
Chapter 7

LDPC Codes and Differential
Modulations

7.1 Introduction

This chapter investigates the use of differentially encoded (DE) modulations
concatenated with low-density parity-check (LDPC) codes. The chapter is
logically divided in two parts.

In the first part of this chapter (from Section 7.2 till Section 7.5), we dis-
cuss the approach to the design of DE-LDPC coded scheme originally proposed
in [79]. Adopting the optimization technique described in Section 5.6, we show
a method to design good LDPC codes for DE modulations. We analyze the
optimized codes, gaining insights into their graph structures and highlighting
the differences between LDPC codes for DE modulations and standard LDPC
codes, i.e., optimized for transmission over a memoryless channel. We con-
sider the concatenation of an LDPC code with a differential modulator for
both phase shift keying (PSK) and quadrature amplitude modulation (QAM).
At the receiver side, we make an extrinsic information transfer (EXIT) chart-
based system performance evaluation, as described in Section 5.4. We compare
the performance of codes optimized for DE modulations with the performance
of standard LDPC codes. We show that LDPC codes optimized for DE mod-
ulations significantly outperform standard LDPC codes when concatenated
with DE modulations. Vice versa, the obtained optimized codes are shown
to be tailored specifically for the particular DE modulation format and the
considered receiver scheme: in other words, while they perform well if used
jointly with DE, they perform poorly with memoryless modulation schemes.
This will be shown to depend on the presence of a large fraction of degree-2
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In the second part of this chapter (Section 7.6 and Section 7.7), we dis-
cuss an iterative detection/decoding scheme based on the concatenation of an
outer soft-output differential detector and an inner LDPC decoder. The outer
detector makes use of a detection strategy, referred to as detection by multiple
trellises and originally introduced in [108], to perform trellis-based detection
over realistic channels. More precisely, we consider channels with unknown pa-
rameters and apply the concept of detection by multiple trellises using parallel
forward-backward (FB) algorithms (see Chapter 2 for more details). The key
idea of our approach consists, first, in properly quantizing the channel param-
eters and, then, in considering replicated coherent FB algorithms operating on
parallel trellises, one per hypothetical quantized value.

7.2
and DE-PSK

Consider the transmission side of an LDPC coded modulation scheme de-
scribed in Chapter 5 and shown in Figure 7.1. As a representative coded
modulation (CM) for the transmission system in Figure 7.1, we first consider
DE-PSK. For coherent detection, the corresponding CM-SISO module imple-
ments, with very low complexity, the FB algorithm. The performance of the
considered systems, first studied through an EXIT chart-based analysis, is
evaluated in terms of bit error rate (BER) versus bit SNR Eb/N0, where Eb

is the average received energy per bit and N0 is the one-sided AWGN power
spectral density. In all the considered simulations and optimizations, Gray
mapping over the PSK constellation is used.

In Figure 7.2 (a), EXIT charts are shown for a regular rate-1/2 (3, 6) LDPC
code, characterized by the degree distributions λ(x) = x2 and ρ(x) = x5. This
code without DE, mapped to a quaternary PSK (QPSK) modulation format,
is characterized by a good tradeoff, between complexity and performance,
for transmission over an AWGN channel. The EXIT curves are computed
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Figure 7.1: System model: transmitter side.

148

Serial Concatenation of LDPC Codes with PSK

CHAPTER 7. LDPC CODES AND DIFFERENTIAL MODULATIONS

variable nodes.



7.2. SERIAL CONCATENATION OF LDPC CODES 149
I 

at
 in

pu
t o

f 
L

D
PC

 C
N

D

I at input of LDPC VND (+DD)

IA

B
−1I

(a)

LDPC CND
LDPC VND only

LDPC VND+DD

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 10.8

I at input of LDPC VND (+DD)
I 

at
 in

pu
t o

f 
L

D
PC

 C
N

D
(b)

LDPC CND
LDPC VND only

LDPC VND+DD

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Figure 7.2: EXIT chart-based analysis of a system with serial concatenation
of an LDPC code and QPSK: (a) EXIT chart of a (3, 6) regular LDPC code
concatenated with a QPSK with DE (Eb/N0 = 2.5dB: tunnel is near pinch-
off ) and QPSK without DE (tunnel is open); (b) EXIT chart of an optimized
rate 1/2 LDPC code concatenated with a QPSK with DE (Eb/N0 = 0.8dB:
tunnel is at pinch-off ) and QPSK without DE (tunnel is closed).

at Eb/N0 = 2.5 dB: the solid curve is the EXIT curve of block A (LDPC
variable node detector, VND, and differential detector, DD) and the dotted
curve is the EXIT curve of block B (LDPC check node detector, CND)—for
more details on the VND and CND, see Section 5.3. Note that the SNR does
not influence the EXIT curve relative to the LDPC CND (the dotted one in
Figure 7.2). It is easy to see that the system is at pinch-off: convergence at
this and lower values of Eb/N0 is not possible. The dashed curve represents
the EXIT curve of the single LDPC VND: this corresponds to the QPSK
system without DE, i.e., LDPC BICM. It can be immediately seen that at
Eb/N0 = 2.5 dB the tunnel, relative to a transmission scheme without DE,
is open. The EXIT chart-based analysis then predicts that, for a bit SNR
slightly lower than 2.5 dB, the system with DE does not converge as opposed
to the system without DE, which instead converges.

We now apply the optimization technique presented in Section 5.6, forcing
the optimization algorithm to use check and variable nodes with specified
degree values. As representative values, check nodes of degree 3, 4, 8, and 15,
and variable nodes of degree 2, 3 and 4 have been used (these are reasonable
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choices, but the approach is general). After a few steps, the optimized degree
distributions converge to the following:

ρ3 = 0.3157 ρ4 = 0.2259 ρ8 = 0.0273 ρ15 = 0.4311
λ2 = 0.5473 λ3 = 0.0116 λ4 = 0.4411.

Figure 7.2 (b) shows the EXIT curves for this optimized code ensemble for
Eb/N0 = 0.8 dB: the solid and dashed curves correspond to block A and the
dotted curve to block B. It is immediate to recognize that the tunnel is at
pinch-off. The dashed curve in Figure 7.2 (b) is the EXIT curve of the LDPC
VND only (i.e., without DD): the tunnel is “heavily” closed, predicting that
the system with DE should perform significantly better than the single LDPC
code without DE. Note that the convergence SNR threshold predicted by the
results in Figure 7.2 (b) is around 0.9 dB.

