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Preface

About sixty years ago, Shannon’s seminal paper laid the foundations of in-
formation theory. In particular, it characterized channel coding as a means
for achieving the so-called channel capacity, i.e., to exploit the full informa-
tion transfer potential of the channel. Since then, both theory and techniques
for point-to-point communications have been constantly developed, up to the
point that, nowadays, techniques for practically closing the gap to channel
capacity exist for several simple channels. This has been made possible by the
invention of powerful coding methods, such as turbo codes and low-density
parity-check (LDPC) codes. The idea of turbo codes was first published in
a conference paper in 1993, where the authors used powerful concatenated
codes and an iterative scheme which made possible to effectively—although
suboptimally—perform decoding. Since the introduction of turbo codes, a
huge amount of resources in the scientific community moved to the investiga-
tion of iterative detection and decoding techniques. This eventually led to the
rediscovery of LDPC codes in 1995. In fact, LDPC codes were first introduces
and analyzed by Robert Gallager in the early Sixties. At that time, the limited
available computational power made the use of LDPC codes impractical and
prevented scientists from fully understanding their potential. After the intro-
duction of irregular LDPC codes and of practical performance analysis tools
in the late Nineties, LDPC codes became the most powerful error correcting
codes, enabling reliable transmissions at rates close to the channel capacity
for a number of memoryless channels.

LDPC codes were originally designed for binary input memoryless chan-
nels. Although the binary input assumption is not really restrictive—LDPC
codes can in fact be easily generalized to non-binary input symbols—getting
rid of the memoryless assumption is a subtle task. In fact, despite LDPC
codes for binary-input memoryless channels admit a decoding algorithm which
is asymptotically optimum for increasing codeword lengths—besides being
optimum, in a few cases, also for finite codeword lengths—there exists no
capacity-achieving coding scheme nor practical optimum decoding algorithm
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2

for generic communications channels. Nevertheless, there are practical ways
to exploit the properties of LDPC codes to obtain efficient communications
also over generic channels. In particular, LDPC coded modulations are among
the most promising techniques for achieving this goal.

In this book, we will explore the world of LDPC coded modulations in-
tended as a means for using binary LDPC codes for obtaining close-to-capacity
performance over generic communication channels. In Chapter 1, we introduce
some basic concepts which will be useful in the remainder of the book. In par-
ticular, we give a short survey of important concepts, such as mathematical
modeling of a communication system, modulation and channel coding, to-
gether with a short and self-contained introduction to information theory. In
Chapter 2, trellis-based detection strategies for modulations and coded modu-
lation schemes are introduced. These will be basic component blocks of LDPC
coded modulations. In Chapter 3, we introduce LDPC codes, describing their
structure, representation, best known decoding schemes and encoding tech-
niques. In Chapter 4, we introduce and discuss the most relevant performance
analysis techniques for assessing the performance of iterative receivers and
their component blocks. In particular, we focus on Monte Carlo methods and
extrinsic information transfer (EXIT) charts. In Chapter 5, we introduce the
concept of LDPC coded modulations and describe how to apply EXIT charts to
analyze their performance. We discuss optimization of LDPC codes for LDPC
coded modulations considering some relevant optimization targets such as best
power efficiency, minimum number of decoding iterations, and minimum bit
error rate (BER). As a particularly relevant case study, we consider code op-
timization for partial response channels. In Chapter 6, we consider LDPC
codes for memoryless channels and the implications of the adopted analysis
technique on the structure of LDPC codes in a few interesting cases. The
results, which demonstrate a low dependence of optimized LDPC codes on
the particular memoryless channel, are used to devise a method for designing
multilevel coding schemes using a database of LDPC codes. In Chapter 7, we
apply the code design techniques described in Chapter 5 to phase-uncertain
communication channels considering LDPC coded differential modulations and
obtaining insights on the optimized LDPC code structure. We also describe
a low-complexity detection strategy particularly suited for use in an LDPC
coded modulation system. In Chapter 8, we draw some final remarks.

Last, but not least, we would like to thank Dr. Christoph Baumann, our
Springer Engineering Editor, for expressing his interest and supporting this
book from the very beginning, and for his patience in waiting for the final
delivery.
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Chapter 1

Preliminary Concepts

1.1 Introduction

In this chapter, we will present some preliminary concepts which will be ex-
tensively used throughout this book. In Section 1.2, we shortly discuss the
modeling process of a (high performance) communication system. In Sec-
tion 1.3, we focus on the concept of modulation and its role in communication
schemes. In Section 1.4, some introductory material on error correcting codes
is presented, with emphasis on linear error correcting codes. Section 1.5 is
a self-contained introduction to information theory, which should provide the
reader not familiar with this field with all the basic tools needed to understand
this book. In Section 1.6, a short overview of the following chapters is given.

1.2 Modeling a Communication System

Modern point-to-point communication theory is based on a scientific approach

either in terms of space or time—destination.
Common to all scientific approaches are the following steps:

• observation of the nature;

• mathematical modeling of the observed phenomena;

• model validation.

Engineering, i.e., designing a communication system, adds a fourth step:

• derivation, on the basis of a mathematical model, of a practical solution
to accomplish a given task.

3

to the task of transmitting information from an information source to a remote—
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4 CHAPTER 1. PRELIMINARY CONCEPTS

The process of modeling is, therefore, a fundamental and central step in
the analysis and design of advanced communication systems. In particular,
whenever the design target is to obtain a system performance close to the the-
oretical (ultimate) limits, the quality of the model has a direct impact on the
obtainable performance. This can be rigorously quantified with information-
theoretic tools [1, 2].

In this book, we will focus on the transmission of a digital stream of data,
i.e., a discrete-time digital process A consisting of a sequence of symbols {ak}
belonging to a discrete set of possible values . At the output of the receiver,
a corresponding sequence of detected symbols Â = {âk}, âk ∈ is found.
The quality of the transmission scheme can be determined by analyzing the
difference between the sequence A and the sequence Â and may be expressed
through several distinct parameters. Under the assumption of binary symbols,
the most used indicator of the transmission quality is the bit error probability,
namely, the probability of error for a generic bit in the digital stream, i.e.,

Pe � P{ak �= âk} .

In contexts where the probability P{ak �= âk} depends on the epoch k, an
average error probability can be defined as

Pe = lim
n→∞

1

n

n∑
k=1

P{ak �= âk} . (1.1)

Depending on the system structure and other assumptions, other quality
indicators may be useful, such as the symbol error probability, if the com-
munication system involves the transmission of non-binary symbols, or the
frame error probability, if the data stream is partitioned into frames. The er-
ror probability is a measure of the rate of occurrence of decision errors over a
sufficiently large number of transmission acts according to the interpretation
of the concept of probability as the relative frequency of error occurrences.
The error rate is a practical performance indicator which is suitable to be
measured. In particular the bit error rate (BER), symbol error rate (SER)
and frame error rate (FER), represent the rates corresponding to the relevant
probabilities. In the following, for brevity, we will not distinguish between er-
ror probability and error rate and we will use the two notions interchangably.

Information theory suggests to accomplish reliable transmission by map-
ping the processA into a process C, which might be discrete-time or continuous-
time, analog or digital, whose statistical properties are suitable for the partic-
ular communication channel. This operation is referred to as channel coding
and modulation. In Figure 1.1, a general point-to-point communication system
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RXCHANTX
A C R Â

Figure 1.1: Point-to-point communication system model.

MODENC
XA C

TX

{xi} {c�}{ak}

Figure 1.2: Schematic diagram of the transmitter (TX) which performs error
correcting coding followed by modulation.

model is shown. Note the presence of the transmitter (TX), whose task is the
construction of the signal C to be transmitted through the channel (CHAN).
The receiver (RX) performs detection of the transmitted data sequence based
on the received process R. A short introduction to information theory will be
given in Section 1.5. For more details, we refer the interested reader to [1, 3],
which provide a thorough treatment of this subject.

From a practical point of view, in most applications the process C may be
effectively represented by a discrete-time sequence {c�}. The operation leading
from A to C is usually split into two separate actions:

• the first consists in performing discrete algebraic operations on A which
result in a new discrete-time digital process X ;

• the second consists in mapping the corresponding sequence {xi} into the
final sequence {c�}, to be transmitted through the considered channel.

The first operation corresponds to the application of an error correction en-
coder to the digital sequence to be transmitted, whereas the second operation,
which maps the digital sequence into a signal suitable for transmission over
the channel, is usually referred to as modulation. An illustrative scheme of
the transmitter performing error correction encoding followed by modulation
is shown in Figure 1.2. Note that the sequences {ak}, {xi}, and {c�} have dif-
ferent index variables k, i and �, to highlight the fact that they might not have
the same rate and that, on average, a symbol in one of the three sequences
does not necessarily correspond to a single symbol in the other sequences.



6 CHAPTER 1. PRELIMINARY CONCEPTS

1.3 Modulation

As stated above, the term modulation denotes an operation that maps a se-
quence of digital symbols, which may correspond to the data to be transmitted
or an encoded version of such data, to a sequence of samples or a waveform
suitable for transmission through the considered communication channel.

Modulation is a mathematical model of the physical block, found in virtu-
ally every communication system, devoted to transform the digital sequence
into the transmitted signal, which is often electrical, but may as well be optical,
acoustic, etc.

We assume that all the signals in the communication system can be given
a discrete-time representation. Modulators are processing blocks and may or
may not have memory, meaning that their current output sample may be a
function of only the last input sample or more input samples, respectively.
Typical memoryless modulations for baseband transmission, which implies
mapping the digital sequence into real samples, belonging to a finite set ,
referred to as the modulation constellation, include:

• on-off keying (OOK) or, in general, amplitude-shift keying (ASK);

• pulse amplitude modulation (PAM).

A memoryless modulator for bandpass transmission maps the digital sequence
into complex samples. Typical complex constellations include:

• quadrature amplitude modulation (QAM);

• phase shift keying (PSK);

• amplitude and phase shift keying (APSK).

For a survey of the principal modulation formats, their constellations, and their
properties, the interested reader is referred to [4]. Examples of modulations
with memory include:

• differential PSK (DPSK);

• trellis-coded modulation (TCM);

• continuous phase modulation (CPM).

The introduction of memory into the modulator provides potentially infi-
nite degrees of freedom. In fact, any combination of a processing block with
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a given modulator may be interpreted as a modulator with memory. In or-
der to take advantage of the separation between coding, i.e., the operation
leading from A to X , and modulation, i.e., the operation leading from X to
C, the complexity of the modulation process should be kept low. Nonethe-
less, it is possible to consider, as part of the tasks carried out by a modulator
with memory, operations which usually are considered separately, such as, for
example

• pilot symbols insertion;

• a line coding block for spectral shaping.

The separation of coding and modulation is the starting point for the
derivation of low-density parity-check (LDPC)-coded modulations. In partic-
ular, it allows to separately focus on modulation, whose role is to provide an
effective “interface” to the channel, and coding, whose role is to improve the
efficiency of information transmission. This will be investigated in depth in
Chapter 5.

1.4 Error Correcting Codes

Error correcting codes (ECC) are functions which map a sequence A of dis-
crete values, i.e., the data sequence, into a (usually longer) sequence X of
discrete values, i.e., the code sequence. As their name suggests, ECC admit
inverse functions capable to recover the data sequence A, regardless of possi-
ble transmission errors in the code sequence X , provided that the amount of
erroneous symbols does not exceed the error correction capability.

Typically, the encoding of a data stream can be performed in two differ-
ent ways: (i) block coding and (ii) stream coding. The first one consists in
partitioning the data sequence into blocks of length K and applying to each
block a coding function returning blocks, i.e., the codewords, of length N . The
obtained codewords are joined to form the code sequence. In stream coding,
the data sequence is fed to a finite state machine (FSM), which outputs one
or more code symbols for each input data symbol.

1.4.1 Block Codes

In general, a block code C is a vector function associating a vector of K
elements, belonging to a set , to a vector of N elements belonging to a set

. Assuming that the function is injective, the cardinality of the set of all
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codewords is equal to [Card( )]K, where Card( ) is the cardinality of . The
code rate RC , expressed in bits per output symbol, is defined as

RC =
K log2 Card( )

N
.

A linear block code over a q-ary Galois finite field—denoted as GF(q)—is
a vector linear function which associates a K-dimensional vector a of elements
in GF(q), i.e., the data to be encoded, to a N -dimensional vector x of elements
in GF(q), i.e., the codeword, according to the following rule:

x = Ga

where G is a matrix in GF(q) referred to as code generation matrix [5, 6]. It
can be shown that the set of all codewords can be characterized by the so-
called parity check matrix, usually denoted with H, which can be obtained by
proper manipulation of G. A vector x is a codeword if and only if

Hx = 0

i.e., the set of all codewords is defined as the null space of the parity check
matrix H [5, 6]. In this book, only binary codes will be considered; hence,
in all cases data and codeword elements will be in GF(2), i.e., the Boolean
algebra.

Several important code families belong to the set of linear block codes,
among which:

• cyclic codes, comprising Bose-Chaudhuri-Hocquenghem (BCH) codes,
Reed-Solomon codes, Hamming codes [6];

• turbo codes [7, 8];

• LDPC codes [9–13].

Several techniques exist for decoding linear block codes. In particular, two
approaches are possible: (i) hard-output decoding, which outputs estimates
of the codewords or the data symbols, and (ii) soft-output decoding, which
outputs the likelihood of each codeword or data symbol, i.e., an estimate of
how much a codeword or a data symbol is likely to assume each possible value.
In this book, we are interested in soft-output decoding only, since, as it will be
clear in the next chapters, this leads to the construction of complex receivers
based on simpler soft-input soft-output (SISO) detection/decoding blocks.
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1.4.2 Stream Codes

Stream coding is an error correcting coding technique which applies to streams
of data as opposed to blocks of data. The codeword length is unbounded,
so that a stream encoder typically operates on a symbol-by-symbol basis,
outputting an encoded symbol for each data symbol at its input. Practical
stream encoders are implemented by means of FSMs. In particular, an FSM
is defined by two functions: (i) the output function and (ii) the next state
function. These two functions are mathematically described as follows:

ck = fo(ak, sk) (1.2)

sk+1 = fns(ak, sk) (1.3)

where ck denotes the output symbol at epoch k, sk denotes the state at epoch
k, ak is the input data symbol at epoch k, and fo(·, ·) and fns(·, ·) denote the
output function and the next state function, respectively. The output stream
is formed by the sequence {ck}. Without loss of generality, it is assumed
that the code sequence has the same length of the information sequence—
the redundancy introduced by the encoder is accounted for by expanding the
symbol cardinality.

Linear stream coding is the most popular stream coding technique for
error correction. Such codes are also known as convolutional codes since the
output stream can be seen as the convolution of the input data stream with
an “impulse response” stream. The convolution is carried out using finite field
algebra.

The decoding of stream codes, like that of block codes, can be performed
by means of hard-output or soft-output decoding algorithms. The most im-
portant hard decoding algorithm for stream coding is the well known Viterbi
algorithm (VA) [4, 14, 15]. The VA is optimum, in the sense that it com-
putes the most likely transmitted data sequence given the received observable
sequence. Soft decoding/detection techniques for stream codes comprise the
soft-output Viterbi algorithm (SOVA) [16].

