
T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 6 – 16, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Modeling Features in Aspect-Based Product
Lines with Use Case Slices:
An Exploratory Case Study

Roberto E. Lopez-Herrejon1 and Don Batory2

1 Computing Laboratory, University of Oxford, England
2 Department of Computer Sciences, University of Texas at Austin, USA

rlopez@comlab.ox.ac.uk, batory@cs.utexas.edu

Abstract. A significant number of techniques that exploit aspects in software
design have been proposed in recent years. One technique is use case slices by
Jacobson and Ng, that builds upon the success of use cases as a common
modeling practice. A use case slice modularizes the implementation of a use
case and typically consists of a set of aspects, classes, and interfaces. Work on
Feature Oriented Programming (FOP) has shown how features, increments in
program functionality, can be modularized and algebraically modeled for the
synthesis of product lines. When AspectJ is used in FOP, the structure of
feature modules resembles that of use case slices. In this paper, we explore the
relations between use case slices modeling and FOP program synthesis and
describe their potential synergy for modeling and synthesizing aspect-based
product lines.

1 Introduction

A significant number of techniques that exploit aspects in the realm of design have
been proposed in recent years [4]. One technique, proposed by Jacobson and Ng [15],
is use case slices, which are modular implementations of use cases. Typically, the
implementation of a use case slice consists of a set of aspects, classes, and interfaces.
A similar structure appears when aspects are used to implement features [16][19],
which are increments in program functionality, with Feature Oriented Programming
(FOP) [10][11], a technology that studies feature modularity in program synthesis for
product lines.

In this paper, we present a simple product line example and its implementation in
AspectJ. This example helps us illustrate how use case slices can model features in
aspect-based product lines and how features can be algebraically modeled for
program synthesis. We analyze the relations between use case slices modeling and
FOP program synthesis and describe how their potential synergy can serve as a
foundation of a methodology for modeling and synthesizing aspect-based product
lines.

2 Product Line Example

To illustrate the similarities between use case slices and features we use a simple
product line based on the Extensibility Problem [17]. This problem has been widely

 Modeling Features in Aspect-Based Product Lines 7

studied within the context of programming language design, where the focus is
achieving data type and operation extensibility in a type-safe manner. Our focus is on
designing and synthesizing a family of programs that we call the Expressions Product
Line (EPL) [17]. Next we describe in detail this product line and its implementation
using AspectJ.

2.1 Example Description

EPL supports a mix of new operations and datatypes to represent expressions of the
following language:

Exp :: = Lit | Add | Neg
Lit :: = <non-negative integers>
Add :: = Exp "+" Exp
Neg :: = "-" Exp

Two operations can be performed on expressions of this grammar:

1) Print displays the string value of an expression. The expression 2+3 is repre-
sented as a three-node tree with an Add node as the root and two Lit nodes as
leaves. Operation Print, applied to this tree, displays the string “2+3”.
2) Eval evaluates expressions and returns their numeric value. Applying the oper-
ation Eval to the tree of expression 2+3 yields 5 as the result.

An extra class Test creates instances of the datatype classes and invokes their
operations.

A natural representation for EPL is a two-dimensional matrix [17]. Rows represent
datatypes and columns specify operations. Each matrix entry is a feature that
implements the operation, described by the column, on the data type, specified by the
row. As a naming convention throughout the paper, we identify matrix entries by
using the first letters of the row and the column, e.g., the entry at the intersection of
row Add and column Print is named ap and implements operation Print on data
type Add. This matrix is shown in Figure 1 where feature names are encircled.

A program member of this product line is composed from the set of features that
are at the intersection of the set of operations (columns) and datatypes (rows) selected
for the program. EPL is formed by all the possible combinations of selections of rows
and columns. For instance, the program that implements Print and Eval operations
on datatypes Lit and Neg is composed with features lp, le, np, and ne.

