
Chapter 6

Memoryless Channels and
LDPC Codes

6.1 Introduction

As stated in Chapter 1, the introduction of low-density parity-check (LDPC)
codes has allowed to achieve near-capacity transmission over some simple chan-
nels, such as, for example, the binary input additive white Gaussian noise (BI-
AWGN) channel, the binary erasure channel (BEC), or the binary symmetric
channel (BSC) [9,12,13,33]. Although the performance of LDPC codes trans-
mitted over binary-input memoryless channels is known and well studied in
the literature, a formal proof of their potential to achieve channel capacity is
still lacking. Moreover, the application of LDPC codes to generic memoryless
channels, and, in particular, for medium to high spectral efficiency signaling
over the AWGN channel, represents a promising evolution of established cod-
ing techniques, such as, for example, trellis coded modulations (TCM), and
have been the subject of attention in the scientific community.

In this chapter, we address the performance of LDPC codes transmitted
through a memoryless channel, as described in the following paragraphs.

In Section 6.2, we consider an extrinsic information transfer (EXIT) chart-
based analysis of the convergence of the belief propagation decoding algorithm
of LDPC codes [69, 76, 77] for binary input memoryless channels. An in-
depth investigation of this analysis technique suggests that the performance
of LDPC codes depends marginally on the characteristics of the particular
memoryless channel, whereas it is dominated by the mutual information (MI)
between the input and the output of the channel. Related work also appears
in [100–102]. In the following, we will refer to this MI as constrained input
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channel capacity Cci, in order to distinguish it from the MI used in EXIT
chart-based analyses, which refers to the MI between the generic message
in the graph and the corresponding codeword bit and is used to track the
convergence of the decoding process. Each investigated communication scheme
is characterized in terms of the parameter Cci. Moreover, a uniform input
binary distribution is assumed, i.e., the a priori distribution of an information
bit X is such that P{X = 1} = P{X = 0} = 1/2. We will also assume
uniform distribution for the LDPC encoded bits, a property that in general
holds for every codeword bit in a binary linear code whose generator matrix
does not contain all-zero lines.

In Section 6.3, we will use the results obtained in the first part of this chap-
ter to derive an efficient design algorithm for multilevel coding (MLC) [103–
105]. The proposed algorithm exploits the partition into memoryless sub-
channels induced by MLC, and selects, from a given library of LDPC codes, a
subset of codes. The selected subset of LDPC codes is tailored for MLC, and
is optimal, in the sense that it maximizes the spectral efficiency guaranteeing
a fixed bit error rate (BER) performance above a given SNR. This technique
can therefore be used as a practical tool to achieve high spectral efficiency
using LDPC codes.

6.2 Performance of LDPC Codes on Binary-Input
Memoryless Channels

The assumptions considered in [9] for the derivation of the Gallager A, B,
and C iterative decoding algorithms for LDPC codes are valid for a binary in-
put memoryless channel. In [69–71], practical approximations of EXIT charts
are proposed and used for LDPC code design. Tight upper and lower bounds
for EXIT charts have been derived in [62–64,106,107]. These bounds allow to
find transmission conditions, in terms of MI between the input and the output
of the channel, for which it is possible to guarantee convergence regardless of
the specific channel. Nevertheless, these bounds do not completely reflect the
actual behavior of the decoding process of LDPC codes, which, as the number
of iterations increases, seems to converge to that of the BEC bound regardless
of the specific channel [93]. This behavior, which has been experimentally
observed, seems related to the fact that in the last iterations the BER is low.

In the following, we show that a performance analysis of LDPC codes based
on EXIT charts suggests that the behavior of an ensemble of LDPC codes (i.e.,
a set of codes with given degree distributions) does not depend appreciably
on the particular memoryless channel, but only on the MI between the input
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and the output of the channel. This would imply that a code from a given
ensemble will exhibit similar convergence threshold and performance on any
memoryless channel—in other words, different memoryless channels exhibit
minor performance differences for a given value of MI. This observation is
supported by simulation results relative to various LDPC codes and several
memoryless channels. The considered channels are both symmetric—binary-
input AWGN channel, BSC and BEC—and asymmetric—binary asymmetric
channel (BAC) and Z channel (ZC). This confirms the early remark in [13],
where it was observed that LDPC codes optimized for the AWGN channel
show good performance for other memoryless channels, such as BSC and BEC.
Similar conclusions where drawn in [100, 101], where the authors show that
the performance of LDPC codes over any Gaussian channel, not necessarily
AWGN, depends only on the MI between the input and the output of the
channel. We remark that the EXIT chart-based analysis of LDPC codes,
interpreted as functions of their degree distributions, underlies the implicit
assumption that the graphs of the corresponding LDPC codes do not contain
short cycles. This condition can be achieved, for example, by choosing a
sufficiently long codeword length.