In general, in stream coding it is not possible to compute exact a posteriori
probability (APP) of the (possibly infinite) transmitted data symbols. Never-
theless, APP computation is possible, if the stream encoder is used to encode
a finite-length sequence, by means of the famous Bahl-Cocke-Jelinek-Raviv
(BCJR) algorithm, also known as forward backward (FB) algorithm [17].
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1.5 Information Theory Basics

In this book, only a basic set of tools drawn from classical information the-
ory will be used. In this section, the main information-theoretic concepts
will be concisely presented, to provide the unfamiliar reader with a sufficient
(minimum) background. For more details, we refer the interested reader to
fundamental information theory textbooks [1,3,18,19] and to the vast scientific
literature referenced therein.

While studying communication problems, we are interested in the informa-
tion transfer capabilities of communication systems. In order to set a math-
ematical framework, the first problem is to define the concept of information
measure. A discrete information source C is an entity emitting a stochastic
sequence of symbols {Ck}, each belonging to a finite set . Let us assume to
describe the sequence as an ergodic random sequence. We define the concept
of entropy rate H(C) to measure the expected rate of information emitted by
the information source C as follows:

H(C) = lim
n→∞

− 1

n
E{log p(C1, . . . , Cn)} (1.4)

where E{·} denotes the expectation, p(c1, . . . , cn) denotes the probability that
the first n elements of the random sequence {Ck} are equal to c1, . . . , cn, and
log is the logarithm to a given base. For base 2, information is measured in
bits. If the source is memoryless, i.e., the output values are independent and
identically distributed (i.i.d.), the entropy rate is usually referred to as entropy
and its definition is the following:

H(C) = H(Ck) � −E{log p(Ck)} (1.5)

which, since {Ck} are i.i.d., does not depend on k.
The entropy of a source can be interpreted as a measure of its unpre-

dictability. Sources emitting samples which can be predicted with high prob-
ability are characterized by low entropy whereas sources emitting samples
which can be predicted with low probability have higher entropy. The entropy
rate of a discrete information source is always higher than or equal to zero.
In particular, H(C) = 0 if and only if there exist a sequence {c∗k} such that
P{Ck = c∗k} = 1, ∀k.

In general, any stream operation—deterministic or stochastic—on the out-
put of a source C, leads to a new source Y with different statistical properties.
The conditional entropy rate of Y given C is defined as follows:

H(Y|C) � lim
n→∞

− 1

n
E{log p(Y1, . . . , Yn|C1, . . . , Cn)} (1.6)



1.5. INFORMATION THEORY BASICS 11

and measures the “residual” entropy rate of Y given C.
The (mutual) information rate between C and Y is defined as follows:

I(C;Y) = H(Y)−H(Y|C) (1.7)

and measures the average per-sample amount of information carried by Y
regarding C.

In the case of i.i.d. sources, the conditional entropy rate and the infor-
mation rate are referred to as conditional entropy and mutual information,
respectively.

Entropy and information rate can be extended to sources emitting con-
tinuously distributed samples. In this case, the entropy rate is referred to as
differential entropy rate and is defined as follows:

h(C) � lim
n→∞

− 1

n
E{log p(C1, . . . , Cn)} (1.8)

where p(C1, . . . , Cn) denotes the probability density function (pdf) of the first
n elements of the random sequence computed using as argument the (random)
vector (C1, . . . , Cn). The differential entropy rate may take any real value, i.e.,
it is not limited to positive or zero values.

If C is a generic source (with discrete or continuously distributed alphabet),
Y is a source emitting symbols in a continuously distributed alphabet, and Y
and C are jointly ergodic, the information rate between C and Y can be defined
in terms of the differential entropy rate as follows:

I(C;Y) = h(Y)− h(Y|C) (1.9)

or, equivalently, in terms of the entropy rate as

I(C;Y) = H(C)−H(C|Y) . (1.10)

Unlike the differential entropy rate, the information rate is larger than or equal
to zero, regardless of the type of source. As a consequence, if C in (1.10) is a
discrete source, given that

I(C;Y) = H(C)−H(C|Y) ≥ 0

and, since the entropy rate (of a discrete source) is non-negative,

H(C|Y) ≥ 0

it follows that
I(C;Y) ≤ H(C) .
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In other words, the information rate between a discrete source and a generic
source is upper bounded by the entropy rate of the discrete source.

In [20], C. E. Shannon showed that, if the input and the output of a channel
have the same joint statistical properties of two sources C and Y, respectively,
I(C;Y) is the supremum of the achievable data rates through that channel
(considering the input distribution imposed by C).

For a given channel, the corresponding channel capacity is a quantity de-
fined as follows:

C = max
C∈K

I(C;Y) (1.11)

where the maximization is carried out over all possible input distributions,
i.e., input sources, belonging to a set of sources K satisfying a given constraint
or set of constraints. The channel capacity thus represents the supremum of
the achievable information rates that can be reliably transmitted through the
considered channel.

The following examples will clarify the role of the information theory quan-
tities described above.

Example 1.1 Binary input AWGN channel.

Assume to transmit a sequence of i.i.d. binary symbols {Ck}, where the
random variable (RV) Ck may take on values in the set = {1,−1} and
P{Ck = 1} = P{Ck = −1} = 1/2, through a discrete additive white Gaussian
noise (AWGN) channel. We will refer to this configuration as binary input
AWGN (BIAWGN) channel.

The output samples {Yk} can be expressed as:

Yk = Ck + Wk (1.12)

where {Wk} are zero-mean i.i.d. Gaussian samples with variance σ2
w. The

signal-to-noise ratio (SNR) can be defined as follows:

SNR �
E{|Ck|2}
E{|Wk|2} =

1

σ2
w

. (1.13)

The entropy of the input source is

H(C) = H(Ck) = −E{log P (Ck)} = −1

2
log

1

2
− 1

2
log

1

2
= 1 bit . (1.14)
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Figure 1.3: Example 1.1: differential entropy rates.

The differential entropy of the output is:

h(Y) = −E{log p(Yk)}
= −

∫ ∞

−∞
p(y) log p(y)dy

= −
∫ ∞

−∞

e
−

(y−1)2

2σ2
w + e

−
(y+1)2

2σ2
w

2
√

2πσ2
w

log
e
−

(y−1)2

2σ2
w + e

−
(y+1)2

2σ2
w

2
√

2πσ2
w

dy (1.15)

and the conditional differential entropy of the output given the input is:

h(Y|C) = h(W + C|C)
= h(W)

= −E{log p(W )}

= −
∫ ∞

−∞

1√
2πσ2

w

e
− (w)2

2σ2
w log

e
−

(w)2

σ2
w

2
√

2πσ2
w

dw

=
1

2
log 2πeσ2

w . (1.16)

In Figure 1.3, h(Y|C) and h(Y) are shown as functions of the SNR. The curves
are monotonically decreasing, owing to the fact that at higher SNR Y becomes
more predictable. The difference between h(Y) and h(Y|C), however, is a
monotonically increasing function of the SNR. In Figure 1.4, the information
rate (IR) I(Y; C) = h(Y)−h(Y|C) is shown as a function of the SNR. At very low
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Figure 1.4: Example 1.1: information rate.

SNR, the IR is close to zero and increases as the SNR increases. Its asymptotic
value is given by H(C) = 1. For each SNR value, the IR gives the maximum
attainable average information rate (per transmitted binary symbol) assuming
the given statistical distribution for C. For example, at 0 dB the IR is equal
to 0.486 bit: therefore, the maximum attainable data rate that can be sent
through the channel is 0.486 bit per channel use (or bit per sample). In other
words, codes with code rate RC > 0.486 shall not achieve arbitrarily low BER
at a SNR equal to 0 dB. On the other hand, for every code rate RC < 0.486
there exists a code that will achieve a specified arbitrarily low BER provided
that the codeword length is sufficiently large.

Another useful point of view is to interpret the IR theoretical limit in
terms of the SNR required to enable achievability of a given code rate R. For
example, from the IR curve in Figure 1.4, one can conclude that it is not
possible to achieve an arbitrarily small BER with codes whose rate is equal to
0.5 if SNR< 0.18 dB, regardless of the codeword length. This interpretation
of the theoretical performance limits suggested by information theory will be
used in this book while discussing numerical performance results for LDPC
coded modulated schemes.

Example 1.2 Binary symmetric channel and correction of residual errors.

Assume to transmit a sequence of i.i.d. binary symbols {Ck}, where the
RV Ck takes a value in the set {0, 1} and P{Ck = 1} = P{Ck = 0} = 1/2.
The channel outputs a binary symbol Yk ∈ {0, 1}, which may be equal to Ck
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Figure 1.5: Example 1.2: binary symmetric channel.

or 1− Ck according to the following rule:

Yk =

{
Ck with probability 1− p
1− Ck with probability p.

(1.17)

Hence, p represents the probability of error in a single use of the channel.
The channel is memoryless, in the sense that the outputs are conditionally
independent, i.e.,

P (y1, . . . , yn|c1, . . . , cn) =

n∏
i=1

P (yi|ci) .

This channel is commonly known as a binary symmetric channel (BSC). In
Figure 1.5, a diagram of a BSC is shown. Although this channel is very
simple, it may be very useful since almost any digital communication system
may be ultimately interpreted as a BSC characterized by p equal to the BER,
as defined in (1.1). In fact, if the processes A and Â in Figure 1.1 are binary,
they could be seen as the input and the output of a binary-input binary-
output channel. To obtain a memoryless binary-input binary-output channel,
one may add an interleaving block in front of the input of the transmitter and
a corresponding de-interleaving block at the output of the receiver. To make
the overall system symmetric, i.e., to obtain equal probability of error for a bit
equal to either 0 and to 1, it is sufficient to input the transmitted bit sequence
to a “pseudo-random” bit flipper placed before the interleaver and to use a
corresponding de-flipper of the bit sequence at the output of the de-interleaver
at the receiver side.1

1Here, pseudo-random flipping of a bit sequence denotes flipping of the bits of a subset of
the bit sequence, followed, at the receiver, by an identical operation to recover the original
bit sequence. For example, one could flip all bits in even positions. In random flipping, each
bit is flipped with probability 1/2. This operation is not intended for encryption purposes,
but, rather, to shape the statistical characteristics of the bit sequence.
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Figure 1.6: Example 1.2: information rate of a binary symmetric channel as
a function of the channel error probability p.

The IR of a BSC with the considered input sequence of i.i.d. symbols can
be expressed as

I(C;Y) = H(Y)−H(Y|C)
= 1−H(p)

where

H(p) � −p log2 p− (1− p) log2(1− p) .

In Figure 1.6, the IR of a BSC with the considered input sequence of i.i.d.
symbols is shown as a function of the BSC transition probability p. By inter-
preting the IR as the supremum of the achievable code rates, one can obtain
interesting insights on systems characterized by a small, but finite, BER.

In particular, consider a communication scheme with a binary process A
at its input and a binary process Â, consisting of the sequence of decided
bits, at its output. The system is assumed to be characterized by a low
probability of error p < 0.5. By introducing, as discussed earlier, (i) an ideal
interleaver before the system input and its corresponding de-interlever at the
output of the receiver, and, if necessary, (ii) a bit-flipper and a de-flipper at
the transmitter and the receiver, respectively, it is possible to transform the
considered communication system into a BSC with transition probability p
with arbitrary accuracy. The obtained system is completely characterized by
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Figure 1.7: Example 2: H(p), i.e., the fraction of bits that must be devoted
to outer error correction to obtain arbitrarily small error probability from a
communication system characterized by BER equal to p.

its IR, since the function H(p) is invertible for 0 ≤ p ≤ 0.5. In particular,
by means of a proper outer error correction code for a BSC, with a code
rate lower than the IR, it is possible to obtain arbitrarily small BER. In
this sense, 1 − I(C;Y) = H(p) is the minimum fraction of bits that must
be “wasted” to guarantee arbitrarily small error probability. In Figure 1.7,
the minimum fraction of bits that must be devoted to redundancy for error
correction coding of the BSC obtained from a generic communication system
is shown considering a BER range from 10−6 to 10−1.

For instance, if a communication system achieves a BER equal to 10−3, a
fraction at least equal to H(10−3) � 0.011 � 1% of bits in the transmitted
stream must be devoted to guaranteeing an arbitrarily small error rate. In
other words, a system with BER equal to 10−3 may be used to build a system
with arbitrarily low error probability and effective data rate only 1% lower
than that of an uncoded system.

1.6 The Following Chapters

This chapter introduced some of the concepts that will be used in the remain-
der of this book. In particular, basic concepts on the detection techniques
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of interest will be presented in Chapter 2. The structure and characteriza-
tion of LDPC codes will be discussed in more detail in Chapter 3. The basic
information-theoretic concepts introduced in the current chapter are useful
for understanding the theoretical limits that one is facing when designing
an advanced communication system. In particular, the extrinsic information
transfer (EXIT) chart-based analysis, described in Chapter 4, is based on the
concept of mutual information. Bounds, based on mutual information, on the
BER of LDPC coded modulated schemes will be given in Chapter 5. Chapter 6
deals with the design of LDPC coded modulations for memoryless channels,
whereas Chapter 7 focuses on differentially encoded LDPC coded modulations.
Finally, in Chapter 8 some final remarks are provided.



Chapter 2

Trellis-based Detection
Techniques

2.1 Introduction

In this chapter, we provide the reader with a brief introduction to the main
detection techniques which will be relevant for the low-density parity-check
(LDPC) coded modulation schemes considered in the following chapters of this
book. In particular, we describe possible trellis-based detection techniques,
taking also into account the presence of (binary) coding. Soft-output trellis
based detection will be used as component block of LDPC coded modulation
receivers in Chapters 5 and 7.

In Section 2.2, we provide a simple classification between hard-output and
soft-output detection, presenting the Viterbi algorithm (VA) and the forward-
backward (FB) algorithm as key examples of these two detection strategies,
respectively. In Section 2.3, we quickly describe optimal detection strategies
over channels with memory. In Section 2.4, we consider detection of encoded
data. Section 2.5 concludes the chapter.

2.2 Hard-Output and Soft-Output Detection

A general model of a digital transmission system can be viewed as based on
both a single MK-ary signaling act or K repetitions of M -ary signaling acts.
In the former interpretation, the message is the entire information sequence,
whereas in the latter the message corresponds to an individual information
symbol. According to these interpretations, two maximum a posteriori (MAP)
detection strategies are obtained. MAP sequence detection is optimal in the

19M. Franceschini, G. Ferrari and R. Raheli, LDPC Coded Modulations,
DOI: 10.1007/978-3-540-69457-1_2, © Springer-Verlag Berlin Heidelberg 2009
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sense that it minimizes the probability of erroneously detecting the entire
sequence, i.e., selecting a sequence not equal to the transmitted one. MAP
symbol detection minimizes the probability of erroneously detecting each infor-
mation symbol. More precisely, considering a suitable discretization process,
through which the received signal is converted into an equivalent sequence of
discrete-time observations r, whose dimension depends on the number of sam-
ples per symbol interval, the following general formulations of these detection
strategies can be derived:

â = argmax
a

P {a|r} MAP sequence detection

âk = argmax
ak

P {ak|r} MAP symbol detection

where a � {ak}K−1
k=0 and r � {rk}K−1

k=0 are the sequences of K information
symbols and observables, respectively.1 As mentioned in the previous section,
two algorithms that efficiently implement these two detection strategies are the
VA [14,15] and the FB algorithm [17]. Both these algorithms are trellis-based,
in the sense that they make use of a trellis diagram induced by a finite state
machine (FSM) model of the underlying transmitter/channel model. More
details will be provided in the remainder of this chapter.

