
Chapter 2

Trellis-based Detection
Techniques

2.1 Introduction

In this chapter, we provide the reader with a brief introduction to the main
detection techniques which will be relevant for the low-density parity-check
(LDPC) coded modulation schemes considered in the following chapters of this
book. In particular, we describe possible trellis-based detection techniques,
taking also into account the presence of (binary) coding. Soft-output trellis
based detection will be used as component block of LDPC coded modulation
receivers in Chapters 5 and 7.

In Section 2.2, we provide a simple classification between hard-output and
soft-output detection, presenting the Viterbi algorithm (VA) and the forward-
backward (FB) algorithm as key examples of these two detection strategies,
respectively. In Section 2.3, we quickly describe optimal detection strategies
over channels with memory. In Section 2.4, we consider detection of encoded
data. Section 2.5 concludes the chapter.

2.2 Hard-Output and Soft-Output Detection

A general model of a digital transmission system can be viewed as based on
both a single MK-ary signaling act or K repetitions of M -ary signaling acts.
In the former interpretation, the message is the entire information sequence,
whereas in the latter the message corresponds to an individual information
symbol. According to these interpretations, two maximum a posteriori (MAP)
detection strategies are obtained. MAP sequence detection is optimal in the
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sense that it minimizes the probability of erroneously detecting the entire
sequence, i.e., selecting a sequence not equal to the transmitted one. MAP
symbol detection minimizes the probability of erroneously detecting each infor-
mation symbol. More precisely, considering a suitable discretization process,
through which the received signal is converted into an equivalent sequence of
discrete-time observations r, whose dimension depends on the number of sam-
ples per symbol interval, the following general formulations of these detection
strategies can be derived:

â = argmax
a

P {a|r} MAP sequence detection

âk = argmax
ak

P {ak|r} MAP symbol detection

where a , {ak}K−1
k=0 and r , {rk}K−1

k=0 are the sequences of K information
symbols and observables, respectively.1 As mentioned in the previous section,
two algorithms that efficiently implement these two detection strategies are the
VA [14,15] and the FB algorithm [17]. Both these algorithms are trellis-based,
in the sense that they make use of a trellis diagram induced by a finite state
machine (FSM) model of the underlying transmitter/channel model. More
details will be provided in the remainder of this chapter.

The VA allows to efficiently derive the sequence of hard decisions â. On
the opposite, the FB algorithm requires the computation of the a posteriori
probability (APP) P{ak|r} of each information symbol. In the case of binary
information symbols, a commonly considered reliability value is given by the
logarithmic likelihood ratio (LLR), derived from the APPs as follows:

LLRk , log
P{ak = 0|r}
P{ak = 1|r} . (2.1)

It is immediate to recognize that a LLR captures, as a single quantity, the
relationship between the APP of a transmitted “1” and that of a transmitted
“0.” Note that the formulation, based on the use of LLR, can also be extended
to the case of larger information symbol cardinality. In the case of M -ary
symbols, (M − 1) LLRs are needed: the LLR relative to the m-th symbol,
m = 0, . . . ,M−2, is given by the logarithm of the ratio between P{ak = m|r}
and P{ak = M − 1|r}—in other words, the reference probability is the APP
of the last symbol, and its corresponding LLR is thus 0.

1Should channel coding or oversampling be used, each information symbol ak could cor-
respond to more than one observable. However, this can be straightforwardly taken into
account by considering a vector notation, i.e., replacing the scalar rk with a vector rk.
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According to the discussion in the previous paragraph, rather than clas-
sifying trellis-based detection algorithms depending on the MAP detection
strategy (either sequence or symbol), a more practical classification is based
on the distinction between hard-output (VA) or soft-output (FB algorithm)
detection.