In order to closely approximate the degree distributions obtained with the
optimization technique, we chose to design LDPC codes with codeword length
equal to 6000 binary symbols. In Figure 7.3, the performance of both op-
timized and regular (3, 6) LDPC codes with and without DE is shown. As
introduced in Section 5.3, we denote the maximum number of iterations be-
tween blocks A and B as Ni, and to the maximum number of standard LDPC
final decoding iterations (between VND and CND) as NLDPC. For DE sys-
tems, these maximum numbers of iterations are Ni = 30 and NLDPC = 30,
whereas for non DE systems a maximum number of 100 standard LDPC it-
erations is allowed—this makes the complexities of the two different systems
very similar. It can be observed that, for a regular (3, 6) LDPC code, while
good performance is obtained without DE (curve marked with diamonds), the
introduction of DE shifts the BER curve to the right, with an SNR loss of
about 1.2 dB (curve marked with squares). When the LDPC code is opti-
mized for DE, i.e., block A includes a CM-SISO module based on the FB
algorithm relative to the DE modulator, it is possible to see the inversion of
performance between the system with and without DE, as predicted by the
EXIT chart-based analysis. In other words, the use of the LDPC code opti-
mized for DE, in the system with DE (curve marked with triangles) leads to
good performance, i.e., it behaves as the regular (3, 6) LDPC code without
DE (curve with diamonds). On the other hand, the use of the LDPC code
optimized for DE, in the system without DE, i.e., LDPC BICM (curve with
crosses) causes unsatisfactory performance, with an SNR loss of more than 2
dB at a BER equal to 10−3, and low curve slope.

It is also possible to use the CM-SISO module, i.e., the DD, only once and
then pass the obtained reliability values to a standard LDPC decoder: the
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Figure 7.3: BER performance of the four communication schemes considered
in Figure 7.2 (a) and (b).

corresponding performance, obtained considering a maximum number of 100
LDPC iterations and using the previous regular (3, 6) LDPC code, is given
by the curve marked with stars. It is easy to recognize that the absence of
iterations between the CM-SISO block and the LDPC VND leads to a loss
of about 1.2 dB with respect to the system with iterative detection/decoding.
This can be interpreted noting that the standard LDPC decoder is based on
the assumption that a memoryless channel is used, as discussed in Chapters 3–
5. When a DE (and the corresponding CM-SISO module) is present, however,
the messages passed to the LDPC decoder are significantly correlated. This
implies that a large amount of information is embedded in the interdepen-
dence of the messages due to the presence of the DE and CM-SISO. The
LDPC decoder does not exploit this correlation, thus causing a non-negligible
performance degradation. Note that the performance degradation is not due
to an ill-conditioned interaction between the correlation structure of the mes-
sages and that of the LDPC codewords because the adopted LDPC code is
randomly generated, i.e., unstructured.

7.2. SERIAL CONCATENATION OF LDPC CODES
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7.3 Optimized LDPC Codes for PSK

In order to understand the features and limits of the described technique,
several optimizations have been carried out, for both a system using DE-PSK
and a system using PSK without DE. The set of allowed variable node degrees
is {2, 3, . . . , 12}, in order to limit the maximum degree and to enable the
construction of codes without short cycles. The set of check node degrees is
{3, 4, 5, 6, 7, 8, 9, 10, 11, 12} for rate-1/2 codes and {3, 6, 8, 9, 12, 16, 20, 24} for
rate-3/4 codes.

LDPC codes with codeword length equal to 12000 have been designed to
match the obtained optimized code ensembles. Each LDPC code has been
concatenated with both a PSK modulator and a DE-PSK modulator. In both
cases, Monte Carlo simulations have been performed. For the DE scheme, the
maximum number of decoding iterations is Ni = 30 and NLDPC = 30, whereas
for the scheme without DE, a maximum number of 100 standard LDPC itera-
tions is allowed. The decoding process stops if a valid codeword is found earlier.
In Figure 7.4, the BER curves relative to three LDPC codes optimized for the
presence of a DE-PSK modulator are shown: the solid curves are relative to
an LDPC code with rate R = 1/2 designed for DE-QPSK, the dashed curves
are relative to an LDPC code with rate R = 1/2 designed for DE-8PSK, and
the dotted curves are relative to an LDPC code with rate R = 3/4 designed
for DE-8PSK. For each LDPC code, the BER curve which exhibits a “cliff”
(i.e., the steepest point) at low SNR corresponds to the system for which the
LDPC code has been optimized, i.e., the system with DE-PSK (curves marked
“with ‘DE”); the other curve represents, instead, the performance of the same
LDPC code employed in a BICM scheme using PSK modulation with Gray
mapping (curves marked “without DE”). For each case, the SNR value corre-
sponding to the capacity limit for the considered coded modulation is shown
as a vertical line. The capacity limit for QPSK with code rate 1/2, i.e., with
a spectral efficiency of 1 bit per channel use, is 0.17 dB; the capacity limit
for 8PSK with code rate 1/2, i.e., with a spectral efficiency equal to 1.5 bit
per channel use, is 1.27 dB; the capacity limit for 8PSK with code rate 3/4,
i.e., with spectral efficiency equal to 2.25 bit per channel use, is 3.66 dB. All
the DE-PSK systems in Figure 7.4 are operating with about 1÷ 1.5 dB SNR
gap to capacity. In other words, the optimized codes guarantee near-capacity
performance, even without an exact phase reference.

In Figure 7.5, the performance of LDPC codes optimized for a memoryless
PSK modulator is analyzed, both in the presence and absence of DE. For
each code, the curve which exhibits a cliff at low SNR corresponds to a system
which uses a memoryless PSK modulator (curves marked “without DE”), while
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Figure 7.4: Simulated BER for 3 LDPC codes optimized for DE-PSK. Each
code is analyzed both with and without DE. In each case, the SNR corre-
sponding to the capacity bound is shown as a vertical line.

the other curve represents the performance of the same code concatenated
with a DE-PSK modulator (curves marked “with DE”). The system without
DE shows a performance advantage, in terms of SNR corresponding to the
cliff of the BER curve, of about 1.5 dB with respect to a system with DE.
However, it is important to note that LDPC codes optimized for and used
with a memoryless PSK modulator exhibit higher “error floor” with respect
to that obtained when the same LDPC codes are used with DE-PSK. The
presence of the BER floor in the memoryless PSK modulator is due to the
nature of the used code, which contains a small amount of short cycles. On
the other hand, the absence of the floor in the DE-PSK case can be associated
with the fact that the DE-PSK modulator can be interpreted as a rate-1
recursive encoder. As shown in [68], the presence of a rate-1 recursive encoder
can reduce short error patterns, responsible for the BER curve flattening, by
exploiting the so-called interleaving gain.

