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Preface

The International Conference on Scientific and Statistical Database Management
(SSDBM) is an established forum for the exchange of the latest research results on
concepts, tools, and techniques for scientific and statistical database applications.
The 2008 meeting marked the 20th time that scientific domain experts, databases
researchers, practitioners, and developers came together to share their new in-
sights and to discuss in a stimulating environment future research directions.

This volume contains the proceedings of the 20th SSDBM Conference, held
in Hong Kong, China, July 9–11, 2008. The conference included 3 keynote talks,
28 long and 7 short papers in 9 sessions, and 8 posters and demonstrations in a
single session.

Distinguished members of the community delivered the three keynotes, which
were about the past, present, and future management of scientific and statistical
data. Alex Szalay, an expert in large-scale scientific data management, discussed
“New Challenges in Petascale Scientific Databases,” managing huge scientific
data repositories, with a focus on particular examples taken from astronomy.
Nick Koudas, a leader in semi-structured text management, talked about “Ad-
ventures in the Blogosphere,” a huge network of textual data (including blogs,
social networks, wikis), and BlogScope, a system that collects and analyzes such
data. Finally, Per Svensson, a pioneer in database systems development for sci-
entific applications, provided a historical review on “The Evolution of Vertical
Database Architectures” from the perspective and performance needs of a sci-
entific or statistical large-scale data analyst user.

The Program Committee, consisting of 37 members, accepted 43 papers (28
long, 7 short, and 8 posters/demos) from a total of 84 submissions. The reviewing
process was managed by the EasyChair Conference System, an excellent free
conference management system, developed by Andrei Voronkov.

The program and activities of SSDBM 2008 were the result of a large effort
by the authors, reviewers, presenters, and organizers. We thank them all for
helping to make this conference a success. In particular, we would like to thank
Max Egenhofer for his great help in the early stages of the organization. We are
grateful to the Department of Computer Science of Hong Kong University, espe-
cially to Maria Lam and the student helpers for their great help with the local
organization. We believe that SSDBM 2008 continued the successful tradition of
the series, providing an interesting program and lively discussions in a pleasant
environment.

Davis, California Bertram Ludäscher
Hong Kong, China Nikos Mamoulis
April 2008
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New Challenges in Petascale Scientific Databases

(Keynote Talk)

Alexander Szalay

Department of Physics and Astronomy
The Johns Hopkins University

3701 San Martin Drive
Baltimore, MD 21218

szalay@jhu.edu

Abstract. Scientific data is doubling every year. Virtual Observatories
are established over every scale of the physical world: from elementary
particles to materials, biological systems, environmental observatories,
remote sensing, and the universe. These collaborations collect increas-
ing amounts of data, often close to a rate of petabytes per year. Many
scientists will soon obtain most of their data from large scientific reposi-
tories of data, often stored in the form of databases. The talk will discuss
the different requirements for such databases, and discuss user behavior
in a few concrete examples taken from astronomy, in particular from
the 6 year usage of the Sloan Digital Sky Survey database. Interesting
query patterns are emerging, where users create custom “crawlers” to
break large queries into many repetitive ones. The trial-and-error behav-
ior of many exploratory projects will be also discussed. The talk will also
present various scalable alternatives to large scientific analysis facilities.

About the Speaker. Alexander Szalay is the Alumni Centennial Professor
of Astronomy at the Johns Hopkins University. He is also Professor in the De-
partment of Computer Science. He is a cosmologist, working on the statistical
measures of the spatial distribution of galaxies and galaxy formation. He was
born and educated in Hungary. After graduation he spent postdoctoral periods
at UC Berkeley and the University of Chicago, before accepting a faculty posi-
tion at Johns Hopkins. In 1990 he has been elected to the Hungarian Academy of
Sciences as a Corresponding Member. He is the architect for the Science Archive
of the Sloan Digital Sky Survey. He is Project Director of the NSF-funded Na-
tional Virtual Observatory. He has written over 340 papers in various scientific
journals, covering areas from theoretical cosmology to observational astronomy,
spatial statistics and computer science. In 2003 he was elected as a Fellow of the
American Academy of Arts and Sciences. In 2004 he received an Alexander Von
Humboldt Prize in Physical Sciences, in 2008 a Microsoft Award for Technical
Computing.
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Adventures in the Blogosphere

(Keynote Talk)

Nick Koudas

Department of Computer Science
Bahen Center for Information Technology

University of Toronto
40 St. George Street Rm BA5240

Toronto ON M5S 2E4
koudas@cs.toronto.edu

Abstract. Blogs, social networks, wikis and microblogging are prolif-
erating at unprecedented pace. The numbers reported quantifying user
engagement are profound. In this talk, I will present BlogScope
(www.blogscope.net) a system under development at the University of
Toronto, that aims to collect, process and distill in real time the informa-
tion in social media. I will present the system, its architecture the difficul-
ties encountered and highlight the various research challenges in building
the various components of the system. I will also present, Grapevine,
BlogScope’s sister project that aims to make sense in real time of the
social media space. I will detail areas of research related to the scope of
these projects and present challenges that could be addressed via the uti-
lization of scientific and statistical database techniques. If time permits,
I’ll present demos.

About the Speaker. Nick Koudas is an associate professor at the University
of Toronto. He was a principal member of technical staff at AT&T labs and an
adjunct professor at Columbia University. He holds a PhD from the University of
Toronto. His research interests are in data management, managing information
at web scale, indexing, algorithms and information mining.

B. Ludäscher and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, p. 2, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

koudas@cs.toronto.edu
www.blogscope.net


B. Ludäscher and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, pp. 3–5, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

The Evolution of Vertical Database Architectures – A 
Historical Review  

(Keynote Talk) 

Per Svensson 

Dept. of Decision Support Systems, Swedish Defence Research Agency,  
SE 164 90 Stockholm, Sweden 
per.svensson@foi.se 

1   Background 

My intention in this lecture is to discuss the evolution of key concepts behind today’s 
emerging vertical database architectures. The Cantor project [5, 7] pioneered the 
analysis and coordinated application of many of these concepts in relational systems, 
which is one reason why references to this work are a recurring theme in what 
follows. The other reason is that although the work was duly reported in reasonably 
well-known conference publications, it has left no trace in citations. Thus, from a 
strictly evolutionary perspective, Cantor was a dead branch which left no progeny, but 
from a historical perspective it might still provide useful lessons.  

Transposed files as such were used in a number of early non-relational data base 
systems, mostly intended for statistical or scientific applications. A fairly 
comprehensive list of such systems was given by the paper [6] which is cited below. 
One great conceptual step that is now being taken is the realization that the adoption 
of transposed files opens a whole range of architectural opportunities. By careful 
combination of these opportunities dramatic performance gains may be provided, in 
particular of course when systems are used in those statistical and analytical kinds of 
application for which the concept was originally developed. 

So what do these architectural opportunities consist of? Below is a list, however, 
due to space limitations it is not possible here to give a fair account of all of them: 

1. column-wise storage of data, or fully transposed files 
2. use of ordering  
3. use of various kinds of “light-weight” data compression: RLE, minimum byte 

size, dictionary encoding, differencing 
4. dynamically optimized combinations of these and other compression techniques 
5. use of run-length encoding (RLE) for columns that are ordered 
6. lazy decompression of data 
7. use of  vectorized method interfaces to reduce call overhead costs 
8. special method interfaces for accessing RLE-coded data to enable higher-level 

search and join operations to work directly on compressed data when available 
9. use of B-tree variants or other techniques to store and retrieve variable-length 

data in columns  
10. conjunctive search and join algorithms working directly on ordered, RLE-

compressed data  
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11. use of the vectorized data flow network architecture paradigm and vectorized 
operations on data streams, to allow efficient query evaluation by interpretation 
of algebraic expressions rather than by compilation to low-level code.  

Today’s experiments and analyses are usually better planned and executed than 
those of the early days. It is therefore at least possible that the current research interest 
in vertical architectures will result in a better-founded kind of consensus than was 
achieved, and criticized in [6], see below, in the early 80´s for the standard tabular 
scheme for storage of relations. 

2   The Effects of Modern Processor Architectures 

The research group behind the Monet DBMS [9, 10] has made thorough analyses of 
the effect of modern computer hardware architectures on data base performance. In 
[9] a detailed discussion is presented of the impact of modern computer architectures, 
in particular with respect to their use of multi-level cache memories to alleviate the 
widening gap between DRAM and CPU speeds that has been a characteristic for 
computer hardware evolution since the late 70’s. They show that it is progressively 
less appropriate to think of the main memory of a computer system as “random 
access” memory, and that accessing data sequentially also in main memory may 
provide significant performance advantages.  

3   Transposed Files and Decomposed Storage Models  

The term transposed file was used in early papers, such as [2,3,4], to denote what is 
today usually called “vertically fragmented” or “vertically decomposed” data 
structures [9], “vertical partitioning”, “column-oriented” data bases [12] or “column 
store” data bases [11]. In my opinion, there is a need for more terminological 
consistency here. 

The first published paper on transposed files and related structures that is widely 
recognized in recent literature is [6]. While the paper notes that some database 
systems use a fully transposed storage model, in this paper the fully decomposed 
storage model (DSM) is described.  

A DSM is a [fully] transposed storage model with surrogates included. The 
authors conclude: “There seems to be a general consensus among the database 
community that the [conventional] n-ary approach is better. … Instead, we claim that 
the consensus opinion is not well founded and that neither is clearly better until a 
closer analysis is made.” 

4   Data Compression  

Two recent papers on the use of data compression in relational data bases are [8, 12]. 
The most significant advantages are obtained when combining data compression with 
ordered, fully transposed file or DSM storage, but there are also approaches which use 
compression for row-oriented storage schemes. The paper [12] also addresses 
querying compressed data and is briefly discussed in the lecture. In [7], Cantor’s 
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approach to data compression is described. It presupposes the existence of an efficient 
way to organize attribute sub-files containing varying length data.  

5   Conclusions 

Based on a literature review, it appears that most of the advantages of vertical storage 
in databases for analytical purposes have been known and exploited since the early 
80’s at least. As an early contributor to this technology, the author is happy to see a 
previous lack of interest at last reverse into what might be seen as a canonical vertical 
architecture, replacing the previous ill-founded consensus around the “flat file with 
indexes” approach. 

 
About the Speaker. Per Svensson has been with the Swedish Defence Research 
Agency (FOI, previously FOA) since 1973 and is a Research Director since 1987. He 
was an Adjunct Professor of Scientific and Statistical Database Management at the 
Royal Institute of Technology (KTH), Department of Numerical Analysis and 
Computer Science, from 1996 to 2002. Previous employments include IBM Sweden 
and the Royal Institute of Technology (KTH). Dr. Svensson authored or co-authored 
30 internationally published scientific papers, as well as about 25 technical reports in 
Swedish or English. He is the editor and one of the authors of the successful 
HiTS/ISAC proposal to EU PASR 2005. 
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Abstract. Random sampling is a popular technique for providing fast
approximate query answers, especially in data warehouse environments.
Compared to other types of synopses, random sampling bears the ad-
vantage of retaining the dataset’s dimensionality; it also associates prob-
abilistic error bounds with the query results. Most of the available sam-
pling techniques focus on table-level sampling, that is, they produce a
sample of only a single database table. Queries that contain joins over
multiple tables cannot be answered with such samples because join re-
sults on random samples are often small and skewed. On the contrary,
schema-level sampling techniques by design support queries containing
joins. In this paper, we introduce Linked Bernoulli Synopses, a schema-
level sampling scheme based upon the well-known Join Synopses. Both
schemes rely on the idea of maintaining foreign-key integrity in the syn-
opses; they are therefore suited to process queries containing arbitrary
foreign-key joins. In contrast to Join Synopses, however, Linked Bernoulli
Synopses correlate the sampling processes of the different tables in the
database so as to minimize the space overhead, without destroying the
uniformity of the individual samples. We also discuss how to compute
Linked Bernoulli Synopses which maximize the effective sampling frac-
tion for a given memory budget. The computation of the optimum solu-
tion is often computationally prohibitive so that approximate solutions
are needed. We propose a simple heuristic approach which is fast and
seems to produce close-to-optimum results in practice. We conclude the
paper with an evaluation of our methods on both synthetic and real-
world datasets.

1 Introduction

With the huge amount of data stored in current data warehouse environments,
it is impracticable to execute queries directly on the database when human
interaction is involved. This applies to explorative queries in data mining and
decision-support tasks, which are used as a precursor to more complex analysis
tasks; the main goal is to determine which methods and parts of data that are
likely to produce interesting results and which will not. It also applies to OLAP
and report design, where approximate query processing is able to significantly
increase the responsiveness of the system and therefore the productiveness of
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its users. In all these scenarios, random sampling has proven to be a valuable
tool for database summarization. Compared to other types of synopses, random
sampling is easy to implement and use, it supports a broad range of queries
(including grouping) and it provides probabilistic error bounds.

The main problem with most of the available database sampling schemes is
that they focus on only a single table in the database; we refer to these schemes as
table-level sampling schemes. Queries that contain joins between multiple tables
are problematic because joins between random samples in general do not result
in a random sample of the join of the respective tables [1,2,3]. To avoid this
problem, it is crucial that relationships between multiple tables be known and
exploited in the sampling process itself. This is accomplished by schema-level
sampling schemes: these schemes sample multiple relations at once in such a
way that it is possible to use the resulting samples to compute results of queries
with joins. In this paper, we restrict attention to foreign-key joins. Such joins
are ubiquitous in data warehouse scenarios, where most queries join a fact table
with multiple dimension tables along predefined foreign-key paths.

The problem of schema-level sampling becomes tractable when only foreign-
key joins are of interest. Indeed, Acharya et al. [2] have shown that it is sufficient
to maintain a single sample per table to support any potential foreign-key join.
The key idea underlying their Join Synopses is to 1) take a sample of each table,
2) join each sample with all tables to which it has foreign keys and 3) store the
joined samples in the synopsis. For example, consider a schema with two tables
R1 and R2, where R1 has a foreign key to R2. Let S1 and S2 be uniform random
samples of R1 and R2, respectively. The Join Synopsis then consists of the two
samples S1 �� R2 and S2. Observe that—by projection on the attributes of R1—
S1 can be reconstructed from S1 �� R2; there is a 1:1 relationship between the
tuples in these two relations. The synopsis can be used to answer queries on R1,
on R2 as well as on R1 �� R2. To reduce the space requirement of the sampling
scheme, [2] also suggest to renormalize the join results. After renormalization,
the synopsis contains three “samples”: S1, R2 � S1 and S2. Observe that both
R2 � S1 and S2 contain tuples from R2. If samples S1 and S2 have a size of, say,
10, 000 tuples each, the entire synopsis consists of up to 30, 000 tuples—a space
overhead of 50%.

In this paper, we develop a new schema-level sampling scheme called Linked
Bernoulli Synopses (LBS), which reduces the space overhead incurred by Join
Synopses. In expectation, the size of LBS is at most as large as the size of the
corresponding Join Synopsis; it is often much smaller. The key idea behind LBS
is to correlate the sampling processes of S1 and S2, while maintaining the uni-
formity of both samples. Intuitively, given a sample of S1, we try to reuse as
many tuples from R2 � S1 as possible for the sample S2. Our synopses are opti-
mal, that is, it is impossible to find a sampling scheme which produces smaller
synopses (with the same sampling fractions for each table) in expectation. For
example, when the cardinalities of R1 and R2 are equal and there is a 1:1 rela-
tionship between both tables (the best case), we require a space budget of 20, 000
tuples to sample 10, 000 tuples from each table; the overhead is reduced to 0%.
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We also address the problem of computing a Linked Bernoulli Synopsis which
fits into a given space budget. The problem is challenging because all the sam-
pling steps are correlated; changing the size of one sample might change the size
of many others. We treat the problem as an optimization problem and show how
it can be solved numerically using results from convex optimization. Finding the
optimum solution requires time exponential to the number of relations and lin-
ear to their size; approximate solutions are therefore key to the practicability of
our methods. In fact, we found that a simple heuristic seems to produce near-
optimal results in practice, so that it might be unnecessary to run the entire
optimization.

The remainder of the paper is structured as follows: In Section 2, we review
Join Synopses in more detail and show how their space consumption can be
reduced with a simple modification. We then analyze the modified sampling
scheme in terms of (expected) space consumption. In Section 3, we introduce and
analyze Linked Bernoulli Synopses. Section 4 discusses the problem of allocating
the available space to the different tables in the schema. Preliminary results of
an evaluation on synthetic and real-world datasets are presented in Section 5.
Section 6 gives a brief overview of related work and we conclude the paper with
a summary of our results in Section 7.

2 Preliminaries

In this section, we review, discuss and analyze Join Synopses. The results pre-
sented in this section drive the design of our Linked Bernoulli Synopsis in
Section 3.

2.1 Notation

We start by summarizing the notation used throughout this paper. Let G =
(V, E) be a schema graph of a relational database with V being the set of vertices
and E being a set of directed edges. In more detail, V is the set of tables in the
database, while the set E ⊆ V ×V describes foreign-key relationships. An element
(R1, R2) ∈ E with R1, R2 ∈ V represents a foreign-key relationship from R1 to
R2. R1 is called parent table or predecessor, while R2 is called child table or
successor. For brevity, we write R1 → R2 whenever (R1, R2) ∈ E. Moreover, we
will use ⇒ to denote the transitive closure over →; � and � denote the inverse
of → and ⇒, respectively. The function pkR(t) determines the primary key of
a tuple t ∈ R, and fkR1→R2(t) determines the foreign key of a tuple t ∈ R1

to table R2. Thus, when R1 → R2, two tuples t1 ∈ R1 and t2 ∈ R2 join if
fkR1→R2(t1) = pkR2

(t2). In this case, we say that t1 references t2.
Figure 1 shows the example database that we will use as our running ex-

ample throughout the paper. The database consists of three tables A, B and
C; foreign keys are defined between A.FK and B.PK as well as B.FK and
C.PK. The foreign-key relationships are graphically encoded using arrows be-
tween matching tuples. Using the notation above, we have V = {A, B, C} and
E = {(A, B), (B, C)}.
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Fig. 1. An example database with 3 tables (A → B and B → C)

We subsequently assume that the schema graph G is free of cycles, that is,
there is no table R with R ⇒ R. The reason is that—when the schema graph
contains cycles—the inclusion of even a single tuple from one of the relations
in the cycle might lead to an explosion of the synopsis size. Fortunately, in the
setting of data warehouses we are concerned with, cycles in the schema graph
do not occur. We also assume that G does not contain multiple edges between
two tables; this is not a limitation of our approach but simplifies explanation.

2.2 Join Synopses Revisited

In the following, we take a slightly different view on Join Synopses by incorpo-
rating them into the more general concept of schema synopses. In more detail,
the schema synopsis ΨG of a schema graph G consists of a table synopsis for
each table in the schema. For brevity, we will omit the schema graph G when
referring to the schema synopsis. The table synopsis ΨR consists of a uniform
sample SampleR and a reference table RefTableR, both containing items from
R. The sample is primarily used for query evaluation, while the reference table
is used to maintain foreign-key integrity. In general, the reference table contains
all tuples from R which (1) are referenced by a table synopsis of a predecessor
of R and (2) are not stored in the sample already. As a matter of notation, we
say t ∈ ΨR whenever t ∈ SampleR ∪RefTableR.

Join Synopses can now be viewed as a special kind of schema synopsis. The
algorithm is as follows [2]:

1. Sample each relation independently using Bernoulli sampling. In Bernoulli
sampling with sampling rate q, each tuple is included into the sample with
probability q and excluded with probability 1 − q; the process is repeated
independently for each tuple. The parameter q essentially controls the desired
sample size; see Section 4.

2. Fill the reference tables so that foreign-key integrity is restored. The tables
are processed top-down, that is, a table R is processed only after all its
predecessors have been processed already. Note that the second step slightly
differs from the original Join Synopses because we do not store the same tuple
in both the sample and the reference table. For large tables, the resulting
space reduction is usually negligible for Join Synopses but sets the foundation
for the space reduction possible with Linked Bernoulli Synopses.
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Fig. 2. Join Synopsis with a sampling rate of 50%

Note that both phases of the above algorithm can be interweaved, that is, we can
compute both the sample and the reference table of each table in a single scan.

An example for a Join Synopsis of our example database is given in Figure 2.
We used a sampling rate of q = 50% for each table. The reference tables are given
below the individual samples. As can be seen, reference tables restore foreign-key
integrity. For example, tuple (a6, b5) ∈ A references (b5, c5) ∈ B, but the latter
is not stored in the sample so that it has been included in the reference table.

2.3 Analysis of Join Synopses

We now analyze the space consumption of the modified Join Synopses described
above.1 Let R1, R2, . . . , Rk be the direct predecessors of a table R. During Join
Synopses computation, R is processed after the processing of R1, . . . , Rk has
completed. Now, let isRefRi→R : R → {true, false} for 1 ≤ i ≤ k be a function
which evaluates to true if a tuple t ∈ R has been referenced by ΨRi and to false
otherwise. Also set

isRefR(t) = isRefR1→R(t) ∨ isRefR2→R(t) ∨ · · · ∨ isRefRk→R(t) ,

so that isRefR(t) evaluates to true if t is referenced by any predecessor.
To determine the space consumption of the Join Synopsis algorithm, we view

isRefR(t) as a random function (over the choices made when sampling the pre-
decessors). Our goal is to compute the reference probability pRefR(t) that tuple
t is referenced from any predecessor of R. Assume for a moment that pRefR(t)
is known for a tuple t ∈ R. The selection probability pSelR(t) that tuple t is
included into the synopsis—either by acception into the sample or by addition
to the reference table—is then given by

pSelR(t) = P (t ∈ ΨR) = P (t ∈ SampleR ∨ t ∈ RefTableR)
= P (t ∈ SampleR) + P (t /∈ SampleR)P (t ∈ RefTableR |t /∈ SampleR)
= qR + (1 − qR) pRefR(t),

where qR is the sampling fraction used for table R. Here, the final equality fol-
lows from the independence of the sampling step and the event that the tuple
1 The analysis is fair with respect to the original algorithms because our modification

of the Join Synopsis algorithm leads to a decrease of the space required to store the
synopsis.
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is being referenced. We now have all the information we need to compute ref-
erence probabilities. Suppose that table R has predecessor R′ and denote by
pRefR′→R(t) the probability that a tuple t ∈ R is referenced by the synopsis
of R′. Since the tuples in R′ are sampled independently from each other, this
probability is given by:

pRefR′→R(t) = 1 −
∏

t′∈R′
fkR′→R(t′)=pkR(t)

(1 − pSelR′(t′)) .

Note that pRefR′→R(t) can be computed incrementally, that is, with only a
single scan of R′. To see this, suppose that we have already processed a subset
R′

0 of the tuples in R′ and let t+ ∈ R′ \ R′
0 be the currently processed tuple.

If t+ does not reference t, we can simply ignore it. Otherwise, we can use the
following relationship

pRefR′
0∪{t+}→R(t) = 1 −

∏
t′∈R′

0∪{t+}
fkR′→R(t′)=pkR(t)

(1 − pSelR′(t′))

= 1 −
(
1 − pSelR′(t+)

) ∏
t′∈R′

0
fkR′→R(t′)=pkR(t)

(1 − pSelR′(t′))

= 1 −
(
1 − pSelR′(t+)

) (
1 − pRefR′

0→R(t)
)

(1)

to update the reference probability. If R′ is the sole predecessor of R, then
pRefR(t) = pRefR′→R(t). The discussion of the computation of pRefR(t) for
tables with multiple predecessors is deferred to Section 3.

Figure 3a shows the selection and reference probabilities for Join Synopses
with a sampling fraction of q = 50% for each table. The reference probabilities
are annotated on the arrows, while the selection probabilities are given right
next to each tuple (rounded to one digit after decimal point). As can be seen,
the selection probabilities—which effectively determine the size of the synopsis—
are larger than both the sampling fraction q and the reference probability. The
reason is that the sampling steps for each table are performed independently of
each other.

Given the sampling fraction qR, the expected size of the table synopsis of R
is given by

E[|ΨR|] =
∑
t∈R

pSelR(t) = qR|R| + (1 − qR)
∑
t∈R

pRefR(t).

In expectation, the entire Join Synopsis consists of

E[|Ψ|] =
∑
R∈V

E[|ΨR|] (2)

tuples by the linearity of expected value. In our example, we have E[|ΨA|] = 3,
E[|ΨB|] ≈ 3.88, E[|ΨC |] ≈ 4.16. The expected total synopsis size E[|Ψ|] is 11.04
tuples.
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Fig. 3. Reference and selection probabilities for q = 50%. Reference probabilities are
annotated on the arrows; tuples with no incoming edges have zero reference probability.

3 Linked Bernoulli Synopses

Linked Bernoulli Synopses are based on Join Synopses, but the synopsis com-
putation is entirely different. The key observation leading to our LBS is that
the event of a tuple being referenced by a predecessor already contains some
randomness, which can be exploited for sampling. If a tuple is referenced, we
have to include it into either the sample or the reference table; that is, we have
to store it anyway. A tuple in a sample, however, is more valuable because it can
be used directly for query answering: larger samples lead to better results. The
tuples in the reference tables can be seen as overhead because they are “only”
used to preserve foreign-key integrity. Thus, we would like to bias the sample
towards referenced tuples, so that the overhead in the reference tables is mini-
mized. LBS perform this biasing in such a way that the resulting sample is still
uniform, so that it can be used for query processing as before. In contrast to Join
Synopses, however, the samples in LBS are correlated. This correlation does not
lead to problems at query time because only one sample is used to answer each
query (the sample of the base table of the join) and each sample on its own is a
uniform random sample of the respective table.

3.1 Algorithmic Description

We are now ready to describe the computation of Linked Bernoulli Synopses in
full detail. The general procedure is as follows:
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1. Scan the tables in top-down order, that is, whenever a table R is processed,
all its predecessors must have been processed already.

2. For each tuple t, decide whether or not the tuple is included into either
the sample or the reference table. This decision is based on (1) the refer-
ence probability pRefR(t) of the tuple and (2) the fact of whether or not the
tuple is referenced by a predecessor (isRefR(t) is true). Simultaneously, com-
pute (or update) the reference probabilities for every successor of R using
equation (1).

The crux of LBS lies in step 2, where we make use of pRefR(t) and isRefR(t)
to drive the sampling process. We now discuss this step in more detail. The key
idea is to compare the reference probability pRefR(t) with the desired sampling
fraction qR. For each tuple t, there are three cases:

Case 1: pRefR(t) = qR, that is, the reference probability and the sampling
fraction are equal. In this case, we add the tuple to the sample if and only if
it is referenced. Otherwise the tuple is ignored. It follows immediately that
P (t ∈ SampleR) = qR.

Case 2: pRefR(t) < qR, that is, the reference probability is smaller than the
sampling fraction. We directly add t to the sample whenever it is refer-
enced. When t is not referenced, we add it to the sample with probability
(qR − pRefR(t)) / (1 − pRefR(t)) or ignore it otherwise. The probability that
t is included into the sample is given by:

P (t ∈ SampleR) = P (isRefR(t) = true) + P (isRefR(t) = false)
qR − pRefR(t)
1 − pRefR(t)

= pRefR(t) + (1 − pRefR(t))
qR − pRefR(t)
1 − pRefR(t)

= qR.

Case 3: pRefR(t) > qR, that is, the reference probability is larger than the sam-
pling fraction. If t is not referenced, we can safely ignore it. If t is referenced,
we add it to the sample with probability qR/ pRefR(t) or to the reference
table otherwise. The probability that t is added to the sample is:

P (t ∈ SampleR) = P (isRefR(t) = true)
qR

pRefR(t)
= pRefR(t)

qR

pRefR(t)
= qR.

This case is the “bad case” because there is a non-zero probability that t is
added to the reference table.

To sum up, the tuple is included into the sample with the desired probability
of qR in each of the three cases. Since both the inclusion/exclusion decisions
as well as the event of being referenced are independent among the tuples, the
algorithm produces a Bernoulli sample with sampling rate qR. The selection
probability pSelR(t), that is, the probability that a tuple t is stored in either the
sample or the reference table, is given by:

pSelR(t) = max {q, pRefR(t)} .

The reference probabilities for LBS are computed from the selection probabilities
as before.
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Fig. 4. Linked Bernoulli Synopsis with a sampling rate of 50%

3.2 Example and Analysis

Figure 3b shows the selection and reference probabilities for LBS with a sampling
rate of q = 50% for each table. By inspection, one finds that—for tables B and
C—the selection probabilities for LBS are lower than the selection probabilities
of Join Synopses; we will formalize this observation below. The expected synopsis
sizes are: E[|ΨA|] = 3, E[|ΨB|] = 2.75, E[|ΨC |] = 3 and therefore E[|Ψ|] = 8.75
(instead of 11.03).

A potential LBS is shown in Figure 4. Compared to Join Synopses (Figure 2),
there is no difference in the sample of table A because A does not have any prede-
cessors (all tuples trivially belong to case 2). When sampling table B, we compare
the desired sampling rate of 50% with the reference probabilities given in Fig-
ure 3b. Tuples b1 through b4 all belong to case 1 above, that is, they are included
if and only if they are referenced. In the example, this holds true for only b1 and
b3; b2 and b4 are ignored. Note that—given the sample of table A—this process
is entirely deterministic. For tuple b5, the reference probability of 75% is larger
than the desired sampling fraction; this is case 3 and—since b5 is referenced—it is
accepted into the sample with probability 2/3 (as in the example) or in the refer-
ence table with probability 1/3. Continuing with table C, both c1 and c5 belong
to case 3. Both tuples are referenced; c1 has been added to the reference table
(probability of acceptance into sample: ≈ 52%) and c5 to the sample (≈ 53%).
Tuples c3 and c4 belong to case 1, but only c3 is referenced and therefore added
to the sample. Finally, tuple c2 belongs to case 2 because it has a reference
probability of zero. It is accepted into the sample with a probability of 50%.

We now compare formally the selection probability of a tuple using Join Syn-
opses with the selection probability using LBS when using the same sampling
rate qR for both. Assuming that the reference probabilities are the same for both
approaches, we have

pSelJS
R (t) − pSelLBS

R (t) = q + (1 − q) pRefR(t) − max {q, pRefR(t)}
= (1 − q) pRefR(t) − max {0, pRefR(t) − q}

=

{
(1 − q) pRefR(t) pRefR(t) ≤ q

q(1 − pRefR(t)) otherwise

≥ 0.

For 0 < q, pRefR(t) < 1 the inequality becomes strict. In general, the reference
probabilities for Join Synopses and Linked Bernoulli Synopses will be different.
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(b) Split pattern (c) Merge pattern (d) Diamond pattern(a) Chain pattern

Fig. 5. Reference patterns

Using the argument above, it is straightforward to show that the reference prob-
ability of Linked Bernoulli Synopses is always smaller than or equal to that of
Join Synopses.

3.3 Handling Multiple Predecessors

Until now, we have assumed that every table has at most one predecessor. This
assumption is clearly too restrictive in practice. In this section, we discuss how
to handle tables with multiple predecessors. The key question we are going to
answer is how to compute the reference probability pRefR(t) from the reference
probabilities pRefRi→R (with Ri being a predecessor of R). To that extent, we
distinguish the 4 possible patterns shown in Figure 5. As before, we assume that
the schema graph is free of cycles.

In a chain pattern, each table has at most one predecessor and at most one
successor. This is exactly the situation we looked at in the preceding sections.
In a split pattern, each table has at most one predecessor but arbitrarily many
successors. Again, the formulas established in the preceding sections can be
used directly. In a merge pattern, each table has arbitrarily many predecessors
and at most one successor. Fix a table R and denote by R1, . . . , Rk the direct
predecessors of R. Since the schema graph is free of cycles, tables R1, . . . , Rk do
not have any common predecessor. They are therefore sampled independently
of each other. It follows that the reference probabilities from each of the Ri to
table R are independent and thus

pRefR(t) = 1 −
k∏

i=1

(
1 − pRefRi→R(t)

)
. (3)

Finally, in a diamond pattern, at least two of the predecessors R1, . . . , Rk of R
share a common predecessor, say R1 and R2. In this case, the event that a tuple
from R is referenced from R1 and the event that the same tuple is referenced from
R2 are not necessarily independent. As a consequence, equation (3) cannot be
used. In the remainder of this section, we have a closer look at the dependencies
introduced in diamond patterns and propose possible workarounds.

We will use the example in Figure 6 for illustration purposes. The example
shows 4 tables A, B, C and D, which are arranged in a diamond pattern. The
sampling rate has been set to 50% for all tables. Suppose that tables A, B and
C have been sampled already and that table D is about to be processed. There
are two problems which might occur in this setting:
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Fig. 6. Reference probabilities for a 50%-sample, dependent references

– Reference probabilities. The references to a tuple t might be dependent. In
the example, tuple d1 is referenced whenever either b1 or c1 is included
into the synopses. The selection probabilities of b1 and c1 are 50% each,
so that the application of formula (3) indicates that d1 is referenced with a
probability of 75%. However, since in a LBS the samples are correlated, both
b1 and c1 are included into the sample of tables B and C, respectively, if
and only if a1 has been included in the sample of table A. This event occurs
with 50% probability, so that the true reference probability of d1 is given by
pRefD(d1) = 50%.

– Joint inclusion probabilities. A more subtle problem is that of joint inclusion
probabilities. In the example, both d2 and d3 are referenced with a probabil-
ity of 75%. The references from tables B and C to tuple d2 are independent,
as are the references to tuple d3. However, if one looks at both d2 and d3

simultaneously, one finds that d2 is referenced whenever d3 is and vice versa.
As a consequence, the sample is biased towards the cases where (1) both
d2 and d3 are sampled and (2) neither d2 nor d3 is sampled. For example,
if we ignore the dependencies between the references and proceed as in the
previous sections, the joint inclusion probability of d2 and d3 is ≈ 44% but
should be 25%.

A trivial way of handling the above problems would be to store table D in its
entirety. Though simple, this approach is viable in scenarios where table D is very
small. For instance, in the schema of the TPC-H benchmark, the only table which
is referenced in a diamond pattern is NATION, and this table consists of only 25
tuples. Otherwise, if table D is too large to store it in its entirety, we see two pos-
sible solutions: (1) switch back to Join Synopses for table D and all its successors
and (2) decide on a per-tuple basis whether to switch back to the Join-Synopses
way of sampling or not. The first solution might work well if table D does not have
large successors; its main advantage is its simplicity. The second solution is more
sophisticated and requires more bookkeeping, but it may reduce the overall space
consumption significantly. We omit further details due to lack of space; a detailed
description of the second solution can be found in [4].
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4 Computing a Synopsis with a Memory Bound

In the previous section, we assumed that the desired sampling rate for each table
is given beforehand. In practice, however, it might be difficult to decide on the
values of the individual sampling fractions. A more realistic approach is to start
with a space budget and to automatically set the sampling fractions so that the
space budget is not exceeded and the sample sizes are maximized. To simplify
the ongoing discussion, we assume that the space budget is given in number
of tuples. That is, for a given budget M , the goal is to find sampling fractions
which ensure that |Ψ| ≤ M with high probability.

4.1 An Optimization Problem

Suppose that the schema contains tables R1, . . . , Rn. Denote by q1, . . . , qn the
sampling fraction used for each respective table, and let q = (q1, . . . , qn) denote a
vector of these sampling fractions. There are many possible choices for q and we
have to quantify which choices are considered good and which are not. Suppose
that there is a function f so that f(q) > f(q′) whenever the sampling rates in q
are considered more valuable than those in q′. We can now treat the problem as
an optimization problem, that is, we want to find a vector q∗ which maximizes
the objective function f(q) with respect to the constraint g(q) ≤ M , where g(q)
encodes the (expected) space budget. Using these two functions, the optimization
problem can be stated as:

Maximize
f(q1, . . . , qn)

with respect to
0 < q1, . . . , qn ≤ 1
g(q1, . . . , qn) ≤ M.

The function f can be derived from workload information or from information
about the intended usage of the synopsis. In the absence of such information, a
suitable choice for f is the geometric mean of the individual sampling fractions
or, even simpler, its n-th power:

fGEO(q1, . . . , qn) = q1q2 · · · qn.

Some insight into this choice for f is given in the next section. In any case, we
make the assumption that both f and g are monotonically increasing functions
of q. In other words, for any Δq = (Δq1, . . . , Δqn) with Δqi ≥ 0, we assume that

f(q + Δq) ≥ f(q) and g(q + Δq) ≥ g(q).

This assumption virtually always holds in practice because larger sampling
rates lead to larger samples (f) which in turn lead to a larger synopsis size (g).
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The monotonicity of f and g introduces structure into the optimization problem,
which can be exploited for solving it. In [5], Tuy proposes an outer-approximation
algorithm for monotonic optimization called the polyblock algorithm. The time
complexity of the polyblock algorithm is exponential in the number of tables, so
that it can only be used when the number of tables is not too large. But even
when the number of tables is small, the polyblock algorithm requires frequent
evaluations of the constraint function g. Exact computation of g according to
equation (2) is expensive because a table scan of every table in the schema is
required. Therefore, for large problem sizes, it is impractical to compute the
optimum solution and approximate algorithms are needed.

4.2 A Heuristic Solution

Our heuristic solution is based on two simplifications. First, we do not compute
g exactly but make use of a lower bound gl for which a closed-form expression
exists and which can be evaluated quickly without accessing the database. It is
easy to see that

gl(q1, . . . , qn) = |R1|q1 + · · · + |Rn|qn

provides the desired lower bound; we simply ignore the size of the reference table.
As a consequence, replacing g by gl will produce oversized synopses. Depending
on the data, this may or may not be significant; we show below that the size of the
reference tables is often negligible when fGEO is used as the objective function.
Second, the optimum solution can be computed analytically for the combination
of gl and fGEO. To see this, consider an n-dimensional hypercube with edges
of length q1|R1|, . . . , qn|Rn|. Then, fGEO is proportional to the volume of the
hypercube, which in turn is maximized when all edges have equal length. It
follows the fGEO is maximized when

qi ∝
1

|Ri|

for 1 ≤ i ≤ n.2 We refer to this allocation scheme as equi-size allocation
because—when the reference tables are ignored—the same number of tuples
is sampled from every table in expectation. For traditional Join Synopses, the
equi-size allocation scheme is known to produce good results [2].

In the following, we argue that the size of the reference tables is often negligible
for equi-size allocation. To see this, consider two tables R1 and R2 with R1 → R2

and set r = |R1|/(|R1| + |R2|). For a space budget of M tuples and equi-size
allocation, we set q1 = rM/|R1| and q2 = (1 − r)M/|R2|. There is no reference
table for R1, so that we focus on R2. Recall that a tuple t ∈ R2 is added to
the reference table if and only if pRefR2

(t) > q2 (case 3 in Section 3). Perhaps
surprisingly, all tuples from R2 that are referenced up to k = |R1|/|R2| times
will not be added to the reference table. To see this, start from the Bernoulli

2 When one of the qi exceeds 1, we set it to 1 and repeat the process for the remaining
sampling fractions.
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inequality (1 + x)k > 1 + kx and set x = −q1 = −q2/k. It immediately follows
that 1−(1−q1)k < q2. The expression on the left hand side is equal to pRefR2

(t)
when t is referenced exactly k times; the inequality also holds when t is referenced
fewer than k times. Thus, only tuples which are referenced k + 1 or more times
have a non-zero chance of being included in the reference tables. There are at
most |R1|/(k + 1) such tuples and only some of them are added to the reference
table. Since dependent tables are typically smaller than their parents, the number
of tuples in the reference table is expected to be low.

5 Experiments

We ran a variety of experiments in order to evaluate the effectiveness of Linked
Bernoulli Synopses. Most of the experiments directly compare Join Synopses
(JS) with Linked Bernoulli Synopses (LBS); the main issue we are trying to
address is the extent to which LBS are able to reduce the overhead for stor-
ing reference tables. We also evaluate how close the equi-size allocation scheme
comes to optimum allocation in terms of resulting sample sizes and query
accuracy.

5.1 Experimental Setup

We implemented JS and LBS on top of DB2 using Java 1.6. The experiments
were conducted on an Athlon AMD XP 3000+ system running Linux with 2 GB
of main memory.

We make use of both synthetic and real-world data. The synthetic datasets
are based on the TPC-H database of 1GB size. We used a Zipfian distribution
for both values (prices, quantities, etc.) and foreign keys. We fixed the skew
parameter for values to z = 0.5; the skew parameter for foreign keys is modified
across the experiments. For our real-world experiments, we make use of the
CDBS database3. The database contains information about radio and television
broadcast services in the United States; only the 14 radio-related tables (without
comment tables) were used in our experiments. The sizes of the tables range from
28, 000 to 1.4 million tuples.

5.2 Space Consumption

In a first set of experiments, we evaluated the effectiveness of LBS in comparison
to JS on both synthetic and real-world datasets. We computed both synopses
for various sampling fractions and datasets and recorded the space overhead
required for the reference tables. The space overhead is defined as the size of the
reference tables with respect to the size of just the samples, that is, we determine
how much space is used for non-sample tuples. We used the equi-size allocation
scheme throughout all the experiments.

3 http://www.fcc.gov/mb/cdbs.html

http://www.fcc.gov/mb/cdbs.html
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Synthetic Data. Our experiments on synthetic datasets try to determine the
key factors that influence the overhead of JS and LBS. We generated several
TPC-H datasets with different parameters to examine the impact of skew in
the foreign-key columns. We also experimented with varying synopsis sizes. For
simplicity, we define the synopsis size as the size of just the sample part of the
synopsis with respect to the size of the original tables.

Data skew. In a first experiment, we only consider the orders (O) and customer
(C) table of the TPC-H schema. We varied the skew parameter of the foreign
keys (O → C) from 0 (uniformly distributed) to 1 (heavily skewed); each tuple
of C is referenced at least once. We used a sampling fraction of 0.55% for O and
5.5% for C; these settings correspond to equi-size allocation with a synopsis size
of 1%. The results are shown in Figure 7a. JS have a high overhead on uniformly
distributed keys, but the overhead decreases with increasing skew. The reason
for this behavior is that, when the skew is low, almost every tuple in the sample
of O corresponds to a different customer, which in turn has to be added to the
reference table. When the skew is high, however, a large subset of the orders are
placed by only a small subset of the customers; the number of distinct foreign
keys in the sample of O therefore decreases in expectation. The overhead of LBS
is consistently smaller than the overhead of JS. For a skew value of z = 0, no
reference tables are needed at all; see the discussion at the end of Section 4.2.
With increasing skew, some tuples are referenced with a higher probability than
their desired sampling rate (case 3), so that they are added to the reference
tables from time to time. If the skew increases further, the number of referenced
tuples decreases rapidly and the same effect as for JS can be observed.

Number of unreferenced tuples. In the next experiment, we proceeded as before
but modified the fraction f of unreferenced customers. A fraction of f = 40%
means that 40% of the customers did not place any order. For the remaining
customers, we used a skew parameter of z = 0.5. Figure 7d plots the space
overhead for various choices of f . For JS, the space overhead decreases as the
f increases. The reason is that the number of distinct customers in the sample
of O drops as f increases so that less space is required for reference tables. LBS
performs better when the values of f are not too extreme. When the value of
f increases, so does the space overhead because more and more customers are
referenced with probability larger than the sampling fraction (case 3).

Number of tables. We next evaluated the impact of the number of tables. We
started with just lineitem and orders and subsequently added customer, part-
supp, part and supplier (in this order). The total size of the synopsis was set to
1%. The skew parameter was set to z = 0.5. The results are shown in Figure 7b.
As can be seen, LBS outperform JS, especially when the number of tables is
high. The reason is that an increasing number of tables lead to an increasing
number of transitive references, which have to be stored in the reference tables.
For Linked Bernoulli Synopses, this effect is reduced to a minimum.

Synopsis size. In a final experiment, we evaluated the impact of the synopsis size
when sampling the 6 tables mentioned above. Figure 7c plots the space overhead
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Fig. 7. Space overhead for Linked Bernoulli Synopses and Join Synopses

in dependency of the size of the sample part of the synopsis. As can be seen, the
overhead decreases with increasing sample size because more and more tuples
qualify for the sample and therefore do not have to be stored in the reference
tables. Especially for small synopses, LBS have a significantly smaller overhead.

Real-world Data. We now report our results on the CDBS data. We modified
the synopsis size between 0.1% and 10%. As can be seen in Figure 7f, the space
overhead decreases with increasing synopsis size for both JS and LBS. The differ-
ence between the two is not as dramatic as it has been in the synthetic datasets
because the CDBS tables contain large numbers of unreferenced tuples (up to
90%). Figure 7e shows the influence of the number of tables for a synopsis size
of 1%. Again, LBS has lower overhead than JS.

5.3 Memory Bounds

In a final experiment, we computed synopses that fit into a prespecified amount
of space. We used all tables of the TPC-H database; the nation and region table
have been sampled entirely. The foreign-key skew was set to z = 0.5 and fGEO

was used as objective function. We ran three different combinations: JS with
equi-size allocation (JS-ES), LBS with equi-size allocation (LBS-ES), and LBS
with polyblock allocation (LBS-PB). In the latter case, we restricted the number
of steps of the optimization algorithm to 1, 000; this corresponds to 1 − 2 days
of computation. In contrast, synopsis computation with equi-size allocation is a
matter of minutes. The memory bound (samples and reference tables) was varied
from 1% to 5%.

Figure 8 plots the objective function fGEO for each combination and memory
bound (log plot). The value of the objective function increases with an increas-
ing synopsis size because more space is available for samples. In all cases, the



22 R. Gemulla, P. Rösch, and W. Lehner

1e-9

1e-8

1e-7

1e-6

1e-5

1e-4

1% 2% 3% 4% 5%
Memory bound

f
G

E
O

JS-ES
LBS-ES
LBS-PB

(a) Objective func.

Q1 Q2 Q3 Q4

JS 3.51% 3.95% 3.28% 0.18%
LBS 2.69% 3.06% 2.43% 0.14%

(−23.4%) (−22.5%) (−25.9%) (−22.2%)

(b) Average relative error (1% size)
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LBS-based approaches achieve significantly larger values of the objective func-
tion than JS; they are between 8.9 to 20.8 times larger. Comparing LBS-ES and
LBS-PB, one finds that both approaches perform similarly. In an additional ex-
periment, we allowed 14, 000 optimization steps for LBS-PB with a 1% memory
bound (16 days) and found that the resulting value of the objective function
was roughly 50% above the one achieved by LBS-ES. Thus, there is room for
improvement, but the high computational cost of LBS-PB renders it impractical.

A different view of the results for a 1% memory bound is given in Figure 8b,
where we compare the estimation error achieved by both JS and LBS with
equi-size allocation. The resulting per-table sample size was 7, 407 tuples and
12, 296 tuples, respectively. The columns denote the average relative error of the
approximate answer for four different queries (over 1, 000 independent runs). Q1

determines the average order value of customers from Germany (O � C � N),
Q2 the average balance of these customers (C � N), Q3 the turnover generated
by European suppliers (L � PS � S � N � R), and Q4 computes the average
retail price of a part (P ). As can be seen in the figure, the increase in sample
size for LBS is directly reflected in the precision of the estimates.

6 Related Work

There exists a variety of sampling techniques for approximate query process-
ing. These techniques can be divided into table-level and schema-level sampling
schemes.

Table-level sampling. A table-level sample represents a single table (or view)
of a database. Most research focuses on sampling techniques which produce good
or optimal samples for a specific purpose such as aggregation queries [6,7] or
group-by queries [8,9]. It might be possible to combine some of these techniques
with the ideas presented in this paper. For example, a combination of LBS with
the weighted sampling scheme in [6] requires an appropriate adjustment of the
reference probabilities.

Schema-level sampling. Schema-level samples summarize more than one table
as well as the relationships between them. The difficulty of joins over random
samples is examined in [3,2]. Acharya et al. [2] also propose the Join Synop-
sis algorithm from which our Linked Bernoulli Synopses have been derived. In
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contrast to Join Synopses, Linked Bernoulli Synopses correlate the individual
samples so that the space consumption of the synopses is minimized.

Other schema-level synopses. Apart from sampling, other synopses have
been proposed for approximate query processing over joins. In [10], Spiegel and
Polyzotis propose the Tuple Graph as a data structure which is able to repre-
sent complex relations between tables. Probabilistic Relational Models [11] also
exhibit statistical dependencies between attributes of multiple tables. Both tech-
niques focus on selectivity estimation of complex queries but are not applicable
to approximate query processing.

7 Conclusion

In this paper, we introduced a novel schema-level sampling scheme called Linked
Bernoulli Synopses. The scheme computes a uniform sample of every table in
the database; foreign-key integrity is maintained for all sampled tuples. Our ap-
proach is based on Join Synopses but correlates the sampling processes of the
individual tables. As a consequence, the size of the resulting synopsis is signif-
icantly reduced without affecting the quality of approximate answers. Indeed,
the saved space can be used to store larger samples, which in turn decreases the
estimation error.
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Abstract. Increasingly, many data sources appear as online databases, hidden
behind query forms, thus forming what is referred to as the deep web. It is de-
sirable to have systems that can provide a high-level and simple interface for
users to query such data sources, and can automate data retrieval from the deep
web. However, such systems need to address the following challenges. First, in
most cases, no single database can provide all desired data, and therefore, mul-
tiple different databases need to be queried for a given user query. Second, due
to the dependencies present between the deep-web databases, certain databases
must be queried before others. Third, some database may not be available at cer-
tain times because of network or hardware problems, and therefore, the query
planning should be capable of dealing with unavailable databases and generating
alternative plans when the optimal one is not feasible.

This paper considers query planning in the context of a deep-web integra-
tion system. We have developed a dynamic query planner to generate an efficient
query order based on the database dependencies. Our query planner is able to se-
lect the top K query plans. We also develop cost models suitable for query plan-
ning for deep web mining. Our implementation and evaluation has been made
in the context of a bioinformatics system, SNPMiner. We have compared our al-
gorithm with a naive algorithm and the optimal algorithm. We show that for the
30 queries we used, our algorithm outperformed the naive algorithm and obtained
very similar results as the optimal algorithm. Our experiments also show the scal-
ability of our system with respect to the number of data sources involved and the
number of query terms.

1 Introduction

A recent and emerging trend in data dissemination involves online databases that are
hidden behind query forms, thus forming what is referred to as the deep web [13].
As compared to the surface web, where the HTML pages are static and data is stored
as document files, deep web data is stored in databases. Dynamic HTML pages are
generated only after a user submits a query by filling an online form.

The emergence of the deep-web is posing many new challenges in data integration.
Standard search engines like Google are not able to crawl to these web-sites. At the
same time, in many domains, manually submitting online queries to numerous query
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forms, keeping track of the obtained results, and combining them together is a tedious
and error-prone process. Recently, there has been a lot of work on developing deep web
mining systems [6, 7, 14, 15, 19, 31, 38]. Most of these systems focus on query interface
integration and schema matching.

A challenge associated with deep web systems, which has not received attention so
far, arises because the deep web databases within a specific domain are often not in-
dependent, i.e., the output results from one database are needed for querying another
database. For a given user query, multiple databases may need to be queried in an in-
telligent order to retrieve all the information desired by a user. Thus, there is a need for
techniques that can generate query plans, accounting for dependencies between the data
sources, and extracting all information desired by a user.

A specific motivating scenario is as follows. In bioinformatics, Single Nucleotide
Polymorphisms (SNPs), seem particularly promising for explaining the genetic contri-
bution to complex diseases [3, 20, 34]. Because over seven million Single Nucleotide
Polymorphisms (SNPs) have been reported in public databases, it is desirable to de-
velop methods of sifting through this information. Much information that biological
researchers are interested in requires a search across multiple different web databases.
No single database can provide all user requested information, and the output of some
databases need to be the input for querying another database.

We consider a query that asks for the amino acids occurring at the corresponding po-
sition in the orthologous gene of non-human mammals with respect to a particular gene,
such as ERCC6. There is no database which takes gene name ERCC6 as input, and out-
puts the corresponding amino acids in the orthologous gene of non-human mammals.
Instead, one needs to execute this query plan. We first need to query on one database,
such as SNP500Cancer, to retrieve all SNPs located in gene ERCC6. Second, using the
extracted SNP identifier, we query on SNP database, such as dbSNP, to obtain the amino
acid position of the SNP. Third, we need to use a sequence database to retrieve the pro-
tein sequence of the corresponding SNP. Finally, querying on BLAST database, which
is a sequence alignment database, we can obtain the amino acid at the corresponding
position in the orthologous gene of non-human mammals.

From the above example, we can clearly see that for a particular query, there are
multiple sub-goals. These sub-goals are not specified by the user query, because the user
may not be familiar with details of the biological databases. The query planner must be
able to figure out the sub-goals. Furthermore, we can note the strong dependencies
between those databases, which constraint the query planning process.

This paper considers query planning in the context of a deep-web integration system.
The system is designed to support a very simple and easy to use query interface, where
each query comprises a query key term and a set of query target terms that the user
is interested in. The query key term is a name, and the query target terms capture the
properties or the kind of information that is desired for this name. We do not need the
user to provide us with a formal predicate-like query. In the context of such a system,
we develop a dynamic query planner to generate an efficient query order based on the
deep web database dependencies. Our query planner is able to select the top K query
plans. This ensures that when the most efficient query plan is not feasible, for examples,
because a database is not available, there are other plans possible.
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To summarize, this paper makes the following contributions:

1. We formulate the query planning and optimization problem for deep web databases
with dependencies.

2. We design and implement a dynamic query planner to generate the top K query
plans based on the user query and database dependencies. This strategy provides al-
ternative plans when the most efficient one is not feasible due to the non-availability
of a database.

3. We support query planning for a user-friendly system that requires the user to only
include query key terms and a set of target terms of interest. Database schemas are
input by an administrator or designer.

4. We develop cost models suitable for query planning for deep web mining.
5. We present an integrated approximate planning algorithm with approximation ratio

of 1/2.
6. We integrate our query planner with a deep web mining tool SNPMiner [37] to

develop a domain specific deep web mining system.
7. We evaluate our dynamic query planning algorithm with two other algorithms and

show that our algorithm can achieve optimal results for most queries, and further-
more, our system has very good scalability.

The rest of the paper is organized as follows. In Section 2, we formulate the dynamic
query planning problem. We describe the details of our dynamic query planner in Sec-
tion 3. In Section 4, we evaluate the system. We compare our work with related efforts
in Section 5 and conclude in Section 6.

2 Problem Formulation

The deep web integration system we target provides a fixed set of candidate terms which
can be queried on. These terms are referred to as the Query Target Terms. A user se-
lects a subset of the allowable Query Target Terms and in addition, specifies a Query
Key Term. Query target terms specify what type of information the user wants to know
about the query key term. From the example in Section 1, we know that for a single
query of this nature, several pieces of information may need to be extracted from var-
ious databases. Furthermore, there are dependencies between different databases, i.e.
information gained from one source may be required to query another source. Our goal
is to have a query planning strategy that can provide us an efficient and correct query
plan to query the relevant databases.

We have designed a dynamic query planner which can generate a set of Top K query
plans. The query plan with shorter length, i.e. the number of databases searched, higher
coverage of user request terms, and higher user preference, are considered to have a
higher priority. By generating K query plans, there can be back-up plans when the best
one is not feasible, for example, because of unavailability of a database.

Formally, the problem we consider can be stated as follows. We are given a universal
set T = {t1, t2, . . . , tn}, where each ti is a term that can be requested by a user. We are
also given a subset T ′ = {t′1, t′2, . . . , t′m}, t′i ∈ T , of terms that are actually requested
by the user for a given query. We also have a set D = {D1, D2, . . . , Dm}, where each
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Di is a deep web database, and each Di covers a set of terms Ei = {e1
i , e

2
i , . . . , e

k
i },

and Ei is a subset of T . Furthermore, each database Di requires a set of elements
{r1

i , r
2
i , . . . , rk

i } before it can be queried, where rj
i ∈ T .

Our goal is to find a query order of the databases D∗ = {D1, D2, . . . , Dk}, which
can cover the set T ′ with the maximal benefit and also makes k as small as possible.
The benefit is based on a cost function that we can choose. We call it a dynamic query
planning problem, because the query order should be selected based on the user speci-
fied target terms, and cannot be fixed by the integration system. This is a variant of the
famous weighted set cover problem, and can be easily proven as NP-Complete [9].

2.1 Production System Formulation

For discussing our algorithm, it is useful to view the query planning problem as a pro-
duction system. A production system is a model of computation that has proved to
be particularly useful in AI, both for implementing search algorithms and for mod-
eling human problem solving [27]. A production system can be represented by four
elements, which are a Working Memory, a Target Space, a set of Production Rules,
and a Recognize-Act control cycle. The working memory contains a description of the
current state in a reasoning process. The target space is the description of the aim.
If the working memory becomes a superset of the target space, the problem solving
procedure is completed. A production rule is a condition-action pair. The condition
part determines whether the rule can be applied. The action part defines the associated
problem-solving step. The working memory is initialized with the beginning problem
description. The current state is matched against the conditions of the production rules.
When a production rule is fired, its action is performed, and the working memory is
changed accordingly. The process terminates when the content of the working memory
becomes a superset of the target state, or no more rules can be fired.

We map our query planning problem into the four elements of a production system
as follows. The working memory is comprised of all the data which has already been
extracted. Our query plan is generated step by step, and when a database is added into
our query plan, the data that can be obtained from this database is considered as stored
in the working memory. Initially, the working memory is just the Query Key Term. The
target state is a subset of the Query Target Terms selected by the user.

Each online database has one or more underlying query schema. Those schemas
specify what the input of the online query form of the database is, and what data can
be extracted from the database by using the input terms. The production rules of our
system are the database schemas. Note that one database may have multiple schemas.
In this case, each schema carries different input elements to retrieve different output
results. The database schemas are provided by deep web data source providers and/or a
developer creating the query interface.

The terms in working memory are matched against the necessary input set of each
production rule. Appropriate rule will be fired according to our rule selection strategy,
which will be introduced in Section 3.3. We consider the corresponding database as
queried and the output component of the fired rule is added to the working memory.
We mark the selected rules as visited to avoid re-visiting the same rule. If either of the
following two cases holds, one complete query plan would have been generated. In the
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first case, the working memory has covered all the elements in the target space, which
means that all user requested Query Target Terms have been found. In the second case,
there are still some terms in the target state have not been covered by the working mem-
ory, but no unvisited rules can cover any more elements in the target space. This means
that it is impossible to retrieve all the request terms by using current set of available
databases. This normally occurs when some databases are unavailable.

3 Query Planning Approach and Algorithm

Our approach for addressing the problem stated in the previous section is as follows.
We first introduce a data structure, dependency graph, to capture the database depen-
dencies. Our algorithm is based on this data-structure. Towards the end of this section,
we describe the cost or benefit model that we use.

3.1 Dependency Graph

As we stated earlier, there are dependencies between online databases. If we want to
query database D, we have to query on some other databases in order to extract the
necessary input elements of D first. We use the production rule representation of the
databases to identify the dependecies between the databases and build a dependency
graph of databases to capture the relationship between databases.

Formally, there is a dependency relation DR, ≺DR ⊂ 2D × D, where 2D is the
power set of D. If {Di, Di+1, . . . , Di+m} ≺DR Dj , we have to query on data source
Di, Di+1, . . . , Di+m first in order to obtain the necessary input elements for querying
on the data source Dj . Note that there could be multiple combinations of databases that
can provide input required for querying a given database.

We use hypergraph to represent the dependency relationship. A hypergraph consists
of a set of nodes N and a set of hyperarcs. The set of hyperarcs is defined by ordered
pairs in which the first element of the pair is a subset of N and the second element is a
single node from N . The first element of the pair is called the parent set, and the second
element of the pair is called the descendant. If the parent set is not singleton, the ele-
ments of the set of parents are called AND nodes. In our dependency graph, the nodes
are online databases, and hyperarcs represent the dependencies between databases. For
a particular hyperarc, the parent nodes of the pair are the databases which must be
queried first in order to continue the query on the database represented by the descen-
dent node of the pair.

The dependency graph is constructed using the production rules of each online
database. For two databases Di and Dj , suppose Di has a set of production rules
Ri = {ri1, ri2, . . . , rin} and Dj has a set of production rules Rj = {rj1, rj2, . . . , rjm}.
If any rule in Ri has an output set which can fully cover any of the rules’ input set in Rj ,
we build an edge between Di and Dj . In another case, if any rule in Ri has an output
set which partially covers any of the rules’ input set in Rj , we scan the rules of other
databases to find a partner set of databases for Di together with which can fully cover
any of the rules’ input set in Rj . If the partner set exists, we build a hyperarc from Di
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Fig. 1. Dependency Graph Example

and its partner set databases to Dj . If the production rules of a database are updated,
our dependency graph can also be updated accordingly. Figure 1 shows an example of
hypergraph.

In Figure 1, there are 8 nodes in the hypergraph, and 7 hyperarcs. The first hyperarc
is denoted by a. The first element (parent) of the ordered pair of a is node D1, and the
second element (descendant) of the pair is node D2. This hyperarc implies that after
querying on D1, we can obtain the input elements needed for querying D2. Hyperarcs
b to e are similar to hyperarc a. In hyperarc f , the arc connecting the two edges of f
shows that this hyperarc is a 2-connector. The first element of f is a set comprising of
D5 and D6, and the second element is D8. This shows in order to query on D8, we need
to first query on D5 and D6. Hyperarc g has the same structure as f .

For a node D, the neighbors of D are the nodes which have an edge coming from D.
The partners of D are the nodes which is connected with D by a hyperarc to a common
descendent. For example, in Figure 1, D5 has a partner D6, as D5 and D6 connect D8.

3.2 Query Planning Algorithm

We now introduce our algorithm. Initially, we define several new terms.
Due to the existence of database dependencies, some databases can be more impor-

tant because it can link us to other important databases. In Figure 1, suppose we are
on node D1, and user requested terms can only be obtained by the database D8. Using
the query key term, we cannot query on D8 at the beginning. We must first query on
other databases, say D3, to gain additional information in order to follow the database
dependencies and finally query on D8. We call databases D2, D3, D4, D5 and D6
hidden nodes.

In order to determine the hidden nodes, we need to come up with a strategy to
find all reachable nodes from a starting node in the dependency graph. This can be
done by adapting the breath-first search method to a hypergraph. We use the algorithm
Find Reachable Node(DG,s) to find all reachable nodes from a starting node s in the
dependency graph DG. We show the sketch of this algorithm in Algorithm 3.1. In the
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algorithm, Q1 is a queue which stores all reachable nodes from starting node s, Q2
stores all reachable nodes from s with the help of its partners, and PS(t) returns the
partner set of t.

Algorithm 3.1: FindReachableNodes(DG, s)

Initialize two queues Q1 and Q2
Add s to Q1, and mark s as visited
while Q1 is not empty

Dequeue the first element in Q1, name it as t
foreach n which is a neighbor of t

if n ∈ unvisited and PS(t) = Φ and rules match
Add n to Q1 and mark n as visited
else if n ∈ unvisited and PS(t) �= Φ
Add n to Q2

while Q2 is not empty
foreach n ∈ Q2

Extract the partner set PS of n
Denote each partner of n as p
if p ∈ Q1

foreach p of n and rules match
Add n to Q1, and remove n from Q2
Mark n as visited

return (Q1)

Next, we introduce a new concept, Database Necessity. Each production rule is as-
sociated with a set of terms which can be extracted by executing the rule. Some terms
can only be provided by one database, while other terms can be provided by multiple
databases. If a requested term can only be provided by a single rule, that rule should
have a higher priority to be executed. Conversely, if the term can be provided by multi-
ple rules, a lower priority can be assigned to this rule. Based on this idea, each term is
associated with a Database Necessity value. Formally, for a term t, if K databases can
provide it, the database necessity value for t is 1

K .
As part of our algorithm, we need to make hidden rules partially visible on the sur-

face. A hidden but potentially useful rule has the following two properties: (1) It must
be executed in order to extract all user requested terms. (2) The necessary input ele-
ments of it are hidden, i.e. either they are not in the Query Target Terms or they can
only be extracted by rules located in the hidden layer.

We make the hidden rules visible in a bottom-up manner as follows. We scan all the
terms in the user provided Query Target Terms, i.e. the initial Target Space. If there is
some term in the initial target space with database necessity value of 1, which means
only one production rule, say R, can provide this term. This rule R is a hidden rule
which must be fired. In order to make rule R visible, we add the necessary input ele-
ments of R into the target space to enlarge the target space. Then, we re-scan the newly
enlarged target space to find new hidden rules and enlarge the target space further. This
procedure continues until there are no more hidden rules of this kind.
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Another important issue in our algorithm is the ability to prune similar query plans.
The dynamic query planner can generate the top K query plans. When one query plan
is generated, the algorithm will trace back from the current point to generate another
query plan. It is highly possible that two generated query plans QP1 and QP2 use the
same set of databases, but differ in the order of querying two or more databases which
do not have any dependencies. In this case, we will consider the two query plan QP1

and QP2 as the same, and the latter one will be deleted.

Algorithm 3.2: Find TopK Query Plans(PR, WS,TS)

while enlargeable(WS)
Enlarge WS

Initialize queue Q and P
while size(Q) ≤ K

if (∃e ∈ TS and e �∈ WS)
and (∃r ∈ PR and ∃o ∈ O(r) and o ∈ TS)
Find candidate rule set CR
foreach r ∈ CR

Compute benefit score according to benefit model
Select r opt, the rule with the highest benefit
if !prunable(P, r opt)

while r opt �= null and (∃e ∈ TS and e �∈ WS)
and (∃r ∈ PR and ∃o ∈ O(r) and o ∈ TS)
Add r opt to P, and update WS
Select next r opt

else Empty queue P
else Add P to Q and re-order Q

if size(P ) > 0
Remove the last rule of P, update WS, trace back

return (Q)

Main Algorithm. Our dynamic query planning algorithm takes the Query Target Terms
and Query Key Term, and dynamically generates K query plans which cover as many
request terms as possible. At the beginning, we enlarge user provided target space to
visualize hidden rules and obtain the enlarged target space. We take the Query Key Term
as the initial working memory. Then, the production system begins the recognize-act
procedure. Each iteration the system selects an appropriate rule according to a benefit
model and updates the current working memory. This procedure terminates when all
terms in the target space are covered or no more rules can be fired.

Now, we assume our benefit model can select the best rule according to the current
working memory and our goal. We will introduce our benefit model in detail in Sec-
tion 3.3. Algorithm 3.2 shows the sketch of the planning algorithm. In the algorithm,
PR is the set of production rules, WS is the working memory, and TS is the target
space. Q is a queue to store the top K query plans, and P is a queue to store the rules
along one query plan. O(r) returns the output elements of a rule r. prunable() is a
function to test whether a candidate query plan can be pruned as we discussed earlier.



32 F. Wang, G. Agrawal, and R. Jin

Our dynamic query planning algorithm is a greedy algorithm which selects the pro-
duction rule with the local maximal benefit according to the benefit model. Each greedy
algorithm has an approximation ratio which measures the performance of the algorithm.
We use |R| to represent the cardinality of the collection of rules R, i.e. the total number
of production rules. We have the following result:

Theorem 1. The approximation algorithm introduced in Algorithm 3.2 has an approx-
imation ratio of |R|+1

2|R| .

The proof is omitted for lack for space.

3.3 Benefit Model

A very important issue in a production system is rule selection, i.e., which rule should
be executed. We have designed a benefit model to select an appropriate rule at each
iteration of the recognize-act cycle. In the algorithm presented earlier in this section,
at each step, each rule is scanned and all the rules which can be fired are put into a set
called the candidate rule set. Then, we compute a benefit score for each of the candidate
rules.

We have used four metrics for rule selection, which are Database Availability (DA),
Data Coverage (DC), User Preference (UP), and Potential Importance (PI).

Database Availability: A production rule R can be executed if the corresponding
database is available. In our implementation, for each rule, we send a message to the
database to test the availability of the database. If the database is not available, we just
ignore this rule for the current iteration.

Data Coverage: Data coverage measures the percentage of required data that can be
provided by a particular rule. Given a rule Rk, the target state TS, and k − 1 rules
R1, R2, . . . , Rk−1 that have already been selected, we want to compute the data cov-
erage of the current rule Rk with respect to TS. We use the number of Query Target
Terms in TS which are also covered by the rule Rk, but have not been extracted by
previous rules for this purpose.

User Preference: Some terms can be extracted from multiple databases, and domain
users may have preference for certain databases for a particular term. We can assign
a user preference value for each term with respect to databases and incorporate user
preference into the benefit function. Consider a particular term t, which can be obtained
from r databases D1, D2, . . . , Dr. A number between 0 and 1 should be assigned to t
for each of the r databases as the preference value, such that the r preference values
sum up to 1. If t can only be obtained from a single database D, the preference value
of t with respect to D is 1 and is 0 for all other databases. The user preference values
should be given by a domain expert.

Suppose we are examining the production rule R, which is associated with the
database D. The following k terms UF1, UF2, . . . , UFk have not been found. For each
term UFi, the user preference with respect to database D is UPi. We use the database
necessity value of each term (DNi for term UFi) as the weight of its user preference



Query Planning for Searching Inter-dependent Deep-Web Databases 33

and we compute the weighted sum of all unfound terms as the user preference value of
the rule, i.e. the user preference of R is

∑k
i=1 DNi ∗ UPi.

Potential Importance: Because of database dependencies, some databases can be more
important due to its linking to other important databases. Figure 1 shows an example. In
the above case, suppose D2 and D3 have the same data coverage and user preference.
Obviously, D3 is potentially more important because D3 can help us link to our final
target D8. As a result, the D3 should be assigned a larger benefit value. Based on the
above idea, we incorporate potential importance to our benefit function.

Suppose we are considering production rule corresponding to the database D. By us-
ing Algorithm 3.1, we find a set of databases Dreachable = {D1, D2, . . . , Dm}, which
can be queried by using the data extracted from database D exclusively. We have k
term which have not been found, denoted by UF1, UF2, . . . , UFk. For term UFi, its
database necessity value is DNi, which means the term UFi can be obtained by 1

DNi

number of databases and we denote this set of databases as NecessaryDi. We want
to know the number of Necessary Databases of UFi which can be reached by the cur-
rent rule R. We count the number of databases in NecessaryDi, which are also in the
set Dreachable, i.e. we compute the cardinality of the set {d|d ∈ NecessaryDi, d ∈
Dreachable}. Suppose the cardinality is ri for term UFi. The potential importance for

UFi with respect to rule R and corresponding database D is
ri∗ 1

DNi

|Dreachable | = ri

m∗DNi
.

Finally, the potential importance for the rule R is

k∑
i=1

ri

m ∗ DNi

For each candidate rule, a benefit score is computed according to the three metrics, data
coverage, user preference and potential importance. The value of the three metrics are
closely related to the database necessity values of all unfound terms when a rule is being
examined, as a result, if a rule is considered as a candidate multiple times, each time the
benefit score must be different, because each time the set of unfound terms is different.
As a result, the benefit score of a production rule is dynamically related to the current
working space of the production system.

The benefit function of a rule R with respect the current working space WS can be
represented as follows:

BF (R, WS) = DC ∗ α + UP ∗ β + PI ∗ γ, α + β + γ = 1

There are three parameters α, β and γ associated with each metric term. These three
parameters scale the relative importance of the three metric terms.

3.4 Discussion: System Extendibility

Extendibility is an important issue for any deep web mining system, as new data sources
can emerge often. We now briefly describe how a new data source can be integrated
with our system. First, we need to represent the database query schemas of the new data
source into the form of production rules. Then, a domain expert assigns or changes user
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preference values for the terms appearing in the newly integrated data sources. We have
developed simple algorithms for automatically integrating the new data source into the
Dependency Graph and updating the database necessity values. The algorithms pro-
posed are scalable to larger numbers of databases. Furthermore, because the design of
our dependency graph and query planning algorithm is based on the inherent character-
istics of deep web data sources, such as database dependencies and database schemas,
our system is independent of the application domain, i.e., the system can be applied on
any domains of application.

4 Performance

This section describes the experiments we conducted to evaluate our algorithm. We ran
30 queries and compared the performance of our algorithm with two other algorithms.

4.1 Experiment Setup

Our evaluation is based on the SNPMiner system [37]. This system integrates the fol-
lowing biological databases: dbSNP1, Entrez Gene and Protein2, BLAST3,
SNP500Cancer4, SeattleSNPs5, SIFT6, and BIND7. SNPMiner System provides an in-
terface by which users can specify query key terms and query target terms. We use
some heuristics to map user requested keywords to appropriate databases. SNPMiner
uses Apache Tomcat 6.x to support a web server. After a query plan is executed, all
results are returned in the form of HTML files. We have a web page parser to extract
relevant data from the files and tabulate the data.

We created 30 queries for our evaluation. Among these 30 queries, 10 are real queries
specified by a domain expert we have collaborated with. The remaining 20 queries were
generated by randomly selecting query keywords. We also vary the number of terms in
each query in order to evaluate the scalability of our algorithm. Table 1 summarizes the
statistics for the 30 queries.

Table 1. Experimental Query Statistics

Query ID Number of Terms
1-8 2-5
9-16 8-12
17-24 17-23
25-28 27-33
29,30 37-43

1 http://www.ncbi.nlm.nih.gov/projects/SNP
2 http://www.ncbi.nlm.nih.gov/entrez
3 http://www.ncbi.nlm.nih.gov/blast/index.shtml
4 http://snp500cancer.nci.nih.gov/home 1.cfm
5 http://pga.gs.washington.edu/
6 http://blocks.fhcrc.org/sift/SIFT.html
7 http://www.bind.ca
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Our evaluation has three parts. First, we compare our production rule algorithm with
two other algorithms. Second, we show that enlarging the target space improves the
performance of our system significantly. Finally, we evaluate the scalability of our sys-
tem with respect to the number of databases and the number of query terms. In all our
experiments, the three scaling parameters are set as follows: α = 0.5, β = 0.3 and
γ = 0.2.

In comparing planning algorithms or evaluating the impact of an optimization, we
use two metrics, which are the mumber of databases involved in the query plan and
the actual execution time for the query plan. We consider a query plan to be good if
it can cover all user requested terms using as few databases as possible. A query plan
that involves more databases tends to query redundant databases, and cause additional
system workload.

4.2 Comparison of Three Planning Algorithms

We compare our Production Rule Algorithm (PRA) with two other algorithms, which
are the Naive Algorithm (NA) and the Optimal Algorithm (OA).

Naive Algorithm: As the name suggests, this algorithm does query planning in a naive
way. The algorithm selects all production rules which can be queried at each round,
until all keywords are covered. This algorithm can quickly find a query plan, but the
query plan is likely to have a very low score and a long execution time.

Optimal Algorithm: This algorithm searches the entire space to find the optimal query
plan. Because we only had 8 databases for our experiments, we could manually deter-
mine the optimal query plan for each query. Such a plan is determined based on the
number of databases involved in the query plan and the expected response time of the
databases involved. This means that the optimal query plan has the smallest estimated
execution time, though the measured execution time may not necessarily be the lowest
of all plans.

In Figure 2, sub-figures (1a) and (1b) show the the comparison between PRA and
NA. In sub-figure (1a), the diamonds are the ratios between the execution time of the
query plans generated by PRA and NA, annotated as ETRatio. We can see that all di-
amonds are located below the ratio = 1 line, which implies that for each of the 30
queries, the query plan generated by production rule algorithm has a lesser execution
time than that of the plan generated by naive algorithm. In the sub-figure (1b), the rect-
angles are the ratios of the number of databases involved in the query plan generated by
PRA and NA, denoted as DRatio. We observe that the same pattern, i.e. the query plans
generated by the production rule algorithm use fewer data sources.

Sub-figures (2a) and (2b) show the the comparison between PRA and OA. From the
sub-figure (2a), we can observe that all the diamonds are distributed closely around the
ratio = 1 line. This shows that in terms of the execution time of generated query plans,
the production rule algorithm has close to the optimal performance. We also observe
from the sub-figure (2b) that in terms of the number of databases involved in query
plans, the production rule algorithm obtains the optimal result, with an exception of
query 11. We examined the query plans generated by PRA, and found that most of the
query plans are exactly the same as the optimal query plans. For other cases, we note
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(1a) (1b)

(2a) (2b)

Fig. 2. Comparison among PRA, NA and OA: (1a) Comparison between PRA and NA on Plan
Execution Time; (1b) Comparison between PRA and NA on Plan Length;(2a) Comparison be-
tween PRA and OA on Plan Execution Time;(2b) Comparison between PRA and OA on Plan
Length

that the optimal algorithm uses some databases with lower response time. However, this
did not necessarily result in lower actual execution time. We can see from the sub-figure
(2a) that some of the execution time with PRA are actually smaller than the execution
times of the plans generated by the optimal algorithm.

4.3 Impact of Enlarging Target Space

In this experiment, we compare the number of databases involved and the execution
time for different query plans generated using the system without enlarging target space
and the system with enlarged target space. We select 8 queries which contains many
terms with database necessity value smaller than 1, because these query plan results
can better show the usefulness of enlarging the target space. The results are shown in
Figure 3.

We have the following observations. From the sub-figure (a) in Figure 3, we can
observe that the number of databases involved for most of the query plans is much
shorter for the enhanced system than that of the system without enhancement. From
the sub-figure (b) in Figure 3, we can also observe that the execution time reduces
very significantly for the enhanced system. The above results show that enlarging target
space can effectively improve our system to generate query plans with fewer databases
and less execution time.
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(a) (b)

Fig. 3. System Enhancement Test: (a) Comparison of Number of Databases Involved; (b) Com-
parison of Execution Time

(a) (b)

Fig. 4. System Scalability Test: (a) System Scalability with respect to Number of Databases In-
volved; (b) System Scalability with respect to Number of Terms in Queries

4.4 Scalability of Production Rule Algorithm

Our last experiment evaluated how the query planning time scales with increasing num-
ber of databases and query terms. From Figure 4, in sub-figure (a), we can observe that
in terms of the average planning time, there is a sharp increase in going from 2 data
sources to 4 data sources. Then, the planning time increases only moderately with re-
spect to the increase in the number of data sources. In the sub-figure (b), we can see
that the average planning time increases very slowly with the increase in the number of
terms in the queries. This shows that our system has good scalability.

5 Related Work

We now compare our work with existing work on query planning, deep web mining,
and keyword search on relational databases.

Query Planning: There are a number of research efforts on query planning. Raschid
and co-workers have developed a navigational-based query planning strategy for mining
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biological data sources [5,21,22,23,28,36]. They build a source graph representing inte-
grated biological databases and an object graph representing biological objects in each
database. The navigational links (hyperlink) between the database objects are assumed
to be pre-fetched. Extending their work [23, 28], they allowed each physical link to
carry a semantic meaning to enhance their algorithm. The key differences in our work
are as follows. First, we focus on deep web database dependencies, not the physical
links between database objects. Further, in their work, a user query needs to specify
source and target databases.

A lot of work has been done in SQL-based query planning [1,12,18,26,32]. In [18],
new SQL operators were introduced to reduce repetitive and unnecessary computations
in query planning. In [12, 26], a set of pre-defined plans were represented in the form
of grammar production rules. For a SQL query, the algorithm first built plans to access
individual tables, and then repeatedly refered grammar rules to join plans that were
generated earlier. Other work has focused on query planning using database views and
multiple databases sharing the same relational schema [1, 32].

Much work on query planning is based on the well known Bucket Algorithm [10,
11, 17, 24, 25, 29, 30]. In the above work, they assume that the user query specifies the
databases or relations need to be queried, and the task of the work is to find a query
order among the specified relations or databases. Based on user specified relations or
sub-goals, a bucket is built containing all the databases which can answer the corre-
sponding sub-goal. But in our work, the user query only contains keyword and will not
specify any databases or relations of interest. Our system selects the best data sources
automatically, i.e. our system figure out sub-goals by itself. At the same time, query
planning is performed.

In [35], a query planning algorithm minimizes the query’s total running time by opti-
mally exploits parallelism among web services. The main difference between our work
and theirs is, they assume that one attribute can only be provided by exactly one data
source which is a unrealistic assumption in real application, but we allow the present of
data redundancy.

Deep Web Mining: Lately, there has been a lot of work on mining useful informa-
tion from the deep web [6, 7, 14, 15, 19, 31, 38]. In [19], a database selection algorithm
based on attribute co-occurrence graph was proposed. In [31], Nie et al. proposed an
object-level vertical searching mechanism to handle the disadvantages of document-
level retrieval. QUIC [38] was a mining system supporting imprecise queries over in-
complete autonomous databases. In [14, 7, 6], Chang et al proposed an E-commerce
domain deep web mining tool MetaQuerier. MetaQuerier translated user query into
several local queries by schema matching. WISE-Integrator [15] was another deep web
mining tool similar to MetaQuerier. The key difference in our work is that none of the
above systems consider database dependencies.

Keyword Search on Relational Databases: Recently, providing keyword based search
over relational databases has attracted a lot of attention [2,4,16,33]. The major technical
issue here is to efficiently search several keywords which co-occur in the same row, in
a table obtained by joining multiple tables or even databases together, and rank them
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based on different measures. In addition, the keywords may appear in any attribute or
column. This is very different from the problem studied in this paper.

Select-Project-Join Query Optimization: There has been extensive work in query
optimization, especially SPJ type query optimization since the early 1970s [8]. A query
optimizer needs to generate an efficient execution plan for the given SQL query from a
space of possible plans based on a cost estimation technique which is used to measure
the cost of each plan in the search space. Our work has some similarities with the above
research efforts in that we both do selection as earlier as possible. Two major differences
between our work and SPJ query optimization are as follows. First, in traditional query
optimization, any join-order is allowed, but for our work, due to deep web properties,
the allowable join operations are restricted. Second, in traditional databases, redundant
columns seldom occur, so it is impossible to have options to take one project or column
from several alternative databases, but redundant data exists in our deep web databases,
and we can take different paths. As pointed out above, our problem is different from
traditional SPJ query and new techniques are needed.

6 Conclusion

In this paper, we formulated and solved the query planning and optimization problem
for deep web databases with dependencies. We have developed a dynamic query plan-
ner with an approximation algorithm with a provable approximation ratio of 1/2. We
have also developed cost models to guide the planner. The query planner automatically
selects best sub-goals on-the-fly. The K query plans generated by the planner can pro-
vide alternative plans when the optimal one is not feasible. Our experiments show that
the cost model for query planning is effective. Despite using an approximate algorithm,
our planning algorithm outperforms the naive planning algorithm, and obtains the op-
timal query plans for most experimental queries in terms of both number of databases
involved and actual execution time. We also show that our system has good scalability.
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Abstract. Much real data consists of more than one dimension, such as financial
transactions (eg, price × volume) and IP network flows (eg, duration × num-
Bytes), and capture relationships between the variables. For a single dimension,
quantiles are intuitive and robust descriptors. Processing and analyzing such data,
particularly in data warehouse or data streaming settings, requires similarly ro-
bust and informative statistical descriptors that go beyond one-dimension. Apply-
ing quantile methods to summarize a multidimensional distribution along only
singleton attributes ignores the rich dependence amongst the variables.

In this paper, we present new skyline-based statistical descriptors for capturing
the distributions over pairs of dimensions. They generalize the notion of quantiles
in the individual dimensions, and also incorporate properties of the joint distri-
bution. We introduce φ-quantours and α-radials, which are skyline points over
subsets of the data, and propose (φ,α)-quantiles, found from the union of these
skylines, as statistical descriptors of two-dimensional distributions. We present
efficient online algorithms for tracking (φ, α)-quantiles on two-dimensional
streams using guaranteed small space. We identify the principal properties of the
proposed descriptors and perform extensive experiments with synthetic and real
IP traffic data to study the efficiency of our proposed algorithms.

1 Introduction

Much of the data in warehouses and streams contains multiple attributes (those at-
tributes typically having skewed distributions), and analysis of such data often calls
for summarizing relationships between attributes via robust statistical descriptors.
Quantiles (e.g., percentiles), applied to singleton attributes independently, are more de-
scriptive than just the median, which are in turn more robust than the mean. However,
quantiles ignore the rich dependencies that can exist between attributes. In particular, it
is important to understand the trade-offs between attribute value combinations as well
as comparisons between data points exhibiting similar trade-offs.

Example. The American College Board measures academic performance using the SAT
standardized test, which historically consisted of both math and verbal sections, and
scores for each are sent to prospective colleges. Each section on its own is a nar-
row indicator of overall scholastic aptitude (e.g., a student with a top score on the

B. Ludäscher and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, pp. 42–60, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Summarizing Two-Dimensional Data with Skyline-Based Statistical Descriptors 43

math section may have weak verbal skills). Knowing percentiles for sections inde-
pendently does not reveal the overall dominance of a student. E.g. if 10% of students
scored above 1300 on the math section and 10% scored above 1200 on verbal, it does

ve
rb

al
 s

co
re

math score

0.5-radial
0.9-quantour

Fig. 1. Radials and quantours on SAT data

not imply that 10% of students si-
multaneously achieved these scores
on both sections. Ideally, one would
like to summarize the distribution
of scores having (roughly) the same
sectional percentile ratio. So it will
be useful to answer questions such
as, “Which students ranked equiva-
lently as well on the math and ver-
bal sections?” Figure 1 depicts such
scores, labeled “0.5-radial” (explained
later), using SAT scores for 2244 col-
leges.1 Many schools seek balanced
candidates; some (e.g., Caltech) have a
preference for mathematical prowess over verbal proficiency. Hence, it is useful to
understand the trade-offs between score combinations. Another example question is,
“Which math and verbal score combinations dominate (on both math and verbal scores)
90% of students?” Figure 1 depicts these scores as the curve labeled “0.9-quantour” on
the same data. Using both notions one can obtain the “(0.9, 0.5)-quantile”: the student
dominating 90% of all students and amongst balanced students (along the 0.5-radial);
or, equivalently, the balanced student amongst students with 90% dominance (along the
0.9-quantour). ��

Other examples of 2D data analysis arise in the context of flow size distributions within
network service providers (where size is measured in both bytes and duration), and fi-
nancial transactions (price and volume). The outstanding question is how to define and
develop such descriptors for multidimensional data. Such a descriptor should reflect the
joint distribution while being composed solely of a representative subset of the data
points (which can serve as example records). Furthermore, any given input parameter
vector should identify a single point in the distribution (though these mappings need
not be unique), so that a range of parameter values yields a fixed number of points.
Quantiles provide a simple and robust point descriptors of an arbitrary one-dimensional
data set (i.e., distribution). But in many problems, such as indexing, going from one di-
mension to two induces many new difficulties, both conceptual (what are suitable space
partitioning techniques in two dimensions?) and technical (how to define the problem
declaratively and find a solution efficiently?). To provide an analogous description of
multi-dimensional data, several approaches have been considered in the Statistics and
Database literature, the three most popular of which are:

– Quantile-quantile (QQ) plots are a well-established tool in data analysis to com-
pare two one-dimensional distributions [11]. Values from the first distribution form
the x-axis of the plot, and values from the second form the y-axis. However, this

1 http://www.ivywest.com/satscore.htm

http://www.ivywest.com/satscore.htm
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gives a fundamentally one-dimensional view: when applied to the marginals of two-
dimensional data, the resulting pairs will likely not be points from the data set. QQ
plots allow for the comparison of one-dimensional distributions but are insufficient
to give insight into the joint distribution of multidimensional data.

– Tukey proposed an “onion peeling” technique to order points based on the proxim-
ity to the “center” of a data set, which is procedurally defined based on recursively
stripping away convex hull layers to determine the contour depth of a point [22].
However, since an arbitrary number of points may exist at any given depth, points
are not uniquely identified by q, so this technique is not a point descriptor. Other
approaches, such as multidimensional equidepth histograms [19] have similar defi-
ciencies and are fundamentally ad hoc in nature.

– Lastly, the skyline operator has been proposed to determine the subset of points not
dominated by any other points (e.g., “find the skyline of cheap hotels that are close
to the beach”) [2] and have been generalized to so-called k-skybands [21], that
is, points not dominated by more than k points, typically for some small constant
k. The skyline (more generally, k-skyband) may contain an arbitrary number of
points from the data (perhaps the entire set), and is thus not a point descriptor.
Attempts to address this select a subset of the skyline based on orthogonal criteria,
rather than distributional properties, such as subspace dominance [4], additional
dimensions [12], or the number of distinct points dominated [18].

Our approach is based on computing skylines of subsets of data based on the “depth”
of the data within the points in the dataset. This depth is given by removing points
which dominate more than a fixed fraction of the whole data set, and so can access
points which are far from the traditional skyline or skybands. We are not aware of any
prior generalization of skyline queries in this way. This approach is more robust, and
functionally rather than procedurally defined (e.g., in comparison with onion peeling).

Our Approach. We introduce two orthogonal notions: the φ-dominance of a point,
which encodes the fraction of the data set dominated; and the α-skewness of a point,
which is the ratio of its rank in the y-dimension divided by the sum of its ranks in x
and y dimensions. We also introduce the notion of φ-quantours (short for “quantile-
contours”), which is a set of points that dominate at most a φ-fraction of the multi-
dimensional points; and the notion of α-radials, which are a set of points having an
aspect ratio at most α in their marginal ranks. A point in the data set is uniquely identi-
fied by supplying values of φ and α. Together, we study the notion of (φ, α)-quantiles
where points satisfy both α-radial as well as φ-quantour properties; thus they simulta-
neously capture the notion of being quantiles in each of the dimensions as well as in
the joint distribution. They generalize the notion of skylines and provide clearly defined
point descriptors in multiple dimensions. Parameters φ and α are reminiscent of polar
coordinates but applied on order statistics rather than values.

Our Contributions. This paper consists of two parts.

– In the first part of the paper, we introduce φ-quantours, α-radials, and (φ, α)-
quantiles as suitable descriptors of multidimensional distributions and describe
a simple algorithm for computing them offline; We analyze these properties and
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illustrate their use in understanding the “local” structure (Section 2) with respect to
the overall joint distribution.

– Motivated by the utility of (φ, α)-quantiles to understand a distribution, in the second
part of the paper we present small-space algorithms for estimating φ-dominance and
α-skewness at streaming speeds, with provable guarantees. While tracking (φ, α)-
quantile points over a stream history may be useful for some applications, in many
streaming scenarios only newly-arriving points can be acted upon (e.g., due to time
criticality). Thus, the online problem we study is the following. Given a range of
φ-dominance and α-skewness that are of interest (perhaps obtained by offline dis-
tributional analysis described in the first part), the (φ, α)-values of incoming points
are monitored for matches. For example, if an incoming IP flow record exhibits high
α-skew at high φ-dominance with respect to respective packet and byte counts, it
may be a candidate for more thorough inspection.

Our algorithms take a stream of points in two dimensions and create com-
pact summaries that can answer such (φ, α)-quantile queries accurately. We derive
these algorithms by constructing a variety of novel combinations of algorithms for
quantiles in one dimension, building on prior work. We consider three fundamen-
tal approaches to building these combinations: the cross-product approach, the
deferred-merge approach and the eager-merge approach. Each of these has differ-
ent properties in terms of the space required and the amortized cost per point in
the stream. From the viewpoint of real life applications, our methods are able to
process more than a hundred thousand flows a second when monitoring IP flows on
the stream, and as such are suitable for large Internet Service Provider applications.

– Finally, we perform a detailed experimental study of the online algorithms, using
real IP network traffic data as well as synthetic data, to study the space and speed
efficiency of these algorithms.

2 Preliminaries

We formally define quantile concepts and problems in two dimensions. We first state
the definition of quantiles in one dimension, then show how these can extend to higher
dimensions. In one dimension, we consider an input of N items. If we sort the input,
and pick out a which is the ith in the sorted order, we say that the rank of a, rank(a), is
i; alternatively, a dominates i points. Given an item a (which may or may not be present
in the input), its rank is its position within the sorted input.2 Throughout we use ε to
denote the permitted tolerance for error. A one-dimensional quantile query is, given φ,
and an error tolerance ε to return a so (φ − ε)N ≤ rank(a) ≤ (φ + ε)N . E.g. finding
the median corresponds to querying for the φ = 1

2 -quantile. We also make use of the
stronger error guarantee that is the “biased” quantiles requirement which asks to find a
so that rank(a) ∈ (1 ± ε)φN [7].

Problem Definition and Discussion. In two dimensions, there is no longer a unique
single descriptor of the dominance relationships of the points. The input consists of
a stream of items: now these items are points in 2-dimensional space, drawn from a

2 Hence the rank of an item which appears multiple times in the input is a range of positions
where the same item occurs in the sorted input.



46 G. Cormode et al.

domain of size U , so that each coordinate is in the range [0 . . . U − 1]. Let P be the set
of N points.

Definition 1. The φ-dominance of a point p = (px, py) is the fraction φ of points from
the input that are φ-dominated by p, i.e., q ∈ P, (qx ≤ px) ∧ (qy ≤ py). Let rank(p)
be the number of points from the input q = (qx, qy) such that p φ-dominates q.3 The
φ-dominance of p, φ(p), is rank(p)/N .

This notion of dominance is reversed from traditional examples of dominance in sky-
line computations, but this does not materially affect the definition. From this, we can
define a skyline-like operator which identifies points with similar dominance that are
not themselves dominated.

Definition 2. Given a set of points P , let Pφ be the subset of points such that Pφ =
{p ∈ P |φ(p) ≤ φ}. Define the φ-dominance quantile contour, or φ-quantour for short,
as the skyline of Pφ using the φ-dominance relation.

Thus the φ-quantour selects those points such that their dominance is at most φ, and
they are not dominated by any other points with dominance at most φ. This definition
is carefully chosen so that it is well defined for any 1

N ≤ φ ≤ 1. When φ = 1, this
maximal quantour “touches the sky”, that is, it is identical to the standard skyline.

Definition 3. Given a point p, we define its α-skewness as α(p) = ranky(p)/
(rankx(p) + ranky(p)).4 Intuitively, this shows how skewed this point is in terms of
the ordering of its two dimensions. We similarly set Pα to be the subset of points such
that Pα = {p ∈ P |α(p) ≤ α}. We say a point p α-dominates q if py > qy and px < qx

(and hence α(p) > α(q)). We define an α-radial based on Pα, as the skyline of Pα,
using the α-dominance relation.

Our definition of α means every point has 0 < α < 1. Intuitively, α = 1
2 is ‘balanced’

between x and y dimensions. If we reflect all points in the line y = x to generate a new
point set P r = {pr = (py, px)|(px, py) ∈ P}, then the new α(pr) = 1−α(p), showing
the symmetry of the definition. Our notions of φ-dominance and α-dominance are chosen
to ensure that, given any two points p and q, either one φ-dominates the other, or one α-
dominates the other. From studying the definitions, the dominating point will be the one
with maximum y value; if they share the same y value, then it is the one with the greater
x value. Thus we can combine these two notions and define a unique point estimator.

Definition 4. We define the (φ, α)-quantile as follows: we take the skyline of Pφ ∩
Pα based on φ-dominance and take the skyline of the result with α-dominance. What
remains is defined to be the (φ, α) quantile.

Example. Our two-dimensional definitions are illustrated in Figure 2 (points from
the same quantours and radials are connected by line segments for illumination). It
shows a set of 20 points in two dimensions. For each point we show its (φ, α) value:

3 Technically, the rank of a point can be a range when points from the input share the same
coordinates. For simplicity of presentation, we avoid further discussion of this issue and treat
rank as if it gives a single value (our results hold when it is a range).

4 Hence the α-skewness is a range for points having an x- or y-value that appears multiple times
in the input; again, we treat α as a unique value for simplicity of presentation.
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Fig. 2. Sample data set with (φ, α) values for
each point shown along with φ-quantours and
α-radials for φ = 1
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the point marked p with (φ, α) =
(0.4, 13/23) φ-dominates 8 points (includ-
ing itself), and has ranky = 13 and
rankx = 10, and so has φ = 0.4 and
α = 13/23. It falls on the intersection of
φ = 0.5 quantour and the α = 2

3 radial, and
therefore is the unique (0.5, 2

3 ) quantile.
For the (0.5, 0.5) quantile, there are sev-

eral possible points that have (φ ≤ 0.5, α
≤ 0.5): these are Pα ∩ Pφ = {(0.05, 1/2),
(0.1, 3/8), (0.1, 2/9), (0.25, 2/5),
(0.2, 3/16), (0.35, 2/7), (0.35, 10/21),
(0.45, 9/26)}. However, the unique point q
at (0.35, 10/21) either φ-dominates or α-
dominates every other point in Pα ∩ Pφ,
and is therefore the (0.5, 0.5) quantile. As
noted next, this is the point with the great-
est y rank amongst the set which obey
the (φ, α) predicates, and it falls on the
α = 0.5-radial. ��

Properties of (φ, α)-quantiles, φ-quantours and α-radials. One can readily verify
the following statements:

1. A unique point from the input is found. This follows since, after taking the φ-
dominance skyline, we obtain a set of points such that no pair is comparable under
φ-dominance. Thus, they must all be comparable under α-dominance, and hence there
is a unique maximal point.
2. The order of the taking the φ-dominance skyline and the α-dominance skyline is
unimportant. Moreover, the unique point that is returned is the point in Pφ ∩ Pα which
has the greatest y value and, if more than one has this y value, the one amongst them
with the greatest x value.
3. The returned point lies on the α-radial or the φ-quantour, or possibly both if they
intersect. When the maximal points on the α-radial and φ-quantour have differing y-
values, then the (φ, α)-quantile is guaranteed to be on the α-radial.
4. For any two input points p, q, we have φ(p) = φ(q) ∧ α(p) = α(q) ⇔ p = q. In
other words, all distinct input points have distinct (φ, α) values. This is seen by observ-
ing that if two points share the same α-value then one must φ-dominate the other. So p
is the (φ(p), α(p))-quantile.

Thus we have a robust definition which selects a unique point p from the input having
α(p) ≤ α and φ(p) ≤ φ.

Exact Algorithm. We note that one can compute (φ, α) quantiles with similar time cost
to computing quantiles in one dimension. We omit the details for brevity; the main idea is
to scan the data in an appropriate order, and track certain information to rapidly compute
the φ-dominance of a point. The result we claim is that given O(N log N) preprocessing,
we can find the (φ, α)-quantiles (in two-dimensions) in time O(N) per query.
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(a) Uniform Data (b) Skewed Data (c) Correlated data (d) Anti-correlated data

(e) Correl-Unif-Correl (f) Unif-Correl-Unif (g) SNMP data (h) Flow data

Fig. 3. Radials and quantours on synthetic and real data

Other Dimensionalities. Note that in one-dimension, where the notion of α does not
apply, this definition naturally collapses back to the familiar definition of φ-quantiles.
We can also generalize these definitions to higher dimensions: the same notion of φ
and φ-dominance translate immediately. One can also define d − 1 new α-dominances
between the d dimensions: let ranki(p) denote the rank of the projection of p on the
ith dimension of d dimensions. We define αi(p) = ranki(p)/

∑d
j=1 rankj(p). Thus,

we have
∑d

i=1 αi(p) = 1, and in two dimensions we recover our original definition.
Since our focus is primarily on the two-dimensional case we will only briefly mention
extensions to higher dimensions later.

Nature of φ-Quantours and α-Radials. Figure 3 plots the φ-quantours, α-radials
and (φ, α) quantiles of several synthetic data sets, for φ ∈ {0.1, ..., 0.9} and α ∈
{0.1, ..., 0.9}. Comparing Figure 3(b) with Figure 3(a) demonstrates how skew affects
the angles between radials, causing them to diverge when both x and y have higher skew.
In Figure 3(c), every point p has α(p) = 0.5, effectively collapsing to 1D quantiles. In
Figure 3(d), every point p has φ(p) = 1

N (i.e., every point is on the skyline), effectively
collapsing to 1D quantiles along the skyline. Figures 3(e) and 3(f) demonstrate how
(φ, α) quantiles follow the “shape” of a point cloud on hybrid data sets having (and
lacking) regional correlations. In Figure 3(f), the reason why only points above the di-
agonal merge into the diagonal is due to the definition forcing α-radial points p to have
α(p) ≤ α.

(a) Correl-Unif-Correl (b) Flow data

Fig. 4. Depth contours on synthetic & real data

Figures 3(g) and 3(h) give examples
of quantours and radials of real data sets,
plotted in log-log scales. In Figure 3(g),
which plots outbound versus inbound
traffic volumes, the correlation varies by
region of the plot, as indicated by how
the radials “bend inwards”: at low values
there is high correlation (acute quantour
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angles), at medium values low correlation (obtuse angles), and at high values again
high correlation (acute angles). Compare this with Figures 3(a) and 3(b), where there
is no correlation between x and y. Hence, inbound and outbound traffic is balanced for
medium traffic levels, but the traffic parity doesn’t remain when the throughput in ei-
ther direction is too large or small. In Figure 3(h), which plots flow sizes in bytes versus
packets, the distributions of both attributes are skewed, as indicated by the divergence
of the radials away from the center. The curvature of the 0.5-radial shows that the rela-
tionship between packets and bytes is different for small “balanced” flows than larger
ones, perhaps indicating distinct application types. For contrast, Figure 4 shows the data
from Figures 3(e) and 3(h) plotted with depth contours. We argue that these plots are
less informative, and more idiosyncratic, than the quantour/radial plots: Figure 4 is un-
able to capture the local information as well as Figure 3(e) and 3(h). Quantile-quantile
plots are also unsuitable for these examples: Figures 3(a), 3(c), 3(e) and 3(f), all have
the same set of x and y values, and so would be indistinguishable in a QQ-plot.

3 Streaming Algorithms

We now define and solve approximate versions of the problem which will allow us
to reduce the amount of space required to answer them. While in one dimension it is
possible to give relative error (1 ± ε) estimates of φ-dominance, the same is not true in
higher dimensions (we omit the formal information theoretic proof for brevity). Instead,
we formalize the requirements as:

Definition 5. Given a stream of data points in two dimensions, the approximate (φ, α)
quantile problem is to process the stream so that, given any point p, we return an ap-
proximation (φ̂(p), α̂(p)) satisfying:

φ(p) − ε ≤ φ̂(p) ≤ φ(p) + ε and (1 − ε)α(p) ≤ α̂(p) ≤ (1 + ε)α(p).

This allows the accurate estimation of φ and α values for any point, whether in the input
data, or not (e.g. answering “what if” queries, such as how a particular flow would rank
amongst the recently observed data). We can draw sample points from the input as
quantile points, since our algorithms keep track of a representative set of input points.

3.1 Algorithmic Approach

We provide a selection of algorithms to solve the above approximate problem over
streaming data. We separate the two key components of the approximate (φ, α) quan-
tile problem: estimating α values and estimating φ values. Estimating α is relatively
straightforward, since it can be found by combining independent estimations of one
dimensional quantiles with appropriate guarantees. Thus, the bulk of our challenge
comes in estimating φ-dominance of points. Our approach uses techniques from the
one-dimensional problem to summarize the two-dimensional data by dividing the data
on each axis. We propose three classes of algorithms for combining one-dimensional
summaries in order to compute (φ, α)-quantiles. These include some algorithms previ-
ously proposed for the related but distinct problem of computing rank queries in two-
dimensions. Here, we provide a more general framework and demonstrate the different
combinations that are possible to combine to form other examples of such classes.
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The two-dimensional algorithms retain a subset of points from the input, and addi-
tional information to allow the estimation of φ and α values of points. We primarily
consider algorithms which support several operations: INSERT(x), which takes a new
value x ∈ [0 . . . U − 1] and updates the summary accordingly; φ̂(q) which returns the
approximate φ-dominance of point q; α̂(q) which returns the approximate α-dominance
of point q; and COMPRESS, which compacts the data structure.

3.2 Properties of One-Dimensional Algorithms

We first summarize some of the properties of one-dimensional quantile summary algo-
rithms that we use as the building blocks of our two-dimensional algorithms—note that
not all algorithms have all properties, which affects which combinations are possible.

– Mergable: an algorithm is considered (strongly) mergable if two summaries of dif-
ferent inputs can be combined to create a summary of the union of the two inputs.
Our focus is on summaries that can be merged arbitrarily many times and still retain
the same asymptotic space bounds. Other summaries are weakly mergable, in that
their output can be merged to answer a query on the union of their inputs, but there
is no guarantee that the size of the merged summary is less than the sum of sizes of
the original summaries.

– Compressing: a quantile algorithm is compressing if it stores items from the input
and, when the size of the summary is being reduced, tuples are compressed together
by summing the counts of particular items or ranges from the input.

– Hierarchical: a quantile algorithm is hierarchical if it follows a pre-determined,
hierarchical approach to merging: a tree-structure is placed over the domain, and
merges only occur between child nodes and their parent.

We briefly outline existing “sample-based” algorithms (which maintain summaries
based on selecting points from the stream):

– The Greenwald-Khanna algorithm (GK) [13] retains a set of tuples consisting of an
item from the input, a count of how many items have been merged into that tuple,
and an upper bound on the rank of the item.

– The Quantile Digest algorithm (QD) [25] retains a set of tuples, where each tuple
consists of an item or (dyadic) range of items from the input and a count of how
many items have been merged into that tuple.

– Biased Quantiles (BQ) [7] uses Quantile Digest-like data structure with different
manipulation routines to estimate the dominance of a point with stronger relative
error guarantees, with slightly higher space usage.

QD and BQ do not by default retain points from the input. But it is straightforward to
augment them to do so: for every tuple that relates to a range of items, we additionally
keep some point from the input that fell in that range, and merge these appropriately.
Figure 5 lists the key properties of these algorithms. Randomized methods, such as
random sampling, can give similar guarantees, but our focus is on stronger deterministic
guarantees, so we do not discuss these. Each of the algorithms we do consider allows
us to 1DINSERT a new item, 1DCOMPRESS the structure to compact the size to its
theoretical bounds, and 1DQUERY to find the approximate rank of a point.
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Method Space cost Update time Compressing Mergability Hierarchical
GK [13] O( 1

ε
log εN) O(log( 1

ε
log εN)) Yes Weakly No

QD [25] O( 1
ε
log U) O(log log U) Yes Strongly Yes

BQ [7] O( 1
ε
log U log εN) O(log log U) No Strongly Yes

Fig. 5. Properties of one-dimensional quantile summary algorithms

Using 1D algorithms to approximate α. Computing α(p) can be carried out with
relative error in small space:

Theorem 1. Using space O(1
ε log U log εN), we can take any point q and compute an

approximation α̂(q) such that (1 − ε)α(q) ≤ α̂(q) ≤ (1 + ε)α(q).

Proof. Recall that α(q) = ranky(q)/(rankx(q) + ranky(q)). By maintaining a biased
quantile data summary (BQ) on the x-values and y-values of points independently, we
can approximate rankx and ranky with r̂x and r̂y such that (1−ε) rankx(q) ≤ r̂x(q) ≤
(1 + ε) rankx(q) and (1 − ε) ranky(q) ≤ r̂y(q) ≤ (1 + ε) ranky(q). Thus, finding
α̂(q) = r̂y(q)/(r̂x(q) + r̂y(q)) ensures that the relative error is between 1−ε

1+ε ≥ 1 − 2ε,
and 1+ε

1−ε ≤ 1 + 3ε, for ε ≤ 1
3 . We rescale ε by a factor 3, which does not affect the

asymptotic space costs of the BQ summary, whose space bounds follow from [7].

The next three sections outline three classes of algorithms, and for each give sample
instantiations based on combining appropriate one-dimensional algorithms from the
list above. For reasons of brevity, we do not give complete proofs of all properties of
the algorithms in this presentation, but instead provide an outline of why they hold. The
main properties of each algorithm are summarized in Figure 6.

Type Instance Space Amortized time φ̂-query time

Cross-product GK×GK O( log2 εN

ε2
) O( log εN

ε
) O( log2 εN

ε2
)

Deferred-merge GK ×QD O( log U log εN

ε2
) O(log log U

ε
) O( log U log εN

ε2
)

Eager-merge QD×QD O( log3 U

ε
) O(log U log log U) O( log3 U

ε
)

Fig. 6. Comparison of bounds for different instantiations of two-dimensional data structures

3.3 Cross-Product Algorithms

Our first approach to tracking quantile information in multiple dimensions is the cross-
product approach, based on keeping one-dimensional compressing sample-based sum-
maries on each dimension independently.

Update Processing in Cross-Product. Each 1D summary consists of a set of items
and ranges from each dimension, and we maintain information about the cross-product
across dimensions: if we keep information on a set X of points or ranges from the x-
dimension, and a set Y on the y-dimension, then we will maintain information on the
Cartesian product X × Y . For each cell in this cross-product, we maintain a count of
the number of input items associated with the cell, and a point from the input that falls
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in the cell, if the count is non-zero. The counts must satisfy the property that summing
the counts of all cells within a rectangle gives a lower bound on the number of input
points within that rectangle.

Periodically, a 1DCOMPRESS operation is run on first X and then Y . When the 1D
algorithm merges two tuples together, the corresponding cells from X × Y are also
merged. The count of the merged cell is the sum of the counts of the cells which went
to form it. The retained point is chosen arbitrarily from the points of the merged cells.
When INSERT is run on a new point p = (px, py), we update X × Y accordingly to
reflect the changes from the insertion to X and Y . Typically, this means inserting px

into X and py into Y , so we update X × Y with {px} × Y , X × {py} and (px, py).
We set the count (px, py) = 1 (if (px, py) already exists in X × Y , we increment its
count) and the count of all other new cells to zero (if they already exist, we leave them
unchanged).

Estimation and Accuracy on Cross-Product. In order to compute φ̂(q), we compute
the count of all cells dominated by q. The approximation error in our response comes
because q may fall within a cell: all cells below and to the left of q contain points that
are strictly dominated by q, and all cells above or to the right contain points that are not
dominated by q; this leaves the cells containing the x-value of q, and the cells contain-
ing the y-value of q. The properties of the one-dimensional structures ensure that this
uncertainty is limited to εN . The space used by this algorithm depends on the product
of the sizes of the one-dimensional summary structures used. Various combinations are
possible: GK×GK, QD×QD (which was considered in [26]) or even GK×QD.

Instantiation: Cross-product with GK×GK . Since the GK algorithm typically at-
tains the best space usage on one-dimensional data, it is expected that GK×GK will
attain the best space usage of the cross-product algorithms. The space bounds follow
from [26], and restated here along with our improved time bounds. Asymptotically, the
space usage of GK×GK is bounded by O( 1

ε2 log2(εN)). The time cost of all cross-
product algorithms can be somewhat high. For efficiency, rather than explicitly materi-
alizing all cells, our idea is to use a hash table to store only those cells (x, y) in the grid
that have a non-zero count. GK (along with other one-dimensional algorithms) adds a
new item to the data structure for each INSERT operation. In two dimensions this adds
O(1

ε log(εN)) new cells, but by using the hash table approach, we only have to do O(1)
operations since only a single new cell is created with a non-zero count. COMPRESS

requires time linear in the (worst case) size of the data structure, O( 1
ε2 log2(εN)): it

consists of compressing each of the one-dimensional data structures independently,
and when they merge two of their tuples, merging together the cells associated with
those rows/columns. Merging a row takes time linear in its size, and compressing each
1D data structure also takes linear time, so the total time cost of COMPRESS is worst
case bounded by the size of the data structure. By performing COMPRESS after every
O(1

ε log(εN)) INSERT operations, the space bounds are preserved, while the amortized

time cost is O(1
ε log(εN)) per update. The time to compute φ̂(p) is at most linear in the

size of the data structure, and to compute the φ̂ of every stored point at most logarith-
mically longer in the size of the data structure, using the exact algorithm of Section 2.
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3.4 Deferred-Merge Algorithms

Our next approach fixes an ordering on the dimensions, and runs a compressing al-
gorithm on the primary (x) dimension with uniform guarantee εx. It runs multiple
instances of (strongly) mergable algorithms on the secondary (y) dimension with pa-
rameter εy. Dominance queries require the merging of multiple secondary data struc-
tures to answer, but we defer this merging to query time, hence “deferred-merge”. So
for the primary axis, we can use either GK or QD; for the secondary axis, we can use
QD because of its mergable properties.

Update Processing in Deferred-Merge. For each input point p, we first 1DINSERT

px into the compressing algorithm on the x-dimension. Instead of just keeping a count
of the number of items retained in each tuple, we also keep a second one-dimensional
quantile data structure that summarizes the y-values of all points that are summarized in
the tuple. So after finding the data structure tuple to insert px into, we insert py into its
associated summary. For compression of the data structure, we first run 1DCOMPRESS

on the one-dimensional summary of x-values. If we merge tuples in this structure, then
we also merge together their summaries of y-values and 1DCOMPRESS the result.

Estimation and Accuracy on Deferred-Merge. In order to approximate φ(q), we can
query qx to find the summary containing qx, and then merge together all summaries
of y-values to the left of this, and query the resulting merge structure with qy . The
approximation error from this approach comes from two sources: uncertainty due to the
querying on x-values, and uncertainty on y-values. The guarantees of the summaries
on x-values ensure that the uncertainty is at most εxN points; similarly, posing a query
to the merged summary of y-values gives a guarantee depending on εy. In order to get
the required accuracy bounds, we set the parameters εx and εy less than or equal to
ε
2 , giving accuracy εN or better for each query. Consequently, this algorithm solves
the approximate (φ, α) quantiles problem. Lastly, we observe that the space bound of
merge-based algorithms is at most the product of the space bounds of the algorithms
on each axis. We can instantiate the deferred merge algorithms with either GK or QD
on the primary (x) axis, but require a strongly mergable algorithm for the secondary (y)
axis, which allows us to use GK×QD or QD×QD.

Instantiation: Deferred-merge algorithm with GK×QD. GK is a compressing al-
gorithm that typically achieves the best space in 1D; QD is a mergable algorithm that
also has relatively small space cost. The worst case bound on the space needed is the
product of the space bounds: O( 1

ε2 log(εN) log U). To INSERT a new point, we first
insert the px into the GK structure, and store py along with the inserted points itself
as a QD summary of size 1. To COMPRESS the summary, we run the one-dimensional
GK-COMPRESS on the GK structure with error parameter εx = ε/2, and when two
tuples in GK are merged, we also merge their corresponding QD summaries (and then
run the one-dimensional QD-COMPRESS on the result with error parameter εy = ε/2).
The time to perform the compression is thus worst case bounded by time linear in the
total data structure. This can be amortized by running COMPRESS only after every O( 1

ε2

log(εN) log U) updates, which retains the asymptotic space bounds, and ensures that
the update cost is dominated by the cost of inserting into one GK structure and one
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QD structure, which is O(log(1
ε ) + log log U). The overall uncertainty in φ-dominance

queries is at most ε.
An important feature of the merge based algorithms is that the size of the data struc-

ture is never more than the size of the input, since each input point corresponds to at
most one tuple in the summary. This is in contrast to the next methods we consider,
which have the potential to represent each point multiple times during the early phases
of the algorithm.

3.5 Eager-Merge Algorithms

The class of eager-merge algorithms also combine one-dimensional algorithms. They
use a compressing hierarchical algorithm on the primary (x) axis, with uniform guaran-
tee εx. Rather than demanding that the algorithm on the secondary (y) axis be strongly
mergable (as in the deferred-merge case), they eagerly compute the results of merging
by inserting the y-dimension of each input point into a summary at each level of the
hierarchy, and (weakly) merge appropriate outputs from these structures at query time.
The first such algorithm was proposed in [14]. Here, we generalize the description, and
give details for completeness.

Update Processing In Eager-Merge. For each materialized node in the primary data
structure, we maintain a second data structure on the y-dimensional values of all points
allocated to this node or any of its descendants, with an accuracy guarantee set to ensure
accurate answers. To perform an INSERT operation on a new point, we first find the node
in the x-structure corresponding to px from the inserted point. We then 1DINSERT py

into the corresponding y-summary of that node, and also into the y-summaries of every
ancestor of the node. When we create a new node based on an input point p, we store p
along with that node. COMPRESS takes place firstly over the data structure on the x-axis,
and then on each of the data structures covering the y-axis contained within it. We run
the 1DCOMPRESS routine over the x structure and when nodes are merged, only their
associated counts are updated. The y-summaries corresponding to the deleted children
can simply be deleted: they are not merged into their parent, since during insertions, the
result of the merge is already (eagerly) computed, by ensuring that every inserted point
was put into the y-summaries of every ancestor. After deleting y-summaries, we then
perform a COMPRESS on those that remain.

Estimation and Accuracy in Eager-Merge. The product of the x and y space bounds
gives a naive space bound, but tighter bounds are obtained using the fact that each point
is represented at most once per level. We need to use a hierarchical algorithm such as
QD on the primary (x) axis, and a (weakly) mergable algorithm on the secondary axis.

Instantiation: Eager-merge algorithm with QD×QD. Our eager-merge algorithm
uses QD as the method on the first dimension, since this method is hierarchical, and
also uses QD on the second dimension. (An alternative is QD×GK, but QD×QD yields
better worst case space bounds.) Rather than using the number of points within the y-
summary as the basis of the threshold for compressing, we use a threshold based on
N , the total number of points in the data structure (the same idea was used in [14],
though we obtain different bounds due to implementation choices). This is because the
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overall error guarantee is in terms of εN , and to give a tight space bound. Within each
y-summary, we set a local error tolerance of ε

2 log U . This is chosen to ensure that when
these are summed over log U different summaries, the total error will be bounded by
ε/2.

INSERT operations take time O(log U log log U): we perform 1DINSERT opera-
tions for O(log U) nodes in the x-dimensional summary, and each of those can be
completed in time O(log log U) on the y-dimensional summaries [7]. A COMPRESS

operation takes time linear in the size of the data structure, since it reduces to run-
ning 1DCOMPRESS on multiple one-dimensional data structures, each of which takes
time linear in the size of their substructure. The amortized update time is therefore
O(log U log log U).

To answer a φ-dominance query given q, we find a set of nodes in the x structure to
query, by representing qx as a union of disjoint ranges from the hierarchy. The binary
tree structure of the QD algorithm ensures that there are at most log U nodes in this
set. For each node in the set, we query its corresponding y-summary with qy and sum
the outputs to obtain the estimate of rank(q): qx is broken into two y-summaries, one
on the first half of the horizontal span, another on the next quarter. We get an accurate
count of the number of points within the queried region: summing the accuracy bounds
over the at most log U queries gives error at most ε/2. The uncertainty due to the query
on the x-axis is also at most ε/2, from the accuracy bound on the x-data structure, so
the total error is at most ε. Since queries probe at most log U y-summaries, each in time
O(log U), the total time cost is O(log2 U) per query after a COMPRESS has updated

counts in time O( log3 U
ε ).

3.6 Comparison

We summarize the space and time bounds of various instantiations of the three dif-
ferent approaches in Figure 6. Initially, it is hard to compare them, since the relative
asymptotic cost depends on the setting of parameter ε, relative to log U . Comparing
eager-merge costs to deferred-merge, the space cost trades off roughly a factor O(1

ε )
for one of O(log U). This suggests that for very fine accuracy situations ε � 1

log U ,
the eager-merge approach will win out. Comparing cross-product to deferred-merge, it
seems possible that cross-product methods will use less space, especially since GK has
been observed to use closer to O(1

ε ) space in practice. But the amortized running time of
the deferred-merge algorithms are exponentially smaller than those of the cross-product
algorithms, which can make a big difference over high speed data streams.

In terms of query time for estimating φ-dominance, by default all methods require
a linear pass over the whole data structure to answer the query, so those with smaller
space have faster queries. But, if many queries are being computed in a batch, then the
time cost of eager-merge methods can be improved to O(log2 U) by taking advantage
of the hierarchical structure of the summary to answer queries much faster. This relies
on utilizing stored counts within the data structure that are needed by the INSERT and
COMPRESS routines. By recomputing these counts in a linear pass before each compu-
tation of φ̂(p), the running time is much reduced for each query.
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4 Experimental Results

In this section, we summarize experiments comparing the three classes of algorithms in
Section 3 for answering approximate (φ, α) estimation queries: cross-product based on
GK×GK; deferred-merge based on GK×QD; and eager-merge based on QD×QD.

In all experiments, we run all three instances with the same accuracy requirements ε
and observe how their space and time bounds vary while they provide the same accu-
racy guarantee. We report space usage in terms of the number of tuples and as a function
of the number of stream tuples that have arrived; we report performance in terms of the
throughput, that is, the number of tuples processed per second. These experiments were
run on a Linux machine with a 2.8 GHz Pentium CPU, 2 GB RAM and 512K cache.
For synthetic data, we generated random uniform data with universe size 232 on each
axis independently; we did the same with Zipfian data (skew parameter=1.3); and we
generated bivariate Gaussian data sets with varying correlation strengths. We also used
real network flow data from a router used in the AT&T Common Backbone and ob-
tained 2D data sets by projecting on the fields (numPkts, numBytes), (duration,
numBytes), and (srcIP, destIP).

In addition, we conducted experiments using a live stream of IP packet traffic mon-
itored at a local network interface. The traffic speeds varied throughout the day, with
a rate of about 200K TCP packets per second at mid-day. The stream data was moni-
tored using Gigascope, a highly optimized system for monitoring very high speed data
streams [8]. Our copy was installed on a FreeBSD machine with a dual Intel Xeon
3.2 GHz CPU and 3.75 GB RAM. The methods were implemented as User-Defined
Aggregate Functions (UDAFs) in Gigascope, as explained in [6].

Results on Real and Synthetic Data Sets. Figure 7 shows a space usage and through-
put comparison (in log scale) of the different algorithms run with ε = 0.01; Figure 8
shows the same with ε = 0.001. The algorithms were run longer (up to 10M tuples) in
Figure 8 than in Figure 7 (1M tuples), long enough so that the space usage curves can be
seen to “level off” and converge to approximately stable values. None of the algorithms

(a) Uniform data (b) Zipfian data (c) Network packets-bytes data

Fig. 7. Space usage and throughput (ε = 0.01)
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(a) Uniform data (b) Zipfian data (c) Network packets-bytes data

Fig. 8. Space usage and throughput (ε = 0.001)

was dominant in all cases. Notice that space usage and performance were not always
correlated: some cases exhibited a space-time trade-off.

Data skew affected space usage and performance: in general, there was smaller space
and faster runtime with increasing skew. Whereas the GK algorithm (in 1D) is impervi-
ous to the data values since it only cares about rank-ordering, the universe-based algo-
rithms (eg, QD) benefit from non-uniformity. This can be seen from the space usages in
Figures 7(a) and 7(b): the gap between the curves for eager-merge (based on QD) and
cross-product (based on GK) narrows significantly. Indeed, real data is often skewed, as
is the case with flow data (thought not quite as skewed as the Zipfian data set). Hence,
the space usage on this data set in Figure 7(c) was much more similar to that on Zipfian
data in Figure 7(b) than uniform data in Figure 7(a). The deferred-merge algorithm, a
hybrid of GK and QD approaches, is asymmetric: it is more efficient when the attribute
with higher skew is in the y-axis. We observed up to a factor of 5 difference in the space
used by deferred-merge by swapping the ordering of the axes.

Another relevant factor is correlation between attributes, as observed using bivariate
Gaussian data of differing covariances. This benefits the cross-product approach be-
cause, with increasing correlation, cross-product effectively becomes one-dimensional;
correlation did not have much impact on the other classes. Real data, such as flow pack-
ets and bytes, often exhibit correlations. Skew, which does not benefit cross-product but
benefits the other algorithms, appeared to be more significant in our experiments.

In the streaming scenario, throughput often trumps space efficiency.5 Therefore,
deferred-merge is the overall “safest” algorithm to use. In our experiments, it always
had higher throughput than cross-product (often 1-2 orders of magnitude) while being
competitive with respect to space usage; and it had as good or better performance than
eager-merge, with significantly better space usage. In some cases (e.g., Figure 8(a)), the

5 For example, the Gigascope high-level query processor can make use of as much RAM as
available.
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space usage of eager-merge grew so large that it exceeded the RAM size, causing the
system to thrash and resulting in abysmal throughput.

Live Packet Streams. We issued a long-running query to the Gigascope system to
maintain per-minute (φ, α)-quantiles with ε = 0.01, on our methods, over a cumulative
window of pairs of approximate flow aggregates on (numPkts, numBytes) grouped by
flow. We compared to a ‘null’ aggregate that just counts updates, which required 85%
CPU utilization. Cross-product and eager-merge could not keep up with this stream,
but the deferred-merge UDAF achieved processing rates similar to the ‘null’ aggregate
(130-140K per minute) and CPU utilization around 88%.

5 Related Work

In Statistics, there has been significant work on multidimensional quantile descriptors.
A good overview can be found in [24], with some specific approaches in [5,9,16]. How-
ever, these approaches do not yield point descriptors but algebraic curves. Quantile-
quantile (QQ) plots compare the 1D quantiles from each marginal as 2D points. Such
plots allow us to compare one-dimensional distributions, but are insufficient to give us
full insight into joint distribution of multi-dimensional data.

Similarly, in Computational Geometry, notions of median and other quantiles are
procedurally defined in terms of “depths” of point-sets and produce quantile regions
[10,15,22,23]. While this may be satisfying for visualization, such region-based quan-
tile descriptors are not point descriptors. Other descriptors such as multidimensional
equidepth histograms and one dimensional quantiles on linearized multidimensional
data are ad hoc, and have similar deficiencies.

In recent years there has been significant interest in the area of data streams, where
the space available for processing is considerably smaller than the input, which is pre-
sented in a “one-pass” fashion [1, 20]. As previously noted, there is a wealth of algo-
rithms devoted to the problem of tracking (1D) quantiles in data streams [7,13,25]. For
multidimensional data streams, prior work has been scant; it is primarily focused on
summaries such as histograms [3, 27].

Our three classes of algorithms for combining one-dimensional summaries in order
to compute (φ, α)-quantiles capture some algorithms previously proposed for the re-
lated but distinct problem of computing rank queries in two-dimensions. Algorithms
proposed in [14, 26] can be thought of as fitting into our class of “cross-product” and
“eager-merging” summaries, respectively. Here, we provide a more general framework
and demonstrate the different combinations that are possible to combine to form other
examples of such classes. We are not aware of any prior examples which demonstrate
the deferred-merging approach that we have proposed. Interestingly, it appears that this
class is often the best suited for keeping pace with high streaming data rates.

6 Conclusions

Data in warehouses and streams, such as IP traffic data, are typically multidimen-
sional, and capture relationships between multiple variables. In a variety of applica-
tions, one needs simple, statistical point descriptors of such streams. Existing methods
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use quantiles in single dimensions and therefore miss joint distributional behavior, or
give procedural or ad hoc definitions. In this paper, we propose skyline-based statistical
descriptors, and introduce φ-quantours, α-radials and, in particular (φ, α)-quantiles.
We present fast and small-space streaming algorithms for computing them approxi-
mately with guaranteed accuracy by judicious combinations of previously known one-
dimensional algorithms. We demonstrate experimentally the efficiency of computing
2D quantiles in data streams with synthetic and real data.
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Abstract. Applications requiring the handling of uncertain data have led to the
development of database management systems extending the scope of relational
databases to include uncertain (probabilistic) data as a native data type. New au-
tomatic query optimizations having the ability to estimate the cost of execution of
a given query plan, as available in existing databases, need to be developed. For
probabilistic data this involves providing selectivity estimations that can handle
multiple values for each attribute and also new query types with threshold values.
This paper presents novel selectivity estimation functions for uncertain data and
shows how these functions can be integrated into PostgreSQL to achieve query
optimization for probabilistic queries over uncertain data. The proposed methods
are able to handle both attribute- and tuple-uncertainty. Our experimental results
show that our algorithms are efficient and give good selectivity estimates with
low space-time overhead.

1 Introduction

Recently there has been a surge in interest in managing probabilistic data in relational
databases [1,2,3,4,5,6]. This interest is engendered by the needs of numerous appli-
cations including scientific data management, data integration, sensor databases, data
cleaning, text processing and location-based services. The relational database model
has very little support for uncertain data, limited to the use of NULL values. The nature
of uncertainty in many applications is such that it is necessary to store alternative values
for tuples, or attributes and process probabilistic queries over this data.

Several models have been proposed for extending the scope of relational databases
to include uncertain (probabilistic) data as a native data type. These models define new
semantics for query processing over uncertain data. The results of these queries are
typically probabilistic in nature. Since results with a low probability of occurrence are
generally less interesting than higher probability answers, an important new class of
threshold queries has been identified [7]. These queries return only those answers that
have a probability exceeding a threshold. While this thresholding weeds out less rel-
evant answers, it also opens up possibilities for query optimization. There has been
some recent work on efficient processing of threshold queries over uncertain data [8].
This work has largely focused on indexing methods to improve query performance.
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The long-term goal for several projects is the development of novel database man-
agement systems that natively handle uncertain data. An important step in this direction
is the development of automatic query optimization as is available in existing databases.
Toward this end, an essential ingredient is the ability to estimate the cost of execution
of a given query plan. For probabilistic data this would involve providing selectivity
estimates for probabilistic operators. Currently, there is no work on providing such se-
lectivity estimation functions for probabilistic data. With the availability of these esti-
mation functions it is possible to use existing query optimization techniques that are
already built into databases to handle the case of probabilistic data.

In this paper we address this problem and develop novel selectivity estimation func-
tions for uncertain data. We also show how these functions can be integrated into Post-
greSQL to achieve query optimization for probabilistic queries over uncertain data.
Selectivity estimation for uncertain data needs to handle multiple values for each at-
tribute and also novel query types with threshold values. Furthermore, an important
type of uncertainty transforms a single attribute value to a continuous distribution – this
is especially common in sensor databases [9]. The existing cost estimation methods are
therefore not applicable for this domain.

The goal of this paper is to handle selectivity estimation for the two main types
of uncertainty that have been proposed in recent work: tuple uncertainty [1,2] and at-
tribute uncertainty [7]. To demonstrate the effectiveness of our selectivity estimation
techniques, we have used an open-source database management system for uncertain
data called Orion [3] which is built into PostgreSQL.

The major contributions of this paper are as follows:

– We have developed efficient algorithms for selectivity estimation of probabilistic
threshold queries over uncertain data.

– We have implemented these algorithms in a real database system.
– Our experimental results show that the algorithms are efficient and provide good

estimates for query selectivities.

The rest of this paper is organized as follows. Section 2 summarizes the related work
done in this area. We formally describe the uncertainty model and probabilistic queries
in Section 3. Our algorithms for selectivity estimation are presented in Section 4. We
present the experimental results in Section 5, and Section 6 concludes this paper.

2 Related Work

There is a rich body of work on selectivity estimation for traditional relational database
management systems. Most approaches for selectivity estimation on precise data use
histograms. Poosala et al [10] proposed a taxonomy to capture all previously proposed
histogram approaches. These approaches are not applicable for uncertain data because
both the queries and the underlying data types for uncertain data differ greatly from
traditional data and queries.

More recently, there has been a great deal of work on the development of models
for representing uncertainty in databases. Two main approaches for modeling uncertain
data have emerged in this field: Tuple uncertainty [1,2] and Attribute uncertainty [7].
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Similar models have been proposed in moving-object environments [11] and in sensor
networks [9]. Several systems that handle such uncertainty in data have been recently
proposed (Orion [3], MayBMS [12], Mystiq [13], Trio [14], [4]). This probabilistic
modeling of data has also been extended to semi-structured data [15] and XML [16].

Efficient evaluation of probabilistic range queries is discussed in [2,6,7,9,11]. Prob-
abilistic nearest-neighbor queries are presented in [7,17]. An index called Probabilistic
Threshold Index was proposed in [18] that can be used to efficiently execute some
classes of probabilistic queries.

To best of our knowledge, the issue of selectivity estimation for queries over proba-
bilistic data has not been addressed before.

3 Uncertainty Model

To model the uncertainty present in a data item, a data scheme known as the Attribute
uncertainty model was proposed in [7]. This scheme assumes that individual attributes,
as opposed to complete tuples, are uncertain. The attribute uncertainty model assumes
that each data item can be represented by a range of possible values along with the
distribution of values over this range. Formally, assume that each tuple of interest con-
sists of an uncertain attribute a. If there are more than one uncertain attributes within
the same tuple, they are assumed to be independent of each other. The domain of the
uncertain attribute can be continuous (e.g. real-valued) or discrete (e.g. integer). The
probabilistic uncertainty of a continuous attribute a consists of two components:

1. Uncertainty Interval: The uncertainty interval of an item a, denoted by Ua, is an
interval [la, ra] where la, ra ∈ �, ra ≥ la and a ∈ Ua. The range of Ra of a is
defined as Ra = ra − la.

2. Uncertainty pdf: The uncertainty pdf of a, denoted by fa(x) is a probability dis-
tribution function (pdf) of a where fa(x) = 0 if x /∈ Ua.

In addition to the pdf fa(x), we can also define a cumulative distribution function
(cdf) Fa(x), which is defined as Fa(x) =

∫ x

−∞ fa(x)dx. Note that, similar to the con-
tinuous case, we can also define the pdf and cdf functions in case of a discrete attribute
by replacing the integral with a sum in the above definitions.

The tuple uncertainty model [1,2,19] assumes that the complete tuple is uncertain. A
probability value is attached to each tuple which represents the probability of that tuple
being present in the database. In addition, multiple tuples can be grouped together to
form an x-tuple [1]. The tuples present inside a x-tuple are called alternatives and they
represent mutually exclusive values for the tuple.

The goal of this paper is to propose estimation solutions that are applicable to both
models of uncertainty: attribute and tuple. For our purposes, we are interested in a single
attribute at a time, a (real-valued or integer), for which we are estimating the selectivity.
Thus, we can ignore the intra-tuple dependencies. We assume that the uncertainty in the
data can be captured in terms of attribute uncertainty. In other words, for the attribute in
question, we are able to generate a pdf (fa) and cdf (Fa) for each tuple of the relation.
This is directly available from the attribute uncertainty model. For the case of tuple
uncertainty, there are two cases to consider. The first is if there are no x-tuples. In
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this case, each tuple has a probability value associated with it and is independent of any
other tuple. For this case, the pdf for each tuple is simply the single attribute value along
with the associated tuple probability. In the second case, the x-tuple itself provides
multiple alternatives for the given attribute along with associated probabilities. These
are collapsed into a single attribute uncertainty (discrete) pdf.

3.1 Operators and Threshold Queries

A number of operators are defined in [8] for comparing uncertain values with both un-
certain and certain (precise) values. This paper focuses on selection queries that com-
pare an uncertain value with precise values. For these queries, we present the definitions
for comparing uncertain with certain data. Operators between an uncertain value a and
a certain value v ∈ � can be defined as:

Pr(a < v) =
∫ v

−∞
fa(x)dx = Fa(v)

Pr(a > v) = 1 − Fa(v)

The set of queries that we consider in the paper are called Probabilistic Threshold
Range Queries and were proposed in [18]. These queries are a variant of probabilistic
queries where only answers with probability values over a certain threshold τ are re-
turned. With this concept, all the operators discussed above can be changed into boolean
predicates by adding a probability threshold to them.

4 Selectivity Estimation

In this section we describe various techniques that can be used for estimating the selec-
tivity for a given probabilistic threshold operator.

4.1 Unbounded Range Queries

This approach is based on mapping the uncertain attribute values to a 2-D histogram
and estimating the query result size by executing a 2-D box query on the histogram.

To understand the approach, let us consider an unbounded range query Q given by
a <τ x0, where τ is the probability threshold for the > predicate. This query returns
all uncertain items a such that Pr(a < x0) > τ . In terms of the cumulative distribution
function Fa(x), we get the following condition:

Pr(a < x0) > τ ⇔
∫ x0

−∞
fa(x)dx > τ ⇔ Fa(x0) > τ (1)

This follows from the definition of pdf and cdf functions.
Let us consider a 2D graph where we plot the cdf function F of all uncertain items.

Figure 1 shows an example of this graph. The cdfs for three data items a, b, and c are
shown. The range query Q given by Equation 1 can be translated into a (unbounded)
box query x < x0 and y > τ over this 2D plot (the shaded region in Figure 1). Items a
and b satisfy the query as they intersect the shaded region.
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p = 1
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Fb(x)
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Fig. 1. Example plot for query Q(x0, τ )

Theorem 1. All the items whose cdf function Fa(x) lies in the box defined by query Q
are part of the result of query Q. That is, ∀a, where the cdf function Fa lies in the box
defined by query Q, we have Pr(a < x0) > τ .

Proof. We observe that for any cdf Fa that lies in the box of query Q, we have Fa(x) >
τ for some x < x0. As Fa is a monotonically increasing function, we can deduce that
Fa(x0) > Fa(x) > τ . Using 1, P (a < x0) > τ .

Now we state the following theorem without proof:

Theorem 2. The total number of cdf lines that lie in the query box Q is equal to the
number of lines crossing (intersecting) the vertical line-segment given by 
 : x =
x0, τ < y ≤ 1, which furthermore is equal to the number of lines crossing (inter-
secting) the horizontal ray y = τ, x < x0.

The proof of this theorem follows from basic geometry and the monotonically increas-
ing nature of cdf F .

Now finding all the items whose cdf function lies in the box defined by a query Q is
equivalent to finding the total number of intersections of cdf lines with the vertical line-
segment 
. To efficiently calculate this number we need to develop an approximation of
the above technique. For this purpose, we define a 2-D grid of histogram over the plot
region. Given ui, 0 ≤ i < m as all the uncertain data items, we define

l = min
i

(lui) , r = max
i

(rui)

where [lui , rui ] is the uncertainty interval of ui. The plot region is bounded by 0 and 1
in the y (probability) direction and l, r in the x direction. The range R of the histogram
is defined as R = r − l. The width of the histogram is given by the parameters δx and
δp which represent the size of histogram along x and y (probability) axes respectively.
A histogram bucket H(x, y) covers the area given by the box (x, y, x+ δx, y+ δp). The
notations used are summarized in Table 1.
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Table 1. Notations

Symbol Meaning

fa Probability distribution function (pdf) of uncertain item a
Fa Cumulative distribution function (cdf) of a

la, ra Left and right bounds of a’s interval.
Ra Range of a, Ra = ra − la
ui All the uncertain data items (0 ≤ i ≤ m)
l, r Leftmost and rightmost limits of all the uncertain intervals
R Range of input data, R = r − l

δx, δp Width of histogram bucket along x and y (probability) axis
H Histogram structure for cost estimation

Definition 1. The height of a histogram bucket H(x, y) is the total number of cdf lines
of uncertain items intersecting the box (x, y, x + δx, y + δp).

With this definition, we can now informally define the algorithm for calculating an
approximation (upper-bound) of operator selectivity. Using Theorem 2 we see that the
sum of individual histograms that cover the vertical line-segment 
 gives a good approx-
imation of the upper-bound of the result set size. The error in this approximation can
be reduced by reducing the size of the histogram buckets. This extra accuracy comes at
the cost of increased space overhead for storing the histogram structure.

If a cdf line has a large slope, it can contribute to more than one histogram in a given
vertical window. This will result in over-estimation of the result size because the same
cdf line will be counted multiple times. To prevent this, we propose a simple fix: If a
cdf line intersects multiple (contiguous) histograms in a given vertical window, we only
count its contribution in the topmost histogram. With this slight change, we will avoid
counting the same line multiple times and obtain a tighter upper bound. Note that by
adding the contribution of a given cdf line to the topmost histogram, we are guaranteed
that there will be no false negatives. The algorithm for constructing this 2-D histogram
is presented in Figure 2.

The algorithm presented in Figure 2 takes as input the uncertain data items from an
attribute and the parameters δx and δp defining the width of each histogram inside the
structure H . In addition to these values, it also takes the l and r values (defined earlier)
which represent the spread of input data values. Depending on the attribute domain,
these parameters can be provided by the user or the system can select them by random
sampling. For a given uncertain item a, we start counting its contribution from its lower
bound la and stop when we hit the upper-most bucket in the y-direction (Step 1(ii)).
This small optimization saves a lot of computations as this step is repeated for all the
input uncertain data items. Note that, for the correctness of our algorithm we do need
to add the contributions to all the successive top buckets for item a. We take care of this
correction in step 2 with just one pass over the entire histogram.

Given this histogram structure H , we can easily give an approximation for query
result size. Figure 3 shows the algorithm for finding the selectivity estimate for query
Q(x, τ) = a <τ x.
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Input
ui, 0 ≤ i < m : All the uncertain data items
δx, δp : Width of histogram along x and y axis
l, r : The left and right bounds for the histogram

Output
H : The histogram structure for the input data

0. Initialize H with all bucket heights = 0
1. for a = u0, u1 . . . , um−1 do

(i) let x = �(la − l)/δx�; p = 0
(ii) while p < (1 − δp)

(a) p = Fa(l + (x + 1)δx)
(b) H (x, �p/δp�)++
(c) x++

2. for x = 0, 1, . . . , �R/δx�
(i) H(x, �1/δp�) += H(x − 1, �1/δp�)

3. return H

Fig. 2. Algorithm for generating the histogram for unbounded range queries

Input
x0, τ : Parameters of a query Q
H : Histogram structure
m : Total number of uncertain items
δx, δp : Width of histogram along x and y axis
l, r : The left and right bounds for the histogram

Output
An estimate (upper-bound) of query selectivity

1. if x0 < l return 0
2. if x0 > r return 1
3. x = �(x0 − l)/δx�
4. let S = 0
5. for p = �τ/δp� , . . . , �1/δp�

(i) S = S + H(x, p)
6. return (S/m)

Fig. 3. Algorithm for estimating query selectivity for unbounded range queries

Note that the above discussion applies to a <τ x queries only. For unbounded range
queries of the form Q : a >τ x, we have the following result:

a >τ x ⇔ Pr(a > x) > τ ⇔ Fa(x) < 1 − τ (2)

Using Equation 2 we can see that if an uncertain item a does not satisfy the query
a <1−τ x (i.e. Fa(x) �> 1 − τ ) then it will satisfy the query a >τ x. The algorithms
presented in Figures 2 and 3 can therefore be used for >τ queries with slight modifi-
cations. The selectivity of > can be calculated by computing the selectivity of < and
using the fact that selectivity for >τ is 1 - selectivity for <1−τ .
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Theorem 3. The time complexity of algorithm presented in Figure 2 is:

m−1∑
i=0

(
Rui

δx

)
+ O

(
R

δx

)
Proof. The first terms comes from Step (1) in which we go through each item once for
each uncertain item. Finally we add up all the contributions in the top histogram buckets
in Step (2) which gives us the second term in the above expression.

4.2 General Range Queries

As discussed earlier, a general range query Q is expressed as Pr(x1 < a < x2) > τ .
This query returns all tuples such that:

Pr(x1 < a < x2) > τ ⇔
∫ x2

x1

fa(x)dx > τ

⇔ Fa(x2) − Fa(x1) > τ

The previous section on unbounded range queries is a special case of the general
range query where x1 = −∞ (or l) or x2 = ∞ (or r).

We can extend the earlier solution to general range queries by adding another dimen-
sion to the histogram. In addition to the x-axis and y-axis representing x2 (end-point of
the range query) and the probability threshold τ respectively, we will now have a z-axis
representing x1 (or the beginning of range query).

The theoretical discussion of this selectivity estimation solution is similar to the un-
bounded case. In place of a 2-D curve, we will now have a 3-D curve for each uncertain
item which is given by the function:

Ga(x1, x2) =
∫ x2

x1

fa(x)dx = Fa(x2) − Fa(x1) (3)

The range query Q will now translate to a box query given by x < x2, y > τ and
z = x1. We can now state the following theorem for the 3-D curve:

Theorem 4. Each item for which Ga(x1, x2) intersects the box defined by query Q is
part of the result of query Q. That is, ∀a, where the function Ga intersects the box
defined by query Q, we have Pr(x1 < a < x2) > τ .

Proof. We observe that for any cdf Fa that lies in the box of query Q, we know that
Ga(x1, x) > τ for some x < x2. This gives us that Ga(x1, x2) > Ga(x1, x) > τ .
Using 3, we have P (x1 < a < x2) > τ .

Similar to Theorem 2, we can prove that we can count the total number of items in the
result set by counting the total number of intersections of function Ga with the line-
segment x = x2, τ < y ≤ 1 in the z = x1 plane. The definition and construction
of 3-D histogram is similar to the 2-D counterpart and is presented in Figure 4. The
algorithm for estimating the answer size for a given query Q(x1, x2, τ) is presented in
Figure 5.
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Input
ui, 0 ≤ i < m : All the uncertain items
δx, δp : Width of histogram along x,z and y axis
l, r : The left and right bounds for the histogram

Output
H : The histogram structure for the input data

0. Initialize H,Hx, Hz, Hxz with all bucket heights = 0
1. for a = u0, u1 . . . , um−1 do

(i) let xmin = �(la − l)/δx�, xmax = �(ra − l)/δx�
(ii) for z = xmin, . . . , xmax do

for x = z, . . . , xmax do
(a) p = Ga(l + zδx, l + (x + 1)δx)
(b) if (z = xmin) ∧ (x = xmax)

Hxz(x, �p/δp� , z)++
(c) else if (z = xmin)

Hz(x, �p/δp� , z)++
(d) else if (x = xmax)

Hx(x, �p/δp� , z)++
(e) else H(x, �p/δp� , z)++

2. let xmax = �R/δx�
3. for p = 0, . . . , �1/δp�

(a) for x = 0, . . . , xmax

for z = xmax − 1, xmax − 2, . . . , 0
Hz(x, p, z) += Hz(x, p, z + 1)

(b) for z = 0, . . . , xmax

for x = 1, 2, . . . , xmax

Hx(x, p, z)+ = Hx(x − 1, p, z)
4. for x = 0, . . . , xmax

for z = xmax − 1, xmax − 2, . . . , 0
Hxz(x, �1/δp�, z) += Hxz(x, �1/δp�, z + 1)

5. for z = 0, . . . , xmax

for x = 1, 2, . . . , xmax

Hxz(x, �1/δp�, z) += Hxz(x − 1, �1/δp�, z)
6. for all x, z, p

H(x, z, p) += Hz(x, p, z) + Hx(x, p, z) + Hxz(x, p, z)
7. return H

Fig. 4. Algorithm for generating the histogram structure for general range queries

We can apply an optimization similar to the algorithm in Figure 2 by modifying only
the local histogram area which is affected by an uncertain item and then propagating the
effects globally by adding a post-processing step. This optimization helps in bringing
down the running time of the algorithm significantly. To achieve this goal we keep three
temporary histogram tables Hx, Hz and Hxz along with the main histogram structure
H . For an uncertain item a, Step 1 adds the contribution of the item to the main his-
togram H , along with adding the contributions that are to be propagated globally to
the temporary histograms. Hz and Hx store the contribution to the bins corresponding
to z = la and x = ra respectively, while Hxz stores the contribution to the bin
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Input
x1, x2, τ : Parameters of a query Q
H : Histogram structure
m : Total number of uncertain items
δx, δp : Width of histogram bucket along x,z and y axis
l, r : The left and right bounds for the histogram

Output
An estimate (upper-bound) of query selectivity

1. if x1 < l x1 = l
2. if x2 > r x2 = r
3. let x = �(x2 − l)/δx�, z = �(x1 − l)/δx�
4. let S = 0
5. for p = �τ/δp�, . . . , �1/δp�

(i) S = S + H(x, p, z)
6. return (S/m)

Fig. 5. Algorithm for estimating query selectivity for general range queries

corresponding to z = la and x = ra. It is easy to see that the local contribution of
the item a to Hz needs to be propagated to the plane given by la ≤ x < ra and z < la
as for these values Pr(z < a < x) = Pr(la < a < x) (Step 3a). Similarly, Hz

needs to be propagated globally to the plane la < z ≤ ra and x > ra as for this plane
Pr(z < a < x) = Pr(z < a < ra) (Step 3b). In a similar fashion, Hxz is propagated
to z < la and x > ra (Step 4 and 5). Finally, we add all the temporary histograms to
the main histogram to get the final histogram structure (Step 6).

Theorem 5. The time complexity of algorithm presented in Figure 4 is:

m−1∑
i=0

(
R2

ui

2δ2
x

)
+ O

(
R2

δ2
xδp

)
Proof. By counting the number of loops. All the steps in Figure 4, except for Step 1,
touch the cells only constant number of times. The number of loops in Step 1 gives the
first summation.

4.3 General Range Queries Using Slabs

In Section 4.2 we discussed how the histogram construction technique can be extended
to general range queries. While the accuracy of such an estimate is very good, the
initial construction time and space trade-off is quadratic in terms of the range of the
input data (R). In this section, we present another technique which has, in general, a
lower accuracy than the previous technique but better space-time complexity.

In this algorithm, we partition the entire range of input data into slabs. Similar to
histograms, the length of a slab is controlled by the input parameter δx. Each slab
stores estimates of query selectivity for different values of p. A slab with end-points
at x = x1, x2 stores the selectivity of a bounded range query Q(x1, x2, τ) for different
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values of τ . Once again, the number of divisions (estimates) along the probability axis is
controlled by δp. Note that, for a query that spans multiple slabs, we cannot just add the
contributions of individual slabs. To solve this problem, we have a hierarchy of slabs.
The size of slab at the bottom-most level of this hierarchy is exactly δx but as we go up
the hierarchy the size increases exponentially until we reach the top-most slab, which
encompasses the entire input region. At each level of the hierarchy there are two1 sets
of slabs, one starting at the midpoint of the other, so that we can get better estimates.
We call these slabs A and B, respectively.

Formally, we have log(R/δx) hierarchical levels, with each hierarchical level having
two sets of slabs A(i, j, p) and B(i, j, p) where j ≤ �log2(R/δx)�.

Definition 2. The slabs A(i, j, p) and B(i, j, p) cover the regions R1 = [l + 2jiδx, l +
2j(i + 1)δx] and R2 = [l + 2j(i + 1/2)δx, l + 2j(i + 3/2)δx] respectively. The height
of the slab A(i, j, p) (or B(i, j, p)) is given by the number of uncertain items satisfying
the bounded query R1 (or R2) with probability between pδp and (p + 1)δp.

As mentioned earlier, each of these slabs stores the query answers for different values of
query threshold τ . Thus, every A(i, j) or B(i, j) is an array of �1/δp� values. The con-
struction algorithm is presented in Figure 6. In Step 1, for each item, we find the slabs
that are affected by the item and add the contribution of the item to the corresponding
slabs.

Input
ui, 0 ≤ i < m : All the uncertain items
δx, δp : Parameters controlling width of divisions
l, r : The left and right bounds for the input region

Output
The slab structure for the input data

0. Initialize A and B with all buckets heights = 0
1. for a = u0, u1, . . . , um−1 do

(i) for j = 0, 1 . . . , 
log2(R/δx)� do
(a) let xmin = �(la − l)/(2jδx)�,

xmax = �(ra − l)/(2jδx)�
(b) for x = xmin . . . xmax do

(A) let p = Ga(l + x2jδx, l + (x + 1)2jδx),
(B) A(x, j, �p/δp�)++

(c) let xmin = �(la − (l + 2j−1δx))/(2jδx)�,
xmax = �(ra − (l + 2j−1δx))/(2jδx)�

(d) for x = xmin . . . xmax do
(A) p = Ga(l + 2j(x + 1/2)δx, l + 2j(x + 3/2)δx)
(B) B(x, j, �p/δp�)++

2. return A,B

Fig. 6. Algorithm for generating slabs

1 In general, we can have more than two sets of slabs for each level of hierarchy which will
further increase the accuracy of this technique.
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Once we have this slab structure, we can get estimates by finding a pair of slabs that
contains (over-estimate) and is contained (under-estimate) by the query region. With
these estimates, we interpolate the estimates based on the the interval size to get the
final estimate. The algorithm for finding the estimate is presented in Figure 7. In the
algorithm, Step 1 picks j which corresponds to the slab size just smaller than the query.
We have two additional functions pickLB and pickUB, which given the query limits and
a level j, returns the slab that is contained inside and contains the query respectively.
If these functions can not find any such slab at level j they return null. For j < 0,
these functions simply return a slab with size 0 and all estimates are set to 0. In the
case, these functions find more than one slab which satisfy the conditions of UB (LB)
they return the one with minimum (maximum) estimate. This is done in order to get
a tighter bound on the final estimate. The details of these functions are omitted due to
space considerations. Steps 2 and 3 find the slabs and return them. Once we have a slab
TLB that bounds the answer from below and a slab TUB that bounds the answer from
above, we find the selectivity estimates of TLB and TUB in Step 6 and then finally in
Step 7 we linearly interpolate the estimates based on the size of query and size of the
two intervals returned. This gives us an estimate of the query result size.

