
T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 6 – 16, 2007. 
© Springer-Verlag Berlin Heidelberg 2007 

Modeling Features in Aspect-Based Product 
Lines with Use Case Slices: 
An Exploratory Case Study 

Roberto E. Lopez-Herrejon1 and Don Batory2 

1 Computing Laboratory, University of Oxford, England 
2 Department of Computer Sciences, University of Texas at Austin, USA 

rlopez@comlab.ox.ac.uk, batory@cs.utexas.edu 

Abstract. A significant number of techniques that exploit aspects in software 
design have been proposed in recent years. One technique is use case slices by 
Jacobson and Ng, that builds upon the success of use cases as a common 
modeling practice. A use case slice modularizes the implementation of a use 
case and typically consists of a set of aspects, classes, and interfaces. Work on 
Feature Oriented Programming (FOP) has shown how features, increments in 
program functionality, can be modularized and algebraically modeled for the 
synthesis of product lines. When AspectJ is used in FOP, the structure of 
feature modules resembles that of use case slices. In this paper, we explore the 
relations between use case slices modeling and FOP program synthesis and 
describe their potential synergy for modeling and synthesizing aspect-based 
product lines. 

1   Introduction 

A significant number of techniques that exploit aspects in the realm of design have 
been proposed in recent years [4]. One technique, proposed by Jacobson and Ng [15], 
is use case slices, which are modular implementations of use cases. Typically, the 
implementation of a use case slice consists of a set of aspects, classes, and interfaces. 
A similar structure appears when aspects are used to implement features [16][19], 
which are increments in program functionality, with Feature Oriented Programming 
(FOP) [10][11], a technology that studies feature modularity in program synthesis for 
product lines. 

In this paper, we present a simple product line example and its implementation in 
AspectJ. This example helps us illustrate how use case slices can model features in 
aspect-based product lines and how features can be algebraically modeled for 
program synthesis. We analyze the relations between use case slices modeling and 
FOP program synthesis and describe how their potential synergy can serve as a 
foundation of a methodology for modeling and synthesizing aspect-based product 
lines. 

2   Product Line Example 

To illustrate the similarities between use case slices and features we use a simple 
product line based on the Extensibility Problem [17]. This problem has been widely 
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studied within the context of programming language design, where the focus is 
achieving data type and operation extensibility in a type-safe manner. Our focus is on 
designing and synthesizing a family of programs that we call the Expressions Product 
Line (EPL) [17]. Next we describe in detail this product line and its implementation 
using AspectJ.  

2.1   Example Description 

EPL supports a mix of new operations and datatypes to represent expressions of the 
following language: 

Exp  :: = Lit | Add | Neg 
Lit  :: = <non-negative integers> 
Add  :: = Exp "+" Exp 
Neg  :: = "-" Exp 

Two operations can be performed on expressions of this grammar: 

1) Print displays the string value of an expression. The expression 2+3 is repre-
sented as a three-node tree with an Add node as the root and two Lit nodes as 
leaves. Operation Print, applied to this tree, displays the string “2+3”.  
2) Eval evaluates expressions and returns their numeric value. Applying the oper-
ation Eval to the tree of expression 2+3 yields 5 as the result. 

An extra class Test creates instances of the datatype classes and invokes their 
operations.  

A natural representation for EPL is a two-dimensional matrix [17]. Rows represent 
datatypes and columns specify operations. Each matrix entry is a feature that 
implements the operation, described by the column, on the data type, specified by the 
row. As a naming convention throughout the paper, we identify matrix entries by 
using the first letters of the row and the column, e.g., the entry at the intersection of 
row Add and column Print is named ap and implements operation Print on data 
type Add. This matrix is shown in Figure 1 where feature names are encircled. 

A program member of this product line is composed from the set of features that 
are at the intersection of the set of operations (columns) and datatypes (rows) selected 
for the program. EPL is formed by all the possible combinations of selections of rows 
and columns. For instance, the program that implements Print and Eval operations 
on datatypes Lit and Neg is composed with features lp, le, np, and ne. 
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Fig. 1. Matrix representation of EPL 
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2.2   AspectJ Implementation 

Let us now analyze how the features of EPL are implemented in AspectJ [17]. Recall 
that feature lp implements operation print on datatype Lit. Thus the 
implementation of this feature contains: a) interface Exp that declares method print, 
b) class Lit with a value field, a constructor, and the implementation of print 
method, and c) class Test with a field ltree of type Lit, a constructor that creates 
an instance of Lit and assigns it to ltree, and method run that calls method print 
on ltree. See entry lp in Figure 1 for the short depiction of this feature’s contents. 
lp can be implemented as follows1: 

Feature  lp  constitutes  the  base  code  in  our  product  line  because  it  contains  only 
standard Java classes and interfaces which are used by all the other features of EPL. 