6.2.1 The Start Point in EXIT Charts

In Chapter 4, we introduced a statistical characterization of the convergence
behaviour of LDPC coded schemes on the basis of EXIT charts. We now ask
ourselves the following question: what is the meaning of the start point of the
decoding trajectory in an EXIT chart? The messages at the output of variable
nodes at the very first iteration correspond to the logarithmic likelihood ratios
(LLRs), based on channel observations, of the transmitted symbols [9]. These
quantities are sufficient statistics for an optimal decision on the transmitted
sequence. This means that the MI between the transmitted binary sequence
and these LLRs is equal to the MI between the transmitted binary sequence
and the channel output. Since the transmitted bits are assumed to be 0
or 1 with probability 1/2, this MI can also be interpreted as constrained-
input channel capacity Cci. Hence, at the first iteration, the MI generated
at the output of the variable node detector (VND) is IV = Cci. As stated
in Section 5.4, this value corresponds to the start point of the EXIT chart
decoding trajectory in Figure 5.4.

Since simple EXIT chart-based analyses assume that the MI at the output
of a block is independent of the particular distribution of the messages, but de-
pends only on the MI at its input, the check node detector (CND) EXIT curve
(i.e., the curve IB in Figure 5.4) does not depend on the particular channel.
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Nevertheless, the VND EXIT curve may depend on the channel. Experience
suggests, however, that the VND EXIT curve (i.e., IV ) depends on the channel
through Cci only, whereas it depends weakly on the particular channel type.
This is taken into account in the practical approximations currently used for
LDPC code design in [69], where the author expresses IV as a function of
the MI between the input and the output of the channel and the MI of the
messages coming from the CND. Since, as previously stated, Cci = IV (0), i.e.,
the start point of the EXIT chart decoding trajectory, from the considerations
above, it follows that the entire function IV (I) can be characterized by this
start point.

Assuming that the EXIT chart-based analysis is accurate, one can conclude
that the convergence of the decoding process for an ensemble of LDPC codes,
described by their degree distributions, depends only on the constrained-input
channel capacity and not on the particular channel. This means that if a ran-
domly chosen code of a given ensemble shows, with high probability, a good
BER performance when transmitted over a memoryless channel with given
Cci, then this code, with high probability, will guarantee good BER perfor-
mance also when used for transmission over any other memoryless channel
with equal Cci. The previous consideration is valid provided that there is no
feedback from the VND to the soft demapper or that the presence of this
feedback would not change the MI between the message set at the output of
the soft demapper and the generic codeword bit. This occurs in binary input
memoryless channels and other significant scenarios which will be addressed
in Chapter 7.

It is important to note that these considerations rely on an approximated
method, and their accuracy is strictly related to the accuracy of the EXIT
chart-based analysis. In the next section, simulation results will be presented
that allow to understand to what extent LDPC codes belonging to the same en-
semble and transmitted over a memoryless channel show similar performance
regardless of the specific channel.

6.2.2 Numerical Evidence

We consider Monte Carlo simulation-based performance analysis of three LDPC
codes transmitted over five different memoryless channels. The considered
codes have rates 1/4, 1/2, and 3/4, and are generated starting from the degree
distributions, optimized for the binary-input AWGN channel, found in [97].
The used degree distributions (for variable and check nodes) are given in Ta-
ble 6.1. The codeword length is set to 10000 binary symbols in all cases.
The decoding process stops if a codeword is obtained or a maximum allowed
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Table 6.1: Variable and check nodes degree distributions for the considered
LDPC codes.