The VA allows to efficiently derive the sequence of hard decisions â. On
the opposite, the FB algorithm requires the computation of the a posteriori
probability (APP) P{ak|r} of each information symbol. In the case of binary
information symbols, a commonly considered reliability value is given by the
logarithmic likelihood ratio (LLR), derived from the APPs as follows:

LLRk � log
P{ak = 0|r}
P{ak = 1|r} . (2.1)

It is immediate to recognize that a LLR captures, as a single quantity, the
relationship between the APP of a transmitted “1” and that of a transmitted
“0.” Note that the formulation, based on the use of LLR, can also be extended
to the case of larger information symbol cardinality. In the case of M -ary
symbols, (M − 1) LLRs are needed: the LLR relative to the m-th symbol,
m = 0, . . . ,M−2, is given by the logarithm of the ratio between P{ak = m|r}
and P{ak = M − 1|r}—in other words, the reference probability is the APP
of the last symbol, and its corresponding LLR is thus 0.

1Should channel coding or oversampling be used, each information symbol ak could cor-
respond to more than one observable. However, this can be straightforwardly taken into
account by considering a vector notation, i.e., replacing the scalar rk with a vector rk.
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According to the discussion in the previous paragraph, rather than clas-
sifying trellis-based detection algorithms depending on the MAP detection
strategy (either sequence or symbol), a more practical classification is based
on the distinction between hard-output (VA) or soft-output (FB algorithm)
detection.

2.2.1 The Viterbi Algorithm

As anticipated at the beginning of this section, the MAP sequence detection
strategy can be formulated as

â = argmax
a

P{a|r}. (2.2)

The operation in (2.2) can be described as “finding the sequence â such that
the a posteriori probability P{â|r} of having transmitted â, given the re-
ceived sequence r, is maximum.” In particular, a conceptual method for the
identification of â consists of the evaluation of P{a|r} for all possible in-
formation sequences a, and selection of the sequence which maximizes the a
posteriori probability. By chain factorization and owing to the independence
of the information symbols, the MAP sequence detection strategy in (2.2) can
be formulated in terms of the conditional probability density function (pdf)
p(r|a) and the a priori sequence probability P (a):

P{a|r} ∼ p(r|a)P (a) =

K−1∏
k=0

p(rk|rk−1
0 ,a)P{ak}

=
K−1∏
k=0

p(rk|rk−1
0 ,ak

0)P{ak}

∼
K−1∑
k=0

[
ln p(rk|rk−1

0 ,ak
0) + ln P{ak}

]
(2.3)

where the symbol ∼ indicates that two quantities are monotonically related
with respect to the variable of interest (in this case, a); a statistical notion of
system causality is assumed to hold in the second line; the monotonicity of the
logarithm is used in the third line; and rk−1

0 is a short-hand notation for the
sequence {ri}k−1

i=0 of k observables. In particular, if the a priori probabilities
{P{ak}} are equal, the MAP sequence detection criterion coincides with the
so-called maximum likelihood (ML) sequence detection criterion.

The maximization of (2.3) over all possible sequences {a} can be imple-
mented as a search of a path in a tree diagram where each branch is in a
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time →

ak = +1

ak = −1

a0
a1

a2
a3

Figure 2.1: Tree representation of the possible transmitted sequences. The
number of possible paths to be searched to perform MAP sequence detection
increases exponentially with the sequence length.

one-to-one correspondence with an information symbol ak. Consequently, a
path is in a one-to-one correspondence with a partial sequence ak

0 up to epoch
k. Assigning a metric equal to the k-th term of (2.3) to a branch at epoch k
associated with symbol ak and defining a path metric as the sum of the met-
rics of the branches forming the path, the MAP sequence detection strategy
can be implemented as a search of the path with largest metric in this tree
diagram. In Figure 2.1, an example of tree comprising all possible paths to be
searched is shown, considering a binary alphabet for ak. Two paths are also
emphasized.

While a tree diagram is in principle required, the tree can often be “folded”

can be described as a finite state machine (FSM) with state μk and character-
ized by the following “next-state” and “output” functions, respectively:{

ns(μk, ak) = μk+1

o(μk, ak) = ck.
(2.4)

Considering a channel with complex additive white Gaussian noise (AWGN)
with circular symmetry, i.e., with independent real and imaginary components,
each with variance σ2—a simple and very common example of memoryless
channel—the generic observation at epoch k can be written as

rk = ck + nk (2.5)

into a trellis, as explained in the following. We assume that the encoder/modulator
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time →
time →

ak = +1

ak = −1ak = +1

ak = −1

Figure 2.2: Illustrative representation of a tree folded into a trellis.

where nk is the AWGN sample. In this case, it follows that

p(rk|rk−1
0 ,ak

0) = p(rk|μk, ak) =
1

2πσ2
e−

|rk−ck|2

2σ2

and (2.3) can be reformulated as

P{a|r} ∼
K−1∑
k=0

[
−|rk − ck|2

2σ2
+ ln P{ak}

]

∼
K−1∑
k=0

[−|rk − ck|2 + 2σ2 ln P{ak}
]
. (2.6)

As mentioned above, a brute-force approach to the implementation of the MAP
sequence detection criterion would consist in evaluating (2.6) for all possible
information sequences, and choosing the maximizing sequence. Assuming M -
ary information symbols, the complexity of this brute-force approach would
be MK , i.e., exponential with the transmission length. Hence, this imple-
mentation of the MAP sequence detection principle is feasible only for short
transmission lengths, whereas it becomes impractical for transmission lengths
of practical relevance in many applications. A much more efficient and ap-
pealing MAP sequence detection algorithm is the VA, which will be described
in the following.

In the case of strictly finite-memory channels, MAP sequence detection
can be formulated as indicated in (2.6), possibly by redefining the symbol ck

and the underlying FSM model. In particular, the optimal tree diagram can
be folded into a trellis diagram, where the possible states at each epoch are
given by all possible values of the state μk of the encoder/modulator FSM.
In Figure 2.2, an illustrative representation of a folding of a tree into a trellis
is shown. In the remainder of this chapter, the number of states of the en-
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coder/modulator FSM will be indicated by Sc. Denoting by tk � (μk, ak) a
transition in the trellis diagram, a branch metric associated with this transition
can be defined as follows:

λk(μk, ak) = λk(tk) � ln p(rk|μk, ak) + lnP{ak}. (2.7)

Upon the definition of the branch metric (2.7), the a posteriori sequence prob-
ability can be written as follows:

P{a|r} ∼
K−1∑
k=0

λk(μk, ak). (2.8)

Without entering into the details (the interested reader can find plenty of
literature regarding the VA, e.g. [4, 21]), the implementation principle of the
VA is that of associating to each state μn a partial path metric relative to
the corresponding path originating from a known state μ0, at epoch 0, and
terminating into μn. This partial path metric, denoted as Λn(μn), can be
written as follows:

Λn(μn) =
n−1∑
k=0

λk(tk) 1 ≤ n ≤ K. (2.9)

Obviously, P{a|r} = ΛK(μK). Based on the trellis representation of the un-
derlying FSM, the partial metrics, associated with the trellis states, can be
computed recursively. For the sake of simplicity, we consider binary informa-

tion symbols, i.e., M = 2. The path metrics associated to states μ
(1)
k and

μ
(2)
k are indicated as Λk(μ

(1)
k ) and Λk(μ

(2)
k ), respectively. The VA associates

to state μk+1 (the common ending state of both transitions t
(1)
k = (μ

(1)
k , a

(1)
k )

and t
(2)
k = (μ

(2)
k , a

(2)
k )) the following path metric:

Λk+1(μk+1) = max
{

Λk(μ
(1)
k ) + λk(μ

(1)
k , a

(1)
k ),Λk(μ

(2)
k ) + λk(μ

(2)
k , a

(2)
k )
}

.

(2.10)

In this sense, the basic operation of the VA is defined as add-compare-select
(ACS), since: (i) the path metrics associated with the two starting states are
summed with the branch metrics of the two branches entering into the common
final state; (ii) the obtained partial path metrics are compared; and (iii) the
“candidate” largest path metric is selected as the path metric associated to
μk+1.
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The evaluation of path metrics as indicated above guarantees that the path
terminating into any state at a given epoch is, among all entering paths, the
one to which the largest metric is associated. At any epoch, the Sc paths
with the largest possible path metrics are therefore tracked. Consequently,
at the final trellis section at epoch K, the largest path metric among those
associated with the final states is such that the corresponding information
sequence satisfies the MAP sequence detection criterion in (2.2).

Even if the complexity of the VA is proportional to KSc (i.e., the de-
pendence on the transmission length is linear and not exponential anymore),
the delay would still be unacceptable for large transmission lengths, since one
should wait for the transmission of the entire information sequence before
being able to output the sequence of symbols satisfying the MAP sequence
detection criterion. The VA, however, has an appealing feature which we will
describe shortly. At every epoch the number of survivors is equal to the num-
ber Sc of states in the trellis. One could track backwards all these survivors
starting from the trellis section at epoch k down to the trellis section at epoch
k − D. For each value of D it is possible to count the number of distinct
survivor paths. This number is a monotonically non-increasing function of
D. In particular, if the value of D is such that the number of distinct paths
is equal to 1, all Sc survivors share the same path from trellis section 0 to
trellis section k − D. In other words, the survivors merge at section k − D.
This implies that there is no uncertainty on the best sequence from epoch 0
to epoch k − D, and, therefore, the corresponding decisions can be emitted.
The probability of having all survivors sharing, at epoch k, the same path
in correspondence to trellis section k −D rapidly approaches 1 for increasing
values of D. Hence, at epoch k, it is possible to emit the decision âk−D relative
to the MAP information sequence which will eventually be selected. In other
words, by assuming that consecutive observations are sequentially available,
the latency corresponds to only D symbol intervals, where D is sufficiently
large to guarantee, at epoch k, high probability of merged survivors at section
k −D.

2.2.2 The Forward-Backward Algorithm

The most commonly used algorithm to perform MAP symbol detection is the
so-called FB algorithm. Seminal work on the design of algorithms for soft-
output decoding dates back to the late Sixties [22, 23]. An instance of the
FB algorithm was proposed in [24], but a clear formalization is due to Bahl,
Cocke, Jelinek and Raviv in 1974 [17]—for this reason, the FB algorithm is
also often referred to as BCJR algorithm from the initials of the last names of
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the authors of [17].

The MAP symbol detection criterion leads to the choice of the symbol
âk which minimizes the probability of error with respect to the received sig-
nal. More precisely, the MAP symbol detection strategy can be formulated as
follows:

âk = argmax
ak

P{ak|r}. (2.11)

In order to compute the APP P{ak|r} one can write:

P{ak|r} =
∑
a:ak

P{a|r} ∼
∑
a:ak

p(r|a)P{a} (2.12)

where the notation a : ak denotes all possible information sequences containing
ak, or compatible with ak. Note that the computation of the APP, as indicated
in (2.12), can be based on the same metric as in the case of MAP sequence
detection (i.e., p(r|a)P{a}) and a further marginalization based on the sum
over all the information sequences compatible with symbol ak. Assuming that
the information symbols are independent, one can further express the APP as
follows:

P{ak|r} ∼ P{ak}
∑
a:ak

p(r|a)
K−1∏

i=0,i�=k

P{ai}. (2.13)

The first and simplest possible approach for the evaluation of the APP
could be based on the computation of expression (2.13). It is immediate to
conclude that the computational efficiency of this operation is very low, since
one must compute a large number of sequence metrics and then marginalize by
adding them together. The complexity would obviously be exponential in the
transmission length K. The FB algorithm, introduced in more detail in the
following, represents an efficient way to compute the APP, with a complexity
linear with the transmission length K, as in the case of a VA for MAP sequence
detection.

As already mentioned, the first clear formulation of the FB algorithm can
be found in [17]. In the following, we propose a simple derivation of the FB
algorithm for transmission over a memoryless channel. We assume that the
encoder/modulator can be represented as a FSM, with state μk and output
symbol ck. We assume that the next-state and the output functions are known2

2Note that the derivation shown in the following holds also in the case of a channel
with strictly finite-memory, the only difference being the interpretation of μk as the state
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and can be formulated as in (2.4). The couple (μk, ak) uniquely identifies a
transition in the trellis diagram of the encoder/modulator FSM. We denote
this transition as tk. After a suitable discretization process with one sample
per information symbol, we assume that the observable at epoch k can be
written as in (2.5). In this case, the APP can be expressed as follows:

P{ak|r} ∼ p(r|ak)P{ak}
=
∑
μk

p(r|ak, μk)P{μk|ak}P{ak}

=
∑
μk

p(rK−1
k+1 |rk

0 , ak, μk)p(rk|rk−1
0 , ak, μk)p(rk−1

0 |ak, μk)

·P{μk|ak}P{ak}. (2.14)

Assuming independent information symbols, since μk may depend on ak−1
0 , it

follows that:

P{μk|ak} = P{μk}.

Upon the assumption of transmission over a memoryless channel, the remain-
ing conditional pdfs in (2.14) can be simplified as:

p(rK−1
k+1 |rk

0, ak, μk) = p
(
rK−1

k+1 |μk+1 = ns(ak, μk)
)

p(rk|rk−1
0 , ak, μk) = p(rk|ak, μk)

p(rk−1
0 |ak, μk) = p(rk−1

0 |μk).

Hence, the APP in (2.14) can be rewritten as follows:

P{ak|r} ∼
∑
μk

p
(
rK−1

k+1 |μk+1 = ns(ak, μk)
)

·p(rk|ak, μk)p(rk−1
0 |μk)P{μk}P{ak}. (2.15)

By defining

αk(μk) � p(rk−1
0 |μk)P{μk}

γk(ak, μk) � p(rk|ak, μk)P{ak}
βk+1(μk+1) � p(rK−1

k+1 |μk+1)

of the FSM obtained by concatenating the encoder/modulator and the channel. Moreover,
we assume generation of a single output symbol ck in correspondence to each information
symbol ak, but the derivation can be straightforwardly extended to the case of multiple
output symbols by using a vector notation, as mentioned in Footnote 1.
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the desired symbol APP finally becomes

P{ak|r} ∼
∑
μk

αk(μk)γk(ak, μk)βk+1(μk+1) (2.16)

where, for the sake of notational simplicity, the dependence of μk+1 on μk and
ak is not explicitly indicated.3 In the following, since the generated soft-output
value is a quantity monotonically related with the APP, we will indicate this
value with the general notation S[ak]. In other words, one can write:

S[ak] �
∑
μk

αk(μk)γk(ak, μk)βk+1(μk+1). (2.17)

The actual APP values can be obtained by applying a proper normalization to
the terms S[ak], since

∑
ak

P{ak|r} = 1. Note that the operation (2.17) where
the quantities {αk(μk)} and {βk+1(μk+1)} are combined to generate the APP
is usually referred to as completion.

The quantities αk(μk) and βk+1(μk+1) can be computed by means of for-
ward and backward recursions, respectively. More precisely, one can write:

αk(μk) = p(rk−1
0 |μk)P{μk}

=
∑

(μk−1, ak−1) :
ns(ak−1, μk−1) = μk

p(rk−1
0 |ak−1, μk−1, μk)P{ak−1, μk−1|μk}P{μk}

=
∑

(μk−1, ak−1) :
ns(ak−1, μk−1) = μk

p(rk−1|rk−2
0 , ak−1, μk−1, μk)

·p(rk−2
0 |ak−1, μk−1, μk)P{ak−1, μk−1, μk}

=
∑

(μk−1, ak−1) :
ns(ak−1, μk−1) = μk

p(rk−1|rk−2
0 , ak−1, μk−1, μk)

·p(rk−2
0 |ak−1, μk−1, μk)P{μk|ak−1, μk−1}

·P{ak−1|μk−1}P{μk−1} (2.18)

where the index of the summation indicates all possible transitions {(μk−1,
ak−1)} compatible, through the next-state function, with μk—this notation is
general and accounts also for the case of underlying recursive and non-recursive

3This simplifying notational assumption (and other similar assumptions) will also be used
in the following. The context should eliminate any ambiguity.
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FSM models. The summation in (2.18) can be re-interpreted as carried over
all possible trellis branches {tk−1} compatible with the final state μk. Since
we are considering possible combinations of μk−1 and ak−1 compatible with
μk, it follows that

P{μk|ak−1, μk−1} = 1. (2.19)

On the basis of the independence between the information symbols and recall-
ing the absence of channel memory, one can write:

p(rk−1|rk−2
0 , ak−1, μk−1, μk) = p(rk−1|μk−1, ak−1)

p(rk−2
0 |ak−1, μk−1, μk) = p(rk−2

0 |μk−1)

P{ak−1|μk−1} = P{ak−1}.

