
OCL Support in an Industrial Environment

Michael Altenhofen1, Thomas Hettel2, and Stefan Kusterer3

1 SAP Research, CEC Karlsruhe,
76131 Karlsruhe, Germany

michael.altenhofen@sap.com
2 SAP Research, CEC Brisbane,

Brisbane, Australia
thomas.hettel@sap.com

3 SAP AG, 69190 Walldorf, Germany
stefan.kusterer@sap.com

Abstract. In this paper, we report on our experiences integrating OCL
evaluation support in an industrial-strength (meta-)modeling infrastruc-
ture. We focus on the approach taken to improve efficiency through what
we call impact analysis of model changes to decrease the number of nec-
essary (re-)evaluations. We show how requirements derived from appli-
cation scenarios have led to design decisions that depart from or resp.
extend solutions found in (academic) literature.

1 Introduction

The MDA [1] vision describes a framework for designing software systems in a
platform-neutral manner and builds on a number of standards developed by the
OMG.

With its upcoming standard-compliant modeling infrastructure, SAP plans
to support large-scale MDA scenarios with a multitude of meta-models that put
additional requirements on the technical solution, that are normally considered
out-of-scope in academic environments. This may lead to solutions that may
be considered inferior at first sight, but actually result from a broader set of
(sometimes non-functional) requirements.

This paper focuses on one particular aspect in SAP’s modeling infrastruc-
ture, namely an efficient support for the OCL [3] constraint language. We will
show how he have modified some of the existing approaches to better fit the
requirements we’re facing in our application scenarios.

The rest of the paper is organized as follows: In Section 2, we will give an
overview of SAP’s modeling infrastructure focusing on features that are consid-
ered critical in large-scale industrial environments. Then, in Section 3, we will
summarize related work in the area of OCL impact analysis that has guided
our work leading to a more detailed description of our approach in Section 4.
In Section 5, we will report on first experimental experiences and conclude in
Section 6 by summarizing our work.

T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 169–178, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

170 M. Altenhofen, T. Hettel, and S. Kusterer

2 The SAP Modeling Infrastructure (MOIN)

Mid of 2005, SAP launched “Modeling Infrastructure” (MOIN), as development
project within the NetWeaver1 organization. The goal of the MOIN project is to
implement the consolidated platform for SAP’s next generation of modeling tools.

2.1 Overview on the Architecture and Services of MOIN

The requirements for MOIN resulted in an architecture, which consists of the
components described in the following sections as major building blocks.

Repository. First and foremost, MOIN is a repository infrastructure for meta-
models and models capable of storing any MOF compliant meta-model together
with all the associated models. For accessing and manipulating this content,
client applications can use JMI compliant interfaces, which are generated for the
specific meta-model.

The MOF standard does not impose any concepts for physical structuring
of model content onto the implementer, however, some notion of a meaningful
group of model elements is required. For that, MOIN offers the concept of model-
partitions, which allows users splitting up the graphs represented by model con-
tent into manageable buckets loaded and stored by the MOIN repository.

Query Mechanism. JMI is well suited for exploring models, by accessing
attributes, following links etc. However, for many use-cases more powerful means
of data retrieval are needed. The MOIN query API (including a query language)
therefore provides flexible methods for retrieving model elements, based on their
types, attribute values, relationships to other model elements etc.

Eventing Framework. Events can be used by MOIN clients to receive notifica-
tions for e.g. changes on models. This supports an architecture of loosely coupled
components. The event types supported by the framework will be discussed in
section 4.

Model Transformation Infrastructure (MTI). The model transformation
infrastructure (MTI) is planned as basis for model-to-model and model-to-text
transformations. MTI will provide a framework for defining and executing these
transformations, where OCL is considered as an option for describing query parts
of transformation rules.

MOIN Core. The MOIN core is the central component in the MOIN archi-
tecture, implementing and enforcing MOF semantics. It is independent from the
deployment options and development infrastructure aspects and calls the other
components for implementing all of MOIN’s functionality.

By managing the object instances, representing model elements, the MOIN
core can also be seen as in-memory cache for model content. However, it also
1 SAP and SAP NetWeaver are trademarks or registered trademarks of SAP AG in Ger-

many and in several other countries.