Lemma 1. For any query Q, the difference between the levels, from which TLB and
TUB are picked up, is at most 2. Thus, the space covered by TUB is at most 4 times that
of TLB.

Proof. It follows from the cases of Figure 7. It remains to show that the else cases in
Step 2(b) and Step 3(a),(b) are always successful in finding a slab. Note that the size
of the slab at level j is less than the query interval. So a slab at level j could fit in the
query. If this happens with the A slab being contained, then there is a slab at level j + 2
that surely contains the query. This is because, an A slab at level j + 1 contains at least
one end-point of the query, and hence at level j +2, since an A slab and a B slab extend
this A slab at level j + 1 in different directions, at least one of the A slabs at level j + 2
or B slabs at level j + 2 will cover the entire interval. If at level j, the query covers a B
slab, then it cuts two consecutive A slabs at level j and hence it is covered in either an
A slab or a B slab at level j + 1. If the query does not cover any slab at level j, then it
again cuts two consecutive A slabs at level j. This means it is covered by a slab at level
j + 1. Also, it cuts at least one of these A slabs by more than half at the level j. Thus,
there is an A slab at level j − 1 which is contained in the query.

Theorem 6. The time complexity of algorithm presented in Figure 6 is:

O

(
m−1∑
i=0

(
Rui

δx

)
+ m log

(
R

δx

))

Proof. The above result directly follows from the following expression which is the
total cost of Step 1.

m−1∑
i=0

log(R/δx)∑
j=0

⌈
Rui

2jδx

⌉
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Input
x1, x2, τ : Parameters of a query Q
A,B : Slab structure
m : Total number of uncertain items
δx, δp : Parameters controlling width of divisions
l, r : The left and right bounds for the histogram

Output
An estimate of the query selectivity

1. let j = �log2((x2 − x1)/δx)�
2. if (T = pickLB(x1, x2, j)) exists

(a) TLB = T
(b) if (T = pickUB(x1, x2, j + 1)) exists

TUB = T
else TUB = pickUB(x1, x2, j + 2)

3. else
(a) TLB = pickLB(x1, x2, j − 1)
(b) TUB = pickUB(x1, x2, j + 1)

4. let Smin = Smax = 0, t1 = length of TLB ,
t2 = length of TUB

5. for p = �τ/δp�, . . . , �1/δp�
(a) Smin += TLB(p), Smax += TUB(p)

6. S = Smin + (Smax − Smin) × (x2 − x1 − t1)/(t2 − t1)
7. return (S/m)

Fig. 7. Algorithm for estimating query selectivity using slabs

Similarly, we can also show that the total space overhead is O (R/δx). Both these results
are intuitive if we observe that the total cost/space is asymptotically bounded by num-
ber of slabs at the bottom-most level as the number of slabs at higher levels decrease
exponentially.

5 Experimental Evaluation

We have implemented our statistics collection and selectivity estimation algorithms in
Orion, a publicly available extension to PostgreSQL that provides native support for un-
certain data [3]. To efficiently evaluate the queries discussed in this paper, Orion uses an
indexing scheme known as probabilistic threshold index (PTI) introduced in [18]. This
system not only allows us to validate the accuracy of our methods in a realistic runtime
environment, it also gives additional insight into the overall effect our techniques have
on query optimization in an industrial-strength DBMS.

5.1 Implementation

PostgreSQL measures the cost of query plans in disk page fetches (for simplicity,
all CPU efforts are converted into disk I/Os). The optimizer generally estimates the
cost of query plans by calculating the overall selectivity and multiplying it against the
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estimated cardinality. In the common case of multiple predicates, individual selectivies
are multiplied together, except for range queries where the dependence between the
lower and upper bounds is simple to evaluate.

Virtually every numeric data type in PostgreSQL shares the same source code for
cost estimation. Using this code base, we have built our implementation of the algo-
rithms in Figures 2, 4, 3, and 5. Using the elegant framework PostgreSQL provides
for new data management techniques, our implementation extends the functionality
of Orion’s UNCERTAIN data type by registering the optional callbacks for collecting
statistics and estimating selectivity.

5.2 Methodology

To ensure correctness, we ran each experiment on a variety of queries and datasets, and
then averaged the results. After populating the database with each test dataset, we first
used VACUUM ANALYZE to generate the statistics in advance. The following experi-
ments were conducted on a 1.6 GHz Pentium CPU with 512 MB RAM, running Linux
2.6.17, PostgreSQL 8.1.5, and Orion 0.1. Note that most of the resulting plots show the
relative error of the selectivity estimates, i.e. the goal is to be as close to 0% as possible.

Synthetic Datasets. Each dataset consists of random “sensor readings,” using a schema
Readings (rid, value). Without loss of generality, the uncertain values (i.e.
reported from the sensors) are floating point numbers ranging from 0 to 1000, and the
pdf for each uncertain value is a uniform distribution. The interval sizes are distributed
normally, with midpoints distributed uniformly. We refer to our three main datasets as
Data-5, Data-50, and Data-100; the numbers correspond to the average width of
the uncertain value intervals.

Table 2 summarizes the control variables for the subsequent experiments. In particu-
lar, we show that our algorithms perform well without regard to dataset cardinality, and
are reasonably robust to query selectivity and probabilistic threshold. In addition, we
demonstrate the effect of increased precision as a trade-off between construction time
and space versus the resulting accuracy of the selectivity estimates.

Example Query Plan. To illustrate the impact that correct estimates have on query
optimization, we present the following example output from PostgreSQL. When no
selectivity estimation function is available for a given predicate, PostgreSQL simply
returns the default value of 1/3 for estimating unbounded range queries, and 0.005 for
general range queries. In practice this estimate favors the use of unclustered indexes,
such as PTI [18], to improve I/O performance:

Table 2. Summary of control variables

Variable Default Value

Cardinality 250,000
Selectivity 2.5 %
Threshold 50 %
Precision 70 bins



Query Selectivity Estimation for Uncertain Data 75

SELECT * FROM Readings WHERE value < 750;
-----------------------------------------
Bitmap Heap Scan on Readings
(cost=742.33..4075.67 rows=66667 width=36)
(actual=20379.348..20824.652 rows=153037)
Recheck Cond: (value < 750::real)

-> Bitmap Index Scan on pti_value
(cost=0.00..742.33 rows=66667 width=0)
(actual=20378.677..20378.677 rows=153K)
Index Cond: (value < 750::real)

With accurate estimates, the optimizer makes the correct decision, namely not to use
the available PTI index:

(same query as before, but using our algorithms)
------------------------------------------------
Seq Scan on Readings

(cost=0.00..5000.00 rows=164333 width=35)
(actual=83.841..15545.401 rows=153037)
Filter: (value < 750::real)

As shown in this example, accurate selectivity estimation saves the system thousands
of disk fetches (i.e. 15545 total cost instead of 20825). In general, incorrect estimates
may result in much higher losses of efficiency.

5.3 Results

We now evaluate the accuracy and performance of our cost estimation techniques for
unbounded range queries using the 2D histogram structure introduced in Section 4.1
(see Figure 3), and general range queries using the 3D histogram discussed in Section
4.2 (see Figure 5).

Accuracy at Varying Selectivities: The first experiment verifies the accuracy of our
algorithms, regardless of query selectivity. Figures 8 and 9 summarize the results using
all three synthetic datasets. For clarity, we have only plotted one of them. The x-axis
shows the selectivity of the query which was varied from high (1%) to low (100%). The
y-axis shows the accuracy of the estimation as a percentage relative to the size of the
exact result. Our algorithm significantly outperforms the baseline PostgreSQL estimate.
As expected, high selectivity has a slight effect on the accuracy of our methods.

Accuracy at Varying Cardinalities: The next experiment studies the overall scalability
of our algorithms, namely the impact of the size of the relation on the accuracy of the
estimations. Figures 10 and 11 show the results for three representative queries. The
x-axis shows the size of the table in number of tuples which was varied from 50,000
to 800,000. The results show that our approach is unaffected by the size of the dataset.
This is in sharp contrast to the baseline PostgreSQL estimator (not shown) which is
much more sensitive to the dataset size, particularly for smaller datasets.

Accuracy at Varying Thresholds: Figures 12 and 13 show the impact of query thresh-
old on the accuracy of the estimates. The x-axis shows the threshold probability and the
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Fig. 9. Selectivities (3D)
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Fig. 10. Cardinalities (2D)
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Fig. 11. Cardinalities (3D)
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Fig. 12. Thresholds (2D)
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Fig. 13. Thresholds (3D)

y-axis shows the relative accuracy with respect to the correct answer size. Once again,
we observe that our algorithm is much more robust than the baseline PostgreSQL esti-
mator (not shown) that simply returns a constant selectivity. Our implementation shows
slightly better accuracy for smaller thresholds, in part because larger thresholds result
in additional tuples becoming part of the query answer, leading to overestimates. We
can see that for highly selective queries, our algorithm is significantly better that the
baseline and thus it is more likely to lead the optimizer into choosing a much more
efficient plan.
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Fig. 14. Precision (2D)
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Fig. 15. Precision (3D)

Accuracy at Varying Precisions: Next we show the relationship between the size of
the histograms and the resulting accuracy. Figures 14 and 15 summarize the results for
each dataset. The x-axis shows the number of histogram buckets in each dimension,
which was varied from 10 to 100. Clearly, both algorithms perform better with a more
detailed histogram. Our algorithm outperforms the baseline for smaller histograms. As
expected, we see that after a certain amount (i.e. 70, for these datasets and queries),
larger histograms do not provide significant increase in accuracy.

Runtime Performance Overhead: The final set of experiments study the runtime per-
formance of constructing the statistics and estimating the selectivity of a query. We have
omitted figures for these findings because of limited space. As expected, the estimation
times are constant and almost negligible (on the order of 15 ms). The histogram con-
struction times scale linearly with respect to data cardinality, and grow a little more than
linear as the requested number of buckets increases. For the bulk of our experiments,
histogram construction only amounted to several hundred milliseconds.

6 Conclusions and Future Work

In this paper, we developed algorithms for computing selectivity estimates of proba-
bilistic queries over uncertain data. The estimation techniques can be applied both to tu-
ple uncertainty and attribute uncertainty models. These techniques were implemented in
PostgreSQL and found to provide accurate estimates for uncertain data. The algorithms
presented can be further improved by combining them with standard cost estimation
techniques such as equi-depth binning and sampling. We showed both theoretically and
empirically that our histogram construction algorithms are fast. The experiments show
that they give very accurate estimation especially for less selective queries. For more
selective queries, the accuracy is not quite as good, but is still much better than the
baseline estimator.
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Abstract. One of the fundamental challenges that the data mining com-
munity faces today is privacy. The question “How are we going to do
data mining without violating the privacy of individuals?” is still on
the table, and research is being conducted to find efficient methods to
do that. Data transformation was previously proposed as one efficient
method for privacy preserving data mining when a party needs to out-
source the data mining task, or when distributed data mining needs to
be performed among multiple parties without each party disclosing its
actual data. In this paper we study the safety of distance preserving
data transformations proposed for privacy preserving data mining. We
show that an adversary can recover the original data values with very
high confidence via knowledge of mutual distances between data objects
together with the probability distribution from which they are drawn.
Experiments conducted on real and synthetic data sets demonstrate the
effectiveness of the theoretical results.

1 Introduction

Data mining technology proved its success in many areas such as health, life-
sciences, and security. On the other hand, the popularity of data mining ignited
heated debates on the privacy aspects especially after the launch of large scale
projects related to homeland security. In fact, some projects were stopped since
they failed to meet the privacy concerns. According to a very recent article in
Computer World by Jaikumar Vijayan “The chairman of the House Committee
on Homeland Security, has asked Department of Homeland Security Secretary
Michael Chertoff to provide a detailed listing of all IT programs that have been
canceled, discontinued or modified because of privacy concerns” [15]. In addition
to that, the Chairman also asked for information about the measures being taken
to address privacy issues [15].

Measures to address privacy issues can be as simple as not collecting privacy
sensitive information at all. Unfortunately, in many applications this is not pos-
sible. Therefore, advanced protocols based on statistics and cryptography are
proposed to ensure privacy. Privacy preserving data management in general, is
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still an ongoing research topic, and efficient as well as secure methods without
strong assumptions are yet to be proposed. In fact, recent results showed that
the data sets transformed with perturbation based techniques can be recovered
by a principle component analysis based attack[7]. In this paper, we present a
general attack which is applicable in cases where only the pairwise distances
among objects are known.

The main contribution of this paper is to demonstrate that any data trans-
formation, from which an attacker can learn the mutual distances between data
objects may disclose private information: (1) If the attacker knows a few of the
data objects in the database, he can recover all data perfectly, (2) If the attacker
has a-priory knowledge of the probability distribution from which the data is
drawn, he can recover all data with high precision. Our attack is based on an
attack of Liu et al.[7], but is improved so that it is applicable even to the privacy
preserving method which was proposed in [8] to prevent the attack from [7]. Our
attack is also improved in the sense that it is applicable to a wider range of
scenarios than the attack of Liu et al.. We demonstrate the attack with known
probability distribution on the Adult Census dataset from the UCI Machine
Learning Repository [13], which is the same dataset used in [8], and show that
the original data can be recovered with an error as low as 2%.

2 Related Work

Data perturbation is a widely used technique for privacy preserving data mining.
Additive perturbation techniques proposed by Agrawal and Srikant are based on
adding random noise to the original data which can then be filtered to recover
the distribution of the original data[3]. Another scenario is where a group of
organisations would like to perform collective data mining but would not like to
share their data. An encryption based protocol for privacy preserving association
rule mining in distributed environments is proposed in[6]. Similarly, secure multi-
party computation based methods are applied to privacy preserving clustering
in distributed environments[14]. In [2], authors propose an approach for privacy
preserving data mining which maps the original data set into a new anonymised
data set preserving the correlations among the different dimensions.

Security of random perturbation methods against partial disclosure through
successive querying of the database by snoopers is studied in [10]. The effect of
high dimensionality in randomisation was studied by Aggarwal in [1].

Many techniques for classification such as clustering only relies on the mu-
tual distances between the objects in the database. In consequence several pri-
vacy preservation techniques which preserves mutual distances have been pro-
posed. The authors of [4,5,11] have proposed perturbation techniques based on
geometric transformations such as translation, rotation, and re-scaling of the
dataset. With the exception of rescaling, these operations preserve distances.
Even rescaling, while it does not preserve the exact distances, preserves the rel-
ative distances. Oliveira and Zäıane, propose techniques for securely computing
the distances between each pair of data objects, and only reveal the resulting
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dissimilarity matrix to the third party, who can then perform clustering[12].
Oliveira and Zäıane prove that the dissimilarity matrix alone does not violate
privacy with the assumption that the attacker does not have domain knowledge.
However, in cryptography the well established Kerckhoffs’ principle states that
the security of a system must never rely on keeping the algorithm and/or the
data secret — the only secret should be an easily exchangeable cryptographic
key. The role of this principle in the case of privacy preserving data mining is
well understood in the words of Bruce Schneier [9]:

“Kerckhoffs’ principle applies beyond codes and ciphers to security sys-
tems in general: every secret creates a potential failure point. Secrecy, in
other words, is a prime cause of brittleness and therefore something likely
to make a system prone to catastrophic collapse. Conversely, openness
provides ductility.”

While privacy is preserved in [12] when the adversary has no domain knowledge
at all, it is unclear what happens if the adversary gains partial knowledge of
the domain. A party involved in data mining, for instance, is likely to know
the layout of the tables in the database, and anyone can easily gain access to
national statistics about age, sex, income, e.t.c. Relying on this information to
be kept secret from the adversary is unrealistic, and clearly violates Kerckhoffs’
principle. Notice that knowing the distribution of the data is not the same as
knowing the data. Even though anyone can see the distribution of patients with
cancer according to e.g. age and income, we do not want anyone to learn the
identity of a specific individual with cancer. In this paper we demonstrate that
in a worst case scenario a secret database can be reconstructed very accurately
if the adversary knows the table layout and knows the distribution of the data.

Our attack is based on the work by Liu et al., where the authors point out
that perturbation techniques which preserve distance between data objects can
be attacked if the attacker knows a small set of data selected according to the
same probability distribution as the original data set[7,8]. The attack applies
principal component analysis to the perturbed data, and tries to fit it to the
known data set. Liu et al. also propose an alternative transformation where the
objects in the original data set are projected onto a subspace in a way that
distance is preserved with high probability. They point out that the alternative
approach is secure against the identified attack, but may not be secure against
other attacks. Our attack is applicable to a wider range of scenarios than the
attack of [7], since the attacker does not need the entire perturbed dataset: only
the mutual distances and information about the probability distribution from
which objects are chosen. Our attack is more general since: (1) In many cases the
information about the probability distribution can be obtained from alternative
sources (i.e. national statistical agencies), and (2) only the mutual distances
from the original dataset are needed (not a perturbation of every object). Our
attack also have some improvements in the computational cost: Our attack is
polynomial in the number of attributes, whereas the attack in [7] is exponential
in the number of attributes.
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3 Problem Formulation

Throughout this paper we let n be the number of objects (i.e. rows) in the
target database which is attacked. Each object in the database has d attributes.
In other words, each object can be thought of as a vector in a d-dimensional
vector space. For simplicity we assume that all attributes are from an alphabet
Ω. We model the objects as random variables X1, . . . , Xn. We assume that these
random variables are independent and identically distributed according to a
global probability distribution, and let P (x) denote the probability that Xi = x,
for all i ∈ {1, . . . , n}.

3.1 Distance Preserving Transformations and Dissimilarity
Matrices

In this paper we show how to attack any distance preserving data transformation.
The only thing we need for our attack are the pairwise distances between the
objects in the database. We represent this information by a dissimilarity matrix
as described below. We are not concerned with the actual transformation, or
whether the data is centralised or distributed.

The dissimilarity matrix is an n × n matrix which contains the distances
between each pair of data objects. We can describe the dissimilarity matrix as
random variable D, which depends on the random variables X1, . . . , Xn in that
Dij = |Xi − Xj|, for all i, j ∈ {1, . . . , n}.

In our experiments we use databases containing numerical and boolean at-
tributes, since they have well-defined distance measures. We use the Euclidean
distance, and assign the values 1 and 0 to boolean values true and false, respec-
tively. Textual and nominal data requires extra work, and are not addressed in
this paper.

In data mining applications it is common to normalise the attributes before
analysing the data. Normalisation prevents attributes of large magnitudes to
dominate the small scaled attributes. In our work we assume that all attributes
are normalised.

3.2 Motivating Scenario

Dissimilarity matrices of objects having only one attribute is a simple special
case, where the distances between objects are equal to the differences in their
attributes. In this section we will briefly study this special case to get some
intuition.

Suppose we have a database containing the ages of randomly selected individ-
uals within a country. For samples of sufficient sizes, it is acceptable to assume
that the database has the same probability distribution of ages as nationwide.

Suppose we have a database of 5 individuals, x1, x2, x3, x4, x5, with discrete
ages 25, 95, 4, 60, 32, respectively. The corresponding dissimilarity matrix can
be seen in Table 1.

If we know the age of two individuals, x1 and x2, say, we can easily find the
age of all the other individuals: namely the unique age at the given distance
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Table 1. Dissimilarity matrix of the age of 5 individuals

x1 x2 x3 x4 x5

x1 0 70 21 35 7
x2 0 91 35 63
x3 0 56 28
x4 0 28
x5 0

from the two known ages. This corresponds to the “Hyper-lateration” attack
described in Sec. 4 below.

To recover the ages from the dissimilarity matrix only, we start by finding
the biggest distance in the matrix — in this case 91. The two individuals with
biggest distance (x2 and x3) defines the boundaries of the database: one of them
is the youngest, while the other is the oldest. We assign the age zero to any of
the two points, x2, say. Now the age of all the other individuals is their distance
to x2 (since all ages are known to be positive). The resulting ages can be seen
in Table 2.

Table 2. Ages, if x2 is assumed to be 0 years

x2 x4 x5 x1 x3

0 35 63 70 91

Suppose that we know that more than half of the population is younger than
40 years. In that case the ages in Table 2 do not fit the probability distribution of
the population — we have most likely chosen the wrong person as the youngest.
When flipping the ages of x2 and x3 we get the ages seen in Table 3, which fits
the global probability distribution better.

Table 3. Ages, if x3 is assumed to be 0 years

x3 x1 x5 x4 x2

0 21 28 56 91

Now that we have a good candidate dataset, the histogram of the candidate
dataset is compared with the global probability distribution and the statistical
distance between the two is computed (in our example, the dataset is too small to
plot the histogram). By shifting the candidate dataset by small amounts (in this
case by 1 year), and computing the statistical distance of the resulting probabil-
ity distributions to the global probability distribution, we can find the best fitting
candidate dataset. The shift trials are conducted until the oldest individual in
the candidate dataset reaches the maximum possible age the global probability
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distribution (at 120 years, say). The candidate dataset that has the minimum
statistical distance to the global probability distribution is chosen as the winning
set.

In Sec. 5 we give an attack which can rotate a multidimensional candidate
dataset to the true dataset with low error.

3.3 Attack Scenarios

Our underlying model is that a secret data base of n objects is drawn according
to a global probability distribution of d dimensional vectors. An attacker is given
the dissimilarity matrix of the data base. Besides the dissimilarity matrix he has
some extra information available. This information can be:

Known sample. An attacker might be able to learn a few of the objects in the
data base. If he knows at least d + 1 objects (and knows the corresponding
entries in the dissimilarity matrix) he will be able to reconstruct the data
base with high probability, as described in Sec. 4.

Known probability distribution. The probabilitydistribution from which the
objects are drawn may be known to an attacker. In Sec. 5 we show an attack
using this information.

There are several ways in which an attacker might recover the necessary in-
formation. To get a known sample of the database, an attacker might get insider
information from a person within the organisation which owns the database, or
he might be able to inject information. In some cases it may even be realistic
to assume that the attacker already knows some entries in the database (he had
an operation in the hospital which has the target database of medical data).
Knowledge of the global probability distribution can, in some cases, be obtained
from national statistical societies. In other cases the attacker could be in posses-
sion of his own database with objects drawn from the same global probability
distribution (a competing hospital).

Finally we assume that an attacker knows the schema of the database. The
schema of the database will often depend on the software which is used by the
organisation, and may be readily available. It may also follow public standards.

3.4 Principal Component Analysis

In the scenario where the attacker does not have a known sample from the
database, but has knowledge about the global probability distribution of the
data, we apply principal component analysis (PCA). PCA is a statistical method
which identifies correlations in a dataset. It takes a dataset of random variables
drawn from the d-dimensional vector space, and creates a vector basis which
is best suited to represent the dataset. The basis is such that when data is
projected onto the subspace spanned by “the most significant” basis vectors,
only little information is lost.

More precisely, PCA computes the covariance matrix of the dataset. On entry
(i, j) ∈ {1, . . . , d}2 the covariance matrix has the covariance

Cov(Xi, Xj) = E((Xi − μi)(Xj − μj)), (1)
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where μi and μj are the expected values of Xi and Xj , respectively. The eigen-
values and the corresponding eigenvectors of the covariance matrix are then
computed. The eigenvectors (i.e. principal components) form the new vector
basis, which we refer to as the eigen-basis. The eigenvectors with the largest
eigenvalues are the most significant components, and point in the direction of
the highest correlation.

The central observation is that the eigenvalues do not change when the dataset
is rotated and/or mirrored. In particular, a dataset which is obtained by hyper-
lateration will have the same eigenvalues as the original dataset, and we expect
that rotating the corresponding eigen-basis to the original eigen-basis will recover
the data.

4 Attacking with Known Sample

In this section we assume that the attacker has a known sample of at least
d + 1 objects from the data base, and knows the corresponding entries in the
dissimilarity matrix.

Given three points in a two dimensional vector space, which do not lie on a line,
a fourth point with known distances to these three points can be placed by tri-
angulation or trilateration. Trilateration generalises to points in a d-dimensional
vector-space, so that we can uniquely place a point with known distances to
d+1 distinct points, which span the vector-space. We call this procedure “hyper-
lateration”. Applying hyper-lateration to our case; if we have a database with
d attributes and n objects, and we are only given the dissimilarity matrix, we
can find the original data if we can correctly place d + 1 distinct points (which
span the full vector-space). In most databases there are considerably more data
objects than attributes. We thus reduce the complexity of guessing all n objects
in the database to guessing or obtaining d + 1 � n objects.

4.1 Hyper-lateration

We now give the algorithm for hyper-lateration. Given d + 1 reference points,
p0, . . . , pd, in Rd the following theorem gives us a point x at distance δi to point
pi, for i = 0, . . . , d.

Theorem 1. Let p0, . . . , pd be d + 1 distinct points which span Rd. Any point x
is uniquely determined by the set of distances {δi}d

i=0, where δi is the distance
from x to point pi, for i ∈ {0, . . . , d}.

Proof. Hyperlateration is the task of solving the equations

δ2
i =

d∑
j=1

(xj − pij)
2 =

d∑
j=1

x2
j − 2xjpij + p2

ij , (2)
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for all i ∈ {0, . . . , d}. These equations are simplified by subtracting the equaiton
δ2
0 =

∑d
j=1 x2

j − 2xjp0j + p2
0j from all the other equaitons:

δ2
i − δ2

0 =
d∑

j=1

2xj(p0j − pij) + p2
ij − p2

0j , (3)

for all i ∈ {1, . . . , d}. The result is a system of d linear equations which we write
as

Mx = d + δ, (4)

where Mij = 2(p0j − pij), and di =
∑d

j=1(p
2
0j − p2

ij) only depend on the known
points, and δi = δ2

i − δ2
0 depends on the distances. This system of equations has

a unique sollution exactly when M is non-singular, which is the case if and only
if p1, . . . , pd are linearly independent.

4.2 The Hyper-lateration Attack

If an attacker knows a sample of d+1 objects from the database, he may be able
to recover the entire database if he sees the dissimilarity matrix. The success of
this attack depends on two things: (1) the known objects should be represented
by distinct points which span the full vector-space, and (2) the attacker must
know the corresponding entries in the dissimilarity matrix (i.e. he must know
the distances between the known objects and any other object). If these two
conditions are met, the attacker will be able to fully recover the database without
any error.

The attack consists of the following steps:

1. Pre-compute the matrix M , it’s inverse, and the vector d from Eq. 4.
2. For each row in the dissimilarity matrix, which corresponds to an unknown

object, compute the vector δ from Eq. 4, and solve the system of linear
equations.

The first step can be done in time O(d3), while the second step (assuming
that n > d) requires time O((n − d)d2). The overall time is O(d2n).

5 Attacking without Known Sample

If the attacker does not have a known sample of the target database, he can
still attack the dissimilarity matrix if he knows the “shape” of the data. In this
section we show how the attacker can map a candidate dataset obtained from the
dissimilarity matrix into the real data. The attacker obtains a candidate dataset
by randomly fixing d+1 points so that they are consistent with the dissimilarity
matrix. This gives a candidate dataset where the relative position of all points
is true (up to mirroring in any axis) — in other words: a perturbation of the
original data in the target database. By applying a principal component analysis
attack, similar to the one presented by Liu et al.[7], to the candidate dataset,
we show how the candidate dataset can be mapped to a dataset which fits well
to the real data of the target database.
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5.1 The PCA Attack

In the PCA attack the attacker is given only two pieces of information:

– The dissimilarity matrix of the database.
– A representation of the global probability distribution from which the data

is drawn.

Given this data, the goal of the attacker is to reconstruct the secret database.
Generating a candidate dataset, which is consistent with the dissimilarity ma-

trix, is straightforward by hyper-lateration as described in Sec 4.1. Unfortunately
the candidate dataset found by hyper-lateration can be an arbitrarily rotated
and mirrored version of the real data. Such a rotation and mirroring of a dataset
can be seen as a perturbation of the dataset. Liu et al. proposed using PCA to
rotate and mirror a perturbed dataset back to its original position by comparing
the principle components of a known sample from the same global probability
distribution with the perturbed data’s principle components and then generate
a rotation matrix which rotates the perturbed data to the actual position by
a simple matrix multiplication[7]. The principle components generated by PCA
are very good representatives of the general shape of the probability distribu-
tion, as they directly depend on the variances and covariance values of individual
attributes. As the distance matrix we are attacking is assumed to be of a data
mining application, the correlations between variables will most likely gener-
ate strong principle components. The results of [7] can directly be applied to
our case, since the result of our hyper-lateration process is special case of data
perturbation.

Although one of the main uses of PCA is to project data to lower dimensions
without loosing statistical information, we only use it to find principle compo-
nents of both the candidate dataset and the known probability distribution, and
try to construct a rotation matrix to match the principle components of these
two probability distributions.

One limitation of PCA is that it is invariant under mirroring of the data. In
other words: when using PCA to rotate the candidate dataset, we may end up
with a dataset which is mirrored along any of the principal components. There
are 2d possible mirror images of which we have to find the one that matches
the global probability distribution best. To test the quality of a candidate we
compute the statistical distance between the probability distribution which can
be computed from the candidate dataset to the real probability distribution. For
a candidate dataset C and global probability distribution P we compute

δ(C, P ) =
∑

v∈Ωd

∣∣∣∣ #v

‖C‖ − P (v)
∣∣∣∣ , (5)

where #v is the number of occurrences of v in C (this can be computed efficiently
by only summing over v which occur in C).

Our attack can be described in the following steps:

1. Perform hyper-lateration on the dissimilarity matrix, to get a candidate
dataset.
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2. Compute the covariance matrices of the global probability distribution, and
the candidate dataset.

3. Find eigenvalues and eigenvectors of the two matrices.
4. Match the eigenvectors of the two covariance matrices pairwise, and find a

rotation which will rotate the eigen-basis of the candidate dataset to the
eigen-basis of the global probability distribution.

5. For each eigenvector, measure the statistical distance between the known
probability distribution and the candidate dataset obtained from both di-
rections of the eigenvector — choose the one that is closest to the known
distribution, and continue to next eigenvector.

Steps 2 and 3 comprises the PCA. Notice that since the target database is
drawn from the global probability distribution, the covariance matrix made from
target database should match the covariance matrix of the global probability
distribution fairly accurately.

Our attack differs from the attack of Liu et al. on two points:
– Liu et al. do an exhaustive search amongst all 2n possible mirroring of the

eigenvectors, whereas we find the direction of eigenvectors one at the time.
– Liu et al. use multivariate two-sample hypothesis test to find the best can-

didate dataset. We compute the statistical distance defined in Eq. 5. The
approach by Liu et al. requires time O((n + d)2), whereas our approach can
be done in time O(n log n) (sort the vectors in the candidate dataset and
count their frequencies).

Step 1 has time complexity O(d2n). Step 2 also takes time O(d2n) (we assume
that the covariance matrix of the global probability distribution has been pre-
computed) and Step 3 takes time O(d3). Finding the rotation in Step 4 takes
O(d2n). The final step has time complexity O(dn log n). In total our attack has
time complexity O(d3 + d2n + dn log n) (which is O(n3) when d < n).

5.2 Characteristics of Vulnerable Datasets

While our attack is based on a statistical method for mapping the hyper-latereted
data to the global probability distribution, the characteristics of data can change
the accuracy of the output considerably. For example, a dataset with a circu-
lar shape (no correlation between attributes) in 2-dimensional space cannot be
mapped to its original position by using PCA.

The covariance matrix is the main identifier of the success of our attack, as it
is the only input to PCA. Its eigenvalues and eigenvectors define the alignment
of data and are the basis for finding the rotation which maps a candidate dataset
to the real data of the target database. We therefore study the connection be-
tween the properties of the covariance matrix and the success of the attack. The
covariance matrix contains the covariance values between each pair of attributes
and the variances of single variables in its diagonal.

In order to see the effect of the covariance values, we implemented an algo-
rithm that constructs a multivariate Gaussian distribution which has a given
covariance matrix (see Sec. 5.2 below). By using this tool, we can observe error
rates with different configurations of the covariance matrix.
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Fig. 1. Effect of eigenvalue differences (synthetic data)

Recall that the PCA-based attack works by finding the eigen-basis of the
candidate dataset, and comparing it to the eigen-basis of the known properties
distribution. In order to match the eigenvectors pairwise, all the correspond-
ing eigenvalues must be different. We thus expect that the attack works best,
when there is a large average difference between the eigenvalues of the covari-
ance matrix (so that they are easily paired with the eigenvalues of the known
probability distribution). To test this, we constructed data with difference co-
variance matrices, and plotted the average distance between eigenvalue versus
the error percentage of the output of the attack. As can be seen from the result
of the tests given in Fig. 1, there is a clear relationship between the eigenvalue
difference and the error percentage. When the difference between the eigenvalues
grows, the error drops. On the other hand, when the eigenvalues are very similar,
the error percentage increases dramatically.

A dataset has a high average difference between eigenvalues of the covariance
matrix when the correlations between different pairs of attributes differ. In other
words: datasets where some attributes are highly correlated, while others are only
weakly correlated are more vulnerable to the PCA attack.

In some scenarios it may not be realistic to assume that an attacker has access
to statistical data which contains the correlations between attributes. If, for
instance, the attacker can only obtain statistics for each attribute independently,
he will not be able to apply the PCA attack, since his description of the global
probability distribution does not contain the correlations necessary for the PCA
attack to work. In this case, however, other methods may be applies. Recall that
PCA is only used to recognise “geometrical characteristics” of the dataset which
can be used to rotate the candidate dataset to the real data. Since we know that
our hyper-latereted candidate dataset has the same shape as the original data
— up to rotation, displacement, and mirroring, any technique which can give a
simple representation of the shape of a dataset, can be used to find a rotation
from the candidate dataset to the real data. Instead of using PCA an attacker
may try to recognise each attribute independently in the candidate dataset. We
leave it to future work to find alternatives to PCA.
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Generating Synthetic Datasets. To characterise the vulnerable datasets, we
generated synthetic datasets with a given covariance matrix, V . We do this as
described in this section.

A d-dimensional data set, described by a d-dimensional random variable X =
(X1, . . . , Xd) has the covariance matrix:⎡⎢⎢⎢⎣

E[(X1 − μ1)(X1 − μ1)] · · · E[(X1 − μ1)(Xd − μd)]
E[(X2 − μ2)(X1 − μ1)] · · · E[(X2 − μ2)(Xd − μd)]

...
...

E[(Xd − μd)(X1 − μ1)] · · · E[(Xd − μd)(Xd − μd)]

⎤⎥⎥⎥⎦ ,

where μi = E[Xi] is the expected value of the ith attribute. This matrix can be
rewritten as

Covd(X) = E
[
(X − E[X ])(X − E[X ])T

]
. (6)

We now see, that for an d-dimensional random variable X , and orthogonal
matrix U :

Covd(UX) = E
[
(UX − E[UX ])(UX − E[UX ])T

]
= E

[
U(X − E[X ])(X − E[X ])T UT

]
= UE

[
(X − E[X ])(X − E[X ])T

]
UT

= UCovd(X)UT .

We can now create a data set with the given covariance matrix V . Since V is
self-adjoint it can be diagonalised. In other words, we can find orthogonal matrix
U , and diagonal matrix D such that:

V = UDUT . (7)

The matrix U will have the ith eigenvector of V as the ith row, and the matrix
D will have the ith eigenvalue in Dii.

We now see that if Covd(X) = D then

Cov(UX) = UCov(X)UT = UDUT = V. (8)

In other words — by generating X with independently distributed variables,
where XI has variance Dii, then the random variable UX has the desired co-
variance matrix.

6 Experimental Results

To demonstrate the potential power of our attack we apply it to both real and
synthetic datasets. We use the “Adult Census” and “Auto-MPG” datasets from
the UCI Machine Learning Repository [13]. For our experiments we use a 1.6 GHz
Pentium Notebook with 2 MB cache and 512 MB RAM running the Windows XP
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operating system. The implementation of our attack is programmed using ruby
1.8.6 with rb-gsl (gnu scientific library) bindings for mathematical operations.

The Adult Census dataset contains 48842 objects. The objects have 14 at-
tributes, of which we are only using the attributes “age”, “education-num”,
“sex”, and “hours-per-week” (Liu et al. apply their attack to the attributes
“age”, “education-num”, “hours-per-week”).

The Auto-MPG dataset contains information on car brands, their engines,
and their gas consumption. The dataset contains 398 objects with 8 attributes.
We apply our attack to the attributes “mpg”, “displacement” (engine volume),
“horsepower”, “weight”, and “acceleration”.

Before the attack is applied, we compute the global probability distributions,
which is to be known to the attacker. To this end each test first selects a subset
from the given dataset, and computes the statistics on that subset. The attack is
subsequently applied to the dissimilarity matrix of another subset of objects (the
target database). When the target database is overlapping with the data used for
computing the probability distribution, the computed probability distribution
fits closely to the target database. This may make the attack seem better than
it is. We have selected non-overlapping sets, where possible. Unfortunately the
Auto-MPG dataset only contains 398 objects, so some overlap is unavoidable.

As measure of success, we compute the average distance between the recovered
data and their real values. The tests are repeated 30 times, and their average is
taken. In the following graphs the distances are reported in percentage of the max-
imum distance1, which is referred to as distance error, to make comparison easy.

In Fig. 2 the results of the attack on the Auto-MPG dataset is shown. Since
the dataset is small, we use 200 objects for computing the known probability
distribution. We attack target datasets of sizes from 50 to 400 in steps of 50.
In the tests where the target database has less than 200 objects, we use non-
overlapping sets. However, in the tests with more than 200 objects there is an
overlap between the data used for computing the probability distribution and

Fig. 2. Error percentage in Auto-MPG dataset with 5 attributes

1 Since we normalise all data, the maximum distance of d-attribute objects is
√

d.
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Fig. 3. Error percentage in adult census dataset with 4 attributes

Fig. 4. Error percentage in adult census dataset with and without our speed optimisation

the target dataset. Even for a dataset as small as 50 objects, we can recover the
data with an error of only 6.5%. When the size of the dataset grows, the error
drops to approximately 2%, and therefore our attack becomes more effective.

In Fig. 3 the results of the attack applied to the Adult Census dataset is
illustrated. The global probability distribution is computed from a set of 5000
objects, and the target datasets contain between 2000 and 40000 objects in steps
of 2000. Since the Adult Census dataset contains 48842 objects the dataset used
for computing the global probability distribution and the target dataset are non-
overlapping. The tests show that in this very realistic scenario, we are able to
recover the secret data with an error of only 3%, and on some cases as low as
2%. In terms of privacy this means that we can recover the age of individuals to
a precision of 3 years; this is clearly a violation of privacy.

Since our attack does not do exhaustive search for the best mirroring of the
dataset, but iteratively try to mirror in one direction at the time it will clearly not
be as precise as when exhaustive search is used. To see how much the precision
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Fig. 5. Time of the attack on 1000 objects with and without our speed optimisation

suffers when using our optimisation we also make the above test on the Adult
Census dataset. In Fig. 4 it is seen that the speed improvement reduces the
precision of the attack, as expected.

To demonstrate the effect of our improvement on the speed of the attack, we
perform a series of timings both with and without our improvement. The tests
are performed on synthetic datasets of 1000 objects with 4 – 12 attributes. As
can be seen from Fig. 5 our approach greatly reduces the time of the attacks.

For databases with many attributes our improved attack offers a realistic
attack, where the original attack becomes infeasible.

7 Conclusions

Privacy preserving data mining is still an ongoing research topic where off-the-
shelf software solutions are yet to be developed. Two of the main reasons for
the lack of software solutions are the strong assumptions made by the existing
methods, and possible privacy breaches. In this work we showed that distance
preserving data transformation techniques proposed for privacy preserving data
mining (1) make too strong assumptions for real life scenarios, and (2) com-
promise the privacy of individuals. Current distance preserving transformations
assume that the adversary does not have background information about the re-
leased data. To prove that this is not a realistic assumption, we showed how
an adversary can utilise public data sets to obtain statistics about the trans-
formed data. We further demonstrated how this background information can be
used in conjunction with the distance values to obtain the original data set. We
conducted experiments on US census and Auto MPG data obtained from UCI
[13] to show that the actual data can be recovered with very high accuracy. Our
attack is an improvement of the attack of Liu et al. since it is applicable to any
distance preserving map (including the projection map proposed in [8] which is
secure against the attack from [7]).
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It is still an open problem to quantify how much information can be disclosed
from the dissimilarity matrix of a given dataset. We argued that, when the PCA
attack is applied, the amount of disclosed information is related to the charac-
teristics of the eigenvalues of the correlation matrix, but for other techniques
other properties may govern the amount of leakage. It is an interesting problem
to find alternatives to PCA.
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Abstract. Location-based services, such as on-line maps, obtain the exact loca-
tion of numerous mobile users. This information can be published for research or
commercial purposes. However, privacy may be compromised if a user is in the
proximity of a sensitive site (e.g., hospital). To preserve privacy, existing meth-
ods employ the K-anonymity paradigm to hide each affected user in a group that
contains at least K − 1 other users. Nevertheless, current solutions have the fol-
lowing drawbacks: (i) they may fail to achieve anonymity, (ii) they may cause
excessive distortion of location data and (iii) they incur high computational cost.

In this paper, we define formally the attack model and discuss the conditions
that guarantee privacy. Then, we propose two algorithms which employ 2-D to
1-D transformations to anonymize the locations of users in the proximity of sensi-
tive sites. The first algorithm, called MK, creates anonymous groups based on the
set of user locations only, and exhibits very low computational cost. The second
algorithm, called BK, performs bichromatic clustering of both user locations and
sensitive sites; BK is slower but more accurate than MK. We show experimentally
that our algorithms outperform the existing methods in terms of computational
cost and data distortion.

1 Introduction

The recent years have witnessed the widespread availability of positioning capabilities
(e.g., GPS) in automobiles, handheld devices, etc. The emergence of novel applications
based on user locations has created the potential for gathering large amounts of location
data from mobile clients. Location data can also be collected from a variety of other
sources. For instance, the Octopus system in Hong Kong, which employs a smart card
for transportation and low-value purchases, can monitor the location where the card was
used.

Location data can benefit a broad range of applications, such as alleviation of traffic
congestion, or optimization of operations in a public transportation network. Neverthe-
less, Hu et al. [9] observed that publishing such data for research or planning purposes
introduces serious privacy concerns. The location data can be joined with external infor-
mation, such as schedules of hospital appointments, in order to reveal sensitive informa-
tion about individuals. Consider the example in Figure 1a (adapted from [9]). Assume
that the published location data for a specific day at 2pm consists of users u1 . . . u4.
Furthermore, hospital h publishes the appointment schedule of Figure 1b; note that the

B. Ludäscher and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, pp. 95–113, 2008.
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Fig. 1. Privacy violation in location data publishing

schedule is anonymous. Taken in isolation, neither of the two published datasets rep-
resents a privacy threat. However, by combining the two datasets, an attacker can infer
that user u1, who was the only one near the hospital at 2pm, is consulting a cardiologist.

Previous work employed Spatial K-Anonymity (SKA) [10] to preserve privacy in
Location-Based Services (LBS). SKA replaces the exact location of u with an Anonymiz-
ing Spatial Region (ASR), which encloses u as well as K − 1 other users; therefore the
identification probability of u does not exceed 1/K (K is a user-defined parameter called
anonymity degree). The process of replacing exact locations with ASRs is called cloak-
ing. Several algorithms for spatial cloaking have been proposed [5,6,8,10,13]. Most of
the previous work focused on hiding the association between a query sent to an LBS and
the actual querying user; therefore, each time a user u sends a query, a single ASR is
built around u. Our problem, on the other hand, has two characteristics that make it more
difficult: (i) the privacy of all users must be preserved, as opposed to anonymizing only
a single querying user, and (ii) an additional set of sensitive locations must be taken into
account; therefore, anonymization is performed with respect to the external data that an
attacker may have access to (e.g., the hospital schedule).

Continuing the earlier example, let the anonymity degree be K = 2. Figure 1c shows
ASR1,2 that encloses users u1 and u2, as well as the sensitive site h. In the published
data, the exact location of u1 and u2 is replaced by the ASR. From the attacker’s point
of view, u1 or u2 can be anywhere inside the ASR with equal probability. Moreover, the
ASR encloses h, so it is closest to h than any other user. Consequently, the attacker can
only assume that either u1 or u2 is having a cardiologist appointment with probability
at most 1/K = 1/2. Observe that the locations of u3 and u4 do not need to be cloaked,
because these users are further away from the sensitive site (compared to the ASR), so
they would not be associated with h. Note that, while cloaking preserves privacy, it also
reduces the accuracy of the published data: a researcher that studies Figure 1c cannot
know exactly where the users are located. A tradeoff emerges between privacy and the
amount of information that is lost in the process of cloaking. The data distortion is the
sum of areas of all ASRs; this metric must be minimized.

The previous example assumed that the attacker knows the identity of u1, there-
fore the association between u1 and “cardiologist” can be performed. In practice, when
publishing location data, the identity of the mobile users is removed. Nevertheless, as
shown in [4], a number of methods can be employed to infer the identity of a user based
on his location (e.g., through trajectory reconstruction [15]). For the rest of the paper
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Fig. 2. The kNN approach may result to excessive data distortion

we assume that an attacker is able, in the worst case, to acquire the identity of the user
associated to each location in the published data.

A naı̈ve solution to generate ASRs in the proximity of sensitive locations is the fol-
lowing: For each sensitive site si, use a k-Nearest-Neighbor (kNN) algorithm to assign
the K nearest users to si. However, the data distortion depends on the order of pro-
cessing the sites. In the example of Figure 2a, s1 is processed first resulting to ASR3,4

since u3 and u4 are the nearest users; then s2 is assigned to ASR1,2. On the other hand,
our solution (Figure 2b) assigns s1 to ASR1,2 and s2 to ASR3,4; clearly the resulting
data distortion is lower. Moreover, we show in our experiments that the kNN solution
is slow. Recently, Hu et al. [9] formulated the problem as a version of the set cover
problem and proposed heuristic algorithms. However, their solution suffers from the
following drawbacks: (i) the approach for generating and publishing ASRs does not
guarantee anonymity, (ii) the data distortion is high and (iii) the computational cost is
very high.

In this paper we propose efficient solutions that do not suffer from the above-
mentioned drawbacks. Our methods map the 2-D user locations to 1-D space. Dimen-
sionality reduction has been acknowledged as a suitable method to achieve privacy for
both relational data [7] and in Location-based services [10]. Figure 3 shows an outline
of our approach: the locations of users and sensitive sites are mapped to the 1-D domain
using the Hilbert [14] space-filling curve. The Hilbert curve has good locality proper-
ties: if two points are close to each other in the 2-D space, with high probability they
will also be close in the 1-D transformation. We devise two methods to generate ASRs:
(i) Monochromatic K-anonymity (MK) is a multi-stage method: first the set of users
is partitioned into groups containing K to 2K − 1 users; the partitioning is optimal

Fig. 3. Using 2-D to 1-D mapping, s1 is assigned to ASR2,1, s2 to ASR3,5, etc.
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(i.e., lowest possible group extents) in the 1-D space. Then, a greedy approach is used
to assign sensitive sites to user groups. MK is fast because the partitioning phase is
linear to the number of users. However, since the initial partitioning is independent
of the sensitive sites, the resulting data distortion is not optimal. (ii) Bichromatic K-
anonymity (BK) is a one-stage algorithm that performs an optimal assignment (in the
1-D space) of users to sites by simultaneously clustering both users and sensitive sites
(hence “bichromatic”). Although the assignment is not optimal in the 2-D space, the
resulting data distortion is lower compared to MK. The tradeoff is that BK is compu-
tationally more expensive, since the search space of the solution is considerably higher
than for MK. Nevertheless, we show experimentally that both MK and BK are much
faster and achieve lower data distortion compared to existing methods.

The rest of the paper is organized as follows: Section 2 defines formally the problem
and surveys the related work. Section 3 describes the Monochromatic K-anonymity
technique, whereas Section 4 introduces Bichromatic K-anonymity. The experimental
evaluation is presented in Section 5. Finally, Section 6 concludes the paper with direc-
tions for future work.

2 Background and Related Work

This section formalizes the attack on the published location data and defines the
anonymi-zation problem. It also presents the related work on relational databases and
Location-based services.

2.1 Problem Definition

Let U be the set of user locations and S the set of sensitive sites. Both users and sites
may have arbitrary shapes and are represented by their Minimum Bounding Rectangle
(MBR). Consider that U is published in its original form. Then, an attacker can com-
promise privacy by joining U and S. Formally:

Definition 1 (Attack on Location Privacy). Given U , S and the anonymity require-
ment K , an attack is defined as the result of the following spatial join:

SELECT user.id, site.id
FROM U as user, S as site
WHERE distance(user.mbr, site.mbr) =

SELECT MIN(distance(U.mbr, S.mbr))
FROM U, S
WHERE S.id = site.id

An attack is successful iff the probability of distinguishing a particular user u in any
of the resulting tuples of the above query is larger than 1/K .

In the example of Figure 1a, the spatial join will output the tuple 〈u1, h〉, since u1 is
closest to h than any other user. Therefore the attacker can infer that u1 has a cardiology
appointment.
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Fig. 4. User sharing violates privacy

To achieve anonymity, each sensitive site s is associated with an anonymizing set,
denoted by M(s), of at least K users who are indistinguishable from each other. Instead
of publishing the exact user locations, we publish the ASR, which is the MBR that
encloses s and the users in M(s). Formally:

Definition 2 (Privacy-Preserving Location Publishing Format). A privacy-preserving
publication of U with respect to S is a mapping M : S → 2U (2U is the set of all pos-
sible anonymizing sets). The published format consists of a collection of ASRs, one for
each s ∈ S, where ASR(s) = MBR({s} ∪M(s)).

Based on the attack model and publication format, we define below the K-anonymity
condition for our problem:

Definition 3 (K-anonymous Location Publishing). A privacy-preserving mapping
M : S → 2U is K-anonymous iff (i) ∀s ∈ S, |M(s)| ≥ K and (ii) ∀s1, s2 ∈ S,
M(s1) ∩M(s2) = ∅.

Condition (i) is imposed by the indistinguishability requirement, whereas condition (ii)
specifies that the anonymizing sets of different sites should be disjoint. To demonstrate
the need for the second condition, consider the example in Figure 4, where K = 2.
S consists of sites s1 and s2, but the anonymizing sets of these sites overlap in user
u4. Therefore, only three distinct users are included in M(s1) ∪ M(s2). An attacker
can infer that any of u1, u2 or u4 was present at a sensitive site (either s1 or s2) with
probability 2/3 = 0.66 > 1/K = 0.5; hence, privacy is compromised.

Returning to the example of Figure 1c, the K-anonymity conditions are satisfied,
since |M(h)| = |{u1, u2}| = 2 and M(h) does not share users with any other site.
This can be verified by executing the query of Definition 1. The exact locations of u1

and u2 have been replaced by the ASR, whose distance to h is 0. Therefore the query
returns two tuples: 〈u1, h〉 and 〈u2, h〉; hence the probability of associating u1 or u2

with the cardiology appointment is at most 1/2. Observe that u3 and u4 are not included
in the query results, since their distance to h is larger than that of the ASR. Therefore,
we can publish the exact locations of u3 and u4 without compromising privacy.

Besides providing privacy, the distortion (also called generalization cost) of the pub-
lished data must be minimized. Similar to the related work in Location-based services
[5,6,8,10,13], we measure the generalization cost by the sum of the areas of the pub-
lished ASRs. Formally:
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Definition 4 (Generalization Cost). Given a set U of user locations, a set S of sensi-
tive sites, and a privacy-preserving mapping M : S → 2U , the generalization cost for
site s is:

GC(s) = Area(MBR(M(s) ∪ {s})) (1)

The overall (global) generalization cost of the entire mapping is:

GGC(M) =
∑
s∈S

GC(s) (2)

Recall that for some users we publish their exact locations (e.g., u3 and u4 in Figure 1c);
no generalization cost is incurred for such users. Our problem is formally defined as:

Problem 1 (Optimal K-Anonymous Location Data Publication). Given U , S and
K , determine a K-anonymous mapping M : S → 2U such that the generalization cost
GGC(M) is minimized.

2.2 K-Anonymity in Relational Databases

K-anonymity [16,17] was initially proposed in relational databases for privacy pre-
serving publishing of detailed data (or microdata), such as hospital records. Although
identifying attributes (e.g., name) are removed, microdata contains quasi-identifying at-
tributes (QID) (e.g., 〈Age, Zipcode〉) that can be joined with external information, such
as voting registration lists, to expose the identity of individual records. To address this
threat, K-anonymity requires that each record must be indistinguishable from at least
K − 1 other records, with respect to the QID. Two techniques are commonly used to
achieve K-anonymity: suppression, where some of the attributes or tuples are removed,
and generalization, which involves replacing specific values (e.g., phone number) with
more general ones (e.g., only area code). Both methods lead to information loss. Al-
gorithms for anonymizing an entire relation are discussed in [2,11]. Xiao and Tao
[18] consider the case where each individual requires a different degree of anonymity,
whereas Aggarwal [1] shows that anonymizing a high-dimensional relation leads to un-
acceptable loss of information due to the dimensionality curse. Machanavajjhala et al.
[12] propose 
-diversity, an anonymization method that provides diversity among the
sensitive attribute values of each anonymized group. Ghinita et al. [7] employ multi-
dimensional to 1-D transformations to solve efficiently the K-anonymity and 
-diversity
problems.

2.3 K-Anonymity for Location Data

Most related work in the area of location K-anonymity focuses on query privacy in
Location-based Services (LBS). Users issue queries such as “find the closest hospital to
my current location”. Typically, there is a trusted Anonymizer Service (AN) between
the users and the LBS. The users constantly update their location with AN. Queries are
also sent through AN, which removes the user id and constructs an ASR that contains
the querying user as well as at least K − 1 additional users. The AN forwards the ASR
to the LBS, which computes the answer based on the ASR, instead of the exact user
location. The result is also routed back to the querying user through the AN. In [8],
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Fig. 5. Local Algorithm

the anonymizer employs a quad-tree to index user locations. Given a query from u, the
corresponding ASR is the lowest-level quadrant that contains u as well as K − 1 other
users. In [13] a similar structure is used, but two neighboring quadrants are allowed to
form an ASR, before ascending one level up in the quad-tree. In [6] queries from mul-
tiple users form a graph. The graph is searched for cliques (i.e., queries from near-by
users), which are used to form the ASR. Kalnis et al. [10] identify the reciprocity prop-
erty, a sufficient condition to guarantee anonymity. To enforce reciprocity, the users are
split into disjoint buckets based on their 1-D Hilbert ordering; the same transformation
is used in our work. The previous algorithms generate a single ASR independently for
each query. This approach is not applicable to our problem, since we must publish an
anonymized version of the entire dataset U ; furthermore, anonymization depends on
the set of sensitive sites S.

Location publishing in the proximity of sensitive sites was first discussed by Hu
et al. [9]. They formulated the problem as a version of the set cover problem and pro-
posed a heuristic algorithm called Local (see Figure 5). Local is a user-centric method:
for each user u ∈ U (for simplicity the example shows only one user) the location of
u is incrementally enlarged to include sensitive sites in its bounding box. Local con-
sists of four nested loops, corresponding to four directions originating at u (North, East,
South, West), and each loop advances a plane-sweep line in its direction. In Figure 5a,
the North sweeping line dN is fixed, and the East line is advanced from d1

E to d2
E to

cover sites s4 and s3, respectively. Out of all combinations along the four directions,
the bounding box with the optimal coverage (measured as the area of the bounding box
divided by the number of enclosed sites) is retained as the candidate box Ω(u). The
candidate boxes are determined for all u ∈ U , and user u0 with the lowest coverage is
output, at which point a coverage counter of all sites enclosed by Ω(u0) is increased. If
the counter of a site s reaches K , s is removed from S, the candidate boxes of all other
users that enclose s are updated, and the algorithm continues for the remaining sites, un-
til all sites are covered at least K times. The complexity of Local is O(|S|4 ·(|S|+|U |)),
which is very high. [9] proposes an optimization based on the R-Tree spatial index
(see Figure 5b). Instead of performing the plane-sweep with respect to individual sites,
the algorithm considers the nodes of the R-Tree. Each node represents a “super-site”,
which is considered to be situated at the point inside the node that is closest to u,
and has a weight equal to the number of sites rooted in the subtree of that node. It
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is shown that by using the super-site concept, a lower bound of the actual coverage is
obtained, and the search space of the solution is reduced.

We show in Section 5 that the execution time (even with the R-tree optimization)
and generalization cost of Local are very high. More importantly, Local allows the
anonymizing sets of distinct sensitive sites to share users. Therefore, it does not guar-
antee privacy (recall condition (ii) in Definition 3). Furthermore, the authors of [9] pro-
pose a publication format, further referred to as “2-by-2”, that discloses a collection of
MBRs for each site s: each MBR encloses s and a single user in M(s). However, this
format discloses exact user locations, since each published MBR only contains two lo-
cations, and one of them (i.e., s) is known to the attacker. Figure 5c shows an example:
Local chooses users u3 and u4 as part of M(s), because the two rectangles R1 and R2,
which are very skewed, have small areas (hence, low generalization cost). An attacker
can infer that the users are situated at the opposite extremities of R1, respectively R2,
from s. This is similar to publishing the exact locations of all users, therefore privacy
is compromised. Should we choose a secure publishing format like the one in Defini-
tion 2, i.e. ASR3,4 in the example, the resulting area is very large. We will investigate
this issue further in Section 5.

3 Monochromatic K-Anonymity (MK)

In this section, we present Monochromatic K-Anonymity (MK). MK is a multi-stage
algorithm: In the first stage, it partitions the set U into groups with K to 2K − 1 users
each. In the subsequent stages, it uses a greedy approach to assign user groups to each
site in S. The first stage of MK employs the 1DAnon algorithm, which was used in [7] to
partition relational data with 1-D quasi-identifiers. Below, we briefly explain 1DAnon.

1DAnon takes as input the set U of user locations sorted according to their 1-D
Hilbert values. We use u to denote a user, as well as his coordinate in the 1-D space.
Furthermore, we denote by |ui −uj| the 1-D distance between users ui and uj . Given a
group of users G = {ubegin, . . . , uend}, where ubegin and uend represent respectively
the user with the minimum and maximum 1-D coordinate in G, we denote the extent
of G in the 1-D space as: 1D Ext(G) = |uend − ubegin|. We refer to begin and end
as the boundaries of G. 1DAnon finds the optimal K-anonymous partitioning U =
{G1, . . . , G|U|} of U , such that the

1D Cost(U) =
∑
G∈U

1D Ext(G) (3)

is minimized. Note that Eq. (3) is the one-dimensional equivalent of the GGC metric
from Eq. (2). To find the optimal anonymous partitioning of U , 1DAnon applies a dy-
namic programming recursive formulation which determines the best grouping for each
prefix {u1, . . . , ui} (where K ≤ i ≤ |U |) of the user sequence. 1DAnon returns a set
of K-anonymous groups, each with size bounded between K and 2K − 1. The com-
putation cost of 1DAnon is O(K · |U |), hence linear to the number of users. In our MK
algorithm, we vary 1DAnon slightly: Instead of 1D Cost, we use the GGC metric. The
user partitioning is not optimal in the 2-D space, but due to the good locality properties
of the Hilbert ordering, the results are adequate in practice.
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Monochromatic K-anonymity (MK)
Input: sets U [1 . . . n] and S[1 . . . m] sorted in ascending order of 1D Hilbert values
1. U =1DAnon(U, K)
2. while |S| > 0
3. foreach s ∈ S

// assign s to a user group s.t. the resulting area is minimized
4. AS(s) = Gi s.t. ∀j �= i, Area(MBR(Gi ∪ {s})) < Area(MBR(Gj ∪ {s}))
5. foreach G ∈ U
6. if ∃s s.t. AS(s) = G then

// choose the site that minimizes the resulting area
7. choose s0 s.t. AS(s0) = G and ∀s ∈ S|s �= s0 ∧ AS(s) = G,

Area(MBR(G∪ {s0})) < Area(MBR(G∪ {s}))}
8. output MBR(G ∪ {s0})
9. U = U�G
10. S = S�{s0}

Fig. 6. Monochromatic K-Anonymity Pseudocode

Figure 6 shows the pseudocode of MK: the input consists of sets U and S, sorted
in the 1-D Hilbert order of the locations of users and sensitive sites, respectively. The
cardinalities of the two sets are denoted as n = |U | and m = |S|. Initially, MK in-
vokes 1DAnon (line 1) and obtains U , which is the partitioning of U into K-anonymous
groups. Subsequently, MK assigns the sensitive sites to groups of U . At each stage, each
site s ∈ S is assigned to the user group G that minimizes the area of MBR(G ∪ {s})
(lines 3-4). We say that G is the anonymizing set of s, i.e. AS(s) = G. Note that,
multiple sites can be assigned to the same group, whereas some groups may not be
assigned any site. Since sites cannot share users (condition (ii) in Definition 3), colli-
sions are solved (line 7) by choosing for each group the site that minimizes the area
of MBR(G ∪ {s}) (in case of ties, a random site is chosen). For each assigned site,
we output (line 8) the MBR that encloses s0 and its corresponding anonymizing set
M(s0) ≡ G. U and S are updated by eliminating the users and sites that have been
output (lines 9-10). If there still exist unassigned sites (line 2), the algorithm starts a
new stage with the remaining users and sites. Since at most 2K − 1 users belong to
each user group, the algorithm is guaranteed to terminate if the inputs satisfy the con-
dition n ≥ (2K − 1) · m.

In the worst case, at each stage all sites are assigned to the same user group, and the
number of required stages is m. Each stage takes O(m · n) to find the closest group for
each site. Hence, the complexity of MK is O(K ·n+m2·n); the first term corresponds to
1DAnon. In practice, the number of stages is significantly smaller than m; in Section 5
we show that MK is very fast.

Figure 7 illustrates an example of applying MK for U = {u1 . . . u6} and S =
{s1 . . . s3}. Initially (Figure 7b), the 1DAnon algorithm is executed, resulting in anony-
mous groups G1 . . . G3. Then, sites s1 and s2 are assigned to G1, whereas s3 is assigned
to G3. Since the enclosing area of s2 and G1 is larger than that of s1 and G1, MK out-
puts s1 with anonymizing set G1, and s3 with G3. In the next stage (Figure 7c), the
remaining users and sites are {u3, u5} and s2, which are output together. Note that,
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Fig. 7. Example of MK

it is possible for MK to terminate, even though some users do not have any site as-
signed to them. For those users we publish their exact location, since their privacy is
not threatened (refer to Definition 3).

4 Bichromatic K-Anonymity (BK)

This section introduces the Bichromatic K-anonymity (BK) algorithm. BK also uses the
1-D Hilbert transformation for U and S. However, the process of creating anonymizing
sets considers simultaneously U and S (as opposed to MK, which partitions U inde-
pendently). As a result, BK achieves lower generalization cost.

Before presenting BK, we will study a restriction of the problem to the 1-D space.
We seek to find an optimal K-anonymous mapping M that assigns sites to user groups,
such that the 1-D cost is minimized. In the 1-D domain the generalization cost of a
mapping is:

1D Cost(M) =
∑
s∈S

1D Ext({s} ∪M(s)) (4)

In Section 4.1we identify three properties of an optimal 1-D mapping: (i) each anonymiz-
ing set contains exactly K users, (ii) each anonymizing set consists of users that are con-
secutive in the 1-D domain, and (iii) the extents of any two anonymizing sets do not
overlap in the 1-D domain. Based on these properties, in Section 4.2 we present the BK
algorithm, which employs dynamic programming to solve the problem in the 2-D space.
Although the 2-D solution is not optimal, due to the good locality properties of the Hilbert
ordering, BK achieves very low generalization cost in practice.

4.1 Properties of an Optimal 1-D Mapping

The following theorem states that there exists an optimal 1-D mapping where the
anonymizing set of each site contains exactly K users.

Theorem 1. Consider a set of user locations U and a set of sensitive sites S. Then,
there exists an optimal mapping M : S → 2U such that, ∀s ∈ S, |M(s)| = K .

Proof. Let M′ be the optimal mapping for U and S, and assume that ∃s0 ∈ S such that
G = M′(s0) and |G| > K . Let G′ be the anonymizing set obtained by retaining only
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Fig. 8. Anonymizing sets consist of consecutive users in the 1-D sequence

K users from G. Define mapping M such that M(s0) = G′, and ∀s �= s0,M(s) =
M′(s). Then the K-anonymity condition for M is satisfied, according to Definition 3.
Furthermore, since G′ ⊂ G, we have that 1D Ext(G′) ≤ 1D Ext(G), hence the
generalization cost of M does not exceed that of M′. By applying the same reasoning
for all groups with size larger than K , we obtain an optimal mapping M such that
∀s ∈ S, |M(s)| = K . ��

We further show that the anonymizing set of every site s consists of users that are
consecutive in the user sequence. Formally:

Theorem 2. There exists an optimal mapping M such that ∀s ∈ S, if ui, uj ∈ M(s)
and i < j, then ∀ul with i < l < j, ul ∈ M(s).

Proof. Assume optimal mapping M′ and that ∃s ∈ S such that ui, uj ∈ M′(s), i < j,
and ∃ul, i < l < j, such that ul /∈ M′(s). This situation is depicted in Figure 8. Then,
we can replace M′(s) with either G′ = M′(s)�{ui}∪{ul} or G′′ = M′(s)�{uj}∪
{ul}. The privacy condition is still satisfied, since |G′| = |G′′| = K; furthermore,
1D Ext(G′) ≤ 1D Ext(G) and 1D Ext(G′′) ≤ 1D Ext(G). Therefore, we obtain
a new K-anonymous mapping M with generalization cost not exceeding that of M′,
hence optimal. ��

We also prove that there exists an optimal 1-D mapping, where the extents of the
anonymizing sets do not overlap. Formally:

Theorem 3. There exists an optimal mapping M such that, ∀s1, s2 ∈ S, and G1 =
M(s1), G2 = M(s2), the 1-D extents of G1 and G2 do not overlap.

Proof. Denote by M′ the optimal mapping for U and S, and assume that ∃s1, s2 ∈ S,
G1 = M′(s1) and G2 = M′(s2), such that G1 and G2 overlap in their 1-D extents.
Let ui1 , ui2 be the start boundaries and uj1 , uj2 be the end boundaries of groups G1

and G2, respectively. Without loss of generality, consider that ui2 < uj1 , a situation
depicted in Figure 9. We build anonymizing groups G′

1 = G1 ∪ {ui2}�{uj1} and
G′

2 = G2 ∪{uj1}�{ui2}, that is, we swap the end user of G1 with the start user of G2.
Since |ui2 − ui1 | + |uj2 − uj1 | ≤ |uj1 − ui1 | + |uj2 − ui2 |, the generalization cost of
the mapping is not enlarged. Furthermore, sets G′

1 and G′
2 have the same cardinality as

G1 and G2, hence the privacy requirement is satisfied. Therefore, the new mapping M
obtained by replacing G1, G2 with G′

1, G
′
2 is optimal. By applying the same reasoning

for every pair of overlapping groups, the theorem is proved. ��
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Fig. 9. Anonymizing sets do not overlap in their 1-D extent

4.2 The BK Algorithm in the 2-D Domain

BK is a dynamic programming algorithm, which is based on the properties of the 1-
D ordering. BK finds the best mapping M by minimizing the 2-D GGC metric from
Eq. (2). Recall that BK is not optimal in the 2-D domain.

Let AS(s) be the anonymizing set of site s. Each AS has cardinality K (Theorem 1)
and consists of consecutive users in the 1-D order (Theorem 2). Therefore, we can
uniquely identify a particular AS by its start boundary i (i.e., the group starting at i
consists of users ui . . . ui+K−1).

BK determines recursively the optimal mapping for each sub-problem corresponding
to prefixes Ui = {u1 . . . ui+K−1} of U and Sj = {s1 . . . sj} of S. Intuitively, Ui con-
tains all users that may be part of anonymizing sets starting at boundary at most i. BK
tabulates the values of a cost matrix Cost[1 . . . n][1 . . .m], where element Cost[i][j]
contains the optimal solution to the sub-problem with inputs Ui and Sj .

According to Theorem 3, the users in AS(sj) must be after those in AS(sj−1);
therefore, not all start boundaries are acceptable for a given j. Let a(j) be the minimum
and b(j) the maximum allowable start boundary for AS(sj). There must be enough
users before AS(sj) to build AS for sites s1 . . . sj−1. Similarly, sufficient users must
remain after AS(sj), to form AS for sj+1 . . . sm. Formally:

a(j) = (j − 1) · K + 1, b(j) = n + 1 − (m − j + 1) · K (5)

Figure 10 illustrates the Cost matrix and the possible choices of the start boundary for
AS(j).

Fig. 10. BK: Cost matrix tabulation
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Bichromatic K-anonymity (BK)
Input: sets U [1 . . . n] and S[1 . . . m] sorted in ascending order of 1D Hilbert values
0. min val = ∞, best start value = −1

/* populate first column */
1. for i = 1 to n − m · K + 1 do /* for every allowed start boundary of AS(s1) */
2. if GC(ui, . . . , ui+K−1, s1) < min val then
3. min val = GC(ui, . . . , ui+K−1, s1)
4. best start value = i
5. solution[i][1] = best start value
6. Cost[i][1] = min val

/* populate remaining columns */
7. for j = 2 to m do
8. min val = ∞, best start value = −1
9. for i = (j − 1)K + 1 to n + 1 − (m − j + 1)K do /*for every start boundary of AS(sj)*/
10. if (Cost[i − K][j − 1] + GC(ui, . . . , ui+K−1, sj)) < min val then
11. min val = Cost[i − K][j − 1] + GC(ui, . . . , ui+K−1, sj)
12. best start value = i
13. solution[i][j] = best start value
14. Cost[i][j] = min value

/* output solution */
15. group start = solution[n − K + 1][m]
16. output M(sm) ≡ AS(sm) = (ugroup start . . . ugroup start+K−1)
17. for j = m − 1 downto 1 do
18. group start = solution[group start − K][j]
19. output M(sj) ≡ AS(sj) = (ugroup start . . . ugroup start+K−1)

Fig. 11. Bichromatic K-Anonymity Pseudocode

Note that some users may not be included in any AS, hence there may be “gaps” left
in the user sequence when forming an AS. As mentioned earlier, Cost[i][j] stores the
best cost of the solution for sub-problem Ui, Sj . According to Eq. (5), the AS of the
last site in Sj can start at any value between a(j) and i. Hence, Cost[i][j] contains the
minimum cost over all choices of start boundary i′, a(j) ≤ i′ ≤ i. The Cost value is
recursively determined as:

Cost[i][j] = min{Cost[i−1][j], Cost[i−K][j−1]+GC(ui, . . . , ui+K−1, sj)} (6)

If the first element of the min function is smaller, it signifies that choosing to start
AS(j) at i is more costly than if we start it at i − 1, or earlier. Hence, i should not be
the start of AS(sj). Otherwise, AS(sj) should begin at i, and the value of Cost[i][j] is
updated as the sum of the immediate generalization cost associated to the area enclosing
{sj} ∪ {ui . . . ui+K−1}, and the recursive component Cost[i − K][j − 1]. The latter
corresponds to the best cost obtained for the sub-problem Ui−K , Sj−1 (the i − K is
dictated by the requirement that AS(sj−1) must end before i, hence must have start
boundary at most i − K).

Figure 11 shows the BK pseudocode. The values in the first column of the ma-
trix (i.e., Cost[∗][1]) are determined directly (lines 1-6) by computing all possible
anonymizing sets associated to sensitive site s1. Formally:

Cost[i][1] = min
1≤i′≤i

GC(ui′ , . . . , ui′+K−1, s1), a(1) ≤ i ≤ b(1) (7)
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In addition to the minimum cost value, we also need to retain the i′ value that minimizes
the above cost, to reconstruct the solution once the tabulation is completed. For this
purpose we use an additional table solution[1 . . . n][1 . . .m], which contains at element
solution[i][j] the start boundary of AS(sj) of the best solution to sub-problem Ui,
Sj .

The main loop (lines 7-14) tabulates the contents of Cost and solution in increasing
value of j (i.e., by columns), and in increasing value of i within each column, based on
the best solution obtained previously for column j−1. Finally, the mappingM(sj), 1 ≤
j ≤ m, is obtained in lines 15-19 with the help of the solution table. The cost of the
best mapping corresponds to the minimum value in the final column m (recall that each
entry in column j of Cost stores the accumulated cost of the solution to subproblem
Ui, Sj). Formally:

BestCost = min
(m−1)·K<i≤n−K+1

Cost[i][m] (8)

From Eq. (5), it results that the number of actual entries in each column j (i.e., the
number of allowable i values) is b(j)− a(j) + 1 = (n + 1−m ·K). The total number
of tabulated entries becomes (n + 1−m ·K) ·m ≡ O(m · n). However, the tabulation
proceeds column-by-column, and only the last column of Cost needs to be retained at
any time. Hence, the space complexity of storing Cost is O(n). Still, we need to store
the entire solution table. Nevertheless, only a constant O(n) fraction (i.e., the current
column) must be stored in main memory, while the rest can be saved to secondary
memory and read one more time when the output is performed.

In terms of computational cost, BK needs to tabulate O(n · m) entries of Cost, and
each entry requires O(K) computation for determining the base-case cost of GC in
Eq. (6) (line 10). The total cost is O(m · n · K). Although this is asymptotically lower
than MK, we show in Section 5 that BK is more expensive in practice, since the actual
number of stages in MK is much smaller than the worst case analysis. Nevertheless, the
generalization cost incurred by BK is considerably lower.

5 Experimental Evaluation

We implemented C++ prototypes of the proposed MK and BK algorithms, as well as the
Local technique from [9]. We also implemented a benchmark method based on nearest
neighbor search, referred to as KNN. KNN picks sensitive sites in random order, and
for each s ∈ S and a given K , it includes in M(s) the K nearest users of s. Those
users are then eliminated from U , to ensure that users are not shared among sites. For
efficiency, in the KNN method we index the users with an in-memory R*-Tree [3].

Our experiments were run on a P4 3.0 Ghz machine with 1GB of RAM and Linux
OS. We measured the execution time and the generalization cost GGC. GGC is ex-
pressed as the percentage of the sum of areas of all generalized locations, over the area
of the entire dataspace (intuitively, this measures how much of the dataspace area is
covered by the published locations). Formally:
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Fig. 12. Variable m, K = 5, 10000 Users

GGC(M) = 100 ·

∑
s∈S

Area(MBR(M(s) ∪ {s}))

DomainArea
% (9)

We used the NA1 real dataset, consisting of 569, 120 locations on the North-American
continent. We generated U and S sets of various sizes through random sampling from
NA. In Section 5.1 we compare all algorithms for small input sizes, because of the very
high overhead of Local, whereas in Section 5.2 we evaluate MK, BK and KNN for large
inputs.

5.1 Comparison Against Local

In this experiment we set the number of users to 10, 000, K = 5, and vary the number
of sensitive sites m. Figure 12a shows that even for such a small value of K , the GGC
incurred by Local is one order of magnitude worse than that of other methods (roughly
10% of the dataspace). As discussed in Section 2.3, Local tends to include in M(s)
users that are very close to site s in one of the x or y coordinates, but they may be far
away in actual distance. Therefore, the resulting MBR is very large. We also measured
GGC using the publication method proposed in [9] (recall from Section 2 that this
format has serious privacy drawbacks). For m = 200, for instance, Local achieves
a GGC value of 0.25, compared to 0.78 for KNN. However, Local performs poorly
when a secure publishing format is used. Among the other methods, BK obtains the
best GGC. In terms of execution time, Figure 12b shows that Local is several orders of
magnitude slower than the other techniques. For 400 sites the absolute value is 18 hours.
The results do no utilize the R*-Tree-based optimization described in [9]. However, a
preliminary implementation that included that improvement did not show significant
gains. Among the other algorithms BK and MK are very fast, outperforming KNN.

Figure 13 presents the results for variable K; n = 10, 000 users and m = 200 sites.
The only value for which Local achieves low GGC is K = 2. For this value, it is likely
that a site s includes in its M(s) two users with close-by x or y coordinates, resulting

1 http://www.rtreeportal.org
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Fig. 13. Variable K, 200 Sensitive Sites, 10000 Users

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2000  3000  4000  5000  6000  7000  8000  9000  10000

G
G

C
 (

%
 o

f D
at

as
pa

ce
)

Sensitive Sites (m)

MK
BK

KNN

(a) Generalization Cost

 0

 200

 400

 600

 800

 1000

 2000  3000  4000  5000  6000  7000  8000  9000 10000

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

Sensitive Sites (m)

MK
BK

KNN

(b) Execution Time

Fig. 14. Variable m, K = 20, 569120 Users

in an MBR with small area. As K increases, the resulting MBR becomes less skewed,
and its area grows considerably.

5.2 Comparison of MK and BK Versus KNN

Below, we compare MK, BK and KNN for large input sizes that are relevant for practi-
cal applications (we exclude Local due to its excessive running time). Unless otherwise
specified, U consists of the entire NA dataset (i.e., 569K users). Figure 14 compares
the three algorithms for variable m and K = 20. There is a clear tradeoff between MK
and BK: GGC is up to 2 times lower for BK compared to MK, but MK is up to 8 times
faster. The execution time of MK is 42 seconds for the largest input. KNN is worse than
BK in terms of GGC and it is also much slower.

In Figure 15, we vary K for m = 4, 000 sensitive sites. BK maintains its advan-
tage over KNN in terms of GGC, while being up to ten times faster. MK is the fastest
method. Observe that the execution time of BK decreases with K , because the number
of tabulated entries in the dynamic programming formulation is (n + 1 − m · K) · m.
Intuitively, less candidate start boundaries need to be considered as K increases. For
MK, there are two contrary effects as K increases: the initial cost of 1DAnon is linear
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Fig. 15. Variable K, 4000 Sensitive Sites, 569120 Users
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Fig. 16. Variable n, 2000 Sensitive Sites, K = 20

to K . However, fewer groups are generated and this reduces the user-to-site assignment
phase of MK. As a result, the execution time remains almost constant.

Finally, in Figure 16 we fix m = 2, 000, K = 20 and vary the number of users
n. As n increases, the density of the users in the dataspace also increases, and more
compact anonymizing sets can be formed. Therefore, GGC decreases with larger n for
all methods. The execution time of KNN grows considerably with n, as more users
need to be considered in the nearest-neighbor search. The execution time of both BK
and MK is linear to n.

5.3 Discussion

Our two proposed methods, BK and MK, provide a clear tradeoff between generaliza-
tion cost and execution time: BK is the best in terms of GGC out of all considered
algorithms. It is also much faster than KNN and Local, but it is slower than MK. MK
is faster at the expense of higher GGC (roughly 2 times worse than BK). Neverthe-
less, MK remains a good choice for applications where speed is essential; for instance,
publishing real-time traffic updates.

Local cannot be used for any input size of practical value, due to its extremely high
computational overhead. Furthermore, Local incurs very high generalization cost, if a
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secure location publishing format is used. Finally, the KNN method is outperformed by
BK in terms of both GGC and execution time.

6 Conclusions

The collection of location data from mobile users has received considerable attention re-
cently. To enable users with low-end communication devices (i.e., even without GPS) to
access location-based services, certain LBS providers (e.g., GoogleMaps) have devised
systems that calculate the user location from the identifiers of cellular network tow-
ers. As huge amounts of location data are becoming available, their privacy-preserving
publication emerges as an important concern. In this paper we proposed two methods
for the anonymous publishing of location data, which are fast and achieve low data
distortion. Our methods are significantly better, compared to existing work.

In the future, we plan to study more complex attacks, based on traces of locations. By
correlating information published at consecutive timestamps, an attacker may be able to
gain additional knowledge and compromise the privacy of certain users. We also plan to
address the scenario where the input location data is not entirely available before-hand,
but instead it is generated in a streaming manner. This setting is more difficult, since
data must be output before their expiration deadline; therefore, computational efficiency
becomes a primary concern.
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Abstract. Theproblemof summarizingmulti-dimensionaldata into lossy
synopses supporting the estimation of aggregate range queries has been
deeply investigated in the last three decades. Several summarization tech-
niques have been proposed, based on different approaches, such as his-
tograms, wavelets and sampling. The aim of most of the works in this area
was todevise techniques for constructing effective synopses, enabling range
queries to be estimated, trading off the efficiency of query evaluation with
the accuracy of query estimates. In this paper, the use of summarization
is investigated in a more specific context, where privacy issues are taken
into account. In particular, we study the problem of constructing privacy-
preserving synopses, that is synopses preventing sensitive information from
being extracted while supporting ‘safe’ analysis tasks. In this regard, we in-
troduce a probabilistic framework enabling the evaluation of the quality of
the estimates which can be obtained by a user owning the summary data.
Based on this framework,wedevise a technique for constructinghistogram-
based synopses of multi-dimensional data which provide as much accurate
as possible answers for a given workload of ‘safe’ queries, while preventing
high-quality estimates of sensitive information from being extracted.

1 Introduction

In the last three decades, a great deal of attention has been devoted to the prob-
lem of summarizing multi-dimensional data into synopses supporting the estima-
tion of aggregate range queries. Several lossy compression techniques have been
proposed, based on different approaches (such as histograms [11], wavelets [3],
and sampling [7]). These techniques can be profitably applied in several appli-
cation contexts (e.g., On-line Analytical Processing [7], query optimization [15],
statistical and scientific databases [12]), where a high precision of query esti-
mates is not mandatory, and fast query answers (affected by reasonable error
rates) suffice to effectively support the tasks to be accomplished.

Intuitively enough, the experience acquired by the research community in de-
signing effective lossy compression techniques could be applied in a new emerg-
ing scenario, where data should be published to support different analysis tasks,
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with no risk for privacy issues. That is, the compression process could be driven
so that the loss of information is exploited to hide sensitive information, while
‘safe’ information is enabled to be accurately extracted from the synopses. In-
deed, most of summarization techniques proposed in the previously mentioned
scenarios provide no warranty on the privacy preservation of sensitive informa-
tion. In fact, the compression process accomplished by these techniques aims at
reducing as much as possible the loss of information resulting from summariz-
ing data in a limited amount of storage space, paying no attention to the risk
that sensitive information could be extracted from the summarized data with a
high degree of accuracy. This makes the problem of refining traditional compres-
sion techniques to deal with privacy-preserving issues intriguing, also due to its
practical impact in many application contexts.

In this paper we focus our attention on histogram-based summarization tech-
niques, which are widely used in the context of data compression. A histogram
is a synopsis obtained by suitably partitioning the data domain into a set of
blocks and then replacing the set of individual data inside each block with some
aggregate data. First, we introduce a probabilistic framework for evaluating the
quality of the estimates of sensitive information which can be obtained by access-
ing a histogram. Specifically, the quality of estimates is measured by evaluating
the probability associated with confidence intervals of individual-data estimates.
This framework can be used to assign a ‘safety certificate’ to histograms, as it
provides a measure of the privacy threat owing to the summary data published
through a histogram. Thus, we exploit the proposed probabilistic framework to
devise a technique for constructing privacy-preserving histograms. Our technique
is based on a greedy strategy for constructing a partition of data which aims at
two objectives: on the one hand, the resulting histogram should provide as much
accurate as possible estimates for a workload of queries considered ‘safe’; on the
other hand, the resulting histogram should provide low-quality estimates of indi-
vidual data. Finally, we address future directions towards which our work could
be extended.

2 Preliminaries

In this work, we focus our attention on multi-dimensional data defined on a
domain whose dimensions are discrete, and the values associated with the points
of the domain are non-negative real numbers. Specifically, a d-dimensional data
set D is a set of tuples of the form 〈p1, . . . , pd, m〉, where p1, . . . , pd identify a
point in a multi-dimensional space of size n1 × · · · × nd and m is a measure
associated with the point. Thus, D can be viewed as a d-dimensional array of
size n1×· · ·×nd, where ni is the cardinality of the i-th dimension. Given a point
p = 〈p1, . . . , pd〉 of the domain of D, where pi ∈ [1..ni] (∀i ∈ [1..d]), the value
m associated with p will be denoted as D[p] (if D contains no tuple associated
with point p, then D[p] = 0). A range over D is a d-tuple  = 〈1, . . . , d〉,
where i (∀i ∈ [1..d]) is a pair of the form 〈l

i, 
u
i 〉 such that 1 ≤ l

i ≤ u
i ≤ ni.

Basically, a range is a hyper-rectangular subset of the domain of D. We define
the volume of a range  as Πi∈[1..d](u

i − l
i + 1) and denote it as vol().
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A histogram over D is a synopsis of aggregate values which is constructed by
first partitioning the domain of D into a number of non-overlapping ranges, called
buckets, and then storing, for each bucket, some aggregate data summarizing
the data set underlying it. Histograms can be used to support the estimation of
aggregate range queries, which are evaluated by exploiting the summary data
stored in its buckets. Specifically, we study the case that, for each bucket, the
sum of the values of the points inside it is stored (as it will be clearer in the
following, this allows sum-range queries to be estimated). In this scenario, a
bucket of a histogram over D can be viewed as a pair 〈, s〉, where  is a range
over D and s =

∑
p∈	 D[p]. Given a bucket β = 〈, s〉, the terms  and s will

be referred to as the range and the sum of β, respectively, and will be denoted
as range(β) and sum(β). Moreover, we will denote the volume of the range
of β as vol(β) and the average value of β (i.e., sum(β)

vol(β) ), as μ(β). This kind of
histogram (where buckets are associated with sums) supports the evaluation of
sum-range queries, that is, queries asking for the sum of the values of the points
of D inside a specified range. A range-sum query over D is an expression of the
form q = sum(q), where  is a range over D. The actual answer of q is the value∑

p∈	q
D[p]. Given a histogram H = {β1, . . . , βn} over D, the estimated answer

of q over H is q̃ =
∑n

i=1 vol
(
range(βi) ∩ q

)
· sum(βi)

vol(βi)
. Hence, the estimation is

performed adopting linear interpolation, that is, assuming that the points inside
a bucket βi have the same value, namely the average value μ(βi).

A point query on a data set D is a pair q = 〈D,p〉 asking for the value
D[p]. Thus, q can be viewed as a range query where the specified range has
volume 1, then the estimate of its answer obtained from histogram H is given
by sum(β)

vol(β) = μ(β), where β is the bucket of H whose range contains p. In the
following, given a point query q = 〈D,p〉 and a histogram H over D, we denote
the bucket of H whose range contains p as β(q) (observe that β(q) is unique, as
the buckets of H do not overlap).

Example 1. A two-dimensional data set D is shown in Fig. 1(a). A histogram on
D is shown in Fig. 1(c). It has been obtained by first partitioning the domain
of D (as in Fig. 1(b)) and then storing the boundaries and the sum of values of
each block (bucket) of the partition. Consider the point query q = 〈D, 〈3, 4〉〉. In
this case, the bucket involved in the query is β(q) = β1, being the point 〈3, 4〉
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Fig. 1. A two-dimensional data set D (a), a partition of the domain of D (b) and a
histogram H summarizing D (c)
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inside the range of the bucket β1. The estimated answer of q is 24/12 = 2, since
the sum and the volume of β1 are 24 and 12, respectively. �

3 A Probabilistic Framework for Estimating Individual
Values from a Histogram

In this section we present a probabilistic framework supporting the estimation of
individual values based on the summary data stored in a histogram. Specifically,
this framework provides a measure of the quality of the estimates of individual
data which can be obtained by exploiting the aggregate data stored in a his-
togram. The quality measure is given in terms of probability that the estimation
of an individual value is within a confidence interval.

Given a histogram H on a data set D and a point query q = 〈D,p〉, we
model the answer of q estimated on H as a random variable q̃s,b defined over the
sample space Ω(q) = [0, s], where s and b are the sum and the volume of β(q).
Basically, q̃s,b can assume all the values inside the interval [0, s] as the actual
value associated with p is non-negative and cannot exceed the overall sum of
the bucket of H whose range contains p. It is worth noting that this random
variable does not depend on parameters other than s and b, as histogram buckets
do not overlap and we assume independence among the values summarized into
different buckets, thus the sum values and the volumes of the buckets different
from β(q) do not affect the estimation of q.

We now characterize the above-introduced random variable q̃s,b.

Theorem 1. Let D be a data set, H a histogram over D, q = 〈D,p〉 a point
query, and s and b be the sum and the volume of bucket β(q) of H, respectively.
The probability density function of the random variable q̃s,b is:

f(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ(0) if s = 0;

δ(s) if b = 1;

b−1
s

·
(
1 − x

s

)b−2
if b > 1, s > 0, and x ∈ [0, s];

0 if b > 1, s > 0, and x /∈ [0, s];

(1)

where δ(x) denotes the Dirac function, its cumulative distribution function, is:

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H(0) if s = 0;

H(s) if b = 1;

1 −
(
1 − x

s

)b−1
if b > 1, s > 0, and x ∈ [0, s];

0 if b > 1, s > 0, and x < 0;

1 if b > 1, s > 0, and x > s;

(2)
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where H(x) denotes the Heaviside step function. The expected value and the
variance of q̃s,b are

E(q̃s,b) =
s

b
(3)

and

σ2(q̃s,b) =
b − 1
b + 1

(s

b

)2

, (4)

respectively.

Proof. We first focus on the expressions for f(x) and F (x). In the case that
s = 0, as the elements of D are non-negative, the actual value associated with
each point inside β is 0. Hence, q̃s,b takes value 0 with probability 1.

In the case that b = 1, β contains a unique element, thus the definition of
f(x) derives from the fact that the value associated with p is exactly s (the sum
associated with β).

We now consider the case that b > 1 and s > 0. In this case, clearly f(x)
is null for x /∈ [0, s], as individual values are assumed to be non-negative and
their sum is s (thus, no individual value can be larger than s). For the same
reason, F (x) = 0 for x < 0 (it is impossible that any individual value is less
than 0) and F (x) = 1 for x > s (it is certain that any individual value is less
than or equal to s). Now we derive f(x) and F (x) for the most interesting case,
that is b > 1, s > 0, and x ∈ [0, s]. We first characterize a discrete random
variable Vj different from q̃s,b, whose probability distribution will be exploited
to derive f(x) and which is defined as follows. Given a real number γ > 0 and
a set S = {k1 · γ, . . . , kb · γ} of cardinality b, where, for each i ∈ [1..b], ki ∈ N ,
and

∑b
i=1 ki · γ = s, Pr(Vj = x) denotes the probability that the value of kj · γ

is equal to x. Intuitively enough, Vj can be viewed as the translation of q̃s,b to
the case that the domain of the values of D is discrete (i.e., the points D can
be assigned only multiples of γ). Thus, Vj is a discrete random variable defined
over the sample space Ω(Vj) = {x|0 ≤ x ≤ s and x is a multiple of γ}. We now
show that

Pr(Vj = x) =

(
s − x

γ + b − 2
s − x

γ

)
(

s
γ + b − 1

s
γ

) . (5)

This formula can be explained as follows. If a value in S is equal to x, then the
sum of the remaining b − 1 elements is s − x. Therefore, Pr(Vj = x) is equal to
the ratio between all the possible value assignments to b− 1 elements such that
their sum is s− x and all the possible assignments to b elements such that their
sum is s. The formula derives from the facts that each element can be assigned
a multiple of γ, and that all the possible value assignments to n elements such
that their sum is y is equal to number of combinations with repetitions of n
objects from which y have to be chosen, that is

(
y+n−1

y

)
.
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We denote the cumulative distribution function of Vj as FV (x), and derive a
formula for FV (x):

FV (x) = Pr(Vj ≤ x) =

 x

γ �∑
k=0

Pr(Vj = k · γ) =

= 1 −

s
γ∑

k=
�
x
γ
�
+1

Pr(Vj = k · γ) = 1 − 1(b+ s
γ −1
s
γ

)
s
γ∑

k=
�
x
γ
�
+1

(
b + s

γ − k − 2
s
γ − k

)

Let i = s
γ − k. We obtain:

s
γ∑

k=
�
x
γ
�
+1

(
b + s

γ − k − 2
s
γ − k

)
=

s
γ −� x

γ �−1∑
i=0

(
b − 2 + i

i

)

and by adopting the identity

k∑
j=0

(
n + j

j

)
=
(
n + k + 1

k

)

we obtain:

FV (x) = 1 −

⎛⎝b − 2 + s
γ −

⌊
x
γ

⌋
s
γ −

⌊
x
γ

⌋
− 1

⎞⎠
(
b + s

γ − 1
s
γ

) . (6)

The cumulative distribution function F (x) = Pr(q̃s,b < x) of q̃s,b can be obtained
as F (x) = limγ→0 FV (x). In fact, as γ tends to 0, the elements of set S can be
assigned any real value in [0, s] (under the constraint that their sum is s), thus
at the limit the distribution functions F and FV coincide. Then, we obtain:

F (x) = lim
γ→0

FV (x) = 1 − lim
γ→0

(
b − 2 + s

γ −
⌊

x
γ

⌋)
! ·
(

s
γ

)
! · (b − 1)!(

s
γ −

⌊
x
γ

⌋
− 1
)
! ·
(
b + s

γ − 1
)
! · (b − 1)!

=

= 1 − lim
γ→0

b–1 factors︷ ︸︸ ︷
(s −

⌊
x
γ

⌋
· γ) + (b − 2) · γ

γ
× · · · ×

(s −
⌊

x
γ

⌋
· γ)

γ
s + (b − 1) · γ

γ
× · · · × s + 1 · γ

γ︸ ︷︷ ︸
b–1 factors

=
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= 1 − lim
γ→0

(s −
⌊

x
γ

⌋
· γ)b−1 + o(γ)

sb−1 + o(γ)
= 1 −

(
1 − x

s

)b−1

From definition of probability density function of a continuous random variable,
we have that the probability density function f(x) and the cumulative distribu-
tion function F (x) are related as follows:

F (x) =
∫ x

0

f(u)du.

By resolving the latter and exploiting the boundary condition F (s) = 1, we
obtain the expression for f(x) reported in the statement.

We now derive the expected value of q̃s,b. From definition of expected value,
we obtain:

E(q̃s,b) =
∫ s

x=0

f(x) · x · dx =
b − 1

s

∫ s

x=0

(
1 − x

s

)b−2

· x · dx =

=
b − 1

s

[
−
(
1 − x

s

)b−1

· s

b − 1
·x
]s

x=0

+
b − 1

s

∫ s

0

(
1 − x

s

)b−1

· s

b − 1
dx =

=
b − 1

s

[
s

b − 1

(
1 − x

s

)b s

b

]s

x=0

=
s

b
.

Similarly, from the definition of variance, we obtain:

σ2(q̃s,b)
∫ s

x=0

f(x) ·
(
x − s

b

)2

dx =
b − 1

s

∫
x=0

s
(
1 − x

s

)b−2

·
(
x − s

b

)2

dx =

=
b − 1

s

[
−
(
1 − x

s

)b−1 s

b − 1

(
x− s

b

)2

+
2s

b − 1

∫ (
1−x

s

)b−1 (
x − s

b

)
dx

]s

x=0

=

=
(s

b

)2

+ 2
[
−
(
1 − x

s

)b s

b

(
x − s

b

)
+

s

b

∫ (
1 − x

s

)b

dx

]s

x=0

=

=
(s

b

)2

− 2
(s

b

)2

+ 2
2s

b

[
−
(
1 − x

s

)b+1 s

b + 1

]s

x=0

=

= −
(s

b

)2

+
2s

b

s

b + 1
=

b − 1
b + 1

(s

b

)2

. �

The characterization of random variable q̃s,b can be exploited to determine the
quality of the point-query estimates which can be obtained by accessing the
summary data stored in H . In fact, a user owning the histogram can estimate
the answer of a point query q as the expected value of q̃s,b (which corresponds to
performing linear interpolation), and evaluate the quality of this estimate as the
probability that the actual answer of q lies inside an interval containing E(q̃s,b)
as wide as desired. For instance, consider the data set D and the histogram H
shown in Fig. 1, as well as the point query q = 〈D,p〉, with p = 〈3, 4〉. If only the
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aggregate data stored in the histogram is available, the answer of q is estimated as
E(q̃24,12) = 2, since the sum and the volume of the bucket β1 of H containing the
point 〈3, 4〉 are 24 and 12, respectively, as seen in Example 1. A user owning the
histogram cannot infer the actual value associated with p, but she can evaluate
the probability associated to any confidence interval. For instance, a user could
be interested in evaluating the probability that the value associated with p is
inside [1.8, 2.2], that is a ‘narrow’ range centered at the expected value. Using
the results provided in Theorem 1, the user obtains that the probability that the
actual answer is in [1.8, 2.2] is F (2.2) − F (1.8) = (1 − 1.8

24 )11 − (1 − 2.2
24 )11.

1
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24181260
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x
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24181260

F

x

(a) (b)

Fig. 2. Probability density (a) and distribution (b) functions of q̃24,12

Fig. 2 depicts the probability density function (a) and the distribution function
(b) of the random variable q̃24,11.

Intuitively enough, as our framework can be used to measure the quality
of estimates of queries asking for sensitive information, it can be exploited to
determine whether a histogram can be considered safe or not w.r.t. a privacy
standpoint. This matter is investigated in the following section.

3.1 Privacy and Histograms

Given a histogram H over a data set D, a privacy breach occurs if an adversary
can retrieve from H “high”-quality estimates of individual data, that is she can
reveal sensitive information by establishing with a high confidence level that an
individual value is within a certain interval.

In the following we will devise a histogram construction technique which aims
at preventing any user owning a histogram from establishing that the actual value
associated with a point is “close” to its estimate with a probability higher than
a certain threshold. This is tantamount to requiring that the estimated value of
every individual data must be affected by a certain error with a probability at
least equal to a certain threshold. For instance, a company publishing summary
data about the incomes of its employees would like to impose that the estimate
of the the income of a single employee evaluated by accessing the summary data
is affected by at least 50% error with a probability greater than 70%.
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In this example, we used the relative error to define the threshold guaranteeing
the safeness of the summary data. However, different metrics could be used, such
as the absolute error. In the following, we will consider the relative error as it is
quite intuitive and it has been largely stressed in literature [6,8] that it represents
a significant measure of the quality of the estimates. On the basis of this idea,
we introduce the notion of privacy preserving bucket and privacy preserving
histogram.

Definition 1. Given a data set D, a histogram H on D, and two real numbers
ε,P ∈ (0, 1), a bucket β of H is said to be 〈ε,P〉-privacy-preserving if, for every
point query q = 〈D,p〉, where p is a point laid inside the range of β, it holds
that:

Pr
(
|q̃s,b − E(q̃s,b)| ≤ ε · E(q̃s,b)

)
< P, (7)

where s and b are the sum and the volume of β. �

Definition 2. Given a data set D, a histogram H on D, and two real numbers
ε,P ∈ (0, 1), H is said to be 〈ε,P〉-privacy-preserving if every bucket of H is
〈ε,P〉-privacy-preserving. �

According to Definition 2, a histogram H on a data set D is not privacy preserv-
ing (w.r.t. a pair 〈ε,P〉) if it does not protect the privacy of at least one point
p, that is the value associated with p is summarized in a bucket with sum s and
volume b such that

Pr
(
|q̃s,b − E(q̃s,b)| ≤ ε · E(q̃s,b)

)
≥ P ,

where q is the point query asking for the value of p.
Hence, a pair 〈ε,P〉 defines a privacy constraint, and the values assigned to ε

and P must be chosen according to the specific context where privacy must be
guaranteed.

As Pr
(
|q̃s,b − E(q̃s,b)| ≤ ε · E(q̃s,b)

)
= F

(
s
b · (1 + ε)

)
− F

(
s
b · (1 − ε)

)
, where

F (·) is the cumulative distribution function of q̃s,b derived in Theorem 1 (see
Equation 2), under the assumption that s > 0, we find that1:

Pr
(
|q̃s,b − E(q̃s,b)| ≤ ε · E(q̃s,b)

)
=
(

1 − 1 − ε

b

)b−1

−
(

1 − 1 + ε

b

)b−1

. (8)

Interestingly, from Equation 8, it turns out that the probability associated with
a confidence interval of an estimate does not depend on the sum of the bucket
summarizing the value to be estimated. Thus, in the following, we will refer to
Pr
(
|q̃s,b − E(q̃s,b)| ≤ ε · E(q̃s,b)

)
simply as P (b, ε).

In Fig. 3, the diagrams of P (b, ε) against ε and b are shown. It is worth
observing that P (b, ε) is monotone increasing w.r.t. ε and monotone decreasing
w.r.t. b. This means that a privacy constraint 〈ε,P〉 implies a lower bound on
1 The case s = 0 can be disregarded, as it implies that every individual value inside

the bucket is 0 with probability 1.
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Fig. 3. P (b, ε) vs. ε, for different values of b (a), and vs. b for different values of ε

the volume of the buckets of a histogram: in order to satisfy the constraint
P (b, ε) < P , a histogram must consist of only buckets having at least volume
bmin = �b� + 1�, where b� is the solution of the equation

P (b�, ε) = P . (9)

Solving Equation 9 is not possible through analytical methods, but the value of
bmin can be efficiently computed2 starting from b = 1 and iteratively increment-
ing b by one and computing P (b, ε), by adopting Equation 8, until P (b, ε) < P
holds.

The monotonicity of P (ε, b) w.r.t. b is at the basis of the property stated in
the following proposition.

Proposition 1. If a histogram H summarizing a data set D is not 〈ε,P〉-
privacy-preserving, then there is no split-sequence of its buckets that can yield a
〈ε,P〉-privacy-preserving histogram.

Proof. If a histogram is not 〈ε,P〉-privacy-preserving, then it has at least a
bucket β of volume b with P (ε, b) ≥ P . Any split of β yields new buckets with
volume b′ < b. It is easy to see that ∂P

∂b < 0, thus P (ε, b′) > P (ε, b) ≥ P holds
too. This implies that any histogram obtained from H by splitting β is not 〈ε,P〉-
privacy-preserving. �

The result is quite intuitive after considering that a privacy constraint 〈ε,P〉, as
discussed above, is satisfied only if each bucket of the histogram has volume not
less than bmin, where bmin can be computed by solving Equation 9. Thus, if a
bucket β has volume b < bmin, any sub-bucket of β will have volume less than
bmin.

In the following section we will introduce a greedy algorithm for constructing
privacy preservinghistograms,which exploits the property stated in Proposition1.
2 The time needed to compute bmin for one million different combinations of ε and P

is only 2.7 seconds with a Pentium IV 3.2 GHz.
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4 A Greedy Algorithm for Constructing
Privacy-Preserving Histograms

In many practical cases, summarized data can be effectively exploited for per-
forming statistical analysis. Several summarization techniques have been devised
to support an efficient query evaluation, aiming at providing query answers af-
fected by the least possible error. When privacy-constraints are defined over
published data, the summarization has to take them into account. That is, on
the one hand, answers of queries should be accurate enough to enable statisti-
cal analysis to be performed. On the other hand, published data must prevent
sensitive information from being inferred.

In this work, we focus our attention on constructing privacy-preserving his-
tograms which can be profitably exploited for statistical data analysis. Specif-
ically, we consider the problem of constructing a privacy preserving histogram
which aims at providing as much accurate as possible estimates of sum range
queries considered ‘safe’. More formally, given a privacy constraint 〈ε,P〉 and
a query workload W consisting of m sum range queries defined over a mul-
tidimensional data set D, we consider the problem of constructing a 〈ε,P〉-
privacy-preserving histogram H summarizing D which minimizes the error over
the queries in W . In order to measure the error over a workload we consider
the sum of squared errors of the range queries in the workload. That is, if
W = {sum(ρ1), . . . , sum(ρm)}, being qi the exact answer of the sum range
query in W over the range ρi and q̃i the approximate one, the overall estimation
error w.r.t. W is defined as:

SSE(D, H, W ) =
m∑

i=1

(qi − q̃i)
2 .

Constructing the optimal histogram for a query workload over a multi-
dimensional data set has been proved to be an NP-hard problem (in [14], Muthukr-
ishnan et al. showed that constructing the optimal histogram of a two-dimensional
data set is NP-hard when the query workload consists of all the possible point
queries). Thus, we show how our probabilistic framework can be exploited in a
greedy algorithm for building (possibly non-optimal) histograms for a given query
workload.

Our algorithm (see Fig. 4) works as follows. It takes as input a data set D, a
query workload W , and a privacy constraint 〈ε,P〉, and returns a 〈ε,P〉-privacy-
preserving histogram summarizing D. It starts from a histogram consisting of
a unique bucket (corresponding to the whole data domain), and it iteratively
refines the current histogram by taking a bucket and splitting it into two smaller
buckets. Being H ′ and H ′′ the histogram at the beginning and at the end of
the current iteration, respectively, the choice of the most suitable split for a
bucket β of H ′ is accomplished by function bestSafeSplit, which returns, among
all the splits yielding two privacy preserving sub-buckets of β, the split which
maximizes the difference SSE(D, H ′, W ) − SSE(D, H ′′, W ), where H ′′ is the
histogram obtained from H ′ by replacing β with the pair of buckets resulting
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Input: A data set D, a query workload W , and a privacy constraint 〈ε,P〉
Output: An 〈ε,P〉-privacy-preserving histogram summarizing D

begin
Histogram definitive=new Histogram();
Histogram refinable=new Histogram();
Bucket β=new Bucket(range(D), sum(D));
refinable.add(β);
while (!refinable.isEmpty()) do begin

β=refinable.remove();
〈β′, β′′〉=β.bestSafeSplit(D,W,ε,P);
if (〈β′, β′′〉==null) then

definitive.add(β);
else begin

refinable.add(β′);
refinable.add(β′′);

end;
end;
return definitive;

end;

Fig. 4. A greedy algorithm for constructing privacy preserving histograms

from the split. If no split exists for β yielding two privacy preserving buckets,
then β is considered as a definitive bucket, and will be not considered for further
splits in the subsequent iterations. In fact, from Proposition 1 we have that, if
a non-privacy-preserving bucket were created by splitting β, at least one non-
privacy-preserving bucket would exist at every subsequent iteration, and then the
final histogram would not be privacy-preserving. The algorithm ends when there
is no bucket of the current histogram which can be safely split. In the pseudo-
code implementation shown in Fig. 4, buckets which can be still considered for
being split are maintained in the histogram refinable, while definitive buckets are
put in the histogram definitive. Thus, at each iteration, the current histogram is
the union between the sets of buckets stored in refinable and definitive.

Observe that any bucket of refinable can be chosen to be split at each itera-
tion3. In fact, the split of a bucket at a given iteration does not influence the
possibility to split the other buckets in refinable.

We now analyze the complexity of the algorithm. We assume that D contains
N points distributed across a multidimensional domain of size nd (i.e., d dimen-
sions each of size n) and that W contains m queries. The number of iterations of

3 Indeed, in the case that the histogram size were bounded by a maximum amount
of storage space, the choice of the bucket to be split at each iteration could be
performed according to some greedy criterion (e.g., the bucket giving the largest
contribution to the overall error could be chosen).
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the algorithm is O(N), as each iteration increases by one the number of buckets,
and the final number of buckets cannot be larger than N (a bucket must contain
at least one non-null value). Thus, the complexity of the algorithm depends on
the cost of the bestSafeSplit function, which is called O(N) times. At each call
of bestSafeSplit, all the O(d ·n) possible splits must be tried, and for each split a
range query of cost O(N) must be performed for each query of the workload, in
order to evaluate the SSE reduction provided by the split. The cost of checking
if each split is safe is constant. In fact, according to Definition 2, in order to
verify if a split is safe, the value bmin could be computed before starting the
iterations, and then the function bestSafeSplit simply checks if the two buckets
resulting from the split have volume greater than bmin and sum greater than 0.
Therefore, the time complexity of the algorithm is O(N2 · m · n · d).

Remark. Our probabilistic framework is suitable for being embedded in sum-
marization techniques constructing histograms whose bucket do not overlap.
This is due to the fact that, in this case, a point query can be estimated by ac-
cessing one bucket only. Several well-known techniques have this characteristic,
such as MHIST [15] and MinSkew [1]). However, some techniques constructing
histograms whose bucket overlap could exploit our probabilistic framework as
well. For instance, when a bucket is nested inside another bucket, representing
a ‘hole’, the estimate of a point query still depends on a unique bucket. Two
techniques belonging to this class are CHIST [5] and STHoles [2].

5 Extending the Basic Results in Further Directions

In this section we trace further directions towards which our work could be
extended:

– managing privacy when additional information is known about original data
in buckets;

– managing other forms of privacy constraints;
– managing privacy when buckets overlap.

5.1 Managing Privacy When Additional Information Is Known
about Original Data in Buckets

The results derived in Section 3 are based on the assumption that nothing is
known about the original data inside each bucket, except that their sum is s
and they are distributed in the bucket range of volume b. In many real cases,
further information could be available due to the specific application context.
For instance, if the measure associated with points is represented by integers,
the probability distribution associated with the random variable representing
the estimate of individual values would not be that derived in Theorem 1. In
this case, the random variable would be discrete, thus its sample space would
be {0, 1, 2, . . . , s} instead of [0, s]. However, the corresponding random variable
could be characterized even easier than the continuous case previously studied.



A Probabilistic Framework for Building Privacy-Preserving Synopses 127

In fact, the new random variable probability distribution would be represented
by Equation 5, with γ = 1. Then, its cumulative distribution function would be
represented by Equation 6, again with γ = 1. That is,

Pr(q̃s,b ≤ x) = 1 −

(
b − 2 + s − x

s − x − 1

)
(
b + s − 1

s

) .

Another issue which is worth investigating is the case that other aggregate
data (such as the count of non-null values, the minimum or the maximum value)
inside each bucket is known. This may happen if either this summary information
is explicitly represented in the histogram along with the sums of the buckets (to
enhance the estimation process) or it is retrieved from different sources.

5.2 Managing Other Forms of Privacy Constraints

The definition of privacy provided in Section 3.1 can cover a large number of
practical cases, in which exact individual values have to be protected. However,
some other forms of privacy are worth investigating, due to their practical im-
pact. According to our approach, guaranteeing the privacy of an individual value
means limiting the confidence level associated with a confidence interval whose
width is proportional to the expected value. It would be interesting to study the
case that the width of the confidence interval is defined by an absolute value
(rather than a relative one), that is that the confidence interval is expressed in
the form [E(q̃) − Δ, E(q̃) + Δ], where q̃ is the estimate of an individual value
which must be protected, and Δ is a real number. In particular, it would be
interesting to devise an algorithm managing mixed forms of constraints, where
the width of confidence intervals can be expressed by either relative or absolute
values. In fact, using an absolute value is more suitable for buckets summarizing
“small” values, whereas a relative value is more suitable for buckets summarizing
“large” values (where the meaning of “small” and “large” depends on the spe-
cific application context). This is due to the fact that adopting a relative value
for describing intervals centered at “small” values would result in defining “nar-
row” intervals, for which guaranteeing low confidence levels would not suffice to
preserve privacy.

5.3 Managing Privacy When Buckets Can Overlap

Even though classical histograms are based on partitions of the multi-dimensional
data domain (thus, their buckets do not overlap) some of the most performing
techniques, such as GENHIST [9], exploit bucket overlapping in order to summa-
rize the data set more accurately. To this aim, our framework should be extended
to enable taking into account the possibility that the estimation of a single point
depends on the aggregate data stored in a number of buckets. For instance, in
the case that a point p is within the ranges of two overlapping buckets, the
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random variable representing the value associated with p would depend on the
random variables q̃s′,b′ and q̃s′′,b′′ , each representing the value of p given by
one of the two buckets, independently. The random variable representing the
expected value associated with p would be represented by the sum of the two
random variables q̃s′,b′ and q̃s′′,b′′ . Thus, its probability density function could
be obtained by computing the convolution of the probability density functions of
q̃s′,b′ and q̃s′′,b′′ . Computing the convolution of many probability density func-
tions could be practically infeasible. However, for a large number of random
variables, that is, when the value associated to a point inside the intersection of
a large number of overlapping buckets must be estimated, for the central limit
theorem, the random variable could be very well approximated by a normal dis-
tribution that could be completely characterized by knowing the expected values
and the variances of the random variables which have to be summed.

6 Related Work

The problem of managing privacy in statistical databases has received a lot of at-
tention in the last few years, and several works dealing with data summarization
and privacy issues have been proposed. However, few works providing formal
frameworks for checking the privacy preservation of summarized data have been
developed.

Some works provide techniques for summarizing data with quality guaran-
tees [6,10]. However, in these works, the quality is intended as a measure of the
“distance” between a synopsis and the optimal synopsis consuming the same
amount of storage space. Thus, no guarantee is provided on the error rates of
query estimates which could be exploited to measure the safeness of a synopsis.
Our probabilistic framework, instead, does not aim at providing a technique for
building optimal histograms, but provides a tool for evaluating the quality of
individual value estimates, intended as confidence levels related to confidence
intervals.

A work which deals with the privacy guaranteed by histograms is [4]. In this
paper Chawla et al. consider points of a multidimensional space as individuals,
which are not associated with any label. A privacy violation occurs when a user
can isolate less than t points inside a spherical region of radius proportional to
a value c (c and t are parameters which have to be chosen according to the
practical context). This work, analogously to others based on the preservation
of anonymity of individuals [16], is different from ours as it aims at masking
the identity of individuals, that is the coordinates of the points inside the mul-
tidimensional domain (which are not associated with any measure). Our work,
instead, deals with labelled points, more specifically, with points which are as-
sociated with an additive measure. Thus, our approach to privacy preservation
is orthogonal w.r.t. [4]: we aim at protecting the measure associated with indi-
viduals, rather than their identity.

A thread of works where the attention is focused on the possibility to infer
sensitive information by means of range queries on multidimensional data is that
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leaded by Malvestuto et al. [13]. They study the possibility to infer confidential
information exploiting the answers of multiple range queries which, separately,
could be considered safe. They design a query engine providing safe answers,
which keeps track of past queries, and checks that the answer of each new query
cannot be combined combined with the answers previously published in order
to enable sensitive information to be inferred. Our approach is different since we
assume that to release the whole data set is summarized and published. A very
interesting point of contact between the issues studied in [13] and this paper
could be the study of the possibility to release multiple safe histograms, each
optimized for a different query workload. In fact, when different histograms are
released, the fact that each of them is privacy preserving does not suffice to
guarantee that confidential information cannot be disclosed, as a user owning
different histograms on the same data set could exploit them jointly.

7 Conclusions

In this work we provided a novel approach for constructing effective histograms
in the presence of privacy constraints. We introduced the notion of privacy-
preserving histograms, that is histograms preventing a user owning them to ob-
tain high quality estimates of individual values which must be kept confident. We
defined a probabilistic framework for estimating individual values summarized
in a histogram and, on the basis of our probabilistic framework, we proposed a
greedy approach for constructing privacy-preserving histograms with high data
utility, that is privacy-preserving histograms minimizing the estimation error for
range queries belonging to a given query workload supporting statistical anal-
ysis tasks. Finally, we outlined the directions towards which our work could be
extended.

To the best of our knowledge, this is the first work presenting a mechanism
enabling the quality of the estimates of individual values which can be retrieved
from a histogram to be measured. Our approach to the problem of preserving
the privacy of data can be viewed as orthogonal to other ones, which aim at
masking the identity of points belonging to a multi-dimensional domain. Our
approach, in fact, aims at protecting a measure associated with the individuals,
rather than protecting the identity of individuals.
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Abstract. Tree-structured data are becoming ubiquitous nowadays and
manipulating them based on similarity is essential for many applica-
tions. Although similarity search on textual data has been extensively
studied, searching for similar trees is still an open problem due to the
high complexity of computing the similarity between trees, especially
for large numbers of tress. In this paper, we propose to transform tree-
structured data into strings with a one-to-one mapping. We prove that
the edit distance of the corresponding strings forms a bound for the
similarity measures between trees, including tree edit distance, largest
common subtrees and smallest common super-trees. Based on the the-
oretical analysis, we can employ any existing algorithm of approximate
string search for effective similarity search on trees. Moreover, we embed
the bound into a filter-and-refine framework for facilitating similarity
search on tree-structured data. The experimental results show that our
algorithm achieves high performance and outperforms state-of-the-art
methods significantly. Our method is especially suitable for accelerating
similarity query processing on large numbers of trees in massive datasets.

1 Introduction

The use of tree-structured data in modern database applications is attracting
the attention of the research community. Typical examples of huge repositories
of rooted, ordered and labeled tree-structured data include the secondary struc-
ture of RNA in biology or the XML data on the web. In this paper, we study the
similarity measure and similarity search on large trees in huge datasets. These
problems form the core operation for many database manipulations, such as, ap-
proximate join, clustering, k-NN classification, data cleaning, data integration
etc. Data cleaning deals with the identification and correction of data incon-
sistencies. Frequently, due to such inconsistencies (e.g., misspellings in strings),
multiple representations of real-world objects appear in data collections. Among
other inconveniences, such redundant information may lead to wrong evaluation
results, confuse consistency maintenance, and, when integrated from various data
sources, may artificially inflate data files. Therefore, besides data cleaning, de-
tection of duplicates is a long-term research goal in the relational world, often
denoted as the fuzzy duplicate problem.
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Fig. 1. Running Examples of Four Trees

Our findings are useful in numerous applications including XML data search-
ing under the presence of spelling errors, efficient prediction of the functions of
RNA molecules, version management for documents, etc. Trees provide an inter-
esting compromise between graphs and the linear representation of data. They
allow the expression of hierarchical dependencies where the semantics are speci-
fied implicitly by the relationship between their components; thus, the structure
of the tree plays an important role in differentiating the data. More importantly,
with growing importance of XML, this problem becomes even more urgent and,
due to the structure of XML documents and their increased modeling flexibility,
more challenging.

As a classical solution, relational DBMSs have correlated matching records of
textual data by using similarity joins. A similarity join finds the pairs of tuples
from two relations whose specified attributes are similar. The similarity of these
attributes is expressed using a similarity function and a pair of tuples is qualified
if the similarity function returns a value greater than a given threshold. However,
extending this approximate operation to the tree structure brings a new quality
to the correlation problem. As similar or even the same information could be
embodied by quite different structures. For example, refer to the sample trees
in Figure 1. Consider a situation where tree T1 (a) has to be correlated to tree
T2 (b). Although they are obviously identical from the human observer, they
would not be classified as equal because of textual variations. The use of an
appropriate textual similarity measure would easily classify them as duplicate
candidates. On the other hand, T4 (d) refers to another paper. Although T4 is
similar to T1 if considering textual similarity, the comparison of T1 with T4 would
probably lead to non-duplicate detection when structural similarity is considered.
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Hence, evaluation of structural similarity could help to classify the considered
document fragments as non-duplicates. To address the related difficulties, we
need accurate and efficient mechanisms to correlate trees thereby coping with
additional complexities induced by the tree structures.

Although similarity search on numerical multidimensional data [21] and tex-
tual data [1,8,13,16] have been extensively studied, similarity search on tree-
structured data has only recently attracted the attention of the research com-
munity [2,12,24]. The most commonly used distance measure on tree-structured
data is the tree edit distance [4]. However, computing the tree edit distance can
be very expensive both in terms of CPU cost and disc I/Os, rendering it imprac-
tical for huge datasets. To guarantee the filtration efficiency, the lower bound
function should be a relatively precise approximation of the tree edit distance.
At the same time, it should be computationally much less expensive than the
real distance. Although some studies [2,12,24] are proposed to address this prob-
lem, they consider either the textual similarity or the structural similarity and
cannot integrate them together for effective similarity search on trees.

To address above-mentioned problems, in this paper, we propose a filter-and-
refine framework for effective similarity search on rooted, ordered, labeled trees
by considering both the structure and the content. We transform the trees into
strings with a one-to-one mapping. We use string edit distance to approximate
tree similarity measures, including tree edit distance, largest common subtree
distance and smallest common super-tree distance, and give a theoretical bound.
We adopt the existing approximate string join techniques to filter out dissimilar
strings based on the bound so as to filter the corresponding dissimilar trees.

To summarize, we make the following contributions:

• We propose to transform tree-structured data into strings with a one-to-
one mapping and employ string edit distance to approximate the similarity
between trees. Moreover, we prove that the edit distance of the corresponding
transformed strings forms a bound for the similarity measures between trees,
including tree edit distance, largest common subtree distance and smallest
common super-tree distance.

• We devise a novel filter-and-refine framework for effective similarity search
over tree-structured data by adopting effective filtration techniques borrowed
from q-gram based methods in the literature of approximate string join.

• We have implemented our approach and the experimental results show that
our approach achieves high performance and outperforms the existing state-
of-the-art methods significantly.

The rest of the paper is organized as follows: In Section 2 we provide the
background and an overview of the measures to evaluate the similarity of trees
and strings. Section 3 presents a sequencing method, which transforms the trees
to strings with a one-to-one mapping; while in Section 4 we demonstrate how to
use string edit distance to approximate the similarity between trees. A thorough
experimental study of our algorithms is conducted in Section 5. Section 6 reviews
some related work. Finally, Section 7 concludes our paper.



134 G. Li et al.

2 Preliminaries and Related Work

2.1 Preliminaries and Notations

In this paper, we focus on the huge dataset D of rooted, ordered, labeled trees.
Here, a tree is defined as a data structure T =(V , E , root(T )). V is a finite set of
vertices. E is a relation on V where each pair (u, v) ∈ E represents the parent-
child relationship between two nodes u and v. Node u is the parent of node v
and v is one of the child nodes of u. There exists only one root note, denoted
as root(T ), which has no parent. Every other node of the tree has exactly one
parent and it can be reached through a path of edges from the root. The nodes
which have a common parent u (i.e., all the children of u) are siblings. |T | is the
size of T , i.e., the number of nodes in tree T . We call T a labeled tree if each
node is a assigned a symbol from a fixed finite alphabet Σ. We call T an ordered
tree if a left-to-right order among siblings in T is given. In our paper, we focus
on rooted, ordered, and labeled trees.

2.2 Tree Similarity Measures

The measure of similarity between two trees T and T ′ has been well studied
in combinatorial pattern matching. Various distance functions, such as edit dis-
tance, largest common subtree and smallest common super-tree, are proposed
to measure the similarity between trees. In this paper, we consider matching
problems based on these measures on top of rooted, ordered, and labeled trees.

For ease of the following discussions, we begin by introducing some notations.
Given a tree T , V(T ) denotes the set of vertices in T and E(T ) denotes the set
of edges in T . L denotes the set of leaves in T .

Definition 1. Isomorphic: T is an isomorphic subtree of T ′ if there exists
an injective mapping f : V(T ) → V(T ′) satisfying the following conditions: i) if
(u, v) ∈ E(T ), then (f(u), f(v)) ∈ E(T ′) and ii) if u is a preceding sibling of v,
f(u) is a preceding sibling of f(v). Such a mapping f is called an isomorphic
embedding f : T → T ′.

If there is an isomorphic from T to T ′, we call that T is included in T ′, and T
is called a subtree of T ′ (T ′ is also called a super-tree of T ). If T �= T ′, T is
called a proper subtree of T ′.

Definition 2. Largest Common Subtree(LCST): Tl is the largest common
subtree of T and T ′ if Tl is a common subtree of T and T ′ and there does not
exist another common subtree of T and T ′, which is a proper super-tree of Tl.

We can use the largest common subtree to measure the similarity between trees.
As the more alike that T and T ′ are, the larger is their largest common subtree.
We propose LCST distance to evaluate the similarity between trees.

Definition 3. LCST Distance: Given two trees T and T ′, LCST distance of
T and T ′, denoted as lcstd(T , T ′), is |T | + |T ′| − 2 ∗ |LCST(T , T ′)|, where
LCST(T , T ′) denotes the largest common subtree of T and T ′.



Efficient Similarity Search for Tree-Structured Data 135

r

a b c

d e f

r

a b c

e f

r

a b c

ge f

T Tl T´

Delete d Delete g

Fig. 2. Largest Common Subtree

r

a b c

d e f

r

a b c

e f

r

a b c

ge f

T Tm T´

d g

Insert g Insert d

Fig. 3. Smallest Common Super-tree

Obviously, if T and T ′ are the same, their LCST distance is 0; on the contrary,
if they do not share any common node, they are very dissimilar and their LCST
distance is large. Note that the more alike that they are, the smaller is their
LCST distance. For example, in Figure 2, Tl is the largest common subtree of T
and T ′. lcstd(T , T ′)=2.

Definition 4. Smallest CommonSuper-tree(SCST): Tm is the smallest com-
mon super-tree of T and T ′ if Tm is a common super-tree of T and T ′ and there
does not exist a common super-tree of T and T ′ that is a proper subtree of Tm.

We can use the smallest common super-tree to measure the similarity between
trees. As the smaller the smallest common super-tree, the more relevant between
the trees. We propose SCST distance to evaluate the similarity between trees.

Definition 5. SCST Distance: Given two trees T and T ′, SCST distance of
T and T ′, denoted as scstd(T , T ′), is 2 ∗ |SCST(T , T ′)| − |T | − |T ′|, where
SCST(T , T ′) denotes the smallest common super-tree of T and T ′.

Obviously, if T and T ′ are the same, their SCST distance is 0; on the contrary, if
they do not share any common node, they are dissimilar and their SCST distance
is large. Note that the more alike that they are, the smaller is their SCST distance.
For example, in Figure 3, Tm is the smallest common super-tree of T and T ′.
scstd(T , T ′)=2.

Another most commonly used distance measure on tree-structured data is the
tree edit distance [4]. To introduce the tree edit distance, we begin by introducing
some tree edit operations as follows:

• Substitution: Substitute a node v to node u in T (i.e, change the label).
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• Deletion: Delete a node v in T with parent vp, making the children of v
become the children of vp. The children are inserted in the place of v as a
subsequence in the left-to-right order of the children of vp.

• Insertion: Insert a node v as a child of node vp, making v become the
parent of a consecutive subsequence of the children of vp.

Figure 4 illustrates tree edit operations. Note that u→v denotes substituting
u with v. u→Δ denotes deletion of u and Δ→v denotes insertion of v.

Note that, insertion/deletion/substitution of an internal node is more expen-
sive than insertion/deletion/substitution of a leaf node; insertion/deletion of a
node will make two trees more dissimilar than the substitution of a node. There-
fore, existing methods will assign different cost to different tree edit operations.

In this paper, we assign the cost of edit operations (denoted as λs for substi-
tution, λd for deletion, λi for insertion) as follows:

λs(v) = cSize(v)

λd(v) =

⎧⎨⎩
2 if v is a leaf node
1 if v is an internal node and parent(v) = v
cSize(v) if v is an internal node and parent(v) �= v

λi(v) =

⎧⎨⎩
2 if v is a leaf node
1 if v is an internal node and parent(v) = v
cSize(v) if v is an internal node and parent(v) �= v

(1)

where λs(v),λd(v) and λi(v) denote the cost of substitution, insertion and dele-
tion of node v respectively; cSize denotes the number of children of v. parent(v)
denotes the parent of v and parent(v)�=v denotes that they have different la-
bels. We note that if parent(v)=v, insertion/deletion of v will not make the tree
much dissimilar as the children of v still share a parent with the same label as
v; on the contrary if parent(v)�=v, it will lead to the two trees much dissimilar,
and thus we assign different cost for these two conditions.

We define the edit distance based on the edit operations. Assume that we are
given a cost function defined on each edit operation. Let T and T ′ be two ordered
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and labeled trees. An edit transformation between T and T ′ is a sequence of
edit operations transforming T into T ′. The cost of an edit transformation is
the sum of the costs of the operations in the edit transformation. An optimal
edit transformation between T and T ′ is an edit transformation between T
and T ′ of minimum cost and this cost is the tree edit distance. The tree edit
distance problem is to compute the edit distance and the corresponding edit
transformation. An example of an edit transformation is shown in Figure 5.

A problem in the literature is the lack of an agreement on a definition of the
edit operation/distance problem. The definition given here is by far the most
well-studied and in our opinion the most natural [4].

The edit distance problem on ordered labeled trees was introduced by Tai
[22] as a generalization of the well-known string edit distance problem. For the
ordered version of the problems polynomial time algorithms exists. These are all
based on the classic technique of dynamic programming and most of them are
simple combinatorial algorithms. Tai presented an algorithm for the ordered ver-
sion using O(|T ||T ′||L|2|L′|2) time and space. Subsequently, this result has been
improved by Zhang and Shasha [25] using O(|T ||T ′|min(|L|, |D|)min(|L′|, |D′|))
time and O(|T ||T ′|) space, where |D| denotes the depth of T and |L| denotes the
number of leaves in T . More recently, Klein [14] modified this algorithm to get
a better worst case time bound of O(min(|T |2|T ′|log(|T ′|), |T ′|2|T |log(|T |)))
under the same space bounds. We note that these algorithms are inefficient for
similarity join on trees as formalized in Definition 6, especially for large num-
bers of trees.

Definition 6. Similarity Join on Trees: Given two sets of trees, treeSet
and treeSet′ and a distance threshold τ , let dist be a distance function on
trees. The similarity join on the two sets of trees reports in the output all pairs
of trees < T ∈ treeSet, T ′ ∈ treeSet′ >, such that dist(T , T ′)≤τ .

To address this problem, Guha et al. [9] proposed a pivot based approximate
join algorithm on XML documents. However, the complexity of computing the
proposed lower bounds is still O(|T ||T ′|) (i.e., the complexity of tree edit distance
computation), and it is not scalable to this problem. Kailing et al. [12] presented
a set of filters grounded on structure and content-based information in trees.
They proposed using the vectors of the height histogram, the degree histogram
and the label histogram to represent the structure as well as content information
of trees. The lower bound of the unordered-tree edit distance can be derived from
the L1 distance among the vectors. However, their filters are for unordered trees
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and cannot explore the structure information implicitly depicted by the order of
siblings. Moreover, their lower bounds are obtained by considering structure and
content information separately. In our approach, we suggest combining the two
sources of information to provide accurate bounds. More recently, pq-Gram [2]
transforms the trees into a set of pq-grams and uses pq-grams to approximately
match trees. Binary tree based method [24] transforms tree-structured data into
an approximate numerical multidimensional vector which encodes the original
structure information, and employs the vectors to approximate the tree edit
distance. However they emphasis on the structural similarity and neglect the
textual similarity. That is, they only consider the exact match between the labels
of nodes. For example, in Figure 1, their edit distance between T1 and T2 is 4
while that of T1 and T3 is 3. However, T2 is much more similar to T1 than T3

from human observer. Alternatively, in this paper, we transform trees into strings
and employ string edit distance to approximately match the trees by considering
both the structural similarity and textual similarity, which is an effective and
efficient approximation of the tree edit distance and LCST/SCST distance.

2.3 String Edit Distance

Most of existing methods usually use edit distance to evaluate the similarity
between strings. The operations of string edit distance include substitution, in-
sertion, deletion of a character and the cost of the three operations are always
assigned to one. Similarity search and similarity join based on edit distance over
textual data have been extensively studied [1,8,13,16]. Given a query set, re-
trieving all sets in a collection with similarity greater than some threshold is
called similarity search. Given two input collections of sets, a set-similarity join
identifies all pairs of sets, one from each collection, that have high similarity.

Gravano et al. [8] proposed q-grams to facilitate similarity match on textual
data. Given a string S, a q-gram is a contiguous substring of S of length q. If S1

and S2 are within edit distance k, S1 and S2 must share at least max(|S1|,|S2|)-
(k-1)*q-1 common q-grams. Recently, Li et al. [16] proposed a new technique
called VGRAM to judiciously choose high-quality grams of variable lengths from
a collection of strings for improving the performance. Indexing structures and
merging algorithms were proposed to facilitate similarity searches in [10,11,15].

3 Sequencing

This section introduces a one-to-one sequencing method to transform the trees
to strings. Prüfer (1918) proposed a method that constructed a one-to-one cor-
respondence between a labeled tree and a sequence by removing nodes from the
tree one at a time [18].

The construction of a sequence from tree Tn with n nodes labeled from 1 to n
of the algorithm works as follows. From Tn, we remove a leaf with the smallest
label to form a smaller tree Tn−1. Let a1 denote the label of the node that was
the parent of the removed node. Repeat this process on Tn−1 to determine a2

(the parent of the next node to be deleted), and continue until only two nodes
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joined by an edge are left. The sequence (a1, a2,· · · ,an−2) is called the Prüfer
sequence of tree Tn. From the sequence (a1, a2,· · · ,an−2), the original tree Tn

can be reconstructed. The length of the Prüfer sequence of tree Tn is n − 2. In
fact, we can construct a Prüfer sequence of length n−1 for Tn by continuing the
removal of nodes until only one node is left.

Any numbering scheme can be used in the above process to label a tree as
long as it associates each node in the tree with a unique number between one
and the total number of nodes. This guarantees a one-to-one mapping between
the tree and the sequence. Without loss of generality, the post-order is used to
uniquely number tree nodes. It helps a Prüfer sequence be constructed for a tree
by using the node removal method. This sequence consists entirely of post-order
numbers and is called NPS (Numbered Prüfer Sequence). When each number
in an NPS is replaced by its corresponding label, a new sequence that consists
of labels can be constructed, and this sequence is called LPS (Labeled Prüfer
Sequence). On the basis of LPS, ELPS (Extended Labeled Prüfer Sequence) and
ENPS (Extended Numbered Prüfer Sequence) can be constructed by extending
leaf nodes of the document tree with dummy child nodes. Clearly the leaf node
labels of the original tree are kept in ELPS. To facilitate similarity search, we
introduce IPS (Inverted labeled Prüfer Sequence) and INPS (Inverted Numbered
Prüfer Sequence), which invert the ELPS and ENPS respectively.

IPS embeds the structural relationships of trees, such as parent-child and
ancestor-descendant relationships and the sibling order relationship. It is easy to
figure out that post-order preserves the sibling order relationship, and IPS keeps
parent-child and ancestor-descendant relationships as formalized in Lemma 1.

Lemma 1. Suppose (e1,e2,· · · ,em) and (n1,n2,...,nm) are respectively IPS and
INPS of a tree T . ∀i,j, 1≤i<j≤m, we have,

(1) If ni>ni+1, ei is the parent of ei+1; and
(2) If ni<nj, ej is an ancestor of ei; and
(3) If ni>nj and � ∃t, i<t<j, ni>nt>nj, ei is the parent of ej.

Proof. We first prove (1). As ni>ni+1, ei+1 must be removed before ei according
to the removal-based sequencing method. As ei+1 and ei are neighbors, ei is the
parent of ei+1 according to the post-order encoding scheme.

We then prove (2). As ni<nj , ei must be removed before ej . According to the
sequencing method, all the nodes, which have larger post-order than ni, must
be removed after ei, thus those nodes must be before ei in IPS based on the
construction method of IPS. As i<j and ni<nj, ej must be an ancestor of ei.

We finally prove (3). As ni>nj , ei must be removed after ej . ei may be an
ancestor of ej or a following sibling of ej. As �∃t, i<t<j, ni>nt>nj , ei must
be the parent of ej, as there is no node between ei and ej which has larger
post-order than nj .

Example 1. In Figure 6, the circled numbers are the assigned (post-order) num-
bers to each node. We construct the strings of the corresponding trees according
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Table 1. Strings Transformed from Trees

Trees Strings Trees Strings Trees Strings

T S : rcrbfbebdra T ′ S ′ : rcrbgbfbera Tl Sl : rcrbfbera

Tm Sm : rcrbgbfbebdra Ts Ss : rsrbfbebdra Ti Si : rcrbibfbebdra

Td Sd : rcrbfbera Tg Sg : rcrgfgegdra Tb Sb : rcrfrerdra

to our removal-based sequencing method. LPS of T is rbbbrr. ELPS can be
constructed by inserting leaf nodes (i.e., a, d, e, f , c) into the corresponding
positions of LPS. We note that the leaf node must be preceding and neighboring
its parent. Accordingly, we get the ELPS of T , ardbebfbrcr. We can get IPS of
T , rcrbfbebdra, by inverting its ELPS ardbebfbrcr.

Consider IPS and INPS of T , as n3(7)>n4(5), e3=r is a parent of e4=b accord-
ing to Lemma 1(1); as n7(3)<n10(7), e7=e is a descendent of e10=r according
to Lemma 1(2); as n3>n6, and n4 �>n6 and n5 �>n6, e3=r is the parent of e6=b
according to Lemma 1(3). Accordingly, IPS captures the structural information
of trees.

In addition, we give the IPS of T , T ′ and Tl in Figure 2 and Tm in Figure 3,
Ts,Ti,Td,Tg and Tb in Figure 4, as illustrated in Table 1.

4 Tree Similarity Distance Transformation

In this section, we employ string edit distance to approximate LCST distance,
SCST distance and edit distance of trees. For ease of the following discussions,
we introduce some notations. Given two trees T and T ′ and let S and S′ denote
the corresponding strings transformed from T and T ′ respectively as described
in Section 3. Let ted(T ,T ′) denotes the edit distance between T and T ′ in
which the cost of each edit operation is assigned to one. ed(T ,T ′) denotes the
edit distance between T and T ′ where we assign the cost of edit operations as
described in Equation 1. ed(S,S′) denotes the edit distance between S and S′

in which the cost of each edit operation is assigned to one.
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4.1 Edit Distance Transformation

Firstly, consider the substitution operation, suppose T ′ is constructed with a
substitution operation v → u from T , obviously we have,

ed(S,S′) = cSize(v) (2)

where cSize(v) denotes the number of children of v.
Secondly, consider the insertion operation, suppose T ′ is constructed with an

insertion operation Δ → v from T , obviously we have,

ed(S,S′) =

⎧⎨⎩
2 if v is a leaf node
1 if v is an internal node and parent(v) = v
cSize(v) if v is an internal node and parent(v) �= v

(3)

Thirdly, consider the deletion operation, suppose T ′ is constructed with a
deletion operation v → Δ from T , obviously we have,

ed(S,S′) =

⎧⎨⎩
2 if v is a leaf node
1 if v is an internal node and parent(v) = v
cSize(v) if v is an internal node and parent(v) �= v

(4)

Based on above analysis of the string edit distance for different tree edit
operations, we give a bound of tree edit distance as formalized in Theorem 1.

Theorem 1. Given two trees T and T ′ and their transformed strings S and S′,
we have

ted(T , T ′) ≤ ed(S,S′) = ed(T , T ′) ≤ Cmax ∗ ted(T , T ′) (5)
where Cmax=max(2, maxu∈T ∪T ′{cSize(u)}).

Example 2. For example, in Figure 4, consider Ts, ted(T , Ts)=1 and cSize(c)=1,
thus ed(S,Ss)=1. Consider Tg, ted(T ,Tg)=1 and cSize(b)=3, thus ed(S,Sg)=3
as illustrated in Table 1. Consider Ti, ted(T ,Ti)=1. As node i is a leaf node,
ed(S,Si)=2. Consider Tb, ted(T ,Tb)=1. As b is an internal node and cSize(b)=3,
ed(S,Sb)=3. Consider Td, ted(T ,Td)=1. As d is a leaf node, ed(S,Sd)=2. Con-
sider the construction of T from Tb, ted(Tb,T )=1. As node b is an internal node
and cSize(b)=3, ed(Sb, S)=3 as illustrated in Table 1.

Based on Theorem 1, we can use the string edit distance to approximate the tree
similarity. More importantly, if we assign different cost for different operations
as described in Equation 1, the tree edit distance is the same as the string edit
distance. Obviously, insertion/deletion of an internal node lead to two trees more
dissimilar than insertion/deletion of a leaf node; insertion/deletion of a node will
make the two trees more dissimilar than the substitution of a node. Thus, our
assignment is meaningful for tree edit distance.

Accordingly, we can give a filter-and-refine strategy for effective similarity
search on trees in terms of tree edit distance based on string edit distance.
Consider similarity join in Definition 6, we transform the trees into strings off-
line and translate similarity join on trees to similarity join on strings. If we select
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ed as the distance function over trees, we first find the string pairs <S,S′>, such
that ed(S,S′)≤τ and then return the corresponding trees.

If we select ted as the distance function over trees, we propose a filter-and-
refine framework according to Theorem 1 as follows. For two strings S and S′,
if ed(S,S′)>τ∗Cmax, then ted(T ,T ′)≥ 1

Cmax
*ed(S,S′)>τ , thus T and T ′ do not

similarity match. Accordingly, we can filter out such trees. On the other hand,
if ed(S,S′)≤τ , ted(T ,T ′)≤ed(S,S′)≤τ , thus T and T ′ must similarity match.
Accordingly, we can directly filter out many dissimilar trees. More importantly,
we can employe q-gram based techniques [8,15,16] for processing string similarity
search so as to effectively answer tree similarity queries.

4.2 LCST Distance Transformation
This section proposes to employ string edit distance to approximate the LCST
distance. We give a bound of LCST distance based on tree edit distance as for-
malized in Lemma 2. Based on Theorem 1, we give a bound of LCST distance
based on string edit distance as stated in Theorem 2.

Lemma 2. Given two trees T and T ′, we have lcstd(T , T ′)≥ted(T , T ′).
Proof. Suppose Tl is the LCST of T and T ′. We can transform T to T ′ as follows.
We first delete the nodes in V(T )-V(Tl) from T and generate a tree Tl, and then
insert the nodes in V(T ′)-V(Tl) to Tl and get T ′. Thus, we can construct T ′ from
T with lcstd(T , T ′) operations. Accordingly, lcstd(T , T ′)≥ted(T , T ′).

Theorem 2. Given trees T and T ′, lcstd(T , T ′)≥ted(T , T ′)≥ 1
Cmax

*ed(S,S′).

Based on Theorem 2, given two strings S and S′, if ed(S,S′)>τ ∗ Cmax, then
lcstd(T ,T ′)≥ 1

Cmax
*ed(S,S′)>τ , thus T and T ′ do not similarity match. Ac-

cordingly, we can directly filter out such trees based on Theorem 2.

4.3 SCST Distance Transformation

This section proposes to employ string edit distance to approximate the SCST
distance. We give a bound of SCST distance based on tree edit distance as for-
malized in Lemma 3. Based on Theorem 1, we give a bound of SCST distance
based on string edit distance as stated in Theorem 3.

Lemma 3. Given two trees T and T ′, we have scstd(T , T ′)≥ted(T , T ′).
Proof. Suppose Tm is the SCST of T and T ′. We can transform T to T ′ as follows.
We first insert the nodes in V(Tm)-V(T ) to T and generate a tree Tm, and then
delete the nodes in V(Tm)-V(T ′) from Tm and get T ′. Thus, we can construct T ′

from T with scstd(T , T ′) operations. Accordingly, scstd(T , T ′)≥ted(T , T ′).

Theorem 3. Given trees T and T ′, scstd(T , T ′)≥ted(T , T ′)≥ 1
Cmax

*ed(S,S′).

Based on Theorem 3, given two strings S and S′, if ed(S,S′)>τ ∗ Cmax, then
scstd(T ,T ′)≥ 1

Cmax
*ed(S,S′)>τ , thus T and T ′ do not similarity match. Ac-

cordingly, we can directly filter out such trees based on Theorem 3.
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4.4 Structural Similarity and Textual Similarity

In this section, we present how to seamlessly integrate the structural similarity
and textual similarity into our framework.

Consider the four trees in Figure 1, the traditional methods [2] only consider
the structural similarity. In their methods, ed(T1,T2)=4. ed(T1,T3)=3. Obviously,
T2 is much more relevant to T1 than T3 from human observer.

In our method, we transform the trees into strings. If we only consider the
structural similarity, we take the label of the node as an element in the string;
otherwise, if we take both the structural similarity and textual similarity into
account, we take each character in the label as an element in the string.

For example, consider the trees in Figure 1, we have,

S1=paper · editor ·E. Bertinoi · paper · author · lname ·Ooi · author · fname ·
B. C.·paper·author·lname·Li·author·fname·G.·paper·title·Similarity Search.

S2=paper ·editer ·E. Bertnoi ·paper ·author · lname ·Ooi ·author ·fname ·B. ·
paper · author · lname ·Li · author · fname ·G. · paper · title ·Similerity Search.

S3=paper ·editor ·B.C. Ooi ·paper ·author · lname ·Bertinoi ·author ·fname ·
E. ·paper ·author ·lname ·Li ·author ·fname·G. ·paper ·title·Similarity Search.

S4=paper · editor ·E. Bertinoi ·paper ·authors ·author · lname ·Ooi ·author ·
fname · B. C. · authors · author · lname · Li · author · fname · G. · paper · title ·
Similarity Search.

If we only consider the structural similarity, we have ed(T1,T2)=4. ed(T1,
T3)=3. ed(T1,T4)=2. We find that ed(S1,S2)=4. ed(S1,S3)=3. ed(S1,S4)=2. Note
that the string edit distances are exactly the same as the tree edit distances. On
the contrary, if we consider both the structural similarity and textual similarity,
we have ed(S1,S2)=5. ed(S1,S3)=16. ed(S1,S4)=13. Thus, T2 is much more rel-
evant to T1 than T4, which in turn is much more relevant to T1 than T3. This
is consistent with human observer. Accordingly, we can seamlessly integrate the
structural similarity and textual similarity for facilitating similarity join on trees.

5 Experimental Study

In this section, we compare the performance of our filter-and-refine similarity
search algorithm, which employs string edit distance to approximate tree dis-
tance against the approximate XML join method [9] (denoted as AppJoin in the
Figures). In our methods, we employed q-gram based methods [16] for similarity
search on strings. We used the inverted index to maintain the q-grams [11,13] and
adopted the merge based algorithm[15] for processing string similarity search so
as to effectively answer tree similarity queries.

We employed the synthetic and real datasets: DBLP 1, TreeBank 2, SIGMOD
Record 3 and XMark 4 for our experiments. (1) XMark is synthetic and generated
1 http://dblp.uni-trier.de/xml/
2 http://www.cs.washington.edu/research/xmldatasets/
3 http://www.sigmod.org/record/xml/
4 http://www.xml-benchmark.org/
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Table 2. Characteristics of datasets

Datasets Average # of elements Maximal depth Maximal fan-out

DBLP 13.6 4 8

SIGMOD Record 12.2 4 8

XMark 10.4 6 6

Treebank 11.8 8 6

by an XML data generator; (2) DBLP is a collection of papers and articles, which
consists of bibliographic information on major computer science journals and
proceedings; (3) SIGMOD Record, which is a collection of papers in database
area and obtained from SIGMOD homepage; (4) Treebank is obtained from
the University of Washington XML repository. The DTD of Treebank is very
deep recursive. In the experiment, we generated 10000 XML documents for each
dataset and we randomly selected 100 queries for similarity searches.

Different characteristics of selected trees are shown in Table 2. The results
shown in this paper were all averaged on the queries. We adopted the CPU
time consumption as performance measures. Through the experiments on real
datasets, we show our algorithm’s sensitivity to different features of the data. We
also present our experiments on real dataset to show the algorithm’s performance
on different query characteristics.

We conducted all the experiments on a computer with AMD 5600 2.8GHz
CPU and 2GB of RAM. We implemented the algorithms in C++.

5.1 Pruning Power

This section presents the pruning power of our proposed methods. We selected
10000 trees as the data collection, and randomly selected 100 queries and sub-
mitted them to the data collection. We varied different values of τ to evaluate
the average number of pruned trees, where the pruned trees denote the dis-
similar trees that are directly filtered out by the algorithms. Figure 7 gives the
experimental results. In the Figures, SSTD denotes our proposed method for Simi-
larity Search over Tree-structured Data. SSTD(ED), SSTD(TED), SSTD(LCSTD), and
SSTD(SCSTD) denote our methods which respectively adopt ed, ted, lcstd and
scstd similarity functions.

We observe that our proposed methods can prune many dissimilar trees and
thus improve the efficiency of similarity search on trees. Thus, we can embed the
bounds based on the similarity functions into our filter-and-refine framework for
effective approximate tree join. Moreover, with the increase of τ , SSTD(LCSTD)
and SSTD(SCSTD) drop down while SSTD(TED) and SSTD(ED) vary slightly. This
is because the ed function can help to filter out many more irrelevant trees
than lcstd and scstd functions as described in Section 4. This reflects the
effectiveness of edit distance based methods which can accurately evaluate the
similarity between trees.
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Fig. 7. Average # of Pruned Trees vs. Different Values of τ

5.2 Similarity Search Performance

The experiments described in this part were conducted to compare the perfor-
mance of the filtration algorithms for the queries with different parameters.

Firstly, we selected 10000 trees as the data collection, and randomly selected
100 queries and submitted them to the data collection. We varied different values
of τ to evaluate the average elapsed time of processing the one hundred queries.
Figure 8 illustrates the experimental results.

We see that our algorithms achieve high performance and outperforms Ap-
pJoin significantly. This is because our method can prune many dissimilar trees
based on string edit distance by employing effective filtration techniques, such
as, q-grams filtration and distance pruning techniques, which can improve the
efficiency of string similarity search and thus accelerate tree similarity search.
Moreover, with the increase of τ , the performance of AppJoin drops down sharply
while our methods vary slightly. This further reflects the benefits of our proposed
techniques. In addition, we see that the edit distance based method achieves
higher performance than those based on LCST distance and SCST distance. This
is because string edit distance is much better to approximate tree edit distance
than LCST distance and SCST distance.

Secondly, we selected different numbers of trees as the data collections, and
randomly selected 100 queries and submitted them to the data collections. We
varied the sizes of data collections, i.e., the numbers of trees in the data collec-
tions, to evaluate the average elapsed time of processing the one hundred queries.
Figure 9 illustrates the experimental results obtained.
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We see that our algorithms still achieve high performance and outperform
AppJoin. Furthermore, with the increase of the numbers of trees, the elapsed
time of our methods varies a little while that of AppJoin increases dramatically.
This reflects the scalability of our methods.
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5.3 Structural Similarity and Textual Similarity

This section evaluates the approximate tree search by combining both structural
similarity and textual similarity as described in Section 4.4. We still selected
10000 trees on each dataset as the data collection, and randomly selected 100
queries and submitted them to the data collection. The total elapsed time of
processing these 100 queries is illustrated in Table 3. We observe that our method
achieves very high performance and the average elapsed time is even less than
4ms. This further reflects the benefits of our proposed methods.

Table 3. Elapsed Time of Combining Structural and Textual Similarity

Elapsed Time of Processing 100 Queries(ms) τ=2 τ=4 τ=6 τ=8 τ=10 τ=12

DBLP 81 109 161 241 311 373

SIGMOD Record 90 118 173 245 323 381

XMark 82 101 155 234 318 365

Treebank 87 114 177 241 311 378

6 Related Work

In the literature, “approximate string matching” also refers to the problem of
finding a pattern string approximately in a text. There have been many studies
on this problem. Gonzalo Navarro [17] gives an excellent survey. The prefix filter
[6] technique was proposed for evaluating joins using pure relational processing.
It is designed for edit/hamming distance, Jaccard and some simple weighted
variants. It can be modified to work for all weighted similarity measures for
selection queries. Arasu et al. [1] designed a signature scheme that can be used
as a filter for identifying candidate sets with hamming distance smaller than
k from a query set. It was used for answering set similarity joins based on edit
distance and Jaccard. It is not clear how to extend this work for weighted metrics
and selection queries. Both exact and approximate algorithms for set similarity
joins between sets with un-weighted elements have been proposed as well.

