
Chapter 3

Low-Density Parity-Check
Codes

3.1 Introduction

In this chapter, we provide the reader with an overview on low-density parity-
check (LDPC) codes. The concepts outlined in this chapter will then be used
througout the remainder of the book.

This chapter is structured as follows. In Section 3.2 a basic description of
LPDC codes, together with their graphical representation, is given. In Sec-
tion 3.3, LDPC codes are described through a statistical approach, which al-
lows to derive significant insights into the behavior of these codes in a tractable
manner. In Section 3.4, possible decoding algorithms are presented. Sec-
tion 3.5 presents LDPC code design techniques based on the use of the statis-
tical description introduced in Section 3.3. Finally, encoding techniques are
presented in Section 3.6 and conclusions are drawn in Section 3.7.

3.2 Description of LDPC Codes

LDPC codes were first introduced by R. Gallager in his Ph.D. thesis [9]. In
their first instance, LDPC codes are linear block codes characterized by a
sparse parity-check matrix H whose columns have a fixed number dv of non-
zero elements and whose rows have a fixed number dc of non-zero elements.
The following matrix gives an example of a possible LDPC code parity check

37M. Franceschini, G. Ferrari and R. Raheli, LDPC Coded Modulations,
DOI: 10.1007/978-3-540-69457-1_3, © Springer-Verlag Berlin Heidelberg 2009



38 CHAPTER 3. LOW-DENSITY PARITY-CHECK CODES

matrix with dv = 3 and dc = 6:





0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1
0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0
0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0
0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 1
1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0
0 0 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0
0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 1 0





. (3.1)

In the current literature such codes are referred to as regular (dv , dc) LDPC
codes. Let N be the number of columns of the parity check matrix, i.e., N
is the length of the codeword. Let M < N be the number of rows of the
parity check matrix and assume that the parity check matrix H is maximum
rank, i.e., Rank(H) = M . Considering a column vector x of N elements, the
number of degrees of freedom in the solution of the parity check equation

Hx = 0 (3.2)

i.e., the number of linearly independent columns of H, is equal to K = N−M ,
which also corresponds to the number of information bits in a codeword. Of
course, the sum of all ones in the rows equals the sum of all ones in the
columns. Therefore

Ndv = Mdc = (N −K)dc

which yields

K

N
= 1− dv

dc
. (3.3)

The term R = K/N in (3.3) is the so called code rate, i.e. the average number
of information bits per codeword binary symbol. Therefore, a regular (dv , dc)
LDPC code has code rate R = 1− dv/dc.

It is possible to associate H with a bipartite graph in one-to-one corre-
spondence. Such a graph contains two kinds of nodes: each node of the first
kind, denoted as variable node, is associated with a column of H; each node
of the second kind, denoted as check node, is associated with a row of H.
The bipartite graph associated with the parity check matrix is constructed as
follows:



3.2. DESCRIPTION OF LDPC CODES 39

6

5

4

3

2

1

1

2

3

1

1

1

1

1

10

0

0

0

1

2

3

2 3 4 5

1 1 1 10

1

1

1

0

6

Figure 3.1: Pictorial exemplification of the graph construction for a regular
(2, 4) LDPC code.

1. allocate an array of N variable nodes, each one in correspondence to a
column of H;

2. allocate an array of M check nodes, each one in correspondence to a row
of H;

3. for each nonzero entry of H, connect with a branch the variable and
check nodes corresponding to the entry column and row, respectively.

In Figure 3.1, a pictorial exemplification of the construction of the bipartite
graph for a very simple LDPC code is shown, characterized by dv = 2 and
dc = 4.

In the parity check equation (3.2), each column of the H matrix is mul-
tiplied by a corresponding binary symbol in the codeword. Therefore, each
variable node is associated with a binary symbol in the codeword. The bit po-
sition is represented by the position of the column associated with the variable
node. On the other hand, each check node is associated with a parity check
equation specified by the row corresponding to that particular check node. A
node is said to have “degree i” if i branches depart from it and connect to i
different nodes of the other kind.



40 CHAPTER 3. LOW-DENSITY PARITY-CHECK CODES

The above described bipartite graphs for LDPC codes are instances of the
so called Tanner graphs for linear block codes. Tanner graphs were introduced
by M. Tanner in [31], and may be used to describe the constraints that a
codeword must fulfill in order to belong to a particular linear block code. One
may observe that, substituting any row in the parity check matrix H with a
linear combination of the row itself and any other set of rows does not alter the
set of codewords fulfilling the parity check equation (3.2), i.e., the obtained
matrix is a parity check matrix for the same code. In other words, every
linear block code admits several parity check matrices, or, equivalently, several
Tanner graph representations. Nevertheless, in general, the above described
linear combination method does not preserve sparseness of the parity check
matrix.