In Figure 7.6, the coefficients {ρj} and {λi} of several optimized LDPC
codes are shown. Different code ensembles with equal constraints are obtained
considering different initial seeds of the pseudo-random number generator em-
bedded in the random walk-based optimization algorithm. The code ensembles
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Figure 7.5: Simulated BER for 3 LDPC codes optimized for a memoryless
channel. Each code is concatenated with MPSK both with and without DE.
In each case, the SNR corresponding to the capacity bound is shown as a
vertical line.

in Figure 7.6 (a) and (b) are optimized for DE-QPSK with rate 1/2. The algo-
rithm operates over a limited parametric space, i.e., only a small set of possible
node degrees are allowed: the set of variable node degrees is {2, 3, . . . , 12} and
the set of check node degrees is {3, 4, . . . , 12}. These sets of values makes it
possible to design codes without short cycles and reasonable codeword length.
The variable node degree distributions {λi} in Figure 7.6 (c) correspond to
realizations of rate-1/2 LDPC codes optimized for transmission with BICM
PSK. The check node degree distributions appear to give little information,
due to the optimization algorithm “residual noise.” This is not surprising
since, as stated in [13], the performance of LDPC codes exhibit little depen-
dence on the check node degree distribution. Focusing our attention on the
coefficients {λi}, it is possible to observe that degree-2 variable nodes show a
characteristic behavior: in the LDPC code ensembles optimized for DE-QPSK,
λ2 > 0.5 and λ2 >> λi, i > 2. Very similar results, in terms of variable node
degree distributions with a predominance of λ2, were obtained also for LDPC
codes optimized for rate-1/2 DE-8PSK and rate-3/4 DE-8PSK. In the LDPC
code ensembles optimized for a PSK modulator, λ2 is still higher than the
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Figure 7.6: Bar diagrams of degree distribution coefficients of three realizations
of optimized LDPC code ensembles. In (a) and (b), variable and check node
degree distributions for three LDPC codes optimized for rate-1/2 DE-QPSK
are shown, respectively. In (c), the variable node degree distributions of three
LDPC codes optimized for rate-1/2 QPSK are shown.
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other coefficients, but not as high as for DE schemes (see Figure 7.6 (c)).
In [13], a stability condition on λ2 (inequality (5.30) in Chapter 5) for a

standard LDPC decoding algorithm is provided. According to this condition,
in order for the BER to approach zero, a necessary condition is λ2 < ε, where
ε is a parameter which depends on the channel and ρ(x). As a reference value,
in [13] the authors consider ε ' 0.4 for a rate-1/2 standard LDPC code. The
above discussed results show that this condition is violated if a CM is inserted
between the LDPC code and the channel, allowing, in the case of DE-PSK,
higher values of λ2. Note that an LDPC code with a high value of λ2 is a code
whose majority of variable nodes have degree 2, and this corresponds to code
graphs with a smaller number of edges (for a given code rate and codeword
length). In fact, if ` is the total number of edges in the graph and N is the
length of the LDPC codeword, it holds

N = `
∑

i

λi

i
.

Considering two codes with equal codeword length, variable node degree dis-
tributions {λi} and {λ′

i} and number of edges ` and `′, respectively, the ratio
between the number of edges in the code graph can be written as

`′

`
=
∑

i
λi
i∑

i
λ′

i
i

. (7.1)

If we substitute in (7.1) the degree distributions obtained optimizing for AWGN
and for DE, respectively, we obtain a reduction of the edges in the graph of
about 20%. Since the computational cost of the decoding algorithm for an
LDPC code is proportional to the number of edges in the graph, it follows
that LDPC codes optimized for DE-PSK have the pleasant side effect of al-
lowing decoding with lower complexity.

It is generally believed that degree-2 variable nodes exhibit weaker error
protection than higher-order variable nodes [13, 34]. However, considering
Figure 7.6 (a), one notices that the presence of a large percentage of degree-2
variable nodes is associated with an increase of the fractions of high-degree
variable nodes. A possible intuitive interpretation of this behavior is as follows.
While a standard LDPC decoder exploits all the available information from
the very first iteration, in the considered iterative detector/decoder for LDPC
coded modulations the information made available at the “channel input” of
the LDPC VND by the CM-SISO block increases with the iterations. This is
possible since, at every iteration, the VND passes information to the a priori
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Figure 7.7: Pictorial representation of a DE-16QAM modulation format.

input of the CM-SISO block (see Figure 5.3). Therefore, the critical part of the
decoding algorithm corresponds to the first iterations, when the information
from CM-SISO block is limited. High-degree variable nodes seem to help the
convergence of the iterative algorithm in the first iterations.

7.4 LDPC Codes for DE-QAM

In this subsection, the transmission of LDPC codes concatenated with 16QAM
and DE-16QAM is considered. In Figure 7.7, a pictorial representation of a
DE-16QAM modulation format is shown. One can observe that two of the
four bits at its input are encoded by a Gray mapped DE-QPSK modulator:
the obtained point is used to rotate, by an angle equal to a multiple of π/2, a
first-quadrant 16QAM constellation point selected by the other two bits (one
bit per dimension).

In Figure 7.8, the BER performance for two communication systems with
16QAM, with and without DE, is shown. Both systems use the same rate-7/8
LDPC code with codeword length 65536. For reference purposes, a vertical
dash-dotted line is also shown in correspondence to the capacity SNR, equal
to approximately 6.16 dB. The LDPC code is chosen from an ensemble of
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Figure 7.8: BER of a rate-7/8 LDPC code optimized for DE-16QAM and
concatenated with DE-16QAM (solid line) and with a 16QAM memoryless
modulator (dashed line). The vertical (dash-dotted) line indicates the SNR
corresponding to the capacity limit for 16-QAM at the considered code rate.

codes optimized for the presence of DE-16QAM modulator. For DE-QAM,
the maximum numbers of iterations are Ni = 30 and NLDPC = 30, whereas
for QAM without DE a maximum number of 100 standard LDPC iterations
is allowed. The solid curve corresponds to a system with a DE-16QAM and
the dashed curve corresponds to the system with a Gray mapped 16QAM.

The results in Figure 7.8 show that the code designed for DE-16QAM
performs better if used without DE. A possible interpretation of this result is
that the iteration gain of the DE-QAM SISO module, i.e., the gain enabled
by allowing the VND to pass messages to the CM-SISO, is very low. In other
words, from an EXIT chart point of view, the considered DE-QAM modulator
is similar to a memoryless, Gray-mapped QAM modulator, and this implies
that good codes for DE-QAM may also be good codes for QAM. However, the
memory introduced by the DE and the corresponding CM-SISO block leads to
strong sub-optimality of the processing at the LDPC VND and CND, which
assume an underlying memoryless channel. Another immediately noticeable
fact is that the BER curve relative to the system without DE is characterized
by an error floor, whereas the curve relative to the system with DE does not
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show any floor in the considered BER range. The floor in the QAM case can
be attributed to the presence of a small amount of short cycles in the code
graph, which is typical of random LDPC codes. Moreover, the differential
encoder can be reinterpreted as a rate-1 recursive encoder (at least for the
bits which select the quadrant) which, as observed for DE-PSK, is likely to
reduce short error patterns.