2.2.1 The Viterbi Algorithm

As anticipated at the beginning of this section, the MAP sequence detection
strategy can be formulated as

â = argmax
a

P{a|r}. (2.2)

The operation in (2.2) can be described as “finding the sequence â such that
the a posteriori probability P{â|r} of having transmitted â, given the re-
ceived sequence r, is maximum.” In particular, a conceptual method for the
identification of â consists of the evaluation of P{a|r} for all possible in-
formation sequences a, and selection of the sequence which maximizes the a
posteriori probability. By chain factorization and owing to the independence
of the information symbols, the MAP sequence detection strategy in (2.2) can
be formulated in terms of the conditional probability density function (pdf)
p(r|a) and the a priori sequence probability P (a):

P{a|r} ∼ p(r|a)P (a) =

K−1∏

k=0

p(rk|rk−1
0 ,a)P{ak}

=
K−1∏

k=0

p(rk|rk−1
0 ,ak

0)P{ak}

∼
K−1∑

k=0

[
ln p(rk|rk−1

0 ,ak
0) + ln P{ak}

]
(2.3)

where the symbol ∼ indicates that two quantities are monotonically related
with respect to the variable of interest (in this case, a); a statistical notion of
system causality is assumed to hold in the second line; the monotonicity of the
logarithm is used in the third line; and rk−1

0 is a short-hand notation for the
sequence {ri}k−1

i=0 of k observables. In particular, if the a priori probabilities
{P{ak}} are equal, the MAP sequence detection criterion coincides with the
so-called maximum likelihood (ML) sequence detection criterion.

The maximization of (2.3) over all possible sequences {a} can be imple-
mented as a search of a path in a tree diagram where each branch is in a
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time →

ak = +1

ak = −1

a0
a1

a2
a3

Figure 2.1: Tree representation of the possible transmitted sequences. The
number of possible paths to be searched to perform MAP sequence detection
increases exponentially with the sequence length.

one-to-one correspondence with an information symbol ak. Consequently, a
path is in a one-to-one correspondence with a partial sequence ak

0 up to epoch
k. Assigning a metric equal to the k-th term of (2.3) to a branch at epoch k
associated with symbol ak and defining a path metric as the sum of the met-
rics of the branches forming the path, the MAP sequence detection strategy
can be implemented as a search of the path with largest metric in this tree
diagram. In Figure 2.1, an example of tree comprising all possible paths to be
searched is shown, considering a binary alphabet for ak. Two paths are also
emphasized.

While a tree diagram is in principle required, the tree can often be “folded”

can be described as a finite state machine (FSM) with state µk and character-
ized by the following “next-state” and “output” functions, respectively:

{
ns(µk, ak) = µk+1

o(µk, ak) = ck.
(2.4)

Considering a channel with complex additive white Gaussian noise (AWGN)
with circular symmetry, i.e., with independent real and imaginary components,
each with variance σ2—a simple and very common example of memoryless
channel—the generic observation at epoch k can be written as

rk = ck + nk (2.5)

into a trellis, as explained in the following. We assume that the encoder/modulator
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time →
time →

ak = +1

ak = −1ak = +1

ak = −1

Figure 2.2: Illustrative representation of a tree folded into a trellis.

where nk is the AWGN sample. In this case, it follows that

p(rk|rk−1
0 ,ak

0) = p(rk|µk, ak) =
1

2πσ2
e−

|rk−ck|2

2σ2

and (2.3) can be reformulated as

P{a|r} ∼
K−1∑

k=0

[
−|rk − ck|2

2σ2
+ ln P{ak}

]

∼
K−1∑

k=0

[
−|rk − ck|2 + 2σ2 ln P{ak}

]
. (2.6)

As mentioned above, a brute-force approach to the implementation of the MAP
sequence detection criterion would consist in evaluating (2.6) for all possible
information sequences, and choosing the maximizing sequence. Assuming M -
ary information symbols, the complexity of this brute-force approach would
be MK , i.e., exponential with the transmission length. Hence, this imple-
mentation of the MAP sequence detection principle is feasible only for short
transmission lengths, whereas it becomes impractical for transmission lengths
of practical relevance in many applications. A much more efficient and ap-
pealing MAP sequence detection algorithm is the VA, which will be described
in the following.