Specialized set similarity join algorithms using cosine similarity between sets
have also been considered [3]. Kahveci et al. [11] proposed an index for sub-
string matches within edit distance k from a query. Sahinalp et al. [19] proposed
VP-trees for answering nearest neighbor queries for edit distance. An exhaus-
tive comparison of methods based on edit distance and variants appears in [17].
Several algorithms (e.g., [5], [7], [8]) have been proposed for answering approx-
imate string queries efficiently. Their main strategy is to use various filtering
techniques to improve the performance. These filters can be adopted with slight
modifications to be written as SQL queries inside a relational DBMS. Other re-
lated studies include [20], [23] on similarity joins. These algorithms find, given
two collections of sets, those pairs of sets that share enough common elements.
Similarity selections and similarity joins are in essence different. The former
could be treated as a special case of the latter, but algorithms developed for the
latter might not be efficient for the former.
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More recently, Kim et al. [13] proposed a technique called “n-Gram/2L” to
improve space and time efficiency for inverted index structures. Li et al. [16] pro-
posed a new technique called VGRAM to judiciously choose high-quality grams
of variable lengths from a collection of strings. Li et al. [15] studied the problem
of how to efficiently find a collection of strings those similar to a given query
string. They developed several merge algorithms that can greatly improve the
performance. Hadjieleftheriou et al. [10] demonstrated a length bounding prop-
erty. They proposed three new algorithms based on TA/NRA style processing on
inverted lists. Their shortest-first algorithm achieved truly interactive responses.

7 Conclusion

We have studied the problem of effective similarity search over tree-structured
data. We proposed a filter-and-refine framework to improve the efficiency of
similarity search over trees by using approximate string search techniques. We
transformed trees to strings with a one-to-one mapping strategy. We employed
the string edit distance to approximate the similarity measures between trees,
including tree edit distance, largest common subtree distance, and smallest com-
mon super-tree distance, and gave the theoretical bounds. We embedded the
bound into our filter-and-refine framework for facilitating effective similarity
search on tree-structured data. Moreover, we adopted the existing approximate
string search techniques to improve the performance of similarity search on trees.
The experimental results show that our methods achieve high performance and
outperform the existing methods significantly.
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LNCS, vol. 2992, pp. 676–693. Springer, Heidelberg (2004)

13. Kim, M.-S., Whang, K.-Y., Lee, J.-G., Lee, M.-J.: n-gram/2l: A space and time
efficient two-level n-gram inverted index structure. In: VLDB (2005)

14. Klein, P.: Computing the edit-distance between unrooted ordered trees. In: Bilardi,
G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461.
Springer, Heidelberg (1998)

15. Li, C., Lu, J., Lu, Y.: Efficient merging and filtering algorithms for approximate
string searches. In: ICDE (2008)

16. Li, C., Wang, B., Yang, X.: Vgram: Improving performance of approximate queries
on string collections using variable-length grams. In: VLDB (2007)

17. Navarro, G.: A guided tour to approximate string matching. ACM Computing
Surveys, 31–88 (2001)

18. Prufer, H.: Neuer beweis eines satzes uber permutationen. Archiv fur Mathematik
und Physik 27, 142–144 (1918)

19. Sahinalp, S.C., Tasan, M., Macker, J., Ozsoyoglu, Z.M.: Distance based indexing
for string proximity search. In: ICDE (2003)

20. Sarawagi, S., Kirpal, A.: Efficient set joins on similarity predicates. In: SIGMOD
(2004)

21. Seidl, T., Kriegel, H.-P.: Optimal multi-step k-nearest neighbor search. In: SIG-
MOD (1998)

22. Tai, K.-C.: The tree-to-tree correction problem. Journal of the Association for
Computing Machinery (JACM) 26, 422–433 (1979)

23. Ukkonen, E.: Approximate string matching with q-grams and maximal matches.
Theor. Comput. Sci. 92(1), 191–211 (1992)

24. Yang, R., Kalnis, P., Tung, A.K.H.: Similarity evaluation on tree-structured data.
In: SIGMOD (2005)

25. Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between
trees and related problems. SIAM Journal of Computing 18, 1245–1262 (1989)



Hierarchical Graph Embedding for Efficient Query
Processing in Very Large Traffic Networks
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Abstract. We present a novel graph embedding to speed-up distance-range and k-
nearest neighbor queries on static and/or dynamic objects located on a (weighted)
graph that is applicable also for very large networks. Our method extends an exist-
ing embedding called reference node embedding which can be used to compute
accurate lower and upper bounding filters for the true shortest path distance. In
order to solve the problem of high storage cost for the network embedding, we
propose a novel concept called hierarchical embedding that scales well to very
large traffic networks. Our experimental evaluation on several real-world data sets
demonstrates the benefits of our proposed concepts, i.e. efficient query processing
and reduced storage cost, over existing work.

1 Introduction

Similarity queries in large traffic networks are important database operations in appli-
cations such as location-based services, traffic network monitoring, traffic information
systems, etc. Typically, traffic networks such as road networks are modeled by graphs.
Nodes of the graph represent crossings such as road intersections or junctions, whereas
edges represent connections such as roads or railways between nodes. The data objects
representing points of interest such as cars, service stations, etc. are distributed over
this road network, i.e. are located at nodes or on edges or may move along the graph.
The distance between objects in the network is measured by means of the shortest path
distance which can be computed by the Dijkstra algorithm.

In today’s applications usually a high number of online queries on networks of hun-
dreds of thousands or even millions of nodes have to be answered in real-time. Obvi-
ously, a more efficient solution than computing Dijkstra for all these query nodes is
utterly necessary for such scenarios. A filter/refinement approach is envisioned, apply-
ing a cheaper filter step in order to efficiently partition the data objects into a set of true
hits and/or true drops, and a set of candidates, that need to be further analyzed. In order
to decide about true hits, we need an upper bounding distance approximation, whereas
a lower bounding distance approximation is needed to decide about true drops. The re-
maining set of candidates that cannot be discarded from or included in the result set by
means of the filter step, need to be refined, i.e. the true network distance needs to be
computed.

Here, we propose a novel filter/refinement query processor for very large graph net-
works based on a hierarchical network graph embedding. Section 2 introduces prelim-
inary definitions and discusses related work. In Section 3, we show how the so-called

B. Ludäscher and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, pp. 150–167, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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reference node embedding can be extended to reduce the storage cost for very large
networks. We show how this novel embedding can be computed efficiently for static
and dynamic objects located on graph networks and derive efficient lower- and upper
bounds for the network distance from the hierarchical embedding. Section 4 sketches
our multi-step query processor. Section 5 presents an experimental evaluation of the
proposed concepts and Section 6 concludes the paper.

2 Preliminaries and Related Work

2.1 Preliminaries

Let D be a database of objects that are located in a traffic network, e.g. cars or pedestri-
ans in a network of streets. The traffic network is represented by an undirected weighted
graph G = (N, E, W ) called network graph, where N denotes the set of nodes, E ⊆
N × N denotes the set of edges and the function W : E → �

+ associates a weight
w(ni, nj) to each edge (ni, nj) ∈ E. The network distance between two nodes ni, nj ∈
N , denoted by dnet(ni, nj), equals w(ni, nj) if ni, nj are adjacent, i.e. (ni, nj) ∈ E,
else it equals the length of the shortest path from ni to nj . The length of a path is defined
as the sum of the weights of all participating edges.

If an object o is located on an edge (ni, nj) ∈ E, di(o) and dj(o) denote the distance
of o to the adjacent nodes ni and nj , respectively. The network distance between two
objects oi, oj ∈ D, dnet(oi, oj), is the length of the shortest path between oi and oj .
Thereby, we assume that oi and oj are additional “virtual” nodes of the graph. Thus,
if oi is located on edge (ni1 , ni2) we introduce additional “virtual” edges (oi, ni1) and
(oi, ni2) with weights w(oi, ni1) = di1 (oi) and w(oi, ni2) = di2(oi), respectively. If
oi is located on a node n, we do not need to introduce additional edges or nodes but can
work with n instead of oi. Note, that by introducing the additional “virtual” nodes for
objects, the network distance is still a function N ×N → �. Whenever we use dnet as
a function on D × D in the following, we assume the introduction of virtual nodes for
the according objects if necessary.

Based on the network distance, proximity queries are given as follows. Given a query
object q located on G and a distance threshold ε ∈ �+, a distance range query (DRQ)
returns the set DRQ(q, ε) = {o ∈ D | dnet(q, o) ≤ ε}. Given a query object q lo-
cated on G and a number k ∈ �+, a k-nearest neighbor query (kNNQ) returns the set
NNQ(q, k) containing k objects such that ∀o ∈ NNQ(q, k), ô ∈ D \ NNQ(q, k) :
dnet(q, o) ≤ dnet(q, ô).

2.2 Related Work

Proximity queries in traffic networks are based on network distances defined by the
shortest path between two objects, e.g. computed by the Dijkstra algorithm [1] and its
variants [2]. These algorithms expand the path from the starting node towards the tar-
get node using a priority queue of visited nodes sorted by ascending distance from the
starting node. The A* algorithm [3] applies heuristics to prune the search space and
direct the graph expansion. Materialization techniques [4,5,6] suffer from increasing
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storage cost. In [7] the authors divide the graph into regions and gather information
whether an edge is on a shortest path leading to a specific region. All these approaches
provide only a speed-up for the exact distance computation but cannot be used as a filter
step.

In [8] the Euclidean distance between graph nodes/objects is used as a lower bound-
ing filter in order to guide an incremental network expansion for refinement. This ap-
proach works well only for high-proximity queries (i.e. small query range ε or small
nearest-neighbor coefficient k) and dense object distributions, otherwise a large por-
tion of the network for distance computation need to be retrieved. Furthermore, this
approach does not provide an upper bounding distance function to filter out true hits,
resulting in a larger amount of refinements.

In [9] one of the graph embedding technique from [10] is applied in order to estimate
the network distance between two nodes. An extended dynamic embedding for moving
objects is presented. In addition, it is shown how the graph embedding can be used
to compute an approximate shortest path between two objects. The accuracy of the
approximation depends on the density and distribution of the objects in space. A severe
drawback of the approach is that the embedded space involves 40 to 256 dimensions. In
addition, it does not offer any solution for the computation of the exact distances of the
candidates in the refinement step.

In [11] distance signatures are computed and managed for each data object o in
the network graph containing a vector of distance approximations between o and all
other data objects in the network graph. These distance approximations are then used to
efficiently determine the candidates of a proximity query in a filter step. Subsequently,
the exact distances of the candidates are computed online in the refinement step. The
obvious drawback of this proposal is that the storage and query cost directly depend
on the number of objects. Furthermore, this approach does not support an efficient re-
embedding necessary to answer proximity queries on moving objects that frequently
change their positions.

The work of this paper is based on the network graph embedding originally proposed
independently by two research groups [12,13] and [14]. While the work in [12,13] only
explores a lower bound, the authors in [14] also derive an upper bound for the network
distance. In addition, the authors in [12,13] focus only on speeding up the shortest path
computations whereas in [14], the authors propose a multi-step query processing frame-
work for supporting proximity queries in traffic networks. The details of the embedding
is reviewed in Section 3.1.

In [15] a Voronoi diagram on the network space is computed and each Voronoi cell
that represents the region of the nearest neighbor in the network is represented by a
2D polygon. These Voronoi-cell polygons are indexed to support kNN queries. The
performance of this approach mainly depends on the density and distribution of the
objects in the network. Dense network graphs on which the data objects are sparsely
distributed lead to large Voronoi cells with a lot of adjacent neighbor cells. In this case,
the computation of the kNN would have a poor performance.

In this paper, we do not focus on another class of proximity queries in road networks
called continuous proximity queries (as studied e.g. in [16,17]).
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3 Network Graph Embedding

3.1 Basics

Our approach is based on a special form of a Lipschitz embedding of the traffic
network using singleton reference sets which we call reference nodes according to
[14] (in [12,13], these reference nodes are called landmarks). The embedding trans-
forms the nodes of a given network graph and the objects located on that graph into
a k-dimensional vector space. Let G = (N, E, W ) be a network graph and N ′ =
〈nr1 , . . . , nrk

〉 ⊆ N be a subsequence of k ≥ 1 reference nodes. The embedding, or
transformation, of the native space N into a k-dimensional vector space �k is a map-
ping FN ′

: N ∪D → �
k, where |N ′| = k is the dimensionality of the vector space. A

reference node embedding of G based on N ′ ⊂ N defines the function FN ′
as follows.

For each n ∈ N , FN ′
(n) = (FN ′

1 (n), . . . , FN ′
k (n))T, where FN ′

i (n) = dnet(n, nri)
for 1 ≤ i ≤ k. Objects can be embedded analogously. For each o ∈ D located on a node
n, FN ′

(o) = FN ′
(n). For each o ∈ D located on an edge (n1, n2) ∈ E, FN ′

(o) =
(F̂N ′

1 (o), . . . , F̂N ′
k (o))T, where F̂N ′

i (o) = min{d1(o)+ FN ′
i (n1), d2(o)+ FN ′

i (n2)}.
In Figure 1 a reference node embedding of some objects located on a sample network

graph using reference nodes N ′ = 〈n8, n7〉 is illustrated.
The reference node embedding has two major advantages. First, if the graph structure

remains fixed (which is obviously a realistic assumption) and the embedding of the
graph nodes (that do not change) is performed offline in a preprocesing step and is
then stored, a re-embedding of moving objects can be done very efficiently. Second,
the reference node embedding can be used to compute upper and lower bounds for the
network distance. In [14] it is shown that the distance D(x, y) = maxi=1..k |xi − yi| in
the embedded space lower bounds the distance dnet in the native space. In addition, it is
shown that the distance function D∗(x, y) = mini=1...k(xi + yi) is an upper bound of
dnet. In summary, the reference node embedding approach is very suitable to efficiently
support similarity queries over both static and dynamic objects in traffic networks.
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3.2 The Idea of Hierarchical Network Embedding

Beside these two significant advantages, the reference node embedding proposed in
[12,13] and [14] — in the following called flat embedding — has one major short-
coming. The performance gain of the embedding heavily depends on the number of
reference nodes used. Though it is shown in [14] that even a low number of refer-
ence nodes is sufficient in order to achieve significant performance boosts on small and
medium-sized networks, it is also indicated that on large-scale networks, the number
of reference nodes necessary to approximate the network distance sufficiently well and
to speed-up similarity query processing is considerably large. However, a large set of
reference nodes leads to high storage cost because we have to store O(|N | · |N ′|) dis-
tances for the embedding. In addition, also the computational cost of the embedding
and re-embedding process and of the query processor increases with increasing |N ′|.
Especially the increase of query processing cost (due to higher CPU cost to determine
the distance between |N ′|-dimensional points and due to higher I/O cost caused by the
fact that higher dimensional points can be indexed less efficiently) is a severe handicap
of the flat embedding approach.

Obviously, the reason for this bad scalability of the flat reference node embedding on
large networks is the increasing dimensionality of the resulting embedding vectors in
the vector space �|N ′|. This is somewhat arbitrary because finally only one reference
node is taken into account for a distance estimation as D and D∗ aggregate over the
distances to all reference nodes such that only the “best” reference node is taken. Usu-
ally a small subset of the reference nodes suffices for the distance estimation between
an object o and any other object in the graph. It is easy to see that the smaller is the
distance of a reference node to a particular object o, the better is this reference node for
all distance approximations w.r.t. o.

In this paper, we propose a solution to the limited scalability of the flat reference
node embedding that is inspired by these considerations. Given an object o there are
reference nodes that are more relevant and less relevant for o in N ′. So why not use
only the relevant reference nodes in N ′ for the embedding of o? This should decrease
the dimensionality of the resulting embedded vectors without downgrading the distance
approximations considerably.

3.3 Two-Level Network Embedding

A first approach is to use for each object o only the K nearest reference nodes N ′
o ⊆ N ′,

where K << N ′. Obviously, the lower and upper bounding distance approximations
D and D∗ can still be used to approximate the network distance dnet(x, y) between two
objects x and y as far as the intersection of the corresponding reference node sets N ′

x

and N ′
y is not empty, i.e. N ′

x ∩ N ′
y �= ∅.

However, in large traffic networks with a large reference node set N ′, it is more
likely that this property does not hold for most of the pairs of objects, in particular for
those which are not very close to each other. To overcome this problem, we introduce
a further embedding level on top of the current embedding. A comprehensive graph
G′ = (N ′, E′, W ′) is built using all reference nodes N ′ as nodes and all shortest paths
between these nodes in the original graph G as edges E′. The weights W ′ are deter-
mined analogously. The idea is illustrated in Figure 2.
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reference

node graph

network

graph

Fig. 2. Schema of a 2-level reference node embedding

Formally, let G = (N, E, W ) be the network graph and N ′ ⊆ N a set of reference
nodes (landmarks) with |N ′| ≥ K . For each node or object o ∈ N ∪ D let N ′

o =
〈ro

1 , . . . , r
o
K〉, ro

j ∈ N ′ be the set of K local reference nodes relevant for o. The 2-level
embedding, or transformation, of the native space N ∪ D into a K-dimensional vector
space �k is a mapping F̃N ′

: N ∪ D → �
K together with a reference node graph

G′ = (N ′, E′, W ′). A 2-level reference node embedding of G and D based on N ′ ⊂ N
is a pair (F̃N ′

,M′) consisting of the mapping function F̃N ′
and the reference node

matrix M′ that is the weighted adjacent matrix of G′.
The function F̃N ′

is defined as follows.

F̃N ′
o(o) =

⎧⎪⎪⎨⎪⎪⎩
(dnet(ro

1 , o), . . . , dnet(ro
K , o))T if o ∈ N is a node

F̃Nn(n) if object o ∈ D is located on n ∈ N

(SN ′
o

1 (o), . . . , SN ′
o

k (o))T if o ∈ D is located on (ni, nj) ∈ E

where S
N ′

o

i (o) = min{d1(o) + F̃
N ′

o

i (n1), d2(o) + F̃
N ′

o

i (n2)}.
Let us note that a re-embedding of moving objects using F̃ is still very efficient as

long as we assume that the graph structure remains fixed because then the embedding
of the graph nodes performed in a preprocessing step can be stored.

The reference node graph G′ = (N ′, E′, W ′) is a graph over all reference nodes N ′,
where E′ = {(ni, nj)|ni, nj ∈ N ′} is the set of all pairwise connections between the
reference nodes in N ′ and W ′(ni, nj) = dnet(ni, nj) is the shortest path between the
corresponding reference nodes ni, nj ∈ N ′ in the original graph G.

Because the set of edges is implicitly defined, we can store and represent this ref-
erence node graph by its weighted adjacency matrix which we call the reference node
matrix. This matrix has the following general form.

M′ =

⎡⎢⎢⎢⎣
0 dnet(r1, r2) . . . dnet(r1, rk)

dnet(r2, r1) 0 . . . dnet(r2, rk)
...

...
. . .

...
dnet(rk, r1) dnet(rk, r2) . . . 0

⎤⎥⎥⎥⎦
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In summary, the pair (F̃N ′
,M′) defines a 2-level reference node embedding of a

graph G.

3.4 Distance Approximations

Based on F̃N ′
and M′, we can now define a distance function D̃ for objects in x, y ∈ D

in the embedded space that lower bounds dnet as follows.

D̃(F̃Nx(x), F̃Ny(y)) = max
k∈Nx,l∈Ny

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Mik,il

− F̃Nx

k (x) − F̃
Ny

l (y) (case A)
F̃Nx

k (x) − Mik,il
− F̃

Ny

l (y) (case B)
F̃

Ny

l (y) − Mik,il
− F̃Nx

k (x) (case C)
0 (case D)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where ip represents the index of the rn

p ∈ Nn in M′ and where the following cases
appear: case A: dnet(ri, rj) > dnet(na, ri) + dnet(nb, rj), case B: dnet(na, ri) >
dnet(ri, rj) + dnet(nb, rj), case C: dnet(nb, rj) > dnet(na, ri) + dnet(ri, rj) and case
D otherwise.

Figure 3 illustrates the definition of D̃. On the left hand side, case A (k = 1 and
l = 4, i.e. r1 and r4 determine the distance approximation) is visualized. On the right
hand side, case B and case C (symmetric) are depicted.

Lemma 1 (Lower bounding property). Let (F̃ ,M′) be a 2-level reference node em-
bedding of nodes and objects of a network G = (N, E, W ) w.r.t. a set of reference
nodes N ′ and local reference node sets No for all nodes or objects o ∈ N ∪ D. For
each x, y ∈ N ∪ D the following property holds.

D̃(F̃Nx(x), F̃Ny(y)) ≤ dnet(x, y).

Proof. Without loss of generality, let ri ∈ Nx und rj ∈ Ny be the reference nodes that
determine D̃. Since dnet is a metric, the following considerations hold.

dnet(r4, y)

r1

r2 r3

r4

dnet(r1, x)
dnet(r2, x)
x

dnet(r3, y)

y

))(
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~
(

~ ''* yFxFD yx
NN

))(
~
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~
(
~ ''

yFxFD yx
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M1,4=dnet(r1,r4)

M2,3=dnet(r2,r3)

(a) case A and D

dnet(r2, x)
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~
(

~ ''* yFxFD yx
NN

))(
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(
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M2,3=dnet(r2,r3)
r2 r3

(b) case B and C

Fig. 3. Illustration of the distance approximation derived from a reference node embedding
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Case A occurs if dnet(ri, rj) > dnet(na, ri) + dnet(nb, rj). Then,

D̃(F̃Nx(x), F̃Ny (y)) = Mii,ij − F̃Nx

i (x) − F̃
Ny

j (y)
= dnet(ri, rj) − dnet(x, ri) − dnet(y, rj)
≤ dnet(ri, na) − dnet(nb, rj)
= dnet(x, rj) − dnet(y, rj)
≤ dnet(x, y)

Case B occurs if dnet(na, ri) > dnet(ri, rj) + dnet(nb, rj). Then,

D̃(F̃Nx(x), F̃Ny (y)) = F̃Nx

i (x) − Mii,ij − F̃
Ny

j (y)
= dnet(x, ri) − dnet(ri, rj) − dnet(y, rj)
= dnet(x, ri) − dnet(rj , ri) − dnet(y, rj)
≤ dnet(x, rj) − dnet(y, rj)
≤ dnet(x, y)

Case C occurs if dnet(nb, rj) > dnet(na, ri) + dnet(ri, rj). Then,

D̃(F̃Nx(x), F̃Ny (y)) = F̃
Ny

j (y) − Mii,ij − F̃
Ny

j (y)
= dnet(y, rj) − dnet(ri, rj) − dnet(x, ri)
≤ dnet(y, ri) − dnet(x, ri)
≤ dnet(x, y)

Otherwise, in case D, we have

D̃(F̃Nx(x), F̃Ny (y)) = 0 ≤ dnet(x, y)

Analogously, we can define a distance function D̃∗ for objects in x, y ∈ D in the
embedded space that upper bounds dnet as follwos.

D̃∗(F̃Nx(x), F̃Ny (y)) = min
k∈Nx,l∈Ny

{Mik,il
+ F̃Nx

k (x) + F̃
Ny

l (y)}

where ip is defined as above. Figure 3 illustrates the definition of D̃∗.

Lemma 2 (Upper bounding property). Let (F̃ ,M′) be a 2-level reference node em-
bedding of nodes and objects of a network G = (N, E, W ) w.r.t. a set of reference
nodes N ′ and local reference node sets No for all nodes or objects o ∈ N ∪ D. For
each x, y ∈ N ∪ D the following property holds.

D̃∗(F̃Nx(x), F̃Ny(y)) ≥ dnet(x, y).
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Proof. Let x, y ∈ N ∪ D. Since dnet is a metric, for each pair of reference nodes
ri ∈ Nx und rj ∈ Ny the following holds:

D̃∗(F̃Nx(x), F̃Ny(y)) = Mii,ij + F̃Nx

i (x) + F̃
Ny

j (y)
= dnet(ri, rj) + dnet(x, ri) + dnet(y, rj)
= dnet(x, ri) + dnet(ri, rj) + dnet(rj , y)
≥ dnet(x, rj) + dnet(rj , y)
≥ dnet(x, y)

Let us note that for directed graphs, dnet is no metric distance function (it is not
symmetric). However, lower and upper bounds for the network distance on the 2-level
embedding can be defined analogously also for directed graphs. Since in this case
dnet(x, y) is not symmetric we have to distinguish between the two traversal direc-
tions (x → y and y → x) for which we have to take the corresponding directed edge
weights into account.

3.5 From Two-Level to Multi-level Network Embeddings

The proposed 2-level reference node embedding scales very well even for very large
graphs as far as the number K of relevant reference nodes for each object is consider-
ably small. We will see this in our experiments (cf. Section 5). However, for very large
graph networks that require a high reference node density, K can again be large. In
addition, the storage cost for the reference node matrix M′ obviously scale quadratic
with the number of global reference nodes N ′. In such scenarios, M′ will no longer
fit into main memory. This will increase the query processing time dramatically since
for determining the distance approximations, we steadily need random access to the
elements in M′.

To solve this problem, we propose to introduce further embedding levels, i.e. to
generalize the 2-level reference node embedding to a multi-level reference node em-
bedding. Such a multi-level embedding can be constructed bottom-up starting with a
2-level embedding. The reference node set is partitioned at each level. Each of these
partitions is assigned to one of the objects/nodes in the network as the corresponding
relevant reference node set. The reference node partitions may overlap and neighbor-
ing nodes/objects should get nearly the same reference node partition assigned. For
each partition, a complete reference node graph is constructed on the second embed-
ding level. Thereby, the size of each partition should be chosen such that the reference
nodes on each level are completely connected (i.e. each reference node is reachable
from each other) when combining all reference node graphs on a level. Furthermore,
the reference node matrices of the corresponding reference node graphs should fit into
a memory page. From the resulting reference node graph on embedding level i a prede-
fined number of nodes is selected to form an embedding level i + 1 analogously. This
procedure is iterated until only one “graph” remains that is complete and fits into main
memory. The idea is illustrated in Figure 4.
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Fig. 4. Schema of a multi-level reference node embedding

3.6 Choosing the Reference Node Set

It is easy to see that the choice of the reference node set affects the quality of the
distance approximations. The problem of how to choose the reference nodes is two-
fold. First, the global set N ′ has to be chosen adequately, and second, for each node or
object o ∈ N ∪ D, the local set of relevant reference nodes N ′

o needs to be selected,
too. Obviously, the choice of the global set N ′ affects the possibilities for the selection
of the local sets N ′

o.
For a flat embedding, D(x, y) = dnet(x, y) for two objects x, y ∈ D, i.e. the approx-

imation error is zero, if there is at least one ri ∈ N ′ such that either x ∈ Pbest(ri, y)
or y ∈ Pbest(ri, x), where Pbest(a, b) denotes the shortest path between nodes/objects
a and b. On the other hand, the approximation obtained from reference node ri is very
coarse if ri is located such that dnet(x, ri) ≈ dnet(y, ri) and ri ∈ Pbest(x, y). On the
other hand, D∗(x, y) = dnet(x, y) for two objects x, y ∈ D, i.e. the approximation
error is zero, if there is at least one ri ∈ N ′ such that ri ∈ Pbest(x, y). The more
disconnected a reference node ri is from Pbest(x, y), the coarser is the approximation
obtained from this reference node. The same considerations hold true for a 2-level or
even for a multi-level reference node embedding.

Intuitively, the probability that these conditions for accurate distance approximations
are fullfilled is higher if the reference nodes are close to the objects. Thus, if the dis-
tribution of the objects in the network is unknown, the set of global reference nodes
N ′ should be evenly distributed over the network because then, the probability that all
objects have at least one reference node in their local vincinity is maximized. In addi-
tion, for each node or object o ∈ N∪D, the set of relevant reference nodes N ′

o should be
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selected as the K-nearest reference nodes of o from N ′. This further ensures that the
reference nodes N ′

o are in proximity of o.
On the other hand, if information about the object distribution, the characteristics of

object movement, and/or the distribution of query locations is known, the set of local
relevant reference nodes N ′

o for all nodes or objects o ∈ N ∪ D could be selected
individually. Ideally, hot spots, i.e. nodes that are often part of shortest paths during
query execution, should be chosen as reference nodes. Since the set N ′

o of reference
nodes relevant for node/object o can be dynamically adjusted rather easily, we can even
learn the location of hot spots by monitoring for each node how often it is visited during
a shortest path computation.

3.7 Efficient Shortest-Path Computation

Analogously to the flat embedding, our hierarchical reference node embedding can be
successfully applied as heuristics for the A*-search algorithm to compute the true net-
work distance. The A*-search method is a special case of a best-first search algorithm
using heuristics. In contrast to the Dijkstra algorithm whose search is only backward-
oriented (blind search), the A*-search method is an informed search method, i.e. it also
looks in the forward direction using a lower bounding network distance approximation,
e.g. the Euclidean distance. Here, we propose to use the distance function D̃ of the
vector space resulting from our multi-level K-closest reference node embedding as es-
timator function. In addition, we can use the upper bounding distance estimation D̃∗ in
order to identify the branches of the search tree that do not need to be expanded. Since
these branches do not need to be considered throughout the remaining search steps, we
do not need to maintain them which reduces the memory cost.

4 Multi-Step Query Processing

The upper and lower bounding distance estimations introduced above can be used in a
filter step as well as for speeding-up the refinement step using the modified A* algo-
rithm. In the following, we present the multi-step DRQ and kNNQ using our embed-
ding function FN ′

implementing a multi-level K-closest reference node embedding. As
mentioned above, for static objects, the graph embedding has to be performed only once
in a preprocessing step before any query is launched. The re-embedding for dynamic
objects can be computed rather efficiently on the fly (cf. Section 3).

The DRQ over the embedded objects and nodes can directly prune all objects for
which the distance approximation D̃ is greater than ε as true drops without refining
them. All objects are added to the result list if the distance estimation D̃∗ is lower or
equal to ε. Only the remaining candidates need to be refined.

For the kNNQ we use the algorithm proposed in [18] which is shown to be optimal
w.r.t. the number of candidates that are refined. The algorithm is illustrated in Figure 5.
It uses a ranking of the objects in ascending order of their lower bounding filter distance
D̃ and performs an iterative refinement as long as the lower bound of the next object in
the ranking is smaller or equal to the current K-th nearest neighbor distance.
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kNNQ(q,k,G)

SortedList results,candidates;
initialize ranking := RQ(q,D);
candidates←first k objects from ranking;
dmin = kth smallest D(F N′

(q), F N′
(o)) of o ∈candidates;

dmax = kth smallest D∗(F N′
(q), F N′

(o)) of o ∈candidates;
df next = D(F N′

(q), F N′
(o)) of o=ranking.top element;

do {
update dmin, dmax, and df next;

if dmin ≥ df next then
candidates.add(ranking.top element);
update dmin, dmax, and df next;

for all c ∈ candidates do
if D∗(F N′

(q), F N′
(c)) < dmin then add c to result ;

if D(F N′
(q), F N′

(c)) > dmax then prune c;

if |results|+|candidates| > k ∨ df next ≤ dmax then
for all c ∈ candidates with D(F N′

(q), F N′
(c)) ≤ dmin

∧ dmax ≤ D∗(F N′
(q), F N′

(c)) do
if dnet(q, c) ≤ dk−nn(q, result) then add c to result ;

else add all remaining c ∈ candidates to result ;

} while (df next ≤ dmax ∨ |candidates| > 0)

return result ;

Fig. 5. The kNNQ algorithm

5 Experimental Evaluation

Due to space limitations, we focus on a two-level embedding in our experiments. We
used real road networks of San Joaquin County (“TG”, 18,300 nodes) and San Fran-
cisco (“SA”, 175,000 nodes). The network objects were simulated through randomized
samples of the graph nodes. The graph was stored on disk implementing the approach
proposed in [8] using R∗-trees with a block size of 8 KB and an average storage load of
70% each. The R∗-trees are used to manage the nodes, the edges and the street segments
in form of polylines. An embedding vector is a further attribute of a node. The refer-
ence nodes were chosen by spatially ordering all graph nodes along a Hilbert curve.
We then uniformly distributed the reference nodes along this curve. Datasets without an
embedding are denoted by REF, flat embeddings by 1RNE and two-level embeddings
by 2RNE. All experiments were performed on a workstation featuring a 1.8 GHz CPU,
2GB RAM, a random disk with page access time of 6 ms, and a transfer rate of 86MB/s.
The cache size was set to 5% of the dataset size. In all experiments, we performed 1,000
random queries and averaged the results.
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Fig. 6. Size of the embedding, w.r.t. size of the network graph

5.1 Storage Requirements

Figure 6 shows the storage requirements of different embeddings. We compared a flat
embedding (1RNE) with an object density of rho = 0, 0001 (rho = # objects / # graph
nodes) with several two-level embeddings (2RNE) using different numbers K of rele-
vant reference nodes1 per node and object. For each 2RNE we assumed a considerably
higher object density of rho = 0, 01. In addition, the size of the reference node matrix
M′ is depicted. In the following, M denotes the size of the reference node matrix M′,
i.e. about

√
M (1st-level) reference nodes are used for M′. It can be observed, that us-

ing a 2RNE we can use approximately two orders of magnitude more reference nodes
compared to a 1RNE with quite similar storage cost. Obviously, using more global ref-
erence nodes increases the quality of the distance approximations, and, thus boosts the
overall performance.

5.2 Multi-step Query Processing

In this experiment, we assumed a capacity of 80 byte per embedded node and object of
the network graph. We used K = 3 relevant reference nodes per node and object result-
ing in an overall number of 400 and 700 reference nodes for TG and SF, respectively.
The reference node distance matrix M′ thus required 0.61 MB (TG) and 1,88 MB (SF)
RAM, respectively. Because of its small size, the distance matrix M′ was kept in main
memory in all experiments. The results of distance range query processing on the SF
dataset are depicted in Figure 7. The most important advantage of the 2RNE over the
1RNE approach is that it can use significantly more reference nodes which increases the
quality of the filter distances. Especially for less selective queries, the filter selectivity
is significantly better than using a 1RNE with comparable storage requirements. The
scalability of the 2RNE approach w.r.t. the object density is linear similar to the 1RNE
approach. The results on the TG dataset are similar (not shown due to space limitations).
In summary, the results show that the 2RNE approach is superior to 1RNE especially

1 The number K of relevant reference nodes corresponds to the number of reference nodes
assigned to each graph node on each embedding level.
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Fig. 7. Performance of DRQ w.r.t. the object density rho on SF dataset
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Fig. 8. Performance of kNNQ w.r.t. the object density rho on TG dataset
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on large graphs with comparable storage requirements. The results of kNNQ processing
on the TG dataset are depicted in Figure 8. On the SF dataset we made similar observa-
tions (not shown due to space limitations). Here, especially for high object densities, the
2RNE approach outperforms the 1RNE approach on large datasets. Again, the higher
number of reference nodes that can be used in the 2RNE approach yields a significantly
better distance approximation.

5.3 Shortest Path Algorithm

In this experiment, we concentrate on the cost required for the refinement step, i.e. the
cost of the exact distance computation. The benefits of our novel distance approxima-
tions for computing the shortest path can be observed in Figure 9. A sample shortest
path (marked in blue) is computed by four different methods. For each method, the
corresponding search space containing all visited edges is marked in orange. While the
Dijkstra algorithm (cf. Figure 9(a)) needs to access nearly the complete displayed part
of the graph, the A* algorithm using the Euclidean distance as lower bounding distance
estimation (cf. Figure 9(b)) requires a considerably reduced search space. The novel

(a) Dijkstra (b) A* with Euclidean

(c) A* with 1RNE (d) A* with 2RNE

Fig. 9. Search space (orange) for computing a sample shortest path (blue)



Hierarchical Graph Embedding for Efficient Query Processing 165

200 400 600 800

number of reference nodes

0

200

400

600

800

1000

1200

1400

1600

pa
ge

 a
cc

es
se

s 
(a

vg
.)

2RNE, K=5
A* eucl

(a) # of page accesses w.r.t. |M′|).

2 4 6 8 10 12

size of reference node vector

0

200

400

600

800

1000

1200

1400

pa
ge

 a
cc

es
se

s 
(a

vg
.)

2RNE , M=200
REF

(b) # of page accesses w.r.t. K.

Fig. 10. Performance evaluation of the shortest path algorithm

A* algorithm with upper and lower bounding distance estimations derived from a flat
reference node embedding with |N ′| = 50 reference nodes (cf. Figure 9(c)) further re-
duces the search space. Finally, our 2-level reference node embedding with |N ′| = 100
global reference nodes and K = 5 relevant reference nodes per object (cf. Figure 9(d))
requires the smallest search space of all competitors.

Figures 10(a) and 10(b) show the average number of disk page accesses required for
one distance computation between two objects (nodes) w.r.t. the size of the reference
node matrix M′ and the number K of reference nodes used for the two-level embed-
ding. As can be observed, our novel shortest path algorithm again significantly outper-
forms the A* search using the Euclidean distance and Dijkstra (not shown for clarity
reasons). We also observed, that increasing the number K of relevant reference nodes
per object does not significantly increase the quality of the distance approximation (not
shown due to space limitations). Our experiments suggest that K = 5 is a reasonable
choice despite it is a rather small value. As a consequence, the storage requirements
for each object are rather low. In turn, this allows us to use a higher number of global
reference nodes.

5.4 Comparison with Other Approaches

Finally, we compare the performance of our approach to that of state-of-the art ap-
proaches. We chose the distance signature (DS) approach [11] as comparison part-
ner because it outperforms other methods such as the network voronoi diagram [15].
The DS method was parameterized as described in [11]. For the comparison, we com-
puted a two-level (2RNE) embedding for M = 256 and K = 5. For an object density
rho = 0.01, the 2RNE embedding occupies half of the space required by DS. Please
note that the object density linearly influences the memory footprint of our technique, in
contrast to the DS approach where the relationship between object density and memory
consumption is quadratic. The DRQ experiments in Figure 11 show that the signature
approach is significantly outperformed by our approach. The two-level embedding is
able to outmatch DS although it occupies significant less memory, i.e. needs far less
precomputed distance information.

In summary, our experimental evaluation empirically showed the following facts:
First, the integration of our novel upper and lower bounding distance approximations
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into the A* algorithm is superior to state-of-the-art methods for shortest path computa-
tion. Second, our novel two-level (or even multi-level) embedding outperforms the flat
embedding on large graphs because it allows an even more accurate lower and upper
bounding distance approximation.

6 Conclusions

We proposed a hierarchical graph embedding of very large networks that is suitable for
static and dynamic objects. From the embedding, we derived accurate upper and lower
bounds for the network distance that can be used to implement a filter/refinement archi-
tecture for similarity search in large traffic networks. In addition, our embedding allows
an acceleration of the refinement step by applying an informed A*-search using our
novel distance approximations. Our experiments show that our novel approach outper-
forms a simple flat embedding and other existing competitors in terms of pruning power
in the filter step and overall performance. Furthermore, it turned out that our informed
search in the refinement step is much more efficient than comparable approaches due to
a dramatically reduced search space.
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Abstract. In recent years, there is an increasing need to monitor k nearest neigh-
bor (k-NN) in a road network. There are existing solutions on either monitor-
ing k-NN objects from a single query point over a road network, or computing
the snapshot k-NN objects over a road network to minimize an aggregate dis-
tance function with respect to multiple query points. In this paper, we study a
new problem that is to monitor k-NN objects over a road network from multi-
ple query points to minimize an aggregate distance function with respect to the
multiple query points. We call it a continuous aggregate k-NN (CANN) query.
We propose a new approach that can significantly reduce the cost of computing
network distances when monitoring aggregate k-NN objects on road networks.
We conducted extensive experimental studies and confirmed the efficiency of our
algorithms.

1 Introduction

With the development of positioning technologies such as the Global Positioning Sys-
tem (GPS), many applications are developed in transportation domains by taking advan-
tages of monitoring object movements in road networks where the position and distance
of objects are constrained by spatial networks. An important type of these queries is a k
nearest neighbor (k-NN) query, which is widely used in location-based services, traffic
monitoring, emergency management. Existing solutions focused on either monitoring
k-NN objects over a road network from a single query point (observation point) [1],
or computing the snapshot k-NN objects over a road network to minimize an aggre-
gate distance function with respect to the multiple query points [2]. In this paper, we
study a new problem that is to monitor k-NN objects over a road network from mul-
tiple query points to minimize an aggregate distance function with respect to multiple
query points. We call it a continuous aggregate k-NN (CANN) query. In brief, it deals
with the network distance instead of Euclidean distance, and it monitors the top-k ob-
jects, where an object is ranked based on an aggregate function value of the distances
between the object and multiple query points. As an example, consider people in n
companies/organizations need to schedule meetings in downtown frequently. The room
availabilities in hotels and restaurants is monitored, and the best place is selected to
reduce the total travel time for people to meet.

The main difficulties for processing CANN query are as follows. First, when there
are a large number of objects in the road network or there are a large number of CANN

B. Ludäscher and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, pp. 168–186, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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queries, the cost of computing network distances becomes the bottleneck. Second, an
object is ranked in the road network based on an aggregate function value in terms
of the network distances to a set of query points. Unlike computing a CANN query
for a single query point in the road network where the order of visiting edges can be
determined using an expansion tree from the query point, computing the CANN query
from multiple query points makes it difficult to find an order of visiting edges.

The main contributions of this paper are summarized below. (1) We study a new
problem of processing the continuous aggregate nearest neighbor queries (CANN) over
large road network. To the best of our knowledge, this is the first attempt to study
this problem. (2) We propose new approaches that do not need to expand tree to com-
pute CANN queries. Our approach can reduce the cost of computing network distances
significantly. (3) We conducted extensive performance studies, and confirmed the effi-
ciency of our new approaches.

The rest of the paper is organized as follows. Section 2 gives the problem statement.
Section 3 introduces two existing solutions. Section 4.2 discusses our new approaches
followed by discussions on implementations in Section 5. Section 6 shows our experi-
mental results. The related work is given in Section 7. Finally, Section 8 concludes this
paper.

2 Problem Definition

Road Network is an undirected weighted connected graph, G(V, E), where V is a set
of nodes (road intersections), and E is a set of edges (roads). An edge, e ∈ E, connects
two nodes ni and nj . A positive number, len(e), denotes the length of the edge e. (Data
or Query) points lie on edges of road network G. We use pose(p) to denote the position
of a point p on e = (ni, nj) by the distance from point p to node ni on edge e, provided
i < j.

Network Distance: For two nodes ni, nj ∈ V , the network distance d(ni, nj) is the
length of the shortest path between ni and nj in the road network. The network distance
between a point, p that lies on the edge e = (ni, nj), and a node, nk, is computed as
d(p, nk) = min{pose(p) + d(ni, nk), (len(e) − pose(p)) + d(nj , nk)}. For any two
data points p and p′, if p and p′ are on different edges, their network distance is com-
puted as d(p, p′) = min{pose(p) + d(p′, ni), (len(e) − pose(p)) + d(p′, nj)}. Other-
wise, d(p, p′) is min {|pose(p)− pose(p′)|, pose(p)+ d(p′, ni), (len(e)− pose(p))+
d(p′, nj)}.

Figure 1 shows a simple road network. There are 6 nodes and 6 edges. The number in
the brackets under each edge ei denotes its length (len(ei)). For instance, e4 is the edge
that connects nodes n3 and n4, and the length of e4 is len(e4) = 80. In Figure 1, a data
point is indicated by a cross. The position of a data point is marked in the brackets above
it. For instance, p3 lies on edge e3, and its position is pose3(p3) = 70. The network
distance between two nodes, n1 and n6, is d(n1, n6) = 30 + 80 + 30 = 140, along
the shortest path e1 → e4 → e6, the network distance between data point p3 and node
n4 is d(p3, n4) = min{pose3(p3) + d(n2, n4), (len(e3)− pose3(p3)) + d(n6, n4)} =
min{70 + 110, 50 + 30} = 80, and the network distance between two data points, p3



170 L. Qin et al.

p (20)
4

3e (30)1

p (15)5

p (10)1

n p (20) q (40) n

e (80)

p (35) q (50)

e (120)

p (70)
n

q (15)
n

e (30)

1

2

6
3

e (30)6

e (30)

n5

5

4 2 3

3

1

n2

2

4

6

Fig. 1. Road Network

and p2, that are on two different edges e3 and e4, is d(p3, p2) = min{pose3(p3) +
d(n2, p2), (len(e3) − pose3(p3)) + d(n6, p2)} = min{70 + 50, 50 + 90} = 120.

Problem Statement (CANN Query): Given a road network G(V, E) and the set of
data points (moving objects) P = {p1, p2, · · · } over G(V, E). A continuous aggre-
gate nearest neighbor query is denoted as CANN(Q, k, h), where Q = {q1, q2, · · · }
is a set of fixed query points over G(V, E), k is a positive number (> 0), and h is
an aggregate function (sum, min, max). Here, for a data point, pi ∈ P , h(pi) =
h{d(pi, q1), d(pi, q2), · · · , d(pi, q|Q|)}, regarding the query points Q. The CANN (Q,
k, h) query is to monitor the top-k data points in P that has the smallest h function
values while all data points are moving.

Consider a CANN(Q, k, sum) where Q = {q1, q2, q3}, k = 3 against G(V, E) (Fig-
ure 1). Here, sum(p1) = sum{d(p1, q1), d(p1, q2), d(p1, q3)} = 35 + 60 + 60 = 155,
sum(p2) = 155, sum(p3) = 255, sum(p4) = 200, sum(p5) = 280, and sum(p6) =
255. The top-3 result is {p1, p2, p4}.

3 Existing Solutions

While many recent researches have focused on continuous monitoring of nearest neigh-
bors over dynamic objects, we first propose the solution for CANN query in road
networks. Mouratidis et al.’s work in [1] is the one closest to ours. They gave two
algorithms, IMA and GMA, to process continuous nearest neighbor queries over a
road network, when there is a single query point, i.e., CANN(Q, k, h) where |Q| = 1
(a special case of CANN).

The incremental monitoring algorithm (IMA) retrieves the initial top-k data points
using the shortest path expansion tree of the query point for a single CANN query.
The group monitoring algorithm (GMA) groups multiple CANN queries that lie on the
same edge, as a group, to process them together, based on IMA. IMA keeps expanding
the tree and updating the top-k result until the next edge to be expanded has minimal
distance that is no less than the kth distance in the current result. When data points
move, the result for the query is maintained by incrementally expanding or shrinking
the expansion tree.

Figure 2 shows an example to explain the expansion tree for CANN({q3}, k, sum),
where k = 3. Assume the current top-3 result is {p1, p2, p5}, and the edges (called
partial edges) that may partially affect the new top-3 results when data points move are
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P = {e1, e2, e5, e6}. Suppose the data point p1 moves out of the partial edges. IMA
needs to expand the expansion tree from nodes n3 and n4 and retrieve all the data points
on the edges in P to obtain the new top-k result {p2, p4, p5}. In summary, when data
points move, IMA does not need to recompute the result from scratch, for a CANN
query, but it needs to retrieve the data points, that lie on the partial edges, which is
time consuming. In this paper, we propose a new approach that does not need to use an
expansion tree for CANN, and allows multiple query points in one CANN query.

4 A New Non-tree-expanding Approach

The high online processing cost for CANN queries dues to the frequent update of the
expansion tree. In this paper, we propose a new approach that does not need an expan-
sion tree. In brief, for a new CANN(Q, k, h) query registered, we construct a query
graph, GQ(VQ, EQ), based on CANN and the road network G. The query graph,
GQ(VQ, EQ), is static when processing CANN(Q, k, h) (no update is needed). It fa-
cilitates computing the value of aggregate function h(p), for a data point p ∈ P . With
the assistance of query graph GQ, we can efficiently monitor the top-k results, when
the data points move.

4.1 Query Graph Construction

The query graph GQ(VQ, EQ) facilitates computing the value of aggregate function
h(p) in CANN(Q, k, h), for a data point, p ∈ P . We require that, given the position of
p on edge e, pose(p), the value of aggregate function h(p) can be computed efficiently.
We first discuss the relationship between the distance function d(q, p) / the aggregate
function h(p) and the position of p.

Distance function w.r.t. pose(p): Consider a data point p on an edge e = (ni, nj) in
GQ, and a query point q ∈ Q. The distance d(p, q) between q and p can be specified as
a function of pose(p), denoted as fe,q: fe,q(pose(p)) = d(p, q). We note that function
fe,q(·) is a continuous piecewise-linear function in the domain [0, len(e)]. We discuss
the main idea behind fe,q(pose(p)) followed by the discussion on how to compute it.

An example is illustrated in Figure 3(a) over the road network G (Figure 1). Take
the edge e4 = (n3, n4) in G as an example. Its three functions, fe4,q1(pose4(p)),
fe4,q2(pose4(p)), and fe4,q3(pose4(p)), for three different query points, q1, q2, and q3,
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are shown in Figure 3(a). Note: on x-axis, [0, len(e4)], is pose4(p), the distance from
n3. The curve of fe4,q1(pose4 (p)) suggests that the shortest distance between q1 and
any data points p on e4 should first go to the end node n3 of e4, and then go to p. The
curve of fe4,q2(pose4(p)) suggests that the shortest distance between q2 and any data
points p on e4 may come from two different ends of e4 (from either n3 or n4). When the
data point p is on the left side of [0, len(e4)] before the peak value of fe4,q2(pose4(p)),
the shortest distance between q2 and p should come from the end of n3; when the data
point p is on the right side of [0, len(e4)] after the peak value of fe4,q2(pose4(p)), the
shortest distance between q2 and p should come from the end of n4.

Function fe,q(pose(p)) can be computed as follows. Assume e = (ni, nj), where
i < j. With Dijkstra’s single-source shortest-path algorithm, we obtain the shortest
distance from q to every node in G. There are two cases.

i) q is not on edge e: If |d(q, ni) − d(q, nj)| = len(e), fe,q(pose(p)) is a 1-piece
linear function of pose(p) ∈ [0, len(e)]. In this case, its 1-piece segment is (0, fe,q

(0))-(len(e), fe,q(len(e))), where fe,q(0) = d(q, ni) and fe,q(len(e)) = d(q, nj).
Otherwise, fe,q(pose(p)) is a 2-piece linear function, and its two linear segments are
(0, d(q, ni))-(x, y), and (x, y)-(len(e), d(q, nj)), where x and y are computed as
follows. {

x = d(q,nj)−d(q,ni)+len(e)
2

y = d(q,nj)+d(q,ni)+len(e)
2

(1)

ii) q is on edge e: Query point q split e into two parts, from ni to q and from q to
nj respectively. Consider q as a node, function fe,q(pose(p)) on each part shares high
similarity to case i), thus, we omit further explanation. The curve of fe4,q3(pose4(p))
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shows such an example. But notice that function fe,q(pose(p)) of pose(p) ∈ [0, len(e)]
may be a 3-piece linear function here. The 3-piece case happens only if q is on e.

From above discussions, we have the following lemma.

Lemma 1. fe,q(·) is a continuous piecewise-linear function with at most 3 linear pieces
on domain [0, len(e)].

Aggregate function w.r.t. pose(p): Since distance function fe,q(pose(p)) is a continu-
ous piecewise-linear function of pose(p), given CANN(Q, k, h) and Q = {q1, q2, · · · },
the aggregate function value for any data point p on edge e, regarding all query points,
can also be specified as a continuous piecewise-linear function of pose(p), denoted by

ge(pose(p)) = h{fe,q1 (pose(p)), ..., fe,q|Q| (pose(p))} (2)

for pose(p) ∈ [0, len(e)]. Since fe,q(·) has at most 3 linear pieces, ge(·) has at most
O(|Q|) linear pieces.

Lemma 2. ge(·) is a continuous piecewise-linear function with at most O(|Q|) linear
pieces on domain [0, len(e)].

Reconsider the example in Figure 3(a) for the three query points, q1, q2, and q3. The
aggregate function on edge e4 for h = sum, min, and max, are shown in Figure 3(b),
Figure 3(c), and Figure 3(d), respectively.

Constructing the query graph GQ(VQ, EQ): Given a CANN(Q, k, h) query over a
road network G(V, E), we define a query graph, GQ(VQ, EQ), to efficiently compute
the value of h(p) given pose(p), the position of a data point p on edge e. The idea to
construct GQ is to segment edges in G, such that aggregate function ge(·) w.r.t. pose(p)
is a 1-piece linear function within each segment.

Formally, suppose on an edge, e = (ni, nj) in E, ge(·) is a z-piece linear function,
then e needs to be segmented into a sequence of edges, (nk0 , nk1), (nk1 , nk2), · · · ,
(nkz−1 , nkz), where ni = nk0 and nkz = nj , such that ge(·) is a 1-piece linear function
on each segment [pose(nkl−1), pose(nkl

)] (1 ≤ l ≤ z). All such nodes nkl
, for 0 ≤ l ≤

z, will be included in VQ, and all the segmented edges (nkl−1 , nkl
), for 1 ≤ l ≤ z, will

be included in EQ. If ge(·) is a 1-piece linear function, then there is no segmentation
needed over an edge e = (ni, nj) (ni, nj are included in VQ, and e is included in EQ).

We explain how to segment an edge using an example (Figure 3(b)), for a CANN(Q,
k, h) where Q = {q1, q2, q3}, and h = sum. Consider edge e4 = (n3, n4), as shown in
Figure 3(b), its aggregate edge function is a continuous 3-piece-segment linear function.
Therefore, we add two new nodes into query graph GQ, denoted, nk1 and nk2 at position
40 and 50 on the x-axis as shown in Figure 3(b). Note: 40 and 50 are the distance
from n3. e4 = (n3, n4) will be segmented into three edges, (n3, nk1), (nk1 , nk2), and
(nk2 , n4), in GQ. Each of the three edges is associated with a 1-piece linear aggregate
function.

It is important to note that in GQ(VQ, EQ), every edge is associated with a 1-piece
linear function (a piece of ge(·)). We can compute the value of the aggregate function for
any data point in any edge with the help of GQ efficiently. Consider an edge (nkl−1 , nkl

)
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in GQ, which is an edge segment of an edge e in G. Let xl−1 = pose(nkl−1) and
xl = pose(nkl

). Let yl−1 = ge(xl−1) and yl = ge(xl) be the aggregate function
values at nodes nkl−1 and nkl

. When the position of a data point p, pose(p), is within
[xl−1, xl], since ge(·) is a 1-piece linear function on [xl−1, xl], the aggregate function
value at point p can be computed as:

ge(pose(p)) = yl−1 +
(yl − yl−1) · (pose(p) − xl−1)

(xl − xl−1)
. (3)

Figure 4 shows a query graph, GQ(VQ, EQ) over the road network G (Figure 1),
for a CANN({q1, q2, q3}, k, sum) query. There are totally 12 edges in GQ, and each of
them is marked as si for 1 ≤ i ≤ 12. In addition to the original 6 nodes in G(V, E),
nj , for 1 ≤ j ≤ 6, there are 6 nodes q1 – q3 (for the three query points), and b1 –
b3, which segment edges in E into linear pieces. The number below each node denotes
the ge value. The relationship between the the aggregate edge functions and the two
horizontal edges are illustrated in Figure 4.

Lemma 3. The time complexity for the construction of query graph GQ(VQ, EQ) is
O((n · log n + m · log |Q|) · |Q|), where n = |V | and m = |E|, given graph G(V, E).

Proof. For each query point q in Q, the complexity to find the distances from source q
to every other node in G is O(n · log n+m). In sum, we need O((n · log(n)+m) · |Q|)
time. Moreover, since ge(·) has at most O(|Q|) linear pieces (Lemma 2), |VQ| and |EQ|
are both bounded by O(|Q| ·m). To segment an edge e ∈ E into a sequence of edges in
EQ, we need O(|Q| log |Q|) time (sort all the linear pieces and scan them). Therefore,
the total time complexity is O((n · log n + m · log |Q|) · |Q|). �

4.2 Basic Top-k Monitoring Algorithm

In this subsection, we introduce our basic algorithm to monitor the top-k result for a set
of CANN queries, {C1, C2, · · · }, where Ci = CANN(Qi, ki, hi), over a road network
G with data point set P .

For each query, Ci, the query graph is denoted as GQi(VQi , EQi). Because of the
property of query graphs we discussed in the previous subsection (recall Lemma 2), in
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Algorithm 1. IRC(Ci)
1: Ci.top ← ∅; Ci.k ← +∞;
2: e ← head(Ci.E);
3: while e �= ∅ and low(e) ≤ Ci.k do
4: update Ci.top and Ci.k with data points on e;
5: e ← next(Ci.E);

the following part, we can assume the aggregate function value at a given data point p
w.r.t. query Ci can be computed in constant time (according to Equation (3)).

All edges in EQi are sorted in the ascending order of the aggregate function lower
bounds within the edges. The sorted edge list is denoted by Ci.E. A pointer is associated
with the ordered list Ci.E, and four operations are defined: i) head(Ci.E) – set the
pointer to the first edge in Ci.E and return this edge; ii) current(Ci.E) – return the
edge pointed by the pointer currently; iii) next(Ci.E) – move the pointer to the next
edge and return this edge (or return emptyset if the pointer points to the end of Ci.E);
iv) prev(Ci.E) – move the pointer to the previous edge and return this edge.

Initial Top-k Result Computation: The algorithm IRC (Algorithm 1) computes the
top-ki data points for a query Ci. In line 1, Ci.top, used to keep the set of the top-ki data
points for Ci, is initialized as empty; Ci.k, used to record the ki-th smallest aggregate
value of the data points kept in Ci.top, is initialized as +∞. In line 2, head(Ci.E)
returns the first edge in Ci.E. In the while statement (line 3-6), it computes the top-ki

data points for Ci by scanning the ordered list Ci.E. In line 3, e �= ∅ means Ci.E
has not been scanned to the end yet, and low(e) denotes the aggregate function’s lower
bound within the edge e.

The case low(e) ≤ Ci.k, called edge e is influenced, indicates that there may be
some data points on e, which can be included in Ci.top. In this case, the top-k list
(Ci.top) and the ki-th smallest aggregate value in Ci.top are updated using all the data
points on the edge e (line 4).

Figure 5 shows an example over the road network G (Figure 1), for the query Ci =
CANN({q1, q2, q3}, 3, sum). The label for each segment, sl, for 1 ≤ l ≤ 12 is illus-
trated in Figure 4. The x-axis shows the aggregate function values and the y-axis shows
the list of edges Ci.E. All edges are listed in ascending order of the aggregate function
lower bound on them, and each data point is marked as a cross in edges. Suppose the
current set of data points is P = {p1, p2, · · · , p7}(p7 that lies on s9 is not drawn on
Figure 1). After visiting edges from s2 to s4, the data points, p1, p2 and p4, are added
to Ci.top. In the next iteration, the edge s9 is visited. Note: s9 is on edge e4 = (n3, n4)
over the road network G from the position 40 to 50. On position 40 and 50, its aggregate
function values are 175 and 205, respectively. This information is recorded in Ci.E.
Here, p7 is over s9, and therefore on e4 in the road network G. Note: pose4(p7) = 45.
IRC computes its value, for p7, 175+ (205−175)×(45−40)

50−40 = 190, which is smaller than
the current Ci.k = 200 for the data point p4. Therefore, p4 is removed from Ci.top and
p7 is added. The value Ci.k is updated to be 190. Then, when visiting the next edge s10,
the smallest value is 205 which is larger than Ci.k = 190, and it stops. The top-3 for
Ci is then Ci.top = {p1, p2, p7}.
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Algorithm 2. MTR

1: let Pdel be the set of removed data points;
2: let Pins be the set of added data points;
3: for every data point p in Pdel do
4: suppose p lies on edge e;
5: delete p from e (using an object index);
6: for every Ci in that is influenced by e do
7: if p in Ci.top then
8: delete p from Ci.top;
9: Ci.k ← +∞;

10: for every data point p in Pins do
11: suppose p lies on edge e;
12: insert p into e (using object index);
13: for every Ci that is influenced by e do
14: update Ci.top and Ci.k using p;
15: for every Ci do
16: if Ci.k is greater than its previous value then
17: IRC(Ci);
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Monitor Top-k Result: Algorithm 2 shows top-k monitoring for a list of CANN queries.
Here, the movement of a data point is considered as: first to delete it from P ; then to
insert a new data point into P . Let the set of deleted data points and the set of newly
inserted data points be Pdel and Pins, respectively. (line 1-2). In Algorithm 2, in the
first for statement (line 3-9), it updates Ci.top if the deleted data points affects the top-
ki results. In the second for statement (line 10-14), it updates Ci.top if the inserted data
points affects the top-ki results. In the first two for-statement, there is no need to scan
Ci.E. In the third for-statement (line 15-17), if Ci.k is changed and is greater than its
previous Ci.k value, it calls IRC(Ci) to recompute the top-ki results.

Reconsider the example (Figure 5) over the road network G (Figure 1), for the query
Ci = CANN({q1, q2, q3}, 3, sum). First, suppose p9 that lies on s5 is inserted. The
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Algorithm 3. ForwardUpdating(Ci)
1: e ← current(Ci.E);
2: while e �= ∅ and low(e) ≤ Ci.k do
3: update Ci.top, Ci.k, Ci.can with data points on e;
4: e ← next(Ci.E);

insertion of p9 does not change the current top-3 results for Ci, as shown in Figure 5.
Second, suppose p7 is deleted which is in Ci.top. It leads to invoke IRC(Ci) to recom-
pute the top-k result. The new result is Ci.top = {p1, p2, p4}. Then, suppose p8 (lies
on s4) is inserted, which lies on the influenced edges (solid lines). It does not request
recomputation. The new result is Ci.top = {p1, p2, p8}.

4.3 Bidirectional Top-k Monitoring Algorithm

There are two drawbacks in the MTR algorithm. First, it needs to recompute top-k,
for Ci, when Ci.k increases (line 16-17) in MTR, which is time consuming. Sec-
ond, it may scan some edges in Ci.E which is unnecessary. In this section, we intro-
duce a new incremental monitoring algorithm, to avoid the two drawbacks. The new
algorithm keeps an additional structure called candidate list, denoted as Ci.can, for
query Ci, which always stores the points lies on the influenced edges, but not in Ci.top.
These points may be included in Ci.top, when some points in Ci.top are deleted. As
an example, consider Figure 6, for P = {p1, p2, · · · , p10} (here p7 to p10 is differ-
ent from those in Figure 5) for a query Ci = CANN ({q1, q2, q3}, 4, sum). Suppose
Ci.top = {p1, p2, p9, p4} and Ci.can = {p7, p10}. Below, we give two procedures,
namely forward updating and backward updating, followed by the introduction to the
new monitoring algorithm.

Forward Updating: As shown in Algorithm 3, this procedure is similar to that of IRC
(Algorithm 1). The differences are as follows. First, it does not need the initialization
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Algorithm 4. BackwardUpdating(Ci)
1: e ← prev(Ci.E);
2: while low(e) > Ci.k do
3: delete data points on e from Ci.can;
4: e ← prev(Ci.E);
5: next(Ci.E);

Algorithm 5. BUA

1: let Pdel be the set of removed data points;
2: let Pins be the set of added data points;
3: for every point p in Pdel do
4: suppose p lies on edge e;
5: delete p from e (using an object index);
6: for every Ci where e is influenced do
7: if p in Ci.top or p in Ci.can then
8: update Ci.top, Ci.k, Ci.can by deleting p;
9: for every point p in Pins do

10: suppose p lies on edge e;
11: insert p into e (using the object index);
12: for every Ci where e is influenced do
13: update Ci.top, Ci.k, Ci.can by inserting p;
14: for every Ci do
15: if low(current(Ci.E)) ≤ Ci.k then
16: ForwardUpdating(Ci);
17: else
18: BackwardUpdating(Ci);

step. Second, the candidate list is updated in line 3. The forward updating procedure
repeat updating Ci.top, Ci.k, and Ci.can when not all the influenced edges are visited.

Backward Updating: This procedure, as shown in Algorithm 4, removes from Ci.can
the data points on every edge e in Ci.E, if e is not influenced any more.

The BUA Algorithm: Our new incremental bidirectional updating algorithm (BUA)
is shown in Algorithm 5. We explain it using the example in Figure 6. Suppose initially,
the set of data points is P = {p1, p2, · · · , p8}, for a query Ci = CANN ({q1, q2,
q3}, 3, sum). After ForwardUpdating(Ci) for initialization, we can get the initial
result Ci.top = {p1, p2, p4} and Ci.can = {p7}. Then, suppose Pins = {p10} and
Pdel = {p4}. When inserting p10, it lies on the influenced edge s4 but has an aggregate
function value that is less than Ci.k. So p10 is inserted into the candidate list of Ci,
Ci.can. When deleting p4, it is in the Ci.top. So it is removed from the Ci.top and p7

will be moved from Ci.can to the Ci.top. At this time, the lower bound of the current
edge low(s10) ≤ Ci.k (the aggregate function value of p7). So the forward updating is
invoked, s10 becomes influenced in Ci. The data point p8 that lies on s10 is also added
to Ci.can. The current result becomes Ci.top = {p1, p2, p7} and Ci.can = {p8, p10}.
Note that in case of the MTR algorithm, the result of Ci have to be recomputed because
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Ci.k increases. In the next time stamp, suppose Pins = {p9} and Pdel = φ. After p9

is used to update the result of Ci, it is added into Ci.top and p7 is moved from Ci.top
to Ci.can. At this time, we have the lower bound of current edge low(s5) > Ci.k (the
aggregate function value of p9). So the backward updating is invoked, and s10 is not
influenced any more. The data point p8 that lies on s10 is also removed from Ci.can.
The result becomes Ci.top = {p1, p2, p9} and Ci.can = {p7, p10}.

4.4 Analysis

Suppose there are n nodes and m edges in the network, for each query CANN(Q, k, h),
there are s segments in the query graph on average, and the average number of objects
on each segment is o, the buffer size for each query is b. The average number of seg-
ments that influence the result of a query is r, we have o · r ≥ k. We assume that the
objects are uniformly distributed on all edges and the portion of objects that changes at
each timestamp is λ(0 ≤ λ ≤ 1). For convenience, we ignore the cost for operations
on the object index, which is not the dominate cost.

Lemma 4. In the IRC algorithm, for each query, the time complexity to compute the
initial results is O(o · r · log k), the memory used is O(k + b) and the I/O cost is O( r

b ).

Proof. To compute the initial top-k result of a query, we need to retrieve all the objects
that lie on the influence segments(i.e., the first r segments in the segment list of the
query). The number of objects to be retrieved is O(o · r). Each object is used to update
the top-k results, which can be implemented as a heap of size k. Each update can be
done in O(log(k)) time, so the total time complexity is O(o·r · log(k)). For the memory
cost, we need O(b) to buffer the segment list, and O(k) to store the results, so the total
memory used is O(k + b). We visit the first r segments in the segment list sequentially,
so the I/O cost is O( r

b ). �

Lemma 5. In the MTR algorithm, with a probability of 0.5, the result of a query is
needed to be recomputed at each timestamp. For the query that does not need to be
recomputed, the time complexity for updating at each time stamp is O(λ · o · r · log k)
and no I/O operation is needed. The memory used for each query is the same as in
IRC.

Proof. The result of a query needs to be recomputed iff after the deletion and insertion
steps, the new top-k result expires, or Ci.k value for the query Ci increases. This case
happens when, for the two sets Pdel and Pins, Pdel contains more objects with cost
smaller than the former Ci.k. The probability of this situation is 0.5 for the uniformly
distributed objects. For each query that does not need re-computation, the time cost is
the updates of λ ·o ·r objects that lie on the influence segments, each update cost log(k)
time as the same in the IRC algorithm, so the total time complexity for updating at
each timestamp is O(λ · o · r · log k). The influence segments keeps the same after the
updating steps, so no I/O operation is needed on the segment list. The memory cost is
also the same as the IRC algorithm. �

Lemma 6. For the BUA algorithm, no re-computation is needed to update the result of
a query at each timestamp, the time complexity for each query is O(λ ·o · r · log (o · r)).
The memory used for each query is O(o·r+b). The I/O cost is O(λ·r

b ) in the worst case.
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Proof. For the BUA algorithm, it uses an extra candidate list for each query to record
the candidate objects that lie on the influence segments but not in the top-k result of a
query. For the λ · o · r changed objects that lie on the influence segments, the cost for
updating each object is O(log o · r) by using a heap to record all the objects that lie on
the influence segments(i.e., all the objects in the top-k result and candidate list). The
total time complexity is O(λ · o · r · log (o · r)). For the memory cost, in addition to the
O(b) buffer size, we need O(o · r) cost to record all the objects that lie on the influence
segments. The total memory cost is O(o · r + b). For the I/O cost, consider the worst
case, when λ · o · r objects move out of the influence segments and no object moves in,
or λ ·o · r objects move into the influence segments and no object moves out. In the first
case, we need to visit O(λ·o·r

o ) = O(λ · r) segments which cost O(λ·r
b ) I/O operations

for the forward updating. In the second case, we also need to visit O(λ · r) that cost
O(λ·r

b ) I/O operations for the backward updating. So the I/O cost is O(λ·r
b ) in the worst

case. �

For the I/O cost of the BUA algorithm, in the average case, the number of objects that
move into the influence segments is almost the same to the number of objects that move
out, so the average I/O cost is very small in practice.

5 Implementation Details

In this section, we introduce the details for implementation including the data struc-
tures used and the storage model.We introduce three types of data structures that are
constructed over the road network, data objects and queries respectively.

Edge Table. For every edge e in the road network, we store in the edge table two part
of information. The first part is about the network structure, i.e., the edge e.id, the two
nodes ni and nj it connects, the length of the edge len(e), and the lists of edges to
ni and nj , this part can be used to construct the query graph GQ of a CANN query.
The second part is the influence list of e maintaining a set of queries that e influence
along with the set of influence edges in GQ. Using this part of information, we can fast
retrieve all queries that is influenced by e.

Object Index. Each object point p in the network can be represented as (e.id, pos),
where e.id is the id of the edge it lies on, and pos is its position on e, i.e., pos = pose(p).
We use a index of a balanced tree to store all the object points in the network. It allows
to retrieve all the objects that lies in a certain interval on a given edge e, or retrieve
all the objects that over a certain edge s in a query graph of a CANN query. When the
size of objects are large, the index can be stored external and a B+ tree can be used for
storage.

Query Table. The query table stores the set of queries. For every query Ci in the query
table, tree parts of information are stored. The first part is the query descriptor, i.e.,
Ci.id, Q, k and h. The second part is the list of top-k objects Ci.top along with Ci.k and
the candidate list Ci.can. The third part is the sorted edge list in the query graph Ci.E,
which is a external data structure on which only sequential access and read operation is
allowed. Each edge in the list is represented as s = (e.id, x1, y1, x2, y2), where e is the
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edge on the original graph G, x1 and x2 are the start and end positions of s on e, y1 and
y2 are the aggregate values on x1 and x2 respectively. Based on the sequential property,
a buffer can be used for each query when processing.

The main internal and external data structures used for processing are illustrated in
Figure 7.

6 Experimental Studies

We conducted extensive experimental studies to test the performance of our algorithms.
All algorithms are implemented using C++. We use the road-map in the Maryland State

Table 1. Parameters

Parameter Default Range

Number of edges 25K 10, 15, 20, 25, 30 (K)
Number of nodes 20K 5, 10, 15, 20, 25 (K)
Number of queries 5K 1, 3, 5, 7, 10 (K)
Number of query points 20 1, 10, 20, 30, 40
Number of objects 100K 10, 50, 100, 150, 200 (K)
Query distribution Uniform Gaussian, Uniform
Object distribution Uniform Gaussian, Uniform
Top-k 50 1, 25, 50, 100, 200
Object agility 10% 5, 10, 15, 20, 25 (%)
Buffer size 2K 1, 2, 3, 4, 5 (K)
Function SUM MIN, MAX, SUM
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Table 2. Time to construct query graph

|E|(K)/T(ms) 10/114 15/214 20/319 25/408 30/505
|N |(K)/T(ms) 5/64 10/155 15/254 20/336 25/437
|Q|/T(ms) 1/26 10/178 20/343 30/506 40/675

in US extracted from US Census Bureau 2005 TIGER/Line.1. All the parameters in-
cluding default values and ranges are listed in Table 1. Here, number of query points
means the number of points in Q (i.e., |Q|) for each query, the query distribution is
distribution of all query points, and the object agility is the percentage of objects that
is changed per time stamp. The default graph is a subgraph of the above network with
20K nodes and 25K edges. When number of nodes varies, we use a subgraph of the
network with the provided node number. When number of edges varies, we fix the node
number to be 10K and generate a graph with the provided edge number. For each test
that is to monitor the k-NN result, we process for 100 time stamps by generating the
moving objects using the generator proposed in [3].We record the average performance
for every time stamp. For the IRC algorithm, we mean to recompute the top-k result
from scratch for every time stamp. Unless specified, we will use the default value for
testing. All tests are conducted on a 2.8GHz CPU/1G memory PC running XP.

Query Graph Construction: We first test the time to construct the query graph for each
query. We vary the number of edges, number of nodes and number of query points, and
record the time to construct the query graph in each test. The result is shown in Table 2,
the time to construct query graph is small (less than 0.7 second) for all tests. As each of
the three parameters increases, the response time will increase steadily.

IMA,GMA vs BUA: With |Q| fixed to be 1, we test the efficiency for IMA, GMA, and
BUA algorithms. For each algorithm, we combine the different distributions(i.e., Gaus-
sian and Uniform distribution) for queries and objects (e.g., U/G means the queries are
uniformly distributed and the objects are in Gaussian distribution) with all other param-
eters setting to be the default values. As illustrated in Figure 8(a), our BUA algorithm
always performs best and changes for distribution of both the queries and objects will
not influence the efficiency of BUA algorithm much.

Network: We vary the number of edges and number of nodes for the network with
an average of 4 objects on each edge and test the average processing time for IRC,
MTR and BUA algorithms in each time stamp. We report our result in Figure 8(b)
and Figure 8(c). For each test, the MTR algorithm is about 2-3 times faster than the IRC
algorithm, and the the BUA algorithm is 2-4 times faster than the MTR algorithm. When
the number of edges increases, the processing time for all three algorithms will increase,
because as the network becomes denser, the number of influence edges will increase.
When the number of nodes increases, the processing time for all three algorithms do
not change much, because both the density of network and density of objects will not
change as the network increases.

1 Topologically Integrated Geographic Encoding and Referencing system:
http://www.census.gov/geo/www/tiger/
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Objects: Figure 8(d) and Figure 8(e) shows the average processing time per time stamp
for IRC, MTR and BUA algorithms when the object agility or the number of objects
varies. When the object agility increases, the processing time for both MTR and BUA
will increase steadily while IRC is not influenced because it will always computes
each query from scratch at every time stamp. When the number of objects increases, the
density of objects becomes larger, which increases the processing time. But the number
of influenced edges will decrease, which decreases the processing time. We can see
from Figure 8(e) that when the object number is larger than 50K , the processing time
for all the three algorithms all increase slowly.

Queries: There are mainly 4 parameters for the query: the top-k value, number of
queries, number of query points in each query(i.e., |Q|), and the type of aggregate func-
tion for the query. In Figure 8(f) and Figure 8(g), when k increases or the number
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of queries increases, the processing time for IRC, MTR and BUA algorithms will
increase steadily. In Figure 8(h), when the number of query points in each query in-
creases, the processing time for all three algorithms will not influence much, because
at one hand, the number of edges in each query’s query graph in will increase which
raise the complexity of algorithm; at the other hand, the length of edges in each query’s
query graph becomes shorter, and the objects lies on the influence edges become less,
which lower the complexity. In Figure 8(i), we see that the MIN function consumes
more for all three algorithms. It is because for MAX and SUM function, the best ob-
jects retrieved is more centralized for each query, while in the MIN function, each query
point in a query can be considered as a center for the distribution of the top objects.

Total I/Os: We vary the buffer size used for every query C in the corresponding edge
list C.E, and study the number of I/Os for IRC, MTR and BUA algorithms for each
time stamp. As shown in Figure 8(j), as the buffer size increases, the number of I/Os will
decrease steadily. The MTR costs about 1

5 I/Os of IRC while BUA costs about 1
20 of

MTR, which is rather small, because the pointer for each query only moves forward of
backward incrementally.

Memory: We finally test the memory used for algorithms of IRC, MTR and BUA.
When the number of queries and top-k value vary, the result is shown in Figure 8(k)
and Figure 8(l). As the query number or k increases, the memory used will increase
steadily, for all three algorithms. The memory cost of IRC and MTR is the same as
analyzed in Section 4.4. The memory cost for BUA is about 1.1 to 2.4 times of IRC.

7 Related Work

In this section, we survey k-NN search over road networks in two categories, namely,
snapshot approaches and continuous monitoring approaches.

Snapshot approaches: Shahabi et al. in [4] applied an embedding technique to trans-
form a road network to a high dimensional space, and used the Minkowski metrics for
distance measurement in the embedded space. Jensen et al. in [5] proposed a founda-
tion data model and a system prototype for k-NN queries in road networks. Shekhar
et al. in [6] addressed the problem of finding the in-route nearest neighbor (IRNN).
Papadias et al. in [7] proposed an architecture that integrates network and Euclidean
information for query processing in spatial network databases. Tao et al. in [8] studied
the time-parameterized k-NN queries when query points and objects change in certain
speed and directions. Kolahdouzan et al. in [9] proposed to find the nearest points of
interest to all the points on a path over road networks. They also performed k-NN over
spatial networks in [10] based on the pre-computed first order Voronoi diagram. Yiu et
al. in [17] first studied the aggregate nearest neighbor query in road networks, which
explored the network around the query points until the aggregate nearest neighbors are
discovered. UNICONS [11] developed a search algorithm which answers NN queries
at any point of a given path. Huang et al. in [12] presented a versatile approach to k-NN
computation in spatial networks using the island which is a sub-network in a certain
area. Hu et al. in [13] proposed an approach that indexes the network topology based
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on a set of interconnected tree-based structures. Huang et al. in [14] focused on caching
the query results in main memory and subsequently reusing these for query process-
ing when there are multiple k-NN queries over a road network. Almeida et al. in [15]
proposed a storage schema with a set of index structures to support Dijkstra based algo-
rithms for k-NN queries in road networks. Deng et al. in [16] considered the problem
of efficient multi-source skyline query processing in road networks.

Continuous monitoring approaches: In recent years, more works focused on continu-
ous monitoring of NN queries over road networks. Ku et al. in [17] studied the adaptive
NN queries in travel time networks. It developed a local-based greedy nearest neighbor
algorithm and a global-based adaptive nearest neighbor algorithm that both utilize real-
time traffic information to maintain the search results. Mouratidis et al. in [1] focused
on monitoring nearest neighbors in highly dynamic scenarios.

8 Conclusion

In this paper, we studied a new problem (CANN query) that is to monitor k-NN ob-
jects over a road network from multiple query points to minimize an aggregate distance
function with respect to the multiple query points. In order to reduce the cost of network
distance computing, we proposed a new approach that computes a query graph offline
for a CANN query. With the help of the query graph, the cost of computing aggregate
function values for any possible data points on the road network is significantly reduced.
In addition, we proposed two algorithms to monitor CANN queries. We conducted ex-
tensive experimental studies over large road networks and confirmed the efficiency of
our algorithms.
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Abstract. We propose a definition for frequent approximate patterns in order
to model important subgraphs in a graph database with incomplete or inaccu-
rate information. By our definition, frequent approximate patterns possess three
main properties: possible absence of exact match, maximal representation, and
the Apriori Property. Since approximation increases the number of frequent pat-
terns, we present a novel randomized algorithm (called RAM) using feature re-
trieval. A large number of real and synthetic data sets are used to demonstrate the
effectiveness and efficiency of the frequent approximate graph pattern model and
the RAM algorithm.

1 Introduction

A large number of algorithms have been developed for mining exact graph patterns [7]
[8] [9] [11] [18] [3], [12], [17], [5], [16]. However, in many important applications,
the relationships modeled by edges may be inaccurate or incomplete. This is especially
true in bioinformatics and social network analysis. Many types of biological data are
known to be inaccurate, e.g., gene expression profiles, protein interaction networks,
metabolic pathways. Besides, when describing networks of human social interactions,
some relationship can be dual, e.g., two people can be both friends and enemies. Last
but not least, approximate graph mining can be applied in procedure dependency graphs
to discover neglected conditions, e.g., missing paths, conditions, and cases in the field
of software engineering [2].

One example of such data is protein interaction networks. A challenging technical
problem described in a recent review [1] is the prevalence of spurious interactions due
to self-activators, abundant protein contaminants and weak, nonspecific integrations.
Analysis based on the agreement of the interaction and expression data shows that less
than half of these interactions are biologically relevant. Therefore one might observe an
interaction among two proteins that are not functionally related in the cell at all. Due to
the fact that various experiments use different confidence thresholds, there also exist a
large number of false negative interactions.

Another important application of approximate graph mining lies in the study of
cross-market customer segmentations [14]. In a specific market, the similarity among
customers in market behavior can be modeled as a similarity graph. Each customer is
a vertex in the graph, and two customers are connected by an edge if their behaviors in
the market are similar. While we can identify customer types easily, the similarity level
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between customers in different markets is more difficult to evaluate. Thus, there may
exist both false positive and false negative edges.

Due to edge distortion, exact graph mining algorithms may not find important pat-
terns even when the support threshold is low. Therefore, in this paper, we first present
a formal definition of frequent approximate patterns, which can be applied in graph
databases when the edge relationships are less reliable. Then, we introduce our approx-
imate graph mining algorithm.

One contribution of the paper is the formal definition of frequent approximate pat-
terns. We propose two constraints on such a pattern: (1) the pattern should approx-
imately be embedded in at least a certain number of graphs in the database; (2) the
occurrence of each edge in the pattern should be higher than a minimum threshold.
The second constraint gives users the ability to keep unrelated edges from affecting the
frequency of patterns due to approximation.

Compared to exact graph pattern mining, approximate patterns tend to be larger, i.e.,
with more vertices and more edges. This adds two additional challenges for mining ap-
proximate graphs on top of the exact graph mining problems. First, with larger patterns,
the total number of patterns increases. This can greatly impact the efficiency of any
pattern mining algorithm. Secondly, canonical forms are commonly used for graph iso-
morphism tests. When the graph patterns grow large, it becomes extremely inefficient
to compute the canonical forms and storing all the canonical forms as strings may lead
the program to run out of memory.

With these two challenges in mind, we introduce a randomized algorithm, called
RAM, based on feature retrieval. RAM mines frequent graph patterns in a depth first
fashion. Instead of using canonical forms for isomorphism tests, we construct a vec-
tor of hash values for features. It greatly improves the efficiency and scalability of the
mining process. However, it may produce false negatives, missing some patterns. To
overcome this problem, we adopt a randomized algorithm. During each run, the inser-
tion of edges and addition of vertices are ordered randomly. As a result, if during a run
a pattern could be discovered with x probability, then by p runs, the probability to find
that given pattern would be 1− (1−x)p. For example, even if 20% of the patterns may
be missed during one run, then less than 1% of patterns would be missed after 3 runs.
(Looking ahead, the accuracy of one run is in fact higher than 80% for the real data
sets in our experiments.) Therefore, the RAM algorithm can achieve a high degree of
accuracy with relatively short execution time.

The remainder of the paper is organized as follows. Section 2 is the related work.
Section 3 defines the preliminary concepts. Some important properties of frequent ap-
proximate patterns are explained in Section 4. Section 5 presents a basic algorithm for
the problem based on depth first search. Then, in section 6 we provide an optimized
algorithm Monkey. Section 7 presents experiment results. In Section 8, some improve-
ments are discussed, and Section 9 concludes our study.

2 Related Work

In recent years, a large number of algorithms have been designed to find exact fre-
quent patterns. Inokuchi et al. proposed an Apriori-based algorithm [9], called AGM,
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to discover all frequent substructures. Kuramochi and Karypis further developed FSG
[11], using a more efficient graph representation structure and edge-growth instead of
vertex-growth. Yan et al. developed gSpan and designed DFS lexicographic order to
support the mining algorithm. Huan et al. proposed FFSM [7] with a graph canonical
form, called CAM, and a set of CAM tree operations. While AGM and FSG took advan-
tage of apriori-like level-wise approaches, gSpan and FFSM adopted depth first search,
which was more efficient for graph mining problems. Meanwhile, Huan et al. devel-
oped SPIN [8] and Nijssen et al. presented Gaston [13], both of which mined frequent
patterns by first mining frequent trees or more basic patterns.

One important application of the graph mining algorithms is to find frequent pat-
terns, motifs, and modules in biological networks. Koyuturk et al. [10] introduced an
efficient algorithm specially designed for biological data. However, many edges in the
dataset were unreliable, which indicated efficient approximate pattern mining algo-
rithms should be designed for biological datasets with edge distortions.

In [19], Yan et al. presented Grafil to perform approximate graph indexing with
edge relaxation. However, there are very few approximate graph mining algorithms
in the current state of graph-based data mining. Holder et al. proposed SUBDUE [6] to
discover approximate substructure pattern based on the minimum description length
principle and optional background knowledge. Since SUBDUE used a computationally-
constrained beam search, it cannot discover the complete set of frequent patterns. Fur-
thermore, SUBDUE is not designed to find patterns in datasets with edge distortions. In
[20], approximate pattern mining in the itemset setting has been proposed.

To the best of our knowledge, hashing has not been used in graph mining, but it
is used in frequent itemset mining. In [15], the authors proposed a hashing method to
find frequent 2-itemsets. Multiple 2-itemsets were hashed into a single entry. If any of
these 2-itemset occurred in a transaction, the count of the hashing entry incremented.
This can be used to efficiently discover frequent 2-itemsets. On the other hand, in [4],
randomized algorithm has been first used in pattern mining.

3 Preliminaries

In this section, some terminologies are introduced, and then the problem statement is
given.

Definition 1. A labeled graph G is a five element tuple G = {V, E, ΣV , ΣE , LG}
where V is a set of vertices and E ⊆ V × V is a set of edges. ΣV and ΣE are the sets
of vertex and edge labels respectively. The labeling function LG defines the mappings
V → ΣV and E → ΣE . If there is no edge between vertex x and y in G, we assume a
virtual edge exy between x and y and define LG(exy) = ∅. V (G) and E(G) represent
the vertex and edge set of G.

Definition 2. To model the frequent approximate patterns with edge distortion, we in-
troduce three parameters, support γ, variability β, and tolerance α. We will illustrate
the details of these parameters in the following definitions.
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1. Support γ confines the size of support set.
2. Variability β indicates the maximum number of missing edges from an embedding.
3. Tolerance α regulates the maximum number of missing edge from the support set.

Definition 3. We define a labeled graph p is β edge isomorphic to q, denoted by p ≈β q
iff

1. ∃ bijection f : V (p) ↔ V (q), Lp(x) = Lq(f(x)), x ∈ V (p), f(x) ∈ V (q)
2. At most β different pairs of vertices (x, y) in V (p), such that Lp(exy) �=

Lq(ef(x)f(y)). Moreover, if Lp(exy) �= Lq(ef(x)f(y)), Lp(exy) = ∅.

Fig. 1. β edge isomorphism (β ≥ 2)

Figure 1 shows an example of β edge isomorphism. In the example, graph p is at least 2
edge isomorphic to q; however, graph q is not any edge isomorphic to p. The definition
of β edge isomorphic is not symmetrical, i.e., p ≈β q cannot always lead to q ≈β p,
and p is not necessarily connected.

Graph G is β edge subgraph isomorphic to graph G′, denoted by G ⊆β G′, iff there
exists a subgraph G′′ of G′ such that G′′ ≈β G. G′′ is defined as an embedding of G
in G′. In figure 1, when q is a given pattern, then p can be considered as an embedding
of q.

Definition 4. Given a graph database D = {g1, g2, ..., gn}, the β edge different sup-
port set of subgraph g, denoted by
sup(D, g, β), is defined as the subset of D to which g is β edge subgraph isomorphic.

sup(D, g, β) = {gi|g ⊆β gi, gi ∈ D}

When β = 0, sup(D, g, 0) is the subset of D to which g is exactly subgraph isomorphic.
Parameter support γ is used to indicate the minimum frequency threshold. However,

if graph g contains some edge which rarely appears in the database, it is not beneficial
to include g in the results. Therefore, we introduce another parameter tolerance α. If
any edge of graph g appears less than γ −α times in sup(D, g, β), we will not define g
as frequent.

Definition 5. Let |Eg(e)| be the number of edges in graph g with the same edge and
vertex label, e.g., in figure 2, |Eg(e)| = 4.

Graph g is β edge γ frequent with tolerance α (i.e., frequent approximate pat-
tern) iff
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Fig. 2. Definition of |Eg(e)|

1. |sup(D, g, β)| ≥ γ.
2. For each edge e in g, |S| ≥ γ − α, where S is a subset of sup(D, g, β) and each

database graph gi in S satisfies the following condition: gi contains at least one
embedding s, s.t. s ≈β g, |Es(e)| = |Eg(e)|.

In figure 2, if graph g is a frequent approximate pattern, it indicates that there are at
least γ − α embeddings of g in different graphs. Each of these embedding contains all
the 4 marked edges. A further example will be presented in section 4.2.

Problem Statement: Given a graph database D and parameters support γ, variability
β and tolerance α, we are to find all the connected graph g which is β edge γ frequent
with tolerance α of edge missing in the support set.

4 Properties

In this section, we illustrate some important properties of approximate patterns.

4.1 Possible Absence of Exact Match

In the traditional graph mining models, a frequent pattern is exactly embedded in a
minimum number of database graphs. However, after adding approximation, it is pos-
sible for a pattern to be a frequent approximate pattern even though it is not exactly
embedded in the database. For example, assume that the parameters are α = 2, β = 1,
and γ = 3, the graph pattern g (as in figure 3) does not have any exact embedding in
figure 4. However, g is β edge subgraph isomorphic to all the graphs in the database.
Also, every type of edges occurs more than 1 (= 3−2) times. Therefore, g is a frequent
approximate pattern in the database.

In our model, having exact embeddings is not a necessity to be defined as frequent. In
many chemical and biological applications, important patterns may have several varia-
tions. As a result, traditional exact graph mining methods may miss these patterns when
all the corresponding mutations are below the threshold. However, approximate graph
mining may find the patterns, given the range of edge distortion.
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Fig. 3. Frequent Approximate Pattern without Exact Match

Fig. 4. Graph Database

4.2 Maximal Representation

There are two kinds of constraints. The first one is on the whole approximate frequent
pattern, the other is on each type of embedding edges.

The second constraint guaranteesthe maximal representation property of approxi-
mate patterns. Any subgraph of pattern g, except g itself, cannot represent all the
embeddings of g, i.e., for any non-trivial subgraph t of g, there exist at least γ − α
embeddings of g which are not β edge isomorphic to t.

For example, assume a pattern p occurs in γ graphs, without the second property, i.e.,
the tolerance parameter, we can add any β edges into p, the resulting is still a frequent
approximate pattern. Thus, we employ the tolerance parameter to prevent this.

Figure 5 further explains the property. Suppose the graph database and the parame-
ters are the same as those in figure 4. For any non-trivial subgraph t of g, there exists at
least one edge e (as marked) embedded in g but not in t. We also marked all the edges
of the same type as e by ellipses. Suppose g is a frequent approximate graph pattern;
then there are at least γ − α embeddings of g, which contain all the edges we have
marked. Therefore, any of these embeddings contains e. According to definition 2, these
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Fig. 5. Maximal Representation

embeddings are not β edge isomorphic to t. In this example, one embedding in graph
(a) is not 1-edge isomorphic to t, as shown in figure 5.

However, if we do not include the second constraint in the definition, the maximal
representation property can no longer hold. Many redundant patterns may be generated,
whose embeddings can be represented by one of its subgraphs.

4.3 Apriori Property

The Apriori property claims that if a pattern satisfies the minimum support threshold,
then any sub-pattern of it also satisfies the minimum support threshold. The property is
very useful in the field of data mining.

By our definition of frequent approximate patterns, we have the following theorem.

Theorem 1. For a frequent approximate graph g, any subgraph of g is also a frequent
approximate pattern.

Proof: For any subgraph s of g, there is a sequence of subgraphs of g: a0 = s, a1 =
s + e1, a2 = s + e1 + e2, ..., an = g. ai be a subgraph of ai+1 with one edge missing.
By definition, when k = n, an = g is a frequent approximate pattern. Suppose when
k = i, ai is a frequent approximate pattern; we therefore assume ai − ai−1 = e. We
want to prove that the approximate pattern ai−1 is frequent.

For every embedding t of ai, if e is embedded in t as it is in ai, we define t′ = t− e.
Otherwise, t′ = t. From our definition, t′ is also β edge isomorphic to ai−1. Thus,
sup(D, ai−1, β) ≥ sup(D, ai, β) ≥ γ. Also, for any edge e′ in ai−1, if |Et(e′)| =
|Eai(e′)|, we have |Et′(e′)| = |Eai−1(e′)|. Thus, every type of edge exists no less than
γ − α times in the graph database. Therefore, ai−1 is a frequent approximate pattern.
By induction, we have a0 = s is also a frequent approximate pattern.

Theorem 1 guarantees that if graphh is not a frequent approximate pattern, we need not
examine any supergraphs of h. This theorem is the foundation of our mining algorithm.

5 Basic Algorithm

In this subsection, we present a basic approximate graph mining algorithm based on
depth first search, which is very similar to former exact graph mining algorithms.
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Given parameters α, β, and γ, we first find frequent approximate edges by enumer-
ation, and remove non-frequent edges in the database. Starting from these approximate
frequent edges as a first set of patterns, we recursively grow edges in a depth first fash-
ion. If all possible candidate patterns grown from pattern g have been checked, we
backtrack to the pattern from which g is grown, and grow another edge to that pattern.

We first discuss the case when we grow an edge with a new vertex to an existing
pattern g. Let euv be the growing edge, in which u exists in g but v is the new vertex
to be introduced. Here we assume the label of vertex u is lu and the label of v is lv . If
the pattern of g + euv has not been reached before by the mining algorithm. We are to
decide whether g + euv could be a frequent approximate pattern. To achieve this, all the
embeddings of g are examined. We test,

1. whether there are no less than γ database graphs which contain at least one embed-
ding of g and a vertex v′ with label lv. These database graphs constitute the support
set. Moreover, if each embedding in a database graph has exactly β edge differ-
ence from pattern g, and none of them are connected to v′ with the same label as
the growing edge euv, this database graph cannot be added to the support database
graph set.

2. whether there are no less than γ − α database graphs which contain at least one
embedding of g and vertex v′. Besides, if none of the embeddings are connected to
v′ with the same label as the growing edge euv and exactly contain all the edges in
pattern g of the same type of euv, the database graph cannot be counted effectively.

If these two requirements are satisfied, the new pattern of g + euv is also a frequent
approximate pattern.

The procedure of adding a new edge to an existing pattern g without introducing
any new vertex is similar. The search is also done in a depth first fashion. We do not
need to identify the new vertex any more since the two endpoints of the new edge are
already known. After discovering all frequent approximate patterns in which edge s is
embedded, we remove s from the graph database to shrink the searching space.

In this basic algorithm, we adopt canonical adjacent matrix to determine whether
the ongoing candidate pattern has been reached or not. The basic algorithm is a nat-
ural extension of exact graph mining algorithms to approximate graph mining. How-
ever, the calculations of canonical forms of graphs, especially for larger graphs, is
extremely time-consuming. Additionally, frequent approximate graph models tend to
generate many more patterns. We need to deal with these two difficulties in approxi-
mate graph mining. In the next section, we introduce a randomized algorithm, which is
more efficient and flexible.

6 Algorithm RAM

A maximal frequent graph is a frequent graph all of whose supergraphs are infrequent. In
approximate graph mining, taking edge relaxation into account, the average size of max-
imal frequent approximate pattern grows. Consequently, the number of non-maximal
frequent approximate graphs is even larger. (This is due to the exponential growth of

subgraphs, e.g., there are approximately 2(n
2)/n subgraphs of a complete graph with n
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nodes.) In the basic algorithm, we calculate the canonical form for every pattern. Here
we present a Randomized Approximate Graph Mining algorithm (RAM) for better ef-
ficiency. RAM works in a depth first fashion just like the basic algorithm. Instead of
using canonical forms, we retrieve a set of features to identify possible patterns. The
set of features are carefully selected, and can be obtained from pattern graphs in poly-
nomial time. To achieve better space management, we hash those feature sets into hash
vectors. In the mining process, if a pattern with the same hash vector has been examined
before, we will stop the searching from the pattern. The algorithm can also be applied
to exactly mining large graphs. Next we will introduce the details of the algorithm.

6.1 Feature Retrieval

In the last section, we use canonical forms to distinguish graph patterns. However, the
calculation of canonical forms of arbitrary graph patterns can be very expensive. There-
fore, in this section, we use feature sets to identify patterns. The intuition is that more
often than not a feature set is strong enough to distinguish graph patterns as long as it
is well selected. Advantages of the substitution include: (1) calculating feature set is
asymptotically easier than canonical forms; and (2) the space consumption of feature
sets after hashing is very flexible.

The design of feature set is of crucial importance to the randomized algorithm. Al-
though the design may vary for the graphs in different databases, there are some goals in
common, which include: (1) to assure any two isomorphic graphs have the same feature
set, which suggests that any kind of automorphism form of the same pattern should re-
sult in the same feature values; (2) to minimize the number of patterns which may share
the same feature values with another pattern. When collisions are inevitable, patterns
sharing the same feature values should at least have great topological similarity; (3) to
minimize calculation - any feature selected can be calculated in polynomial time. In this
section, we provide one possible design of a set of feature set, which takes advantage
of a variety of topological information.

We map each vertex and edge label to a positive prime number. Suppose the total
weight of the minimum spanning tree of graph g is W (MST (g)); the distance between
two vertices v1, v2 is dis(v1, v2); the degree of vertex v is deg(v); the set of edges
incident with vertex v is e(g, v). Then, for a graph g, we can select the following set of
six features f1, ..., f6.

1. f1 relates to how big g is.
f1(g) = |V ||E|.

2. f2 relates to the type of edges.
f2(g) = Σexy∈E(g),Lg(exy) �=∅Lg(x)Lg(y)Lg(exy).

3. f3 relates to the minimum spanning tree of g.
f3(g) = W (MST (g)).

4. f4 relates to the connectivity of g.
f4(g) = Σv1,v2∈V (g),v1 �=v2dis(v1, v2).

5. f5 relates to the degree sequence of g and vertex labels.
f5(g) = Σv∈V (g)deg2(v)Lg(v).
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6. f6 relates to the degree sequence of g and edge labels.
f6(g) = Σv∈V (g)deg2(v)(Σe∈e(g,v)Lg(e)).

All the features can be obtained in polynomial time. In fact, since we adopt a depth
first search as framework, all the feature values can be calculated in linear time by
using the information of the predecessor. It is obvious that for a pair of graphs g1,
g2, if g1 ≈ g2, then fi(g1) = fi(g2). For the benefit of space efficiency, we hash
these features into a hash vector, i.e., Hi = fi mod Pi, while Pi is a prime number.
The selection of the prime numbers is based on the size of available space, i.e., Pi

is proportional to the number of possible value of fi and
∏

i Pi is about the size of
available space for the mining program.

6.2 A Randomized Algorithm for Approximate Graph Mining

In this subsection, we introduce the randomized algorithm RAM for approximate graph
mining. The main differences between RAM and the basic algorithm are (1) RAM
grows edges in a random order, and (2) RAM adopts hash vectors of feature sets instead
of using canonical forms.

We use basic algorithm to mine the frequent approximate patterns with less than L
edges first. Those small patterns tend to be missed by the randomized algorithm but can
be mined efficiently. Expanding from those relatively small patterns, we reach candidate
graph patterns by growing edges in a random order. Moreover, for any candidate graph
g, instead of calculating the canonical form, we use the hash vector of the selected
feature set of g. If a pattern with the same hash vector has already been found, graph g
is considered to be reached (even if it is not). Otherwise, if g is frequent, we continue
to grow edges from g.

After discovering all frequent approximate patterns in which edge s is embedded,
we remove s from the graph database to shrink the search space. Also, we reset all sets
of hash values. Because none of the patterns discovered afterwards contain s, it is safe
to reset used hash vectors to avoid collisions. Algorithm RAM is shown in algorithm 1.

As we did not adopt canonical forms for efficiency, the algorithm may lose some
patterns in a single run, i.e., if pattern A and B have exactly the same hash vector
value, we may lose B if A has been reached first. However, since we grow edges in a
random order, low miss rate can be achieved by multiple runs; i.e., in another run, B
is recognized as frequent if it appears earlier than A. Furthermore, missing most of the
non-maximal patterns is harmless to if their supergraph patterns can be discovered by
the algorithm, i.e., if B and A are subgraphs of pattern C, we may find C by growing
edges from A even if we failed to find B. Thus we recover B as a subgraph of C.
Further analysis is presented in the following subsection.

6.3 Algorithm Analysis

As shown in the previous subsection, the randomized algorithm can miss patterns. We
miss a pattern g when (1) a different graph with the same hash vector has been discov-
ered already, and (2) all the connected subgraphs of g with one edge absent are missing.
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When the feature set is well selected, we assume that their corresponding hash vec-
tors are uniformly distributed. Then, the first factor is determined by the number of
possible values of hash vectors, i.e.

∏6
i=1 Pi in this paper for the features and hash func-

tions we selected. Assume there are at most M approximate patterns with a given graph
database and parameters which contain a same edge, the average number of graphs
which share a same hash vector is M/

∏6
i=1 Pi. We define P = min{1,

∏6
i=1 Pi/M},

P quantifies the average probability of pattern being found without considering the
second factor.

A connected subgraph with one edge of g absent is either a connected spanning
subgraph, when e is not a bridge edge in g; or a non-trivial component of graph g − e
with |V (g) − 1| vertices, when e is a bridge edge in g. The second factor is largely
affected by the number of connected subgraphs with one edge absent, which is reversely
related to the number of bridge edges of the pattern graph. The number of connected
subgraphs with one edge absent varies a lot with the pattern graph, e.g., it is 2 for a
line graph of size n while it is m for a cycle graph of size m. To simplify the problem,
we assume that the number of connected subgraphs of a graph of size n with one edge
absent is n/2.

Algorithm 1. RAM
Input: Graph database D, parameter β, γ, α
Output: FAG (frequent approximate graph) set G(D)

1: Find one edge FAG set G1(D)
2: Find small FAG set (below L edges) Gs(D)
3: G(D) ← Gs(D)
4: for each graph s ∈ Gs(D) do
5: G(D) ← G(D) + RandomGrow(s,G1(D), D)
6: Gs(D) ← Gs(D) − s
7: if ∃ edge e ∈ s, ∀s′ ∈ Gs(D), e ∈ s′ then
8: G1(D) ← G1(D) − e
9: Delete saved hash vectors

10: end if
11: end for

Subprocedure name: RandomGrow
Input: FAG a, edge set S, Graph database D
Output: frequent supergraphs of a

1: S′ ← S
2: while |S′| > 0 do
3: Randomly select edge s from S′

4: for each candidate pattern p ∈ a + s do
5: if p is frequent and H(p) has not been saved then
6: output p and save H(p)
7: RandomGrow(p, S, D)
8: end if
9: end for

10: S′ ← S′ − s
11: end while
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Assume the average probability of a pattern graph of size n being found is Pn; com-
bining above two factors, Pn = P −P (1−Pn−1)(n/2). Since we start the randomized
algorithm only from larger patterns, the second part of the formula is negligible. Thus,
we have Pn ≈ P .

Supposing we would find approximately P of the maximal patterns in a single run,
we would find approximately 1 − (1 − P )q portion of the maximal patterns if we run
RAM q times.

The hash vector of any pattern occupies only one bit in the multidimensional hash
table. Therefore, P can be quite large. If the set of features is well designed, we can
find most of the patterns at a much faster speed, as we avoid the tedious calculation of
canonical forms. Moreover, if the amount of main memory is limited, we can adopt a
hash function with small hash table, at the cost of losing more patterns in a single run.
However, we can improve the accuracy by employing more runs.

7 Experiments Results

In this section, we report on our experiments, which validate the efficiency and effec-
tiveness of the approximate graph mining algorithms. Due to Property 1, some patterns
may not have any exact embedding. As a result, existing exact subgraph mining methods
cannot be directly applied because they aim to find exact patterns. The performance of
algorithm RAM is compared with that of the basic algorithm which can be considered a
modification of existing depth first graph mining methods, e.g., FFSM [7], gSpan [18],
etc. We do not compare RAM with any breadth first search algorithm because breadth
first search is too space-consuming for approximate graph mining problems.

We use two kinds of datasets in our experiments: one real dataset and several syn-
thetic datasets. The real dataset consists of 394 graphs. Each graph corresponds to a
metabolic network of glycan. The network is generated from KEGG [22] using the
second-level categories defined in [23]. In each graph, vertices represent enzymes, la-
beled with protein family ID. If there is an edge between enzymes (vertices) A and B, it
indicates that A and B interact with each other. The synthetic data was generated using
a method similar to that in [11]. The generator allows the user to specify the number of
graphs, their average size, the number of seed graphs, the average size of seed graphs,
the number of distinct labels, and the approximate level (the random probability that we
change the edge label) of each edge.

In algorithm RAM, we adopt the set of hash functions for the real dataset. We set
P1 = 53, P2 = 53, P3 = 43, P4 = 43, P5 = 13, and P6 = 13. All our experiments are
performed on a 2.8GHZ, 2GB memory, Intel PC. Both algorithm RAM and the basic
algorithm are compiled with VS2005.

7.1 Metabolic Pathways Dataset

We employ a categorized metabolic pathway dataset for the experiments. In the path-
ways graph databases, there are 394 graphs in total. The randomized algorithm starts
when the size of the pattern graph is bigger than the size threshold 5. In each experi-
ment, we only run RAM once.



RAM: Randomized Approximate Graph Mining 199

Table 1. Results of Pathways Dataset (1)

(γ, β, α) Exe.Time of Algorithm RAM Basic Algorithm
(25,1,2) 9 s 25 s
(25,1,4) 12 s 33 s
(35,1,2) 8 s 17 s
(35,1,4) 10 s 26 s

(γ, β, α) No. of Max. Patterns of RAM Basic Algorithm
(25,1,2) 123 123
(25,1,4) 131 131
(35,1,2) 107 107
(35,1,4) 112 112

Table 2. Results of Pathways Dataset (2)

(γ, β, α) Exe.Time of Algorithm RAM Basic Algorithm
(25,1,2) 9 s 25 s
(25,2,2) 54 s 126 s
(35,1,2) 8 s 17 s
(35,2,2) 45 s 104 s

(γ, β, α) No. of Max. Patterns of RAM Basic Algorithm
(25,1,2) 123 123
(25,2,2) 461 467
(35,1,2) 107 107
(35,2,2) 431 431

First we show the runtime of both algorithms and the number of maximal approxi-
mate patterns. We set parameters (γ, β, α) to range from (25, 1, 2) to (35, 2, 4). As there
are three different parameters, we show the results of both algorithms in the following
tables. In table 1, in each subgroup, we keep β and γ unchanged and vary α from 2 to
4. In table 2, we vary β from 1 to 2. Lastly, in table 3, we vary γ from 25 to 35.

We can observe from the tables that overall, algorithm RAM is about 60% more ef-
ficient than the basic algorithm. On average, RAM can find no less than 99% of the
total maximal patterns at a single run. When parameter γ decreases, the optimization
of algorithm RAM tends to be more effective, due to the increase of frequent approx-
imate patterns; the basic algorithm must calculate the canonical forms of every graph.
The number of maximal frequent patterns grows quickly with parameter β, and it is
consistent with the runtime of the algorithms.

When α = 2, β = 1, and γ = 25, RAM found 123 maximal patterns, and the
largest approximate pattern contained 14 edges and 14 vertices. The exact graph mining
method only found 24 maximal patterns, and the maximal edge and vertex count of the
exact patterns were 10 and 9, respectively. This indicates that approximate graph mining
methods can find more and larger frequent patterns.

Last, we tested if the approximate patterns are useful in real applications. We divided
the graph database into two parts. There were 300 database graphs in the first part and
94 in the second. We generated the exact and approximate patterns from the first set of
patterns. Graphs in the second part were mixed with 100 arbitrary graphs as a test set.
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Table 3. Results of Pathways Dataset (3)

(γ, β, α) Exe.Time of Algorithm RAM Basic Algorithm
(25,2,2) 54 s 126 s
(35,2,2) 45 s 104 s
(25,2,4) 63 s 149 s
(35,2,4) 50 s 125 s

(γ, β, α) No. of Max. Patterns of RAM Basic Algorithm
(25,2,2) 461 467
(35,2,2) 431 431
(25,2,4) 497 505
(35,2,4) 448 450

The exact and approximate patterns from the first part were used to predict whether a
graph in the mixed set belongs to the original family. We found that approximate patterns
yield about 15% higher accuracy than exact patterns on average, which indicates that
approximate patterns better capture characteristics of the original data set.

7.2 Synthetic Dataset

In this section, we analyze the performance of the RAM algorithm on synthetic datasets.
The synthetic graph dataset is generated as follows. First, a set of seed fragments is gen-
erated randomly, whose size is determined by a Poisson distribution with mean I. The
size of each graph is a Poisson random variable with mean T. Seed fragments are then
randomly selected and inserted into a graph one by one until the graph reaches its as-
signed size. We add an approximate level parameter P , which is the random probability
that we change the edge label. More details about the synthetic data generator are avail-
able in [11]. A typical dataset may have the following setting: it has 500 graphs and
uses 300 seed fragments with 30 distinct labels. On average, each graph has 40 edges
and each seed fragment has 20 edges, the probability of change for any edge label is
0.05. This dataset is denoted as D500I20T40S300L30A0.05.

We first compared the performance of both algorithms with respect to the user in-
put parameters β, γ, and α on the synthetic dataset D500I20T40S300L30A0.05. In test
1, we set α to 4 and β to 2, and vary γ from 50 to 200. In test 2, we set γ to 100
and β to 2, and vary α from 1 to 4. In test 3, we set γ to 100 and α to 2, and vary β
from 1 to 4. Figure 6 shows the running time of both algorithms in tests 1, 2 and 3,
respectively. Compared with the real dataset, RAM has a similar performance gain as
in the synthetic datasets. However, it can be observed that the runtime increases signif-
icantly as β grows. We then tested the performance of the approximate graph mining
algorithms with respect to different types of input datasets. Two characteristics of the
datasets were selected for analysis: (1) the average size of graphs in the dataset (T), and
(2) the number of graphs in the database (D). During the experiments, we set α = 4,
β = 2, and γ = D/5. Other non-varying parameters were the same as in the last ex-
periments. In these tests, RAM can discover almost all maximal frequent approximate
graphs that the basic algorithm can find, since we set Pi to be fairly large. To test the
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(a) Varying γ (b) Varying β (c) Varying α

Fig. 6. Performance of Varying α, β, γ

(a) Varying D (b) Varying T

Fig. 7. Performance of Varying D, T

performance of RAM under a small space requirement, we set Pi to smaller values. We
set α = 4, β = 2, and γ = 100. Then, we varied the product of Pi, i.e.,

∏6
i=1 Pi from

104 to 108. Figure 8 shows the percentage of total maximal patterns algorithm RAM
can find with different products of Pi. As we can see from the figure, the percentage
of the total maximal patterns can be discovered increases greatly when products of Pi

increases. Next, we tested the effects when we ran RAM multiple times with a small
product of Pi. We set the product of Pi to 106, leaving the other parameters the same
as those in the last experiment. Figure 8 indicates that the percentage of discovered
maximal patterns rises significantly after we run RAM two or three times. However,
when we ran it more times, increased amount of discovered patterns diminished. We
will discuss the reason for this in a later section.

The empirical study clearly shows that RAM is much more time efficient than the
basic algorithm under different sets of parameters , though it tends to lose a very small
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(a) Varying Product (b) Runtime

Fig. 8. Percentage of total maximal FAGs varying product of Pi, and run time

fraction of maximal pattern with a small product of Pi and run times. However, when
we execute RAM multiple times with a larger product of Pi, most frequent subgraphs
can be discovered.

8 Discussion

In the experimental results section, we found that when there are more frequent approx-
imate patterns than the available memory allows for, some patterns are more difficult
to reach than others. To discover these patterns, we may have to run algorithm RAM
many times. In this section, we discuss the reason and a possible solution.

If the hash functions are well designed, we can make the distribution of hash vectors
close to uniform. However, the second factor, i.e., the number of connected subgraphs,
is determined by the nature of the graph database. Even if we restrict the randomized
search to larger patterns, some patterns may still be more vulnerable to not being dis-
covered. To compensate the loss of patterns which have fewer subgraphs, one possible
solutions is to add a probability parameter φ for those patterns, indicating the likelihood
for continuing to search from those patterns when there is a hit on their hash value.

9 Conclusion

Graphs play an important role in modeling complex structural data, e.g., protein inter-
action networks, social networks, etc. In many applications, the graphs in the database
may contain a number of unreliable edges. However, none of the current graph mining
algorithms are designed to find the complete set of frequent patterns in graph databases
with edge distortions.

We first introduced a formal definition of frequent approximate patterns in a graph
database with edge distortion. Then we proposed a basic algorithm based on depth
first search. As there are much more frequent patterns and embeddings, we presented
the hashing-based randomized algorithm RAM. As shown in the experimental results,
the approximate graph mining algorithm can find more and larger frequent patterns.
More significantly, by approximate pattern mining, we may find important patterns that
cannot be discovered by exact mining algorithms.
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Finding Frequent Items over General Update

Streams

Sumit Ganguly, Abhayendra N. Singh, and Satyam Shankar
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Abstract. We present novel space and time-efficient algorithms for find-
ing frequent items over general update streams. Our algorithms are based
on a novel adaptation of the popular dyadic intervals method for finding
frequent items. The algorithms improve upon existing algorithms in both
theory and practice.

1 Introduction

There is a growing class of applications in areas of business and scientific data
processing that continuously monitor large volumes of rapidly arriving data for
detecting user-programmed scenarios, some of which may encode anomaly and
exception conditions or desirable conditions. Although a deep analysis of the
data can be done, it is both space and time consuming. Data streaming systems
are designed to give fast, but possibly approximate answers to a class of queries
while processing the input data in an online fashion. For example, consider a
satellite data processing system where continuous and voluminous weather data
has to be rapidly processed to give a forewarning of an emerging climate phe-
nomenon. While deep analysis is possible, often, an early warning capability
is very desirable, which though approximate, could then be used to trigger a
deeper analysis. As another example, consider a biological experiment scenario
where there are sensors attached to many biological subjects whose data is be-
ing continuously transmitted to a central server. Monitoring extremal aggregate
conditions over to sensor readings are often useful indicators in such scenarios.

Central to the success of data streaming systems are highly space and time-
efficient algorithms that can summarize input data streams while processing
them in an online fashion. In this paper, we present novel algorithms for data
stream processing in the same vein, specifically considering general data streams.
In the general stream model, each input record indicates arbitrary insertions or
deletions of an item, where, an item may be an IP-address, stock ticker, sensor-
id, etc.. In this model, the sum of aggregate insertions (positive) and deletions
(negative) for each item over the course of the stream may be either positive
or negative. We address the problem of finding frequent items over general data
streams.

The problems of finding frequent items and estimating item frequencies over
data streams are among the most popular primitive operations over data streams
[2,3,4,5,8,10]. Much of the research in this basic problem has centered around
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the insert-only streaming model [2,5,8,10] and the strict update models [3,6]
respectively. For general streams, there are two known approaches towards the
problem of finding approximate frequent items, namely, the non-adaptive group
testing approach [4] and the reversible sketches approach [11]. In this paper, we
present the random dyadic approach towards finding frequent items over general
streams. The proposed algorithm is novel, and extends the applicability of the
popular dyadic intervals technique for strict streams to general streams.

Data Streaming Model. A data stream σ over the domain [1, n] = {1, 2, . . . , n}
is modeled as an unbounded sequence of records of the form (pos, i, δv), where,
pos is the current sequence index, i ∈ [1, n] and δv ∈ Z. Here, δv > 0 signifies
insertion(s) of instance(s) of i and δv < 0 signifies deletion(s) of instance(s) of
i. For each data item i ∈ [1, n], its frequency fi(σ) is defined as

fi(σ) =
∑

(pos,i,δv) ∈ stream

δv, i ∈ [1, n] .

In this paper, we consider the general model, where, the n-dimensional fre-
quency vector f(σ) ∈ Zn. The frequency moment F1 of a general stream is
defined as the sum of the absolute values of the frequencies, that is, F1(σ) =∑

i∈[1,n]|fi(σ)|. The second moment of the frequency vector is defined as F2(σ) =∑
i∈[1,n](fi(σ))2. The data stream model of processing permits online computa-

tions over the input sequence using sub-linear space.

Conventions. (a) We will assume that the domain size n is a power of two. (b)
By a data stream, we always mean the current state of the stream and hence we
drop the stream argument σ; for example, fi abbreviates fi(σ).

Problem definitions. In this paper, we consider the following two problems. Let
0 < φ < ε < 1.

1. Finding F1-based frequent items, denoted by ApproxFreq1(ε, φ) is: return
all i ∈ [1, n] such that fi(σ) ≥ εF1 and do not return any i such that
fi ≤ (ε− φ)F1. A randomized algorithm for this problem satisfies the above
property for all items returned with probability 1− δ.

2. Finding F2-based frequent items, denoted by ApproxFreq2(ε, φ) is: return
all items i ∈ [1, n] such that |fi| ≥ (εF2)1/2, and no i such that |fi| <
((ε − φ)F2)1/2. A randomized algorithm satisfies the above properties with
a total success probability of at least 1 − δ.

In this paper, we design randomized algorithms for finding F1 and F2-based
frequent items whose space requirement is nearly linear in φ−1.

Contributions. We present novel, space and time-efficient algorithms to solve
the problems stated above. For the problem of finding frequent items, our tech-
nique extends the applicability of the popular dyadic intervals technique for
strict streams to general streams. We present two algorithms for the problem
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ApproxFreq2(ε, φ) which improve the space requirement of the existing
algorithm [4] by a factor of O( 1

φ ). The solution to the F1-based frequent items
problem is shown to have better properties of precision and recall. The algo-
rithms perform well in experiments and have rigorous space versus accuracy
guarantees.

2 Review

In this section, we review relevant algorithmic techniques for processing general
data streams.

2.1 Review: Finding Approximate Frequent Items

We review two approaches for finding approximate frequent items over general
streams, namely, non-adaptive group testing [4] and reversible sketches [11].

Non-adaptive group testing. A collection of s hash tables T1, . . . , Ts is kept, each
consisting of b buckets numbered 1 to b. Associated with each hash table Tj is a
pair-wise independent random hash function hj : [1, n] → [1, b]. Each bucket of a
table contains a two dimensional array U [0 . . . 1, 1 . . . log n] of integer counters1.
We refer to a specific entry of a bucket as Tj [r].U [v][k], where, j is the table index
in [1, s], r is the bucket index in [1, b], v is a bit value that is either 0 or 1 and k
is a bit position with value from [1, log n]. Corresponding to each stream record
of the form (pos, x, Δ), the data structure (initialized to all zeros) is updated as
follows. Let x = xlog nxlog n−1 . . . x2x1 be the binary representation of x.

Tj[hj(x)].U [xk][k] = Tj [hj(x)].U [xk][k] + Δ
j = 1, . . . , s, k = 1, . . . , log n .

For the problem ApproxFreq1(ε, φ), where, φ < ε, b is set to � 2
φ� and s is set to

O(log((φδ)−1(log(1/φ)))) in order to ensure that the problem
ApproxFreq1(ε, φ) is solved with error probability at most δ. In addition, a
data structure for estimating F1 of the stream to within a constant factor (say,
(1 ± 1

8 )) is also kept. The procedure for inference is the following. A bucket
Tj[r] contributes at most one element x towards a set of candidate frequent
items as follows. Let F̂1 = (estimate of F1) /(1 + 1/8). For each j ∈ [1, s] and
r ∈ [1, b], the procedure RetrFrequent(j, r) is invoked for each hash table Tj

and each bucket r ∈ [1, b] of Tj to obtain a candidate set of non-nil elements
returned from the invocation RetrFrequent (j, r). These are the candidate fre-
quent items–their frequencies are estimated by treating the data structure as a
Count-Min sketch structure [3] and (x, f̂x) is returned as a frequent item and
its estimate provided, f̂x ≥ (ε − φ)F̂1. The space requirement of this technique

1 For k ∈ [1 . . . log n], r ∈ [1, b] and j ∈ [1, s], we have Tj [r].U [0][k] + Tj [r].U [1][k] =�
hj(x)=r

fx. The latter quantity is stored in another counter associated with the

bucket Tj [r] thus reducing the storage associated with each bucket from 2 log n coun-
ters to 1 + log n counters. This optimization is done in the experiments.
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procedure RetrFrequent(j, r) // j ∈ [1, s], r ∈ [1, b]
Returns x ∈ [1, n] or nil in case of perceived ambiguity.
x := 0;
for k = 1 to log n {

if (Tj [r].U [1][k] ≥ (ε − φ)F̂1) and (Tj [r].U [0][k] ≥ (ε − φ)F̂1)
return nil

else if (Tj [r].U [1][k] ≥ (ε − φ)F̂1) x := x + 2k−1

else if (Tj [r].U [0][k] < (ε − φ)F̂1)) return nil

}

is O(φ−1(log n)(log F1)(log((φδ)−1 log φ−1))) bits. The time required to process
each stream update is O((log((φδ)−1 log φ−1)) log n).

The group testing approach was used by [4] to present algorithms for the
problem ApproxFreq2(ε, φ), that is, retrieve all items i such that fi > (εF2)1/2

and not retrieve any items i with fi < ((ε−φ)F2)1/2. The data structure has the
same structure as the one described above; in addition to the array U kept for
each hash table bucket Tj [r], this structure also keeps log n AMS sketches, that
is, Tj [r].U [v][k] is an AMS sketch of the sub-stream defined by the items that
map to bucket r of table j and have value v in bit position k. The asymptotic
space requirement is O( 1

φ2 (log n)(log F1)(log((φδ)−1 log φ−1))) bits [4].

Reversible sketches. The reversible sketches paper [11] keeps s = O(log n
δ ) tables

Tj, where, each table has b buckets and each bucket is simply a counter that stores
the sum of the frequencies of all the items that map to that bucket. A bucket Tj [r]
is considered to contain a potential frequent item provided, Tj[r] ≥ (ε − φ)F1.
The reversible sketches does not keep any additional bits in the data structure to
retrieve the items. Instead, the hash function is constructed in a modular manner
that allows the retrieval of the items. The main problem with the approach
is that the retrieval method can be very time-consuming (as we found in our
experiments ), since, the number of candidate frequent items can be as large as
nα, for α ranging from 0.5 to 0.9.

2.2 Review: Use of Dyadic Intervals

The dyadic intervals technique is a simple building block for design of algo-
rithms for insert-only and strict streams. We briefly review the technique and
its applications. Recall that we have assumed n to be a power of 2.

A dyadic interval at level l is an interval of size 2l from the family of intervals
of the form [i2l + 1, (i + 1)2l], for 0 ≤ i ≤ n

2l − 1 and 0 ≤ l ≤ log n. The set of
dyadic intervals of levels 0 through log n form a complete binary tree as follows.
The root of the tree is the single dyadic interval [1, n] and the leaf nodes are the
singleton intervals. Moreover, for 0 ≤ l < log n, each dyadic interval at level l of
the form I = [i2l + 1, (i + 1)2l] has two children at level l − 1, namely, the left
and the right halves of Ih. The left child of I is the interval [i2l +1, (2i+1) ·2l−1]
and the right child is the interval [(2i + 1) · 2l−1 + 1, (i + 1)2l]. The frequency of
a dyadic interval I is defined as the sum of the individual frequencies of items
in I, and is denoted as fI .
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The following observations can be made for strict streams (i.e, fi ≥ 0, for all
i ∈ [1, n]). Since each level 0 item belongs to one and only one dyadic interval at
a given level l, the sum of the interval frequencies at level l is the same as the
sum of the item frequencies at level 0, which is F1. That is, F1 =

∑
{fI | I is a

dyadic interval at level l}, for each l = 0, 1, . . . , log n. If an item i is frequent (i.e.,
fi ≥ εF1), then the dyadic interval I that contains i at any level l has frequency
fI ≥ fi ≥ εF1 and is therefore also frequent at level l.

Frequent items algorithm using dyadic intervals. An algorithm for solving
ApproxFreq(ε, φ) is as follows. For each level l = 0, . . . , �log εn�, a data struc-
ture for estimating the frequency of a given dyadic interval (for e.g., a Count-Min

sketch sketch or Countsketch) is kept. The elements at level l are the set of
dyadic intervals interval I at level l and the frequency of an interval I is defined
as the sum of the frequencies of the items that belong to I, that is, the leaves
of the sub-tree of the dyadic binary tree rooted at I: fI =

∑
{fi | i ∈ I}. The set

of dyadic intervals at level l are identified with their starting position
modulo 2l. Corresponding to a stream update (pos, x, Δ), we propagate the up-
date (pos, � x

2l �, Δ) to the data structure at level l, for l = 0, 1, . . . , �log(εn)�.
The inference procedure for finding frequent items is as follows. Start from
the structure at level lmax = �log(εn)� and estimate the frequencies of each of
the 2lmax dyadic intervals at level l0 using the data structure. Select those intervals
whose estimated frequency is at least (ε − φ

2 )F1; consider its left and
right child, estimate their frequencies using the structure at the next lower level,
retain only those intervals whose estimated frequency is at least (ε − φ

2 )F1; this
process is continued until the ground level is reached and the structure at level 0
is processed.

The main problem in applying this technique to general streams is that, since,
item frequencies can be negative, a frequent item or interval at level l may be
contained in an interval at level l + 1 that is not frequent at its level.

3 Algorithm Countsketch Dyadic

In this section, we present the algorithm Countsketch Dyadic for finding
frequent items over general streams with respect to the second moment. That
is, the problem ApproxFreq2(ε, φ) is to retrieve all items i such that |fi| ≥
(εF2)1/2 and not return any i such that |fi| < ((ε − φ)F2)1/2. The solution
presented improves the space requirement of the current best algorithm by a
factor of O( 1

φ ) while preserving time-efficiency of processing stream updates and
of retrieving the frequent items.

The basic idea is to randomly re-distribute the items in the dyadic intervals
using random permutations. Let π be a random permutation of [1, n] that is very
nearly t-wise independent (t = 3 will suffice). A typical way of generating π is
by the use of Fiestel permutations using Luby and Rackoff’s technique [9]. The
advantage of using Fiestel permutations is that it is very efficiently computed
and the inverse permutation is also very efficiently computed as follows. Given
a number x expressed using 2m bits, let L denote the top-order m bits and R
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denote the low order m bits; thus x = (L, R). A single round Fiestel permutation
is a map π : (L, R) = (R, L ⊕ f(R)), where, f is a t-wise independent hash
function f : [0, 2m − 1] → [0, 2m − 1] and ⊕ denotes the bit-wise exclusive or
operation. The inverse of a single-round Fiestel permutation is the map (L, R) →
(f(L) ⊕ R, L) and is thus easily computed. Luby and Rackoff show that four
rounds of Fiestel permutations suffice to generate very nearly t-wise independent
permutations such that the distance between the uniform distribution over 2m
bits and the distribution of the Luby-Rackoff permutations is at most t2·2−m. We
note that for t = 3, there are known constructions for exactly 3-wise independent
permutation families. However, for t > 3, constructions for exact independent
random permutations are not known [7].

Let π1, . . . , πs be very nearly 4-wise independent permutations that are ob-
tained in the manner explained above. For each πj and each level l = 0, . . . , lmax,
a Countsketch structure of height ck′ and width w, where, k′ = � 1

φ� and the
parameters c, w and lmax will be fixed in the analysis. For each j = 1, 2, . . . , s,
let ξj,x ∈ {−1, +1} denote a four-wise random mapping for each x ∈ [1, n]
(i.e., an ams sketch [1]). This family is independent of the sketches used by
the Countsketch structures themselves. The processing of each stream record
(pos, x, v) is as follows, for each j = 1, 2, . . . , s and l = 0, 1, . . . , lmax, the update
(pos, �πj(x)/2l�, v · ξj,x) is propagated to the Countsketch structure at level l
corresponding to permutation πj .

The retrieval of the frequent items is done as described in Section 2.2 with
minor differences. The following procedure is repeated for each permutation
index j = 1, 2, . . . , s. The retrieval procedure starts from level lmax and scans
all the dyadic intervals at this level and keeps those intervals whose estimated
frequency is at least the threshold ((ε− φ

2 )F2)1/2. The children of such intervals
are considered in turn–these are the candidate intervals at level lmax−1. Among
these intervals, those whose estimated frequency crosses the threshold ((ε −
φ
2 )F2)1/2 are retained, and the rest are discarded. The process continues to the
next lower level in this manner until level 0 has been processed. The candidate
intervals or items at a level are are those whose absolute value of the estimated
frequency crosses the threshold ((ε − φ

2 )F2)1/2. An estimate F̂2 of F2 that is
correct to within a relative accuracy of 1 ± 1

4 and probability 1 − δ
2 is used

and can obtained using the Fast-AMS algorithm of [12] that requires space
O((log 1

δ )(log F1)) bits and time O(log 1
δ ) for processing a stream update.

3.1 Analysis

The residual second moment [2] denoted by F res
2 (k) is the sum of the squares

of the frequencies of all items in the stream, except for the top-k frequencies in
terms of absolute value. More formally, if rank is a permutation of the items such
that |frank(j)| ≥ |frank(j+1)|, for 1 ≤ j ≤ n− 1, then, F res

2 (k) =
∑n

j=k+1 f2
rank(j),

defined for k ∈ [0, n − 1].
For a permutation πj , j ∈ [1, s], i ∈ [1, n] and level l ∈ [0, lmax], let gj,l,i be

the frequency of the unique dyadic interval I to which πj(i) maps at level l.
Let ĝj,i,l denote the estimate obtained from the Countsketch structure for
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the unique dyadic interval at level l containing πj(i) at level l. Define the event
NoCollisionl(i) if the dyadic interval to which πj(i) maps at level l does not
contain any of the top-k frequencies (except perhaps itself). Define

NoCollision(i, lmax) = NoCollision1(i) and NoCollision2(i) and . . .
. . . and NoCollisionlmax(i) .

Lemma 1. For 1 ≤ j ≤ s and i ∈ [1, n],

Pr

{
|ĝj,i,l − fiξj,i| ≤

(
32F res

2 (k′)
k′

)1/2

, ∀l : 0 ≤ l ≤ lmax

}
≥ 5

8
.

Proof. Fix a permutation πj and abbreviate it by π and the corresponding sketch
family as {ξi}i∈[1,n]. Similarly, abbreviate gj,i,l by gi,l, etc.. Fix a top-k element
j, j �= i. Let l ∈ [0, lmax]. Due to t-wise independence of πj , t ≥ 2, the probability
that i and j map to the same dyadic interval at level l is(

n−2
2l−2

)(
n−1
2l−1

) =
2l − 1
n − 1

<
2l

n
.

Therefore, Pr {NoCollisionl(i)} ≥ 1− k2l

n , by union bound. Since, NoCollisionl(i)
implies NoCollisionl′(i), for l′ < l, Pr {NoCollision(i, lmax)} ≥ 1 − k2lmax

n . Let
k′ = 8� 1

φ�. Fix an item i. For j ∈ [1, n] and j �= i, the indicator variable ul,j is
defined as follows: it is 1 if j maps to the same dyadic interval at level l as i and
is 0 otherwise. Thus,

gl,i = fiξi +
∑
j �=i

fjξjul,j .

Assuming NoCollisionl(i), we have by direct calculation

E
[
(gl,i − fiξi)2

]
< F res

2 (k′)
2l

n
.

This repeats the arguments of Alon, Matias and Szegedy [1]. By Markov’s in-
equality,

Pr

{
(gl,i − fiξi)2 < tF res

2 (k′)
2l

n

}
≥ 1 − 1

t

or, equivalently,

|gl,i − fiξi| <

(
tF res

2 (k′)2l

n

)1/2

with prob. 1 − 1
t

.

The expression 2l

n is largest for l = lmax. Therefore, letting lmax = �log n
4k′t�

ensures that
(

tF res
2 (k)2l

n

)1/2

≤
(

F res
2 (k′)
4k′

)1/2

. Therefore, with this choice of lmax,
we have
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|gl,i − fiξi| <

(
F res

2 (k′)
4k′

)1/2

with prob. 1 − 1
t

. (1)

Define F2,l to be the sum of the squares of the frequencies of the dyadic intervals
at level l. For i ∈ [1, n] and r ∈ [1, n

2l ], let vl,i,r = vi,r denote the indicator variable
that is 1 if i is mapped to the dyadic interval [r2l + 1, (r + 1)2l]. Therefore,

F2,l =
( n/2l−1∑

r=0

n∑
i=1

fivi,rξi

)2

.

By direct calculation, E
[
F2,l

]
= F2 and Var

[
F2,l

]
≤ 5F2. Repeating the argument

of Countsketch algorithm [2], with height 32k′ and width w at each level,

|ĝl,i − gl,i| ≤
(

F res
2 (32k′)

4k′

)1/2

with prob. 1 − 2−Ω(w) .

Combining with (1), we have,

Pr

{
∀l : 0 ≤ l ≤ lmax

(
|ĝi,l − fiξi| ≤

(
F res

2 (k′)
k′

)1/2
)}

≥ 1 − lmax

(
2−Ω(w) +

1
t

)
.

Choosing lmax = �log φn
32 log(φn)�, t = 8lmax and w = O(log log lmax), the error

probability in the above expression is 2
8 . Since, the probability of

NoCollision(i, lmax) is 7
8 , combining, we obtain the lemma. ��

Theorem 1 summarizes the space, accuracy and time properties.

Theorem 1. The algorithm Countsketch Dyadic with height ck′ = 32� 1
φ�,

width w = O(log log(φn)), maximum dyadic level lmax = �log φn
32 log(φn)� and

number of permutations s = O(log 1
φδ ) solves the problem ApproxFreq2(ε, φ)

with probability 1 − δ with the following characteristics.

Space O

(
1
φ

(
log φn

log(φn)

)(
log 1

φδ

)
(log log(nφ))(log F1)

)
Update Time O

((
log φn

log(φn)

)
(log log n)(log 1

φδ ))
)

Retrieval Time O
(

log(φn)
φ (log log(nφ))(log 1

φδ )))
)

. ��

The proposed algorithm improves the space requirement for solving the
ApproxFreq2(ε, φ) problem as compared to the variational deltoids algorithm
[4] by reducing the dominant term in the space complexity expression from O( 1

φ2 )
to O( 1

φ ).
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4 Algorithm Countsketch Linear

An improvement of the variational deltoids algorithm of [4] for the problem
ApproxFreq2(ε, φ) that reduces the dominant term in the space complexity
expression from O( 1

φ2 ) to O( 1
φ ) can be designed although it appears to have

higher constant factors than the Countsketch Dyadic algorithm discussed
above. We briefly present the design and analysis of such an algorithm which we
term as Countsketch Linear.

The data structure consists of s tables T1, . . . , Ts1 , each consisting of ck′ buck-
ets, where, k′ = � 1

φ�, where, c = 8 and s1 = O(log k′ log(1/δ)
δ ). Each bucket Tj [r]

has an array of sketches U [v][k][s2][s3], where, v ∈ {0, 1} denotes a bit value,
k ∈ [1, logn] denotes a bit position, s2 = O(1) (to be fixed later) and s3 =
O(log log n). Corresponding to each table Tj , we keep s2 · s3 independent fami-
lies of AMS sketches denoted by ξx,j,u,w, where, x ∈ [1, n], j ∈ [1, s1], u ∈ [1, s2]
and w ∈ [1, s3]. Each stream update of the form (pos, x, Δ) is processed as fol-
lows. Let x = xlog nxlog n−1 . . . x2x1 denote the binary representation of x.

Tj[hj(x)].U [xk][k][u][w] = Δ · ξx,j,u,w,

j ∈ [1, s1], k ∈ [1, log n], u ∈ [1, s2], v ∈ [1, s3] .

The time taken to process each stream update is therefore O(s1s2s3 log n) =
O((log log(1/δ)

φδ )(log n)(log log n)). A set of candidate frequent items is obtained
by calling procedure Retrieve(j, r), for j ∈ [1, s1] and r ∈ [1, h] as presented in
Figure 1. A second verification step is then performed wherein the frequency
of each candidate frequent item x is estimated as f̂x by treating the structure

procedure Retrieve(j, r)
Retrieves a potential candidate frequent item from Tj [r]
x := 0;
for k := 1 to log n

c0 := 0; c1 := 0;
for w =1 to s3 do

Ū [0][k][w] := avgs2
u=1(Tj [r].U [0][k][u][w])2 ;

Ū [1][k][w] := avgs2
u=1(Tj [r].U [1][k][u][w])2 ;

if (Ū [0][k][w] > Ū [1][k][w]) c0 := c0 + 1;

else if (Ū [1][k][w] > Ū [0][k][w]) c1 := c1 + 1;

endfor

if (c1 > s3/2) x := x + 2k elseif (c0 < s3/2) return nil ;
endfor
return x;

Fig. 1. Finding frequent items: Algorithm Countsketch Linear
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as a standard Countsketch structure. The pair (x, f̂x) is returned provided
|f̂x| ≥ ((ε − φ

2 )F̂2)1/2. An estimate F̂2 such that |F̂2 − F2| ≤ F2
4 is obtained

using the Fast-AMS algorithm [12] using O(log 1
δ ) hash tables, each having

O(1) buckets.

Analysis of Countsketch Linear

Lemma 2. Suppose s2 ≥ 40ε
ε−φ/2 , h = ck′ ≥ 8� 1

φ�. If |fx| > (εF res
2 (k′))1/2, then,

for any fixed j ∈ [1, s1], the probability that procedure Retrieve(j, hj(x)) returns
x is at least 5

8 .

Proof. Fix a table index j. Let

X(v, k, w) = Xj(v, k, w) = avgs2
u=1(Tj[hj(x)].U [v][k][u][w])2 ,

Gj,k(x) =
∑

{f2
y | hj(y) = hj(x) and yk = xk} and

Hj,k(x) =
∑

{f2
y | hj(y) = hj(x) and yk = x̄k} .

By arguments of [1],

E
[
X(xk, k, w) − X(x̄k, k, w

]
= Gj,k(x) − Hj,k(x),

Var
[
X(xk, k, w) − X(x̄k, k, w)

]
≤ 5

s2
(Gj,k(x) + Hj,k(x))2

By Chebychev’s inequality,

Pr {X(xk, k, w) − X(x̄k, k, w) ≤ 0} ≤
Var
[
X(xk, k, w) − X(x̄k, k, w)

]
(E
[
X(xk, k, w) − X(x̄k, k, w)

]
)2

≤ 5
s2

· Gj,k(x) + Hj,k(x)
Gj,k(x) − Hj,k(x)

(2)

Define the event NoCollisionj(x) as: none of the top-k′ items map to the same
bucket as x in table Tj (except perhaps x itself). Therefore,

Pr {NoCollisionj(x)} ≥ 1 − k′

ck′ = 1 − 1/c .

We have Gj,k(x) ≥ f2
x ≥ εF res

2 (k′). Assuming NoCollisionj(x),

E
[
Hj,k(x) | NoCollisionj(x)

]
≤ F res

2 (k′)
ck′

and therefore by Markov’s inequality,

Pr

{
Hj,k(x) ≤ 8F res

2 (k′)
ck′

∣∣NoCollisionj(x)
}

≥ 7
8

.
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Let k′ = � 1
φ� and c = 16. Then, 8F res

2 (k′)
ck′ ≤ φF res

2 (k′)
2 . Substituting in (2) and

assuming NoCollisionj(x),

Pr {X(xk, k, w) − X(x̄k, k, w) ≤ 0} ≤ 5ε

s2(ε − φ/2)
≤ 1

8
, if s2 ≥ 40ε

ε − φ/2
. (3)

Note that the probability in (3) depends on (a) NoCollisionj(x), which holds
for all k if it holds for any one, and, (b) is derived for any Gj,k(x) and Hj,k(x)
satisfying Gj,k ≥ f2

x and Hj,k(x) ≤ F res
2 (k′)

k′ . Since, this is the worst case, the
property holds for all k, as stated below. Suppose s2 ≥ 40(ε+φ)

ε−φ . Then,

Pr {X(xk, k, w) − X(x̄k, k, w) > 0, ∀k ∈ [1, logn] | NoCollisionj(x)} ≥ 7
8

(4)

Let W (x, k) be the number of w’s in [1, s3] for which X(xk, k, w) > X(x̄k, k, w).
Then, E

[
W (x, k) | NoCollisionj(x)

]
≥ 7s3

8 and by Chernoff’s bounds,

Pr
{
W (x, k) <

s3

2
| NoCollisionj(x)

}
< e−9s3/56 <

1
8 log n

,

if s3 ≥ 56
9

ln(8 log n) .

Combining using union bounds,

Pr {W (x, k) ≥ 0.5s3, ∀k ∈ [1, log n]} ≥ 1 − log n

8 logn
=

7
8

. (5)

Combining the error probability using union bound, namely, 1
8 for NoCollision(x),

the total error probability is at most 2
8 . Therefore, the probability that x is

retrieved as a frequent item by procedure Retrieve(j, r) is at least 6
8 . ��

Note that for φ < ε, 1 ≤ ε
ε−φ/2 ≤ 2. We therefore have the following theorem.

Theorem 2. Suppose |F̂2 − F2| ≤ F2
4 with probability 1 − δ/2, s1 = O

(log log(1/φδ)
φδ ), s2 = O(1), s3 = O(log log n) and the height of the hash ta-

bles is ck′ = O(� 1
φ�). Then the algorithm Countsketch Linear solves the

ApproxFreq2(ε, φ) with probability 1 − δ with the following characteristics.

Space O
(

1
φ · (log n)(log log n)

(
log log(1/φδ)

φδ

)
(log F1)

)
Update Time O

(
(log n)(log log n) log log(1/φδ)

φδ

)
Retrieval Time O

(
Space
log F1

)
. ��

A comparison of Theorems 1 and 2 shows that the properties of Countsketch

Linear andCountsketchDyadic are similar althoughCountsketchLinear

has slightly worse constants. Both algorithms improve over the space requirement
of O( 1

φ2 · poly-log(n, F1)) of the variational deltoids algorithm [4].
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5 Algorithm Count-Min Dyadic

In this section, we present an extension of the Count-Min algorithm for finding
F1-based frequent items for general streams by using the dyadic intervals tech-
nique. We use s random permutations π1, . . . , πs. Corresponding to πj , we keep
a dyadic intervals based data structure for levels 0 through lmax as described
in Section 2.2. Corresponding to each permutation πj and each dyadic level, we
keep a Count-Min sketch structure of height k′ and width w, where, h and
w are parameters that will be fixed later. Corresponding to a stream update
(pos, x, Δ), the update (pos, πj(x), Δ) is propagated to the jth dyadic intervals
structure. Finally, during inference of frequent items, we use the jth dyadic based
structure using the algorithm described in Section 2.2, to retrieve a set of can-
didate items Sj , then apply the inverse permutation π−1 to each candidate item
to obtain π−1(Sj). This step is done for each j = 1, 2, . . . , s. Finally, we return
those items x that occur in at least two-thirds (or a majority) of the π−1(Sj)’s
and return the median estimate of its estimated frequency.

Analysis. Fix a permutation index j and abbreviate π = πj . We will use the
notation in the statement of Theorem 3. Let k = � 1

ε �. Here top-k frequencies
are determined in terms of the absolute value of fj ’s. For a dyadic interval I at
level l, define the random variable

gI =
∑

π(x)∈I

fx .

Let gl(i) denote the frequency of the node I at level l to which the item i maps.

Lemma 3. Let t = 8�log(φn)�, lmax = �log φn
4t � and w = log log lmax. Then,

Pr

{
∀l : 0 ≤ l ≤ lmax

(
|ĝl(i) − fi| ≤

φF1

2

)}
≥ 5

8
.

Proof. Let gl(i) denote the frequency of the dyadic interval I at level l to which
the item i maps. Assume NoCollisionl(i) holds. Then, E

[
|gl(i) − fi|

]
≤ F1(k)2l

n .
By Markov’s inequality,

Pr

{
|gl(i) − fi| ≤

tF1(k)2l

n

}
≤ 1

t
.

Define Fl,1 as the sum of the absolute values of the frequencies of the family of
dyadic intervals at level l. Then, Fl,1 ≤ F1. If k′ ≥ 8� 1

φ�, by Count-Min struc-

ture guarantees, |ĝl(i)−gl(i)| ≤ φFl,1
4 ≤ φF1

4 , with probability 1−2−Ω(w), for each
l. By triangle inequality, and using union bound to add the error probabilities,

Pr

{
∀l : 0 ≤ l ≤ lmax

(
|ĝl(i) − fi| ≤

φF1

4
+

tF12l

n

)}
≥ 1 − lmax

(
2−Ω(w) +

1
t

)
.
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Substituting t = 8�log(φn)�, lmax = �log φn
4t � and w = log log lmax, we have

lmax
t ≤ 1

8 and t2l

n ≤ t2lmax

n ≤ φ
4 . ��

The property of the algorithm is summarized in the following theorem.

Theorem 3. The algorithm Count-Min Dyadic with height k′ = 8� 1
φ�, width

w = O(log log(φn)), maximum dyadic level lmax = �log φn
32 log(φn)� and number

of permutations s = O(log 1
φδ ) solves the problem ApproxFreq(ε, φ) with prob-

ability 1 − δ with the following characteristics.

Space O

(
1
φ

(
log φn

log(φn)

)(
log 1

φδ

)
(log log(nφ))(log F1)

)
Update Time O

((
log φn

log(φn)

)
(log log n)(log 1

φδ ))
)

Retrieval Time O
(

log(φn)
φ (log log(nφ))(log 1

φδ )))
)

.

��

6 Experimental Comparison

In this section, we present an experimental comparison of our algorithms with
the relevant algorithms in the literature. For the problem of finding F1-based fre-
quent items, we compare our Count-Min Dyadic algorithm with the reversible
hash method of [11] and the absolute deltoids based group testing technique of
[4]. For the problem of finding F2-based frequent items, we compare our algo-
rithms Countsketch Dyadic and Countsketch Linear with the variational
deltoids group testing technique of [4].

Experimental testbed. Our experiments were run on Intel Pentium dual core
2.80 Ghz processor with 2Gb of main memory running Fedore Core version 6.
We tested the algorithms against zipfian distributions. The algorithms under
comparison were given the same space (in number of bytes) and run against
the same input data. In fact, since our hash function code works for table sizes
in powers of 2, we give additional advantage by rounding up the space to the
nearest power of 2, for algorithms in the literature that we are comparing with.

The zipdiff(z1, z2) distribution. The input data was generated to simulate gen-
eral streams, with positive and negative frequencies, as follows. Two random
frequency vectors distributed as per normalized zipfian distribution zipf with
parameters z1 and z2 are generated and their difference is taken. Varying z1 and
z2 gives us the various test data. Such distributions are denoted as zipfdiff(z1, z2).
Such distributions typically have a set of relatively high positive values as the
top frequencies of zipf(z1) and a set of relatively high (in absolute value) neg-
ative values distributed as the top frequencies of zipf(z2). The item frequencies
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are chosen in a manner that the top frequencies in terms of absolute value of
either distributions do not conflict 2.

We compare the algorithms on the standard measures of precision and recall.
Recall is the percentage of the frequent items that are detected as frequent by
the algorithm; thus 1− recall is the fraction of false negatives. Precision is the
fraction of frequent items among the set of frequent items; thus 1− precision is
the fraction of false positives.

The reversible hash algorithm [11] performs well only for a limited range of the
input when there are very few frequent items in the data. Otherwise, we found
that the reversible hashing algorithm generates a very large number of false posi-
tive frequent items to the tune of about two to three orders of magnitude (or more)
larger than the actual number of frequent items and then attempts to eliminate
them in a verification phase. In summary, for the range of tests that we performed
and report below, the time required to find frequent items by the reversible hash-
ing method was found to be higher than the other methods by at least factors of
1000 to 10000 (order of ms versus order of minutes). We therefore do not report
specific experimental observations relating to the reversible hashing method.

Experiment 1: Count-Min Dyadic vs. Absolute deltoids. Figure 2 presents
the experimental evaluation of the Count-Min Dyadic method and the ab-
solute deltoids method of [4]. We consider frequency distribution over items
with frequency distributed as the difference of zipfian distributions zipf(z) with
parameters z1 and z2 respectively. We report results for the following three
distributions. Distribution A: zipfdiff (0.1,0.9), distribution B: zipfdiff (0.4,0.5),
distirbution C: zipfdiff (0.3,0.7). The number of distinct items was fixed at 2.1
million items (221). The total space used by the algorithms is given in the tables.
For Count-Min dyadic, either 6 or 7 tables were used for each permutation,
the number of permutations was set to 1 (which was surprisingly sufficient), the
height of the tables was varied from 212 to 214 (in powers of 2) and the number
of levels was set to between 19 and 21 (lmax = 32− log(height)+1). The param-
eters of the absolute deltoids algorithm was set so that the total space used is
no less than the Dyadic algorithm–this translates to table height ranging from
211 to 213 (in powers of 2) and the number of tables being set to one more than
that for the instance of Count-Min Dyadic being compared with.

Results and Conclusions for Experiment 1. The precision of both algorithms is
close to 100% in the sense that the items reported as frequent are truly frequent
(almost always). We therefore do not report precision in the tables. The two
algorithms are distinguishable by their recall; the Count-Min dyadic method

2 This can be done in multiple ways, namely, randomized, where, the ranking of the
items in terms of each of zipf(z1) and zipf(z2) is randomized, leading to very low
probability of conflict of the few top-k items in each distribution. We perform this in
a deterministic manner, where the the ranking of the items in terms of frequencies for
the first distribution zipf(z1) is the standard order 1, 2, . . . , n whereas, the ranking
of the items for the second distribution is s, s + 1, . . . , n, 1, 2 . . . , s − 1, where, s is a
shift parameter much larger than k.



218 S. Ganguly, A.N. Singh, and S. Shankar

Distribution Space Threshold Actual No Recall Recall
(in size of) αF1 of frequent Absolute Deltoids Count-Min

(doubles) α items [4] Dyadic

210540 2−9 11 9 10
zipfdiff 2−10 20 14 16

(0.1, 0.9) 2−11 40 19 24
409600 2−9 11 10 11

2−10 20 17 17
2−11 40 24 29
2−12 86 37 52

778240 2−9 11 11 11
2−10 20 18 20
2−11 40 29 32
2−12 86 49 61
2−13 179 73 100

210540 2−9 0 0 0
zipfdiff 2−10 0 0 0

(0.4, 0.5) 2−11 0 0 0
409600 2−9 0 0 0

2−10 0 0 0
2−11 0 0 0
2−12 3 1 1

778240 2−9 0 0 0
2−10 0 0 0
2−11 0 0 0
2−12 3 1 2
2−13 8 6 11

210540 2−9 3 2 3
zipfdiff 2−10 7 4 4

(0.3, 0.7) 2−11 13 5 8
409600 2−9 3 3 3

2−10 7 4 4
2−11 13 8 9
2−12 26 11 16

778240 2−9 3 3 3
2−10 7 5 4
2−11 13 10 11
2−12 26 16 18
2−13 72 22 26

Fig. 2. F1-based frequent items: Comparing absolute deltoids method [4] with
Count-Min Dyadicmethod. Number of items = 221.

is consistently superior to the absolute deltoids algorithm. The results are pre-
sented in Figure 2.