It is interesting to note that, although it is possible to construct a parity
check matrix for a regular (dv , dc) code when dv is an even number, this matrix
will not have maximum rank, since there exists at least one linear combination
of rows equal to the all-0 vector. In fact, consider the vector r = (r1, . . . , rN )
obtained by summing all row vectors in H. The j-th element of r is

rj =

M∑

i=1

hij mod 2

= dv mod 2

= 0

where {hij} denote the entries of H. Therefore, it is possible to remove a
row from the parity check matrix without modifying the set of codewords and
increasing the code rate. As a consequence, there cannot exist regular (dv , dc)
LDPC codes with even dv and rate 1− dv/dc.

3.3 Statistical Description of LDPC Codes

The notation (dv , dc) for regular LDPC codes describes a peculiar property,
i.e., that the code admits at least a parity check matrix that has exactly dv

ones in each column and dc ones in each row. There can be more than one
actual code that has this property, even if the codeword length N is fixed.
Therefore, this notation identifies a class or ensemble of codes. Several LDPC
codes performance analysis techniques refer to code ensembles, in the sense
that the analysis characterizes the expected performance when an actual code
is randomly selected within an ensemble.

Although the regularity assumption greatly simplifies performance anal-
ysis, it imposes unnecessary constraints on the structure of the parity check



3.3. STATISTICAL DESCRIPTION OF LDPC CODES 41

matrix. As a consequence, in [10,13,32] irregular LDPC codes have been pro-
posed, which allow for a different number of non-zero elements in each row
and column.

The bipartite graph construction does not rely on code regularity and
therefore applies to irregular LDPC codes as well. In the irregular case, the
number of branches connected to the various nodes may change from node to
node, regardless the node kind. In other words, variable (or check) nodes are
not constrained to have equal degree.

To give a description of irregular LDPC codes ensembles, in [10, 13, 32],
the concept of degree distribution is introduced.1 The degree distributions of
an LDPC code is specified by a pair of polynomials

(λ(x), ρ(x)) ,




∞∑

i=1

λix
i−1,

∞∑

j=1

ρjx
j−1





where the coefficient λi is the fraction of graph branches connected to degree-i
variable nodes and ρj is the fraction of graph branches connected degree-j
check nodes [13]. The polynomial ρ(x) is referred to as the check node degree
distribution and λ(x) is referred to as variable node degree distribution. The
coefficients {ρj} and {λi} must satisfy the following constraints [13]:

0 ≤ ρj ≤ 1 j ≥ 1

0 ≤ λi ≤ 1 i ≥ 1
∑∞

j=1 ρj = 1
∑∞

i=1 λi = 1

(3.4)

where the third and the fourth relation arise because the “sum of all fractions
of edges” must be equal to one.

If a graph has l branches, i.e., the corresponding parity check matrix has
l nonzero entries, the number vi of degree-i variable nodes is

vi =
lλi

i

and the number cj of degree-j check nodes is

cj =
lρj

j
.

1Note that the concept of degree distribution is borrowed from random graph theory,
where it is characterized by a slightly different definition.



42 CHAPTER 3. LOW-DENSITY PARITY-CHECK CODES

Therefore the number N of variable nodes is given by

N =
∑

i

vi = l
∑

i

λi

i
= l

∫ 1

0
λ(x) dx

where the integral notation is sometimes used in the literature for conciseness.
The number M of check nodes is given by

M =
∑

j

cj = l
∑

j

ρj

j
= l

∫ 1

0
ρ(x) dx .

The code rate R = K/N , therefore, is as follows:

R =
K

N
=

N −M

N
= 1− M

N

= 1−
l
∑

j

ρj

j

l
∑

i

λi

i

= 1−
∫ 1
0 ρ(x) dx
∫ 1
0 λ(x) dx

One can observe that, given the code rate R, the degree distribution coefficients
must satisfy the following linear constraint:

∞∑

j=1

ρj

j
= (1−R)

∞∑

i=1

λi

i
. (3.5)

Irregular LDPC codes are among the most powerful binary codes known
today. In [13], it is shown how to design the degree distributions of powerful
irregular LDPC codes and in [33] it is shown that carefully designed irregular
LDPC codes can practically achieve performance as close as 0.0045 dB to
the Shannon limit of the additive white Gaussian noise (AWGN) channel.
Irregular LDPC codes characterized by performance close to the capacity limit
have been obtained for a variety of binary input memoryless channels, among
which the binary erasure channel (BEC) and the binary symmetric channel
(BSC).

3.4 Decoding Algorithms for LDPC Codes

3.4.1 Sum-Product Algorithm

Maximum a posteriori probability (MAP) decoding, either per-symbol or per-
codeword, of a generic linear block code is, in general, a formidable task.