7.5 LDPC Codes for DE-PSK with Noncoherent
Detection

Since the design method described in Section 5.6 can take into account the
particular channel, as well as the modulation format and the detection algo-
rithm used in the CM-SISO block, the optimization has been carried out also
for LDPC codes concatenated with DE-PSK with noncoherent detection. In
the presence of phase uncertainty, the received observation can be modeled as

rk = cke
jθ + nk (7.2)

where θ is a random variable constant over the transmitted block and uni-
formly distributed over [0, 2π). While coherent detection can be based on
the standard FB algorithm in the CM-SISO module, noncoherent maximum a
posteriori (MAP) symbol detection requires some approximations. Following
the approach in [109, 110], one can derive a detection algorithm based on a
quantization of the phase rotation introduced by the channel. First, the a
posteriori probability (APP) are computed by the FB algorithm conditionally
on one hypothetical channel phase value; then, the conditional APPs are av-
eraged over all possible phase values. The a posteriori symbol probability can
be written as

P{ak|r} ∝ P{ak}p(r|ak)

= P{ak}
∫

θ
p(r|ak, θ)pθ(θ)dθ

(7.3)

where r is the vector of all received observations and ∝ means that the left
member is equal to the right member times a constant independent of ak. In
(7.3), p(r|ak, θ) can be interpreted as the extrinsic information generated by
a coherent FB algorithm, which assumes a phase rotation θ. The integral in
(7.3) can be approximated as a sum over a properly chosen discrete set P of
quantized phase values, obtaining:

P{ak|r}
∼∝ P{ak}

∑

θ∈P
p(r|ak, θ)P (θ) (7.4)
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where
∼∝ denotes an approximation in the relationship described by symbol ∝.

Since DE-PSK is insensitive to rotations of the received signal by multiples
of 2π/M , where M is the cardinality of the PSK symbols, the set of phases
can be a subset of [0, 2π/M) [109]. We then choose two possible sets: the
first includes 8 equally spaced points (in [110], this is shown to lead to neg-
ligible performance degradation), i.e., P = {0, 1

8
2π
M , . . . , 7

8
2π
M }, and the second

includes 4 equally spaced points, i.e., P = {0, 1
4

2π
M , 2

4
2π
M , 3

4
2π
M }. The optimiza-

tion algorithm is then run over the same set of node degrees as in the previous
subsection. The difference between the degree distributions of LDPC code
ensembles optimized for DE-PSK and noncoherent detection and those rela-
tive to coherent detection is not noticeable. This is true even if the number
of quantization levels used for the computation of (7.4) is reduced to two.
An intuitive explanation of this fact is that DE is a technique which makes
the communication system insensitive to phase uncertainties, so that the in-
troduction of a further, possibly continuous, phase uncertainty cannot induce
a severe system change. Moreover, theoretical results show that, asymptoti-
cally, the performance of a noncoherent system approaches that of a coherent
system [26,111–113].

In Figure 7.9, the performance of optimized LDPC codes for DE-PSK with
coherent and noncoherent detection is compared. The considered LDPC codes
are optimized for DE-QPSK (with rate 1/2) and DE-8PSK (with rates equal
to 1/2 and 3/4, respectively); the length of the codeword is 12000 and the
maximum allowed numbers of inner and outer iterations are Ni = 30 and
NLDPC = 30, respectively. The considered numbers of discrete phase values
are 8 (curves marked by a triangle) and 4 (curves marked by a square). The
curves relative to coherent detection are marked by a circle. It is clear that
the phase uncertainty introduces a limited performance loss, as long as the
phase quantization is sufficiently fine. Moreover, the results in Figure 7.9 show
that, while an 8-level phase quantization introduces negligible performance
loss, a 4-level quantization introduces a performance loss of about 0.4 dB.
Further analysis on the described noncoherent detection algorithm shows that
the number of quantization levels can be reduced to a minimum number of 2,
causing a performance loss of about 1.7 dB with respect to coherent detection.

7.6 Detection by Multiple Trellises

In the previous sections, LDPC codes were designed for AWGN and nonco-
herent channel, i.e., an AWGN channel with a constant and unknown phase
uncertainty. Practical channels are often influenced by a number of parame-
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Figure 7.9: BER of LDPC codes optimized for DE-QPSK (rate 1/2) and DE-
8PSK (rates 1/2 and 3/4) optimized both for AWGN channel and noncoherent
channel.

ters, which in general may vary with time. The problem of designing an effec-
tive CM-SISO algorithm in the presence of time-varying parameters is often
nontrivial and pursueing optimal solutions might entail a significant compu-
tational burden. In this section, a family of CM-SISO algorithms accounting
for time varying parameters in the channel/system model are described, with
particular emphasis on the phase uncertain channel and the fading channel.

In order to set the problem under study and present the mathematical
notation, we begin by reviewing a modified version of the FB algorithm suit-
able for generic finite-memory channels affected by time-invariant stochastic
parameters (see also Chapter 2 for more details on the design of FB algo-
rithms for channels with memory). Afterwards, we will describe the extension
to time-varying parameters and analyze two different multi-trellis SISO algo-
rithms.

7.6.1 Time-Invariant Parameters

Let us assume that the channel output is observed for a period of K + 1
symbol intervals. The channel can be completely described by the following
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joint probability density function (pdf)

p(rK
0 , ξ|aK

0 ) (7.5)

where rK
0 (or, simply, r) is the vector of the observables (r0, . . . , rK), ξ ∈ Dξ

is a stochastic constant channel parameter independent of the transmitted
data, Dξ is the domain of the channel parameter, and aK

0 is the vector of
information symbols ak transmitted through this channel. Note that (7.5) can
take into account possible coding of the information symbol sequence {ak}
into a code sequence {ck}. We remark that the parameter ξ could be either a
scalar parameter or a vector parameter, i.e., ξ could represent a whole set of
parameters.

The APP of an information symbol ak can be expressed as follows:

P{ak|rK
0 } ∝ p(rK

0 |ak)P{ak}

= P{ak}
∫

Dξ

p(rK
0 |ak, ξ).p(ξ) dξ (7.6)

If, conditionally on the parameter realization ξ, the channel has finite mem-
ory [26], the conditional pdf p(r|ak, ξ) can be computed via a standard FB
algorithm [17, 65]. This is possible whenever the transmission system can be
modeled as a finite state machine (FSM) whose input and output are, respec-
tively, the information symbol ak and a random variable (RV) whose statistics
depend only on the FSM state and the input symbol (see Chapter 2).

A simple approximation for the computation of the integral in (7.6) is
obtained by performing the following finite sum:

P{ak|r}
∼∝ P{ak}

L∑

i=1

p
(
r|ak, ξ

(i)
)

p(ξ(i)) (7.7)

where {ξ(1), . . . , ξ(L)} is a set of hypothetical quantized values for the channel
parameter whose actual values and number L are chosen to obtain the desired
accuracy in the numerical integration in (7.6). This corresponds to running
L standard FB algorithms in parallel, each one associated with a value ξ(i),
i = 1, . . . , L, and computing a weighted average of their outputs to obtain a
quantity approximately proportional to the APP.1

In the following, we denote the forward state metrics computed during
the forward recursion of an FB algorithm as {α(i)(sk)}, where the superscript

1A detailed explanation of the FB algorithm can be found in Chapter 2; further references
include [17,25,65].