In the case of strictly finite-memory channels, MAP sequence detection
can be formulated as indicated in (2.6), possibly by redefining the symbol ck

and the underlying FSM model. In particular, the optimal tree diagram can
be folded into a trellis diagram, where the possible states at each epoch are
given by all possible values of the state µk of the encoder/modulator FSM.
In Figure 2.2, an illustrative representation of a folding of a tree into a trellis
is shown. In the remainder of this chapter, the number of states of the en-
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coder/modulator FSM will be indicated by Sc. Denoting by tk , (µk, ak) a
transition in the trellis diagram, a branch metric associated with this transition
can be defined as follows:

λk(µk, ak) = λk(tk) , ln p(rk|µk, ak) + lnP{ak}. (2.7)

Upon the definition of the branch metric (2.7), the a posteriori sequence prob-
ability can be written as follows:

P{a|r} ∼
K−1∑

k=0

λk(µk, ak). (2.8)

Without entering into the details (the interested reader can find plenty of
literature regarding the VA, e.g. [4, 21]), the implementation principle of the
VA is that of associating to each state µn a partial path metric relative to
the corresponding path originating from a known state µ0, at epoch 0, and
terminating into µn. This partial path metric, denoted as Λn(µn), can be
written as follows:

Λn(µn) =
n−1∑

k=0

λk(tk) 1 ≤ n ≤ K. (2.9)

Obviously, P{a|r} = ΛK(µK). Based on the trellis representation of the un-
derlying FSM, the partial metrics, associated with the trellis states, can be
computed recursively. For the sake of simplicity, we consider binary informa-

tion symbols, i.e., M = 2. The path metrics associated to states µ
(1)
k and

µ
(2)
k are indicated as Λk(µ

(1)
k ) and Λk(µ

(2)
k ), respectively. The VA associates

to state µk+1 (the common ending state of both transitions t
(1)
k = (µ

(1)
k , a

(1)
k )

and t
(2)
k = (µ

(2)
k , a

(2)
k )) the following path metric:

Λk+1(µk+1) = max
{

Λk(µ
(1)
k ) + λk(µ

(1)
k , a

(1)
k ),Λk(µ

(2)
k ) + λk(µ

(2)
k , a

(2)
k )
}

.

(2.10)

In this sense, the basic operation of the VA is defined as add-compare-select
(ACS), since: (i) the path metrics associated with the two starting states are
summed with the branch metrics of the two branches entering into the common
final state; (ii) the obtained partial path metrics are compared; and (iii) the
“candidate” largest path metric is selected as the path metric associated to
µk+1.
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The evaluation of path metrics as indicated above guarantees that the path
terminating into any state at a given epoch is, among all entering paths, the
one to which the largest metric is associated. At any epoch, the Sc paths
with the largest possible path metrics are therefore tracked. Consequently,
at the final trellis section at epoch K, the largest path metric among those
associated with the final states is such that the corresponding information
sequence satisfies the MAP sequence detection criterion in (2.2).

Even if the complexity of the VA is proportional to KSc (i.e., the de-
pendence on the transmission length is linear and not exponential anymore),
the delay would still be unacceptable for large transmission lengths, since one
should wait for the transmission of the entire information sequence before
being able to output the sequence of symbols satisfying the MAP sequence
detection criterion. The VA, however, has an appealing feature which we will
describe shortly. At every epoch the number of survivors is equal to the num-
ber Sc of states in the trellis. One could track backwards all these survivors
starting from the trellis section at epoch k down to the trellis section at epoch
k − D. For each value of D it is possible to count the number of distinct
survivor paths. This number is a monotonically non-increasing function of
D. In particular, if the value of D is such that the number of distinct paths
is equal to 1, all Sc survivors share the same path from trellis section 0 to
trellis section k − D. In other words, the survivors merge at section k − D.
This implies that there is no uncertainty on the best sequence from epoch 0
to epoch k − D, and, therefore, the corresponding decisions can be emitted.
The probability of having all survivors sharing, at epoch k, the same path
in correspondence to trellis section k −D rapidly approaches 1 for increasing
values of D. Hence, at epoch k, it is possible to emit the decision âk−D relative
to the MAP information sequence which will eventually be selected. In other
words, by assuming that consecutive observations are sequentially available,
the latency corresponds to only D symbol intervals, where D is sufficiently
large to guarantee, at epoch k, high probability of merged survivors at section
k −D.

