
Chapter 4

Performance Analysis
Techniques

4.1 Introduction

Efficient system design requires the use of tools for evaluating the perfor-
mance of a given system. Based on a performance analysis method, design
algorithms can be constructed, for example, with a specific performance op-
timization goal. The ideal analysis tool should be (i) fast, (ii) accurate, and,
possibly, (iii) highly informative, i.e., it should provide a comprehensive de-
scription of the system under analysis. However, exact analytical evaluation
of the relevant statistical parameters characterizing a realistic communication
system is, usually, unfeasible. Therefore, it is necessary to resort to approxi-
mate evaluation tools. A universal technique satisfying the requirements (ii)
and (iii) is given by a Monte Carlo simulation-based analysis of the system
performance. In particular, this simulation method allows to collect all needed
system statistical parameters with the desired accuracy. Unfortunately, sys-
tem simulation is usually a computationally intensive task. This makes this
technique not appealing for automated system parameter optimization (or
design), which usually calls for repeated analyses. Nevertheless, Monte Carlo
simulation is an invaluable tool suited for accurately testing the performance of
a complex system. Iterative receiver schemes can also be investigated through
a number of approximate tools which exploit their internal structures. For
example, density evolution and extrinsic information transfer (EXIT) charts
admit efficient numerical implementation, since they are characterized by a
limited computational complexity.

In this chapter, the main numerical performance analysis tools useful for

61M. Franceschini, G. Ferrari and R. Raheli, LDPC Coded Modulations,
DOI: 10.1007/978-3-540-69457-1_4, © Springer-Verlag Berlin Heidelberg 2009

62 CHAPTER 4. PERFORMANCE ANALYSIS TECHNIQUES

the analysis and design of low-density parity-check (LDPC) codes for coded
modulations will be described. In Section 4.2, Monte Carlo techniques are
introduced and some considerations on their correct implementation and use
are drawn. In Section 4.3, the density evolution method for analysis of iterative
decoders is described. In Section 4.4, EXIT charts are introduced. Section 4.6
concludes this chapter.

4.2 Monte Carlo System Simulation

By system simulation, we refer to the practice of reproducing a set of signals
which are statistically equivalent to those found in the actual system under
analysis. To this end, the system is decomposed into its component blocks.
We assume that the system may be decomposed into a network of blocks
characterized by deterministic behavior and driven by inputs which may be
either deterministic or stochastic. This assumption is quite general and may
be applied in almost all scenarios of interest.

The deterministic blocks of the system are reproduced by implementation
of the corresponding (embedded) signal processing algorithms or by numerical
solution of the input-output equations of their mathematical model. The
stochastic input signals may be generated in two different ways.

The first is to implement a physical device comprising a controlled and
precisely known noise source, such as, e.g., amplified thermal noise, which is
used to obtain a signal whose statistics are similar to those of the stochastic
input to the system. In this case, the fact that the noise source parameters
are not perfectly known is a possible cause of mismatch between the simulated
system and the actual one.

The second, and most relevant for our purposes, technique for generating
the input stochastic signals is by means of a pseudo-random number gener-
ator (PRNG). PRNGs are recursive algorithms which may be viewed as au-
tonomous systems whose initial state is referred to as seed and whose output,
interpreted as the realization of an ergodic and stationary process, implies
statistical properties of the process such as, e.g., independent and identically
distributed (i.i.d.) outputs, uniform distribution of the output sample over
the integers within a given range, etc. Obviously, since the output is actu-
ally a deterministic sequence, the statistical description of the sequence is
only an approximation of the desired one. Nevertheless, the output sequence
is plausible for the stochastic model that the PRNG tries to emulate. The
“randomness” of the sequence can be evaluated using a number of statistical
evaluation mathematical tools. In order to obtain stochastic processes with

4.2. MONTE CARLO SYSTEM SIMULATION 63

Detect.
Chan.
B.I.

YiXi
X̂i

Figure 4.1: Schematic diagram of a uncoded binary-input (BI) simulator.

the desired statistical description, the output of the PRNG can be properly
processed applying standard methods [56].

It is important to note that not every PRNG may be suited for the spe-
cific scope of a problem. On the other hand, in general, it is not necessary to
use a true—as opposed to pseudo—random number generator. Every simu-
lation scenario has its own characteristics. For example, almost every PRNG
has a periodic behavior, i.e., the sequence repeats itself after a finite num-
ber of samples. Some applications may require a very long period in order
to guarantee accurate estimation of the relevant statistical parameters. Other
applocations, such as, for example, the generation of information bits in an un-
coded binary-input (BI) memoryless channel simulator, can achieve the same
or better results than those obtained with a true random number generator,
with a PRNG with period as short as 2. This is considered in the following
example.