∆Test
∆run()

∆Neg
int eval()

∆Test
Neg ntree

∆Test()
∆run()

Neg

Exp expr

Neg(Exp)

void print()

∆Test
∆run()

∆Add
int eval()

∆Test
Add atree

∆Test()
∆run()

Add

Exp left

Exp right

Add(Exp,Exp)

void print()

∆Test
∆run()

∆Lit
int eval()

∆Exp
int eval()

Test

Lit ltree

Test()

void run()

Lit

int value

Lit(int)

void print()

Exp

void print()

∆Test
∆run()

∆Neg
int eval()

∆Test
Neg ntree

∆Test()
∆run()

Neg

Exp expr

Neg(Exp)

void print()

∆Test
∆run()

∆Add
int eval()

∆Test
Add atree

∆Test()
∆run()

Add

Exp left

Exp right

Add(Exp,Exp)

void print()

∆Test
∆run()

∆Lit
int eval()

∆Exp
int eval()

Test

Lit ltree

Test()

void run()

Lit

int value

Lit(int)

void print()

Exp

void print()

Print Eval

Lit

Add

Neg

lele

aeae

nene

lplp

apap

npnp

Fig. 1. Matrix representation of EPL

 R.E. Lopez-Herrejon and D. Batory 8

2.2 AspectJ Implementation

Let us now analyze how the features of EPL are implemented in AspectJ [17]. Recall
that feature lp implements operation print on datatype Lit. Thus the
implementation of this feature contains: a) interface Exp that declares method print,
b) class Lit with a value field, a constructor, and the implementation of print
method, and c) class Test with a field ltree of type Lit, a constructor that creates
an instance of Lit and assigns it to ltree, and method run that calls method print
on ltree. See entry lp in Figure 1 for the short depiction of this feature’s contents.
lp can be implemented as follows1:

Feature lp constitutes the base code in our product line because it contains only
standard Java classes and interfaces which are used by all the other features of EPL.

Let us now consider the implementation of feature le. This feature implements
operation eval on Lit datatype. It adds the definition of method eval to an existing
interface Exp using an inter-type declaration as follows2:

// Exple.java
aspect Exple {
 abstract int Exp.eval();
}

We refer to this as an interface extension [10][11] which we denote with ∆Exp in
Figure 1. Similarly, we refer to the additions to existing classes as class extensions
[10][11], which are also shown in Figure 1 with symbol ∆ prefixed to the name of the
class. Feature le makes class extensions for classes Lit and Test. It adds a new
method to class Lit as follows:

// Litle.java
aspect Litle {
 int Lit.eval() { return value; }
}

1 Class members privileges are omitted for simplicity.
2 Aspect file names are formed with the name of the class or interface they are extending

followed by the feature they help implement. This naming scheme was chosen to make the
connection to the algebraic model described in Section clearer.

// Exp.java
interface Exp { void print(); }

// Lit.java
class Lit implements Exp {

int value;
Lit (int v) { value = v; }
void print() {

System.out.print(value);
}

}

// Test.java
class Test {

Lit ltree;
Test() { ltree = new Lit(10); }
void run() { ltree.print(); }
void static main(String[] args) {

Test test = new Test();
test.run();

}
}

4

We refer to this type of extension as method addition [10][11] and denote it in Figure 1
with the header of the method. Feature le also executes an additional statement in

 Modeling Features in Aspect-Based Product Lines 9

method run of class Test that calls method eval on field ltree. We call this a method
extension [10][11] and denote it as ∆run() in Figure 1 . The implementation uses a
pointcut that captures the executions of method run and gets a reference to the object
target of the execution, and an around advice that contains the additional statement as
shown below:

// Testle.java
aspect Testle {
 pointcut LPRun(Test t): execution(void Test.run()) && target(t);
 void around(Test t) : LPRun(t) {
 proceed(t); System.out.println(t.ltree.eval());
 }
}

Seasoned AspectJ programmers may wonder at this point why the contents of the three
aspects are not aggregated (copied) into a single one. In previous work we showed that
composing aspects in this way is not equivalent to their separate file definitions under
the current AspectJ precedence rules [18]. Additionally, keeping classes and interfaces
extensions into separate aspects improves program understandability [6] and simplifies
the algebraic composition model described in Section 4.

As another example, consider the implementation of feature ap. First this feature
implements operation print on the Add datatype as follows:

// Add.java
class Add implements Exp {
 Exp left, right;
 Add (Exp l, Exp r) { left = l; right = r; }
 void print(){ left.print(); System.out.print("+"); right.print();}
}

// Testap.java
aspect Testap{
 Add Test.atree;
 pointcut APTest(Test t): execution(Test.new()) && target(t);
 void around(Test t) : APTest(t) {
 proceed(t); t.atree = new Add(t.ltree, t.ltree);
 }
 pointcut APRun(Test t):execution (void Test.run(..)) && target(t);
 void around(Test t) : APRun(t) { proceed(t); t.atree.print();}
}

Notice that Testap implements a construction extension denoted as ∆Test() in
Figure 1. The implementation of the rest of the features is similar to the ones just
described.