2.2.2 The Forward-Backward Algorithm

The most commonly used algorithm to perform MAP symbol detection is the
so-called FB algorithm. Seminal work on the design of algorithms for soft-
output decoding dates back to the late Sixties [22, 23]. An instance of the
FB algorithm was proposed in [24], but a clear formalization is due to Bahl,
Cocke, Jelinek and Raviv in 1974 [17]—for this reason, the FB algorithm is
also often referred to as BCJR algorithm from the initials of the last names of



26 CHAPTER 2. TRELLIS-BASED DETECTION TECHNIQUES

the authors of [17].

The MAP symbol detection criterion leads to the choice of the symbol
âk which minimizes the probability of error with respect to the received sig-
nal. More precisely, the MAP symbol detection strategy can be formulated as
follows:

âk = argmax
ak

P{ak|r}. (2.11)

In order to compute the APP P{ak|r} one can write:

P{ak|r} =
∑

a:ak

P{a|r} ∼
∑

a:ak

p(r|a)P{a} (2.12)

where the notation a : ak denotes all possible information sequences containing
ak, or compatible with ak. Note that the computation of the APP, as indicated
in (2.12), can be based on the same metric as in the case of MAP sequence
detection (i.e., p(r|a)P{a}) and a further marginalization based on the sum
over all the information sequences compatible with symbol ak. Assuming that
the information symbols are independent, one can further express the APP as
follows:

P{ak|r} ∼ P{ak}
∑

a:ak

p(r|a)
K−1∏

i=0,i6=k

P{ai}. (2.13)

The first and simplest possible approach for the evaluation of the APP
could be based on the computation of expression (2.13). It is immediate to
conclude that the computational efficiency of this operation is very low, since
one must compute a large number of sequence metrics and then marginalize by
adding them together. The complexity would obviously be exponential in the
transmission length K. The FB algorithm, introduced in more detail in the
following, represents an efficient way to compute the APP, with a complexity
linear with the transmission length K, as in the case of a VA for MAP sequence
detection.

As already mentioned, the first clear formulation of the FB algorithm can
be found in [17]. In the following, we propose a simple derivation of the FB
algorithm for transmission over a memoryless channel. We assume that the
encoder/modulator can be represented as a FSM, with state µk and output
symbol ck. We assume that the next-state and the output functions are known2

2Note that the derivation shown in the following holds also in the case of a channel
with strictly finite-memory, the only difference being the interpretation of µk as the state
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and can be formulated as in (2.4). The couple (µk, ak) uniquely identifies a
transition in the trellis diagram of the encoder/modulator FSM. We denote
this transition as tk. After a suitable discretization process with one sample
per information symbol, we assume that the observable at epoch k can be
written as in (2.5). In this case, the APP can be expressed as follows:

P{ak|r} ∼ p(r|ak)P{ak}
=

∑

µk

p(r|ak, µk)P{µk|ak}P{ak}

=
∑

µk

p(rK−1
k+1 |rk

0 , ak, µk)p(rk|rk−1
0 , ak, µk)p(rk−1

0 |ak, µk)

·P{µk|ak}P{ak}. (2.14)

Assuming independent information symbols, since µk may depend on ak−1
0 , it

follows that:

P{µk|ak} = P{µk}.

Upon the assumption of transmission over a memoryless channel, the remain-
ing conditional pdfs in (2.14) can be simplified as:

p(rK−1
k+1 |rk

0, ak, µk) = p
(
rK−1

k+1 |µk+1 = ns(ak, µk)
)

p(rk|rk−1
0 , ak, µk) = p(rk|ak, µk)

p(rk−1
0 |ak, µk) = p(rk−1

0 |µk).

Hence, the APP in (2.14) can be rewritten as follows:

P{ak|r} ∼
∑

µk

p
(
rK−1

k+1 |µk+1 = ns(ak, µk)
)

·p(rk|ak, µk)p(rk−1
0 |µk)P{µk}P{ak}. (2.15)

By defining

αk(µk) , p(rk−1
0 |µk)P{µk}

γk(ak, µk) , p(rk|ak, µk)P{ak}
βk+1(µk+1) , p(rK−1

k+1 |µk+1)

of the FSM obtained by concatenating the encoder/modulator and the channel. Moreover,
we assume generation of a single output symbol ck in correspondence to each information
symbol ak, but the derivation can be straightforwardly extended to the case of multiple
output symbols by using a vector notation, as mentioned in Footnote 1.
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the desired symbol APP finally becomes