3.4. DECODING ALGORITHMS FOR LDPC CODES 43

However, in [9] Gallager introduces three suboptimal iterative decoding al-
gorithms for LDPC codes, which exploit the sparseness of the parity check
matrix of the code. Two of them have very low complexity and are based on
hard decisions and a bit-flipping technique, whereas the third one is a more
accurate algorithm which is based on the iterative exchange of real-valued reli-
abilities of the codeword bits. These algorithms are widely known as Gallager
A,B, and C algorithms, after [34].

All these algorithms have the appealing property of being based on the
Tanner graph representation of the LDPC code. In particular, they are char-
acterized by the fact that the nodes, both variable and check, act as proces-
sors exchanging real-valued messages on the code graph. All the processing
is done locally, i.e., for each node it is based only on the available messages.
The messages represent reliability values for the codeword bits; in particular
they represent an estimate of the probability that each particular codeword
bit is equal to “1”. In [12, 35], the author presents a reinvention of LDPC
codes, and the relevant iterative decoding algorithm. He also highlights how
the iterative decoding algorithm can be seen as a particular instance of the
belief propagation (BP) algorithm [36]. In [37], the authors present a gen-
eral graph-based algorithm, i.e., the sum-product (SP) algorithm, which can
be useful for computing the marginalization of complex probability density
functions. The authors show how BP can be seen as an instance of the SP
algorithm and that the SP algorithm achieves optimality if the code graph has
no cycles. In other words, the Gallager C decoding algorithms computes the
exact a posteriori probability of each codeword symbol—thus enabling MAP
symbol detection—if the code graph has the shape of a tree. This fact had
been argued in [9] as well.

The Gallager C algorithm is now introduced with emphasis on its imple-
mentation in the logarithmic domain. Given a binary random variable X,
taking values in the set {0, 1}, its likelihood ratio λX is defined as

λX =
P{X = 0}
P{X = 1} (3.6)

and the corresponding log-likelihood ratio is

ΛX = log λX .

At each iteration in the decoding algorithm: (i) first, each variable node com-
putes an output message for each connected edge and, (ii) then, each check
node computes an output message for each connected edge. The order of com-
putation of the messages is usually referred to as schedule. This is only the



44 CHAPTER 3. LOW-DENSITY PARITY-CHECK CODES

m0

mv
1

mv
j

mv
dv

Figure 3.2: Variable node: the quantities involved in the computation of the
j-th output message are shown.

most commonly adopted schedule; other schedules exist and can be found in
the literature [38–40].

In Figure 3.2, a degree-dv variable node is shown and the input and output
messages are explicitly indicated. One can observe that there is an input,
connected to the node and whose value is labeled with m0, which represents
an input reliability value associated with the bit corresponding to the variable
node, expressed in the log-likelihood domain. This input reliability value is
usually computed on the basis of the observation of the channel.

The decoding algorithm can be derived by reasoning in the probability
domain and then by casting the result in the log-likelihood ratio (LLR) domain
as follows. The message at the output of a variable node is the probability that
the corresponding codeword bit X is equal to “1” given a set of independent
observations regarding the bit. Assume to have dv independent observations
ξ1, . . . , ξdv . Let the likelihood ratios of the probability of the observations be

(
p(ξ1|X = 0)

p(ξ1|X = 1)
, . . . ,

p(ξdv |X = 0)

p(ξdv |X = 1)

)
= (λ1, . . . , λdv ) .

The probability of X being equal to 0 given the observations is

P (X = 0|ξ1, . . . , ξdv ) =
p(ξ1, . . . , ξdv |X = 0)P (X = 0)

p(ξ1, . . . , ξdv)



3.4. DECODING ALGORITHMS FOR LDPC CODES 45

and the corresponding likelihood ratio is

λ =
P (X = 0|ξ1, . . . , ξdv)

P (X = 1|ξ1, . . . , ξdv)

=
p(ξ1, . . . , ξdv |X = 0)P (X = 0)

p(ξ1, . . . , ξdv |X = 1)P (X = 1)

=

∏dv
i=1 p(ξi|X = 0)

∏dv
i=1 p(ξi|X = 1)

P (X = 0)

P (X = 1)

=
P (X = 0)

P (X = 1)

dv∏

i=1

λi (3.7)

which, assuming P (X = 0) = P (X = 1) = 1/2, in the LLR domain becomes2

Λ =
dv∑

i=1

Λi (3.8)

where Λi = log λi.

The variable node decoding algorithm can be formulated in the logarithmic
likelihood domain as follows [9]. Each degree-dv variable node, as shown in
Figure 3.2, computes dv output messages as follows:

mv
j = m0 +

dv∑

i=1
i6=j

mv
i (3.9)

where mv
j is the j-th output message and mv

i is the i-th input message coming
from a check node. In other words, the variable node treats all the messages
at its input as independent observations: dv − 1 are from the check nodes
and one, m0, corresponds to the likelihood ratio associated with an external
observation. This external observation can be a sample from the channel, or
it might correspond to an a priori information on the corresponding bit. The
message m0 enables to account for an a priori information and will be used in
Chapter 5 as a feedback input in a more general decoding scheme.