OCL Support in an Industrial Environment 171

manages the complete life-cycle of objects, triggers events, and uses the reposi-
tory layer to read or write data.

OCL Components. For dealing with OCL expressions, MOIN contains an
OCL parser, OCL evaluator, and an OCL impact analysis component, managed
by the MOIN core.

The impact analysis is essential for the efficient implementation of constraint
checking, as it avoids the unnecessary evaluation of constraints in specific situ-
ations. The impact analysis is described in section 4 in more detail.

3 Related Work

To our knowledge, there is not much related work in the area of optimization of
OCL expression evaluation at the moment. In [5] the authors describe an algorithm
to reduce the set of OCL expressions that have to be evaluated if a model change
occurs. We follow that approach, but had to relax it since we have to deal with any
sort of OCL expression whereas [5] only deals with OCL constraints where further
optimization are possible, based on the assumption that initially all constraints
are valid. However, there are application scenarios in MOIN where this assumption
does not hold at all. E.g., it may be desirable, or at least tolerable to temporarily
leave meta-models in an inconsistent state, like situations where the architect or
designer is not yet able to provide all mandatory information. In a second paper [6],
the same authors describe a method to reduce the number of context instances for
which relevant OCL constraints have to be evaluated as a further optimization on
top of the approach in [5]. The idea of decomposing expressions into sub-expression
andbuilding paths through themodelwas taken fromthere.However, the approach
taken in [6] violates one of our requirements that meta-models should stay intact
avoiding modifications not intended by the user. Furthermore, we had to extend
the algorithm to support all language features of OCL.

In [7], the authors go even one step further, and actively rewrite constraints
for further optimizations. This may even lead to attaching a constraint to a new
context. While this approach may definitely lead to a better performance than
our approach, we did not consider optimizations in that direction, because this
would introduce additional management overhead if we hid that transformation
from the modeller and kept the two versions of constraints in sync.

In [8] a rule-based simplification of OCL constraints is introduced, including,
e.g., constant folding, and removing tautologies. We intentionally abandoned
that approach in our work, again because of the additional overhead introduced.

4 OCL Impact Analysis in the SAP Modeling
Infrastructure

This section presents the architecture and functionality of the OCL impact anal-
ysis and how it fits into SAP’s modeling infrastructure.

172 M. Altenhofen, T. Hettel, and S. Kusterer

4.1 Architecture

To support a wide range of different usage scenarios we decided to implement
the impact analyzer (IA) as a general optimization add-on to applications, which
have to deal with OCL in some way.

Fig. 1. Impact Analyzer Architecture

As indicated in Figure 1, interacting with the IA happens in two phases:
Firstly, in the analysis phase (steps 1-3), a set of parsed OCL expressions is
passed to the IA, whereupon a filter expression is returned. This filter can then
be used to register with the eventing framework, so the application will only
be notified about relevant model change events. Secondly, in the filter phase
(steps 4-6), a received event can be forwarded to the IA to identify the OCL
expressions affected by a change and the set of context instances per expression,
for which the expression has to be evaluated.

In fact, IA does not actually return a set of context instances, but OCL expres-
sions evaluating to that set. This allows for quick responses and leaves further
optimizations to the evaluator. Furthermore, in contrast to [6], this approach
does not rely on an extension of the meta-model.

During the analysis phase, internal data structures are built up, which are then
used in the filter phase for quick look-ups. These data structures are based on
so-called internal events which represent classes of model change events provided
by MOIN’s eventing framework. The relationship between internal events and
model change events is shown in Table 1.

The analysis phase itself is split up into a class scope analysis and a subsequent
(optional) instance scope analysis. Both methods are described in the following
sections.

4.2 Class Scope Analysis

The goal of the class scope analysis is to find the set of internal events (i.e.,
all types of model change events) which affect a given expression, assumming
that all affected expressions have to be evaluated for all its context instances2.
2 Hence the name class scope analysis.