Let us now consider the implementation of feature le. This feature implements 
operation eval on Lit datatype. It adds the definition of method eval to an existing 
interface Exp using an inter-type declaration as follows2: 

// Exple.java 
aspect Exple {  
   abstract int Exp.eval();  
} 

We refer to this as an interface extension [10][11] which we denote with ∆Exp in 
Figure 1. Similarly, we refer to the additions to existing classes as class extensions 
[10][11], which are also shown in Figure 1  with symbol ∆ prefixed to the name of the 
class. Feature le makes class extensions for classes Lit and Test. It adds a new 
method to class Lit as follows: 

// Litle.java 
aspect Litle {  
  int Lit.eval() { return value; }  
} 

                                                 
1 Class members privileges are omitted for simplicity. 
2 Aspect file names are formed with the name of the class or interface they are extending 

followed by the feature they help implement. This naming scheme was chosen to make the 
connection to the algebraic model described in Section  clearer. 

 

// Exp.java
interface Exp { void print( ); }

// Lit.java
class Lit implements Exp {

int value;
Lit (int v) { value = v; }
void print() { 

System.out.print(value);
}

} 

// Test.java
class Test {

Lit ltree;
Test( ) { ltree = new Lit(10); }
void run( ) { ltree.print( ); }
void static main(String[] args) {

Test test = new Test();
test.run();

}
}

4

We refer to this type of extension as method addition [10][11] and denote it in Figure  1 
with the header of the method. Feature le also executes an additional statement in 
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method run of class Test that calls method eval on field ltree. We call this a method 
extension  [10][11] and denote it as ∆run() in Figure 1 .  The implementation uses a 
pointcut that captures the executions of method run and gets a reference to the object 
target of the execution, and an around advice that contains the additional statement as 
shown below: 

// Testle.java 
aspect Testle { 
  pointcut LPRun(Test t): execution(void Test.run()) && target(t); 
  void around(Test t) : LPRun(t) { 
     proceed(t); System.out.println(t.ltree.eval()); 
  } 
}  

Seasoned AspectJ programmers may wonder at this point why the contents of the three 
aspects are not aggregated (copied) into a single one. In previous work we showed that 
composing aspects in this way is not equivalent to their separate file definitions under 
the current AspectJ precedence rules [18]. Additionally, keeping classes and interfaces 
extensions into separate aspects improves program understandability [6] and simplifies 
the algebraic composition model described in Section 4. 

As another example, consider the implementation of feature ap. First this feature 
implements operation print on the Add datatype as follows: 

// Add.java 
class Add implements Exp { 
  Exp left, right; 
  Add (Exp l, Exp r) { left = l; right = r; } 
  void print(){ left.print(); System.out.print("+"); right.print();} 
} 
 
// Testap.java 
aspect Testap{ 
  Add Test.atree; 
  pointcut APTest(Test t): execution(Test.new()) && target(t); 
  void around(Test t) : APTest(t) { 
    proceed(t); t.atree = new Add(t.ltree, t.ltree); 
 } 
 pointcut APRun(Test t):execution (void Test.run(..)) && target(t); 
 void around(Test t) : APRun(t) { proceed(t); t.atree.print();} 
} 

Notice that Testap implements a construction extension denoted as ∆Test() in 
Figure 1. The implementation of the rest of the features is similar to the ones just 
described. 

An EPL program is created by passing all the names of the files that implement its 
features to the AspectJ compiler or weaver ajc [5]. When several pieces of advice 
apply to the same join point an order of execution must be specified following 
AspectJ precedence rules as the order is in general undefined. For example, if in the 
program that implements both operations for Lit and Add (which we call LitAdd) 

                                                 
3 In [18] we describe several compositional problems that precedence clauses cause. 

we would like to execute the method extensions to run in order ap, followed by that 
in le, and ae, we would need to define a precedence clause in an aspect as follows3: 
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aspect Ordering {  
   declare precedence : Testae, Testle, Testap;  
} 

The whole composition of LitAdd becomes: 
ajc Exp.java Lit.java Test.java Exple.java Litle.java Testle.java 
Add.java Testap.java Addae.java Testae.java Ordering.java  
-outjar LitAdd.jar    

With this example, we present how use case slices can be used to model EPL features. 