One can observe that the sum explicitly excludes the message coming from
the edge whose output message is being computed. This is in agreement with

2We remark that the a priori probability P (X = 0), and in particular its corresponding
likelihood ratio P (X = 0)/P (X = 1) plays the same role in (3.7) as any other likelihood ratio
observation. In other words, it could be formally treated as an observation and embedded
into the product.



46 CHAPTER 3. LOW-DENSITY PARITY-CHECK CODES

mc
1

mc
j

mc
dc

Figure 3.3: Check node: the quantities involved in the computation of the
j-th output message are shown.

the use of the so-called extrinsic information in iterative detection, and, in
particular, in turbo decoding [8].

In Figure 3.3, a generic degree-dc check node is shown. A check node
represents a constraint on the codeword bits associated to the variable nodes
connected to it. This constraint is expressed by the corresponding parity
check matrix row: the modulo-2 sum of the codeword bits connected to the
check node is equal to 0. In this case, the associated problem is the following.
Given probabilities

(P (X1 = 1), . . . , P (Xdc−1 = 1)) = (p1, . . . , pdc−1)

associated with dc − 1 bits of the dc bits connected to the parity check node,
compute the probability P0 that their sum modulo-2 is equal to 0 (we know
that the sum of all dc bits modulo-2 is equal to 0). Assuming that all the
observations leading to the computation of P (X1 = 1), . . . , P (Xdc−1 = 1) are
independent, then

P0 =
∑

x:sum is even

P (x)

=
∑

x:sum is even

dc−1∏

j=1

P (xj)

where “x : sum is even” denotes all bit vectors x of length dc − 1 whose sum
is an even number, i.e., x contains an even number of 1’s. The computation of
this quantity can be performed following the guidelines in [9]. First, consider
the following polynomial in t

q(t) = α0 + α1t + . . . + αdc−1t
dc−1 =

dc−1∏

j=1

(1− pj + pjt) .



3.4. DECODING ALGORITHMS FOR LDPC CODES 47

Observe that the coefficient αi is given by

αi =
∑

k1<k2<...<ki

pk1 . . . pki

∏

j 6=k1,...,ki

(1− pj) .

In other words, αi is the probability of having i ones and dc − 1 − i zeros
among the dc − 1 bits. Observe now that q(1) is the sum of all coefficients
and q(−1) is the sum of all coefficients where all odd coefficients have changed
sign. Therefore

q(1) + q(−1) =

dc−1∑

j=0

(1 + (−1)j)αj =

⌊(dc−1)/2⌋∑

k=0

2α2k

is equal to two times the sum of all even coefficients, i.e., twice the probability
of having an even number of 1’s. As a consequence,

P0 =
q(1) + q(−1)

2
=

1 +
∏dc−1

j=1 1− 2pj

2
.

The corresponding LLR is

Λ = log
P0

1− P0

= log
1 +

∏dc−1
j=1 (1− 2pj)

1−∏dc−1
j=1 1− 2pj

= log
1 +

∏dc−1
j=1 (1− 2

eΛj +1
)

1−∏dc−1
j=1 1− 2

eΛj +1

= log
1 +

∏dc−1
j=1 tanh(Λj/2)

1−
∏dc−1

j=1 tanh(Λj/2)

= 2atanh

dc−1∏

j=1

tanh(Λj/2)

where

Λj = log
1− pj

pj
.

Recalling the check node in Figure 3.3, in order to compute the generic
output message, each check node performs the following computation:

mc
j = 2 atanh

dc∏

i=1
i6=j

tanh
mc

i

2
(3.10)



48 CHAPTER 3. LOW-DENSITY PARITY-CHECK CODES

where mc
j is the j-th output message and mc

i is the i-th input message coming
from the variable nodes. As in the variable node case, the message coming
from the j-th edge is not used for the computation of the outgoing message in
the j-th edge. The messages can be interpreted as LLRs of the bits associated
with the variable nodes towards/from which the message is directed.

At the end of the decoding process, each variable node computes an output
reliability value as follows:

mv = m0 +

dv∑

i=1

mv
i (3.11)

where dv is the degree of the node. In other words, the output reliability value
of a codeword bit is the sum of all messages directed towards the correspond-
ing variable node. As for the forward-backward (FB) algorithm, this step may
be referred to as completion—see Chapter 2 for more details on the FB al-
gorithm. From (3.6), an LLR referring to a binary random variable can be
straightforwardly used to compute a MAP estimate of the random variable. In
fact, if the sign of the LLRs is positive the probability of the random variable
being equal to 0 is larger than the probability of the random variable being
equal to 1. Vice versa, if the sign of the LLRs is negative the probability of
the random variable being equal to 0 is smaller than the probability of the
random variable being equal to 1. Thus, the signs of the LLRs in (3.11) are
all is needed to obtain decisions on the codeword bits.