Finally, a step in the forward recursion in (2.18) can be concisely expressed as
follows:

αk(μk) =
∑

tk−1:μk

p(rk−2
0 |μk−1)P{μk−1}p(rk−1|μk−1, ak−1)P{ak−1}

=
∑

tk−1:μk

αk−1(μk−1)γk−1(tk−1). (2.20)

A similar derivation holds also for the backward recursion. More precisely,
one can write:

βk(μk) = p(rK−1
k |μk)

=
∑
ak

p(rK−1
k |ak, μk)P{ak|μk}

=
∑
ak

p(rk|rK−1
k+1 , ak, μk)p(rK−1

k−1 |ak, μk)P{ak|μk}. (2.21)

On the basis of the independence between information symbols and the ab-
sence of memory of the considered transmission channel, the following simpli-
fications hold:

p(rk|rK−1
k+1 , ak, μk) = p(rk|ak, μk)

p(rK−1
k−1 |ak, μk) = p

(
rK−1

k−1 |μk+1 = ns(ak, μk)
)

P{ak|μk} = P{ak}.



30 CHAPTER 2. TRELLIS-BASED DETECTION TECHNIQUES

A step in the backward recursion, as indicated in (2.21), can be rewritten as
follows:

βk(μk) =
∑
ak

p(rK−1
k−1 |μk+1)p(rk|ak, μk)P{ak}

=
∑
ak

βk+1(μk+1)γk(tk).

2.3 Optimal Detection Strategies for Channels with
Memory

In this section, we recall the basic detection strategies which can be devised for
communication channels with memory. In particular, as seen in the previous
sections, the same basic metric can be used for both hard-output and soft-
output detection. For more details, the reader is referred to [25,26].

Consider the transmission system model previously described. A sequence
of independent and identically distributed M -ary information symbols {ak} are
transmitted successively from epoch 0 to epoch K−1. The encoder/modulator
block can be described as a time-invariant FSM (e.g., a trellis coded modulator,
TCM, [27] or a continuous phase modulator, CPM, [28]), and we assume that
next-state and output functions can be expressed as in (2.4).

A causality condition for the considered communication system can be
formulated in terms of statistical dependence of the observation sequence rk

0,
up to epoch k, on the information sequence. Accordingly, a system is causal if

p(rk
0 |a) = p(rk

0 |ak
0). (2.22)

Similarly, a finite-memory condition (FMC) can be formulated, in statistical
terms, as follows:

p(rk|rk−1
0 ,ak

0) = p(rk|rk−1
0 ,ak

k−C , μk−C) (2.23)

where C is a suitable finite-memory parameter and μk−C represents the state,
at epoch k − C, of the encoder/modulator. The considered model includes
any definition of state μk in terms of a suitable state variable, not necessarily
defined in terms of input variables. It can easily be proved that causality and
finite-memory conditions imply the following equalities [26]:

p(rk|rk−1
0 ,ak

k−D, μk−D) = p(rk|rk−1
0 ,ak

k−C , μk−C) ∀D ≥ C (2.24)

p(rK−1
k |rk−1

0 ,ak−1
0 ) = p(rK−1

k |rk−1
0 ,ak−1

k−C , μk−C). (2.25)
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The first equality formalizes the intuition that considering past information
symbols, before epoch k − C, adds no further information regarding the ob-
servation at epoch k. The second equality formalizes the idea that the finite-
memory condition4 extends to future observations beyond epoch k. Upon
the introduction of an output function o(·, ·) as in (2.4), causality and finite-
memory conditions can be formulated as follows:

p(rk
0 |c) = p(rk

0 |ck
0) (2.26)

p(rk|rk−1
0 , ck

0) = p(rk|rk−1
0 , ck

k−C). (2.27)

We remark, however, that these conditions involve the transmission channel
only and, in general, do not imply (2.22) and (2.23). A case of interest may be
that of a linear block code followed by a memoryless modulator. In particular,
a linear block code is not guaranteed to be causal and finite-memory5 so that
the channel causality (2.26) and finite memory (2.27) do not imply the system
causality (2.22) and finite memory condition (2.23).

The introduction of the FMC leads naturally to the definition of augmented
trellis state and branch (transition):

Sk � (ak−1
k−C , μk−C)

Tk � (Sk, ak) = (ak
k−C , μk−C).

Then, the following common metric can be used in the VA and FB algorithm:

γk(Tk) � p(rk|rk−1
0 ,ak

k−C , μk−C)P{ak}. (2.28)

In particular:

• the VA can now be formulated in the logarithmic domain, by defining
the branch metric λk(Tk) � log γk(Tk), and obtaining

log P{a|r} ∼
K−1∑
k=0

λk(Tk);

• the symbol APP computed by the FB algorithm can be finally expressed
as

P{ak|r} ∼
∑
Sk

βk+1(NS(Sk, ak))γk(Sk, ak)αk(Sk).

4Note that there is a slight difference between the formal definition of the finite memory
condition (2.23) and (2.25), since in (2.25) the conditioning information sequence is ak−1

0 and
does not include symbol ak. This is, however, expedient for the derivation of the backward
recursion of the FB algorithm in Subsection 2.2.2.

5Block-wise causality and finite-memory must be indeed satisfied.
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2.4 Detection of Encoded Data

In this section, we discuss on the applicability of the previously devised strate-
gies in the case of encoded data. The presence of coding makes consecutive
transmitted symbols dependent. In the case of transmission over channels
with memory, it follows that the overall memory is due to the channel and
the encoder. Depending on how these two memory components are “treated,”
detection and decoding can be properly combined or separated.

2.4.1 Joint Detection and Decoding

In the case of a channel characterized by parameters affected by stochastic
uncertainty, a very general parametric model for the observation rk is the
following:

rk = g(ak
k−L, μk−L, ξk

0) + wk (2.29)

where L is an integer quantifying the encoding memory (e.g., the memory
length of a convolutional encoder), ξk

0 is a sequence of stochastic parameters
independent of a, and wk is an additive noise sample. Under this channel
model, the following conditional Markov property

p(rk|rk−1
0 ,ak

0) = p(rk|rk−1
k−N ,ak

0) (2.30)

where N is the order of Markovianity, is sufficient to guarantee a FMC. In
fact, (2.30) implies the following [26]:

p(rk|rk−1
0 ,ak

0) = p(rk|rk−1
k−N ,ak

k−C , μk−C) (2.31)

where the finite-memory parameter is C = N +L. It is immediate to recognize
that (2.31) represents a special case of (2.23). As a consequence, all the
derivations in the previous section hold by using the “exponential metric6”
γk(Tk) = p(rk|rk−1

k−N , Tk)P{ak}. In other words, (2.31) is the key relation
which “links” the algorithms derived in Section 2.3 with the detection problem
over channels with memory. A statistical description of the stochastic channel
parameter allows one to compute this exponential metric as [25,26]

γk(Tk) =
p(rk

k−N |Tk)

p(rk−1
k−N |Sk)

P{ak}

=
E

ξ
k

0

{p(rk
k−N |Tk, ξ

k
0)}

E
ξ

k−1

0

{p(rk−1
k−N |Sk, ξ

k−1
0 )} P{ak}. (2.32)

6The usual notation in the literature refers to a metric in the logarithmic domain. Hence,
assuming that log γk can be referred to as metric, we refer to γk as exponential metric.
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2.4.2 Separate Detection and Decoding

While in the previous subsection the fundamental metric γ was computed by
taking into account simultaneously encoding and channel memories, another
possible strategy consists in separating the detection process from the decoding
process. This can be carried out, at the receiver side, by considering the
concatenation of two blocks:

• the first block, i.e., the detector, computes a posteriori reliability values
on the coded symbols, by taking into account the channel memory and
exploiting the available statistical channel characterization;

• the second block acts as a “standard” decoder, which receives at its
input the reliability values generated by the detector. However, care
has to be taken in correctly estimating the distribution of the reliability
values generated by the detector (typically, their distribution is well
approximated as Gaussian [8]).

In the presence of a stochastic channel with order of Markovianity equal
to N , as in Subsection 2.4.1, the detector can make use of the final metric
(2.32), the only difference, with respect to Subsection 2.4.1, consisting of the
fact that L = 0, i.e., C = N .

2.4.3 Iterative Detection and Decoding

As briefly anticipated in Chapter 1, the concept of iterative decoding was origi-
nally introduced by Gallager in his Ph.D. thesis [29] for decoding LDPC codes
and was crystallized by Berrou and Glavieux in 1993 with the introduction
of turbo codes [7, 8]. In this revolutionary work, the authors showed that
a complicated code, with a particular structure, can be decoded efficiently
with limited complexity. In particular, they considered a parallel concate-
nated convolutional code (PCCC), constituted by the parallel concatenation,
through interleaving, of two convolutional codes. The receiver is based on
two component decoders (corresponding to the two constituent convolutional
encoders) which exchange information between each other. In Figure 2.3, the
basic structure of a turbo decoder, relative to a PCCC, is shown. The two
component decoders exchange soft information between each other and the
interleaver is denoted as Π. More precisely, the decoders exchange a modified
version of the APP, the so-called extrinsic information, which represents the
component of the generated soft output on a symbol not depending on the
soft-input information on the same symbol [8]. Referring to the FB algorithm
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S(E,2)
n [ak]

Π−1

Figure 2.3: Turbo decoder for a PCCC.

formulation proposed in Subsection 2.2.2, the final soft-output quantity, i.e.,
the extrinsic information, (2.17), can be written as follows:

S[ak] = P{ak}S(E)[ak]

where

S(E)[ak] �
∑
μk

αk(μk)γ
′
k(ak, μk)βk+1(μk+1)

and

γ′
k(ak, μk) � p(rk|ak, μk) =

γk(ak, μk)

P{ak}
.

Note that the a priori probability P{ak} of an information symbol used by
each component decoder is given, in the iterative decoding process, by the
extrinsic information generated by the other decoder, i.e.,

P{ak} ←− S(E,i)[ak] =

∑
μk

αk(μk)γk(ak, μk)βk+1(μk+1)

S(E,j)[ak]
(2.33)

where i, j ∈ {1, 2}, i �= j, and the operator “←−” denotes a value assignment.
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In Figure 2.3, the extrinsic information values on information symbol ak

generated by the first and second decoders at the n-th iteration are denoted

by S
(E,1)
n [ak] and S

(E,2)
n [ak], respectively. Assuming, as a convention, that an

iteration is constituted by the sequence of decoding acts of the first and sec-
ond component decoders, the soft-output values generated by each component
decoder can be re-written as follows:

S(1)
n [ak]︸ ︷︷ ︸

complete output

= S
(E,2)
n−1 [ak]︸ ︷︷ ︸
input

S(E,1)
n [ak]︸ ︷︷ ︸

extrinsic output

(2.34)

S(2)
n [ak] = S(E,1)

n [ak] S(E,2)
n [ak]. (2.35)

In other words, the soft-output value generated by the first decoder at the n-th
iteration is the product between the soft value at its input, corresponding to
the extrinsic information generated by the second decoder at the (n − 1)-th
iteration, and the generated extrinsic information. The soft-output value gen-
erated by the second decoder at the n-th iteration is the product between the
soft value at its input, corresponding to the extrinsic information generated
by the first decoder at the same iteration, and the generated extrinsic infor-
mation. The two soft-output values in (2.34) and (2.35) indicate clearly that
the soft-output decoding processes (based on the FB algorithm) in the two
component decoders are coupled. If the iterative decoding process starts with
decoder 1, then the soft-output information (2.35) produced by decoder 2 will
be the final soft information at the output.

In the presence of channels with memory, this iterative decoding scheme
can be straightforwardly extended to an iterative joint detection/decoding
scheme, the only difference being the fact that each component decoder in
Figure 2.3 makes use of an FB algorithm based on the metric developed in
Subsection 2.4.1.

2.4.4 Turbo Detection

where every component block was aware of both channel and code structure.
A separate detection/decoding approach, obtained through a serial concate-
nation of a detector and decoder (as described in Subsection 2.4.2), leads to
an iterative receiver scheme where the detector (or soft demodulator), which
accounts for the statistical characterization of the channel, and the decoder,
which accounts for the code structure, exchange soft information. More pre-
cisely, in the non-iterative separate scheme introduced in Subsection 2.4.2,
the inner detector computes and passes soft-output information to the outer

In the previous subsection we have considered iterative joint detection/decoding,
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decoder without a feedback from the decoder itself. The receiver becomes iter-
ative as soon as the outer decoder feeds soft information back to the detector.
In the literature, this iterative separate detection and decoding scheme is usu-
ally referred to as turbo-equalization [30], despite this terminology is slightly
abused because, strictly speaking, an equalization process does not take place.
An alternative terminology is “turbo detection.”

2.5 Concluding Remarks

In this chapter, we have summarized basic detection theoretic concepts which
will be used in the following chapters. In particular, we have discussed a
unified approach to trellis-based detection over channels with memory. The
concepts of joint and separate detection/decoding have been presented, to-
gether with a short discussion on iterative detection and turbo equalization.
The FB algorithm—or other trellis-based soft-output detection algorithms de-
rived from it, such as, for example, the multi-trellis soft-input soft-output
(SISO) algorithm which will be presented in Section 7.6—will be used in the
remainder of this book as component blocks to build LDPC coded modulation
receivers.



Chapter 3

Low-Density Parity-Check
Codes

3.1 Introduction

In this chapter, we provide the reader with an overview on low-density parity-
check (LDPC) codes. The concepts outlined in this chapter will then be used
througout the remainder of the book.

This chapter is structured as follows. In Section 3.2 a basic description of
LPDC codes, together with their graphical representation, is given. In Sec-
tion 3.3, LDPC codes are described through a statistical approach, which al-
lows to derive significant insights into the behavior of these codes in a tractable
manner. In Section 3.4, possible decoding algorithms are presented. Sec-
tion 3.5 presents LDPC code design techniques based on the use of the statis-
tical description introduced in Section 3.3. Finally, encoding techniques are
presented in Section 3.6 and conclusions are drawn in Section 3.7.