Example 4.1 Simple PRNGs might be better than true RNGs

We now compare the quality of BER estimate using a real random input
data sequence and one generated using a PRNG with cycle of length 2. Show-
ing that, even if the real communication system will operate on a random
data sequence, the use of a PRNG leads to better estimate of the BER of
that system. Consider a simulator for the uncoded transmission scheme in
Figure 4.1, where the input sequence {Xi} is a random sequence of i.i.d. bits
{Xi} with P{Xi = 1} = P{Xi = 0} = 1/2. The symbol Yi output by the BI
channel at epoch i depends only on Xi, i.e., the channel is memoryless. The
sequence is detected by means of a detector device which outputs estimates of
the transmitted bits on a bit-by-bit basis. For example, choose the maximum
a posteriori probability (MAP) symbol decision rule, i.e., choose the bit X̂i

whose conditional a posteriori probability, given the received Yi, is highest.
We assume that the conditional probability of error Pe,0 associated with the
transmission of a 0 might be different from the conditional probability of error
Pe,1 associated with the transmission of a 1.

We use Monte Carlo simulation for measuning the bit error rate (BER)
of the system. We generate N bits to be transmitted X1, . . . ,XN and send

64 CHAPTER 4. PERFORMANCE ANALYSIS TECHNIQUES

them through the channel obtaining N output samples Y1, . . . , YN . As BER
estimator we consider the sample average of the error indicator function:

P̂e =
1

N

N∑

i=1

1{X̂i 6= Xi}

where the indicator function 1(A) of an event A is given by the following
definition:

1(A) =

{
1 if A is true
0 else.

In other words,
∑N

i=1 1{X̂i 6= Xi} is the total number of errors in N trials.
We now characterize the variance of the BER estimator considering the

two cases of a real random number generator and a PRNG.
First we measure probability of error using real random number generators.

The bits to be transmitted are therefore N i.i.d. equiprobable random bits
X1, . . . ,XN . The mean of the estimator is

E{P̂e} =
1

N

N∑

i=1

E{1{X̂i 6= Xi}} =
1

N

N∑

i=1

Pe = Pe

where the fact that E{1(A)} = Pr{A} has been used and Pr{A} denotes the
probability of event A. As a consequence, the estimator is unbiased and its
variance is

Var{P̂e} =
1

N2

N∑

i=1

Var{1{X̂i 6= Xi}}

=
1

N2

N∑

i=1

E{12{X̂i 6= Xi}} − E2{1{X̂i 6= Xi}}

=
1

N2

N∑

i=1

Pe − P 2
e

=
Pe − P 2

e

N

where Var{·} denotes the variance of a random variable.
Assume now that we can accurately simulate the exact statistical channel

distribution (e.g., by using the actual channel) but we send alternatively 1
and 0, i.e., X2i−1 = 1 and X2i = 0, i ≥ 1. This corresponds to the use of a
particular PRNG with periodicity equal to 2 to generate the {Xi} sequence.

4.2. MONTE CARLO SYSTEM SIMULATION 65

As before, we generate N (even) samples and compute the mean and variance
of our estimator applied to the newly obtained sequence. Since it holds that

E{P̂e} = E

{
1

N

N∑

i=1

1{X̂i 6= Xi}
}

= E





1

N




N/2−1∑

i=0

1{X̂2i+1 6= X2i+1}+

N/2∑

i=1

1{X̂2i+2 6= X2i+2}










=
1

N




N/2−1∑

i=0

E{1{X̂2i+1 6= X2i+1}|X2i+1 = 1}

+

N/2∑

i=1

E{1{X̂2i+2 6= X2i+2}|X2i+2 = 0}





=
1

N

[
N

2
P{X̂2i+1 6= X2i+1}|X2i+1 = 1}

+
N

2
P{X̂2i+2 6= X2i+2}|X2i+2 = 0}

]

=
1

2
Pe,1 +

1

2
Pe,0

= Pe

it follows that the estimator is unbiased. Moreover, its variance is

Var{P̂e} =
1

N2

N∑

i=1

Var{1{X̂i 6= Xi}}

=
1

N2




N/2−1∑

i=0

Var{I{X̂2i+1 6= X2i+1}

+

N/2−1∑

i=0

Var{1{X̂2i+2 6= X2i+2}}





=
1

N2

[
N

2
(Pe,1 − P 2

e,1) +
N

2
(Pe,0 − P 2

e,0)

]

=
1

N

(
Pe,1 + Pe,0

2
−

P 2
e,1 + P 2

e,0

2

)

≤ Pe − P 2
e

N

66 CHAPTER 4. PERFORMANCE ANALYSIS TECHNIQUES

where Pe,1 = P{X̂2i+1 6= X2i+1|X2i+1 = 1} and Pe,0 = P{X̂2i+2 6= X2i+2|
X2i+2 = 0} and the last passage is due to the fact that

P 2
e =

(
Pe,1 + Pe,0

2

)2

≤
P 2

e,1 + P 2
e,0

2
.

This means that the resulting variance of the estimator is better than or equal
to that obtained with random bits, i.e., using realistic data. It turns out that
if the channel is known to be symmetric, i.e., if Pe,0 = Pe,1, as they do in the
case of the BI additive white Gaussian noise (BIAWGN) channel investigated
in Example 1.1, the two variances coincide.