Summarizing, the Gallager C decoding algorithm comprises the following
steps.

1. Compute all the reliability values for the symbols in the codeword. These
values correspond, for each variable node, to the m0 value in Figure 3.2.

2. Initialize to 0 all the messages coming from the check nodes.

3. Compute the variable nodes’ output messages using (3.9).

4. Transfer the messages to the check nodes.

5. Compute the check nodes’ output messages using (3.10).

6. Transfer the messages to the variable nodes.

7. Verify that a stopping criterion—described in the following paragraph—
is met. If not, go to step 2.

8. Compute the final reliability values using (3.11).



3.4. DECODING ALGORITHMS FOR LDPC CODES 49

A stopping criterion may be based on several possible events. The two most
common are (i) the codeword bits that would be obtained after the completion
step form a valid codeword, and (ii) a given maximum number of iterations is
reached. It has been observed [41] that the Gallager C algorithm for LDPC
codes has the interesting property of exhibiting particularly low probability
of not detecting an erroneous decoding result, i.e., when the decoding process
fails, the decoder is mostly aware of the failure. In fact, unlike turbo codes,
the BP algorithm for LDPC codes operates on codeword bits rather than
information bits. This is easily recognized by observing that the information
bits (i.e., the information payload in the codeword) and the parity bits are
dealt with in the same way. Neither convergence to the optimum codeword
nor convergence to a codeword at all is guaranteed. It seems apparent that,
whenever a decoding error occurs, the resulting decided bit sequence is not a
codeword, in the sense that usually it does not satisfy (3.2).

In the above described algorithm, the structure of message passing is rigid:
first, every variable node computes its messages; then, all the messages are
passed to the check nodes, which in turn compute all the messages at their out-
puts. All the obtained messages are then sent back to the variable nodes. This
scheduling is optimum when applied to a tree-shaped bipartite graph, i.e., a
graph without cycles. If the graph has cycles, the algorithm becomes subopti-
mal and there may be some benefit in adopting other scheduling schemes. An-
other motivation for using other scheduling patterns, rather than the standard
Gallager C algorithm, is to improve the computational and implementation
efficiencies of circuits devoted to LDPC decoding.

In the following, we will refer to the set of variable node processors as
variable node detector (VND) and to the set of check node processors as check
node detector (CND). The LDPC decoding process can be seen as an iterative
exchange of vector messages, referred to as message sets, between VND and
CND.

3.4.2 Min-Sum Algorithm

The check node operation (3.10) in the log-domain relies on the computation
of complex nonlinear functions, i.e., atanh(·) and tanh(·). The computation
of (3.10) may be formulated in a recursive form as described in the following.
Let (m1, . . . ,mdc−1) denote the messages in the product of (3.10), where the
superscript c has been omitted and consecutive indices have been adopted to



50 CHAPTER 3. LOW-DENSITY PARITY-CHECK CODES

simplify the notation. If we define the following recursion:

m∗
1 = m1

m∗
i+1 = 2atanh tanh

m∗
i

2
tanh

mi+1

2
(3.12)

then

mc
j = m∗

dc−1 .

Note that, for any x, y ∈ R

2atanh
(
tanh

x

2
tanh

y

2

)

= sgn(x)sgn(y)

(

min{|x|, |y|} + log
1 + e−|x|−|y|

1 + e−||x|−|y||

)

where the term

log
1 + e−|x|−|y|

1 + e−||x|−|y||
(3.13)

becomes small whenever ||x| − |y|| is large. This result can be obtained by
observing that, first, both tanh(·) and atanh(·) have odd symmetry and, there-
fore,

2atanh
(
tanh

x

2
tanh

y

2

)
= 2sgn(x)sgn(y)atanh

(
tanh

|x|
2

tanh
|y|
2

)
.

Expanding the right-hand side, one obtains:

2atanh
(
tanh |x|

2 tanh |y|
2

)
= log

1 + tanh(|x|/2) tanh(|y|/2)
1− tanh(|x|/2) tanh(|y|/2)

= log
1 + e−|x|−|y|

e−|x| + e−|y|

= − log
(
e−|x| + e−|y|

)
+ log

(
1 + e−|x|−|y|

)

= min{|x|, |y|} − log
(
1 + e−||x|−|y||

)

+ log
(
1 + e−|x|−|y|

)

= min{|x|, |y|} − log
1 + e−|x|−|y|

1 + e−||x|−|y||

where the well known identity

log
(
ea + eb

)
= max{a, b}+ log

(
1 + e−|a−b|

)



3.4. DECODING ALGORITHMS FOR LDPC CODES 51

Figure 3.4: Comparison of the check node functions: (a) BP algorithm and
(b) Min-Sum algorithm.

has been used. By neglecting the term (3.13) in the computation of the recur-
sion (3.12), one obtains the following approximate check node operation:

mc
j =

dc∏

i=1
i6=j

sgn(mc
i )min

i6=j
{mc

i}

which yields the so-called Min-Sum approximation of the BP algorithm.