3   Use Case Slices 

Use cases are a common technique to capture system functionality and requirements 
using UML [21]. However the implementation of use cases using traditional object 
oriented languages and techniques typically breaks use case modularity as their 
implementation is scattered and tangled in the modules supported by the underlying 
OO languages. This is the observation that Jacobson and Ng exploit to make the 
connection with the work on aspects [15]. They propose use case slices as a 
modularization unit to address these problems. 

A use case slice contains ([15] pages 111-112): 

•  Collaboration  A collaboration is a set of UML diagrams (interaction, class, 
etc.) that describe how a use case is realized. 

•  Specific Classes  Classes that are specific to a use case realization. 
•  Specific Extensions  Extensions to existing classes specific to a use case 

realization. 

A use case slice is modeled as a special kind of package with stereotype << use 
case slice >>. The package has the following basic contents: 

•  Use case slice name.  
•  A collaboration symbol (a dashed ellipse) and its name. 
•  Specific classes. Denoted with the standard UML symbol for classes. These 

classes may have any relationships of standard class diagrams. 
•  Specific aspects. Denoted with a symbol similar to UML class. It has stereotype 

<<aspect>>. This symbol has two compartments, one for the pointcuts and 
one for the class extensions. Aspects may have the same relations between them 
as supported by AspectJ. 

Let us illustrate a use case slice with feature ap as shown in Figure 2. Recall that this 
feature implements the print operation on the Add datatype. First, notice the name 
of the use case slice and its collaboration. Since ap adds new class Add, this class is 
represented using the standard class symbol. This feature also contains one 
constructor extension and one method extension to class Test. The pointcuts 
compartment of the Testap aspect contains the definitions of pointcuts APTest and 
APTRun. The class extensions compartment contains class Test as all the extensions 

.

.
.

that this aspect implements are for this class. In the attributes compartment of the 
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extensions are given names for reference, apAtree() and apRun(), and specify the 
type of advice (around), the pointcuts they apply to (APTest and APRun) and a 
denotation of their operations, addf and testf (names chosen arbitrarily) for adding 
and testing a field (in this case atree). 

Use case slices have the same relationships as use cases, extend, 
generalization, and include with a comparable semantics. This relationship can 
be used to describe how a program of the product line can be composed. To the best of 
our understanding, use case slices do not provide modeling support for the variability 
entailed by a product line design, thus a use case slice diagram conveys the design of a 
single member of a product line. Use case slices can be further modularized into use 
case modules, where each slice modularizes a different model of the use case lifecycle: 
analysis, design, implementation, testing, etc. [15] (Chapters 4 and 10). 

In this section we described the basic ideas of use case slices. However, they can 
provide  more  sophisticated modeling functionality .  For instance, their pointcuts, 
classes, and class extensions can be parameterized, using UML templates, to allow 
extra design flexibility [15]. In next section, we present how EPL can be algebraically 
modeled with FOP. 

4   Feature Oriented Programming (FOP) 

Feature Oriented Programming (FOP) is a technology that studies feature modularity 
and its use in program synthesis. FOP aims at developing a structural theory of pro-
grams to express program design, manipulation, and synthesis mathematically 
whereby program properties can be derived from a program’s mathematical 
representation. In this context, a program’s design is an expression, program 
manipulation is expression manipulation, and program synthesis is expression 
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right : Exp
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Fig. 2. Use case slice for feature ap 

Test class the atree field appears as it is introduced by the aspect. In the operations 
compartment, the method extension and constructor extensions are shown. The 
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4.1   AHEAD in a Nutshell 

An AHEAD model of a domain is an algebra that offers a set of operations, where 
each operation implements a feature. We write M = {f, h, i, j} to mean model M 
has operations (or features) f, h, i, and j. AHEAD categorizes features as constants 
and functions. Constant features represent base programs, those implemented with 
standard classes and interfaces. For example:  

f   // a program with feature f 
h   // a program with feature h 

Function features represent program refinements or extensions that add a feature to 
the program received as input. For instance: 

i•x    // adds feature i to program x 
j•x     // adds feature j to program x 

where • means function application. The design of a program is a named expression 
which we refer as a program equation. For example: 

prog1 = i•f     // prog1 has features f and i 
prog2 = j•h     // prog2 has features h and j 
prog3 = i•j•h      // prog3 has features h,j,i  