Experiment 2. In this experiment, we evaluate the Countsketch Dyadic,
Countsketch Linear and the variational deltoids algorithm. We consider data
whose frequency is distributed as zipfian difference zipfdiff(z, z), for parameters
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Distri- Space Threshold Actual No Recall, Recall, Recall,
bution Precision Precision Precision

(in size of) (αF2)
1/2 of frequent Variational Countsketch Countsketch

(doubles) α items Deltoids [4] Dyadic Linear

307240 2−9 2 0 0, 0 1,0
zipfdiff 2−10 8 0 3, 3 2,1
(0.3, 0.3) 2−11 24 0 4, 4 3,1

2−12 76 0 10, 8 3,1
2−13 232 0 26, 19 3,1

573440 2−9 2 0 0, 0 0
2−10 8 0 4, 4 0
2−11 24 0 7, 7 0
2−12 76 0 18, 18 1,0
2−13 232 0 38, 37 1,0

1064960 2−9 2 0 0, 0 1,1
2−10 8 0 4, 4 1,1
2−11 24 0 10, 10 3,2
2−12 76 0 26, 26 3,2
2−13 232 0 54, 53 3,2

307240 2−9 17 0 8, 8 5,5
2−10 42 0 19, 19 7,7

zipfdiff 2−11 99 0 39, 39 8,8
(0.4, 0.4) 2−12 232 0 60, 59 10,9

2−13 540 0 115, 96 10,9
573440 2−9 17 2,2 11, 11 6, 6

2−10 42 3,3 24, 24 6, 6
2−11 99 0 44, 44 6, 6
2−12 232 0 91, 91 7,7
2−13 540 0 154, 149 7,7

1064960 2−9 17 6 12, 12 16, 14
2−10 42 8 28, 28 21, 19
2−11 99 2 56, 56 21, 20
2−12 232 0 109, 109 22, 22
2−13 540 0 184, 184 24, 24

307240 2−9 42 10, 10 27, 27 8, 7
2−10 84 4, 4 50, 50 9, 8

zipfdiff 2−11 167 0 77, 77 9, 9
(0.5, 0.5) 2−12 334 0 125, 122 9, 9

2−13 644 0 210, 183 10, 10
573440 2−9 42 14, 14 29, 29 25, 22

2−10 84 16, 16 56, 56 29, 28
2−11 167 3 , 3 95, 95 30, 30
2−12 334 0 162, 162 31,31
2−13 644 0 256, 256 31, 31

1064960 2−10 84 26,26 66, 66 41, 39
2−11 167 20,20 119, 119 44, 42
2−12 334 7, 7 208, 208 47, 44
2−13 644 1, 1 359, 359 48, 46

Fig. 3. Comparing Countsketch Dyadic/ Linear vs. variational deltoids
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z = 0.3, 0.4 and 0.5. The number of distinct items was fixed at 4 million items.
The total space used by the algorithms is given in Figure 3 and varies between
2.5— 10% of the space required to actually store the data. In comparison, in
experiment 1, it was varied between 10 — 40% of the size of the data. Thus, the
experiments in this category use significantly less space (percentage wise) than
the first experiment and significantly stresses the retrieval capabilities of the
algorithms. The parameter choices are as follows. For Countsketch Dyadic,
the settings are the same as those of Count-Min Dyadic wherever possible.
That is, the number of random permutations used is 1, the number of levels is
kept between 19 and 21 and the number of tables is kept between 5 and 7. Recall
that for the Countsketch Linear algorithm, s2 is the number of sketches in
each group whose average (of the squares) is taken, and s3 is the number of such
groups; for each bit value 0 or 1, for each bit position 1 through logn and each
bucket of each table. In our experimentation, s2 is set to 1 and s3 to 5. These
settings are significantly smaller than the theoretical bounds. For the variational
deltoids algorithm, the number of tables were kept between 5 and 7. Since the
space provided to the algorithms is the same, the main parameter that varies is
the height of each of the tables, subject to the above settings.

Results of Experiment 2. The results of the experiments are summarized in
Figure 3. Corresponding to each of the three algorithms tested, the precision
and recall are shown in the same column (except when recall is 0). The nature
of the results are both surprising and conclusive. It appears that Countsketch

Dyadic is significantly superior in terms of both precision and recall to the
Countsketch Linear algorithm, whereas the performance of the variational
deltoids algorithm is quite poor. The recall is not 100%, given that the space
provided to the algorithms is very small. Further, as expected, both precision
and recall improve with increased space. It is an unexpected observation that
Countsketch Dyadic is substantially superior to the other two algorithms.

7 Conclusions

We present novel and practical space and time-efficient algorithms for finding
frequent items, absolute range sums and absolute quantiles over general streams.
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Efficiently Discovering Recent Frequent Items in

Data Streams�
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Abstract. The problem of frequent item discovery in streaming data
has attracted a lot of attention lately. While the above problem has
been studied extensively, and several techniques have been proposed for
its solution, these approaches treat all the values of the data stream
equally. Nevertheless, not all values are of equal importance. In several
situations, we are interested more in the new values that have appeared
in the stream, rather than in the older ones.

In this paper, we address the problem of finding recent frequent items
in a data stream given a small bounded memory, and present novel algo-
rithms to this direction. We propose a basic algorithm that extends the
functionality of existing approaches by monitoring item frequencies in
recent windows. Subsequently, we present an improved version of the al-
gorithm with significantly improved performance (in terms of accuracy),
at no extra memory cost. Finally, we perform an extensive experimental
evaluation, and show that the proposed algorithms can efficiently identify
the frequent items in ad hoc recent windows of a data stream.

1 Introduction

The problem of frequent item discovery in streaming data has attracted much
attention, because it is relevant to many different applications across various
domains [12,13,15]. A naive approach to deal with this problem is to keep a
count of each distinct item. Yet, in general, we assume that our main memory is
not large enough to hold counters for all the distinct items. Several techniques
that can efficiently solve the problem have been proposed in the literature that
also take into account the special characteristics and requirements of streaming
data [10,17,23]. These techniques are approximate, but they can provide the
correct answer with high probability and they have been empirically proven to
produce accurate results.

The above approaches treat all the values of the data stream equally. Note
though, that not all the values that have appeared in the data stream are of
equal importance. In several situations, we are more interested in the values that
have appeared in the stream in the recent past, rather than in the distant past.
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Similar observations have also been made in other works, where the problems of
time-variant data summarization [5,25], clustering [3], and storage [8] have been
studied.

The same is true for the problem of frequent item identification in data
streams. A few indicative examples are described below.

– In the financial domain, we are interested in finding stocks that are traded the
most in a stock exchange system. This knowledge is crucial for applications
that deal with automatic trading, pre-trade analysis, post-trade execution,
and market monitoring [26].

– In the communications and network operators industry several applications
need to monitor the frequency of occurrence of packets traveling between
specific nodes in the network [12]. This information is in many cases at the
core of the business of companies in this area.

– Retail shops and online businesses are interested in identifying the products
that sell the most. The results of this analysis can be used for launching
special promotions, performing inventory management, and in other appli-
cations [19].

The applications in the above examples require estimates in the item frequencies
for the recent past, rather than for the entire history of the data stream. More-
over, in certain cases the users would like to be able to query about the item
frequencies in different windows in the recent past, and compare these values
among themselves.

In this paper, we propose solutions for the discovery of recent frequent items
in streaming data given a small bounded memory. These solutions are based on
existing sketching techniques, which we extend in order to be able to effectively
operate on the recent past. We describe the TiTiCount1 algorithm that can be
used to efficiently answer queries for frequent items in ad hoc recent windows.
The algorithm uses a tilted timeframe for the representation of the past, which
allows the algorithm to provide item frequency estimates for a number of different
windows in the past, using a small amount of memory. At the same time, these
estimates are more accurate for the most resent windows, and the accuracy of
the estimates diminishes as we go further in the past. We also present a query
answering method that takes into account the size of the window intervals used
by our algorithm, and provides better frequency estimates than the straight-
forward approach.

Furthermore, we propose TiTiCount+, an enhanced algorithm for query an-
swering. In this case, when a query for some item frequency in a particular
window comes in, the query answering algorithm makes use of the information
stored in the specified window of interest, but also uses the information stored
in certain neighboring windows. Based on this extra information, the algorithm
is able to refine the item frequency estimates, leading to more accurate results,
with minimal additional processing. As we will describe in more detail later on,
this scheme also leads to superior performance in the case where the distribution
of the data stream is non-stationary.
1 Tilted Timeframe Count.
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In summary, in this work we make the following contributions.

– We describe algorithms that can estimate the frequency counts of hot items
in the recent past of a data stream. Our approach efficiently supports queries
on ad hoc recent windows, and can store information about arbitrary points
in the past, depending on the user preferences and available memory budget.

– We propose a simple method that accounts for the size of our summary
structures, and leads to more accurate item frequency estimates in query
answering when compared to the straight-forward approach.

– We extend the above algorithm with a technique that combines the informa-
tion stored in different parts of our data representation structures in order
to improve the accuracy of the results. As we empirically demonstrate, the
above technique results in a significant performance improvement at a neg-
ligible additional processing cost.

– Finally, we perform an extensive experimental evaluation using synthetic
and real data. The results show the behavior of the algorithms in different
conditions, and demonstrate the effectiveness of the proposed approach.

The rest of the paper is organized as follows. We start by giving some necessary
background for the problem of mining data streams for frequent items in Sec-
tion 2. In Section 3, we describe the problem of recent frequent items formally.
Section 4 describes the development of our algorithm on the basis of two existing
algorithms. Our experimental evaluation is presented in Section 5. Finally, we
discuss related work in Section 6 and conclude in Section 7.

2 Background

We assume a data stream S that is composed of a stream of integer numbers,
where each integer represents the occurrence of a data item in S.

Let N be the current length of the data stream S, i.e., N is the current number
of transactions. Further assume that the data stream contains M distinct values.
A frequent item is an item whose frequency is greater than φN , where the support
parameter φ is a user-defined threshold in the interval [0.0, 1.0].

Several algorithms have been proposed for efficiently mining frequent items
in data streams. The Frequent (FREQ)[18] and the Lossy Counting (LC)[23] al-
gorithms are based on maintaining approximate frequency counts, while Combi-
natorial Group Testing (CGT)[11], Count-Min (CM)[10], CCFC [7] and hCount
(HC)[17] are based on sketches. We have conducted extensive experiments in
order to compare the performance of these algorithms. Our implementation of
the FREQ, LC, CM, CGT, and CCFC algorithms was based on the Massive
Data Analysis Lab code-base [2]. The hCount algorithm was implemented from
scratch, using the same optimizations as the other algorithms. We ran experi-
ments on both synthetic and real datasets, and measured time and space usage
for all the above six algorithms, averaged over several independent runs. In or-
der to evaluate the quality of the results obtained, we used the two standard
measures of recall (percentage of the true frequent items that are found by the
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algorithm) and precision (percentage of items identified by the algorithm, which
are truly frequent).

In the interest of space, we only briefly summarize our results (details are
in the full version of this paper). We ran experiments with varying the support
threshold φ. The results indicate that the performance of CCFC is affected when
support is low, but its recall improves when the support level is high. Regarding
precision, hCount and CCFC are consistently the top performers, with the other
algorithms improving their performance as the support threshold is increased.

We also measured the scalability and time requirements of the algorithms by
running experiments with 10 to 100 million transactions. The results show that
all algorithms scale linearly in time with respect to the number of transactions.
CCFC requires the longest time, whereas LC and FREQ are the most time-
efficient, with hCount performing very close to the fastest algorithms.

The qualitative results from all our experiments are summarized in Table 1
(a more detailed discussion of the experiments can be found elsewhere [22]).
Based on these experiments (similar results have also appeared elsewhere [17]),
we selected the hCount algorithm as the frequency estimation component of our
approach, because it has several desirable characteristics. Namely, it exhibits a
consistently good performance across various conditions, it has low time com-
plexity, and is relatively easy to implement.

Note that this choice is not restrictive in any way, and in our techniques hCount
could be replaced with any other suitable frequency estimation algorithm.

Table 1. Performance Summary

Algorithm Characteristics

FREQ Fast. Low precision.
CGT Fastest of the sketch-based. Cannot handle lower support
CM Less space than CGT but more time, cannot handle lower support

CCFC Slow, fairly good accuracy
LC Fast, good recall and precision
HC Fast, good recall and precision

3 Recent Frequent Items

In this section, we formally define the problem of recent frequent item discovery,
and we give a brief overview of our approach.

3.1 Problem Definition

Let the data stream S be represented by {T1, T2, . . . , Tn}, where Ti denotes the
ith item, and Tn is the latest (most recent) item in the stream. In this work, we
assume that each item, Ti, is represented by a single integer, and corresponds to
a transaction2.
2 For the remainder of this paper, we will use the terms item and transaction inter-

changeably.
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Let w = [wmin, wmax] define a window in the history of the stream, where
wmin refers to the index of the least recent point in the window, and wmax

to the index of the most recent one. The length, or size (in terms of number
of transactions), of window w is |w| = wmax − wmin. Further, assume that φ,
0 < φ ≤ 1 is a user-defined parameter that determines which items are frequent,
according to the following definition.

Definition 1. [Frequent Item] An item is called frequent with respect to a win-
dow w if it appears in at least φ|w| transactions within w.

We can now define the recent frequent item problem for a stream S.

Problem 1. [Recent Frequent Item (RFI)] Given a threshold φ, and a window
w, where n − wmin ≤ L, we want to identify the frequent items in w, for a
predetermined parameter L >> 1.

We make two remarks regarding the above definition of the problem. First, both
the window w and the threshold φ are part of the query, and can be different
for each query. Also note that the query window of interest w, is ad hoc, and
can refer to any interval in the recent history of the stream. The parameter
L determines how far in the past the query window can refer to. Essentially,
L defines the least recent transaction that can be part of the query window,
and in practice can be very large. That is, for a window w = [wmin, wmax],
n − L ≤ wmin < wmax ≤ n.

Second, we define the window size in terms of the number of transactions,
rather than time, because the data rates of streams are often times variable.
Hence, windows defined in terms of number of transactions are more appropriate.
Nevertheless, the techniques we propose can in principle work for both cases.

3.2 Proposed Approach

Previous works have studied the problem of identifying frequent items in the
entire history of a data stream [7,10,11,17,18,23]. What is fundamentally different
in our case is that we wish to identify frequent items in arbitrary (recent) window
intervals of the stream. In order to solve the RFI problem, we have to store
information about the item frequencies in various time-points in the past, which
will allow us to answer queries for ad hoc windows.

A simple solution to the above problem is to divide the recent history of the
stream, that is, the last L transactions, in fixed-size intervals, and estimate the
item frequency counts for each one of these windows. This scheme allows us to
answer queries even if they are not aligned to the interval boundaries; in this
case, we provide an approximate answer.

However, the drawback of this approach is that the memory requirements
are rather high. For L >> 1, we need to keep information on a large num-
ber of intervals. Note that the number of intervals is also directly related to the
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accuracy of the query answers we can provide. Therefore, reducing the memory
requirements comes at the cost of performance.

In order to overcome the above limitation and efficiently solve the RFI prob-
lem, we propose the use of tilted-time window intervals. (Similar approaches have
been studied in other applications as well [3,5,8,25]. Though, as we describe later
on, we propose novel operation schemes that allow our algorithms to offer sig-
nificant performance improvements.) Under this scheme, we divide the history
of the stream in increasingly larger intervals as we move in the past (result-
ing in more accurate item frequency estimations for the most recent window
intervals, and increasingly less accurate for the window intervals further in the
past). Therefore, we can significantly reduce the memory requirements, while
still being able to answer queries from different time horizons. In the algorithms
we propose, we assume logarithmic tilted-time windows, where each subsequent
older window interval is twice the size of the previous interval. In this case, we
can cover the entire space of L transactions with just K = log L windows.

In the following section, we describe algorithms that efficiently and effectively
solve the RFI problem, using the tilted-time windows scheme. We also propose
techniques that can significantly improve the accuracy of the algorithms using
the same amount of memory. These improvements are more pronounced for
queries involving the older, larger window intervals. Thus, we effectively alleviate
the disadvantage that the tilted-time windows have on the intervals referring to
stream values further in the past.

4 Algorithms for Recent Frequent Items

In this section, we present algorithms for the RFI problem. We start by briefly
describing the main skeleton of the algorithms, which is the same for all of them.
Subsequently, we discuss in more detail specific features of each algorithm, and
the benefits it brings along.

As we mentioned earlier, we use the hCount sketch in order to estimate the
frequency counts within a given window interval. The hCount algorithm [17]
maintains an array of M × H counters, where M and H are parameters deter-
mined by the data characteristics and the allowed error. The algorithm uses H
hash functions that map the occurrence of an item to H of the counters, which
are subsequently incremented by one. The estimate of an item’s frequency is
computed as the minimum value of all the counters to which the item maps.

In our case, instead of a single window interval, the algorithm has to oper-
ate with K intervals. These windows follow a tilted time-frame as follows. The
first window, w0, covers the b most recent stream values, that is, transactions
Tn−b+1, . . . , Tn. The parameter b defines the size of w0, and is called batch size.
The second window, w1 is also of size b, and covers the next b transactions.
Then, the size of each subsequent window is double the size of the previous
one. In general, the size of the i-th window is given by the formula wi = 2i−1b,
0 < i < K.
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Fig. 1. Tilted-time windows

Let n :=current transaction number
b := batch size

When new transaction Tn arrives:
1 use hCount to determine the set of counters C related to Tn

2 for each counter in C
3 update the counts of c
4 if (n mod b) == 0
5 call PerformShift()

When query for frequency of item i in window interval [tq
min,tq

max] arrives:
6 use hCount to determine the set of counters C corresponding to Tn

7 call GetFreqEst(C,[tq
min,tq

max])

Fig. 2. Main skeleton of the proposed algorithms

In order to account for all K window intervals, we extend the hCount sketch
to an array of M ×H×K elements by replacing each one of the M ×H counters
cm,hin the original structure with an array cm,h[] of K counters, for 0 ≤ m <
M , 0 ≤ h < H3. These arrays of counters correspond to the K windows, as
shown in Figure 1. The first element (in some cases also the second, as we will
explain later) of these arrays, c[0], stores the counts for newly incoming stream
values (according to the hCount algorithm). The subsequent elements store the
historical values of the counts that refer to the corresponding window interval.
In essence, they keep track of the history of the item frequencies.

There are two main operations that we need to have in place (outlined in
Figure 2). First, the shifting of the counter values c[] so that they correspond to
the current window intervals. This operation is triggered every time the window
that receives the new stream values gets full, that is, every b transactions. Second,
the item frequency estimation mechanism, used to provide the estimate of an
item frequency within a given window interval.

In the next sections, we describe in more detail different solutions that we
propose for the above two operations.

3 For the remainder of the text, we omit the indices m, h when we refer in general to
the array of counters c[].
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4.1 Basic Algorithm

The straightforward approach to implement the shifting operation is to use inter-
mediate windows (and corresponding counters). As shown in Figure 3, the coun-
ters corresponding to the first window, c[0], are always receiving the new data
(depicted in gray), and counter values shift sequentially every b transactions.

Fig. 3. Shifting with Intermediate Windows (batch size b = 10). Gray boxes denote
windows receiving new stream values.

Answering item frequency questions in this model is simple as well. When a
query for the frequency of an item in a specific window interval wq comes in, we
identify the counters that store information on time intervals overlapping with
wq, and we sum the estimates from these counters. Note that if the query interval
wq is not aligned with the counter time intervals, then we introduce errors in the
estimation, since we are counting frequencies over intervals that do not belong
in the wq (this is true for the two ends of the query interval).

The advantage of this algorithm, which we call NaiveCount, is its simplicity.
Though, this advantage comes at the expense of memory (for the intermediate
windows). The required memory for NaiveCount is (2K − 1)S, where K is the
number of windows and S is the memory required by hCount (or any other
similar technique that can be used here), and the number of shift operations is
in the worst case K. In the following sections, we show how we can reduce the
memory requirements, while at the same time improving the accuracy of the
results.

4.2 Reducing the Memory Requirements

We observe that we can reduce the memory requirements of the algorithm by
discarding the intermediate windows. Under the new shifting scheme (see Fig-
ure 4), we keep track of which counters correspond to which window intervals,
which allows us to directly move counter contents to the next window. (We also
employ lazy shifting, by allowing also the second window to process new stream
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Fig. 4. Shifting without Intermediate Windows (batch size b = 10). Gray boxes denote
windows receiving new stream values.

values, thus, only shifting contents when necessary and saving some shift op-
erations.) In this case, the memory requirements are KS (K is the number of
windows and S the size of the sketch), while the number of shift operations is
in the worst case K.

Even though this algorithm, TiTiCount, needs almost half the amount of
memory of NaiveCount by not using any intermediate windows, the accuracy
of its results is not affected. This is because the intermediate windows are only
used to facilitate the shifting operation.

What is more interesting is that with TiTiCount we can actually improve the
accuracy of the results. In NaiveCount, we notice that whenever the edges of
the query window wq are not aligned with the edges of the window intervals
corresponding to the counters c[], we introduce an error in the results. Consider
query q with wq = [100, 950] of Figure 6. The edges of wq are not aligned with the
edges of w4 and w0. Nevertheless, for the calculation of the result NaiveCount
will consider the counts corresponding to the entire intervals w4 and w0, even
though part of them falls outside wq.

TiTiCount resolves this problem, and only takes into account the portions of
the windows that are covered by the query. This is achieved by considering in
the result the weighted fraction of the estimate provided by the counters c[] that
corresponds to the fraction of the counter window overlapping the query window.
In this work, we apply a linear model in this computation (i.e., the fraction
is directly computed as the amount of overlap), but other, more sophisticated
techniques can be applied (e.g., even limited knowledge on the distribution of
the frequencies within a window could lead to an even more accurate non-linear
model). However, as we show in the experimental evaluation of the algorithms,
this simple idea improves the quality of the results substantially.

4.3 Exploiting Redundant Information

Taking a close look at the shifting operation, we observe that during specific
time intervals, information pertaining to the same data stream transactions is
stored in more than one counters at the same time. For example, referring back
to Figure 4 (example of shifting for TiTiCount), we observe that information
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Fig. 5. Value added shifting (batch size b = 10). Gray boxes denote windows receiving
new stream values.

regarding transactions 1 − 20 is stored both in c[2] and c[3] (see bottom of
the figure). Note that the counters do not store the same information, as c[3]
corresponds to a larger time interval than c[2]. Nevertheless, there is a certain
amount of information redundancy, and in the following paragraphs we explain
how the TiTiCount+ algorithm uses it in order to further improve the accuracy
of the results.

In order to exploit the above side-effect of shifting, we modify the shifting
operation as follows. We no longer employ the lazy shifting scheme used by
TiTiCount, but instead have the first window process all the new data stream
transactions. This results in an increased number of shift operations, which in
the worst case can be as many as K(K − 1)/2. However, the required shifts are
on the average much less, and as we empirically demonstrate, the additional cost
in the total running time is very small. The memory requirements are the same
as before, namely, KS.

When we apply the above shifting mechanism, the way the various window
intervals are placed with respect to each other is governed by the following
properties4.

Lemma 1. [Window Property 1] If two window intervals overlap, then the
smaller window interval is completely contained in the larger one.

Lemma 2. [Window Property 2] All window intervals that overlap have one
common boundary, and this common boundary is the most recent edge of these
intervals.

The above properties are very important, because they constitute the base of
the query answering algorithm. The main idea of the algorithm is to always
use the counters corresponding to the smallest possible window interval in order
to estimate some frequency count. When a query wq comes in, it is split into
subqueries wsq1 , . . . , wsqj , . . . , wsqJ that align with the boundaries of the counter
window intervals. Then, results for each subquery are derived as follows.

4 In the interest of space, we omit the proofs, which can be found in the full version
of this paper.
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– Smallest Interval: If wsqj can be answered using multiple counters then use
the counter that corresponds to the smallest window interval to compute the
result.

– Subtraction Operation: If the window interval, wl, of the counter that is to
be used to answer wsqj overlaps with a smaller window interval, ws, then
subtract the values of the ws counter from the wl counter, and subsequently
compute the result.

The above steps lead to correct results, because the properties stated in Lem-
mata 1 and 2 ensure the window intervals are aligned in such a way that the
subtraction operation is feasible. The following example explains how this algo-
rithm works.

Example 1. Assume we have five window intervals, w0, . . . , w4, and that the
current transaction number is 990, as shown in Figure 6. A query q comes in,
asking for frequent items in interval [100, 950]. The algorithm splits q in five
subqueries, according to the boundaries of the window intervals with which it
overlaps. Then, the algorithm computes frequency estimates for each subquery
as follows. The estimate for q5 is derived from the w0 counter by applying the
weighted fraction model (i.e., the estimate will be (950−901+1)/(990−901+1)
times the result returned by the counter). Frequency estimates for q4 and q3 are
derived directly from the counters of intervals w1 and w2, respectively. For q2,
the estimate is directly computed after subtracting the values of the w2 counter
from the w3 counter. Finally, for q1 the algorithm first subtracts the values of the
w3 counter from the w4 counter, and then applied the weighted fraction model,
since q1 is not interested in the first 100 transactions of w4.

We can now demonstrate the advantage that the subtraction operation provides
to TiTiCount+ for producing estimates with significantly improved accuracy,
when compared to TiTiCount. Using the same example as above, assume that
all the items in the interval [1, 400] have the value x, and all the items in the
interval [401, 990] have the value y. Suppose, a query comes that asks for the
frequency of value y in interval [1, 400]. In this case, TiTiCount will use just
the w4 counter with the weighted fraction model, returning an answer of 200.
On the other hand, TiTiCount+ will subtract the contents of the w3 counter
from those of the w4 counter, and correctly return 0 as an answer. Evidently,

Fig. 6. Example of query answering for TiTiCount+
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this advantage of TiTiCount+ is magnified when the distribution of the values
in the data stream change over time.

5 Experimental Evaluation

We implemented our proposal and conducted a series of experiments to evaluate
the efficiency of our techniques in a variety of settings. Apart from the three
algorithms we describe in this paper, we also implemented algorithm Linear
to compare against our approach. Linear is similar to TiTiCount, except that
instead of tilted time window intervals, it uses window intervals of fixed size.

In our experiments we used both synthetic and real datasets. The synthetic
datasets we used were generated according to a Zipfian distribution with Zipf
parameter 1.1, unless noted otherwise. We generated datasets with up to 100
million items, with both stationary and non-stationary distributions. The real
datasets we used were as follows.

– kosarak [1]: It consists of anonymized click-stream data of a Hungarian online
news portal, expressed as a sets of integers. It has about 8 million individual
items.

– retail [4]: It contains retail market basket data from an anonymous Belgian
store. This dataset has about 0.9 million individual items.

We implemented all our algorithms in C using the gcc compiler under Linux
Fedora Core 5. The experiments were run on a dual Intel Xeon 2.8Ghz machine.

5.1 Evaluating the Accuracy

In the first experiment, we compare the algorithms NaiveCount, TiTiCount, and
TiTiCount+ in terms of the accuracy of the results they provide. We measure
recall, defined as the percentage of the true frequent items that are found by
the algorithm, and precision, defined as the percentage of items identified by
the algorithm that are truly frequent. We ran experiments using several query
window intervals, where in each interval we were looking for the frequent items
(φ = 0.005). In Figure 7, we report the results for nine of these queries (the
results for the rest of the queries we tried were similar). The queries we used as
test cases are listed in Table 2 (we report the boundaries of the query window
intervals). All experiments used a batch size b = 1, 000, they were repeated 15
times, and results were averaged.

Figures 7(a) and 7(b) show the recall and precision for the three algorithms,
when run over a dataset with a stationary distribution. We observe that all three
algorithms have virtually perfect recall rates. However, precision varies. TiTi-
Count and TiTiCount+ average precision rates close to 90%, with TiTiCount+
performing slightly better. The performance of NaiveCount is notably worse,
averaging a mere 45%.

In Figures 7(c) and 7(d), we show the results of the same experiment, when
run over a dataset with time-variant distribution. In this case, the stream was
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Table 2. Query window intervals used as test cases

n=50000 n=60000 n=70000
No. tq

min tq
max No. tq

min tq
max No. tq

min tq
max

1 5000 45000 4 5000 55000 7 20000 45000
2 35000 45000 5 35000 55000 8 40000 55000
3 25000 40000 6 5000 50000 9 40000 65000

generated by concatenating several small datasets. These datasets were all gen-
erated by sampling a Zipfian distribution, but each one of them had a different
set of frequent items.

These experiments represent a more challenging setting for our algorithms,
and the results demonstrate the qualitative difference among them. TiTiCount+
is consistently the best performer among the three, with significantly better per-
formance than TiTiCount in several cases. The NaiveCount algorithm performs
very poorly in terms of precision, which explains its high recall rates.

The reason TiTiCount+ produces even more accurate results than TiTiCount
for the time-varying dataset is because the TiTiCount algorithm relies solely on
the weighted fraction mechanism to arrive at frequency estimates. Evn though
this is an improvement over the NaiveCount algorithm, this mechanism works
well only for stationary distributions, where the item frequencies remain rela-
tively stable across different window intervals. In contrast, TiTiCount+ using
the subtraction mechanism can effectively alleviate this problem and produce
better estimates. This explains the large difference in performance observed in
test cases 7 − 9.

(a) (b)

(c) (d)

Fig. 7. Performance on time varying and non-varying data distributions
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We also performed tests by varying the skew parameter of the Zipfian dis-
tribution. The trends in these experiments are similar, and we omit them for
brevity. For the remainder of the discussion, we do not consider the NaiveCount
algorithm.

In the following experiment, we tested the performance of the algorithms as
a function of the size of the query window interval, and we also compare them
to Linear. We use Linear only as an indication of how good the performance
of our algorithms would be if they had enough memory to use fixed- instead
of tilted-time window intervals. For our experiment, batch size b = 1, 000, and
number of windows K = 11. This means that our algorithms can answer queries
about item frequencies for the past 1, 000, 000 transactions. In order for Linear
to be able to answer the same class of queries, we have to use 1000 windows
(for window size equal to b), which requires two orders of magnitude more space
than our algorithms. We also compared against LinearConst, which the Linear
algorithm that is given the same amount of space as our algorithms (resulting
in a window size of 100, 000).

The experiment was run on the kosarak dataset, using 120 randomly gener-
ated queries following a Gaussian distribution (mean 9N/10, stddev N/8). Fig-
ures 8(a) and 8(b) depict the results of the experiment for recall and precision,
respectively. The graphs show that TiTiCount+ outperforms TiTiCount across
the entire range of query sizes. It is interesting to note that while TiTiCount
exhibits a steady recall rate across the experiment, TiTiCount+ improves its per-
formance as the size of the queries increase. This happens because larger queries
are more effectively managed by the subtraction mechanism of TiTiCount+.

As expected, LinearConst performs the worst (its somewhat high precision
numbers are explained by the low performance in recall), and Linear is almost
always the winner in both metrics. Note though, that the performance of TiTi-
Count+ is very close to Linear, which demonstrates the effectiveness of the
subtraction mechanism.
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Fig. 8. Performance with respect to query width (dataset: kosarak, batch size b =
1, 000)
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5.2 Finding Top-k Items

In some situations, it is desirable to know the top-k most frequent items in a
stream, or their cumulative frequency. Our algorithms can be adapted to deter-
mine those values. In this experiment, we tested TiTiCount+ for the accuracy
of the estimated frequencies of the top-k items, and compared its results to the
exact answers.

Similar to the previous experiment, we ran random queries of different sizes,
asking for the cumulative frequencies of the top-k items, for several values of
k. The results are illustrated in Figure 9, for both real datasets. The top-k
items were correctly identified in all cases. The graphs show that the cumulative
frequencies reported by TiTiCount+ were consistently very accurate (less than
0.05% error for our experiments).
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Fig. 9. Top-k items: Estimated and actual cumulative frequencies

5.3 Scalability

In order to evaluate the scalability of the proposed algorithms, we ran experi-
ments to measure the update times of TiTiCount and TiTiCount+. The update
time is the time required to update the internal data structures every time a
new transaction arrives, including shifting operations We tested the algorithms
with data streams of 100 million transactions, and we report the cumulative
update time in Figure 10. The reported times are averages over five independent
runs. The results show that both algorithms scale linearly with the number of
transactions, with TiTiCount+ being slightly less efficient, because of the higher
worst case cost of the shift operation that it implements.

6 Related Work

In the recent years, numerous studies have focused on problems related to
streaming data, ranging from practical applications to theoretical questions
[16,24]. There is a wealth of work on the problem of identifying frequent items
in streaming data. The Frequent (FREQ)[18] and the Lossy Counting (LC)[23]
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algorithms maintain a number of counts, which are pruned as new items ar-
rive in the data stream. Other algorithms, such as Combinatorial Group Testing
(CGT) [11], Count-Min (CM)[10], CCFC [7] and hCount (HC) [17] are based on
sketches. The sketches are designed so that they provide accurate results for the
frequent item discovery problem, while requiring limited memory resources.

The important difference between these works and our approach is that we
want to be more flexible in identifying frequent items, placing more importance
on recent frequent items. For mining recent frequent items, an intuitive approach
is to use time-decaying approximations. This technique has been used in several
diverse areas, such as online time series summarization [25,5], streaming data
clustering [3], and data warehousing [8].

Other works have studied the problem of efficiently identifying and maintain-
ing frequent itemsets over streaming data [6,9,20]. In this case, we are interested
in sets of items that appear frequently together. Specialized techniques and al-
gorithms have been developed for the solution of this problem. Some of these
works are also based on sliding windows [21], or tilted time windows [14], in
order to focus on the transactions in the recent past of the data stream. The
FP-Stream approach [14] uses a tilted timeframe similar to our work. However
it makes use of the FP-Tree structure, which has been specifically designed for
itemsets, rather than items. An efficient implementation of the above approach
for the problem we solve in this study is not straightforward. Moreover, in our
work we describe novel shifting schemes for the tilted timeframe, which are used
by TiTiCount+ in order to deliver significant performance improvements.

7 Conclusions

The problem of frequent item identification has attracted lots of attention in the
past years, and has found many interesting applications across diverse domains.
This work is motivated by the need of many real-world applications to identify
frequent items in the recent past of a data stream, rather than over the entire
history.
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In this paper, we propose novel algorithms for the discovery of recent frequent
items in a data stream. The proposed algorithms are based on the sketching
technique, and are very flexible in that they are designed to answer queries for
frequent items in ad hoc window intervals in the recent past of the data stream.
Based on our observations, we also describe extensions of the basic algorithm that
can significantly improve the accuracy of the query results, while maintaining
the same memory usage and at negligible additional processing cost.

We have evaluated the performance of the proposed techniques on real and
synthetic data streams. The results show that the algorithms can efficiently
operate using few space and time resources, while maintaining a high quality
approximation in query answering.
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Abstract. Existing approaches to the management of streaming posi-
tional updates generally assume that all active user requests have equal
importance, ignoring the possibility of any priorities concerning deliv-
ery of results in mission-critical mobile applications. Query prioritization
could be assigned either explicitly after users’ preferences or implicitly
by the processing engine itself to better regulate system load. In this
work, we specifically examine priority-based evaluation of ranked con-
tinuous range queries against locations of moving objects streaming into
a central processor. We define a versatile model with alternative scor-
ing functions for deciding evaluation strategies adaptable to the relative
importance of queries and the current distribution of objects. We also
propose a processing mechanism enhanced with ranked priorities, which
exploits shared computation and enables critical requests to receive re-
sponse more frequently than less demanding ones. A comprehensive ex-
perimental study with performance results offers concrete evidence that
such a scheme is capable of efficiently handling numerous moving queries
of varying priorities and spatial extents with minimal system overhead.

1 Introduction

Proliferation of location-enabled mobile devices (like phones, PDAs, or GPS)
has given rise to many modern monitoring applications, such as location-based
advertising, car navigation systems, smart tourist guides, wildlife protection sys-
tems etc. From a data management perspective, the main challenge is to cope
with streams of massive positional updates that arrive to a central server from nu-
merous moving sources (e.g., humans, animals, or machines) at high rates. This
information cannot be easily managed in a typical spatiotemporal database, and
not just because of the enormous bulk of data that keep steadily accumulating.
It is mainly the necessity to provide real-time response to several long-running
user requests that calls for immediate handling and online processing of the
incoming data items. Several types of such continuous queries have recently at-
tracted much research interest, particularly range [2,14] or k-nearest neighbor
search [13,20], and skyline computation [12]. Most approaches adhere to a ”push-
based” model for processing streams of moving objects’ locations. For instance,
considering continuous range search, it is the arrival of positions that triggers

B. Ludäscher and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, pp. 240–257, 2008.
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reevaluation of queries covering them. In contrast, according to a ”pull-based”
policy employed by traditional DBMS’s, queries should check incoming locations
and compute their own answer.

In this paper, we turn our focus on evaluating continuously moving range
queries that also indicate a user-defined preference to receiving results promptly
or frequently. This degree of interest is expressed with a (possibly time-varying)
rank value associated to each request. A high-ranked query indicates that the
user needs urgently or frequently information about objects within her area of
interest. In contrast, a small rank value signifies a lower priority for this query,
i.e., the client is content to receive notification less often. It is plausible that
emergency messages asking for ambulances, police cars, fire brigade automobiles
etc., should be prioritized over other requests searching for restaurants or bars
in a certain area. Of course, a user may submit multiple requests with diverse
ranks, implying that some of them are urgent, while others may be answered
with a short delay or even less frequently.

Besides, it is most likely that overlapping areas of interest among many range
queries offer opportunities for common processing, while requests that are spa-
tially isolated clearly call for separate handling. Hence, the central server may
deliberately assign priorities among active queries; e.g., by giving precedence to
areas with a high concentration of queries, multiple requests could be processed
faster. In that case, queries would be scheduled for execution so as to better
utilize available resources and not on the basis of their perceived significance.

Our objective is to investigate priority-based evaluation strategies that take
into account a user-specified importance of queries. A näıve execution scheme
would be to process each query separately in descending rank order, each time
starting from the top-ranked request. Apart from wasting resources, it is also
probable that low-ranked queries would hardly get any response as soon as the
incoming rate of positional updates escalates or the system gets overwhelmed
with too many pending requests. With a constant demand for timely results, the
processing engine might be forced to drop tuples or ignore requests.

Thus, we opt for solutions that intend to share computation among queries,
while still respecting their rankings. In order to exploit common spatial pred-
icates, we organize a simple, yet flexible grid partitioning for indexing both
queries and locations. Accordingly, we are able to organize greater groups of
range queries with a collective rank value that can be used to guide prioritized
examination of requests. Among the designing principles of the system is that
it should answer queries reasonably often and always provide fresh results com-
puted against recently recorded object locations and query ranges. Fairness is
another concern, such that high-ranked requests are not extremely favored to the
detriment of the rest. A wise policy could also take into account object density
when deciding execution priorities. The major challenge, though, is robustness;
this framework must successfully cope with an increased number of objects and
queries that are both moving continuously.

Overall, this paradigm suggests that queries should not necessarily be given
equal importance when processed in location-based monitoring applications. To
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the best of our knowledge, this is the first work that attempts evaluation of
prioritized moving queries over streaming positional updates.

The contributions of this work can be summarized as follows:

– We introduce a ranking model with several scoring functions that offer col-
lective assessment for the spatial distribution of query priorities, as a means
of identifying regions that involve many important queries.

– We suggest alternative strategies that prioritize evaluation of queries in
greater groups according to their aggregated rankings.

– We conduct extensive experiments with large datasets to validate rank-aware
execution policies and demonstrate the capabilities of this framework.

The remainder of this paper is organized as follows: Section 2 briefly reviews
related work. Section 3 outlines the general processing framework and the under-
lying spatial index. Section 4 discusses the salient characteristics of the ranking
model and examines alternative scoring schemes. In Section 5, evaluation strate-
gies are introduced, along with a measure for the quality of service achieved.
Experimental results are reported in Section 6. Finally, Section 7 concludes the
paper and offers directions for future research.

2 Related Work

Abundance of available data in real-world applications requires some type of
ranking for its efficient retrieval [10]. Ranked search in databases refers mainly
to top-k query answering [1], which intends to limit the cardinality of results
according to a user-specified parameter k. This trend has been particularly in-
vestigated with respect to rank-aware query optimization, for proper selection
of cost-effective query plans (e.g., for joins [7]).

A new paradigm for personalized queries in databases [8] takes advantage of
users’ profiles in order to provide most relative answers. A generalized model
[9] for combining and selecting preferences is utilized for generation of ranked
results. Although we make use of two ranking functions suggested with this
model, our starting point and objectives are utterly different; in our approach,
users specify priorities for queries and not preferences to particular pieces of
information, so evaluation proceeds in quite different fashion.

In [15], the novel concept of quality contracts is used to combine users’ pref-
erences for both Quality of Service (QoS) and Quality of Data (QoD) for data-
intensive web sites, where users require short response times for queries and
freshness of information. Quality contracts are defined with step and linear
functions that specify time deadlines and freshness constraints. The proposed
two-level technique initially allocates processing resources between queries and
data updates, but then it allows queries and updates to have their own priorities.
Our spatiotemporal scenario differs a lot, as we consider that object locations
are always kept up-to-date and have no preferences; furthermore, our interest is
in maximizing QoS by sharing computation among queries, also making use of
suitable ranking functions to combine priorities.
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Recent works on data streams address effective load shedding in a distributed
mobile setting [3] or consider prioritized transmission to a central portal of query
results computed locally at numerous sensor nodes [21]. In the former approach,
the objective is to shed differing amounts of data from distinct regions in order
to minimize total error in results, so the notion of a user-assigned importance
for the submitted requests is disregarded. In the latter framework, prioritiza-
tion mainly signifies delivery order for results, but without sharing computation
among queries running at the same priority level.

Generic frameworks [6] for continuous monitoring or moving objects or sophis-
ticated algorithms for specific query types (e.g., [4,13]) do not consider priorities
of requests over streaming locations. The novelty of this work is that we empha-
size on prioritized query evaluation and not at all on delivering ranked query
results. In our context, ranks and priorities1 affect strictly to the execution order
of queries in the central processor; we do not intend to return the top-k objects
found within the range of a given query, but to provide response to queries as
frequently as their rank prescribes. Nor are we interested in rating the ”im-
portance” of data, according to some kind of preferences, as needed in several
decision-making applications [18]. Our approach also distinguishes itself from
the usual notion of ranking in spatial databases, utilized as a means of sorting
objects according to their increasing distance from a query point [5].

3 Processing Framework

3.1 System Model

We assume a central processor capable of monitoring numerous objects moving
in a given area (e.g., vehicles circulating in the road network of a city). At regular
intervals, each object oid sends a message to the server, informing about its cur-
rent position. This message may be considered a tuple of the form 〈oid, xi, yi, τ〉,
where τ is a timestamp value that denotes the time when 2-d point coordinates
(xi, yi) were actually measured for that object. There is no distinction of class
or importance among objects, so all are treated in equal terms.

On the other hand, users are able to register queries that search for objects
falling within a specified range. For simplicity, we assume that all query ranges
are rectangles, but any other polygonal area could be defined as well. An im-
portant characteristic is that query ranges may be moving as well, exactly like
objects. Queries are also specified as tuples 〈qj , aj, ρj , τ〉, signifying that query
qj will investigate spatial area aj for qualifying locations at time τ . Each query
qj is also assigned a rank value ρj ∈ [0..1] that expresses the degree of user’s
interest to get a quick or frequent response (Fig. 1a). Ranks close to 1 denote
urgent requests asking for immediate response, while values close to 0 mean that
users do not really care too much about how soon they will receive an answer
and how often this information gets refreshed. Query rankings are amenable to
dynamic changes with time, so users can modify their preferences at will.
1 In the sequel, terms ”priority” and ”rank” of a query are used interchangeably.
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Multiple continuous queries may be active at any given time, each one with
varying specifications concerning current range and rank. We assume that at
a given time instant τi, the current system workload includes M queries and
receives messages from N objects in total. Usually M < N , but in practice this
workload may fluctuate across time. However, location updates exhibit a se-
quential pattern, hence delayed or out-of-order items never appear at incoming
streams of object positions or query ranges. Commonly to a streaming scenario,
the arrival rate of object locations and query specification updates could surpass
the processing rate of the system. Hence, it may occur that some requests will
be left unanswered for some time or locations will be dropped without process-
ing them (load shedding). Alternative strategies are needed to provide reliable
response to as many queries as possible and also respect their priorities.

We opt for a processing policy that runs periodically in execution cycles (as
in [11,19]), each one lasting for a predefined time granule T , i.e., an interval that
spans between successive clock ticks (like heartbeats in [17]). At the beginning
of a new cycle i, we assume that fresh location and query updates are available
for processing and they all refer to the same heartbeat. Therefore, updates get
admitted in waves and all items in cycle i are associated to the same timestamp
value τi. Although in practice it cannot be expected that all sensor readings
have been simultaneously collected, we assume that data given for processing
are always synchronized, after mapping detailed time indications to the coarser
time granule utilized by the system. For instance, incoming items may have
timestamps expressed in milliseconds, but they will be rounded to seconds, if
execution cycles are scheduled each second (T = 1 sec). So, queries will be
definitely examined against the same object locations and will provide valid
answers referring to the most recent time instant.

3.2 Spatial Indexing

In presence of numerous objects and queries that continuously change their spa-
tial features, an indexing method is apparently required to speed up range search.
Traditional spatial access methods suffer from the increased rate of updates in-
herent in positional streams, so the execution model must be modified (e.g.,
[14]). As in other recent approaches (e.g., [13,20]), we preferred an index based
on regular grid partitioning of the Euclidean plane. This static subdivision into
c × c rectangular cells is common for object locations and query rectangles and
it covers the entire area of interest E where they actually move.

At every timestamp value τ , all current object locations and query rectangles
are hashed against grid cells. Each object can only appear in one cell, but a
query may affect multiple cells; depending on grid granularity, a query rectangle
may be covering a cell in total or overlapping it in part (Fig. 1b). Thus, each cell
maintains a list of point locations currently found inside its area and a separate
list of all queries it overlaps with. Cell contents concerning previous time instants
need not be retained, since queries always ask for currently recorded locations.

To evaluate a query, those grid cells that overlap with its rectangle are firstly
identified. For cells completely within query range, we can readily provide their
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(f) Inflationary

Fig. 1. (a) Snapshot with N = 50 objects and M = 10 range queries with varying ranks.
(b) Spatial indexing using a regular grid partitioning into 8 × 8 cells. (c) Dominant,
(d) normalized, (e) average and (f) inflationary scoring functions for ranking cells.

associated object locations as a response. For partially covered cells, their related
objects must be probed against the query rectangle to discover the qualifying
ones. In line with the well-known technique of ”filter-and-refinement” [16], this
indexing structure identifies candidates just about the specified range and thus,
prunes the search space considerably.

4 Ranking Model

Conforming rigorously to user-specified query rankings under limited system
resources, would always favor processing of top-ranked queries at the expense of
many starving requests of lower priority that would rarely be given the chance to
execute. In this section, we develop a model that estimates a collective ranking
of multiple queries in order to better organize their examination in groups of
common interest and classified importance.

4.1 Rank Aggregation for Multiple Queries

To avoid penalizing the majority of user requests to the advantage of very few
high-ranked ones, we consider several alternative scoring functions that examine



246 K. Patroumpas and T. Sellis

a set of range queries overlapping with a given cell and return a collective query
rank. This single value characterizes the entire cell area and offers a coarse es-
timation of the combined importance for all its associated requests. In essence,
we perform a mapping from the set of rank values of numerous range queries
to a much smaller set of scores assigned to spatially disjoint areas. When it
comes to processing, instead of trivially evaluating each query individually, we
may examine each cell in turn and identify qualifying object locations for all its
related queries. Visiting order for cells is influenced by their collective rank, so
evaluation at each cycle will most probably start from areas with higher density
in urgent requests. Assuming that a mixture of queries with diverse ranks would
appear in each cell, it is evident that even lower-priority queries could have a
fair share in processing if they pertain to higher-priority areas.

However, queries are continuously moving and their rank may be subject to
possible fluctuations across time. Hence, each cell may involve a different set of
queries at every execution cycle, so its collective rank must be constantly up-
dated. The chosen scoring function should be easy to calculate even for increased
number of queries with varying ranks. Collective query rank of a cell is computed
by taking into account range queries that fully cover or partially overlap with
its area. Next, we suggest a family of representative scoring functions:

i) Dominant. This scheme dictates that collective rank of a cell ck is equal to
the highest priority among those currently assigned to its associated queries:

σ(ck) = max
qi∈ck

(ρi) (1)

The rationale behind this function is that a very urgent request should prevail
over others in the same cell and get precedence at any cost, no matter if the
remaining queries are not so critical. Thus, a high-ranked query that covers
several cells will give increased priority to all of them, even if some cells involve
only few queries or have requests with rather low rank values. As a side-effect,
such a choice could perhaps diminish the relative importance of other urgent
queries except for the top-ranked one. However, by identifying the most pressing
request in each cell, this function offers a clear view of the observed magnitude
of rankings across the entire area of interest (Fig. 1c).

ii) Normalized. Towards an unbiased assessment on the distribution of query
rankings in cells, this model emphasizes on the relative importance of each cell
with respect to the cumulative ranking of entire query workload Q. Specifically:

σ(ck) =

∑
qi∈ck

ρi∑
qj∈Q ρj

(2)

Hence, cells are characterized by the regularized total intensity of rankings ob-
served therein. This function conveys a proportional propensity, attempting to
examine cells with impartiality and to weigh them up with respect to total de-
mand. According to this formula, a cell with a single high-ranked query may
be of similar priority to another cell overcrowded with queries of little interest
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(Fig. 1d). Note that, although a single query rank value may contribute to many
cell scores, it holds that the computed ratio σ(ck) ≤ 1 for any grid cell ck.

iii) Average. This function suggests an egalitarian approach, by striking a
balance in each cell between the amount of local query workload and the sum of
their ranks. Such a policy can be simply expressed as the average value of query
ranks per cell, assuming that mk queries currently overlap with a given cell ck:

σ(ck) =
1

mk
·
∑

qi∈ck

ρi (3)

This objective ratio tends to smooth down the effect of extreme ranks (Fig. 1e).
Yet, abundance of many low-ranked queries could prevent early execution of an
urgent request that also appears in the same cell, due to its flattened score σ(ck).

iv) Inflationary. In contrast to previous ones, this function favors especially
query ”clusters” of greater interest. The more high-ranked requests present in a
given cell, the more increased its inferred score should become. More formally:

σ(ck) = 1 −
∏

qi∈ck

(1 − ρi) (4)

In essence, queries of higher priority are given superior influence on overall cell
score. Presence of many such queries would probably boost aggregated ranks
close to 1, potentially exceeding the maximum rank value assigned to any query
overlapping this cell (Fig. 1f). Note that such ”inflationary” [8] scores get more
pronounced with higher rank values and considerable query workload.

Discussion. Overall, these functions aim at a hierarchical treatment of rank-
ings, by capturing their actual trend and characterizing cells accordingly. With
the exception of the dominant model, all other schemes also depend on the num-
ber of active queries, as well as on the distribution of their current rank values.
Of course, many other schemes could have been devised, e.g., by taking the me-
dian of rank values in each cell or applying a ”reserved” behavior [9]. There
is no clear rule concerning which function is more suitable for assessing query
rankings collectively, since they have similar computational complexity. As we
experimentally verified (Section 6), inflationary and dominant models generally
cope better with diverse query ranges compared to regularized functions (nor-
malized, average). Proper choice of scoring function may be affected by the actual
workload and the rank patterns of registered queries, but it chiefly depends on
the operational goals of the application at hand.

4.2 Determining Cell Ranking Scores

Notwithstanding the crucial role of rankings, successful evaluation of queries also
depends on the observed pattern of object locations. This sounds fair enough,
since concentration of many objects may constitute a potential trend that re-
quires notification before long, even for a few low-priority queries.
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(c) Combined

Fig. 2. Cell classification according to scores computed with an inflationary function
(rankings as in Fig. 1), assuming that significance of queries is twice as much as that
of objects. Graduated gray color reflects the magnitude of inferred cell ranking scores.

Therefore, prioritization should ideally strike a balance between query rank-
ings and object distribution, so we adopt a composite model for deciding the
final cell rankings. Let a grid cell ck with mk queries and nk objects located
there at timestamp τ . The estimated importance of this cell is expressed by its
ranking score βk, which is based on three factors:

1. A collective query rank σ(ck) of requests pertaining to this cell, as captured
by the chosen scoring function. Intuitively, the more high-ranked queries
currently present in a cell, the more increased its ranking should become.

2. The percentage Pk = nk

N of objects currently located within ck. All cells
have equal areas due to uniformity of grid partitioning, hence this fraction
expresses the present density of moving objects in a cell. In most typical
object distributions, some cells are expected more crowded than others, so
their Pk value will be higher. Note that all objects are assumed equally
important with no particular preference assigned to them, since ordering
results in not needed for range queries.

3. A system-wide regulation parameter λ ≥ 0 used to leverage the relative im-
portance between the set of queries and the set of objects during processing.

We suggest three alternative options for determining cell ranking scores:

i) Balanced Score. The overall ranking score of cell ck can be calculated as:

βk = λ · σ(ck) + (1 − λ) · Pk (5)

where parameter λ ∈ [0..1]. If λ = 1, the final cell score will take into account only
query ranks, ignoring object distribution altogether. Smaller λ values indicate
an increasing influence of objects into the final ranking scores. In case that
λ = 1/2, objects and queries are treated in equal terms for computing the final
score. If λ > 1/2, then query rankings are considered more important than object
densities, hence their increased influence on final cell scores (Fig. 2a illustrates
cell scores when λ = 2/3). In case that λ = 0, rankings are completely ignored,
and query prioritization is based solely on current object distribution.
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ii) Harmonic Score. Another scheme for assessing overall ranking score can
be based on the weighted harmonic mean of queries and objects currently in the
cell (reminiscent of a performance measure from Information Retrieval [10]):

βk =
(1 + λ) · σ(ck) · Pk

λ · σ(ck) + Pk
(6)

When λ = 1, queries and objects are considered equally important, but such
an even weighing might not be always ideal. If λ < 1 the importance of queries
gets accentuated, while values λ > 1 emphasize density of objects. In case that
λ = 1/2, the collective rank of queries weighs twice as much as the total density
of objects (Fig. 2b). As λ approaches zero, the impact of queries becomes more
pronounced compared to the significance of objects. When Pk is very low (i.e.,
few objects in this cell), the overall score will drop, even if critical queries affect
the same area. Whenever σ(ck) = 0 or Pk = 0, we can safely avoid examination
of that cell, since there are no pending queries or no objects at all, respectively.

iii) Combined Score. This method computes a ranking score based on queries
and then it regularizes it by the mixed density of queries and objects alike:

βk =
mk + nk

M + N
· σ(ck) (7)

The fractional term expresses the ”popularity” of that specific cell with the
pending queries and current locations, not making any distinction between the
two sets. Naturally, among cells that are equally congested, the one that has
greater score σ will get higher priority (Fig. 2c).

Discussion. Note that σ(ck), Pk, βk ∈ [0..1], so the calculated score can be
used as a measure for assessing the relative importance of cells. After sorting
cells by their βk, we can determine an advantageous order for visiting them and
evaluating their queries. Anyway, all score formulae guarantee that maxβk = 1.
In fact, this can only occur at the highly improbable case that all queries and
objects are found within the same cell ck and all queries have rank 1.

The rationale behind suggestion of the aforementioned scoring schemes is
illustrated in Fig. 2. Intuitively, balanced scores are meaningful for each cell
referencing objects or queries, although probably weighing them unevenly. In
contrast, harmonic scores only appear in cells that contain both queries and
objects; thus, a cell without objects need not be visited at all, whereas objects
need not be examined if no query covers their cell. As for combined scores,
they are assigned to cells overlapping with queries, no matter if any objects are
actually located in them.

5 Prioritized Query Evaluation

Based on ranking scores of all cells, an execution order can be determined for
providing fresh results to continuous queries. In this section, we suggest alterna-
tive policies for prioritized examination of queries in cells and we discuss possible
estimates for the quality of service achieved.
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5.1 Utilizing Ranking Scores in Query Execution

As already pointed out, evaluation takes place in execution cycles that last for a
fixed time T . During this period T , location and query updates of identical times-
tamp τ are first inserted into the data structures linked to the grid index, while
rankings get computed for all affected cells. As long as T has not yet expired,
cells are visited and results are generated for their associated queries, attempting
to examine as many cells as possible. Apparently, an evaluation strategy should
start from queries affecting the most important cells, which are exactly those
with the highest ranking scores. When the deadline is reached (i.e., available
T has expired), a new cycle starts with fresh stream items and query ranges,
discarding previous state altogether and ignoring any unprocessed cells.

A strict time limit T incurs that there is no guarantee that a query qj will
receive exact results at any execution cycle. Unless all cells covered by its spatial
extent aj are examined, the response to a given query will be probably incom-
plete; unvisited cells may contain locations that fall inside range aj , but these
results will be missed. Therefore, answer could be emitted with an estimated
confidence margin fj for each query qj . This factor should express how represen-
tative this answer actually is, showing the degree of processing for each query.
For an approximate estimation of the accuracy of answers given to query qj , we
suggest to compare the number of cells Cj overlapping its extent aj to the num-
ber of cells Vj that actually contributed to its current result (of course, Vj ⊆ Cj).
Then, the answer to every single query qj at time τ is returned with a confidence
margin fj = |Vj |

|Cj| . In case that a collective estimation is needed, we can get either
the percentage of queries answered completely or the percentage of those that
received no response at τ . Both estimates can be used as an empirical indication
of efficiency, as we point out in Section 6. A detailed study concerning accuracy
of query results is a challenging topic by itself and it is left for future work.

At the end of each execution cycle (i.e., every successive timestamp τ), the
subset R of processed queries that received a response can be compared against
the entire set Q of active queries. A global success ratio at each τ can be estimated
collectively for all cells ck of the grid:

γ(τ) =

∑
ck

∑
qi∈R ρi∑

ck

∑
qj∈Q ρj

(8)

This ratio simply expresses how well the system coped with prioritized execution
of active queries satisfying user demands, and can be considered as an indication
for the Quality of Service (QoS) achieved by the processing mechanism. Note
that success ratio is calculated on original user-specified query rankings and
not on artificial scores computed during evaluation. In the optimal case that
γ(τ) = 1, all queries have been answered completely at this execution cycle.

5.2 Cell Examination Strategies

As soon as the ranking scores are computed at τ , the system can start visit-
ing cells and probe locations against their associated queries, until the end of
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that cycle. Within each particular cell, queries are processed in descending rank
order (i.e., the one assigned from users). However, several options are still avail-
able. Should we examine all queries within a cell before proceeding to the next,
even for queries of negligible interest just because they happen to pertain to a
prioritized cell? Or, is there any means of responding first to high-ranked re-
quests throughout the entire area E of interest and afterwards, if time permits,
to not-so-urgent remaining ones? Further, how can we cope with queries of low
priority that only occasionally (or never) get a chance to execute? To tackle such
issues, we devised three alternative evaluation strategies that concern the degree
of processing that takes place within or among cells.

Exhaustive Evaluation. As its name suggests, this strategy provides response
to all queries in a given cell, before visiting the successive one. Evidently, it starts
processing cell ck that currently has the highest ranking score βk and examines
all queries qj ∈ ck, even those of very low rank ρj . Then, processing continues
with other cells in descending rank order, until deadline T is reached.

Stratified Evaluation. Obviously, cells can be classified into l strata, accord-
ing to their calculated scores (e.g., l = 4 in Fig. 2a). Such a classification may
resemble either to an equi-sum histogram where all cells in each class sum up
to the same overall ranking or to a quantile by dividing cells into disjoint sets
of equal range. This strategy follows a prioritized rotating scheme by examin-
ing earlier the cells of ith stratum every ri execution cycles (i = 0, 1, . . .). For
instance, assuming that r = 2, cells in top class i = 0 still provide answers at
every (20) cycle, but next class i = 1 takes precedence every 21 cycles, class i = 2
every 22 cycles, class i = 3 every 23 cycles and so on.

Essentially, this policy each time gives precedence for execution to a different
class of queries (i.e., a stratum of similar rankings), while all the rest get pro-
cessed in descending ranking order. Thus, cells with lower scores will sometimes
be prioritized before top-ranked ones. The frequency of such an out-of-order pri-
oritization depends on the number l of classes. Of course, cells belonging to the
same class are still examined according to their ranking scores.

This scheme aims at preventing starvation of queries; while boosting execu-
tion of the most important ones, it still ensures that low-priority user requests
eventually receive some results, even not so frequently.

Threshold-guided Evaluation. Consider a processing policy that iterates
through cells in descending rank order, but for each cell ck it only answers
queries qj ∈ ck that have ρj ≥ θ, where θ ∈ [0..1] is a flexible threshold value.
After leaving cell ck, its ranking score βk gets properly adjusted by excluding
all processed queries and their ranks. In case that all cells have been visited
and there is still some time available until T expires, this technique can start
complementary rounds of processing. In each round, cells are visited according to
their modified scores, so the top cell may be different each time. Intuitively, this
policy intends to deliver results primarily to an élite comprised of demanding
clients. As soon as higher-priority requests are responded completely, then the
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system can take care of the rest. However, choice of θ is a delicate issue. If θ
is too large, only high-ranked requests will be endorsed; a smaller value may
retract the desired benefits by falling short to serve all targeted queries qj with
ρj ≥ θ within the deadline.

Therefore, we propose a variation not requiring an explicit θ, but controlling
itself the fraction of prioritized requests for each cycle τ . To this goal, global
success ratio γ(τ − 1) obtained immediately before the current cycle (Eq.(8))
can be utilized as an expected target, along with a local success ratio γk(τ)
computed dynamically for the examined cell ck. This latter ratio characterizes
the degree of progress for the set of queries Qk pertaining to ck as follows:

γk(τ) =

∑
qi∈Rk

ρi∑
qj∈Qk

ρj
(9)

This quotient resembles to Eq.(8), but it is computed locally for currently exam-
ined cell ck and it only involves the set Rk of already processed requests among
those in Qk. Hence, during evaluation at τ , this strategy should continue exam-
ining cell ck as long as the local success ratio γk(τ) has not yet attained the most
recent global ratio, i.e., γk(τ) < γ(τ − 1).

Yet, it should be ruled out the risk that success ratio γ could steadily de-
teriorate cycle after cycle. To avoid this possibility, we have finally chosen a
more optimistic variant, by purposely raising the expected target, say by a
small δ = 10%. In this fashion, processing for a given ck continues as long
as γk(τ) < (1+ δ) ·γ(τ −1). As soon as all cells have been examined and there is
still time left for additional processing, this best-effort strategy will start another
round on and on, eager to further improve the global success ratio.

6 Experimental Validation

In this section, we report performance and qualitative results from an experi-
mental validation of the prioritized query evaluation strategies, and also discuss
appropriate parameterization of the ranking model utilized.

6.1 Experimental Setup

We generated synthetic datasets for objects and queries moving at diverse speeds
along the road network of greater Athens (an area of about 250 km2). By cal-
culating shortest paths between nodes chosen randomly across the network, we
were able to create samples of 200 timestamps from each such route. Thus,
we obtained a point set of locations for N =100000 objects, and similarly, the
centroids of M = 10000, 20000, and 50000 query rectangles. Since our focus is
primarily on queries, N remains always fixed while M is scaling. Spatial range of
queries is expressed as percentage (%) of the entire monitored area of interest E.
The interarrival time of streaming messages from objects and queries was fixed,
assuming that all of them reported their positional updates concurrently at reg-
ular time intervals (in this case, at every timestamp). This is actually the most



Prioritized Evaluation of Continuous Moving Queries 253

Table 1. Experiment parameters

Parameter Values

Number N of objects 100000

Number M of range queries 10000, 20000, 50000

Query range α (% of universe E) 1, 2, 3, 4, 5

Execution cycle duration (T ) 1, 2, 3, 4, 5 seconds

Grid size (c × c) 8 × 8, 16 × 16, 24 × 24, 32 × 32

Regulation (λ) 0.01, 0.1, 0.33, 0.5, 0.66, 0.75, 1

Number of classes (l) 4, 6, 8, 10

intensive situation, as agility of movement is set to 100%, so system must cope
simultaneously with massive location updates and renewal of all query results.

With respect to query rankings, at each timestamp we assigned ranks ac-
cording to a Zipfian distribution with parameter s = 1 for ten discrete values
{0.1, 0.2, . . . , 1}. This scheme imitates a real-world situation where ”the more you
pay, the sooner you get results”, but few people can afford to pay expensively
for better service. Thus, high-ranked queries (ρ = 1) represent a rather small
fraction, while the majority consists of requests of negligible interest (ρ = 0.1).

Evaluation strategies were implemented in C++ and compiled with gcc on an
Intel Core 2 Duo 3GHz CPU running GNU/Linux with 2GB of main memory.
We ran simulations using different parameter settings for each experiment. Due
to space limitations, we show results just from some representative ones. All
results are calculated averages of the measured quantities for 200 time units.
Table 1 summarizes experimentation parameters and their respective ranges;
the default value is shown in bold.

6.2 Experimental Results

System Configuration. The first set of experiments aimed at fixing some basic
parameters of the system. Primarily, we needed to specify granularity c of the
partitioning, since this grid indexes all incoming stream items and also controls
query execution. Figure 3a plots the per cycle cost of hashing a fixed number
of objects and diverse query workloads into grid cells. This particular diagram
refers to query rectangles that cover a = 2% of universe E, but similar trends
occur for all ranges tested. As expected, cost depends on input size; however, as
grid granularity gets finer, maintenance cost escalates, especially for larger query
numbers. This is due not only to data adjustments in more cell lists, but also
because scores must be calculated for many more cells. To take a decision, we
examined global success ratio γ under different grid sizes. As indicatively shown
in Fig. 3b for exhaustive evaluation of M = 50000 queries under a balanced
inflationary scheme with a strict T = 5 sec, coarser subdivisions are more stable
under all query ranges. Thus, we picked c = 16 for subsequent experiments, since
this yields better quality γ of results for most spatial extents.

Another crucial system parameter concerns duration T of each execution cy-
cle. A too short period will not be sufficient to respond to many queries, especially
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for greater workload M ; on the other hand, a greater T will delay deliverance of
fresh results to high-ranked queries. Figure 4 illustrates the processing cost for
complete response to 20000 and 50000 queries of several ranges under a balanced
inflationary scheme (similar graphs obtained for other scoring functions). Indeed,
system overhead for index maintenance and rank aggregation at the cell level is
minimal compared to actual evaluation of queries. Quite predictably, evaluation
cost deteriorates –yet sublinearly– for larger query rectangles and greater num-
ber of requests. Besides, Fig. 7 depicts the success ratio achieved for M = 20000
queries, using the same scoring scheme but with several specified deadlines. A
strict deadline T leaves many queries partially or completely unanswered, hence
the drop in overall QoS. In effect, a proper choice of T is a trade-off between
the number of queries and their actual ranges. In the sequel, unless otherwise
specified, we examine M = 20000 queries with a strict T = 2 sec, in order to
compare performance of evaluation strategies under the ranking model.

Ranking Schemes. As explained in Section 4.1, each of the scoring functions
interprets distribution of query ranks in a different fashion. This is reflected in
Fig. 5, which shows success ratio for M = 20000 queries at T = 2 sec, using
a balanced scoring scheme with λ = 0. In that fashion, object distribution is
purposely ignored, so as to get more insight into the role of rank aggregation.
Not surprisingly, biased schemes (dominant, inflationary) seem to excel in quality
compared to egalitarian ones (average, normalized). Similar conclusions can be
drawn from Fig. 6 that depicts a breakdown of queries answered completely, only
partially or not at all, irrespective of their rank. This effect can be attributed to
cells that gain a high ranking score due to the presence of urgent requests, so
this turns in favor of all their affected queries. In contrast, an impartial approach
(especially a normalized scheme) tends to downgrade collective cell rankings
and makes discrimination of regions with important queries much harder, thus
reducing overall quality. It appears that an inflationary function copes slightly
better than a dominant one with diverse spatial ranges and query numbers,
hence it is utilized in all subsequent experiments.

Next comparison refers to alternative scoring schemes for cells (Fig. 8). Qual-
ity of results was derived from an exhaustive examination; for scoring cells,
queries were considered twice as significant as objects. Interestingly enough, the
combined score prevails over the other two, because it leans towards intensifying
aggregated query ranks in proportion to cell density in queries and objects alike.
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Cell ranking scores seem to get overly ”spoiled” when considering object distri-
bution Pk as an autonomous factor in Eq.(5) and Eq.(6). Despite suspicions that
this might have been caused from inappropriate choice of regulation parameter,
both balanced and harmonic schemes seem unaffected from moderate values of
λ. As reflected in Fig. 9 for exhaustive and threshold evaluation of query ranges
at a = 2% of E, quality remains almost stable with the exception of balanced
score when objects are not taken into account at all (λ = 1). We believe that
regulation between opposing demands for query responses and object freshness
requires more investigation, and we plan to study dynamic determination of a
flexible λ across execution, instead of fixing it beforehand.

Evaluation Strategies. As depicted in Fig. 9, threshold-guided evaluation con-
sistently surpasses the exhaustive policy almost by a factor of 3 in overall quality.
With respect to stratified evaluation (Fig. 10a), the combined scoring scheme is
again the most beneficial to QoS. In addition, under all scoring schemes, quality
slightly deteriorates as the number of classes increases (Fig. 10b). Indeed, with a
strict deadline T = 2 sec, only top classes will be given complete response, while
the remaining ones should await their turn in the rotating scheme to get priority.
The greater the number of query classes, the less often each one gets prioritized.
From Fig. 11, we also conclude that stratified execution is slightly better than
exhaustive, but cannot really compete with the threshold-guided policy. Superi-
ority of threshold-guided evaluation is justified considering that, at every cycle,
this strategy at least tries not to fall short of the quality achieved at the pre-
ceding cycle, if not gaining a better QoS (in all simulations we set δ = 10%). In
addition, if there is time left for additional processing, this self-regulating policy
continues to evaluate more queries, further improving success ratio γ.
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As already shown in Fig. 6, only rarely queries are left entirely unanswered,
when time deadline is very short and the number of queries and objects is over-
whelming. Typically, each strategy responds completely to a significant portion
of the actual query workload, whereas most of the remaining requests receive
at least some partial results. The returned locations are always accurate, so no
false positives exist among those found for any query. However, some qualifying
object locations may not be retrieved at all, because they happen to fall in a cell
that was not visited during that cycle.

7 Conclusions and Future Work

In this work, we set forth a novel approach for evaluating moving range queries
with user-specified priorities over streaming positions of moving objects. We de-
veloped a ranking model for identifying regions with higher concentration in ur-
gent queries and object locations, in order to examine together groups of queries
and not separately each one. We further proposed adaptive evaluation policies,
that achieve varying degrees of quality in answering scaling query workloads.

In the future, we plan to extend the ranking model according to estimated
cost and query selectivity in combination with users’ preferences. Besides, by
incorporating an aging-aware prioritization scheme that favors long-penalized
queries, the processing mechanism can be fine-tuned even more, offering better
accuracy in results. Finally, applying similar ranking schemes for other query
types (k-nearest neighbor search, in particular) is a challenging research topic.
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Abstract. Genome sequence data and annotations are subject to fre-
quent changes resulting from re-assembly and re-annotation, or commu-
nity feedback based on experimental evidence, giving rise to new data
releases. These releases are rarely accompanied by a description of the
changes, making it difficult for biologists working with the data to iden-
tify and work through the consequences of the changes that have taken
place. This paper explores the extent to which existing XML difference
algorithms, namely X-Diff, JXyDiff and 3DM, can be used to identify
and document genome changes, in particular investigating: (i) their abil-
ity to detect typical changes in genome sequence documents; and (ii) the
ease with which the difference report can be used to determine whether
genes of interest are affected by changes to the genome. The evaluation
compares the performance of the algorithms both with synthetic modifi-
cations and for detecting changes in a public genomic database. Typical
behaviours of the algorithms are identified and a root cause analysis
carried out.

1 Introduction

Genomic data, including the annotation of predicted genes and proteins, is avail-
able for an increasing number of genomes. The genomic data for each of those
genomes undergoes regular re-annotation, and in many cases even re-assembly
of the sequence data, resulting in new releases that replace previous versions.
In particular in the early stages of a genome release, re-annotation generally
involves automatic annotation of the (re-assembled) sequence from scratch us-
ing a computational analysis pipeline (e.g., the Ensembl analysis pipeline [1,2]).
In the later stages, i.e., a few years after the initial genome release, this process
might be complemented or increasingly replaced by manual changes to the anno-
tation based on experimental evidence provided by the community. In contrast
to the manual annotation, which explicitly introduces a change to the previous
annotation and therefore, if captured appropriately, provides a delta description
between two different releases of the same genome (e.g., the summary of chromo-
some sequence and annotation updates provided by the Saccharomyces Genome
Database (SGD) [3]), the automatic re-annotation of a genome does not result
in such a delta description. Therefore, very little or no information about the
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changes carried out is made available by providers of genomic data. For example,
Ensembl [4] only provides very general information on the type of data updated
as news for each new release, but no detailed information on gene level changes.
In contrast, the Fungal Genome Initiative (FGI) at the Broad Institute1 provides
a list of the changes between two releases for some genomes. The information
provided on the changes, however, is limited and only lists the identifiers of newly
predicted, updated, split and deleted genes, but no further details. The limited
information on changes between genome data releases presents significant chal-
lenges to biologists and bioinformaticians working with the genomic data and
the corresponding annotation, in some cases even resulting in the continued use
of an out-of-date genome release.

A number of data providers make previous genome releases available in archives
(e.g., Ensembl, EMBL [5,6]), provide tools for converting data from one release to
another release of a genome (Ensembl), or provide tools for comparison of two
genome versions, the result of which can be inspected manually (EMBL). Those
tools, however, are not generally applicable. The converter provided by Ensembl
is currently only available for converting mouse assembly data between the cur-
rent release and the previous one, and is not available for conversion between
other combinations of releases or other genomes. The comparison tool provided
by EMBL can be used to compare any two versions of a genome, but it compares
the files line by line and highlights lines that have been removed or inserted be-
tween the two versions. Lines that contain changes are also presented as removed
and inserted. The user has to inspect the highlighted file manually to identify the
consequences for genes of interest, a labour-intensive task when carried out for a
whole genome and/or a number of releases. Changes between two releases of the
same genome can be of varied nature (see the following section). Without a his-
tory of changes, however, it is hard for users of the data to track genes of interest
through time, i.e., various genome releases and determine, e.g., whether a missing
gene has been removed, renamed, moved to a different location, or merged with a
neighbouring gene.

Genomic data is represented in a variety of formats, amongst others XML
(e.g., EMBL XML Schema), and converters are available to convert data be-
tween different formats and also to convert it into the EMBL XML format (e.g.,
converters are provided by EMBL [5] and BioJava2). A number of XML differ-
ence tools and algorithms have also been published previously (e.g., X-Diff [7],
XyDiff [8], 3DM [9]). In the original publications these algorithms have mainly
been applied to merging of XML documents that have been edited by differ-
ent people (3DM), and for detecting changes of XML documents on the web
(X-Diff, XyDiff). In this paper we evaluate the applicability of XML difference
algorithms on XML documents representing genomic data and associated anno-
tation. In so doing, we seek both to obtain insights into the algorithms and to
identify an effective means of understanding the changes that have been made
to genomes.

1 http://www.broad.mit.edu/annotation/fgi/
2 http://biojava.org
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The paper is structured as follows. Section 2 provides a detailed description
of the problem, including an introduction to the format in which genomic data
is represented. Section 3 introduces the XML difference algorithms evaluated
here. Section 4 describes the experimental setup and discusses the results. This
is followed by an evaluation of the XML difference algorithms on real data in
Section 5. Section 6 concludes by reviewing the lessons learned.

2 Problem Description

In this section the XML representation of genomic data is introduced. Further-
more, a number of typical changes to genomic data are presented.

Genomic data is represented in a number of flat file formats established by the
major data providers, including Genbank [10] and EMBL [5]. For both Genbank
and EMBL formats, XML representations of the data are available, namely Insd
XML and EMBL XML, respectively. Due to its slightly more intuitive represen-
tation of genomic data, we have chosen to use the EMBL XML representation.
The majority of genomic data is made available separately for each chromosome
of a genome. For this reason, we have chosen a chromosome as the unit in which
we analyse changes in genomic data. Therefore, we do not consider changes that
affect multiple chromosomes, such as a move of a predicted gene between chro-
mosomes; such changes would be detected as a deletion in one chromosome and
an insertion in another.

A gene is a defined strand of DNA that contains regions that code for a protein
(exons) and those that do not (introns). The complete sequence of exons for a
gene is also called a coding sequence (CDS). The whole DNA sequence of a gene
is transcribed from DNA to (pre-)mRNA, followed by a process called splicing
during which the introns are removed and the exons spliced together to form the
messenger RNA (mRNA). The mRNA is then translated into a protein.

In both the well established flat file formats and the corresponding XML rep-
resentations a predicted gene is represented as follows: (i) an element capturing
information on the gene; (ii) an element describing the corresponding mRNA;
(iii) an element containing information on the coding sequence (CDS); and
(iv) elements with information on the corresponding exons (elements <feature
name="gene">,<feature name="mRNA">,<feature name="CDS">, and <feature
name="exon">, respectively, in Figure 1). Usually, information on the predicted
genes appear in the order of the genes on the chromosome, i.e., the order among
siblings is important, and the genomic sequence is included as a whole for the
chromosome and not for each gene separately. However, to ease the identifica-
tion of changes in the sequence of a gene, we retrieve the sequence for each gene
and include it alongside the corresponding gene information. An example of the
resulting XML representation of the elements describing the gene, its mRNA,
CDS, genomic sequence and exon is provided in Figure 1. Usually, the descrip-
tions of all exons for all genes can be found at the end of the document (indicated
by ‘...’ in the example). As can be seen in the example, all the elements corre-
sponding to a gene are located at the same level in the hierarchical structure
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<EMBL>
<entry accession="chromosome:SGD1.01:I:1:230308:1" lastUpdated="8-APR-2007" name="I">

...
<feature name="gene">

<qualifier name="gene">YAL003W</qualifier>
<qualifier name="note"> Elongation factor 1-beta (EF-1-beta) </qualifier>
<location complement="false" type="single">

<locationElement complement="false" type="range">
<basePosition type="simple">142176</basePosition>
<basePosition type="simple">142255</basePosition>

</locationElement> </location> </feature>
<feature name="mRNA">

<qualifier name="gene">YAL003W</qualifier>
<qualifier name="note">transcript id=YAL003W</qualifier>
<location complement="false" type="single">

<locationElement complement="false" type="range">
<basePosition type="simple">142176</basePosition>
<basePosition type="simple">142255</basePosition>

</locationElement> </location> </feature>
<feature name="CDS">

<dbreference db="RefSeq peptide" primary="NP 009398.1"/>
<qualifier name="gene">YAL003W</qualifier>
<qualifier name="protein id">YAL003W</qualifier>
<qualifier name="note">transcript id=YAL003W</qualifier>
<qualifier name="translation"> MASTDFSKIETLKQLNASLADKSYIEGTAVSQA...</qualifier>
<location complement="false" type="single">

<locationElement complement="false" type="range">
<basePosition type="simple">142176</basePosition>
<basePosition type="simple">142255</basePosition>

</locationElement> </location> </feature>
<sequence length="987" type="DNA" version="0.0"> agttgcgcatgaatttctcc...</sequence>
...
<feature name="exon">

<qualifier name="note">exon id=YAL003W.1</qualifier>
<location complement="false" type="single">

<locationElement complement="false" type="range">
<basePosition type="simple">142176</basePosition>
<basePosition type="simple">142255</basePosition>

</locationElement> </location> </feature>
...

</entry>
</EMBL>

Fig. 1. Example of genomic data represented using a variant of EMBL XML [5,6]

of the XML representation. There are no parent elements for each gene that
contain all the associated elements; instead the parent element of all elements
describing all the genes is the element describing the chromosome on which the
genes are located. It can also be seen that the elements contain partly redundant
information, such as the location and the identifier of the gene.

With increasing knowledge of a genome, its genomic data and associated anno-
tation can change in a number of different ways. Changes include modifications
of the genomic sequence itself, the identification of new genes with their associ-
ated proteins, and the removal of a previously predicted gene that is no longer
thought to be a gene. Further changes include the merging of two neighbouring
genes into one gene or the splitting of one gene into two neighbouring genes.
Examples of such changes can be found in the change history provided by SGD
for the yeast genome.3 In the remainder of the paper we focus on five types of
3 http://www.yeastgenome.org/cache/genomeSnapshot.html#ChrSeqAnnotUpdates
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changes, which are explained in more detail below. A number of other changes,
such as the update of the name or identifier of a gene or the update of its lo-
cation, are essentially updates to the value of a text node. As is shown later,
an update to the value of a text node does not present a challenge to the XML
difference algorithms.

Change to the genomic sequence. The genomic sequence can undergo changes,
for example, to correct mistakes introduced in an earlier release. To change the
sequence of a gene, the value of the corresponding text node with name sequence
is updated.

Identification of a new gene. When a new gene that has been missed previously
is identified, all elements capturing information on the gene, its mRNA, CDS,
sequence and exons are inserted. As the genes appear in the document in the
same order as on the chromosome, the first four elements (gene, mRNA, CDS,
sequence) for the new gene are inserted after the element containing the sequence
of the preceding gene and before the elements describing the following gene. As
the exons are listed at the end of the document in the same order as on the
chromosome, the elements with information on the exons of the new gene are
inserted between the exons of the preceding gene and those of the following gene.

Removal of a previously predicted gene. Analysis of the genome and its sequence
can reveal that a previously identified gene isn’t actually a gene. Thus, all ele-
ments describing this gene, its mRNA, its CDS, its sequence and its exons need
to be removed.

Both identification and removal of a gene result in a change of the positions
of elements following the inserted or removed elements within the sequence of
elements describing all the genes on a chromosome.

Merging of two neighbouring genes, gene1 and gene2, into one gene. Biological
experiments can reveal that two separate genes actually correspond to a single
gene. In such a case the annotation needs to be updated as follows (see also
Figure 2):

– Update of the elements corresponding to gene1. Changes include (i) update
of the identifiers of the elements describing the gene, its mRNA and CDS; (ii)
update of the location of gene1 and insert of additional location elements for
the exons of gene2, which after the merge belong to gene1 ; and (iii) update
of the sequence and translation of gene1 by appending the corresponding
sequence and translation of gene2.

– Update the identifiers of all the exons belonging to gene1 and gene2 before
the merge to reflect that they belong to the merged gene.

– Delete the elements (with information on gene, mRNA, CDS, sequence) cor-
responding to gene2.

Splitting of one gene into two neighbouring genes, gene1 and gene2. As the
complementary change to merging of two neighbouring genes, a single gene can
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Fig. 2. Split of one gene into two neighbouring genes and merge of two neighbouring
genes into one gene
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also be split into two neighbouring genes. The annotation is updated as follows
(see also Figure 2):

– Insert elements (gene, mRNA, CDS, sequence) corresponding to gene2 with
the appropriate part of the translation and sequence that belongs to gene2
after the merge and the appropriate location elements. This information can
be obtained from the single gene that is to be split.

– Update of the elements corresponding to the single gene to reflect that it
represents gene1 after the split. Changes include (i) update of the identifiers
of the elements describing the gene, its mRNA and CDS; (ii) update of the
location of the gene and delete of the additional location elements for the ex-
ons that belong to gene2 after the split; and (iii) update of the sequence and
translation of gene1 by removing the part of the sequence and translation
that belongs to gene2 after the split.

– Update of the identifiers of all the exons belonging to the gene to be split to
reflect that they belong to either gene1 or gene2. If there is only one exon,
this needs to be split by updating the existing exon appropriately to reflect
that it belongs to gene1 and inserting a new element with information on
the exon belonging to gene2.

As shown above, changes to genomic sequence data and its annotation generally
lead to a number of (different) changes to the document, not something the
techniques evaluated here were designed to support.

3 XML Difference Algorithms

Three published XML difference algorithms for which working Java implemen-
tations were obtained are evaluated in this paper. The key properties of the
algorithms are summarised in Table 1 and described below.

X-Diff [7]. The X-Diff algorithm involves the following steps:

– Preprocessing: In the preprocessing phase, both XML documents are parsed
into tree representations and using XHash (a special hash function similar to
DOMHash [13], but working on unordered trees), hash values for all nodes in
both trees are calculated. The hash value of an element node a is calculated
based on the hash values of its child nodes and the resulting value, therefore,
represents the entire subtree rooted at the node a.

Table 1. Summary of key properties of XML difference algorithms

Algorithm Source Ordered/ Changes detected
Unordered Tree

X-Diff [7] Unordered Insert, Delete of leaf nodes or subtrees; Update of
values of text- or attribute nodes

JXyDiff XyDiff [8,11] Ordered Insert, Delete, Move of leaf nodes or subtrees; Update
of values of text- or attribute nodes

3DM [9,12] Ordered Insert, Delete, Move of leaf nodes; Update of values
of text- or attribute nodes
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– Matching: The matching step consists of the following three steps.
• To reduce the search space, subtrees with the same hash value are filtered

out.
• Starting from the leaf node pairs and moving upwards, nodes of the same

type (i.e., text-, element-, or attribute node) and with matching ancestor
names are matched, and their edit distance computed using a cost model
with a uniform distance of 1 for update, insert and delete. To compute
the edit distance between subtrees, the minimum-cost maximum flow
algorithm [14,15] is used to find the minimum-cost bipartite matching.
Both matching and edit distance are stored.

• Starting from the root node and using the matchings and edit distances
calculated in the previous step, create minimum-cost matchings between
nodes of the two trees, allowing only one-to-one matchings and matching
only child nodes of parents that are matched.

– Edit script: Starting from the root nodes and based on the minimum-cost
matching and the edit distance, a minimum-cost edit script is generated.
Nodes or subtrees found in the base document, but not found in the match-
ing, are marked as deleted; nodes or subtrees found in the updated docu-
ment, but not in the matching, are marked as inserted; and leaf nodes that
are found in the matching but have different values are marked as updated.

JXyDiff (Java implementation of XyDiff [8,11]). The algorithm, called Bottom-
Up, Lazy-Down (BULD) propagation, consists of the following steps:

– Preprocessing: Starting from the leaf nodes, hash values are calculated based
on content of the node itself and the hash values of its children. Similar to
X-Diff, the hash value of a node represents the entire subtree rooted in that
node. In addition to the hash value, a weight is calculated for each node
as follows: for a text node the weight is the size of the content and for an
element node the weight is the sum of the weights of its child nodes. Subtrees
represented by their root nodes are inserted into a priority queue where they
are ranked by their weight.

– Matching: Starting with the heaviest subtree of the updated document (when
there are several subtrees with the same weight, the first one in the queue
is chosen), nodes with the same hash value (representing the entire subtree
rooted at that node) are identified in the base document. If there is only
one node in the base document with the same hash value, they are matched.
If there are no nodes with the same hash value and the node is an element
node, its children are inserted into the priority queue. If there are several
nodes with the same hash value, the node whose parent matches the parent
of the node from the updated document is chosen. The matching is followed
by an optimisation phase in which already matched nodes are used to prop-
agate matches further to nodes not matched in the previous matching step.
During this phase, nodes are matched when their parents and/or children
are matched and they have the same label. Bottom-up propagation of the
matchings is controlled by the weight of the matching subtrees, i.e., the
heavier/larger a subtree the further the matching is propagated.
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– Edit script: Based on the matchings, the edit script is generated. Unmatched
nodes in the old document are marked as deleted, and those unmatched in
the new document are marked as inserted. Matched text nodes with changed
content are marked as updated. Nodes that are matched, but without match-
ing parents, are marked as moved. JXyDiff also detects moves of nodes within
the same parent, i.e., changes to the order of matched siblings under matched
parents. This is done by finding the largest order-preserving subsequence and
adding move operations for the remaining pairs of nodes. As this step is ex-
pensive for large sequences of elements, in such cases the sequence is cut
into smaller subsequences of a fixed maximum length and the same process
applied to all the smaller subsequences. This improves the performance, but
does not guarantee the optimal number of moves.

3-Way Merge and Diff (3DM) [9,12]. 3DM is a merge and diff tool that can
merge 3 documents, the base document and two updated versions of the docu-
ment for the purpose of reintegrating changes from two independently modified
copies into a single document containing all the modifications. It can, however,
also be used to find differences between two documents by providing two copies
of the same document, e.g., the base document and the updated document as
input. The algorithm consists of the following steps:

– Matching: For each node in the base document, find exact or close matching
nodes in the updated document. The similarity of close matching nodes is
based on the q-gram string distance measure [16]. Q-grams are substrings of
length q and the q-gram distance is the number of q-grams that appear in
only one of the two strings. For all pairs of matched nodes, match the subtrees
by depth-first traversal starting with the two matched nodes. Continue as
long as the child nodes are matched too. Select the best matching subtree.

– Post-processing: The postprocessing phase can be divided into the following
steps:
• Remove matches of small copies: All nodes in the updated document

whose matching node in the base document has several matches in the
updated document are checked, and matches to nodes that are part of a
subtree containing only little information are removed to avoid copying
small amounts of data.

• Propagate matches: Using the structure of the document, nodes so far
not matched are matched if their parents and left or right siblings are
matched.

• Set type of match: All matches are classified as structural, content or
full (structural and content) matches.

• Merge documents: Starting from the root node and based on the match-
ings between the base document and each of the two updated documents,
the merged document and the edit script is created. This is done by pair-
ing up children of matched nodes, determining the sequence of these pairs
according to any moves made, and merging the contents of the matched
pairs. The merged node is added to the merge tree.
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– Edit script: During the merging step, the edit script is created. Nodes found
in either of the updated copies but not the base version of the document
are marked as inserted; matched nodes with different contents are marked
as updated; nodes that are matched, but appear in a different order are
marked as moved; and nodes not found in either of the two updated copies
but in the base document are marked as deleted.

4 Experiments Involving Controlled Modifications

In this section the experimental setup is introduced and the results of the ex-
periments are discussed. The experiment consists of two parts: (i) evaluation of
the XML difference algorithms on synthetic modifications to enable controlled
exploration of a number of different kinds of change; and (ii) exploration of the
use of the algorithms with real modifications between different releases of ge-
nomic data obtained from Ensembl [4].

Experimental setup: Beginning with a base document of genomic data from
chromosome 10 of yeast containing about 400 genes, changes are introduced in
a systematic manner. For each type of change and each pairwise combination
of changes mentioned in Section 2, new documents are produced with n (n =
4, 20, 40, 60, 80) of the genes subject to each change. The changes are intro-
duced randomly, but conform to the constraints imposed by the well established
representation of the data: for example, elements describing a gene, its mRNA,
its CDS and its sequence are neighbouring siblings, genes appear in the order
they are on the chromosome, and exons appear at the end of the document in
the same order as they are on the chromosome. In addition to the updated doc-
uments, a change report for each updated document is produced, detailing the
changes introduced, gathering corresponding gene-level changes, and presenting
them in a manner meaningful to biologists, as illustrated in Figure 3.

Using each of the XML difference algorithms, the base document is compared
with each of the updated documents. In a post-processing step, the edit scripts
produced by each of the algorithms are processed to: (i) identify the changes
reported; (ii) gather changes affecting the same gene; and (iii) reproduce as
much as possible of the change report corresponding to each updated document.

A number of observations could be made in the post-processing phase for the
majority of edit scripts produced by JxyDiff and 3DM, and for this reason, are
summarised here: (i) Edit scripts produced by JXyDiff tend not to be minimal,
in that they contain a number of moves of sibling elements within the same
parent, an observation reported previously [7]. These move operations are a re-
sult of incorrect matching of subtrees (where, for example an updated subtree
is matched incorrectly to a different subtree, that is then updated accordingly
followed by move operations to restore the order of the siblings). To restore the
order of the siblings, large sequences of siblings are split into smaller sequences
to improve the performance of the analysis step that seeks to detect moves of
nodes within the same parent (see Section 3). As no moves are introduced as
changes, the reported move operations are not included in the change report
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<changeReport>
<insert biological concept concept="gene" name="newGene55">

<insert> <feature name="gene">
<qualifier name="gene">newGene55</qualifier>
<qualifier name="locus tag">newGene55 YEAST</qualifier>
<qualifier name="note">Uncharacterized protein newGene55</qualifier>
<location complement="false" type="single">

<locationElement complement="false" type="range">
<basePosition type="simple">95483</basePosition>
<basePosition type="simple">95483</basePosition>

</locationElement>
</location> </feature> </insert>

<insert> <feature name="mRNA">
... </feature> </insert>

<insert> <feature name="CDS">
... </feature> </insert>

<insert>
<sequence length="0" type="DNA" version="0.0">agtgaataatttaa...</sequence>

</insert>
<insert> <feature name="exon">

... </feature> </insert>
</insert biological concept>
<delete biological concept concept="gene" name="YAL011W">

<delete> <feature name="gene">
... </feature> </delete>

<delete> <feature name="mRNA">
... </feature> </delete>

<delete> <feature name="CDS">
... </feature> </delete>

<delete>
<sequence length="1878" type="DNA" version="0.0">agtttctgggttt...</sequence>

</delete>
<delete> <feature name="exon">

... </feature> </delete>
</delete biological concept>

</changeReport>

Fig. 3. Example of a change report, developed to present changes in a manner mean-
ingful to biologists

generated from the edit scripts. (ii) Edit scripts produced by 3DM contain the
parent element as well as all the child elements that are affected by the change.
In cases where the child element is reported with the same type of change as
its parent element, i.e., the child element is subsumed by its parent element,
the child element is not included in the change report generated from the edit
script. If child and parent elements are reported with different types of changes,
both are included in the change report. The generated change reports are then
evaluated with respect to the quality of the results.

Experiment 1: Change of genomic sequences. In this experiment, which re-
quires the fewest atomic element-level changes to the document, the value of
the text node sequence is updated. This experiment analyses the ability of the
algorithms to detect updates to values of text nodes. As the change introduced
affects only a single node, this experiment is the least challenging. The number
and types of changes reported by each difference algorithm are compared with
those in the change report associated with the updated document.
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Fig. 4. Experiment 2, Introduction of new genes, relative performance

The following was observed: (i) Both X-Diff and 3DM detect all the introduced
changes correctly and as the correct type of change. (ii) JXyDiff, however, detects
all the introduced changes correctly, but as delete and insert of the text node
sequence and not as an update, resulting in twice as many reported changes.

Experiment 2: Identification of new genes. In the second experiment, all the
elements describing a gene, its mRNA, CDS, sequence and exons are inserted at
appropriate positions in the document, following the constraints imposed by the
representation of the data.

The following was observed: (i) Both X-Diff and JXyDiff detect all the intro-
duced changes correctly. (ii) 3DM detects all the introduced changes correctly
as inserts. In addition to the correctly identified inserts of elements, however,
it detects a subset of the inserted sequence elements also as copies and up-
dates of other sequence elements. The algorithm does not restrict the number
of matches that can be identified between an element in the updated document
and elements in the base document. As mentioned in Section 3, 3DM calculates
the similarity of nodes using the q-gram string distance measure, and applies
a threshold on the similarity to determine which nodes should be matched. As
genomic sequence is basically a string of arbitrary length of the alphabet {a, c,
t, g}, it is quite likely that two strings of sufficient length will have a sufficient
number of q-grams in common to be regarded as similar enough to be copies of
each other. As the q-gram string distance doesn’t take into account the length of
the string, sequences of very different lengths are matched based on their q-gram
string distance, and one reported as an updated copy of the other. This results
in a higher number of changes reported. The numbers of changes reported by
each algorithm are compared with those in the change report associated with
the updated document, and the ratios are plotted in Figure 4.

Experiment 3: Removal of previously predicted genes. In this experiment, all
the elements representing a gene, its mRNA, CDS, sequence and exons are
deleted.
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The following was observed: all three XML difference algorithms detect the
deletion of the subtrees correctly.

Experiment 4: Change of genomic sequences and identification of new genes /
Change of genomic sequences and removal of previously predicted genes. In this
experiment, the changes introduced in Experiment 1 are combined with those
introduced in Experiment 2 or 3.

The following was observed: all three algorithms were able to identify the
changes, exhibiting the same behaviour as in Experiments 1-3 with the corre-
sponding single changes.

Experiment 5: Identification of new genes and removal of previously predicted
genes. In this experiment, the changes introduced in Experiment 2 are combined
with those introduced in Experiment 3.

The ratios of the numbers of changes reported by each algorithm compared
with those in the corresponding change report are plotted in Figure 5. The fol-
lowing can be observed: (i) 3DM detects all the inserted elements and all the
deleted elements correctly. As before in Experiment 2, however, a number of the
inserted sequence elements are also detected as copies of other sequence ele-
ments combined with subsequent updates, resulting in a slightly higher number
of changes reported. In contrast, JXyDiff and X-Diff report a far greater num-
ber of changes. (ii) JXyDiff detects inserts and deletes of elements describing
the gene, mRNA, sequence and exons correctly, but fails to do so for a number
of elements containing information on the CDS. In such cases, the child ele-
ments dbreference, qualifier and basePosition are reported as updates,
deletes or inserts, resulting in the high number of changes reported. To restore
the order of the elements, a large number of move operations of the siblings
describing the elements of genes are reported. The incorrect matching of the in-
serted and deleted CDS elements principally results from the optimisation phase
(see Section 3) in which matches of children, e.g., of the location elements, are

Fig. 5. Experiment 5, Introduction of new and removal of previously predicted genes,
relative performance
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propagated bottom-up to their parents. As the propagation is controlled by the
weight of the matched subtree, this step can result in incorrect matchings of
the CDS subtrees but not of the subtrees representing the other elements, as the
CDS subtrees tend to have the larger number of children and therefore tend to
be heavier. (iii) X-Diff reports the majority of deleted and inserted elements as
updates, inserts or deletes of their corresponding leaf nodes, resulting in a high
number of changes. As mentioned in Section 3 and listed in Table 1, X-Diff has
the following properties: it regards the XML documents as unordered trees, uses
a uniform cost model, creates a match starting with the leaf nodes, and matches
nodes of the same type if their ancestors have matching names. These proper-
ties result in an almost arbitrary matching of the leaf nodes of the inserted and
deleted subtrees representing the elements of the inserted and deleted genes. In
the source documents though, order among siblings is significant.

Experiment 6: Merging of two neighbouring genes. In this experiment two
neighbouring genes are merged. For detailed information on the changes intro-
duced see Figure 2.

The ratios of the number of changes reported by each algorithm compared
with those in the corresponding change report are plotted in Figure 6. The
following can be observed: (i) X-Diff correctly identifies the deleted elements
(representing one of the two neighbouring genes), but fails to match the up-
dated elements correctly, resulting in a number of additional deletes, updates
and inserts. For example, elements representing exons or CDS are matched with
those representing mRNAs. These incorrect matchings are a result of handling
the XML document as an unordered tree. However, no consistent pattern was
observed for these incorrect matchings. (ii) JXyDiff identifies only a fraction of
the deleted elements and matches very few of the updated elements correctly.
This results in a large number of deletes, inserts, updates and moves to com-
pensate for the incorrect matchings. In some cases, elements representing exons
are matched with elements representing CDS or genes, however, no consistent

Fig. 6. Experiments 6, Merging of two neighbouring genes, relative performance
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Fig. 7. Experiments 7, Splitting of one gene into two neighbouring genes, relative
performance

pattern throughout all changes was observed. (iii) 3DM correctly identifies the
majority of deleted elements and matches the updated elements. However, the
majority of updates are not reported as such, but as deletes and inserts, resulting
in about twice as many changes reported as in a minimal description. Further-
more, a number of elements are reported both as inserted and as updated, a
result of the lack of a restriction on the number of matchings between an ele-
ment in the updated document and elements in the source document.

Experiment 7: Splitting of one gene into two neighbouring genes. In this ex-
periment one gene is split into two neighbouring genes. Detailed information
on the changes introduced are shown in Figure 2. The ratios of the number of
changes reported by each algorithm compared with those in the corresponding
change report are plotted in Figure 7. The following was observed: (i) X-Diff
identifies all inserted elements correctly and matches the majority of updated
elements correctly. However, in some cases elements representing mRNAs are
matched with elements representing genes or exons, resulting in detection of
additional updates, deletes or inserts. (ii) JXyDiff identifies all the inserted ele-
ments correctly, but matches only a few of the updated elements correctly. This
results in the identification of a large number of inserts, deletes, updates and ad-
ditional moves to restore the order of the siblings and compensate for incorrect
matchings. (iii) 3DM identifies all the inserted elements correctly but doesn’t al-
ways match the updated elements correctly, resulting in a significantly increased
number of updates, inserts and deletes. In cases where elements are matched
correctly, the updates are sometimes reported as inserts and deletes.

5 Evaluation Involving Real Genomic Data

To explore the performance of the XML difference algorithms on detection of real
modifications, we compared two different releases (41 and 42) of the genomic data
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Table 2. Number of changes detected between different versions of genomic data

Chromosome X-Diff JXyDiff 3DM

3 1805 13223 1864
5 1130 18475 679

of yeast chromosomes 3 and 5 obtained from Ensembl. The numbers of changes
reported by each of the tools for both chromosomes are shown in Table 2. The
following observations were made:

X-Diff: While X-Diff performs reasonably well in the case of singular changes
within an element (describing gene, mRNA, CDS, or exon) and detects the
majority correctly, the fact that it represents XML documents as unordered trees
leads to incorrect reporting of changes in the following cases amongst others:
(i) Large number of changes within one element (e.g., inserts, updates, deletes
of elements dbreference or qualifier). In such cases, instead of reporting the
various updates, inserts and/or deletes within the element, they may be matched
incorrectly with other elements in the document. (ii) Update of the start and
end location of an element. As pairs of basePosition elements are affected and
the order among siblings is not taken into account in X-Diff, updates to the start
position can be confused with updates to the end position and vice versa. The
order of the start and end positions indicates the direction in which the gene is
transcribed.

JXyDiff: For the most part, JXyDiff seems unable to match elements correctly,
resulting in the reporting of significantly more changes in comparison to the other
two algorithms. The numbers shown for JXyDiff in Table 2 exclude the more
than 8,000 and 10,000 moves reported for chromosomes 3 and 5, respectively.
In particular CDS elements tend to be mismatched, resulting in a large number
of updates of all the subelements and attributes. Mismatching of CDS elements
was observed earlier in the synthetic experiments (see Experiment 5) and is the
result of the optimisation phase in which matches of leaf nodes are propagated
bottom-up to their ancestors. The extent of the propagation is controlled by the
weight of the subtree.

3DM: 3DM performs reasonably well in detecting changes between the two
versions of genomic data. The following cases, amongst others, though, lead to
reporting of additional changes: (i) Insert or delete of dbreference or qualifier
elements within one element describing a CDS. In such cases, a newly inserted
element might be matched to an existing element, which is reported as updated
to represent the new element, and then the original is reported as inserted,
therefore increasing the number of changes reported. Similar incorrect matchings
can be observed for deleted elements, which aren’t reported as deletes, but as a
number of updates followed by deletes of different similar elements. This occurs
more frequently in cases of a larger number of changes within one element, but
also for newly inserted elements describing a gene or mRNA. (ii) Update of
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sequence elements. In such cases, the updated sequence might be reported as
both an update and a copy followed by an update of another sequence element.
(iii) Moves of elements, i.e., changes to the order of elements on the chromosome.
In this case, not only are the elements affected by the move reported as such,
but also a number of neighbouring elements, again resulting in an increase in the
number of changes reported. The majority of these mismatches are the result of
the q-gram distance measure used to match elements, and a lack of restriction
on the number of matches of elements in the updated document with elements
in the base document. Both cases have been observed in the experiments with
synthetic data.

6 Conclusions

This comparative evaluation has shown that all the algorithms tested contain
features that are effective at detecting a subset of changes relevant within the
context of genomic data. However, none are useable without significant post-
processing of the edit scripts. We have identified the following features of the
representation of genomic data and of the algorithms that affect performance.

The task of matching versions of genomic data correctly and detecting changes
between them is hindered by the following properties of the fairly flat structure
of the data representing genomic sequences and their annotation: (i) Large num-
bers of siblings. (ii) Related elements are not easily identifiable as such (e.g.,
elements describing gene, mRNA, CDS, exons and sequence of a gene are only
identifiable as related by the values of their qualifier child elements). (iii) Very
similar contents of nodes and subtrees. Elements or subtrees sometimes can only
be distinguished by values of attribute or descendant text nodes. The follow-
ing properties of the algorithms affected their performance: (i) Treating XML
documents as unordered trees can result in inappropriate matchings. (ii) Fuzzy
matching using q-gram string distance measure can result in incorrect matchings
of elements, in particular sequence elements. (iii) Propagating matches bottom-
up to nodes with the same labels. This, in combination with the similarity of
the contents of nodes and subtrees can result in incorrect matchings.

This suggests that selection and use of genome difference algorithms requires:
(i) good understanding of the data over which the algorithm is to be used during
algorithm selection; and (ii) significant tailoring of results to compensate for the
production of non-minimal and challenging-to-interpret edit scripts.
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Abstract. Scientific web services often possess data models and query
workloads quite different from commercial ones and are much less stud-
ied. Individual queries have to be processed in parallel by multiple server
nodes, due to the computation- and data-intensiveness of the processing.
Meanwhile, each query is performed against portions of a large, com-
mon dataset. Existing scheduling policies from traditional environments
(namely cluster web servers and supercomputers) consider only the data
or the computation aspect alone and are therefore inadequate for this
new type of workload.

In this paper, we systematically investigate adaptive scheduling for
scientific web services, by taking into account parallel computation
scalability, data locality, and load balancing. Our case study focuses on
high-throughput query processing on biological sequence databases, a
fundamental task performed daily by millions of scientists, who increas-
ingly prefer to use web services powered by parallel servers. Our research
indicates that intelligent resource allocation and scheduling are crucial in
improving the overall performance of a parallel sequence database search
server. Failure to consider either the parallel computation scalability or
the data locality issues can significantly hurt the system throughput and
query response time. Also, no single static strategy works best for all re-
quest workloads or all resources settings. In response, we present several
dynamic scheduling techniques that automatically adapt to the request
workload and system configuration in making scheduling decisions. Ex-
periments on a cluster using 32 processors show the combination of these
techniques delivers a several-fold improvement in average query response
time across various workloads.

1 Introduction

There is a growing trend to provide parallel scientific computation services
through the web interface, especially for computation- and data-intensive tasks
such as scientific database queries, data mining, and visualization. Rather
than having users download large volumes of shared data and run stand-alone
applications, scientific web services allow them to perform common data pro-
cessing/analysis tasks through intuitive web interfaces. For example, an online
bio-sequence search service can be viewed as the equivalent of web search engine
in the bioinformatics world.

B. Ludäscher and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, pp. 276–294, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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These services are very appealing to scientists due to several reasons. First,
for many researchers the existence of web data processing services reduces or
even eliminates the purchase and maintenance cost of owning local clusters. Sec-
ond, many popular data processing tasks access shared public datasets (such as
well-known sequence databases or satellite images) that are constantly updated.
Having such datasets managed by a parallel web server enables individual scien-
tists to access the latest data without worrying about downloading, storing, and
updating large datasets. Last but not least, providing parallel scientific data pro-
cessing through transparent and intuitive web interfaces hides the painful details
of parallel computing. It lets domain scientists obtain the performance of power-
ful clusters without dealing with tedious and challenging tasks such as machine
administration, batch job submission and monitoring, manual data staging, and
after all, learning or even writing parallel software.

Given a computing platform (typically a cluster of back-end servers and one or
more frontend servers), a collection of shared datasets, and a collection of appli-
cations to run on demand as services, efficient scheduling is crucial to the parallel
web server’s performance, in terms of the average request response time. How-
ever, existing scheduling strategies from two related application fields, namely
commercial clustered web servers and space-shared parallel computers, are in-
adequate for this new type of workload. Below we briefly describe the reasons
(more detailed discussion will be given in Section 5).

Scientific web services tend to be both computation- and data-intensive, per-
forming non-trivial algorithms over large amounts of shared data. In contrast,
commercial web servers typically stream contents or perform low-cost relational
database queries. Hence their scheduling algorithms concentrate on data locality
optimization and load balancing. Also, a back-end server node usually handles
many client requests simultaneously with multiple open connections. With sci-
entific data analyzing services, the CPU and the memory resources required to
timely process a request are often far beyond those can be offered by a single
node. Consequently, a group of these nodes is dedicated to every request in a
tightly synchronized manner.

In this sense, request processing in scientific web services is closer to batch
job processing on parallel computers, however with two major differences. First,
on general-purpose parallel computers, batch jobs are mutually independent and
rarely share data. Second, as shared computation platforms, parallel computers
have no knowledge regarding each job’s computation and I/O requirements, and
the resources requested by each job (such as the number of processors and the
maximum run time) are specified explicitly in job scripts. Therefore batch job
scheduling usually pays no attention to data locality issues and has no control
over the level of concurrency in each job. With scientific data services hosted by
specialized data centers, data sharing is common and the parallel web server has
much more knowledge about the services it provides.

Therefore, parallel scientific web services require careful examination of the
intertwined computation and data management issues in making scheduling de-
cisions. In this paper, we extended scheduling algorithms to work for parallel
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scientific web services, from those designed for the commercial cluster web servers
and batch processing parallel computers. By adopting a novel combination of
these extended algorithms, a parallel scientific web server will take into con-
sideration both the data and the computation aspects: data locality, parallel
execution efficiency, and load balancing. In addition, the combined strategies
work fully adaptively, automatically adjusting scheduling strategies according
to the server load levels and dynamic data access patterns.

We implemented our proposed scheduling algorithms, along with baseline
strategies to compare with, in a parallel BLAST server prototype. BLAST [1] is
a fundamental sequence database search task performed routinely by scientists.
Given a query sequence, the BLAST family tools search through a database of
known sequences and return sequences that are “similar” to it. Online parallel
BLAST searches have become popular. In April 2005, the NCBI parallel BLAST
web server received about 400,000 BLAST queries daily [19]. Such dedicated se-
quence search web servers often host multiple databases and provide different
alignment algorithms. Meanwhile, the search workload is highly dynamic [2].

Our experiments on a cluster server performing parallel BLAST revealed that
a careful choice in query concurrency and database-to-processor assignment may
easily result in a dramatic difference in the average query response time. We con-
firmed that different query arrival rates and query composition ask for specialized
strategies, and there are no “one-size-fits-all” solutions. The combination of the
proposed adaptive strategies, however, achieves the best or close-to-best perfor-
mance across a wide range of system load levels, with a several-fold improvement
in average query response time in many cases.

Although our implementation and evaluation are based on parallel BLAST, this
workload carries many common characteristics of scientific data processing appli-
cations, such as accessing large shared databases, map-reduce type of processing,
and content-dependent execution time. We believe that the observations and ex-
periences collected through this study can be utilized by many other applications.

2 Parallel BLAST Web Server Architecture

2.1 BLAST and Parallel BLAST

The BLAST [1] family algorithms search one or multiple input query sequences
against a database of known nucleotide (DNA) or amino acid sequences. The
input of BLAST is one or more query sequences and the name of the target
database to search. For each query sequence, BLAST performs a heuristics based,
two-phase search on all sequences in the database and returns those that are most
similar to it. This requires a full scan of all the sequences in the database. For
each of these sequences returned, BLAST reports its similarity score based on its
alignment with the input query and highlights the regions with high similarity
(called hits). Therefore, the BLAST process is essentially a top-k search, where
k can be specified by the user, with a default value of 500.

Many approaches have been proposed to execute BLAST queries in paral-
lel. Among them, the database segmentation [3,9,13,15] model has proved to be
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effective in processing the ever growing sequence data sets. With database
segmentation, a sequence database is partitioned into multiple fragments and
distributed to different cluster nodes, where the BLAST search tasks are per-
formed concurrently on different database fragments. The local results generated
by individual nodes for a common query sequence are merged centrally to pro-
duce the global results.

2.2 Parallel BLAST Web Server Architecture

Figure 1 illustrates the parallel BLAST web server architecture targeted in our
study, with sample query and partial output. As in a typical cluster setting,
each node has its own memory and local disk storage, as well as access to a
shared file system. One of the cluster nodes serves as the front-end node, which
accepts incoming query sequences submitted online, maintains a query waiting
queue, schedules the queries, and returns the search results. The other nodes are
back-end servers, often called “processors” in the rest of the paper for brevity.

For each query, the front-end node determines the number of processors to
allocate, selects a subset of idle back-end nodes (called a partition) when they
are available, and assigns these nodes to execute this query. After the parallel
BLAST search, the results are merged by one of the nodes in the partition and
returned to the client via the front-end node.

To save the database processing overhead, all the sequence databases sup-
ported by the parallel BLAST web server are pre-partitioned and stored in the
shared storage. Figure 1 shows two sample databases, each partitioned into 4
fragments. The required database fragments will be copied to the appropriate
back-end nodes’ local disk before each query is processed, and are cached there
using a cache management policy. Existing parallel BLAST implementations al-
low multiple database fragments to be “stitched” into a larger virtual fragment
with little extra overhead. Therefore for the maximum flexibility in schedul-
ing without creating physical fragments of many different sizes, we partition
the database into the largest number of fragments allowed to be searched in

Node 1

Shared File System

DB11

Incoming Queries

Partition 1

q1
q2

Query Queue

Node 2 Node 3 Node 4

DB12 DB13 DB14

DB11 DB12 DB13 DB14 DB21 DB22 DB23 DB24

Node 5 Node 6

DB21 DB22 DB23 DB24

Partition 2

Front EndTGACGTCATCCTCATGTGTTTCTCCATTGACAGCCCTGACAGTTTGGAAAAC

ATTCCTGAGAAG …

Results

q3, q4, q5 …
Query: 1   tgacgtcatcctcatgtgtttctccattgacagccctgacagtttggaaaacattcctga 60

||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Sbjct: 21  tgacgtcatcctcatgtgtttctccattgacagccctgacagtttggaaaacattcctga 80
...

Fig. 1. Target parallel BLAST web server architecture
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parallel. To simplify the scheduling and to achieve better load balance, both
the database fragmentation and processor allocation are based on power-of-two
numbers, which is natural considering the way clusters are purchased or built.
Note that the fragments combined into a larger virtual fragment do not need to
be in consecutive order. For example, when 16 processors are assigned to search
a certain query against a database partitioned 64-way in a 64-processor cluster,
one of them may be assigned to search fragments 0, 8, 45, and 57.

Assumptions: Before we move on to the scheduling strategies, we summarize
assumptions made in this study: First, we assume a homogeneous environment,
which is true for most clusters. Second, due to the space constraint, in this paper
we discuss the scenario where the entire collection of databases can be accom-
modated at each cluster node’s local disks.1 This is likely the case for parallel
BLAST servers, as the total size of formatted NCBI sequence databases is cur-
rently around 100GBs, while a cluster node can easily have hundreds of GBs
of local disk space today. Finally, to simplify query workload generation, we as-
sume that each query contains only one sequence. Although existing BLAST web
servers may allow users to upload multiple query sequences, the standard NCBI
BLAST engine processes input queries sequentially. The difference in search time
between the shared and separate BLAST sessions for multiple query sequences is
not significant and mainly lies in the initialization overhead. Our research results
can be easily extended to handle multiple-sequence requests. In the rest of the
paper, we use the terms “request” and “query” interchangeably.

3 Scheduling Strategies

In this section, we present scheduling strategies for parallel scientific web services,
using parallel BLAST server as a case study. We extend two existing scheduling
algorithms and integrate them to design adaptive algorithms that automatically
adjust to various query workloads and cluster configurations. Like in many ex-
isting request scheduling studies, our major goal is to optimize the average query
response time.

In Section 3.1 and Section 3.2, we discuss our extended scheduling algorithms
respectively. The first one comes from the commercial cluster web server com-
munity and performs data-oriented scheduling. It determines which processors
should be allocated for a specific query, considering existing data cached at these
processors and their current load. The second one comes from the space-sharing
parallel job scheduling community and performs efficiency-oriented scheduling.
It determines the desired level of concurrency for processing a query, considering
the specific query workload and the current system load. Both algorithms are
extended substantially to fit the scenario of parallel scientific web services. Then
in Section 3.3, we discuss our overall scheduling scheme and describe how we
integrate the two scheduling algorithms.

1 For systems equipped with insufficient local storage, we have developed additional
optimizations, as described in our technical report [14].
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3.1 Data-Oriented Scheduling

Like in other distributed or cluster web servers, data locality is a key performance
issue in parallel BLAST web servers. Figure 2 demonstrates the impact of going
down the storage hierarchy: main memory, local file system, and shared file
system. The experiments use sequential NCBI BLAST to search the est-mouse
and nr databases, which can fit into the memory of a single processor. For each
case, 10 sequences randomly sampled from the database itself are used as queries,
and the average search time is reported. In the “warm-cache” tests, we warm up
the file system buffer cache with the same query before taking measurements,
and in the “cold-cache” tests we flush the cache first. For “cold-cache-shared”,
we force loading the database from the shared file system. The results indicate
that improving file caching performance and in particular, reducing remote disk
accesses can significantly improve the search performance.
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As mentioned earlier, in this paper we focus on the scenario where the entire
set of databases hosted by a parallel scientific web server can fit into the per-node
local disk space. Still, only a small fraction of those databases can be buffer-
cached in the main memory, and scheduling must be performed considering the
data locality issue. One intuitive locality-aware optimization is to assign queries
targeting different databases to disjoint pools of processors and let each processor
pool search the same database repeatedly. This way, the effective working set of
each processor is reduced. Creating static per-database processor pools, however,
is not flexible enough to handle the dynamic online query composition and will
likely cause serious system underutilization.

A similar problem has been addressed regarding general-purpose content-
serving cluster web servers. In this paper, we extend the LARD algorithm for
content request distribution proposed by Pai et al. [20] to the parallel scientific
web service context. Given a set of back-end servers, the LARD algorithm assigns
partitions of hosted targets to subsets of these servers. An incoming web request
will be routed to one of the servers assigned to its target, or the least loaded
server if it is the first request of the given target. Load balancing is performed
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periodically to move requests from heavily loaded servers to lightly loaded ones.
LARD exploits data locality to improve the server performance by assigning
requests of the same target to the same set of processors.

Two major differences make our target system considerably more complex
than a general-purpose cluster web server. First, multiple processors need to be
co-scheduled to queries or co-transferred between pools. Second, a processor can
handle only one query at any given time. Therefore queries cannot be piled to
server nodes as they arrive, but need to wait for dispatch.

To handle these requirements, we extend LARD to a new algorithm called
PLARD (Parallel LARD). To perform locality-aware assignment and load bal-
ancing, PLARD adopts a two-level scheduling mechanism. It establishes one
global query queue (global queue) and multiple per-database query queues
(queue[DBi]). Queries will be first appended to the global queue, and subse-
quently dispatched to one of the per-database queues. Similarly, because servers
need to be assigned in groups, PLARD manages a global idle processor pool
(global pool), and multiple per-database processor pools (pool[DBi]). Initially,
all the processors are in the global pool. A scheduling operation will be triggered
by either a query arrival or a query completion. Algorithm 1 gives the detail of
the process of scheduling one query from the global queue.

Queries in the global queue will be scheduled in the first-come-first-serve
(FCFS) order. When there are not enough resources for the next query, the
scheduling attempt is aborted and the global scheduler waits until a query com-
pletes. This helps ensure fairness and prevents starvation. Also, this allows the
recommended partition size to be recalculated as the system load changes.

Before moving a query from the global queue to a per-database pool, a recom-
mended partition size will be calculated by the function get recommended size().
This function determines how many processors should be allocated to a target
database, using algorithms such as the ones described in the next section. The
target database-pool will be enlarged if the pool size is less than the recom-
mended size. In case there are not enough processors to allocate from the global
pool, the algorithm will seize processors from the most lightly loaded pool if
there are fewer queries waiting in that pool’s local queue than those waiting for
the target database in the global queue.

After a query is assigned to a per-database processor pool, it goes to the local
queue of that pool and is scheduled using an internal scheduling algorithm (such
as a fixed partitioning policy or RMAP, as presented in the next section). This
way, a relatively stable subset of server nodes are assigned to work on a certain
database, maximizing the use of their collective buffer cache space.

Like in the original LARD, every time a query is scheduled the system per-
forms load balancing. In PLARD, we move processors from the most lightly
loaded pool (pool[DBmin]) to the most heavily loaded pool (pool[DBmax]), if
one of the following conditions is satisfied:

1. queue[DBmax].length - queue[DBmin].length > T and
queue[DBmax].length ≥ 2× queue[DBmin].length, or

2. queue[DBmin].length = 0 and queue[DBmax].length > 1
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Algorithm 1. PLARD
fetch the next query q from global queue
partition size ← get recommended size()
m ← the number of queries waiting for q.target db in global queue
candidate queues ←

�
queue[DBi], where DBi not equal to q.target db

increase size ← partition size - pool[q.target db].size
if increase size > 0 then

while global pool.size < increase size and candidate queues not empty do
size needed ← increase size - global pool.size
find queue[DBj ] ∈ candidate queues with smallest queue length
if m > queue[DBj ].length then

num idle ← the number of idle nodes in pool[DBj ]
S ← release idle nodes(DBj , min(num idle, size needed))
add S to global pool

end if
remove queue[DBj ] from candidate queues

end while
if increase size ≤ global pool.size then

A ← allocate increase size processors from global pool
add A to pool[q.target db]

end if
end if
if pool[q.target db] is not empty then

append q to queue[q.target db]
end if
balance load()

T in the above is a configurable threshold, which is set as 10 in our imple-
mentation. The number of processors moved during load balancing is set to be
Pmin of DBmax, where Pmin is the minimum partition size allowed for a given
database as described in Section 3.2. This helps reduce the internal fragmenta-
tion of a database pool during load balancing.

3.2 Efficiency-Oriented Scheduling

PLARD helps us optimize query processing performance by maximizing the use
of cached data and improving load balance between server nodes. However, it
does not consider the parallel processing scalability of the scientific applications
that service the web requests. The latter turns out to be crucial in deciding how
many processors should be allocated to each individual query, and can have a
significant impact on the parallel web server’s performance.

We illustrate the argument by examining parallel BLAST’s performance scal-
ability. Like most parallel applications, it is subject to the performance tradeoff
between absolute performance and system efficiency when the level of concur-
rency increases. One obvious explanation is the higher parallel execution over-
head associated with searching a single query using more processors. In addition,
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as BLAST performs top-k search, the task of processing and filtering of inter-
mediate results grows with the number of processors. Figure 3 illustrates the
performance trend of parallel BLAST from searching two widely used databases,
the NCBI nr and nt, as benchmarked on our test cluster (to be described in Sec-
tion 4.1). For each search workload, we plot the efficiency, which is defined as
parallel speedup divided by the number of processors. Therefore a perfect linear
efficiency is a flat line. For both nr and nt, the efficiency slides steadily as more
processors are used for each query.

Systems such as the NCBI BLAST server reported periodic variances in the
query arrival rate [2]. One intuitive heuristic is to control the number of proces-
sors allocated to each query based on the current system load: when the load is
light, allocate more processors for smaller query response time; when the load is
heavy and queries are piling up in the queue, allocate fewer processors for bet-
ter system throughput (and consequently better average response time). This
intuition is backed up by queuing theory and has been adopted in adaptive par-
titioning algorithms for parallel job scheduling [21]. In this work, we select the
MAP algorithm [8], which improves upon the above work, as our base algorithm.

With MAP, both the waiting jobs and the jobs currently running are consid-
ered in determining the system load. It chooses large partitions when the load
is light and small ones otherwise. More specifically, for each parallel job to be
scheduled, a target partition size is calculated as

target size = Max(1, � n

q + 1 + f ∗ s
�),

where n is the total number of processors, q is the waiting job queue length,
s is the number of jobs currently running in the system, and f (0 ≤ f ≤ 1)
is an adjustable parameter that controls the relative weight of q and s. In our
experiments, we set the f value as 0.75, as recommended in the original MAP
paper [8]. Once the target partition size is selected, the front-end node waits
until these many processors become available to dispatch the query.

One may notice that in Figure 3 the nt curve does not monotonically decrease.
Instead it peaks at 8 processors, with a super-linear speedup at that point. This
is due to that the nt database cannot fit into the aggregate memory of 4 or fewer
processors on our test platform. As BLAST makes multiple scans and random
accesses to the sequence database, out-of-core processing causes disk thrashing
and significantly limits the search performance. The nr database is much smaller
and can be accommodated in a single compute node’s memory, therefore does
not show the same behavior.

This motivates us to propose Restricted MAP (RMAP), which augments the
base MAP algorithm with a database-dependent and machine-dependent mem-
ory constraint. For a given database supported by a given cluster server, we
select Pmin and Pmax, which define the range of partition sizes (in terms of the
number of processors) allowed to schedule queries against this database. Pmin is
the smallest number of processors whose aggregate memory is large enough to
hold the database. Pmax is determined by looking up the saturation point in the
speedup chart: it is the largest number of processors before the absolute search
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performance declines. In other words, after this point deploying more processors
will not produce any performance gain. An initial benchmarking is needed to
set Pmax for each database, which is feasible considering the total number of
different databases supported by a web server is often moderate2.

For each query scheduled, when there are more idle processors available than
p, the desired partition size calculated, RMAP adopts a simple node selection
strategy called FA (First Available), where the first p idle processors by the
processor rank will be assigned to work on the query. Database fragments will
be assigned to these processors in a round-robin manner.

3.3 Combining PLARD and RMAP

We integrated PLARD and RMAP in our two-level query scheduler implemen-
tation for the parallel BLAST server prototype.

As shown in Algorithm 1, when dispatching a query from the global queue
to a particular DB queue, the RMAP algorithm is first used to calculate a rec-
ommended partition size based on the global system state. More specifically,
the queue length(q) is calculated by summing up all queries in the global queue
and local DB queues, and the number of queries in the system(s) is the sum of
queries being searched at all DB pools. If the number of idle processors in the
processor pool of the target DB is smaller than the recommend partition size,
the scheduling algorithm seeks to assign more processors to this pool by acquir-
ing idle processors from the system idle processor pool and/or other relatively
lightly-loaded DB pools.

When a partition with the recommended size can be provided, the query is
moved into the local DB queue. There the RMAP algorithm will be called again
to determine a proper partition size in local scheduling. At this point, each local
RMAP scheduler uses the local system state, namely the local DB queue length
as q and the number of queries being serviced in the local processor pool as s.

With this two-level scheduling approach, we adapt simultaneously to the in-
tensiveness and the database access pattern of the dynamic query workload by
leveraging strengths of both RMAP and PLARD. The two algorithms comple-
ment each other nicely under the new scheduling framework.

4 Performance Results

4.1 Experiment Configuration

In our experiments, we use five biological sequence databases downloaded from
the NCBI public sequence repository. Table 1 summarizes several basic attributes
of these databases. Among them, the first two are protein sequence databases
(type “P”) and the other three are nucleotide sequence databases (type “N”).
The two types of the databases are searched using the blastp and blastn

2 The number of all sequence databases offered by the NCBI web search is 21 at the
time this paper is written.
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Table 1. Database characteristics. Note the Pmin values are multiples of 2, this is
because our experiments are performed on a two-way SMP cluster, and we found using
a compute node (2 processors) as the smallest scheduling unit yields better performance
than does using an individual processor, as the former choice has better data locality.

Name Type Raw Size Formatted Size Pmin Pmax

env nr P 1.7GB 2.5GB 2 32
nr P 2.6GB 3.0GB 4 32

est mouse N 2.8GB 2.0GB 2 16
nt N 21GB 6.5GB 8 32
gss N 16GB 9.1GB 8 32

algorithms respectively. The size of each database shrinks after the database is
formatted for search using the standard formatdb tool. For each of the databases,
we also give the Pmin and Pmax pair, which defines the processor partition size
range. As discussed in Section 3.2, Pmin is determined by the memory constraint
and Pmax is determined by benchmarking the parallel execution scalability of
the individual database search workload.

The parallel BLAST software we used is the popular mpiBLAST tool [9,13],
available at http://mpiblast.org/. For queries, we sampled 1000 unique sequences
from the five databases, with the number of samples from each database propor-
tional to the formatted database size. Since sequence databases are constantly
appended with newly discovered sequences, we hope this sampling method re-
sembles the composition of real BLAST search workloads, which are driven by
sequence discoveries. We compose online query traces by drawing queries ran-
domly from this pool of unique sequences, setting the arrival interval with the
Poisson distribution.

To create traces with the desired arrival rates, we benchmark the maximum
throughput of the whole system. This maximum throughput is calculated in
an aggressive manner: we measure the maximum throughput of each database’
search workload by executing the corresponding subset from the 1000-query pool
on the whole cluster using the smallest partition size (Pmin). This way the system
achieves best efficiency and data locality with the single-database workload and
small partition size. We then derive the multi-database maximum throughput
by taking a weighted average of the single-database peak throughput, according
to the number of queries going to each database.

Unless noted otherwise, the experiments are performed using query traces that
contain 600 query sequences sampled from the 1000-query pool above. Note that
many of the charts use log2 scale on the y axis, due to the large distribution of
performance numbers under different system load levels.

4.2 Test Platform

Our experiments were performed on the Orbitty Linux cluster located at North
Carolina State University. Orbitty consists of 20 compute nodes, each equipped
with dual Intel Xeon 2.40GHz processors sharing 2GB of memory. Due to its
target workload, this cluster has 400GB per-node local storage space, which
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is large enough to host the entire collection of NCBI sequence databases. The
interconnection is Gigabit Ethernet and a shared storage space of over 10TB is
accessed through a Lustre server.

4.3 Data-Oriented Scheduling Results

First, we examine the effectiveness of improving data locality in query process-
ing, by showing the impact of PLARD on three versions of fixed partitioning
strategies. With fixed partitioning, the number of processors allocated to queries
against the same database is fixed throughout the run. For each database, we
choose three fixed partition sizes within its partition size range [Pmin, Pmax]:
small (FIX-S), medium (FIX-M), and large (FIX-L).

Experiments are carried out using different levels of system load by adjusting
the query arrival rate. A system load of 1 means the query arrival rate is equal
to the maximum query throughput. All these strategies also use the default FA
policy in selecting idle processors to schedule.
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Fig. 4. Normalized average number of page faults and normalized average service time

Figure 4 portraits the impact of PLARD on the fixed partition size algorithms’
file caching performance. Since BLAST uses memory mapped files, the number
of page faults is a good indication of the amount of file I/O performed to retrieve
the database fragments. For each of the fixed algorithms, we plot the average
number of page faults per node (dashed lines) and the average query service
time (solid lines), with and without PLARD. All the page fault numbers are
normalized against the page fault number of the original algorithm (without
PLARD) with the system load of 1. The same applies to the service times. The
absolute values of these two pivot numbers are marked in the charts.

As expected, the PLARD algorithm does have a significant impact on the
number of page faults. In particular, for FIX-S, the original page fault numbers
of over 750 are reduced at least by half, and almost eliminated with the lightest
and heaviest system loads. On average, the number of page faults is reduced
by 79.87%. The original FIX-S page fault slightly declines as the system load
intensifies since more processors will be actively used, and the chance of having
cache hits increases due to the enlarged aggregate memory size, although there
is no intentional, locality-aware query placement. With PLARD, however, the
peak of page fault numbers appear in the medium load (0.6), where with the
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small partition size, the per-database processor pools are the most dynamic:
processors are shifted between pools relatively more frequently, reducing the
chances of cache hits within each database pool.

With FIX-M, the page fault reducing of PLARD is smaller but still consid-
erable, with an average of 43.37% decrease. Here the peaks of the page fault
numbers, both with and without PLARD, are different from those with FIX-S
due to the larger partition sizes. For example, the lightest load achieves the best
data locality since the query load is rather concentrated on a group of processors,
facilitating in-memory data reuse, while the size of the group is large enough to
spread the databases out and reduce the data access working set per node.

With FIX-L, the databases are so spread out so that all the fragments needed
by a processor are almost always in the memory. Although the normalized curves
look dramatic, the absolute numbers are very small. Even without PLARD, the
cache misses are negligible, with an average page fault count of 0.37.

The improvement of service times using PLARD is a direct result of the
improved data locality, as PLARD does not affect the computation efficiency of
each query’s processing with the fixed-partitioning algorithms. The degree of the
improvement, however, declines as the partition size selected increases. This is
because the number of page faults goes down faster than the service time does
when larger partitions are used. Therefore the impact of page fault reduction
plays a smaller and smaller role.
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Fig. 5. Query load distribution among processors with the medium partition size

Figure 5 provides additional information about the effect of PLARD, from
its load balancing aspect. We illustrate this using FIX-M, the algorithm using
the medium partition size. As discussed above, with the FA policy for processor
assignment, the query processing workload distribution is skewed at the load
level of 0.2. Most queries are assigned to the first 16 processors, with an ad-
ditional 100+ queries assigned to the first 8 (please recall that the “medium
partition size” varies from database to database). Heavier system loads force the
queries to become more evenly distributed. With PLARD, the query processing
assignments are well balanced among processors for all system load levels.
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(c) Large partition size

Fig. 6. Impact of PLARD on the average query response time. Note that the y axis
uses the log2 scale, and the speedup factor brought by PLARD is shown at the top of
each pair of bars.

Now we take a look at the overall impact of PLARD, by comparing the average
query response time before and after. Because long waiting time with heavy
system loads caused a wide distribution of response time, we show the numbers
in log scale, with the speedup factor brought by PLARD labeled at the top of
each pair of bars.

Figure 6 shows the comparison, again for each of the FIX algorithms using
multiple system loads. As expected, the largest improvements are found with
FIX-S, where the average response time is reduced by up to 4.1 times. As we
have seen from Figure 4, the largest enhancement to data locality and the av-
erage query service time occurs with the small partition size. The changes in
service time, in turn, has a varying impact on the query response time. With
heavier loads, the reduced service time has a rather dramatic effect on decreasing
the queue length and average query wait time. With light loads, the enhanced
service time does not affect the per-query wait time much. For FIX-M, the best
improvement is observed at the load of 0.8, with a speedup factor of 1.83. Not
surprisingly, PLARD does not bring significant improvement to FIX-L.

4.4 Efficiency-Oriented Scheduling Results

Now we examine the impact of RMAP by enabling PLARD for all tests and
compare the three FIX algorithms with RMAP.

Figure 7 portraits the results. As expected, no single fixed partitioning strat-
egy performs consistently well. When the system load is light, the large partition
size works best by using a large number of processors to reduce each query’s re-
sponse time. As the load increases, first the medium, then the small partition size
becomes the winner. With heavier loads, smaller partition sizes help achieving
better overall resource utilization by improving the parallel execution efficiency.
The performance difference is significant: across the x axis, the difference be-
tween the best and worst average response time among the fixed partitioning
strategies varies between 3.5 and 8 times. RMAP, on the other hand, closely
matches the best performance from the three fixed partitioning strategies by
automatically adapting to the system load.
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The only point where the RMAP performance is visibly lower than the best
fixed partition size algorithm is with the medium system load (0.6). Because
the trace we used is not even-paced, the medium load is an unstable case for
RMAP, where the scheduler adjusts the partition size (in both directions) most
frequently. With frequent partition size changes, cache contents cannot be well
utilized and more cold misses are introduced.

To verify this, we take a closer look at the behavior of FIX-M-PLARD and
RAMP-PLARD. Table 2 summarizes a group of measurements taken from the
experiments using the two algorithms, at the system load level 0.6 and 0.8. Be-
cause the partition sizes are power-of-two numbers, we calculate the average
partition size by taking the arithmetic average after performing the log2 oper-
ation. The “total service time” is calculated as the total computation resource
usage in an experiment. For each query, we calculate its resource usage as the
product of its service time and the number of processors it used. We sum up the
resource usage of all queries in a trace as the total service time.

From the page fault counts, we see that RMAP does hurt the data locality at
load level 0.6. Consequently, RMAP adopts a slightly larger partition size than
FIX-M does, but has a 8% higher average service time. The service time increase
causes a similar increase in the waiting time and average response time.

Interestingly, RMAP caused a much larger increase in the number of page
faults at the load of 0.8, yet the average response time of RMAP is 5 times
better than that of FIX-M. This is caused by that RMAP has better parallel

Table 2. FIX-M-PLARD and RMAP-PLARD statistics at system load 0.6 and 0.8

System Load 0.6 0.8

Policy FIX-M-PLARD RMAP-PLARD FIX-M-PLARD RMAP-PLARD
Average # Page Faults 93.00 132.74 63.64 224.88
Average Service Time (s) 8.81 9.53 8.76 15.47
Average Waiting Time (s) 2.50 2.95 128.25 12.51
Average Response Time (s) 11.31 12.48 137.02 27.98
Total Service Time (s) 69936 78700 69657 63977
Average Partition Size (log2) 3.71 3.88 3.71 2.78
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computation efficiency there, which can be seen from the total service time:
RMAP increased the total service time at 0.6 and decreased it at 0.8. Although
the individual query’s service time is longer than FIX-M, RMAP increases the
whole-system throughput by automatically adopting a considerably smaller av-
erage partition size. With such a heavy system load, this had a dramatic effect
on shortening the average query waiting time, and the average query response
time consequently.

Finally, we evaluate the overall adaptivity of the combined RMAP-PLARD
algorithm. Figure 8 shows two sets of experiments, each using a mixed load level
trace containing 800 queries. In each trace, the average load level is adjusted
several times, e.g., from 0.2 to 0.4, 0.6, and finally 0.8, for four equal-length
intervals (in terms of the number of queries). Trace 1 adopts such an monoton-
ically rising system load as in the above example, while trace 2 has a repeated
up-down pattern. Again, for such mixed load traces, none of the fixed partition
size algorithms consistently win, and each of them may suffer trace intervals
where the selected partition size is undesirable. RMAP, on the other hand, suc-
cessfully adapts to the varying query intensiveness and significantly outperforms
all the fixed partition size algorithms, bringing an improvement factor of 1.63
and 1.26 in average response time over the best performing fixed algorithm for
trace 1 and 2, respectively.

5 Related Work

There have been numerous studies on scalable distributed web-server systems,
most of which were focused on efficient request routing and assignment for con-
tent serving, as surveyed by Cardellini et al. [6]. One closely related project is
the LARD system [20], which performs content-based web request distribution
to back-end servers considering both load balance and request locality for bet-
ter memory cache performance. Research in this category, along with that on
resource-intensive web request scheduling [24], often assumes that multiple re-
quests can be served by the same back-end server simultaneously, or the request
service time is known or can be predicted. In our target scenario, time-sharing
the back-end servers is difficult given the closely-coupled message passing model
used by a subset of servers performing parallel scientific applications, and the
cost of each request could be quite unpredictable [11].

Regarding space-sharing of parallel computers, a wealth of job scheduling
algorithms have been proposed and evaluated, as summarized by Feitelson [10].
However, with the prevailing use of message passing programming interfaces
such as MPI [17] and contemporary batch parallel job execution environments,
adaptive or dynamic allocation of resources is rarely used on parallel computers.
Instead, jobs are given the exact number of processors as requested, using strate-
gies such as FCFS plus backfilling [18]. Our work reveals a type of real-world
workload that features so called “moldable parallel jobs” (those can be run on
a flexible number of processors), where many existing scheduling strategies can
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be applied to. In this paper, we extend existing adaptive parallel job scheduling
algorithms [8,21] to the high-performance scientific web service context.

Many projects have studied accelerating BLAST through parallel processing
on SMP machines or clusters [3,4,5,7,9,12,13,15], with the current trend of en-
abling database segmentation [9,13]. Our case study of parallel BLAST server
examines resource allocation and data placement issues related to handling on-
line BLAST queries on a cluster web server, which can potentially work on top of
any of the above underlying parallel BLAST implementations. Instead of making
an individual parallel BLAST system more efficient, we focus on improving the
overall resource utilization and exploiting data locality.

There have also been studies on high throughput BLAST online services.
Wang and Mu described a distributed BLAST online service system [23], where
the incoming query is assigned to the least-loaded SMP node and each node
searches one entire target database. Wang et. al. introduced a service-oriented
BLAST system built on peer-to-peer overlay networks [22]. This work assumes
a heterogeneous environment with high communication cost. NCBI hosts a pub-
licly accessible BLAST server on a farm of LINUX workstations [2,16]. For a
given query, the system statically splits the search into 10-20 subtasks, each
searching a different piece of the database. The subtasks are scheduled indepen-
dently to the machines that have just searched the same piece of data when pos-
sible. A central machine tracks and merges results from subtasks for all queries.
Due to the lack of design/implementation details about the NCBI BLAST server
in the literature, we were not be able to do a direct comparison. However, we
argue that the NCBI server is not able to factor in the parallel efficiency by using
only static task partitioning. To the best of our knowledge, our paper presents
the first systematic investigation of optimizing scientific web services by taking
into account both parallel efficiency and data locality.

6 Conclusion and Future Work

Below we summarize the findings and contributions of this paper: (1)We iden-
tified the scheduling requirements of increasingly popular parallel scientific web
services. (2) For our target workload, we extended and designed several adaptive
scheduling strategies, namely PLARD for locality-enhancing resource partition-
ing, and RMAP for dynamic parallelism adjustments. These strategies automat-
ically react to the query workload, both in terms of the request intensiveness and
the data access pattern. (3) We integrated and implemented our proposed algo-
rithms in a parallel BLAST sequence search prototype and performed extensive
experiments using real-cluster tests. (4) Our results demonstrated that PLARD
can significantly reduce the amount of file I/O. Meanwhile, RMAP outperforms
its static counterparts across various query workloads. Combined together, our
proposed strategies often deliver an several-fold performance gain.

This work can be extended in several directions. First, we would like to apply
our scheduling algorithms to other parallel web services such as online scientific
data mining. Another interesting topic will be investigating how to combine
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intelligent data prefetching and our adaptive scheduling to host service of huge
datasets that cannot be fully cached in a server node’s local storage.
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Abstract. Annotations play an increasingly crucial role in scientific exploration
and discovery, as the amount of data and the level of collaboration among scien-
tists increase. In this paper, we introduce ViP, a user-centric, view-based annota-
tion framework that promotes annotations as first-class citizens. ViP introduces
novel ways of propagating annotations, empowering users to express their prefer-
ences over the time and network semantics of annotations. To efficiently support
such novel functionality, ViP utilizes database views and introduces new caching
techniques. Through an extensive experimental study on a real system, we show
that ViP can seamlessly introduce new annotation propagation semantics while
significantly improving the performance over the current state of the art.

1 Introduction

Without a doubt, data management is playing a pivotal role in scientific exploration
nowadays, constantly fueling the pace of discovery. In addition to efficiently managing
the tsunami of experimental data generated, data management also facilitates effec-
tive collaboration among scientists, by recording data provenance [6] and data lineage
[1,2,9,11,12], and by supporting annotations [3,4,5,15,23]. Data provenance and lin-
eage essentially keep track of where the data is coming from (and what transformations
it has been through), whereas annotations enable users to record additional information
about the data stored (and propagate this information to all “related” data items).

In this paper, we present ViP, a novel annotation framework that introduces new an-
notation propagation methods, utilizes views both as a specification mechanism and as a
user-interface mechanism, and employs caching techniques for improved performance
compared to the state of the art 1.

Our interest in this research area came from our participation in the Center for Mod-
eling Pulmonary Immunity (CMPI). CMPI is bringing together experimentalists and
modelers to study pulmonary immunity in response to three bio-defense pathogens.
Our group is responsible for the design and development of the data sharing platform
(DataXS), where experimental data, analysis, and models will be shared among project
participants. In such a diverse setting, the ability to record annotations and propagate

1 This research was supported in part by NIH-NIAID grant NO1-AI50018.

B. Ludäscher and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, pp. 295–312, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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them to all related data items and interested parties is crucial to the success of the
project.

As part of the design process and during the implementation of our first prototype,
we were able to identify two distinct usage patterns related to the specification and
the propagation of annotations within a Database Management System (DBMS), which
were not currently supported by the state of the art.

Support for user-centric time semantics for annotations. The first usage pattern that
we observed was that experimental data was almost always entered in the database
in an order different than the one it was generated. In fact, even data about the same
experiment was entered at completely different times, since more than one labs were
involved in generating the data (for example, one lab would generate the luminex data
whereas a different lab would produce microarray data for the same tissues). Looking
at annotations, this means that if one wanted to annotate data from a particular exper-
iment with an observation about the tissues, it would not be enough to do this once,
as additional experimental data may be added into the database later (which would not
automatically “inherit” the annotation).

To address this, we propose the concept of valid time of annotations, where annota-
tions should be propagated to all data items matching a certain description within the
validity time interval specified by users. We refer to this feature as “user-centric time
semantics”.

Support for propagation of annotations in user-defined ways. The second usage
pattern that we observed was that there exist many relationships, or paths, between data
items that cannot be inferred by the existing database schema or their lineage. Such
paths materialize because, for example, tissues from multiple, independent experiments
were processed together, in a single assay (for example, on a single plate that needed
to be filled up to minimize costs). Annotations associated with this one assay would be
propagated to all experiments that shared the plate, e.g., in the case of a contamination.

To address this, we propose to enable users to specify explicit annotation paths, thus
allowing for more “interconnections” among data and knowledge. Annotations should
be propagated along these paths, reaching “related” data items, as specified by users.
Since these paths are essentially forming a network, we refer to this feature as “user-
centric network semantics”.

User-friendly Implementation. First of all, we need to identify a way to formally
define data items matching a certain criterion, to be used by our algorithms. The answer
is somewhat obvious: use database views, which describe the results of a query. Similar
approaches have been proposed in the past (e.g., [21]); ours significantly extends the
use of views with additional semantics. Secondly, we need a realistic way for users to
utilize the new features. Clearly, they are not to be expected to provide view definitions
in SQL! In DataXS, a user can easily specify filtering conditions to locate certain data
items, in other words, to specify views using a point and click interface (Figure 1);
these views were initially implemented to provide an easy reference for frequently used
queries (e.g., the In Vitro experiments tab in Figure 1), but can also be trivially used to
implement all functionality of the ViP framework.
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Fig. 1. DataXS User Interface

Contributions: This paper has both theoretical and practical contributions:

• based on our experience from a real system implementation, we introduce new an-
notation propagation methods, suitable for scientific data,

• we propose user-centric features (user-centric time semantics, network semantics,
and access control) that enable users to personalize annotation propagation,

• we propose to use views as the formal mechanism to implement the new annotation
propagation features and also as a user-interface paradigm,

• we utilize caching to significantly improve the performance over the state of the art,
• we experimentally evaluate the proposed ViP framework using a real system imple-

mentation and simulated workloads.

Roadmap: Section 2 presents the details of the proposed annotation framework, along
with related work. Section 3 describes our implementation. Section 4 presents the re-
sults from our extensive experimental study using a real system.

2 Annotation Propagation Semantics in ViP

In this section, we present the details of our proposed semantics for annotation prop-
agation. In each case, we also present the corresponding statements in ViP-SQL, our
proposal for a simple extension to SQL that would handle the new semantics based on
the concept of views.

2.1 User-Centric Time Semantics

We propose the concept of valid time, which is the validity time interval of an annota-
tion view or path. It allows users to specify what time period to associate the annotations
with corresponding data or to propagate the annotations via a certain path.

If we consider the time dimension of annotation propagation, we can easily distin-
guish four different cases:

• now, where an annotation is only propagated to data items currently in the database,
• future, where an annotation is only propagated to data items that are added in the

database in the future,
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• now+future, where an annotation is propagated to data items currently in the
database, and also to those that are added in the database in the future. This is
essentially the combination of the now and future approaches,

• future interval, where an annotation is propagated to data items that are added in the
database in the time interval a user specifies.

These four cases represent all the possible alternatives if one considers the concept of
future time semantics and also wants to give users the flexibility to specify the validity
interval for their annotations.

Related Work. Most of the current annotation management frameworks utilize now
time semantics, propagating annotations to only existing data items [2,3,4,13,14]. In
contrast, our system supports now and future semantics (in all the four “flavors” de-
scribed above), which we will assume for the rest of this paper. To the best of our
knowledge, only the work in [21] functions similar to the now+future time semantics
presented in this paper.

Motivating Example #1. To properly motivate the need for time semantics, let us
assume a setup like that in the DataXS system, where experimental data are stored
(in the Experiments table) and shared among project participants. Let us assume that
a contamination happened in the ADMT Lab between Oct 1, 2007 and Oct 20, 2007,
and we would like to annotate all experimental data accordingly, with now+future time
semantics. Clearly, if we only attach an annotation to all the files matching the ADMT
Lab and happened Oct 1 - 20, 2007 (at the time of annotating), we will miss all the files
that are potentially added into the DataXS system at a later time, and still meet these
conditions. As we discussed earlier, this is a typical usage pattern, making now+future
time semantics a necessity. We can describe such an annotation in ViP-SQL as follows:

CREATE ANNOTATION V1 ON Experiments
AS (SELECT ExpID FROM Experiments

WHERE Lab = "ADMT" and Date >= "10/01/07"
and Date <= "10/20/07")

VALUE "ADMT Lab was contaminated between Oct. 1st
& Oct. 20, 2007. Please use data with caution."

VALIDTIME [now, )

General Case. The main idea behind view-based annotation propagation is that we
can attach an annotation to a view, i.e., a query definition that corresponds to a set of
data items, instead of attaching it to individual data items. If we do not materialize the
view, then the annotations will always be properly associated with the corresponding
data items, according to now+future time semantics.

Given that annotations are associated with views instead of individual data items, the
expected behavior in cases of modifications is straightforward (Figure 2). Assuming a
view Vi with annotation a, the following actions can be defined:

• INSERT(data) into VIEW:
if D1 becomes a member of view Vi (either through insertion or an update or a
creation of an annotation view), then it will also be associated with annotation a
(attached to Vi) when it is queried.
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Vi{a}

D1 D1{a}

Fig. 2. View-based Annotation Propagation: User-centric Time Semantics. (Annotation a is asso-
ciated with view Vi. Data item D1 ∈ Vi receives annotation a.)

• DELETE(data) from VIEW:
if D1 is no longer a member of view Vi (either through deletion or an update), then
it will not be associated with annotation a when it is queried.

• DELETE(view):
if Vi is deleted, then all the data items that were members of Vi and were associated
with annotation a will no longer be associated with it.

2.2 User-Centric Network Semantics

Most annotation-enabled systems propagate annotations along data provenance paths.
In other words, annotations are propagated over existing “schema” paths between source
data and derived data. Although this happens over multiple derivation levels, it fails
to capture relationships between data items that do not share a common source in the
database. As we have witnessed from our involvement in the CMPI project, this can
happen often in scientific databases.