In Figure 3.4.2, the check node operation in the LLR domain for a degree-3
check node is shown considering (a) the BP algorithm and (b) the Min-Sum
algorithm. The x and y axes represent the two input LLR values and the z axis
represents the output message in the LLR domain. One can observe the visual
similarity of the two functions. In Figure 3.5, the difference between the exact
function and its Min-Sum approximation is shown. One can observe that the
highest difference is concentrated in the region where the two message values
are close. If the input reliabilities to the variable nodes are characterized by
high LLR values, as in the case of a good channel such as an AWGN channel
with high SNR, the average difference between the Min-Sum approximation
and the BP is expected to be small.

Min-Sum decoding has an interesting property that we will briefly discuss.
Observe that, in the case of binary-input AWGN (BIAWGN) channel described
in Example 1.1, the input LLR reliability value to the k-th variable node can

-4 -2 0 2 4 -4
-2
0
2
4

-4
-2
0
2
4

-4 -2 0 2 4 -4
-2
0
2
4

-4
-2
0
2
4

(b)(a)



52 CHAPTER 3. LOW-DENSITY PARITY-CHECK CODES

Figure 3.5: Difference between the BP and Min-Sum check node functions.

be computed as follows:

m0 = log

1√
2πσ2

w

e
−

(yk−1)2

2σ2
w

1√
2πσ2

w

e
−

(yk+1)2

2σ2
w

= log e
4yk
2σ2

w =
2yk

σ2
w

where yk is the k-th received sample, i.e., signal plus noise, and σ2
w is the

additive noise variance. In order to perform LDPC decoding with the above
described BP algorithm, the only needed channel information consists of the
knowledge of σ2

w, which is used to compute the input LLRs. If in a variable
node or check node Min-Sum operation all the messages are multiplied by a
factor α > 0, the resulting output LLR is multiplied by the same factor α.
Therefore, if in the Min-Sum algorithm every input LLR is multiplied by α,
the obtained messages, at every iteration and in every graph edge, change only
by a constant factor α. In particular, the message sign does not change and,
as a consequence, the bit decisions do not change.

By choosing α = σ2
w/2, one obtains a decoding algorithm that does not rely

on the knowledge of the channel statistics, i.e., knowledge of σ2
w is unneeded

and the input messages can be computed simply as

m0 = yk .

-4 -2 0 2 4 -4
-2

0
2

4

-0.8
-0.4

0
0.4
0.8



3.5. PRACTICAL LDPC CODE DESIGN 53

For this reason, the Min-Sum decoder is also known as universal decoder [42].
The performance of the Min-Sum decoder can be improved in a number of
ways. In particular, the application of a correction factor and an offset in
the check node output message may have beneficial effect on the decoder
performance [43].

3.4.3 Alternative Decoding Algorithms

Several techniques have been proposed either to achieve better performance
than that of BP decoding or to obtain low-complexity decoding. Linear pro-
gramming (LP) decoding of LDPC codes has been proposed in [44,45], where
it is shown how to formulate the maximum likelihood (ML) decoding of LDPC
codes as a LP problem. To make the use of an efficient LP algorithm feasi-
ble, the constraints on the solution must be (approximately) relaxed. Several
improvements have been proposed to tighten the distance between approxi-
mate LP decoding and ML decoding. LP decoders have, in general, better
performance than BP decoders. Nevertheless, their use as component blocks
of the complex iterative receivers that will be investigated in the next chapters
is difficult since they are conceived to perform per-codeword ML detection as
opposed to per-bit MAP detection, which is better suited for iterative detec-
tion [46].

Other reduced complexity decoding techniques comprise bit-flipping tech-
niques, which refer to graph-based algorithms with binary valued messages
(see, e.g., [9] and [47] and references therein). Message quantization has been
also investigated. The basis for performance analysis using quantized message
passing algorithm for LDPC decoding may be found in [34].

3.5 Practical LDPC Code Design from Statistical
Description

As usual, design techniques rely on performance evaluation techniques. The
most effective LDPC code performance evaluation techniques will be discussed
in Chapter 4 and are based on asymptotic analysis of LDPC code ensembles
defined by their degree distributions. The use of these techniques in code
design allows to optimize the degree distributions of the code, i.e., its statistical
description. In order to use the code, it is necessary to construct a parity check
matrix that satisfies, in addition to the obtained degree distributions, all the
desired constraint, such as, for example, the codeword length.

A widely known LDPC construction algorithm is the progressive edge



54 CHAPTER 3. LOW-DENSITY PARITY-CHECK CODES

growth (PEG) algorithm [48, 49], which enables to design good LDPC codes
characterized by high minimum cycle length, or girth, and based on a given
degree distribution.