Code
Rate

Variable Node
Degre Distribution

Check Node
Degre Distribution

i λi j ρj

1
4

2 0.4161610 4 1
3 0.2355160
5 0.0759725
6 0.061250
7 0.0013665
9 0.0158465
10 0.1938870

1
2

2 0.272536 7 0.7
3 0.237552 8 0.3
4 0.070380
10 0.419532

3
4

2 0.201224 16 1
3 0.276439 8 0.3
4 0.033386
10 0.488951

number (equal to 100) of iterations is reached. In both cases, a decision on
a binary symbol is made according to the final corresponding LLR value of
the symbol, computed as the sum of all the messages sent to its correspond-
ing variable node at the last iteration. The receiver is assumed to know the
channel statistics. The soft demapper thus computes the exact APP.

Figure 6.1 shows the considered memoryless channels, which comprise
three symmetric channels (binary input AWGN channel, BSC and BEC) and
two asymmetric channels (BAC and ZC). We evaluate the BER performance
of each considered code over each channel as a function of the constrained-
input capacity. For the BAC, the transition probability P{0→ 1} is different
from the transition probability P{1 → 0}. Two parameters are then neces-
sary to describe this channel (and to compute Cci). We choose to specify the
ratio t , P{0 → 1}/P{1 → 0} as a given constant parameter. The ZC can
be interpreted as a particular instance of the BAC with t = 0. It is then
possible to express Cci for every channel as a function of a single parameter,
namely the SNR γ for the AWGN channel, the transition probability for the

6.2. PERFORMANCE OF LDPC CODES
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Figure 6.1: Pictorial representation of the considered memoryless channels:
(a) the BSC, (b) the BEC, (c) the BAC, (d) the ZC and (e) the BI-AWGN.
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BSC, the erasure probability for the BEC, the average transition probability
(P{1 → 0} + P{0 → 1})/2 for both BAC and ZC (all these probabilities are
denoted by p in the following expressions). Summarizing, the constrained-
input capacities of the considered channels can be obtained using standard
methods and have the following expressions:

CAWGN
ci =

1
2

∫ ∞

−∞

1√
2πγ

e
− (y−2γ)2

8γ log2
2

1 + e−y
dy (6.1)

CBSC
ci = 1 + p log(p) + (1− p) log(1− p) (6.2)

CBEC
ci = 1− p (6.3)

CBAC
ci|t =

1
2(1 + t)

{
2(1 + t) + pt(1 + t) log

[
pt(1 + t)

(1 + t)(1− p + pt)

]

+ (1 + t)(1− p) log
[

(1 + t)(1 − p)
(1 + t)(1− p + pt)

]
(6.4)

+ p(1 + t) log
[

p(1 + t)
(1 + t)(1 + p− pt)

]

+ (1− pt)(1 + t) log
[

(1 + t)(1− pt)
(1 + t)(1 + p− pt)

]}
(6.5)

CZC
ci = CBAC

ci|t=0 =
1
2
[2 + p log p− (1 + p) log(1 + p)]. (6.6)

We remark that for symmetric channels, Cci equals the unconstrained capac-
ity [1].

In Figure 6.2, the BER curves of all three codes, transmitted over the
considered five channels, are shown as functions of Cci—note that Cci can as-
sume values between 0 and 1, since the transmitted symbols are binary. For
the BAC, the ratio t = 3 is chosen as representative. From the results in
Figure 6.2, one can conclude that the convergence threshold, in terms of Cci,
basically depends only on the code and, in a very limited way, on the chan-
nel. Interestingly, this conjecture holds for asymmetric channels as well. The
slight differences between the BER curves relative to a specific code cannot be
predicted by the EXIT chart-based analysis. In fact, the BER curves depend
on the actual code structure, which may contain short cycles [13], and on the
statistical distribution of the LLRs at the output of the channel, which are
not taken into account by the EXIT charts. Moreover, by considering Fig-
ure 6.2 one can quantify the actual difference between the performance of a
code transmitted over the considered channels in terms of small fractions of
bits per channel use (within a few hundredths).

6.2. PERFORMANCE OF LDPC CODES
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Figure 6.2: BER versus constrained-input capacity for three LDPC codes,
characterized by rates 1/4, 1/2 and 3/4, respectively. For each code, the
performance for transmission over five memoryless channels is shown. The
codeword length is 10000 and the codes are optimized for transmission on the
AWGN channel.

6.2.3 Implications

In the previous subsections, we have shown that, with good approximation,
LDPC codes which are good for a particular memoryless channel are also
good for any memoryless channel, in the sense that they guarantee similar
BER performance in the same Cci region, regardless of the channel type.