In performing a system analysis through Monte Carlo simulation, one
should carefully consider which parameters are to be estimated. This is im-
portant, since a simulation, in general, produces a large amount of data. It is
usually not possible nor efficient to completely store the produced data and,
afterwards, proceed with a batch processing. Typically, depending on the
particular statistical parameter to be evaluated, only a small fraction of the
produced data has to be stored, although the whole produced data may some-
times need to be processed. As a simple but meaningful example, consider the
transmission system analyzed in the above example. In order to estimate the
BER, one could store the sequences {Yi}, {Xi}, and {X̂i}, then perform batch
processing on the sequences and compute both the estimate P̂e and and an
estimate of its variance. This would require a memory of size O(N).1 Obvi-
ously, the same can be done with a memory as small as O(1). In fact, the
processing could be done by updating an error counter on a sample-by-sample
(or bit-by-bit) basis, i.e., if X̂i 6= Xi then increase the error counter by one.
The estimate is obtained by dividing the number of errors by N . Its variance
can be estimated, in a similar way, using a single update variable.

One should always remember that every estimate based on the output
of a simulation is, as a matter of fact, a measure which is subject to error.
Assume to simulate the transmission of N bits by a communication system. By
comparing the decided bits at the output of the receiver with the transmitted
ones, one discovers that there are X errors. Without any other knowledge,
the most reasonable estimate of the BER P̃e characterizing the system is

P̃e =
X

N
.

1We say that a quantity g(N) is “on the order of” f(N) or O(f(N)), if the limit

lim
N→∞

f(N)

g(N)

exists and is greater than 0.

4.2. MONTE CARLO SYSTEM SIMULATION 67

Source TX Channel RX Analysis

Figure 4.2: Block diagram of a Monte Carlo analysis system.

This estimator corresponds to the sample mean of the error indicator, and has
good properties in several scenarios of practical interest. For example, if the
communication system processes are stationary, it turns out that

E{P̃e} = Pe

where Pe is the true system BER. Note that every estimator is characterized
by its own distribution. This allows to compute the uncertainties that should
characterize every well done measure. For more details on this important topic
we refer the reader to [56] and [57].

An important property of system simulation as analysis tool is that, if prop-
erly implemented, it is robust against possible implementation/programming
errors. In Figure 4.2, a block diagram of a Monte Carlo simulation-based anal-
ysis system is shown. Each block, source, transmitter (TX), channel, receiver
(RX), and statistical analysis, denote a “separate” software unit that may
be implemented exploiting the most convenient paradigms of the adopted lan-
guage or toolkit. By “separate” software unit we mean that it does not rely on
nor may access other data besides those passed through the arrow connection,
which carry only the sampled signal through the system. The receiver block
is highlighted to emphasize that it is the block where the biggest design effort
is spent. The other blocks, except for the transmitter which may make use of
sophisticated signal processing algorithms, are usually very simple. If every
other processing block but the receiver is known to be working correctly, a
Monte Carlo simulation guarantees the following interesting robustness prop-
erty: if the receiver implementation is defective, i.e., it comprises one or more
implementation errors, there cannot be false improvements of the system per-
formance. In other words, although defective, the implemented receiver al-
gorithm can be considered as a real algorithm working on real data and the
computed performance corresponds to the performance of a receiver using the
buggy algorithm.

68 CHAPTER 4. PERFORMANCE ANALYSIS TECHNIQUES

T

r

Proc.

mkmk−1

â

Figure 4.3: Illustrative diagram of a generic iterative detection scheme.

4.3 Density Evolution

Consider a generic iterative detection algorithm. The transmitted data se-
quence a produces a received vector r which is the input to the iterative
detection scheme. A possible representation of a generic iterative algorithm
is shown in the diagram in Figure 4.3. The receiver observes the vector r

and generates a first vector of messages m0. The iterative process begins and
at each iteration the previously obtained message set mk−1 is processed by
a deterministic function which, on the basis of mk−1 and r, computes the
next message set mk. Note that, although the input vector r is random, the
processing block operations are deterministic. At the end of the iterative pro-
cess, e.g., after ℓ iterations, the output â is computed as a function of the last
message set mℓ and of the input r.

A complete statistical characterization of the iterative process would re-
quire to compute how the conditional joint probability density function (pdf)
p(mk|a) evolves as a function of k, and considering all possible transmitted
data sequences a. This is, however, impractical since the number of possible
data sequences is an exponential function of the data sequence length and the
size of the vector mk is typically large. An LDPC code decoder would com-
prise a number of messages equal to the number of edges in the LDPC code’s
bipartite graph, which in practical applications, as a rule of thumb, may span
from 2 to 6 times the codeword length. This implies that such an analysis of
a practical LDPC code would require to compute the evolution of a joint pdf
of about 104-105 random variables (RVs).