3.2 Description of LDPC Codes

LDPC codes were first introduced by R. Gallager in his Ph.D. thesis [9]. In
their first instance, LDPC codes are linear block codes characterized by a
sparse parity-check matrix H whose columns have a fixed number dv of non-
zero elements and whose rows have a fixed number dc of non-zero elements.
The following matrix gives an example of a possible LDPC code parity check

37M. Franceschini, G. Ferrari and R. Raheli, LDPC Coded Modulations,
DOI: 10.1007/978-3-540-69457-1_3, © Springer-Verlag Berlin Heidelberg 2009
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matrix with dv = 3 and dc = 6:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 1
0 0 1 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0
0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0
0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 1
1 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 0
0 0 1 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 0
0 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (3.1)

In the current literature such codes are referred to as regular (dv , dc) LDPC
codes. Let N be the number of columns of the parity check matrix, i.e., N
is the length of the codeword. Let M < N be the number of rows of the
parity check matrix and assume that the parity check matrix H is maximum
rank, i.e., Rank(H) = M . Considering a column vector x of N elements, the
number of degrees of freedom in the solution of the parity check equation

Hx = 0 (3.2)

i.e., the number of linearly independent columns of H, is equal to K = N−M ,
which also corresponds to the number of information bits in a codeword. Of
course, the sum of all ones in the rows equals the sum of all ones in the
columns. Therefore

Ndv = Mdc = (N −K)dc

which yields

K

N
= 1− dv

dc
. (3.3)

The term R = K/N in (3.3) is the so called code rate, i.e. the average number
of information bits per codeword binary symbol. Therefore, a regular (dv , dc)
LDPC code has code rate R = 1− dv/dc.

It is possible to associate H with a bipartite graph in one-to-one corre-
spondence. Such a graph contains two kinds of nodes: each node of the first
kind, denoted as variable node, is associated with a column of H; each node
of the second kind, denoted as check node, is associated with a row of H.
The bipartite graph associated with the parity check matrix is constructed as
follows:
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Figure 3.1: Pictorial exemplification of the graph construction for a regular
(2, 4) LDPC code.

1. allocate an array of N variable nodes, each one in correspondence to a
column of H;

2. allocate an array of M check nodes, each one in correspondence to a row
of H;

3. for each nonzero entry of H, connect with a branch the variable and
check nodes corresponding to the entry column and row, respectively.

In Figure 3.1, a pictorial exemplification of the construction of the bipartite
graph for a very simple LDPC code is shown, characterized by dv = 2 and
dc = 4.

In the parity check equation (3.2), each column of the H matrix is mul-
tiplied by a corresponding binary symbol in the codeword. Therefore, each
variable node is associated with a binary symbol in the codeword. The bit po-
sition is represented by the position of the column associated with the variable
node. On the other hand, each check node is associated with a parity check
equation specified by the row corresponding to that particular check node. A
node is said to have “degree i” if i branches depart from it and connect to i
different nodes of the other kind.
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The above described bipartite graphs for LDPC codes are instances of the
so called Tanner graphs for linear block codes. Tanner graphs were introduced
by M. Tanner in [31], and may be used to describe the constraints that a
codeword must fulfill in order to belong to a particular linear block code. One
may observe that, substituting any row in the parity check matrix H with a
linear combination of the row itself and any other set of rows does not alter the
set of codewords fulfilling the parity check equation (3.2), i.e., the obtained
matrix is a parity check matrix for the same code. In other words, every
linear block code admits several parity check matrices, or, equivalently, several
Tanner graph representations. Nevertheless, in general, the above described
linear combination method does not preserve sparseness of the parity check
matrix.

It is interesting to note that, although it is possible to construct a parity
check matrix for a regular (dv , dc) code when dv is an even number, this matrix
will not have maximum rank, since there exists at least one linear combination
of rows equal to the all-0 vector. In fact, consider the vector r = (r1, . . . , rN )
obtained by summing all row vectors in H. The j-th element of r is

rj =

M∑
i=1

hij mod 2

= dv mod 2

= 0

where {hij} denote the entries of H. Therefore, it is possible to remove a
row from the parity check matrix without modifying the set of codewords and
increasing the code rate. As a consequence, there cannot exist regular (dv , dc)
LDPC codes with even dv and rate 1− dv/dc.

3.3 Statistical Description of LDPC Codes

The notation (dv , dc) for regular LDPC codes describes a peculiar property,
i.e., that the code admits at least a parity check matrix that has exactly dv

ones in each column and dc ones in each row. There can be more than one
actual code that has this property, even if the codeword length N is fixed.
Therefore, this notation identifies a class or ensemble of codes. Several LDPC
codes performance analysis techniques refer to code ensembles, in the sense
that the analysis characterizes the expected performance when an actual code
is randomly selected within an ensemble.

Although the regularity assumption greatly simplifies performance anal-
ysis, it imposes unnecessary constraints on the structure of the parity check
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matrix. As a consequence, in [10,13,32] irregular LDPC codes have been pro-
posed, which allow for a different number of non-zero elements in each row
and column.

The bipartite graph construction does not rely on code regularity and
therefore applies to irregular LDPC codes as well. In the irregular case, the
number of branches connected to the various nodes may change from node to
node, regardless the node kind. In other words, variable (or check) nodes are
not constrained to have equal degree.

To give a description of irregular LDPC codes ensembles, in [10, 13, 32],
the concept of degree distribution is introduced.1 The degree distributions of
an LDPC code is specified by a pair of polynomials

(λ(x), ρ(x)) �

⎛⎝ ∞∑
i=1

λix
i−1,

∞∑
j=1

ρjx
j−1

⎞⎠
where the coefficient λi is the fraction of graph branches connected to degree-i
variable nodes and ρj is the fraction of graph branches connected degree-j
check nodes [13]. The polynomial ρ(x) is referred to as the check node degree
distribution and λ(x) is referred to as variable node degree distribution. The
coefficients {ρj} and {λi} must satisfy the following constraints [13]:

0 ≤ ρj ≤ 1 j ≥ 1

0 ≤ λi ≤ 1 i ≥ 1∑∞
j=1 ρj = 1∑∞
i=1 λi = 1

(3.4)

where the third and the fourth relation arise because the “sum of all fractions
of edges” must be equal to one.

If a graph has l branches, i.e., the corresponding parity check matrix has
l nonzero entries, the number vi of degree-i variable nodes is

vi =
lλi

i

and the number cj of degree-j check nodes is

cj =
lρj

j
.

1Note that the concept of degree distribution is borrowed from random graph theory,
where it is characterized by a slightly different definition.
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Therefore the number N of variable nodes is given by

N =
∑

i

vi = l
∑

i

λi

i
= l

∫ 1

0
λ(x) dx

where the integral notation is sometimes used in the literature for conciseness.
The number M of check nodes is given by

M =
∑

j

cj = l
∑

j

ρj

j
= l

∫ 1

0
ρ(x) dx .

The code rate R = K/N , therefore, is as follows:

R =
K

N
=

N −M

N
= 1− M

N

= 1−
l
∑

j

ρj

j

l
∑

i

λi

i

= 1−
∫ 1
0 ρ(x) dx∫ 1
0 λ(x) dx

One can observe that, given the code rate R, the degree distribution coefficients
must satisfy the following linear constraint:

∞∑
j=1

ρj

j
= (1−R)

∞∑
i=1

λi

i
. (3.5)

Irregular LDPC codes are among the most powerful binary codes known
today. In [13], it is shown how to design the degree distributions of powerful
irregular LDPC codes and in [33] it is shown that carefully designed irregular
LDPC codes can practically achieve performance as close as 0.0045 dB to
the Shannon limit of the additive white Gaussian noise (AWGN) channel.
Irregular LDPC codes characterized by performance close to the capacity limit
have been obtained for a variety of binary input memoryless channels, among
which the binary erasure channel (BEC) and the binary symmetric channel
(BSC).

3.4 Decoding Algorithms for LDPC Codes

3.4.1 Sum-Product Algorithm

Maximum a posteriori probability (MAP) decoding, either per-symbol or per-
codeword, of a generic linear block code is, in general, a formidable task.
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However, in [9] Gallager introduces three suboptimal iterative decoding al-
gorithms for LDPC codes, which exploit the sparseness of the parity check
matrix of the code. Two of them have very low complexity and are based on
hard decisions and a bit-flipping technique, whereas the third one is a more
accurate algorithm which is based on the iterative exchange of real-valued reli-
abilities of the codeword bits. These algorithms are widely known as Gallager
A,B, and C algorithms, after [34].

All these algorithms have the appealing property of being based on the
Tanner graph representation of the LDPC code. In particular, they are char-
acterized by the fact that the nodes, both variable and check, act as proces-
sors exchanging real-valued messages on the code graph. All the processing
is done locally, i.e., for each node it is based only on the available messages.
The messages represent reliability values for the codeword bits; in particular
they represent an estimate of the probability that each particular codeword
bit is equal to “1”. In [12, 35], the author presents a reinvention of LDPC
codes, and the relevant iterative decoding algorithm. He also highlights how
the iterative decoding algorithm can be seen as a particular instance of the
belief propagation (BP) algorithm [36]. In [37], the authors present a gen-
eral graph-based algorithm, i.e., the sum-product (SP) algorithm, which can
be useful for computing the marginalization of complex probability density
functions. The authors show how BP can be seen as an instance of the SP
algorithm and that the SP algorithm achieves optimality if the code graph has
no cycles. In other words, the Gallager C decoding algorithms computes the
exact a posteriori probability of each codeword symbol—thus enabling MAP
symbol detection—if the code graph has the shape of a tree. This fact had
been argued in [9] as well.

The Gallager C algorithm is now introduced with emphasis on its imple-
mentation in the logarithmic domain. Given a binary random variable X,
taking values in the set {0, 1}, its likelihood ratio λX is defined as

λX =
P{X = 0}
P{X = 1} (3.6)

and the corresponding log-likelihood ratio is

ΛX = log λX .

At each iteration in the decoding algorithm: (i) first, each variable node com-
putes an output message for each connected edge and, (ii) then, each check
node computes an output message for each connected edge. The order of com-
putation of the messages is usually referred to as schedule. This is only the
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m0

mv
1

mv
j

mv
dv

Figure 3.2: Variable node: the quantities involved in the computation of the
j-th output message are shown.

most commonly adopted schedule; other schedules exist and can be found in
the literature [38–40].

In Figure 3.2, a degree-dv variable node is shown and the input and output
messages are explicitly indicated. One can observe that there is an input,
connected to the node and whose value is labeled with m0, which represents
an input reliability value associated with the bit corresponding to the variable
node, expressed in the log-likelihood domain. This input reliability value is
usually computed on the basis of the observation of the channel.

The decoding algorithm can be derived by reasoning in the probability
domain and then by casting the result in the log-likelihood ratio (LLR) domain
as follows. The message at the output of a variable node is the probability that
the corresponding codeword bit X is equal to “1” given a set of independent
observations regarding the bit. Assume to have dv independent observations
ξ1, . . . , ξdv . Let the likelihood ratios of the probability of the observations be

(
p(ξ1|X = 0)

p(ξ1|X = 1)
, . . . ,

p(ξdv |X = 0)

p(ξdv |X = 1)

)
= (λ1, . . . , λdv ) .

The probability of X being equal to 0 given the observations is

P (X = 0|ξ1, . . . , ξdv ) =
p(ξ1, . . . , ξdv |X = 0)P (X = 0)

p(ξ1, . . . , ξdv)
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and the corresponding likelihood ratio is

λ =
P (X = 0|ξ1, . . . , ξdv)

P (X = 1|ξ1, . . . , ξdv)

=
p(ξ1, . . . , ξdv |X = 0)P (X = 0)

p(ξ1, . . . , ξdv |X = 1)P (X = 1)

=

∏dv
i=1 p(ξi|X = 0)∏dv
i=1 p(ξi|X = 1)

P (X = 0)

P (X = 1)

=
P (X = 0)

P (X = 1)

dv∏
i=1

λi (3.7)

which, assuming P (X = 0) = P (X = 1) = 1/2, in the LLR domain becomes2

Λ =
dv∑
i=1

Λi (3.8)

where Λi = log λi.

The variable node decoding algorithm can be formulated in the logarithmic
likelihood domain as follows [9]. Each degree-dv variable node, as shown in
Figure 3.2, computes dv output messages as follows:

mv
j = m0 +

dv∑
i=1
i�=j

mv
i (3.9)

where mv
j is the j-th output message and mv

i is the i-th input message coming
from a check node. In other words, the variable node treats all the messages
at its input as independent observations: dv − 1 are from the check nodes
and one, m0, corresponds to the likelihood ratio associated with an external
observation. This external observation can be a sample from the channel, or
it might correspond to an a priori information on the corresponding bit. The
message m0 enables to account for an a priori information and will be used in
Chapter 5 as a feedback input in a more general decoding scheme.

One can observe that the sum explicitly excludes the message coming from
the edge whose output message is being computed. This is in agreement with

2We remark that the a priori probability P (X = 0), and in particular its corresponding
likelihood ratio P (X = 0)/P (X = 1) plays the same role in (3.7) as any other likelihood ratio
observation. In other words, it could be formally treated as an observation and embedded
into the product.
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mc
1

mc
j
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dc

Figure 3.3: Check node: the quantities involved in the computation of the
j-th output message are shown.

the use of the so-called extrinsic information in iterative detection, and, in
particular, in turbo decoding [8].

In Figure 3.3, a generic degree-dc check node is shown. A check node
represents a constraint on the codeword bits associated to the variable nodes
connected to it. This constraint is expressed by the corresponding parity
check matrix row: the modulo-2 sum of the codeword bits connected to the
check node is equal to 0. In this case, the associated problem is the following.
Given probabilities

(P (X1 = 1), . . . , P (Xdc−1 = 1)) = (p1, . . . , pdc−1)

associated with dc − 1 bits of the dc bits connected to the parity check node,
compute the probability P0 that their sum modulo-2 is equal to 0 (we know
that the sum of all dc bits modulo-2 is equal to 0). Assuming that all the
observations leading to the computation of P (X1 = 1), . . . , P (Xdc−1 = 1) are
independent, then

P0 =
∑

x:sum is even

P (x)

=
∑

x:sum is even

dc−1∏
j=1

P (xj)

where “x : sum is even” denotes all bit vectors x of length dc − 1 whose sum
is an even number, i.e., x contains an even number of 1’s. The computation of
this quantity can be performed following the guidelines in [9]. First, consider
the following polynomial in t

q(t) = α0 + α1t + . . . + αdc−1t
dc−1 =

dc−1∏
j=1

(1− pj + pjt) .



3.4. DECODING ALGORITHMS FOR LDPC CODES 47

Observe that the coefficient αi is given by

αi =
∑

k1<k2<...<ki

pk1 . . . pki

∏
j �=k1,...,ki

(1− pj) .

In other words, αi is the probability of having i ones and dc − 1 − i zeros
among the dc − 1 bits. Observe now that q(1) is the sum of all coefficients
and q(−1) is the sum of all coefficients where all odd coefficients have changed
sign. Therefore

q(1) + q(−1) =

dc−1∑
j=0

(1 + (−1)j)αj =

�(dc−1)/2	∑
k=0

2α2k

is equal to two times the sum of all even coefficients, i.e., twice the probability
of having an even number of 1’s. As a consequence,

P0 =
q(1) + q(−1)

2
=

1 +
∏dc−1

j=1 1− 2pj

2
.

The corresponding LLR is

Λ = log
P0

1− P0

= log
1 +
∏dc−1

j=1 (1− 2pj)

1−∏dc−1
j=1 1− 2pj

= log
1 +
∏dc−1

j=1 (1− 2

eΛj +1
)

1−∏dc−1
j=1 1− 2

eΛj +1

= log
1 +
∏dc−1

j=1 tanh(Λj/2)

1−∏dc−1
j=1 tanh(Λj/2)

= 2atanh

dc−1∏
j=1

tanh(Λj/2)

where

Λj = log
1− pj

pj
.

Recalling the check node in Figure 3.3, in order to compute the generic
output message, each check node performs the following computation:

mc
j = 2 atanh

dc∏
i=1
i�=j

tanh
mc

i

2
(3.10)
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where mc
j is the j-th output message and mc

i is the i-th input message coming
from the variable nodes. As in the variable node case, the message coming
from the j-th edge is not used for the computation of the outgoing message in
the j-th edge. The messages can be interpreted as LLRs of the bits associated
with the variable nodes towards/from which the message is directed.