An EPL program is created by passing all the names of the files that implement its
features to the AspectJ compiler or weaver ajc [5]. When several pieces of advice
apply to the same join point an order of execution must be specified following
AspectJ precedence rules as the order is in general undefined. For example, if in the
program that implements both operations for Lit and Add (which we call LitAdd)

3 In [18] we describe several compositional problems that precedence clauses cause.

we would like to execute the method extensions to run in order ap, followed by that
in le, and ae, we would need to define a precedence clause in an aspect as follows3:

 R.E. Lopez-Herrejon and D. Batory 10

aspect Ordering {
 declare precedence : Testae, Testle, Testap;
}

The whole composition of LitAdd becomes:
ajc Exp.java Lit.java Test.java Exple.java Litle.java Testle.java
Add.java Testap.java Addae.java Testae.java Ordering.java
-outjar LitAdd.jar

With this example, we present how use case slices can be used to model EPL features.

3 Use Case Slices

Use cases are a common technique to capture system functionality and requirements
using UML [21]. However the implementation of use cases using traditional object
oriented languages and techniques typically breaks use case modularity as their
implementation is scattered and tangled in the modules supported by the underlying
OO languages. This is the observation that Jacobson and Ng exploit to make the
connection with the work on aspects [15]. They propose use case slices as a
modularization unit to address these problems.

A use case slice contains ([15] pages 111-112):

• Collaboration A collaboration is a set of UML diagrams (interaction, class,
etc.) that describe how a use case is realized.

• Specific Classes Classes that are specific to a use case realization.
• Specific Extensions Extensions to existing classes specific to a use case

realization.

A use case slice is modeled as a special kind of package with stereotype << use
case slice >>. The package has the following basic contents:

• Use case slice name.
• A collaboration symbol (a dashed ellipse) and its name.
• Specific classes. Denoted with the standard UML symbol for classes. These

classes may have any relationships of standard class diagrams.
• Specific aspects. Denoted with a symbol similar to UML class. It has stereotype

<<aspect>>. This symbol has two compartments, one for the pointcuts and
one for the class extensions. Aspects may have the same relations between them
as supported by AspectJ.

Let us illustrate a use case slice with feature ap as shown in Figure 2. Recall that this
feature implements the print operation on the Add datatype. First, notice the name
of the use case slice and its collaboration. Since ap adds new class Add, this class is
represented using the standard class symbol. This feature also contains one
constructor extension and one method extension to class Test. The pointcuts
compartment of the Testap aspect contains the definitions of pointcuts APTest and
APTRun. The class extensions compartment contains class Test as all the extensions

.

.
.

that this aspect implements are for this class. In the attributes compartment of the

 Modeling Features in Aspect-Based Product Lines 11

extensions are given names for reference, apAtree() and apRun(), and specify the
type of advice (around), the pointcuts they apply to (APTest and APRun) and a
denotation of their operations, addf and testf (names chosen arbitrarily) for adding
and testing a field (in this case atree).

Use case slices have the same relationships as use cases, extend,
generalization, and include with a comparable semantics. This relationship can
be used to describe how a program of the product line can be composed. To the best of
our understanding, use case slices do not provide modeling support for the variability
entailed by a product line design, thus a use case slice diagram conveys the design of a
single member of a product line. Use case slices can be further modularized into use
case modules, where each slice modularizes a different model of the use case lifecycle:
analysis, design, implementation, testing, etc. [15] (Chapters 4 and 10).

In this section we described the basic ideas of use case slices. However, they can
provide more sophisticated modeling functionality . For instance, their pointcuts,
classes, and class extensions can be parameterized, using UML templates, to allow
extra design flexibility [15]. In next section, we present how EPL can be algebraically
modeled with FOP.

4 Feature Oriented Programming (FOP)

Feature Oriented Programming (FOP) is a technology that studies feature modularity
and its use in program synthesis. FOP aims at developing a structural theory of pro-
grams to express program design, manipulation, and synthesis mathematically
whereby program properties can be derived from a program’s mathematical
representation. In this context, a program’s design is an expression, program
manipulation is expression manipulation, and program synthesis is expression

<<use case slice >>
ap

Add

Add(Exp, Exp)
print(): void

left : Exp
right : Exp

Add

Add(Exp, Exp)
print(): void

left : Exp
right : Exp

pointcuts
APTest= execution(Test.new())

&& target(t)
APRun= execution (void Test.run(..))