A technique which can be used to effectively analyze iterative decoding
schemes is the so-called density evolution [34, 58]. This technique is based

4.3. DENSITY EVOLUTION 69

on a single-letter analysis of the evolution of the messages in an iterative
decoding algorithm. In other words, the analysis focuses on the computation

of the output distribution of a single message m
(i)
k . The message m

(i)
k is a

deterministic function of a subset m
(j1)
k−1, . . . ,m

(jdi
)

k−1 of di elements of the vector
of messages mk−1 at the output of the processing block at the iteration k− 1:

m
(i)
k = fi(m

(j1)
k−1, . . . ,m

(jdi
)

k−1) . (4.1)

The pdf of m
(i)
k is a function of the joint distribution of the input messages

involved in the computation:

p
m

(i)
k

= Ψi(p
m

(j1)
k−1,...,m

(jdi
)

k−1

) . (4.2)

In general, the function Ψi(·) depends on the index i of the considered output
message and can rarely be computed in closed form. Nevertheless, numerical
approaches can be followed, for example by sampling the pdf and representing
the messages with discrete RVs.

The discretization of the messages can be limited to the analysis purpose
or, as practical scenarios call for low complexity implementations, could be the
intrinsic way the receiver operates. In other words, the receiver may operate on
discrete messages, e.g., the representation of the messages could be limited to
4 bits, in which case the messages belong to a 16 elements set. In a quantized
scenario with M -level messages, the pdfs become probability mass functions
(pmfs) which can be represented by M -element real vectors. The resulting
pmf evolution function Ψ is

Ψ : R
Mdi 7→ R

M .

Observing (4.1) and (4.2), one can immediately notice two issues:

i. if at the k-th iteration the joint pdf of the messages m
(j1)
k−1, . . . ,m

(jdi
)

k−1 is
needed, the computation of the marginal pdf p

m
(i)
k

only does not allow

to proceed iterating the algorithm;

ii. even if the pdf p
m

(i)
k

is available for every k, how can one understand if

the decoding algorithm is converging, i.e., if the BER is approaching 0?

A solution for the first issue is to assume conditional independence of the

messages m
(j1)
k−1, . . . ,m

(jdi
)

k−1 . In this case, (4.2) becomes

p
m

(i)
k

= Ψi(pm
(j1)
k−1

, . . . , p
m

(jdi
)

k−1

) (4.3)

70 CHAPTER 4. PERFORMANCE ANALYSIS TECHNIQUES

which entails significant simplification of the problem, as can be seen in the
discrete message case with M -level messages. In this case, the pmf evolution
function Ψ is

Ψ : R
Mdi 7→ R

M .

Although, in general, this would be an approximation, this assumption holds
exactly in the case of LDPC codes if the iteration number k is smaller than
the girth of the graph.

Consider now the second issue, i.e., how to track the actual convergence
of the decoding system based on the evolution of the pdfs p

m
(i)
k

. At the final

iteration, the processing block outputs a vector â, which is an estimate of the
transmitted data sequence, computed as a function of the last message set mℓ

and of the received observable sequence r. Therefore, the output value of a
symbol âl is a function gl(m, r). A corresponding pmf pâl

can be computed
as a function of the pdf of m. Once obtained the pmf of âl and given that
the analysis is done assuming a particular transmitted sequence, it is easy to
compute the corresponding probability of error.

Another common assumption done in a density evolution analysis of LDPC
codes is that of considering a common distribution equal for all the input
messages. In other words, this corresponds to assuming that the input pdfs
are all equal:

p
m

(j1)
k−1

= . . . = p
m

(jdi
)

k−1

, pmk−1
.

Since, at each step, {p
m

(i)
k

} are computed and generally vary for different values

of i, this requires an additional step after the computation of each relevant
output pdf p

m
(i)
k

. In this additional step, usually, averaging of all output pdfs is

performed for computing the pdf pmk
used as input pdf at the (next) iteration

k + 1:

pmk
=

1

L

L∑

i=1

p
m

(i)
k

where L is the number of messages, i.e., the length of mk.

The assumption of a unique distribution for all input messages holds ex-
actly in the case of regular LDPC codes [58], assuming that the all-zero se-
quence has been transmitted (present in all LDPC codebooks). In general, in
a communication system, the performance depends on the particular trans-
mitted codeword. However, the sum-product (SP) algorithm has a symmetry
property that allows to state that the statistical description of the messages
does not depend on the particular codeword. Therefore, the use of density

4.4. EXIT CHARTS 71

evolution leads, in this case, to exact results. For more details on density evo-
lution techniques, which in general can be applied to a wide variety of message
passing decoders, we refer the interested reader to [58].

We point out that the main disadvantage of this technique is that analyt-
ical derivation of the message pdf evolution function Ψ(·) is seldom feasible
(with some important exceptions—see, for example, [13]). On the other hand,
a statistical evaluation of the pdf evolution would need intensive Monte Carlo
simulations, thus limiting the computational efficiency of this analysis tech-
nique.