At the end of the decoding process, each variable node computes an output
reliability value as follows:

mv = m0 +

dv∑
i=1

mv
i (3.11)

where dv is the degree of the node. In other words, the output reliability value
of a codeword bit is the sum of all messages directed towards the correspond-
ing variable node. As for the forward-backward (FB) algorithm, this step may
be referred to as completion—see Chapter 2 for more details on the FB al-
gorithm. From (3.6), an LLR referring to a binary random variable can be
straightforwardly used to compute a MAP estimate of the random variable. In
fact, if the sign of the LLRs is positive the probability of the random variable
being equal to 0 is larger than the probability of the random variable being
equal to 1. Vice versa, if the sign of the LLRs is negative the probability of
the random variable being equal to 0 is smaller than the probability of the
random variable being equal to 1. Thus, the signs of the LLRs in (3.11) are
all is needed to obtain decisions on the codeword bits.

Summarizing, the Gallager C decoding algorithm comprises the following
steps.

1. Compute all the reliability values for the symbols in the codeword. These
values correspond, for each variable node, to the m0 value in Figure 3.2.

2. Initialize to 0 all the messages coming from the check nodes.

3. Compute the variable nodes’ output messages using (3.9).

4. Transfer the messages to the check nodes.

5. Compute the check nodes’ output messages using (3.10).

6. Transfer the messages to the variable nodes.

7. Verify that a stopping criterion—described in the following paragraph—
is met. If not, go to step 2.

8. Compute the final reliability values using (3.11).
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A stopping criterion may be based on several possible events. The two most
common are (i) the codeword bits that would be obtained after the completion
step form a valid codeword, and (ii) a given maximum number of iterations is
reached. It has been observed [41] that the Gallager C algorithm for LDPC
codes has the interesting property of exhibiting particularly low probability
of not detecting an erroneous decoding result, i.e., when the decoding process
fails, the decoder is mostly aware of the failure. In fact, unlike turbo codes,
the BP algorithm for LDPC codes operates on codeword bits rather than
information bits. This is easily recognized by observing that the information
bits (i.e., the information payload in the codeword) and the parity bits are
dealt with in the same way. Neither convergence to the optimum codeword
nor convergence to a codeword at all is guaranteed. It seems apparent that,
whenever a decoding error occurs, the resulting decided bit sequence is not a
codeword, in the sense that usually it does not satisfy (3.2).

In the above described algorithm, the structure of message passing is rigid:
first, every variable node computes its messages; then, all the messages are
passed to the check nodes, which in turn compute all the messages at their out-
puts. All the obtained messages are then sent back to the variable nodes. This
scheduling is optimum when applied to a tree-shaped bipartite graph, i.e., a
graph without cycles. If the graph has cycles, the algorithm becomes subopti-
mal and there may be some benefit in adopting other scheduling schemes. An-
other motivation for using other scheduling patterns, rather than the standard
Gallager C algorithm, is to improve the computational and implementation
efficiencies of circuits devoted to LDPC decoding.

In the following, we will refer to the set of variable node processors as
variable node detector (VND) and to the set of check node processors as check
node detector (CND). The LDPC decoding process can be seen as an iterative
exchange of vector messages, referred to as message sets, between VND and
CND.

3.4.2 Min-Sum Algorithm

The check node operation (3.10) in the log-domain relies on the computation
of complex nonlinear functions, i.e., atanh(·) and tanh(·). The computation
of (3.10) may be formulated in a recursive form as described in the following.
Let (m1, . . . ,mdc−1) denote the messages in the product of (3.10), where the
superscript c has been omitted and consecutive indices have been adopted to
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simplify the notation. If we define the following recursion:

m∗
1 = m1

m∗
i+1 = 2atanh tanh

m∗
i

2
tanh

mi+1

2
(3.12)

then

mc
j = m∗

dc−1 .

Note that, for any x, y ∈ R

2atanh
(
tanh

x

2
tanh

y

2

)
= sgn(x)sgn(y)

(
min{|x|, |y|} + log

1 + e−|x|−|y|

1 + e−||x|−|y||

)

where the term

log
1 + e−|x|−|y|

1 + e−||x|−|y||
(3.13)

becomes small whenever ||x| − |y|| is large. This result can be obtained by
observing that, first, both tanh(·) and atanh(·) have odd symmetry and, there-
fore,

2atanh
(
tanh

x

2
tanh

y

2

)
= 2sgn(x)sgn(y)atanh

(
tanh

|x|
2

tanh
|y|
2

)
.

Expanding the right-hand side, one obtains:

2atanh
(
tanh |x|

2 tanh |y|
2

)
= log

1 + tanh(|x|/2) tanh(|y|/2)
1− tanh(|x|/2) tanh(|y|/2)

= log
1 + e−|x|−|y|

e−|x| + e−|y|

= − log
(
e−|x| + e−|y|

)
+ log

(
1 + e−|x|−|y|

)
= min{|x|, |y|} − log

(
1 + e−||x|−|y||

)
+ log

(
1 + e−|x|−|y|

)
= min{|x|, |y|} − log

1 + e−|x|−|y|

1 + e−||x|−|y||

where the well known identity

log
(
ea + eb

)
= max{a, b}+ log

(
1 + e−|a−b|

)
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Figure 3.4: Comparison of the check node functions: (a) BP algorithm and
(b) Min-Sum algorithm.

has been used. By neglecting the term (3.13) in the computation of the recur-
sion (3.12), one obtains the following approximate check node operation:

mc
j =

dc∏
i=1
i�=j

sgn(mc
i )min

i�=j
{mc

i}

which yields the so-called Min-Sum approximation of the BP algorithm.

In Figure 3.4.2, the check node operation in the LLR domain for a degree-3
check node is shown considering (a) the BP algorithm and (b) the Min-Sum
algorithm. The x and y axes represent the two input LLR values and the z axis
represents the output message in the LLR domain. One can observe the visual
similarity of the two functions. In Figure 3.5, the difference between the exact
function and its Min-Sum approximation is shown. One can observe that the
highest difference is concentrated in the region where the two message values
are close. If the input reliabilities to the variable nodes are characterized by
high LLR values, as in the case of a good channel such as an AWGN channel
with high SNR, the average difference between the Min-Sum approximation
and the BP is expected to be small.

Min-Sum decoding has an interesting property that we will briefly discuss.
Observe that, in the case of binary-input AWGN (BIAWGN) channel described
in Example 1.1, the input LLR reliability value to the k-th variable node can
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Figure 3.5: Difference between the BP and Min-Sum check node functions.

be computed as follows:

m0 = log

1√
2πσ2

w

e
−

(yk−1)2

2σ2
w

1√
2πσ2

w

e
−

(yk+1)2

2σ2
w

= log e
4yk
2σ2

w =
2yk

σ2
w

where yk is the k-th received sample, i.e., signal plus noise, and σ2
w is the

additive noise variance. In order to perform LDPC decoding with the above
described BP algorithm, the only needed channel information consists of the
knowledge of σ2

w, which is used to compute the input LLRs. If in a variable
node or check node Min-Sum operation all the messages are multiplied by a
factor α > 0, the resulting output LLR is multiplied by the same factor α.
Therefore, if in the Min-Sum algorithm every input LLR is multiplied by α,
the obtained messages, at every iteration and in every graph edge, change only
by a constant factor α. In particular, the message sign does not change and,
as a consequence, the bit decisions do not change.

By choosing α = σ2
w/2, one obtains a decoding algorithm that does not rely

on the knowledge of the channel statistics, i.e., knowledge of σ2
w is unneeded

and the input messages can be computed simply as

m0 = yk .
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For this reason, the Min-Sum decoder is also known as universal decoder [42].
The performance of the Min-Sum decoder can be improved in a number of
ways. In particular, the application of a correction factor and an offset in
the check node output message may have beneficial effect on the decoder
performance [43].

3.4.3 Alternative Decoding Algorithms

Several techniques have been proposed either to achieve better performance
than that of BP decoding or to obtain low-complexity decoding. Linear pro-
gramming (LP) decoding of LDPC codes has been proposed in [44,45], where
it is shown how to formulate the maximum likelihood (ML) decoding of LDPC
codes as a LP problem. To make the use of an efficient LP algorithm feasi-
ble, the constraints on the solution must be (approximately) relaxed. Several
improvements have been proposed to tighten the distance between approxi-
mate LP decoding and ML decoding. LP decoders have, in general, better
performance than BP decoders. Nevertheless, their use as component blocks
of the complex iterative receivers that will be investigated in the next chapters
is difficult since they are conceived to perform per-codeword ML detection as
opposed to per-bit MAP detection, which is better suited for iterative detec-
tion [46].

Other reduced complexity decoding techniques comprise bit-flipping tech-
niques, which refer to graph-based algorithms with binary valued messages
(see, e.g., [9] and [47] and references therein). Message quantization has been
also investigated. The basis for performance analysis using quantized message
passing algorithm for LDPC decoding may be found in [34].

3.5 Practical LDPC Code Design from Statistical
Description

As usual, design techniques rely on performance evaluation techniques. The
most effective LDPC code performance evaluation techniques will be discussed
in Chapter 4 and are based on asymptotic analysis of LDPC code ensembles
defined by their degree distributions. The use of these techniques in code
design allows to optimize the degree distributions of the code, i.e., its statistical
description. In order to use the code, it is necessary to construct a parity check
matrix that satisfies, in addition to the obtained degree distributions, all the
desired constraint, such as, for example, the codeword length.

A widely known LDPC construction algorithm is the progressive edge
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growth (PEG) algorithm [48, 49], which enables to design good LDPC codes
characterized by high minimum cycle length, or girth, and based on a given
degree distribution.

Most of the results obtained in this book will be based on LDPC codes
constructed using the simple random graph construction algorithm described
in the following.

The key goal is to obtain a code with, in order of priority:

1. a given codeword length N ;

2. a girth larger than or equal to a given value γ;

3. a given rate R;

4. given degree distributions.

In general, it is not possible to satisfy the last two constraints. In fact, since R
is generally a real number and the degree distributions have real coefficients,
there may be cases where it is not possible to build a finite length code char-
acterized by given code rate R and degree distributions. These two design
constraints may need to be somehow relaxed, allowing for small roundings on
the degree distributions coefficients.

In order to build a code we first compute, based on N and the variable
node degree distribution, the number � of edges in the graph

� =
N∑
i

λi

i

and the number vi and ci of degree-i variable and check nodes, respectively,
for each i:

vi = �
λi

i

ci = �
ρi

i
.

The obtained values must be properly rounded in order to obtain an integer
number of nodes for each degree. In addition, the rounding strategy for vi

must be chosen in order to obtain a total number of variable nodes equal to
N , and the rounding of ci must preserve the number of actual edges � in the
variable nodes.

To build the LDPC code graph, first the available variable and check nodes
must be arranged in two separate groups. Each degree-i node of a specific kind,
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(a) (b)

Figure 3.6: Simple code construction: (a) arranged nodes with empty sockets
and (b) graph after all empty sockets have been connected.

either check or variable, has i “empty sockets,” each ready to be connected to
a socket of a node of the other kind. Figure 3.6 (a) shows the arranged nodes
ready to be connected. After having prepared the nodes to be connected, the
construction algorithm is as follows:

1. start from the first socket in the first variable node;

2. connect the current socket with a random socket in the check nodes;

3. verify that the new connection does not generate a cycle up to a given
desired girth γ (by exploring the graph starting from the new edge up
to a depth γ − 1);

4. if no new short cycle is generated pass to the next empty socket in the
variable nodes and repeat starting from 2; else, delete the connection



56 CHAPTER 3. LOW-DENSITY PARITY-CHECK CODES

and repeat from 2.

If the algorithm reaches a dead end, i.e., it is not possible to find an empty
check node socket that does not generate a cycle of length longer than γ,
all the connections are erased and the algorithm restarts from the beginning.
If after a given number of trials the algorithm does not provide a complete
graph, then the algorithm fails and returns no code at all. In this case, it
may be useful to reduce the required girth or to increase the codeword length.
Eventually, all empty sockets will be connected, as shown in Figure 3.6 (b).

3.6 Encoding Techniques for LDPC Codes

On the basis of the vector of information bits to be transmitted, encoding is
the operation that selects, from the set of all codewords, i.e., the codebook,
one corresponding codeword. In general, LDPC code encoding can entail
significant complexity due to the random code structure. In the following
subsections, some encoding techniques are described that may be applied to
any generic LDPC code.

3.6.1 Encoding by Matrix Multiplication

In several contexts involving binary coding, it is useful that the information
bits explicitly appear in the associated codeword. This allows, for example, to
avoid costly decoding when the communication system is operating on a par-
ticularly favorable channel, introducing negligible uncertainty on the received
data sequence. Codes satisfying this condition are known as systematic. The
part of codeword replicating the data bits is known as the systematic portion
of the codeword. In convolutional encoding, the systematic portion is often
interleaved with the non-systematic part (also known as parity bits). In this
book, we will address systematic LDPC codes whose systematic part consists
of the first bits of the codeword.

Since LDPC codes are linear block codes, they can be encoded using the
corresponding N ×K generation matrix G. In particular, the codeword x can
be obtained as follows:

x = Ga

where a = (a1, . . . , aK)T is the vector of K information bits to be encoded.
Since the code is systematic, the generation matrix must be of the form

G =

⎛⎝ IK

· · ·
P

⎞⎠ .
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where P is a (N−K)×K matrix that generates the parity bits of the codeword.
The encoded vector x = Ga is in the form

(a1, . . . , aK , p1, . . . , pN−K)T

where the vector of parity bits is

p = (p1, . . . , pN−K)T = Pa .

The matrix H̃ defined as

H̃ =

(
P

... IN−K

)
is a parity check matrix for the systematic code generated by G, meaning that
a vector x is a codeword if and only if

H̃x = 0 .

This fact can be easily recognized since any bit vector x = (x1, . . . , xN ) is a
codeword only if the last N − K bits p̂ = (xK+1, . . . , xN ) are equal to the
parity bit vector p generated by the first K codeword bits as follows:

p = P (x1, . . . , xK)T .

It is easily recognized that

H̃x =

(
P

...IN−K

)
(x1, . . . , xK , xK+1, . . . , xN ) = p + p̂

which is equal to 0, using boolean algebra, if and only if

p = p̂

i.e., if and only if x is a codeword.

The generation matrix G is completely defined by its sub-matrix P , which,
in turn, can be computed by transforming a given parity check matrix H into
its H̃ form, by means of simple row operations (i.e., substitution of a row with
the linear combination of itself and other rows).

Given a parity check matrix H, in order to guarantee the existence of a
corresponding systematic code, the rightmost (N −K)× (N −K) sub-matrix
of H must be non singular. If this condition does not hold, however, observe
that, if H has maximum rank, there exists a subset of N −K columns of H
that forms a non-singular matrix. Therefore, it is possible to obtain a parity
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check matrix corresponding to a systematic code by applying a permutation
of the columns of H that places those columns in the rightmost positions.

Although H is sparse by definition, the sub-matrix P of G is, in general,
dense. This means that, discarding the identity matrix part, in order to store
G, at least

K(N −K) = K2

(
1

R
− 1

)
bits of memory are needed. Since a typical LDPC codeword size ranges from
103 to 104 it means that the memory for storing G for, e.g., a rate 1/2 code
(i.e., N −K = K), is at least on the order of 106 bits.