Most of the results obtained in this book will be based on LDPC codes
constructed using the simple random graph construction algorithm described
in the following.

The key goal is to obtain a code with, in order of priority:

1. a given codeword length N ;

2. a girth larger than or equal to a given value γ;

3. a given rate R;

4. given degree distributions.

In general, it is not possible to satisfy the last two constraints. In fact, since R
is generally a real number and the degree distributions have real coefficients,
there may be cases where it is not possible to build a finite length code char-
acterized by given code rate R and degree distributions. These two design
constraints may need to be somehow relaxed, allowing for small roundings on
the degree distributions coefficients.

In order to build a code we first compute, based on N and the variable
node degree distribution, the number ℓ of edges in the graph

ℓ =
N

∑
i

λi

i

and the number vi and ci of degree-i variable and check nodes, respectively,
for each i:

vi = ℓ
λi

i

ci = ℓ
ρi

i
.

The obtained values must be properly rounded in order to obtain an integer
number of nodes for each degree. In addition, the rounding strategy for vi

must be chosen in order to obtain a total number of variable nodes equal to
N , and the rounding of ci must preserve the number of actual edges ℓ in the
variable nodes.

To build the LDPC code graph, first the available variable and check nodes
must be arranged in two separate groups. Each degree-i node of a specific kind,



3.5. PRACTICAL LDPC CODE DESIGN 55

(a) (b)

Figure 3.6: Simple code construction: (a) arranged nodes with empty sockets
and (b) graph after all empty sockets have been connected.

either check or variable, has i “empty sockets,” each ready to be connected to
a socket of a node of the other kind. Figure 3.6 (a) shows the arranged nodes
ready to be connected. After having prepared the nodes to be connected, the
construction algorithm is as follows:

1. start from the first socket in the first variable node;

2. connect the current socket with a random socket in the check nodes;

3. verify that the new connection does not generate a cycle up to a given
desired girth γ (by exploring the graph starting from the new edge up
to a depth γ − 1);

4. if no new short cycle is generated pass to the next empty socket in the
variable nodes and repeat starting from 2; else, delete the connection



56 CHAPTER 3. LOW-DENSITY PARITY-CHECK CODES

and repeat from 2.

If the algorithm reaches a dead end, i.e., it is not possible to find an empty
check node socket that does not generate a cycle of length longer than γ,
all the connections are erased and the algorithm restarts from the beginning.
If after a given number of trials the algorithm does not provide a complete
graph, then the algorithm fails and returns no code at all. In this case, it
may be useful to reduce the required girth or to increase the codeword length.
Eventually, all empty sockets will be connected, as shown in Figure 3.6 (b).

3.6 Encoding Techniques for LDPC Codes

On the basis of the vector of information bits to be transmitted, encoding is
the operation that selects, from the set of all codewords, i.e., the codebook,
one corresponding codeword. In general, LDPC code encoding can entail
significant complexity due to the random code structure. In the following
subsections, some encoding techniques are described that may be applied to
any generic LDPC code.

3.6.1 Encoding by Matrix Multiplication

In several contexts involving binary coding, it is useful that the information
bits explicitly appear in the associated codeword. This allows, for example, to
avoid costly decoding when the communication system is operating on a par-
ticularly favorable channel, introducing negligible uncertainty on the received
data sequence. Codes satisfying this condition are known as systematic. The
part of codeword replicating the data bits is known as the systematic portion
of the codeword. In convolutional encoding, the systematic portion is often
interleaved with the non-systematic part (also known as parity bits). In this
book, we will address systematic LDPC codes whose systematic part consists
of the first bits of the codeword.

Since LDPC codes are linear block codes, they can be encoded using the
corresponding N ×K generation matrix G. In particular, the codeword x can
be obtained as follows:

x = Ga

where a = (a1, . . . , aK)T is the vector of K information bits to be encoded.
Since the code is systematic, the generation matrix must be of the form

G =




IK

· · ·
P



 .



3.6. ENCODING TECHNIQUES FOR LDPC CODES 57

where P is a (N−K)×K matrix that generates the parity bits of the codeword.
The encoded vector x = Ga is in the form

(a1, . . . , aK , p1, . . . , pN−K)T

where the vector of parity bits is

p = (p1, . . . , pN−K)T = Pa .

The matrix H̃ defined as

H̃ =

(
P

... IN−K

)

is a parity check matrix for the systematic code generated by G, meaning that
a vector x is a codeword if and only if

H̃x = 0 .

This fact can be easily recognized since any bit vector x = (x1, . . . , xN ) is a
codeword only if the last N − K bits p̂ = (xK+1, . . . , xN ) are equal to the
parity bit vector p generated by the first K codeword bits as follows:

p = P (x1, . . . , xK)T .