This allows a characterization of the coding gain in terms of bits per chan-
nel use. Since slight differences between different channels have been observed,
one can expect that a given LDPC code will exhibit equal performance, within
a small fraction of bits per channel use, over different memoryless channels.
More rigorous claims regarding our conjecture would involve the derivation
of new bounds on EXIT curves of LDPC codes, which extend the results
in [62–64, 106, 107], taking into account how the distribution of the messages
varies at each iteration. The fact that the performance of an LDPC code has a
small dependence on the particular channel has some interesting implications,
described in the following.
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LDPC Codes Libraries

The independence of the LDPC code performance from the particular memo-
ryless channel implies that good LDPC codes for memoryless channels could
be collected in code libraries and reused for several different applications, thus
separating the tasks of (i) designing LDPC codes and (ii) fitting them to the
considered scenario, which may consist of the concatenation of one or more
LDPC codes with a high spectrally efficient modulator .

Soft Demapper without Feedback from VND

The presented conjecture may also impact the design of LDPC codes to be
used in a bit interleaved coded modulation (BICM) scheme, which maps binary
symbols onto high-order modulation formats [81]. At the receiver side, a soft
demapper could generate reliability values for the mapped bits to be passed
to the LDPC decoder, which would treat them as channel outputs. In this
case, the decoding process would not depend on the particular mapper or
channel but only on the MI at the output of the soft demapper. Assuming
that iterations between demapper and decoder are not performed or are not
useful, LDPC codes designed for a simple memoryless channel (e.g., BSC) will
be a good choice also if mapped into high-order modulations. This is due
to the fact that, in BICM schemes, the presence of the interleaver after the
binary encoder transforms the channel, as seen by the encoder/decoder, into
a memoryless channel.1 However, if iterations are allowed, these claims are no
longer valid, since at every iteration the LDPC VND operates on a different
input from the soft demapper.

LDPC-MLC Design

Another application of the described property is presented in the following
section, where it is shown how to select LDPC codes belonging to a library of
good codes for memoryless channels, in order to design an LDPC coded MLC
scheme.

6.3 Multilevel Code Design

We now use the concepts developed in the previous sections in order to design
MLC schemes [103–105]. In particular, given a set of LDPC codes which
exhibit good performance on memoryless channels and featuring several code

1This holds exactly only if an ideal random interleaver is used.
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Figure 6.3: MLC transmission scheme.
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Figure 6.4: Multi-stage decoding scheme: each decoder passes its decisions
to every following decoder, which uses this information to compute its own
decisions.

rates, i.e., an LDPC code library, we show how to optimally choose the tuple
of codes for a MLC scheme operating on a given constellation.

6.3.1 Multilevel Scheme Overview

In Figure 6.3, a MLC transmission scheme is shown for transmission over a
2n-point constellation. The information bits are split into n different streams
by a serial to parallel (S/P) conversion block. Each information bit stream is
encoded with a properly chosen LDPC code. The S/P conversion block adjusts
the bit rate delivered to each encoder in order to obtain, at the output of each
encoder the same binary symbol rate, regardless of the code rate. Hence, the
label “Non Uniform S/P.” The obtained encoded bit streams feed a mapper
which encodes n code bits into a constellation symbol. This coding technique
was first proposed in [103], along with a proper decoding algorithm, referred
to as multi-stage decoding (MSD). MLC caught growing attention after [105],
where it is shown how to determine the rate of each component code in order
to retain the full information rate allowed by the considered modulation.

In Figure 6.4, an MSD scheme is shown. For each encoder at the trans-
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mitter side, there is a matched decoder at the receiver side. The received
observables are fed to each decoder. The decoding process starts at decoder 1,
which performs a codeword decision based on the observables from the chan-
nels. The decided bits are passed to the remaining decoders. At each stage,
the i-th decoder makes a decision on the corresponding codeword, based on
the observables from the channel and the codeword decisions corresponding
to codes 1, . . . , i− 1.