OCL Support in an Industrial Environment 173

Table 1. Mapping between InternalEvents and ModelChangeEvents

Internal Event Model Change Event
CreateInstance(MofClass c) ElementAddedEvent(RefObject o), c being the type

of o
DeleteInstance(MofClass c) ElementRemovedEvent(RefObject), c being the type

of o
AddLink(AssociationEnd e) LinkAddedEvent(Link l), e and l referring to the same

association
RemoveLink(AssociationEnd e) LinkRemovedEvent(Link l), e and l referring to the

same association
UpdateAttribute(Attribute a) AttributeValueEvent(RefObject o, Attribute b), a

and b referring to the same attribute

As outlined in Section 3, we use a generalized approach from [5] and walk the
abstract syntax tree (AST) representing the given OCL expression in a depth-
first manner, tagging each node3 with internal events that are relevant to it:

– Variable expressions referring to self → CreateInstance(C), where C iden-
tifies the type of self

– C.allInstances() → CreateInstance(C), DeleteInstance(C)
– Association end calls to aE → AddLink(l), RemoveLink(l), where l refers

to the association to which the association end aE belongs
– Attribute call expressions to a → UpdateAttribute(a)

Given a concrete model change event during the filter phase, IA determines the
corresponding internal event and simply looks up the OCL expressions affected
by that event.

context Department i nv maxJun iors :
s e l f . employee−>s e l e c t (e | e . age<23)−> s i z e ()< s e l f . maxJun iors

Listing 1.1. OCL expression [5] for the running example

For the OCL expression in Listing 1.1 4, the Class Scope Analysis returns the
following internal events: CreateInstance(Department), AddLink(employee),
RemoveLink(employee), UpdateAttribute(age), and UpdateAttribute
(maxJuniors).

3 For user-defined attributes and operations, the analyzer recurses into their bodies.
The evaluation of a user-defined attribute or operation changes if its body is affected
by a change to the model, thus affecting the evaluation of any expression referring
to that user-defined operation or attribute.

4 Within a department only a certain number of junior employees are allowed.

174 M. Altenhofen, T. Hettel, and S. Kusterer

4.3 Instance Scope Analysis

The goal of instance scope analysis is to reduce the number of context instances
for which an expression needs to be evaluated. Following the approach in [6],
this is done by identifying navigation paths5. Given an element affected by a
change, the set of relevant context instances can be found by following the reverse
of the navigation paths. Once identified, these reverse paths are turned into
OCL expressions and stored in the internal data structure. By evaluating these
expressions, the set of context instances can be computed from a given changed
element.

The following sections describe in more detail how sub-expressions and sub-
sequently navigation paths can be identified and how they are reversed and
translated into OCL.

Identifying Sub-expressions. The first step is to find sub-expressions. Sub-
expressions start with a variable, or allInstances() and end in a node being
the source of an operation with a primitive return type or in a node being a
parameter of an operation or the body of a loop expression. Sub-expressions can
also contain child sub-expressions in the body of a loop expression.

Two types of sub-expressions can be distinguished: class and instance. Class
sub-expressions start (directly or indirectly) with allInstances() and thus have
to be evaluated for all instances of a class. Instance sub-expressions on the other
hand start (directly or indirectly) with self. In this case, a subset of context
instances can be identified for which the expression has to be evaluated. The
following steps only apply to instance sub-expression.

Example: Given the OCL expression in Listing 1.1, the following sub-expressions
can be identified: self.employee->select(), e.age, and self.maxJuniors.

Identifying Navigation Paths. As per definition, sub-expressions consist only
of navigation operations, but do not necessarily start at the context. To get a
sequence of navigation operations starting at the context, the navigation con-
tained in a child sub-expression has to be concatenated with the navigation of
the parent sub-expression6.

Example: For the example in Listing 1.1 the context-relative navigation paths
are: <employee>, <employee, age> 7, and <maxJuniors>.

For loop expressions with a different return type than their source (e.g. collect,
iterate), the loop body contains vital information which has to be included;
otherwise, the navigation path would contain a gap.
5 I.e. the sequences of attributes and association ends, in an expression starting at the

context. If an object is changed, an OCL expression has to be evaluated for those
context instances from where the changed object can be reached by navigating along
these paths.