CHAPTER 7. LDPC CODES AND DIFFERENTIAL MODULATIONS



7.6. DETECTION BY MULTIPLE TRELLISES 163

i refers to the FB algorithm associated with the quantized parameter value
ξ(i) and sk denotes the state of the FSM in the corresponding trellis diagram.
In particular, we assume that sk ∈ {0, . . . ,Ξ − 1}, where Ξ is the number
of states characterizing each trellis. Similarly, we denote the backward state
metrics associated with the i-th trellis diagram as {β(i)(sk)}.

Several practical scenarios can be cast within the model described by (7.5),
(7.6) and (7.7). In particular, as useful examples, we will consider phase-
uncertain and flat fading channels.

Phase-Uncertain Channel

In a communication scenario where the channel introduces a time-invariant
phase rotation, the stochastic channel parameter ξ can be equivalently mod-
eled as a phase rotation θ of the transmitted symbol sequence. The discrete-
time equivalent observation can be expressed as

rk = cke
jθ + nk (7.8)

where rk is the received observable, ck is the (possibly encoded) transmitted
symbol, and nk is a (noise) sample of a sequence of independent and identically
distributed (i.i.d.) zero mean Gaussian RVs.

Flat Fading Channel

The generic observation model given by (7.5) applies directly to a flat fading
channel, provided that ξ has the proper statistical distribution. In particular,
in a scenario with unresolvable multipath, ξ corresponds to a fading coefficient
f and the channel input-output relation can be expressed as follows:

rk = f ck + nk (7.9)

where, in the case of Rayleigh fading, f has a complex circularly-symmetric
Gaussian distribution with zero mean.

7.6.2 Time-Varying Parameters

The idea of detection by multiple trellises stems from an extension of the
previous static-parameter approach to a scenario with time-varying channel
parameters.

In order to obtain insights on the impact of the presence of a time-varying
parameter, let us consider a useful case study where the channel parameter
process {ξk} is discrete and block constant. Let us assume that ξk is uniformly
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distributed over the set {ξ(1), . . . , ξ(L)} and constant over blocks of length
N < K. In other words,

ξlN+i = ξlN+j ∀i, j ∈ {0, . . . ,N − 1}

and the realizations {ξk} are i.i.d. from block to block, i.e.,

p(ξlN , ξnN ) = p(ξlN )p(ξnN ) =
1
L2 ∀l 6= n .

As a consequence, the process {ξk} is a time-varying Markov chain, charac-
terized by an L × L transition matrix Pk = (p(k)

ij ) at the k-th epoch such
that

p
(k)
ij =

{
δij if k 6= N − 1 mod N
1
L

if k = N − 1 mod N

where δij denotes the Kronecker delta. We further assume that the information
sequence {ak} is encoded into a code symbol sequence {ck} by means of an
FSM. Considering that the observed sequence of length K comprises more
than one length-N block with constant channel parameter, the application
of a MAP detection strategy to this scenario leads to a time-varying trellis.
In Figure 7.10, a representative time-varying trellis for this illustrative block-
constant discrete parameter channel is shown. Within a block, i.e., for N − 1
consecutive time epochs, the trellis structure consists of L “coherent” trellises,
each assuming knowledge of ξ, one for each hypothetical quantized value of
ξ. In the sections of the various trellis diagrams connecting the states at the
end of a block with the states at the beginning of the next block, each state in
each coherent trellis is connected with the corresponding state in all the other
coherent trellises. In other words, each coherent trellis is connected with any
other trellis by the non-zero probability of variation of the parameter value.

A general formulation can be obtained considering an extension of the
standard FB algorithm to a channel whose statistics at epoch k are a function
of the state ξk of a Markov chain. Assume that, given {ξk}, the modulator-
channel pair can be described by an FSM, in the sense that the observable
statistics are functions of the state σk of an FSM whose input is the informa-
tion symbol sequence {ak}. Moreover, let us assume that (i) {ak} and {ξk}
are independent and (ii), given {ak} and {ξk}, the observables are indepen-
dent. Following the guidelines in [26,110,114,115], it can be shown that the a
posteriori probability of the symbol ak can be computed as follows:

P{ak|r} =
∑

(σk ,σk+1):ak

βk+1(σk+1)αk(σk) γk(σk, σk+1, ak) (7.10)
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Figure 7.10: Time-varying trellis for detection on block-constant discrete pa-
rameter channel.

where, as before, r denotes the vector of the observables and σk = (sk, ξk) is
the (extended) state of the system, the notation (σk, σk+1) : ak denotes “the
set of all (σk, σk+1) pairs compatible with the input symbol ak” and the branch
“metric” γk(σk, σk+1, ak) is defined as2

γk(σk, σk+1, ak) = p(rk|ak, ξk, sk) · P{ak} · P{ξk+1|ξk} (7.11)

in which P{ξk+1|ξk} is the transition probability between the Markov chain
states ξk and ξk+1, and p(rk|ak, ξk, sk) is the channel statistical description,
i.e., the observable PDF given the data sequence and the channel parameter ξk

computed at the observation value rk. The forward and backward “metrics”
αk(σk) and βk(σk) are obtained by the following recursions:

αk(σk) =
∑

(σk−1,ak−1):σk

αk−1(σk−1) γk−1(σk−1, σk, ak−1)

βk(σk) =
∑

(σk+1,ak):σk

βk+1(σk+1) γk(σk, σk+1, ak) .

The FB algorithm in (7.10) operates on a trellis with a number of states equal
to the number Ξ of states of the modulator-channel FSM times the number L

2Strictly speaking, log γk(σk, σk+1, ak) is a metric.
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of states of the channel parameter Markov chain. This can be interpreted as
a “super-trellis” comprising L trellises, each with Ξ states.

As special case, if the Markov chain {ξk} is time varying and the transition
matrix differs from the identity matrix only at time epochs k = Nl, with l ∈ N,
it can be easily shown that the forward and backward recursions in the above
extended FB algorithm are equivalent to the computation of L independent
forward and backward recursions in the Ξ-state trellises for N−1 time epochs.
Every N time epochs, the recursions involve, in general, all trellises. This cor-
responds to a block-constant discrete parameter ξk, which has been discussed
in Section 7.6.2 assuming uniform distribution of the parameter realization.
The corresponding super-trellis is pictorially exemplified in Figure 7.10.

Applying the above general formulation, the forward and backward metrics
αk(sk, ξk) and βk(sk, ξk) are functions of the “extended” state σk = (sk, ξk).
They can be computed recursively by running L separate coherent FB al-
gorithms, one for each parameter value. Every N time epochs, in general,
αk(sk+1, ξk+1) and βk(sk, ξk) depend on all forward and backward metrics in
all coherent trellises, respectively, i.e., a “mix” of the forward and backward
metrics in the coherent FB algorithms is performed. The above considerations
can be equivalently drawn by following the guidelines in [110], where a Markov
chain model for the channel phase is assumed.