P{ak|r} ∼
∑

µk

αk(µk)γk(ak, µk)βk+1(µk+1) (2.16)

where, for the sake of notational simplicity, the dependence of µk+1 on µk and
ak is not explicitly indicated.3 In the following, since the generated soft-output
value is a quantity monotonically related with the APP, we will indicate this
value with the general notation S[ak]. In other words, one can write:

S[ak] ,
∑

µk

αk(µk)γk(ak, µk)βk+1(µk+1). (2.17)

The actual APP values can be obtained by applying a proper normalization to
the terms S[ak], since

∑
ak

P{ak|r} = 1. Note that the operation (2.17) where
the quantities {αk(µk)} and {βk+1(µk+1)} are combined to generate the APP
is usually referred to as completion.

The quantities αk(µk) and βk+1(µk+1) can be computed by means of for-
ward and backward recursions, respectively. More precisely, one can write:

αk(µk) = p(rk−1
0 |µk)P{µk}

=
∑

(µk−1, ak−1) :
ns(ak−1, µk−1) = µk

p(rk−1
0 |ak−1, µk−1, µk)P{ak−1, µk−1|µk}P{µk}

=
∑

(µk−1, ak−1) :
ns(ak−1, µk−1) = µk

p(rk−1|rk−2
0 , ak−1, µk−1, µk)

·p(rk−2
0 |ak−1, µk−1, µk)P{ak−1, µk−1, µk}

=
∑

(µk−1, ak−1) :
ns(ak−1, µk−1) = µk

p(rk−1|rk−2
0 , ak−1, µk−1, µk)

·p(rk−2
0 |ak−1, µk−1, µk)P{µk|ak−1, µk−1}

·P{ak−1|µk−1}P{µk−1} (2.18)

where the index of the summation indicates all possible transitions {(µk−1,
ak−1)} compatible, through the next-state function, with µk—this notation is
general and accounts also for the case of underlying recursive and non-recursive

3This simplifying notational assumption (and other similar assumptions) will also be used
in the following. The context should eliminate any ambiguity.
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FSM models. The summation in (2.18) can be re-interpreted as carried over
all possible trellis branches {tk−1} compatible with the final state µk. Since
we are considering possible combinations of µk−1 and ak−1 compatible with
µk, it follows that

P{µk|ak−1, µk−1} = 1. (2.19)

On the basis of the independence between the information symbols and recall-
ing the absence of channel memory, one can write:

p(rk−1|rk−2
0 , ak−1, µk−1, µk) = p(rk−1|µk−1, ak−1)

p(rk−2
0 |ak−1, µk−1, µk) = p(rk−2

0 |µk−1)

P{ak−1|µk−1} = P{ak−1}.

Finally, a step in the forward recursion in (2.18) can be concisely expressed as
follows:

αk(µk) =
∑

tk−1:µk

p(rk−2
0 |µk−1)P{µk−1}p(rk−1|µk−1, ak−1)P{ak−1}

=
∑

tk−1:µk

αk−1(µk−1)γk−1(tk−1). (2.20)

A similar derivation holds also for the backward recursion. More precisely,
one can write:

βk(µk) = p(rK−1
k |µk)

=
∑

ak

p(rK−1
k |ak, µk)P{ak|µk}

=
∑

ak

p(rk|rK−1
k+1 , ak, µk)p(rK−1

k−1 |ak, µk)P{ak|µk}. (2.21)

On the basis of the independence between information symbols and the ab-
sence of memory of the considered transmission channel, the following simpli-
fications hold:

p(rk|rK−1
k+1 , ak, µk) = p(rk|ak, µk)

p(rK−1
k−1 |ak, µk) = p

(
rK−1

k−1 |µk+1 = ns(ak, µk)
)

P{ak|µk} = P{ak}.
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A step in the backward recursion, as indicated in (2.21), can be rewritten as
follows:

βk(µk) =
∑

ak

p(rK−1
k−1 |µk+1)p(rk|ak, µk)P{ak}

=
∑

ak

βk+1(µk+1)γk(tk).