Following an information-theoretic viewpoint proposed in [105], we denote
the n bits forming a constellation symbol as X1, . . . ,Xn and the corresponding
noisy received observable as Y . The MI between the input and the output of
the channel can be expressed as follows:

I(X1, . . . ,Xn;Y ) =
n∑

i=1

I(Xi;Y |Xi−1, . . . ,X1) (6.7)

where the right hand side is obtained by applying the chain rule of MI [1].
Equation (6.7) hides a very powerful concept. In fact, it is possible to inter-
pret the stochastic relation between the transmitted bit at the i-th stage Xi

and the received observable Y , given exact knowledge of X1, . . . ,Xi−1, as a
particular memoryless channel. In fact, although it is true that there is depen-
dence between the bits corresponding to a specific constellation symbol, the
successive realizations are conditionally independent over time. The overall
2n-ary input channel can then be seen as as a cascade of channels. Assuming
that it is possible to practically achieve “error-free” performance on a memory-
less channel through channel coding techniques, one can design a good code for
the channel (X1;Y ), then a good code for the channel (X2;Y ) given the knowl-
edge of X1, and so on. MLC-MSD is the straightforward decoding solution
for this scheme. In particular, for each (sub)channel it is possible to achieve
error free performance at any rate below the MI of the (sub)channel (uniform
input is assumed). With MLC-MSD, it is therefore possible to achieve error
free performance at any rate below the MI I(X1, . . . ,Xn;Y ) of the overall
channel. We refer the interested reader to [105], where information theoretic
aspects of MLC-MSD are covered in details. Among the possible code de-
sign techniques for MLC-MSD, selection of the code rate based on the MI
of the (sub)channels is referred to as MI rule in [105]. According to this
rule, efficient coding can be achieved by choosing for the i-th (sub)channel,
i = 1, . . . , n, a powerful (and possibly ad hoc) binary code with rate slightly
lower than I(Xi;Y |Xi−1, . . . ,X1).



140 CHAPTER 6. MEMORYLESS CHANNELS AND LDPC CODES

6.3.2 Code Selection with the MI Rule

We now show how the results in Section 6.2 affect MLC design based on the MI
rule and LDPC coding. Since, over a memoryless channel, the performance
of a particular LDPC code without short cycles in the code graph depends
almost only on the MI between the input and the output of the channel, as
discussed in Section 6.2, we collect a library of LDPC codes, characterized by
various rates.

For simplicity, we restrict ourselves to an AWGN channel and linear mod-
ulations with given 2n-ary constellations. The goal is to select an ordered
n-uple of LDPC codes in the code library, in order to obtain an overall MLC
whose performance can be considered error-free for SNR values below a given
threshold. The obtained MLC should have the highest possible rate.

We start with the following consideration: given a constellation, if it is
possible to specify a BER threshold P ?

b and to guarantee that at each level in
the MLC scheme the error rate is below this threshold, then by specifying a
sufficiently low value of P ?

b , it is possible to obtain arbitrary small BER for the
overall MLC scheme. This reasonable assumption has an important impact
on the code design algorithm described in the following. In fact, consider the
property described in Section 6.2, i.e., that the performance of LDPC codes
does not depend on the particular channel but only on the channel MI. Every
code will be characterized by its own BER versus MI curve. If two LDPC codes
have the same rate, for a specified value of P ?

b one of them will have a better
or equal performance, measured as input MI needed to achieve a BER equal to
P ?

b , than the other. If both codes fulfill the required design constraints, there
is no point in using the code that requires higher MI to achieve the specified
BER equal to P ?

b . Thus, for each code rate in the LDPC code library, it is
possible to eliminate all codes but the best one. We can thus assume that in
the code library the codes will have different rates.

In Figure 6.5, an 8-PSK constellation with natural bit mapping is shown.
In Figure 6.6, the MIs of the three sub-channels, as well as with the overall MI,
are shown for an 8-PSK constellation transmitted through an AWGN channel.
The MI is shown as a function of the SNR Es/N0, where Es is the average
8-PSK symbol energy and N0 is the one-sided noise power spectral density.
The three curves are monotonically non-decreasing. The horizontal dotted
line represents the MI needed for a particular code to achieve a BER equal
to P ?

b . One can observe that the first subchannel intersects the horizontal
line in the rightmost point, the third in in the leftmost and the second in the
middle. The meaning of each intersection is that beyond the corresponding
SNR, the considered code will guarantee a BER lower than P ?

b if used for
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Figure 6.5: Pictorial representation of an 8-PSK constellation with natural
mapping.

channel coding on the corresponding sub-channel. If the actual SNR is below
that corresponding to the intersection, then the system is in outage.