4.2   An Algebraic Model of EPL 

The AHEAD model of EPL is algebraically expressed as a set of features: 

EPL = { lp, le, ap, ae, np, ne } 

These features are themselves formed with classes, interfaces, class extensions, and 
interface extensions. They are denoted as follows (where subscripts identify the 
feature an element belongs to): 

 

Thus features are hierarchical modules that can contain any number of nested 
modules. Two features are composed by composing its elements by name (ignoring 
subscripts). The elements that do not have a match are simply copied to the result of 
the composition. For example, the composition of ap•lp is defined as follows: 

A similar composition scheme is only depicted throughout Chapter 4 in Jacobson and 
Ng’s book [15], where it is denoted with symbol +, however its realization is not 
further described nor elaborated. 

lp = { Explp, Litlp, Testlp } le = { Exple, Litle, Testle }
ap = { Addap, Testap }  ae = { Addae, Testae }
np = { Negnp, Testnp } ne = { Negne, Testne }

lp = { Explp, Litlp, Testlp }
ap = { Addap, Testap }
ap•lp = { Explp, Litlp, Addap, Testap•Testlp }

evaluation. AHEAD (Algebraic Hierarchical Equations for Application Design), is a 
realization of FOP that is based on a unification of algebras and step-wise 
development [8][11]. FOP research predates the work on use case slices and aspects. 
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Scalability is a prominent concern in any software project. We explain now how 
AHEAD addresses this concern. Normally, a program is specified in AHEAD by a 
single expression. By organizing feature models as matrices (or k-dimensional cubes), 
a program is specified by k expressions, one per dimension. This can drastically 
simplify program specification, from O(nk) to O(nk) for k dimensions and n features 
per dimension [11]. This complexity reduction is key for the scalability of AHEAD’s 
program synthesis. Such matrix (or cube) is called an Origami Matrix. An example is 
the EPL matrix in Figure 1. Each dimension of a matrix is represented with a model. 
In EPL, the dimensional models are: 

Operation = { print, eval } 
Datatype = { Lit, Add, Neg } 

operation= eval•print = Πiε(eval,print)Operation 

datatype  = Add • Lit = Πjε(Add,Lit)DataType 

where ΠiεX denotes dot composition of a given sequence X of features. If we denote 
MLA as the projected EPL matrix that forms the intersection of Lit and Add rows on 
both columns, LitAdd program can be algebraically expressed as: 

The algebraic representation of origami matrices has proven an useful abstraction to 
analyze matrix orthogonality, a property that guarantees that the same program is pro-
duced for any valid (conforming to design constraints [11]) composition order [9].  

AHEAD has been successfully used to synthesize large systems (in excess of 250K 
Java LOC) from program equations [11]. Currently AHEAD does not support 
AspectJ, it uses a language called Jak that can express all the types of extensions 
required by EPL. We are working on extending and integrating an algebraic model of 
AspectJ [18] into ATS. Nonetheless, the composition model described for EPL still 
holds. Furthermore, FOP ideas have been used to implement an AspectJ version of the 
core tools of AHEAD which generates 207+KLOC of which around 30% is aspect 
code [19]. 

P = Πiε(eval,print)Πjε(Add,Lit)MLAoperation,datatype
= ae • le • ap • lp
= { Addae, Testae } • { Exple, Litle, Testle } 
• { Addap, Testap } • { Explp, Litlp, Testlp }

= { Addae•Addap, Litle•Litlp, Exple•Explp, Testae•Testle•Testap•Testlp}

Features are implemented as hierarchies of directories and can contain multiple 
artifacts other than source code. Artifact types are distinguished by the names of the 
file extensions. Composition of non-code artifacts follows the same principles of 
source code composition [10] and feature elements are composed when they match 
both file name and extension. The AHEAD Tool Suite (ATS) provides tailored tools 
for different artifacts which are selected by ATS’s composer tool according to the 
artifact type. Currently ATS supports composition of equation files, extended Java 
files, XML files, and grammar files [8]. Since AHEAD treats all artifacts from all life 
cycle stages equally, we find that the ideas of use case slides and use case modules are 
unified or indistinguishable in AHEAD. 