2.3 Optimal Detection Strategies for Channels with
Memory

In this section, we recall the basic detection strategies which can be devised for
communication channels with memory. In particular, as seen in the previous
sections, the same basic metric can be used for both hard-output and soft-
output detection. For more details, the reader is referred to [25,26].

Consider the transmission system model previously described. A sequence
of independent and identically distributed M -ary information symbols {ak} are
transmitted successively from epoch 0 to epoch K−1. The encoder/modulator
block can be described as a time-invariant FSM (e.g., a trellis coded modulator,
TCM, [27] or a continuous phase modulator, CPM, [28]), and we assume that
next-state and output functions can be expressed as in (2.4).

A causality condition for the considered communication system can be
formulated in terms of statistical dependence of the observation sequence rk

0,
up to epoch k, on the information sequence. Accordingly, a system is causal if

p(rk
0 |a) = p(rk

0 |ak
0). (2.22)

Similarly, a finite-memory condition (FMC) can be formulated, in statistical
terms, as follows:

p(rk|rk−1
0 ,ak

0) = p(rk|rk−1
0 ,ak

k−C , µk−C) (2.23)

where C is a suitable finite-memory parameter and µk−C represents the state,
at epoch k − C, of the encoder/modulator. The considered model includes
any definition of state µk in terms of a suitable state variable, not necessarily
defined in terms of input variables. It can easily be proved that causality and
finite-memory conditions imply the following equalities [26]:

p(rk|rk−1
0 ,ak

k−D, µk−D) = p(rk|rk−1
0 ,ak

k−C , µk−C) ∀D ≥ C (2.24)

p(rK−1
k |rk−1

0 ,ak−1
0 ) = p(rK−1

k |rk−1
0 ,ak−1

k−C , µk−C). (2.25)
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The first equality formalizes the intuition that considering past information
symbols, before epoch k − C, adds no further information regarding the ob-
servation at epoch k. The second equality formalizes the idea that the finite-
memory condition4 extends to future observations beyond epoch k. Upon
the introduction of an output function o(·, ·) as in (2.4), causality and finite-
memory conditions can be formulated as follows:

p(rk
0 |c) = p(rk

0 |ck
0) (2.26)

p(rk|rk−1
0 , ck

0) = p(rk|rk−1
0 , ck

k−C). (2.27)

We remark, however, that these conditions involve the transmission channel
only and, in general, do not imply (2.22) and (2.23). A case of interest may be
that of a linear block code followed by a memoryless modulator. In particular,
a linear block code is not guaranteed to be causal and finite-memory5 so that
the channel causality (2.26) and finite memory (2.27) do not imply the system
causality (2.22) and finite memory condition (2.23).

The introduction of the FMC leads naturally to the definition of augmented
trellis state and branch (transition):

Sk , (ak−1
k−C , µk−C)

Tk , (Sk, ak) = (ak
k−C , µk−C).

Then, the following common metric can be used in the VA and FB algorithm:

γk(Tk) , p(rk|rk−1
0 ,ak

k−C , µk−C)P{ak}. (2.28)

In particular:

• the VA can now be formulated in the logarithmic domain, by defining
the branch metric λk(Tk) , log γk(Tk), and obtaining

log P{a|r} ∼
K−1∑

k=0

λk(Tk);

• the symbol APP computed by the FB algorithm can be finally expressed
as

P{ak|r} ∼
∑

Sk

βk+1(NS(Sk, ak))γk(Sk, ak)αk(Sk).

4Note that there is a slight difference between the formal definition of the finite memory
condition (2.23) and (2.25), since in (2.25) the conditioning information sequence is ak−1

0 and
does not include symbol ak. This is, however, expedient for the derivation of the backward
recursion of the FB algorithm in Subsection 2.2.2.

5Block-wise causality and finite-memory must be indeed satisfied.
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2.4 Detection of Encoded Data

In this section, we discuss on the applicability of the previously devised strate-
gies in the case of encoded data. The presence of coding makes consecutive
transmitted symbols dependent. In the case of transmission over channels
with memory, it follows that the overall memory is due to the channel and
the encoder. Depending on how these two memory components are “treated,”
detection and decoding can be properly combined or separated.