Through the ViP framework, we propose to empower users to specify explicit an-
notation paths between data items, thus establishing additional annotation propagation
paths. Such explicit paths are defined using views as follows:

• given a source view, Vs, and a destination view, Vd,
• an explicit annotation propagation path Vs → Vd is defined, such that any annotation

that is added in a member of Vs must be propagated to all members of Vd.

Motivating Example #2. Continuing from Motivating Example #1, we have that the
ADMT Lab and the Ross Lab are next to each other, and the ADMT Lab provides
the Ross Lab with tissues for model analysis. As such, there is a need to propagate all
annotations regarding ADMT Lab experiments to the Ross Lab (to properly record, for
example, if there has been any contamination). We can describe such an annotation in
ViP-SQL as follows:

CREATE ANNOTATION V2
ON Experiments
AS (select Date from Experiments

where Lab = "ADMT" and Treatment = "Influenza A")
TO Experiments
AS (select Date from Experiments

where Lab = "Ross" and Treatment = "Influenza A")
VALIDTIME [now, )



300 Q. Li, A. Labrinidis, and P.K. Chrysanthis

D3{b}

Vi Vj
D2{b}

D3

Fig. 3. View-based Annotation Propagation: User-centric Network Semantics (Disjoint
source/destination). There exists an annotation propagation path from Vi to Vj . Data item
D2 ∈ Vi has annotation b. Data item D3 ∈ Vj receives annotation b.

Vi

D4{c}
D5{c}D5

Fig. 4. View-based Annotation Propagation: User-centric Network Semantics (Identical
source/destination). There exists an annotation propagation path from Vi to self. Data item
D4 ∈ Vi has annotation c. Data item D5 ∈ Vi receives annotation c.

D7{aa}
D8{aa}

Vk
Vm

D6{aa} D7

D8

Vl Vn

Fig. 5. View-based Annotation Propagation: User-centric Network Semantics (Overlapping
source/dest.). There exists an annotation propagation path from Vk to Vl and another path from
Vm to Vn. Vl and Vm overlap. Data item D6 ∈ Vk has annotation aa. Data item D7 is a member
of both Vl and Vm. Data item D7 receives annotation aa. Data item D8 receives annotation aa.

General Case. Considering the general case of using source/destination views to de-
scribe explicit paths for annotation propagation, we can see that such paths essentially
form a network, hence the need for network semantics. With regards to view member-
ship, the behavior is very similar to that in the case of time semantics, as presented in
the previous section. With regards to the relation between the source and destination
views, we consider the following cases:

• source and destination views are disjoint (Figure 3)
• source and destination views are identical (Figure 4)
• source and destination views are overlapping (Figure 5)

Related Work. In the context of metadata management, [21] considered implicit paths
from queries to queries but they have not considered the explicitly-defined network
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paths as we do in this paper. In the context of schema mapping, there are multiple
works that consider paths of “similar” tables [8,19].

2.3 User-Centric Access Control

We advocate that scientific annotation must have a strong access control component.
First of all, much of the data is not public, so appropriate access controls need to be in
place for the raw data, and the annotations on them. Secondly, even for public data, the
annotations are often private, since they reflect additional analysis that is not ready to be
made available to all. Thirdly, in many cases, even the way that raw data are associated
with each other (i.e., by specifying explicit paths for annotation propagation) corre-
sponds to private information that should not be made public. Given all these reasons,
the ViP framework includes multiple user-centric access control features.

On the annotation level. First of all, we implement access control at the level of indi-
vidual annotations. In other words, when an individual data item receives an annotation
from a user, the user can specify who can access the annotation. We support arbitrary
user hierarchies (i.e., specific users, groups of users, groups of groups of users, etc).

On the view level. We expect the majority of annotations to happen through views,
to take advantage of time semantics. In this case, user access controls are also imple-
mented, with the expected behavior.

On the path level. One important innovation of the ViP framework is the explicit path
functionality (network semantics). We support three different access control features,
as they apply to user-centric network semantics:

• Access control: Users would want to control who can take advantage of the explicit
annotation propagation paths that they introduce. This is necessary for two reasons:
(a) confidentiality of paths, i.e., not willing to make relationships between data pub-
lic; and (b) scalability of paths from a information absorption point of view, i.e., not
everybody is interested in everybody else’s beliefs on which data is related. This of
course means that certain paths will not be visible to some users.

• Maximum HAP: Given explicit annotation paths and the ensuing network seman-
tics, an annotation can theoretically be propagated over an unreasonable number of
paths, if left unconstrained. Towards this, the ViP framework includes a system vari-
able, MAX-HAP, short for maximum number of hops allowed to propagate, which
puts a system-wide upper bound over how many hops any annotation is allowed to
propagate. The number of hops starts counting after we follow the first “direct” path
(i.e., in Figure 5 the number of hops is 2). This was inspired by the TTL value of
queries in unstructured peer-to-peer networks.

• HAP on insert: The ViP framework enables users to specify a variable, HAP-i,
or Hops Allowed to Propagate at insertion, to indicate how far the newly-inserted
annotation can be propagated. HAP-i = 0 means the annotator just wants to limit
this annotation to data items specified in the view. HAP-i = 1 means the annotator
allows this annotation to be propagated only to neighboring nodes. HAP-i = MAX-
HAP means the annotator is not placing any restriction on the propagation of his/her
annotation.
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Before AfterAction

CREATE ANNOTATION V3
ON Vx
VALUE “a1”
VALIDTIME [now,  )
FOR USER G3
WITH HAP-i 1

MAX-HAP = 5

Vx Vy

Vz

Vx Vy

Vz

{a1, G3, 0}

{a1, G3, 1}

{a1, G3, 2}

{a1, G3, 3}

{a1, G3, 3}

{a1, G3, 4}

Fig. 6. User-Centric Annotation Propagation Example

• HAP on query: Although if A → B and B → C implies that A → C, this may
not be applicable for all cases (i.e., because of information “decay”). In cases of a
network of paths (e.g., as in Figure 5), it may not be prudent to exhaustively fol-
low all paths in the network to propagate annotations. Similarly with the HAP on
insert, the ViP framework gives the option to specify a maximum number of hops
an annotation is allowed to propagate at query time, or HAP-q. Given these three
parameters (some of which are optional), the maximum number of hops followed
is MIN(MAX-HAP, HAP-i, HAP-q). By setting HAP-i or MAX-HAP to 0, we ef-
fectively disable explicit annotation direct paths; by setting MAX-HAP to 1, we
effectively disable cascading annotation propagation.

Motivating Example #3. We illustrate the user-centric semantics of the ViP framework
using the example in Figure 6. Figure 6/Before has a network of paths; Figure 6/Action
indicates that an annotation is added on node Vx; Figure 6/After shows how annotations
would be propagated (the third number in the set corresponds to the number of hops
required to reach each node). We see that the annotation a1 is propagated to Vy within
HAP 1 as (a1, G3, 1), and to Vz within HAP 4 (which is bigger than HAP-i). Clearly,
users that neither belong to group G3 nor specify a HAP-q high enough will not “see”
annotation a1. Besides, if HAP-i of a1 is set to 0, even if users specify a high HAP-q
will still not “see” annotation a1. The queries and the results are shown in Table 1.

Related work. There is significant related work in personalization, especially in con-
nection with information retrieval [16,18]. There is also additional work in user-centric
data management, allowing users to express their preferences on the execution of their

Table 1. Queries and Results for Figure 6

HAP-i Query Result User HAP-q Annotation
1 1 Vy U1 ¬ ⊆ G3 3 No a1

1 2 Vz U3 ⊆ G3 3 No a1

0 3 Vz U3 ⊆ G3 5 No a1

MAX-HAP 4 Vz U3 ⊆ G3 5 a1
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Table 2. Standard Annotation Management Features Comparison

Standard Features DBNotes[3] Mondrian[14] ULDB[2] bdbms[13] MMS[21] ViP
Annotation Yes Yes Confidence Yes Yes Yes
Provenance Yes Yes Lineage Yes Yes Yes
Time Semantics:
· Implicitly-defined No No No No Yes Yes
· Explicitly-defined No No No No No Yes
Network Semantics:
· Implicitly-defined Limited Limited Limited Limited Yes Yes
· Explicitly-defined No No No No No Yes
Propagation Type Eager On-demand On-demand Eager On-demand Hybrid
Annotation Storage Naive Naive x-relations Anno. table q-type A-table
Scalability Small Medium Medium Medium Large Large
Query pSQL Color algebra TriQL A-SQL Predicate ViP-SQL

queries, such as [17,20]. However, to the best of our knowledge, this is the first work to
address in a unifying framework all the user-centric features that we proposed as part
of ViP.

2.4 Discussion

There are many systems that support in isolation, some of the features that are part of
ViP without any one single system incorporating all of them. Additionally, many of the
semantics introduced by ViP are not found in other systems.

Most current systems, for example, do not support annotations that are also valid in
the future (Table 2). Only MMS [21] supports future time semantics in an implicitly-
defined way (i.e., without giving the user options to select as ViP is doing through the
valid time concept).

One of ViP’s novel ideas is the explicit paths for annotation propagation, which also
have privacy controls. Although existing systems support implicit annotation propaga-
tion paths, none except for ViP supports explicit, user-defined annotation propagation
paths. ViP supports large scale annotation management, thus employs a hybrid propa-
gation scheme while [3,13] use eager propagation, whereas [2,14,21] use an on-demand
scheme.

To the best of our knowledge, ViP brings user-centric features in many aspects that
are not considered in most related work as shown in Table 3. ViP enables users to
specify the propagation method. In DBNotes [3], users can specify custom propagation
scheme to bind the source and target tuples while there is a join operation, so that the
annotations that are associated to the source tuples will be propagated to the target
tuples. ViP provides a stronger and more complex scheme, that is the annotation path.

Some systems consider access control on the data level, or even on the update autho-
rization part [13]. Instead, we propose to fully support this feature in a broader domain,
on annotations, annotation views, and annotation paths.
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Table 3. User Centric Annotation Management Features Comparison

User-centric Features DBNotes[3] Mondrian[14] ULDB[2] bdbms[13] MMS[21] ViP
Time Semantics:
· Valid Time No No No No No Yes
Network Semantics:
· Propagation Method Yes No No Limited No Yes
Access Control:
· Annotations No No No Limited No Yes
· Annotation Views No No No No No Yes
· Annotation Paths No No No No No Yes

3 Implementation

3.1 The ViP Framework

The ViP framework is illustrated in Figure 7. ViP-SQL queries are rewritten automat-
ically into SQL queries evaluated by the annotation query processor, then registered
with the annotation register and the path setup manager. They are sent to DBMS and
the resulting annotation set is merged with the regular query result by the postprocessor
for matching and presentation. Our DataXS application “fits” on top of this framework,
providing a point-and-click user interface.

3.2 Annotations Registration

Explicit annotations could be a string or a file; while implicit annotations include an-
notation views and annotation paths. If it is an annotation view, the annotation register

DBMS
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Fig. 7. ViP System Architecture
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is responsible for insertion, deletion and updating. If it is an annotation path, the path
setup manager will update the auxiliary table to record path source and target, with ap-
propriate path query conditions. Obviously, sorting views or addressing the view con-
tainment problem [7,10,22] may bring significant computation and time complexity.
To simplify the problem setting, we assume that the network formed by the annota-
tion paths forms a directed acyclic graph, when ordered. All views are sorted by topo-
logical order to build a hierarchy/dependency tree, thus guarantee the correctness and
completeness.

3.3 Implementing Auxiliary Tables

It is quite naturally to use auxiliary tables storing the attributes of the annotation views.
Like MMS [21], ViP also uses auxiliary tables to store annotation view conditions,
which will work as filters to drop unrelated annotation lookups. However, MMS uses
Q-indexes (index on queries, which is similar to views in ViP) to maintain indexes on
the Q-values (query values); as such, for every data change, all related index tables need
to be updated. Unlike MMS, we use caching to improve the performance of computing
annotations. The reason is that for the index to be useful, it would need to be efficiently
updateable when data and annotations are inserted, deleted and updated; therefore, such
index maintenance may require a high cost in space and time. In addition, from the
usage pattern we observed in DataXS project, data updates happen more often than
annotation views/paths updates, in which case an index approach would require a lot of
Q-value updating. Thus, ViP relies on caching instead of indexing.

3.4 Querying Result with Annotations

We use ViP-SQL to allow users to retrieve regular results with annotations. A query with
annotation is rewritten as standard SQL with preprocessing and postprocessing. Prepro-
cessing checks the auxiliary table for possible early annotation filtering. If a query result
is satisfied in an annotation view, then the annotation query processor will lookup the
annotations associated with the query result. The cache is used to optimize system per-
formance. We present the pseudocode for the corresponding algorithms accordingly.

Caching to Optimize Annotation Search. If a data tuple is not found in the cache,
ViP will execute the annotation query and save its annotation result set into the cache. If
a data tuple is found in the cache, we need to verify if it is still “fresh.” Cache manage-
ment will take no action if a data item is inserted, deleted, or updated in the database.
Whenever an annotation registration is updated/inserted, our system will reset the cache
appropriately. If an annotation registration is removed, our system will remove its re-
lated entries from the cache as well. The algorithm is shown in Figure 8.

Search Associated Annotations. To Search the annotations associated with of a data
item, we need to search in both directions: its direct annotations (via annotation views)
and its inherited annotations (via annotation paths) as shown in Figure 9.
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hit_caching(Ti)
    Tj = search_in_cache_index(Ti.table, Ti.col, Ti.id)
    if Tj is found,
       compare(Ti.data, Tj.datasnapshot)
       if matches
           hit-counter++
           return Tj.CachedAnnotationQueryResult
    return false

insert_into_caching(Ti)
    if cache is full
        evict as LFU algo
    insert Ti to cache
    save a snapshot of data referred by Ti

after_annotation_delete(Ti)
    delete cached AnnotationQueryResult R
    where R.table = Ti.table and R.id = Ti.id

Fig. 8. Algorithm of Annotation Cache Management

search_associated_annotation(Ti)
    find_direct_associated_annotation(Ti)
    find_dependent_associated_annotation(Ti)
    return Ti.annotationQueryResult

find_direct_associated_annotation(Ti)
    A = search_in_Annotation_Attribute_table(Ti.table, Ti.col)
    for each annotation Aj in A
       compare_condition_parameter (Aj, Ti)
       if match, add Aj.id to Ti.annotationQueryResult

find_dependent_associated_annotation(Ti)
    H = search_in_Inhertance_Definition_table(Ti.table, Ti.col)
    for each Hj in H
        R = find_records_in_associated_table(Hj.inheritance_rule)
        R_column = Hj.inhertance_through_rule.attribute
        for each record Rm in R
            search_associated_annotation(Rm.R_column)

Fig. 9. Algorithm of Searching Associated Annotations

4 Experimental Results

We have implemented the ViP system as a Ruby on Rails application that interfaces to
MySQL. We used simulated users, annotations, and query workloads to be able to scale
our experiments to desired levels.

To the extent possible, we compare our system with MMS [21], the latest and the
most related work. In [21], MMS was compared to other systems, specifically DBNotes
[3] and MONDRIAN [14]. MMS showed significant benefits over those systems both in
query times and storage space usage. That is because in DBNotes every relational table
column is associated to one additional annotation column, and if a value in a tuple has
more than one annotation, the tuple is recorded multiple times, one for each annotation.
On the other hand, MONDRIAN associates one extra annotation column to each rela-
tion, plus one shadow column for each attribute to indicate whether the annotation refers
to the respective attribute or not. In [21], the experimental results showed that MMS re-
duced the redundant space used in DBNotes and MONDRIAN; also, it decreased query
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Table 4. Experiment Parameters

Parameter Value Parameter Value
Data tuples 300,000 Queries 1,000
Annotation views [1, 50,000] Users [1, 100]
Annotation paths [1, 2,500] Path Depth [1, 10]

time even with the cost of updating the Q-index and querying additional metadata table.
Our system works similar to MMS in the way that there are annotation tables instead
of additional annotation columns. Thus, it is expected our system will perform similar
to MMS when compared to DBNotes and MONDRIAN if the association between the
data and the annotation is explicit and static. In this paper, we focused on implicit an-
notations, i.e., annotation propagation through annotation views and paths. Since both
ViP and MMS can accommodate future tuples and use views to specify annotation reg-
istration, we compared our system with MMS mainly in terms of query time. For those
features that ViP supports and MMS does not (such as the user-centric access control),
we performed a sensitivity study of our framework.

Data. We gathered data from what has already been stored in our DataXS prototype. To
test the scalability, we enlarged the dataset using uniform and Zipf distributions. The
experiment parameters are shown in Table 4.

Annotation Traces. There are two types of annotations registered: annotation view and
path. Annotation view is a query with static annotation(s) associated to it; annotation
path is the establishment of an annotation(s) propagation from one annotation view to
another annotation view. We generated annotation registrations using two different Zipf
distributions: one to identify how many annotation views a data item should participate
in, and another one to determine how many data items a particular annotation view
should contain. Annotation traces include annotation insertion and update.

Query Traces. We generated queries with Zipf distribution on both (1) data tuples
the query is associated with (2) query arrival sequence. Query conditions vary from 1
to 4 joins. All queries are read-only. Query time is measured in milliseconds unless
otherwise indicated.

4.1 View-Based Annotation Propagation

We compared the query time of our system, ViP, with MMS. Both systems retrieved the
same annotations associated with the same queries. In our first experiment, we varied
the total number of annotation registrations (Figure 10). ViP always outperformed MMS
due to its caching optimization. With more annotation views registered, ViP gained
more benefit. In the case of 50,000 annotation views registered, ViP took about 25%
less time, indicating that ViP works better for large numbers of annotation views.

We also measured the confidence interval of the result to make sure they are sta-
tistically significant. In the case of 1,000 queries with 50,000 annotation views, the
95% confidence interval for ViP mean query time (ms) is (1468.06∓ 7.36) = (1460.7,
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1475.42); the 95% confidence interval for MMS mean query time (ms) is (1878.91 ∓
4.05) = (1874.86, 1882.96). The results presented in the paper were acquired as the
average value from 1000 repeated experiments with random parameter settings. Due to
the limited space, not every confidence interval is listed in the paper; all results were
similar to this experiment.

In all experiments, we started with 80% annotation views and paths insertions. When
the query traces were executed, the remaining 20% of the annotation registrations were
performed, with their arrival times uniformly distributed over the duration of the exper-
iment. We assume each query or annotation registration operation is atomic. The query
time includes (1) data query time, (2) annotation lookup time, (3) cache lookup time if
cache is used, and (4) cache management time. The setup time includes (1) data inser-
tion time, (2) annotation registration time, and (3) cache setup time. The setup time per
query for both systems is shown in Figure 11. Although ViP took extra time to manage
the cache, the overhead is negligible compared to the gain from the query time.

In the next set of experiments, we investigated the effect of various annotation den-
sities, which is the percentage of data associated with annotation views. In Figure 12,
1000 queries were plotted in each subfigure to display the various query times. The
density was changed from 50% to 200%, and the query time increased accordingly. In
these figures, a vertical line corresponds to a cache hit (near 0 response time) on all
annotations the query expects to return. We found in the extremely dense case, which
is 200% in Figure 12(d), that ViP had so many cache hits, that the overall query time
was reduced significantly. The detailed summary of average query time is presented in
Table 5. Again, ViP works better in large scale of annotation views because of its opti-
mized scheme. For fairness, we used only a 10% annotation density, which is the least
beneficial setting for ViP, in all other experiments.

Table 5. Query Time with Different Annotation Densities

Anno. Density 40% 50% 60% 70% 80% 90% 100% 150% 200%
MMS Time (ms) 1804.81 1808.66 1812.50 1867.94 1878.02 1895.51 1928.80 1979.92 2178.67
ViP Time (ms) 1471.38 1419.73 1445.81 1499.44 1394.39 1386.27 1484.16 1483.84 1250.99
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Fig. 12. Query Time with Different Annotation Densities

4.2 Annotation Propagation with Caching

In our optimization scheme, caching plays a major factor to improve system perfor-
mance. However, the cache management time was insignificant compared to the query
time, shown in Figure 13. Even with 50,000 annotation views, the cache management
time is just about 3% in query time.

We performed a set of experiments to test the sensitivity of ViP to the cache size
(Figure 14). We found that ViP worked best at 10% to 17.5% of the overall size. When
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Fig. 14. Various Cache Sizes

the cache size was larger than 30%, not much benefit was gained (i.e., query times did
not improve much) from further cache size increases, although the cache hits may be
increased. This is clearly because a larger size cache brings extra effort to lookup and
manage the cache, so the overall query time will not be reduced.

4.3 View-Based Annotation Path Propagation

We conducted a set of experiments where varied the HAP variable (HAP-q) in annota-
tion path propagation. HAP-i was set as MAX-HAP. We present the results in Table 6.
It is obvious that with deeper hops search, more annotations got matched and more time
it took to retrieve them. Nonetheless, ViP increased the query time gradually.

4.4 User-Centric Access Control

Another interesting feature of ViP is its user-centric access control features. Not only
users may issue queries that include their search preference, but also users can spec-
ify public/private annotation views when they register the annotations. The first set of
experiments, in Figure 15 and Figure 16 illustrate how the different search coverage
affected the query times and the number of annotations found. The most restrictive
user-specified condition decreased the query time as well as the associated annotations.

On the other hand, Figure 17 and Figure 18 present the query times with different
percentages of public annotation views and annotation paths. In these cases, the remain-
ing “private” annotation views and paths were uniformly distributed among all users.
The query time almost decreased linearly as the public annotation views decreased;
however, it decreased faster when the public annotation paths were decreased. Since

Table 6. Path Propagation in Network Semantics

HAP-q 1 2 3
Time (sec) 10.1445 11.1853 13.5833
Annotations Found 269 278 289
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Annotation Path Percentages

annotation paths have the transitivity property, once the dependent views are not vis-
ible, it may speed up the query time exponentially. This essentially works like a first
priority “filter” to reduce the query search time. In general, we expect such user-centric
features to have a compound effect if used together, dramatically reducing query times.

5 Conclusions

In this paper we presented ViP, a view-based user-centric annotation framework. ViP
introduced user-centric time semantics, network semantics, and access control for an-
notation propagation. Using database views as the underlying mechanism to implement
these semantics enabled us to have a well-defined formal framework and also have a
natural mapping to the existing user-interface, so that users of ViP do not have to learn
SQL in order to specify their annotations. An other major advantage of ViP, compared
to existing systems, is its use of caching techniques that significantly improve perfor-
mance, as verified by our extensive experimental study on a real system.
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Abstract. We propose an automatic method for modeling a relational
database that uses SQL triggers and foreign-keys to efficiently answer
positive semantic queries about ground instances for a Semantic Web
ontology. In contrast with existing knowledge-based approaches, we ex-
pend additional space in the database to reduce reasoning at query time.
This implementation significantly improves query response time by al-
lowing the system to disregard integrity constraints and other kinds of
inferences at run-time. The surprising result of our approach is that load-
time appears unaffected, even for medium-sized ontologies. We applied
our methodology to the study of brain electroencephalographic (EEG
and ERP) data. This case study demonstrates how our methodology can
be used to proactively drive the design, storage and exchange of knowl-
edge based on EEG/ERP ontologies.

1 Introduction

With recent advances in data modeling and increased use of the Semantic Web,
scientific communities are increasingly looking to ontologies to support web-
based management and exchange of scientific data. Ontologies can be used to
formally specify concepts and relationships between concepts within a domain.
The resulting logic-based representations form a conceptual model that can help
with storage, management and sharing of data among different research groups.

In addition to the representation of classes and properties, ontologies can
store intensional knowledge in the form of general facts, often called rules, ax-
ioms or formulae, such as, “All Sisters are Siblings.” Extensional data include
specific facts, or ground terms, such as, “Mary and Jane are Sisters.” Relational
databases can effectively store and retrieve extensional data, but they lack ob-
vious mechanisms to perform the inferences necessary to answer extensional
queries over intensional data, as in, “Which individuals are Siblings?” Unlike a
typical relational database, a knowledge base can support the deduction that
Mary and Jane are siblings by using an inference engine.

B. Ludäscher and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, pp. 313–330, 2008.
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Intensional knowledge reduces the need to store large amounts of extensional
data. For example, we do not need to store the fact, “Mary and Jane are Sib-
lings,” to know that it is true. The trade-off, however, is that inferences are
required at run-time to generate this fact. What we have, therefore, is an exam-
ple of the classical trade-off between time and space: the more extensional data
we store, the less time it will take to answer queries about them. In this paper,
we challenge traditional approaches for modeling knowledge-based or deductive
database systems of this sort, which typically aim to find a balance between space
and time requirements. Instead we propose that space is expendable and a great
deal of inference (time) can be saved through the use of triggers and foreign-keys
to forward-propagate inferences at load-time. Interestingly, when we compared
our methods against existing benchmarks, we found we significantly improved
query performance as expected, but load-time was remarkably unaffected.

In addition to these performance gains, we demonstrate that semantics can
play an essential role in data management and query answering. In fact, both
ontologies and database systems are important, leading us to propose a new
methodology for database design, which we will call ontology databases.

To illustrate this idea, we describe the application of our methodology to brain
electroencephalographic (EEG and ERP) data. In this application, we describe a
database design that is ontology-driven. Moreover, we demonstrate how queries
can be posed by domain experts at the ontology-level rather than using SQL di-
rectly. Database projects like ZFIN [8] and MGI [1], housing large central reposi-
tories for zebrafish and mouse genetic data, respectively, were later reinforced by
the Gene Ontology [25] to help normalize knowledge across these kinds of repos-
itories. By contrast, our Neural ElectroMagnetic Ontology (NEMO) project uses
expert knowledge in the form of EEG/ERP ontologies to drive the data modeling
and information storage and retrieval process.

The paper is organized as follows. We begin with related work (Section 2),
followed by a description of our ontology-based modeling methodology and a
performance analysis (Section 3). We then present a case study in which we
applied our methodology to develop ontology databases for EEG/ERP query
answering (Section 4). We conclude with a discussion and an outline of future
work in Section 5.

2 Related Work

Ontologies can be regarded as a conceptual or semantic model for database
design. Hull and King [19] provide a nice summary of semantic models of all
kinds: Entity-Relational, Object-Oriented, Ontological and so on. While the no-
tions in their survey make clear that there are firm connections between models,
database implementations, and logics, we have been interested in exploring the
question, “What is a semantic data model?” In particular, we wish to explore it
from an ontology-based perspective that addresses practical issues in collabora-
tive scientific research, especially, biomedical research. Increasingly, biomedical
researchers are looking to develop ontologies to support cross-laboratory data
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sharing and integration. These ontologies can be found at ontology repositories
around the world [34]. For example, more than 62 biomedical ontologies can be
found at the National Center for Biomedical Ontology (NCBO) [6].

Pan and Heflin proposed a similar approach, which they call description logic
databases (DLDB) [26]. DLDB is a storage and reasoning support mechanism
for knowledge base facts (RDF triples), which has been compared to well-known
systems such as Sesame [10]. Although we structure the database relations in a
way that is similar to DLDB (i.e., unary and binary predicates become unary or
binary relations), our implementation using triggers and foreign keys to support
reasoning, as opposed to SQL views, allows for a significant performance gain by
trading space for time by eagerly forward-propagating data at load-time. In this
context, it is informative to consider the recent work by Paton and Dı́az [27],
which examines rules and triggers in active database systems.

Recent research on bridging the gap between OWL and relational databases
by Motik, Horrocks and Sattler [24] provides unique insight into the expressive-
ness of description logics versus relational databases. The integrity constraints
in databases can be described with extended OWL statements (axioms). An
important contribution of this research is to show that the constraints can be
disregarded while answering positive queries, if the constraints are satisfied by
the database.

The idea of balancing space and time when we couple databases and reason-
ing mechanisms comes from seminal works by Reiter [28,30]. Reiter proposed a
system that uses conventional databases for handling ground instances, and a
deductive counterpart for general formulae. Since no reasoning is performed on
ground terms, Reiter argues convincingly that in such a system queries can be
answered efficiently while retaining correctness. OntoGrate [13] is precisely such
a system for semantic query translation using ontologies. The key question that
motivated our trigger-based approach was, “Since disk-space is rarely an issue
these days, what would happen if we use even more space?”

The neuroscience community is a recognized leader in the development of
biomedical ontologies. For example, the Human Brain Project has supported the
development of a common data model and meta-description language [17] for neu-
roscience data exchange and interoperability. BrainMap [22] has designed a Ta-
laraich coordinate-based archive for sharing and meta-analysis of brain mapping
studies and literature, as well as a sharable schema for expression of cognitive-
behavioral and experiment concepts. The fBIRN project [20] has pioneered sev-
eral areas for neuroscience data sharing, including distributed storage resources
and taxonomies of neuroscience terms (called BIRNlex). Our project will build
on this prior work and extend it to incorporate ontology-based methods for rea-
soning. In addition to incorporating cognitive-behavioral and anatomy concepts
represented in BrainMap and in fBIRN, NEMO will develop ontologies for tempo-
ral, spatial, and spectral concepts that are used to describe EEG and ERP pat-
terns. In line with OBO “best practices,” we will reuse ontology concepts from
relevant domains. In fact, we are collaborating directly with ontology engineers
and domain experts in the fMRI, as well as the EEG and ERP, communities.
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The NEMO project brings some distinctive methods to bare on the problem of
data sharing. Whereas most prior work on data sharing in the neurosciences has
focused on the development of simple taxonomies or relational databases, NEMO
uses ontologies to design databases that can support semantically based queries.
What this means is that NEMO databases can be used to answer more com-
plex queries, which cannot be handled by traditional (purely syntactic) database
structures. For example, the popular Gene Ontology (GO) [25] provides a stan-
dard vocabulary and concept model for molecular functions, biological processes
and cellular components in genetic research. The OWL [7] specification of GO
is over 40 Megabytes in size [25] and terabytes of research data stored in model
organism databases around the world such as ZFIN [8] and MGI [1] are all being
marked-up according to the GO ontology. The NEMO working group is borrow-
ing from this idea and taking it a step further [12,15]. More than a standard
vocabulary of terms, the ontologies NEMO is developing will capture knowl-
edge ranging from the experimental methods used to gather ERP data down
to instrument calibration settings so that results can be shared and interpreted
semantically during large-scale meta-analysis across laboratories.

3 Ontology-Based Data Modeling

We first present a new and general methodology, which takes a Semantic Web
ontology as input and outputs a relational database schema. We call such a
database an “ontology database,” which is an ontology-based, semantic database
model. As we will show in Section 4, after we load ERP data into the NEMO
ontology database, we can answer queries based on the ontology while automat-
ically accounting for subsumption hierarchies and other logical structures within
each set of data. In other words, the database system is ontology-driven, com-
pletely hiding underlying data storage and retrieval details from domain experts,
whose only interaction-interface happens at the ontology (conceptual) level.

3.1 The Procedural Extension

Although Description Logics (DL) [9] provide the formal logical foundation for
OWL and Semantic Web ontologies, we do not require the full expressiveness of
this logic for data modeling purposes in most scenarios we have encountered. It
suffices to use rules of the form (reads “if C then D”):

C ⇒ D,

which exclude the analysis-by-cases and contrapositive reasoning provided by
full DL inclusion axioms of the form (reads “C is subsumed by D”):

C ' D.

What this means is that we are drawing a line between databases and knowledge
bases. For example, while it may be taken for granted in a knowledge-based
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system that, “X is either a Rock or it is not a Rock, no matter what X is,” a
database has no such reasoning capability. It can only say which is actually the
case. As such, we technically only allow epistemic inclusion axioms with the K
operator [9] which stands for “know” in the following rule (reads “Only when
we know that C is true can we conclude D”):

KC ' D.

The difference is evidenced by the fact that we can immediately conclude D
(without any positive or negative witnesses of C) in:

(C � ¬C) ' D,

but not necessarily in:
(KC � K¬C) ' D.

This restriction makes knowledge maintenance (reasoning) much easier: all we
need to calculate is the procedural extension of a given set of facts and rules [9].
This can easily be done using database triggers and foreign keys with cascading
deletes, the basic idea of which we outline below.

3.2 Triggers

Triggers are used for each rule to propagate data in a forward-chaining manner
as facts are loaded into the ontology database. For example, suppose we have
the following first-order rule (reads “all Sisters are Siblings”):

∀x, y : Sisters(x, y) → Siblings(x, y).

Whenever a new pair of sisters is inserted into the ontology database, such as
Sisters(Mary, Jane), a trigger fires, eagerly inserting Siblings(Mary, Jane) as
well. This process is depicted in Figure 1.

Sisters (subj, obj)

(Mary, Jane)

Siblings (subj, obj)

(Mary, Jane)
(Lily, Zena) (Paul, Mary)

(Lily, Zena)
(Mary, Jane)trigger

f-keyf-key

Fig. 1. This figure shows that upon asserting Sisters(Mary,Jane) which means in-
serting (Mary, Jane) into the Sisters-property table, the trigger causes (Mary, Jane)
to first be inserted into the Siblings-property table. Triggers generate knowledge in
a forward-chaining manner for the Sisters-Siblings rule, ∀x, y : Sisters(x, y) →
Siblings(x, y). Implicitly understood in this sub-property rule is also the contraposi-
tive, ∀x, y : ¬Siblings(x, y) → ¬Sisters(x, y), an integrity check that foreign-keys can
enforce, shown here as the dotted line.
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Although the above is an example of a sub-property (Sisters is a sub-property
of Siblings), triggers can be used for both sub-class and sub-property hierarchies.
Each trigger is a straightforward encoding of the epistemic rule, in SQL:

CREATE TRIGGER subPropertyOf-Sisters-Siblings SUCH THAT

UPON DETECTING EVENT INSERT (x,y) INTO Sisters(subject,object)

FIRST EXECUTE INSERT (x,y) INTO Siblings(subject,object)

3.3 Foreign Keys with Cascading Delete

Foreign keys are used to check integrity constraints as usual, but by using the
“on delete cascade” option, they also propagate deletions whenever facts are
negated (which is not uncommon in scientific domains). For example, in the
Sisters-Siblings sub-property rule of Figure 1 it is understood implicitly that if
two people are not Siblings, then they cannot be Sisters either:

∀x, y : ¬Siblings(x, y) → ¬Sisters(x, y).

Semantically, we interpret the contrapositive to mean two things. First of all, it is
an integrity constraint: if Siblings(Mary, Jane) is not true, then it cannot be the
case that Sisters(Mary, Jane) is true, so an integrity check is performed to val-
idate that Siblings(Mary, Jane) is true before inserting Sisters(Mary, Jane).
Of course, care must be taken to ensure triggers and integrity checks happen
in the correct order (note the “FIRST” keyword in the SQL trigger). Secondly,
if deletions (negations) are performed, they must be propagated to ensure con-
sistency is maintained, thus explaining the “on delete cascade” option. Indeed,
this is the pattern for all sub-class and sub-property rules: they are both triggers
(knowledge generating) and integrity constraints (knowledge checking), consis-
tent with the semantics of inclusion axioms.

Integrity constraints also occur in domain and range restrictions on properties.
In this case, we have foreign keys but no triggers. For example, when we assert
Sisters(x, y) we generally presume that x and y are People. That is, we mean:

∀x, y : [¬Person(x) ∪ ¬Person(y)] → ¬Sisters(x, y),

but not necessarily:

∀x, y : Sisters(x, y) → [Person(x) ∩ Person(y)].

In other words, given the statement Sisters(Mary, buddyTheFrog), we do not
intend to automatically conclude that buddyTheFrog is a Person but rather
hope the assertion is rejected unless we know for sure that buddyTheFrog is a
Person (and not a Frog). This kind of reasoning is due in large part to the notion
common in database systems that any fact not known to be true is presumed
false, known as the closed world assumption [29].
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Table 1. The ontology database methodology is summarized in this table. Here, re-
spectively, subj and obj refer to the subject and object of a property, MinCard and
MaxCard refer to cardinality, and f-key and p-key stand for foreign key (with an “on
delete cascade” option) and primary key.

Logical Feature FOL Formalism Ontology DB Implementation

Structure

Class(A), Class(B) A(x), B(y) relation: A(id), B(id)
Property(P ) P (x, y) relation: P (subj, obj)

Restrictions

Domain(P, A) ∀x, y : P (x, y) → A(x) f-key: P (subj) ref A(id)
Range(P, B) ∀x, y : P (x, y) → B(y) f-key: P (obj) ref B(id)

MaxCard(P, 1) ∀x, y, z : P (x, y) ∧ P (x, z) p-key: P (subj)
→ y = z

MinCard(P, A, 1) Domain(P, A) f-key P (subj) ref A(id);
→ (∀x : A(x) trigger: on insert on A(id)

→ ∃y : P (x, y)) insert ignore P (id, null)

Subsumption

subClassOf(B, A) ∀x : B(x) → A(x) trigger: before insert on B(id)
insert ignore A(id);

f-key: B(id) ref A(id);

subPropertyOf(Q, P ) ∀x, y : Q(x, y) → P (x, y) trigger: before insert on Q(subj,obj)
insert ignore P (subj, obj);

f-key: Q(subj, obj) ref P (subj, obj);

Horn Rules & GMP

∀x1, x2 . . . xm : ∀k ∈ [1..n] trigger(rule premise-k):
on insert on Pk(xh−1, xh)

P1(x1, x2) ∧ . . . update [rule-premise-table with Pk]
∧Pn(xm−1, xm) → Q(xi, xj)

trigger(rule activate):
(1 ≤ i, h ≤ m, 1 ≤ j, h ≤ m) on update on [rule-premise-table]

if [all premises satisfied]
then insert ignore Q(xi, xj)

(1 ≤ i, h ≤ m, 1 ≤ j, h ≤ m)

3.4 Modeling Summary

Table 1 summarizes the main logical features we implement in the ontology
database methodology. These features can be categorized according to struc-
tures, restrictions and subsumptions which come from OWL, RDF [3] and gen-
eral first-order logic. The database relational structure we have chosen (unary
and binary predicates become unary and binary relations) is almost identical to
the hybrid approach of DLDB [26], which combines approaches from prior works
to effectively store RDF triples.

3.5 Logical Justification

Our ontologies are generally restricted to Horn Normal Form (HNF) [32], which
is a disjunction with only one positive literal as in:
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¬p1 ∨ ¬p2 ∨ . . . ∨ ¬pn ∨ q.

These formulae can be written as implications without disjunctions on the right-
hand side, like Datalog [33] rules, which we call implicative normal form (INF):

p1 ∧ p2 ∧ . . . ∧ pn → q.

Generalized Modus Ponens (GMP) [32] is an inference rule based on the well-
known modus ponens rule:

p′1 ∧ p′2 ∧ . . . ∧ p′n p1 ∧ p2 ∧ . . . ∧ pn → q

SUBST (θ, q)
GMP

GMP allows us to unify several antecedents simultaneously to prove a con-
clusion. It is well-known that GMP is sound and complete for knowledge bases
in HNF (and therefore INF) [32]. A trigger is essentially a forward-chaining im-
plementation of GMP, recursively calling other triggers as necessary. Because all
definitions are acyclic, the procedure is guaranteed to terminate. Foreign-keys
and null-valued triggers together provide the machinery for solemnization under
existential constraints (such as, “All Employees have an SSN.” [31]). According
to this method, an ontology database therefore produces and maintains the pro-
cedural extension, guaranteeing that the database is a Herbrand Model for the
given set of facts (see [32] for details on the Herbrand universe, interpretation
and model).

3.6 General Performance Analysis

We tested our methodology using the Lehigh University Benchmark (LUBM) [18]
ontology1, and compared the load-time (see Figure 2) and query-answering (see
Figure 3) performance against DLDB [26], an ontology data storage model not
unlike our own.

The LUBM features an ontology for the university domain (e.g., faculty,
courses, departments, etc.) together with a data generation tool for creating
OWL datasets of arbitrary size and a set of queries for evaluating performance.
The most significant difference between DLDB and our ontology database
(OntoDB) is that DLDB uses SQL views instead of triggers to propagate sub-
sumptions. In other words, our approach is like an eager evaluation strategy for
subsumption inferences whereas DLDB is lazy. Because we propagate knowledge
as data is loaded so as to increase query performance, we expected to incur a
load-time hit. To our surprise, the load-time was largely unaffected even though
query-time benefitted significantly. Our only explanation of this phenomenon is
that the underlying database file system is optimized to perform several inser-
tions (caused by triggers) in relatively constant-time – which might eventually
be affected as the depth of the subsumption hierarchy grows. Naturally, our ap-
proach uses more disk-space (roughly 3-times the space), a trade-off we knew
we had to make (space versus time has to give) [30]. Again, our results are
summarized in Figures 2 and 3.
1 All experiments were performed on an unremarkable personal laptop computer with

a 1.8Ghz Centrino processor and 1Gb of RAM running MySQL 5.0 as the RDBMS.



Ontology Database: A New Method for Semantic Modeling 321

 0

 5

 10

 15

 20

 25

 0  200  400  600  800  1000  1200  1400  1600

tim
e 

(h
ou

rs
)

facts (thousands)

load time (university ontology)

DLDB (10/2007)
OntoDB (10/2007)

Fig. 2. The load-time results for the Lehigh University benchmark ontology data show
that the load-time of our ontology database approach (OntoDB) is comparable to that
of DLDB. The blips at around 1.2M and 1.4M are probably due to disk resizing or
other background effects.
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Fig. 3. The query-answering time results for the Lehigh University benchmark ontology
data show that the query-time of our ontology database approach is often significantly
faster than DLDB. Charted here are the running-times for 10 of the 14 benchmark
queries published by Lehigh University. Queries 2, 4, 8, and 9 are not shown here due
to scale, having extremely long running-times.
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4 Case Study: Application of Ontology Databases to
Brainwave Data

4.1 EEG and ERP Data Sharing in Clinical and Cognitive
Neuroscience

The problem of data sharing in brain electromagnetic research, like that in
other scientific fields, is challenged by data scale, multivariate parameterizations,
and dimensionality. Neuroinformatics must address these challenges with robust
data management and integration techniques. To this end, neuroinformatics re-
searchers have developed a number of database and XML-based methods [21],
providing effective solutions for annotation and storage of complex, large-scale
datasets. Going beyond syntax and structure, the hard problems that remain
are closely linked to the neuroscience community’s requirements for rich seman-
tic representation and integration of patterns across disparate experiment and
laboratory procedures and paradigms.

The development of ontologies may be central to addressing these problems.
Indeed, adoption of ontologies has already enabled major scientific progress in
biomedical research [6,20,23,25] and is a rapidly growing area in bioinformatics
and neuroinformatics research. The present work aims to extend and combine
Semantic Web and database modeling technologies to address issues in ERP
data representation and semantic query answering. The project is called “Neural
ElectroMagnetic Ontology” (NEMO). Eventually, we hope that our ontology-
based framework will support large-scale semantic data sharing, give rise to
meta-analysis, and lead to major advances in brain functional mapping using
ERP and related methods.

Electroencephalographic (EEG) data consist of changes in neuroelectrical ac-
tivity measured over time (on a millisecond timescale), across two or more lo-
cations, using noninvasive sensors (“electrodes”) that are placed on the scalp
surface. A standard technique for analysis of EEG data involves averaging across
segments of data (“trials”), time-locking to stimulus “events,” to create event-
related brain potentials (ERPs). The resulting measures are characterized by a
sequence of positive and negative deflections across time, at each sensor. For
example, to examine brain activity related to language processing, the EEG
may be recorded during presentation of words versus non-words, using 128 or
more sensors (Figure 4). Averaging across trials within a given stimulus cate-
gory accentuates brain activity that is related to processing the specific type of
stimulus. In principle, activity that is not event-related will tend towards zero
as the number of averaged trials increases. In this way, ERPs provide increased
signal-to-noise (SNR), and thus increased sensitivity to functional (e.g., task)
manipulations.

The resulting datasets comprise rich sets of spatial, temporal, and functional
(task-related) measurements. This case study describes the ontology that has
been developed by domain experts and refined by data mining techniques to
capture this knowledge. Furthermore, we demonstrate how the ontology database
methodology can be used to automatically implement an effective storage and



Ontology Database: A New Method for Semantic Modeling 323

Fig. 4. (A) 128-channel EEG waveplot; positive voltage plotted up; responses to words
versus non-words. (B) Time course of P100 factor for same dataset, extracted using
Principal Components Analysis. (C) Topography of P100 factor (negative on top and
positive at bottom). See [15] for details.

retrieval mechanism for ERP data that preserves the meaning and interpretation
prescribed by domain experts.

4.2 ERP Ontology Development

In previous work, an ERP ontology for a limited domain (word recognition) was
designed collaboratively with domain experts, using data collected in a series
of visual word recognition experiments (see [12,16] for details). To support the
development of an initial ERP ontology, based on automated data analysis and
labeling, we applied data decomposition methods to help separate signal (brain
activity) from noise (noncerebral artifacts) and to disentangle overlapping pat-
terns [16]. More specifically, temporal Principal Components Analysis (PCA)
was applied to ERP data consisting of 128 electrodes, 275 timepoints (sampling
rate, 250Hz), 34 human subjects, and 4 experimental conditions (see [11] for
details on PCA methods).

For each PCA factor, we extracted summary metrics representing spatial,
temporal and functional dimensions of the ERP patterns of interest. Thus, the
data represent the individual PCA factors, weighted across individual subjects
and experiment conditions. These data were post-processed by ERP domain
experts and represented as points in a 25 dimensional attribute space. In previous
work, we characterized eight types of robust patterns, P100, N100, N2, N3, MFN,
P1r/P2, N4 and P300 [16]. Rules for each pattern were based on results from
prior literature. For example, the P100 rule was operationalized as follows:

∀x, i, j : [ PCA Factor(x)∧ (80 < i) ∧ ti max(x, i) ∧ (i < 150)∧
factorEvent(x,STIMON) ∧ factorModality(x, V ISUAL)∧
in mean roi(x, j) ∧ (0 < j) ∧ roi(P100v, OCC) ]

→ occursIn(P100v, x)

where “ti max” is the peak latency, “in mean roi” is the mean amplitude
over a given region-of-interest (ROI), and ROI for “P100v” is specified as “oc-
cipital.” In addition to “top-down” (expert-defined) pattern rules, we performed
“bottom-up” (data mining) analysis using clustering-based classification to
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discover class and property hierarchies and association rule mining to find ax-
ioms as a way to complement and refine the concepts and rules articulated by
domain experts [12,16]. Evaluation was performed against a “Gold Standard”
labeled dataset described in [16].

Our initial ERP ontology consists of classes, class taxonomy, properties and
their relationships. The ontology consists of roughly 29 classes, 40 properties,
27 sub-class relationships, and 3 super-properties. We show a partial view of
the ERP ontology in Figure 5. We would like to stress that this ontology has
undergone significant changes since the time of this writing. The latest version
of the NEMO ERP ontology is available online at http://aimlab.cs.uoregon.
edu/NEMO/NEMO ERP.owl2 and will soon be available on NCBO. Figure 5 shows
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Fig. 5. A partial view of the ERP ontology

five basic classes, i.e., factor, pattern, channel group, topography and measure-
ment. Factor objects have temporal, spatial and functional attributes (part of
which are listed in the graph, such as factorEvent, SP cor and factorModality)
which are represented as properties of the factor class in the ERP ontology. TI-
max and IN-mean(ROI) are properties of factor which relates the measurements
(e.g., time-instance and voltage) which have both unit and value properties. The
pattern class has 8 sub-classes (P100, N100, etc.) which correspond to the 8
ERP patterns defined by domain experts [16,12]. The properties of the pattern
class are those used in expert rules or rules discovered by data mining. The
expert rules are represented as Horn rules whose body are conjunctions of pred-
icates. The relationship between factor and pattern can be modeled using the
“occursIn” property. Each pattern has a region of interest, which is a channel
group belonging to the topography class. Each area on the scalp can be divided
into a left and right part. For instance, left occipital (LOCC) and right occipital
2 Human readable OWLDoc: http://aimlab.cs.uoregon.edu/NEMO/OWLdoc ERP

http://aimlab.cs.uoregon.edu/NEMO/NEMO_ERP.owl
http://aimlab.cs.uoregon.edu/NEMO/NEMO_ERP.owl
http://aimlab.cs.uoregon.edu/NEMO/OWLdoc_ERP
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(ROCC) are sub-classes of channel group and the combination of them is called
occipital (OCC) (not shown). The mean intensity (measured in microvolts) for
each region of interest is calculated based on this relationship.

While the graph representation helps convey the general idea, we use a formal,
first-order ontology language to represent the ontology internally. This internal
language is (and has been) easily translated to and from standard ontology lan-
guages such as OWL [7] or OBO [2] for terminological knowledge and SWRL [5]
for general Horn rules. We plan to contribute our ERP ontology to the National
Center for Biomedical Ontology [6].

4.3 ERP Data Modeling Results

We applied our modeling methodology to the ERP ontology depicted in Fig-
ure 5 to investigate several properties: correctness, space, load-time, and query
answering speed.

We worked with a visual word study data set in which there were 34 different
human subjects, 25 different dimensions in the attribute space and a vector of
1152 different component factors after PCA decomposition. In essence, we were
working with a relatively small matrix of data that was approximately 1152 rows
by 30 columns in size.

For every class in the ERP ontology, we define a unary relation and for every
property a binary relation. For every logical rule in the ontology specification,
we generated the corresponding foreign keys, triggers, and primary keys in the
database. Finally, for every data instance, we generated a unique internal object
identifier. Altogether, the data essentially consists of 100,425 individual facts.

It took approximately 14 seconds to generate the database schema based on
the ontology and load it into the MySQL RDBMS. It took 1.3 hours to load
all of the individual facts. The entire ERP ontology database occupies roughly
10 MB of disk space, and contains over 145,000 facts (including new ones after
all triggers). There are 29 tables for class concepts and 40 tables for properties.
The class hierarchy has a depth of at most 5. The top-class in the hierarchy
has 23,093 instances whereas the average-sized class has 1,152 instances. The
ontology database generated 27 different triggers and 95 foreign-key constraints
to maintain the procedural extension.

Figure 6 shows a visual representation of the entity-relation (ER) diagram
for the ERP ontology database. Although too large and complex to show every
detail in this paper, the diagram gives a rough idea of how many concepts (boxes)
and dependencies (lines) are managed by the database (triggers are not shown).

As for query processing, we tested four different queries that exhibited the
various properties of interest for our implementation: subsumption, data size
(amount of data, joins, etc.), aggregate computations, and ease of formulation
based on ontology concepts. A summary of the queries and properties they are
meant to explore is shown in Table 2. Although we hoped to find at least some
interesting and significant variations in query speed or formulation difficulty (ac-
cording to domain experts), this was not the case. Each query proved extremely
straightforward to formulate in SQL, and execution time was statistically unmea-
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Fig. 6. Although too difficult to read in printed form, this visualization of the ER
Diagram for the ERP ontology database gives a general sense of number and complexity
of the concepts (boxes) and foreign-key relationships (lines). Central concepts such as
“pattern,” “factor,” and “channel group” are toward the right-side of the image – they
are the most densely connected nodes.
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Data

SQL
Wrapper

1 2

45

3
SQL

Wrapper

Schema-1 Schema-2
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OntoGrate

Fig. 7. A data integration scenario in which the user (1) issues a query using the
semantics of the source ontology which (2) gets translated into the semantics of the
target ontology using the inference engine in OntoGrate which is then (3) issued as a
database query using a SQL syntax wrapper from which (4) target data is returned
and finally (5) translated back into the source semantics for the user to interpret.

surable (somewhere between 0-40 ms) on our equipment. All answers returned
by the database were 100% complete and sound (perfect recall and precision)
as compared to answers expected by our domain experts. The answers and ex-
ecution times for each query are also shown in Table 2. We would like to note
that, although not the focus of this paper, the ontology database approach we de-
scribe adds the unique advantage that queries can be posed at the ontology-level
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Table 2. This table lists the queries and answers verified by experts. Each query is
meant to test various properties of interest.

Query / Answer Property of Interest

(1) Show the region of interest for all ERP patterns
that occur between 0 and 300ms.

subsumption, data size

Pattern ROI max_value min_value
====================================
N100 LOCC 229 151
N100 ROCC 229 151
N2 LPTEM 300 230
N2 LOCC 300 230
P100 ROCC 150 60
P100 LOCC 150 60

[Fetch MetaData: 0/ms] [Fetch Data: 10/ms]
[Execution: 0/ms]

(2) Which PCA factor do P100 patterns most often
appear in?

subsumption, aggregation,
data size

Pattern occurances Factor_Number
==================================
P100 133 4

[Fetch MetaData: 0/ms] [Fetch Data: 0/ms]
[Execution: 20/ms]

(3) What is the range of intensity mean for the region
of interest for N100 patterns?

ease of formulation

Pattern in_mean_roi_min in_mean_roi_max
=========================================
N100 -infinity -0.4

[Fetch MetaData: 0/ms] [Fetch Data: 0/ms]
[Execution: 10/ms]

(4) Show the patterns whose region of interest is left
occipital and occurs between 220 and 300ms.

subsumption, aggregation

Pattern ROI max_value min_value
==================================
N2 LOCC 300 230

[Fetch MetaData: 0/ms] [Fetch Data: 0/ms]
[Execution: 10/ms]

by domain experts using languages such as SPARQL [4] or OWL-QL [14] and
automatically translated to SQL using wrappers (see Figure 7).

5 Discussion and Future Work

In this paper, we have outlined a new framework for designing and implementing
ontology databases. We have further presented a case study in which we applied
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our method to ERP data. This ontology-driven data modeling approach appears
promising, working well for: (1) scientific application scenarios requiring rich
semantics, and (2) “query-mostly” scenarios common to such domains in which
large sizes of data must be queried and analyzed significantly more often than
data are loaded. We have also argued that the ontology database methodology
using triggers and foreign-keys is logically justified: that it correctly generates
and maintains a logical model for a given ontology and set of data.

In terms of scalability, the LUBM is fairly complex but medium in size. GO,
on the other hand, has over 36,000 different concepts arranged in a hierarchy
roughly having depth 14. Although large in size, GO is mostly a class hierarchy
with only one property (“part-of”). The main limiting factor for our approach
will be the number of tables and triggers a database system can realistically
support. MySQL, for example, is limited only by the number of files possible on
the operating system. Unless other DBMSs have strict limitations, we do not
see scalability to be a problem in general since ontologies do not typically grow
to sizes on the order of millions of concepts. To be clear, we mean scalability
in terms of the conceptual model, not the data instances which definitely pose
scalability issues. We tested our system on a toy ontology up to size 40,000 and
depth 20 and there was no visible difficulty. In future work, we will process GO
itself and possibly incorporate data instances from ZFIN and MGI given our
strong working relationship with those groups.

The next goal for the NEMO project is a comprehensive ontology-based mod-
eling and integration system that will facilitate the representation and dissemi-
nation of ERP data across different EEG and ERP analysis methods, different
experiment paradigms, and different laboratories. It is likely that the represen-
tation of EEG and ERP patterns that are associated with different analysis
methods and different functional (experiment) paradigms will require multiple
ontologies to be developed. Ontology-based integration in NEMO will study
the mapping rules between these EEG and ERP ontologies. Given the mapping
rules between different ontologies, once the user query comes in, various ERP
databases with different ontologies can be searched for answers to the query. We
reported an efficient ontology-based data integration system called OntoGrate
that addresses this problem using an inference engine [13]. In general, we antic-
ipate that this research can be generalized for integrating other types of neuro-
science data (e.g., event-related fields (ERF) and functional magnetic resonance
imaging (fMRI) data) and can support other biomedical ontology-based data
sharing efforts (e.g., GO) in the future. Figure 7 highlights the main idea behind
the query answering scenario under this model of integration.
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Abstract. TheR-tree [7] family is themost popularmulti-dimensional in-
dex method. The R-tree, however, has overlaps among index entries and its
index page fanout decreases rapidly as data dimension increases. Further-
more, the R-tree has poor concurrency performance. For frequent-update
multi-dimensional point data sets, the hB-pi [5] tree is a better choice than
the R*-tree. But the hB-pi tree (and all other kd-tree based access meth-
ods) indexes the whole space no matter whether or not there is any data
in some sub-spaces. Indexing empty space (i.e., space without data inside)
leads to unnecessary data page accesses which increase with growing di-
mension. This paper addresses this problem by proposing the hB-pi* tree,
which efficiently indicates empty spaces and improves range query perfor-
mances while preserving the hB-pi’s high fan-out and good concurrency.
Our methods can be applied to any kd-tree based access methods, and our
claims are supported by extensive experimental evaluation.

Keywords: hB-pi* tree, Empty space, Multi-dimension access method.

1 Introduction

Indexing multi-dimensional point data sets has been extensively studied, and
numerous structures [6] have been developed. This paper focuses on indexing
low to medium (i.e., 2D to 8D) point data sets that undergo a significant load
of updates.

One of the most popular multi-dimensional access methods is the R-tree fam-
ily, which can index both point data and non-point data. Spatially adjacent
objects are clustered into the same data page. Spatially adjacent data pages
are clustered into the same index page. This cluster process will repeat until
it reaches the root of the tree. Each entry in the data page is in the form of
<MBR, tid> where MBR is the minimal bounding box of the object O, and
the tid refers to the real position of O in the database. Each entry in the index
page is in the form of (MBR, ptr) where MBR is the minimal bounding box that
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Fig. 1. Example of the R-tree

encloses all the MBRs in the child page (pointed to by ptr). Figure 1 illustrates
a two level R-tree with the page capacity of 2. The R∗-tree [2], a variant of the
R-tree [7], reduces the area, margin, and overlap of the index entries’ MBRs, and
it is robust against skewed data distributions. Furthermore, the R∗-tree intro-
duces the concept of Forced Reinsert. That is, if an insertion causes a page P to
overflow, a certain number of the entries in P (i.e., the entries whose centers are
far away from the center of P) will be removed from P and reinserted into the
tree. The Forced Reinsert can prevent the split, increase the storage utilization,
and decrease the overlap and margins. The RO-tree [14] further improves the
performance of the R*-tree by storing outliers (i.e., an object which is located
far from other objects) at index levels.

The R-tree is widely used because of its simplicity and efficiency. In spite of
the R-tree’s popularity, the R-tree has three problems. First, there are overlaps
among index entries, and the overlaps increase rapidly with growing dimension-
ality of the data. According to [4], the overlap can reach 90% at the dimension
of 6, where the overlap is defined as the percentage of data objects that fall in
the overlapping portion of the space. Second, the R-tree’s index entry contains
the MBR whose storage cost linearly increases as the data dimension increases;
thus, the fanout of the index pages decreases as the data dimension increases.
Third, the R-tree has poor concurrency performance. For example, each data
entry insertion might cause the update of MBRs to the root of the R-tree.

Although the R-tree has the problems listed above, some major database ven-
dors [1] have used the R-tree to provide spatial database support for two reasons.
First, most spatial data are 2D and 3D. Increasing overlaps and decreasing in-
dex page fanout are not serious problems for 2D and 3D data. Second, spatial
databases tend to be static most of the time (e.g., some census data only change
once per year). Concurrency is not a major concern for nearly static data sets.

However, for frequent-update multi-dimensional point data sets (especially
those data sets whose dimensions are higher than 3D), the R-tree is not a good
choice due to the reasons mentioned previously.

The R-tree is proposed as a multi-dimensional access method for point data
and non-point data. In this paper, we consider only point data. For multi-
dimensional point data, one set of popular access methods is the kd-tree based in-
dex methods. The kd-tree [3] is an in-memory binary search tree that recursively
divides the k-dimensional space into non-overlap subspaces by using (k-1) di-
mensional hyper-planes. The kd-B-tree [13] is a variant of the kd-tree that pages
secondary memory. The kd-B-tree is a balanced tree, but it cannot guarantee
the minimum storage utilization because of the force split, which splits children
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of splitting parent index pages. The Bkd-tree [12] improves the storage utiliza-
tion of the kd-B-tree by using a set of kd-B-trees. Henrich et al. propose the
LSD-tree [9] (Local Split Decision Tree), which is another variant of the kd-tree.
The LSD-tree is not a balanced tree because the heights of its external subtrees
can differ at most by one.

Lomet and Salzberg propose the hB-tree [10] (holey Brick Tree), which can
guarantee good storage utilization. The hB-tree is a balanced tree and adapts
well to skewed data distributions. Later, Evangelidis et al. combine the hB-tree
and the II-tree [11] into the hB-pi-tree [5]. The hB-pi-tree not only preserves the
good properties from the hB-tree, but also inherits good concurrency and recov-
ery control algorithms from the II-tree. The hB-pi tree divides the space into non-
overlapping subspaces and is fairly insensitive to dimension increases because each
kd-tree node only stores the split value of one split attribute. The advantages of
the hB-pi tree exactly address the the impediments of the R-tree. That’s why we
argue the hB-pi tree is a good candidate to index multi-dimensional point data
sets which update frequently and require high concurrency performance.

The hB-pi tree (and all other kd-tree based access methods) indexes the whole
space no matter whether or not there is any data in some sub-spaces. Indexing the
empty space (i.e., space without data inside) leads to empty data page accesses.
The empty data pages are defined as the data pages that are accessed during a
range query but do not contain any data in the query range. It has been observed
that the real data in high-dimensional space are highly correlated and clustered,
and that the data occupy only some subspaces of the whole space. So as the
dimension increases, more and more empty data pages might be accessed.

In this paper, we attempt to overcome the problems listed above and combine
the advantages of previous structures by proposing the hB-pi* tree, a comprehen-
sive access method for frequent-update low to medium point data sets. The hB-pi*
tree preserves the good properties of the original hB-pi tree such as non-overlap,
insensitivity to dimension increases, and integration with good concurrency and
recovery algorithms. The hB-pi* tree can also cluster the data as the R-tree, rein-
sert the data as the R*-tree, and detect the outliers as the RO-tree.

A hB-pi* tree includes a modified hB-pi tree, which stores most data, a small
hash table for data in sparse space (HTSS), which stores the data in sparse space
(i.e., space with few or no objects inside), and a tiny auxiliary data page density
queue (DPDQ), which maintains the densities of data pages in a priority queue
(i.e., sorted by data page densities in ascending order). The hB-pi* tree involves
several heuristics that take into account the density, area, and margin to improve
query performance significantly. In the following, we abbreviate sparse space and
(or) empty space as sparse space without causing any ambiguity.

The rest of the paper is organized as follows. Section 2 illustrates the access
methods directly related to our work and analyzes their problems. Section 3
presents the structure of the hB-pi* tree and the corresponding construction and
concurrency algorithms. Section 4 contains an extensive experimental evaluation,
while section 5 summarizes the contributions and provides directions for future
work.
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2 Preliminaries

The hB-pi* tree is a kd-tree [3] based point access method. We will first illustrate
the hB-pi tree, then explain empty space in the hB-pi tree.

2.1 hB-pi Tree

The hB-pi tree [5] is a comprehensive point access method different from other
kd-tree variants [9,13]. First, the hB-pi tree can guarantee decent storage uti-
lization, and it is a balanced tree. Second, the hB-pi tree adapts well to skewed
data distributions [5]. Third, the hB-pi tree integrates the II-tree [11], which can
efficiently support recovery and concurrency control.

Like all other hierarchical index methods, the hB-pi tree includes data pages
and index pages. A data page contains one or more record lists (containing the
real data) and zero or one kd-trees (storing the space decomposition informa-
tion). A record list has records in the form <a1,a2,..ak,data> where a1 to ak

are the attribute values and data is the real data value. The kd-tree node N
is in the form of <split-attribute, split-value, left-pointer, right-pointer> where
split-attribute and split-value store the split dimension with the corresponding
value. The left-pointer points to N’s left child, which stores data whose value in
split-attribute is smaller than or equal to the split-value, and the right-pointer
points to N’s right child, which stores data whose value in split-attribute is bigger
than the split-value.

An index page only contains one kd-tree. A kd-tree node N is in the form of
<decoration, split-attribute, split-value, left-pointer, right-pointer> where deco-
ration is the child page address where N was posted from, and it records the split
order among data pages. The decoration will be used in the page consolidation
(an example will be illustrated in the next section). All the other fields have the
same meanings as those in data pages. An example is illustrated in Figure 2(a).
The hB-pi tree starts with one data page A. After a certain number of data
insertions, the original root data page A overflows. Part of the data in A will be
moved to the newly created data page B. The data left in data page A is saved
in two record lists (i.e., R1 and R2). A kd-tree is added to A with a side pointer
pointing to page B. The index page P is created and it contains a kd-tree that
stores the space decomposition information of the subspace. The decoration of
both kd-tree nodes in P is A, because both nodes are posted from data page A. If
a set of kd-tree nodes (e.g., nodes X10 and Y10) have the same decoration (e.g.,
A), only the kd-tree node at the highest level (e.g., node X10) will be decorated.

If the data page A further splits into data pages A and C (figure 2(b)), the
split path (X10 right) is posted to the parent index page P. The split path is the
path from the root of the kd-tree (e.g., X10 in A’s kd-tree) in the splitting page
(e.g., A) to the side pointer pointing to the new page (e.g., C). Starting from the
kd-tree node (X10) in P (which is labeled with the decoration for A, the splitting
page), the updating algorithm of the hB-pi tree will attempt to find where to
place a copy of the path by matching the split path with the path starting from
X10. It will find a full copy of this path already in P and only need to post the
decoration for the new split on Y10 as illustrated.
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(a)Original hB-pi tree (b)Post I (c)Post II

Fig. 2. hB-pi tree example

If the data page A splits instead (not merely following the original split lines)
into data pages A and C as in figure 2(c), the split path (X10 left -> Y7 left) is
posted to P. In this case, the split path has not been posted yet. The split path
itself must be posted as well as the new decoration.

2.2 Empty Spaces

The index entry of the hB-pi tree (and other kd-tree variants) is independent of
the number of dimensions of the data set. As a consequence, the fanout of the
index pages in the hB-pi tree is insensitive to dimension increases. The price we
have to pay for fixed index entry size is that the whole data space is indexed
in the hB-pi tree even if some sub-spaces do not contain a single data point.
This can lead to unnecessary data page access in query operations. An example
is illustrated in figure 3(a). Two data pages (D1 and D2) are divided by a split
line (X8). Data points are represented by dots, and query range is represented
by the shaded area. The query range does not contain any point in D2, but D2
will be visited because the space covered by D2 intersects with the query range.
D2 is an empty data page, which is accessed during the range query, but does
not contain any data in the query range.

As data dimension increases, more and more empty data pages might be ac-
cessed for two reasons. First, for the same size query range, more data pages
might be intersected with the query range as the dimension increases. An exam-
ple is illustrated in figure 4. The whole data space is divided into four parts (data
pages) and query range always covers 1

4 of the data space. For the 1-dimensional
case, the query range intersects 2 data pages; for the 2-dimensional case, 4 data
pages are intersected with the query range. Second, higher dimensional data is
usually more skewed than lower dimensional data. As the dimension increases,

(a) Empty space (b) Using MBR

Fig. 3. Example of empty space
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(a) 1-dimension (b) 2-dimension

Fig. 4. Data pages intersect with query range

a higher percentage of the data pages that are visited during range query will
be empty data pages.

A simple idea to reduce empty space is to introduce MBRs to the hB-pi tree.
Each data page stores an MBR, which encloses all data points actually stored in
the data page. Each index page stores an MBR, which encloses all data points
actually stored in the corresponding sub-tree. The index entry in index pages
stores the MBR of the lower level page together with the pointer that points
to the corresponding lower level page. An example is illustrated in figure 3(b).
Although the query range intersects with the data space of D2, the query range
does not intersect with the MBR of D2. The range query will not access D2, and
one empty data page access is saved. A similar idea is proposed in [8].

However, this simple idea of using MBRs has three disadvantages. First, the
index entry size will increase linearly as the dimension increases because the
index entry stores the MBRs, whose size increases as dimension increases. The
index page fanout will decrease for high dimensional data as in the R-tree. Sec-
ond, the outliers can make the MBR method (i.e., introducing MBRs to the
hB-pi tree) quite inefficient. For example, data page D1 (figure 3(b)) will still be
accessed because D1’s MBR intersects with the query range. Third, each data
entry insertion might cause the update of MBRs to the root of the hB-pi tree.
This leads to the same poor concurrency performance as that of the R-tree. In
our experiments, we found that the hB-pi tree with the MBRs hardly improves
the query performance of the hB-pi tree, even without considering the concur-
rency issue. The performance of the hB-pi tree with MBRs is not included in
this paper’s experimental section. The hB-pi* tree, which will be illustrated in
the next section, overcomes these problems while still efficiently reducing empty
data page accesses.

3 hB-pi* Tree

The general idea of the hB-pi* tree is to use extra kd-tree nodes to indicate
sparse spaces, and to store the outliers in an in-memory structure. At most one
extra kd-tree node, which only stores the split dimension and the corresponding
split value, is introduced during each data page split. Furthermore, the number
of extra kd-tree nodes is also constrained by the bound on the size of the table
storing the outliers to which they refer. Thus, although the number of index
pages (not data pages) may increase, the experimental results show that, for
a real data set, the hB-pi* tree has a similar number of index pages as that
of the original hB-pi tree. Since the original hB-pi tree is independent of the
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Fig. 5. Overview of the hB-pi* tree

number of dimensions of the data set, the hB-pi* tree is also not sensitive to
data dimension.

In the following, section 3.1 first illustrates the structure of the hB-pi* tree.
Thereafter, section 3.2 presents the insertion algorithm, section 3.3 demonstrates
the page reentry algorithm. Deletion, query and concurrency algorithms are not
provided in this paper due to space limitation. Detail algorithms can be found
in [15].

3.1 Structure

The overview structure of the hB-pi* tree is illustrated in figure 5. An hB-
pi* tree contains the following three parts: a durable tiny in-memory Data Page
Density Queue (DPDQ), a durable small in-memory Hash Table for Sparse Space
(HTSS), and a disk-based extended hB-pi tree. Durable in-memory structures
(i.e., DPDP and HTSS) are copied to log checkpoints, and changes made to
them are logged so that in case of system failure, they can be reconstructed
(more details can be found in [15]). The extended hB-pi tree’s recovery control
algorithm is similar to that of the original hB-pi tree.

The DPDQ stores the densities of data pages in a priority queue in ascending
order (i.e., the first data page in the DPDQ has the lowest density). Each entry
has the form <pageid, density>, where density is defined as the number of
objects in the data page (indicated by pageid) divided by the space size of the
data page. The DPDQ is used to detect the sparse space in data pages other
than the currently overflowing data page.

The HTSS stores the data located in sparse space. Each entry has the form
<record listid, data list>. The record listid is the unique identifier assigned to
each sparse space. Sparse spaces are detected by the hB-pi* tree insertion algo-
rithm. The data list is a record list that stores all the data in the sparse space
indicated by the record listid. If a sparse space becomes too dense with data, the
corresponding record list might be re-inserted into the extended hB-pi tree.

The extended hB-pi tree stores all of the data in the dense space. However,
the major difference between the original hB-pi tree and the extended hB-pi tree
is that in the index pages of the original hB-pi tree, the pointers of the kd-tree
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nodes can only point to the other kd-tree nodes, the child pages at the lower
level, or the sibling pages at the same level. However, in the index pages of the
extended hB-pi tree, the pointers of the kd-tree node can also point to a record
list in the HTSS. In the following section, the extended hB-pi tree is abbreviated
as the hB-pi tree without causing any ambiguity.

Figure 6 illustrates the hB-pi* tree for the same data distribution of figure 3.
The whole space first splits at Y3 (because of the data distribution). Point a
(i.e., an outlier) is above the split line Y3 and it is stored in the record list E1
in the HTSS. The sub-space below Y3 further splits into two data pages at X5.
The densities of D1 and D2 are inserted into the DPDQ. The index page (i.e.,
P) of the hB-pi tree is shown at the right-bottom corner. The kd-tree node Y3’s
right pointer points to the record list E1 in the HTSS.

If the query range is the same as that in figure 3, the query procedure can
stop at the index page of the hB-pi tree when it travels the kd-tree in the index
page. The query procedure retrieves the results (i.e., point a) directly from the
record list E1 in the HTSS without accessing any data page.

Fig. 6. Example of the hB-pi* tree

The insertion algorithm of the hB-pi* tree will be illustrated in the next
section. This algorithm involves several heuristics to reduce the sparse space
covered by the hB-pi tree, and to improve the query performance. Furthermore,
the heuristics used by the algorithm are applicable to other kd-tree variants.

3.2 Insertion

Figure 7 shows the insertion algorithm of the hB-pi* tree. By using the kd-trees
in the index pages of the hB-pi tree, the insertion algorithm first determines
whether the new data will be stored in a data page (in the hB-pi tree) or a
record list (in the HTSS). If the new data is located in a data page and entering
the new data causes the data page to overflow, the page split algorithm will be
invoked. If data is located in a record list, and the number of data records in
the record list reaches the threshold (i.e., 1

3 of the data page capacity) or the
HTSS overflows, the re-insert algorithm will be executed. Finally, the updated
information will be posted to parent pages.

A set of consecutive examples are used to demonstrate the evolving of the
hB-pi* tree while new data is continuously inserted. In each example, the index
page of the hB-pi* tree is used to illustrate the structure of the hB-pi* tree.
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Fig. 7. The insertion algorithm

Figure 8 illustrates the initial status of the hB-pi* tree. The data page capacity
of the hB-pi* tree is 12, and it starts with only one data page (D1). Most data is
located below the line Y3, and only one outlier (i.e., a) is above the line Y3. The
DPDQ and the HTSS are empty. There is no index page and the right-bottom
corner of the figure 8 is empty.

In the following sections, the insertion method’s two major sub-algorithms
(i.e., the page split algorithm and the page reentry algorithm) will be illustrated
in detail. Section 3.2 covers the major parts of the page split algorithm: the
split detection algorithm and the procedure of splitting the sparse space from
the currently overflowing data page. Section 3.3 illustrates the page reentry al-
gorithm. In order to follow the examples according to the data insertion order,
an example of how the page split algorithm splits the sparse space from the data
page in the DPDQ is illustrated in Section 3.3.

Fig. 8. The initial status of the hB-pi* tree

Sparse space in overflowing data pages. Because D1 already contains the
maximum number of entries (e.g., 12 data entries), the data page D1 in figure 8
overflows when a new object is inserted. In this case, the original hB-pi tree
splits D1 into two parts, as we have seen in Figure 3.1(a). However, much of the
space in both parts is sparsely inhabited. The original hB-pi tree (and all the
other kd-tree based access methods) indexes the whole space no matter whether
or not there is any data in some parts of the space. Indexing sparse space will
lead to empty data page access (i.e., visiting data pages that do not contain any
data inside the query range) during range queries.
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The hB-pi* tree is motivated by two facts. First, many real multi-dimensional
data sets are highly correlated and clustered, and therefore most of the data
occupies areas which are a small fraction of the whole space. For example, most
data in figure 8 clusters at both bottom corners. Second, a few outliers may be
isolated from the denser clusters of data. For example, there is only one data
point above the Y3 line in figure 8. The main idea of the page split algorithm
in the hB-pi* tree is to detect sparse spaces in data pages (not only in currently
overflowing data pages) and to save outliers in an in-memory structure (i.e.,
HTSS).

Figure 9 formally describes the PageSplit algorithm. In the following, the
definition of the sparse space is provided first; the example of the page split
algorithm is illustrated afterwards; the explanation of the algorithm is presented
at the end of this sub-section.

Fig. 9. The page split algorithm

The page split algorithm (figure 9) begins with detecting the sparse spaces in
the currently overflowing data page (i.e., D1) along each dimension. The sparse
space detection algorithm actually detects the dense space in data pages. A data
page D contains dense space at dimension K, if and only if there exists a subspace
(S) at one end of axis K that contains at least 2

3 of D’s data and S’s density is at
least 2

dim
2 (i.e., dim is the dimension of data) times bigger than (or equal to) the

density of D. The reason for using the metric 2
dim
2 will be given at the end of this

section. The subspace S is the dense space in D and the other space in D is the
sparse space. If there is no dense space in D at dimension K, there is no sparse
space in D at dimension K either. The sparse space detection algorithm will only
detect the sparse space at both ends (i.e., low and high) of each dimension, and
the reasons will be provided after the examples.

Let us continue using the data page (i.e., D1) split example in figure 8. First,
the sparse space at X-dimension is detected by invoking the DetectSplit method.
All data entries are sorted in ascending order by their X-values, and the re-
sults are saved in sorted result. Then the sparse spaces at both ends of the
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X-dimension are detected separately. The first 2
3 entries of the sorted result are

stored in low data and the last 1
3 entries are saved in high data. In this example,

the density of low data is smaller than twice (i.e., dim = 2 and 2
dim
2 = 2) of the

density of D1; no dense space exists at the low end of the X-dimension, and no
sparse space exists at the high end of the X-dimension. If the density of low data
is bigger than (or equal to) twice of the density of D1, the while loop (i.e., line
4-5 in figure 10) will be executed to put all points in dense space in the low data.
Next, the first 1

3 entries of the sorted result are stored in low data, and the last
2
3 entries are save in high data. No sparse space exists at the low end of the
X-dimension either. Therefore, there is no sparse space along the X-dimension.

Fig. 10. Detecting sparse spaces at each dimension

Next, the DetectSplit method is invoked to detect the sparse space along the
Y-dimension. The sparse space exists at the high end of the Y-dimension (i.e.,
above Y3), and the space below Y3 is the dense space of D1. The split result is
saved. In our example, there is only one split that contains sparse space. If there
is more than one split that contains sparse space, the one with the largest dense
space density will be chosen.

After the best split is found in the currently overflowing data page (i.e., D1),
the sparse space from the first data page (i.e., the data page with the lowest
density) in DPDQ also needs to be checked. Because the DPDQ is empty in our
example, the density of dense space in sparse split (i.e., the best split result
from the DPDQ) is initially set to +∞. The density of dense space in D1 is
smaller than that of sparse split, so the sparse space (i.e., the space above Y3)
is split from D1. The sparse record list (i.e., E1) is created in the HTSS, and the
outlier is stored in E1. The dense space of D1 further splits into two parts (i.e.,
D1 and D2) at X5. The densities of D1 and D2 are inserted into DPDQ. The
final status of the hB-pi* tree is illustrated in figure 11.

The sparse space detection algorithm only reports the sparse space at one end
(i.e., low or high) of each dimension. The reason for this choice is twofold: (i)
Indicating the sparse space at one end only needs one extra kd-tree node, and
it can guarantee that the hB-pi* tree is still insensitive to the data dimension.
Indicating the sparse space at multiple place in the data page would introduce
multiple kd-tree nodes. The split algorithm would also be more complicated. (ii)
Even if there is sparse space in the overflowing data page which is not at either
end of the data page, it still might be detected in the future.
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Fig. 11. Split sparse space from overflowing data pages

The DetectSplit algorithm (Figure 10) tests if density discovered in a sweep
along one dimension is greater than 2dim/2 times the page density. because the
formula 2

dim
2 is the best criterion we found in experiments.

3.3 Page Reentry

The PageReEntry algorithm can re-distribute the data in the hB-pi* tree (i.e.,
move data from the HTSS to the hB-pi tree). The cost of the hB-pi* tree’s
PageReEntry algorithm is less than the re-insertion algorithm of the R*-tree.
In the hB-pi* tree, the record list (e.g., E1) is either becomes a data page itself
or consolidates with its decoration data page (e.g., D1) and no other data page
is affected. In the R*-tree, the re-insertion algorithm will re-insert the data one
by one. For a common experimental setting in the R*-tree (i.e., 4K bytes page
size, 2-dimensional data set, 30% data in overflowing data page is re-inserted),
one R*-tree re-insertion operation might include several dozens of data insertion
operations and even more page accesses.

4 Experiments

To demonstrate the effectiveness of the hB-pi* tree, we performed an extensive
experimental evaluation of the hB-pi* tree and compared it to the original hB-
pi tree and the R*-tree. The experimental setup is discussed in section 4.1. The
experimental results are illustrated in section 4.2.

4.1 Experimental Setup

All experiments were run on an Intel Pentium IV 2.66GHz CPU machine with
1G bytes main memory. In all experiments, the disk page size was 1K bytes. Each
entry in a data page included its k-dimensional position values and an object ID
(4 bytes). Values in all the dimensions were represented by 4-byte floats.

In our experiments, the range query and the exact match query were chosen
to compare the three access methods because these two types of queries serve
as basic operations for other queries such as nearest neighbor queries or partial
range queries. Query performance was measured in terms of the number of page
accesses. For each experiment, 100 random queries were executed and the average
number of page accesses per query was reported.
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All three access methods use the same amount of main memory for queries.
The hB-pi* tree keeps all its index pages, the HTSS and the DPDQ in main
memory. The hB-pi tree uses the same amount of memory to store all its index
pages and data pages that contain most data entries. The R*-tree uses the same
amount of memory to store its index pages. The index pages at higher levels
(i.e., the root page is at the highest level) will be stored in main memory first.
If index pages at a certain level cannot be all stored in main memory, the index
pages that contain more index entries will be stored in main memory.

There are two important parameters for the hB-pi* tree, namely, the size of
the HTSS and the size of the DPDQ. In all experiments, the size of the HTSS
was 1% of the whole data set size. This is a practical assumption because the
size of the main memory can easily reach 1% of the disk space in many real
systems. In all experiments, the DPDQ stored the densities of the most sparse
20% of data pages. The bigger the DPDQ size, the more accurate the data page
density information retrieved from the DPDQ can be. We have tested the bigger
DPDQ size (e.g., stores the densities of all data pages) and found storing the
densities of the sparsest 20% of data pages can have results similar to storing
the densities of all data pages.

Each entry in the DPDQ stored a data page ID (4 bytes) and the corresponding
density of the data page (4 bytes). For an 8-dimensional data set with 200,000 data
(the raw data file occupies more than 10M bytes disk space), the corresponding
DPDQ only required about 4K bytes space. For lower dimension data sets with the
same amount of data, the size of the corresponding DPDQ would be even smaller.
For low to medium (i.e., 2D to 8D) point data sets discussed in this paper, the size
of the DPDQ is less than 1

1000 of the data set size.
In all experiments, the criterion 2

dim
2 (dim is the data dimension) was used

in the sparse space detection algorithm. The criterion becomes stricter as the
dimension increases.

4.2 Experimental Results

The house (HOUSE) data set is used in our experiments and it contains 84,362
eight dimensional records. Specifically, it contains house value, household in-
come, latitude, and longitude, etc. We use PCA (Principle Component Analy-
sis) method to generate the 2D to 8D data sets from the HOUSE data set. For
example, the 2D data set contains the 2D values from the two dimensions with
the biggest eigenvalues.

Figure 12(a) illustrates the number of index pages in the hB-pi tree, the hB-
pi* tree and the R*-tree. As data dimension increases, the size of each data entry
increases, and the number of data pages increases (for a fixed page size). More
splits are posted to index pages and more index entries are inserted into index
pages. So all three access methods have more index pages as data dimension
increases. The R*-tree has far more index pages than the hB-pi tree and the hB-
pi* tree because R*-tree’s index entry contains an MBR whose size is increasing
linearly with the data dimension. For each page split, the hB-pi tree and the
hB-pi* tree only store the split dimension and the corresponding split values
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(a) Number of index pages (b) Index page utilization

Fig. 12. Index pages

(a) Insertion cost (b) Sparse space indicated by HTSS

Fig. 13. Tree construction and tree structure

that are insensitive to data dimensions. So the hB-pi tree and hB-pi* have much
fewer index pages than the R*-tree.

If a data page overflows and it contains sparse space, the hB-pi* tree will use
one extra kd-tree node to indicate the sparse space. Furthermore, for the same
data set, the hB-pi tree and the hB-pi* tree have similar data pages utilization
which designate two methods have similar number of data page splits. In the
worst case (i.e., all overflowing data pages contain sparse spaces), for the same
data set, the number of index pages of the hB-pi* tree will be about twice that
of the hB-pi tree because at most one extra kd-tree node is introduced to the
hB-pi* tree for each data page split. In the experiments, the hB-pi* tree has
more index pages than the hB-pi tree (figure 12(a)), but much less than twice
of the hB-pi tree’s index pages. The reasons are: first, the hB-pi tree and hB-pi*
tree have similar index page utilizations (figure 12(b)); second, sparse space only
exists in a small number of data pages and only a few extra kd-tree nodes are
added to the hB-pi* tree.

Figure 13(a) illustrates the insertion cost of the three access methods. The
insertion cost is defined as the all pages accesses (from root page to leaf page)
during the tree construction divided by the number of data entries being inserted.
The insertion cost of the R*-tree is higher than the hB-pi tree and the hB-p*
tree for two reasons. First the re-insertion operation of the R*-tree introduces
extra page accesses. Second, the height of the R*-tree is higher than those of the
hB-pi tree and the hB-pi* tree because of the R*-tree small index page fanout.
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The insertion cost of the hB-pi tree and the hB-pi* tree is close to the final
height of the tree as expected. The hB-pi* tree’s insertion cost is higher than
the hB-pi tree because the hB-pi* tree needs extra page access for page reentry
and DPDQ retrieval operations. Since the page reentry method of the hB-pi*
tree batch inserts data and the re-insertion of the R* tree re-inserts data one by
one, the hB-pi* tree’s page reentry cost is much lower than the re-insertion cost
of the R*-tree.

Figure 13(b) illustrates what percentage of the whole space is taken up by the
sparse space indicated by the HTSS entries. As the data dimension increases,
higher and higher percentage of the space are indicated as sparse spaces and
indexed by the HTSS. This experimental result is in line with the observation
that the data tends to cluster in small sub-spaces in high dimension space. The
sparse space indicated by the HTSS increases rapidly as data dimension increases
when the data dimension is less than five. After the data dimension becomes
larger than five, the sparse space indicated by the HTSS becomes stable. This
observation indicates that detecting sparse space in even higher dimensional
space (i.e., >8D) might not be as effective as in low-dimensional (e.g., <5D)
space because most parts (i.e., higher than 90%) of the whole space have been
indicated as sparse spaces and covered by the entries in the HTSS.

Figure 14 illustrates the query performance of the three access methods for
different query sizes. Experimental results on 2D and 8D data sets are used
to indicate the performace change of three access methods as data dimension
increases (i.e., results on 3D-7D are skipped). For the 2-dimensional data set
(figure 14(a)), the hB-pi* tree outperforms the R*-tree, and the R*-tree outper-
forms the hB-pi tree. For low dimensional (e.g., 2D) data sets, the index entry
(i.e., MBR) size and overlap among index entries do not significantly affect the
query performance of the R*-tree. On the other hand, the performance of the
hB-pi tree is heavily impeded by the empty space. The average page access of
the hB-pi* tree can be smaller than one page which indicates that some queries
can be finished without visiting any data page.

Figure 14(b) illustrates the query performance for the 8-dimensional data set.
The hB-pi* tree is better than the hB-pi tree, and the hB-pi tree is better than
the R*-tree. For high-dimensional (e.g., 8D) data sets, the performance of the
R*-tree deteriorates rapidly because of the increasing index page size and the
overlaps among index entries. The hB-pi tree is overlap free and its index entry
size is insensitive to data dimension, so the hB-pi tree can outperform the R*-
tree. The hB-pi* tree inherits the advantages of the hB-pi tree. Furthermore, the
hB-pi* tree can indicate sparse spaces and stores outliers in the HTSS. So the
hB-pi* tree further outperforms the hB-pi tree.

Figure 15(a) illustrates the performance change of the three access methods
as the data dimension increases (query range size is fixed at 0.01%). For low-
dimensional (i.e., 2D-3D) data sets, the R*-tree outperforms the hB-pi tree.
For high-dimensional (i.e., 5D-8D) data sets, the hB-pi tree outperforms the
R*-tree. The hB-pi* tree outperforms the hB-pi tree and the R*-tree for all
dimension (i.e., 2D-8D) data sets. Figure 15(b) further explains why the hB-pi*
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(a) 2-dimension data (b) 8-dimensional data

Fig. 14. Range Query Performance

(a) Page access (b) Empty data page access

Fig. 15. Range Query Performance

tree performs better than the hB-pi tree. As data dimension increases, data are
clustered in sub-spaces and the empty page access increases in both the hB-pi
tree and the hB-pi* tree. By indicating the sparse space and storing outliers in
the HTSS, the hB-pi* tree can significantly reduce the empty data page access
which is a serious problem in the original hB-pi tree (and all other kd-tree based
methods).

5 Conclusions

In this paper, we addressed the problem of indexing frequent-update low to
medium (i.e., 2D to 8D) point data sets. The original hB-pi tree (and all other
kd-tree variants) indexes the whole space, even though some subspaces do not
contain any data. Indexing empty space will lead range queries to access empty
data pages. We proposed the hB-pi* tree to reduce the empty data page accesses.
The hB-pi* tree uses an extended hB-pi tree to store most data in dense spaces
and a HTSS to store the data in sparse spaces.

We illustrated the insertion algorithm and the concurrency algorithm of the
hB-pi* tree in detail. The hB-pi* tree preserves the good properties of the hB-pi
tree (non-overlap, insensitivity to data dimensions, guaranteed data page uti-
lization, good concurrency algorithm, etc.) and combines the advantages of the
R-tree family (clustering data, indicating outliers, etc.).
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Abstract. Bitmap indexes are known to be efficient for ad-hoc range queries
that are common in data warehousing and scientific applications. However, they
suffer from the curse of cardinality, that is, their efficiency deteriorates as at-
tribute cardinalities increase. A number of strategies have been proposed, but
none of them addresses the problem adequately. In this paper, we propose a novel
binned bitmap index that greatly reduces the cost to answer queries, and therefore
breaks the curse of cardinality. The key idea is to augment the binned index with
an Order-preserving Bin-based Clustering (OrBiC) structure. This data structure
significantly reduces the I/O operations needed to resolve records that can not
be resolved with the bitmaps. To further improve the proposed index structure,
we also present a strategy to create single-valued bins for frequent values. This
strategy reduces index sizes and improves query processing speed. Overall, the
binned indexes with OrBiC great improves the query processing speed, and are 3
– 25 times faster than the best available indexes for high-cardinality data.

1 Introduction

A large data warehouse typically contains high-dimensional data with tens or even hun-
dreds of attributes. Most popular indexing techniques are not effective for answering
queries on these datasets; some use the term the curse of dimensionality to describe the
poor performance [1]. The bitmap index is able to break this curse even when the di-
mensionality of the dataset is very high [2,3,4]. Hence, major commercial database sys-
tems, such as ORACLE, IBM DB2, and Sybase IQ, have implemented various bitmap
indexes. In many cases, bitmap indexes not only take less disk space than the commonly
used B-Tree indexes and their variations, but also answer queries much faster [2,3,5].
However, the current bitmap indexes also have serious limitations [6]. One of the most
serious ones, which we call the curse of cardinality, is that both index sizes and query
response time increase as the number of distinct values in an attribute increases. In this
paper, we propose to break this curse with a novel binned index and demonstrate its
effectiveness with both analyses and experimental measurements.

The number of distinct values of an attribute in a dataset is known as the attribute
cardinality. A number of strategies have been proposed to improve the performance of
bitmap indexes on high-cardinality attributes as discussed in the next section; among
them we see binning as the most promising [7,8,9,10]. Instead of building one bitmap
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for each distinct value as in the basic bitmap index, a binned bitmap index builds one
bitmap for a range (or bin) of values, which reduces the number of bitmaps used in
the index. Typically a query range spans multiple interior bins and two edge bins. For
example, an attribute “age” represented by integers between 0 and 100 might be divided
into 10 bins uniformly with bin 1 for “age” between 0 and 9, bin 2 for “age” between
10 and 19, and so on. The query “age between 25 and 65” will have bins 4, 5, and 6
as interior bins, bins 3 and 7 as edge bins. The bitmaps can be used to identify rows in
the interior bins and edge bins. Those in the interior bins are hits, but the ones in edge
bins are only candidates and their base data has to be examined to determine whether
they are hits. We call this process of examining the edge bins the candidate check. The
candidate check is often slow and significantly diminishes the value of a binned index.

In this paper, we propose to solve this problem by augmenting the bitmap index with
an Order-preserving Bin-based Clustering (OrBiC) structure. This structure clusters the
values for each bin together in the same order as they appear in the bitmap for the bin.
The most important reason that the candidate check takes a long time is that the values
fall in a bin are scattered in data files. The OrBiC data structure stores the values of
each bin together and reduces the time needed for the candidate check. Our analysis
and measurements on both synthetic and application datasets show that the total size of
the bitmap index with the OrBiC structure can be smaller than the size of the bitmap
index without binning. Systematic timing measurements showed that our strategy sig-
nificantly outperforms both unbinned bitmap indexes and conventional binned bitmap
indexes without the OrBiC structure.

The second innovation in this paper is the use of a hybrid of single-valued bins
and multi-valued bins. We give an algorithm for creating these single-valued bins for
both integer values and floating-point values. This allows us to reduce the time for
candidate checks and the size of OrBiC structures. On low-cardinality attributes, this
hybrid binning strategy produces mostly single-valued bins. On high-cardinality at-
tributes, it assigns the most frequent values to single-valued bins. It has the advantages
of both binned and unbinned bitmap indexes. The combination of the OrBiC structure
with hybrid-binning is especially effective for high-cardinality attributes, and results
in three-fold to several dozen-fold improvement over well known indexing methods.
In summary, our binned bitmap index with OrBiC essentially overcomes the curse of
cardinality.

2 Background and Related Work

The strategies for improving the performance of bitmap indexes on high-cardinality
attributes can be categorized into three broad categories: compression, encoding and
binning. In this section, we briefly review the common strategies from each category
and show how our method improves upon existing strategies.

Compression is typically used to reduce the size of each bitmap in a bitmap index.
Different compression methods have been used, including general text compression and
specialized bitmap compression [11]. General text compression methods are effective
in reducing the sizes of bitmaps, but require a long time to decompress bitmaps to an-
swer a query. To improve the query response time, a number of specialized compression
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methods have been designed, such as Byte-aligned Bitmap Code (BBC) [12] and
Word-Aligned Hybrid code (WAH) [13]. In particular, the WAH compression index
was shown to have the same theoretical optimality as the B+-Tree index, that is the time
required to answer range queries is bounded by linear functions of the number of hits
[13,14]. However, in timing measurements compressed bitmap indexes outperform the
B+-tree index significantly [15]. We use WAH compression in this work because WAH
compressed indexes were found to be 12 times faster than BBC compressed ones while
using about 50% more space [5].

Compression alone does not fully address the difficulty of applying bitmap indexes
to high-cardinality attributes. In the extreme case where every value is distinct, the com-
pressed bitmap index can be larger than a typical B-Tree index. For a dataset with N
tuples, a WAH compressed index containing N bitmaps requires 5N words to store the
bitmaps (details in Sec. 4.1), which is larger than the size of a typical B-Tree imple-
mentation. The size of a BBC compressed index might be smaller than that of a WAH
compressed index, but both indexes would take more time to answer a query than the
projection index [3]. Therefore, encoding and binning technique are used in addition to
compression especially for high-cardinality attributes.

Bitmap encoding methods are applied to reduce the number of bitmaps used in a
bitmap index. Among the different encoding methods, the bit-sliced index [3] (also
called the binary encoding [16]) produces the least number of bitmaps. One shortcom-
ing of this encoding method is that it needs to access nearly every bitmap to answer any
query. There is a number of other encoding methods that produce more bitmaps than
the binary encoding, but only have to access a small number of bitmaps to answer a
query [17,18]. Still, using encoding methods alone also does not fully address the per-
formance issues of high-cardinality attributes. In the worst case, even the most compact
binary encoding produces an index that is as large as the projection index. Furthermore,
the projection index usually outperforms such a binary encoded index because the op-
erations on the bitmap index are more complex than operations on the projection index.

For attributes with extremely high cardinality, combining compression and encoding
methods does not produce indexes that are competitive with projection indexes. This is
because bitmaps produced by compact encoding schemes such as the binary encoded
bitmaps typically do not compress well. In this case, compression does little to reduce
the index sizes, but could increase the query response time. Thus, binning may be the
most promising technique for high cardinality attributes.

Binning places multiple distinct values into a single bitmap and therefore reduces
the number of bitmaps required for the bitmap index [7,8,10]. It allows a user to control
how many bitmaps to use in an index. As mentioned earlier, the disadvantage is that one
needs to perform the candidate check to resolve the edge bins. Performing the candidate
check usually ends up touching a majority of the disk pages storing the base data even
though the number of false positives may be small. The reason is that reading data from
disk is performed in pages (typically, 4 KB or 8 KB)1 and the candidates are usually
scattered throughout the base data. Therefore the time required to answer a query is
usually longer than that of the projection index. Our challenge here is to reduce the
time needed for candidate check, or eliminate such checks when possible.

1 Most I/O system also performs read-ahead, which reads 128 KB or more in one operation.
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There are a number of recent papers that address the issue of how to reduce the
number of candidate checks [19,20]. They optimize the placement of bin boundaries
to minimize the average query response time by taking into account of data distribu-
tion and query workloads. However, their strategy do not reduce the time required for
each candidate check procedure. In this work, we present an auxiliary data structure
that allows us to directly reduce the candidate check time and thus the overall query
processing time. This complements the existing work. In practice, because the exact
query workload is usually not available before indexes are built, our approach is likely
to be more effective because it does not rely on knowing the query workload.

In this work, we assume the base data is not modified or infrequently modified. Such
data are common in extremely large data warehouses, where the only updates are bulk
loading of a large number of new records. Similarly, most scientific applications gener-
ate or collect data records never modify their data records either [21]. For this reason,
a number of research database systems such as C-Store [22] and MonetDB [23] make
similar assumptions. Usually these systems can efficiently append new records, but they
also implement a number of strategies to accommodate a small number of updates. For
example, a special mask for deleted entries can be maintained and an update to a row
can be treated as a deletion followed by an append. Using these strategies, many datasets
can be treated as read-only.

3 The New Binned Index Structure

In this section, we explain the new binned index structure. The two key elements of
this index are: an Order-preserving Bin-based Clustering (OrBiC) data structure and
a hybrid-binning strategy that uses single-valued bins together with multi-valued bins.
Before describing them, we first briefly review the basic binned bitmap index.

To build a typical binned bitmap index, one first chooses the bin boundaries. Next,
each value in a bin is represented in the corresponding bitmap by setting a bit to 1.
Figure 1(a) shows an illustration of a bitmap index with two bins for an attribute whose
values can be between 0 and 1. Bin 0 is for values between 0 and 0.5 (not including 0.5)
and bin 1 is for values between 0.5 and 1 (including 0.5). For a query requesting the
rows with values greater than 0.3, all rows in bin 1 satisfy the condition – an interior
bin that we need to access the bitmap; some rows in bin 0 (an edge bin) also may satisfy
the query condition. We need to examine the base data for bin 1 to determine if they
are actually hits. Because the base data in bin 1 is usually scatter on disk, the candidate
check process is typically expensive. The proposed new data structure is to cluster the
values according to the bin number and reduce the I/O cost.

3.1 Order-Preserving Bin-Based Clustering

During a candidate check, all values that fall in the edge bin must be examined. The
rows for a given edge bin are known as soon as the index is built. Therefore, it is possible
to reorganize the data so that the values in an edge bin are stored consecutively. We call
this additional data structure for storing the reorganized data as Order-preserving Bin-
based Clustering (OrBiC).
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(a) basic binned bitmap index (b) binned bitmap index with OrBiC

Fig. 1. An illustration of bitmap indexes with two bins

Typically, a bitmap index is built for a single attribute of a relation (a column of a
table) at a time. In this setting, the OrBiC data structure can be thought of as a projection
of the attribute, reordered according to the bin numbers, and preserving the relative
order of values in each bin. To use these values efficiently, we also need to record
the starting and ending positions of each bin. Because we preserve the relative order
of values in each bin, their relative positions are the same as those bits that are 1 in
the bitmap for the bin. This allows us to use the clustered values without their row
identifiers.

An illustration of a bitmap index with two bins and the OrBiC structure is shown
in Figure 1(b). In addition to the clustered values, we also store starting and ending
positions of every bin. Since we assume the base data is read-only, the reordered values
are of course also read-only. Their starting positions are never modified. This allows us
to pack the clustered values in an array. We also pack the starting and ending positions
together into one short array alongside the clustered values.

To perform a candidate check, we first read the starting positions to determine which
values are needed. Since the values corresponding to each bin are packed consecutively
on disk, they can be read sequentially. This significantly reduces the I/O cost associ-
ated with candidate checks as shown later in this paper. Additionally, since OrBiC data
structure is part of a bitmap index, it does not affect the ordering of the base data and
allow different attributes to have their own bitmap indexes with OrBiC.

3.2 Single-Valued Bins

Next we consider the issue of reducing the storage requirement for the OrBiC structure.
Our approach is based on the observation that in real applications the distributions of
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data is hardly ever uniform, but skewed, that is some of the values appear much more
frequently than the rest. For example, in a typical store, the sales records contain many
more sales of lower priced items than higher priced ones. Similarly, in a climate simu-
lation, there are fewer records with very high or very low temperature values. In these
cases, removing the most frequent values from OrBiC significantly reduces the number
of entries stored.

To facilitate the removal of frequent values, we store the actual minimum and max-
imum values in each bin. If a bin has the same minimum and maximum value, i.e.,
representing a single value, then no candidate check is ever needed for this bin. We call
these bins the single-valued bins.

Knowing the minimum and the maximum also helps reduce the need for candidate
check. In the example used in Figure 1(b), a query to find all records with values greater
than 0.4 appear to have bin 0 as the edge bin. However, since the actual maximum of
bin 0 is 0.4, we do not need to perform the candidate check.

3.3 Creating Single-Valued Bins

Now we discuss the mechanics of generating the single-valued bins. We first describe
the procedure to specify bin boundaries to ensure that a single-valued bin actually
holds only one value, and then describe a heuristic for assigning values to single-valued
bins.

As mentioned before, our binning procedure starts with a set of bin boundaries. To
create single-valued bins we need to specify the bin boundaries precisely so that the
intended bins actually contain only one value each. Given a set of bin boundaries {b0,
b1, . . . , bB}, we define a set of bins with closed left ends and open right ends. For
example, the first bin contains values satisfying the following conditions b0 ≤ x < b1

and the second bin contains values satisfying b1 ≤ x < b2. Given this definition, to
have single-valued bin for value bi, we need to make sure that the next bin boundary is
bi+1, the smallest possible value that is larger than bi. In digital computers, all numbers
are discrete and it is possible to compute bi+1 quickly.

For integer attributes, the smallest possible value that is larger than bi is bi+1 = bi+1.
To compute the same for floating-point numbers, we rely on a parameter known as the
machine epsilon (or the unit round off error) ε, which is defined to be the smallest
number such that 1 + ε > 1 in floating-point arithmetic [24]. For a normal floating-
point number bi, we can compute bi+1 as bi+1 = bi(1 + ε).

Now that we know how to specify the bin boundaries to make single-valued bins, the
remaining challenge is to decide when to put a value in its own bin. In this work, we use
a heuristic to produce approximate equal-weight bins. The overall goal is to make each
bin have the same number of rows. Because there is no way to further divide a single
value into multiple bins, a frequent value should be in its own bin. To make this decision,
we need to know how many times each value appears in a dataset (i.e., the frequency).
We may compute the exact frequencies or approximate them with sampling [25]. With
the exact frequency counts, we can make more precise decisions, but it may take more
time and space to collect the counts. We generate equal-weight bins by first identifying
the most frequent value. If its frequency is no less than the average count for a bin, we
place it in its own bin, otherwise we only have multi-valued bins. Once a single-valued
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bin is identified, the procedure is recursively applied to the left side and the right side
of the single-valued bin. This heuristic requires the number of bins to be specified first,
a topic we discuss in the next section.

4 Performance Analysis

In this section, we compute the worst case sizes and query processing costs of binned
indexes with OrBiC. Our analyses use some earlier results on sizes of WAH compressed
bitmaps [13]. In addition to understanding the performance characteristics of binning
with OrBiC, we also use this study to explore options for deciding the number of bins
to use.

4.1 Curse of Cardinality

To start with, we recall the main results about the most difficult case for compressed
bitmap indexes, which is random data. We also use this opportunity to explain exactly
what we mean by the curse of cardinality.

Let C denote the attribute cardinality of C and di denote the probability of value i
in the dataset. Assuming each di is a constant independent of others, then the bitmaps
generated for the basic bitmap index and the binned bitmap index are all uniform ran-
dom bitmaps as defined in [13]. The key results we use for our analysis is the formula
for the size of such a uniform random bitmap.

Following the definitions used in [13], we define w to be the number of bits in a
word, N to be the number of rows in a dataset (also the number of bits in a bitmap of
a bitmap index), and d to be the fraction of the bits that are 1 in a bitmap. The size of a
uniform random bitmap is given by

m(d) =
⌊

N

w − 1

⌋
+ 2 −

(⌊
N

w − 1

⌋
− 1
)(

(1 − d)2w−2 + d2w−2
)

(1)

≈ 3 +
N

w − 1
(
1 − (1 − d)2w−2 − d2w−2

)
. (2)

The first part on the right-hand side of Equation (1), � N
w−1�+2, is the maximum number

of words that can be used by a WAH compressed bitmap. The remaining of the right-
hand side is the expected number of words that can be removed by WAH compression
[13]. Knowing the size of each bitmap, we can sum them up to give the total size of the
bitmap index as

∑
m(di).

Note that Equation (1) is the exact formula from [13], while Equation (2) is a mod-
ification of the approximation given in [13]. This approximation is more accurate, par-
ticularly for very low bit densities. Since the bitmaps with only 0s are not stored in
a bitmap index, the minimum bit density is d = 1/N . In this case, the two formulas
from Equations (1) and (2) give the same value, 5, which is accurate in our experience.
It is possible that every bitmap has a bit density of 1/N if every value of an attribute
is distinct. In that case, there are N such bitmaps and the total size of bitmaps is 5N
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words2. This total size is larger than a typical B-Tree index which is observed to be 3 -
4N words, and it is also larger than the size of a projection index which uses exactly N
words. This is one aspect of the curse of cardinality: even with an effective compression,
the bitmap index size can be larger than commonly used indexes.

Associated with the increase in index sizes, the query processing time would also
increase because of the increased time to perform I/O operations and to operate on the
compressed bitmaps. For an attribute with typical high cardinality, say, C < N/10, the
compressed index size is about 2N words, and WAH compressed indexes never take
more time than scanning the vertical projections (also known as projection indexes).
However, as the attribute cardinality further increases, the indexes would have more
than 2N words and the WAH compressed indexes would take more time than the pro-
jection indexes for increasingly more queries. This is the second aspect of the curse of
cardinality for bitmap indexes.

4.2 Sizes of Binned Indexes

Equation (1) gives us a way to compute the expected sizes of bitmaps used in an index.
Since we assume the base data is read-only, these bitmaps will not change and therefore
can be densely packed together one after another [26]. In an index file containing such
a set of packed bitmaps, we also need to store the starting positions of bitmaps and bin
boundaries. Since the bitmaps follow each other, we need to know the starting position
of bitmap i and bitmap i + 1 in order to read the content of ith bitmap. To allow the last
bitmap to be handled the same way as the rest, we store the position just after the last
byte of the last bitmap as the starting position of a nonexistent bitmap. Altogether we
store B + 1 starting positions for B bitmaps.

To define B bins for a variable that can take values between 0 and 1, we need to
define B − 1 bin boundaries between 0 and 1. One may choose to store bin boundaries
with or without the values 0 and 1. In our test software, we choose to store the value 1,
but not the value 0. This allows us to easily count values less than bi. This way, we store
B bin boundaries for B bins. We also store the actual minimum and maximum value of
each bin, which leads to an additional 2B values. Assuming that each value is stored in
one word, the total size of the bin boundaries and the minimum and maximum values
is 3B words.

Assuming no single-valued bins, the total number of the clustered values is exactly
the number of rows, N . We need B + 1 values to record the starting position of each
bin. Altogether, the total size (in number of words) of our binned index is

S =
∑

m(di) + N + 5B + 2. (3)

In later experiments, we use a series of synthetic data following Zipf distribution, where
the value i, between 0 and C − 1, has the probability that is proportional to (i + 1)−z .

2 There are N words out of these 5N words that have the same value in each bitmap, therefore
it is possible to replace these N words with one word [13]. However, doing so makes all the
bitmaps depending on this single parameter which makes it more difficult to create the bitmap
indexes. To simplify the testing software, we have chosen to keep a counter in each bitmap.
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The constant z is known as the Zipf exponent (z ≥ 0). When z = 0 and C is an integer
multiple of B, we can simplify the formula for the total size of our binned index as
follows.

Sz=0 ≈
(

3 +
N

w − 1

(
1 − (1 − 1

B
)2w−2 − (

1
B

)2w−2

))
B + N + 5B + 2 (4)

≈ 3N + 8B. (5)

Note that the approximation in Equation (5) is accurate when 1− (1− 1/B)2w−2 ≈
(2w − 2)/B is accurate, which is true for large B, say B > 1000. For smaller B, we
need to go back to Equation (4) to compute the index size accurately. The expressions
for the equal-weight bins and for non-zero Zipf exponents can be similarly computed
even though they are not as easily simplified as in this special case.

4.3 Query Processing Cost

Next we compute the number of words accessed when answering an average query. To
simplify the discussion, we only consider 1-sided range queries of the form x > c,
where c is a constant we call the query boundary. The analysis we carry out here can
be similarly applied to equality queries and 2-sided range queries. In this analysis, we
only consider the amount of data to be read from disk in order to answer a query. To
further simplify the discussion, we assume the query boundaries are a uniform sample
of all distinct values that appears in the dataset. The main measure we use to judge the
effectiveness of an indexing method is the average number of words needed to answer
such a 1-sided range query.

To answer a range query with a binned bitmap index, two steps are needed. Step 1
operates on the bitmaps to identify which bins are fully contained in the query range
and which are edge bins that require a candidate check. Step 2 performs the candidate
check. For any 1-sided range query, there can be at most one edge bin. For simplicity,
we assume a candidate check is always necessary. Before the evaluation can start, we
always read the starting positions of the bitmaps, the bin boundaries, and the minimum
values and the maximum values of each bin to memory. This process reads 4B + 1
words. Clearly, this is the worst case scenario; one could cache these values to reduce
the query response time.

In Step 1, the main cost is reading the bitmaps from disk. If we need to read more than
half of the bitmaps (as measured by the number of words accessed), we can evaluate
the complement of the query instead. This allows us to read no more than half of the
words in the bitmap index. Given that the query boundaries are uniformly distributed
in the domain of the attribute, the average number of words accessed in Step 1 is one
quarter of the total size of the bitmaps (0.25

∑
m(di)).

In Step 2, the main cost is reading the values in the edge bin. We simply take this cost
to be N/B words. The cost of reading the starting and ending positions of the bin could
be taken as two words. However, because the underlying file system reads at least one
page, we approximate it by assuming that all B + 1 starting positions are read. Overall,
the total number of words read from disk is

R = 2 + 5B + N/B + 0.25
∑

m(di). (6)
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Fig. 2. The average number of words accessed to answer a 1-sided range query using bitmap
indexes with equal-weight bins and OrBiC (N = 108, C = 106, w = 32)

With equal-weight bins and for nonuniform data, we can similarly compute the expected
cost to process an average query. Because of the use of single-valued bins, the expres-
sions for these cases are much longer than Equation (6). Instead of giving analytical
expressions, we plotted them in Figure 2.

Figure 2 plots the average number of words accessed to answer a query. The figure
shows the query processing costs for three synthetic attributes, Zipf0, Zipf1 and Zipf2
(named after their Zipf exponents). We identify the optimal number of bins to be about
13 for Zipf0, 25 for Zipf1 and 550 for Zipf2. We also note that the average query
processing cost is not sensitive to the number of bins for Zipf1 and Zipf2. For example,
in the case of Zipf2 any number of bins from 400 to 1000 leads to nearly the same query
processing cost.

Next we compare the query processing cost of our new method against that of the
unbinned bitmap index and the projection index. We first consider the unbinned bitmap
index. Again we assume that one quarter of words has to be read on average. Thus, the
query processing costs of an attribute where every value is distinct is 1.25N words. In
Figure 2, we assumed N = 108, which means the query processing cost is at worst
5 × 108 bytes. The query processing cost of the projection index is always N words.
In Figure 2, this corresponds to a query processing cost of 4 × 108 bytes. We clearly
see that query processing of our binned index with OrBiC costs less than 4× 108 bytes.
With the optimal number of bins, the expected query processing cost for Zipf0 is about
8 × 107 bytes, which is about 1/5th of that of the projection index. In a more realistic
case, where the unbinned index is close to 2N words, the average query processing cost
is about 2 × 108 words, the binned index with OrBiC is about 3 (∼ 2 × 108/8 × 107)
times as fast as the unbinned index. The query processing cost for nonuniform data is
much less than that for Zipf0 as evidenced by experiments in the next section.

In Figure 3, we show a comparison between the query processing cost of a binned
bitmap index with OrBiC and one without OrBiC. It is easy to see that without OrBiC
we need to use more than 1000 bins in order for the query processing cost to be less
than that of the projection index. However, with OrBiC, the query processing cost is
always below that of the projection index.

Overall, the analyses here show that the new binned bitmap index with OrBiC and
equal-weight binning outperforms well-known methods for answering range queries
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Fig. 3. The average number of words accessed to answer a 1-sided range query on Zipf0 using
binned bitmap indexes with and without OrBiC

on read-only data. Since our analyses do not include the CPU time or I/O overhead
such as disk seek time, the actual observed query response time could show different
performance characteristics. Next, we conduct a number of tests on both synthetic and
real application data to measure the actual performance.

5 Data Sets and Index Sizes

In this section we describe the synthetic and application datasets used for our perfor-
mance evaluation. We also discuss the sizes of bitmap indexes with different numbers
of bins and compare their sizes with unbinned bitmap indexes and the expected values
computed in the previous section.

All experiments were conducted on a computer with dual 2.8 GHz Pentium 4 pro-
cessors, 2 GB of main memory, and an IDE RAID storage system capable of sustaining
60 MB/sec for reads and writes. Our bitmap index software is implemented with C++
and compiled with gcc 4.1.0 using the compiler optimization flag -O5.

5.1 Zipf Data

The synthetic data set consists of three high-cardinality attributes following the Zipf
distribution with Zipf exponents 0, 1, and 2. We refer to these three attributes as Zipf0,
Zipf1 and Zipf2. The number of rows is 100 million. The total size of the data set is 1.2
GB. The three synthetic attributes have non-negative values less than 1 million. Their
cardinalities are much higher than those used in the earlier tests [11,13].

5.2 Astrophysics Data

Our application data set is from an astrophysics application that studies supernova ex-
plosions. The data consists of 6 high-cardinality floating-point valued attributes with
110 million rows. The average attribute cardinality of these attributes is about 25 mil-
lion. The total size of the data set is about 2.6 GB.

The distributions of two attributes are shown in Figure 4. Note the log scale on the
y-axis. We show the distribution of x-velocity as the representative of the three veloc-
ity components. These attributes have some infrequent values, but the majority of the
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(a) x-velocity (b) density

Fig. 4. Distribution of astrophysics data. Note the log scale on the y-axis

values have frequencies within the same order of magnitude. The other three attributes,
density, entropy and pressure, have much higher skew in their distribution. We show the
distribution of density as the representative. In this case, we see that the frequencies of
values span eight orders of magnitudes.

5.3 Index Sizes

Next we examine the bitmap index sizes for both data sets. We start our discussion with
the Zipf data.

For each of the three Zipf attributes Zipf0, Zipf1 and Zipf2, we generated bitmap
indexes with 10, 20, 50, 100, 1000 and 10000 equal-weight bins, where each bin has
about the same number of values. Each of these variants also include an instance with
OrBiC and an instance without OrBiC. In addition, we also generated bitmap indexes
with no binning. In total we generated 13 different bitmap indexes per attribute. The
sizes of the bitmap indexes for the Zipf data are shown in Figure 5. We label the indexes
with equal-weight binning (without OrBiC) as “binning”, and the indexes with both
equal-weight binning and OrBiC as “binning with OrBiC”. For references, we also
plotted the size of the base data as the solid horizontal line, the unbinned index size
as the dashed line, and the expected sizes according to the analyses from the previous
section as ’x’.

Note that the expected sizes of the bitmap indexes agree very well with the actual
sizes in Figure 5. We see that the size of the bitmap index with binning (without Or-
BiC) is always smaller than the bitmap index without binning. As the number of bins
increases, the curves marked “binning” and “binning with OrBiC” become closer for
Zipf2, because the OrBiC data structure stores less and less values as more and more
bins become single-valued.

The sizes of the bitmap indexes for the astrophysics data are shown in Figure 6.
Again we see that the bitmap index with binning is always smaller than the bitmap
index without binning3. We also note that the bitmap index with binning and OrBiC

3 Due to extensive resource requirements of bitmap indexes without binning we had to build the
unbinned indexes on a server with more than 2GB of main memory.
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(a) Zipf0 (b) Zipf2

Fig. 5. Sizes of the bitmap indexes with different numbers of bins for Zipf data

(a) x-velocity (b) density

Fig. 6. Sizes of the bitmap indexes with different numbers of bins for astrophysics data

is only larger than the unbinned bitmap index in one case, namely for the attribute x-
velocity with 1000 bins with OrBiC. These results clearly demonstrate that our novel
binned bitmap index is able to take advantage of the non-uniformity present in the data
to reduce the sizes of bitmap indexes.

6 Query Processing Time

In this section we report an experimental evaluation of our binned indexes on both syn-
thetic and application data. The experiments are structured as follows. We first compare
the performance of range queries for binned bitmap indexes with and without OrBiC.
The results show that binned bitmap indexes with OrBiC are about a factor of 3 to 25
faster than those without OrBiC. Next, we run a set of tests to measure the relative per-
formance of binned index with OrBiC against unbinned indexes and projection indexes.
Because these indexes are known to significantly outperform the more popular B-Tree
index [2,3,5], we do not compare with B-Tree indexes directly.

All experiments are based on so-called aggregation queries that are common in data
warehousing and scientific applications. These types of queries provide statistical in-
formation on the result set rather than returning result records. A typical example of
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an aggregation query in an astrophysics application is as follows: “Count the number
of cells where pressure > X”. Note that before we executed each set of queries, we
unmounted and remounted the file system containing both the data and the indexes in
order to ensure cold cache behavior. The timing values reported here are elapsed time
in seconds.

In our first set of experiments we evaluate the query performance of binned bitmap
indexes with and without OrBiC. To simplify the following discussion, we fix the num-
ber of bins at 100. We start our performance evaluation with range queries over syn-
thetic data. The cardinality of each synthetic attribute is 1,000,000. For each attribute
we ran 10 range queries with ranges uniformly distributed over the entire attribute do-
main space. In particular, the query workload is as follows: a ≥ C/Q ∗ q + δ where a
is the query attribute, C is the attribute cardinality, Q is the total number of queries, q is
the query number and δ is a small value to make sure that the query range does not fall
on a bin boundary. Note that if a query range falls on a bin boundary there is no need
for a candidate check. Hence, the query performance for binned bitmap indexes with
OrBiC is equal to those without OrBiC.

Figure 7(a) shows the query response time for binned bitmap indexes with and with-
out OrBiC for Zipf0, i.e. uniformly distributed data. We see that binned bitmap indexes
with OrBiC are about a factor of 3 faster than binned bitmap indexes without OrBiC.
This agrees with Figure 3 for 100 bins. In Figure 7(a), we notice that both timing curves
show a characteristic “A shape”, because we evaluate the complement of the query if
more than half of the bitmaps are involved.

(a) Zipf0 (b) Zipf2

Fig. 7. Processing time of range queries over Zipf data. The figure shows a significant perfor-
mance advantage of binned bitmap indexes with OrBiC over binned bitmap indexes without
OrBiC.

Figure 7(b) show the query response time for binned bitmap indexes on Zipf2. Again
we see that the binned bitmap indexes with OrBiC are significantly faster than those
without OrBiC. In particular, the average performance improvement is a factor of 25.6
for Zipf2 (and 5.5 for Zipf1). These speedup values are larger than that for Zipf0 indi-
cating that the advantage of using OrBiC increases as the skewness of data increases.

Figure 8 shows the query response time for range queries over two attributes of
the astrophysics data set. Again we see a significant performance increase for binned
bitmap indexes with OrBiC compared with bitmap indexes without OrBiC.
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(a) x-velocity (b) density

Fig. 8. Processing time of range queries over astrophysics data. The figure shows a significant
performance advantage of binned bitmap indexes with OrBiC over binned bitmap indexes without
OrBiC.

Table 1 summarizes the average performance improvements of binned bitmap in-
dexes with OrBiC over binned bitmap indexes without OrBiC. The advantage of using
OrBiC is the least for uniform data, which has a speedup value of 3. On our application
data and synthetic data with skew, the speedup values are larger.

Table 1. Average speedup of binned bitmap indexes with OrBiC over binned bitmap indexes
without OrBiC

Synthetic Astrophysics
Attribute Speedup Attribute Speedup Attribute Speedup
Zipf0 2.94 density 3.91 x velocity 5.65
Zipf1 5.50 entropy 12.61 y velocity 4.82
Zipf2 25.62 pressure 4.40 z velocity 4.28

The previous set of tests clearly confirms the advantage of using OrBiC. In the fol-
lowing tests, we compare binned indexes with OrBiC with two other types of indexes,
the unbinned bitmap index and the projection index. In this set of tests, we use the av-
erage query response time over all queries to compare different indexing methods. We
start with a comparison against the unbinned index in Figure 9.

In Figure 9, the vertical axis shows the average query response time to answer the
same 10 range queries used in our previous tests. The horizontal axis shows the num-
ber of bins used by the binned index. Figure 9(a) is for the uniform data Zipf0 and
Figure 9(b) is for the highly skewed data Zipf2. In the case of the uniform data, where
the unbinned index require about 5.4 seconds to answer a query4, the binned index with
OrBiC is always better. In the best case, the new binned index with OrBiC is about three
times faster than unbinned index, which agrees with the analysis given in Section 4.3.

4 Assuming that 5.4 seconds were used to read a quarter of bitmaps, totaling about 8 × 108

bytes, the effective reading speed is 37 MB/s, which is about 2/3 of the maximum reading
speed.



Breaking the Curse of Cardinality on Bitmap Indexes 363

(a) Zipf0 (b) Zipf2

Fig. 9. The average query response time with the new binned index with OrBiC and the unbinned
bitmap index

On highly skewed data, the unbinned index performs very well, using about 0.15 sec-
onds instead of 5.4 seconds. However, even in this case, the new binned index with
OrBiC can outperform the unbinned index with a wide range of choices as the number
of bins.

Figure 10 shows the relative performance of the new binned index against the pro-
jection index. The vertical axis is the speedup of range queries using binned bitmap
indexes over the projection index and the horizontal axis is the number of bins used
by the binned index. Overall, we see that the speedup values are always greater than 1,
indicating the new binned index with OrBiC is always faster than the projection index.

(a) Synthetic (b) Astrophysics

Fig. 10. Speedup of range queries using binned bitmap indexes over projection index

Figure 10(a) shows the results for synthetic data. For Zipf0 with 20 bins the speedup
over the projection index is about a factor of 3. For Zipf1 and Zipf2, the highest speedup
is about a factor of 6 and 40, respectively.

Figure 10(b) shows the average speedup for the astrophysics dataset. We can see that
for attribute x-velocity bitmap indexes with about 50 bins have the highest speedup of
about a factor of 8. Note that the attribute x-velocity is of moderate skewness. However,
for the highly skewed attributes such as density and pressure, the optimal number of bins
is much higher and is around 1000. Additional analyses are required to fully understand
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the dependency of the number of bins on the skewness of data. However, the benefit of
using OrBiC is clear; the highest speedup over the projection index for the attributes
density and pressure is about a factor of 40.

7 Conclusions

The basic unbinned bitmap indexes used in major commercial database systems are ef-
ficient for querying low-cardinality attributes and highly skewed data. However, they
suffer from the curse of cardinality, i.e. their effectiveness decreases as attribute cardi-
nality increases. We solve this important problem by using a novel binned bitmap index
structure that performs efficiently even with extremely high-cardinality attributes. One
key idea is to augment the bitmaps with an Order-preserving Bin-based Clustering
(OrBiC) data structure. This data structure significantly reduces the cost of candidate
checks. In addition, we use a hybrid-binning strategy that employs single-valued bins
for frequent values to eliminate the need for candidate checks for these single-valued
bins. This further enhances the search performance. We performed detailed analytical
and experimental evaluations of our bitmap index structure and showed that our binned
bitmap indexes are in most cases smaller in size and more efficient in answering queries
than the unbinned bitmap indexes and the projection indexes.

In the worst case for a unbinned bitmap index, that is when the attribute has very high
cardinality and uniform data distribution, our analysis provides definitive guidance on
the number of bins to use. In addition, the predicted advantage has been verified exper-
imentally as well. For more realistic data, where the single-valued bins enhance perfor-
mance, a precise analysis of query processing cost (Equation (6)) is more complicated,
and how to determine the optimal number of bins remains a challenge. Nevertheless,
we experimentally demonstrated that our technique effectively broke the curse of car-
dinality.

The software that implements our binning technique has been released under LGPL
and can be accessed at https://codeforge.lbl.gov/projects/fastbit.
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Abstract. The existing Metric Access Methods (MAM) assume the
data elements represent immutable objects. However, many applications
must handle complex data evolving over time. Health care, weather mon-
itoring, and other applications require removing or updating elements.
Most of the MAM presented in the literature either do not have the dele-
tion operation described, or it is performed just marking the element as
deleted without effectively removing it from the structure. In this pa-
per we describe an algorithm that effectively removes any element from
a metric tree. While maintaining the height-balancing of the structure,
the proposed deletion algorithm uses mechanisms to enforce a reduced
number of pages in the tree, improving the query performance. Based on
the deletion algorithm, we propose a new way to optimize a MAM, which
we call the Push-pull technique. It reduces the node overlap performing
the deletion and reinsertion of elements close to the border of each node
covering region. We also developed the Smart Push-pull algorithm, which
uses statistical data about subtrees’ overlapping to calculate how many
elements should be removed from each node. The statistics are collected
during the evaluation of the structure overlap, an operation employed
to ascertain the need to trigger an optimization process. The experi-
ments were run on the Slim-tree and showed a reduction of overlap and
a query performance improvement over trees optimized by this technique
as compared over trees optimized by the Slim-down method.

1 Introduction

Database Management Systems (DBMS) were initially developed to deal with
numbers and small character strings. However, DBMS are being increasingly
required to support more complex data types, such as images, video, audio, geo-
referenced data and genetic sequences. Distinctly from traditional data, complex
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data usually do not possess the total ordering property. Therefore, comparison
operators (‘<’, ‘≥’, ‘≤’, ‘>’) cannot be employed. Moreover, equality compar-
isons are almost useless, since it is very difficult to have two complex elements
exactly equal. To compare data in those domains, the similarity among elements
is the most relevant operation [1].

Although complex elements can be understood as points in a vector or a
multidimensional space, there are domains that do not have a dimensionality,
such as words and genetic sequences. However, similarity can be adequately
expressed when data is represented in a metric space.

A metric space is formally defined as a pair M = 〈S, d〉, where S denotes the
universe of valid elements and d is the function d : S × S → R+ that expresses
the distance, or (dis)similarity, between elements in S. Thus, d must satisfy the
following properties, ∀s1, s2, s3 ∈ S: (1) symmetry: d(s1, s2) = d(s2, s1); (2) non-
negativity: 0 < d(s1, s2) < ∞ if s1 �= s2 and d(s1, s1) = 0; and (3) triangular
inequality: d(s1, s3) ≤ d(s1, s2) + d(s2, s3).

Several Metric Access Methods (MAM) have been developed to speed up
similarity query answering. However, most existing MAM consider that each data
element represents an unchangeable object of the real world. Some of them are
static and even those that are dynamic, allowing random insertions, hardly allow
the deletion operation. In fact, it is common to perform the deletion operation
by marking the element as deleted without effectively removing it from the
structure. This alternative is enough when few deletions occur, but it is not
acceptable when frequent deletions and/or updates occur.

For instance, consider an application for controlling epidemics and dangerous
diseases, such as the recent cases of avian influenza. Patients suspect of infec-
tion by any of the monitored diseases are added to the database, storing also
the results of their various medical exams. Storing the patients’ exams enables
searching for other people with similar health conditions and allows identify-
ing associations in the population spread across the world. However, many false
positives can be included that must be shortly removed upon notice.

Whereas deleting an element stored in a leaf node is straightforward (ignoring
the minimum node occupancy rule), removing elements of an internal node that
direct searches through the index is a tough task. When updates and deletions
are frequent, just marking representatives as deleted becomes inappropriate,
because they remain in the structure, increasing both the memory usage, the
number of disk accesses and the number of distance calculations required.

In this work we propose an algorithm for effective deletion in metric access
methods organized as hierarchical trees. Our approach enables deleting any el-
ement, including those stated as representatives. It employs a mechanism to
reduce the structure reorganization, without requiring to rebuild all the subtree
covered by a deleted representative. We show experiments confirming that sub-
sequent queries over a tree that uses the effective deletion algorithm are faster
than those over a tree with the marking as deleted technique.

Using the delete operation, we developed a new optimization technique for
MAM already built. When the structure becomes “fat” (i.e. with many overlaps
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among nodes), the proposed technique removes elements near the border of each
covering region and reinsert them in the structure. The technique, which we call
Push-pull, is much cheaper than searching for a better location for each element
in each level of the tree during the reinsertion, which can be prohibitively costly.
We also developed the Smart Push-pull algorithm, which employs this technique
and uses statistical data from the subtrees’ overlapping to define how many
elements should be removed from each node. The statistics are collected during
the evaluation of the structure overlap, an operation employed to ascertain the
need to trigger an optimization process. The experiments were run on the Slim-
tree, but the presented algorithms can easily be applied to other hierarchical
structures. As shown in the experiments, Push-pull reduces the overlap and
speeds up executing queries, outperforming the current Slim-tree optimization
technique Slim-down. Notice that this approach is feasible only when elements
can be effective removed, reinforcing the importance of the proposed deletion
algorithm.

In the next section we discuss basic concepts and related work to this research.
Section 3 presents our algorithm for effective deletion and Section 4 details our
new optimization technique for MAM. Section 5 shows the results of experiments
performed with the proposed techniques. Finally, Section 6 concludes the paper.

2 Background and Survey

In this section we discuss the fundamental concepts involved in our work. Sub-
section 2.1 shows a review of interesting MAM and introduces the challenges of
dealing with deletions in MAM. Subsection 2.2 presents the drawbacks related
to node overlap in metric trees.

2.1 Deletion in Metric Access Methods

Many data structures were developed to index data in metric domains, where
only the data elements and the distances (dissimilarity) among them are avail-
able. The methods proposed by Burkhard and Keller [2] were the starting point
of MAM development. They introduced the techniques for recursive partitioning
of metric datasets that led to the construction of MAM. Based on these ideas,
various MAM were proposed, such as the GH-tree [3], VP-tree [4], MVP-tree [5],
and GNAT [6]. However, all of those primordial structures are constructed in
a single operation using the whole dataset, and neither insertions nor deletions
are allowed.

The first dynamic MAM developed was the M-tree [7]. It is a height-balanced
tree, where elements are stored in leaf nodes that correspond to regions of the
metric space. Elements are grouped around special elements, named representa-
tives, in order to cluster similar elements. Each representative is the center of a
ball with a radius which covers all elements of the subtree rooted at it. Every
element stored in the node or in any subtree rooted at the node has a distance
to the node representative equal or smaller than its covering radius. The regions
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delimited by the nodes can intersect, generating the problem of node overlap-
ping (see Subsection 2.2). The MAM Slim-tree [8] has a structure similar to the
M-tree, however it improved M-tree presenting the first technique to measure
and to reduce the amount of overlap between subtrees in metric spaces. An-
other dynamic MAM is the DBM-tree [9], which reduces the amount of overlap
between nodes relaxing the height-balancing of the structure.

The development of dynamic MAM focused on supporting insertions and ef-
ficient query answering, but neglected the deletion of elements. Except by the
DBM-tree, which allows the deletion by unbalancing the structure, none of them
provide algorithms for the complete remotion of elements. However, removing
the height-balancing mandate allow trees to, eventually, degenerate completely.

Deleting elements in metric trees can force large tree reorganizations. Al-
though it is simple to remove elements that have not been used as represen-
tatives in index nodes, removing representatives require rebuilding the whole
subtree centered on it. This operation can be very expensive, and can lead to
the reconstruction of the whole tree when the removed element is in the root
node. Therefore, the challenge of the removal algorithm is to reduce the required
reorganization without degenerating the structure and without increasing node
overlaps.

Variants of the R-tree [10] implement the deletion while maintaining the
height-balancing property. However, the space division follows an approach to-
tally different, which cannot be employed in metric spaces, as split rules cannot
be directly used.

In almost every hierarchical MAM (and in all balanced MAM), it is suggested
that the deletion of representative elements be performed just marking them
as removed. This alternative, which we call here m-delete (mark-as-deleted),
becomes inappropriate when applications perform a large number of deletions.
In fact, maintaining deleted elements on the structure increases the consumption
of memory and disk space, the number of disk accesses and also the number of
distance calculations, as it forces comparisons with elements that do not exists
any more.

In Section 3, we present the first algorithm for effective deletion of elements in
height-balanced MAM, regardless where they are stored, in a leaf or index node.

2.2 Overlap in Metric Trees

The division of the metric space of almost every dynamic MAM does not generate
disjunct regions, producing overlaps among nodes at a same level of the tree.
This effect is undesirable, as it reduces the ability to prune subtrees. In fact, as
opposed to search trees where the cost of a point query is always one disk access
per level, the cost of a point query over a MAM also depends on the amount of
overlaps.

The first approach to evaluate the amount of overlaps of the nodes of a tree
was the fat-factor, defined over the Slim-tree [8]. The overlap between two nodes
was defined as the number of elements in the corresponding subtrees covered
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by both regions, divided by the number of elements in both subtrees. Thus, the
absolute fat-factor of a Slim-tree T with height H storing N elements on M disk
pages is given by:

Fat(T ) =
IC − H ∗ N

N
∗ 1

(M − H)
(1)

where IC denotes the total number of node accesses required to answer a point
query for each of the N elements stored in the metric tree.

The fat-factor is defined on the range [0, 1], where large values denote trees
with high degree of overlapping, and Fat(T ) = 0 indicates an ideal tree (no
overlap between nodes). The absolute fat-factor is a measure of the amount of
elements that lie inside intersecting regions defined by nodes at same level of a
MAM. However, if two trees storing the same dataset have a different number
of nodes, the direct comparison of the corresponding absolute fat-factor will not
give such an indication. To enable the comparison of two different trees that store
the same dataset, they also proposed the relative fat-factor, which “penalizes”
trees that use more than the minimum required number of nodes. The relative
fat-factor considers not the height and number of nodes in the real tree, but that
of the minimum tree:

rFat(T ) =
IC − Hmin ∗ N

N
∗ 1

(Mmin − Hmin)
(2)

where Hmin = �logCN�, and the minimum number of nodes for a given dataset
is Mmin =

∑Hmin

i=1 �N/Ci�, where C is the capacity of the nodes. The value of
rFat(T ) varies from zero to a positive real number. The smaller the number,
the fewer disk accesses will be needed to answer a query.

Supported by the fat-factor measure, Traina Jr. et.al [8] also proposed a tech-
nique to minimize the node overlap in metric trees, named Slim-down, which
is intended to be executed after the tree construction. When sibling leaf nodes
overlap themselves, the Slim-down performs the “migration” of the farthest ele-
ment of a node into a sibling node that also covers the element. As the migration
reduces the covering node radius without increasing the radius of any other node,
the overlap is reduced. Nodes that become empty are removed, contributing to
further overlap reduction. This procedure is repeated until no element migrates
between siblings nodes. The authors reported results where Slim-down reached
improvements from 10% to 40% in the number of disk accesses for range queries.

The Slim-down optimization algorithm restricts the covering radius shrinking
to the leaf nodes of a subtree. Therefore, when two leaf nodes rooted at different
index nodes overlap each other, no improvement is achieved. Skopal et. al [11]
developed the Generalized Slim-down algorithm, which addresses this point
traversing each level of the tree, starting on the leaf level. For each node on a
given level, a better location for each element stored in the node is pursued
executing a modified range query. The processing of a given level is repeated
until no element is moved anymore. When a level is finished, the algorithm pro-
cesses the next higher level. Although this algorithm can move elements between
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Algorithm 1: Effective deletion algorithm
1 Delete(sd)

2 INPUT: The element sd to be deleted

3 OUTPUT: TRUE if sd was deleted or FALSE otherwise

1 IF PointQuery(sd, root) is NULL

2 return FALSE

3 RecursiveDelete(sd, root)
4 IF ElementsToReinsert is not empty

5 reinsert elements in ElementsToReinsert

6 return TRUE

any subtrees, it is very time-consuming. As shown by the authors’ experiments,
this optimization is up to two orders of magnitude costlier than building the
whole structure from scratch, both regarding number of disk accesses and the
wall clock time.

In Section 4, we present an optimization that also allows to migrate elements
among subtrees and improves a tree better than the Slim-down does, but it is
much cheaper than the Generalized Slim-down. Our technique employs dele-
tion and reinsertion as occurs in the R*-Tree [12], but whereas the elements
reinserted in the R*-Tree are those stored in nodes split in the insertion path
during the insertion operation, our approach is to find elements in overlapping
regions after a tree was already built, performing a global tree optimization.

3 An Algorithm for Effective Deletion in Metric Access
Methods

In this section we present the first deletion algorithm developed for dynamic
height-balanced MAM. It is based on importing the sibling subtrees when the
Minimum Node Occupation (MNO) rule is violated, taking into account that the
node covering overlap must be maintained low. The pseudo-code for the deletion
operation is presented in Algorithm 1.

To delete an element sd, the Delete procedure (Algorithm 1) starts calling a
PointQuery, to locate the path from the root to the leaf node where sd is stored.
If the element is not found, the procedure finishes (lines 1-2) returning NULL.
Otherwise, the deletion is performed recursively, calling the RecursiveDelete pro-
cedure (line 3).

The RecursiveDelete (Algorithm 2) recursively traverses the tree until finding
the leaf node where sd is stored (lines 1-2) and deletes its entry (lines 33-34). If
the leaf node violates the MNO property (underflow), its remaining entries are
stored in the array ElementsToReinsert, and the leaf is deleted (lines 35-38). If
only sd is deleted and it was the node representative, then a new representative
must be chosen and propagated to the upper levels (lines 39-41). If none of these
situations occur, RecursiveDelete is completed (line 42).

Each recursive call to RecursiveDelete returns the action that must be exe-
cuted in the node at the level above in response to the operations performed in
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Algorithm 2: Recursive deletion algorithm
RecursiveDelete(sd, Node)

INPUT: The element sd to be deleted and the current Node in

DeletePath

OUTPUT: NO_ACTION , CHANGED_REP or REMOVED_NODE

1 IF Node is an index node

2 SWITCH (RecursiveDelete(sd, ChildNode))
3 CASE NO_ACTION

4 return NO_ACTION

5 CASE CHANGED_REP

6 update the representative of ChildNode entry with

the new one

7 IF the representative of Node was changed

8 choose a new representative

9 return CHANGED_REP

10 return NO_ACTION

11 CASE REMOVED_NODE

12 set RemoveEntry to TRUE

13 IF ExportSubtrees is not empty // subtrees of child

node

14 IF it was possible to export entries in

ExportSubtrees to other child of Node

15 delete ChildNode

16 set RemoveEntry to FALSE

17 IF RemoveEntry is TRUE

18 delete the ChildNode entry from Node

19 IF Node violates MNO //MNO of root is 2

20 IF Node is the root

21 set the node pointed by this entry as the

new root

22 delete Node

23 return NO_ACTION

24 Try to import an element

25 IF it was not possible to import

26 IF Node has less than MIN_CONCESSION

entries OR Node is in the lower half

of the tree

27 store entries of Node on

ExportSubtrees

28 return REMOVED_NODE

29 IF the representative of Node was changed

30 choose a new representative

31 return CHANGED_REP

32 return NO_ACTION

33 IF Node is a leaf node

34 delete sd
35 IF Node violates MNO

36 store entries of Node on ElementsToReinsert

37 delete Node

38 return REMOVED_NODE

39 IF sd was the representative of Node

40 choose a new representative

41 return CHANGED_REP

42 return NO_ACTION

the current Node. NO ACTION means that nothing need to be changed in the up-
per levels nodes; CHANGED REP means that the node representative was changed
and an update on its father node is required; and REMOVED NODE indicates that
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the node was deleted, thus the corresponding entry must be removed from its
father.

After returning from a recursion that updated the representative
(CHANGED REP) (lines 5-7), the old representative is compared to the representa-
tive of the current Node. If both are the same, a new representative is chosen
(lines 5-9) and is propagated to its parent, otherwise RecursiveDelete finishes
(line 10).

When the node in the lower level was removed (REMOVED NODE) and there
are subtrees of the ChildNode to be exported (that is, the auxiliary array
ExportSubtrees is not empty) RecursiveDelete exports them to another child
of Node. If every subtree is exported, ChildNode is deleted (lines 13-16). Notice
that it is possible that a subtree is not exported if Node has only one subtree
and the value of MIN CONCESSION = 1 (the minimal desired prunability of index
nodes, explained later).

If a child node was deleted, its entry on Node is removed too (lines 17-18),
what can, in turn, lead Node to violate the MNO. If this occurs at the root node,
whose MNO is always 2, the node pointed by the remaining entry is promoted
to be the new root, Node (the old root) is removed, reducing the height of
the tree and RecursiveDelete finishes (lines 19-23). If the MNO violation occurs
deeper, the algorithm attempts to import an entry from a sibling node that will
not violate the MNO (line 24). The first attempt is to import an entry already
covered by Node, so its covering radius does not increase. If none is found, the
algorithm attempts to import the entry closest to the Node’s representative. If
every sibling node will violate the MNO to export one element, then the siblings
of Node are surely able to store the entries previously stored in the child node.
Therefore, the subtrees of Node are stored in ExportSubtrees and the recursion
returns one level setting REMOVED NODE (lines 25-28). Finally, if the representative
of Node and the ChildNode entry were the same, a new representative must be
chosen and propagated to the upper level (lines 29-31).

After finishing RecursiveDelete, if a leaf was deleted, then its entries were
stored in the array ElementsToReinsert. Hence, they are re-inserted again in the
tree (Algorithm 1, lines 4-5), ending the deletion operation.

To reduce the required tree reorganization, a concession to the MNO rule is
granted in the following case: if the node is in the upper half of the tree and all of
the siblings are also with the minimum occupation, then the MNO is allowed to
be violated, up to a limit defined by the user-defined parameter MIN CONCESSION.
Notice that accepting the MNO violation on nodes in the upper half of the tree
is not critical, first because the root can naturally have a much lower occupation
than other nodes, and second because the proportion of nodes in the upper levels
of the tree is small. Thus the MNO violation causes small impact in the average
occupation of the tree. Anyway, it is important to note that the MNO property
can also be violated by the m-delete algorithm even at the leaf nodes, which is
a much worse situation, as there are many more leaf nodes than index nodes
at the upper half of the tree. Thus, the MIN CONCESSION parameter is a way to
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allow the user to tune how much the MNO can be violated in the upper half of
the tree.

To evaluate the proposed deletion algorithm, we implemented it over the Slim-
tree MAM. Nevertheless, it can be applied to other height-balanced dynamic
MAM having one representative per node. Section 5.1 presents the experiments
performed.

4 An Overlap Reduction and Optimization Technique for
Metric Access Methods

In this section we introduce a novel optimization technique based on the effective
deletion algorithm. It searches for elements that are not close to the others on
the node, thus increasing the covering radius. Nodes with large covering radius
increase the overlap on the structure, thus worsening query execution. Our idea
is to remove several elements in the periphery of leaf nodes and reinsert them
at once.

The elements selected to be removed are the farthest from their representa-
tives, so the covering radius of the leaf nodes tend to decrease significantly. As
the insertion operation tries first to store new elements in the nodes that do
not increase their covering radius, most elements will be reinserted either on
nodes that already cover them or in subtrees requiring a small radius increas-
ing, therefore achieving an overall overlap reduction. We call this the Push-pull
technique.

Figure 1 illustrates the stepwise execution of Push-pull. Figure 1a shows a
structure before applying any overlap reduction technique. It has two index
nodes, each one with three leaf nodes. In this figure, it was considered the max-
imum node occupation as 8, the minimum occupation as 2 and the number of
elements to be removed from each leaf node as 2. The elements to be removed
are highlighted as stars in Figure 1b: those farthest from their respective repre-
sentatives. Figure 1c shows the tree after the deletions. Notice that only two leaf
nodes remained on the left index node, because one of its leaves was removed by
violating the MNO (it became empty). Finally, Figure 1d presents the optimized
structure, after the reinsertions.

For the sake of comparison, Figure 1e shows the same tree optimized by Slim-
down. Notice that, as opposed to Slim-down, the Push-pull technique allows
“migration” of elements between any leaf node, not being limited to siblings.
Figure 1e, illustrates the overlap reduction between leaf nodes linked to the
same index node, but not between leaf nodes linked to different index nodes. On
the other hand, Push-pull, enabled overlap reduction even between leaf nodes
linked to different index nodes (Figure 1d).

In the näıve implementation of the Push-pull technique, users need to provide
the quantity of elements to be removed from each node as an input parameter.
Through experimental evaluation, we found that the ideal percentage of elements
to be removed vary from dataset to dataset, but it is limited by a saturation
point (see Subsection 5.2). We also verified that the ideal number of elements to
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Fig. 1. Comparison of Push-pull and Slim-down optimizations. (a) the original struc-
ture; (b) and (c) intermediate steps during execution of Push-pull; (d) the final struc-
ture optimized with Push-pull; (e) the structure optimized with the Slim-down.

be removed from each node varies from node to node, according to their overlap.
Thus, we developed the Smart Push-pull algorithm to find automatically an
adequate value for the quantity of elements to be removed in a a given dataset,
based on statistics measured in the tree. This algorithm defines a near optimal
number of elements to be removed from each leaf node, and it can be different
for each node in a given tree.

Smart Push-pull uses the total number of disk accesses required to reach each
element through a point query, which is calculated during the computation of the
tree’s fat-factor, and for each node it evaluates AV GNode as the average number
of accesses it had to retrieve every entry stored in each leaf node. The maximum
value of AV GNode among all the nodes is computed, in order to find the costlier
node (i.e. the node with the highest overlap), which is marked as the AV GMax

node. Thereafter, the ideal number of elements to be removed (#ObjDel) from
each node is given as:

#ObjDel =
AV GNode − H

AV GMax
∗ Max Occup (3)

where Max Occup is the maximum node capacity and H is the height of the tree.
Notice that the optimal AV GNode is the tree height, since it only occurs when
there is no overlap. Thus H is subtracted from AV GNode in order to acquire
only the exceeding disk accesses. We limit the value of #ObjDel to 40% of the
node capacity, because experimental evaluation indicated this value as very close
to the saturation point.

We present in Section 5.2 experiments that confirmed the effectiveness of the
Push-pull technique. The experiments also showed that the Smart Push-pull
algorithm outperforms the Slim-down method, the most known MAM optimiza-
tion technique. We also obtained very good results that showed that Smart
Push-pull always performed close to the best case of näıve Push-pull using user-
defined settings, but relinquishing the user from this responsibility.
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5 Experiments

We implemented the proposed algorithms over the Slim-tree MAM and evaluated
them using several synthetic and real datasets, with varying properties such as
dimension, number of elements and node capacity. In this paper we show results
from the more representative datasets, presented in Table 1.

Table 1. Datasets used in the experiments

Name Nr Dim. Node Description
Elems. capacity

Cities 5,507 2 26 Latitudes and longitudes of Brazilian cities
(http://www.ibge.gov.br)

Letters 20,000 16 56 Attributes extracted from character
images - UCI Machine Learning Archive
(http://mlearn.ics.uci.edu/MLRepository.html)

ColorHisto 12,000 256 49 Color image histograms from
Amsterdam Library of Object Images
(http://www.science.uva.nl/ aloi)

SynthData 200,000 64 94 Synthetic vector with 100 clusters with
Gaussian distribution in a 64D unit hypercube
(generated by the tool DBGen [13])

The algorithms were implemented in C++ on the MAM Slim-tree using the
library Arboretum1. The experiments were executed in a computer equipped
with an AMD Athlon 2.6 GHz processor, 2Gb of RAM and a 250Gb SATA disk,
running MS Windows XP Professional. The Slim-tree was set up with its recom-
mended parameters, which includes MST for the split algorithm, minDist for the
algorithm of choosing subtrees, and MNO of 25%. The value of MIN CONCESSION
was set with one. The next subsections show the results achieved for the deletion
algorithm (Subsection 5.1) and the Push-pull optimization (Subsection 5.2).

5.1 Effective Deletion Algorithm

In this section we present results of the experiments comparing the proposed
deletion algorithm with m-delete. As we pointed out in Subsection 2.1, the
m-delete (mark-as-deleted) algorithm effectively deletes non-representative el-
ements and just marks representative elements as deleted in non-leaf nodes.

The experiments of this section used the datasets Letters and Cities. Each
dataset was initially divided in two parts, the first with 80% of the elements and
the second with the remaining 20%. For each dataset, an initial tree was built
with the first part of the dataset (16,000 elements for the dataset Letters and
4,500 for the dataset Cities). Next, approximately half of the indexed elements
were randomly removed (8,000 for the dataset Letters and 2,000 for the dataset
Cities).

First we show that the cost of effective deletion (Effective delete) is very close
to the cost of m-delete. Table 2 displays statistics about the execution of the two
1 An open source software library implementing several MAM (http://www.gbdi.

icmc.usp.br/arboretum).

http://www.gbdi.icmc.usp.br/arboretum
http://www.gbdi.icmc.usp.br/arboretum
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Table 2. Comparing the costs of the m-delete algorithm and the proposed deletion
algorithm. These results were obtained when deleting respectively 8,000 and 2,000
elements from the datasets Letters and Cities.

Dataset/Algorithm Number of Total time Disk accesses Distance calculations
pages (ms) (avg.) (avg.)

Letters
m-delete 639 6,296 43 997.4
Effective delete 442 6,313 44.9 1,058.9
Cities
m-delete 408 198 13.9 46.4
Effective delete 309 212 14.9 76.5

Fig. 2. Performance of k -NN queries (varying k), after deletions and insertions, over a
Slim-tree employing the proposed delete algorithm (Effective delete) and over a Slim-
tree using the m-delete algorithm. The results were obtained after the deletion of
8,000/2,000 elements (respectively for the datasets Letters and Cities) followed by the
insertion of other 4,000/1,000 elements (Letters/Cities).

deletion methods, for the reorganization. As it can be seen, the average number of
disk accesses required to perform the structure reorganizations were very similar.
Regarding the number of distance calculations m-delete required 6% less distance
calculations than ours for the Letters dataset and 40% less for the Cities dataset.
The total time required to delete the stated amount of elements executing both
algorithms were nearly the same for the Letters dataset, and the m-delete was
only 7% faster for Cities dataset. However, after the execution of both algorithms,
the number of pages left in the tree by the m-delete algorithm was 32% larger
for Cities dataset and 44% larger for Letters dataset than the number of pages
left by our algorithm, what improves query evaluation significantly.

In order to evaluate the query performance after deletions, we inserted the sec-
ond part of the original datasets (4,000 elements for the dataset Letters and 1,000
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for the datasetCities) into the resulting trees. Figure 2 shows the results of running
500 k -NN queries over the resulting trees, with k ranging from 5 to 50.