The matrix multiplication operation, accounting only for the dense part of
G, requires K(N−K) = K2(1/R−1) multiplications (boolean and operations)
and (K−1)(N−K) = (K2−K)(1/R−1) additions (boolean exor operations).
The encoding complexity is therefore quadratic in the number of information
bits per codeword or, given the code rate, in the length of the codeword. It
is also an increasing function of the code rate. The Pa matrix multiplication
can be intrinsically done in parallel, by performing several scalar products.
This may be useful if speed or latency are critical issues, although it requires
a specific implementation.

3.6.2 Recursive Encoding and Structured Codes

Since BP decoding has linear computational cost in the block length, for long
enough codes, encoding may become more computationally expensive than de-
coding itself. To overcome this problem, several solutions have been proposed.
A possible technique is to design highly structured codes. This approach gen-
erated a thriving field of research that lead to the invention of several coding
techniques. A particularly interesting possibility is to build LDPC codes that
are quasi-cyclic, thus enabling low-complexity encoding [50–52]. Another ex-
ample is given by [53], where turbo-Gallager codes are introduced. They
consist of a class of turbo codes which can be effectively decoded by means of
a standard LDPC code decoder and, simultaneously, are characterized by the
linear complexity encoding property of turbo codes. A family of codes which
enable efficient recursive encoding is proposed in [54], with particular emphasis
on digital subscriber line applications. Due to their highly structured parity
check matrix, the proposed codes enable the use of a very simple circuit for
encoding purposes. Besides possible simplification of the encoding procedure,
structured codes might have other interesting benefits including

• the possibility of an algorithmic description of the parity check matrix,
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thus avoiding the storage of the whole matrix;

• a more efficient interconnection of the processing blocks involved in the
LDPC code decoding: an unstructured LDPC code requires the capabil-
ity of a generic interconnection structure which might lead to unsolvable
difficulties in the design of the system hardware;

Another possible technique to obtain efficient encoding is proposed in [55],
where it is shown how to exploit the sparseness of the parity check matrix to
obtain quasi-linear encoding complexity. The proposed technique exhibits a
one-to-one correspondence with the decoding process for an erasure channel
using the same code. The procedure is recursive, i.e., all the parity bits but a
small fraction are obtained using a recursion, whereas the remaining bits are
obtained by means of a matrix multiplication.

It is interesting to note that, if the parity check matrix can be put in lower
triangular form in its rightmost part by means of a row permutation, then
a BP decoding process, initialized with zero LLRs for the parity bits part
and the value 1 − 2ak in the k-th systematic bit, completely recovers all the
parity bits after a sufficiently large number of iteration (at most N−K). This
means that, if the parity check matrix fulfills the previously given condition,
the decoder can be used for encoding as well. If the parity check matrix does
not fulfill the requirements for exact encoding by decoding, then at the end
of the encoding process there will be a fraction of parity bits that remain
uncertain. In principle, it could be possible to use the partial encoding result
to compute a signal to be transmitted. Depending on the strategy used this
would result in a performance loss, due to a suboptimal encoding.

3.7 Concluding Remarks

In this chapter, an overview of LDPC codes has been given. We remark that,
on the basis of the structure and properties of LDPC codes, a huge number
of new code families have been proposed in several works. In this book, we
focus on generic irregular LDPC codes since we will use an LDPC code as
a component block of a more complex system tailored for transmission on
specific channels. In the next chapter, an overview of the most important
performance analysis techniques for iterative detection schemes will be given,
with particular emphasis on LDPC coded schemes.



Chapter 4

Performance Analysis
Techniques

4.1 Introduction

Efficient system design requires the use of tools for evaluating the perfor-
mance of a given system. Based on a performance analysis method, design
algorithms can be constructed, for example, with a specific performance op-
timization goal. The ideal analysis tool should be (i) fast, (ii) accurate, and,
possibly, (iii) highly informative, i.e., it should provide a comprehensive de-
scription of the system under analysis. However, exact analytical evaluation
of the relevant statistical parameters characterizing a realistic communication
system is, usually, unfeasible. Therefore, it is necessary to resort to approxi-
mate evaluation tools. A universal technique satisfying the requirements (ii)
and (iii) is given by a Monte Carlo simulation-based analysis of the system
performance. In particular, this simulation method allows to collect all needed
system statistical parameters with the desired accuracy. Unfortunately, sys-
tem simulation is usually a computationally intensive task. This makes this
technique not appealing for automated system parameter optimization (or
design), which usually calls for repeated analyses. Nevertheless, Monte Carlo
simulation is an invaluable tool suited for accurately testing the performance of
a complex system. Iterative receiver schemes can also be investigated through
a number of approximate tools which exploit their internal structures. For
example, density evolution and extrinsic information transfer (EXIT) charts
admit efficient numerical implementation, since they are characterized by a
limited computational complexity.

In this chapter, the main numerical performance analysis tools useful for
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the analysis and design of low-density parity-check (LDPC) codes for coded
modulations will be described. In Section 4.2, Monte Carlo techniques are
introduced and some considerations on their correct implementation and use
are drawn. In Section 4.3, the density evolution method for analysis of iterative
decoders is described. In Section 4.4, EXIT charts are introduced. Section 4.6
concludes this chapter.

4.2 Monte Carlo System Simulation

By system simulation, we refer to the practice of reproducing a set of signals
which are statistically equivalent to those found in the actual system under
analysis. To this end, the system is decomposed into its component blocks.
We assume that the system may be decomposed into a network of blocks
characterized by deterministic behavior and driven by inputs which may be
either deterministic or stochastic. This assumption is quite general and may
be applied in almost all scenarios of interest.

The deterministic blocks of the system are reproduced by implementation
of the corresponding (embedded) signal processing algorithms or by numerical
solution of the input-output equations of their mathematical model. The
stochastic input signals may be generated in two different ways.

The first is to implement a physical device comprising a controlled and
precisely known noise source, such as, e.g., amplified thermal noise, which is
used to obtain a signal whose statistics are similar to those of the stochastic
input to the system. In this case, the fact that the noise source parameters
are not perfectly known is a possible cause of mismatch between the simulated
system and the actual one.

The second, and most relevant for our purposes, technique for generating
the input stochastic signals is by means of a pseudo-random number gener-
ator (PRNG). PRNGs are recursive algorithms which may be viewed as au-
tonomous systems whose initial state is referred to as seed and whose output,
interpreted as the realization of an ergodic and stationary process, implies
statistical properties of the process such as, e.g., independent and identically
distributed (i.i.d.) outputs, uniform distribution of the output sample over
the integers within a given range, etc. Obviously, since the output is actu-
ally a deterministic sequence, the statistical description of the sequence is
only an approximation of the desired one. Nevertheless, the output sequence
is plausible for the stochastic model that the PRNG tries to emulate. The
“randomness” of the sequence can be evaluated using a number of statistical
evaluation mathematical tools. In order to obtain stochastic processes with
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Figure 4.1: Schematic diagram of a uncoded binary-input (BI) simulator.

the desired statistical description, the output of the PRNG can be properly
processed applying standard methods [56].

It is important to note that not every PRNG may be suited for the spe-
cific scope of a problem. On the other hand, in general, it is not necessary to
use a true—as opposed to pseudo—random number generator. Every simu-
lation scenario has its own characteristics. For example, almost every PRNG
has a periodic behavior, i.e., the sequence repeats itself after a finite num-
ber of samples. Some applications may require a very long period in order
to guarantee accurate estimation of the relevant statistical parameters. Other
applocations, such as, for example, the generation of information bits in an un-
coded binary-input (BI) memoryless channel simulator, can achieve the same
or better results than those obtained with a true random number generator,
with a PRNG with period as short as 2. This is considered in the following
example.

Example 4.1 Simple PRNGs might be better than true RNGs

We now compare the quality of BER estimate using a real random input
data sequence and one generated using a PRNG with cycle of length 2. Show-
ing that, even if the real communication system will operate on a random
data sequence, the use of a PRNG leads to better estimate of the BER of
that system. Consider a simulator for the uncoded transmission scheme in
Figure 4.1, where the input sequence {Xi} is a random sequence of i.i.d. bits
{Xi} with P{Xi = 1} = P{Xi = 0} = 1/2. The symbol Yi output by the BI
channel at epoch i depends only on Xi, i.e., the channel is memoryless. The
sequence is detected by means of a detector device which outputs estimates of
the transmitted bits on a bit-by-bit basis. For example, choose the maximum
a posteriori probability (MAP) symbol decision rule, i.e., choose the bit X̂i

whose conditional a posteriori probability, given the received Yi, is highest.
We assume that the conditional probability of error Pe,0 associated with the
transmission of a 0 might be different from the conditional probability of error
Pe,1 associated with the transmission of a 1.

We use Monte Carlo simulation for measuning the bit error rate (BER)
of the system. We generate N bits to be transmitted X1, . . . ,XN and send
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them through the channel obtaining N output samples Y1, . . . , YN . As BER
estimator we consider the sample average of the error indicator function:

P̂e =
1

N

N∑
i=1

1{X̂i �= Xi}

where the indicator function 1(A) of an event A is given by the following
definition:

1(A) =

{
1 if A is true
0 else.

In other words,
∑N

i=1 1{X̂i �= Xi} is the total number of errors in N trials.
We now characterize the variance of the BER estimator considering the

two cases of a real random number generator and a PRNG.
First we measure probability of error using real random number generators.

The bits to be transmitted are therefore N i.i.d. equiprobable random bits
X1, . . . ,XN . The mean of the estimator is

E{P̂e} =
1

N

N∑
i=1

E{1{X̂i �= Xi}} =
1

N

N∑
i=1

Pe = Pe

where the fact that E{1(A)} = Pr{A} has been used and Pr{A} denotes the
probability of event A. As a consequence, the estimator is unbiased and its
variance is

Var{P̂e} =
1

N2

N∑
i=1

Var{1{X̂i �= Xi}}

=
1

N2

N∑
i=1

E{12{X̂i �= Xi}} − E2{1{X̂i �= Xi}}

=
1

N2

N∑
i=1

Pe − P 2
e

=
Pe − P 2

e

N

where Var{·} denotes the variance of a random variable.
Assume now that we can accurately simulate the exact statistical channel

distribution (e.g., by using the actual channel) but we send alternatively 1
and 0, i.e., X2i−1 = 1 and X2i = 0, i ≥ 1. This corresponds to the use of a
particular PRNG with periodicity equal to 2 to generate the {Xi} sequence.
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As before, we generate N (even) samples and compute the mean and variance
of our estimator applied to the newly obtained sequence. Since it holds that

E{P̂e} = E

{
1

N

N∑
i=1

1{X̂i �= Xi}
}

= E

⎧⎨⎩ 1

N

⎡⎣N/2−1∑
i=0

1{X̂2i+1 �= X2i+1}+

N/2∑
i=1

1{X̂2i+2 �= X2i+2}
⎤⎦⎫⎬⎭

=
1

N

⎡⎣N/2−1∑
i=0

E{1{X̂2i+1 �= X2i+1}|X2i+1 = 1}

+

N/2∑
i=1

E{1{X̂2i+2 �= X2i+2}|X2i+2 = 0}
⎤⎦

=
1

N

[
N

2
P{X̂2i+1 �= X2i+1}|X2i+1 = 1}

+
N

2
P{X̂2i+2 �= X2i+2}|X2i+2 = 0}

]
=

1

2
Pe,1 +

1

2
Pe,0

= Pe

it follows that the estimator is unbiased. Moreover, its variance is

Var{P̂e} =
1

N2

N∑
i=1

Var{1{X̂i �= Xi}}

=
1

N2

⎡⎣N/2−1∑
i=0

Var{I{X̂2i+1 �= X2i+1}

+

N/2−1∑
i=0

Var{1{X̂2i+2 �= X2i+2}}
⎤⎦

=
1

N2

[
N

2
(Pe,1 − P 2

e,1) +
N

2
(Pe,0 − P 2

e,0)

]
=

1

N

(
Pe,1 + Pe,0

2
− P 2

e,1 + P 2
e,0

2

)

≤ Pe − P 2
e

N
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where Pe,1 = P{X̂2i+1 �= X2i+1|X2i+1 = 1} and Pe,0 = P{X̂2i+2 �= X2i+2|
X2i+2 = 0} and the last passage is due to the fact that

P 2
e =

(
Pe,1 + Pe,0

2

)2

≤ P 2
e,1 + P 2

e,0

2
.

This means that the resulting variance of the estimator is better than or equal
to that obtained with random bits, i.e., using realistic data. It turns out that
if the channel is known to be symmetric, i.e., if Pe,0 = Pe,1, as they do in the
case of the BI additive white Gaussian noise (BIAWGN) channel investigated
in Example 1.1, the two variances coincide.

In performing a system analysis through Monte Carlo simulation, one
should carefully consider which parameters are to be estimated. This is im-
portant, since a simulation, in general, produces a large amount of data. It is
usually not possible nor efficient to completely store the produced data and,
afterwards, proceed with a batch processing. Typically, depending on the
particular statistical parameter to be evaluated, only a small fraction of the
produced data has to be stored, although the whole produced data may some-
times need to be processed. As a simple but meaningful example, consider the
transmission system analyzed in the above example. In order to estimate the
BER, one could store the sequences {Yi}, {Xi}, and {X̂i}, then perform batch
processing on the sequences and compute both the estimate P̂e and and an
estimate of its variance. This would require a memory of size O(N).1 Obvi-
ously, the same can be done with a memory as small as O(1). In fact, the
processing could be done by updating an error counter on a sample-by-sample
(or bit-by-bit) basis, i.e., if X̂i �= Xi then increase the error counter by one.
The estimate is obtained by dividing the number of errors by N . Its variance
can be estimated, in a similar way, using a single update variable.

One should always remember that every estimate based on the output
of a simulation is, as a matter of fact, a measure which is subject to error.
Assume to simulate the transmission of N bits by a communication system. By
comparing the decided bits at the output of the receiver with the transmitted
ones, one discovers that there are X errors. Without any other knowledge,
the most reasonable estimate of the BER P̃e characterizing the system is

P̃e =
X

N
.

1We say that a quantity g(N) is “on the order of” f(N) or O(f(N)), if the limit

lim
N→∞

f(N)

g(N)

exists and is greater than 0.
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Source TX Channel RX Analysis

Figure 4.2: Block diagram of a Monte Carlo analysis system.

This estimator corresponds to the sample mean of the error indicator, and has
good properties in several scenarios of practical interest. For example, if the
communication system processes are stationary, it turns out that

E{P̃e} = Pe

where Pe is the true system BER. Note that every estimator is characterized
by its own distribution. This allows to compute the uncertainties that should
characterize every well done measure. For more details on this important topic
we refer the reader to [56] and [57].

An important property of system simulation as analysis tool is that, if prop-
erly implemented, it is robust against possible implementation/programming
errors. In Figure 4.2, a block diagram of a Monte Carlo simulation-based anal-
ysis system is shown. Each block, source, transmitter (TX), channel, receiver
(RX), and statistical analysis, denote a “separate” software unit that may
be implemented exploiting the most convenient paradigms of the adopted lan-
guage or toolkit. By “separate” software unit we mean that it does not rely on
nor may access other data besides those passed through the arrow connection,
which carry only the sampled signal through the system. The receiver block
is highlighted to emphasize that it is the block where the biggest design effort
is spent. The other blocks, except for the transmitter which may make use of
sophisticated signal processing algorithms, are usually very simple. If every
other processing block but the receiver is known to be working correctly, a
Monte Carlo simulation guarantees the following interesting robustness prop-
erty: if the receiver implementation is defective, i.e., it comprises one or more
implementation errors, there cannot be false improvements of the system per-
formance. In other words, although defective, the implemented receiver al-
gorithm can be considered as a real algorithm working on real data and the
computed performance corresponds to the performance of a receiver using the
buggy algorithm.
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Figure 4.3: Illustrative diagram of a generic iterative detection scheme.