2.4.1 Joint Detection and Decoding

In the case of a channel characterized by parameters affected by stochastic
uncertainty, a very general parametric model for the observation rk is the
following:

rk = g(ak
k−L, µk−L, ξk

0) + wk (2.29)

where L is an integer quantifying the encoding memory (e.g., the memory
length of a convolutional encoder), ξk

0 is a sequence of stochastic parameters
independent of a, and wk is an additive noise sample. Under this channel
model, the following conditional Markov property

p(rk|rk−1
0 ,ak

0) = p(rk|rk−1
k−N ,ak

0) (2.30)

where N is the order of Markovianity, is sufficient to guarantee a FMC. In
fact, (2.30) implies the following [26]:

p(rk|rk−1
0 ,ak

0) = p(rk|rk−1
k−N ,ak

k−C , µk−C) (2.31)

where the finite-memory parameter is C = N +L. It is immediate to recognize
that (2.31) represents a special case of (2.23). As a consequence, all the
derivations in the previous section hold by using the “exponential metric6”
γk(Tk) = p(rk|rk−1

k−N , Tk)P{ak}. In other words, (2.31) is the key relation
which “links” the algorithms derived in Section 2.3 with the detection problem
over channels with memory. A statistical description of the stochastic channel
parameter allows one to compute this exponential metric as [25,26]

γk(Tk) =
p(rk

k−N |Tk)

p(rk−1
k−N |Sk)

P{ak}

=
E

ξ
k

0

{p(rk
k−N |Tk, ξ

k
0)}

E
ξ

k−1

0

{p(rk−1
k−N |Sk, ξ

k−1
0 )}

P{ak}. (2.32)

6The usual notation in the literature refers to a metric in the logarithmic domain. Hence,
assuming that log γk can be referred to as metric, we refer to γk as exponential metric.
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2.4.2 Separate Detection and Decoding

While in the previous subsection the fundamental metric γ was computed by
taking into account simultaneously encoding and channel memories, another
possible strategy consists in separating the detection process from the decoding
process. This can be carried out, at the receiver side, by considering the
concatenation of two blocks:

• the first block, i.e., the detector, computes a posteriori reliability values
on the coded symbols, by taking into account the channel memory and
exploiting the available statistical channel characterization;

• the second block acts as a “standard” decoder, which receives at its
input the reliability values generated by the detector. However, care
has to be taken in correctly estimating the distribution of the reliability
values generated by the detector (typically, their distribution is well
approximated as Gaussian [8]).

In the presence of a stochastic channel with order of Markovianity equal
to N , as in Subsection 2.4.1, the detector can make use of the final metric
(2.32), the only difference, with respect to Subsection 2.4.1, consisting of the
fact that L = 0, i.e., C = N .

2.4.3 Iterative Detection and Decoding

As briefly anticipated in Chapter 1, the concept of iterative decoding was origi-
nally introduced by Gallager in his Ph.D. thesis [29] for decoding LDPC codes
and was crystallized by Berrou and Glavieux in 1993 with the introduction
of turbo codes [7, 8]. In this revolutionary work, the authors showed that
a complicated code, with a particular structure, can be decoded efficiently
with limited complexity. In particular, they considered a parallel concate-
nated convolutional code (PCCC), constituted by the parallel concatenation,
through interleaving, of two convolutional codes. The receiver is based on
two component decoders (corresponding to the two constituent convolutional
encoders) which exchange information between each other. In Figure 2.3, the
basic structure of a turbo decoder, relative to a PCCC, is shown. The two
component decoders exchange soft information between each other and the
interleaver is denoted as Π. More precisely, the decoders exchange a modified
version of the APP, the so-called extrinsic information, which represents the
component of the generated soft output on a symbol not depending on the
soft-input information on the same symbol [8]. Referring to the FB algorithm



34 CHAPTER 2. TRELLIS-BASED DETECTION TECHNIQUES

SOFT-OUTPUT

DECODER 1

SOFT-OUTPUT

DECODER 2

Depunct.