At this point, the idea underlying detection by multiple trellises can be
outlined. As for a constant channel parameter ξ, several coherent FB algo-
rithms, characterized by forward and backward metrics α

(i)
k (sk) = αk(sk, ξ

(i))
and β

(i)
k (sk) = βk(sk, ξ

(i)), respectively, are run independently. The difference
with respect to the time-invariant channel parameter case is that every N time
epochs, the forward (backward) metrics in the different trellises are properly
“mixed” to account for the possible variation of the channel parameter. In the
following, we will refer to N as “inter-mix interval.”

The idea of considering parallel trellises which occasionally “talk” to each
other is appealing, since it is likely to allow both low-complexity and parallel
processing. In this sense, performing detection by multiple trellises can be
equivalently interpreted as an instance of the divide et impera approach to
tackle complicated problems with limited complexity.

We remark that the “mixing strategy” should be tailored for the specific
communication scenario at hand. Nevertheless, some general considerations
can be drawn:

• If ξ is time invariant, the quantity p(r|ak, ξ
(i)), computed via a coherent

FB algorithm, is expected to be maximum in correspondence to the value
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ξ(i) closest to the true3 channel parameter ξ. In fact, numerical analyses
carried out in several scenarios showed that the forward and backward
state metrics {α(i)

k (sk)} and {β(i)
k (sk)} exhibit an exponential decay in

the probability domain. as a function of the epoch k. This is due to the
fact that, denoting by α

(i)
k the vector of the forward metrics at epoch k

in the i-th trellis, the forward recursion can be equivalently expressed as

α
(i)
k = Γ(i)

k−1α
(i)
k−1 (7.12)

where Γ(i)
k is a matrix whose elements are the pdfs of the observable

rk conditioned on every possible transitions in the i-th coherent trel-
lis. In particular, as expected, the decay exponent is higher (i.e., de-
cay is slower) in the FB algorithm associated with the phase value ξ(i)

which is closest to the true channel parameter ξ, leading to state metrics
{α(i)

k (sk)} and {β(i)
k (sk)} relatively much larger than those computed by

the j-th FB algorithm with j 6= i.

• If ξ is time varying, we expect that {α(i)
k (sk)} and {β(i)

k (sk)} will try
to adapt to the parameter changes. This adaptiveness is limited by the
fact that state metrics exhibit a “low-pass filter” behavior, i.e., they
have memory and can change only slowly. This is due to the recursive
structure of the metric computation algorithm (7.12). In other words,
the FB metric computation process can be equivalently described as a
recursive time-varying vector filtering.

• While in standard applications an FB algorithm is insensitive to a possi-
ble multiplication of all forward or backward state metrics by a constant,
in the algorithm underlying (7.7), the relative weights of different trel-
lises are important. Accordingly, the multi-trellis SISO algorithm turns
out to be insensitive to a normalization of the metrics only if this nor-
malization is carried out, at a given epoch, over all forward or backward
state metrics of all parallel FB algorithms.

In the following, two possible “mix” strategies are described.

3Depending on the symmetry structure of the modulation code, i.e., the law encoding the
information symbols ak into the transmitted symbols ck, there can be a set of ξ values which
are optimal, in the sense that they are undistinguishable at the receiver. This may occur,
for example, in differential M -PSK transmitted over a phase uncertain channel, where phase
rotations of the observed sequences by multiples of 2π/M cannot be distinguished [109,110].
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Multi-Trellis SISO Algorithm 1

At each length-N interval, i.e., at epochs k = lN , l ∈ N, one could ma-
nipulate the forward metrics {α(i)

k (sk)} (and, similarly, the backward metrics
{β(i)

k (sk)}) according to the following rule:

α
(i)
k (sk)←−

L∑

j=1

α
(j)
k (sk) i = 1, . . . , L ∀sk (7.13)

where the notation “←−” represents the assignment of a new value. This
corresponds to averaging, for every given state sk, the metrics relative to all
quantized phase values: in other words, the metrics associated with a given
state in the various trellises are averaged. We will refer to this algorithm as
Algorithm 1. This is the exact APP computation algorithm for the channel
with block-constant parameter described at the beginning of Section 7.6.2, if
the observables are independent (conditionally on the parameter and the data
sequence).

Multi-Trellis SISO Algorithm 2

Assume that the channel is slowly time varying, i.e., assume that ξk can exhibit
small changes at adjacent epochs. If a suitable manipulation of {α(i)

k (sk)} and
{β(i)

k (sk)} is allowed only at epochs k = lN , with l ∈ N, the possible transitions
of the parameter from one quantization interval to another, occurring amid the
block, should be taken into account. Heuristically, it was discovered in [108]
that the impact of slow parameter changes within the block can be limited
by performing a normalization of the forward state metrics {α(i)

k (sk)} (and,
similarly, of the backward state metrics {β(i)

k (sk)}) as follows:

α
(i)
k (sk)←−

α
(i)
k (sk)∑

s′
k

α
(i)
k (s′

k)
i = 1, . . . , L ∀sk . (7.14)

where s′
k is a dummy state in the summation, running over all Ξ states of

a coherent trellis. This corresponds to a normalization of the state metrics
within each FB algorithm, i.e., trellis by trellis, as opposed to a normalization
amongst all trellises (as considered in Algorithm 1). We will refer to this
algorithm as Algorithm 2.
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Figure 7.11: Pictorial exemplification of the metric mixes in the two considered
algorithms.

Metric Mix in the Algorithms: a Comparison

The manipulations corresponding to (7.13) and (7.14) can be interpreted as
a combining or mixing of the metrics {α(i)

k (sk)} (similarly for the metrics
{β(i)

k (sk)}). Figure 7.11 gives a pictorial description of the described algorith-
mic family, highlighting the metric mix for both Algorithms 1 and 2. Each
depicted trellis diagram is associated with a coherent FB algorithm which
assumes a given channel parameter ξ(i), i = 1, . . . , L. The metric mix for Al-
gorithm 1 is shown to “manipulate” the metrics of all trellises summing all
metrics on a per-state basis, whereas the metric mix for Algorithm 2 “manipu-
lates” each trellis independently of the other trellises, performing a per-trellis
normalization. The mixing epochs {lN}, i.e., the beginning of the blocks, refer
to the forward metric computation. The backward metric computation mix is
performed at epochs {lN − 1}.

In both Algorithms 1 and 2, the value of L, i.e., the number of quantized
values of the channel parameter, must be chosen considering its impact on
both performance and complexity. In particular, by increasing L the perfor-
mance of the described detection algorithms can be improved, even though
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for sufficiently large value of L the performance improvement becomes negligi-
ble. On the other hand, it can be shown that the complexity of the detection
algorithms increases linearly with L [108].

7.7 LDPC Coded Schemes with Detection by Mul-
tiple Trellises

7.7.1 Phase-Uncertain Channels

In this subsection, a phase-uncertain channel is considered. First, the algo-
rithms introduced in Section 7.6 are specialized to this type of channel. Then,
these algorithms are analyzed and numerical results are given to characterize
their performance.