As it can be seen in Figure 2, queries performed after the deletions and inser-
tions executing the proposed deletion algorithm were always faster, with gains of
up to 14%. Regarding disk accesses, the deletion algorithm also presented better
results considering both datasets, with gains of up to 14% using the dataset
Letters. The small increase in the number of distance calculations with the Let-
ters dataset (maximum of 4.6%) is explained by the reduction of the number
of pages in the tree, resulting from the use of the effective deletion algorithm:
due to the increase of the average node occupation rate, the number of dis-
tance calculations to process each accessed node increases accordingly. However,
this increase of distance calculations was compensated by the reduction of disk
accesses, resulting in an overall faster query answering.

Analyzing the experimental results, we conclude that, for applications that
perform many updates in the database, using the proposed algorithm for deletion
is the better option, considering the overall performance and also the amount of
disk usage.

5.2 Evaluating the Push-Pull Optimization

This section presents results of experiments comparing the Push-pull with the
Slim-down techniques for overlap reduction. The first question these experiments
aimed at answering is: how the Push-pull technique behaves varying the amount
of elements removed per node? Considering our approach for automatically defin-
ing the ideal amount of elements to remove, the second question is: how Smart
Push-pull compares with näıve Push-pull? The third question is: how Smart
Push-pull compares to Slim-down?

In order to cope with these questions, in the first part of the experiments we
built a Slim-tree for each dataset and optimized them using: (i) Slim-down, (ii)
Smart Push-pull and (iii) näıve Push-pull with a varying number of elements re-
moved per node (this number is indicated by a percentage of the node capacity).
Then, we executed 500 k -NN queries over the trees, using k = 10.

Figure 3 shows the results obtained. Each column of graphics in this figure
corresponds to a dataset (Letters, ColorHisto and Cities), and the rows corre-
spond to the total time (in miliseconds), the average number of disk accesses,
the average number of distance calculations and the relative fat-factor of each
resulting tree.

Considering the total execution time of the queries (first row), the trees
optimized with Push-pull obtained better performance with the augment of
the amount of elements removed per node. However, it can be noticed a sat-
uration point around 30% to 40% of entries removed. It is also visible that
Smart Push-pull outperforms both Slim-down and näıve Push-pull having ob-
tained better results in the majority of the cases. Another important analysis
is that Smart Push-pull achieved results always near to the best case of näıve
Push-pull, which is a very desirable result. The same behaviour can be noticed
regarding the other measures, except for the average number of disk accesses
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Fig. 3. Comparison of the total processing time (first row), average number of disk
accesses (second row) and average number of distance calculations (third row) to pro-
cess 500 10-NN queries, and relative fat-factor (fourth row): of Slim-trees optimized
with näıve Push-pull varying the percentage of removed elements per node, a Slim-tree
optimized with Slim-down and a Slim-tree optimized with Smart Push-pull.

for the ColorHisto, where Slim-down was 5% better than Smart Push-pull. In
general, queries posed over the tree optimized by Smart Push-pull was up to
27% faster, required up to 18% less disk acesses, and performed up to 35% less
distance calculations than the tree optimized by Slim-down.

Next, we evaluated the behavior of queries executed over trees not optimized,
optimized by Slim-down and optimized by Smart Push-pull. Figure 4 shows
measurements of executing 500 k -NN queries varying k between 5 and 50.
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Fig. 4. Comparison of the total processing time (first row), average number of disk
accesses (second row) and average number of distance calculations (third row), to
perform 500 k -NN queries varying k between 5 and 50 over a Slim-tree not optimized,
a Slim-tree optimized with Slim-down and a Slim-tree optimized with Smart Push-pull,
varying k.

As it can be seen in Figure 4, the trees optimized by the Smart Push-pull algo-
rithm have always evaluated k -NN queries faster, being up to 28% faster over the
not optimized tree and 23% faster over the tree optimized by the Slim-down.

Another part of the experiments aimed to evaluate how Smart Push-pull be-
haves regarding the dataset size and how it compares to Slim-down in this aspect.
In this experiment, we employed a 64D synthetic dataset, varying its size from 40
to 200 thousands elements. Figure 5 shows measurements of performing 500 10 -
NN queries over trees without optimization, over trees optimized by Slim-down,
and over trees optimized by Smart Push-pull.

As it can be noticed in Figure 5, the tree optimized by Smart Push-pull have
always answered k-NN queries faster. Queries posed over the non-optimized tree
were up to 196% slower, required up to 140% more disk acesses and performed up
to 125% more distance calculations than the tree optimized by Smart Push-pull.
Moreover, k-NN queries posed over the tree optimized by our algorithm are up to
60% faster than when posed over tree optimized with Slim-down method, having
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Fig. 5. Comparison of the total processing time (first graphic), average number of disk
accesses (second graphic) and average number of distance calculations (third graphic),
over Slim-trees not optimized, Slim-trees optimized with Slim-down and Slim-trees
optimized with Smart Push-pull, with varying dataset size.

Fig. 6. Comparison of the time required to optimize a tree with Slim-down and Smart
Push-pull, compared to the time required to construct the initial tree, with varying
dataset size

achieved gains of up to 43% in number of disk accesses and 65% in number of
distance calculations. In summary, Smart Push-pull have always produced trees
that answered similarity queries faster than the trees optimized by Slim-down.

Finally, we developed experiments to evaluate the cost of the proposed al-
gorithm. Figure 6 shows the total time required to optimize a tree using Slim-
down and Smart Push-pull, compared with the time to build the tree, varying
the dataset size. For this experiment we also employed 64D synthetic datasets
varying its size from 40 to 200 thousands elements.

As it can be seen in Figure 6, the time required by Smart Push-pull was
only between 60% and 77% of the time required to construct the original tree.
As expected, the proposed technique has proven to be more expensive than
the Slim-down method, as Push-pull allows reinserting the removed elements
anywhere in the tree, distinctly from the local action of the Slim-down. In fact,
the execution time of Smart Push-pull was from 2 to 6.5 times larger than the
cost of Slim-down. However, the optimization is applied only few times over a
tree if compared to the execution of queries, which our algorithm improved to
run up to 150% faster than Slim-down did. Thus, depending on the query load,
the Smart Push-pull can be a very good option.
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6 Conclusions

The deletion operation is not described or implemented in most of the existing
MAM. Deletion is usually performed just marking the data as removed, with-
out really removing it from the tree. This solution is not satisfactory when the
structure is frequently updated, because old data elements continue to be used
internally during query operations, increasing the required number of disk access
and distance calculations.

This work proposed an algorithm for the effective deletion of elements indexed
in MAM, allowing to delete any element, including those used in the internal
node structure without incurring in expensive tree reorganizations. The experi-
ments performed using the Slim-tree MAM showed that the queries were always
faster after the application of the proposed algorithm than marking the removed
representatives.

This work also presented a new technique to optimize MAM, the Push-pull.
It reduces the overlap between nodes, performing deletion and reinsertion of
elements in the border of the leaf-nodes. We developed an algorithm to auto-
matically define a number of elements to be removed near optimal for each leaf
node, based on statistical data collected from subtrees overlap. This algorithm
was called Smart Push-pull. The experiments showed that the trees optimized
by the Smart Push-pull tend to answer queries more efficiently, having been up
to 190% faster than the not optimized tree, and up to 150% faster than trees
optimized by Slim-down.
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Abstract. Both Geographic Information Systems and Information Re-
trieval have been very active research fields in the last decades. Lately, a
new research field called Geographic Information Retrieval has appeared
from the intersection of these two fields. The main goal of this field is
to define index structures and techniques to efficiently store and retrieve
documents using both the text and the geographic references contained
within the text.

We present in this paper a new index structure that combines an
inverted index, a spatial index, and an ontology-based structure. This
structure improves the query capabilities of other proposals. In addi-
tion, we describe the architecture of a system for geographic information
retrieval that uses this new index structure. This architecture defines a
workflow for the extraction of the geographic references in the document.

1 Introduction

Although the research field of Information Retrieval [1] has been active for the
last decades, the growing importance of Internet and the World Wide Web have
made it one of the most important research fields nowadays. Many different index
structures, compression techniques and retrieval algorithms have been proposed
in the last few years. More importantly, these proposals have been widely used
in the implementation of document databases, digital libraries, and web search
engines.

Another field that has received much attention during the last years is the
field of Geographic Information Systems [2]. Recent improvements in hardware
have made the implementation of this type of systems affordable for many or-
ganizations. Furthermore, a cooperative effort has been undertaken by two in-
ternational organizations (ISO [3] and the Open Geospatial Consortium [4]) to
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B. Ludäscher and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, pp. 384–400, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



An Ontology-Based Index to Retrieve Documents 385

define standards and specifications for interoperable systems. This effort is mak-
ing possible that many public organizations are working on the construction of
spatial data infrastructures [5] that will enable them to share their geographic
information.

During the last decades these two research fields have advanced indepen-
dently. However, many of the documents stored in digital libraries and docu-
ment databases include geographic references within their texts. For example,
news documents reference the place where the event happened and often the
place where the document has been written. Furthermore, the information in a
spatial data infrastructure often includes documents with geographic information
such as construction licences or urban planning information. Finally, geographic
references can also be attached to web pages by using information from the text,
the location of the web server, and many other information elements.

Even though it is very common that textual and geographic information oc-
cur together in information systems, the geographic references of documents are
rarely used in information retrieval systems. Few index structures or retrieval al-
gorithms take into account the spatial nature of geographic references embedded
within documents. Pure textual techniques focus only on the language aspects of
the documents and pure spatial techniques focus only on the geographic aspects
of the documents. None of them are suitable for a combined approach to infor-
mation retrieval because they completely neglect the other type of information.
As a result, there is a lack of system architectures, index structures and query
languages that combine both types of information.

Some proposals have appeared recently [6,7,8] that define new index struc-
tures that take into account both the textual and the geographic aspects of a
document. However, there are some specific particularities of geographic space
that are not taken into account by these approaches. Particularly, concepts such
as the hierarchical nature of geographic space and the topological relationships
between the geographic objects must be considered in order to fully represent
the relationships between the documents and to allow new and interesting types
of queries to be posed to the system.

In this paper, we present an index structure that takes these issues into ac-
count. We first describe some basic concepts and related work in Section 2. Then,
in Section 3, we present the general architecture of the system and describe its
components. The system architecture defines a workflow for constructing a doc-
ument database where both the words and the geographic references in the doc-
uments are considered. The core of the system architecture is an index structure
that enables the system to store and access efficiently the documents using both
their textual references and their geographic ones. Finally, the system architec-
ture includes two different user interfaces: one for final users that can be used
to pose queries to the system and to display the results, and another for sys-
tem administrators that can be used to manage the document collections. After
that, in Section 4, we describe some types of queries that can be answered with
this system and we sketch the algorithms that can be used to solve this queries.
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Furthermore, Section 5 presents some experiments that we made to compare
our structure with other ones that use a pure spatial index. Finally, Section 6
presents some conclusions and future lines of work.

2 Related Work

Inverted indexes are considered the classical text indexing technique. An inverted
index associates to each word in the text (organized as a vocabulary) a list of
pointers to the positions where the word appears in the documents. The set of
all those lists is called the occurrences [1]. The main drawback of these indexes
is that geographic references are mostly ignored because place names are con-
sidered words just like the others. If the user poses a query such as as hotels
in Spain, the place name Spain is considered a word, and only those documents
that contain that word are retrieved. A document containing only names of cities
of Spain but not the exact word Spain is not retrieved by the system because
it does not fulfil the textual query. Regarding indexing geographic information,
many different spatial index structures have been proposed along the years. A
good survey of these structures can be found in [9]. The main goal of spatial in-
dex structures is improving access time to collections of geographic data objects.
One of the most popular spatial index structure and a paradigmatic example is
the R-tree [10]. The R-tree is a balanced tree derived from the B-tree which splits
space in hierarchically nested, possibly overlapping, minimum bounding rectan-
gles. The number of children of each internal node varies between a minimum
and a maximum. The tree is kept in balance by splitting overflowing nodes and
merging underflowing nodes. Rectangles are associated with the leaf nodes, and
each internal node stores the bounding box of all the rectangles in its subtree.
The decomposition of space provided by an R-tree is adaptive (dependent on the
rectangles stored) and overlapping (nodes in the tree may represent overlapping
regions). A drawback of spatial index structures is that they do not take into
consideration the hierarchy of space. Internal nodes in the structure are mean-
ingless in the real world, they are just meaningful for the index structure. For
example, imagine that we want to build an index for a collection of countries,
provinces, and cities. These objects are structured in a topological relationship
of containment, that is, a city is contained within a province that is itself con-
tained within a country. If we build an R-Tree with these geographic objects, the
containment hierarchy will not be maintained. The internal nodes of the R-Tree
do not represent provinces or countries, and therefore, the hierarchy of space is
not maintained in the index. It is not possible to associate some information to
the node of a province and have the cities belonging to this province inherit this
information because there is no relation at all between a province and its cities in
the R-Tree index structure. Some work has been done to combine both types of
indexes. The papers about the SPIRIT (Spatially-Aware Information Retrieval
on the Internet) project [11,12,13,14,15] are a very good starting point. In [14],
the authors conclude that keeping separate text and spatial indexes, instead of
combining both in one, results in less storage costs but it could lead to higher
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response times. More recent works can be broadly classified into two categories
depending on how they combine textual and spatial indexes. On the one hand,
some proposal have appeared that combine textual and spatial aspects in an
hybrid index [16,17]. On the other hand, some proposals define structures that
keep separate indexes for spatial and text attributes [6,7,8]. Our index struc-
ture is part of this second group because this division has many advantages [8].
Furthermore, in [7,8], the authors survey the work in the SPIRIT project and
propose improvements to the system and the algorithms defined. In their work
they propose two naive algorithms: Text-First and Geo-First. Both algorithms
use the same strategy: one index is first used to filter the documents (textual
index in Text-First and spatial index in Geo-First), the resulting documents are
sorted by their identifiers and then filtered using the other index (spatial index
in Text-First and textual index in Geo-First). Nevertheless, none of these ap-
proaches take into account the relationships between the geographic objects that
they are indexing.

A structure that can properly describe the specific characteristic of geographic
space is an ontology, which is a formal explicit specification of a shared concep-
tualization [18]. An ontology provides a vocabulary of classes and relations to
describe a given scope. In [19], a method is proposed for the efficient manage-
ment of large spatial ontologies using a spatial index to improve the efficiency of
the spatial queries. Furthermore, in [12,15] the authors describe how ontologies
are used in query term expansion, relevance ranking, and web resource annota-
tion in the SPIRIT project. However, as far as we know, nobody has ever tried
to combine ontologies with other types of indexes to have a hybrid structure
that captures both the topological and the spatial relationships between the
geographic objects indexed.

3 System Architecture

Fig. 1 shows our proposal for the system architecture of a geographic information
retrieval system. The architecture can be divided into three independent layers:
the index construction workflow, the processing services and the user interfaces.
The bottom part of the figure shows the index construction workflow, which,
in turn, consists of three modules: the document abstraction module (described
in Section 3.1), the index construction module (the textual part of this process
is described in Section 3.2 and the spatial part of this process is described in
Section 3.3), and the index structure itself (described also in Section 3.3).

The processing services are shown in the middle of the figure. On the left side,
the Geographic Space Ontology Service used in the spatial index construction is
shown. This service is used extensively in the index construction module, and
therefore it is described in Section 3.3. On the right side, one can see the two
services that are used to solve queries. The rightmost one is the query evalua-
tion service, which receives queries and uses the index structure to solve them.
Section 4 describes the types of queries that can be solved by this service, as
well as the algorithms that are used to solve these queries. The other service is
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a Web Map Service following the OGC specification [20] that is used to create
cartographic representations of the query results. This service is not described in
this paper. On top of these services a Geographic Information Retrieval Module
is in charge of coordinating the task performed by each service to response the
user requests. The topmost layer of the architecture shows the two user inter-
faces that exist in the architecture: the Administration User Interface and the
Query User Interface. These user interfaces are described in Section 3.4.

3.1 Document Abstraction

Given that the system must be generic, it must support indexing several kinds
of documents. These documents will be different not only because they may
be stored using different file formats (plain text, XML, etc.), but also because
their content schema may be different. A document collection may have a set of
attributes that have to be stored in the index (such as document id, author, and
document text), whereas other document collection may have a different set of
attributes (such as document id, summary, text, author, and source).

To solve this problem, we have defined an abstraction that represents a docu-
ment as a set of fields, each one with a value that is extracted from the document
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text. Each field can either be stored, indexed, or both. If a field is stored, its con-
tents are stored in the index structure and they can be retrieved by a query. If a
field is indexed, then this field is used to build the index structure. Furthermore,
a field can be indexed textually, spatially, or in both indexes. The definition of
a document as a set of fields is similar to the one used in the Lucene text search
engine [21]. We have extended this idea adding the spatial indexing possibility.

In order to support different types of documents and different file formats, the
document abstraction is exposed by the system as a programming interface that
can be extended with particular implementations for different configurations of
file formats and document schemas. In order to support a new configuration, a
developer only has to implement the interface DocumentFactory that defines the
operations that must be implemented in order to create Documents.

As an example for the validation of the system, we have indexed documents
from the Financial Times collection [22]. The document collection is marked
up in SGML (Standard Generalized Markup Language). Each document has a
<DOCNO> tag including the TREC document identifier string and a <TEXT>
tag including the main content of the document. Fig. 2 shows a partial example
of a document in this collection.

<DOC>

<DOCNO>FT941-6371</DOCNO>

<TEXT>

Senior European company executives are being invited to ’vote’

for Europe’s Most Respected Companies . . .

</TEXT>

</DOC>

Fig. 2. Financial Times (TREC) example

To support this document collection, we defined a TRECFTDocumentFactory
that builds documents with two fields. The first field contains the tag DOCNO
content and it is stored but not indexed. The second field contains the tag TEXT
content and it is not stored but indexed in both indexes.

3.2 Textual Indexing

As we said before, the index structure at the core of the system architecture con-
tains both a textual index and a spatial index. We use Lucene [21] to implement
a textual index. Lucene is a high-performance, full-featured text search engine
library written entirely in Java. It is an open source project part of the Apache
project. Lucene uses an object representation of the indexable documents. A
Document in Lucene contains several Fields. A Field in Lucene is a pair (name,
value) and information about whether it is stored and/or indexed. Field values
are set using Analyzers. These analyzers implement several classical information
retrieval techniques to reduce the number of indexed words and to improve the
index performance such as removing stopwords, stemmers, etc. StandardAnalyzer
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is the most sophisticated analyzer built into Lucene’s core. It is a parser with
rules for email addresses, acronyms, hostnames, floating point numbers, as well
as converting the value to lowercase and removing stop words.

In this stage of the workflow process, the system builds a Lucene index. Each
of the documents built in the previous stage is inserted into the textual index.
The document identifier is stored but not indexed in the textual index, and each
field marked to be indexed in the textual index or in both indexes is indexed
tokenized in the Lucene index but not stored.

3.3 Spatial Indexing

After building the textual index, the spatial index must be built. The spatial in-
dexing is the most complex stage, and it comprises three steps. First, the system
analyses the document fields that are marked as spatially indexable and extracts
candidate location names from the text. In a second step, these candidate loca-
tions are processed in order to determine whether the candidates are real location
names, and, in this case, to compute their geographic locations. There are some
problems that can happen at this point. First, a location name can be ambiguous
(polysemy). For instance, “London” is the capital of the United Kingdom and it
is a city in Ontario, Canada too. Second, there can be multiple names for the
same geographic location, such as “Los Angeles” and“LA”. Finding geographical
references in text is a very difficult problem and there have been some papers
that deal with different aspects of this problem [6,23,24]. Web-a-where [23] uses
“spatial containers” in order to identify locations in documents, MetaCarta (the
commercial system described in [24]) uses a natural language processing method,
and STEWARD [6] uses an hybrid approach. It is not the aim of this paper to
deal with this problem but we describe how we obtain geographic references in
order to complete the architecture description. Finally, the third step consists
in building the spatial index with the geo-referenced locations computed in the
previous step together with references to the documents containing them. We
describe these three steps and the spatial index structure below.

Discovery of Location Names. For the discovery of candidate location names,
all the spatially indexable fields are processed in order to discover the place names
contained within. There are two Linguistic Analysis techniques that are widely
used for this: Part-Of-Speech tagging and Named-Entity Recognition. On the
one hand, Part-Of-Speech tagging is a process whereby tokens are sequentially
labelled with syntactic labels, such as “verb” or “gerund”. On the other hand,
Named-Entity Recognition is the process of finding mentions of predefined cat-
egories such as the names of persons, organizations, locations, etc.

Our Location Names Discovery module uses the Natural Language Tool Ling-
Pipe [25] to find locations. It is a suite of Java libraries for the linguistic analysis
of human language free for research purposes that provides both Part-Of-Speech
tagging and Named-Entity Recognition. LingPipe involves the supervised train-
ing of a statistical model to recognize entities. The training data must be labelled
with all of the entities of interest and their types. In the system validation with
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the Financial Times collection, we use LingPipe trained with the MUC6 corpus
(http://www.ldc.upenn.edu) labelled with locations, people and organizations.
After the LingPipe processing, the module filters the resultant named entities
selecting only the locations and discarding people and organization names.

Geo-referenciation of Location Names. After discovering a collection of
candidate location names, the system must distinguish false candidates and geo-
reference the real ones. In this context, geo-referencing a location name implies
not only to obtain its coordinates in a particular coordinate system, but also
to obtain all the data needed to include the place in a spatial index. We have
developed a system based on an ontology of the geographic space that is built
using a Gazetteer and a Geometry Supplier.

A Gazetteer is a geographical dictionary that contains, in addition to location
names, alternative names, populations, location of places, and other information
related to the location. In our test implementation we use Geonames [26] that
provides a geographical database available under a creative commons attribution
license. This database contains more than two million populated places over
the world with their latitude/longitude coordinates in WGS84 (World Geodetic
System 1984 ). All the populated places are categorized so that it is possible to
classify them into different administrative division levels (continents, countries,
regions, etc.).

However, Geonames (and Gazetteers in general) does not provide geometries
for the location names other than a single representative point. But for our
spatial index we need the real geometry of the location name (for example,
the boundary of countries). We defined a Geometry Supplier service to obtain
the geometries of those location names. As a base for this service we used the
Vector Map (VMap) cartography [27]. VMap is an updated and improved version
of the National Imagery and Mapping Agency’s Digital Chart of the World. It
supplies first and second level administrative division geometries in a proprietary
format. However, there are free tools that can create shapefiles from that format,
such as FWTools [28]. We have created a PostGIS [29] spatial database with
these shapefiles and we have done several corrections and improvements over
this database.

Even though our test implementation uses Geonames and VMAP, it has been
designed so that these components are easily exchangeable. All accesses to these
components are performed through generic interfaces that can be easily imple-
mented for other components.

This step combines both services in order to geo-reference location names.
First, an ontology of the geographic space is defined. In our test implementa-
tion, the geographic space is divided into three levels of administrative divisions
(continents, countries and regions) and a level of populated places. These four
levels are organized in a hierarchical structure where each level geographically
contains all objects in the next level.

Then, for each candidate location name, an ontology path must be built. This
path will be used in the construction of the spatial index structure. For this task,
a hierarchical structure following the design pattern Chain of Responsibility [30]
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Fig. 3. Geo-references module

was implemented. Fig. 3 shows a brief class diagram of this component. The
structure is composed of four levels (continent, country, region, and populated
place), one for each level of the ontology, but it is easily extensible. Each level
contains a connection to the gazetteer and to the geometry supplier in order to
retrieve the data needed by the process. Then, an algorithm in two steps obtains
all possible geo-references associated with a location name. In the first step,
each level obtains from the gazetteer all the locations with the requested name.
If the gazetteer does not return any location for a given candidate location name,
the candidate is discarded. In the second step, the system builds the complete
ontology path from bottom to top. For instance, if the requested location name
was London, in the first step the system obtains two locations with this name.
After that, it returns the paths United Kingdom, England, London and Canada,
Ontario, London.

Spatial Index Construction. Fig. 4 shows a class diagram of the index struc-
ture. The main component of the index structure is a tree composed by nodes that
represent location names. These nodes are connected by means of inclusion rela-
tionships (for instance, Galicia is included in Spain). The tree structure is built
using the ontology paths computed by the process described in the previous sec-
tion. In each node we store: (i) the keyword (a place name), (ii) the bounding box
of the geometry representing this place, (iii) a list with the document identifiers
of the documents that include geographic references to this place, and (iv) a list
of child nodes that are geographically within this node. If the list of child nodes is
very long, using sequential access is very inefficient. For this reason, if the number
of children nodes exceeds a threshold, an R-Tree is used instead of a list.

Two auxiliary structures are used in the index. First, a place name hash ta-
ble that stores for each location name its position in the index structure. This
provides direct access to a single node by means of a keyword that is returned
by the Gazetteer Service if the word processed is a location name. The second
auxiliary structure is the textual index with all the words in the documents that
is used to solve textual queries (this index is described in section 3.2).
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Keeping separate indexes for text and geographical scopes has many advan-
tages. First of all, all textual queries can be efficiently processed by the text
index, and all spatial queries can be efficiently processed by the spatial index.
Moreover, queries combining textual and spatial aspects are supported. Further-
more updates in each index are handled independently, which makes easier the
addition and removal of data. Finally, specific optimizations can be applied to
each individual indexing structure.

However, this structure has two main drawbacks. First, the tree that supports
the structure is possibly unbalanced penalizing the efficiency of the system. We
present some experiments in Section 5. Our intention is to prove that it is not a
very important problem. Second, ontological systems have a fixed structure and
thus our structure is static and it must be constructed ad-hoc.

3.4 User Interfaces

The system has two different user interfaces: an administration user interface
and a query user interface. The administration user interface was developed as a
stand-alone application and it can be used to manage the document collection.
The main functionalities are: creation of indexes, addition of documents to in-
dexes, loading and storing indexes, etc. The main screen of this interface shows
useful information about the loaded index such as the number of documents
indexed, the fields of each of these documents, the number of location names in
the index, etc.

Fig. 5 shows a screenshot of the query user interface. This interface was devel-
oped as a web application using the Google Maps API [31]. This API provides
a number of utilities for manipulating maps and adding content to the map.

In the next section we sketch the types of queries that can be solved with this
system. These queries have two different aspects: a textual aspect and a spatial
aspect. The query user interface allows the user to indicate both aspects. The
spatial context can be introduced in three ways that are mutually exclusive:

– Typing the location name. In this case, the user types the location name
in a text box. This is the most inefficient way because the system has to
obtain all geo-references associated with the typed place name and it is a
time-expensive process.



394 M.R. Luaces et al.

Fig. 5. Query User Interface

– Selecting the location name in a tree. In this case, the user sequentially selects
a continent, a country within this continent, a region within the country, and
a populated place within the region. If the user wants to specify a location
name of a higher level than a populated place, it is not necessary to fill in all
the levels. The operation is very easy and intuitive because the interface is
implemented with a custom-developed component using the AJAX technol-
ogy that retrieves in the background the location names for the next level.
When the user selects a place in the component, the map on the right zooms
in automatically to the selected place.

– Visualizing the spatial context of interest in the map. The user can navigate
using the map on the right to select the spatial context of interest. The
system will use the bounding box of this map as the query window if the
user did not type a place name or did not select a location name.

4 Supported Query Types

The most important characteristic of an index structure is the type of queries
that can be solved with it. The following types of queries are relevant in a
geographic information retrieval system:

– Pure textual queries. These are queries such as “retrieve all documents where
the words hotel and sea appear”.
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– Pure spatial queries. An example of this type of queries is “retrieve all doc-
uments that refer to the following geographic area”. The geographic area in
the query can be a point, a query window, or even a complex object such as
a polygon.

– Textual queries with place names. In this type of queries, some of the words
are place names. For instance, “retrieve all documents with the word hotel
that refer to Spain”.

– Textual queries over a geographic area. In this case, a geographic area of
interest is given in addition to the set of words. An example is “retrieve all
documents with the word hotel that refer to the following geographic area”.

Inverted indexes can solve pure textual queries by retrieving from the inverted
index the lists of documents associated to each word and then performing the
intersection of the lists. Pure spatial queries can be solved by spatial indexes by
descending the structure and taking into consideration only those nodes whose
bounding box intersects with the geographic area of the query. This operation
returns a set of candidate documents that has to be refined with the actual
geographic reference in order to decide whether the document is part of the
result or not.

Pure textual queries can be solved by our system because a textual index is part
of the index structure. Similarly, pure spatial queries can also be solved because
the index structure is built like a spatial index. Each node in the tree is associated
with the bounding box of the geographic objects in its subtree. Therefore, the same
algorithm that is used with spatial indexes can be used with our structure. How-
ever, the index structure that we propose can be used to solve the third and fourth
types of queries, which cannot be easily solved using a textual index and a spatial
index. For the case of the query with place names, our system can discover that
Spain is a geographic reference by querying the Gazetteer service and then we can
use the place name hash table in the structure to retrieve the index node that rep-
resents Spain. Thus, we save some time by avoiding a tree traversal. Fig. 6 shows
how these type of queries can be solved by the index structure. The textual index
of the structure can be seen on the right part of the figure, whereas the spatial in-
dex can be seen on the left part. When the user poses a query with the text sunny
places and the place name Spain, the textual index is used to retrieve the list of
documents that contain the words, and the index structure is used to compute the
list of documents that reference the geographic area. These two lists can be seen
at the bottom part of the figure. Then, the result to the query is computed as the
intersection of both lists.

Regarding the fourth type of query, the textual index is used to retrieve the
list of documents that contain the words and the ontology-based index structure
is used to compute the list of documents that reference the geographic area.
Then, the intersection of both lists is the result to the query. We analyze the
performance of our structure to solve this type of queries in comparison with
other proposals using a pure spatial index in Section 5. The conclusion of these
experiments is that the performance of our structure is acceptable in comparison
with index structures using pure spatial indexes.
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Fig. 6. Example of the index structure

Another improvement over text and spatial indexes is that our index structure
can easily perform query expansion on geographic references because the index
structure is built from an ontology of the geographic space. Consider the fol-
lowing query “retrieve all documents that refer to Spain”. The query evaluation
service will discover that Spain is a geographic reference and the place name
index will be used to quickly locate the internal node that represents the geo-
graphic object Spain. Then all the documents associated to this node are part
of the result to the query. Moreover, all the children of this node are geographic
objects that are contained within Spain (for instance, the city of Madrid). There-
fore, all the documents referenced by the subtree are also part of the result of
the query. The consequence is that the index structure has been used to expand
the query because the result contains not only those documents that include the
term Spain, but also all the documents that contain the name of a geographic
object included in Spain (e.g., all the cities and regions of Spain).

5 Experiments

In the previous section we showed that our structure has a qualitative advantage
over systems that combine a textual index with a pure spatial index because
query expansion can be performed directly with our index structure (e.g. retrieve
all documents with the word hotel that refer to Spain). Hence, our index structure
supports a new type of query that cannot be implemented with a pure spatial
index. However, unlike pure spatial index structures, our index structure is not
balanced and therefore, the query performance can be worse.

In this section we describe the experiments that we performed to compare our
structure with other ones based on a pure spatial index. We used the TREC FT-
91 (Financial Times, year 1991) document collection [22], which consists of 5,368
news documents. Then, we built two indexes over this collection: one using our
index structure as described in this paper, and another one using a textual index
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Fig. 7. Example of randomly generated query windows

and an R-Tree [10]. Furthermore, we developed an algorithm to generate random
spatial query windows. This algorithm is based on the performance comparisons
of the R*-Tree in [32] and it generates query windows where the ratio of the
x-extension to the y-extension uniformly varies from 0.25 to 2.25 and the centres
of the query rectangles are uniformly distributed all over the world. Fig. 7 shows
several query windows generated using this algorithm.

We compared the structures with respect to four different query window areas,
namely 0.001%, 0.01%, 0.1% and 1% of the world. We generated 100,000 random
query windows for each area, and we averaged the computing time of each query
execution. Table 1 shows the results of this experiment.

Table 1. Ontology-based index versus R-Tree

Query area 0.001% 0.01% 0.1% 1%

Our index 0.013 0.017 0.052 0.360
R-Tree 0.010 0.016 0.057 0.370

The first row of the table shows the results obtained with our structure (in
milliseconds), and the second one shows the results obtained with the structure
using an R-Tree. Both index structures have similar performance. The perfor-
mance of our structure is a bit worse than the R-Tree when the query window is
small but, surprisingly it is a bit better than the R-Tree when the query window
is bigger. In order to explain this surprising result, we analyzed the performance
in particular zones. We distinguished two relevant types of zones and we repeated
the experiment generating random queries in both zones. First, we studied the
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Table 2. Ontology-based index versus R-Tree (zones of high document density)

Query area 0.001% 0.01% 0.1% 1%

Our index 0.03 0.11 1.05 9.84
R-Tree 0.07 0.22 1.64 12.85

Table 3. Ontology-based index versus R-Tree (zones of low document density)

Query area 0.001% 0.01% 0.1% 1%

Our index 0.02 0.03 0.09 0.4
R-Tree 0.02 0.03 0.07 0.2

performance of the structures when the document density is high (see Table 2).
In this case, the performance of our structure is higher than the R-Tree perfor-
mance. We believe this is because our structure stores a list of documents for
each location while the R-Tree uses a node for each one document.

Second, we studied the performance when the documents density is low (see
Table 3). In this case, the R-Tree performance is better because the number
of nodes in both structures is similar and the R-Tree is balanced whereas our
structure may be unbalanced. For this reason, in the general case, when the query
window is small the probability of that query window being in a high document
density zone is small and, therefore, the R-Tree performance is better. However,
when the query window is bigger that probability is higher and, therefore, the
R-Tree performance is lower.

6 Conclusions and Future Work

We have presented in this paper a system architecture for an information retrieval
system that takes into account not only the text in the documents but also
the geographic references included in the documents and the ontology of the
geographic space. This is achieved by a new index structure that combines a
textual index, a spatial index and an ontology-based structure. We have also
presented how traditional queries can be solved using the index structure. Finally,
new types of queries that can be solved with the index structure are described
and the algorithms that solve these queries are sketched.

Future improvements of this index structure are possible. We are currently
working on the evaluation of the performance of the index structure, partic-
ularly we are performing experiments to determine the precision and recall.
Moreover, Toponym Resolution techniques must be implemented to solve am-
biguity problems when we geo-reference the documents. Another line of future
work involves exploring the use of different ontologies and determining how each
ontology affects the resulting index. Furthermore, we plan on including other
types of spatial relationships in the index structure in addition to inclusion (e.g.,
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adjacency). These relationships can be easily represented in the ontology-based
structure, and the index structure can be extended to support them. Finally, it
is necessary to define algorithms to rank the documents retrieved by the system.
For this task, we must define a measure of spatial relevance and combine it with
the relevance computed using the inverted index.
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Abstract. We study the problem of mining all associated itemsets whose
prevalence variations are similar to a given reference sequence from tem-
poral databases. The discovered temporal association patterns can reveal
interesting relationships of itemsets which co-occur with a particular event
over time. A user-defined subset specification which consists of a reference
sequence, a similarity function, and a dissimiliarty threshold is used for
defining interesting temporal patterns and guiding the similarity search.
We develop algorithms with exploring interesting properties for efficiently
finding the similar temporal association patterns. Experimental results
show that the proposed algorithms are efficient than a naive approach.

1 Introduction

We study the problem of mining all associated itemsets whose prevalence vari-
ations are similar to a given reference sequence from temporal databases. The
reference sequence can be a user guided prevalence sequence pattern showing
special shapes (e.g., seasonal, emerging and diminishing patterns over time) or
a prevalence variation of item of interest (e.g., a scientific phenomenon like El
Niño, a weather event such as a hurricane, a product sale in market basket data,
and a stock exchange in the stock market). The mining results can reveal inter-
esting relationships of data items which co-occur with a particular event over
time, and also be used as filtered information for further analysis of trend, predic-
tion, factors showing strong connections with a certain scientific event, and so on.

Application Examples
Earth scientists have been interested in the behavior of climates in a region which
shows a strong connection with the El Niño phenomenon, an abnormal warm-
ing in the eastern tropical Pacific Ocean [17]. For example, the extreme climate
variability in Australia is known to be connected with the El Niño phenomenon,
which in turn can be associated with an El Niño index, e.g., the Southern Oscil-
lation Index(SOI) [23]. Fig. 1 show an illustration of mining a similarity based
temporal association patterns with Earth climate data. The monthly climate
measurements in a region (e.g., Australia) can be represented to a temporal
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Fig. 1. An application example

database. The item types are climate events (e.g, low temperature, high pre-
cipitation) or other related events (e.g, high NPP(Net Primary Production)) in
an ecosystem model. Given a similarity constraint which includes a reference
sequence(e.g., SOI index), a similarity function(e.g, Euclidean distance) and a
dissimilarity threshold to distinguish interest patterns, we are interested in dis-
covering all subsets of items whose prevalence variances are similar with the
specific reference sequence. In the example, we can notice that the temporal
prevalence variation of a discovered itemset, precipitation low, is similar with
the SOI index sequence.

As another application example, for market data analysis, a retail analyst
may be interested in such queries as finding all itemsets whose sales similarly
change to that of an itemset of interest for a period of time. Consider sales of
retail items during hurricane season in a region. While we can expect that sales
of bottled water (one of survival kits) will increase with an increasing strength
of hurricane threat, Wal-Mart recently discovered a surprising customer buy-
ing pattern. Not only did survival kits (e.g., flashlights, generators, tarps) show
similar selling patterns with bottled water, but so did the sales of Strawberry
Pop-Tarts (a snack item) [2]. The similarity based temporal association patterns
can give important insight into many application domains such as Earth science,
business and ecology.

Related Work
Although much work has been done on association patterns [3,14,19,20] and time
series search [4,11,9], little attention has been paid to such a similarity based
temporal association pattern. The closest related efforts have attempted to cap-
ture special temporal regulations of frequent association patterns such as cyclic
association rule mining [18] and calendar-based association rule mining [15] in
temporal association mining. Özden et al. [18] examined cyclic association rule
mining, which detects periodically repetitive patterns of frequent itemsets over
time. Cyclic associations can be considered as itemsets that often occur in every
cycle with no exception. Li et al. [15] explored the problem of finding frequent
itemsets along with calendar-based patterns. The calendar-based patterns are
defined with a calendar schema, e.g., (year, month, day). For example, (*,10,31)
represents the set of time points each corresponding to the 31st day of October.
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However, real-life patterns are usually imperfect and may not demonstrate any
regular periodicity. Other studies in temporal data mining have discussed the
change of found association rules. Dong et al. [10] presented the problem of
mining emerging patterns, which are the itemsets whose supports increase sig-
nificantly from one dataset to another. Ganti et al. [12] presented a framework
for measuring difference in two sets of association rules from two datasets. Liu
et al. [16] studied the change of fundamental association rules between two time
periods using support and confidence. When new transactions are added to the
original dataset, the maintenance of discovered association rules with an incre-
mental updating technique was proposed in [7]. In contrast, Agrawal et al. [6]
addressed the problem of monitoring the support and confidence of association
rules. First, all frequent rules satisfying a minimum threshold from different
time periods are mined and collected into a rule base. Then interesting rules
can be queried by specifying shape operators(e.g., ups and downs) in support
or confidence over time. This problem model appears to be close to our prob-
lem. However, we use a user-defined numeric sequence for the interesting query
pattern and search globally similar itemsets.

Our similarity constraint is formulated with a similarity-profiled subset speci-
fication which consists of a reference time sequence, a similarity function, and a
dissimilarity threshold. The subset specification is used to define a user interest
temporal pattern and guide the degree of approximate matching to prevalence
changes of itemsets. For distinguishing interesting itemsets, we use a compos-
ite interest measure which consists of prevalence values of an itemset over time
(i.e., a support sequence), and the dissimilarity degree of the support sequence
to the reference sequence. We call the result itemsets to similarity-profiled tem-
poral associations. Finding the similarity-profiled temporal association patterns
is computationally challenging. A naive approach is to divide the mining pro-
cess into two separate phrases. The first phrase computes the support values of
all possible itemsets at each time point, and generates their support sequences.
The second phrase compares the generated support time sequences with a given
reference sequence, and finds the similar itemsets. However, the computational
costs of generating the support time sequences of all combinatorial itemsets and
then doing the similarity search become prohibitively expensive with increase of
items. Thus we explore schemes which can conduct the support time sequence
generation and the similarity search interactively, and develop two algorithms
with differing database scan methods. The experimental results on synthetic
and real data show that our algorithms are efficient and scalable rather than the
naive approach.

The remainder of the paper is organized as follows. In Section 2, we formal-
ize the problem of discovering temporal association patterns under a similarity
constraint. Our algorithmic design concepts are discussed in Section 3. Section
4 presents the proposed algorithms. The experimental results are presented in
Section 5. Section 6 summarizes our work and discusses future work.

2 A Formalization of the Problem

First, we formally define our problem, describe our subset specification in detail,
and then introduce our interest measure.
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2.1 Problem Definition

Given:

1) A set of items I
2) A time period T =t1 ∪ . . . ∪ tn, ti ∩ tj = ∅, i �= j
3) A temporal database D=D1 ∪ . . . ∪ Dn, Di ∩ Dj = ∅, i �= j Each transaction
record d ∈ D is a tuple < timestamp, itemset > where timestamp is a time
∈ T that the record data is observed, and itemset ⊆ I. Di is a set of records
included in time slot ti.
4) A subset specification

4a) A reference sequence R =< r1, . . . , rn > over the time slots t1, . . . , tn
4b) A similarity function fSimilarity(X , Y ) )→ Rn, where X and Y are nu-

meric sequences.
4c) A dissimilarity threshold θ

Find: A set of itemsets I ⊆ I which satisfies the given subset specification, i.e.,
fSimilarity(SI , R) ≤ θ, where SI =< s1, . . . , sn > is the sequence of support
values of an itemset I over the time slots t1, . . . , tn.

Objective: Reduce the computational cost.

We use the standard notion of items in traditional association rule mining.
Items can be supermarket items purchased by a customer during a shopping
visit, product pages viewed in a web session, climate events at a location, stocks
exchanged within a hour, etc. Items can be grouped to form an itemset. We
assume we are interested in a fixed time period. A time period can be a particular
year or any arbitrary period of time. We model time as discrete, and thus, a total
time period can be viewed as a sequence of time slots at certain time granularity.
For example, one year period can be divided into monthly unit time slots. We
denote an ith time slot by ti. We assume our temporal database D is a set of
timestamped transactions. Each transaction record consists of a set of items over
a finite item domain I and a time point when the transaction is executed. The
transaction dataset can be partitioned to disjoint groups of transaction records
by time slots. We denote a part of D included in time slot ti by Di. For example,
Fig. 2 (a) shows an example dataset including three distinct items, A, B and C.
It is partitioned into two groups of transactions related to time slots t1 and t2.

2.2 Subset Specification

A subset specification is a set of conditions that itemsets have to satisfy to
become interesting patterns. Our subset specification for a similarity constraint
consists of three components: a reference sequence, a similarity function, and a
dissimilarity threshold. First, we assume that an arbitrary temporal pattern of
interest can be defined as a reference sequence by user. A reference time sequence
is a sequence of interesting values over time slots t1, . . . , tn. We assume that
the reference sequence values are in the same scale as the prevalence measure
of itemsets or can be normalized to the same scale to allow for differences in
level and scale. For example, in Fig. 2 (a), <0.4, 0.6> is given as the reference
sequence.
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Fig. 2. An example of similarity-profiled temporal association mining (a) Input data
(b) Generated prevalence time sequences, and the sequence search (c) Output itemsets

Second, we propose using a Lp norm (p = 1, 2, . . . ,∞) based similarity func-
tion between the reference sequence and the prevalence time sequences of item-
sets. Many similarity measures have been discussed in the time series database
literature [8]. A Lp norm is a typical similarity measure and useful in many real
application areas [4,9,11,22], and can be used as basic building blocks for more
complex similarity models as in [5].

Definition 1. For two time sequences X=< x1, . . . , xn > and Y =< y1, . . . ,
yn >, the Lp norm between X and Y is defined as Lp(X, Y ) = (

∑n
i=1 |xi −

yi|p)
1
p , where p = 1, 2, . . . ,∞.

Especially, when p=2, L2 norm is called Euclidean distance and defined as
L2(X , Y ) = (

∑n
i=1 |xi − yi|2)

1
2 . It is known that the use of Euclidean distance

is optimal(in the Maximum Likelihood sense) when measurement differences are
independent, identically distributed Gaussian [22]. However, the disadvantage of
Lp norm distance is that it has no obvious bound value of the maximum dissim-
ilarity distance. It is hard to infer from its value whether the degree of similarity
is small or large. Thus, we also use a normalized Euclidean distance, which gives
the bound value for the maximum dissimilarity distance.

Definition 2. For two time sequences X=< x1, . . . , xn > and Y =< y1, . . . ,
yn >, the normalized Euclidean distance between X and Y is defined as

Normalized L2(X, Y ) = (
1
n

)
1
2 ∗ L2(X, Y ) = (

∑n
i=1 |xi − yi|2

n
)

1
2 ,

where n is the number of time slots.

The last component of the subset specification is a dissimilarity threshold. It
indicates a maximum discrepancy to allow for interesting patterns.
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2.3 Interest Measure

Prevalence measures such as support have been successfully used in traditional
association rule mining and temporal association rule mining [21]. Support is
the fraction of records that contain an itemset in a database.

Definition 3. Let D be a transaction database. The support of an itemset I
is defined as s(I,D) = |{d ∈ D|I ⊆ d}|/|D|.

Instead of support in an entire dataset for measuring the prevalence of an itemset,
we measure the support value each time slot, and generate the n-dimensional
support sequence from a n divided dataset.

Definition 4. Let D = D1 ∪ . . . ∪ Dn be a temporal database of disjoint trans-
action sets. The support time sequence of an itemset I is defined as

SI =< s(I,D1), . . . , s(I,Dn) >,

where s(I,Dt) is the support of an itemset I in a sub dataset Dt.

As an interest measure for similarity-profiled temporal patterns, we use a Lp

norm (p = 1, 2, . . . ,∞) based distance between the support time sequence of
an itemset I, SI , and the reference sequence R. It is denoted by D(R, SI).
In the case of the normalized Euclidean distance, D(R, SI)=Normalized L2

(R, SI) = ( 1
n )

1
2 ∗ L2(R, SI) = (

�n
i=1 |ri−si|2

n )
1
2 = σ(SI). Statistically, the dis-

tance can be thought of as the deviation of the support time sequence SI from
the reference sequence R. The range of value is the set of real numbers between
0 to 1 inclusive. A value of 1 reflects the most distant behavior between two
sequences. If D(R, SI) is less than a given dissimilarity threshold θ, the itemset
I is called similar itemset. For example, Fig. 2 (b) shows the support time se-
quences of all possible itemsets from Fig. 2 (a) dataset. As seen in Fig. 2 (c), the
result itemsets are {B}, {A, C} and {B, C} since their interest measure values
do not exceed the dissimilarity threshold, 0.2.

3 Algorithmic Design

In this section, we discuss our algorithmic design concept for mining similarity-
profiled temporal association patterns.

3.1 Upper Bound and Lower Bound of Support Time Sequence

Generating the support time sequences of itemsets is a core operation in discover-
ing similarity-profiled temporal association patterns. The operation, however, is
very data intensive and sometimes can produce the sequences of all combina-
tions of items. We explore a way for estimating support time sequences without
examining the input dataset. We define the upper bound and the lower bound
of the support time sequence of an itemset using the support time sequences of
its subsets.
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Definition 5. Let D = D1∪ . . .∪Dn be a temporal database of disjoint transac-
tion sets. Let I be a size k itemset ⊆ I, and J={J1, . . . , Jk} be a set of all size
k − 1 subsets of I. The upper bound support time sequence of I, UI=<
u1, . . . , un > is defined to < min{s(J1,D1), . . . , s(Jk,D1)}, . . . , min{s(J1,Dn),
. . . , s(Jk,Dn)} >, where s(Jh,Dt) is the support of itemset Jh ∈ J in Dt,
1 ≤ h ≤ k, 1 ≤ t ≤ n.

Definition 6. Let D = D1 ∪ . . . ∪ Dn be a temporal database of disjoint trans-
action sets. Let I be a size k itemset ⊆ I, and J={J1, . . . , Jk} be a set of all
size k− 1 subsets of I. The lower bound support time sequence of I, LI =
< l1, . . . , ln > is defined to < max{(s(J1,D1)+s(I−J1,D1)−1), . . . , (s(Jk,D1)+
s(I − Jk,D1)− 1), 0}, . . . , max{(s(J1,Dn) + s(I − J1,Dn)− 1), . . . , (s(Jk,Dn) +
s(I −Jk,Dn)− 1), 0} >, where s(Jh,Dt) is the support of itemset Jh ∈ J in Dt,
1 ≤ h ≤ k, 1 ≤ t ≤ n, and s(I−Jh,Dt) is the support of an single item of I −Jh

in Dt.

For example, let suppose that in a sub dataset D1, s(A,D1)=0.6, s(B,D1)=0.3,
s(C,D1)=0.8, s(AB,D1)=0.3, s(AC,D1)=0.4 and s(BC,D1)=0.3, and in a
sub dataset D2, s(A,D2)=0.4, s(B,D2)=0.7, s(C,D2)=0.8, s(AB,D2)=0.3,
s(AC,D2) =0.4 and s(BC,D2)=0.5. The upper bound support time sequence
UABC of an itemset ABC is < min{0.3, 0.4, 0.3}, min{0.3, 0.4, 0.5}>=<0.3,
0.3>. The lower bound support time sequence LABC of ABC is =< max{(0.3+
0.8−1), (0.4+0.3−1), (0.3+0.6−1), 0}, max{(0.3+0.8−1), (0.4+0.7−1), (0.5+
0.4 − 1), 0} > =< 0.1, 0.1 >.

3.2 Lower Bounding Distance

We explore bounding distances to eliminate candidate itemsets which could not
possibly be a best match with a reference sequence under a given dissimilar-
ity threshold. In our concept of lower bounding distance, if the lower bounding
distance of an itemset does not satisfy the dissimilarity threshold, its true dissim-
ilarity distance also will not satisfy the threshold. Our lower bounding distance
consists of two parts, upper lower-bounding distance and lower lower-bounding
distance.

Definition 7. For a reference sequence R and the upper bound support sequence
U of an itemset, let RU =< r1, . . . , rk > be a subsequence of R, and UL =<
u1, . . . , uk > be a subsequence of U where ri > ui, 1 ≤ i ≤ k. The upper lower-
bounding distance between R and U , DUlb(R, U), is defined as D(RU , UL).

The upper lower-bounding distance between a reference sequence R and an up-
per bound support sequence U is a dissimilarity distance between subsequences
of R, RU , and subsequences of U , UL, in which each element value ri in RU

is greater than the corresponding element value ui of UL. For example, when
Euclidean distance is the similarity function, the upper lower-bounding distance
between R and U is DUlb(R, U) = D(RU , UL) = (

∑n
i=1 f(ri, ui)))

1
2 , where

if ri > ui, f(ri, ui) = |ri − ui|2; otherwise, f(ri, ui) = 0. In the same way,
the upper lower-bounding distance between a reference sequence R and the
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true support time sequence S of an itemset, DUlb(R, S), is D(RU , SL) where
SL =< s1, . . . , sk > be a subsequence of S, and ri > si, 1 ≤ i ≤ k.

Definition 8. For a reference sequence R and a lower bound support time se-
quence L of an itemset, let RL =< r1, . . . , rk > be a subsequence of R, and
LU =< l1, . . . , lk > be a subsequence of L where ri < li , 1 ≤ i ≤ k. The
lower lower-bounding distance between R and L, DLlb(R, L), is defined as
D(RL, LU ).

The lower lower-bounding distance is a dissimilarity distance between subse-
quences of a reference sequence R, RL, and subsequences of a lower bound
support sequence L, LU , in which each element value ri in RL are less than the
corresponding element value li of LU .

Definition 9. For a reference sequence R, and the upper bound support time
sequence U and lower bound support time sequence L of an itemset, the lower
bounding distance, Dlb(R, U , L) is defined as DUlb(R, U) + DLlb(R, L).

Fig. 3 gives an example of lower bounding distances computed using the Fig. 2
(a) dataset. Fig. 3 (a) shows the upper lower-bounding distances of several true
support time sequences. Fig. 3 (c) shows the upper lower-bounding distance of
the upper bound support sequence of {A, B}, UAB (AB upper in the figure),
and the lower lower-bounding distance of the lower bound support sequence
of {A, B}, LAB (AB lower in the figure). The lower lower-bounding distance of
LAB is 0 since no value in LAB is greater than the values of R. The lower bound
distances of the two bound sequences of AB is DUlb(UAB, R)+DLlb(LAB, R) =
0.22 + 0 = 0.22 as shown in Fig. 3 (b).

Next, we discuss an interesting property related to our upper lower-bounding
distance. We first present a related lemma.

Lemma 1. The support values of the support time sequence of an itemset are
monotonically non-increasing with the size of itemset at each time slot.
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Fig. 3. An example of lower bounding distances (a) Upper lower-bounding distances
of true support sequences (b) Distance table (c) Upper lower-bounding distance and
Lower lower-bounding distance of bounds of support sequence
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Fig. 4. (a) Non-monotonicity of the Euclidean distance with itemset size (b) Mono-
tonically non-decreasing property of the upper lower-bounding distance with itemset
size

Proof. Support has a monotonically non-increasing property with increasing size
of the itemset [3]. All supersets of a given itemset have supports less than or
equal to the support of that itemset, i.e., if I and J are itemsets and J ⊆ I,
then support(I) ≤ support(J). The support time sequence of an itemset consists
of supports of the itemset from a set of disjoint transactions in each time slot
by Definition 4. Each support value of the prevalence time sequence follows the
same monotonicity property.

Similarly, the monotonicity property of our interest measure can state that all
supersets of a given itemset have dissimilarity distances greater than the dis-
similarity distance of the itemset, i.e., if I and J are itemsets and J ⊆ I,
then D(R, SI) ≥ D(R, SJ). For example, Fig. 4 (a) shows the Euclidean dis-
tances between the support time sequences of {C}, {A,C} and {A,B,C}, SC ,
SAC and SABC , and a reference sequence R. As can be seen, D(SC , R)=0.45,
D(SAC , R)=0.2 and D(SABC , R)=0.32. Thus, D(SABC , R) > D(SAC , R) but
D(SAC , R) < D(SC , R). That means we observed the Lp norms-based interest
measure does not show any monotonicity with the size of the itemset. However,
we can notice that the upper lower-bounding distance is monotonic.

Lemma 2. The upper lower-bounding distance between the (upper bound) sup-
port time sequence of an itemset and a reference time sequence is monotoni-
cally non-decreasing with the size of the itemset.

Proof. We prove it using Euclidean distance. First, we prove the monotonicity of
the upper lower-bounding distance to the true support time sequences. According
to Definition 7, the upper lower-bounding distance between SI =< s1, . . . , sn >
for a size k itemset I and R =< r1, . . . , rn > is DUlb(R, SI) = (

∑n
i=1,ri>si

(ri −
si)2)

1
2 . For a size k +1 itemset I ′=I ∪{i′}, where i′ /∈ I and its support time se-

quence SI′ =< s′1, . . . , s
′
n >, we need to prove that DUlb(SI , R) ≤ DUlb(SI′ , R).

According to Lemma 1, the support is non-increasing with the size of itemset
at each time slot, i.e., the support of I ′ is equal to or less than the support
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of I at each time slot such that s1 ≥ s′1, . . . , sn ≥ s′n. If si ≥ s′i, si < ri and
s′i < ri, then ri − si ≤ ri − s′i. Thus, we can get (

∑n
i=1,ri>si

(ri − si)2)
1
2 ≤

(
∑n

i=1,ri>s′
i
(ri − s′i)

2)
1
2 , i.e., DUlb(R, SI) ≤ DUlb(R, SI′). Second, the mono-

tonicity of upper lower-bounding distance to the upper bound support time
sequence can be similarly proved.

For example, in Fig. 4 (b), DUlb(SA, R)=0.2, DUlb(SB , R)=0.1 and DUlb(SAB,
R)=0.32. Thus DUlb(SA, R)≤DUlb(SAB, R) and DUlb(SB , R)≤DUlb(SAB, R).
We can also see that DUlb(SAB, R) ≤ DUlb(SABC , R), DUlb(SAC , R) ≤ DUlb

(SABC , R), and DUlb(SBC , R) ≤ DUlb(SABC , R).

3.3 Database Scan Strategy

Support time sequences can be generated using different methods to scan the
timestamped transaction database. We can consider two database scan methods:
a lattice-dominant scan and a snapshot-dominant scan.

1) Lattice-dominant scan: The lattice-dominant scan method reads a whole
database from time slot t1 to time slot tn for lattice itemsets of each depth, and
generates the support time sequences of the itemsets over all time slots.

2) Snapshot-dominant scan: The snapshot-dominant scan method repeats the
scanning of transaction records at each time slot, e.g, from the first time slot, by
counting the supports of itemsets until it finds all candidate itemsets of different
sizes. It then moves to the next time slot and repeats the process. This method
incrementally generates support time sequences with the processed time slots.

4 Algorithms

We developed similarity-profiled association mining algorithms based on our
algorithm design concept discussed in Section 3. We first discuss a naive approach
for comparison, and then present the proposed algorithms.

4.1 Naive Approach

A naive approach for finding similarity-profiled temporal associations can be
characterized using a two-phase paradigm. The first phase generates the his-
tory of supports for all possible itemsets at different time slots. The second
phase compares the generated support time sequences with a reference sequence
to find similar associated itemsets. In the second step, we can use advanced
time series search algorithms using multi-dimensional index structures, e.g., R-
tree [13]. However, exponentially increasing computational costs of generating
the support time sequences of all combinatorial candidate itemsets become pro-
hibitively expensive.

4.2 SPAMINEs

We propose a one-step approach to combine the generation of support time
sequences and the sequence search. We propose two algorithms for the Similarity-
Profiled temporal Association MINing mEthod(SPAMINE): a Lattice-dominant
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SPAMINE(L-SPAMINE) and a Snapshot-dominant SPAMINE(S-SPAMINE).
They are different in the database scan method.

4.2.1 L-SPAMINE
The L-SPAMINE algorithm uses the lattice-dominant database scan method to
generate the support time sequences. Algorithm 1 shows the pseudocode. Fig. 5
provides an illustration of execution trace of L-SPAMINE using the example
data in Fig. 2 (a).

[Steps 1 - 3] Generate the support time sequences of single items and find similar
items: All singletons (k = 1) become candidate items(C1). In the first scan of
an entire time-stamped database, the supports of singletons are computed per
each time slot and their support time sequences(S1) are generated. If the dis-
tances between the support time sequences and a given reference sequence do
not exceed a given dissimilarity threshold, the singletons are added to a result
set(A1). On the fly, if the upper lower-bounding distances of the support time
sequences satisfy the threshold, the items are kept to B1 for generating the next
size candidate itemsets. In Fig. 5, only item B is a similar itemset but items A
and C are also kept for generating the next size candidate itemsets.

[Step 6] Generate candidate itemsets and their upper and lower bound support
sequences: All size k (k > 1) candidate itemsets(Ck) are generated using size
k − 1 itemsets(Bk−1) whose upper lower-bounding distances satisfy the dissim-
ilarity threshold. If any subset of size k − 1 of the generated itemset is not

Inputs:
E : A set of single items.
TD: A temporal transaction database
R : A reference sequence
D : A similarity function
θ : A dissimilarity threshold
Output: All itemsets whose support sequences are similar to R under D
and θ
Variables :
k : Itemset size
Ck : A set of size k candidate itemsets
U k : A set of upper bound support sequences of size k itemsets
Lk : A set of lower bound support sequences of size k itemsets
Sk : A set of true support sequences of size k itemsets
Bk : A set of size k itemsets whose upper lower-bounding distance ≤ θ
Ak : A result set of size k itemsets whose true distance ≤ θ
Main:
1) C1 = E;
2) S1= generate support sequences(C1, TD);
3) (A1, B1)= find similar itemsets(C1, S1, R, D, θ);
4) k = 2;
5) while (not empty Bk−1) do
6) (Ck, Uk, Lk) =generate candidate itemsets(Bk−1, Sk−1);
7) Ck =prune candidate itemsets by lbd(Ck, U k, Lk, R, D, θ);
8) Sk=generate support sequences(Ck, TD);
9) (Ak, Bk) =find similar itemsets(Ck, Sk, R, D, θ);
10) k = k + 1;
11) end
12) return

�
(A1, . . . , Ak);

Algorithm 1. L-SPAMINE algorithm
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Fig. 5. An illustration of L-SPAMINE algorithm trace

in the Bk−1, the candidate itemset is eliminated using the monotonically non-
decreasing property of the upper lower-bounding distance. Otherwise, the upper
and lower bound support sequences of candidate itemsets are generated. Fig. 5
shows the generated size 2 candidate itemsets, and their upper bound and lower
bound support time sequences.

[Step 7] Prune candidate itemsets using the lower bounding distance: The lower
bounding distances of candidate itemsets are calculated. If the lower bounding
distance of an itemset exceeds the dissimilarity threshold, the candidate itemset
is eliminated from the candidate set. For example, in Fig. 5, the lower bounding
distance of itemset {A, B} is 0.22 which is the sum of its upper lower-bounding
distance and lower lower-bounding distance. Itemset {A, B} is removed from the
set of candidate itemsets since the value is greater than the threshold 0.2.

[Step 8] Scan database and generate the support time sequences: The supports
of candidate itemsets are computed during the scan of the temporal database,
and their support time sequences(Sk) are generated.

[Step 9] Find itemsets showing similar prevalence variations: The true distance
between the support time sequence of an itemset and the reference sequence
is computed. If the value satisfies the threshold, the itemset is included in the
result set(Ak). In Fig. 5, {A,C} and {B,C} are similar itemsets. On the fly, if the
upper lower-bounding distances of itemsets satisfy the threshold, the itemsets
are added to Bk for generating the next size candidate itemsets.

[Step 10] Increase the examined itemset size: The size of the examined itemsets
is increased to k = k + 1. The above procedures(steps 6-10) are repeated until
no itemset in Bk remains.

4.2.2 S-SPAMINE
The S-SPAMINE algorithm uses the snapshot-dominant scan method. It first
repeats scanning transaction records at time t1 with increasing itemset size until
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all candidate itemsets at time t1 are found. The pruning strategy is the same
as those of L-SPAMINE except S-SPAMINE uses the accumulated distances up
to the current time slot. If the accumulated upper lower bounding distance is
greater than a given threshold, the candidate itemset is pruned at the current
time slot. After finding all size candidate itemsets, we move to the next time
slot and repeat the procedures until the last time slot. Finally, itemsets whose
accumulated true similarity value is less than the threshold are included in the
result set.

5 Experimental Evaluation

We conducted a series of experiments to examine the effect of pruning by lower
bounding distance, database scan method, number of time slots, number of items,
and number of time slots. Our experiments were performed on synthetic and real
datasets. Synthetic datasets were generated using the transaction generator de-
signed by the IBM Quest project used in [3]. We modified it for generating
a time-stamped transaction database, where each transaction has a time slot
value. In the rest of paper, we use the following parameters to characterize the
synthetic datasets we used. TD is the total number of transactions(× 1,000),
D is the number of transaction per time slot(× 1,000), I is the number of dis-
tinct items, L is the average size of transaction, and T is the number of time
slots. A reference time sequence was randomly generated in the scale of the sup-
port value at each time slot or generated by choosing a support value near a
quartile e.g., a 25th, 50th, 75th percentile of the sorted supports at each time
slot after calculating the supports of single items. For the experiment with a
real dataset, we used a climate dataset. We compared the performances of L-
SPAMINE, S-SPAMINE and the naive method. Since the naive method with no
pruning scheme generates huge candidate itemsets with increase of itemset size,
we used small datasets, especially in the number of items, in comparisons with
the naive approach. Normalized Euclidean distance was used for the similarity
function. All experiments were performed on a workstation with 2 Gbytes of
memory running the Linux operating system.

5.1 Experiment Results

Effect of lower bounding pruning. In this experiment, we examined the
effect of pruning by our lower bounding distance in L-SPAMINE. The TD100-
D1-L10-I20-T100 dataset was used and a reference sequence was chosen near
the second quartile. Fig. 6 (a) shows the pruning effect ratios per each level
with different dissimilarity thresholds. The pruning effect ratio is the number of
candidate itemsets which need a database scan over the total number of possible
itemsets per level. L-SPAMINE generates dramatically fewer candidate itemsets
compared with the naive approach. In the next experiment, we examined the
pruning effect with different reference sequence types. The reference sequence
values were chosen near different quartiles of sorted supports of single items.
Fig. 6 (b) shows the results when the dissimilarity threshold was fixed to 0.2.
As can be seen, our lower bounding pruning scheme is most effective when the
reference sequence values are overall greater than the support sequence values.
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Fig. 6. (a) Effect of lower bounding pruning (b) Effect of reference sequence type (c)
Effect of database scan method

Effect of database scanning method. We examined the effect of choice of
database scan method with different thresholds. We used a synthetic dataset
TD100-D1-L10-I20-T100 and choose a reference sequence near the second quar-
tile. Fig. 6 (c) shows a max lattice level explored in each time slot. S-SPAMINE
examined a little smaller lattice level with L-SPAMINE at threshold 0.2. How-
ever, with the increase of the dissimilarity threshold (e.g., 0.4), S-SPAMINE
showed a dramatically large itemset search space in the beginning time slots,
since the accumulated lower bounding distances were not enough for pruning.
By contrast, L-SPAMINE showed a constant deployment of the itemset lattice
independent with the time slot number.

Effect of number of items. We examined the effect of number of items with
synthetic datasets of different number of items, TD10-D1-L10-I*-T10. Under
the 0.2 threshold, which prunes most itemsets before around level(pass) 4 in
these datasets, L-SPAMINE and S-SPAMINE showed a similar execution time
and received little effect with the increase of itemset size. However, when the
threshold value was increased to 0.3, S-SPAMINE showed dramatically increased
execution time. The reason is that the pruning ability of S-SPAMINE was weak
in the beginning time slots under this threshold and kept many lattice subsets.
Fig. 7 (a) shows the results.

Effect of number of time slots. In this experiment, we examined the effect of
time sequence length using synthetic datasets, TD*-D1-L6-I20-T* having differ-
ent numbers of time slots. Query sequences were chosen near the second quartile
in each dataset and the threshold was the same value, 0.2 in each dataset. Fig. 7
(b) shows that the execution time of both algorithms increased with increases
in the number of time slots since the total number of transactions is increased
with the number of time slots. However, L-SPAMINE receives less effect with
number of time slots.

Experiment with a real dataset. Finally, we examined our algorithms with
an Earth climate dataset available in UCI KDD Archive [1]. The data set contains
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Fig. 7. (a) Effect of number of items (b) Effect of number of time slots (c) A real
dataset

oceanographic and surface meteorological readings taken from a series of buoys
positioned throughout the equatorial Pacific. Each buoy has five meteorological
readings, e.g., humidity measure, almost every day from 1980 March to 1998
June. Since the reading value is a real number, we categorized the real value
using its quartile values. Each reading item was categorized to four item types,
e.g., humidity high, humidity mid1, humidity mid2, humidity low. Total 20 cat-
egorized items are generated. One transaction consists of five climate items of a
day at a buoy. The total number of transactions was 178,080. When we chose a
month as a time slot granularity, there were total 220 time slots. Fig. 7 (c) shows
the experiment result with different thresholds. The S-SPAMINE shows a dra-
matic increase of execution time with the increase of the threshold. L-SPAMINE
showed overall better performance than S-SPAMINE.

6 Conclusion

We formulated the problem of mining temporal association patterns under simi-
larity constraints and proposed novel algorithms to discover them. The proposed
algorithms substantially reduced the search space by pruning candidate item-
sets using the lower bounding distance of the bounds of support sequences, and
the monotonicity property of the upper lower bounding distance. Experimental
results showed that L-SPAMINE algorithm is computationally efficient than S-
SPAMINE and a naive method. We need further study for discovery accuracy
with domain experts. On the other hand, time series literature proposes many
different similarity measures for time sequence search [8]. We plan to explore vari-
ous similarity functions for similarity-profiled association patterns. Another issue
in similarity modeling is concerned about the components of sequence matching.
We currently use a whole-sequence matching for discovering similar association
patterns. We also plan to consider techniques for sub-sequence matching, e.g.,
for the case that the length of a reference sequence and of a support sequence is
different.
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Abstract. Most correlation clustering algorithms rely on principal com-
ponent analysis (PCA) as a correlation analysis tool. The correlation of
each cluster is learned by applying PCA to a set of sample points. Since
PCA is rather sensitive to outliers, if a small fraction of these points does
not correspond to the correct correlation of the cluster, the algorithms
are usually misled or even fail to detect the correct results. In this pa-
per, we evaluate the influence of outliers on PCA and propose a general
framework for increasing the robustness of PCA in order to determine
the correct correlation of each cluster. We further show how our frame-
work can be applied to PCA-based correlation clustering algorithms. A
thorough experimental evaluation shows the benefit of our framework on
several synthetic and real-world data sets.

1 Introduction

Finding clusters in arbitrarily oriented subspaces is an important data mining
task for many applications. The motivation behind this task is that in high
dimensional data, one probably cannot find clusters due to several properties
of high dimensional feature spaces. In contrast, clusters can usually be found in
arbitrarily oriented subspaces of the original data space. The points of a subspace
cluster are then located on a common lower dimensional hyperplane and exhibit
a common correlation among a subset of the attributes. The task of finding
clusters in arbitrarily oriented subspaces is also called correlation clustering.

The major challenge of correlation clustering is identifying the correct sub-
space of a cluster. Most correlation clustering algorithms [1,2,3,4,5,6] apply prin-
cipal component analysis (PCA) to a subset of points in order to define the
correct subspace in orientation and weighting of the transformed axes. PCA is
a mature technique and allows the construction of a broad range of similarity
measures grasping local correlation of attributes and, therefore, allows to find ar-
bitrarily oriented subspace clusters. It is easy to see that the more points of this
subset are cluster members that are located on the common hyperplane, the more
accurate the procedure of determining the correct subspace (i.e. hyperplane) will
be. However, a drawback common to all those approaches is the notorious lo-
cality assumption. Since cluster memberships of points are obviously not known
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beforehand, it is assumed that the local neighborhood, e.g. the ε-neighborhood
or the k-nearest neighbors, of cluster points or cluster centers represents the
correct subspace suitably well in its orientation and variance along axes. This
assumption is widely accepted but it boldly contradicts the basic problem state-
ment, i.e. “find clusters in a high-dimensional space”, because high dimensional
spaces are typically doomed by the curse of dimensionality. The term “curse
of dimensionality” refers to a bundle of problems occurring in high dimensional
spaces. The most important effect in the sight of clustering is that concepts like
“proximity”, “distance”, or “local neighborhood” become less meaningful with
increasing dimensionality of a data set (as elaborated e.g. in [7,8,9]). As a conse-
quence of these findings, the discrimination between the nearest and the farthest
neighbor becomes rather poor with increasing data dimensionality. This is by far
a more fundamental problem than the mere performance degradation of algo-
rithms on high dimensional data: The higher the dimensionality of a data set is,
the more outliers will be placed inevitably in the set of neighboring objects.

As we will see in this paper, PCA is very sensitive to outliers. In other words,
if the local neighborhood of cluster members or cluster centers to which PCA is
applied in order to find the correct subspace of the corresponding cluster con-
tains noise points that do not belong to the cluster, the subspace determination
process will be misled. Thus, in view of the “curse of dimensionality”, to suc-
cessfully employ PCA in correlation clustering in high-dimensional data spaces
may therefore require more sophisticated techniques of selecting a representative
set of neighbors.

In this paper, after shortly reviewing existing approaches to correlation clus-
tering (cf. Section 2), we evaluate the influence of outliers on PCA in general
(cf. Section 3) and propose a general framework to determine the correct local
subspace dimensionality and orientation for cluster members and cluster centers
in a more robust way (cf. Section 4). In Section 5, we show how to apply the
proposed framework for increasing the robustness the subspace determination
process on existing correlation clustering approaches. Section 6 demonstrates
the impact of the increased robustness of PCA on several data sets. The paper
is concluded in Section 7.

2 Related Work

The first approach to generalized projected clustering, called ORCLUS [1], is a
K-means like approach. It picks Kc > K seeds at first and assigns the data base
objects to these seeds according to a distance function that is based on an eigen-
system of the corresponding cluster assessing the distance along the small eigen-
vectors only (i.e., the distance in the projected subspace where the cluster objects
exhibit high density). The eigensystem is iteratively adapted to the current state
of the updated cluster (i.e., based on the current neighborhood of the cluster cen-
ter). The number Kc of clusters is reduced iteratively by merging closest pairs
of clusters until the user-specified number K is reached. The method proposed
in [10] is a slight variant of ORCLUS designed for enhancing multi-dimensional
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indexing. Initially, however, the eigensystems in both methods are based on the
local neighborhood in the Euclidean space.

The algorithm 4C [2] is based on a density-based clustering paradigma [11].
Thus, the number of clusters is not decided beforehand but clusters grow from a
seed as long as a density criterion is fulfilled. Otherwise, another seed is picked
to start a new cluster. The density criterion is a required minimal number of
points within the neighborhood of a point, where the neighborhood is ascertained
based on distance matrices computed from the eigensystems of two points. The
eigensystem of a point is based on the covariance matrix of the ε-neighborhood
of the point in Euclidean space.

As a hierarchical approach, HiCO [4] defines the distance between points
according to their local correlation dimensionality and subspace orientation –
thus again based on a local neighborhood query – and uses hierarchical density-
based clustering [12] to derive a hierarchy of correlation clusters.

COPAC [5] is based on similar ideas as 4C but disposes of some problems like
meaningless similarity matrices due to sparse ε-neighborhoods instead taking a
fixed number k of neighbors — which raises the question how to choose a good
value for k but at least choosing k > λ ensures a meaningful definition of a λ-
dimensional hyperplane. Still, the Euclidean neighborhood critically influences
the results.

The latest PCA-based correlation clustering algorithm is ERiC [6], also deriv-
ing a local eigensystem for a point based on the k nearest neighbors in Euclidean
space. Here, the neighborhood criterion for two points in a DBSCAN-like proce-
dure is an approximate linear dependency and the affine distance of the correla-
tion hyperplanes as defined by the largest eigenvectors of each point. In finding
and correctly assigning complex patterns of intersecting clusters, COPAC and
ERiC improve considerably over ORCLUS and 4C.

Another approach based on PCA said to find even non-linear correlation clus-
ters, CURLER [3], seems not restricted to correlations of attributes but, accord-
ing to its restrictions, finds any narrow trajectory and does not provide a model
describing its findings. However, even in this approach the PCA is applied to
the local neighborhood of points in Euclidean space.

Note that the term “correlation clustering” relates to a different task in the
machine learning community, where a partitioning of the data shall correlate as
much as possible with a pairwise similarity function learned from past data [13].

3 Problem Analysis

To the best of our knowledge, all correlation clustering algorithms that use PCA
as the method to determine the correct subspace of a cluster face the following
problem. In order to determine the correct subspace of a cluster, a (considerably
large) number of cluster members needs to be identified first such that PCA can
be applied to them. On the other hand, in order to identify points of a particular
cluster, the subspace of this cluster needs to be determined first. To escape
from this vicious circle all algorithms rely on the locality assumption, i.e. it is
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assumed that the points in the local neighborhood of cluster members or cluster
representatives sufficiently reflect the correct subspace of the corresponding clus-
ter such that applying PCA to those neighboring points reports the cluster hy-
perplane.

As stated above, selecting a meaningful neighborhood becomes more and more
difficult with increasing data dimensionality. A neighboring set of points will al-
most certainly contain outliers, i.e. points that do not belong to the cluster and,
thus, are not located on the hyperplane of the cluster. Obviously, these outliers
are not helpful to assign a meaningful local correlation dimensionality and ori-
entation. On the other hand, all correlation clustering approaches available (cf.
Section 2) rely on an arbitrarily chosen set of neighboring points. We therefore
argue to choose a neighboring set of points in a more sophisticated way to en-
hance the robustness of local correlation analysis and, consequently, to enhance
the robustness of correlation clustering algorithms.

3.1 Impact of Outliers on PCA

Correlation analysis using PCA is a least squares fitting of a linear function to
the data. By minimizing the mean square error, outliers are emphasized in a way
that is not always beneficial, as can bee seen in Figure 1. This data set consists of
5 points in a 2D space that are strictly positively correlated and, thus, are located
on a common 1D hyperplane plus one additional outlier that is not located on
that 1D hyperplane. When applying PCA on these six points and computing
the strongest eigenvector of the corresponding covariance matrix, the resulting
vector is directed towards the outlier (cf. Figure 1). This implies that in certain
situations, adding only one single extra point to the correlation computation can
cause the resulting strongest eigenvector(s) to flip into a completely different
direction. Let us note that if the outlier point would have been closer to the
other points it would, at a certain distance, not have made any difference on the
vector orientation, but this distance threshold for the flip is rather small.

As a consequence, one needs to carefully select the points that are included
into the computation of the cluster hyperplane. In addition, one can consider us-
ing a modified correlation analysis procedure which is less sensitive to the effect
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Fig. 1. Simple data set with 6 points and largest eigenvector after PCA
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of outliers. In fact, there are obviously multiple strategies to handle these issues.
The most obvious one – using outlier detection to remove outliers from the com-
putation – can usually not be applied to this problem because we face the same
vicious circle when searching for outliers as we face when detecting cluster points:
in order to identify outliers that do not belong to any clusters, the subspaces
of the clusters need to be determined first; in order to determine the correct
subspace of a cluster, a (considerably large) number of cluster members needs
to be identified first such that PCA can be applied to them; etc. Instead, we
introduce two ideas to stabilize PCA for correlation clustering. First, we explore
a local optimization strategy that handles the problem of picking appropriate
neighboring points in a way that is easy to integrate in many correlation clus-
tering algorithms. Second we will add a modified correlation analysis to further
stabilize results which is based on the integration of a suitable weighting function
into PCA.

3.2 Statistic Observations on Data Correlation

Without loss of generality, we assume that the points on which PCA is applied
to find the correct subspace of a particular cluster are selected as the k-nearest
neighbors (kNN) of cluster members or cluster representatives. Later, we will dis-
cuss the extension of our ideas to methods like ORCLUS that use neighborhood
concepts other than kNN.

When comparing the relative strength of the normalized eigenvalues (i.e. the
part of the total variance explained by them) computed for the kNN of a par-
ticular point w.r.t. increasing values of k (ranging from 0 to 50% of the data
set), a behavior similar to that shown in Figure 3 can usually be observed. We
used a 3D data set shown in Figure 2, with a set of 200 outlier points (noise), a
correlation cluster of 150 points sharing a common 2D hyperplane (plane), and
a correlation cluster of 150 points that are located on a common 1D hyperplane
(line) that is embedded into the hyperplane of the 2D cluster. In Figure 3 there
are three plots in this graph representing the behavior of the eigenvalues of a
sample noise point, of a sample point on a 2D, and of a sample point on a 1D
line in the data set (embedded within the 2D plane), respectively.
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Fig. 2. Data set with a 2D plane and an embedded 1D line
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Fig. 3. Relative strength of eigenvectors

Examining the noise point (green dotted lines in Figure 3) we observe a min-
imum relative strength of the first eigenvalue of about 0.4 for k = 10% − 15%
(cf. Figure 3(a)). Since the minimum possible value for the strongest eigenvector
in a 3D data set is 1/3 = 0.33, the noise point shows approximately no correla-
tion when looking at its kNN with k = 10% − 15% of the data set. The second
eigenvector (cf. Figure 3(b)) shows similar behavior in that particular range of
k confirming our conclusions.

For the point in the 1D cluster (red solid lines in Figure 3), the first eigenvector
(cf. Figure 3(a)) explains 80% of the complete variance at around k = 7%, i.e.
using this value for k, the kNN of the particular point form the 1D line of the
cluster. It is worth noting that the amount of variance explained for the 1D
cluster case drops quickly when increasing k beyond this point. The reason for
this is that – since the line is embedded in a plane – with increasing k more
and more points of the kNN are points from the 2D cluster. As a consequence,
the variance explained by the first eigenvector decreases, whereas the variance
explained by the second eigenvector increases simultaneously (cf. Figure 3(b)).
Then, at k ≈ 10%, we have again a very high strength of the first eigenvector (less
points from the 2D cluster and more points from the 1D cluster are considered),
etc. In other words, depending on the value of k, the kNN of the point form the
1D cluster line or the 2D cluster plane.

For evaluating the 2D cluster, the relevant graph (depicting the behavior of
the second eigenvector) is shown in Figure 3(b). In a 3D data set, a value of
around 1/3 would be typical for uncorrelated data and is observable on noise
points. For the sample point from the 2D cluster it peaks at almost 45% for
about k = 10%. Together with the first graph, this means that the first two
eigenvectors explain almost the complete variance at that particular value for
k. In other words, for k = 10%, the kNN of this point reflect the 2D plane of
the cluster sufficiently. Compared to this observation, the variance of the sample
point from the 1D cluster embedded in the 2D cluster (red dotted line) along
the first two eigenvectors is significantly below the expected value (which is not
surprising, having seen that the first eigenvector reaches 80%).
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These simple examples illustrate that it is essential to select a sufficient set of
points by choosing a suitable value for k. A slight change in k can already make
a large difference. Moreover, we have seen that it is rather meaningful to choose
even significantly different values of k for different points.

4 A General Framework for Robust Correlation Analysis

The above presented considerations induce two important aspects. First, since
PCA is a least square fitting and we cannot assume that there are no outliers
in the kNN of a point, adjusting the weighting of the points during PCA should
improve the results. Second, the selection of points to which PCA is applied can
be improved by both micro-adjusting the value of k (to avoid sudden drops in
the explained variance) as well as choosing significantly different k for different
points in the data set. In the following, we will discuss both aspects in more
detail. In fact, our framework for making PCA-based correlation analysis more
robust uses both ideas.

4.1 Increasing the Robustness of PCA Using Weighted Covariance

As mentioned above, PCA is a common approach to handling correlated data.
It is also commonly used for dimensionality reduction by projecting onto the
λ strongest (i.e. highest) components. In correlation clustering, PCA is a key
method to finding correlated attributes in data.

PCA operates in two steps. In the first step, for any two attributes, i.e. di-
mensions, d1 and d2 the covariance Cov(Xd1 , Xd2) of these two dimensions is
computed. In the second step, the eigenvectors and eigenvalues of the resulting
matrix (which by construction is positive, symmetric and semi-definite) are com-
puted. The computation of eigenvectors and eigenvalues on a symmetric matrix
is a standardized procedure which cannot be altered to make the overall process
more robust. Instead, the stabilization has to be implemented during the first
step.

Given an attribute X , we can model the values of k points in that particular
attribute, denoted by xi for the i-th point, as a random variable. Then, the
covariance between two attributes X and Y is mathematically defined as

Cov(X, Y ) := E((X − E(X)) · (Y − E(Y ))), (1)

where E is the expectation operator. Usually, one uses the mean of all values of
the corresponding attribute as expectation operator, i.e.

E(X) =
1
k

k∑
i=1

xi =: x̂, (2)

so we have

Cov(X, Y ) :=
1
k

k∑
i=1

(xi − x̂)(yi − ŷ). (3)
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Obviously, all data points are treated equally in this computation. But given
that we want to reduce the effect of outliers, it is more appropriate to use a
different expectation operator. Given arbitrary weights ωi for all points i (1 ≤
i ≤ k and Ω :=

∑k
i=1 ωi), we can define a new expectation operator

Eω(X) :=
1
Ω

k∑
i=1

ωixi =: x̂ω . (4)

With this new expectation operator, we can give each point in kNN a different
weight. In particular, we can give potential outliers a smaller weight. Using
Eω(X), we can compute the covariance as given below.

Covω(X, Y ) :=
1
Ω

n∑
i=1

ωi(xi − x̂ω)(yi − ŷω). (5)

Steiner’s translation still applies, which leads to the following slightly simpler
equation.

Covω(X, Y ) = (
1
Ω

n∑
i=1

ωixiyi) − (
1
Ω

n∑
i=1

ωixi) · (
1
Ω

n∑
i=1

ωiyi). (6)

This form is particularly nice for computation. It is also trivial to prove that if
ωi = 1 for all i, we have Cov(X, Y ) = Covω(X, Y ). If a point i is assigned the
weight ωi = 2, the result would be the same as if we had two points with the
same coordinates as i. If a point i is weighted by ωi = 0, the result is the same
as if point i had not been included in the computation at all.

We can now use arbitrary weighting functions to calculate the weights to be
used. Obviously, we again have the dilemma that we do not know which points
are outliers and need to get assigned a lower weight. However, since all algorithms
use the locality assumption, we can make the following considerations: On the
one hand, it is usually very likely that taking the local neighborhood of points
includes a lot of outliers. But on the other hand, the neighbors that are near to
the query point will more likely be cluster members than the neighbors that are
farther apart from the query point. So a distance-based weighting function will
most likely weight cluster points higher and outliers lower.

Some examples of distance-based weighting functions are given in Figure 4.
We have chosen parameters such that the value at x = 0.0 is about f(0.0) ∼ 1.0
and at x = 1.0 it is about f(1.0) ∼ 0.1. Weights too close to 0.0 are not very
useful, because then, these points are not considered for the computation at all.
The example weighting functions we have used in our experiments (cf. Figure
4) include a constant weighting of 1.0 (solid red line in Figure 4), a linearly
decreasing function ranging from 1.0 to 0.1 (dashed blue line in Figure 4), an
exponential fall-off (green dashed line in Figure 4), a sigmoid-curved fall-off
(violet dotted line in Figure 4), a Gauss function (green dashed-dotted line in
Figure 4), and the complementary Gauss Error Function Erfc (red dashed-dotted
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Fig. 4. Some weight functions

line in Figure 4). The last one is a function well-known from statistics related to
normal distributions and, thus, probably the most sound choice.

In our experiments, all of the alternative weighting functions (except the con-
stant weight) lead to similar improvements so there is no reliable measure or
significance to establish a ranking between the different weighting functions. In
fact, it is plausible that different functions are appropriate for different under-
lying causes in the data or assumptions in the clustering process (e.g. clustering
algorithms assuming a Gauss distribution might benefit best from a Gaussian
weighting function).

For distance-based weighting functions, several tasks arise. We have chosen
to scale distances such that the outermost point has a distance of 1.0, i.e. a
weight of 0.1, ensuring that this point has still some guaranteed influence on the
result. This choice is somehow arbitrary, but it has at least the benefit of fairness.
On the other hand, this fairness comes at the cost that all weights depend on
the outermost point. When points are selected using a range query, the query
range could offer a better normalization. When an incremental computation is
desired, a completely different choice might be appropriate. Additionally, we are
computing weights based on the distance to a query point. This is appropriate
for situations where the data is obtained via kNN or ε-neighborhoods. When
computing the correlation for an arbitrary set of points, the distance might need
to be computed from the centroid or medoid of that set.

In the above described toy example of five cluster points plus one outlier
(cf. Figure 1), the observed sensitivity to that outlier is significantly decreased,
given that the outlier will only be weighted at around 0.1. Applying the weight-
ing function to the 3D example data set of Figure 2 we also observe an increased
robustness of the correlation analysis. Figures 5(a) and 5(b) depict the effect of
a weighted covariance on the relative strength of the first eigenvector and the
normalized sum of the first two eigenvectors, respectively, using the Erfc weight-
ing. Compared to Figures 3(a) and 3(b) we can derive that many of the sudden
drops have been erased, while the overall shape is well preserved. Especially
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Fig. 5. Relative strength of eigenvectors (with Erfc weight)

for higher values of k, sudden jumps have mostly disappeared. Therefore, this
measure is useful to avoid choosing a particularly bad value of k, i.e. a k where
the kNN of the particular point do not reflect the correct subspace of the cor-
responding cluster, by somewhat averaging with neighbors. Peaks usually are
shifted towards a slightly higher value of k. This is natural since the added
points are weighted low at first.

4.2 Auto-Tuning the Local Context of Correlation Analysis

Graphs such as Figure 3(a) show that even small differences in k can lead to
significantly different results. Therefore, it is reasonable not to use a fixed value
of k, i.e. a fixed number of neighboring points, but rather to adjust the value of
k for each point separately. For example, one can use a globally fixed number
of neighbors kmax and then individually select for each point the k ≤ kmax

neighbors that are relevant for the particular point. As far as kmax is sufficiently
large, we should in general be able to select a reasonable k, so that this strategy
produces accurate results. Of course there are different strategies of selecting k.
Since there are O(2kmax) subsets of the given kmax points that could be used,
simply trying all combinations of subsets of k points (1 ≤ k ≤ kmax) is not
feasible. Probably the easiest strategy of O(kmax) complexity is to test for any
k (1 ≤ k ≤ kmax) only the k nearest points, resulting in kmax tests. The next
question that arises is how to evaluate the results of the kmax tests in order to
report the best value for k. The obvious strategy of returning the result that
maximizes the relative strength of eigenvalues has shown to be not very reliable
because of jitter: one particular k value could result in a “perfect” hyperplane
consisting mainly of points that form a subspace completely different to the
subspace of the cluster. Figure 6 illustrates this effect: using only the three
points in the red ellipsoid, we will hardly find the correct hyperplane of the
cluster although all those three points are cluster members because they do not
fit the subspace perfectly. Rather, the three points perfectly form a different line
so the relative strength of the first eigenvalue will be very high (appr. 100%).
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k = 3

k = 16

perfect cluster 

hyperplane

Fig. 6. Problems with jitter

In fact, we are more interested in a range of k values where we have a high and
stable relative strength of eigenvalues, so we need a more elaborate filtering.

In our evaluations, we have chosen the strategy to use the k nearest points
for correlation analysis, with kmin ≤ k ≤ kmax, where kmin is a minimum
number of points such that the PCA is at least somewhat sensible at this data
set dimension. The motivation behind the introduction of the lower bound kmin

is that we need at least λ points to span a λ-dimensional hyperplane and 3 · λ
has been considered as a lower bound of points such that the detection of a λ-
dimensional hyperplane by PCA is trustworthy rather than arbitrary. To avoid
jitter and outlier effects, we use a sliding window to apply a dimensionality filter
and average the variance explained by the largest eigenvalues.

Let

ex(E, λ) :=
∑λ

i=1 ei∑d
i=1 ei

(7)

be the relative amount of variance explained by λ eigenvalues E = {ei} repre-
senting a hyperplane of dimensionality λ. Most correlation clustering algorithms
rely on a level of significance α ≤ 1 to decide how many eigenvectors explain
a significant variance and, thus, span the hyperplane of the cluster. Intuitively,
the eigenvectors are chosen such that the corresponding eigenvalues explain more
than α of the total variance. The number of those eigenvectors is called local di-
mensionality (of a cluster), denoted by λE , formally

λE = min
λ∈{1...d}

{λ | ex(E, λ) ≥ α} . (8)

Let us note that almost all correlation clustering algorithms use this notion
of local dimensionality. Typical values for α are 0.85, i.e. the eigenvectors that
span the hyperplane explain 85% of the total variance along all eigenvectors.

As indicated above, for filtering out the best value of k, we are intuitively
interested in a value where (i) the local dimensionality λ is stable, i.e. increasing
or decreasing k by a small degree does not affect the value of λ, and (ii) ex(E, λ)
is maximal and stable, i.e. increasing or decreasing k by a small degree does not
affect the value of ex(E, λ). The motivation behind these considerations is that
the value of k that fulfills both properties leads to the determination of a robust
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hyperplane, that maximizes the variance along its axis. In other words, using
the neighbors determined by k, the hyperplane reflects all of these neighbors in
a best possible way and there are most likely only very few neighbors that are
outliers to this hyperplane. In addition, increasing or decreasing k, i.e. adding
or deleting few neighbors, does not affect the correlation analysis.

To find the value of k that meets both properties, we determine ex(E, λ) for
all kmin ≤ k ≤ kmax. We then use a sliding window W = [kl, ku] and choose k =
(kl + ku)/2 such that for all k′ in W (i.e. kl ≤ k′ ≤ ku) the local dimensionality
λ is the same and the average of ex(Ek′ , λ) is maximized. Additionally, if this
maximum is at the very beginning or end of our search range (i.e. kl = kmin or
ku = kmax), we discard it. We can still obtain multiple maxima, one for each
dimensionality λ. In this case we pick the lowest like all correlation clustering
algorithms aiming at finding the lowest dimensional subspace clusters. Those are
the most interesting ones since they involve the largest set of correlations among
attributes.

5 Application to Existing Approaches

In the following, we discuss how our concepts can be integrated into existing
correlation clustering algorithms in order to enhance the quality of their results.
Exemplarily, we show this integration with two different types of algorithms,
the latest density-based algorithm ERiC and the k-means-based algorithm OR-
CLUS.

5.1 Application to Density-Based Correlation Clustering
Algorithms

The integration of our concepts into ERiC is rather straightforward. ERiC de-
termines for each data point p the subspace of the cluster to which p should be
assigned (hereafter called the subspace of p). The subspace of p is computed by
applying PCA to the kNN of p where k needs to be specified by the user.

Using our concepts, we can simply replace the parameter k by the global
maximum kmax of neighbors that should be considered. Both the weighting and
the auto-tuning can then be applied directly when computing the subspace of p.
First, from the kmaxNN of p, the optimal kp ≤ kmax for detecting the subspace
of p is determined as described in Section 4.2 based on a weighted covariance
as described in Section 4.1. Second, the subspace of p is computed by applying
PCA using a weighted covariance on the kpNN of p (cf. Section 4.1).

The integration of our concepts into other density-based algorithms like CO-
PAC, HiCO, and 4C can be done analogously.

5.2 Application to Partitioning Correlation Clustering Algorithms

ORCLUS determines the subspace of each cluster C by applying PCA to the
local neighborhood of the center of C, denoted by rC . The local neighborhood
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of rC includes the set SC of all points that have rC as their nearest cluster
representative.

Using our concepts, we can simply consider SC as the maximum set of points
that should be considered for PCA, i.e. kmax = |SC |. Both the weighting and
the auto-tuning can then be applied directly when computing the subspace of
C. First, from the SC , the optimal kC ≤ kmax for detecting the subspace of
C is determined as described in Section 4.2 based on a weighted covariance as
described in Section 4.1. Second, the subspace of C is computed by applying
PCA using a weighted covariance on the kC points in SC that are closest to rC

(cf. Section 4.1).

6 Experiments

6.1 Evaluation Methodology

In order to evaluate the results of our novel concepts integrated into ERiC and
ORCLUS, we generated artificial data sets with a well-defined gold standard, i.e.
we defined certain data distributions and all points in our data set are assigned to
the distribution with the maximum density in that particular point. Since both
ERiC and ORCLUS have different properties and, here, we are not interested
in judging which algorithm is better for which data set, we generated different
data sets for each algorithm.

To evaluate the quality of the clustering, we employ a pair-counting F-measure,
considering the noise points to be a cluster on its own. This means that any two
points in the data set form a pair if they belong to the same cluster (or noise).
Let C = {Ci} be a clustering (with Ci being the clusters in C, including the noise
cluster). Then PC := {(a, b) | ∃Ci : a ∈ Ci∧b ∈ Ci} is the set of pairs in clustering
C. The F-measure to evaluate how good a clustering C matches the gold standard
D is then defined as

F (C, D) :=
2 · |PC ∩ PD|

2 · |PC ∩ PD| + |PC \ PD| + |PD \ PC |
.

Obviously, F (C, D) ∈ [0, 1], where F (C, D) = 1.0 means that the clustering C
is identical to the gold standard D.

6.2 Synthetic Data

For evaluating the influence of our novel methods on both ORCLUS and ERiC,
we used several synthetic data sets ranging from 3 to 100 dimensions. In the
following discussion, we focus on some lower dimensional data sets for a clear
presentation.

ERiC. We first focus on two 3D synthetic data sets that can be seen in Figure 7.
Figure 8(a) gives the results for data set DS1 shown in Figure 7(a). We plot-
ted the F-measure of the compared algorithms along the y-axis and varied the
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Fig. 7. 3D synthetic data sets used for evaluating ERiC
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Fig. 8. Results of ERiC with different weight functions and auto-tuning

parameters k and kmax along the x-axis. The blue line represents the results of
the unmodified ERiC algorithm. Obviously the choice of k is nontrivial, a value
of about k = 34 gives the best results. The violet dotted line is the result when
using the Erfc weight in PCA. Obviously, the results are significantly better,
and any k in 35 < k < 65 gives good results. Therefore choosing a good k has
become a lot easier using only the weighting approach. The green line with the
short dash-dot pattern depicts the result of ERiC using a Gauss weight. As it
can be seen, the results using a simple Gaussian weighting do not significantly
differ from the Erfc weighting results.

The remaining three lines show the results of ERiC when using the auto-
tuning of the parameter k, i.e. for each point the optimal k ≤ kmax is determined
separately (for these graphs, the x-axis represents the chosen kmax value). The
red line is using the traditional PCA without any weighting, while the dashed
green and the orange line with the long dash-dot pattern represent the results
using the Erfc and Gauss weights, respectively. The results show that kmax simply
needs to be chosen high enough in order to achieve reasonably good results. While
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Fig. 9. Results of ERiC with different weight functions and auto-tuning on a sample
10D synthetic data set

these results do not reach the results of choosing the optimum k (which is not
possible without knowing the gold standard), they approach the optimal value
quite well. This observation dramatically simplifies the choice of the k/kmax

parameter.
Figure 8(b) depicts the results on DS2 shown in Figure 7(b). Overall, the

results on DS1 and DS2 are comparable. However, given that every point has
just one “sensible” dimensionality – the other data set had points that had both
a sensible 1D and 2D context – and the noise level is not as high, the effect of
the weighted PCA on DS2 is not as high as on DS1. Since increasing the noise
level will increase the difference between the non-weighted and weighted graphs,
the weighting is especially interesting for noisy (e.g. higher dimensional) data.

All observations that could be made for the two 3D data sets could also
be made for higher dimensional data sets. For example, Figure 9 shows the
results of ERiC with different extensions for a sample 10D data set. Again, the
version of ERiC using an Erfc weighted PCA in combination with the auto-tuned
selection of k achieved the best overall F-measure. Also, as long as kmax is chosen
sufficiently high, we get rather accurate results.

In summary, we observed that in all cases, the combination of the Erfc weighted
PCA and the auto-tuned selection of k considerably increased the F-measure of
the resulting clustering and significantly reduced the complexity of selecting suf-
ficient input parameters compared to the original ERiC algorithm.

ORCLUS. The results of ORCLUS are harder to evaluate, because the results
of ORCLUS depend on the order in which the data points are processed. There-
fore, we generated 100 permutations of the original data, applied ORCLUS with
optimal parameters to all of them, and averaged the results. The data set used
in these computations was a 10-dimensional data set, containing 10 clusters of
dimensionalities 2 to 5. The results are given in Table 1.

Each of these values was obtained by running ORCLUS and its variants on
the same 100 permutations of the input data set and averaging the resulting F-
measure values. The standard deviation over the 100 resulting F-measure values
is given to show the dependence of ORCLUS on picking good seeds. It can
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Table 1. Impact of the integration of our novel concepts into ORCLUS

Variant Average F-measure Standard Deviation

ORCLUS 0.667 0.046

ORCLUS + Gauss weight 0.684 0.055

ORCLUS + Exponential weight 0.676 0.054

ORCLUS + Erfc weight 0.683 0.061

ORCLUS + Linear weight 0.686 0.056

ORCLUS + Auto 0.751 0.070

ORCLUS + Auto + Gauss 0.763 0.069

ORCLUS + Auto + Exponential 0.754 0.075

ORCLUS + Auto + Erfc 0.754 0.075

ORCLUS + Auto + Linear 0.771 0.078

Table 2. Results on NBA data using ERiC with autotuning and Erfc weighting

cluster ID dim Description

1 4 “go-to-guys”

2 4 guards

3 4 reserves

4 5 small forwards

be observed that the benefits of using a weighted PCA are smaller (≈ 0.02)
than those of using an auto-tuning PCA (≈ 0.09) and the combination of both
actions further improves the results. Interestingly, in this experiment, a linear
weighting function is slightly better (by up to 0.02) than a Gaussian or Erfc
weighting. However, in general on different data sets, there is no significant
difference observable comparing different weighting functions. In summary, using
our novel concepts, the F-measure on this data set is improved by approximately
0.1 corresponding to a 10% quality boost.

6.3 Real-World Data

We applied the enhanced version of ERiC (using autotuning and Erfc weighting)
on a data set containing average career statistics of current and former NBA
players1. The data contains 15 features such as “games played” (G), “games
started” (GS), “minutes played per game” (MPG), “points per game” (PPG),
etc. for 413 former and current NBA players. We detected 4 interesting clusters
each containing players of similar characteristics (cf. Table 2). In addition, several
players were assigned to the noise set. Cluster 1 contains active and former
superstars like Michael Jordan, Allen Iverson, Larry Bird, Dominique Wilkins,
and LeBron James, etc. The second cluster features point and shooting guards.
A third cluster contains only very few players that are not so well-known because

1 Obtained from http://www.nba.com

http://www.nba.com
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Table 3. Results on Metabolome data using ERiC with autotuning and Erfc weighting

cluster ID dim Description

1 10 PKU

2 10 controll

3 11 PKU

4 12 PKU

5 13 PKU

they are usually reserves. The fourth cluster consists of small forwards. Let us
note that we also applied the original ERiC algorithm (without the extensions)
to the NBA data set but could not get any clear clusters. In summary, using
our novel concepts, the algorithm ERiC is now able to detect some meaningful
clusters on the NBA set.

In addition, we applied our novel concepts in combination with ERiC to the
Metabolome data set of [14] consisting of the concentrations of 43 metabolites in
20,391 human newborns. The newborns were labelled according to some specific
metabolic diseases. The data contains 19,730 healthy newborns (“control”), 306
newborns suffering from phenylketonuria (“PKU”), and 355 newborns suffering
from any other diseases (“other”). The results are depicted in Table 3. As it
can be seen, we could separate several of the newborns suffering from PKU
from the other newborns. Again, the original version of ERiC could not find any
comparatively good results.

7 Conclusion

Almost all correlation clustering algorithms suffer from an arbitrary selection of
points in the local neighborhood of cluster members or cluster representatives
from which the subspace of a cluster is determined by applying PCA. Choosing
the local neighborhood, is a heuristics that is usually more meaningfull than ran-
dom sampling. However, due to outliers in this selection, the process of finding
the correct subspace is often misled because PCA is rather sensitive to outliers.
In this paper, we discuss general concepts to enhance the robustness of PCA for
finding the correct subspace in order to increase the effectiveness of any PCA-
based correlation clustering algorithm. Thereby, we do not solve the problem of
making a more suitable selection rather than the local neighborhood but try to
ease the influence of outliers in this local neighborhood by a two-step approach:
First, a weighting function is applied to the points when computing the covari-
ance matrix for PCA in order to weight points that are potential outliers lower
than points that are potential cluster members. Second, a method for selecting
a suitable number of neighbors for each cluster member or cluster representative
separately is presented. We further discuss how our general method can be inte-
grated into existing correlation clustering algorithms based on different cluster
paradigms. Our experiments show that the quality of the corresponding results
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can be significantly enhanced when using our new methods. In addition, the
experiments show that our approach remarkably simplifies the selection of critical
parameters. In summary, our method considerably enhances the robustness and
usability of correlation clustering algorithms.
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Abstract. Sequence, widely appearing in various applications (e.g. event
logs, text documents, etc) is an ordered list of objects. Exploring corre-
lated objects in a sequence can provide useful knowledge among the ob-
jects, e.g., event causality in event log and word phrases in documents.
In this paper, we introduce correlation query that finds correlated pairs
of objects often appearing closely to each other in a given sequence. A
correlation query is specified by two control parameters, distance bound,
the requirement of object closeness, and correlation threshold, the mini-
mum requirement of correlation strength of result pairs. Instead of pro-
cessing the query by scanning the sequence multiple times, that is called
Multi-Scan Algorithm (MSA), we propose One-Scan Algorithm (OSA) and
Index-Based Algorithm (IBA). OSA accesses a queried sequence once and
IBA considers correlation threshold in the execution and effectively elim-
inates unneeded candidates from detail examination. An extensive set of
experiments is conducted to evaluate all these algorithms. Among them,
IBA, significantly outperforming the others, is the most efficient.

1 Introduction

Many datasets, such as event logs and textual documents, organize data ob-
jects in an ordered list, i.e., sequence. Both the data objects and their positions
are captured by the sequence where the closeness of two objects in a sequence
implies their relationships. We refer objects a and b as correlated if they often
occur closely to each other. Efficiently identifying correlated objects has a large
application base. For example, finding products likely to be selected by the same
customers some time after their purchase of certain products is a key to the suc-
cess of recommendations [4]. Detecting events usually happened some time after
some others from an event log can provide hints to determine event causality in
an event analysis [8]. Figuring out words frequently appearing together in docu-
ments will help identifying key phrases used and providing better understanding
of documents [6].

Motivated by the importance of identifying correlated objects in a sequence,
we introduce correlation query in this paper. Its definition is formalized in Sec-
tion 3. In a sequence, objects can be classified into object sets, i.e., subsets of
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objects categorized by certain properties of interests. Two objects are said to be
close if their distance along the sequence does not exceed a threshold, specified
by a query parameter distance bound. A correlation query is to retrieve object
set pairs that have a large portion of objects close to each other. Another query
parameter correlation threshold is specified that two object sets (that we call
them an object set pair) satisfy a correlation query when their correlation coeffi-
cient is greater than the specified threshold. A correlation coefficient (defined by
cosine function in this paper) measures the strength of correlation in two object
sets whose objects are closely located. A correlation query finds all the satisfied
correlated object set pairs from a sequence.

Efficiently processing a correlation query is challenging because the number of
close objects is subject to the specified distance bound. The most intuitive way is
to scan the queried sequence to measure the numbers of close objects, and then
determine the correlation coefficients. Following this idea, we propose a scan-
based algorithm, namely Multi-Scan Algorithm (MSA), to serve as the baseline
algorithm. It examines a pair of candidate object sets in each scan. Suppose there
are n objects sets. MSA scans the whole sequence

(
n
2

)
times that is very time

consuming. To overcome the shortcoming of MSA, we propose another scan-
based algorithm, One-Scan Algorithm (OSA), which finishes the query within
one sequence scan. Scan-based algorithms, however, have serious performance
deterioration when the queried sequence is very long. Since only object set pairs
with high correlation coefficients are needed and worth investigation, we pro-
pose Index-Based Algorithm (IBA), which builds an index for every object set
to capture the positions of mapped objects in the sequence. Given two indices,
the number of close objects can be determined by merging the two indices and
thus the correlation coefficient is calculated. Several effective optimization tech-
niques, such as candidate screening, group matching, and early termination, are
proposed to further boost up the search performance.

We conduct an extensive set of experiments on both synthetic and real datasets
to evaluate the proposed search algorithms. MSA and OSA perform stably with
various sequence properties and OSA significantly outperforms MSA. IBA runs
even much faster than OSA due to effectiveness of optimization techniques, espe-
cially when search criteria is strict (i.e., a large correlation threshold and a small
distance bound) and the cardinalities of object sets differ a lot. We also discuss
some variants of correlation query including constrained correlation query, posi-
tion correlation query and correlation spectrum query. Our contributions in this
paper are summarized as below:

1. We introduce a new query type, called correlation query, which retrieves
correlated object set pairs based on specified distance bound and correlation
threshold.

2. We analyze the characteristics of correlation query and propose two scan-
based algorithms, namely Multi-Scan Algorithm (MSA) and One-Scan Algo-
rithm (OSA).

3. We also propose Index-Based Algorithm (IBA), that indexes objects in a se-
quence, and employs optimization techniques for better search performance.
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4. We introduce variants of correlation query including constrained correlation
query, position correlation query and correlation spectrum query.

5. We conduct an extensive set of experiments to evaluate the performance of
the proposed algorithms. The results indicate that IBA performs better than
the others and it is the most efficient algorithm for this correlation query.

The remainder of the paper is organized as follows. Section 2 reviews related
work about correlation analysis in related domains. Section 3 formalizes the
correlation query and discusses algorithm design criteria. Section 4 details our
proposed algorithms. Section 5 discusses variants of correlation query. Section 6
evaluates the performance of proposed algorithms and presents our results. Sec-
tion 7 concludes this paper.

2 Related Work

Subject to application needs and data characteristics, the definitions and mea-
surements of object correlation are different [5,10]. In statistics, correlation mea-
sures the strength and direction of a linear relationship between two random
variables (e.g. education and income). Two random variables are correlated when
the values of both variables increase (or decrease) with similar amplitude simul-
taneously. In data mining where transaction databases are usually considered,
finding association among objects is one of the most important search. Result ob-
jects are those frequently appearing in same transactions [3]. Association mining
finds which pairs or groups of objects are often included in same transactions.

y ȳ

x fxy fxȳ fx

x̄ fx̄y fx̄ȳ fx̄

fy fȳ N

Fig. 1. A 2 × 2 contingency table for x and y

Finding correlated objects is fundamentally different from association min-
ing that correlated pairs of objects may not have high frequencies but strong
correlations [13]. Currently, there are a number of correlation metrics (e.g., lift,
cosine, χ2 and Pearson’s correlation coefficient) defined to quantify the strength
of object correlation [10]. Most of the metrics are developed based on contin-
gency table. Figure 1 shows a 2 × 2 contingency table for two objects, x and y
where fxy is the frequency (i.e., the counts) of baskets containing both x and y
at the same time, and fx̄ȳ is one containing neither x nor y. fxȳ (fx̄y) represents
the number of baskets containing x (or y) only. Based on these frequencies, x
and y are highly correlated if fxy is relatively large to fx and fy. To perform
such correlation analysis, all the frequencies have to be collected in advance.

There are several related research studies exploring correlation in sequences,
but they are different from what we focus in this paper. Existing studies concern
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the correlation between individual sequences from a pool of sequences [9,14],
while our work is to explore a single long sequence and find out the correlation
among objects according to distance bound a query parameter. Subject to the
setting of distance bound, the frequency of close objects is not fixed. Thus,
counting the number of close objects in prior is no longer feasible. Thus, new and
efficient algorithms that can quickly identify correlated objects are demanded.

3 Problem Formulation

A sequence, S, is a list of objects 〈o1, o2, · · · o|S|〉, where oi represents an object
o located at position i in S and |S| is the length of S. The distance between two
objects oi and oj where oi can be located either before or after oj , denoted by
δi,j , is equal to |j− i|. Two objects oi and oj are said to be close if their distance
is not greater than a distance bound ω, i.e., δi,j ≤ ω. Each object is classified
to one of n object sets, i.e., O = {Oi|i ∈ [1, n]} according to application needs.
The following is a running example.

Example 1 (Running Example). Given a sequence S = 〈a1, b2, a3, a4, b5,
b6, a7, c8, c9, d10, d11, c12〉 and four object sets, O = {A, B, C, D} with A = {a},
B = {b}, C = {c} and D = {d}. The distance between a7 and d10, δ7,10, is 3,
and that between a7 and b8, δ7,8, is 1. When ω is set to 2, a7 and b8 are regarded
to be close but a7 and d10 are not. �

Our model considers one object in one sequence position for presentation clarity.
It can be easily extended to have multiple objects located at a same position
and use real number as positions [7,12]. Correspondingly, our proposed search
algorithms are general enough to handle these variations. The correlation coeffi-
cient between two object sets is defined in Definition 1. We consider the cosine
metric because of its wide acceptance. The coefficient φω(X, Y ) ranges from 0
to 1. The larger the coefficient is, the stronger the correlation of two object sets
exploits.

Definition 1 Object Set Correlation Coefficient. The correlation coeffi-
cient between two object sets X and Y is defined in Equation (1).

φω(X, Y ) =
|XY |ω√
|X | · |Y |

(1)

where |X | and |Y | are the numbers of objects in X and in Y , respectively and
|XY |ω is the number of close object pairs that depends on the setting of ω. For
convenience, we omit ω from φω(X, Y ) and |XY |ω if the context is clear. �

To calculate φ(X, Y ), |X |, |Y | and |XY | have to be determined. However, it is
not that straightforward to measure |XY | due to a redundant count problem. Let
us consider the first 5 objects a1, b2, a3, a4, b5 in S in the running example. If ω
is set to 2, b2 is close to a1, a3 and a4, and b5 is close to a3 and a4. Based on
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this, while |A| and |B| are 3 and 2, respectively we would obtain 5 pairs of close
objects (i.e., |AB| = 5), which is, however, incorrect. In fact, |XY | represents
the number of close object pairs that must be disjoint. In other words, once an
object in set X is identified to be close to an object in set Y , it contributes
only one to |XY |, no matter how many objects in set Y it is close to and vice
versa. Back to the running example, we can only identify 2 disjoint close object
pairs, e.g., 〈a1, b2〉 and 〈a4, b5〉 and |AB| equals 2. Based on object set correlation
coefficient, correlation query is formally defined in Definition 2 and exemplified in
Example 2. Take the redundant count problem into consideration, our proposed
algorithms to be discussed next guarantee the correctness of |XY |.

Definition 2 Correlation Query. Given a sequence, a set of predefined object
sets, O, and two query parameters: distance bound, ω, and correlation threshold,
t, a correlation query, Q(S, ω, t), returns all pairs of object sets (X, Y ) ∈ O×O
with φω(X, Y ) > t. �

Example 2. Given a correlation query (S, 2, 0.5) using S and O specified in
Example 1, the correlation coefficients of all object set pairs are derived according
to Equation (1) and listed in Figure 2.

XY |X| |Y | |XY |ω φω(X, Y )

AB 4 3 3 0.87
AC 4 3 1 0.29
AD 4 2 0 0.00
BC 3 3 1 0.33
BD 3 2 0 0.00
CD 3 2 2 0.82

Fig. 2. Correlation coefficients

Given the four object sets, there are 6 object set pairs. As t is set to 0.5, only
AB and CD are qualified and returned as the result set. �

4 Search Algorithms

In this section, we present three algorithms for correlation query, namely, Multi-
Scan Algorithm (MSA), One-Scan Algorithm (OSA) and Index-Based Algorithm
(IBA). MSA and OSA are scan-based while IBA is an index approach.

4.1 Multi-Scan Algorithm (MSA)

Multi-Scan Algorithm (MSA) is an iterative algorithm. In each turn, it examines
one pair of object sets, say X and Y , and determines the corresponding |X |, |Y |
and |XY | to compute φ(X, Y ). It skips objects not belonging to candidate object
sets. Given n sets of data objects, MSA iterates for

(
n
2

)
object set pairs.
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To tackle the redundant count problem that affects the correctness of |XY |,
we allocate a sliding window W to buffer the ω recently examined objects. An
object is only compared against those objects inside W to form close object
pairs. If an object can be paired with multiple objects in W , the oldest object is
matched so the recent ones are reserved to match with those later examined in
order to maximize |XY |. Once an object is paired with a new object, it is deleted
from the sliding window W to prevent double counting. A counter cXY carries
the number of close object pairs formed so far with zero as its initial value.

Figure 3(a) depicts the pseudo-code of MSA. It consists of a big loop (line
1-15). For each iteration, it examines one object set pair. It reads one object o
from S each time (line 4). It compares o against a buffer W and updates counters
(i.e., cX , cY and cXY ) and W accordingly (line 6-11). By the end of each turn,
it collects the examined object sets if the calculated correlation coefficient is
greater than a correction threshold, t (line 14) and returns the result (line 16).
Example 3 shows how MSA determines the correlation coefficient.

Example 3. Suppose object sets A and B are examined and ω set to 2. First,
three counters cA, cB and cAB that are used to measure |A|, |B| and |AB|,
respectively, are all initialized to 0, and a sliding window, W , that buffers two
recently accessed objects, is initialized with (⊥,⊥), (where ⊥ means no object).
The trace of MSA examining A and B is shown in Figure 3(b) where each row
presents a state right after an object is examined.

Algorithm. MSA
input: a sequence S; a set of object sets O,

dist. bound ω; corr. threshold t;
output: a result set of object set pairs R;
Begin
1. foreach (X, Y ) ∈ O ×O ∧ X �= Y do
2. start at the head of S;

cX ← 0; cY ← 0; cXY ← 0;
3. repeat
4. read o from S;
5. if o ∈ X ∨ o ∈ Y then
6. increase cX(cY ) if o ∈ X (Y ) by 1;
7. compare o against W ;
8. if o matches with o′ then
9. increase cXY by 1;

10. replace o′ with o′ in W ; add o to W ;
11. else add o to W ;
12. else add ⊥ to W ;
13. until S end;
14. if cXY√

cX ·cY
> t then R ← R ∪ {(X, Y )};

15. endforeach
16. return R;
End.

(a) The pseudo-code of MSA

object W matched cA cB cAB

〈init〉 (⊥,⊥) - 0 0 0
a1 (⊥,a1) no 1 0 0
b2 (a1,b2) 〈a1, b2〉 1 1 1
a3 (b2,a3) no 2 1 1
a4 (a3,a4) no 3 1 1
b5 (a4,b5) 〈a3, b5〉 3 2 2
b6 (b5,b6) 〈a4, b6〉 3 3 3
a7 (b6,a7) no 4 3 3
c8 (a7,⊥) no 4 3 3
c9 (⊥,⊥) no 4 3 3
d10 (⊥,⊥) no 4 3 3
d11 (⊥,⊥) no 4 3 3
c12 (⊥,⊥) no 4 3 3

(b) Trace of MSA for A and B

Fig. 3. Multi-Scan Algorithm
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The search starts with examining a1 (∈ A) from S; cA and W are updated to
1 and (⊥, a1), respectively. Next, b2 is examined and it is close to a1 in W . Both
are marked as a1 and b2 so they are not available for other match and both cB

are cAB are updated to 1. Next, a3 is accessed and cA is increased to 2. Since no
buffered object available for matching, it is appended to W , while a1 is shifted
out. W becomes (b2, a3). Next, a4 is scanned and W is replaced with (a3,a4)
and cA is increased to 3. Later, b5 is examined and both a3 and a4 are close to
it. To maximize cAB, b5 is matched with a3, i.e, the older one in W and cAB is
updated to 2. This examination continues until S is completely scanned. At last,
cA, cB and cAB are 4, 3, and 3, respectively and hence the coefficient φ(A, B) is
obtained as cAB/

√
cA × cB = 3/

√
4 × 3 = 0.87. �

MSA needs only a few counters and a ω-slot buffer. However, it is inefficient
because of its blind scan of the sequence multiple times. As seen in Example 3,
the last five objects scanned from S do not belong to either A or B and they do
not affect φ(A, B) but MSA has to scan all of them. Similarly, when examining
another pair of candidates, C and D, the head portion of the sequence that
contains no related objects is also scanned. Finally, each scan incurs O(ω · |S|)
comparisons. Hence, the complexity of MSA is O(n2 · ω · |S|).

4.2 One-Scan Algorithm (OSA)

One-Scan Algorithm (OSA) improves MSA by evaluating all object set pairs in
one sequence scan. For each object set pair, it counts the numbers of close objects.
During the sequence scan, it updates the respective counters. The pseudo-code
of OSA is depicted in Figure 4(a). It compares each examined object o against
a sliding window W and updates respective counters (line 2-12). After the scan,
those with coefficient higher than the correlation threshold t are collected as a
part of the query result (line 13-15) and finally the result is returned (line 16).

To address the redundant count problem, we associate objects in W with their
matched partners if any. When an object o ∈ O is examined against objects in
W , it tries to match with an object available, i.e., not belonging to O and not
being matched with any object belonging to O. In case multiple buffered objects
are available to match, the oldest one is chosen. Example 4 illustrates OSA based
on our running example.

Example 4. Due to limited space, our discussion focuses only on object sets
A, B and C and their counters cAB, cAC and cBC . Assume that ω is set to
2. Figure 4(b) shows the trace. We use x:{y, z} to denote a buffered object x
and its paired objects, y and z. OSA first loads a1 from S and buffers it in W ,
which becomes (⊥, a1:{}). Next, b2 is examined. It matches a1 and contributes
one to cAB. Consequently, W becomes (a1:{b2}, b2:{a1}). Thereafter, a3 and a4

are studied and found that b2 has already been matched with a1. Now W becomes
(a3:{}, a4:{}). Further, b5 is matched with a3 which is the oldest and available
and cAB is increased to 2. Next, b6 is matched with a4; thus, cAB is updated
to 3. For the next object a7, no match is found. Next, c8 is retrieved and it is
matched with both b6 and a7. Consequently, both cAC and cBC are updated to 1.
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Fig. 4. One-Scan Algorithm

The next object is c9 which does not find any close object and hence is simply
inserted into W . The run continues until S is fully scanned. Finally, cAB, cAC

and cBC are 3, 1, and 1, respectively, based on which, the correlation coefficients
of the object set pairs are calculated. �
For each object o ∈ O retrieved from a sequence, OSA examines it against all
the objects in the sliding window W . Suppose there are n object sets, an object
in W can be associated with at most n−1 objects. The complexity of examining
an object is O(ω) and that of OSA is O(ω · |S|) which is n2 times faster than
MSA. However, OSA needs maintain O(n2) counters and a window with O(n ·ω)
slots which incurs a higher space requirement.

4.3 Index-Based Algorithm (IBA)

Since correlation query retrieves object set pairs whose correlation coefficients
are higher than a given threshold based on Definition 2, evaluating all the ob-
ject set pairs is unneeded especially when most of them do not provide higher
coefficients. Motivated by this observation, we propose Index-Based Algorithm
(IBA). IBA preserves multiple indices, each of which corresponds to one object
set. Each index maintains the positions of objects (in the sequence) belonging
to the corresponding object set in an ascending order. For instance, for object
set A in our running example, the index maintains 〈1, 3, 4, 7〉, i.e., a shorter

Algorithm. OSA
input: a sequence S; a set of object sets O,

dist. bound ω; corr. threshold t;
output: a result set of object set pairs R;
Begin
1. start at the head of S;

cX ← 0; cY ← 0; cXY ← 0;
2. repeat
3. read o from S (assuming o ∈ X);
4. increase cX by 1;
5. compare o with W ;
6. forall o′ in W matched with o
7. increase cXY by 1 where o′ ∈ Y ′;
8. associate o′ with o;
9. associate o with o′;

10. endforall
11. add o and its associated objects to W ;
12. until S end;
13. foreach (X, Y ) ∈ O ×O ∧ X �= Y
14. if cXY√

cX ·cY
> t then R ← R ∪ {(X, Y )}

15. endforeach
16. return R;
End.

(a) The pseudo-code of OSA

exam W cAB cAC cBC

〈init〉 (⊥, ⊥) 0 0 0
a1 (⊥, a1:{}) 0 0 0
b2 (a1:{b2}, b2:{a1}) 1 0 0
a3 (b2:{a1}, a3:{}) 1 0 0
a4 (a3:{}, a4:{}) 1 0 0
b5 (a4:{}, b5:{a3}) 2 0 0
b6 (b5:{a3}, b6:{a4}) 3 0 0
a7 (b6:{a4}, a7:{}) 3 0 0
c8 (a7:{c8}, c8:{a7, b6}) 3 1 1
c9 (c8:{a5, b6}, c9:{}) 3 1 1
d10 (c9:{}, d10) 3 1 1
d11 (d10, d11) 3 1 1
c12 (d11, c12 : {}) 3 1 1

(b) Trace of OSA
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sequence. The index can be prepared off line and its small construction cost that
involves only one sequence scan can be amortized by multiple correlation queries
with different ω’s. Also, statistics collected during index construction is useful
to speed up the search.

Given two indices, the correlation coefficient of two corresponding object sets
X and Y can be determined by a merge-like matching function. Initially, two
pointers pX and pY point to the head of both indices. Follow steps in a compar-
ison, match, and slide strategy. In the comparison step, two positions pointed
by pX and pY are compared and the smaller one in the sequence is taken to
compare against the buffer W , which keeps ω recently examined positions and
corresponding object sets that contribute these position entries. If a match is
found, the counter cXY is increased by one, and both matched positions become
unavailable for later match. Otherwise, the position is inserted into the buffer.
Finally, the pointer located at the examined position slides to the next one and
the same steps repeat. If one of indices reaches its end, another index is iter-
atively fetched. It continues until both indices are completely scanned. We use
Example 5 to illustrate this matching.

Example 5. The trace of IBA matching function (for object sets A and C, based
on our running example) is depicted in Figure 5. An object with underline rep-
resents the one having smaller position, i.e., the examined object. In the indices,
the positions of objects are stored. For illustration, we show the objects.

A C W cAC

〈init〉 〈init〉 (⊥,⊥) 0
a1 c8 (⊥,a1) 0
a3 c8 (⊥,a3) 0
a4 c8 (a3,a4) 0
a7 c8 (⊥,a7) 0
− c8 (a7,c8) 1
− c9 (c8,c9) 1
− c12 (c9,c12) 1

Fig. 5. Trace of IBA for object sets A and C

First, all the four objects from A, i.e, a1, a3, a4 and a7, are retrieved as all
of them are smaller than c8, the head object of set C. Then, the index for A
reaches its end and c8, the head object of C is retrieved. It matches a7 in W and
cAC is increased to 1. Thereafter, objects c9 and c12 are examined and the end of
set C is reached, indicating the completion of this matching function. Since cAC

(i.e., |AC|) equals 1 and |A| and |C| are 4 and 3, respectively, the correlation
coefficient of sets A and C φ(A, C) = 1/

√
4 · 3 = 0.29. �

This matching function outperforms MSA because it only scans objects belong-
ing to the targeted object sets but not the entire sequence as MSA does. It
reduces the number of scanned objects from O(|S|) to O(|X | + |Y |), with X
and Y indicating the examined object sets. However, it may still suffer from
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multiple scans of indices. Actually, the performance of IBA can be significantly
improved when several optimization techniques are applied. In what follows, we
first discuss three optimization techniques, namely, candidate screening, group
matching and early termination and then explain how to integrate them into
IBA to further boost up the search performance.

Candidate Screening. Candidate screening attempts to filter out object set
pairs with their correlation coefficient definitely lower than a given correlation
threshold, so the examination of those can be saved. Based on the cardinality
and distribution of each object set, two coefficient values can be estimated re-
spectively. In the following, we detail the two correlation coefficient estimations.

– Estimation based on cardinalities. As |X | and |Y | are the cardinalities of
X and Y , respectively and they can be accounted during index building, the
upper bound of the correlation coefficient between X and Y is min(|X|,|Y |)√

|X|·|Y |
.

For instance, the maximum correlation coefficient between A and D in our
example is min(4,2)√

4·2 = 0.45.
– Estimation based on distributions. The cardinality-based estimation is

straightforward, but it is nothing related to ω. In fact, the number of close
objects is highly dependent on ω and the distance between close objects. Dur-
ing the index construction for each object set, we account 1) the smallest and
the largest positions of objects inside the object set to get the distance range;
and 2) the distance between any two adjacent objects. For any two object
sets, if their distance ranges are more than ω apart, they are guaranteed not
correlated. Thus, the estimated coefficient should be zero. For instance, the
ranges of A and D in our running example are (1, 7) and (10, 12). Conse-
quently, the ranges of A and D are disjoint and their estimated coefficient
is, of course, zero.

If two object sets have their ranges overlap, their coefficient can be es-
timated based on the probability of finding close object pairs, as detailed
in the following. Assuming distances between adjacent objects in an object
set X follows normal distribution, we collect the mean (μX) and standard
deviation (σX) of all the distances between adjacent objects during index
construction. Other possible distributions will be studied in our future work.
Consider A from our example. After building the index, |A|, μA and σA are
collected as 4, 1.67 (i.e.,2+1+2

3 ) and 0.58, respectively.
We estimate the probability that the distance between objects of two

object sets is not greater than ω, denoted by p. So, p is the probability
that objects are close enough to match. Let δX,Y be the expected distance
between objects in X and Y , and p can be estimated by P (|δX,Y | ≤ ω) =
P (−ω ≤ δX,Y ≤ ω), i.e., the probability that δX,Y lies within the range
[−ω, ω]. To obtain p, we first obtain the standard normal variable Z based
on Central Limit Theorem [11], i.e.,

Z =
(μX − μY ) − δX,Y√
σ2

X/|X |+ σ2
Y /|Y |
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where the value of Z follows normal distribution. We estimate p as P (zlower ≤
Z ≤ zupper) (i.e., P (−∞ ≤ Z ≤ zupper) − P (−∞ ≤ Z ≤ zlower)), in which
zlower and zupper are the lower and upper limits, respectively. To resolve this
probability, zlower and zupper are computed as zlower = (μX−μY )−ω√

σ2
X/|X|+σ2

Y /|Y |
, and

zupper = (μX−μY )+ω√
σ2

X/|X|+σ2
Y /|Y |

. Finally, the estimated maximum correlation coef-

ficient is determined as p · min(|X|,|Y |)√
|X|·|Y |

.

Our approach first conducts cardinality-based estimation that is lightweight
and discard those object set pairs with their estimations smaller than the given
threshold. For those object set pairs passing the first estimation, distribution-
based estimation is conducted and compared. Finally, the indices of those object
set pairs passing both tests are examined with matching functions.

Group Matching. Instead of pairwise matching, matching among a group of
object sets is preferred, thus avoiding the multiple index accesses if an object
set is founded to be correlated to more than one object set simultaneously. The
idea of group matching is pretty similar to OSA by maintaining several counters.
The only difference is that multiple indices, rather than a single sequence, are
traversed at the same time.

Early Termination. Early termination determines approximate the correlation
coefficient of object set pairs without completely traversing the indices, thereby
improving the response of the search. We maintain cX , cY and cXY to keep track
of the numbers of examined objects in X , Y , and matched objects, respectively.
In addition, we keep ωX and ωY to bookkeep the number of buffered objects of
X and Y that are still available (i.e., not yet matched). During matching, we
estimate both the maximal correlation coefficient maxφ(X, Y ) and the minimal
correlation coefficient minφ(X, Y ).

The maximal coefficient maxφ(X, Y ) can be obtained if all remaining unex-
amined objects can be matched and calculated as cXY +min(|X|−cX+ωX ,|Y |−cY +ωY )√

|X||Y |
at any point of time. Consider Example 5. Behind object c8, there is no more
object from A and two objects from C pending for the examination, with an
empty buffer. Since the current cAC is one, we can approximate the maximal
correlation coefficient maxφ(A, C) is 1+min(4−4+0,3−1+0)√

4·3 = 1√
4·3 = 0.29. Since

the maximum value of the coefficient is below the given threshold (t = 0.5), it is
safe to skip the remaining objects (i.e., c9 and c12) from examination and assures
that object set A and C are not correlated.

The minimal correlation coefficient, minφ(X, Y ) can be determined if all the
remaining unexamined objects do not match. It is expressed as cXY√

|X||Y |
. Once

an object set pair with minimal coefficient larger than the given threshold, it is
guaranteed to be one of the answer sets. Back to Example 5 and suppose t = 0.2.
After the examination of object c8, cAC is one and there might not be any close
object pair. Therefore, the minimal value of coefficient can be derived according
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Algorithm IBA
input: a sequence S; a set of object sets O,

distance bound ω; correlation threshold t;
output: a result set of object set pairs R;
Begin
1. foreach (X, Y ) ∈ O ×O do
2. if (X,Y) pass candidate screen then
3. start from heads of IX and IY ;
4. repeat
5. read o with the smallest position from IX and IY ;
6. increase cX if o ∈ X (or cY if o ∈ Y ) by 1;
7. compare o with W ;
8. if match then increase cXY by 1.
9. add o to W ;

10. compute maxφ and minφ;
11. if maxφ ≤ t then goto 14;
12. if minφ > t then R ← R ∪ {(X, Y )}; goto 14;
13. until IX and IY end;
14. if cXY√

cX ·cY
> t then R ← R ∪ {(X, Y )};

15. endforeach
16. return R;
End

Fig. 6. The pseudo-code of IBA

to cAC√
|A|·|C|

, i.e., minφ(A, C) = 1√
4·3 = 0.29. Thus, it can be safely included as

an answer set.
Putting all the techniques together, Figure 6 lists the pseudo-code of IBA.

IBA first prepares a pool of candidate object set pairs. Then, it studies all
the individuals with candidate screening and discards those uncorrelated based
on the two estimated coefficients (line 2). The remainders are then examined
through group matching. Here, the figure shows the matching function (line 5-9)
for sake of simplicity and IX and IY are the indices of X and Y , respectively.
During the match, we validate if early termination applies to stop the matching
without examining the rest of the indices (line 10-12). Finally IBA outputs the
result object set pairs if their correlation coefficients (line 14) (or their minimal
correlation coefficients obtained while the match is early terminated (line 12))
are greater than the correlation threshold of the query.

Let 1/f be a fraction of candidates passing the candidate screening. IBA
examines n2/f candidates with f ∈ [1, n2]. As each matching function incurs
O(ω · |S|/n) comparisons, the complexity of IBA is O(n · ω · |S|/f). The perfor-
mance of IBA depends on f that is affected by distance bound and correlation
threshold. So, for a small ω or a large correlation coefficient, f will become large.
When f > n, IBA will achieve better performance than OSA. To construct the
index, a sequence needs to be scanned once and the cost of O(|S|) is amortized
by correlation queries.
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5 Variants of Correlation Query

In this section, we discuss several variants of our correlation query, namely, con-
strained correlation query, position correlation query and correlation spectrum
query, and discuss the extensions of our algorithms to support them.

Constrained Correlation Query. In our model, if multiple objects are avail-
able for matching, the farthest one within a window is picked to maximize the
counts and thus the correlation coefficient. However, the matching in some cases
is not arbitrary. For instance, in document analysis, a word is usually semanti-
cally related with closest one; in event causality analysis, one cause event must
occur right before its consequence. Therefore, the presence order have to be
considered in identifying close object pairs. Constrained correlation query takes
additional matching constraints into consideration. Our proposed algorithms can
be easily adjusted by incorporating matching rules, like matching the closest one.
When an examined object from a sequence is compared with buffered objects,
the matching rules are applied to find a right candidate to match.

Position Correlation Query. For some applications, it is also interesting to
know the correlation of objects with respect to their positions in a sequence.
For example, a company may be interested to explore the correlation of their
products sold to certain days and event analysts want to identify what events are
likely to happen at certain times. Specific to temporal data, this is also referred
to as temporal autocorrelation. Putting the search into a generalized framework,
position correlation query explores the correlation of objects to their positions
in a sequence. This query can be extended to determine object periodicity in a
sequence by specifying regular interval. To support this variant, our algorithms
can be extended by buffering specific sequence positions rather than examined
objects. The other parts of our algorithms remain the same to count the number
of close objects and to determine correlation coefficients.

Correlation Spectrum Query. Correlation coefficients increase together with
the number of close objects which is in turn controlled by ω. In some applications,
we might suspect that two object sets are correlated but are not so certain about
the setting of a distance bound which can produce a high correlation coefficient.
A straightforward approach is to obtain the coefficient for each possible ω, which
varies from 1 up to the length of the entire sequence. Correlation spectrum query
returns the coefficients between two object sets according to a range of ω but
not a single one. The proposed algorithms can be extended by keeping a large
number of counters and a very large buffer. However, it may not be space and
time efficient. We shall study this in our future direction.

6 Performance Evaluation

This section evaluates the performance of our three proposed algorithms, namely,
Multi-Scan Algorithm (MSA), One-Scan Algorithm (OSA) and Index-Based Al-
gorithm (IBA) for correlation query. We implemented them in GNU C++ and
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conducted experiments on Linux computers with Intel CPU 3.2GHz. We eval-
uate our algorithms based on synthetic and realistic data sequences with each
sequence stored in one file. Synthetic data sequences are characterized by the
sequence length (i.e., |S|), the number of object sets (i.e., n) and the variations
of object set cardinalities (controlled by a factor s). The sequence length varies
from 1M (220 objects) to 5M with 2M as the default unless specified otherwise.
The number of object sets (n) is ranged from 20 to 100 in step of 20 with 60
as the default. The cardinalities of object set are controlled by a skewness fac-
tor s. In generating synthetic sequence, the probability of objects in a sequence
mapped to object sets follows Zipf distribution with s controlling the skewness of
the distribution. The value of s varies from 1.5 to 3 in step of 0.5. This affects the
cardinalities of object sets and the distributions of objects of an object set in a
sequence. As a large s is set, both object set cardinalities and distributions vary
a lot and only a few object sets would produce higher correlation coefficients.

We also use two realistic data sequences, i.e., EARTHQUAKE [2] and APRS [1].
EARTHQUAKE is an earthquake log. It remarks times, geographical coordinates
and earthquake magnitudes. This log contains 446k records ordered according
to time. We classify each entry based on coordinates into 100 equal-sized rect-
angular geographical regions. For EARTHQUAKE, |S| = 446k and n = 100.
Correlation query is evaluated on this earthquake log to search which pairs of
geographical regions usually experienced earthquake at the same time (according
to the setting of ω). APRS is a message log about radio base station broadcast-
ing messages in United States. It includes times and names of base stations that
broadcast. The log consists of 188k records related to 1000 base stations col-
lected on Aug 23 2001, and it is ordered based on time. For APRS, |S| = 188k
and n = 1000. In this log, it only records base stations who broadcast messages
but no information about their correspondents. Correlation query is used to find
pairs of communicating base stations based on an observation that two commu-
nicating base stations would have multiple message exchanges within small time
intervals, determined by ω.

Correlation query is evaluated based on two parameters, namely, distance
bound (ω) and correlation threshold (t). The settings of ω is varied from 10, 100,
to 1000 and t is varied among 0.4, 0.5, and 0.6. Two performance metrics are
measured, namely, elapsed time and I/O cost. The elapsed time is the duration
of time, in terms of seconds, from the time when an algorithm starts to the time
when all the results are returned. The I/O cost measures the number of pages
accessed from an underlying file storing the sequence. The page size is 4KB. The
results to be present are the averages of 100 runs for each experiment setting.

6.1 Evaluation on Synthetic Data

The first set of experiments is based on synthetic data sequence. We evaluate all
the factors, namely, ω, t, n, |S| and s. We first evaluate the impact of ω on the
search performance. The larger the ω is, the more the objects are considered to
be close and hence the larger the resulted correlation coefficients are. Figure 7(a)
and Figure 7(b) depict the results in terms of elapsed time and number of pages
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Fig. 7. Impact of ω

accessed for various ω while |S|, n and s are fixed at 2M , 60 and 2.0, respectively.
From Figure 7(a), it can be observed that an increase of ω results in longer
elapsed time. For both MSA and OSA, the size of the buffer is increased as
ω grows thus increasing the lookup cost. Among all, MSA incurs the longest
elapsed time, several orders of magnitude longer than OSA and IBA for same
settings because of its multiple scans. On the other hand, IBA performs the
best and at least 10 times faster than OSA. From the figure, we can see OSA
and MSA are invariant to the correlation threshold setting (t from 0.4 to 0.6)
but IBA performs better when a larger t is set. This is because the proposed
optimization techniques become more effective when t is larger.

In Figure 7(b), observations similar to Figure 7(a) are made that MSA is
the worst among all candidates. Both OSA and MSA incur constant I/O costs,
due to a fixed number of scans. The performance of IBA varies depending on the
number of object set pairs being investigated. When t is smaller (e.g., t = 0.4) or
ω is larger (e.g., ω = 1000), IBA becomes less competitive than OSA in terms of
number of page accesses. This is because the optimization techniques proposed
to speed up the performance of IBA do not take effect for a longer distance bound
or a larger correlation threshold, without mentioning that IBA still suffers from
multiple scans compared with OSA. However, the measurement of counts for
correlation coefficient is CPU intensive. IBA, although accessing a little more
pages, incurs less overheads in matching objects to measure the coefficient and
hence its cost is payed off. As previously shown, IBA takes shorter elapsed time.
Since MSA is identified as the weakest candidate, we omit it from the following
discussion. Besides, we focus our remaining evaluation on the elapsed time.

Then, we evaluate the factor of n, the number of object sets. The immediate
effect of n is on the size of a candidate pool and the number of candidates in
matching for IBA. Figure 8(a) plots the results in terms of elapsed time against n.
The other factors such as |S|, s and w are fixed at 2M, 2.0 and 100, respectively.
For IBA, the index construction time is 6.2 seconds for all n evaluated and the
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Fig. 8. Impacts of n and |S|

indices are used for queries with various t. The performance of OSA is consistent
to our analysis that it is invariant to n. On the other hand, IBA is more or less
stable to n. Although the number of object set pairs grows as n does, the average
sizes of indices are reduced due to fixed |S|. Further, most of the pairs are filtered
out when the threshold t is set to be high. As a result, we can observe a significant
difference between IBA and OSA especially when t is set to 0.6.

Next, we evaluate the impact of |S|, the length of sequence. Figure 8(b) shows
the results in terms of elapsed time versus the length of sequence, |S|. The other
factors such as n, s, and ω are set to 60, 2 and 100, respectively. Obviously,
a longer sequence results in a longer elapsed time. OSA is invariant to t as
explained before and its running time is linear proportional to |S|. IBA again
runs much faster than OSA for all |S| evaluated. From this, we can conclude
that for a long sequence, IBA is superior to OSA, particularly when a larger t is
specified. For |S| = 1M, 2M, 3M, 4M and 5M , the index construction times for
IBA are 3.1, 6.2, 9.4, 12.4, 15.1 seconds, respectively.

Further, we examine the impact of s, the skewness parameter for object set
cardinality variation. If the object cardinalities are very different, the correlation
coefficients of object set pairs would not be high due to a number of unmatched
objects. In this evaluation, we vary s among 1.5, 2, 2.5 and 3. When s is set to
3, the produced sequence has the most significant variation in the cardinalities
of object sets, i.e., the most skewed sequence with regard to cardinalities.

The results are displayed in Figure 9(a). Here, the performance of OSA is
improved together with the increase of s. This is because when s is large, cer-
tain object sets dominate the entire sequence and thus the buffer. As a results,
the majority of the objects in the sequence belong to a small number of object
sets, and the comparison between objects from the same set, which is expected
to occur very frequently, can be saved. On the other hand, IBA performs well
when s is set to 2 or above. For these settings, the object set cardinalities are
skewed and most of the object set pairs that are identified not correlated will
be eliminated at the beginning. However, when s is at 1.5, object sets are in
similar sizes and hence the estimation based on cardinalities and distribution is
not effective in candidate screening. Many object set pairs have to be examined



452 K.C.K. Lee et al.

0

3

6

9

12

1.5 2 2.5 3

OSA (t=0.4)
OSA (t=0.5)
OSA (t=0.6)
IBA (t=0.4)
IBA (t=0.5)
IBA (t=0.6)

s

se
co

n
d

s

(a) Impact of s

1

10

100

1000

|S|=1,
m=20

|S|=2,
m=40

|S|=3,
m=60

|S|=4,
m=80

|S|=5,
m=100

No opt
Cand Scr Only
Cand Scr + Group Match
Cand Scr + Group Match + Early Term

|S|, m

se
co

n
d

s

(b) Evaluation of IBA (ω = 100)

Fig. 9. Elapsed time for various s and Evaluation of IBA optimization

in detail, causing a longer elapsed time. However, this cardinality variation can
be detected during the IBA index construction. If s is small, OSA is preferred.
Otherwise, IBA is more efficient especially when a larger threshold (t) is used.

Evaluated upon all the factors in synthetic data sequences, IBA is shown to
perform the best. Now we investigate the effectiveness of proposed techniques to
improve IBA. Recall that the three proposed techniques are candidate screening
(labeled as Cand Scr), group matching (Group Matching) and Early Termina-
tion (Early Term). Instead of trying every possible combination of proposed
techniques, we incrementally enable those techniques against IBA with no tech-
nique applied (No opt) and evaluate the performance in terms of elapsed time.
In this experiment, we fix ω at 100 and t at 0.5. The results are shown in Fig-
ure 9(b), from which we can observe that candidate screening is the most effective
approach that reduces the elapsed time by screening out irrelevant candidates.
Group Matching and Early Termination can further slightly reduce the elapsed
time.

6.2 Evaluation of Real Data

In this subsection, we evaluate the performance of OSA and IBA on real datasets.
We vary both ω and t in our evaluation. This experiment tests the practicality
of our algorithms in real situations. The results in terms of elapsed time for
EARTHQUAKE and APRS sequences are shown in Figure 10(a) and 10(b), re-
spectively. For EARTHQUAKE, ω is expressed as days, we evaluate 10 days,
100 days and 1000 days. For APRS, ω is expressed as 10 sec, 100 sec and 1000
sec. The results are consistent with those obtained from synthetic data. When
ω is set to a small value (say, 10), both IBA and OSA can quickly determine the
results since most of objects are not close and the buffer size is small. While ω
is increased, IBA can save more elapsed time than OSA. As we explained above,
this improvement is contributed by candidate screening technique which approx-
imates the potential correlation coefficient to filter those unqualified candidates
out of the detailed examination. From the result, IBA can be concluded as the
best efficient search for correlation query.
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Fig. 10. Evaluation on real datasets

7 Conclusion

Sequence is widely used by various applications. In a sequence, objects that are
often closely located are likely to be correlated to each other. In this paper, we
identify a new query, namely correlation query, to search for object set pairs
based on two parameters: 1) distance bound (ω) and 2) correlation threshold (t).
The distance bound determines whether two objects are close in a sequence.
Based on the number of close objects, we measure the strength of object correla-
tion by cosine metric as the correlation coefficient. The larger the coefficient is,
the stronger the correlation between corresponding object set pairs is interpreted.
A correlation query then returns those object set pairs having corresponding
correlation coefficient higher than the given correlation threshold. Three search
algorithms, namely, Multi-Scan Algorithm (MSA), One-Scan Algorithm (OSA)
and Index-Based Algorithm (IBA), are proposed in this paper to efficiently pro-
cess correlation query. We conducted an extensive set of experiments to evaluate
the performance of different algorithms. IBA, together with three optimization
techniques, outperforming the other two for both real and synthetic sequences,
is the most efficient algorithm to this correlation query.
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Abstract. Given a query tuple q, the dynamic skyline query retrieves
the tuples that are not dynamically dominated by any other in the data
set with respect to q. A tuple dynamically dominates another, w.r.t. q,
if it has closer to q’s values in all attributes, and has strictly closer to
q’s value in at least one. The dynamic skyline query can be treated as a
standard skyline query, subject to the transformation of all tuples’ val-
ues. In this work, we make the observation that results to past dynamic
skyline queries can help reduce the computation cost for future queries.
To this end, we propose a caching mechanism for dynamic skyline queries
and devise a cache-aware algorithm. Our extensive experimental evalua-
tion demonstrates the efficiency of this mechanism compared to standard
techniques without caching.

Keywords: skyline, dynamic skyline query, caching.

1 Introduction

The skyline query has received considerable attention since its introduction in the
database community [1]. Consider a data set P where each tuple is represented as
a d-dimensional point. The skyline query returns all points in P not dominated
by another point. A point pi is said to dominate another point pj if for all
dimensions pi has equal or smaller coordinate values than pj and in at least
one dimension pi has strictly smaller value than pj. Intuitively, assuming in all
dimensions lower values are better, the skyline query retrieves the best tuples,
irrespective of how a user assigns preference to each dimension. More formally,
for any monotone preference function that assigns scores to tuples, the highest
scored — most preferable — tuple is included in the skyline.
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Fig. 1. Skyline queries

Consider a table that contains entries about hotels, with attributes Name,
Price and Classification. Naturally, considering only its price, a hotel is more
preferable if it cheap. Similarly, regarding its classification, a high-starred ho-
tel is more desirable. Figure 1(a) shows 15 hotels drawn as points in the two
dimensional plane, where the x dimension is Classification, and the y is Price.
The arrows in the axes indicate the direction of preference in each dimension,
e.g., the more preferable high ranked (budget) hotels have lower x (y) values.
Notice that there is no hotel that dominates p1, p2 and p15, and, hence, they
all belong in the skyline, as pointed in Figure 1(a). On the other hand, clearly,
p3 cannot be in the skyline as it is dominated by both p1 and p2. In fact, any
hotel that resides in the right-hand side with respect to the line connecting the
skyline hotels, is dominated.

A natural extension of the skyline query is its dynamic counterpart, introduced
in [2]. Given a query point q, not necessarily in the data set P , the dynamic
skyline query retrieves all points in P not dynamically dominated, with respect
to q, by another point. A point dynamically dominates another, w.r.t. q, if it has
closer to q’s values in all dimensions, and has strictly closer to q’s value in at
least one. Returning to the hotel example, suppose that a user looks for hotels
that match her budget and standards. For this reason, she specifies her “ideal”
hotel q and wishes to retrieve all similar, in price and classification, hotels not
dominated by others. Figure 1(b) illustrates the query point q and the dynamic
skyline with respect to it. The dynamic skyline query w.r.t. q returns the hotels
p2, p3, p5, p13 and p14, as shown in the figure. Notice that p9 is not in the skyline,
because p13 is closer to q in all dimensions, i.e., p13 matches the “ideal” hotel
better than p9 both in price and classification.

Dynamic skylines are useful in a variety of settings, where preferences are
defined relatively to an exemplar, as in the ideal hotel scenario previously de-
scribed. They also serve as the basic block for more complex queries. Seeing the
skyline computation problem from the micro-economic perspective, other types
of dominance related queries [3] also make sense. For example, hotel owners
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might be interested to find out for which ideal hotels specified by users their ho-
tels belong in the skyline. The latter is known as the reverse skyline problem [4].
Further, a query can specify a set of exemplars, rather than one, and the domi-
nance relationships are adjusted accordingly to consider the entire set. Examples
of such queries include the multi-source skyline [5] and the spatial skyline [6].

A dynamic skyline query can be reduced to a static skyline query, subject
to the transformation of all points’ coordinates. In particular, given query q, a
point p is transformed to p′ such that the i-th coordinate of p′ is computed as
p′i = |pi−qi|. Therefore, any method designed for the standard skyline query can
be trivially applied to the dynamic case. Note that all such methods are designed
to solve a single instance, given a single data set. Therefore, in the dynamic case,
where multiple instances — one for each query point — need to be solved, the
algorithm must run anew each time, examining all points for dominance. In this
paper we show that results to past dynamic skylines queries can help reduce the
cost of processing future queries. We present a caching mechanism that maintains
the most useful past results and uses them to exclude from consideration certain
points.

Figure 2 illustrates the intuition behind our caching mechanism. Assume that
qa, qb and qc are past dynamic skyline queries, as depicted in Figure 2(a). Observe
that each query point partitions the space into 4 quadrants. Let q represent the
dynamic skyline query under consideration, shown in Figure 2(b), and examine
the upper-right quadrant, which contains the past query qa. Assuming we have
cached the result for query qa, we know that p7 is part of qa’s dynamic skyline
and that it dominates points p8, p11 and p12, as seen in the upper right shaded
area in Figure 2(b). Furthermore, since p7 lies in the same quadrant (upper-
right) with respect to qa as qa lies with respect to q, we conclude that these
points are dynamically dominated by p7 w.r.t. q, as well. Indeed, p8 is farther,
in all dimensions, from both qa and q than p7. With analogous reasoning and by
examining the past query qb (qc) one can deduce that p15 (p4) cannot be in the
dynamic skyline of q since it is dominated by p14 (p3).
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The contributions of this work can be summarized as follows:

1. We introduce the notion of orthant skylines and examine its relationship
with dynamic skylines.

2. We extend the well-known Bitmap algorithm to compute the orthant skylines
in parallel to the dynamic skyline, incurring small computation overhead.