&& target(t)

<<aspect>>
Testap

class extensions

Test

atree: Add

operations
apAtree() { around (APTest) addf }
apRun() { around (APRun) testf }

pointcuts
APTest= execution(Test.new())

&& target(t)
APRun= execution (void Test.run(..))

&& target(t)

<<aspect>>
Testap

class extensions

Test

atree: Add

operations
apAtree() { around (APTest) addf }
apRun() { around (APRun) testf }

Test

atree: Add

operations
apAtree() { around (APTest) addf }
apRun() { around (APRun) testf }

ap

Fig. 2. Use case slice for feature ap

Test class the atree field appears as it is introduced by the aspect. In the operations
compartment, the method extension and constructor extensions are shown. The

 R.E. Lopez-Herrejon and D. Batory 12

4.1 AHEAD in a Nutshell

An AHEAD model of a domain is an algebra that offers a set of operations, where
each operation implements a feature. We write M = {f, h, i, j} to mean model M
has operations (or features) f, h, i, and j. AHEAD categorizes features as constants
and functions. Constant features represent base programs, those implemented with
standard classes and interfaces. For example:

f // a program with feature f
h // a program with feature h

Function features represent program refinements or extensions that add a feature to
the program received as input. For instance:

i•x // adds feature i to program x
j•x // adds feature j to program x

where • means function application. The design of a program is a named expression
which we refer as a program equation. For example:

prog1 = i•f // prog1 has features f and i
prog2 = j•h // prog2 has features h and j
prog3 = i•j•h // prog3 has features h,j,i

4.2 An Algebraic Model of EPL

The AHEAD model of EPL is algebraically expressed as a set of features:

EPL = { lp, le, ap, ae, np, ne }

These features are themselves formed with classes, interfaces, class extensions, and
interface extensions. They are denoted as follows (where subscripts identify the
feature an element belongs to):

Thus features are hierarchical modules that can contain any number of nested
modules. Two features are composed by composing its elements by name (ignoring
subscripts). The elements that do not have a match are simply copied to the result of
the composition. For example, the composition of ap•lp is defined as follows:

A similar composition scheme is only depicted throughout Chapter 4 in Jacobson and
Ng’s book [15], where it is denoted with symbol +, however its realization is not
further described nor elaborated.

lp = { Explp, Litlp, Testlp } le = { Exple, Litle, Testle }
ap = { Addap, Testap } ae = { Addae, Testae }
np = { Negnp, Testnp } ne = { Negne, Testne }

lp = { Explp, Litlp, Testlp }
ap = { Addap, Testap }
ap•lp = { Explp, Litlp, Addap, Testap•Testlp }

evaluation. AHEAD (Algebraic Hierarchical Equations for Application Design), is a
realization of FOP that is based on a unification of algebras and step-wise
development [8][11]. FOP research predates the work on use case slices and aspects.

 Modeling Features in Aspect-Based Product Lines 13

Scalability is a prominent concern in any software project. We explain now how
AHEAD addresses this concern. Normally, a program is specified in AHEAD by a
single expression. By organizing feature models as matrices (or k-dimensional cubes),
a program is specified by k expressions, one per dimension. This can drastically
simplify program specification, from O(nk) to O(nk) for k dimensions and n features
per dimension [11]. This complexity reduction is key for the scalability of AHEAD’s
program synthesis. Such matrix (or cube) is called an Origami Matrix. An example is
the EPL matrix in Figure 1. Each dimension of a matrix is represented with a model.
In EPL, the dimensional models are:

Operation = { print, eval }
Datatype = { Lit, Add, Neg }

operation= eval•print = Πiε(eval,print)Operation

datatype = Add • Lit = Πjε(Add,Lit)DataType

where ΠiεX denotes dot composition of a given sequence X of features. If we denote
MLA as the projected EPL matrix that forms the intersection of Lit and Add rows on
both columns, LitAdd program can be algebraically expressed as:

The algebraic representation of origami matrices has proven an useful abstraction to
analyze matrix orthogonality, a property that guarantees that the same program is pro-
duced for any valid (conforming to design constraints [11]) composition order [9].

AHEAD has been successfully used to synthesize large systems (in excess of 250K
Java LOC) from program equations [11]. Currently AHEAD does not support
AspectJ, it uses a language called Jak that can express all the types of extensions
required by EPL. We are working on extending and integrating an algebraic model of
AspectJ [18] into ATS. Nonetheless, the composition model described for EPL still
holds. Furthermore, FOP ideas have been used to implement an AspectJ version of the
core tools of AHEAD which generates 207+KLOC of which around 30% is aspect
code [19].