4.4 EXIT Charts

Whenever its underlying assumptions hold, density evolution leads to a com-
plete statistical characterization of the decoder, although it requires the ca-
pability of efficiently computing the evolution of an entire pdf (or probability
mass function, pmf, if the message set is finite). Another possible solution is
to track the evolution of some statistical function of the message set. This
could lead to great simplifications. For example, in [59], the authors use a real
valued function of the pdf of message sets, which is defined as an equivalent
signal-to-noise ratio (SNR), as a means for characterizing the input-output
relation of a processing block (the forward-backward, FB, algorithm for a par-
ticular convolutional code, in this case). The input SNR/output SNR relation
of each component block of the iterative receiver is then used for predicting
the convergence behavior of the receiver.

A statistical parameter, function of the message distribution, which allows
to obtain good accuracy through this analysis method is the average mutual in-
formation (MI) between the generic transmitted codeword bit and the generic
message in the decoder referring to that particular bit. In a SP decoder or,
more generally, in a message passing decoder for LDPC codes, a message is
said to refer to a codeword bit if it is originated from or is directed towards
the variable node corresponding to that particular bit.

There is a number of possible techniques which can be used to compute
the average MI of the messages. If every message m in the set has the same
known distribution p(m|a), where a is the corresponding bit, then the MI can
be computed as usual:

I =
∑

a

∫
p(m|a)P (a) log

p(m|a)

p(m)
dm. (4.4)

However, reality is usually more complicated: (i) the distributions of the mes-

72 CHAPTER 4. PERFORMANCE ANALYSIS TECHNIQUES

sages are not equal and (ii) the message pdf is not known. In the first case, a
possible definition of the MI is the following:

I =
1

L

L∑

i=1

Ii (4.5)

where Ii is the MI between the i-th message and the corresponding bit, and
L is the total number of messages.

In the second case, i.e., whenever the distribution is difficult to compute,
several approximate techniques may be used. In particular, in some circum-
stances, it may be convenient to use a Monte Carlo approach to obtain an
estimate of the MI. This can be done by setting up a simulator and generating
sets of sample messages which are quantized and used to obtain a histogram
approximation of the pdf p(m|a). The MI can therefore be computed based
on the histogram approximation and using (4.4).

The MI has a practical meaning: it quantifies, in terms of bits, how much
information about a particular codeword bit a given message carries. In prac-
tice, whenever the MI is equal to 1, the bit is reliably recovered. This can be
easily shown: in fact, if A is a uniformly distributed binary random variable,
H(A) = 1. Assuming I(A;M) = 1, a functional relation exists between M
and A. In fact:

I(A;M) = H(A)−H(A|M)

⇓
1 = 1−H(A|M)

⇓
H(A|M) = 0

which implies that, given M , A is known, i.e., it is a function of M .

4.4.1 EXIT Curves and EXIT Charts

At this point, one could observe that although it is possible to track the
evolution of the MI of the message sets during the iteration process, the MI
is still a function of the underlying pdf of the messages and, therefore, little
advantage may be obtained in this way. However, empirical observation shows
that if a message set characterized by an MI I ′ is used as input to a given
processing block, the MI I ′′ of the output message set depends almost only
on I ′ and has little dependence on the particular pdf of the input messages.
Each processing block can therefore be characterized by the relation between

4.4. EXIT CHARTS 73

the input message set MI and the output message set MI. Since, usually,
only extrinsic information is exchanged between processing blocks, this the
plot of this relation is referred to as extrinsinc information transfer (EXIT)
curve. EXIT curves are used to study convergence of recursive (iterative)
detection/decoding algorithms by means of graphs usually referred to as EXIT
charts. EXIT chart-based analyses allow to predict the system performance
with a significantly lower computational burden with respect to the use of
density evolution or standard computer simulations employed to evaluate the
BER performance of iterative decoders [60,61].

The assumption of independence on the particular message set pdf is an
approximation, although it turns out to be an effective one. A more rigorous
statement is that, given an input MI, the output MI is bounded within a range
of possible values whose extremes are functions of the input MI. This range
is, in practical applications, reasonably small. A thorough treatment of this
topic, usually referred to as information combining, can be found in [62–64].

A remark is worthwhile at this point. We said that the processing block
modifies the MI. In particular, we wish the MI to increase, at each iteration, in
order to approach the value 1 as closely as possible. One can observe, however,
that by the data processing inequality [1], it is not possible to increase the MI
by means of data processing. In fact, the MI we refer to is not the MI between
the codeword bits and the message set, i.e., the MI between two vectors. The
MI used in EXIT charts is the MI between a message and its corresponding
codeword bit, averaged over all messages in the message set. This means that
the statistical dependence between different messages is purposely neglected.
The processing block can therefore exploit this dependence in order to increase
the EXIT chart MI.