3. We show how cached orthant skyline queries can help expedite the computa-
tion of future dynamic skyline queries. We propose three cache replacement
policies for deciding which queries to expunge when the cache is full.

4. We perform an extensive experimental evaluation that demonstrates the ef-
ficacy of the caching mechanism, as portrayed by the significant reduction
in query processing time in all settings.

Paper outline. First, in Section 2 we review literature on skyline related prob-
lems, focusing on the Bitmap algorithm, which is used throughout this work.
Then, in Section 3 we present and formalize the basic notions discussed in this
paper. The extension to the Bitmap algorithm for dynamic skylines and the
caching mechanism are discussed in detail in Section 4. The most important
experimental findings are presented in Section 5. Finally, Section 6 concludes
the paper.

2 Related Work

Computing the points in the skyline, also known as finding the maxima in a
set of vectors [7], has been thoroughly studied in the area of computational
geometry where a large number of theoretical results exists. The first work to
address the skyline computation problem in the context of databases was [1].
The authors discuss various techniques: they devise an algorithm that iterates
over all points using block nested loops (BNL), propose a B-tree based approach,
and also adapt the multidimensional divide and conquer algorithm [8] to handle
external memory. An extension of the BNL algorithm that relies in presorting
the points is introduced in [9]. The work in [10] introduces progressive algorithms
that output points guaranteed to belong in the skyline without having to scan
the entire data set. The Bitmap algorithm encodes all points using a bitmap
representation and uses fast bitwise operations to extract the skyline points. We
use Bitmap as the basis of our methodology for computing dynamic skylines in
the presence of cache, and, thus, we present it in detail in Section 2.1. Another
indexed method based on B-trees is also discussed in [10], where points are sorted
according to their lowest valued coordinate.

Algorithms that use R-trees to index points have also been proposed. In [11]
the authors observe that the nearest neighbor (NN) point to the beginning of
the axes is always part of the skyline. This point segments the dataset into over-
lapping partitions according to its coordinates. Then, NN search is performed on
each partition and the algorithm proceeds iteratively. Special care needs to be
taken to remove duplicates resulting from the overlapping partitions. The branch
and bound algorithm (BBS) introduced in [2] avoids the pitfalls of the nearest
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neighbor approach. BBS maintains the expanded R-tree entries into a heap in
ascending order of their minimum distance to the beginning of the axes. The
first point visited in this manner is the NN and belongs to the skyline. When an
entry is de-heaped, only its children not dominated by the skyline points found
so far are inserted into the heap. BBS is proved to examine only the nodes in the
R-tree that can potentially contain skyline points, and, hence, is I/O optimal.

The notion of dynamic skyline was first introduced in [2], where a variant of
the BBS algorithm was presented. Given a point p, the reverse skyline query
[4] retrieves the points whose dynamic skyline includes p. The authors in [4]
present algorithms that are based on finding the global skyline of p, a notion
related to the orthant skylines defined in this work. Another related notion is
the multi-source skyline query [5,6], in which a set of query points is specified
and the result contains the points not dominated w.r.t. to the set.

When only a subset of the dimensions is considered, the skycube operator [12]
returns the points that belong in the skyline. Some dominance related queries
seen from the micro-economic perspective are presented in the data-warehouse
framework of [3]. When the domain of a dimension is partially ordered, i.e., its
values belong in a hierarchy, the skyline computation becomes more involved
and the final result may require pruning as discussed in [13]. The notion of prob-
abilistic skylines is defined [14] for the case where multiple tuples (or samples)
correspond to randomly distributed objects in the data set.

2.1 The Bitmap Algorithm

The Bitmap algorithm was introduced in [10] for determining the skyline points
efficiently when the domains of the defining dimensions are small and, most
importantly, discrete. Briefly, Bitmap works as follows: (a) it pre-processes all
points to obtain an appropriate bitmap representation, and (b) it checks each
point for dominance against all points and outputs it if not dominated. The
latter step is efficiently performed by fast bitwise AND/OR operations on the
bitmap representations obtained in the former step.

Bitmap representation. For ease of presentation, we assume that all d dimen-
sions have a domain of size n and its values belong in {0, 1, . . . , n − 1}, 0 being
the most preferable value; the extension to dimensions with different domains is
straightforward. A value u is represented by a bitmap of size n, where the u most
significant bits are set to 0 and the remaining (the n − u least significant bits)
are set to 1. A d-dimensional point is, hence, represented as d bitmaps, one for
each of its coordinates. We maintain the bitmap representation for all points in
a bitmap table. For example, assume n = 8 and consider the point p1(0, 3, 7); its
coordinates are represented as the bitmaps 11111111, 00011111 and 00000001,
respectively. Figure 3(a) shows the bitmap table for 6 points, including that
of p1. The function of the bold and italicized bits will become apparent in the
following.

Dominance check. The dominance check of point p identifies the points that
dominate it. Clearly, a point belongs to the skyline if its dominance check
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D1 D2 D3

p1(0, 3, 7) 11111111 00011111 00000001
p2(6, 7, 2) 00000011 00000001 00111111
p3(1, 0, 2) 01111111 11111111 00111111
p4(3, 0, 4) 00011111 11111111 00001111
p5(2, 2, 6) 00111111 00111111 00000011
p6(6, 4, 7) 00000011 00001111 00000001

(a) Bitmap table

A1 = 101110 B1 = 101010
A2 = 001100 B2 = 000000
A3 = 011100 B3 = 011000

A = 001100 B = 111010

C = A&B = 001000

(b) Dominance check for p4

Fig. 3. Bitmap example

identifies no dominating point. Performing the check in the Bitmap algorithm
involves extracting vertical bitslices and performing bitwise AND/OR opera-
tions. Let pi ∈ {0, 1, . . . , n− 1} denote the i-th coordinate of p, where 1 ≤ i ≤ d.
We extract two vertical bitslices, Ai and Bi, from the bitmap representation of
the data set. We extract a single bit for each point; thus, each bitslice has length
N , where N denotes the size of the data set. In particular, we obtain the bitslice
Ai by juxtaposing the (pi + 1)-th bit of the bitmap representation of the i-th
coordinate for all points. Similarly, we obtain Bi by juxtaposing the preceding,
i.e., the pi-th, bit of the bitmap representation of the i-th coordinate for all
points; note that when pi=0 we explicitly set Bi to all zeros. Figure 3(b) shows
the Ai, Bi bitslices for the dominance check of p4(3, 0, 4). For the Ai bitmaps
we extract the 4th, 1st and 5th bit, shown in bold in Figure 3(a), for the first,
second and third dimension of each point. For the Bi bitmaps we extract the
3rd and 4th bit, shown in italics in Figure 3(a), for the first and third dimension
of each point; B2 is set to all zeros. Given point p, its bitslice Ai encodes which
points (i.e., those whose corresponding bit in Ai is set to 1) are equally as good
or better than p with respect to the i-th dimension. In other words if the k-th
bit of Ai is set to 1, then the k-th point has equally good or better value than
p in the i-th coordinate. On the other hand, the bitslice Bi encodes the points
that are strictly better in the i-th dimension.

Let A = A1&A2& . . .&Ad denote the bitwise AND operation of all Ai bit-
slices. A indicates the points that are equally as good or better than p in all
dimensions. Consider a point p in the 2 dimensional space shown in Figure 4.
All points, including p, that reside in the shaded area of Figure 4(a) have their
bit in A set to 1; for all other points the bit is 0. Similarly, let B = B1|B2| . . . |Bd

denote the bitwise OR operation of all Bi bitslices. Then, B indicates the points
that are strictly better than p in at least one dimension. All points that reside in
the shaded area, excluding those in the dashed line and p, shown in Figure 4(b)
have their bit in B set to 1; for all other points the bit is 0. According to the
definition of dominance, if a point has its corresponding bit set both in A and
B, then it dominates p, and, hence, p is not in the skyline. On the other hand,
if C = A&B has no bit set, then p is not dominated by any point, and thus
belongs in the skyline. All points, excluding p, that reside in the shaded area
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Ap

(a) Bitmap A

B

p

(b) Bitmap B

p C=A&B

(c) Bitmap C

Fig. 4. Dominance check

shown in Figure 4(c) dominate p and thus have their bit in C set to 1; for all
other points the bit is 0.

Returning to the dominance check of point p4(3, 0, 4) for the example il-
lustrated in Figure 3(b), notice that A = 001100 and B = 111010; hence,
C = 001000. Since the third bit in C is set to 1, it follows that p3(1, 0, 2)
dominates p4(3, 0, 4). So, p4 does not belong in the skyline.

3 Preliminaries

In this section, we formally define the notions of dominance, and skyline points.
We assume a d-dimensional space, where Di denotes the domain of the i-th
dimension, i ∈ {1, . . . , d}. Each domain Di is totally ordered by < assigning
preference to the values of the domain. Consider values u, v ∈ Di; u is more
preferable than v iff u < v. The data set P contains N = |P | d-dimensional
points. Each point p ∈ P belongs in the space D = D1 × D2 × · · · × Dd and is
represented by its coordinates, p = (p1, p2, . . . , pd).

Definition 1 (Dominance). Let p1, p2 ∈ P and i, j ∈ {1, . . . , d}. A point p1

dominates another point p2, denoted as p1 ≺ p2, iff (i) for all dimensions, pi
1 is

more, or equally preferable than pi
1, i.e., ∀i : pi

1 ≤ pi
2, and (ii) in at least one

dimension, let j, pj
1 is strictly more preferable than pj

2, i.e., ∃j : pj
1 < pj

2.

A point not dominated by any other in the data set is called a skyline point.
Intuitively, one cannot prefer a non-skyline point over a skyline point for any
preference function that is monotonic in each dimension. In other words, the
skyline contains the top-1 point for any preference function and, conversely, for
a given skyline point there always exists a function under which this point is the
top-1.

Definition 2 (Skyline). The skyline of P , denoted as SL(P ), is the set of
points in P that are not dominated by any other point of P , i.e., SL(P ) = {p1 ∈
P | �p2 ∈ P : p2 ≺ p1}.

The skyline query retrieves the points that belong in the skyline. For example,
for the data set shown in Figure 1(a), the skyline query retrieves the points p1,
p2 and p15.
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3.1 Dynamic Skyline

According to the definitions of dominance and skyline presented above, the most
preferable point is the beginning of the axes o = (0, . . . , 0), assuming it exists
in P , since it dominates all other points. As argued in Section 1, however, in
many cases the most preferable point could be a user specified point q. In this
case we need to express the notions of preference and dominance relative to q.
Given a point q = (q1, . . . , qd) ∈ D (not necessarily in P ), the value u ∈ Di, for
some i, is more preferable than the value v ∈ Di iff |u − qi| < |v − qi|. Based
on this preference notion, we now provide the definitions of dynamic dominance
and skyline.

Definition 3 (Dynamic Dominance). Let p1, p2 ∈ P , i, j ∈ {1, . . . , d} and
q ∈ D. Given a query point q, a point p1 dynamically dominates, w.r.t. q, another
point p2, denoted as p1 ≺q p2, iff (i) for all dimensions, pi

1 is more, or equally
preferable, w.r.t. q, than pi

2, i.e., ∀i : |pi
1 − qi| ≤ |pi

2 − qi|, and (ii) in at least
one dimension, let j, pj

1 is strictly more preferable, w.r.t. q, than pj
2, i.e., ∃j :

|pj
1 − qj | < |pj

2 − qj |.

Definition 4 (Dynamic Skyline). Given a query point q ∈ D, the dynamic
skyline of P w.r.t. q, denoted as DSL(P, q), is the set of points in P that are not
dynamically dominated, w.r.t. q, by any other point of P , i.e., SL(P ) = {p1 ∈
P | �p2 ∈ P : p2 ≺q p1}.

Consider the example data set and query q shown in Figure 5. The dynamic
skyline w.r.t. q contains the points p2, p3, p5, p13 and p14 drawn with black solid
circles in the figure.

The dynamic counterparts of the dominance and skyline notions, essentially,
correspond to the standard notions applied to the transformed data set P ′ ob-
tained by mapping each point p = (p1, . . . , pd) ∈ P to the point p′ = (|p1 −
q1|, . . . , |pd − qd|), given the query point q. Consider Figure 5; observe that any
point p, where pj−qj < 0 for at least one dimension, has been mapped to a point
p′ in the upper right quadrant w.r.t. q. The mapping is shown with a dashed
line and the mapped point is drawn as a dashed circle.

As illustrated in Figure 5, the query point q partitions space D into the 4
quadrants (2d orthants in the d-dimensional case) defined by constraining the
space to be higher or lower than qj for each dimension j. An orthant can be
identified by a number written in binary containing d bits where the j-th bit is 0
(1) if for the j-th dimension the orthant contains the values not smaller (smaller)
than qj . Figure 5 shows the 4 orthants and their ids assuming dimension order
yx. We introduce the notion of orthant skylines, which is defined as the dynamic
skyline when considering only the points in P inside an orthant.

Definition 5 (Orthant Skyline). Given a query point q ∈ D, the o-th orthant
skyline of P w.r.t. q, where o ∈ {0, . . . , 2d−1}, denoted as OSL(P, q, o), is the set
of points in P that belong to the o-th orthant and are not dynamically dominated,
w.r.t. q, by any other point of that orthant.
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Fig. 5. Mapping points

Return to the example of Figure 5. The upper right quadrant (with id 0) skyline
contains points p5, p9 and p10, which are drawn with filled circles (black or
grey). Note that an orthant skyline point can be dominated by the skyline point
of another orthant and, hence, the former cannot belong in the dynamic skyline.
For example, p9 is dominated by the mapping of point p13 and, hence, is not part
of the dynamic skyline. Similarly, p10 is dominated by the mappings of points p2

and p14, which happen to coincide. It is straightforward to see that the following
lemma regarding the union of all orthant skylines w.r.t. q, termed global skyline
in [4], holds.

Lemma 1. The union of all orthant skylines w.r.t. q is a superset of the dynamic
skyline w.r.t. q.

4 Caching Dynamic Skylines

We first present the dynamic Bitmap algorithm, termed DBM, for obtaining the
orthant skylines as well as the dynamic skyline in Section 4.1. Next, in Sec-
tion 4.2, we demonstrate that caching queries and their orthant skylines can
help reduce the execution time for future dynamic skyline queries. Finally we
discuss cache replacement policies in Section 4.3.

4.1 Computing the Orthant Skylines

The DBM algorithm computes the orthant skylines and the dynamic skyline with
respect to a query point q. Because the number of orthants is exponential to the
dimensionality, it is crucial that our method finds the orthant skylines with little
overhead compared to calculating only the dynamic skyline.

Initially, we construct the bitmap table for all points. In particular, we rep-
resent each coordinate of point p ∈ P by converting the value |pi − qi| (and not
pi) into the |Di| bits, as described in Section 2.1. We maintain a global mask M
of length N to indicate the points that need to be considered. Initially all bits
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Algorithm DBM

Input: data set P , query q, bitmap table T , masks M , {Mj}
Output: orthant skyline bitmaps {Oj}, dynamic skyline bitmap R
begin1

foreach p ∈ P do2
Let o be the orthant p resides in w.r.t. q3
if Mo[p] = 0 then // pruned by cache4

continue5
else6

GetBitmapC(T, p)7
if C&Mo �= 0 then // case (I)8

Mo[p] ← 0 // not in the orthant9
M [p] ← 0 // and not in the dynamic skyline10

else if C �= 0 then // case (II)11
M [p] ← 0 // not in the dynamic skyline12

R ← M13
Oj ← Mj for all j14
return 〈R, {Oj}〉15

end16

Fig. 6. The Dynamic Bitmap algorithm (DBM)

are set to 1. In addition, DBM creates the orthant masks of length N , denoted
Mj for j ∈ {0, . . . , 2d − 1}, to indicate which points belong to an orthant. Note
that in the following we slightly abuse notation by referring to p’s bit in M as
M [p]. If p resides in the o-th orthant w.r.t. q, then Mo[p] is set to 1. The orthant
masks can be created in parallel to the bitmap table construction, as points are
examined, by identifying the orthant a point resides in. Recall from Section 3.1
that the orthant id written in binary contains d bits, one for each dimension.
Assume that point p is considered; the sign of pi − qi designates the value of the
i-th bit of p’s orthant w.r.t. q, i.e., the bit is 0 if pi − qi ≥ 0 and 1 if pi − qi < 0.

Figure 6 illustrates the DBM algorithm that examines each point in turn
(Line 2). Given query point q, let p be the current point considered and let
o denote the orthant p resides in w.r.t. q (Line 3). If p’s bit in its orthant mask is
set to 0, then we skip this point (Lines 4–5). Of course, in the case we examine
here, this cannot happen, as the Mo mask is initialized to 1 for all its points;
however, in Section 4.2, when the query cache is considered, this may no longer
hold.

Next, DBM computes the C bitmap (Line 7) as discussed in Section 2.1 and
performs two dominance checks, one for the orthant and one for the dynamic
skyline. We distinguish three cases.

(I) C&Mo �= 0 denotes that p is dominated by some other point in its orthant
(Line 8).

(II) C �= 0 and C&Mo = 0 denotes that p is not dominated by some other
point in its orthant, but it is dominated by some point in another orthant
(Line 11).

(III) C = 0 and C&Mo = 0 denotes that p is not dominated by neither some
other point in its orthant, nor by some point in another orthant.
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In case (I), by Lemma 1, point p cannot belong to its orthant and the dynamic
skyline. Hence, its bit in M and Mo is set to 0 (Lines 9–10). In case (II) p cannot
be in the dynamic skyline but is part of it’s orthant skyline. DBM set its bit to
0 only in M (Line 12); its Mo bit remains set to 1. Finally, in case (III) DBM

retains p’s bit in M and Mo to 1. After all points have been examined, the M
mask identifies the dynamic skyline points, whereas the {Mj} masks identify the
orthant skyline points (Lines 13–14).

4.2 Dynamic Skylines Via Caching

In this section we show how caching of past queries and orthant skylines can help
expedite dynamic skyline queries. We start by describing the cached Dynamic
Bitmap algorithm, termed cDBM; we then discuss cache replacement strategies in
Section 4.3. We assume that the cache Q stores for each past query qi, the query
itself and all its orthant skylines OSL(P, qi, j) for j ∈ {0, . . . , 2d − 1}. In par-
ticular, the orthant skyline OSL(P, qi, j) is represented as the N -length bitmap
Oi

j in which p’s bit is set to 1 if p is included in the j-th orthant skyline w.r.t
qi. Therefore, Q = {〈qi, {Oi

j}〉}, i.e., the cache needs to store 2d bitmaps {Oi
j}

for each past query qi; later, we provide a method to compress these bitmaps.
The intuition for using past orthant skylines lies in the fact that they can

immediately and safely prune potentially large parts of the data set. Indeed, an
orthant skyline contains precomputed information about the dominance checks
in the particular orthant, as the next lemma suggests.

Lemma 2. Consider queries qi, q ∈ D and a point p ∈ P , such that qi belongs
in the o-th orthant with respect to q, and p belongs in the o-th orthant w.r.t. qi,
and, thus, w.r.t. q as well. If p is not part of the o-th orthant skyline w.r.t. qi,
then, p is not part of the o-th orthant skyline w.r.t. q, and, hence, neither is part
of the dynamic skyline w.r.t. q.

Proof. Without loss of generality, assume o = 0. Since p is not part of the o-th
orthant skyline w.r.t. qi, it is dominated by (at least) one point, let pa, i.e.,
pa ≺qi p. Therefore, for o = 0 we have that pj

a − qj
i ≤ pj − qj

i for all j, and
pk

a − qk
i < pk − qk

i for at least one k, where j, k ∈ {0, . . . , 2d − 1}. Adding qj
i − qj

and qk
i −qk to the previous inequalities, and since all quantities are non-negative,

we obtain pa ≺q p. ��

Figure 2(b) demonstrates Lemma 2 for the current query q and the past query
qa, which lies in the upper-right quadrant with respect to q. The skyline of the
upper-right quadrant w.r.t. qa contains a single point, p7, which dynamically
dominates p8, p11 and p12 w.r.t. qa. It is obvious that p7 also dominates p8,
p11 and p12, w.r.t. q, and hence, these, points cannot belong to the upper-right
quadrant or dynamic skyline of q.

The cDBM algorithm for calculating the dynamic and orthant skylines is illus-
trated in Figure 8. For each query, cDBM first computes the masks (Line 4) and
then calls the DBM algorithm (Line 5). Finally, the orthant skylines are inserted
into the cache (Line 6).
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Procedure ComputeMasks
Input: data set P , query cache Q, query q
Output: bitmap table T , masks M , {Mj}
begin1

partition Q to the {Qj} sets w.r.t. q2
foreach p ∈ P do3

Let o be the orthant p resides in w.r.t. q4
M [p] ← 1 // initialize mask to 15
Mo[p] ← 1 // initialize o-th orthant mask to 16
Mj [p] ← 0, for all j �= o // initialize all other orthant masks to 07
update T with BitmapEncode(p, q)8

foreach 〈qi, {Oi
j}〉 ∈ Qo do9

Let oi be the orthant p resides in w.r.t. qi10
if oi = o then11

Let Oi
o be the o-th orthant skyline of qi from {Oi

j}12

if Oi
o[p] = 0 then // if p not in its orthant skyline w.r.t. qi13
M [p] ← 0 // it cannot be in the dynamic skyline w.r.t. q14
Mo[p] ← 0 // neither in the j-th orthant skyline w.r.t. q15
break16

return 〈T, M, {Mj}〉17

end18

Fig. 7. Computing masks given the query cache

Algorithm cDBM

Input: data set P
begin1

Q = ∅2
foreach incoming q do3

// initialize masks and construct bitmap table
〈T, M, {Mj}〉 ← ComputeMasks(P , Q, q)4
// calculate dynamic and orthant skylines
〈R, {Oj}〉 ← DFB(P , q, T , M, {Mj})5
update Q with 〈q, {Oj}〉 // run a cache replacement policy6

end7

Fig. 8. The cached Dynamic FastBitmap algorithm (cDBM)

The most important step of the cDBM algorithm is the ComputeMasks pro-
cedure, shown in Figure 7. Given query q, this procedure creates the masks M
and {Mj} applying Lemma 2 to determine which points need not be considered.
Initially, the cache Q is partitioned into sets Qj for j ∈ {0, . . . , 2d − 1}, such
that Qj contains the queries that reside in the j-th orthant w.r.t. q (Line 2).
Then, each point p is examined in turn (Line 3). The bitmap representation of
p with respect to q is computed and the bitmap table T is updated (Line 8), as
discussed in Section 4.1. Let o denote the orthant p lies w.r.t. q (Line 4). Then,
p’s bit in the o-th orthant mask is set to 1, whereas in all other orthant masks it
is set to 0 (Lines 6–7); of course, p’s bit in M is set to 1 (Line 5). The algorithm
continues by examining the past queries that reside in the o-th orthant, i.e.,
those in Qo. Let qi be such a query (Line 9) and let oi be the orthant that p
lies in with respect to qi (Line 10). If p lies in the same orthant with respect to
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qi as qi lies w.r.t. q, i.e., oi = o (Line 11), then Lemma 2 applies (Lines 12–16).
Therefore, if p was not in o-th orthant skyline w.r.t qi (Line 13), then it can be
excluded from consideration in the orthant (Line 14) and the dynamic skyline
(Line 15) w.r.t. q. If this was the case, then no other past query needs to be
examined (Line 16).

Compressing Cached Queries. The caching mechanism discussed above has
a large space overhead, as it requires storing 2d bitmaps for each query in the
cache. We address this issue making the following observation: a point can belong
to only one orthant and, thus, can be part of only one orthant skyline per query.
Given query qi and its orthant skyline bitmaps Oi

j , for all j ∈ {0, . . . , 2d − 1},
we construct a single orthant skyline bitmap Oi by disjuncting all Oi

js. Then,
p’s bit in Oi is set to 1, if point p belongs in the skyline of its orthant w.r.t. q.
Note that the ComputeMasks procedure need not change; in Line 13 of Figure 7,
the Oi mask can be used instead of the o-th orthant mask Oi

o.

4.3 Cache Replacement Policies

In this section we discuss replacement policies for our caching mechanism. The
objective of these policies is the identification of the least useful query point
among those in the cache that must be discarded together with its orthant
mask. The first two policies we consider are the common Least Recently Used
(LRU) and Least Frequently Used (LFU) policies, which keep track of the usage
for each query in the cache. On the other hand, the Least Pruning Power (LPP)
policy measures the pruning ability of each query and discards the least strong.

LRU and LFU policies. In Section 4.2 we used all queries in the cache to discover
which points to exclude from consideration. However, given a query q, some of
the queries in the cache are redundant, i.e., they identify points that can be
pruned even if we don’t consider these cached queries. This is exemplified in
Figure 9(a), where q denotes the current query under consideration, and qa, qb,
qc and qd are past queries in the cache that reside in the upper-right quadrant
w.r.t. q. For each of these queries, their upper-right quadrant skyline can be used
to prune some of the points that are contained in the dashed box ranging from
the query to the upper right point in Figure 9(a). Observe that since qc’s box
is entirely contained in qa, the points the former can possibly prune can also be
pruned by the latter; the same holds for qd and qb. It is easy to show that, given
a query q, if a cached query qc is dominated by another cached query qa, then
qc can be safely disregarded when computing the masks for query q.

The previous observation suggests the following change to the ComputeMasks

procedure in Figure 7. In Line 2, ComputeMasks partitions the cached queries
according to the orthant they belong with respect to the query point q. Instead,
we calculate the orthant skylines w.r.t. q of all queries in Q so that the set Qj

now contains the queries in Q that belong in the j-orthant skyline (and not all
queries in the j-th orthant).

Consider the case when query point q is considered and that we compute the
Qj sets. In the Least Recently Used (LRU) policy, each time a cached query



468 D. Sacharidis, P. Bouros, and T. Sellis

q

qa

qb qc

qd

redundant
past queries

query point

(a) Redundant cached queries

qa

qb

2:3

176
74:88

222

5:7

20
3:4

21

45:52

1170

26:31

1395

15:20

510

23:34

460

(b) Pruning power

Fig. 9. Cache Replacement Policies

belongs in the orthant skyline, i.e., it will be used to prune points, we annotate
it with a timestamp to indicate that it was used for query q. Note that the
timestamp can be a simple counter that increases with each query considered.
When the cache has reached its capacity we choose to evict the cached query
that was least recently used, i.e., has the smallest timestamp. To efficiently
identify the cached query to be evicted, we maintain a priority queue with key
the timestamp of each query. Therefore, updating the timestamp of an already
stored query, inserting a new and evicting the least recently used one require
time logarithmic to the size of the cache.

In the Least Frequently Used (LFU) policy, we maintain a usage counter for
each query in the cache. Each time a cached query belongs in the orthant skyline
w.r.t. the query point, i.e., it will be used to prune points, we increment its
usage counter. We choose to always include in the cache the current query under
consideration, and if the cache is full we evict the least frequently used query,
i.e., that with the smallest usage counter. As before, a priority queue can be
used to expedite the identification of the query to be evicted.

LPP policy. Intuitively, a useful cached query is one which has great pruning
power, i.e., it can discard a large number of points for a lot of queries. Depending
on the position of a cached query qa relative to a query q, the pruning power
of qa can vary significantly. Let dpj

a denote the number of points dominated by
cached query qa’s j-th orthant skyline. Consider for example the two cached
queries illustrated in Figure 9(b). If a query lies in the upper-left quadrant with
respect to qa, then qa’s skyline for the lower-right quadrant can prune 74 points,
as indicated by the first of the three numbers per query and quadrant shown in
Figure 9(b), i.e., dp3

a = 74. On the other hand, if a query lies in the lower-right
quadrant w.r.t. qa, then qa’s upper-left quadrant skyline can only prune 2 points,
i.e., dp1

a = 2.
The pruning power of a query’s orthant also depends on the probability of a

query residing in the antisymmetric orthant. In the example of Figure 9(b), it is
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rather unlikely for a query to belong in the upper-left quadrant w.r.t. qa, hence
qa’s highly dominant quadrant will rarely be used. It is reasonable to assume that
queries follow a similar distribution to the data set; therefore the probability of
a query residing in any area is analogous to the number of data points this area
includes. Given a cached query qa, let npj

a denote the number of points residing
in the j-th orthant w.r.t. qa. In Figure 9(b), npj

a is shown as the second number
in the triad of numbers for all queries and quadrants.

Given a query qa, its pruning power for the j-th orthant, denoted as ppj
a,

is given by ppj
a = npj̄

a · dpj
a, where j̄ identifies j’s antisymmetric orthant. In

Figure 9(b), ppj
a is shown as the third number typed in larger font for each query

and quadrant. In the case of query qa, for example, the upper-left quadrant
skyline dominates 2 out of 3 points, and the lower-right quadrant contains a
total of 88 points; hence, the pruning power of the qa upper-left quadrant is
2 · 88 = 176. The pruning power ppa of a query qa is the sum of its pruning
power for all orthants, i.e., ppa =

∑
j ppj

a. Intuitively, a low pruning power
implies that the query is expected to prune only a few points. LPP always evicts
from cache the query with the least pruning power. As before, a priority queue
can be used.

Note that a query’s pruning power for all orthants can be computed with
little overhead. The number of points in an orthant npj

a can be counted in the
ComputeMasks procedure while examining where each point resides with respect
to the query. Also, the number of points dominated by an orthant skyline dpj

a can
be calculated as the number of points in the orthant minus the orthant’s skyline
size; the latter can be found by simply using a counter in the DBM algorithm.

5 Experimental Evaluation

We present an extensive experimental evaluation of the DBM algorithm paired
with the three cache replacement policies discussed in Section 4.3. In particular,
we compare LRU, LFU, LPP with the Bitmap algorithm adapted to dynamic skyline
query processing, denoted as NO-CACHE since it corresponds to the case where
no cache is used. All algorithms are implemented in C++, compiled with gcc
and executed on a 3 Ghz Intel Core 2 Duo CPU.

We use the generator from [15] to create data sets of three types of distribu-
tion:

– Independent: The attribute values are drawn from a uniformly random in-
dependent distribution.

– Correlated: Tuples whose attribute values are low, i.e., preferable, in one
dimension have most likely low values in the other dimensions, as well.

– Anti-Correlated: Tuples whose values are low in one dimension have most
likely high, i.e., not preferable, values in the other dimensions.

The dimensionality of the data set varies from d = 2 up to 6, where each
dimension’s domain contains a fixed number of discrete values, ranging from
|D| = 10 up to 50. The size of the data set, N , is between 10 thousand and up



470 D. Sacharidis, P. Bouros, and T. Sellis

Table 1. Experimental parameters

Parameter Values

N 10000, 20000, 50000, 100000

d 2, 3, 4, 5, 6

|D| 10, 20, 50

|Q| 10, 20, 30, 40, 50

to 100 thousand tuples. We test all cache replacement policies for different cache
sizes that extend from |Q| = 10 to 50 queries. We perform |Q|+20 dynamic sky-
lines queries and we measure the average performance of all policies for the last
20 queries, so that the query cache is full in all cases. More specifically, we mea-
sure the average running time for each method and we count the average number
of points pruned by the cache. In each experiment we vary a single parameter
while we set the remaining ones to their default values. Table 1 summarizes the
parameters involved and their ranges; the default values are shown in bold.

5.1 Experimental Results

In the first set of experiments we vary the cache size from |Q| = 10 to 50 while
the data set is fixed to containing N = 50000 tuples with d = 4 attributes of
cardinality |D| = 20. In this setting, the dataset is 1000 KB, whereas the cache
size increases from 62.5 KB (6% of data size) for |Q| = 10, to 187.5 KB (19% of
data size) for the default setting (|Q| = 30), and up to 312.5 KB (31% of data
size) for the largest setting |Q| = 50. We measure the average running time and
the average number of points pruned for 20 dynamic skyline queries when the
cache is full.

Figure 10 presents the results of all cache replacement policies for the three
data sets. The average number of pruned points are shown next to the time
measurements for the LPP and LFU policies. We also draw the running time
when the queries are processed witout cache, denoted as NO-CACHE, which is a
straight line over |Q|. The expected behavior when the cache size increases is the
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number of pruned points to also decrease, resulting in shorter running times. This
is clearly the case for the LPP policy which outperforms the usage-based policies.
LRU and LFU, especially in the Anti-Correlated data set (Figure 10(c)), fail to
take advantage of the larger cache. The reason for this behavior can be attributed
to the fact that caching more queries recently (LRU) or frequently used (LFU)
does not guarantee that future queries will benefit from them. In other words, the
queries already seen are not representative of the queries to follow. On the other
hand, LPP keeps in cache queries with great pruning power that can prove useful
for any future query. For the maximum setting |Q| = 50, LPP immediately prunes
15421, 19166 and 20219 out of the 50000 points and decreases the processing time
by 31%, 38% and 40% for the Independent, Correlated and Anti-Correlated data
sets, respectively.

Figure 11 shows the effect of the distribution parameters on the caching mech-
anism. In this setting we draw the relative improvement in running time for the
three cache replacement policies over the case of no cache, for the Correlated
data set; similar results hold for the other distribution types. In Figure 11(a)
we vary the data set size while keeping all parameters, including cache size Q,
to their default values shown in Table 1. This implies that relative to the data
size, the cache decreases as N grows. Still, Figure 11(a) shows that the poli-
cies can prune a rather significant part of the dataset (31% – 41% for LPP as
shown by the labels in the figure), which is translated to an analogous running
time improvement. Note that as the data set becomes denser, LFU and LRU’s
performance also increases.

In Figure 11(b) we vary the dimensionality of the data set, while the remaining
parameters have their default values. The LPP policy is highly affected by the
curse of dimensionality, i.e., as the space becomes sparser (since N is fixed) its
pruning power rapidly decreases, i.e., from 78% down to 17%. The usage-based
policies are also affected but to a lesser degree.

Finally, in Figure 11(c), we vary the domain cardinality for each dimension,
when N = 50000, d = 4 and |Q| = 50. Larger |D| values result in sparser
data sets. However, unlike Figure 11(b), the cache replacement policies are not
significantly affected. LPP in all cases improves running time by 38%.
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6 Conclusions and Future Work

In this paper we study the problem of dynamic skyline queries from a fresh per-
spective. We consider the case where we keep past queries and their results in
a cache so as to expedite future query processing. For this end, we introduce
the notion of orthant skylines and extend a well-known skyline algorithm to
handle them. Then, we prove that results of orthant skyline queries can poten-
tially exclude a large part of the data set from the costly dominance checks. We
propose three cache replacement policies so that the cache always contains the
most useful queries and their results. Through extensive experimental results
on synthetically generated data set, we demonstrate the efficiency of the pro-
posed caching mechanism: using less than 20% of the data size for the cache,
we can reduce the processing time by 40%. In the future, we plan to apply the
caching framework to other skyline processing algorithms, focusing on indexed
approaches. Furthermore, we will investigate methods to increase the pruning
power of the cached queries while at the same time reducing the space overhead.
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Abstract. Plots are among the most important and widely used tools
for scientific data analysis and visualization. With a plot (a.k.a. range
group-by query) data are divided into a number of groups, and at each
group, they are summarized over one or more attributes for a given arbi-
trary range. Wavelets, on the other hand, allow efficient computation of
(individual) exact and approximate aggregations. With the current prac-
tice, to generate a plot over a wavelet-transformed dataset, one aggregate
query is executed per each plot point; hence, for large plots (containing
numerous points) a large number of aggregate queries are submitted to
the database. On the contrary, we redefine a plot as a range group-by
query and propose a wavelet-based technique that exploits I/O shar-
ing across plot points to evaluate the plot efficiently and progressively.
The intuition behind our approach comes from the fact that we can
decompose a plot query into two sets of 1) aggregate queries, and 2)
reconstruction queries. Subsequently, we exploit and extend our earlier
related studies to effectively compute both quires in the wavelet domain.
We also show that our technique is not only efficient as an exact algo-
rithm but also very effective as an approximation method where either
the query time or the storage space is limited.

1 Introduction

Spreadsheets allow us to easily perform complex data analysis on scientific
datasets. However, they cannot operate efficiently on very large multidimen-
sional datasets generated by the current data acquisition methods. Current sci-
ence practice is to store the original data in databases or ftp sites and then
manually generate a smaller subset of the data (by sampling, aggregating, or
categorizing) as a new “data product”. Yet, this time-consuming process suffers
from one major drawback. We lose the detailed information and end-up working
with the secondhand dataset. Hence, this may result in a biased study of the
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data by verifying our known hypothesis rather than being surprised with un-
known facts. To address these shortcomings, we are investigating how to enable
spreadsheet-type functionalities on the original large datasets in databases.

One of the mostly exercised functionalities of spreadsheets is to generate
meaningful plots over the data. Here, we redefine a plot as a database query
(range group-by query) and progressively process it. A plot query summarizes
how a fact changes over a set of attributes and is visually represented in various
forms of charts. These graphs are considered among the most effective visual
aids for statistical analysis methods and are widely used to provide valuable in-
sights over any dataset. For example, one can extract outliers, trends, clusters,
or measurements such as the gradient or the area under the curve by quickly
looking at a plot output.

Approximate plots with a limited number of I/Os are often acceptable enough
to assist us to intuitively understand the general behavior of the data. The valu-
able insight provided by these queries comes from the easy-to-visualize relation-
ship among the plot points. Thus it is essential to preserve this relationship in
approximate or progressive answering rather than conserving the accuracy of
each individual plot point.

In addition, scientists desire to have the plot output in various resolutions from
time to time. In one scenario, the graphic software at the application side may be
limited to only a small number of plot points. In another scenario, scientists may
be only interested in large scale changes (e.g., annual climate change). Finally,
the fine resolution data may carry some noise that its mining renders useless.
With any of these scenarios, it is necessary to compute the plot query for a
coarser resolution and avoid retrieving unwanted details of the data.

We decompose a plot query into two sets of fundamental queries, aggregate
query and reconstruction query. Given these components: aggregation and re-
construction, and emphasizing on the plot drawing requirements: multiresolution
and approximation/progreessiveness, we propose to utilize wavelet transform to
provide efficient plot query processing. The intuition behind our proposal comes
from the fact that we have observed that aggregate queries can be efficiently
evaluated in the wavelet domain and the original data can be equitably recon-
structed from wavelet-transformed data. Using the proposed method, we provide
high-quality approximate plot results independent of the data distribution with
very little I/O and computational overhead by using the most important query
wavelet coefficients. We further extend our algorithm to progressive query pro-
cessing by ordering the retrieved data. Our experimental results show that the
approximate results produced by our progressive framework are very accurate
long before the exact plot query is complete (below 10% of retrieval).

We begin our discussion with reviewing the related work in Section 2. Then,
we define the plot query as a single database query and process it using the state of
the art method in Section 3. Next in Section 4, we overview the wavelet preliminar-
ies thatweuse throughout the rest of the paper. In Section 5 wepresent our efficient
algorithm to process plot queries with wavelets. We extend our query framework
by providing approximate and progressive query processing in Section 6. We
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extensively examine our technique with real-world multidimensional datasets in
Section 7. Finally, we conclude our discussion in Section 8.

2 Related Work

The current practice for generating a plot over a transformed dataset is to com-
pute the plot point-by-point by performing an aggregate query per plot point,
which results in submitting a large number of aggregate queries to the database
for large plots. Each item of the plot is an aggregate value over one or more
measure attributes for a given dimension value.

Extensive studies have been done for evaluation of single aggregate queries in
exact [5,10], approximate [2,4,6,7,8,16,22], or progressive [9,13,14,17,18,23] fash-
ion. However, none of these techniques addressed I/O sharing among a set of
queries as these techniques are essentially designed for individual query process-
ing. More importantly in the case of approximation, these techniques minimize
the approximation error per individual queries rather than minimizing the total
approximation error of the entire set.

Simultaneous evaluation of multiple queries has been addressed in [3,24]. How-
ever, their primary focus is on resource sharing among the queries by either
creating materialized views or computing partial datacubes. In addition, they
are not designed for the case when relations are stored using pre-aggregation
or transformation techniques. Similar to the single query methods, these tech-
niques do not provide a comprehensive plan for approximation of the entire set
of queries.

Toward addressing these shortcomings, we introduced a framework for pro-
gressive answering of multiple aggregate queries in [18]. The focus of this study
was to minimize the structural error across a batch of queries and to share I/O
among them. However, deploying this technique often requires submitting a large
number of queries, which is neither memory efficient (both in the client side and
the server side) nor communication efficient, as compared to the method we pro-
pose for plot query processing. In addition, this technique was efficient when we
have no extra information about the relationships among the queries inside the
batch. However for processing the plot queries, we have this extra information
in advance when we form the batch of queries. Intuitively, our proposed plot
processing method exploits this extra knowledge for more efficient processing of
the plot.

In this paper, we redefine plots as database queries instead of a set of individ-
ual aggregate queries. To the best of our knowledge no other work has defined
plots as database queries. Here, we decompose a plot query into two sets of
1) aggregate queries, and 2) reconstruction queries. Subsequently, we effectively
compute both in the wavelet domain by extending our earlier studies [11,13,19].

In [19], we proposed a new wavelet technique for fast exact, approximate, or
progressive polynomial aggregate query processing that data did not have to be
compressed, unlike most of the prior studies in this area. The use of the wavelet
decomposition was justified by the fact that we could reduce the query cost from



476 M. Jahangiri and C. Shahabi

range size to the logarithm of the data size, which is a major benefit especially for
large range queries. We further enhanced our former method in [13] by providing
practical solutions for real-world deployment in various scientific applications. In
addition, our progressive query processing method was fundamentally different
as we ordered the query coefficients, not the data (see [13,19,20]).

In [13,19,20], we have extensively studied the progressiveness in aggregate
query processing by defining a significancy function for query coefficients. Here,
we briefly overview our former work and extend it to plot processing. Progressive
method for plot queries differs from aggregate queries in that the plot queries are
combined of two sets of queries: aggregate queries and reconstruction queries.
In this paper, we show that reconstruction query requires a different ordering
function and study the near optimal ordering for plot processing in general.

In [11], we introduced two novel operations for wavelet transformed data to
provide general purpose functionalities and work directly in the wavelet domain.
Unlike other reconstruction methods [2] which are limited to only non-standard
multidimensional wavelet, the work of [11] is general enough to support both
forms of wavelet transformations; specifically we study the standard form of
multidimensional transformation, which is the same way we perform multidi-
mensional transformation in this paper. Here, we utilize these operations in
performing our reconstruction query to efficiently reconstruct a subset of data
from its wavelet coefficients.

3 Plot Query

We often wish to generate ad-hoc plots over large multidimensional datasets to
understand the relationship between different parts of the data. Toward this end,
we select a certain region of data, called range, and divide it to different groups
based on a subset of its attributes, called grouping attributes. Subsequently, we
compute a value, called a plot value, per group and draw the chart of plot values
versus grouping attributes.

Consider a dataset with a1,...,ad as its dimension attributes and D as its
measure attribute. Let the range for each dimension i (i ≤ d) be [li, hi] and
let the first g dimensions (g ≤ d) be the grouping dimensions, without loss of
generality. For each combination of grouping dimensions, we compute the plot
value by aggregating the measure values inside the range. The sum and average
are the most widely used aggregation in this regard. In this paper, we focus on
sum due to its simplicity. Extension to other aggregations is straightforward as
discussed in [19].

We define a plot query as a query that prepares the data in the form of a set
of tuples (a1, ..., ag, G) which we articulate as a plot of G versus (a1, ..., ag). We
denote (a1, ..., ag) and G by grouping attributes and plot value, respectively. In
a chart, the grouping attributes appear on the category-axis as the independent
variables, while the plot values appear on the value-axis as the dependent vari-
able. Usually the number of the grouping dimensions is limited to 3 because of
human limitation in visualizing more than 3-dimensional spaces. However, we
can conceptually go beyond this limitation and prepare higher dimensional plots.
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In relational databases, we can compute a plot query by executing the fol-
lowing SQL statement. In this paper, we propose an efficient method to process
such queries progressively using Wavelets.

SELECT a1, ..., ag, SUM(D)
FROM Data

WHERE l1 ≤ a1 ≤ h1

...

AND ld ≤ ad ≤ hd

GROUP BY a1, ..., ag;

Now we mathematically define a plot query as following:

Definition 1. Given a d-dimensional datacube D with its first g dimensions as
the grouping dimensions, and a range [li, hi] for each dimension i, the plot query
is defined as:

{(a1, ..., ag, G)|∀i ≤ g, li ≤ ai ≤ hi,
G(a1, ..., ag) =

∑
lg+1≤ag+1≤hg+1

...
∑

ld≤ad≤hd
D(a1, ..., ad)}

(1)

To simplify our notation, we denote the grouping dimensions by x, x=(a1, ..., ag),
and the rest of the dimensions by y, y = (ag+1, ..., ad). Similarly, we use (x, y)
instead of (a1, ..., ag, ag+1, ..., ad) throughout the paper. Therefore, we simplify
our query definition as following:

{(x, G)|lx ≤ x ≤ hx, G(x) =
∑

ly≤y≤hy

D(x, y)} (2)

The equation above states that G(x) is the sum of all values inside the range
[ly, hy] for each x point inside the grouping dimension range [lx, hx]. Let us
continue our discussion with an illustrative example.

Example 1. Figure 1a demonstrates a 2-dimensional datacube with product and
time as the dimension attributes and sales as the measure attribute. Let time
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be the grouping dimension and product be the aggregating dimension. Now we
would like to perform a plot query of sales versus time for 1 ≤ time ≤ 4 and
1 ≤ product ≤ 3.

To answer this query, we compute the daily total sales by performing a range
aggregate query for each day. For example for time = 2 , we have sum(sales) =

D(2, 1) + D(2, 2) + D(2, 3) = 4 + 5 + 3 = 12 (see Figure 1b). ❑

Lemma 1. Given a d-dimensional data D with the domain size of N per di-
mension, a range size of M per dimension, and a set of g grouping dimensions,
the I/O complexity of plot query processing is O(Md) if we naively perform a
batch of aggregate queries over the original data.

Proof. Our plot query consists of Mg range aggregate queries with the cost of
O(Md−g) for each when we perform the aggregate queries on the original data.
Thus, the total complexity becomes O(Md).

Note that in the worst case where M becomes as large as N , the total complex-
ity becomes O(Nd) which is basically reading the entire database for a single
plot query. Yet, this method suffers from two other major drawbacks in addi-
tion to its high I/O complexity. First, it does not provide any mechanism for
approximate and/or progressive evaluation of the query. Second, it does not
present a resolution-aware process to reduce the query complexity for coarser
resolutions. It is straightforward to see that the complexity remains O(Md) for
coarser resolutions since as the number of range aggregate queries reduces for
coarser resolutions, the cost of each aggregate query increases proportionally.

Towards addressing these shortcoming, we utilize wavelets to process plot
queries. Use of wavelets not only dramatically reduces the cost of aggregate
queries but also addresses the multiresolution and approximation requirements.
In Section 5, first we show how the use of wavelet transform reduces the com-
plexity of each individual aggregate query. Then, we introduce our efficient al-
gorithm in which we exploit the I/O sharing across the aggregations and show
the excellent approximation of the plot in its entirety. But first we overview the
preliminary concepts of Wavelet Transform that we use in the rest of the paper.

4 Discrete Wavelet Transform

Discrete Wavelet Transform (DWT) is defined as a series of pairwise operations
on data by creating “rough” and “smooth” views of the data at different res-
olutions. In the case of Haar wavelets that we use throughout this paper, the
“smooth” view consists of averages or summary coefficients, whereas the “rough”
view consists of differences or detail coefficients. At each resolution, termed level
of decomposition or scale, the summaries and details are constructed by pairwise
averaging and differencing of the summaries of the previous level.

We denote by uk,j and wk,j the j-th summary and the j-th detail coefficient,
respectively, for the k-th level of decomposition. Note that the j-th summary
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coefficient of the 0-th level represents the untransformed data: u0,j = D(j), for
0 ≤ j < N = 2n. Here, D represents the data of length N . We have:

uk,j = (uk−1,2j + uk−1,2j+1)/
√

2 wk,j = (uk−1,2j − uk−1,2j+1)/
√

2

Example 2. Consider a vector of 4 values D = {6, 2, 7, 1}. To apply DWT on
this vector, we first start by taking the pairwise summaries: u1,0 = 6+2√

2
= 4

√
2

and u1,1 = 7+1√
2

= 4
√

2, and the pairwise details w1,0 = 6−2√
2

= 2
√

2 and

w1,1 = 7−1√
2

= 3
√

2. These coefficients form the first level of decomposition.
We continue by constructing the summary and detail coefficients from the sum-
maries. The final summary and all the details produced at all levels of decompo-
sition form the Haar transform. Figure 2a illustrates the process. Notice that at
each level of decomposition the summaries and details can be used to reconstruct
the summaries of the previous level. ❑

4.1 Wavelet Tree

We use the notion of Wavelet Tree, which exploits the relationships between
wavelet coefficients, to simplify our presentation throughout the paper. Figure 2b
shows a Haar wavelet tree for a vector of size 4; summary coefficients are shown
with squares, whereas detail coefficients are shown in circles. The original data
is drawn with dotted line as children of the leaf nodes of the tree. Haar wavelet
tree is a binary tree where each node wk,j has exactly two children, wk−1,2j and
wk−1,2j+1. The summary coefficient un,0 is the root of the tree having only one
child wn,0. Wavelet tree portraits how a single point in time domain depends on
those wavelet coefficients on the path to the root.

Lemma 2. Let D̂ be the wavelet transform of vector D of size N , D̂ = DWT(D).
Any value of D can be reconstructed using O(log N) coefficients from D̂.

Proof. Let D[j] be the j-th value of D and n be log N . At each level of decom-
position k, there is exactly one wavelet coefficient wk,
 j

2k � that depends on D[j].

Thus, the total dependant coefficients are defined as wk,
 j

2k � for all k ∈ [1, n] and
un,0. This means that each data value can be reconstructed in time proportional
to the tree height n.
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Corollary 1. Let D̂ be the wavelet transform of vector D of size N . Any update
on D results in updating O(log N) coefficients from D̂.

It is important to emphasize that we benefit from wavelet transform when we
perform range aggregate queries.

Lemma 3. Let D̂ be the wavelet transform of vector D of size N . Any range-
sum query on D can be computed by retrieving O(log N) coefficients from D̂.

Proof. For any range on D, we need to retrieve only the coefficients lying on the
path from the boundaries of the range to the root of the wavelet tree. We refer
the reader to [13,19] for the complete proof.

In this case for a range of size M , we retrieve O(log N) coefficients, independent
of the range size, from D̂. When M + log N , the reduction in retrievals is
significant.

Lemma 4. Let D̂ be the wavelet transform of vector D of size N . Any region
of D with the size of M can be reconstructed using O(M + log N

M ) coefficients
from D̂.

Proof. For any D[j] in the range, we must retrieve the path from the leaf D[j]
to the root of the wavelet tree. By performing the union on all these paths, we
have O(M + log N

M ) coefficients depend on the data values inside the range. We
refer the reader to [11] for the complete proof.

4.2 Wavelet Matrix

Since the Wavelet Transform is a linear transformation, we can represent it by
an N ×N matrix W to transform the array D of length N as following. Here, λ
represents the level of decomposition.

D̂(i) =
∑

j

Wλ(i, j)D(j)

For example, the table below shows the corresponding matrices for one level of
transformation W 1 and two levels of transformation W 2. We omit the superscript
λ when we refer to the maximum level of decomposition, that is, λ = log N . We
refer the reader to [15] for more details about creating these matrices.

Table 1. Wavelet Matrix

�
����

1√
2

1√
2

0 0
1√
2
− 1√

2
0 0

0 0 1√
2

1√
2

0 0 1√
2
− 1√

2

�
����

�
���

1
2

1
2

1
2

1
2

1√
2
− 1√

2
0 0

1
2

1
2

− 1
2

− 1
2

0 0 1√
2
− 1√

2

�
���

W 1 W 2
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Example 3. Consider the same vector of 4 values D = {6, 2, 7, 1}. We perform
the first level of decomposition on this vector using the transformation matrix
W 1 as : D̂ = W 1 ·D = {4

√
2, 2

√
2, 4

√
2, 3

√
2}. The second level of transformation

is performed similarly by using W 2: D̂ = W 2 · D = {8, 2
√

2, 0, 3
√

2} ❑

4.3 Multidimensional Wavelets

The standard form of multidimensional wavelet transform is performed by ap-
plying a series of one-dimensional decompositions along each dimension. For
example, to decompose a 2-dimensional array of size N2, we first completely de-
compose one dimension and then the other, with the order not being important.
This means that we first transform each of the N rows of the array to con-
struct a new array and then take each of the N columns of the new array and
again perform 1-d DWT on them. The final array is the 2-dimensional standard
transform of the original array.

To represent a d-dimensional wavelet transformed data, we use d 1-dimensional
wavelet trees. In fact, since each dimension is decomposed independently in multi-
dimensional wavelet transform, therefore, there cannot be a single tree capturing
the levels of decomposition. Every coefficient in the transformed data has d in-
dices, one for each dimension. Each of these indices identifies a position in the
1-dimensional wavelet tree.

Theorem 1. Given a d-dimensional wavelet-transformed datacube D̂ with the
domain size of N per dimension, the complexity of range aggregate query pro-
cessing with wavelets is O(logd N).

Theorem 2. Given a d-dimensional wavelet-transformed datacube D̂ with the
domain size of N and the range size of M per dimension, the complexity of data
reconstruction from its wavelet transformed is O((M + log N

M )d).

We refer the reader to [11,13] for the proof of these theorems.
Using the matrix notation, we represent the multidimensional transformation

of a given multidimensional array D as following where Wx and Wy are the
transformations along the dimensions x and y, respectively.

D̂(x, y) =
∑
s,t

Wx(x, s)Wy(y, t)D(s, t) ⇔ D̂ = WxWyD

As a rule of thumb throughout the paper, we use D̂ when we refer to the full
transformation of D along all its dimensions, whereas we denote the transfor-
mation of D only along y dimensions by WyD.

5 Efficient Plot Query Processing with Wavelets

In this section we present our algorithm for efficient processing of plot queries.
First, we employ the wavelet transform to reduce the cost of computing each plot
value. Next, we propose our novel method in which we introduce a framework
to share the coefficients across all the plot points.
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Lemma 5. Given a d-dimensional wavelet-transformed data D̂ with the domain
size of N per dimension, the range size of M per dimension, and the g grouping
dimensions, the I/O complexity of plot query processing is O(Mg logd N) if we
perform a batch of aggregate queries using wavelets.

Proof. The plot query consists of Mg range aggregate queries. Theorem 1 shows
that the cost of each aggregate query decreases from Md−g to O(logd N) using
wavelets. Thus, the total I/O complexity becomes O(Mg logd N).

Despite the significant improvement compared to the naive method, this utiliza-
tion of wavelet transform still suffers from the fact that it treats the plot as a
set of aggregate queries. Thus, it does not share the common coefficients among
the queries which results in several passes over data. In addition, it cannot ap-
proximate the plot in its entirety; instead, it approximates each aggregated value
separately which may not necessarily lead to the best approximation of the plot.

To address these issues, we introduce an efficient algorithm in which we can
process a plot query as a single query. We divide this process into two steps,
aggregation and reconstruction, and describe each in turn. The aggregation phase
deals with preparing the aggregated values for each plot point in the wavelet
domain, whereas the reconstruction phase deals with converting these values
back to the original domain.

5.1 Aggregation Phase

In this phase, we show how we recast a plot query as vector queries in the wavelet
domain for its efficient processing. Let us simplify the plot equation by defining
an aggregate query vector as following:

Definition 2. The aggregate query vector consists of a set of 1’s inside the range
and 0’s outside the range:

Q(y) =
{

1 if ly ≤ y ≤ hy;
0 otherwise.

Now we rewrite the basic definition of the plot query (Eq. 2) as following:

{(x, G)|lx ≤ x ≤ hx, G(x) =
∑

y

D(x, y) · Q(y)}

This equation can be considered as a dot product of two vectors: the x column
of D (noted as Dx) and Q, the data vector and the aggregate query vector,
respectively. We denote the x column of D by Dx and rewrite the equation as
following:

y(x) =
∑

z

Dx(y) · Q(y) (3)

We wavelet transform both vectors of Dx and Q and utilize the following
useful lemma:
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Lemma 6.Given awavelet-transformeddata vector D̂x andawavelet-transformed
query vector Q̂, we compute the plot values as following:

G(x) =
∑

y

D̂x(y) · Q̂(y) (4)

Proof. It is proven that Discrete Wavelet Transform preserves the Euclidean
norm. Thus, the generalized Parseval equality applies to DWT, that is, the dot
product of two vectors equals to the dot product of the wavelet-transformation
of the vectors (see [19] for more information).

Example 4. Consider the same data and query described in Example 1. Now, we
would like to compute the plot values using Wavelets.

Figure 3 illustrates the process of computing G(2) both in the original domain
and in the wavelet domain. We select the Dx for x = 2 as the data vector and
wavelet transform it to have D̂x. Then, we form the aggregate query vector Q
with 1’s inside the range Ry and 0’s outside the range and wavelet transform
Q to have Q̂. Subsequently, we perform a dot product between D̂x and Q̂ to
compute G(x). ❑
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Fig. 3. Aggregation in the Wavelet Domain

Toward computing the plot values using Wavelets, we must be able to efficiently
wavelet transform the query vector and the data vector. For the transformed
query, we employ our efficient wavelet transformation algorithm (see [13]) to
transform the vector by computing the coefficients only on its boundaries. For
the transformed data vector, we select the x column of WyD which represents the
transformation of D along dimension y since we have D̂x(y) = WyD(x, y) by the
definition of standard multidimensional wavelet transformation (see Section 4).
Thus, we have:

G(x) =
∑

y

WyD(x, y) · Q̂(y) (5)

However, y dimension is selected on-the-fly (i.e. at the query submission) and
we cannot pre-compute the data transformed along y dimension in advance. The
following lemma, however, provides the opportunity of constructing WyD from
the transformed data D̂.
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Lemma 7. Given a wavelet-transformed datacube D̂ and the set of dimensions
y, the data transformed along y is computed by inverse transforming the data
along other dimensions x:

WyD(x, y) =
∑
α

W−1
x (x, α) · D̂(α, y) (6)

Proof. Let the data D have two sets of dimensions x and y. Therefore, its wavelet
transformation is defined as D̂ = WxWyD. By performing an inverse transfor-
mation along x on the both sides, we have: WyD = W−1

x D̂.

5.2 Reconstruction Phase

Let us overview the process so far. First, we compute WyD by inverse transform-
ing the D̂ along x dimension. Then, after preparing Q̂ on-the-fly, we perform a
dot product between Q̂ and the x column of WyD for each plot value G(x). How-
ever, this process is not efficient yet since we must perform the costly operation
of W−1

x D̂ at first and store a temporary large datacube WyD. Toward addressing
this inefficiency, now we propose to perform the aggregation before the inverse
transformation to reduce the overall cost. In fact, we push the aggregation down
to the wavelet domain and reconstruct the result from the wavelet-transformed
temporary datacube. For this purpose, let us substitute Equation 6 into Equa-
tion 5 and interchange the linear operations as following:

G(x) =
∑

y

(
∑

α

W−1
x (x, α)D̂(α, y))Q̂(y)

=
∑
α

W−1
x (x, α)(

∑
y

D̂(α, y)Q̂(y))

The equation above shows that we aggregate the data long y first, then we
reconstruct the value by inverse transforming along x. We denote the second
summation by D̂G as it carries the G values of our plot query. In fact, D̂G is the
transformation of the aggregated data along y.

The following lemma summarizes the process of plot processing. In short, it
states that G(x) is computed by performing an inverse transform on D̂G for all
the plot points.

Lemma 8. Given a wavelet-transformed datacube D̂ and a wavelet-transformed
query vector Q̂ as the aggregation along y dimension, we compute the plot values
with the following steps:

Step 1 (Aggregation) : D̂G(x) =
∑

x

D̂(x, y)Q̂(y) (7)

Step 2 (Reconsutrction) : G(x) =
∑

y

W−1
x (x, y)D̂G(y) (8)
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Example 5. Figure 4 demonstrates the process of constructing D̂G from D̂. Here,
every x element of D̂G is computed by a dot product between Q̂ and D̂x. Finally,
we perform an inverse wavelet transform on D̂G to compute DG. The highlighted
subset of DG refers to our plot values G. ❑

To conclude this section, we analyze the complexity of our algorithm by providing
the following theorem.

Theorem 3. Given a d-dimensional wavelet-transformed data D̂ with the do-
main size of N per dimension, the range size of M per dimension, and the g
grouping dimensions, the I/O complexity of plot query processing is:

O((M + log
N

M
)g · logd−g N)

Proof. The aggregation complexity is O(logd−g N) based on Theorem 1 for a
(d−g)-dimensional range and the reconstruction complexity is O((M +log N

M )g)
based on Theorem 2. Multiplying the two, we compute the overall complexity
for plot query processing.

6 Approximation and Progressiveness

When execution time is limited, the accuracy of the plot result can be traded off
for a better response time, that is, a fast less accurate result become preferred
to an exact late result. Since the dominant factor for query processing is the
database retrieval, we limit the retrievals to a certain number B, that is, we
only retrieve the B most significant wavelet coefficients contributing to the query.
Here, we adopt the two widely used methods, First-B and Highest-B, for selecting
the B most significant wavelet coefficients. Using First-B, the most significant
coefficients are the coefficients with the lowest frequencies. With Highest-B, the
most significant coefficients are those that have the highest absolute values.

Let us recall that the process of plot query processing has two phases: 1)
Aggregation phase D̂ → D̂G, 2) Reconstruction phase D̂G → G. Therefore, we
can approximate either or both of these steps to approximate the plot output.

First, we intend to approximate the reconstruction process, that is, we need to
select the best coefficients of D̂G for reconstruction of G given a limited number
of retrievals. The following example clarifies our purpose.
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Example 6. Consider the wavelet data D̂G illustrated in Figure 4. When the
query is limited to retrieve only 2 coefficients, it is recommended to retrieve either
of the following sets: {39.2, 0.35} if we consider the First-B ordering (the least
frequencies) or {39.2,−5.0} if we consider the highest-B ordering (the highest
absolute values). ❑

Unfortunately, we cannot utilize the Highest-B method of the process mentioned
above in practice because this requires knowing all the values of D̂G in advance to
determine the highest values. Therefore, we can only utilize the First-B method
in this step, that is, we select the coefficients with the lowest frequencies.

In addition to the reconstruction phase, we can approximate the aggregated
intermediate result D̂G by selecting the most contributing coefficients, that is,
the ones with the highest values of the pair of query Q̂ and data D̂ items (see
Equation 7). However, the values of D̂ are not known in advance and cannot be
utilized for this process. Therefore, we advocate selecting the query coefficients at
the query time to achieve good approximate results. Toward this end, the B most
significant query coefficients are selected using Highest-B or First-B methods.
We refer the reader to [20] for more information regarding various techniques
used in wavelet query approximation.

Having the ability to approximate at both phases, aggregation and reconstruc-
tion, we are faced with this dilemma: either to compute the aggregated result
in exact and then perform the approximate reconstruction phase, or to approxi-
mate both phases of aggregation and reconstruction together. The result of our
empirical study shows that the latter outperforms the first one. We discuss this
later in the experimental section.

By progressively increasing the term B, we can order coefficients based on
their significants. We exploit this ordering to answer the plot query in a progres-
sive manner so that each step produces a more precise evaluation of the actual
answer. In fact, the real-world users of our technique have found its progressive-
ness the most appealing feature for processing large plot queries.

Let us end this section by emphasizing that we have studied the “query ap-
proximation” here. Adopting “data approximation” (use of compressed data)
is straightforward. More specifically, we can compress the data with any of the
two orderings, Highest-B or First-B. At the query time if the data coefficient is
not stored, i.e. dropped previously due to the data compression, we assume this
wavelet data coefficient is zero and continue the process. This assumption is ba-
sically the implementation of hard thresholding (see [13] for more information).

7 Experiments

In this section, we empirically examine our proposed method with three mul-
tidimensional datasets. We would like to emphasize that our experiments are
performed on real datasets using our fully functional system (see [1,12] for fur-
ther information).

We start the experiments by describing the datasets employed in our study.
Next, we compare the query performance of our technique (Plot Query) with the
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individual queries in both original domain (Naive Batch Queries) and the wavelet
domain (Batch Queries with Wavelets). Finally, we study the progressiveness and
compare the different forms of approximation.

7.1 Experimental Datasets

We evaluate our framework with three real-world scientific datasets, namely
Precipitation, GPS, and AIRS.

Precipitation is a 4-dimensional dataset that measures the daily precipitation
for the Pacific NorthWest for 45 years. It consists of three dimension attributes,
latitude, longitude, and time, and one measure attribute, precipitation. The size
of this dataset is 5 MB.

GPS dataset contains profiles of atmospheric water vapor pressure with resolu-
tion of about a kilometer, derived from radio occultation data. This 5-dimensional
dataset is provided by NASA/JPL and includes latitude, longitude, pressure level,
and time as dimension attributes, and water vapor pressure as measure attribute.
We obtained this data for 9 months and its size is 2 GB.

AIRS, standing for Atmospheric Infrared Sounder, collects the Earths atmo-
spheric temperature profiles at a very high rate. This 5-dimensional dataset
provided by NASA/JPL includes latitude, longitude, pressure level, and time
as dimension attributes, and temperature as measure attributes. This data is
gathered over a year and has a size of 320 GB.

We wavelet transformed the datacubes using our efficient transformation tech-
nique [11] and stored them into the disk using our efficient multidimensional
tiling [21]. Each tile contains the wavelet coefficients that are related with each
other under the particular access pattern of wavelets to minimize the number of
disk I/Os needed to perform any operation in the wavelet domain. By reporting
the number of retrieved “coefficients” in our experiments, we do not include the
advantage of using this technique.

7.2 Performance Analysis

We generate 100 random plot queries (a random range for each query) and
count the number of disk I/Os required to answer each query. We perform this
experiment on our three datasets and used the three algorithm discussed in this
paper; Naive Batch Queries, Batch Queries with Wavelets, and Plot Query (our
proposed technique). The average number of I/Os across the queries is depicted
in Figure 5.

Generally, Batch Queries with Wavelets outperforms Naive Batch Queries
because we perform each aggregate queries in a less costly method (O(Nd) is
reduced to O(logd N)). More importantly, this figure shows that Plot Query
dramatically outperforms both. Note that Y-axis is in logarithmic scale. The
reason is that Plot Query is a one-pass algorithm which shares the coefficient
among plot points whereas Batch Queries with Wavelets requires submitting a
large set of individual aggregate queries.

Now, we study the effect of range size on the performance of plot queries. We
generate 10 plot queries for varied range sizes, from 1% to 35% of the entire
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dataset. The result of our experiment is shown in Figure 6, the median of the
10 queries is reported for each point. Note that for this set of experiments and
the following experiments, we report our results only on AIRS dataset because
the trends and observations from other datasets were similar to those of AIRS.

Here, as the range size grows, the number of coefficients increases for Naive
Batch Queries as we expected since its complexity was O(Md). However, the
number of coefficients for the other two techniques, Batch Queries with Wavelets
and Plot Query, are almost constant as the range grows. This is discussed earlier
when we justified the use of wavelets in aggregate queries. We discussed that
the complexity of range aggregate queries with wavelets is O(logd N) which
is independent of the range size. In addition, this figure shows the significant
difference between the two wavelet methods, one more time this is due to the
I/O sharing in the Plot Query method. Note that Y-axis is in logarithmic scale
in this figure.

Next, we compare the three methods in dealing with multi-resolution param-
eter. We generate 100 random plot queries for each resolution level. A higher
resolution refers to a coarser view of data. We show the average number of I/Os
required to answer these queries versus resolution in Figure 7.
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With Naive Batch Queries, generating a plot for a coarser view has the exact
same cost as we generate it for the finer resolutions. This is because for coarser
views, we submit less number of aggregate queries while the complexity to an-
swer each query is higher. As the resolution grows (coarser views), Batch Query
with Wavelets performs better. This is due to the fact that the number of range
aggregate queries is reduced for coarser views. However, the steep of cost reduc-
tion is not as deep as the Plot Query method. The reason is that no matter what
the resolution is, the cost of aggregate queries for Batch Query with Wavelets is
O(logN ). On the contrary, Plot Query is a resolution-aware method which only
retrieves the data up to the required level. The significant difference between the
query processing methods is also illustrated in this figure. Note that Y-axis is in
logarithmic scale.

We conclude our experiments with studying the progressiveness of our al-
gorithm. We generate 100 random plot queries on AIRS and report the mean
relative error on the values of the plots in its entirety. Here, we use three or-
dering schema. 1) Both FB: First-B ordering for the reconstruction phase then
First-B ordering for the aggregation phases, 2) HB and FB : Highest-B for the
aggregation phase and First-B for the reconstruction phase, and 3) Interchange-
able FB ’s: First-B ordering for both reconstruction and aggregation at the same
time.

Figure 8 shows that the first two algorithms perform similarly and both of
them are inferior compared to the winning ordering which is the interchangeable
FB. The reason behind our observation is that the first two algorithms compute
each coefficient of the intermediate datacube DG exactly and then they move
to computing the second coefficient. However, Interchangeable FB estimates all
coefficients of DG of at the same time.

8 Conclusion

We have defined a plot as a single database query and propose a wavelet-based
technique that exploits I/O sharing across plot points to evaluate the plot ef-
ficiently. Furthermore, we have extended our algorithm to progressive query
processing by ordering the retrieval procedure. Our experimental results show
that the approximate results produced by our progressive framework are very
accurate long before the exact plot query is complete.
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Abstract. In applications like sensor network monitoring and location-
based services, due to limited network bandwidth and battery power, a
system cannot always acquire accurate and fresh data from the exter-
nal environment. To capture data errors in these environments, recent
researches have proposed to model uncertainty as a probability distribu-
tion function (pdf), as well as the notion of probabilistic queries, which
provide statistical guarantees on answer correctness. In this paper, we
present an entropy-based metric to quantify the degree of ambiguity of
probabilistic query answers due to data uncertainty. Based on this met-
ric, we develop a new method to improve the query answer quality. The
main idea of this method is to acquire (or probe) data from a selected set
of sensing devices, in order to reduce data uncertainty and improve the
quality of a query answer. Given that a query is assigned a limited num-
ber of probing resources, we investigate how the quality of a query answer
can attain an optimal improvement. To improve the efficiency of our solu-
tion, we further present heuristics which achieve near-to-optimal quality
improvement. We generalize our solution to handle multiple queries. An
experimental simulation over a realistic dataset is performed to validate
our approaches.

1 Introduction

In many emerging and important applications like wireless sensor networks and
location-based applications, the data obtained from the sensing devices are often
imprecise [10,17,18]. Consider a monitoring application that employs a sensor
network to obtain readings from external environments. Due to imperfection
of physical devices, as well as limited battery power and network delay, it is
often infeasible to obtain accurate readings. As a result, the data maintained in
the monitoring applications are often contaminated with noises (e.g., sampling
and measurement error). The uncertainty of these data should be modeled and
handled carefully, or else the quality of the services or queries provided to users
can be affected [4,10].

One commonly-used uncertainty model assumes that the exact value of a data
item is located within a closed region, together with a probability distribution
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Fig. 1. Probing of Sensor Data for Uncertainty Reduction

function (pdf) of that value in the region [10,13,21]. An example is shown in
Figure 1, where a monitoring server maintains the pdf of the temperature values
acquired from four wireless sensors (T1, . . . , T4). Each of these pdf’s is confined
within a closed range of possible values, to model the fact that the data has not
been updated for an extensive amount of time. These pdf’s could be derived
through techniques like time-series or model-based analysis [5,10]. In general, a
pdf which spans over a larger uncertainty region is more vague (or uncertain)
than the one with a smaller region.

To process uncertain data, probabilistic queries [4,21] have been proposed.
These are the “probabilistic” counterparts of spatial queries, such as range
queries and nearest neighbor queries. Probabilistic queries produce imprecise
results, which are essentially answers that are augmented with probability val-
ues to indicate the likelihood of their occurrences. For example, a probabilistic
range query, inquiring which of the four sensor data values in Figure 1 have non-
zero probabilities of being inside a specified range [10oC, 20oC], may produce
an answer like: {(T1, 0.9), (T2, 0.5)}. This answer indicates that T1 (T2) has a
chance of 0.9(respectively 0.5) for having a value between [10oC, 20oC].

How can we interpret the probability values of these query answers? Intu-
itively, these values reflect the ambiguity of a query result, due to the imprecise-
ness of the data being evaluated. In the previous example, since T1 has a chance
of 0.9 for satisfying the query, we know that T1 is very likely to be located
inside [10oC, 20oC]. The case of T2 is more vague: it could either be inside or
outside the specified range, with equal probabilities. In general, a query answer
may consists of numerous probability values, making it hard for a query user
to interpret the likelihood of their answers. A quality metric is desired, which
computes a real-valued score for a probabilistic query answer [4,15]. This metric
serves as a convenient indicator for the user to understand how vague his/her
answer is, without the need of interpreting all the probabilities present in the
answer. For example, if the score of his/her query answer is high, the user can
immediately understand that the quality of his/her answer is good. In this paper,
we define a quality score for a probabilistic range query based on the definition
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of entropy [20]. This metric quantifies the degree of query answer uncertainty by
measuring the amount of information presented in a query.

More importantly, the quality score definition enables us to address the ques-
tion: “how can the quality of my query answer be improved?” Let us consider
the sensor network example in Figure 1 again. Suppose that the sensors have
not reported their values for a long time. As a result, the sensor data kept in the
server have a large degree of uncertainty. Consequently, the query answer quality
is low (i.e., the query answers are vague), and a user may request the server to
give him/her an answer with a higher quality. To satisfy the user’s request, the
system can acquire (or probe) the current data from the sensors, in order to
obtain more precise information (i.e., possibly with a smaller uncertainty inter-
val). A higher quality score for the query user’s answer can then potentially be
attained. In fact, if all the items (T1, . . . , T4) are probed, then the server will have
up-to-date knowledge about the external world, thereby achieving the highest
query quality.

In reality, it is unlikely that a system can always maintain an accurate state of
the external environment, since probing a data item requires precious resources
(e.g., network bandwidth and energy). It is thus not possible for the system
to probe the data from all the sources in order to improve the quality of a
query request. A more feasible assumption is that the system assigns to the
user a certain amount of “resource budget”, which limits the maximum amount
of resources invested for a particular query. The question then becomes “how
can the quality of a probabilistic query be maximized with probing under tight
resource constraints?” To illustrate, let us consider Figure 1, where c1, . . . , c4 are
the respective costs for probing T1, . . . , T4. The cost value of each sensor may
represent the number of hops required to receive a data value from the sensor.
Let us also assume that a query is associated with a resource budget of 8 units.
If we want to improve the quality for this query, there are five probing sets,
namely {T1}, {T2}, {T3}, {T1, T2} and {T2, T3}. Each of these sets describe the
identities of the sensors to be probed. Moreover, the total sum of their probing
costs is less than 8 units. Now, suppose the probing of T2 and T3 will yield the
highest quality improvement. Then the system only needs to probe these two
sensors, to ensure the maximum benefit.

Since testing the possible candidates in a brute-force manner requires an
exponential-time complexity, we propose a polynomial-time solution based on
dynamic programming. We also present a greedy solution to enhance scalability.
Our experimental results show that the greedy solution achieves almost the same
quality as the dynamic-programming solution. We study this problem for prob-
abilistic range queries, which return the items within a user-defined region. This
query is one of the most important queries commonly found in location-based
services and sensor applications. Our solution can generally be applied to any
multi-dimensional uncertain data, where the pdf’s are arbitrary.

The problem studied in this paper addresses the balance between query quality
and the amount of system resources consumed. A few related problems have been
studied in [10,16], where probing plans are used to direct the server to acquire
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the least number of data items required to achieve the highest quality. However,
these work do not consider the issue of maximizing quality under limited system
resources allocated to a user. We further consider the scenario in which a group
of query users share the same resource budget. This represents the case when a
system allocates its resources to users with the same priority. We explain how
our basic solution (tailored for a single query) can be extended to address this.
To our understanding, this has not been studied before.

To summarize, our major contributions are:

1. We propose an entropy-based quality metric for probabilistic range queries.
2. We develop optimal and approximate solutions that maximize the quality of

a probabilistic query under limited resource constraints.
3. We extend our solution to handle the case where multiple query users share

the same resource budget.
4. We conduct extensive experiments with realistic datasets to validate the

performance of our algorithms.

The rest of this paper is organized as follows. In Section 2, we present the
related work. Section 3 illustrates the system architecture. We discuss the de-
tails of quality and resource budget for probabilistic range queries in Section 4.
Then we give our solutions in Section 5. We report our experimental results in
Section 6. Section 7 concludes the paper.

2 Related Work

In this section, we summarize the work done in probing and evaluation of prob-
abilistic queries.

Probing Plans. In applications like sensor network monitoring, it is important
for a system to generate a probing plan that only requests relevant sources
to report their data values, in order to optimize the use of resources. In [19],
efficient algorithms are derived to fetch remote data items in order to generate
a satisfactory result quickly. Liu et al. [16] propose an optimal algorithm to find
the exact result for minimum and maximum queries by probing the smallest set
of data sources. The uncertainty model of a data item considered in these two
work is simply a one-dimensional interval. Since the pdf of the value within the
interval is not considered, the query results are “qualitative”, i.e. they are not be
augmented with probabilistic guarantees. Our paper, on the other hand, defines
a quality metric for probabilistic query answers, and use this measure to devise
probing plans. Although Madden et al. [8,10,11] consider the pdf of data values
in their uncertainty models, their methods do not consider the strict resource
constraints imposed on the system (e.g., the maximum amount of resources
that can be spent on a query). The quality metric they consider is based on a
simple probability threshold (e.g., the probability of the object should be higher
than 95%). Our work proposes a feasible probing plan that achieves the highest
quality under limited resource constraints. Our solutions can be applied to multi-
dimensional uncertain data with artibtrary pdfs. We also use the amount of
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information gain (i.e. entropy) as the quality metric in our probing solutions,
and this has not been studied before.

Probabilistic Queries. There are plenty of recent studies about efficient evalu-
ation of probabilistic queries for large uncertain databases. In [3,4,5], efficient al-
gorithms of evaluating probabilistic nearest-neighbor queries are proposed, which
evaluate uncertain location data and provide probabilistic guarantees in answers.
In [1], efficient methods for evaluating probabilistic location-dependent queries
are studied. Indexing of probabilistic range queries is considered in [7], and the
solution is extended to handle multi-dimensional uncertainty in [6,22]. The eval-
uation of probabilistic queries in sensor networks is considered in [2,10,14]. In
this paper, we illustrate our probing techniques by using the probabilistic query
evaluation methods in [4]. However, other advanced query evaluation or indexing
techniques can also be used together with our probing algorithm.

3 System Architecture

Figure 2 describes the architecture of the system used in this paper. The Data
Manager caches the value ranges and corresponding pdf of remote sensors. The
Query Register receives queries from the users. The Query Evaluator evaluates
the queries based on the information stored in the Data Manager. The Probing
Scheduler is responsible for generating a probing set for each query – essentially
the set of sensors to be probed. The benefits and costs of probing actions will
be taken into account by the Probing Scheduler in deciding the what sensors to
be consulted. More specifically, a user query is handled in four major steps:

– Step 1. The query is evaluated by the Query Evaluator based on the data
cached in the Data Manager.

– Step 2. The Probing Scheduler decides the content of probing set.
– Step 3. The Probing Scheduler sends probing commands to the sensors de-
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– Step 4. The Query Evaluator reevaluates the query based on the refreshed
data returned to the Data Manager, and returns results to the query issuer.

Uncertainty Model. We assume there are D data sources, namely Ti(i =
1, 2, ..., D). Each data source Ti has an actual value, denoted by Ti.v, where
Ti.v ∈ R. The uncertainty model of each Ti cached at the server consists of
an uncertain region [li, ui], together with a pdf fi. After probing, the value of
the data item becomes “precise” (i.e., has a pdf value equal to one inside an
infinitesimally-thin uncertain region). For simplicity, we illustrate our solution
with an uncertainty model for one-dimensional data, but our methods can easily
be extended to handle multi-dimensional data.

4 Quality and Resource Budget of Probabilistic Queries

In this section, we present the notion of Quality Score for probabilistic range
query, the query that we extensively study in this paper. Section 4.1 details the
definition and evaluation of probabilistic range queries. In Section 4.2 we present
a quality metric for probabilistic range queries. Section 4.3 then discusses the
metric of resource constraints, called Resource Budget, which is assigned to each
query as the maximum amount of resources allowed in the process of query
evaluation.

4.1 Probabilistic Range Query

The Probabilistic Range Query (PRQ)[4] returns a set of data objects, with
the probabilities that their attribute values are in the specified range, called
qualification probabilities:

Definition 1. Probabilistic Range Query (PRQ): Given a closed interval
[a, b], where a, b ∈ R and a ≤ b, a PRQ (denoted by Q), returns a set of tuples
(Ti, pi), where pi is the non-zero probability that Ti.v ∈ [a, b].

To illustrate, Figure 3 shows two PRQ’s on data items A, B, C and D. The
uncertainty region of each item is shown. For query Q1, three items (A, B and
C) are included in the result; item D is excluded since its uncertainty region
does not overlap with the query range, yielding zero qualification probability.
The result of Q1 becomes: (A, 0.25), (B, 0.5), (C, 0.75).

In general, the value of the qualification probability, i.e., pi, can be calculated
by using the Equation 1 [4].

pi =
∫

Ri

fi(x)dx (1)

where Ri is the overlapping region of the query range [a, b] and [li, ui], and fi(x)
is the uncertainty pdf of item Ti. In Figure 3, we shade the overlapping region
of all the data items with the query range of Q1 and Q2.
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4.2 Quality Score

Let us now present a metric to measure the quality of the answer of a probabilis-
tic range query. This metric is based on the notion of information entropy[20].
As a brief review, the information entropy measures the average number of bits
required to encode a message, or the amount of information carried in the mes-
sage:

Definition 2. Entropy: Let X1, ..., Xn be all possible messages, with respec-
tive probabilities p(X1), ..., p(Xn) such that

∑n
i=1 p(Xi) = 1. The entropy of a

message X ∈ {X1, ..., Xn} is:

H(X) = −
n∑

i=1

p(Xi)log2p(Xi) (2)

Recall that in the answer of PRQ, each value pi describes the probability that
object Ti satisfies it. Thus there are two possible events: (1) Ti satisfies the PRQ
with a probability as pi; (2) Ti does not satisfy the PRQ with a probability of
1 − pi. Using Definition 2, the entropy of Ti for satisfying a PRQ is

gi = −pilog2pi − (1 − pi)log2(1 − pi) (3)

We then use the sum of the entropy values for all the objects that satisfy the PRQ
with non-zero probabilities as the quality metric. More specifically, for a result
containing n answers (T1, p1), (T2, p2), ..., (Tn, pn), the quality score, denoted by
H , of this result is defined by

H = −
n∑

i=1

(pilog2pi + (1 − pi)log2(1 − pi)) (4)

By substituting Equation 3 into Equation 4, we have

H =
n∑

i=1

gi (5)
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A larger value of H implies a lower quality. In particular, H is equal to zero if
the result is precisely known, which happens when all the pi’s are equal to zero
or one. The range of H is [0, n]. Notice that after probing item Ti, its uncertainty
region shrinks to a point, and the server knows exactly whether Ti satisfies the
range query. Thus, pi equals to either zero or one. The corresponding ambiguity
caused by the answer (Ti, pi) is then “removed”, and the entropy of the overall
query result is reduced by an amount given by Equation 3 . We denote this
amount of entropy reduction as the gain of probing Ti, denoted by gi. As shown
in Equation 3 the value of gi only depends on the qualification probability of a
single object Ti. Moreover, the gain is only non-zero for we choose items that
have qualification probabilities in (0,1), and the gain of probing a set of items is
simply equal to the sum of their gains.

4.3 Resource Budget

We now present the resource budget model of a query, which limits the amount
of resources that can be used to probe the sensing devices for this query.

In general, there are several types of important resources for a wireless sensor
network, such as network bandwidth and the battery power used to transmit
data. Here we use a single metric, namely the number of transmitted messages,
to measure the cost. The number of transmitted messages for probing an item
is the major source of consumption of the important resources. The more num-
ber of times the sensors are probed, the more amount of network bandwidth
and battery power is required. Thus, we assume the server assigns to a query
the maximum number of transmitted messages allowed as its resource budget,
denoted as C.

The transmission cost of a data item can vary among the sensors. For example,
a message generated from a sensor may need different number of hops to reach
the base station. Figure 2 shows that four hops are required for probing item E
(the dashed path), whereas only one hop is needed to probe item A. Thus probing
E will cost more than A. We assume the server knows how many messages are

Table 1. Notations

Notation Description

T A remote stream source

T.v The exact value of T

[l, u] Lower and upper bounds of T.v

f Probability distribution function of the T.v

Q Probabilistic range query

C Resource constraint assigned to Q

c # of messages for probing T

H Precision quality (entropy)

p The probability that T satisfies Q

g The benefit of probing T

n # of items in the result set
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needed for probing an item. We also use ci to denote the number of messages
for probing Ti. We list the notations used in this paper in Table 1.

5 Maximizing Quality with Limited Resources

As we have mentioned in Section 4.2, probing items that have non-zero qualifi-
cation probabilities can often improve the quality of a query result. In general,
there can be a tremendous number of objects present in the answer. Moreover,
the amount of resource budget available probing is limited. In this section, we
discuss how query quality can be maximized with limited resource budgets.

In Section 5.1 we present the Single Query (SQ) problem, where we explain
how probing can be done efficiently for a query with limited resource budgets.
We then extend our solution to support a more complicated and practical sce-
nario, i.e. Multiple Queries with Shared Budget (MQSB), in Section 5.2. We give
heuristics which provide close-to-optimal performance in Section 5.3.

5.1 Single Query (SQ)

In this scenario, only one query, Q, needs to be considered when choosing sen-
sors. Suppose based on the cached data, the Query Evaluator has calculated the
qualification probabilities,{p1, p2, ..., pn}, of all the items Ti(i = 1, ..., n) such
that pi > 0. The cost of probing Ti is ci. Let the gain obtained by probing Ti be
gi (Equation 3). We formally define the Single Query (SQ) problem as follows.

Maximize
∑n

i=1 xi · gi

subject to
∑n

i=1 xi · ci ≤ C
xi ∈ {0, 1}, i = 1, 2, ..., n

Here we use an array X = x1, x2, ..., xn to record the choices. Initially, all the
values of xi are zero. If item Ti is chosen for probing, we set xi to 1.

To solve the SQ problem, we use dynamic programming. We observe that
this problem has the optimal substructure, meaning that the optimal solutions
of subproblems can be used to find optimal solutions of the SQ problem. Let us
rewrite the SQ problem as P (C, N), which is associated with a resource budget
C and items N = {T1, T2, ..., Tn}, whose pi’s are all nonzero. Suppose we have
found the optimal set S = {Tγ1 , Tγ2, ..., Tγm} (m ≤ n ∧γi ∈ [1, n]) for P (C, N):
among all the subsets of N whose costs are not larger than C, S is the one with
the highest gain. Now we define a subproblem by randomly removing an item, e.g.
Tγ1 , from the candidate item set, and reducing the budget to C−cγ1 . That is, we
consider a subproblem P (C−cγ1 , N/{Tγ1}). If S1 = S/{Tγ1} = {Tγ2 , ..., Tγm}, is
the optimal set for this subproblem, the SQ problem can be solved by using the
dynamic programming framework. Next we prove that S1 must be the optimal
set for P (C − cγ1 , N/{Tγ1}).

Proof. Suppose S1 is not the optimal set for P (C − cγ1 , N/{Tγ1}), then we can
find another set S′

1 �= S1 which meets two requirements: (1) the cost of probing
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S′
1 is not larger than C − cγ1 and (2) the gain of probing S′

1 is higher than
that of probing S1. Consider the set S′

1 ∪ {Tγ1}. Its cost is not larger than
C − cγ1 + cγ1 = C. The gain of probing it is higher than that of probing the
set S1 ∪ {Tγ1}, or S. Thus S′

1 ∪ {Tγ1} should be a better choice than S for the
overall problem, which violates the condition that S is the optimal set. So S1

must be the optimal set for P (C − cγ1 , N/{Tγ1}). ��

Algorithm DP. In this algorithm, we look for the optimal set for each subprob-
lem denoted by P (k, i), where the resource budget equals to k and the candidate
item set is {T1, ..., Ti}. There are totally n ·C subproblems. For the subproblems
with zero budget or empty candidate set, the optimal set is also an empty set.
We use an array s to store the optimal sets for the subproblems, where s[k, i]
is the optimal set for the subproblem P (k, i). Each element of s, e.g. s[k, i], is
also an array, where s[k, i][j] = 1 if Tj is chosen for probing, and zero other-
wise. We also use an array v to store the gain by probing the optimal set s[k, i].
For each data item Ti, there are two possible choices. Either Ti is not chosen
and s[k, i − 1] is considered as the optimal set for P (k, i), or this item is put
into the solution set which contributes gi to the solution gain but decrease the
budget remaining for items {T1, T2, ..., Ti−1} to k − ci. The optimal set for the
subproblem P (k − ci, i − 1) is s[k − ci, i − 1] with the gain v[k − ci, i − 1]. Thus
if Ti is chosen, the maximum possible gain is v[k − ci, i − 1] + gi. In Step 3, the
gains of these two possible choices are compared, and the one with larger gain is
taken as the optimal solution for current subproblem P (k, i). Steps 4-5 handle
the case that Ti is not chosen, while Steps 7-9 construct the optimal set and the
corresponding gain if Ti is chosen. Another point to notice is, in order to put Ti

into the solution set, the cost of probing Ti, i.e. ci, must be not larger than the
remaining budget k. Step 3 also tests whether this condition is satisfied.

Input An array of probing costs c = (c1, c2, ..., cn)
An array of gains g = (g1, g2, ..., gn)
The resource budget C

Output The optimal set

1. for i := 1 to n do
2. for k := 1 to C do
3. if ci > k or v[k, i − 1] > v[k − ci, i − 1] + gi

4. v[k, i] := v[k, i − 1]
5. s[k, i] := s[k, i − 1]
6. else
7. v[k, i] := v[k − ci, i − 1] + gi

8. s[k, i] := s[k − ci, i − 1]
9. s[k, i][i] := 1
10. return s[C, n]

Fig. 4. Algorithm DP for SQ
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Using Algorithm DP, we can find an optimal solution for the SQ problem. We
will show soon that Algorithm DP can also be used to solve the MQSB problem,
with little change to the calculation of gain.

Complexity. There are two for-loops in Algorithm DP. The computational com-
plexity is thus O(nC). The algorithm requires the storage of intermediate results,
i.e. the optimal sets and corresponding gains for the subproblems. The variable
s is a 3D array with space complexity of n2C, while v is a 2D array with the
size of nC. Thus the memory complexity of Algorithm DP is O(n2C).

5.2 Multiple Queries with Shared Budget (MQSB)

In many cases, more than one query are processed at the server simultaneously. A
data item Ti may be involved in the results of multiple queries. By probing Ti, all
queries containing it in their results will have a better quality. In order to apply
Algorithm DP in this scenario, we need to change the method of calculating
gain, i.e. Equation 3. Suppose there are m queries, Q1, Q2, ..., Qm, we can have
a set of m values for Ti, pi1, pi2, ..., pim, where pij(j = 1, 2, .., m) specifies the
probability that Ti satisfies Qj. After getting the exact value of Ti the result
precision of these queries will be improved by Hij . Here Hij , the gain for Qj

obtained by probing Ti, is equal to −pijlog2pij − (1 − pij)log2(1 − pij), where
j = 1, 2, ..., m(Equation 3). The gain of probing Ti is the sum of Hij , or

Gi =
m∑

j=1

Hij (6)

For example, as in Figure 3, item A overlaps with the ranges of both Q1 and
Q2, where pA1 = pA2 = 0.25. Thus gA = −2 · (0.25 · log20.25 + 0.75 · log20.75) =
1.62.

Suppose the server needs to process multiple queries in batches, and these
queries share a single resource budget C. We denote this scenario as Multiple
Queries with Shared Budget, MQSB. The formal definition of MQSB has the
same form as that of SQ. The only difference is the use of Gi (Equation 6) to
replace gi (Equation 3). Therefore, Algorithm DP is also suitable for solving
MQSB. Moreover, the approximate solutions, which will be discussed in Sec-
tion 5.3, can also be used for MQSB.

Complexity of DP (MQSB). Compared with the SQ scenario, the inputed
data size for the DP algorithm will be larger in the MQSB scenario. There are
m queries evaluated concurrently in the MQSB scenario. If we let n to be the
average size of the result sets for these m queries, the DP algorithm needs to
process nm data items. Moreover, there would be extra cost of computing the
gains by using Equation 6 in the MQSB scenario, which is O(nm). Thus, the
computational complexity of Algorithm DP would be O(nmC +nm) = O(nmC)
in the MQSB scenario, and the memory complexity is O((nm)2C).
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5.3 Approximate Solutions

Greedy. The dynamic programming solution, Algorithm DP, can find the op-
timal sets. However, its complexity can be quite high. To enhance its scalability,
we design a greedy algorithm. The general idea of Greedy is to make a locally
optimal choice. Every unit of cost should be allocated to the items which can
produce maximum benefit. To achieve this objective, we define a new metric
to describe the amount of gain obtained by consuming a unit of resource. This
metric is called efficiency, denoted by ei. Equation 7 shows how to compute the
value of ei.

ei =
gi

ci
(7)

Input An array of probing costs c = (c1, c2, ..., cn)
An array of gains g = (g1, g2, ..., gn)
The resource budget C

Output The optimal set

1. d := sort(c, g)
2. b := C
3. for i := 1 to n do
4. if b ≥ cd[i]

5. s[d[i]]:=1
6. b := b − cd[i]

7. return s

Fig. 5. Algorithm Greedy

In Step 1 of the Greedy algorithm, the items are sorted by their efficiencies
in descending order. The sorted indices are stored in an array d. Initially, the
remaining budget, i.e. b, is set to the value of C. We then check the items
sequentially in the order stored in d. If the remaining budget is not smaller than
the cost of probing this item (Step 4), it is put into array s (Step 5) and the
remaining budget is reduced by its cost (Step 6). Step 7 returns the probing set
stored in s.

The Greedy algorithm has a time complexity of O(n log n) (to sort the items).
The space requirement for Greedy is O(n). It is thus more efficient than DP.
However Greedy does not guarantee an optimal set can be found.We will compare
the performance of these two algorithms in Section 6.

Random and MaxVal. We also develop two other simpler heuristics, called
Random and MaxVal. The Random solution chooses items randomly until the
resource budget is exhausted. The MaxVal heuristic probes items sequentially
in descending order of their gains until the resource budget is exhausted.

Table 2 compares the complexities of the above algorithms in the SQ scenario.
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Table 2. Complexity of Four Algorithms (SQ)

Algorithm Computational Complexity Space Complexity

DP O(nC) O(n2C)

Greedy O(n log n) O(n)

Random O(n) O(n)

MaxVal O(n log n) O(n)

Table 3. Complexity of Four Algorithms (MQSB)

Algorithm Computational Complexity Space Complexity

DP O(nmC) O((nm)2C)

Greedy O((nm) log(nm)) O(nm)

Random O(nm) O(nm)

MaxVal O((nm) log(nm)) O(nm)

For MQSB, the complexities of the optimal and approximate solutions are
listed in Table 3. They are derived by substituting the value of n in Table 2
by nm.

6 Experimental Results

We have performed experimental evaluation on the effectiveness of our ap-
proaches. We first present our simulation model, followed by the detailed results.

6.1 Experiment Settings

We use a realistic data set, called Long Beach1, which contains 53K rectangles,
and each represents a region in the Long Beach country. The objects occupy a
2D space of 10, 000 ∗ 10, 000 units. We use the Long Beach data as an uncertain
object database. We also assume that the uncertainty pdf of any uncertain object
is a uniform distribution.

The cost of probing each item (i.e. ci) are uniformly distributed in [1, 10]. The
resource budget, C, ranges from 20 to 500. The performance metric is the result
quality improved by probing a set of result items. Each data point is an average
over 50 runs. Our experiments are run on a PC with 2.4GHz CPU and 512MB
of main memory. Our simulation is written in j2sdk1.4.2 11.

6.2 Results

Effectiveness Analysis. Figure 6 compares the quality improvement using dif-
ferent probing strategies for the SQ problem. The x-axis is the value of resource
budget which ranges from 20 to 500. The y-axis is the improved quality of query
1 Available at http://www.census.gov/geo/www/tiger/
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Fig. 7. Quality Improvement vs. Resource Budget (MQSB)

results. As shown in Figure 6, DP always outperforms MaxVal and Random.
This is because DP derives the probing set with optimal resource utilization.
The performance of Greedy is close to DP; in fact, DP performs about only
2% to 3% better than Greedy. This is because that the quality-aware probing
problem is a variant of the knapsack problem [9], and it has been shown in [12]
that the average performance of a greedy solution is close to the optimal one.

Figure 7 illustrates similar results for MQSB. In these experiments, 10 queries
are executed concurrently in a batch.
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Fig. 8. Time Spent in Different Phases during Query Processing (SQ)
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Fig. 9. Decision Time vs. Resource Budget (SQ)

Performance Analysis. Figure 8 shows a decomposition of the time spent in
the server: (1) Evaluation - the time required by the Query Evaluator to compute
the initial results (Step 1 in Section 3), and (2) Decision - the time for deciding
the probing set contents (Step 2 in Section 3). We have ignored the processing
time of Step 4 since after probing, the qualification probabilities will become
either zero or one for the data items in the probing set, and no extra effort
is needed to compute their qualification probabilities. Here, we use DP to find
optimal probing set in the Decision step. As shown in Figure 8, the Decision
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step costs more time as the resource budget increases. The reason is that more
choices are available with a larger resource budget.

Figure 9 shows the time spent in the Decision step for the SQ problem. DP
uses more time to find the optimal probing sets, and the decision time of DP
increases fast with the resource budget. The decision time for heuristics (i.e.
Greedy, MaxVal and Random) are much less. The results in MQSB are similar
and are omitted here.

Compared with DP, Greedy gets similar quality improvement with less time.
In fact, Greedy performs very well under a large batch of queries in the MQSB
scenario. Figure 10 illustrates the time required for finding the probing sets using
the Greedy algorithm. The resource budget is set to 100. The number of queries
evaluated in a batch varies from 10 to 100. As shown in the figure, the decision
time increases gracefully with the query batch size.

7 Conclusions

The evaluation of probabilistic queries over uncertain data has attracted plenty
of research interest in recent years. In this paper, we investigated the problem
of optimizing the quality of probabilistic query answers with limited resources.
We further extended our solution to handle the case where the resource budget
is shared among multiple queries. While the DP algorithm provides an optimal
solution in polynomial times, our experiments show that the Greedy heuristic
can achieve close-to-optimal performance in less time. In the future, we will
investigate this problem for other types of queries.
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Abstract. Queries such as database similarity searches return results satisfying
certain properties of distances or scores. For domain scientists, the absolute val-
ues of scores are seldom sufficient. Statistical significance or p-value of the result
is a more useful criterion. This can be computed using an appropriate model of
random objects. The problem of computing p-values becomes more acute when
queries have multiple components. In this case, the returned score is an aggregate
of individual scores. The simple way of calculating the p-value by enumerating
all random possibilities fails for large database and query sizes. We propose an
efficient method to calculate the approximate p-value of a multi-attribute result
when the distribution of scores for the database objects is non-parametric. Exper-
imental evaluation on large databases shows that our method is practical, runs 5
orders of magnitude faster than the basic approach, and has an error of less than
5% in p-value computation.

1 Motivation and Problem Statement

Many database systems retrieve results based on some distance or score measure be-
tween the query object and the database objects. Score is a quantitative measure of
the similarity between objects based on multiple attributes. It has been widely used for
ranking results in content-based multimedia retrieval systems. However, with the grow-
ing interest in analyzing the results of a database similarity query, computing rigorous
statistical properties of the results is more meaningful.

Statistical significance helps the domain scientists in understanding the nature of
the query and the statistical properties of the database objects. The most well known
example is BLAST [1]. A standard measure of statistical significance is the p-value.
The p-value of score s of a query result from a database is defined as the probability
of randomly obtaining a result from the database with a score s or higher for the same
query. It is the area under the probability distribution function (pdf) of the scores of
random objects greater than s.

For a database management system (DBMS) serving single object queries, the score
pdf can be characterized or calculated, and so, the p-value can be computed. However,
there are database systems of complex objects where each object consist of multiple
attributes or components. Such systems support queries with multiple attributes or ob-
jects and the score of a result is some aggregate function (e.g., sum) of the individual
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c© Springer-Verlag Berlin Heidelberg 2008
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scores of each query component against its corresponding result component [5]. These
queries are common for region based image retrieval (RBIR) systems [3] and informa-
tion retrieval systems [9]. For example, in an RBIR system, a query region is composed
of a number of sub-regions (e.g., tiles) [2,10]. The database images are also split into
sub-regions. Each component sub-region has a corresponding score of its match with a
query sub-region. The score of a result is the sum of the individual scores.

For a given query object Q of size r, a random database for computing the p-value
can be modeled by considering all possible aggregates of size r composed of compo-
nents from the database. To find the p-value, we need to calculate the score pdf for this
random database. This simple method has a running time that grows exponentially with
database size and query size and is, therefore, impractical. In this paper, we propose and
solve the following problem: “Given a query Q composed of r objects Qi, i = 1, · · · , r,
database objects Dj, j = 1, · · · , n, scoring functions fi : Qi × D → �, compute the
p-value of obtaining a score s for a result R = ∪r

i=1Ri, where s =
∑r

i=1 f(Qi, Ri),
for a random database of objects, each having r component objects.”

Methods have been proposed for obtaining a single measure of statistical significance
by combining the individual p-values. For example, the method in [4] requires finding
the correlation among the attributes, which is done by sampling for large datasets. We
adopt a more direct approach. We find the sum pdf of the individual pdfs of the compo-
nents of the query. Then we calculate the p-value from this sum score pdf. Since score
pdf of each component is independent of the other, this pdf is the convolution of all the
individual pdfs. For most databases, the nature and the parameters of this pdf cannot
be computed. We consider such cases where the probability distribution function of the
cumulative scores is non-parametric.

2 Algorithm

For a multiple object query, the p-value can be found from the sum pdf of its compo-
nents. The basic approach of calculating the sum pdf is to calculate the pdf of each
query component and then find their convolution. Two score pdfs h1 and h2 can be
convoluted to produce the sum score pdf h: the probability corresponding to score s
considers all possible scores s1 and s2 from h1 and h2 such that s = s1 + s2. The
cost of computing this convolution is, thus, quadratic in the number of distinct scores
in the constituent pdfs. Hence, we can see that the convolution of multiple pdfs incurs
a multiplicative cost on the size of the pdfs, and therefore, can be large. Assume that a
query has r components, and each component has b distinct score values. The convolu-
tion of the first two components requires b × b = b2 operations and produces up to b2

distinct scores. Convoluting this result with the third component requires b2 × b = b3

operations, and so on. The total running time, therefore, is b × b × · · · × b = O(br).
In order to speed up the p-value computation, we consider the two aspects of the

problem—computing the score distribution for each query component and convolut-
ing the distributions—separately. The first sub-problem is handled by pre-processing
and maintaining a separate score pdf for each object component in the database. This
can be done offline. For each component of the query, we approximate its score pdf by
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Algorithm PRUNE
Input: Query Q = ∪r

i=1Qi, Score s, Database D, Number of bins b
Output: P-value p
1. for i = 1 to r
2. Di := 1-NN(Qi, D)
3. hi := BinHistogram(Di, b)
4. end for
/* σi is the sum pdf of bin histograms 1, · · · , i */
5. σ1 := h1

6. for i = 2 to r
7. B(σi) := s −

�r

j=i+1 max(hj)

8. B(hi) := B(σi) − max(σi−1)
9. B(σi−1) := B(σi) − max(hi)
10. σi := Convolute(all bins σi−1,j ≥ B(σi−1), all bins hi,k ≥ B(hi))
11. end for
12. p := Sum of probabilities in all bins σr,j ≥ s

Fig. 1. The PRUNE algorithm

the pdf corresponding to its nearest component in the database. The nearest database
component can be retrieved very efficiently by indexing the feature vectors of the ob-
jects using R-trees [7].

To efficiently convolute the pdfs and compute the p-value, we developed an approx-
imation technique PRUNE (Fig. 1). There are three main steps in the algorithm: (i) Use
histograms to approximate the score probability distribution functions of each query ob-
ject, (ii) Progressively cascade the convolution of query object histograms to obtain the
score histogram for the entire query, and (iii) Use bounds to convolute the histograms.
We next explain each step in detail.

2.1 Use of Histograms to Approximate Distributions

Since the cost of convoluting two pdfs is a quadratic function of the number of distinct
values in the pdfs, instead of using an actual score pdf, we approximate it by a histogram
with a fixed number of bins as shown in step 3 of Algorithm PRUNE (Fig. 1). For speed,
simplicity, and convenience, we choose equi-width histograms. The whole score range
is divided into a fixed number of equi-width bins. The accuracy of the approximation
depends on the number of bins maintained. More bins have less error, but higher running
time. Section 3 considers the effect of the number of bins on the running time and the
error in calculating the p-value.

2.2 Cascaded Convolution of Histograms

As described earlier, the simple way of directly convoluting r histograms has a time
complexity which is exponential in r. To avoid such high costs, we convolute the his-
tograms in a progressive fashion. Initially, the histograms of two query component ob-
jects are convoluted to yield another score histogram, which is again binned into b bins.
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Then, this histogram is convoluted with the next histogram and so on till all the r his-
tograms have been convoluted.

Denoting the ith histogram by hi and the convolution of histograms up to i compo-
nents by σi, we compute σi = σi−1 ⊕ hi up to i = r. Each histogram convolution re-
quires quadratic number of operations in terms of the number of bins in the histograms.
The total time complexity, therefore, is O(b2r). To make it even more efficient, we
apply a bounding procedure which is described next.

2.3 Convolution of Bounded Histograms

The bounding method is based on the observation that computing the p-value for a score
s requires counting only those scores that are greater than or equal to s. Scores in the
histogram of a query object that cannot add up to s even when combined with the best
scores of the histograms of other query objects need not be considered. Therefore, the
bins in the histogram whose scores fall below this threshold score can be deleted. The
bounding method achieves this pruning of histogram bins by evaluating the threshold
score at each stage. This reduces the number of bins, and thus, the running time.

Fig. 2 shows an example of how such thresholds are computed. Assume that the
histogram σi−1 is convoluted with hi to yield σi. Also, assume that the score s for
which the p-value is being calculated is 100. If the maximum score in hi+1 is 40, then
any score below 100− 40 = 60 in σi cannot add up to s. This is the threshold score for
that histogram, and is highlighted in the figure. Thus, all scores below 60 can be deleted
from σi. By analyzing this bounding behavior backwards for the histograms σi−1 and
hi, it can be seen that such contributing pairs of scores need not be calculated at all. The
maximum score in hi is 55. Since we do not need any score in σi that is below 60, all
scores below 60 − 55 = 5 in σi−1, when added to any score in hi will be less than 60,
and hence, can be deleted. Continuing this reasoning, all scores below 35 in hi can be
deleted. The threshold scores are highlighted in the figure.

In this example, the number of bins in σi−1 and hi are reduced from 6 to 4 and 3
respectively. This translates to a saving of 6×6−4×3 = 24 bin convolution operations.

hi

100
hi+1

35 = 60 − 25 = i

i−1σ iσ

55
42
35
22
14
7

25
17
9
5
3
−1

80
72
67
64
60
59

40
Score s

Max of

Bound on h

60Bound on = 100 − 40 = iσ

Bound on σi−1= 60 − 55 = 5

Fig. 2. Efficient convolution of histograms. σi−1 ⊕ hi = σi. The bins below the score thresholds
(shown inside circles) can be pruned to save time.
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Steps 7 to 10 of Algorithm PRUNE (Fig. 1) apply bounding to the cascaded convolu-
tion. As shown in the next section, the overall saving for r histogram convolutions is
significant.

Note that the two sources of error in the p-value computation are the use of nearest
neighbors and histogram binning. The bounding method does not introduce any error.

3 Experiments

In this section, we demonstrate the effectiveness of our PRUNE method over alternate
approaches. We explain the empirical results in the context of region-based image re-
trieval (RBIR) system for a biomedical image database of fluorescent micrographs of
feline retinas labeled with different antibodies [6]. The dataset consists of 805,272 tiles.
The score between two tiles is a decreasing function of the L1 distance between the
color histogram features of the tiles. The tiles are the component objects in our system.
The score of the alignment of a query region to a database region is the sum of the
scores of the alignment of the individual tiles. The details of the dataset preparation, the
features, the scoring function, and the retrieval system are explained in [10].

3.1 Running Time

The basic approach of online computation of score pdfs of each query tile and their con-
volution yields impractical time. Therefore, we do not consider it. Instead, we maintain
a database of the pre-computed pdf of each database component. We use the follow-
ing parameters for the analysis of running time: (i) the number of bins in the score
histograms, (ii) the query score for which the p-value is computed, measured as a per-
centage of the maximum score that can be achieved by the query, and (iii) the query
size, which is the number of tiles in the query image.

First, we compare the four different approaches of computing the p-value: (i) Using
actual pdf without pruning, (ii) Using actual pdf with pruning, (iii) Using binned pdf
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without pruning, and (iv) Using binned pdf with pruning (PRUNE). Fig. 3 shows their
running times for different query sizes. The pruning strategy shows a gain of about
103 for a query size of 8 without binning. Binning improves the computation time by
2 orders of magnitude with pruning and 5 orders of magnitude without pruning. In all
cases, the PRUNE strategy finished in practical times—at most 255 ms.

Since the PRUNE strategy outperforms all other approaches we analyze it further
with respect to other parameters. Fig. 4 shows that the efficiency of pruning increases
with the increase in query size across varying number of bins in the histogram. Up to
medium query sizes of 6, and number of bins 5000, the scalability is linear or better.

The next experiment (Fig. 5) shows that the pruning strategy performs better when
the query score increases, across varying number of bins. When the query score is 80%
of the maximum score, the pruning strategy is very effective for all histogram bin sizes.
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The scalability is better for higher query scores. Thus, the empirical results strongly
suggest that our PRUNE method is efficient and practical.

3.2 Error

We next performed experiments to measure the error in p-value computation induced
by binning. Fig. 6 shows the error percentage across varying number of bins. When the
query size is large, using less number of bins accumulates the error over more number of
steps, resulting in more than 20% error. Increasing the number of bins to 1000 reduces
the error to at most 5%, irrespective of the query size and the query score. This proves
the effectiveness of our strategy.

4 Conclusion

In this paper, we defined the problem of efficiently computing the p-value for multi-
object query results for non-parametric distributions. We proposed an approximate
bounding procedure PRUNE and showed that it is faster than the alternate approaches
by more than 5 orders of magnitude with the error in computation less than 5%. Possi-
ble future avenues of work include sampling to obtain the score histograms, computing
bounds for other aggregate functions like max, and examining the order in which the
component object histograms should be convoluted in order to minimize the number of
operations.

We presented a O(b2r) complexity algorithm for convoluting r histograms of b bins
each. In future, we plan to examine the computation time and the possibility of op-
timization by utilizing the convolution theorem which states that the discrete Fourier
transform (DFT) of the convolution of two equi-width histograms is equal to the prod-
uct of the individual DFTs of the histograms [8]. This implies that the convolution of
r histograms can be achieved in O(rb lg b) time using fast Fourier transform and its
inverse [8].
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Abstract. Data reordering techniques are applied to improve the space and time
efficiency of storage and query systems in various scientific and commercial
applications. Run-length encoding is a prominent approach of compression in
many areas, whose performance is significantly enhanced by achieving longer
and fewer “runs” through data reordering. In this paper we theoretically study
two reordering techniques, namely lexicographical order and Gray code order.
We analyze these two methods in the context of bitmap indexes, which are known
to have high query performances. We take into account the two commonly used
bitmap encodings: equality and range. Our analysis indicates that, when we have
all the possible data tuples, both ordering methods perform the same with equality
encoding. However, Gray code achieves better compression with range encoding.
Experimental results are provided to validate the theoretical analysis.

1 Introduction

Scientific data is mostly read-only and its volume can reach to the order of petabytes,
e.g., astrophysics, genomic and proteomics, high energy physics. The techniques for
maintaining the conventional databases usually do not apply to these applications, which
brings up the need for effective indexing methods for efficient storage and retrieval.
Bitmap indexes are compact index structures and they have been successfully applied
to data warehouses and scientific databases by exploiting the property that scientific
data are enumerated or numerical [6,11]. These structures have also been implemented
in commercial Database Management Systems such as Oracle [1,2], Informix [4,7].

These indexes handle partial match and range queries very efficiently since they
utilize the fast bitwise logical operations, which are directly supported by computer
hardware. However, in order to maintain these advantages in large domains, effective
compression schemes are applied. The most suited and widely used techniques are the
adaptations of run-length based compression [10]. Besides reducing the data size, run-
length compression has the benefit of partially avoiding the overhead of decompres-
sion in query processing for bitmap indexes [1,12]. Since run-length based compression
schemes pack together the consecutive same-value-symbols, the compression ratio de-
pends heavily on the occurrences of such patterns. Data can be reorganized/reordered
to increase the length of the runs and improve the compression performance.
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�� Partially supported by US National Science Foundation (NSF) Grant IIS-0546713.
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A common approach is lexicographical sorting, which is used in traditional databases
to preserve locality and avoid disk seeks. Several other reordering techniques have been
successfully applied to increase the performance of compression in different domains
as well [5,9]. For a boolean matrix, the objective of finding an order of data that mini-
mizes the total number of runs in the columns of the matrix was shown to be NP-hard
through a reduction to Traveling Salesperson Problem (TSP) [5]. Gray codes have been
proposed as an efficient alternative to simple lexicographic or expensive TSP heuris-
tics, and shown to achieve comparable compression to TSP, while running significantly
faster than these heuristics [9].

In this paper we examine the effectiveness of (re-)ordering methods on the data
compression performances. We provide the theoretical foundations and performance
analysis of lexicographic and Gray code order in the context of bitmap indexes. Com-
paratively, lexicographic order and Gray code order are investigated for two encoding
techniques that are commonly used in bitmap indices, namely equality and range encod-
ings, and their relative performances are studied with data reordering in consideration.

Compared to their own equality encoding versions, our study reveals that both Gray
code and lexicographic order achieve greater compression performances for range en-
coding. On the other hand, comparison of the two ordering methods leads to the fol-
lowing outcomes. With equality encoding, when we have all the possible data tuples,
lexicographic order and Gray code order perform the same. However, Gray code order
achieves better compression than lexicographic order when range encoding is used. We
also provide experimental results to validate the theoretical analysis.

The organization of the paper is as follows. In Section 2 we briefly cover the back-
ground information about the impact of reordering schemes on the compression perfor-
mance, and provide the preliminaries for the rest of the paper. Section 3 provides the
analysis for the equality encoding bitmap model. We provide the theoretical study on
the range encoding model in Section 4. Experimental results are presented in Section 5,
and finally we conclude in Section 6.

2 Background

In this section, the background information for the data ordering and compression ap-
proaches are provided, and the related work is discussed.

Efficient storage of large boolean tables are achieved by utilizing the run-length
based compression [10], which is the process of replacing the consecutive occurrences
of a symbol by a single instance and a count. We define a run as a sequence of 0’s
followed by (not including) a 1 or end symbol, or a sequence of 1’s followed by (not
including) a 0 or end symbol. For instance, in Figure 1(a) the first column has 2 runs
and the second column has 4 runs. Variations of the run-length compression technique
are utilized in different domains in the literature. For example, for bitmap indexes, the
two most popular compression schemes are BBC [1] and WAH [12]. BBC stores the
compressed data in bytes while WAH stores in words. They are designed not only to
decrease the bitmap index size but also to speed up the query execution performance
while running the queries over the compressed data.
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(a) Lexicographic (b) Gray code

Fig. 1. Example of tuple reordering

For a boolean matrix, long runs of 0 or 1 blocks are necessary for run-length based
compression to be effective. In other words, the performance depends on the number
of runs, therefore reordering techniques are utilized for improvement by packing the
same-value bits together. Adaptations of the traveling salesperson problem (TSP) so-
lutions have been applied to the large boolean matrices in [5]. In order to improve the
bitmap index compression, Gray code ordering (GCO) is proposed as a data reorgani-
zation technique in [9]. GCO based approaches are known to be faster than TSP-based
solutions.

The original Gray code for binary numbers is an encoding such that two adjacent
numbers differ only by one bit (Hamming distance is equal to 1). For instance (000,
001, 011, 010, 110, 111, 101, 100) is a binary reflected Gray code. One can achieve
a Gray code recursively as follows: i) Let S = (s1, s2, ..., sn) be a Gray code. ii)
First write S forwards and then reflect S by writing it backwards, so that we have
(s1, s2, ..., sn, sn, ..., s2, s1). iii) Append 0 to the beginning of first n numbers, and 1
to the beginning of last n numbers. For instance, take the Gray code (0, 1). Write it
forwards and backwards, and we get: (0, 1, 1, 0). Then we add 0’s and 1’s to get: (00,
01, 11, 10).

Figure 1 illustrates the effect of running the GCO algorithm. On the left is the nu-
meric (or lexicographic) order of a boolean matrix with 3 columns. In the rest of the
paper, we refer to the lexicographic order shortly as Lexico order. GCO of the same
matrix is presented on the right. As the figure illustrates, the aim of GCO is to produce
longer and thus fewer runs than Lexico order. Figure 1(a) produces 14 runs (2 on the
first column, 4 and 8 on the following columns) whereas Figure 1(b) has 10 runs (2 on
the first column, 3 and 5 on the following columns).

We call a data set that has all the possible combinations of tuples as full. Table 1
is an example of a full data. Recall that the aim of GCO is to reorder the data so that
the Hamming distances between the consecutive tuples will be 1. For a set of tuples
there can be more than one order that have such property. Therefore, Gray codes are
not unique. In this paper, to simplify the analysis, only the reflected GCO is taken into
account.

Equality Encoding is the basic encoding scheme for bitmap indices, which is also
known as Value-List index [8]. For an equality encoded bitmap index, data is partitioned
into several bins, where the number of bins for each attribute could vary. If a value falls
into a bin, this bin is marked “1”, otherwise “0”. Since a value can only fall into a
single bin, only a single “1” can exist for each row of each attribute. Table 1 shows a
two-attribute example such that the first attribute has 2 bins and the second attribute has
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Table 1. Encoding example for two attributes with 2 and 3 bins

Equality Encoding Range Encoding
Tuple Attribute 1 Attribute 2 Attribute 1 Attribute 2

a b 1 2 3 a b 1 2 3
t1 = (b, 3) 0 1 0 0 1 0 1 0 0 1
t2 = (a, 2) 1 0 0 1 0 1 1 0 1 1
t3 = (a, 3) 1 0 0 0 1 1 0 0 0 1
t4 = (b, 2) 0 1 0 1 0 0 1 0 1 1
t5 = (b, 1) 0 1 1 0 0 0 1 1 1 1
t6 = (a, 1) 1 0 1 0 0 1 1 1 1 1

3 bins. The first tuple t1 falls into the second bin of the first attribute and the third bin
of the second attribute.

Another prominent encoding scheme is called Range encoding [3], which is also
presented in Table 1. In this encoding, if a value falls into a bin bi, all the greater
bins and also bi are marked “1”; and “0” otherwise. Range encoding performs better
especially for single-sided range queries compared to equality encoding. For details we
refer the reader to [3].

3 Equality Encoding

In this section, we investigate the behaviors of Lexico order and GCO schemes using
equality encoding. Our main goal is to derive a formula for the total number of runs
with full data. For the remaining of the paper, we use the terms cardinality and number
of bins of an attribute interchangeably and they basically refer to the same value.

Define F (x) as F (x) = 3x−2. This function will be used to find the number of runs
of an attribute as a function of its cardinality. The total number of attributes is denoted
by A, and the cardinality of attribute i is denoted by Ci. For A attributes, where A ≥ 2,
following theorem presents the total number of runs for the full data using Lexico order.

Theorem 1. For full data, number of runs in Lexico order using equality encoding is

F (C1) +

A�
i=2

�
	F (Ci)

i−1

j=1

Cj −

�
�(Ci − 2)

�
	(

i−1

j=1

Cj) − 1

�
�
�
�
�
�

Proof. Number of runs for the first attribute is F (C1). With full data ith attribute can be
considered as

∏i−1
j=1 Cj separate chunks where the tuples in a chunk have the same value

for the attributes A1, ..., Ai−1. An example is given in Figure 2. In the example first
attribute has a single chunk, second attribute has 2 chunks (C1 = 2) and third attribute
has 4 chunks (C1 ·C2 = 2·2 = 4). Since there are

∏i−1
j=1 Cj chunks and an attribute with

Ci produces F (Ci) runs, there are F (Ci)
∏i−1

j=1 Cj runs in attribute i. However, this
assumes that runs finish and start at chunk boundaries and can not be combined. Runs
for the first and last columns of an attribute can not be combined. However, runs for
other columns can be combined since runs are of the form: 0’s followed by 1 followed
by 0’s. Trailing runs of 0’s for one chunk can be combined with leading 0’s of next
chunk. There are Ci − 2 inner columns in each attribute and there are

∏i−1
j=1 Cj − 1 run
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Fig. 2. Example of chunks with 3 attributes each having 2 bins

merges for each inner column. Total number of run merges is (Ci − 2)(
∏i−1

j=1 Cj − 1)
and we subtract this to find the exact number of runs. �
For equality encoding with the full data, we next show that Lexico order and GCO
produce the same number of runs.

Theorem 2. For full data, the number of runs in GCO using equality encoding is equal
to the number of runs in Lexico order, which is given in Theorem 1.

Proof. Number of runs for the first attribute is F (C1). With full data, ith attribute can
be considered as

∏i−1
j=1 Cj separate chunks where the tuples in a chunk have the same

value for the attributes A1, ..., Ai−1. Since there are
∏i−1

j=1 Cj chunks and an attribute

with Ci produces F (Ci) runs, there are F (Ci)
∏i−1

j=1 Cj runs in attribute i. For odd
numbered attributes, binary numbers in a chunk appear in increasing order and for even
numbered attributes, binary numbers in a chunk appear in decreasing order. In either
case, number of runs for a column is the same. Above analysis assumes that runs finish
and start at chunk boundaries and can not be combined. Rest of the proof is similar to
the proof of Theorem 1. �

4 Range Encoding

In this section, we focus on range encoding and discuss the behaviors of Lexico order
and GCO. Our main goal again includes deriving the total number of runs. In addition,
we compare the compression performances of Lexico order and GCO both for equality
and range encodings. Note that conversion of an equality encoded tuple Ti to its range
encoded version R(Ti) is a 1-1 transformation (see Table 1).

Total Runs for Lexico: Define function E(x) as E(x) = 2x − 1, which will help
deriving the number of runs of range encoding for both Lexico order and GCO. The
formula for lexicographic order is given by the following theorem.

Theorem 3. For full data, the number of runs in Lexico order of A attributes, where
A ≥ 2, using range encoding is

E(C1) +
A�

i=2

�
	E(Ci)

i−1

j=1

Cj −

�
�(

i−1

j=1

Cj) − 1

�
�
�
�

Proof. The number of runs for the first attribute is E(C1). With full data, ith attribute
can be considered as

∏i−1
j=1 Cj separate chunks where the tuples in a chunk have the
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same value for the attributes A1, . . . , Ai−1. Since there are
∏i−1

j=1 Cj chunks and an

attribute with Ci produces E(Ci) runs, there are E(Ci)
∏i−1

j=1 Cj runs in attribute i.
However, this assumes that runs finish and start at chunk boundaries and can not be
combined. Runs for the last column can be combined since all the entries are 1’s. Runs
for other columns can not be combined since they all have a number of 0’s followed by
a number of 1’s. There are

∏i−1
j=1 Cj − 1 run merges for the last column of the attribute.

We subtract the number of run merges (
∏i−1

j=1 Cj − 1) to find the exact number of runs.
�

Equality Lexico vs. Range Lexico: For Lexico order, range encoding achieves better
compression than equality encoding as shown by the following corollary.

Corollary 1. For Lexico order of full data, range encoding produces fewer runs than
equality encoding.

Proof. Follows from the comparison of Theorems 1 and 3 using E(Ci) < F (Ci) and�
(
�i−1

j=1 Cj) − 1
�

<
�
(Ci − 2)

�
(
�i−1

j=1 Cj) − 1
��

. �

Total Runs for GCO: The total number of runs is given below. Tricky part of the
derivation is again to find out how many of the runs merge. Since runs can cross the
chunk boundaries (see Figure 2), we should avoid overcounting.

Theorem 4. For full data, the number of runs in GCO of A attributes, where A ≥ 2, in
range encoding is

E(C1) +

A�
i=2

�
	E(Ci)

i−1

j=1

Cj − Ci

�
�(

i−1

j=1

Cj) − 1

�
�
�
�

Proof. Number of runs for the first attribute is E(C1). With full data, ith attribute can
be considered as

∏i−1
j=1 Cj separate chunks where the tuples in a chunk have the same

value for the attributes A1, . . . , Ai−1. Since there are
∏i−1

j=1 Cj chunks and an attribute

with Ci produces E(Ci) runs, there are E(Ci)
∏i−1

j=1 Cj runs in attribute i. This anal-
ysis assumes that runs finish and start at chunk boundaries and can not be combined.
However, the runs for all the bins of an attribute can be combined. Since there are Ci

bins in the attribute and there are
∏i−1

j=1 Cj − 1 run-merges for each inner column, we

subtract total number of run-merges of the attribute given by Ci(
∏i−1

j=1 Cj − 1) to find
the exact number of runs. �

Equality GCO vs. Range GCO: Range encoding using GCO produces fewer runs. In
other words, the conversion from equality encoding into range encoding reduces the
number of runs for full data. Since the conversion is 1-1, range encoding can be used as
a way to achieve further compression, which is an open research question.

Corollary 2. For GCO of full data, range encoding produces fewer runs than equality
encoding.

Proof. Follows from comparison of Theorems 2 and 4 using E(Ci) < F (Ci) and�
(
�i−1

j=1 Cj) − 1
�

<
�
Ci

�
(
�i−1

j=1 Cj) − 1
��

. �
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Range Lexico vs. Range GCO: For range encoding, finally we compare Lexico order
and GCO in the following corollary.

Corollary 3. GCO produces fewer number of runs than Lexico for range encoding.

Proof. Follows from comparison of Theorems 3 and 4. �

5 Experimental Results

For our experiments, we used full data sets with varying number and cardinality of at-
tributes. In Figure 3(a), we present the total runs in log scale as a function of the attribute
cardinality. The larger the cardinality, the higher the number of runs. (Recall that Lex-
ico and GCO have the same number of runs for equality encoding.) We also repeated
the experiment with different number of attributes (7, 8 and 9). Again, increasing the
number of attributes leads to higher number of runs. For example, 7 attributes each with
5 bins produce 195,331 number of runs, 8 attributes each with 5 bins produce 976,584
runs, and 9 attributes produce 4,882,837 runs.

(a) Equality Encoding (b) Equality vs. Range

Fig. 3. Experimental results with different number of attributes with different cardinalities

For a comparison between equality and range encodings, we present Figure 3(b)
where each attribute has 5 bins. Since Lexico and GCO perform the same for equality
encoding, we simply combined them and named that as Equality Lexico & GCO. Note
that, among the three approaches (namely Equality Lexico & GCO, Range Lexico, and
Range GCO), the best performance is achieved by Range GCO. For an example in
Figure 3(b), the values for 9 attributes are as follows: Equality Lexico & GCO produces
4,882,837 runs. Range Lexico has 3,906,257 runs, and Range GCO produces 1,953,169
runs. For range encoding, note that the number of runs for Lexico is about twice the
number of runs for GCO.

6 Conclusion

In this paper we studied the effectiveness of reordering methods that are applied for
better compression performances in databases. High energy physics, astrophysics, ge-
nomic and proteomics are some of the applications that produce large data sets, which
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bring up the need for effective indexing techniques for efficient storage and querying.
Bitmap indexes are practical structures that are prominently used for querying scien-
tific data. In the literature, in order to reduce the sizes of these indexes, run-length
based compression schemes are developed whose performances are improved by data
reordering approaches.

We provided the theoretical foundations and performance analysis of lexicographic
order and Gray code order in the context of bitmap indexes. Comparatively, lexico-
graphic order and Gray code order are investigated for two encoding techniques that
are commonly used in bitmap indices, namely equality and range encodings, and their
relative performances are studied with data reordering in consideration.

Our study reveals that both Gray code and lexicographic order achieve greater com-
pression performances for range encoding compared to their own equality encoding
versions. On the other hand, comparison of the two ordering methods leads to the fol-
lowing observations. With equality encoding, when we have all the possible data tuples,
lexicographic order and Gray code order perform the same. However, Gray code order
achieves better compression than lexicographic order when range encoding is used. We
also provided experimental results to validate the theoretical analysis.
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Abstract. The presence of coverage holes can adversely affect the accurate rep-
resentation of natural phenomena being monitored by a Wireless Sensor Network
(WSN). Current WSN research aims at solving the coverage holes problem by
deploying new nodes to maximize the coverage. In this work, we take a funda-
mentally different approach and argue that it is not always possible to maintain
exhaustive coverage in large scale WSNs and hence coverage strategies based
solely on the deployment of new nodes may fail. We suggest spatial interpolation
as an alternative to node deployment and present Distributed Kriging (DISK),
a localized method to interpolate a spatial phenomenon inside a coverage hole
using available nodal data. We test the accuracy and cost of our scheme with
extensive simulations and show that it is significantly more efficient than global
interpolations.

Keywords: Wireless Sensor Networks, Coverage Holes, Interpolation, Kriging.

1 Introduction

Monitoring physical phenomenon is an important application domain for wireless sen-
sor networks (WSNs). The WSN data acquisition techniques accomplish a monitor-
ing task by sampling data at different network locations over time. Currently, these
techniques advocate the use of data suppression as a means of achieving energy effi-
ciency [1]. The case for data suppression is based on the assumption that there is always
an abundance of samples in a WSN and hence reporting accuracy is not compromised
even if the data from a large part of the network is suppressed. However, experience
with WSNs [2] and insights into future applications [3,4] reveal that situations may
arise where the assumption of an abundance of samples does not hold. Such situations
arise when node failures or the sparsity of a WSN trigger gaps or coverage holes in the
reported data. We argue that for an accurate representation of a physical phenomenon
in such scenarios augmenting the reported data as well as its suppression is a priority.
In this paper, we investigate such situations and propose novel interpolation methods to
augment the reported data in the presence of gaps.

Existence of coverage holes is an important reality for WSNs and has been stud-
ied extensively [2]. Current research has predominantly focused on the identification
of holes in order to alert and restore the lost coverage of a WSN [5]. However, the re-
placement and restoration of nodes may not be sensible in hostile environments or not
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possible due to prohibitive costs. Therefore, our assertion is that coverage issues require
data acquisition regimes that cope with missing data through other means than simply
replacing or deploying more nodes. Thus, we need methods to interpolate the missing
readings based on the available data and application specific expert knowledge.

Physical phenomenon are characterized by their spatial correlation, i.e., the fact that
proximal locations have similar values and vary together. Spatial interpolation tech-
niques can thus be used to estimate a phenomena in coverage holes. The challenge,
however, is that typical interpolation techniques are not readily applicable to WSNs
due to their reliance on global knowledge of the network [6]. Due to a WSNs’ dynamic
nature and large scale, such global information is prohibitively expensive to collect and
maintain.

The key challenge that we address in this work is to perform accurate spatial inter-
polation for coverage holes with minimal power requirements. To maximize the use of
available information we propose to first build a correlation model of the phenomenon
under observation and then perform interpolation using this model. We first present
the QS (Quad Suppress) algorithm, a distributed in-network aggregation algorithm for
correlation modeling of a phenomenon. We then present the DISK (DIStributed Krig-
ing) algorithm which utilizes the correlation model to perform interpolation in a fully
distributed manner. With extensive simulations we show that QS and DISK are signifi-
cantly more energy efficient than their global counterparts.

2 The Quad Suppress (QS) Algorithm

The first step towards localized spatial interpolation is to find an appropriate variogram
model that best describes the spatial correlation in a dataset. The experimental vari-
ogram (EV) is a measure of spatial continuity in a spatial process defined as average
squared difference between data values at a certain distance, called lag, h [7]. Assume
a random variable Z represents a Gaussian spatial process and Z(x) represent its real-
izations at location x then its EV can be given as:

2γ(h) =
1

N(h)

∑
N(h)

[Z(x) − Z(x + h)]2 . (1)

where, N(h) is the number of data pairs at distance h. A variogram model is a curve
fitted on the observed EV values.

Equation 1 shows that for a certain lag h, EV construction requires the difference
of the value of each node from all nodes in its EV neighborhood, i.e., present within
a distance of h units from itself. Thus, a simple global approach for EV construction
could be to propagate all samples to a base station. However, to reduce communication
costs we propose the QS algorithm, an alternative based on in-network aggregation.
In-network aggregation algorithms organize the network in a tree like fashion such that
each internal node aggregates all data coming from its child nodes and communicate
only the partial aggregate to its parent. However, for EV construction there is an added
constraint; an internal node can aggregate a child node, say K , only if it can ensure that
it is also a parent of all nodes in K’s EV neighborhood. The QS algorithm adopts a
quadtree-like tree creation method to fulfill this constraint.
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Fig. 1. Comparison of energy expenditure in QS and random tree algorithms for EV construction

The QS aggregation tree is built as follows. The base station partitions the space
and chooses a cell-head for each quadrant. These cell-heads recursively partition their
cells choosing new sub-cell heads. The process continues until a predetermined grid
resolution is reached. A random aggregation tree is then built inside each of the un-
partitioned cells rooted at the corresponding cell-head. Data aggregation is performed at
each internal node of this tree. The benefit of creating the aggregation tree in a quadtree-
like manner is that a cell-head can locally determine whether or not it covers the EV
region of a child node. It can then accordingly aggregate or forward the node’s value.

Figure 1 shows the considerable difference in energy expenditure of the QS algo-
rithm and a random tree based global data collection using 2500 samples from Digital
Elevation Model (DEM) dataset [8] covering a 500 m2 area of the state of Colorado, US.
The significant difference in the performance of the two algorithms can be explained
by their data forwarding behavior. The global data collection scheme creates the aggre-
gation tree randomly, thus an internal node cannot determine whether or not it covers
the EV neighborhood of its child nodes. Consequently, all internal nodes propagate
their data to the base station in unaggregated form. On the other hand, the QS algo-
rithm reduces the communication costs significantly by performing the aggregation in
the network as soon as it realizes that a node’s EV neighborhood is covered.

3 Distributed Kriging (DISK) Algorithm

Once a variogram model is established for a given phenomenon, it can then be used
for spatial interpolation using Kriging. Kriging is a well known geostatistical method
used to estimate unknown values of a physical process using existing knowledge about
the process and a model of its spatial variation, i.e., the variogram [7]. Assume that
the values Z(x1), Z(x2), . . . , Z(xN ) represent realizations of a spatial process Z at
locations x1, x2, . . . , xN , then the Kriging interpolator of Z at a point x0 is given by [9]:

Ẑ(x0) =
N∑

i=1

λiZ(xi) . (2)
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where λi are the weights fulfilling the unbiasedness condition, i.e.,
∑N

i=1 λi = 1 and
the expected error is E[Ẑ(x0) − Z(x0)] = 0 [7]. It can be shown that optimal weights
λi for the Kriging interpolator can be computed from the following system of linear
equations (SLE)

Λ = A−1b . (3)

where Λ is a vector comprising of Kriging weights λi and a Lagrange multiplier (added
for computational reasons), A is the covariance matrix of sample locations x1, x2, . . . ,
xN and b is a vector whose elements represent the covariance between x0 and each
xi ∈ {x1, x2, . . . , xN}. All covariances are based on an appropriate variogram model
defined for the spatial process in question. We first use the QS algorithm to build a vari-
ogram model for the entire WSN and distribute this model in the network. In this way all
nodes can autonomously compute their correlation with any other node in the network
as required during the Kriging process.

In the following subsection we explain our interpolation approach, the DISK algo-
rithm, which in essence is a distributed and localized form of the Kriging interpolation.

3.1 Iterative Formulation of Kriging System of Linear Equations

The basic building block of the DISK algorithm is an iterative approach towards the
Gaussian elimination method. In terms of the Kriging SLE, the Gaussian elimination
method can be interpreted as the process of finding a sequence of elementary row op-
erations, or linear maps, that transforms matrix A to its reduced row-echelon form. The
basic idea of our iterative elimination approach is presented in Figure 2. If the nodes
performing a Kriging operation are assumed to be aligned along a chain, each node k
adds a new variable, i.e., its Kriging weight (λk), and its corresponding linear combi-
nation (

∑k
i=1 λicki = bk) to the Kriging SLE. In matrix terms, each node in the chain

adds a new row and column to the matrix A required to be inverted while not chang-
ing the original entries. We can then order the elimination process on the basis of the
following recursive formulation of matrix A:

Ak =
[

1 KT

K Ak−1

]
K =

⎡⎣ ck(k−1)

. . .
ck1

⎤⎦ A2 =
[
c22 c21

c12 c11

]
(4)

where k ≥ 2 .
Now for Ak, we define Φ(Tk) : Ak → AΦ

k as a group of all linear maps enumerated
by the following recursive definition:

Φ(Tk−1) . (5)

Rk ← Rk + (−k1i × Rk−i) ∀i ∈ {1, 2 . . . k − 1} . (6)

Rk ← Rk × 1
a11

. (7)

Rk−i ← Rk−i + (−ki1 × Rk) ∀i ∈ {1, 2 . . . k − 1} . (8)

where k ≥ 2. Ri represents the ith row of Ak and a11, ki1, k1i, i = 1, 2 . . . k − 1
represent elements of matrices Ak and its corresponding K and KT constituent vectors,



Kriging for Localized Spatial Interpolation in Sensor Networks 529

ckk ….. ck4 ck3 ck2 ck1 bk --- Row k
  . 
.
.

.

.

.

…..
…..
…..

…
…
…

c4k c44 c43 c42 c41 b4 --- Row 4
c3k c34 c33 c32 c31 b3 --- Row 3
c2k c24 c23 c22 c21 b2 --- Row 2
c1k

.

.

.
c14 c13 c12 c11 b1 --- Row 1

Matrix A4, at Node 4

Matrix A3, at Node 3

Matrix A2, at Node 2

k 3 2 14… A2A3

Fig. 2. Iteratively building Kriging SLE

respectively. Φ(Tk−1) represents all linear maps defined for matrix Ak−1, while Φ(T1)
comprises one row operation defined as: Rk ← Rk × 1

a11
.

An immediate consequence of above formulation can be specified as the following
Lemma:

Lemma 1. If Ak−1 = I , the identity matrix, and Ak defined in terms of Equation 4,
then AΦ

k = I .

Theorem 1. Let Ak be an invertible matrix and Φ(Tk) : Ak → AΦ
k = I be the group

of linear maps corresponding to Ak. The solution of SLE λ = A−1
k b can be obtained

by a recursive application of linear maps from T K on b.

The above formulation allows us to find the linear maps required to solve the Kriging
SLE in an iterative manner. Consider the example in Figure 2. The first intermediate
node (2) in the chain initiates the iterative process by computing the required transfor-
mations for A2 and transmit the composite linear map, T2, to the node above it (node 3).
Node 3 computes the row and column entries for A3 and according to the definition
above, first applies the received linear map, T2 on A3 followed by linear maps that re-
duce all new row entries to 0, reduce the pivot element to 1 and reduce all new column
entries to zero, i.e., applying Equations 6, 7 and 8 in that order. Node 3 then forwards
the composite linear map T3 to the next node in chain. The iterative application of the
same procedure at each intermediate node in the chain results in a final composite linear
map, Tk at root node of the chain. Tk can then be applied on vector b to compute the
solution of the Kriging SLE resulting in the required Kriging weighting vector: Λ.

4 Experimental Study

We performed extensive simulations with the goal to evaluate the scalability of the
DISK algorithm. Our simulations are based on two large datasets; a Digital Elevation
Model (DEM) dataset from the state of Colorado, US [8] and simulated traffic data for
the city of Melbourne, Australia. Along with DISK, we also simulate a Global Kriging
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Fig. 3. DISK and GK approaches for various network sizes

algorithm (GK) that assumes the full knowledge of node and coverage hole locations
at the base station and performs its interpolation by propagating the required data to
the base station. In the DEM dataset experiments, we estimate the altitude at various
points while in the traffic dataset experiments, we estimate the number of cars at various
locations. We measure the cost of a technique as the overall node energy used in data
transmission. The accuracy is based on cross-validation of interpolation with the known
values and is computed as the root mean square error (RMSE).

We define the Kriging neighborhood as the set of nodes located within a predefined
distance to a point being interpolated. We measure the relationship between the network
area and the Kriging neighborhood as a ratio between their sizes (in terms of number of
nodes), referred to as the network to neighborhood area ratio (NNR).

The effect of network size. In this experiment we analyze the scalability of DISK and
GK with increasing network size. In each step, we expand the deployment area and the
Kriging neighborhood such that the NNR stays constant at 5%. It can be observed from
Figure 3 that DISK scales well with increasing network size while GK increases in cost
rapidly. For the network of 1000 nodes, DISK uses about 60% of energy used by GK
while for the 5000 nodes network its energy usage reduces to about 48% of GK.

Figure 4 shows a comparison of the accuracy of DISK and GK algorithms. Although
both techniques interpolate using the same Kriging neighborhood, the difference in
accuracy can be attributed to the variogram model used in each case. DISK uses the
localized variogram model built through the QS algorithm while GK creates the vari-
ogram model centrally after collecting all data. In the case of highly correlated DEM
data the localized variogram model enables DISK to achieve slightly better accuracy
than GK. In this case, lower estimation accuracy of GK can be attributed to the use of
global information which adds noise to its estimation. On the other hand, DISK suffers
in the traffic dataset due to low levels of spatial correlation in this data.

The effect of the Kriging neighborhood size. In this experiment we increase the NNR
by increasing the Kriging neighborhood area while the network size is kept fixed at
5000 nodes. Figure 5 presents the result of these experiments for DEM data. Increasing
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the neighborhood area results in an increase in the number of nodes in the neighbor-
hood. Consequently, the communication cost of GK increases as there is more data to
propagate to the base station. Similarly, the communication cost of DISK also rises due
to the involvement of more nodes in the Kriging process. However, we observe that
for accurate Kriging the NNR should not be increased beyond a certain value as further
samples add noise to the estimation and lower the accuracy. For DEM data, the most ac-
curate estimation results are obtained for 4% NNR where the cost of DISK is only about
40% of GK. A similar behavior with respect to energy expenditure was observed in our
experiments with the traffic dataset (not shown here for the brevity of presentation).

5 Related Work

The problem of phenomenon estimation in WSNs for a region of interest not fully cov-
ered by a WSN is explored in [10]. The major limitations of [10] in comparison to
DISK is its global nature. This method assumes complete knowledge of the network at
the base station and pumps all of the data from sampled nodes to the sink. The Dis-
tributed Regression method [6] for global kernel regression closely compares to DISK.
This method is based on the notion that a number of regional correlation structures can
be identified inside a given deployment. It is thus suggested that message passing for a
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global regression task can be optimized by distributing the global computation among
the constituent regions. Although we propose the idea of distributed interpolation on a
regional basis as well, the concept of a region in our method is fundamentally different
from [6]. For DISK, the interest in a region is not based upon its correlation pattern
but its vicinity to a coverage hole. Moreover, the iterative Gaussian elimination step in
DISK makes the computation more localized than the distributed regression method.

6 Conclusions and Future Work

Coverage holes are a reality for WSNs and it is often important to estimate the in-
formation within a coverage hole. Kriging is a well-established interpolation method
that particularly suits this problem as spatial correlations in measurements is common
in WSNs. The challenge, however, is to perform Kriging with minimal communica-
tion and computation and with high accuracy in a WSN. We address this challenge
by proposing QS and DISK algorithms that enable distributed and localized variogram
modeling and Kriging. In extensive simulations we show that our methods are signifi-
cantly more energy efficient than global interpolations. In future, we plan to investigate
the applications of DISK to form energy efficient node redeployment strategies where
the movement of nodes can be guided by phenomenon estimation in a region of interest.
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Abstract. Wireless sensor networks have drawn much attention due to
their ability to monitor ecosystems and wildlife habitats. In such systems,
the data should be intelligently collected to avoid human intervention. For
this, we propose a network infrastructure in which the sensor nodes are
designated as “data-generating” or “data-storage”nodes.Data-generating
nodes take measurements, whereas data-storage nodes make themselves
available to compute and store checksums of data received from nearby
data-generating nodes.

We propose a spatially-clustered architecture for our storage nodes
and a coding scheme that allows a data collector to recover all original
data by querying only a small random subset of storage nodes from
each cluster. The size of such a subset is equal to the number of data-
generating nodes that the cluster serves.

When the clustering structure of the storage nodes is unknown, we
show that recovering of the original data is still possible if a random
subset of the right size of storage nodes is selected for querying. We
determine this right size so as to have a successful decoding with a prob-
ability exceeding a given threshold.

1 Introduction

A wireless sensor network (WSN) consists of a large number of cheap, low-
power sensors with strictly limited resources. Most WSN applications collect
and process sensor readings such as temperature and humidity. In applications
such as the detection of fire and pollution, live data streams are delivered to
a data processing center through a connected network [7,8,1,5]. In some other
applications; however, the network may not be connected all the time or access
to live data streams may be costly and undesirable. To mention a few examples,
in ZebraNet [6] that tracks wild zebras in Africa, it is very hard to access live
data from zebras due to their spontaneous movement; in the habitat monitoring
system in Great Duck Island [9], some birds are notoriously sensitive to human
intervention, and as such, data are collected only occasionally. In these examples,
the data are stored temporarily (at storage nodes) for later data access.

A system infrastructure to achieve the above goal is to deploy sensors in the
field to form a distributed data storage network. The infrastructure contains
three different nodes: “data-generating nodes” (or data nodes for short), “data
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storage nodes” (or storage nodes for short), and “data collectors.” The data
nodes (e.g., the sensors on animals) takes measurements. When the data nodes
are close to storage nodes, they upload their readings. The duty of the storage
nodes is to encode and store the incoming data. Data collectors, which may be
interested researchers using the system, will access the storage nodes at a later
time. The storage nodes are usually stationary. They form an auto-configuration
network, which is managed by an underlying network management scheme (e.g.,
clustering). The operations of the management scheme may be invisible to data
nodes (zebras) and data collectors (human people), who may not be always on
the monitored field.

It has been pointed out that näıve data storage without coding cannot achieve
efficient data collection (cf. [3,12]). Suppose that the number of data nodes and
storage nodes is K and N , respectively. The ubiquitous access property is

to recover all K data items by querying any K storage nodes.

This is exactly the goal that we want to achieve with small system overhead.
Dimakis et al. in [3] proposed Decentralized Erasure Codes (DEC) for ubiqui-

tous access to sensor data. Dimakis et al. showed that if each data node transmits
the data to at least 5N

K ln K storage nodes, then the ubiquitous access can be
fulfilled. They assumed, however, a flat underlying network structure, and thus,
the communication cost for the data distribution is prohibitive when N becomes
large. Unfortunately, in many applications, we must deploy a great number of
storage nodes to provide good coverage. In addition, the K data items are de-
codable only with a probability of 1− K

q , where q is the order of the Galois field
used for encoding. To achieve a high decoding probability, q cannot be small,
and this implies a significant overhead in calculations.

We remark that one could also achieve ubiquitous access by using Reed-
Solomon (RS) codes. In such a case, the decoding is 100% certain. However,
the RS code matrix is in general “denser” (i.e. with more non-zero elements)
than the DEC’s code-matrix, and this translates into more data messaging from
the data nodes to storage nodes.

In this paper, we solve this problem by clustering storage nodes. Data items
are propagated only within each cluster. As shown in Figure 1 (right), data
distribution with our method only involves short-range intra-cluster communi-
cations. On the other hand, with a flat architecture, Figure 1 (left), the messages
may be sent to faraway storage nodes. Notably, we have the “luxury” to adopt a
deterministic code (such as RS codes) in a cluster because the number of storage
nodes in a cluster is much smaller than their total number.

Next, we study the case when the data collectors are not fully aware of the clus-
tering structure of storage nodes. This is motivated by the fact that the clusters
may change dynamically and data collectors may not be always on the field. Most
existing clustering algorithms (cf. [11]) dynamically adjust cluster heads or struc-
ture to balance energy consumption and prolong network lifetime. Therefore, for
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Fig. 1. A flat WSN (left) requires long-
distance communication. Our scheme has
intra-cluster communication only (right).
Squares are data nodes; circles are stor-
age nodes.

Fig. 2. A sensor netork of 5 clusters: The
data nodes (squares) upload data to stor-
age nodes (circles). The storage nodes are
forwarding (indicated by arrows) the data
among its cluster.

full generality,we assume that the cluster assignment is unknown todata collectors,
who would like to decode all the data segments by simply querying a random set
of storage nodes. With a theoretical analysis and numerical results, we show that
the size of the random set can be close to K, the number of data nodes.

In summary, our contributions are:
1. We propose an architecture that reduces the cost to achieve ubiquitous access.
2. We propose a coding scheme which imposes no memory overhead.
3. We investigate the possibility of ubiquitous access in the case when a data
collector does not know the cluster structure of the network. For this, we present
a mathematical model for the decoding probability and show that, in practical
cases, this probability is sufficiently high for moderate sample sizes.
4. We demonstrate that our coding scheme is more cost-efficient than DEC.

2 System Architecture and Encoding/Decoding Scheme

Our architecture is a clustered WSN (See Figure 2). In total, there are K data
nodes and N storage nodes. We assume that the storage nodes are stationary
but data nodes may move with animals as for example in the ZebraNet. An
underlying clustering algorithm partitions the storage nodes into M clusters.
Within a cluster, a cluster-head node maintains the full view of the cluster,
including the number of data and storage nodes, node IDs, etc. Each data node
takes measurements and send its readings to its nearest storage node. As the
data nodes move, they transmit their data to different storage nodes belonging
to different clusters. Suppose that the number of storage nodes in the mth cluster
is Nm for 1 ≤ m ≤ M . We assume that K ≤ Nm for each 1 ≤ m ≤ M . This
can be easily achieved by the underlying clustering algorithm as the common
assumption is that K � N .

We denote by dk, for 1 ≤ k ≤ K, the content of such a data-message generated
by data node k. When a storage node receives dk, it propagates dk in its cluster
and updates its checksum and as follows. We denote by sm,i, where 1 ≤ m ≤ M
and 1 ≤ i ≤ Nm, the code-checksums of the storage nodes of cluster m. Let H be
the code-matrix of a systematic (Nm+K, K) RS code over a GF (2w) field, where
2w > Nm +K. The encoding state of cluster m adheres to the following equation
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H ·

⎡⎢⎣d1

...
dK

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 . . . 0
...