P = Πiε(eval,print)Πjε(Add,Lit)MLAoperation,datatype
= ae • le • ap • lp
= { Addae, Testae } • { Exple, Litle, Testle }
• { Addap, Testap } • { Explp, Litlp, Testlp }

= { Addae•Addap, Litle•Litlp, Exple•Explp, Testae•Testle•Testap•Testlp}

Features are implemented as hierarchies of directories and can contain multiple
artifacts other than source code. Artifact types are distinguished by the names of the
file extensions. Composition of non-code artifacts follows the same principles of
source code composition [10] and feature elements are composed when they match
both file name and extension. The AHEAD Tool Suite (ATS) provides tailored tools
for different artifacts which are selected by ATS’s composer tool according to the
artifact type. Currently ATS supports composition of equation files, extended Java
files, XML files, and grammar files [8]. Since AHEAD treats all artifacts from all life
cycle stages equally, we find that the ideas of use case slides and use case modules are
unified or indistinguishable in AHEAD.

Each model lists the features in each dimension. To specify a program, one expression
is defined per dimension. For instance, a specification of program LitAdd is:

 R.E. Lopez-Herrejon and D. Batory 14

slices while the second describes an algebraic foundation of program composition and
synthesis.

On closer inspection there are several similarities. Use case slices consist of
classes, interfaces and their extensions implemented with aspects; which is identical
to the structure of features. Both features and use case slices can be nested
hierarchically and also aim at modularizing non-code artifacts. Similarly, both have
relative strengths and drawbacks which we analyze next.

One one hand, we presume that use case slice notation may be easy to adopt for
aspect modeling as UML is a popular modeling language. However, we believe the
research on use case slices lacks a clear composition model to map use case slices
models to concrete working implementations. In terms of source code, the translation
to AspectJ is missing an important compositional issue, precedence management.
Similarly for other artifacts, we find unclear how such modularization is actually
realized (implemented).

We believe that the differences and similarities described can be exploited for the
development of an aspect-based product line methodology that profits from both lines
of work. A feature modeling notation based on use case slices that can ease the
adoption by programmers, and an underlying scalable and multi-artifact composition
model for program synthesis.

Along the same lines, earlier work by Jacobson hints at the possibility of
expressing use case models with a simple algebra of program extensions [14].
However this line of thought is not further pursued in the work of use case slices. We
believe our work on AHEAD and FOP could provide a basis for an algebraic
foundation for use case slices. We are unaware of any tools that support use case
slices and generate AspectJ code from their models. In any case, such kind of tools
would encounter the same sort of problems of program synthesis of multiple artifacts
faced and solved by AHEAD.

6 Related Work

In UML 2.0 a collaboration is a set of class instances that play different roles [21]. In
that sense it is closer to the notion of collaboration-based designs which are the
origins of AHEAD [10]. Though use case slices also treat several types of UML
diagrams as part of a collaboration.

A close line of work to use case slices is Theme [8]. A theme, is an element of
design: a collection of structures that represent a feature [8]. Themes are classified
into: base themes that share structure and behaviour with other themes, and
crosscutting themes that correspond to aspects. Programs are built by composing

5 Integrating Use Case Slices and Features

The last two sections explore two seemingly disjoint facets of aspect-based product
line development. The first proposes modeling aspect-based features with use case

On the other hand, the strength of AHEAD is its composition model that supports
scalable composition of multiple artifacts. However, for programmers unfamiliar with
algebraic notation it may be less intimidating to adopt a familiar modeling notation
such as UML.

 Modeling Features in Aspect-Based Product Lines 15

in an algebraic notation similar to AHEAD’s.
Several extensions of UML to model product lines have been proposed. One

example is Product Line UML-based Software engineering (PLUS) [13] which is a
method that brings FODA [12] modelling ideas to the realm of UML diagrams. PLUS
models features as packages of use cases that are stereotyped with the kind of feature
they implement such as optional, alternative, etc. Another example is the work of
Ziadi and Jézéquel that describes extensions to model variability in class and
sequence diagrams and an algorithm for product derivation based on UML model
transformations [23]. To what extent this line of work could benefit from aspect
research and algebraic modeling is an open question.

There are several pieces of work on aspect-based product line engineering.
Anastasopoulus and Muthig propose criteria to evaluate AOP as a product line
implementation technology [3]. Alves et al. study product line evolution and
refactoring techniques applied to mobile games [2]. Loughran et al. merge natural
language processing and aspect oriented techniques to provide tool support for
analyzing requirements documents and mining commonality and variability for
feature modeling [20].

