable can be chosen to be split at each itera-
tion3. In fact, the split of a bucket at a given iteration does not influence the
possibility to split the other buckets in refinable.

We now analyze the complexity of the algorithm. We assume that D contains
N points distributed across a multidimensional domain of size nd (i.e., d dimen-
sions each of size n) and that W contains m queries. The number of iterations of

3 Indeed, in the case that the histogram size were bounded by a maximum amount
of storage space, the choice of the bucket to be split at each iteration could be
performed according to some greedy criterion (e.g., the bucket giving the largest
contribution to the overall error could be chosen).
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the algorithm is O(N), as each iteration increases by one the number of buckets,
and the final number of buckets cannot be larger than N (a bucket must contain
at least one non-null value). Thus, the complexity of the algorithm depends on
the cost of the bestSafeSplit function, which is called O(N) times. At each call
of bestSafeSplit, all the O(d ·n) possible splits must be tried, and for each split a
range query of cost O(N) must be performed for each query of the workload, in
order to evaluate the SSE reduction provided by the split. The cost of checking
if each split is safe is constant. In fact, according to Definition 2, in order to
verify if a split is safe, the value bmin could be computed before starting the
iterations, and then the function bestSafeSplit simply checks if the two buckets
resulting from the split have volume greater than bmin and sum greater than 0.
Therefore, the time complexity of the algorithm is O(N2 · m · n · d).

Remark. Our probabilistic framework is suitable for being embedded in sum-
marization techniques constructing histograms whose bucket do not overlap.
This is due to the fact that, in this case, a point query can be estimated by ac-
cessing one bucket only. Several well-known techniques have this characteristic,
such as MHIST [15] and MinSkew [1]). However, some techniques constructing
histograms whose bucket overlap could exploit our probabilistic framework as
well. For instance, when a bucket is nested inside another bucket, representing
a ‘hole’, the estimate of a point query still depends on a unique bucket. Two
techniques belonging to this class are CHIST [5] and STHoles [2].

5 Extending the Basic Results in Further Directions

In this section we trace further directions towards which our work could be
extended:

– managing privacy when additional information is known about original data
in buckets;

– managing other forms of privacy constraints;
– managing privacy when buckets overlap.

5.1 Managing Privacy When Additional Information Is Known
about Original Data in Buckets

The results derived in Section 3 are based on the assumption that nothing is
known about the original data inside each bucket, except that their sum is s
and they are distributed in the bucket range of volume b. In many real cases,
further information could be available due to the specific application context.
For instance, if the measure associated with points is represented by integers,
the probability distribution associated with the random variable representing
the estimate of individual values would not be that derived in Theorem 1. In
this case, the random variable would be discrete, thus its sample space would
be {0, 1, 2, . . . , s} instead of [0, s]. However, the corresponding random variable
could be characterized even easier than the continuous case previously studied.
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In fact, the new random variable probability distribution would be represented
by Equation 5, with γ = 1. Then, its cumulative distribution function would be
represented by Equation 6, again with γ = 1. That is,

Pr(q̃s,b ≤ x) = 1 −

(
b − 2 + s − x

s − x − 1

)

(
b + s − 1

s

) .

Another issue which is worth investigating is the case that other aggregate
data (such as the count of non-null values, the minimum or the maximum value)
inside each bucket is known. This may happen if either this summary information
is explicitly represented in the histogram along with the sums of the buckets (to
enhance the estimation process) or it is retrieved from different sources.

5.2 Managing Other Forms of Privacy Constraints

The definition of privacy provided in Section 3.1 can cover a large number of
practical cases, in which exact individual values have to be protected. However,
some other forms of privacy are worth investigating, due to their practical im-
pact. According to our approach, guaranteeing the privacy of an individual value
means limiting the confidence level associated with a confidence interval whose
width is proportional to the expected value. It would be interesting to study the
case that the width of the confidence interval is defined by an absolute value
(rather than a relative one), that is that the confidence interval is expressed in
the form [E(q̃) − Δ, E(q̃) + Δ], where q̃ is the estimate of an individual value
which must be protected, and Δ is a real number. In particular, it would be
interesting to devise an algorithm managing mixed forms of constraints, where
the width of confidence intervals can be expressed by either relative or absolute
values. In fact, using an absolute value is more suitable for buckets summarizing
“small” values, whereas a relative value is more suitable for buckets summarizing
“large” values (where the meaning of “small” and “large” depends on the spe-
cific application context). This is due to the fact that adopting a relative value
for describing intervals centered at “small” values would result in defining “nar-
row” intervals, for which guaranteeing low confidence levels would not suffice to
preserve privacy.