4.4.2 SISO Detectors and EXIT Charts

A processing block computing bit reliabilities based on (i) a set of constraints,
(ii) an optional set of observations from the channel and (iii) some input a
priori information, is usually referred to as soft-input soft-output (SISO) de-
tector or SISO module [65–68]. In the following chapters, we will use SISO
modules in systems employing differentially-encoded phase shift keying (DE-
PSK) and DE quadrature amplitude modulation (DE-QAM) transmission over
an AWGN channel, DE-PSK with noncoherent detection, and PSK transmis-
sion through a channel affected by ISI.

Since we will focus on binary coding techniques, we assume that the reli-
abilities at the output of SISO blocks are referred to binary symbols. This is
not always the case, since algorithms like the FB algorithm in the general case

74 CHAPTER 4. PERFORMANCE ANALYSIS TECHNIQUES

outputs reliabilities referring to M -ary symbols, where M is the cardinality of
the transmitted information symbol set. However, it is possible to transform
M -ary reliabilities into a set of binary reliabilities and vice versa. The two op-
erations are usually non-invertible, thus implying a possible information loss
due to the conversion.

As an example, consider the conversion of the probabilities of an M -ary
symbol a taking values in the set {0, . . . ,M − 1} into bit reliabilities. Assume
that M = 2n, therefore the symbol a can be represented by n bits b0 . . . bn−1.
Given the probabilities P{a = 0}, . . . , P{a = M − 1} we compute

P{bi = 0} =
∑

j:bi=0

P{a = j}

where j : bi = 0 is the set of all integers j ∈ {0, . . . ,M − 1} such that the i-th
bit of their binary representation is equal to 0.

The conversion from bit reliabilities to symbol reliabilities can be done as
follows, assuming all the bits are independent (which is usually an approxi-
mation):

P{a = j} =

n−1∏

i=0

P{bi = ωi(j)}

where ωi(j) denotes the i-th bit in the binary representation of j.
As already mentioned, EXIT curves are based on the computation of the

MI between each binary symbol and its reliability. Due to the presence of
binary symbols, this MI takes on a value between zero and one.

An EXIT curve for a SISO block S is a function IS(I) which quantifies
the average relationship between the MI of the reliabilities at the input of the
block (i.e., the variable I) and the MI of the a posteriori reliabilities at the
output of the block (i.e., IS)—recall that the MI is computed with respect to
the transmitted information sequence [60,61].

Example 4.2 Using a Monte Carlo simulation-based method for computing
the EXIT curve of a SISO block

As an example, consider an AWGN inter-symbol interference (ISI) channel
with binary phase shift keying (BPSK) at its input. The data is transmitted
in blocks of N bits (a1, . . . , aN). At the receiver a SISO block:

• observes the output r of the channel;

• accepts a vector (m
(in)
1 , . . . ,m

(in)
N) of N a priori probabilities for the

transmitted bits, i.e.,

m
(in)
i = P{ai = 1} ;

4.4. EXIT CHARTS 75

• computes a vector (m
(out)
1 , . . . ,m

(out)
N) of the a posteriori probabilities of

the bits using the FB algorithm (2.16), i.e.,

m
(out)
i = P{ai = 1|r} .

Although it has no implication in this particular example, assume also that
the output messages represent the extrinsic information, as described in Sec-
tion 2.4.3. This is a common and important assumption in an iterative detec-
tion scheme [46].

Assume that we want evaluate the EXIT curve of the considered SISO
block using the previously introduced Monte Carlo simulation-based method.

The SISO block has, as a matter of fact, two (vector) inputs: r and

(m
(in)
1 , . . . ,m

(in)
N). In an iterative decoding process, however, r is fixed, i.e.,

it does not change during the iterations. The EXIT curve must characterize
the MI between the generic transmitted bit ai and the corresponding output

message m
(out)
i as a function of the MI between the generic transmitted bit

ai and the corresponding input message m
(in)
i . To this end:

1. fix the SNR at the receiver;

2. generate the bit sequence (a1, . . . , aN) using a proper PRNG;

3. simulate the transmission of the bit sequence through the channel, ob-
taining the vector of observables r;

4. generate a vector of messages (m
(in)
1 , . . . ,m

(in)
N) characterized by an MI

equal to I, as will be shortly discussed;

5. run the FB algorithm obtaining the output APPs (m
(out)
1 , . . . ,m

(out)
N).

Assuming we have a method for generating the input vector (m
(in)
1 , . . . ,m

(in)
N),

the analysis, i.e., the output MI computation, proceeds as follows. Consider

the pairs {(ai,m
(out)
i)} as samples of pairs of RVs distributed according to

a pdf p(a,m). Given the sample pair sequence, we wish to estimate the MI
between a and m, which represents the output MI. There are several methods
for evaluating the MI from a sample sequence. A very simple one is deriving a
histogram to estimate p(a,m) and then computing the MI of the correspond-
ing joint discrete RVs. Let us follow this simple method. Note that, in the
considered scenario, the messages belong to [0, 1) ⊂ R and, therefore, to derive
a histogram one needs to define a quantization rule. To this end, divide the
interval [0, 1) into L bins B1, . . . , BL, each of width 1/L. At this point, it is

76 CHAPTER 4. PERFORMANCE ANALYSIS TECHNIQUES

possible to associate the vector (m
(out)
1 , . . . ,m

(out)
N) with a quantized vector

(m̃
(out)
1 , . . . , m̃

(out)
N), where

m̃
(out)
i = min{j : m

(out)
i ∈ Bj}

=
⌊
m

(out)
i L

⌋
.