...
0 . . . 1

a1,1 . . . a1,K

...
...

aNm,1 . . . aNm,K

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎣ d1

...
dK

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

...
dK

sm,1

...
sm,Nm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Based on the above equation, a storage node checksum, say sm,i, will be

sm,i = ai,1d1 + ai,2d2 + . . . + ai,KdK .

Of course, some data nodes may be served by other clusters. For those data
nodes, we consider that they send the value of zero, which we assume is not
a valid content. This coding scheme tolerates up to Nm erasures, which means
that we can find out all of d1, . . . , dK values by selecting K storage nodes only.

Let Km be the number of non-zero dk’s in the mth cluster. Clearly, Km ≤ K.
The question is:

Can we recover the Km non-zero dk’s by selecting only Km (as opposed
to K) storage nodes?

I.e. whether the Km non-zero dk’s are calculated from a system of Km equa-
tions. In order to achieve this, we modify our coding state. We observe that
our erasure scheme is special in that all dk’s are always “erased.” Hence, the
problem boils down to solving (with respect to dk’s) a system of linear equa-
tions obtained by selecting any Km equations from the following system of Nm

equations represented in matrix form as⎡⎢⎣ a1,1 . . . a1,K

...
...

aNm,1 . . . aNm,K

⎤⎥⎦
⎡⎢⎣ d1

...
dK

⎤⎥⎦ =

⎡⎢⎣ sm,1

...
sm,Nm

⎤⎥⎦ .

The above translates into asking that any submatrix of the coefficients’ matrix
(on the left), obtained by selecting Km rows, to be invertible.

In other words, because of our particular erasure model, we only need to find
such a “nicely behaved” matrix for computing the sm,i’s. Fortunately, an Nm×K
Vandermonde matrix fits our needs. Such a Vandermonde matrix is⎡⎢⎢⎢⎣

1 1 . . . 1
1 b1 . . . bK−1

...
...

1 bNm−1
1 . . . bNm−1

K−1

⎤⎥⎥⎥⎦
where 1, b1, . . . , bK−1 are K different elements of the underlying GF (2w) field.

The desired property of such an Nm × K Vandermonde matrix is that every
subset of K rows is guaranteed to be linearly independent. Furthermore, the
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west part, (1 . . .Nm) × (1 . . .Km), for 1 ≤ Km ≤ K, is also a Vandermonde
matrix with the property that any set of Km rows is linearly independent.

Thus, by using the above Nm × K Vandermonde matrix as the lower part of
our systematic code-matrix, and by consolidating the non-zero dk’s to be always
the first in the data node vector, we guarantee that with only Km equations (for
sm,i’s) we are able to calculate all the values of the non-zero dk’s. Hence, we
need to query only Km of the storage nodes in order to recover the contents of
the Km data nodes that are in the proximity of cluster m.

When using this scheme, we do not need to store the coefficients since they
can be computed on the fly as powers of b1, . . . bNm , whereas these elements can
be considered as consecutive powers of a field generator g.

Remark. Vandermonde matrices are commonly used in creating systematic
Reed-Solomon codes for RAID schemes recovering from disk failures (see [10]).
For this, one could start with an (Nm + K)×K Vandermonde matrix and then
apply elementary matrix operations to bring it into a systematic form. The final
matrix is, of course, not Vandermonde anymore.

We emphasize that, having an (Nm +K)×K code-matrix which has a K×K
identity matrix as upper part and an Nm×K Vandermonde matrix as lower part
(as we are proposing) would not (in general) allow us to fully decode having only
K values out of dk’s and sm,i’s. Such a matrix is not good for a RAID scheme as
any disk, regular or redundant, can fail, and we need to recover the data using
the remaining disks (whose number needs to be ≥ K).

On the other hand, in our setting, we need instead to recover Km of dk’s
from sm,i’s. This is to say that, the Km data nodes in the vicinity of the cluster
“always fail” whereas the storage nodes in the cluster are “always alive.” For
this, our proposed code-matrix allows us to decode the data of the Km data
nodes, by querying only Km storage nodes (storing sm,i’s).

3 Decoding and Sampling

The random sampling procedure is as follows. A data collector chooses a random
subset of storage nodes and queries them. The storage nodes reply with their
checksums. Then, the data collector is able to decode if it receives at least Km

checksums from cluster m, for 1 ≤ m ≤ M .
As we mentioned before, the data collector may have no clue of the clustering

structure. As such, when a data collector retrieves information from a WSN, it
randomly queries a set S of sensors from the whole network. We call this set of
sensors a sample. Let Sm be the intersection of S and m-th cluster. Therefore,
there are |Sm| selected storage nodes in the m-th cluster. Let Xm = |Sm| −Km.
Then, the data collector can fully decode if |Sm| ≥ Km (or Xm ≥ 0), for m =
1, . . . , M . Clearly, the smallest sample size is K = K1 + . . . + KM . We define
Pr(S) to be the probability that the user can decode using sample S. We can
show that
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Theorem 1.

Pr(S) =

∑
X1

∑
X2

. . .
∑

XM

(
N1

K1+X1

)(
N2

K2+X2

)
. . .
(

NM

KM+XM

)(
N
|S|
) .

To illustrate, suppose that we have 3 clusters of 7 storage nodes each. Also
suppose that K1 = K2 = K3 = 4; and thus the smallest sample size is 12. If |S|
is 13, then the extra selected node can be in any cluster. There are three possible

cases for the extra node. Therefore, Pr(S) = ( 7
4+1)(7

4)(7
4)+(7

4)( 7
4+1)(7

4)+(7
4)(7

4)( 7
4+1)

(21
13)

=0.379. Formally, we are solving the following problem.
Find minimum |S|
Subject to

Pr(S) ≥ 1 − ε
Xm, Km, Nm ≥ 0, for 1 ≤ m ≤ M
X1 + X2 + . . . + XM = X
K1 + K2 + . . . + KM = K
N1 + N2 + . . . + NM = N
|S| = K + X
X ≤ N − K

We solve the above problem numerically by calculating Pr(S) of different
sample sizes ranging from K to N . This approach is inefficient since the calcu-
lation of Pr(S) requires at least O(

(
M+X−1

X

)
) time, and the initial value of |S|

may be far from the optimum solution. The rest of this section approximates the
Pr(S) in linear time and provides a “safe” sample size that can be used directly
by data collectors.

For the approximation, suppose that there are N balls in M bins. The balls
are numbered from 1 to N , and the bins are numbered from 1 to M . The number
of balls in the bin m is Nm. Besides, each bin has a threshold value Km. We
randomly pick up a ball, record the ball number and bin number, put it back,
and pick up another ball. We consider the following question.

After we pick |S| times, what is the probability that we pick at least Km

balls from bin m, for m = 1, . . . M?

We denote this probability as Pr′(S) and use Pr′(S) to approximate Pr(S).
Next we show that Pr′(S) is easy to calculate and provides a good lower bound
for Pr(S).

We firstly consider bin 1. Define an indicator random variable

Yi =
{

1 if the ith ball is picked from bin 1
0 otherwise

Let random variable Z1 =
∑

Yi be the number of the ball that we pick from bin
1. And then, we denote E1 as the event that Z1 ≥ K1, and E1 as the event that
Z1 < K1. Clearly, Pr′(S) = 1 − Pr(E1 ∪ E2 ∪ . . . ∪ EM ). We use the following
lemma from [2] to analyze Pr(E1).
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Lemma 1. Consider a sequence of n Bernoulli trials, where in the ith trial,
success occurs with probability pi and failure with probability qi = 1 − pi. Let Z
be the random variable describing the total number of successes, and μ = E[Z].
Then, for r > 0, Pr(μ − Z ≥ r) ≤ exp[−r2

2n ].

Let p1 = N1/N be the probability that we pick a ball from bin 1, and let r be
|S|p1 − K1. Then, Pr(μ − Z1 ≥ r) = Pr(Z1 ≤ K1) = Pr(E1)
≤ exp[−(|S|p1−K1)

2

2|S| ]. If we take the union bound for all bins, we can find the prob-
ability that we fail to decode. We denote it as Pr(fail). Pr(fail) = 1− Pr′(S) ≤∑M

m=1 Pr(Em) =
∑M

m=1 exp[−(|S|pm−Km)2

2|S| ]. Assume that the m̃-th bin has the

maximum exp[−(|S|pm−Km)2

2|S| ] value among all bins. Let p̃ and K̃ be the proba-
bility that we pick a ball from the m̃-th bin and the threshold value of the m̃-th
bin respectively. We substitute exp[−(|S|�p− �K)2

2|S| ] for each exp[−(|S|pm−Km)2

2|S| ] value
in Pr(fail). Let the threshold be ε. Then, we have

Pr(fail) ≤ M · exp[
−(|S|p̃− K̃)2

2|S| ] < ε

In our sampling scheme, we sample the network without replacement. In other
words, our scheme has better probability of success than the above ball and bin
game. Finally, we solve the above equation and conclude with the following
theorems.

Theorem 2. The decoding probability Pr(S) is no less than

1 −
M∑

m=1

exp[
−(|S|pm − Km)2

2|S| ].

Theorem 3. We can choose a sample size

|S| =
2(p̃K̃ + ln M

ε ) +
√

4(p̃K̃ + ln M
ε )2 − 4p̃2K̃2

2p̃2

to achieve more than 1 − ε probability of decoding.

4 Performance Evaluation and Conclusion

We use a grid network of N storage nodes as an example. The same analytic
principle is applicable to other network topology. Suppose that the storage nodes
are deployed as a grid in a unit square. Each data node moves around randomly
and uploads its sensor reading to its nearest storage node. A clustering algorithm
partitions the grid into M small squares. Regarding the data distribution, our
coding scheme has a message complexity of

∑M
m=1 KmNm(2/3)

√
Nm, whereas

the DEC has a message complexity of 5N ln K · (2/3)
√

N . For an illustration,
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if Nm ≈ N/M and Km ≈ K/M (for 1 ≤ m ≤ M), then the condition for our
scheme to be better than DEC is that

M
K

M

N

M

√
N

M
≤ 5N ln K

√
N ⇒

(
K

5 ln K

) 2
3

≤ M,

which is generally true. The experiments also confirm the same conclusion. We
use 10,000 storage nodes and 100 data nodes in our simulation. The results show
that our decoding probability is sufficiently high, and our data distribution cost
is smaller than DEC’s cost when M > 4. Detailed results and complexity analysis
are in the full version of this paper at http://web.uvic.ca/∼yhl/ssdbm08full.pdf.

In conclusion, we have proposed a cost-efficient coding scheme that fulfills the
ubiquitous access to sensor data. The algorithm is easy to implement on any
clustered WSN. Moreover, we give a mathematical model for the probability
of decoding as well as analysis of our system cost. The experimental results
demonstrate that our coding scheme outperforms DEC.
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Abstract. We address approximate join processing over data streams
when memory limitations cause incoming tuples to overflow the avail-
able memory, precluding exact processing. Moreover, in many real-world
applications such as for news-feeds and sensor-data, different tuples may
have different importance levels. Current methods pay little attention
to load-shedding when tuples bear such importance semantics, and per-
form poorly due to premature tuple drops and unproductive tuple reten-
tion. We propose a novel framework, called iJoin, which overcomes these
drawbacks, maximizes result importance, and has the best performance
compared to earlier work.

1 Introduction

Windowed Joins [1] are stateful operations, which means that all tuples in the
window are required to compute the exact join result. However, when the memory
is already full and a new tuple arrives, there is no recourse but to perform load-
shedding [2]. The join result is said to be approximate when it is executed over
the reduced window (after dropping tuples). Approximate join processing has
been studied from different perspectives. When memory is full, [3,4,5,1] propose
randomly evicting tuples. [6] argues that this scheme is likely to produce sub-
optimal results, and proposes heuristics to maximize the output size. But, none
of the previous work addresses tuple ‘importance’, even though many real-world
applications demand it.

We present an example to motivate that load-shedding which does not address
tuple-importance, such as random-drop [1], and semantic approximation [6] are
sub-optimal for two reasons. First, some important tuples suffer premature evic-
tions and fail to match with other tuples. Second, some unproductive tuples stay
in memory too long without contributing much to result.

Let (t, value:importance) represent a stream tuple. Consider streams R
and S tuples between time=1 to 8. Stream R’s tuples are (1,a:1), (2,b:2),
(3,c:3), (4,d:4), (5,d:4), (6,b:2), (7,a:1), (8,c:3) and S’s tuples
are (1,b:2), (2,a:1), (3,b:2), (4,b:2), (5,c:3), (6,c:3), (7,d:4),
(8,a:1). Consider an equi-join over R and S, with a window of 8 time units.
Formally, an importance-function Fi returns the importance of the tuple r(t) as

B. Ludäscher and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, pp. 541–548, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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a function of its attributes as shown in Equation 1, where Fi is the importance-
function and a1, a2, . . . are the attributes.

r(t).imp = Fi(r(t).a1, r(t).a2, . . .) (1)

When a tuple r(j) joins with a tuple s(i), the output tuple o(j) acquires
importance based on r(j).imp and s(i).imp. as shown in Equation 2.

o(j).imp = min{r(j).imp, s(i).imp} (2)

Let Ωq = {o(i1), . . . , o(in)} be the output tuples of a join query q. We define
join output quality (or total importance IMP(q) of query q) as in Equation 3.

IMP(q) =
∑

o(i)∈Ω

o(i).imp (3)

An exact join (Table 1(a)) in our example produces 16 outputs with a total
importance of 36. Let M be the total amount of memory available, and for
simplicity, let M = 4 be equally divided between R and S. If each tuple occupies
1 unit of memory, a maximum of 2 tuples from each stream can be buffered. Let
the tuple r(t) arrive when R’s buffer is full. The DSMS has to make either of
the following decisions, both resulting in an approximate result: (1) the DSMS
can drop r(t) and process the tuples already in the join buffer, or (2) the DSMS
can evict some buffered tuple, clearing space for r(t). Hence after time t = 3, we
must evict 1 tuple per tuple arrival.

Table 1(b) illustrates a scheme where tuples are randomly dropped, producing
only 3 output tuples with total importance of 5. Let Str(v, t) denote a tuple with
value v arriving in stream Str at time t. The total importance suffers because
tuple R(c, 3) is dropped prematurely, though it would have matched S(c, 5) at
t = 6. Also, R(a, 1) produces no output tuple after t = 2, but occupies memory
until t = 5. We call R(c, 3) a premature tuple and R(a, 1) an unproductive tuple.
Our goal is to overcome these drawbacks.

We address the following problem: Given the available memory M and a
sliding-window join query 〈α, c, w〉, where α = {S1, . . . , Sn} is the set of streams

Table 1. Exact join and approximate join under RAND

(a) Exact (total importance = 36)

t R S Output Imp

2-3 a,b b,a b,a 3

3-4 a,b,c b,a,b b 2

4-5 a,b,c,d b,a,b,b b 2

5-6 a,b,c,d,d b,a,b,b,c c 3

6-7 a,b,c,d,d,b b,a,b,b,c,c b,b,b,c 9

7-8 a,b,c,d,d,b,a b,a,b,b,c,c,d a,d,d 5

8-9 a,b,c,d,d,b,a,c b,a,b,b,c,c,d,a c,c,a,a 8

(b) RAND (total imp. = 5)

t R tuples S tuples Out Imp

2-3 a,b b,a b,a 3

3-4 a,c a,b - 0

4-5 a,d b,b - 0

5-6 d,d b,c - 0

6-7 d,b b,c b 2

7-8 b,a b,d - 0

8-9 b,c b,a - 0
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(with importance semantics), c is the join condition, and w is the time-window,
compute the approximate join such that total importance of the join output is
maximized.

Addressing tuple-importance and fairness simultaneously is challenging, be-
cause tuple characteristics are not know a priori. None of the previous work
addresses fairness during load-shedding, so our contribution here is novel. Simi-
lar to Jain’s fairness index [7], we measure of fairness as fairness = (

�
Li)

2

(n×
�

L2
i )

,
where tuple lifetime Li is the difference between time that tuple i gets evicted,
and it’s arrival time. Fairness ranges from 1/n (worst case) to 1 (best case),
where n is the input size. As we will see later, our work is practical and allows
each tuple a fair chance in being part of the join result.

2 The iJoin Approach

Our framework, which we call iJoin is outlined in Figure 1. As shown in Algo-
rithm 1, various tuple-related information (or metadata) is also updated during
join operation. If the buffer is full, we drop some tuples based on our load-
shedding strategy, we accommodate r(i), and then compute the join as in Algo-
rithm 1.

We maintain the following metadata with each tuple: (1) arrival time (ta) of
the tuple, (2) tuple importance (imp) determined according to Equation 1, (3)
number of tuples (matches) that joined with the tuple, (4) timestamp of most
recent matching tuple (prevmatch). We use these statistics to determine a tuples
‘worth’ and choose which tuples to drop. Algorithm 1 shows how the metadata
is updated when r(i) finds a match to produce o(i). Function isMatch() in
Algorithm 1 returns TRUE only when join condition c is satisfied.

Fig. 1. Flow diagram for iJoin approximation
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Algorithm 1. Join operation

Require: window size w, join condition c, r(i), γ = {s(j)} such that i − w ≤ j ≤ i, w
Ensure: the output set Ω
1: for all s(j) ∈ γ do
2: if isMatch(s(j), r(i), c) = TRUE then
3: o(i) = {s(j), r(i)}, o(i).imp = min {s(j).imp, r(i).imp}
4: Ω ← Ω ∪ {o(i)}
5: s(j).matches ← s(j).matches + 1, s(j).prevmatch ← i
6: end if
7: end for
8: if Ω �= ∅ then
9: r(i).matches ← |Ω|, r(i).prevmatch ← i

10: end if

Tuple Priority: A tuple’s residence priority (RP) indicates how valuable the
tuple is to the join process. As we will see later, tuples with the lowest RP get
dropped from memory. A tuple r(i) arriving at ta is said to have a priority
RP(i, ta), and is set to RPinit(i) on arrival. We must construct a function Fp to
determine the tuple priority at some time t′ > ta. Since we want to maximize
the total importance of a query output, Fp (see Equation 4) is a function of
importance, age, and matches. Residence priority at time t′ is computed using
Equation 5.

Fp(imp, matches, age) =
imp× matches

age
(4)

RP(r(i), t′) = Fp(r(i).imp, r(i).matches, (t′ − r(i).ta)) (5)

Establishing Tuple Maturity: To reduce premature drops, we place a resi-
dence threshold on the tuples before they are candidates for load shedding. A
tuple is mature if it’s age is greater than a certain threshold τ , which can be
set higher (or lower) as per high (or low) memory availability.

Penalizing Unproductive Tuples: A tuple is unproductive if it does not pro-
duce a join output for a long time. Our goal is to identify such tuples, and
penalize it for occupying memory so that they will quickly lose their residence
priority and will be eventually evicted. For example, consider a output tuple pro-
duced at time t. When a arriving tuple s(t) matched with r(i), we record this
time by assigning r(i).prevmatch = t and s(t).prevmatch = t. A tuple is con-
sidered unproductive at time t′ if t′ − r(i).prevmatch ≥ Δ, where Δ is a tunable
parameter. If a tuple is identified as being unproductive, we reduce its priority
by a penalty δ using Equation 6, where K is some constant.

Penalty(δ) = K × (t′ − r(i).prevmatch) (6)

We perform load shedding based on residence priority as shown in Algo-
rithm 2. We first identify mature tuples as eviction candidates. Next, we examine
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Algorithm 2. Load-shedding invoked at time (t)

Require: β={r(i)} such that t-w ≤ i ≤ t, Maturity threshold τ , Unproductivity
threshold Δ, Penalty δ, k .

1: for all r(i) ∈ β do
2: Apply Condition Maturity (τ ) to determine if r(i) is MATURE
3: if r(i) is NOT MATURE then
4: β ← β - {r(i)}
5: end if
6: end for
7: for all r(i) ∈ β do
8: Determine the tuple-priority RP(r(i),t)
9: Apply Condition Unproductivity (Δ) to determine if r(i) is UNPRODUCTIVE

10: if r(i) is UNPRODUCTIVE then
11: RP(r(i), t) ← RP(r(i),t) - δ
12: end if
13: end for
14: for all r(i) ∈ β do
15: Sort tuple by tuple priority RP(r(i), t)
16: end for
17: Drop r(j) such that RP(r(j),t) = min (RP(r,t)) ∀ r ∈ β

the prevmatch to check for unproductive tuples, apply a penalty, and compute
all new residence priorities. Finally, we drop the tuples with the lowest priority.

We propose 3 schemes to recompute residence priorities.

(1) Successive: In this scheme, we compute tuple priority each time we need
to evict a tuple from memory. This scheme has high overhead, but provides the
best estimates of the ‘worth’ of tuples currently in memory.
(2) k-Successive: In this scheme, we compute tuple priorities after every k
load shedding decisions, reducing overhead by k, as compared to the successive
scheme. At relatively stable distributions, k could be set to a higher value.
(3) Adaptive: We monitor the difference between consecutive join-
approximation executions and recompute RP only if the difference in join quality
falls below a certain threshold ε. Increasing ε decreases the overhead.

3 Experiments

We used a synthetic dataset closely resembling real-world settings. The tuples
had categorical attributes, and arrived at the rates between 100–200 tuples per
second. Unless specified, we used the following default parameters: tuple arrival
rate (100–200 tuples per sec), tuple domain (1–100 categorical values), imp do-
main (1–100 decimal values), join memory (M=10 tuples), window size (w=25
secs), maturity threshold (τ=2 secs), unproductivity threshold (Δ=3 secs). We
used the successive recomputation policy. The importance of each tuple was
mapped to the range 1–100, and we allowed the importance function to be re-
defined no more than twice during execution.
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Fig. 2. Performance when available memory is varied from 5 to 20
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Fig. 3. Performance when query window is varied from 10 to 25

We used an equi-join query over 2 streams as a test query. We allowed the
query to run for 100 seconds on a Quad Xeon 550MHz. We measured the follow-
ing: (1) total importance, (2) output size, and (3) fairness. We compared
our work with the following load-shedding schemes: (1) EXACT: a the opti-
mal scheme where memory is unlimited, (2) FIFO: a simple scheme with queue
size M , (3) RAND: a random load-shedding scheme used in [1], (4) SIZE: a
scheme similar to [6] that maximizes output size, and (5) GREEDY: a greedy
scheme that evicts the least important tuple.

Figure 2 shows the effect of memory size. IJOIN has the best performance in
meeting our approximation objective of maximizing total importance. EXACT,
of course, performs best since it has unlimited memory. Though SIZE is designed
to maximize the output-set, our heuristics did better, and also showed higher
join quality. This might be due to SIZE’s limited ability to detect correlation
among joining streams. IJOIN also does the best with respect to fairness. Our
scheme is developed to provide equal, or almost equal opportunity to each tuple
to find a matching tuple, and our experiments show that IJOIN was more than
80% fair in doing so. FIFO obviously is 100% fair, but has the lowest quality.

Figure 3 shows the performance of various schemes when the window size
varied from 10 to 25 seconds. Intuitively, a larger window places higher memory
constraints on the join operation, as the available join memory was constant in
this experiment. Only the IJOIN and GREEDY schemes seem to improve join
quality when the window grows. This is due to IJOIN’s ability to find better
correlations as window grows, and use recent estimates to determine the more
valuable tuples. IJOIN is between 80%-85% fair in retaining tuples in memory.
In contrast, SIZE experiences a drop from 90% to 42%.
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Fig. 5. Performance when unproductivity threshold is increased from 2 to 5 seconds

Next, we varied the domain size of the join attribute from 10–20 distinct values
and let all tuples have the same importance. Intuitively, when the domain size
increases, the probability of the same value appearing in the window decreases.
As shown in Figure 4, this affects the number of matching tuples, so we see a
linear drop in the output size and total importance. IJOIN still outperforms all
other approximation schemes, and is consistently fair between 80%-85%. Inter-
estingly, GREEDY has the worst performance, because all tuples have the same
importance-level which this leads to only a selected few tuples occupying the
memory.

We also studied the effects of the unproductivity threshold Δ. As Figure 5
shows, IJOIN quality drops as Δ increases, since a tuple a can remain longer
without contributing to any result. We recommend a finer threshold (low value)
or applying higher penalty δ (see Algorithm 2) when tuples are identified as
unproductive.

Table 2 shows that successive provides the best approximation, and yields the
highest ’fairness’ measure, at about 80%. However,adaptive has a lower overhead
than successive, with only 600 tuple priority recomputations. k-successive is a

Table 2. Performance of re-computation schemes

Successive k-Successive Adaptive

Total importance 1400 1200 1300

Output size (#tuples) 80 75 80

Fairness 81% 75% 80%

Overhead (#invocations) high (1000) low (100) medium (600)
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balance between these two schemes, with a low overhead and at about 75% fair. We
suggest that successive be used in erratic environments, where data distribution
and tuple correlations are likely to be volatile. Adaptive performs best when data
distributions are relatively stable.

4 Conclusions

We have proposed a join-approximation framework, called iJoin to address tuple-
importance. We have shown that limiting premature drops, and penalizing un-
productive tuples is practical and very effective in improving quality of joins. We
have also shown that fairness is important goal when memory is limited. More-
over, we have outlined 3 schemes to recompute tuple-priorities and shown that
successive scheme is the best to use if data is erratic, and the adaptive scheme
provides the best join quality vs. overhead trade-off.

Acknowledgements. This work was partially supported by grants from Tata
Consultancy Services, Inc.
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Abstract. One of the important types of queries in spatio-temporal
databases is the Continuous K-Nearest Neighbor (CKNN) query, which
is to find among all moving objects the K-Nearest Neighbors (KNNs)
of a mobile user at each time instant within a user-given time interval
[ts, te]. In this paper, we focus on how to process such a CKNN query
efficiently when the moving speed and direction of each moving object are
uncertain. We thoroughly analyze the complicated problems incurred by
this uncertainty and propose a Continuous PKNN (CPKNN) algorithm
to effectively tackle these problems.

1 Introduction

With the increasing number of real-world applications that involve large spatio-
temporal data sets, providing efficient query processing techniques for these ap-
plications becomes essential. One of the important types of queries in spatio-
temporal databases is the Continuous K-Nearest Neighbor (CKNN) query. A
CKNN query is defined as finding the K-nearest neighbors (KNNs) of a moving
user at each time instant within a user-given time interval [ts, te]. In this paper,
we focus on how to process such a CKNN query efficiently when the moving
speed and direction of each moving object are uncertain. The uncertain ranges
of speed and of direction depend on factors such as the historical object infor-
mation (e.g., location, speed, and direction), the traffic condition on the road,
and the location update frequency. We assume that the varying ranges of speed
and direction can be computed based on the above factors by the location server
and then is sent to each object. With the uncertain speed and direction, the
possible locations of each object would be bounded by a sector region (depicted
as a shaded region in Figure 1), which is formed by two segments and two arcs.
In other words, the exact location of an object should be somewhere inside this
sector region. As each moving object is aware of its sector region, a location
update is issued to the server only when it moves out of this region. In this way,
the update frequency for each object is reduced and the communication cost
between the object and the server and the update cost of the server are both
reduced.

B. Ludäscher and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, pp. 549–557, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. Example of a CKNN query

The problem caused by the release
of the fixed speed and fixed direction
assumption is that the uncertainty of
moving speed and direction of an ob-
ject makes it difficult to determine pre-
cisely the distance between a mov-
ing object and the query object. The
uncertain distance between two such
moving objects would lead to an uncer-
tain (or possible) solution which com-
plicates the process of evaluating a
CKNN query. For instance, Figure 1 shows an example of CKNN query for
moving objects with uncertain speed and direction. The start locations of ob-
jects a and b are at (1, 4) and (6, 5), respectively. Both of the two objects move
with an uncertain speed, which lies in between 1 m/sec and 2 m/sec. Let the
uncertain speed be denoted as within a range [1, 2]. In addition, the uncertain
moving directions of both a and b are within a range of angles, which is repre-
sented as [0, π

2 ]. For ease of illustration, query object q is stationary at location
(6, 4) (note that this is however not required in our technique). Region Ra and
region Rb in the figure represent the possible locations of the moving objects a
and b, respectively. Apparently, Ra and Rb will grow as time passes. At time 1.5,
if a and b are located at (4, 4) and (6,8), respectively, then the 1NN of q is a.
However, if a and b are at (1, 7) and (6, 7), respectively, which is as likely to
occur as in the other case, then the 1NN of q is b. From this example, we see
that all “possible” locations of an object should be taken into account in search-
ing for the KNNs of q so as to guarantee that all answers will be included in
the result. These possible answers are named the possible KNNs (or PKNNs for
short). Efficiently identifying the PKNNs for every time instant is a complicated
issue and will be thoroughly investigated in this paper.

The rest of this paper is organized as follows. In Section 2, we discuss some re-
lated works on processing CKNN queries. In Section 3, we present our uncertain
distance model. Section 4 describes the TPR(s,d)-tree. The CPKNN algorithm
is presented in Section 5. Finally, Section 6 concludes the paper.

2 Related Work

Past methods in the literature can be classified into three categories according to
how the velocity of a moving object is treated. Papers in the first category assume
the velocity (i.e., speed and direction) of a moving object is fixed [3,5,8,9]. Under
this assumption, the trajectory of a moving object can be precisely determined.
Tao et al. [8] proposed a repetitive query processing approach for answeringCKNN
queries. Recently, they proposed another method [9] to overcome the high-cost
problems of their repetitive query processing approach, but the method is only ap-
plicable to static objects. To adapt to moving objects and reduce computational
cost, Raptopoulou et al. [5] proposed an efficient method that processes the CKNN
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query by tracing the change of the K-th nearest neighbor. Iwerks et al. [3] answered
the CKNN query through the technique of processing the within query. Papers of
the second category release the fixed velocity assumption so that in their work the
velocity of a moving object is uncertain. Under this circumstance, the exact mov-
ing trajectory is impossible to achieve as the location of every object can only be
updated periodically so that we simply learn the approximate trajectory of a mov-
ing object [4,7,10,11]. Song et al. [7] proposed an approach in which the snapshot
KNN query is re-evaluated whenever the location of the query object is updated.
The data objects in their work are assumed to be static, which simplifies the lo-
cation update problem. Mouratidis et al. [4], Xiong et al. [10], and Yu et al. [11]
extended the approach presented in [7] to adapt to moving object datasets. Our
previous work [1] represents an approach of the third category which remedies the
shortcomings of the above categories of approaches by allowing an object to move
with an uncertain speed and a fixed direction. It uplifts the practicality of the ap-
proaches in the first category in that the speed is allowed to vary within a range
rather than fixed at an unchangeable speed. Also, it avoids query re-evaluation
required in the approaches of the second category. However, the limitation of the
fixed moving direction of an object restricts the applicability of the work to a re-
alistic environment.

3 Uncertain Distance Model

The distance between two objects in our model is the Euclidean distance. We
assume that the moving speed of an object is between a minimal and a maximal
speed. Also, the moving direction lies in between a minimal and a maximal angle.

R to( )

θ
Θ

x

y

o.s

o tδ( )

o tγ( )

o tβ( )

o tα( )
o o tα ( )γ

o o t( )β δ

o o t( )γ δ

o o tα ( )β

Fig. 2. The possible region

Note that in our model, each angle is rep-
resented as a polar angle ranging in [0, 2π].
For example, Figure 2 shows that the speed
(and direction) of an object o varies within
a range [o.v, o.V ] (and [o.θ, o.Θ]). In the case
that object o moves with the minimal speed
o.v and the minimal angle o.θ, its location
at time t, denoted as �oα(t), can be rep-
resented as �oα(t) = o.�s + o.�vα × (t − t0),
where o.�s = (o.x0, o.y0) is the start location,
o.�vα = (o.v × cos(o.θ), o.v × sin(o.θ)) is the
velocity vector, and t0 is the start time. In
another case where object o’s speed and di-
rection are o.v and o.Θ respectively (i.e., o moves with the minimal speed and
the maximal angle), the location of o at time t, denoted as �oγ(t), can be obtained
from the above equation by substituting the velocity vector o.�vγ for o.�vα, where
o.�vγ = (o.v × cos(o.Θ), o.v × sin(o.Θ)). If the direction of o is uncertain and
varies between [o.θ, o.Θ], all of its possible locations at time t would form an arc,
denoted as

�
oαoγ(t), in which �oα(t) and �oγ(t) are the two endpoints. That is, at

time t object o is located at some point on the arc
�

oαoγ(t).
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Similarly, as object o’s speed is o.V (i.e., o moves with the maximal speed)
and direction is within [o.θ, o.Θ], the possible locations of o can be represented
by another arc

�
oβoδ (t) whose two endpoints are oβ(t) and oδ(t). Hence, when

the speed and the direction are within [o.v, o.V ] and [o.θ, o.Θ], respectively, all
the possible locations of o form a sector region (as shown in Figure 2), which is
enclosed by four endpoints �oα(t), �oβ(t), �oγ(t), and �oδ(t), two segments oαoβ(t)
and oγoδ(t), and two arcs

�
oαoγ (t) and

�
oβoδ (t). We term the sector region the

possible region because the object can possibly locate in anywhere inside this
region and denote it as Ro(t). In addition, the set of the four endpoints, the set
of the two segments, and the set of the two arcs of Ro(t) are denoted as Po, So,
and Ao, respectively. As object o moves, Ro(t) moves too and its scope will grow
over time.

Given two moving objects o and q, the distance between these two objects is
bounded by a minimal and a maximal distance. The minimal and the maximal
distances between objects o and q vary over time because the two objects move
continuously. We use two functions, do,q(t) and Do,q(t), to represent at every time
instant the minimal and the maximal distances, respectively. The two functions
do,q(t) and Do,q(t) can be obtained by using the relationship of the possible
regions Ro(t) and Rq(t).

The possible regions Ro(t) and Rq(t) at an arbitrary instant t may or may
not intersect each other. If Ro(t) intersects Rq(t), the minimal distance between
Ro(t) and Rq(t) is equal to 0 (i.e., do,q(t) = 0). Otherwise, do,q(t) would be equal
to one of the following distances:

1. The distance between an endpoint �oi(t) of Ro(t) and an endpoint �qj(t) of
Rq(t). Therefore, do,q(t) is represented as {d(�oi(t), �qj(t))|�oi(t) ∈ Po, �qj(t) ∈
Pq}.

2. The perpendicular distance from an endpoint �p(t) of one possible region to a
segment pipj(t) of another possible region. That is, do,q(t) = {d(�p(t), pipj(t))|
(�p(t) ∈ Po, pipj(t) ∈ Sq) ∨ (�p(t) ∈ Pq, pipj(t) ∈ So)}.

3. The minimal distance from an endpoint �p(t) of one possible region to an
arc

�
pipj(t) of another possible region. Therefore, do,q(t) = {d(�p(t),

�
pipj(t))|

(�p(t) ∈ Po,
�

pipj(t) ∈ Aq) ∨ (�p(t) ∈ Pq,
�

pipj(t) ∈ Ao)}.
4. The minimal distance from a segment pipj(t) of one possible region to an

arc
�

pmpn(t) of another possible region. Hence, do,q(t) = {d(pipj(t),
�

pmpn(t))|
(pipj(t) ∈ So,

�
pmpn(t) ∈ Aq) ∨ (pipj(t) ∈ Sq,

�
pmpn(t) ∈ Ao)}.

5. The minimal distance between an arc
�

oioj(t) of Ro(t) and an arc
�

qiqj(t) of
Rq(t). That is, do,q(t) = {d(

�
oioj(t),

�
qiqj(t))|

�
oioj(t) ∈ Ao,

�
qiqj(t) ∈ Aq}.

As for the maximal distance between Ro(t) and Rq(t), it could only be equal
to (1) the distance D(�oi(t), �qj(t)) between two endpoints �oi(t) and �qj(t), where
�oi(t) ∈ Po and �qj(t) ∈ Pq (i.e., Do,q(t) = D(�oi(t), �qj(t))), or (2) the maxi-
mal distance D(

�
oioj (t),

�
qiqj (t)) between two arcs

�
oioj (t) and

�
qiqj (t), where

�
oioj (t) ∈ Ao and

�
qiqj (t) ∈ Aq (i.e., Do,q(t) = D(

�
oioj (t),

�
qiqj (t))). With the

minimal distance function do,q(t) and the maximal distance function Do,q(t),



Efficient Continuous K-Nearest Neighbor Query Processing 553

the possible distances between two objects o and q within the time interval [ts, te]
can be represented as a region which is bounded by do,q(t) and Do,q(t). That is,
each point in this region is a possible distance between o and q.

4 The TPR(s,d)-tree

The TPR(s,d)-tree is an enhanced TPR-tree [6], which is built to efficiently
index moving objects with uncertain speed and direction. In a TPR(s,d)-tree,
objects are recursively grouped in a bottom-up manner according to their loca-
tions at the time when the index is built. For instance, Figure 3 gives a two-
dimensional example where eleven objects a to k move with uncertain velocity.
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Fig. 3. A two-dimensional example

At time 0, these objects are
grouped according to their spa-
tial proximity into four leaf
nodes E3 to E6. Then, nodes E3

to E6 are recursively grouped
into nodes E1 and E2, that be-
come the entries of the root.
Each entry of a leaf node of a
TPR(s,d)-tree has the structure
(o.�s, o.v, o.V , o.θ, o.Θ, o.ptr),
where o.�s represents the start
location, o.v (o.θ) and o.V (o.Θ)
refer to the minimal and the
maximal moving speeds (angles), respectively, and o.ptr is a pointer to the
actual object tuple in the database. Each entry of an internal node has the
structure (MBRE , E.�v, E.c, E.ptr), where MBRE is the minimum bounding
rectangle (MBR) that encloses all the objects in the child node E of this inter-
nal node, E.�v represents the velocity vector of MBRE , E.c refers to the number
of objects enclosed by MBRE (i.e., the cardinality of node E), and E.ptr is a
pointer to node E. Let the velocity vector E.�v be decomposed to four compo-
nents (E.v�, E.v�, E.v⊥, E.v�), which represent the velocities of the left edge,
the right edge, the lower edge, and the upper edge of MBRE , respectively. Then,
E.v� = min{o.v�|∀o ∈ OE}, where OE is the set of objects enclosed by MBRE

and
o.v� =

�
−o.V if π ∈ [o.θ, o.Θ],
min{o.V × cos(o.θ), o.V × cos(o.Θ)} otherwise.

Similarly, E.v�, E.v⊥, and E.v� can be obtained after minor revisions of the
above equation. For the example shown in Figure 3, the moving speed of each
object is assumed to be within the range [2, 4], and the difference between the
minimal angle and the maximal angle is π

6 . As MBRE3 encloses three objects
a, b, and c (i.e., E3.c = 3), its velocity vector E3.�v is determined by the speeds
and the angles of the three objects and represented as (−4, 4, 0, 4). Similarly, the
velocity vectors of the other MBRs can be derived according to the speeds and
the angles of the objects enclosed by those MBRs. With the velocity vector, the
extent of each MBR at time t, defined as MBR(t), need not be stored explicitly.
Instead, MBR(t) can be obtained from MBR(0) (which represents its extent at
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time when the index is built) and the velocity vector. For instance, the extent of
MBRE3(t) at time 1 can be obtained from MBRE3(0) and the velocity vector
(−4, 4, 0, 4), and is depicted as the dashed rectangle. From this example, we also
see that the possible locations (which is enclosed by a sector region) of objects
j and k are still inside the obtained MBRE6(t). Therefore, we know that if a
moving object o with uncertain speed and direction is grouped into a node E,
then all the possible locations of o will be inside MBRE(t) at any time t.

5 CPKNN Algorithm

5.1 Filtering Step

Starting from the root, the traversal of the TPR(s,d)-tree is based on the following
principles. (1) When an entry o of the leaf node (i.e, an object) is encountered,
its minimal distance function do,q(t) and maximal distance function Do,q(t) are
computed because it is possible to be a PKNN (i.e., a candidate). (2) An entry E
of the internal node is visited only if its MBRE(t) contains any qualifying object
within the query time interval [ts, te]. Two parameters are utilized to determine
whether an entry E needs to be visited or not. The first one is the global minimal
distance between MBRE(t) and MBRq(t), denoted as dE , within the time inter-
val [ts, te]. Note that MBRq(t) is the minimum bounding rectangle enclosing q’s
sector region at time t and is computed based on the start location, the moving
speed, and the moving direction of q. At time t, as both MBRE(t) and MBRq(t)
are rectangles, the minimal distance between them could be equal to either 0
(that is, MBRE(t) intersects MBRq(t)) or the minimal distance from a corner
of one rectangle to another rectangle. Therefore, if there exists a time instant
t ∈ [ts, te] at which MBRE(t) intersects MBRq(t), the global minimal distance
dE = 0. Otherwise, dE = min{dci,E(t)∪dcj ,q(t)|∀ci ∈ Cq, ∀cj ∈ CE , ∀t ∈ [ts, te]},
where dci,E(t) (or dcj ,q(t)) is the minimal distance from the corner ci (or cj) to
MBRE(t) (or MBRq(t)) at time t, and Cq and CE are the sets of four corners of
MBRq(t) and MBRE(t), respectively. Efficient methods for the computation of
the minimal distance between a moving point and a moving rectangle have been
discussed in previous work [9], which can be used to derive dci,E(t) and dcj ,q(t).
The second parameter is the global maximal distance between MBRE(t) and
MBRq(t), denoted as DE , within the time interval [ts, te]. Given two rectangles,
at any time t the maximal distance between them would be equal to the maxi-
mum of the distances between four corners of one rectangle and four corners of
another rectangle. As such, the global maximal distance DE can be represented
as max{dci,cj (t)|∀ci ∈ Cq, ∀cj ∈ CE , ∀t ∈ [ts, te]}, where dci,cj(t) refers to the
distance between the corner ci of MBRq(t) and the corner cj of MBRE(t) at
time t.

During the traversal of the TPR(s,d)-tree, a linked list L is utilized to keep
the information about the entries of the nodes visited so far. Each element of L
stores a node E’s information, including the cardinality E.c (i.e., the number of
objects enclosed by MBRE(t)), the global maximal distance DE , and the global
minimal distance dE . Note that the elements of L are sorted in ascending order
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according to their DE , and initially L only contains root node information of the
TPR(s,d)-tree. In each iteration, the first element of L (i.e., the element whose DE

is the smallest among the elements of L) will be retrieved and the corresponding
node of the TPR(s,d)-tree is visited. If the visited node is an internal node, dE

and DE of each entry of this internal node are computed and then inserted into
L. For each element E of L, if its dE is greater than DEi of the i-th element
Ei which results in

∑i−1
j=1 Ej .c < K ≤

∑i
j=1 Ej .c, then E can be deleted from

L. This is because at least K objects whose distances to the query object are
less than dE of the element E can be found so that the objects enclosed by
MBRE(t) must not be the query result. When a leaf node is visited, each entry
(i.e., an object) of this leaf node is possible to be a PKNN (i.e., a candidate),
and thus its do,q(t) and Do,q(t) are computed. The above process proceeds until
L is empty. The candidates will be further verified in the refinement step.

5.2 Refinement Step

The maximal distance function Do,q(t) and the minimal distance function do,q(t)
of each candidate that have been computed in the filtering step can now be
shown in the time-distance space. For example, Figure 4 shows the maximal
distance functions (depicted as solid curves) and the minimal distance functions
(depicted as dotted curves) of four candidates a to d in the time-distance space.

ts
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Fig. 4. The refinement step

Based on the relationship between the dis-
tance functions of candidates, we know that
at each time instant t ∈ [ts, te], if there ex-
ist K candidates whose Do,q(t) are less than
doi,q(t) of a candidate oi, then oi must not
be a PKNN. Motivated by this, the candidate
ok whose maximal distance ranks at the K-th
smallest among all candidates’ maximal dis-
tances is used to generate an answer curve in
the time-distance space, which is formed by
the K-th smallest maximal distances (i.e., the
values of Dok,q(t)) at all time instants within
[ts, te]. That is, at every time t ∈ [ts, te], there
are exactly K candidates whose Do,q(t) are
less than or equal to Dok,q(t). Continuing the example shown in Figure 4, as-
sume that two NNs are to be found between [ts, te] (i.e., K = 2). Candidate b
is the candidate ok at ts because it has the second smallest maximal distance
Db,q(ts). Then, candidate a replaces b to be the next ok at t2, and is replaced by
d at t4. Note that the time instant at which ok is replaced by another candidate
o (e.g., t2 or t4) can be obtained by solving the equation Dok,q(t) = Do,q(t).
Finally, the answer curve is obtained and shown as the bold line in the figure.

Having generated the answer curve, the PKNNs can be found by examining
the relationship between do,q(t) of each candidate and the answer curve. There
are three possible cases. The first one is that do,q(t) of candidate o is completely
above the answer curve (e.g., candidate c in Figure 4). It means that at least
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K candidates are closer to the query object at each time instant than o is, so
that o can never become part of the query result. The second case is that do,q(t)
is completely below the answer curve (e.g., candidates a and b), and thus o is a
PKNN at each time instant t ∈ [ts, te]. The last case is that do,q(t) intersects the
answer curve at somewhere in [ts, te]. It means that o cannot always be a PKNN
within [ts, te] (e.g., candidate d).

6 Conclusions

In this paper, we focused on processing the CKNN query for moving objects with
uncertain speed and direction. We proposed an uncertain distance model to for-
mulate the uncertain distance between moving objects. Based on this model,
we developed the CPKNN algorithm to efficiently process a CKNN query. The
filtering step of the CPKNN algorithm employed a branch-and-bound traver-
sal on the TPR(s,d)-tree to prune non-qualifying objects. Then, the refinement
step is designed to determine the subintervals within which the query object
has the same PKNNs, and find the corresponding PKNNs within each of these
subintervals. Readers may refer to our technical report [2] for the details on the
performance of the system.
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Abstract. There are a lot of application domains, e.g. sensor databases, traffic
management or recognition systems, where objects have to be compared based
on vague and uncertain data. Feature databases with uncertain data require spe-
cial methods for effective similarity search. In this paper, we propose an effective
and efficient probabilistic similarity ranking algorithm that exploits the full in-
formation given by inexact object representations. Thereby, we assume that the
objects are given in form of discrete probabilistic object locations in particular
several object snapshots with confidence values. Based on the given object rep-
resentations, we suggest diverse variants of probabilistic ranking schemes. In a
detailed experimental evaluation, we demonstrate the benefits of our probabilis-
tic ranking approaches. The experiments show that we can achieve high quality
query results while keeping the computational cost quite small.

1 Introduction

Similarity ranking is one of the most important query types in feature databases. A sim-
ilarity ranking query iteratively reports objects in descending order of their similarity
to a given query object. The iterative computation of the answers is very suitable for
retrieving the results the user could have in mind. This is a big advantage of ranking
queries against the most prominent similarity queries, the distance-range (ε-range) and
the k-nearest neighbor query, in particular if the user does not know how to specify the
query parameters ε and k.

Many modern applications have to cope with uncertain or imprecise data. Exam-
ple applications are location determination and proximity detection of moving objects,
similarity search and pattern matching in sensor databases or personal identification and
recognition systems based on video images or scanned image data. The importance of
this topic in the context of database systems is demonstrated by the increasing interest
of the database research community in this subject matter. Several approaches coping
with uncertain objects have been proposed [1,2,3,8]. All these approaches use contin-
uous probability density functions (pdfs) for the description of the spatial uncertainty
while the approaches proposed in [5,6] use discrete representations of uncertain objects.
The approach proposed in [5] supports probabilistic distance range queries on uncertain
objects. In [6] efficient methods for probabilistic nearest-neighbor queries are proposed.
However, in fact only one-nearest neighbor queries are supported.

Similarity search in conjunction with multimedia data like images, music, or data
from personal identification systems like face snapshots or fingerprints commonly in-
volves distance computations within the feature space. If exact features cannot be gen-
erated from uncertain objects, we have to cope with positionally uncertain vectors in
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the feature space (i.e. objects are represented by ambiguous feature vectors). Basically,
there exist two forms of representations of positionally uncertain data: Uncertain posi-
tions represented by a probability density function (pdf) or uncertain positions drawn by
samples. In this paper we concentrate on uncertain objects represented by a set of sam-
ple positions, each associated with a confidence value. The confidence values indicate
how well the corresponding sample matches the exact object. This form of represen-
tation is motivated by the fact that we often have only discrete but ambiguous object
information as usually returned by common sensor devices, e.g. discrete snapshots of
continuously moving objects.

A probabilistic ranking on uncertain objects computes for each object o ∈ D the
probability that o is the K-th nearest neighbor (1 ≤ K ≤ |D|) of a given query object
q. In the context of probabilistic ranking queries we propose diverse forms of ranking
outputs which differ in the order the objects are reported to the user. Furthermore, we
suggest diverse forms in which the results are reported (i.e. which kind of information
is assigned to each result).

2 Problem Definition

In this section, we formally introduce the problem of probabilistic ranking queries on
uncertain objects. We first start with the definition of (positionally) uncertain objects.

2.1 Positionally Uncertain Objects

Objects of a d-dimensional vector space Rd are called positionally uncertain, if they
do not have a unique position in Rd, but have multiple positions associated with a
probability value. Thereby, the probability value assigned to a position p ∈ Rd of an
object o indicates the likelihood that p is the best of all representations for o. A formal
definition is given in the following:

Definition 1 (positionally uncertain object). Let D be a database of objects located
in a d-dimensional feature space Rd. An object oi ∈ D is called positionally uncertain,
iff the object cannot be assigned to a unique position in Rd. A positionally uncertain
object oi is represented by a set of M sample points S(oi) = {oi,1, .., oi,M}, where
oi,j ∈ Rd (1 ≤ j ≤ M ).

Let us note that in many applications the positionally uncertain objects are already given
in the discrete representation, i.e. by a set of sample points, in particular if the objects are
derived from a sequence of sensor signals, e.g. in object tracking systems. Otherwise,
we use the generally applicable concept of Monte-Carlo sampling to generate the set of
samples according to a given continuous probability density function.

In the remainder, we call positionally uncertain objects simply uncertain objects and
use both notions alternately.

2.2 Distance Computation for Uncertain Objects

Positionally uncertain objects involve uncertain distances between them. Like the un-
certain position, the distance between two uncertain objects (or between two objects
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where at least one of them is an uncertain object) can be described by a probability den-
sity function (pdf) that reflects the probability for each possible distance value. However
for uncertain objects with discrete uncertainty representations we need another form of
distance.

Definition 2 (uncertain distance). Let oi = {oi,1, . . . , oi,M} ∈ D and oj =
{oj,1, . . . , oj,M} ∈ D be two uncertain objects, each represented by M sample points
and let dist : Rd × Rd → R+

0 be a distance function. Then an uncertain distance
duncertain between two uncertain objects oi and oj is a collection of M2 distance sam-
ples as defined below

duncertain(oi, oj) = {dist(oi,m, oj,n)|1 ≤ m ≤ M, 1 ≤ n ≤ M},

where dist() is a Lp-norm based similarity distance.
The probability that the distance duncertain(oi, oj) between two uncertain objects oi

and oj is smaller than a given range ε ∈ R+
0 can be estimated by:

P (duncertain(oi, oj) ≤ dist) =
|{d ∈ duncertain(oi, oj)|d ≤ dist}|

|duncertain(oi, oj)|
.

Since distance computations between uncertain objects are very expensive, we need
computationally inexpensive distance approximations to reduce the candidate set in a
filter step. For this reason, we introduce distance approximations that lower and upper
bound the uncertain distance between two uncertain objects.

Definition 3 (minimal object distance). Let oi = {oi,1, oi,2, .., oi,M} and oj =
{oj,1, oj,2, .., oj,M ′} be two uncertain objects. Then the distance dmin(oi, oj) =
mins=1..M,s′=1..M ′{dist(oi,s, oj,s′)} is called minimal distance between the objects
oi and oj .

Likewise, we can define an upper distance bound for uncertain objects.

Definition 4 (maximal object distance). Let oi = {oi,1, oi,2, .., oi,M} and oj =
{oj,1, oj,2, .., oj,M ′} be two uncertain objects. Then the distance dmax(oi, oj) =
maxs=1..M,s′=1..M ′{dist(oi,s, oj,s′)} is called maximal distance between the objects
oi and oj .

2.3 Probabilistic Ranking on Uncertain Objects

The output of probabilistic queries is usually in form of a set of result objects, each asso-
ciated with a probability value indicating the likelihood that the object fulfills the query
predicate. However, in contrast to ε-range queries and k-nn queries, ranking queries do
not have such an unique query predicate, since the query predicate changes with each
ranking position. In case of a ranking query, a set of probability values is assigned to
each result object, one for each ranking position. We call this form of ranking output
probabilistic ranking.
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Definition 5 (probabilistic ranking). Let q be an uncertain query object and D be a
database containing N = |D| uncertain objects. An uncertain ranking is a function
prob rankedq : (D×{1, .., N}) → [0..1] that reports for a database object o ∈ D and
a ranking position k ∈ {1, .., N} the probability which reflects the likelihood that o is at
the kth ranking position according to the uncertain distance duncertain(o, q) between
o and the query object q in ascending order.

If the result of the probabilistic ranking is reported to the user in its raw form, the user
could be overstrained with ambiguous ranking results. For this reason, we suggest an
unambiguous ranking based on the information given by the probabilistic ranking. The
following proposed unambiguous ranking can be built in a post-processing step. Our
unambiguous ranking PRQ MAC assigns each object o a unique ranking position k by
aggregating over the confidences of all prior ranking positions i < k according to o.

Definition 6. A probabilistic ranking query based on maximal aggregated confidence
(PRQ MAC) incrementally retrieves for the next ranking position i ∈ IN a result tuple
of the form (o,

∑
j=1..i prob rankedq(o, j)), where o ∈ D has not been reported at

previous ranking iterations (i.e. at ranking positions j < i) and ∀p ∈ D which have not
been reported at previous ranking iterations, the following statement holds:∑

j=1..i

prob rankedq(o, j) ≥
∑

j=1..i

prob rankedq(p, j).

3 Probabilistic Ranking Algorithm

The computation of the probabilistic ranking is very expensive and is the main bottle-
neck of the probabilistic ranking queries proposed in the previous section. In the fol-
lowing, we assume that each object is represented by M sample points. Furthermore,
we assume that the object samples are stored in a spatial index structure like the R∗-
tree [7], in order to organize the uncertain objects such that proximity queries can be
efficiently processed.

In the following, we concentrate on the computation of the probabilistic ranking
query according to one sample point qj ∈ Rd of the query object q. The computation is
done for each sample point of the query object separately and, in a post-processing step,
the results are then easily merged by building the average, to obtain the final result.

3.1 Iterative Probability Computation

Initially, an iterative computation of the nearest neighbors of qj w.r.t. the sample points
of all objects o ∈ D (sample point ranking ranks(qj)) is started using the ranking
algorithm proposed in [4]. Then, we iteratively pick object samples from the sample
point ranking ranks(qj) according to the query sample point qj . For each sample point
oi,s (1 ≤ s ≤ M ) returned from ranks(qj), we immediately compute the probability
that oi,s is the kth nearest neighbor of qj for all k (1 ≤ k ≤ i). Thereby, all other
samples oi,t (t �= s) of object oi have to be ignored due to the sample dependency
within an object as mentioned above.
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For the computation of the probabilistic ranking we need a table called probability
table (PT) which is used to maintain the intermediate results w.r.t. oi,s and which finally
contains the overall results of the probabilistic ranking.

Probability Table (PT). The probability table stores for each object oi and each k ∈ N
(1 ≤ k ≤ N ) the actual probability that oi is the kth-nearest neighbor of the query
sample point qs. The entries of PT according to the sth sample point of object oi are
defined as follows:

PT [k][i][s] =
P ((k − 1) objects o ∈ D(o �= oi) are closer to qj than the sample point oi,s).

We assume that object oi is the ith object for which ranks(qj) has reported at least
one sample point. The same assumption is made for the sample points of an uncertain
object (i.e., sample point oi,s is the sth-closest sample point of object oi according to
qj). These assumptions hold for the remainder of this paper.

Now, we show how to compute an entry PT [k][i][s] of the probability table using an
additional structure called sample table (ST ). The sample table stores for each accessed
object l separately the portion of samples already returned from ranks(qj) denoted
by ST [l][1], whereas ST [l][0] denotes the portion of the remaining not yet returned
samples, i.e. ST [l][0] = 1 − ST [l][1]. Let ST be a sample table of size N (i.e. ST
stores the information corresponding to all N objects of the database D). Let σk(i) ⊆
{o ∈ D|o �= oi} denote the set, called k-set of oi, containing exactly (k-1) objects.

If we assume k < N , obviously

(
N
k

)
different k-set permutations σk(i) exist. For

the computation of PT [k][i][s], we have to consider the set Sk of all possible k-set
permutations according to oi. The probability that exactly (k-1) objects are closer to the
query-sample point qj than the sample point oi,s, can be computed as follows:

PT [k][i][s] =
∑

σk(i)∈Sk

∏
l = 1..N

l �= i

{
ST [l][1] ,if ol ∈ σk(i)
ST [l][0] ,if ol /∈ σk(i)

Let us assume that we actually process the sample point oi,s. Since the object samples
are processed in ascending order according to their distance to qj , the sample table entry
ST [l][1] reflects the probability, that object ol is closer to qj than the sample point oi,s.
On the other hand, ST [l][0] reflects the probability that oi,s is closer to qj than ol.

In the following, we show how the entries of the probability table can be computed
by fetching iteratively the sample points from ranks(qj). Thereby, we assume that all
entries of the probability table are initially set to zero. Then the iterative ranking process
ranks(qj) which reports one sample point of an uncertain object in each iteration, is
started. Each reported sample point oi,s is used to compute for all k (1 ≤ k ≤ N )
the probability value that corresponds to the table entry PT [k][i][s]. After filling the
(i,s)-column of the probability table, we proceed with the next sample point fetched
from ranks(qj) in the same way as we did with oi,s. This procedure is repeated until
all sample points are fetched from ranks(qj).
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3.2 Accelerated Probability Computation

The computation of the probability table can be very costly in space and time. One
reason is the size of the table that grows drastically with the number of objects and the
number of samples for each object. The table size can be reduced as, in fact, we need
only one value per object and ranking position which aggregates the results over the
object samples. Another problem is the very expensive computation of the probability
table entries PT[k][i][s]. In the following, we propose methods that reach a considerable
reduction of the overall query cost.

In fact, at a time we explicitly have to maintain table entries for those objects from
which at least one sample point has been reported from ranks(qj), whereas we can skip
those from which we already fetched all sample points.

The computational bottleneck of our probabilistic ranking algorithm is the computa-
tion of each table entry. For each computation of PT [k][i][s] we have to compute the

probabilities according to

(
N
k

)
different k-set permutations which have to be summed

up to the final probability value. For example, if N = 100 and k = 20 we need to con-
sider about 1.73 · 1013 k-set permutations.

In the case of subsequently fetching samples belonging to the same object, the ranking
probabilities according to this object do not change. Hence, obviously only one compu-
tation of the probability value is required. However, the case where two adjacent sample
points reported from the ranking belong to different objects often occurs. For this case
we suggest a divide and conquer method which is able to drastically reduce the number
of k-set permutations to be computed. Instead of considering all k of N permutations, we
first split the k-set into two subsets of equal size. Then we only need to consider (k-i) of
N
2 permutations for i = 1..k for the one subset, combined with the i of N

2 permutations

of the other subset. As a consequence, instead of considering

(
N
k

)
k-set permutations,

the number of k-set permutations to be considered can be reduced to

ALGORITHM probability(ST ,MIN ,MAX,k)
result = 0;
N = MAX − MIN + 1;
IF (k = 0) THEN result =

�
i=MIN..MAX

ST [i][0];
ELSE IF (k ≥ N) THEN result =

�
i=MIN..MAX

ST [i][1];
ELSE

MID = 
(MIN + MAX)/2�;
FOR (i = 0..min(
(MAX − MIN)/2�, k)) DO

left = probability(ST,MIN, MID − 1, i);
right = probability(ST,MID, MAX, (k − i));
result = result + (left * right);

END FOR
END IF
RETURN result;

Fig. 1. The sample point probability computation algorithm
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∑
i=0..k

((
N
2

k − i

)
+
(

N
2
i

))
.

The k-set split can be recursively repeated for each subset. The recursive decomposition
of a subset, from which we have to compute k (0 < k < N ) out of N permutations
stops if k ≥ N . Otherwise, there exists only one permutation that can be immediately
computed and reported to the calling function of the recursion. The algorithm for the
computation of the sample point probability is depicted in Figure 1. The range of the
k-set, that is currently worked on, is limited by the parameters MIN and MAX . The
sample table, which is used for probability computation (cf. Section 3.1), is denoted by
the additional parameter ST .

4 Experimental Evaluation

Due to space limitations, in this section we can only give a coarse summary of the ex-
perimental evaluation of our ranking methods. We applied our ranking methods on real
world datasets as well as on artificial datasets. The artificial datasets which are used for
the efficiency experiments contain 10 to 1000 3-dimensional uncertain objects. For the
evaluation of the effectiveness of our methods we used three real-world datasets O3,
NSPh and NSPfrq. The O3 dataset is an environmental dataset consisting of 30 un-
certain time series, each consisting of a series of measurements of O3 concentration in
the air measured within one month. The NSP datasets NSPh and NSPfrq are chrono-
biologic datasets describing the cell activity of Neurospora1 within sequences of day
cycles. These datasets are used to investigate endogenous rhythms.

In the first experiments, we evaluated the quality of our probabilistic ranking query
(PRQ MAC) proposed in Section 2.3. We compare its quality with the quality of a
non-probabilistic ranking (MP, Mean Position) which ranks the objects based on the
distance between their mean positions. For these experiments, we used the three real-
world datasets O3, NSPh and NSPfrq. The ranking quality is measured by the av-
erage precision over all recall values for each dataset. The average precisions for the
dataset O3 are prec(PRQ MAC) = 0.65 and prec(MP) = 0.63, for the dataset NSPh

they are prec(PRQ MAC) = 0.43 and prec(MP) = 0.35 and for the dataset NSPfrq they
are prec(PRQ MAC) = 0.70 and prec(MP) = 0.60. Obviously, the PRQ MAC approach
outperforms the non-probabilistic ranking approach.

In the next experiment, we evaluated the performance of our probabilistic ranking
acceleration strategies proposed in Section 3.2 w.r.t. query processing time. The re-
sults of the experiments showed that the strategies are able to reduce the query cost by
several orders of magnitude. Interestingly, the recursive computation of the probability
permutations alone (i.e. without other strategies) yields a speed up of up to two orders
of magnitude compared to the other strategies.

1 Neurospora is the name of a fungal genus containing several distinct species. For further in-
formation see The Neurospora Home Page: http://www.fgsc.net/Neurospora/neurospora.html
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5 Conclusions

In this paper, we proposed an approach that efficiently computes probabilistic rank-
ing queries on uncertain objects represented by sets of sample points. In particular,
we proposed methods that are able to break down the high computational complexity
required to compute for an object o the probability, that o has the ranking position k
(1 ≤k≤ N ) according to the distance to a query object q. We theoretically and experi-
mentally showed that against straightforward solutions our approach is able to speed-up
the query by factors of several orders of magnitude. In the future we plan to apply prob-
abilistic ranking queries to improve data mining applications.
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Abstract. While most scientific workflows systems are based on dataflow, some
amount of control-flow modeling is often necessary for engineering fault-tolerant,
robust, and adaptive workflows. However, control-flow modeling within dataflow
often results in workflow specifications that are hard to comprehend, reuse, and
maintain. We describe new modeling constructs to address these issues that pro-
vide a structured approach for modeling control-flow within scientific workflows,
and discuss their implementation within the Kepler scientific workflow system.

1 Introduction

Scientific workflow systems aim to provide end-to-end frameworks for automating and
simplifying data processing tasks. These tasks often include data acquisition, trans-
formation, integration, analysis, and visualization. Many existing scientific workflow
systems (e.g., KEPLER [1], Taverna [2], and SCIRun [3]) are based on dataflow mod-
els of computation [4], where individual components (actors in KEPLER) are loosely
coupled, communicate via streams of data objects, and are scheduled by the workflow
system according to dataflow dependencies. An advantage of this approach is that ac-
tors, which may be native to the system or wrap external software components such
as web services, scripts, or external applications, can become reusable components for
use within multiple workflows. Because of the emphasis on data dependencies, these
systems also provide a simple and intuitive model for scientific workflow designers [5].

However, while dataflow has become a standard model of computation in scien-
tific workflow systems, control-flow modeling is often necessary for engineering fault-
tolerant, robust, and adaptive workflows. Without mechanisms to control the scheduling
and execution of actors, otherwise simple workflows quickly become hard to compre-
hend, reuse, and maintain. In KEPLER, e.g., special-purpose control-flow actors are of-
ten introduced into workflows for this purpose, which often lead to complex workflows
with many of the above problems (e.g., see Figure 1).

This paper describes a structured approach for introducing control-flow into
dataflow-oriented scientific workflows. This work is based on our experiences devel-
oping workflows for a range of domains, including astrophysics, environmental mon-
itoring, phylogenetics, and bioinformatics. These workflows typically involve generic
� This work supported in part through NSF grants DBI-0533368, IIS-0612326, IIS-0630033,

and OCI-0722079.
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Fig. 1. Control-flow intensive workflow in KEPLER. “Retry,” a composite actor for fault-tolerant
data transfer (top), contains a subworkflow (bottom), which itself contains a “ConditionalLoop”
subworkflow (not shown). Complex feedback loops and low-level actors demonstrate complexity
of modeling control-flow using dataflow constructs.

processing steps related to submitting and running external jobs, transferring and pro-
cessing data, and visualizing results. Each generic processing step typically has many
different concrete implementations, where the desired implementation depends on the
data input to the workflow, on the type of analysis being performed, or even on the state
of the workflow environment at the time of execution.

Our approach is based on workflow frames and templates [6], which provide an
abstraction for modeling control-flow issues surrounding the selection of concrete actor
implementations among multiple alternatives. An advantage of our approach is that
dataflow remains the primary model of scientific workflows, while allowing complex
control-flow specifications to be embedded as subtasks or wrappers around existing
actors. We also present an approach (extending [6]) in which the complete specification
of frames is determined at workflow execution time through dynamic embedding.

2 The KEPLER Scientific Workflow System

KEPLER provides support for designing and executing scientific workflows. KEPLER

workflows are created by selecting actors and wiring them together on a design can-
vas to form the desired workflow graph (Figure 1). Actors have input and output ports
for communicating with other actors. Data from one actor is streamed asynchronously
to another actor via data tokens. Composite actors encapsulate subworkflows, e.g., al-
lowing one workflow to be reused in another. Actors typically have parameter ports
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for configuring default behavior. The overall execution of a workflow is not defined by
actors within KEPLER, but is factored out into a separate component called a director
[7]. Thus, different execution models may be used for a workflow, where a different
director may be used at different hierarchical composition levels.

The primary mechanisms currently provided by KEPLER for managing control-flow
include: (a) allowing actors to have multiple ports, which provides a mechanism for
passing control-tokens between actors; (b) low-level and specialized actors for han-
dling control tasks, e.g., to disassemble and reassemble complex data types (such as
records), and “Boolean-switch” actors to fork token streams; and (c) allowing com-
plex workflow graph structures that contain cycles, multiple paths, etc. As described in
[6,8] (and demonstrated in Figure 1), modeling control-flow using these constructs in-
volves inserting and linking low-level and specialized actors alongside dataflow actors,
increasing the complexity of the original workflow and making it difficult to distinguish
dataflow (or “scientific” tasks) from control-flow (since they are “entangled”).

3 Enabling Flexible Scientific Workflows

Frames and templates decouple control-flow from dataflow by introducing new abstrac-
tions: A frame wraps a set of alternative actor implementations, and a template specifies
a subworkflow with “holes” that can be filled in at design time or runtime with actors
or additional templates. We adopt and modify the finite-state transducer framework
of [7] for specifying templates, which provides an intuitive language for encapsulat-
ing control-flow behavior within KEPLER. This approach allows workflow designers to
change control-flow behavior by selecting and applying different templates and frames.

In [6], the specification of control-flow behavior using frames and templates is per-
formed exclusively at workflow design time. For example, once a particular template
is configured, it is not modified again regardless of changing runtime conditions (al-
though the template may be specified to react to pre-specified runtime conditions). Fur-
ther, once a frame or template has been embedded, different implementations cannot
be re-selected for embedding at run time, unless this behavior is explicitly encoded
within the template. Dynamic embedding extends the approach by allowing actors and
control-flow behavior to be selected at workflow runtime. The rest of this section de-
scribes frames, templates, and dynamic embedding.

Actor Frames. Actors in KEPLER are always concrete in that they correspond to par-
ticular implementations that are directly executed in a workflow. As a simple example,
a gridftp and a sftp (secure ftp) actor are tied to two different data-transfer imple-
mentations. A frame denotes a set of alternative actor implementations (or refinements)
with similar, but not necessarily identical functionality. For workflow designers, frames
are placeholders for actors that will be instantiated and specialized at runtime. Thus, a
designer can place a frame on the design canvas, and connect it with other workflow
components, without prematurely specifying which component is to be used. For actor
developers, frames can be used as abstractions for a family of components with simi-
lar function, e.g., a DataTransfer frame can generalize the transfer of data without
specifying whether the implementation is provided by gridftp or sftp.
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Fig. 2. (a) Embedding of component C in frame F ; (b) worfklow template T (F1, F2); (c) finite
state transducer template T (F )

A frame is a named entity F that acts as a placeholder for a component to be “plugged
into” F (see Figure 2). When devising a frame F , a family of components CF is envi-
sioned, with each C ∈ CF being a possible alternative for embedding into F . As with
actors, frames have ports and structural types, which together form the frame signature
ΣF . This signature represents the common API of the family CF of components that
F abstracts. An embedding F [C] of a component C into a frame F is a set of pairs
associating (or “wiring”) ports of C with ports of F . The embedded component C may
also introduce new ports not in F ; and an embedding F [C] may not use all the ports
of C. Parameter ports of F can also be connected to input ports of C and vice versa;
however, other connection types are generally not allowed.

Workflow Templates. A frame F imposes constraints on its set of components CF

such that embeddings F [C] should be well-formed and well-typed for any C ∈ CF .
However, no assumptions can be made about the “inner workings” of C. A workflow
template T provides a similar level of abstraction for a set of workflows WT . Unlike
a frame, a template T (partially) specifies the behavior of the workflows it represents.
In addition, a template includes an “inner” workflow graph WT , where some of the
components of WT are not concrete actors, but frames (Figure 2b). Let F1, . . . , Fn be
the frames that occur in WT , either directly, or indirectly through nested templates. We
can view T as a partial workflow specification T (F1, . . . , Fn), whose frames Fi can
be independently specialized by embedded components (actors or templates) Ci. The
resulting embedding T (F1[C1], . . . , Fn[Cn]) is a concrete, executable workflow if no
Ci has a frame; otherwise the embedding is a (more refined) template. The left diagram
in Figure 3 shows an example data transfer frame embedded with a “retry” transducer
and example state implementation.

Dynamic Embedding. Because frame and template embeddings are given at design
time, they require all paths within a workflow to be completely bound and loaded prior
to execution. In dynamic embedding, frames are embedded and instantiated on demand
during workflow execution, which unlike static embedding, does not require the work-
flow system to load or manage the alternative implementations of a frame. Instead,
alternatives are dynamically selected according to rules employed by the frame itself.
Dynamic embedding is used when selection rules change often or are complex, and
when deploying large workflows with many frames and alternative implementations.

Our implementation of dynamic embedding consists of: (1) waiting for data tokens to
arrive at the frame’s input ports, (2) selecting an embedded component using a set of se-
lection criteria (given by the workflow designer), (3) transferring input tokens from the
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Fig. 3. A generic data transfer component statically embedded with a specific template and un-
derlying state frame implementation (left), and a frame after being embedded dynamically (right)

frame to the embedded component, (4) automatic construction of an internal workflow
to run the embedded component (with the appropriate director), (5) executing the con-
structed workflow, and (6) transferring output tokens from the embedded component to
the frame actor. The right of Figure 3 shows a remote job-execution frame implemented
via dynamic embedding. As the workflow executes, the frame selects the appropriate
concrete actor based on given selection criteria. Also shown in Figure 3 (bottom, right)
is one of the automatically generated internal workflows, which consists of a dataflow
director, the selected actor, the source and sink actors for controlling input and output,
and the workflow parameters.

Frames that employ dynamic embedding are implemented via higher-order actors,
which invoke actors or subworkflows given as input. These frames configure sub-
workflows according to selection criteria and use higher-order actors to control their
execution. The frames also use additional actors to mediate the flow of tokens to
the underlying frame embeddings. The select actor implements the selection policies
of the frame (given as rules based on runtime conditions and input tokens), and sup-
plies the embedding. The source actors transfer input tokens from the frame actor to
the selected actor. The sink actors transfer output tokens from the selected actor to the
frame actor. Finally, a port wiring component is used to map ports and parameters of
the selected actor to ports and parameters of the frame.

Implementation. We have developed a prototype implementation of dynamic embed-
ding within KEPLER and have applied the approach to example workflows, includ-
ing the Terascale Supernova Initiative [9]. This workflow, in particular, was developed
to automate the repetitive and complex data transfer and monitoring tasks involved in
running a supercomputer simulation from a user’s local computer. We have also devel-
oped examples of frame-based workflows for inferring phylogenetic trees that select the
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appropriate implementations of actors (e.g., for file conversion and tree inference) based
on the type of input data provided to the workflow.

4 Summary and Related Work

Frames, templates, and dynamic embedding enable workflow designers to more eas-
ily specify control-flow tasks needed for fault-tolerant, reusable, and adaptive scientific
workflows, while still supporting dataflow as the primary model of computation. Most
scientific workflow systems are based on dataflow, as opposed to business workflow
systems [10] and associated approaches (e.g., workflow patterns [11] and web-service
composition [12,13]) that use control-based models such as Petri nets. A significant
challenge in both fields is to seamlessly integrate control-flow and dataflow within a sin-
gle model. Frames and templates are inspired by hierarchical finite state machines [14]
and the nesting of heterogeneous computation models [15]. Our approach also extends
adaptive workflow modeling [16] by supporting complex data and control structures.
In future work, we will further explore dynamic embedding for designing and analyz-
ing workflows, e.g., to automatically compose specifications of dynamically-embedded
components and discover suitable actors for use within frames and templates.
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Provenance: A First Study
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1 Introduction

Provenance (also referred to as audit trail, lineage, and pedigree) captures in-
formation about the steps used to generate a given data product. Such infor-
mation provides documentation that is key to determining data quality and
authorship, and necessary for preserving, reproducing, sharing and publishing
the data. Workflow design, in particular for exploratory tasks (e.g., creating a
visualization, mining a data set), requires an involved, trial-and-error process.
To solve a problem, a user has to iteratively refine a workflow to experiment with
different techniques and try different parameter values, as she formulates and
test hypotheses. The maintenance of detailed provenance (or history) of this pro-
cess has many benefits that go beyond documentation and result reproducibility.
Notably, it supports several operations that facilitate exploration, including the
ability to return to a previous workflow version in an intuitive way, to undo bad
changes, to compare different workflows, and to be reminded of the actions that
led to a particular result [2].

As provenance-enabled systems are deployed, and increasing volumes of prove-
nance information are collected, there is a unique opportunity to leverage and
obtain useful knowledge from this data. In this paper, we take a first step at
analyzing this data. We present a preliminary analysis of workflow evolution
provenance generated by thirty subjects who worked on six distinct exploratory
tasks over the period of four months. This initial analysis shows that useful
statistics can be extracted from this data that provide insights into how differ-
ent people interact with workflow systems to solve problems.

2 Workflow Evolution Provenance: Background

Because scientific tasks evolve as users switch input data, vary parameters, and
investigate different approaches, scientists often need to manage a large collection
of workflows. The change-based provenance model [2] treats a workflow speci-
fication as a first-class data item and captures the provenance of its evolution
by recording every change to the specification. As a user modifies a workflow
(e.g., by adding a module, changing a parameter or deleting a connection), the
provenance mechanism transparently records each change, akin to a database

B. Ludäscher and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, pp. 573–579, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Fig. 1. A version tree with two workflow specifications and their outputs

transaction log. We can then reconstruct any workflow by replaying the se-
quence of captured changes from an empty specification to the desired version.
In contrast to previous models which only capture provenance of data prod-
ucts (i.e., information about how a given data product was generated) [5], the
change-based model captures both workflow and data provenance: it maintains
a detailed record of the trail created by a user while solving a problem. In addi-
tion, this representation is concise and requires substantially less space than the
alternative of storing multiple versions of a task specification.

Because the change-based provenance model captures the derivation of work-
flows, we can represent workflow evolution as a tree where each node is a version
of the workflow specification and each edge coincides with an action. Given an
edge from a parent node wp to a child node wc, its corresponding action is the
sequence of changes necessary to transform wp into wc. Figure 1 shows an exam-
ple of a workflow version tree, a couple of the workflow specifications, and the
corresponding outputs from these workflows. Note that to reduce visual clutter,
only important nodes of the tree are displayed by default, including those the
user has tagged.

We have shown that maintaining detailed provenance of workflow evolution
has many benefits and supports various activities that are crucial for performing
reflective reasoning and obtaining insights, such as for example, following chains
of reasoning backward and forward and comparing different results [3]. The tree-
based view allows users to work collaboratively, to return to a previous version
in an intuitive way, to undo bad changes, to reuse workflows and workflow frag-
ments, to compare different workflows and their results, and to be reminded of
the actions that led to a particular result [2,4].
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The change-based model was originally implemented in the VisTrails system.1

More recently, other workflow systems, including Taverna [6] and Kepler [1], have
started to capture workflow evolution provenance.

3 Extracting Statistics from Workflow Evolution

Workflow evolution provenance makes it possible to analyze, in an unobtrusive
manner, different aspects of workflow design. Furthermore, it provides a means
to evaluate the utility of workflow systems and provenance to users, as they solve
problems using workflows. In this section, we present an initial case study and
discuss some statistics that can be extracted from this kind of provenance.

3.1 The Data

Our dataset was collected during a scientific visualization course.2 A total of
thirty students took the course. Throughout the semester, they were assigned
six different tasks with fixed deadlines. Table 1 provides a short description as
well as a subjective evaluation by the course instructor of the difficulty and
open-endedness of each task.

Students used VisTrails to complete the tasks and for each task, they sub-
mitted a file containing all the actions they performed. These actions are trans-
parently captured by VisTrails and stored according to the change-based model.
Each action has a unique identifier; the identifier of its parent action; the user
who performed the action; a timestamp indicating when the action took place;
an optional tag; free-text annotations; and the required information to reproduce
the action.

3.2 Analyzing Evolution Provenance at Different Levels

Because our provenance data encompasses a range of tasks completed by a set
of users, it can be analyzed on different levels. Globally, we can observe trends
across all tasks and users. At the task level, we can attempt to characterize tasks

Table 1. Description of the six tasks involved in the study with the instructor’s ex-
pectation of difficulty and open-endedness on a scale from 1 to 5

Task Description Difficulty Open-Endedness

Task 1 Introduction 1 1
Task 2 2D Visualization Techniques 3 2
Task 3 Scalar & Vector Field Visualization 3 2
Task 4 Isosurfacing & Volume Rendering 4 3
Task 5 Diffusion Tensor Imaging & InfoVis 4 4
Task 6 Open-Ended Visualization 5 5

1 http://www.vistrails.org
2 http://www.vistrails.org/index.php/SciVisFall2007
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Fig. 2. Activity histogram binned by date with due dates indicated

by the types of actions involved. Finally, for a specific user, we can drill down
to assess progress, work habits, and strategies used for different tasks.

Because we know exactly when each action occurred, it is possible to plot
the total workload against time. The activity histogram in Figure 2 shows that,
unsurprisingly, most work was condensed into the few days preceding the task
deadlines. Besides that, the activity histogram also gives a good sense of which
tasks required more effort. Although this measure may not match the assessment
of the instructor, it gives a better measure of the effort the students put forth.

Global Analysis
One useful feature of workflow evolution
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Fig. 3. The correlation between the
number of branches and the number
of tags per user-task

provenance is that users can interact with
this provenance as they work. For exam-
ple, in VisTrails users can at any time ac-
cess the version tree and select any ex-
isting workflow to execute it, to inspect
its specification or to modify it. In this
last case, a new branch with the modified
workflow specification is created as a new
leaf of the tree. In order to help users to
identify workflow specifications, VisTrails
allows them to tag the nodes in the tree.
In our analysis, we found that the num-
ber of branches in the version tree is cor-
related with the number of tagged nodes,
as shown in Figure 3. This indicates that,
as users have to revisit a previously defined workflow, they would select a tagged
node because it is easier to identify.

Analysis of Tasks. Workflow evolution information can also be helpful to char-
acterize tasks. As noted in Table 1, the tasks assigned to the scientific visualiza-
tion students varied in their goals, difficulty, due date, and how open-ended they
were. To illustrate how workflow evolution data can be used to gain some insight
into the types of work involved in a task, we classified the actions involved in
workflow development into: structural actions (addition and deletion of modules
and connections in the workflow); parameter actions (modification of parameter
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Fig. 4. Workflow Structural, Parameter and Layout Activity

Fig. 5. Plot of Branching Factors for the six tasks from two different users. The branch-
ing structure for Task 3 is depicted on the right.

values in the workflow); and layout actions (changes to the locations of modules
in visual programming interface).

Figure 4 shows an attempt to characterize tasks by the breakdown of actions
involved. For all users, we calculated the overall percentage of actions that were
structural, parameter and layout actions across all tasks (Figure 4(a)). In ad-
dition, we computed these percentages for each task, as shown in Figure 4(b),
(c) and (d). The distributions of these percentages were plotted as boxplots.
Note that the percentage of actions spent changing parameters has the greatest
variance for most tasks. This should be expected as some users locate correct pa-
rameter values faster than others, and some will also expend more effort tweaking
parameters than others. Another interesting feature of these plots is that Task 5
shows more structural activity than Tasks 2, 3, and 4. This is explained by
the fact that students were given examples for the previous three tasks, and in
Task 5, they were left to discover how to create workflows from scratch.

Analysis of Users. A useful application of workflow evolution provenance is to
help in understanding how different users approach a problem. Figure 5 shows
two trees created by different users for the same task. User 1 and User 2 clearly
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have different development styles: the tree derived by User 2 is both shorter and
narrower than that of User 1. This figure also shows a plot of the branching factor
of the version trees across the tasks for User 1 and User 2. A smaller branching
factor indicates that a more direct path was used to obtain a solution. In contrast,
a larger branching factor indicates that more trial-and-error steps were followed.
There are many cases where branching can be useful, including when a user
wishes to develop workflows that share a common sub-workflow: the user designs
the first workflow, goes to the version tree, selects the node corresponding to the
common sub-workflow and from there branches to the second workflow. We found
a range of branching factors that varied across users and tasks.

Branching is just one variable from the workflow evolution provenance data
that can be used to identify “user signatures”, other variables, such as the time
between actions and the umber of sessions may also lead to insights in this
respect.

4 Discussion and Future Work

We have shown that workflow evolution provenance allows one to measure, sum-
marize, and analyze new aspects of workflow specification and design. A detailed
analysis of how time is spent in workflow design can help to provide an under-
standing of how users interact with workflow systems. In addition, these statistics
can produce insights into the potential bottlenecks and how these systems can
be improved. While our results represent only an initial examination, we have
discovered a number of areas where comparative statistics offer a window into
general workflow design patterns, task characterization, and exploratory styles.

Besides investigating additional measures and statistical analyses, there are
several avenues we plan to pursue in future work. In the course of our study, we
have identified some limitations of the VisTrails provenance capture mechanism.
We plan to improve and augment the variables captured by the change-based
model to allow for more accurate and detailed analyses. Specifically, while each
change is time-stamped, it is difficult to determine the actual time involved in
performing a single action. In addition, information about distinct sessions of
work would be useful to better determine the actual time spent accomplishing
the computational tasks. We also plan to cross quality or merit data about
the workflow specifications with the provenance data to infer information about
which practices led to good workflow specification and how time was used in these
cases. For our initial analysis we considered only general actions for modifying
workflows. In future work, we plan to perform analyses that take into account
the semantics of the individual actions. For example, instead of looking at the
addition and deletion of modules, for a visualization task, we could consider the
addition of a volume renderer or of an isosurface extraction. By doing so, we
could measure the effort involved in applying these two different visualization
techniques.
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Abstract. In order to establish consolidated standards in novel data
mining areas, newly proposed algorithms need to be evaluated thor-
oughly. Many publications compare a new proposition – if at all – with
one or two competitors or even with a so called “näıve” ad hoc solu-
tion. For the prolific field of subspace clustering, we propose a software
framework implementing many prominent algorithms and, thus, allowing
for a fair and thorough evaluation. Furthermore, we describe how new
algorithms for new applications can be incorporated in the framework
easily.

1 Introduction

In an active research area like data mining, a plethora of algorithms is proposed
every year. Most of them, however, are presented once and never heard about
again. On the other hand, newly proposed algorithms are often evaluated in
a sloppy way taking into account only one or two partners for comparison of
efficiency and effectiveness, presumably because for most algorithms no imple-
mentation is at hand. And if an implementation is provided by the authors, a fair
comparison is nonetheless all but impossible due to different performance prop-
erties of different programming languages, frameworks, and, last but not least,
implementation details. Eventually, an evaluation based on implementations of
different authors is more likely to be a comparison of the efforts of different
authors in efficient programming rather than truly an evaluation of algorithmic
merits.

Recently, an understanding for the need for consolidation of a maturing re-
search area is rising in the community as illustrated by the discussions about the
repeatability of results for SIGMOD 2008, the Panel on performance evaluation
at VLDB 2007, and the tentative special topic of “Experiments and Analyses
Papers” at VLDB 2008.

In the software system described in this paper, we try to facilitate a fair com-
parison of many subspace clustering algorithms based on experimental evalua-
tion. The framework provides the data management independently of the tested
algorithms. So all algorithms are comparable on equal conditions. The implemen-
tation aims at effectiveness in a balanced way for all algorithms. But even more
important is an intuitive and easy-to-understand programming style to invite
contributions in the future when the framework is made available open source.

B. Ludäscher and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, pp. 580–585, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

http://www.dbs.ifi.lmu.de


ELKI: A Software System for Evaluation of Subspace Clustering Algorithms 581

2 An Overview on the Software System

A wealth of data-mining approaches is provided by the almost “classical” open
source machine learning framework Weka [1]. We consider Weka as the most
prominent and popular environment for data mining algorithms. However, the
focus and strength of Weka is mainly located in the area of classification, while
clustering approaches are somewhat underrepresented.

The same holds true for another framework for data mining tasks: YALE
[2]. This is a rather complex environment that completely incorporates Weka.
The main focus of YALE is in supporting “rapid prototyping”, i.e. to ease the
definition of a specific data mining task as a combination of a broad range of
available methods. While Weka is restricted to use numerical or nominal features
(and in some cases strings), YALE does also extend the range of possible input
data.

Although both, Weka and YALE, support the connection to external database
sources, they are based on a flat internal data representation. Thus, experiments
assessing the impact of an index structure on the performance of a data mining
application are not possible using these frameworks.

On the other hand, frameworks for index structures, such as GiST [3], do not
provide any precast connection to data mining applications.

To connect both worlds, we demonstrate the Java Software Framework ELKI
(Environment for DeveLoping KDD-Applications Supported by Index Struc-
tures). ELKI comprises on the one hand a profound and easily extensible col-
lection of algorithms for data mining applications, such as item-set mining,
clustering, classification, and outlier-detection, and on the other hand ELKI in-
corporates and supports arbitrary index structures to support even large, high-
dimensional data sets. But ELKI does also support the use of arbitrary data
types, not only feature vectors of real or categorical values. Thus, it is a frame-
work suitable to support the development and evaluation of new algorithms at
the cutting edge of data mining as well as to incorporate experimental index
structures to support complex data types.

ELKI intends to ease the development of new algorithms by providing a wealth
of helper classes and methods for algebraic and analytic computations, and sim-
ulated database support for arbitrary data types using an index structure at
will.

2.1 The Environment: A Flexible Framework

As a framework, our software system is flexible in a sense, that it allows to read
arbitrary data types (provided there is a suitable parser for your data file or
adapter for your database), and supports the use of any distance or similarity
measure (like some kernel-function) appropriate for the given data type. So far,
many implementations of data mining algorithms – especially subspace clustering
algorithms – still rely on the numeric nature of feature vectors as underlying
data structure. Our framework is already one step ahead and ready to work on
complex data types. Generally, an algorithm needs to get provided a distance
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of some sort. Thus, distance functions connect arbitrary data types to arbitrary
algorithms.

The architecture of the software system separates data types, data manage-
ment, and data mining applications. So, different tasks can be implemented inde-
pendently. A new data type can be implemented and used by many algorithms,
given a suitable distance function is defined. An algorithm will perform its rou-
tine irrespectively of the data handling which is encapsulated in the database. A
database may facilitate efficient data management via incorporated index struc-
tures.

2.2 Available Algorithms

While the framework is open to all kind of data mining applications, the main
focus in the development of ELKI has been on clustering and especially sub-
space clustering (axis-parallel as well as arbitrarily oriented). Available gen-
eral clustering algorithms are SLINK [4], k-means [5], EM-clustering [6], DB-
SCAN [7], Shared-Nearest-Neighbor-Clustering [8], OPTICS [9], and DeLiClu
[10]. There are axis-parallel subspace and projected clustering approaches im-
plemented like CLIQUE [11], PROCLUS [12], SUBCLU [13], PreDeCon [14],
HiSC [15], and DiSH [16]. Furthermore, some biclustering or pattern-based clus-
tering approaches are supported like δ-bicluster [17], FLOC [18] or p-cluster
[19], and correlation clustering approaches are incorporated like ORCLUS [20],
4C [21], HiCO [22], COPAC [23], ERiC [24], and CASH [25]. The improvements
on these algorithms described in [26] are also integrated in ELKI.

2.3 Development of Subspace Clustering Algorithms

Often, the main difference between clustering algorithms is the way to assess the
distance or similarity between objects or clusters. So, while other well known
and popular software systems like Weka [1] or YALE [2] predefine the Euclidean
distance as only possible distance between different objects to use in clustering
approaches (beside some kernel functions in classification approaches), ELKI
allows the flexible definition of any distance measure. This way, subspace clus-
tering approaches that differ mainly in the definition of distance between points
(like e.g. COPAC and ERiC) can use the same algorithmic routine and become,
thus, highly comparable in their performance.

Distance functions are used to perform range queries on a database object.
Any implementation of an algorithm can rely on the database object to perform
range queries with an arbitrary distance function and needs only to ask for k
nearest neighbors not being concerned with the details of data handling.

A new data type is supposed to implement the interface DatabaseObject. A
new algorithm class suitable to certain data types O needs to implement the In-
terface Algorithm<O extends DatabaseObject>. The central routine to implement
the algorithmic behavior is void run(Database<O> database). Here, the algorithm
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A new subspace clustering algorithm may therefore use a specialized distance
function and implement a certain routine using this distance function on an
arbitrary database.

2.4 Support of Arbitrary Index-Structures

As pointed out above, while existing frameworks for index-structures, such as
GiST [3], do not provide any precast connection to data mining applications,
well-known data-mining frameworks like Weka [1] or YALE [2] do not support
the internal use of index structures.

Our software system ELKI supports the use of arbitrary index structures in
combination with, e.g., a clustering algorithm. Already available within ELKI
are metric index-structures like MTree [27], MkCoPTree and its variants MkTab-
Tree and MkMaxTree [28], and MkAppTree [29] and spatial index-structures like
RStarTree [30], DeLiCluTree [10], and RdkNNTree, an extension from [31] for
k ≥ 1.

Index structures are encapsulated in database objects. These database objects
facilitate range queries using arbitrary distance functions. Algorithms operate on
database objects irrespective of the underlying index structure. So the implemen-
tation of an algorithm, as pointed out above, is not concerned with the details
of handling the data which can be supported by arbitrary efficient procedures.

This is interesting because the complexity of algorithms is often analyzed
theoretically on the basis of index structures but often, if implementations are
provided, an index structure is not included and cannot be incorporated in the
particular implementation.

2.5 Setting Up Experiments

The integration of several algorithms into one software framework also allows for
setting up complex experiments comparing different algorithms in an easy way
and on equal terms. We plan to use the framework for extensive comparisons of
a broad range of subspace clustering algorithms.

is applied on an arbitrary database consisting of objects of a suitable data type.
The database supports operations like

<D extends Distance <D>>

List <QueryResult <D>>

kNNQueryForObject(O queryObject ,

int k,

DistanceFunction <O,D> distanceFunction)

performing a k-nearest neighbor query for a given object of a suitable data type
O using a distance function that is suitable for this data type O and provides a
distance of a certain type D. Such a query method returns a list of QueryResult<D>
objects encapsulating the database id of the collected objects and their distance
to the query object in terms of the specified distance function.
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2.6 Availability and Documentation

The framework ELKI is available for download and use via

http://www.dbs.ifi.lmu.de/research/KDD/ELKI/.

There is provided an extensive documentation of the implementation and us-
age as well as examples to illustrate how to expand the framework by integrating
new algorithms.

3 Conclusion

The software system ELKI presents a large collection of data mining applications
(mainly clustering and – axis parallel or arbitrarily oriented – subspace and pro-
jected clustering approaches). Algorithms can be supported by arbitrary index
structures and work on arbitrary data types given supporting data classes and
distance functions. We therefore expect ELKI to facilitate broad experimental
evaluations of algorithms – existing algorithms and newly developed ones alike.
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25. Achtert, E., Böhm, C., David, J., Kröger, P., Zimek, A.: Robust clustering in
arbitrarily oriented subspaces. In: Proc. SDM (2008)
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28. Achtert, E., Böhm, C., Kröger, P., Kunath, P., Pryakhin, A., Renz, M.: Efficient
reverse k-nearest neighbor search in arbitrary metric spaces. In: Proc.SIGMOD
(2006)
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Abstract. Decision making for crop production planning is essentially
driven by location-based or more precisely by space-oriented infor-
mation. Therefore, farmers and regional experts in the field mostly
rely on new spatial-data-oriented decision making tools. IVIP1 is a
prototype for a Web-based Spatial Decision Support System (WSDSS)
demonstrating the benefits of location-based decision making using digi-
talized geographic information about ground allocation and soil quality.
We present how the library of potential models for the IVIP WSDSS
has been realized by extending the Scientific Workflow Management
System Kepler that assists the collaboration of agricultural experts
and computer scientists during model development. We first describe
the requirements of our WSDSS, and then give a short introduction to
the Kepler platform and explain in detail which extensions have been
realized: cascading client-server architecture, spatial operations support,
and WSDL interface. Finally, we illustrate how the biomass yield model
has been modeled in our system.

Keywords: Scientific workflow models, Scientific data integration,
Spatial Decision Support System (SDSS), Kepler, Workflow Manage-
ment System (WMS), Web Service, WSDL, GIS, Forecast, Agriculture.

1 Motivation

Decision making for crop production planning is essentially driven by location-
based or more precisely by space-oriented information. The required Global
Positioning System (GPS) and sensor technology are becoming standard for
agricultural machinery and most of the current Farm Management Information
Systems (FMIS) already provide interfaces to import the acquired sensory infor-
mation. With the standards for geospatial content and services developed by the
Open Geospatial Consortium (OGC) the interoperability for geospatial technol-
ogy has been highly facilitated. Nevertheless, the amount and the complexity of
the spatial information becoming available is dramatically increasing and so is
1 The IVIP project is funded by the Ministry for Economy, Transport, Agriculture and

Viniculture (MWVLW) and is part of the EU program: “Ziel 2 Programm RLP.”
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Fig. 1. Screenshots: (a) IVIP Spatial Decision Support System for Crop Production;
(b) the bym Model in Kepler Flex GUI

the demand for tools capable of handling such information. Therefore, farmers
and regional experts in the field mostly rely on new spatial-data-oriented deci-
sion making tools. IVIP is a prototype (see Fig. 1 (a)) for a Web-based Spatial
Decision Support System (WSDSS) demonstrating the benefits of location-based
decision making using digitalized geographic information about ground alloca-
tion and soil quality.

2 WSDSS Requirements

Sprague [9] defines a Spatial Decision Support System (SDSS) as a standard
decision support system plus some semi-structured spatial problem. A SDSS
usually consists of three parts. First there must be a Data-Base Management
System (DBMS) capable of handling geographical data like, e.g., a Geographical
Information System (GIS). Then there must be a library of potential models that
can be used to forecast the possible outcomes of decisions. Finally, an interface
should aid the users to interact with the computer and should assist them in
analyzing the outcomes. This defines the architecture of our WSDSS. In this
paper, we focus on the library of models.

In the GIS world, geospatial information is based on features. A feature is an
entity with a geographic location and some additional meta-information stored
as key-value properties. The geographic location of a feature is described by a
geometry based, e.g., on points, arcs, or polygons. Therefore, our WSDSS must
be able to deal efficiently with feature-data oriented models.

Current SDSS solutions like, e.g., CommunityViz, an extension for ArcGIS,
are definitively meant for GIS specialists. In IVIP, domain experts have none or
relatively limited programming skills and experience with GIS. Never-
theless, those experts must be able to work with the WSDSS and in particular
to develop new models.
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Although networking technologies are constantly being improved, data-
transfer speed is becoming a bottle-neck since the resolution of spatial infor-
mation increases considerably at the same time. Therefore, our WSDSS must
allow to realize data-intensive operations at the places where the data is
actually located (in the network). Moreover, it is often the case that a model
relies on other already existing models in the WSDSS which again can rely on
other models. Consequently, a cascading architecture for GIS operations
is needed which would not only solve the problem of efficient data-transfer but
which would also define a good basis for further issues data providers might be
concerned with like data-control access or billing aspects.

3 The Kepler Platform

Kepler
2 [1] is an open-source scientific workflow system that allows sci-

entists to design scientific workflows and execute them efficiently. A scientific
workflow is a high level description of a data-oriented process which can
be used to solve a scientific problem. The dataflow consists of data being pro-
cessed though parameterizable modules called actors. Kepler is based on the
Ptolemy II

3 system for heterogeneous, concurrent modeling and design devel-
oped at UC Berkeley. Designing a scientific workflow in Kepler is done following
a visual programming principle and a simple workflow using existing actors can
be realized with only a few mouse clicks. Depending on the size and the com-
plexity (in terms of internal logic) of the workflows, basic programming skills
can be helpful but are not mandatory. Advanced programming skills are only
required for implementing new actors.

4 New Extensions for Kepler

Spatial operations support: Possibilities to handle geospatial data in Ke-

pler have already been discussed in [5,8]. However, most of the propositions
rely on externalizing the spatial operations, for example in Web Services or
dedicated applications like the Geographic Resources Analysis Support System4

(GRASS). Although delegating those complex operations to specialized applica-
tions makes sense, this has for the user enormous drawbacks in terms of workflow
transparency. Therefore, we decided to handle geospatial operations directly in
Kepler. This tends to go back to the original idea of Ptolemy however, high
level workflows can still be designed on the feature level.

GeoTools5 is an open-source Java library which provides OGC standards
compliant methods for manipulating geospatial data. The GeoTools provide an
efficient internal representation for features and all necessary basic spatial opera-
tions. We have implemented additional Kepler actors using the GeoTools API.
2 http://kepler-project.org/
3 http://ptolemy.berkeley.edu/ptolemyII/
4 http://grass.itc.it/
5 http://geotools.codehaus.org/
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Spatial information can now directly be imported in Kepler using either the
WFS actor, implementing the OGC Web Feature Service [10] protocol (WFS),
or by using the GMLReader actor which imports data in the OGC Geography
Markup Language [4] format (GML). We have also implemented several actors
handling all common operations at the feature level (add, remove, update,
merge). Finally, storing the resulting information can be done either using our
WFS-T actor implementing the WFS transactional (WFS-T) protocol or by
using the GMLWriter actor which exports GML data.

Client-Server architecture: Although Kepler is currently distributed as a
standalone application, its design actually made it possible to separate the GUI
from the workflow engine itself. Our modified version of Kepler can be deployed
on a standard application server and be remotely controlled through the
HTTP protocol. Besides defining the first step towards building a cascaded
architecture to process spatial information, the client-server architecture also
plays a major role in knowledge sharing.

One key feature of Kepler is to allow scientists to exchange their work-
flows. Scientific workflows in Kepler are stored using Ptolemy’s own Model-
ing Markup Language (MOML). MOML files only contain high level information
about the workflow and the actors used are only referenced. Hence the definitions
of the Kepler actors themselves are not contained in the workflow but are liter-
ally part of the workflow engine. Therefore, if a workflow is using non-standard
actors, it cannot be directly executed on another installation of Kepler. Unfor-
tunately, Kepler still misses a proper management system to manage actors for
tasks like adding, deleting, or updating actors. Those tasks remain too difficult
for users without solid Java programming skills and really affect the possibili-
ties of exchanging workflows. This is actually one of the issues the new Kepler

CORE initiative6 will try to solve in the next years. Our idea is to further take
advantage of our client-server architecture.

An application server is per definition capable of handling multiple-user re-
quests. Let A and B be two scientists both running different instances of Ke-

pler (client-server architecture). A sharing a workflow with B could be done on
the Kepler installation of A. This insures that all necessary actors to run the
workflow provided by A are present in the workflow engine. So the real question
now is whether or not the standalone Kepler GUI can remotely execute a
workflow on a distant Kepler. Unfortunately, although we managed to sep-
arate the GUI and the workflow engine, the GUI could in this state no more
be used without spending a considerable amount of time to reinterface it with
the Kepler server. Alternatively, we went for a simplified version of the GUI
supporting basic functionalities to create and execute workflows. We decided to
develop a web-based Kepler client using the new Adobe Flex 37 technology.
Adobe Flex 3 is a cross platform open-source framework for creating rich appli-
cations. Flex applications are platform independent and are a good compromise
between standard rich versus thin clients. Behind the pure software engineering
6 http://www.kepler-project.org/Wiki.jsp?page=KeplerCORE
7 http://labs.adobe.com/technologies/flex/

http://www.kepler-project.org/Wiki.jsp?page=KeplerCORE
http://labs.adobe.com/technologies/flex/
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performance of implementing this client, downloading and installing the current
100 Megabytes Kepler package is now no longer required to start working with
scientific workflows. A single client-server Kepler version can provide several
scientists with the most core functionalities of Kepler and allow them to effi-
ciently share their workflows.

WSDL interface: Our client-server architecture of Kepler was just the first
step towards a cascaded architecture to process spatial information. Indeed the
HTTP interface to remotely control Kepler workflows is not suitable to allow
two Kepler instances to communicate with each other. The Web Service De-
scription Language [3] (WSDL) is an XML-based language providing a model
for describing Web services. Whereas Web Services can already be used in Ke-

pler workflows [6], our idea was to publish a Kepler workflow itself as a Web
service allowing any application supporting WSDL to use this workflow. There-
fore we introduce two new actors: WebServiceInput and webServiceOutput. Those
actors are only necessary for prototyping the input/output parameters of the
workflow which unfortunately cannot yet be done automatically using the rest
of the information contained in the workflow. A specific file folder is used as
Web service pool and any workflow (properly designed with the WebServiceIn-
put/Output actors) is directly available under the url:
http://serverIp:port/KFlexServer/wsdl/workflow=workflowName.

5 Example: The Biomass Yield Model in Kepler

The Biomass Yield Model (bym) was developed at the University of applied
sciences Eberswalde [2,7]. The original model was developed in Visual Basic
using the software ArcGIS8 from ESRI. Thanks to our custom GIS actors, we
managed to design a Kepler workflow computing the bym. The top level work-
flow in Fig. 1 (b) benefits from the composite actors architecture since the bym
Kepler workflow actually consists of eight encapsulated sub-workflows repre-
senting together more than 130 actors. Thus, the whole bym workflow has been
broken into atomic operations which facilitates the work of the experts aiming
at improving or optimizing this workflow.

The bym workflow can compute the yield for 16 different crops depending on
the soil quality and the precipitation levels. Different kinds of scenarios are taken
into consideration, e.g., conventional vs. ecological farming and three different
levels of precipitation (low, normal, high). On the whole, six different scenarios
are computed at once. The input of the workflow is a map containing the fields
of a farmer, usually a GML file. The soil quality and the precipitation levels are
on two remote GIS which are accessed using the WFS protocol. The results of
the workflow are stored in a local GIS, i.e., in the same network. The storage is
done using the WFS-T protocol. The data can then be visualized either directly
in our GIS or with any mapping service application, e.g., OpenLayers9 or Google
Maps.
8 http://www.esri.com/software/arcgis/
9 http://www.openlayers.org/

http://www.esri.com/software/arcgis/
http://www.openlayers.org/
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The results delivered by this workflow represent the key information for our
IVIP prototype, a Decision Support System to optimize crop production. All
necessary parameters for the workflow can be entered using our GUI using the
Web-Service interface of the bym Kepler workflow to compute the results.

6 Conclusions and Future Work

In this paper we describe how we extended the Scientific Workflow Management
System Kepler to define the core of IVIP, a Web-based Spatial Decision Support
System for crop production planning. The resulting cascading system for GIS
operations enables non-GIS experts to design workflows for their spatial models.
Next steps are to develop more GIS functionalities for Kepler allowing to design
more complex spatial models and to evaluate the benefits of our WSDSS.
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Abstract. This paper describes a tool for providing transparent access
to online meteorological databases by way of local file system. The tool
is based on FUSE, an implementation of usermode filesystem on Linux,
and a user is allowed to deal with online meteorological data as if they
were stored in his/her local file systems. The main target of this tool
is scientists in meteorology those who are not familiar with computers
and related technologies. For this reason, we attempt to provide easy
ways for configuring, maintaining, and using the system. For speeding
up the data transfer, we integrate a caching mechanism inside the system
thereby making the number of HTTP requests smaller.

1 Introduction

Due to the rapid growth of Information and Comunication Technology, there is a
growing demand for carrying out computationally intensive science in highly dis-
tributed network environments. In order to describe such an emerging new-style
science, the term e-Science has been used. The term was created by John Tay-
lor in 1999. Examples of the kind of science include social simulations, particle
physics, earth sciences and bio-informatics.

When looking into the domain of earth science and meteorology, there is
also an increasing demand for computationally intensive processing over large
datasets like observational data. In fact, there are several databases available
online. For example, Center for Climate System Research in the University of
Tokyo 1, Disaster Prevention Research Institute in Kyoto University 2, National
Centers for Environmental Prediction 3, and European Centre for Medium-
Range Weather Forecasts 4 are providing online databases. We are also providing
an online meteorological database, GPV/JMA Archive at http://gpvjma.ccs.
hpcc.jp as a part of the activities at the Center for Computational Sciences

1 http://www.ccsr.u-tokyo.ac.jp/
2 http://www.dpri.kyoto-u.ac.jp/web j/
3 http://www.cdc.noaa.gov/cdc/reanalysis/
4 http://data.ecmwf.int/data/

B. Ludäscher and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, pp. 592–597, 2008.
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in University of Tsukuba [1]. The archive is to provide the daily operational
weather forecasting data provided by the Japan Meteorological Agency (JMA).

For accessing necessary datasets for daily research operations, domain sci-
entists need to deal with such databases. In many cases, such a database pro-
vides a Web browser interface, but it is not so usable when dealing with many
data and/or repeating routine tasks. Another access method might be to use
grid middle-wares if supported. e-Science projects involve large teams managed,
and they thus employ grid middlewares as the basis of their research activities
due to the complexity of the software and the backend infrastructural require-
ments [2,3,4]. Grid middlewares provide efficient ways for sharing computational
and information resources among participating scientists. However, it is often
the case that setting up itself is a complicated task, and it might be overkill for
those scientists who just want to access to desired data.

For the above reason, we have developed a light-weight tool for providing
transparent access to online meteorological databases by way of local file system.
The tool is based on FUSE 5, an implementation of usermode filesystem on
Linux, which a user is allowed to deal with online meteorological data as if they
were stored in his/her local file systems. Notice that the target of the tool is
not limited to meteorology, and it can be used to integrate multidisciplinary
information resources.

Actually, there have been several systems which enable us to deal with remote
files by way of local filesystems with the help of user-level filesystems. Ufo [6]
is an implementation of user-level filesystem on Solaris. SSHFS and HTTPFS
are based on FUSE, and they allow us to access to remote data by respective
network protocols. The main difference between our tool and them is that we
focus on scientific data on the Web, and implement a caching mechanism by
taking the features of those data into account.

2 The Proposed System

2.1 Filesystem in Userspace (FUSE)

We firstly introduce FUSE, an implementation of userspace filesystem in UNIX-
like operating systems, on which we implement our proposed tool. Filesystem in
Userspace (FUSE) is a UNIX kernel module, that allows users to create their
own file systems without modifying the kernel code. This is achieved by the
FUSE kernel module that bridges the file system code in user space to the
kernel interfaces. So, when writing a filesystem code, all that a developer needs
to do is to implement some necessary functions which basically correspond to
system calls related to filesystem. As a consequence, he/she does not need to
know much about kernel-module programming.

FUSE has been a part of the latest Linux kernel, and has been available in
major distributions like RedHat and Debian. FUSE is also available for other

5 http://fuse.sourceforge.net

http://fuse.sourceforge.net
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UNIX-like operating systems, such as, FreeBSD, NetBSD (as PUFFS), OpenSo-
laris, and Mac OS X. FUSE supports major programming languages, such as C,
C++, Java, Perl, and so on. In this paper we adopt FuseFS [5], a Ruby binding
of FUSE that allows users to define a filesystem entirely by the Ruby language.

2.2 An Overview

Fig. 1. A system overview

MDFS (Meteorological Database File System) is
the tool that we have implemented. It works as a
client of FUSE, and a user is allowed to mount a
remote database as a subdirectory under the top
directory managed by MDFS. Once it is mounted,
he/she is allowed to get access to the database as
if it were a locally attached storage. Specifically,
Figure 1 depicts an overview of the system, and
the overall system works as follows:

1) Suppose a user (or a client program) attempts
to access to a file under MDFS. It causes an invo-
cation of a system-call, which is caught by the VFS in the kernel. The message
is then passed to FUSE module and FuseFS. FuseFS translates the message to
an invocation of a method of MDFS.
2) MDFS attempts to extract information about the remote server to be accessed
by looking at the file path, and sends the request to the respective object which
is responsible for interacting with the remote server. We call such an object
“server object” hereafter.
3) The server object firstly query the cache module to check if there is a valid

cache entry. If so, it returns the cached file. Otherwise it tries to get the requested
data from the remote server by an appropriate protocol. Currently, only HTTP
is supported, but we plan to support other major protocols like FTP and SFTP.
4) Having received the requested data, the server object tries to transform the

data to the internal representation. Specifically, as for HTML data, it scrapes
the data to extract hyper links for subsequent generation of directory structures
under the MDFS filesystem. For other types of data, it is treated as a binary
data, and is conveyed to FuseFS. Also, the retrieved data is cached by the cache
module.
5) FuseFS translates the received data so that it can fit for the FUSE kernel

module, and sends the data back to FUSE. FUSE returns the data back to VFS,
and so on. Finally, the user (or the client) gets the response from the filesystem.

As described above, for each remote database, MDFS maintains a dedicated
object called “server object”, which is responsible for interacting with its re-
spective server. MDFS is allowed to interact with remote servers through server
objects. Consequently, a server object can be regarded as a network client from
the remote database side, while it is regarded as a filesystem from the MDFS
side.
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�
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�

1 url: http://remote.database.org/database/pub/

2 user: username

3 password: passphrase

4 delay: 0.7

Fig. 2. An example of server configuration (remotedb.yml)

2.3 Configuring Server Objects

Creating or configuring a server object is an easy task; all that a user needs to do
is to write a configuration file in YAML format6 specifying necessary information
for accessing the database. Figure 2 depicts an example.

– The filename of a configuration, except for its suffix (.yml), is used as the
root directory of the remote server. In this example, remotedb is used, that
is, remotedb directory will appear just below the root directory managed by
MDFS.

– url is mandatory, and is used to specify the network address of the remote
server and the directory being accessed in the server.

– If the remote server requires an authentication, user and password are used
to supply authentication information. These items are optional.

– Some databases do not permit continual access not only as a countermeasure
against DoS attack, but also for supporting a large number of clients. To cope
with such servers, delay can be used to specify intervals between successive
accesses in seconds. This item is not mandatory.

�

�

�

	

==== Terminal 2 ====
$ ls
config/ lib/ mdfs.rb tmp/

==== Terminal 1 ====
$ ruby mdfs.rb

==== Terminal 2 ====
$ ls
config/ lib/ mdfs.rb mnt/ tmp/ ### "mnt" is the / of MDFS.
$ ls mnt/
gpvjma/ nws_noaa/ rish/ ### 3 servers are available.
$ ls mnt/gpvjma ### Looking into gpvjma.
2005/ 2007/ ensemble_month_jma/ gsm_jma/ rsm_jma/
2006/ 2008/ ensemble_week_jma/ msm_jma/ tmp/
$ ls mnt/gpvjma/gsm_jma/ ### Listing available GSM data.
GSM00X024 GSM00X084 GSM12X048 GSM12X180
GSM00X048 GSM12X024 GSM12X084 GSM12X192
$ ls -l mnt/gpvjma/gsm_jma/GSM00X024
-r--r--r-- 1 user group 1 Jan 23 23:14 mnt/gpvjma/gsm_jma/GSM00X024

Fig. 3. A session using MDFS

6 YAML (YAML Ain’t Markup Language) is a human-readable data serialization for-
mat for programming languages (http://yaml.org).

http://yaml.org
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2.4 An Example Session

Figure 3 shows an example session using MDFS. In this session, two terminals are
used; one is to invoke MDFS and the other is to access remote servers. After in-
voking the MDFS process, the mount point mnt appears. By looking into that di-
rectory, three directories appear, each of which corresponds to a remote database.
In this session, GPV/JMA archive (http://gpvjma.ccs.hpcc.jp/∼gpvjma/),
RISH database (http://database.rish.kyoto-u.ac.jp/), and NOAA
(http://www.noaa.gov/) are configured. By accessing those directories, a user
can browse remote data as a part of his/her filesystem. Notice that most UNIX
commands work fine even in MDFS. For example, one can use find to look for
desired data by specifying filename. Since most users are accustomed to manip-
ulate filesystems, MDFS can provide an easy and usable way to access to remote
databases.

3 Preliminary Experiment

We have tested the feasibility of MDFS by a preliminary experiment. This section
reports the experimental results.

Fig. 4. Experimental results

We have compared the data transmission
time of MDFS with an HTTP client (GNU
wget). As for MDFS, we used the cp com-
mand to transfer a data item from the remote
server to the localhost. In order to minimize
the error caused by disk access, the null device
(/dev/null) was used as the destination. To
see the effectiveness of our cache mechanism,
we repeated the same transmission for several
times. Specifically, we copied the same data
for three times for a session, and computed
the average over four sessions. Tested data sizes were 2MB, 16MB, 64MB, and
288MB. All data were copied from GPV/JMA Archive.

3.1 Experimental Results

Figure 4 shows the experimental results. Basically, the performance of MDFS is
comparable to that of wget, but is slightly slower. This is due to the overhead
caused by FuseFS, particularly for writing the accessed data to the cache in local
storage. However, thanks to the caching mechanism, the 2nd and 3rd accesses
are faster than wget.

An important observation here is that even for the 2nd and 3rd accesses, it
is slower than wget for 288MB data. Probably, this owes to the nature of the
Ruby language; it is an interpreter language, and it is therefore not so efficient at
dealing with large data. Another fact might be related to the internal structure
of FuseFS, that is, a data item being transmitted from FuseFS to FUSE have
to be an Ruby object. So, when dealing with large data, the entire data is once

http://gpvjma.ccs.hpcc.jp/~gpvjma/
http://database.rish.kyoto-u.ac.jp/
http://www.noaa.gov/
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loaded in main memory. This gives an significant impact on the entire system
performance. In order to provide stable and robust performance, we need to
develop additional mechanisms, because data sizes in many scientific databases
are quite large.

4 Conclusions

In this paper we described a tool for providing transparent access to online
meteorological databases by way of local file system. We employed FuseFS as
the basis for developing a dedicated filesystem, and implemented a system to
mount remote databases as directories in local filesystem. The system is easy
to configure, and a scientist is allowed to deal with remote data as if they were
stored in his/her local storage. The experimental results show the feasibility of
the system.

As a part of our future work, we try to improve the performance particularly
for large data. Another work is to integrate workflow mechanism in our tool so
that a user is allowed to specify a set of regular tasks regarding data in remote
servers.
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Abstract. Computational fluid dynamics (CFD) linked with virtual reality (VR)
visualization techniques offer comfortable means to explore interaction of fluids
and gases with complex surfaces in the field of engineering or physics amongst
others. Huge data sets, in the range of many gigabytes, require sophisticated stor-
age schemes to enable efficient access during post-processing.

In this paper we introduce approximate geometric ranking methods for CFD
data using off-the-shelf RDBMS by significantly extending the efficient indexing
structure RI-tree. We further present preliminary, but very promising performance
results of our ongoing research.

1 Introduction

Numerical simulations in the area of fluid dynamics became of growing importance by
offering a very high level of accuracy and reproducibility of fluid behavior with complex
surfaces and replacing tedious and expensive physical experiments. In both industrial
development and research, CFD (computational fluid dynamics) [1] simulations are ac-
knowledged methods in the field of physics or automotive engineering amongst others.
During interactive post-processing, requested features of the CFD data sets are extracted
by experts in the application domain. The results are commonly visualized in virtual re-
ality environments, e.g. six-sided stereo projection systems, offering a high degree of
interactivity by letting users fully immerse into the visualized objects. Common post-
processing tasks include isosurface extraction (e.g.: “display regions with temperature
= 125◦C”, cf. example in figure 1 in Visualizer window).

With CFD data sets up to many gigabytes in size, efficiency is one of the major re-
quirements that VR frameworks have to satisfy, reducing expensive idle times until a
result is presented and ready for visual inspection. In [2] we propose the Index based
Graphics data Server IndeGS, utilizing novel secondary storage methods based on R-
trees and supplying efficient dynamic view-dependent access methods. IndeGS offers
quick and high-quality first impressions of result sets by streaming crucial parts of the
solution, enabling the users to change view parameters as well as post-processing pa-
rameters “on the fly” with immediate system response.

Many post-processing tasks (isosurface extraction, geometrical selection, etc.) can
be mapped to interval intersection queries on the CFD data to retrieve “active cells”.
The Relational Interval Tree (RI-tree) [3][4] offers very efficient query methods for

B. Ludäscher and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, pp. 598–604, 2008.
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Fig. 1. IndeGSRI infrastructure

intersection queries using a standard RDBMS, but does not provide a geometric ranking
of the results aligned to the user’s view position and direction during query execution.
An erratic visualization without a ranking of the result stream does not support a good
understanding of the result until the query execution, which is lengthy on very large
data sets, is completely finished.

In this short paper we present our ongoing research on efficiently utilizing state-of-
the-art RDBMS in the context of CFD post-processing. We introduce geometric ranking
of data in the result stream during query processing and are thus able to visualize partial
results depending on the user’s view point and direction. We propose the extension of
the RI-tree in combination with a standard RDBMS (here: Oracle 10g) via its extensible
indexing interface. Figure 1 depicts the resulting infrastructure IndeGSRI.

2 Relational Indexing of CFD Data

CFD data sets consist of collections of 3-dimensional cells of different structure (hex-
ahedra, tetrahedra, etc.) defined by their respective corner points. These corner points
carry geometric locality information and scalar values describing simulated properties
(energy, density, temperature, etc.). The minimum and maximum of each scalar value
of all corner points of one cell define a scalar range for this cell.

We next describe the Relational Interval Tree (RI-tree) for efficiently querying in-
terval data. We substantially extend it in Section 2.2 for the use with CFD data and
view dependent query processing. Our focused problem of CFD isosurfaces queries is
mapped to interval intersection queries. To ensure a high-quality “first impression” of
the result set, the user demands to be presented partial results during query execution
depending on the user’s standpoint. The RI-tree does not incorporate streaming of a
geometric ranking of result data during query execution, thus catering for a random and
erratic construction of the result set, irritating the user who is immersed into a virtual
reality setup.

2.1 RI-Tree Basics

Interval trees have first been proposed by [5] for efficient isosurface extraction based
on main memory access. Techniques presented in [6] enable the use of interval trees in
conjunction with secondary storage by introducing the binary-blocked I/O interval tree.
With the RI-tree [3][4], an efficient access method has been proposed to process inter-
val intersection as well as stabbing queries on top of any existing relational database
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system. Data objects are managed by common built-in relational indexes following the
paradigm of relational indexing. Its implementation is restricted to (procedural) SQL,
and thus can be integrated easily into modern RDBMS (e.g. Oracle 10g, IBM DB2)
through their extensible index interfaces.

The basic structure of the integer version of the RI-tree resembles a binary tree (“vir-
tual backbone”), which is only arithmetically traversed and not materialized. Its node
values are used as artificial keys for the stored intervals: upon insertion of an inter-
val, the first node that hits the interval when descending the tree from the root node
down to the interval location is assigned to that interval. An instance of the RI-tree
consists of two relational indexes lowerIndex and upperIndex, both storing the
artificial key value node, the bounds lower and upper, respectively, and the id of
each interval. An interval is represented by a single entry in each of the two indexes.
Primary keys based on B-tree indexes are generated on the attributes in lowerIndex
and upperIndex. When querying the RI-tree, a candidate set of nodes is generated
by traversing the virtual backbone. With these candidate sets, the lowerIndex and
upperIndex are queried efficiently using their primary keys and intersecting entries
are collected. For a detailed description we refer to [3] and [4], where the predominance
of the RI-tree over competing interval indexing structures is shown. Minor modifica-
tions are applied to efficiently index intervals of floating point numbers.

2.2 RI-Tree Partitionings

During query processing on the standard RI-tree, the result stream is produced without
respect to the geometric location of the result cells. To enable a “quick first impres-
sion”, result cells close to the viewer are supposed to be presented first. We introduce a
partitioning of the data space and integrate the partition information for the CFD cells
into the RI-tree by creating new composite indexes lowerIndex(partition ID,
node, lower, cell id) and upperIndex analogously. The corresponding B-
trees are partitioned B-trees, as described in [7], and offer very efficient means to query
sub-RI-trees (addressed by partition ID).

Examples of axis-parallel partitionings of the data set based on different approaches
are depicted in figure 2. In the case of a regular grid (figure 2a for two dimensions), we
partition the data space into n3 equi-sized cuboids, each of which holds the CFD cells
located inside the cuboid. The density-based approach partitions the data space accord-
ing to the n-quantiles for all geometrical dimensions (figure 2b) with the help of his-
tograms describing the distribution of cells per dimension. The more advanced (octree
based) approach recursively splits the data space into smaller (equi-depth) partitions (as
when constructing an octree, cf. figure 2c). This step is repeated as long as the number
of CFD cells in each new partition exceeds a predefined threshold t, leading to a finer
grid in “dense” regions of the data set. To generate cuboids containing an equal number
of cells, we developed an additional approach: the dimensions are split at the median
point of the data set, thus resulting in 2d = 8 cuboids, each containing an equal number
of cells. This process is repeated recursively on each of the cuboids until a desired parti-
tion size is achieved. CFD cells are not necessarily axis-parallel and might cross cuboid
boundaries. To avoid complex splitting and storing of cells in numerous partitions,
each cell is uniquely allocated to one partition defined by the cells center point. Other
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a) equi-sized b) density based c) octree based d) octree + density

Fig. 2. Partitioning approaches

allocation schemes like “majority voting” on corner points or volume coverage can
easily be realized. The partitioning information is maintained in separate straightfor-
ward tables and can be efficiently accessed during query execution.

3 Querying CFD Data in RDBMS

We focus on common queries that can be mapped to interval intersection queries on
scalar values (e.g. “display isosurface for temperature = 125◦C”, “display regions with
an energy between 4.5 and 4.7 J”). A non-sorted and erratic construction of the result
set, as produced by a linear scan over the complete database, does not allow for a quali-
tative impression of the result until the data set is almost completely scanned (cf. results
presented in [2]). Combining the partitioning of the data space with the extended RI-tree
enables performing approximate view-dependent query execution. View-dependency is
essential to achieve the perception of a “quick first impression” of the result set during
query execution on many gigabytes of CFD data.

Figure 3 displays our approach to introduce view-dependency when querying the
RI-tree: the view-point and view-direction (depicted by the arrow) define an order on
the partitions by using appropriate distance functions. The closest partition, i.e. the par-
tition the view-point lies in, is queried for active cells first, followed by the remaining
cells. Figure 3 shows the ranking order induced by the Euclidean distance. Using the
hv-distance [2], which is aligned to characteristics of human vision and ranks objects in
the line of sight (direction of arrow) before objects in the peripheral field of vision, the
partition order is like shown in figure 3b. The hv-distance speeds up the construction of
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the result set in the user’s field of vision when compared to traditional distance func-
tions like Euclidean or Manhattan distance. Figure 3c shows an exemplary order for an
octree-based partitioning in combination with the hv-distance.

Algorithm 1. Retrieve “active” cells from database
Require: view point q = (x, y, z), value scalar = s

1: PART ⇐ retrieve partition candidates from DB
2: order partitions PART by distance to view point q
3: while PART not empty do
4: remove first element of PART ⇒ part id
5: query RI-tree index with (part id, s)
6: stream “active” cells to visualizer
7: end while

The generic pseudo-code for the
approximate ranking is quoted in
Algorithm 1. “Generic” in this
context means that partitioning
methods, from which the partition
candidates will be retrieved, can
be arbitrarily defined (e.g. as pre-
sented in section 2.2). The dis-
tance function on which the rank-
ing is based in line 2 can be
any user-defined distance, e.g. Eu-

clidean/Manhattan distance, hv-distance etc. A further reduction is possible on the level
of partitions by pruning partitions from the candidate set (line 1) for which we can reli-
ably state that they do not contain “active” cells by storing the range which is covered
by the specified partition. If the queried scalar value is not contained in the range of a
certain partition, this partition is removed from the candidate set without loss of results.

4 Preliminary Results

In this section we present preliminary results of experiments performed using IndeGSRI.
Our test data originates from a simulated fuel injection into a combustion engine cylin-
der consisting of ≈190,000 cells. During the continuation of our research we examine
the expected scalability of our approaches on larger data sets (in the gigabyte range).
We compared the performance of several partitioning schemes regarding runtime and
correctness of the ranking, by running our experiments on Oracle 10g. We generated
equi-distant and density-based partitionings with 8 partitions in each geometric dimen-
sion (resulting in 512 unique partitions). We performed isosurface queries on scalar
“energy” of varying complexity (2,500 up to 10,000 result cells), with an average iso-
surface complexity of ≈5,200 cells.

First we measured the degree of disorder in the stream of result cells regarding the
view-dependent ranking (here: by Euclidean distance). Figure 4a displays the average
disorder, which is defined by the average displacement of all result cells in the measured
stream compared to the correct ranking. The linear scan and standard RI-tree (without
ranking functionality) yield the highest average disorder, with up to 3,100 for a result set
size of 10,000 cells, i.e. each cell in the result stream is on average misplaced 3,100 po-
sitions compared to the correct ranking. The equi-distant and density-based partitioning
variants show a significantly better quality of ranking. The disorder for the partitioned
RI-tree almost grows linearly with the result set size, but the relative displacement is
in the range of only 4.3 − 6.8%. The “sorted” variants order partial results after each
partition query (cf. lines 3-7 in algorithm 3) before streaming the cells to the visualizer,
thus adding marginal sorting costs to the overall execution time, but in return further
reducing the average disorder to a small degree.
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Fig. 4. Evaluation of disorder and block accesses

Figure 4b displays the block accesses performed by the RDBMS. The “linear scan”
requires a constant number of block reads as every database block is accessed. The
RI-trees without prior exclusion of partitions perform unnecessary block reads when
querying partitions not containing result cells, thus producing even more block reads
than the standard RI-tree. Best performance is shown by the partitioned RI-tree variants
which exclude partitions prior to query execution (titled “reduced” in figure 4b), which
significantly outperform the standard RI-tree with factors of up to ≈3.

5 Future Work

Our preliminary experiments show promising results when applying the presented ap-
proaches of partitioning CFD data sets. We plan to investigate on other partitioning
schemes, which are not restricted to an axis-parallel partitioning. Furthermore, one of
the design goals is to further improve the “first impression” during query execution and
we plan to extend our evaluation to various view-oriented distance functions.

In [2], we present dynamic query and result stream adaption when the user changes
view-point and direction by moving in the VR environment during query execution. We
plan to integrate handling of dynamic query adaption in IndeGSRI.
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Abstract. Sensor and network technology advances are increasingly
placing an immense amount of real-time geospatial data streams at the
scientist’s disposal. The effective integration and assimilation of such
datasets, however, is still a challenging goal. In this paper, we describe
a computational framework that simplifies the design, execution, and
visualization of processing workflows involving the integration of satel-
lite raster and ground point data streams. The framework is enabled for
interoperability by adhering to open sensor data standards, and demon-
strated with the evaluation of key environmental inputs needed for the
estimation of reference evapotranspiration over California.

1 Introduction

As geospatial sensor data becomes ubiquitous, there is an increasingly critical
need for its effective integration in applications that require inputs from multiple
sources. Moreover, as geospatial applications are themselves becoming increas-
ingly sophisticated (variety of products, distributed, etc.), the real challenge,
beyond data integration, is to accomplish a high degree of interoperability to
better reuse and exploit the richness of available services and sensor data.

Integration and interoperability play a crucial role in the running of complex
environmental simulation models that assist in forecasting and, more generally,
in the estimation of meteorological variables that are very difficult or costly to
obtain by direct means. For example, accurate evapotranspiration estimations
over extended agricultural areas are important information for water agencies
and individuals interested in delineating optimal irrigation plans, improving wa-
ter quality, and increasing yield [1].

The main contribution of this paper consists of the development of a pro-
cessing framework, which, founded on a precise geospatial data stream model,
is enabled with the utilization of open geospatial standards especially targeted
at sensor information and interoperability. By adopting a scientific workflow
based realization, we also facilitate the usability of the system in scientific en-
vironments. We demonstrate our approach with a representative setting for the
evaluation of key environmental inputs needed for the estimation of reference
� This work is in part supported by the NSF under awards ATM-0619139 (Comet),
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evapotranspiration over California. The evaluation is performed both quanti-
tatively via regression analysis, and qualitatively via 3D visualizations. These
operations are realized as reusable processing components that can be inserted
and linked with other components in new scientific workflows.

2 Related Work

Although decades of research have seen several efforts on integrating static data
sets (see, e.g., [2]), only little work has been done on integrating heterogeneous
data coming from diverse sensors and in a streaming fashion. Peng et al. [3]
present a framework for publishing, browsing, and delivering real-time sensor
data based on UDDI registries and a non-standard communication protocol.
Moodley et al. [4] describe a satellite-based system to support wildfire disaster
response management using Sensor Web technologies. Chu and Buyya [5] present
a service oriented sensor Web architecture that integrates Sensor Web with Grid
computing. Pursuing similar objectives in general, our work is founded on an es-
pecially defined stream model and uses a scientific workflow management system
as the realization infrastructure.

Also, substantial research in the database community has been done toward
the management of data streams (see, e.g., [6]). Most of these efforts, however,
adopt a relational approach (mainly in the context of event monitoring, financial
market analysis, and network traffic analysis), but little research has been done
for a systematic treatment in the case of streams of geospatial images. To rep-
resent geospatial image and point data streams in this paper, we use the model
introduced for this case in our previous work [7,8]. Here, we use relevant concepts
of such a model with a focus on integration and visualization of data with differ-
ent spatio-temporal characteristics, and show how the underlying framework is
extended to incorporate Web service interfaces in a fashion that is transparent
to the components in the processing workflows.

3 Geospatial Data Stream Processing

Both images and point data from remote sensing instruments (e.g., at ground
stations or carried in satellites, aircraft, etc.) are regarded as geospatial obser-
vations. A geospatial observation a = (v,x, τ) comprises the observed value v
(scalar, vector, image) of a particular observable entity at a particular point
location or area x and time of acquisition τ . A geospatial data stream is an
unbounded, timestamp-ordered sequence of observations, 〈a1, a2, . . .〉, where all
values belong to a common set and all locations are given in reference to a com-
mon coordinate system. In the case of point data, the location is given in a
suitable geographic reference and often associated as an explicit property of the
originating sensor. In the case of sensor instruments able to generate single ob-
servations that cover extended geographical areas (e.g., satellite imagery), these
usually take the form of a raster (possibly multi-banded) image. In Sect. 4, we
illustrate our approach with both point and raster data streams.
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Fig. 1. Core architecture [7] and extensions developed in this work (represented in
grayed boxes) for interoperability

We have extended our geospatial data stream processing framework [7] to
incorporate communication components that conform to open standards for in-
teroperability. See Fig. 1. This framework is coupled with the Kepler system [9],
a comprehensive scientific workflow management system being developed by a
community of contributors from several projects in diverse disciplines such as the
geosciences, ecology, bioinformatics, and others. Kepler allows to design, execute,
and deploy scientific workflows using Web- and Grid-based technologies.

To fully potentiate the interoperability of our framework with other data
stream processing systems, we incorporate the utilization of open data and pro-
tocol standards. Of particular relevance are the activities recently taken by the
Open Geospatial Consortium (OGC) Sensor Web Enablement (SWE) program
[10], an initiative that seeks to provide interoperability between disparate sen-
sors and sensor processing systems by establishing a set of standard protocols
to enable a “Sensor Web,” by which sensors of all types in the Web are dis-
coverable, accessible, and taskable. SWE components include several models,
XML Schemas, and Web service interfaces. In our prototype, we have included
elements from the following SWE components:

– SensorML, Sensor Model Language: An XML Schema to describe sensors
and sensor platforms.

– O&M, Observations & Measurements: A specification for encoding observa-
tions and measurements from sensors.

– SOS, Sensor Observation Service: A Web service interface to request and
retrieve metadata about sensor systems as well as observation data.

The general sequence of steps to obtain sensor metadata is as follows. As an SOS
service, the data provider first returns a capabilities document as a response to
a GetCapabilities request by a client. This document includes the identification
of the provider itself and the description of the available streams in the system,
which are organized in the form of observation offerings. An offering includes
information about the period of time for which observations can be requested,
the phenomena being sensed, and the geographic region covered by the observa-
tions. Once a client is interested in a particular geospatial data stream, it will
submit a DescribeSensor request to the provider. The corresponding response is
a SensorML document describing the sensor that generates the stream. Next, the
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client will request the actual data from the sensor. This is done by submitting a
GetObservation request, whose response is an O&M document [10]. The O&M
response will include an xlink:href attribute that the client can use to connect
to the actual data stream.

4 Application: Integration of Ground- and Satellite-Based
Data Streams for Evaluation of an Environmental
Model

The context of this application is the ETo Project [1]. This system calculates spa-
tially distributed daily reference evapotranspiration, denoted ETo, and produces
corresponding daily maps for the state of California at high spatial resolution
(4km2), using data from the CIMIS network of weather stations [11]. Evapotran-
spiration is the loss of water to the atmosphere caused by evaporation and plant
transpiration. Accurate ETo estimations are important information for individ-
uals and water agencies interested in delineating irrigation plans over extended
areas. Several meteorological variables are required to calculate ETo, including
temperature, relative humidity, and wind speed.

A main goal in the ETo system is to generate ETo maps for the whole state
of California. To acomplish this goal, the measurements of some of the variables
(e.g., temperature) obtained at the CIMIS stations are interpolated to obtain
the input rasters required to compute ETo for the state. A key step in the overall
ETo process is the determination of the “best” interpolated surface to use for
each variable. Experience has shown, however, that even when the interpolation
techniques give similar quantitative errors (which are based on standard cross-
validation methods), noticeable discrepancies in the spatial configuration of the
generated surfaces are often revealed. Hence, combined visualizations of these
interpolated surfaces over the same variable have been implemented as an im-
portant tool for inspection. Here, we include real-time GOES satellite data [12]
as one more source for evaluating the output from the interpolation methods.

Several workflow steps are required to properly integrate and compare CIMIS
and GOES raster data in this application. For instance, there are three geo-
graphical projections involved: Albers Equal Area (AEA) is the projection to
be used for the generated ETo maps; latitude/longitude coordinates are used
for the CIMIS stations; and an instrument specific coordinate system is used in
GOES data. The required reprojections and other main steps carried out by the
Kepler workflow shown in Fig. 2 are explained next.

Using the SOS interface, the CimisReader source actor reads data from the
CIMIS system for a given date and hour, and provides the resulting geo-located
point temperature observations into the workflow. The location of each observa-
tion is converted by the L2A actor from latitude/longitude coordinates to easting-
northing coordinates (in meters) in the AEA projection. The resulting point data
is read by the Interpolator actor, here instructed to use one of the available
interpolation methods and, as the region of interest for the generated raster,
the state of California (in AEA projection). The Interpolator actor makes a
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Fig. 2. Workflow for comparing CIMIS and GOES temperature raster images

(a) (b) (c)

Fig. 3. Comparing interpolated and GOES temperature raster images

request to the ETo system back-end to perform the interpolation and receives the
resulting raster as a Web Coverage Service response. The resulting interpolated
temperature raster over the region is denoted i in Fig. 2.

While L2A applies a direct point-to-point reprojection, the ST actor in the
workflow performs a full spatial transform of the incoming GOES infrared images
to the region of interest given in the AEA projection. Finally, the I2T actor
performs the pointwise conversion to temperature, and the stream extension SE
actor spatially aggregates the incoming images to maintain a single composite
over the covered region [7]. The resulting GOES-derived temperature raster over
California is denoted g in Fig. 2.

An especially designed actor, Viz3D, allows the visualization of the input
rasters for qualitative inspection. Complementary to side-by-side comparisons,
the Viz3D actor can combine the raster surfaces in many ways to better appreci-
ate the differences. Three examples are shown in Fig. 3. Raster g is mapped to
gray-level in (a) and (b) to easily distinguish it from i, while in (b) g is also as-
signed a certain level of transparency to better appreciate the discrepancy with
the interpolated raster. The difference i − g is directly displayed in (c) along
with a semitransparent constant surface at 0◦C.

Quantitatively, a linear regression analysis is performed by the Regression
actor on regularly-spaced selected points provided by the Sampler actor.
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5 Conclusion and Future Work

We presented an extension to a computational framework for the processing of
geospatial data streams with different spatio-temporal characteristics to allow
the seamless integration of raster and point data, two common data formats
in remote sensing imagery and ground based sensor systems. A main goal for
interoperability is accomplished by adhering to open geospatial standards and
service interfaces especially designed for sensor data. Our scenario highlighted
the integration of point and raster data with different geographic projections,
for the evaluation of temperature estimations over California. We described a
regression analysis in the raster setting, which required the interpolation of the
ground observations over the region of interest. Both qualitative and quantitative
comparisons were presented as a final step in the overall integration exercise
demonstrating the benefits of the framework in a scientific environment.

Our ongoing work includes the incorporation of sensor data registries, pro-
cess protocols, and other SWE components into our prototype, as well as the
evaluation of middleware stream system strategies toward the computational
scalability of the framework in complex, demanding environments.
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Abstract. IRMA is a meta-algorithm for image registration (image
alignment), evaluating results under multiple metrics using the LONI
Pipeline workflow infrastructure, on the LONI/CCB grid computing fa-
cility. IRMA manages these results in a model base implemented with
PostgreSQL. It permits scientists to catalog the results such as prove-
nance information, and permits subsequent mining — exploring the space
of alternatives in an organized fashion and building understanding about
individual algorithms, and learn about strengths and weaknesses of al-
gorithms over time.

1 Introduction

A common problem in scientific computing is to have to choose among a number
of different metrics or scoring criteria. To minimize error, for example, one might
choose among metrics like L1 error, L2 error, etc. These choices can be difficult
to make, because each criterion is an objective that can be useful in its own
right. Because they can differ significantly, however, ad hoc choices can have
significant consequences.

It is sometimes said that a sign of successful diversity is that complete agree-
ment becomes impossible — no single point of view is enough. Both science and
statistics rest on diversity, encouraging different opinions as long as they add
information, even when their objectives are inconsistent. Different methods for
extracting information from data rest on different objectives or metrics as well.

This work grew out of investigations in data mining, where sophisticated
sampling and meta-level methods for combining models have had enormous im-
pact. Intuitively, just as using ensembles of methods can combat bias and reduce
variance, using multiple methods should provide benefits in large-scale scientific
computation. The results here report an effort spanning several years at UCLA,
resulting in the development of a meta-algorithm for neuroimaging.
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tional Biology, an NIH National Center of Biomedical Computing.

B. Ludäscher and Nikos Mamoulis (Eds.): SSDBM 2008, LNCS 5069, pp. 612–617, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



IRMA: An Image Registration Meta-algorithm 613

IRMA (Image Registration Meta-Algorithm) is a method for combining re-
sults of different image registration algorithms. Registration is effectively a prob-
lem of ‘aligning brains’, i.e., obtaining a correspondence between two different
objects that finds as many points of similarity between them as possible.

In this paper we briefly review the problem of image registration, and present
a sampler of metrics used in assessing the quality of a registration result. We
then report on the development of IRMA and its application for this problem.
We summarize the overall design of IRMA, its use of a database to manage
metadata produced by use of multiple algorithms and metrics, and on the use
of data mining methods to analyze this data.

2 Biomedical Image Registration

2.1 Essence of the Problem

Let R and T be, respectively, the reference and template images we want to
register. In image registration we typically look for a transformation f such
that under reasonable assumptions D(R, f(T )) - 0, where D is a measure of
similarity (distance) between a pair of images. Thus, we want the transformed
image f(T ) to be as close as possible to the target image R. In general, if
D(A,B) - 0 then we say the images A and B are similar.

The similarity between images is commonly defined either as a function of the
intensities (luminosities) of corresponding voxels across images and their distri-
butions or is based on the morphology of the features present in both images. In
practice, measuring similarity in an application depends on the application itself
and on the modalities of the input images. Both intensity- and morphology-based
metrics have been largely employed in the implementation of registration tools
to attend different needs including comparing images with different modalities.
We want the mapping f to be homeomorphic so that points close together in
one image are carried over to points close together in the other image. Also,
f must have a continuous inverse satisfying D(f−1(R), T ) = D(R, f(T )). In
principle a metric (i.e., distance measure) should also satisfy properties such as:
commutativity (D(A,B) = D(B,A)), identity (D(A,B) = 0 iff A = B), and
scale invariance (D(αA,B) = D(A, αB) = D(A,B), for α > 0). When assessing
registration, it is natural to investigate how the edges from the template image
are mapped to the corresponding edges in the reference image. If the mapped
and reference edges are perfectly sumperimposed, or very close in shape and
space, then we say we have a good registration.

2.2 Diversity of Methods and Metrics

The metrics we consider here can be divided into two categories: Intensity based
metrics, which solely rely on the luminosity of the voxels, and Statistics metrics,
which are based on the distribution of intensities. There are strengths and weak-
nesses of each metric when applied to categories of image modalities. In fact,
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some of these metrics are designed and biased towards specific categories and
therefore cannot encompass all possible images arising in practice.

We list here seven basic metrics that we have studied. (A survey covering
the derivation and use of the entropy-related metrics is available in [1], and the
Correlation and Woods metrics are summarized in [2].) Throughout this list, N
is the size of the images (total number of voxels), and x ranges over the set of
voxels in an image. For the problem of registration, the image S could be f(T ),
so that for each of the following metrics D(R,S) is D(R, f(T )):

Mean Square Diff of Intensities 1
N (R − S)2 = 1

N

�
x(R(x) − S(x))2

Absolute Difference of Intensities 1
N |R − S| = 1

N

�
x |R(x) − S(x)|

Entropy of Difference of Intensities H(R − S) = 1
N

�
x p(R(x) − S(x)) log p(R(x) − S(x))

Mutual Information I(R,S) = H(R) + H(S) − H(R,S)
Normalized Mutual Information I(R,S)/H(R,S) + 1 = (H(R) + H(S))/H(R,S)
Correlation cor(S | R) = 1 − 1

N var
�

i N(i) var(i)
Woods woo(S | R) = 1 − 1

N

�
i N(i) stddev(i) / mean(i)

In the final two metrics, i ranges over intensity values, N(i) is the number of
voxels in R having value i, and mean, var, and stddev are statistics of the same
voxel positions. This list of metrics illustrates the challenge: there is diversity
of opinion about what constitutes a good registration. Some researchers go so
far as to assert that high-quality registrations can only be discerned by experts,
and then increase the challenge by noting that experts disagree. To help facil-
itate comparisons across metrics, the metric values were converted to uniform
similarity ‘scores’ (values in [0, 1], with 1 being good and 0 being bad), by nor-
malizing and complementing them. as shown in Figure 1. An alternative view is
that all metrics reflect some aspect of quality of a registration. There are many
notions of quality. Since metrics can be computed automatically, evaluating a
set of them gives us an inexpensive way of assessing multiple aspects of quality,
a means for eliminating poor results, and a basis for machine learning.

Fig. 1. A parallel coordinates plot, recording the performance of 4 algorithms under 7
metrics. The plot summarizes results for each of the 7 metrics (the columns) discussed
in this paper, for 170 differently configured algorithm runs that made use of 4 different
registration algorithms — AIR Warp, AIR Linear, FLIRT, ITK — the ‘rows’ or trajec-
tories across this plot. Altogether there are 170 ’rows’ or ’trajectories’, each giving the
metric values obtained by one run. The plotted points have been jittered (perturbed)
slightly so as to make visible the overlapping results for AIR.
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2.3 Example

Figure 1 shows aggregate results of registering a set of 10 brain images (T2-
weighted RARE 3D MRI volumes of dimension 256 × 256 × 256, of wild-type
mice, produced at UCLA), using 4 different method/parameter-setting runs per
image: altogether a total of 170 different runs. The figure shows the results on
the 7 different metrics just discussed for each of these runs.

The four algorithms here include two – Linear and Warp (nonlinear) – from
UCLA’s AIR registration package [2], the FLIRT tool from Oxford’s FSL pack-
age [3], and the 3D Deformation Registration 7 program from NLM Insight
Segmentation and Registration Toolkit (ITK) package [4]. In addition, a total of
17 different method/parameter combinations were used, i.e., there were a total
of 17 different registration runs per image. These were configured as follows:

Method/Tool Options/Parameters used

AIR Warp same as for AIR Linear, default otherwise
AIR Linear blur ∈ {(11,11,11), (19,19,19) }, model ∈ {6,7,9}
FLIRT transformation ∈ {6,7,8,12}
ITK default

This gives a modest but representative sample of parameter settings. On the
10 brain images (NORM) we obtain a set of 170 registration runs, a nontrivial
computational load requiring several hours to complete on the LONI/CCB grid.

The values for each metric have been rescaled independently, so that the
spread in metric values covers the entire vertical scale. Thus the plot really
only highlights patterns among the relative ordering among metric values for
these different methods, and not patterns among the actual magnitudes of the
metric values. Furthermore, of course, nothing about the relative merit of the 4
algorithms can be determined from one sample registration problem.

3 IRMA: An Image Registration Meta-algorithm

IRMA is a meta-algorithm for image registration developed with all of the con-
siderations above in mind. We have implemented it as a set of programs that
execute within the LONI Pipeline environment [5] at UCLA. Figure 2 shows a
pipeline definition of IRMA for the 4 algorithms and 7 metrics described earlier.
When executed it produced the results shown in Figure 1.

3.1 Essential Aspects of the IRMA Design

The basic idea behind IRMA is simple. Given a set of images R = {R1, . . . , Rn }
produced by a set of registration algorithm runs A = {A1, . . . , Am } and their
respective mappings fi, i = 1, . . . , n (it is possible that a given algorithm gives
more than one candidate mapping, thus m ≤ n), we can automate the evaluation
of each candidate mapping under a battery of metrics.

The implementation of IRMA goes beyond this basic idea in two ways: (1)
IRMA uses a database system to store not only metric values obtained by each
run, but also metadata about program execution, and (2) IRMA includes tools
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Fig. 2. Screen capture of the LONI Pipeline implementation of IRMA

for mining the resulting tables of metric values and execution information. Both
of these design aspects are significant in achieving goals we have set for IRMA.

3.2 IRMA as a Scientific Database

As Figure 2 shows, an IRMA computation consists of a number of independent
branches, each evaluating the results of a given algorithm and a choice of pa-
rameters. These evaluations are performed by the Assess Alignment modules
shown in the figure, which in our example here produce the 7 metric values.
These results are sent to a backend PostgreSQL database for later analysis. The
LONI Pipeline also produces a log containing metadata about the execution
of each IRMA step. IRMA extracts relevant parts of this metadata that also
can be useful for subsequent analysis. Currently the database includes the fol-
lowing important fields: user name, execution directory, images and files used,
commands/modules/algorithms used, and options/parameters/flags used.

IRMA is thus a system for managing data about program executions. Rely-
ing on database technoloyg provides three important benefits. First, it endows
IRMA with the ACID properties (Atomicity, Consistency, Isolation, Durability)
of database systems, permitting it to survive in the scientific world – a world in
which tools are unreliable, as is unfortunately the case in neuroimaging. Second,
IRMA can operate effectively on the grid: the LONI Pipeline is designed to cre-
ate and manage independent processes, and IRMA provides the synchronization
needed to aggregate their results. Third, IRMA is a model base, allowing ad
hoc extraction and mining of execution log data. Although a given set of any
given set of executions may not be large (170 runs in our example), a model base
approach makes analysis of this data natural.
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3.3 IRMA as a Data Mining Platform

IRMA’s managing of information about execution provides interesting capabili-
ties for data mining. For example, one can determine not only which algorithms
and parameter settings give better results for brain volumes from a given source,
but also analyze execution times and differences in performance by variants of
a given algorithm. The introduction of mining capabilities should foster deeper
understanding of registration algorithms, and permit corresponding advances in
sophistication. It should also improve our understanding of the various metrics.

For example, dimensionality reduction methods based on eigendecompositions
are successful at extracting dominant structural elements for this kind of dataset.
Whereas the first eigenvector is weighted almost equally over all metrics, the
second heavily emphasizes the Woods metric. We can reduce most of the per-
formance data to a 2-dimensional space, capturing the variance among these
metrics shown in Figure 1. This permits learning about both the quality of the
individual image registration results and the algorithms and metrics used.

4 Conclusions

We have summarized the design and implementation of IRMA, an Image Regis-
tration Meta-Algorithm. IRMA permits the creation of LONI Pipeline modules
that obtain the results of many image registration algorithms, and then evaluate
these results under multiple metrics.

A key part of IRMA is a model base that permits management and analysis of
these evaluation results. The model base, implemented with PostgreSQL, stores
basic metadata about the execution of each IRMA process. These metadata
include information about the execution of the process, and can be used in
developing models about many aspects of algorithm performance over time.
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Silva, Cláudio T. 573
Singh, Abhayendra N. 204
Singh, Ambuj K. 509

Singh, Sarvjeet 61
Singh, Vishwakarma 509
Sintek, Michael 586
Srivastava, Divesh 42
Stockinger, Kurt 348
Svensson, Per 3
Szalay, Alexander 1

Tanin, Egemen 525
Tantono, Ferry Irawan 222
Thomo, Alex 533
Toga, Arthur W. 612
Tosun, Ali Şaman 517
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