In Section 7.6.1, the model for a channel introducing a time-invariant phase
rotation θ is given. In this case, the APP of an information symbol ak is given
by (7.6). Assuming that θ is uniformly distributed, i.e., pθ(ϑ) = 1/2π for
ϑ ∈ [0, 2π) (and 0 otherwise), expression (7.7) specializes to the following:

P{ak|r}
∼∝ P{ak}

L∑

i=1

p(r|ak, ϑ
(i)) (7.15)

where {ϑ(1), . . . , ϑ(L)} is a set of L properly chosen phase values [79]. This
detection approach for channels with a block-constant random phase was used
in [109].

If we assume a slowly varying channel phase (i.e., the bandwidth of the
channel parameter process is small compared with the receiver filter band-
width), the discrete-time observable can be modeled as in (7.8) by incorporat-
ing a time-varying phase process {θk}4:

rk = cke
jθk + nk . (7.16)

where |ck| = 1 since DE-QPSK is considered and nk is a discrete-time com-
plex AWGN process with Var{nk} = (REb/N0)−1, in which R is the system
spectral efficiency in bits per channel use. By suitably modeling the stochastic
process {θk}, one could try to develop an exact APP algorithm. Since we do
not want to rely on the exact knowledge of the channel parameter statistics,
which is seldom available at the receiver, we resort to the multi-trellis SISO
algorithms described in Section 7.6.2.

4This discrete-time model can be obtained from the continuous-time multiplicative model
assuming that the phase process has a bandwidth much smaller than the signal bandwidth.
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In this section, we assume that transmission over an AWGN channel is
affected by a Wiener phase noise process {θk} described by the following re-
cursive relation:

θk = θk−1 + wk mod 2π (7.17)

where {wk} is a sequence of i.i.d zero mean Gaussian variables. The standard
deviation of wk, denoted as σθ, is representative of the phase noise intensity.

The adopted LDPC coded modulation scheme uses a regular (3,6) LDPC
code. The codeword length is set to 6000 bits. The decoder structure is that
described in Chapter 5. The number of inner and outer final iterations is
Ni = 30 and NLDPC = 30, respectively.

In Figure 7.12, the performance of the described schemes is shown in terms
of BER versus SNR. The performance for transmission over an AWGN chan-
nel without phase noise, considering an ideal coherent FB algorithm as inner
detector, is shown as a reference. The remaining curves show the performance
obtained with the considered algorithms. In particular, the curves marked as
“Alg1” and “Alg2” correspond to the performance of the schemes with Algo-
rithms 1 and 2, respectively. For each algorithm, several values of the phase
noise standard deviation σθ (given in degrees in the figure legend) are consid-
ered. In each case, the inter-mix interval N is heuristically optimized. The
results in Figure 7.12 show that, even in the presence of a significant phase
noise (for instance, σθ = 10◦), it is possible to “blindly” process the metrics of
the trellises while still achieving an SNR loss as limited as 1 dB. Heuristically,
the optimum value of N turns out to be inversely proportional to σθ. The
results in Figure 7.12 show that Algorithm 2 entails better performance than
Algorithm 1. In particular, for very strong phase noise, i.e., σθ = 10◦, Algo-
rithm 1 suffers an SNR penalty larger than 1 dB with respect to Algorithm 2.
This is due to the fact that Algorithm 1 completely erases the phase infor-
mation every N time epochs, whereas Algorithm 2 performs only a “trellis
balancing” as described in Section 7.6.2.

In Figure 7.13, a direct comparison between the performance (in terms of
BER as a function of the SNR) with Algorithm 1 and Algorithm 2, for a fixed
value of the inter-mix distance N = 15, and several values of σθ, is shown.
The value N = 15 optimizes the system performance at σθ = 5◦, as shown
in Figure 7.12. The remaining system and simulation parameters are those of
Figure 7.12. The BER curves show clearly that for values of the phase noise
parameter σθ lower than or equal to 5◦, decoding convergence is guaranteed
for approximately the same value of SNR, whereas if σθ > 5◦ convergence
is not guaranteed any longer, i.e., an error floor may appear. In particular,
the error floor characterizing the BER curve corresponding to Algorithm 2
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Figure 7.12: BER performance of LDPC coded DE-QPSK schemes based on
algorithms 1 and 2.

with σθ = 10◦ is due to the fact that, in order to cope with a strong phase
noise, Algorithm 2 needs a very small inter-mix interval N , as clearly shown
in Figure 7.12. From the results in Figure 7.13, one can conclude that the
described algorithms are blind with respect to the phase noise intensity as long
as this intensity is lower than the value considered in the algorithm design.

7.7.2 Flat Fading Channels

In this section, a flat fading channel is considered. First, we derive the FB
algorithm assuming a Markov chain model for the fading channel. Then, we
specialize the algorithm introduced in Section 7.6 to the case of flat fading
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Figure 7.13: BER performance, as a function of the SNR, of the considered
Algorithms 1 and 2. Several values of σθ are considered and N = 15.

channel, highlighting its similarities with the Markov chain-based approach.
Finally, the algorithms are analyzed and their performance is characterized
through numerical results.

The time-invariant flat fading model given in (7.9) can be extended to a
more realistic model with time-varying flat fading. Accordingly, the discrete-
time observable can be expressed as

rk = fk ck + nk (7.18)

where {fk} is the fading process.5 In the presence of Rayleigh fading, each
realization fk can be modeled as a zero-mean complex circularly symmetric

5We remark that this discrete-time model can be obtained from the continuous-time
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Figure 7.14: Partitioning of the fading complex plane into fading regions.

Gaussian RV. We assume that the fading process {fk} is modeled according to
Clarke [116, 117], with zero mean, unit variance and autocorrelation function
Rf (n) = J0(2πnfDT ), where J0(·) is the zero-th order Bessel function and
fDT is the maximum normalized Doppler shift, which characterizes the speed
of the fading process.

We now outline the derivation of a simple first-order Markov chain model
which approximately describes the evolution of the complex fading process.
Several papers deal with Markov chain modeling of the fading process—for
more details, we refer the reader to [118,119] and references therein. We first
partition the complex plane into Nphase angular sectors [2π i−1

Nphase
, 2π i

Nphase
),

i = 1, . . . ,Nphase. Then, we further split each sector into Nampl “ring-shaped”
regions. As a consequence, the complex plane is split into NphaseNampl sub-
domains {Dij} where Dij denotes the domain corresponding to the i-th phase
sector and the j-th ring-shaped region. In Figure 7.14, an illustrative example
with Nphase = 8 angular sectors and Nampl = 2 ring-shaped regions is shown.

By associating the fading regions with states, it is possible to describe
the evolution of the fading process through the use of a Markov chain. In

multiplicative fading model assuming that the fading process has a bandwidth much smaller
than the signal bandwidth.