6 This approach only works for loop expressions calculating a subset of their source
(e.g. select, reject).

7 As the second sub-expression does not start at the context, its navigation path has to
be concatenated with the navigation path of its parent, i.e., the first sub-expression.

OCL Support in an Industrial Environment 175

Example: Considering the OCL expression in Listing 1.2, the following two nav-
igation paths can be identified: <employer, employee, . . . > (for the parent sub-
expression), and < employer, employee > (for the child sub-expression).

context Employee i nv :
s e l f . employer−>c o l l e c t (d : Department | d . employee) − > . . .

Listing 1.2. An OCL expression including a collect subexpression

In this case, the collect operation takes a set of Departments and returns a
set of Employees. Only by examining the body it can be said how to get from
Department to Employee: by following the employee association end.

Reversing Navigation Paths. For each tagged node in the AST, the way
back to the context (variable) of the expression has to be identified. This is done
by reversing the path from the variable subexpression to the AST node.

Example: Continuing the running example in Listing 1.1, we get the reverse
navigation paths for each relevant internal event identified by class scope analysis
as shown in Table 2.

Table 2. Internal events and corresponding navigation paths

Internal Event Reverse Navigation Path
CreateInstance(Department) <>
AddLink(employee), RemoveLink(employee) <>
UpdateAttribute(age) < employer >
UpdateAttribute(maxJuniors) <>

If a new Department is created, the expression obviously has to be evaluated
for that Department, therefore, the reverse navigation path is empty. If an em-
ployee is added to, or removed from, a department, the reverse navigation path
is empty as well. More interesting is the case when the age of an employee is
changed. In this case, navigating along the employer association end (opposite of
employee) reveals the department, for which the expression has to be evaluated.

Translating into OCL. Reverse navigation paths are translated into OCL
and stored in the internal data structure which relates each internal event with
a number of relevant expressions. For each such pair of internal event and ex-
pression a set of OCL expressions is maintained, which, when evaluated for a
changed model element, results in the set of affected context instances.

For navigating along association ends, translation is straight forward: An as-
sociation call expression is created referring to the opposite association end. Re-
versing object-valued attributes, however, is not that easy. Unfortunately, OCL
does not offer a construct to find the owner of an attribute value. However, a legal

176 M. Altenhofen, T. Hettel, and S. Kusterer

OCL expression can be constructed which finds the attribute value’s owner. The
construct simply iterates through all instances of a type T and checks whether
it’s attribute a points to the given value v: T.allInstances()->select(a=v) 8.

Example: Continuing the running example from Listing 1.1, in case of an Up-
dateAttribute(age) event, the relevant Department instances are computed
from the OCL expression self.employer.

5 Preliminary Results

To show the efficiency of our approach we present empirical results from a test
scenario using the MOF constraints defined in [2] with the UML meta-model as
an instance of MOF.

5.1 UML-meta-model + MOF-constraints

To have a more realistic assessment of the performance benefits achieved by IA,
we used a subset of the MOF-constraints and the UML-meta-model, an instance
of MOF, as a test scenario. We ran the tests with three types of applications: a
naive application (1) that evaluates all constraints on any model change, a class
scope application (2) that only uses the Class Scope Analysis part of the IA, and
an instance scope application (3) that uses the IA to its fullest extend.

Reduction of Expressions. We consider the number of expressions which have
to be evaluated after an event has been reported. In Figure 2 we compare the
results from (2) to those from (1)9. The performance gains are due to the fact
that the CSA does not have to evaluate expressions which cannot have changed
due to the reported event.

For about 1/4 of the events, the number of relevant expressions could be
reduced to one by applying class scope analysis. This is a reduction by 97%. For
about 1/8 of the events, the number of relevant expressions could only be reduced
to 12 and 11 respectively. Still, this is a reduction by 68% (71%). In average, the
number of expressions to evaluate was reduced by 88%, with a Median of 92%.

Reduction of Context Instances. Here we consider the number of evaluator
calls (the evaluation of one expression for one context instance) necessary to
evaluate all affected expressions. The numbers in Figure 3 also include calls
necessary to compute the set of affected context instances. As the number of
expressions to evaluate is reduced in (2), the number of evaluator calls is reduced
as well. Therefore, the number of evaluator calls experiences about the same
reduction as the number of expressions. After an already substantial reduction in
8 For performance reasons, an optimized evaluator could simply replace such a con-

struct by a v.immediateComposite() call on the JMI object to determine the value’s
owner.