The correct choice of the number of bins L is important and should be chosen
so that 1 ≪ L ≪ N . The two extremal choices, L = 1 or L = N , will result
in a MI equal to 0 and 1, respectively. Clearly the quantization operation
would not have been necessary, had we analyzed a SISO block operating with
quantized messages. The histogram approximation can therefore be obtained
based on the sequence (a1, . . . , aN) and the quantized message sequence and
is represented by the following joint pmf:

p̃(a, m̃) =
1

N

N∑

i=1

1(ai = a ∧ m̃
(out)
i = m̃)

where 1(·) is the indicator function previously introduced and ∧ denotes the
logical and.

Given the estimate pmf of the quantized messages, we can compute the
MI between a transmitted bit A and the corresponding message M using the
following approximation:

I(A;M) ≃
∑

a

∑

m̃

p̃(a, m̃) log2

p̃(a, m̃)

p̃(a)p̃(m̃)

where

p̃(m̃) =
∑

a

p̃(a, m̃)

and

p̃(a) =
∑

m̃

p̃(a, m̃) .

By changing the MI I characterizing the input set, and by re-performing
all the above described steps, one can obtain a new set of output messages
and compute the new output MI IS(I) = I(A;M), thus obtaining all desired
points of the EXIT curve IS(I).

(in)
1 , . . . ,m

(in)
N)

of input messages characterized by an MI I(A;M (in)) equal to I. A possible
solution is starting with an input vector of probabilities all equal to 1/2, i.e.,

All the above considerations assume we can generate a vector (m

4.4. EXIT CHARTS 77

declaring to the SISO block that there is no a priori information on the trans-
mitted bits. This corresponds to start with I = 0. We can compute the
output message vector and characterize its MI IS(0). At this point, the out-
put message vector is a vector of probabilities for which we know the MI and,
in principle, could be used as input vector for the estimation of IS(IS(0)).
This can be recursively combined to obtain several point of the EXIT curve.
However, this approach could lead to inaccurate results and requires to keep
the same transmitted bit sequence since all message set will refer to that par-
ticular sequence. A common approach to generate an a priori probability
message sequence for a bit sequence (a1, . . . , aN) is as follows.

Considering a BPSK transmission over an AWGN channel, fix the channel
noise variance σ2 so that the MI between the input and the output of the chan-
nel is equal to I. This can be done numerically by inverting the MI expression
given in Example 1.1. Transmit the bit sequence (a1, . . . , aN) through the
obtained channel, i.e., for each bit ai apply the BPSK mapping rule, obtain-
ing a transmitted symbol ci, and add an AWGN noise sample characterized by
variance σ2, obtaining an output observable yi. Now, compute the a posteriori
probability of the bit:

mi =
e−

(yi+1)2

2σ2

e−
(yi+1)2

2σ2 + e−
(yi−1)2

2σ2

. (4.6)

Since mi is an invertible function of yi, by the data processing inequality,

I(A;M) = I(A;Y) = I .

This implies that the vector (m1, . . . ,mN) is a vector of messages, where each
element represents the probability that the corresponding transmitted bit is
equal to 1 and whose MI (i.e., the MI between the message and the transmitted
bit RVs) is equal to I.

Note that there are infinite methods of generating messages characterized
by a MI equal to I, and each method is characterized by a conditional distribu-
tion of the messages. The above described method is particularly interesting
since the generated message sequence, in the log-likelihood domain, is condi-
tionally Gaussian. This is an appealing property, since there are several useful
SISO block output messages that are characterized by a Gaussian distribution
in the log-likelihood domain. In other words, a message set generated with
the above described method will exhibit statistical properties similar to those
of a real SISO block.

78 CHAPTER 4. PERFORMANCE ANALYSIS TECHNIQUES

4.5 EXIT Charts for LDPC Codes

The following example describes a method to compute the EXIT curves asso-
ciated with the VND and the CND, i.e., the component blocks of a standard
LDPC decoder.

Example 4.3 EXIT curves for the belief propagation LDPC decoder: Gaus-
sian approximation

Consider the variable and check node algorithm (3.9) and (3.10), involving
messages in the LLR domain . Assume to approximate the distribution of
the messages with a Gaussian distribution and assume also that all the input
messages have equal distribution (which, as stated in the previous section, is
a common assumption in density evolution analysis). In [13], it is shown that
the distribution p(m) of a message m in an LDPC belief propagation decoder
in the LLR domain must fulfill the following symmetry condition:

p(m) = emp(−m)

which, for a Gaussian distribution, implies that

Var{m} = 2E{m} .