7 Conclusions and Future Work

In this paper we compare and contrast use case slices and FOP as complimentary
facets in the modeling and synthesis of aspect-based product lines. We briefly
sketched how these two lines of work can serve as the foundation of a product line
methodology that exploits their synergy, feature modeling based on use case slices
and program synthesis based on FOP.

We plan to explore how to model algebraically and implement advanced use case
slices functionality such as parameterized pointcuts. A promising venue is the work
on Aspectual Mixin Layers (AML) which allows extensions of pointcuts and pieces of
advice using mixin technology [5]. AML provide some support for the
parameterization of use case slices. Similarly, the work by Trujillo et al. could be used
as a basis for the composition of UML diagrams that are part of a use case slice
collaboration [22].

References

1. AHEAD Tool Suite (ATS). http://www.cs.utexas.edu/users/schwartz
2. Alves, V., Matos, P., Cole, L., Borba, P., Ramalho, G.: Extracting and Evolving Game

Product Lines. SPLC (2005)
3. Anastasopoulus, M., Muthig, D.: An Evaluation of Aspect-Oriented Programming as a

Product Line Implementation Technology. ICSR (2004)
4. AOSD Europe. Survey of Analysis and Design Approaches. Deliverable D11.

themes with a set of binding specifications. Thus Theme and AHEAD classify
features in a similar way, but their composition mechanism is significantly different.
Also, to the best of our knowledge there is no tool support for this approach. It would
be interesting to explore if the composition mechanism of Theme could be expressed

 R.E. Lopez-Herrejon and D. Batory 16

8. Baniassad, E.L.A, Siobhán, C.: Theme: An Approach for Aspect-Oriented Analysis and
Design. ICSE (2004)

9. Batory, D.: Feature Oriented Programming. Class Notes. UT Austin. Spring (2006)
10. Batory, D., Lopez-Herrejon, R.E., Martin, J.P.: Generating Product-Lines of Product-

Families. ASE (2002)
11. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE TSE,

June (2004)
12. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and Applica-

tions. Addison-Wesley (2000)
13. Gomaa, H.: Designing Software Product Lines with UML. From Use Cases to Pattern-

Based Software Architectures. Addison-Wesley (2004)
14. Jacobson, I.: Use cases and Aspects — Working Seemlessly Together. JOT. July (2003)
15. Jacobson, I., Ng, P.: Aspect-Oriented Software Development with Use Cases. Addison-

Wewley (2004)
16. Lopez-Herrejon, R.E., Batory, D.: Using AspectJ to Implement Product-Lines: A Case

Study. Tech. Report UT Austin CS. TR-02-45. September (2002)
17. Lopez-Herrejon, R.E., Batory, D., Cook, W.: Evaluating Support for Features in Advanced

Modularization Techniques. ECOOP (2005)
18. Lopez-Herrejon, R.E., Batory, D., Lengauer, C.: A disciplined approach to aspect

composition. PEPM (2006)
19. Lopez-Herrejon, R.E., Batory, D.: From Crosscutting Concerns to Product Lines: A Func-

tion Composition Approach. Tech. Report UT Austin CS. TR-06-24. May (2006)
20. Loughran, N., Sampaio, A., Rashid, A.: From Requirements Documents to Feature Models

for Aspect Oriented Product Line Implementation. MDD in Product Lines at MODELS
(2005)

21. Pilone, D., Pitman, N.: UML 2.0 In a Nutshell. A Desktop Quick Reference. O’Reilly
(2005)

22. Trujillo, S., Batory, D., Diaz, O.: Feature Refactoring a Multi-Representation Program into
a Product Line. GPCE (2006)

23. Ziadi, T., Jézéquel, J.-M.: Software Product Line Engineering with the UML: Deriving
Products. FAMILIES project research book. To appear in Springer LNCS.

5. Apel, S., Leich, T., Saake, G.: Aspectual Mixin Layers: Aspects and Features in Concert.
ICSE (2006)

6. Apel, S., Batory, D.: When to Use Features and Aspects? A Case Study. GPCE (2006)
7. AspectJ, http://eclipse.org/aspectj/

	Introduction
	Product Line Example
	Example Description
	AspectJ Implementation

	Use Case Slices
	Feature Oriented Programming (FOP)
	AHEAD in a Nutshell
	An Algebraic Model of EPL

	Integrating Use Case Slices and Features
	Related Work
	Conclusions and Future Work
	References