Each model lists the features in each dimension. To specify a program, one expression 
is defined per dimension. For instance, a specification of program LitAdd is: 
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slices while the second describes an algebraic foundation of program composition and 
synthesis.  

On closer inspection there are several similarities. Use case slices consist of 
classes, interfaces and their extensions implemented with aspects; which is identical 
to the structure of features. Both features and use case slices can be nested 
hierarchically and also aim at modularizing non-code artifacts. Similarly, both have 
relative strengths and drawbacks which we analyze next. 

One one hand, we presume that use case slice notation may be easy to adopt for 
aspect modeling as UML is a popular modeling language. However, we believe the 
research on use case slices lacks a clear composition model to map use case slices 
models to concrete working implementations. In terms of source code, the translation 
to AspectJ is missing an important compositional issue, precedence management. 
Similarly for other artifacts, we find unclear how such modularization is actually 
realized (implemented). 

We believe that the differences and similarities described can be exploited for the 
development of an aspect-based product line methodology that profits from both lines 
of work. A feature modeling notation based on use case slices that can ease the 
adoption by programmers, and an underlying scalable and multi-artifact composition 
model for program synthesis.  

Along the same lines, earlier work by Jacobson hints at the possibility of 
expressing use case models with a simple algebra of program extensions [14]. 
However this line of thought is not further pursued in the work of use case slices. We 
believe our work on AHEAD and FOP could provide a basis for an algebraic 
foundation for use case slices. We are unaware of any tools that support use case 
slices and generate AspectJ code from their models. In any case, such kind of tools 
would encounter the same sort of problems of program synthesis of multiple artifacts 
faced and solved by AHEAD. 

6   Related Work 

In UML 2.0 a collaboration is a set of class instances that play different roles [21]. In 
that sense it is closer to the notion of collaboration-based designs which are the 
origins of AHEAD [10]. Though use case slices also treat several types of UML 
diagrams as part of a collaboration. 

A close line of work to use case slices is Theme [8]. A theme, is an element of 
design: a collection of structures that represent a feature [8]. Themes are classified 
into: base themes that share structure and behaviour with other themes, and 
crosscutting themes that correspond to aspects. Programs are built by composing 

5   Integrating Use Case Slices and Features 

The last two sections explore two seemingly disjoint facets of aspect-based product 
line development. The first proposes modeling aspect-based features with use case 

On the other hand, the strength of AHEAD is its composition model that supports 
scalable composition of multiple artifacts. However, for programmers unfamiliar with 
algebraic notation it may be less intimidating to adopt a familiar modeling notation 
such as UML. 
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in an algebraic notation similar to AHEAD’s. 
Several extensions of UML to model product lines have been proposed. One 

example is Product Line UML-based Software engineering (PLUS) [13] which is a 
method that brings FODA [12] modelling ideas to the realm of UML diagrams. PLUS 
models features as packages of use cases that are stereotyped with the kind of feature 
they implement such as optional, alternative, etc. Another example is the work of 
Ziadi and Jézéquel that describes extensions to model variability in class and 
sequence diagrams and an algorithm for product derivation based on UML model 
transformations [23]. To what extent this line of work could benefit from aspect 
research and algebraic modeling is an open question. 

There are several pieces of work on aspect-based product line engineering. 
Anastasopoulus and Muthig propose criteria to evaluate AOP as a product line 
implementation technology [3]. Alves et al. study product line evolution and 
refactoring techniques applied to mobile games [2]. Loughran et al. merge natural 
language processing and aspect oriented techniques to provide tool support for 
analyzing requirements documents and mining commonality and variability for 
feature modeling [20]. 

7   Conclusions and Future Work 

In this paper we compare and contrast use case slices and FOP as complimentary 
facets in the modeling and synthesis of aspect-based product lines. We briefly 
sketched how these two lines of work can serve as the foundation of a product line 
methodology that exploits their synergy, feature modeling based on use case slices 
and program synthesis based on FOP.  

We plan to explore how to model algebraically and implement advanced use case 
slices functionality such as parameterized pointcuts. A promising venue is the work 
on Aspectual Mixin Layers (AML) which allows extensions of pointcuts and pieces of 
advice using mixin technology [5]. AML provide some support for the 
parameterization of use case slices. Similarly, the work by Trujillo et al. could be used 
as a basis for the composition of UML diagrams that are part of a use case slice 
collaboration [22]. 
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