CHAPTER 7. LDPC CODES AND DIFFERENTIAL MODULATIONS



7.7. LDPC CODED SCHEMES WITH DETECTION 175

general, considering a first-order Markov modeling for the fading process,6

the total number of fading states is L = NamplNphase. The probabilities of
transition through different fading states can be computed by proper numerical
integrations. For example, in order to evaluate the probability of transition
from the region Dij to the region Dkl, one can follow the method in [118],
which is accurate as long as the first-order Markov chain modeling of the
fading process holds and, in turns, corresponds to a scenario where the fading
process is sufficiently slow [119].

Since the fading process is modeled through a Markov chain whose state
corresponds to the current fading subregion Dij, it is possible to derive a
proper FB algorithm for the computation of the APPs of the transmitted
symbols {ak}. A general formulation accounting for a finite-memory channel
depending on a generic process {ξk} modeled by a Markov chain can be found
in [108].

In the following, we will assume that the symbols {ak} are quaternary
and encoded by a DE-QPSK encoder before transmission. The channel pa-
rameter ξk corresponds to the fading region f̂k ∈ {Dij} i = 1, . . . ,Nphase,
j = 1, . . . ,Nampl. The extended state described in Section 7.6.2 here is
σk = (sk, f̃k), where sk is the DE-QPSK encoder state at epoch k, and the fad-
ing region f̃k = Dij for some i, j, has been substituted to the generic parameter
ξk.

The two essential ingredients needed for actual implementation of the
Markov chain-based SISO algorithm in a scenario with fading are the tran-
sition probability P{f̃k+1|f̃k} between the Markov chain states f̃k and f̃k+1,
obtained by suitably modeling the fading Markov chain, and the conditional
PDF of the observable p(rk|ak, f̃k, sk), given by the following expressions:

p(rk|ak, f̃k, sk) =
p(rk, f̃k|ak, sk)

p{f̃k}

=

∫

f̃k

p(rk|f, ak, sk)pf (f)df

∫

f̃k

pf (f)df

(7.19)

where the independence between the fading process and the DE-QPSK coded
data sequence ck is exploited, p(rk|f, ak, σk) is a Gaussian PDF (with mean
fck), and pf (f) is the PDF of the fading coefficient.

6 We remark that the considered approach can easily be extended to higher-order Markov
models of the fading process, at the expense of an increased number of fading states.
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The concept of detection by multiple trellises can be now directly applied
to a fading channel. In particular, as for the phase-uncertain channel, if the
channel is characterized by block-constant fading, Algorithm 1 is an optimum
solution. In order to simplify the metric computation, the integral in (7.19)
will be approximated by a finite sum of simple Gaussian metrics. However, it
was observed that this can lead to numerical problems at high SNR, where the
noise variance becomes small. To overcome this problem, one may increase
the accuracy of the numerical integration techniques used to compute (7.19)
or prevent the variance of the Gaussian pdfs to become too small and trigger
numerical problems.

Observe that every concatenated scheme with a powerful error correction
code is characterized by a bad BER performance below a given SNR threshold
and an operational BER performance beyond this threshold.7 If the detection
algorithm assumes a given, fixed, SNR value, one is guaranteed to obtain
optimal performance only when the actual SNR value equals the assumed
value. The BER of the fixed-SNR receiver as a function of the SNR, is still
expected to be monotonically decreasing. Therefore, if the assumed SNR is
fixed to guarantee an operational BER at that very SNR value, the fixed-SNR
algorithm will guarantee operational BER beyond this SNR as well. As a
consequence, we chose to fix the variance of the Gaussian metric, i.e., the SNR
assumed by the detection algorithm, and to make it independent of the actual
noise variance. This allows to overcome numerical problems and leads to a
completely blind detection algorithm, which does not need either knowledge
of fading or noise statistics.

Unlike commonly considered in the literature, where the fading process
used in the simulations is generated according to the considered Markov chain
model, in the following the fading process used in the simulations is generated
according to a realistic Clarke model.

In order to verify the effectiveness of the described detection by multiple
trellises, we consider applications to DE-QPSK, both uncoded and coded by
a regular (3,6) LDPC code with codeword length 32000—this length allows
to counteract long fades. The code should, in fact, “observe” a received se-
quence long enough to accurately describe the statistics of the channel, i.e.,
to exploit its ergodicity. We performed simulations considering Nampl = 2
and Nphase = 16 and considering Algorithm 1 and the above described sim-
plified metric scheme. Algorithm 2, in the case of fading channel, exhibits

7In actual systems, the transition from bad BER performance to operational BER is not
perfectly sharp, i.e., it happens within a small SNR region, usually referred to as waterfall
region.
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Figure 7.15: BER performance, as a function of the SNR, in a scenario with a
flat Rayleigh fading channel. Various schemes are considered: (i) BPSK with
perfect CSI, (ii) LDPC coded QPSK with Markov chain-based FB detection,
(iii) LDPC coded QPSK with multi-trellis SISO detection, and (iv) LDPC
coded QPSK with perfect CSI.

unacceptable performance, and, therefore, is not shown. This is due to the
fact that the mix operation in Algorithm 2 normalizes independently every
trellis thus assigning large weights to trellises characterized by incorrect fad-
ing amplitudes. The considered normalized Doppler rate fDT is equal to 0.01,
corresponding to a moderately fast fading channel. The obtained results are
shown in Figure 7.15. The multi-trellis curve is obtained assuming a noise
variance value corresponding to an SNR of about 7 dB. The inter-mix interval
is heuristically optimized by trial and error and set to 20. In every LDPC
coded scheme, a number of inner iterations and final LDPC decoder itera-
tions equal to Ni = 30 and NLDPC = 30, respectively, is used. The Markov
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chain-based algorithm presented at the beginning of this subsection is also
investigated and its performance is shown. As a reference, the performance of
(i) the described concatenated scheme and (ii) an uncoded BPSK signaling,
both considering perfect CSI, is also shown. As one can immediately see, the
performance loss incurred by the use of the described detection by multiple
trellises can be quantified at about 1 dB in comparison with the Markov chain
model performance and 1.8 dB compared with the perfect CSI scenario.

7.8 Concluding Remarks

In this chapter, LDPC coded modulation for differential modulation schemes
has been considered. The two main aspects of LDPC coded modulation design
are the design of the LDPC code and the selection/design of the proper modu-
lation and corresponding CM-SISO. The first important consideration is that
using standard LDPC codes for memoryless channels in a DE scheme leads to
a significant performance loss, which can be avoided using properly designed
LDPC codes. A second consideration arises from the analysis of the perfor-
mance of LDPC coded modulation schemes with multiple trellises detection.
Multiple trellis detection is a suboptimal detection which cannot be used in the
absence of coding since its use in an uncoded scheme leads to a significant er-
ror floor. Nevertheless, in an LDPC coded modulation scheme this remarkable
sub-optimality becomes negligible. This highlights the fact that a suboptimal
CM-SISO scheme cannot be characterized by its performance in the absence
of coding: the use of a concatenated LDPC coded modulation scheme allows
powerful simplifications which might be catastrophic in an uncoded scenario.
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