It is easily recognized that

H̃x =

(
P

...IN−K

)
(x1, . . . , xK , xK+1, . . . , xN ) = p + p̂

which is equal to 0, using boolean algebra, if and only if

p = p̂

i.e., if and only if x is a codeword.

The generation matrix G is completely defined by its sub-matrix P , which,
in turn, can be computed by transforming a given parity check matrix H into
its H̃ form, by means of simple row operations (i.e., substitution of a row with
the linear combination of itself and other rows).

Given a parity check matrix H, in order to guarantee the existence of a
corresponding systematic code, the rightmost (N −K)× (N −K) sub-matrix
of H must be non singular. If this condition does not hold, however, observe
that, if H has maximum rank, there exists a subset of N −K columns of H
that forms a non-singular matrix. Therefore, it is possible to obtain a parity



58 CHAPTER 3. LOW-DENSITY PARITY-CHECK CODES

check matrix corresponding to a systematic code by applying a permutation
of the columns of H that places those columns in the rightmost positions.

Although H is sparse by definition, the sub-matrix P of G is, in general,
dense. This means that, discarding the identity matrix part, in order to store
G, at least

K(N −K) = K2

(
1

R
− 1

)

bits of memory are needed. Since a typical LDPC codeword size ranges from
103 to 104 it means that the memory for storing G for, e.g., a rate 1/2 code
(i.e., N −K = K), is at least on the order of 106 bits.

The matrix multiplication operation, accounting only for the dense part of
G, requires K(N−K) = K2(1/R−1) multiplications (boolean and operations)
and (K−1)(N−K) = (K2−K)(1/R−1) additions (boolean exor operations).
The encoding complexity is therefore quadratic in the number of information
bits per codeword or, given the code rate, in the length of the codeword. It
is also an increasing function of the code rate. The Pa matrix multiplication
can be intrinsically done in parallel, by performing several scalar products.
This may be useful if speed or latency are critical issues, although it requires
a specific implementation.

3.6.2 Recursive Encoding and Structured Codes

Since BP decoding has linear computational cost in the block length, for long
enough codes, encoding may become more computationally expensive than de-
coding itself. To overcome this problem, several solutions have been proposed.
A possible technique is to design highly structured codes. This approach gen-
erated a thriving field of research that lead to the invention of several coding
techniques. A particularly interesting possibility is to build LDPC codes that
are quasi-cyclic, thus enabling low-complexity encoding [50–52]. Another ex-
ample is given by [53], where turbo-Gallager codes are introduced. They
consist of a class of turbo codes which can be effectively decoded by means of
a standard LDPC code decoder and, simultaneously, are characterized by the
linear complexity encoding property of turbo codes. A family of codes which
enable efficient recursive encoding is proposed in [54], with particular emphasis
on digital subscriber line applications. Due to their highly structured parity
check matrix, the proposed codes enable the use of a very simple circuit for
encoding purposes. Besides possible simplification of the encoding procedure,
structured codes might have other interesting benefits including

• the possibility of an algorithmic description of the parity check matrix,



3.7. CONCLUDING REMARKS 59

thus avoiding the storage of the whole matrix;

• a more efficient interconnection of the processing blocks involved in the
LDPC code decoding: an unstructured LDPC code requires the capabil-
ity of a generic interconnection structure which might lead to unsolvable
difficulties in the design of the system hardware;

Another possible technique to obtain efficient encoding is proposed in [55],
where it is shown how to exploit the sparseness of the parity check matrix to
obtain quasi-linear encoding complexity. The proposed technique exhibits a
one-to-one correspondence with the decoding process for an erasure channel
using the same code. The procedure is recursive, i.e., all the parity bits but a
small fraction are obtained using a recursion, whereas the remaining bits are
obtained by means of a matrix multiplication.

It is interesting to note that, if the parity check matrix can be put in lower
triangular form in its rightmost part by means of a row permutation, then
a BP decoding process, initialized with zero LLRs for the parity bits part
and the value 1 − 2ak in the k-th systematic bit, completely recovers all the
parity bits after a sufficiently large number of iteration (at most N−K). This
means that, if the parity check matrix fulfills the previously given condition,
the decoder can be used for encoding as well. If the parity check matrix does
not fulfill the requirements for exact encoding by decoding, then at the end
of the encoding process there will be a fraction of parity bits that remain
uncertain. In principle, it could be possible to use the partial encoding result
to compute a signal to be transmitted. Depending on the strategy used this
would result in a performance loss, due to a suboptimal encoding.

3.7 Concluding Remarks

In this chapter, an overview of LDPC codes has been given. We remark that,
on the basis of the structure and properties of LDPC codes, a huge number
of new code families have been proposed in several works. In this book, we
focus on generic irregular LDPC codes since we will use an LDPC code as
a component block of a more complex system tailored for transmission on
specific channels. In the next chapter, an overview of the most important
performance analysis techniques for iterative detection schemes will be given,
with particular emphasis on LDPC coded schemes.