From the channel

Π

Exchange

DECISION

S(2)
n [ak]

{âk}
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Figure 2.3: Turbo decoder for a PCCC.

formulation proposed in Subsection 2.2.2, the final soft-output quantity, i.e.,
the extrinsic information, (2.17), can be written as follows:

S[ak] = P{ak}S(E)[ak]

where

S(E)[ak] ,
∑

µk

αk(µk)γ
′
k(ak, µk)βk+1(µk+1)

and

γ′
k(ak, µk) , p(rk|ak, µk) =

γk(ak, µk)

P{ak}
.

Note that the a priori probability P{ak} of an information symbol used by
each component decoder is given, in the iterative decoding process, by the
extrinsic information generated by the other decoder, i.e.,

P{ak} ←− S(E,i)[ak] =

∑
µk

αk(µk)γk(ak, µk)βk+1(µk+1)

S(E,j)[ak]
(2.33)

where i, j ∈ {1, 2}, i 6= j, and the operator “←−” denotes a value assignment.
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In Figure 2.3, the extrinsic information values on information symbol ak

generated by the first and second decoders at the n-th iteration are denoted

by S
(E,1)
n [ak] and S

(E,2)
n [ak], respectively. Assuming, as a convention, that an

iteration is constituted by the sequence of decoding acts of the first and sec-
ond component decoders, the soft-output values generated by each component
decoder can be re-written as follows:

S(1)
n [ak]︸ ︷︷ ︸

complete output

= S
(E,2)
n−1 [ak]︸ ︷︷ ︸
input

S(E,1)
n [ak]︸ ︷︷ ︸

extrinsic output

(2.34)

S(2)
n [ak] = S(E,1)

n [ak] S(E,2)
n [ak]. (2.35)

In other words, the soft-output value generated by the first decoder at the n-th
iteration is the product between the soft value at its input, corresponding to
the extrinsic information generated by the second decoder at the (n − 1)-th
iteration, and the generated extrinsic information. The soft-output value gen-
erated by the second decoder at the n-th iteration is the product between the
soft value at its input, corresponding to the extrinsic information generated
by the first decoder at the same iteration, and the generated extrinsic infor-
mation. The two soft-output values in (2.34) and (2.35) indicate clearly that
the soft-output decoding processes (based on the FB algorithm) in the two
component decoders are coupled. If the iterative decoding process starts with
decoder 1, then the soft-output information (2.35) produced by decoder 2 will
be the final soft information at the output.

In the presence of channels with memory, this iterative decoding scheme
can be straightforwardly extended to an iterative joint detection/decoding
scheme, the only difference being the fact that each component decoder in
Figure 2.3 makes use of an FB algorithm based on the metric developed in
Subsection 2.4.1.

2.4.4 Turbo Detection

where every component block was aware of both channel and code structure.
A separate detection/decoding approach, obtained through a serial concate-
nation of a detector and decoder (as described in Subsection 2.4.2), leads to
an iterative receiver scheme where the detector (or soft demodulator), which
accounts for the statistical characterization of the channel, and the decoder,
which accounts for the code structure, exchange soft information. More pre-
cisely, in the non-iterative separate scheme introduced in Subsection 2.4.2,
the inner detector computes and passes soft-output information to the outer

In the previous subsection we have considered iterative joint detection/decoding,
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decoder without a feedback from the decoder itself. The receiver becomes iter-
ative as soon as the outer decoder feeds soft information back to the detector.
In the literature, this iterative separate detection and decoding scheme is usu-
ally referred to as turbo-equalization [30], despite this terminology is slightly
abused because, strictly speaking, an equalization process does not take place.
An alternative terminology is “turbo detection.”

2.5 Concluding Remarks

In this chapter, we have summarized basic detection theoretic concepts which
will be used in the following chapters. In particular, we have discussed a
unified approach to trellis-based detection over channels with memory. The
concepts of joint and separate detection/decoding have been presented, to-
gether with a short discussion on iterative detection and turbo equalization.
The FB algorithm—or other trellis-based soft-output detection algorithms de-
rived from it, such as, for example, the multi-trellis soft-input soft-output
(SISO) algorithm which will be presented in Section 7.6—will be used in the
remainder of this book as component blocks to build LDPC coded modulation
receivers.