9 As instance scope analysis does not further reduce the number of expressions, it is
not included in the chart.

OCL Support in an Industrial Environment 177

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 8 1 9 20 21 22 23 24 25 26 2 7 2 8 2 9 30 31 32 33 34

1
1 0

10
0

Reduction of relevant expressions

Navie

Class

Event

re
le

va
nt

ex
pr

es
sio

ns

Fig. 2. Reduction of relevant expressions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
1

10

100

1000

10000

100000

Reduction of evaluator calls

Naive

Class

Instance

event

ev
al

ua
to

r c
al

ls

Fig. 3. Reduction of evaluator calls (including calls for computing context instances)

(2), (3) achieves another enormous reduction: From several thousands to twenty
or less for about 77% of the events (compare Figure 3). In total, the number of
evaluator calls was reduced by three to four orders of magnitude, which is an
enormous benefit in performance compared to some 26000 calls per event in (1).

6 Conclusion

While efficient support for OCL is considered crucial in large-scale modeling
environments, surprisingly little work has been published on optimizing OCL
expression evaluation in case of arbitrary model changes. In this paper, we have
reported on our experiences with integrating OCL into SAP’s next generation
modeling infrastructure MOIN.

Although some of the basic approaches from literature could be reused [5,6],
the actual implementation had to divert from these methods to cope with the
(non-)functional requirements pertinent to MOIN. Most notably, we currently
refused to implement any techniques that would result in silent or user-invisible
changes to either the meta-models or the related OCL expressions. We know that
this may lead to sub-optimal results in terms of performance, but preliminary

178 M. Altenhofen, T. Hettel, and S. Kusterer

experimental results show that the implemented techniques can still lead to
a significant and hopefully sufficient performance gain. Further optimization
techniques may be considered in the future, but they will have to be evaluated
carefully on their trade-offs regarding other desired features.

Another path of optimization that we have not fully explored yet is the way
how context instances are computed. We plan to investigate how the usage of
the internal MOIN Query Language could speed up this computational step.

Acknowledgements

We would like to thank our colleagues Kristian Domagala, Harald Fuchs, Hans
Hofmann, Simon Helsen, Diego Rapela, Murray Spork, and Axel Uhl for fruit-
ful discussions during the design and the implementation of the OCL Impact
Analyzer.

References

1. Object Management Group: MDA Guide. June 2003.
2. Object Management Group: Meta Object Facility (MOF) Specification. April 2002.

http://www.omg.org/docs/formal/02-04-03.pdf.
3. Object Management Group: OCL 2.0 Specification (ptc/2005-06-06). June 2005.
4. Object Management Group: UML 2.0 Superstructure Specification (pct/03-08-02).

August 2003.
5. Cabot, J., Teniente, E.: Determining the Structural Events that May Violate an

Integrity Constraint. In: Proc. 7th Int. Conf. on the Unified Modeling Language
(UML’04), LNCS, 3273 (2004) 173-187

6. Cabot, J., Teniente, E.: Computing the Relevant Instances that May Violate an OCL
constraint. In: Proc. 17th Int. Conf. on Advanced Information Systems Engineering
(CAiSE’05), LNCS, 3520 (2005) 48-62

7. Cabot, J., Teniente, E.: Incremental Evaluation of OCL Constraints. In: Proc. 17th
Int. Conf. on Advanced Information Systems Engineering (CAiSE’06), June 2006.

8. Giese M., Hähnle R., Larsson, D.: Rule-based simplification of OCL constraints. In:
Workshop on OCL and Model Driven Engineering at UML2004, pages 84-89, 2004.

	Introduction
	The SAP Modeling Infrastructure (MOIN)
	Overview on the Architecture and Services of MOIN

	Related Work
	OCL Impact Analysis in the SAP Modeling Infrastructure
	Architecture
	Class Scope Analysis
	Instance Scope Analysis

	Preliminary Results
	UML-meta-model + MOF-constraints

	Conclusion