The previous considerations allow one to derive the following MLC design
algorithm based on the selection of the proper LDPC codes. The procedure is
graphical and the basic graph, shown in Figure 6.7 for a specific scenario (rela-
tive to Example 6.1 considered in the following), can be constructed according
to the following steps.

• On a graph, plot the MIs of the subchannels versus the SNR. The ag-
gregate MI should be plotted as well.

• For each code in the LDPC code library, plot a horizontal line intersect-
ing the MI axis at a MI equal to the value needed by the LDPC code to
obtain a BER equal P ?

b .

• Find the intersection of each code line with each sub-channel MI curve
and draw the projection of each intersection on the SNR axis.

In order to find the best code, i.e. the highest-rate code with SNR outage
threshold below a given SNR∗, it is sufficient, for each sub-channel, to find the
intersection of the corresponding MI curve with the code line which has the
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channels and MI I(X1,X2,X3;Y ) of the overall channel for an 8-PSK con-
stellation with natural mapping.

highest SNR below SNR∗.

Example 6.1 In Figure 6.7, the proposed graphical algorithm is illustrated
for an 8-PSK constellation with natural mapping. Three horizontal lines are
plotted, assuming a library which contains only three codes with rates 0.25,
0.57, and 0.88, respectively, for ease of exposition. However, we remark that
the approach is general and the use of larger libraries can lead to better results.
The intersections are shown on the SNR axis. The intersections corresponding
to the first subchannel are marked with triangles, those corresponding to the
second subchannel with squares, and those corresponding to the third sub-
channel are marked with circles. For a given SNR∗ value, it is sufficent to
find the rightmost triangle, the rightmost square and the rightmost circle to
the left of this SNR∗ value. Each symbol, either triangle, circle or square,
identifies exactly a subchannel and a code in the code library.

Three LDPC codes were selected using the graph in Figure 6.7 and con-
sidering SNR∗ equal to 10.5 dB, as reported in the figure. The resulting codes
can be characterized as follows:
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Figure 6.7: Graphical scheme used for MLC code selection.

channel 1 (X1;Y ): rate 0.57 code
channel 2 (X2;Y |X1): rate 0.88 code

channel 3 (X3;Y |X1,X2): rate 0.88 code.

Had we chosen SNR∗ equal to 9 dB, the selected codes would have been as
follows:

channel 1 (X1;Y ): rate 0.25 code
channel 2 (X2;Y |X1): rate 0.88 code

channel 3 (X3;Y |X1,X2): rate 0.88 code.

In Figure 6.8, the BER performance of the system designed considering SNR∗

equal to 10.5 dB is shown. The component codes, with codeword length 10000
and rates 0.57, 0.88, and 0.88, correspond to three regular LDPC codes: (3, 7),
(3, 25), and (3, 25), respectively. The overall code rate is 0.57 + 0.88 + 0.88 '
2.33 bits per channel use. The predicted convergence threshold, i.e., the SNR
of the rightmost intersection point within the selected codes, is 10.11 dB,
corresponding to a bit SNR Eb/N0 = 6.43. The BER performance of each
sub-channel is shown as well. One can observe that there is a good match
between the design outage threshold and the actual outage threshold.

We remark that, in order to achieve good performance, the first decoding
stages should not introduce errors, since this would affect the next decoding
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Figure 6.8: BER performance of an 8-PSK MLC-MSD system designed for
convergence at SNR equal to 10.11 dB (Eb/N0 = 6.43 dB).

stages, possibly causing avalanche error propagation. The presented numeri-
cal results were obtained with regular and quasi -regular LDPC codes.2 This
choice is due to the fact that the construction of codes without short cycles
is easier for regular LDPC codes, especially in the case of low-degree variable
and check nodes. The absence of short cycles is useful in order to lower (or
make disappear) the error floor characterizing most powerful codes.

6.4 Concluding Remarks

In this chapter, the performance of LDPC codes over memoryless channels has
been discussed. The fact that, with a good approximation, the performance
of an LDPC code transmitted over a binary-input memoryless channel does
not depend on the particular channel but only on the MI between the input
and the output of the channel, has been highlighted. This property has several
implications, among which that of enabling efficient design of multilevel codes.

2We denote as quasi-regular LDPC a code with only two, possibly contiguous, allowed
variable or check node degrees
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In particular, an algorithm for multilevel code design based on the selection of
a group of good LDPC codes from an LDPC code library has been described,
and some design examples have been given.