Therefore, tracking the variance is sufficient to completely describe the evolu-
tion of the distribution.

Assuming, without loss of generality, the transmission of an all-0 sequence,
given a Gaussian LLR message set fulfilling the above symmetry condition, the
MI between the generic message and the corresponding codeword bit is [69]

J(σ) ,
∫ +∞

−∞

1√
2πσ2

e−
(x−σ2/2)2

2σ2 log2
2

1 + e−x
dx . (4.7)

where σ denotes the standard deviation of the message set.
Consider now the operation (3.9) performed during iterative decoding by

the variable node and operating in the log likelihood domain. Assuming that
the messages at the input of the variable node are independent, the variance
of the output message will be equal to the sum of the variances of the input
messages. As a consequence, the input-output relation of the MI in a degree
dv variable node, under the Gaussianity assumption, will be:

Iout = J
(√

(dv − 1)(J−1(Iin))2 + (J−1(I0))2
)

(4.8)

where Iout and Iin denote the MI between the transmitted codeword bit and
a corresponding output and input message, respectively and

4.5. EXIT CHARTS FOR LDPC CODES 79

1.

J−1(·)

is the inverse of the J(·) function

2.

J−1(Iin)

is the standard deviation σin associated with the input message set

3.

(dv − 1)(J−1(Iin))
2

is the sum of the variances of the input messages

4. I0 is the MI between the external observation (leading in (3.9) to the
LLR m0) and the corresponding codeword bit

5.

(J−1(I0))
2

is the variance of the message associated with the external observation

6. and, finally, (√
(dv − 1)(J−1(Iin))2 + (J−1(I0))2

)

is the standard deviation of the message at the output of the variable
node.

If the LDPC code is irregular, one can obtain an average MI associated to
the generic message from the VND and input to the CND according to (4.5),
which leads to

IVND
out =

∑

i

λiJ
(√

(i− 1)(J−1(Iin))2 + (J−1(I0))2
)

(4.9)

where {λi} are the variable node degree distribution coefficients

An approximate formula for the input/output relation for a degree-dc check
node, based on a property of the BEC, is given by

Iout = 1− J
(√

dc − 1 J−1(1− Iin)
)

. (4.10)

For a detailed overview on how to derive the approximate formula (4.10) and
the exact one, we refer the interested reader to [70,71].

80 CHAPTER 4. PERFORMANCE ANALYSIS TECHNIQUES

S1 S2

r IS1

IS2

â

Figure 4.4: Schematic diagram of an iterative receiver comprising two SISO
modules.

The average MI at the output of the CND, computed according to (4.5),
is as follows:

IB = 1−
∑

j

ρjJ
(√

j − 1J−1(1− IA)
)

(4.11)

where {ρj} are the check node degree distribution coefficients.
The MI of the message, computed according to (3.11), at the output of a

degree-dv variable node at the last iteration is

Iout = J
(√

(dv)(J−1(Iin))2 + (J−1(I0))2
)

(4.12)

and the corresponding average MI is

IVND
out =

∑

i

λiJ
(√

(i)(J−1(Iin))2 + (J−1(I0))2
)

. (4.13)

In the following chapters, the receiver will be divided into two distinct
processing blocks. This allows to simplify the analysis by decomposing the
MI input-output relation into two simpler functions. A generic example of
this scheme is shown in Figure 4.4, where two SISO modules S1 and S2 are
connected in a turbo-like configuration. In Figure 4.5, the EXIT curves of these
two hypothetical blocks S1 and S2 are shown. In the graph, the horizontal axis
refers to the output MI of SISO module S2 and the vertical axis refers to the
output MI of SISO module S1, i.e., the inverse I−1

S2
(I) of the S2 EXIT curve

is actually plotted. This representation of a pair of EXIT curves is referred to
as EXIT chart, and is useful to investigate the decoding process as a recursive

4.6. CONCLUDING REMARKS 81

MI Evolution

IS1

I−1
S2

IS1

IS2

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0

SISO module S1 EXIT chart IS1

SISO module S2 EXIT chart I−1

S2

Figure 4.5: Example of EXIT chart: two SISO modules S1 and S2 iteratively
exchange messages; the evolution trajectory of the MI is also shown.

update of the MI. A trajectory representing the evolution of the MI at the
output of the SISO modules S1 and S2 in the EXIT chart is also shown. If the
MI becomes equal to 1, the decoding process is said to converge, in the sense
that a low BER can be expected.

In Chapter 5, the relation between the MI and the BER will be investigated
and used for LDPC code design purposes.

4.6 Concluding Remarks

In this chapter, the main analysis tools for iterative receivers have been dis-
cussed. In particular, EXIT chart-based analyses will play an important role
in the rest of the book, since it provides a simplified, yet accurate, convergence
analysis tool which is well suited for LDPC code design for coded modulations.