5.3 Managing Privacy When Buckets Can Overlap

Even though classical histograms are based on partitions of the multi-dimensional
data domain (thus, their buckets do not overlap) some of the most performing
techniques, such as GENHIST [9], exploit bucket overlapping in order to summa-
rize the data set more accurately. To this aim, our framework should be extended
to enable taking into account the possibility that the estimation of a single point
depends on the aggregate data stored in a number of buckets. For instance, in
the case that a point p is within the ranges of two overlapping buckets, the
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random variable representing the value associated with p would depend on the
random variables q̃s′,b′ and q̃s′′,b′′ , each representing the value of p given by
one of the two buckets, independently. The random variable representing the
expected value associated with p would be represented by the sum of the two
random variables q̃s′,b′ and q̃s′′,b′′ . Thus, its probability density function could
be obtained by computing the convolution of the probability density functions of
q̃s′,b′ and q̃s′′,b′′ . Computing the convolution of many probability density func-
tions could be practically infeasible. However, for a large number of random
variables, that is, when the value associated to a point inside the intersection of
a large number of overlapping buckets must be estimated, for the central limit
theorem, the random variable could be very well approximated by a normal dis-
tribution that could be completely characterized by knowing the expected values
and the variances of the random variables which have to be summed.

6 Related Work

The problem of managing privacy in statistical databases has received a lot of at-
tention in the last few years, and several works dealing with data summarization
and privacy issues have been proposed. However, few works providing formal
frameworks for checking the privacy preservation of summarized data have been
developed.

Some works provide techniques for summarizing data with quality guaran-
tees [6,10]. However, in these works, the quality is intended as a measure of the
“distance” between a synopsis and the optimal synopsis consuming the same
amount of storage space. Thus, no guarantee is provided on the error rates of
query estimates which could be exploited to measure the safeness of a synopsis.
Our probabilistic framework, instead, does not aim at providing a technique for
building optimal histograms, but provides a tool for evaluating the quality of
individual value estimates, intended as confidence levels related to confidence
intervals.

A work which deals with the privacy guaranteed by histograms is [4]. In this
paper Chawla et al. consider points of a multidimensional space as individuals,
which are not associated with any label. A privacy violation occurs when a user
can isolate less than t points inside a spherical region of radius proportional to
a value c (c and t are parameters which have to be chosen according to the
practical context). This work, analogously to others based on the preservation
of anonymity of individuals [16], is different from ours as it aims at masking
the identity of individuals, that is the coordinates of the points inside the mul-
tidimensional domain (which are not associated with any measure). Our work,
instead, deals with labelled points, more specifically, with points which are as-
sociated with an additive measure. Thus, our approach to privacy preservation
is orthogonal w.r.t. [4]: we aim at protecting the measure associated with indi-
viduals, rather than their identity.

A thread of works where the attention is focused on the possibility to infer
sensitive information by means of range queries on multidimensional data is that



A Probabilistic Framework for Building Privacy-Preserving Synopses 129

leaded by Malvestuto et al. [13]. They study the possibility to infer confidential
information exploiting the answers of multiple range queries which, separately,
could be considered safe. They design a query engine providing safe answers,
which keeps track of past queries, and checks that the answer of each new query
cannot be combined combined with the answers previously published in order
to enable sensitive information to be inferred. Our approach is different since we
assume that to release the whole data set is summarized and published. A very
interesting point of contact between the issues studied in [13] and this paper
could be the study of the possibility to release multiple safe histograms, each
optimized for a different query workload. In fact, when different histograms are
released, the fact that each of them is privacy preserving does not suffice to
guarantee that confidential information cannot be disclosed, as a user owning
different histograms on the same data set could exploit them jointly.

7 Conclusions

In this work we provided a novel approach for constructing effective histograms
in the presence of privacy constraints. We introduced the notion of privacy-
preserving histograms, that is histograms preventing a user owning them to ob-
tain high quality estimates of individual values which must be kept confident. We
defined a probabilistic framework for estimating individual values summarized
in a histogram and, on the basis of our probabilistic framework, we proposed a
greedy approach for constructing privacy-preserving histograms with high data
utility, that is privacy-preserving histograms minimizing the estimation error for
range queries belonging to a given query workload supporting statistical anal-
ysis tasks. Finally, we outlined the directions towards which our work could be
extended.

To the best of our knowledge, this is the first work presenting a mechanism
enabling the quality of the estimates of individual values which can be retrieved
from a histogram to be measured. Our approach to the problem of preserving
the privacy of data can be viewed as orthogonal to other ones, which aim at
masking the identity of points belonging to a multi-dimensional domain. Our
approach, in fact, aims at protecting a measure associated with the individuals,
rather than protecting the identity of individuals.

References

1. Acharya, S., Poosala, V., Ramaswamy, S.: Selectivity estimation in spatial
databases. In: Proc. of 1999 ACM SIGMOD Int. Conf. on Management of Data
(SIGMOD 1999), Philadelphia (PA), USA, June 1-3, 1999, pp. 13–24 (1999)

2. Bruno, N., Chaudhuri, S., Gravano, L.: STHoles: a multi-dimensional workload
aware histogram. In: Proc. of 2001 ACM SIGMOD Int. Conf. on Management of
Data (SIGMOD 2001), Santa Barbara (CA), USA, May 21-24, 2001, pp. 211–222
(2001)

3. Chakrabarti, K., Garofalakis, M.N., Rastogi, R., Shim, K.: Approximate query
processing using wavelets. The VLDB Journal 10(2-3), 199–223 (2001)



130 F. Furfaro, G.M. Mazzeo, and D. Saccà
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