4.3 Density Evolution

Consider a generic iterative detection algorithm. The transmitted data se-
quence a produces a received vector r which is the input to the iterative
detection scheme. A possible representation of a generic iterative algorithm
is shown in the diagram in Figure 4.3. The receiver observes the vector r

and generates a first vector of messages m0. The iterative process begins and
at each iteration the previously obtained message set mk−1 is processed by
a deterministic function which, on the basis of mk−1 and r, computes the
next message set mk. Note that, although the input vector r is random, the
processing block operations are deterministic. At the end of the iterative pro-
cess, e.g., after � iterations, the output â is computed as a function of the last
message set m� and of the input r.

A complete statistical characterization of the iterative process would re-
quire to compute how the conditional joint probability density function (pdf)
p(mk|a) evolves as a function of k, and considering all possible transmitted
data sequences a. This is, however, impractical since the number of possible
data sequences is an exponential function of the data sequence length and the
size of the vector mk is typically large. An LDPC code decoder would com-
prise a number of messages equal to the number of edges in the LDPC code’s
bipartite graph, which in practical applications, as a rule of thumb, may span
from 2 to 6 times the codeword length. This implies that such an analysis of
a practical LDPC code would require to compute the evolution of a joint pdf
of about 104-105 random variables (RVs).

A technique which can be used to effectively analyze iterative decoding
schemes is the so-called density evolution [34, 58]. This technique is based
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on a single-letter analysis of the evolution of the messages in an iterative
decoding algorithm. In other words, the analysis focuses on the computation

of the output distribution of a single message m
(i)
k . The message m

(i)
k is a

deterministic function of a subset m
(j1)
k−1, . . . ,m

(jdi
)

k−1 of di elements of the vector
of messages mk−1 at the output of the processing block at the iteration k− 1:

m
(i)
k = fi(m

(j1)
k−1, . . . ,m

(jdi
)

k−1 ) . (4.1)

The pdf of m
(i)
k is a function of the joint distribution of the input messages

involved in the computation:

p
m

(i)
k

= Ψi(p
m

(j1)
k−1,...,m

(jdi
)

k−1

) . (4.2)

In general, the function Ψi(·) depends on the index i of the considered output
message and can rarely be computed in closed form. Nevertheless, numerical
approaches can be followed, for example by sampling the pdf and representing
the messages with discrete RVs.

The discretization of the messages can be limited to the analysis purpose
or, as practical scenarios call for low complexity implementations, could be the
intrinsic way the receiver operates. In other words, the receiver may operate on
discrete messages, e.g., the representation of the messages could be limited to
4 bits, in which case the messages belong to a 16 elements set. In a quantized
scenario with M -level messages, the pdfs become probability mass functions
(pmfs) which can be represented by M -element real vectors. The resulting
pmf evolution function Ψ is

Ψ : R
Mdi �→ R

M .

Observing (4.1) and (4.2), one can immediately notice two issues:

i. if at the k-th iteration the joint pdf of the messages m
(j1)
k−1, . . . ,m

(jdi
)

k−1 is
needed, the computation of the marginal pdf p

m
(i)
k

only does not allow

to proceed iterating the algorithm;

ii. even if the pdf p
m

(i)
k

is available for every k, how can one understand if

the decoding algorithm is converging, i.e., if the BER is approaching 0?

A solution for the first issue is to assume conditional independence of the

messages m
(j1)
k−1, . . . ,m

(jdi
)

k−1 . In this case, (4.2) becomes

p
m

(i)
k

= Ψi(pm
(j1)
k−1

, . . . , p
m

(jdi
)

k−1

) (4.3)
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which entails significant simplification of the problem, as can be seen in the
discrete message case with M -level messages. In this case, the pmf evolution
function Ψ is

Ψ : R
Mdi �→ R

M .

Although, in general, this would be an approximation, this assumption holds
exactly in the case of LDPC codes if the iteration number k is smaller than
the girth of the graph.

Consider now the second issue, i.e., how to track the actual convergence
of the decoding system based on the evolution of the pdfs p

m
(i)
k

. At the final

iteration, the processing block outputs a vector â, which is an estimate of the
transmitted data sequence, computed as a function of the last message set m�

and of the received observable sequence r. Therefore, the output value of a
symbol âl is a function gl(m, r). A corresponding pmf pâl

can be computed
as a function of the pdf of m. Once obtained the pmf of âl and given that
the analysis is done assuming a particular transmitted sequence, it is easy to
compute the corresponding probability of error.

Another common assumption done in a density evolution analysis of LDPC
codes is that of considering a common distribution equal for all the input
messages. In other words, this corresponds to assuming that the input pdfs
are all equal:

p
m

(j1)
k−1

= . . . = p
m

(jdi
)

k−1

� pmk−1
.

Since, at each step, {p
m

(i)
k

} are computed and generally vary for different values

of i, this requires an additional step after the computation of each relevant
output pdf p

m
(i)
k

. In this additional step, usually, averaging of all output pdfs is

performed for computing the pdf pmk
used as input pdf at the (next) iteration

k + 1:

pmk
=

1

L

L∑
i=1

p
m

(i)
k

where L is the number of messages, i.e., the length of mk.

The assumption of a unique distribution for all input messages holds ex-
actly in the case of regular LDPC codes [58], assuming that the all-zero se-
quence has been transmitted (present in all LDPC codebooks). In general, in
a communication system, the performance depends on the particular trans-
mitted codeword. However, the sum-product (SP) algorithm has a symmetry
property that allows to state that the statistical description of the messages
does not depend on the particular codeword. Therefore, the use of density
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evolution leads, in this case, to exact results. For more details on density evo-
lution techniques, which in general can be applied to a wide variety of message
passing decoders, we refer the interested reader to [58].

We point out that the main disadvantage of this technique is that analyt-
ical derivation of the message pdf evolution function Ψ(·) is seldom feasible
(with some important exceptions—see, for example, [13]). On the other hand,
a statistical evaluation of the pdf evolution would need intensive Monte Carlo
simulations, thus limiting the computational efficiency of this analysis tech-
nique.

4.4 EXIT Charts

Whenever its underlying assumptions hold, density evolution leads to a com-
plete statistical characterization of the decoder, although it requires the ca-
pability of efficiently computing the evolution of an entire pdf (or probability
mass function, pmf, if the message set is finite). Another possible solution is
to track the evolution of some statistical function of the message set. This
could lead to great simplifications. For example, in [59], the authors use a real
valued function of the pdf of message sets, which is defined as an equivalent
signal-to-noise ratio (SNR), as a means for characterizing the input-output
relation of a processing block (the forward-backward, FB, algorithm for a par-
ticular convolutional code, in this case). The input SNR/output SNR relation
of each component block of the iterative receiver is then used for predicting
the convergence behavior of the receiver.

A statistical parameter, function of the message distribution, which allows
to obtain good accuracy through this analysis method is the average mutual in-
formation (MI) between the generic transmitted codeword bit and the generic
message in the decoder referring to that particular bit. In a SP decoder or,
more generally, in a message passing decoder for LDPC codes, a message is
said to refer to a codeword bit if it is originated from or is directed towards
the variable node corresponding to that particular bit.

There is a number of possible techniques which can be used to compute
the average MI of the messages. If every message m in the set has the same
known distribution p(m|a), where a is the corresponding bit, then the MI can
be computed as usual:

I =
∑

a

∫
p(m|a)P (a) log

p(m|a)

p(m)
dm. (4.4)

However, reality is usually more complicated: (i) the distributions of the mes-



72 CHAPTER 4. PERFORMANCE ANALYSIS TECHNIQUES

sages are not equal and (ii) the message pdf is not known. In the first case, a
possible definition of the MI is the following:

I =
1

L

L∑
i=1

Ii (4.5)

where Ii is the MI between the i-th message and the corresponding bit, and
L is the total number of messages.

In the second case, i.e., whenever the distribution is difficult to compute,
several approximate techniques may be used. In particular, in some circum-
stances, it may be convenient to use a Monte Carlo approach to obtain an
estimate of the MI. This can be done by setting up a simulator and generating
sets of sample messages which are quantized and used to obtain a histogram
approximation of the pdf p(m|a). The MI can therefore be computed based
on the histogram approximation and using (4.4).

The MI has a practical meaning: it quantifies, in terms of bits, how much
information about a particular codeword bit a given message carries. In prac-
tice, whenever the MI is equal to 1, the bit is reliably recovered. This can be
easily shown: in fact, if A is a uniformly distributed binary random variable,
H(A) = 1. Assuming I(A;M) = 1, a functional relation exists between M
and A. In fact:

I(A;M) = H(A)−H(A|M)

⇓
1 = 1−H(A|M)

⇓
H(A|M) = 0

which implies that, given M , A is known, i.e., it is a function of M .

4.4.1 EXIT Curves and EXIT Charts

At this point, one could observe that although it is possible to track the
evolution of the MI of the message sets during the iteration process, the MI
is still a function of the underlying pdf of the messages and, therefore, little
advantage may be obtained in this way. However, empirical observation shows
that if a message set characterized by an MI I ′ is used as input to a given
processing block, the MI I ′′ of the output message set depends almost only
on I ′ and has little dependence on the particular pdf of the input messages.
Each processing block can therefore be characterized by the relation between
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the input message set MI and the output message set MI. Since, usually,
only extrinsic information is exchanged between processing blocks, this the
plot of this relation is referred to as extrinsinc information transfer (EXIT)
curve. EXIT curves are used to study convergence of recursive (iterative)
detection/decoding algorithms by means of graphs usually referred to as EXIT
charts. EXIT chart-based analyses allow to predict the system performance
with a significantly lower computational burden with respect to the use of
density evolution or standard computer simulations employed to evaluate the
BER performance of iterative decoders [60,61].

The assumption of independence on the particular message set pdf is an
approximation, although it turns out to be an effective one. A more rigorous
statement is that, given an input MI, the output MI is bounded within a range
of possible values whose extremes are functions of the input MI. This range
is, in practical applications, reasonably small. A thorough treatment of this
topic, usually referred to as information combining, can be found in [62–64].

A remark is worthwhile at this point. We said that the processing block
modifies the MI. In particular, we wish the MI to increase, at each iteration, in
order to approach the value 1 as closely as possible. One can observe, however,
that by the data processing inequality [1], it is not possible to increase the MI
by means of data processing. In fact, the MI we refer to is not the MI between
the codeword bits and the message set, i.e., the MI between two vectors. The
MI used in EXIT charts is the MI between a message and its corresponding
codeword bit, averaged over all messages in the message set. This means that
the statistical dependence between different messages is purposely neglected.
The processing block can therefore exploit this dependence in order to increase
the EXIT chart MI.

4.4.2 SISO Detectors and EXIT Charts

A processing block computing bit reliabilities based on (i) a set of constraints,
(ii) an optional set of observations from the channel and (iii) some input a
priori information, is usually referred to as soft-input soft-output (SISO) de-
tector or SISO module [65–68]. In the following chapters, we will use SISO
modules in systems employing differentially-encoded phase shift keying (DE-
PSK) and DE quadrature amplitude modulation (DE-QAM) transmission over
an AWGN channel, DE-PSK with noncoherent detection, and PSK transmis-
sion through a channel affected by ISI.

Since we will focus on binary coding techniques, we assume that the reli-
abilities at the output of SISO blocks are referred to binary symbols. This is
not always the case, since algorithms like the FB algorithm in the general case
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outputs reliabilities referring to M -ary symbols, where M is the cardinality of
the transmitted information symbol set. However, it is possible to transform
M -ary reliabilities into a set of binary reliabilities and vice versa. The two op-
erations are usually non-invertible, thus implying a possible information loss
due to the conversion.

As an example, consider the conversion of the probabilities of an M -ary
symbol a taking values in the set {0, . . . ,M − 1} into bit reliabilities. Assume
that M = 2n, therefore the symbol a can be represented by n bits b0 . . . bn−1.
Given the probabilities P{a = 0}, . . . , P{a = M − 1} we compute

P{bi = 0} =
∑

j:bi=0

P{a = j}

where j : bi = 0 is the set of all integers j ∈ {0, . . . ,M − 1} such that the i-th
bit of their binary representation is equal to 0.

The conversion from bit reliabilities to symbol reliabilities can be done as
follows, assuming all the bits are independent (which is usually an approxi-
mation):

P{a = j} =

n−1∏
i=0

P{bi = ωi(j)}

where ωi(j) denotes the i-th bit in the binary representation of j.
As already mentioned, EXIT curves are based on the computation of the

MI between each binary symbol and its reliability. Due to the presence of
binary symbols, this MI takes on a value between zero and one.

An EXIT curve for a SISO block S is a function IS(I) which quantifies
the average relationship between the MI of the reliabilities at the input of the
block (i.e., the variable I) and the MI of the a posteriori reliabilities at the
output of the block (i.e., IS)—recall that the MI is computed with respect to
the transmitted information sequence [60,61].

Example 4.2 Using a Monte Carlo simulation-based method for computing
the EXIT curve of a SISO block

As an example, consider an AWGN inter-symbol interference (ISI) channel
with binary phase shift keying (BPSK) at its input. The data is transmitted
in blocks of N bits (a1, . . . , aN ). At the receiver a SISO block:

• observes the output r of the channel;

• accepts a vector (m
(in)
1 , . . . ,m

(in)
N ) of N a priori probabilities for the

transmitted bits, i.e.,

m
(in)
i = P{ai = 1} ;
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• computes a vector (m
(out)
1 , . . . ,m

(out)
N ) of the a posteriori probabilities of

the bits using the FB algorithm (2.16), i.e.,

m
(out)
i = P{ai = 1|r} .

Although it has no implication in this particular example, assume also that
the output messages represent the extrinsic information, as described in Sec-
tion 2.4.3. This is a common and important assumption in an iterative detec-
tion scheme [46].

Assume that we want evaluate the EXIT curve of the considered SISO
block using the previously introduced Monte Carlo simulation-based method.

The SISO block has, as a matter of fact, two (vector) inputs: r and

(m
(in)
1 , . . . ,m

(in)
N ). In an iterative decoding process, however, r is fixed, i.e.,

it does not change during the iterations. The EXIT curve must characterize
the MI between the generic transmitted bit ai and the corresponding output

message m
(out)
i as a function of the MI between the generic transmitted bit

ai and the corresponding input message m
(in)
i . To this end:

1. fix the SNR at the receiver;

2. generate the bit sequence (a1, . . . , aN ) using a proper PRNG;

3. simulate the transmission of the bit sequence through the channel, ob-
taining the vector of observables r;

4. generate a vector of messages (m
(in)
1 , . . . ,m

(in)
N ) characterized by an MI

equal to I, as will be shortly discussed;

5. run the FB algorithm obtaining the output APPs (m
(out)
1 , . . . ,m

(out)
N ).

Assuming we have a method for generating the input vector (m
(in)
1 , . . . ,m

(in)
N ),

the analysis, i.e., the output MI computation, proceeds as follows. Consider

the pairs {(ai,m
(out)
i )} as samples of pairs of RVs distributed according to

a pdf p(a,m). Given the sample pair sequence, we wish to estimate the MI
between a and m, which represents the output MI. There are several methods
for evaluating the MI from a sample sequence. A very simple one is deriving a
histogram to estimate p(a,m) and then computing the MI of the correspond-
ing joint discrete RVs. Let us follow this simple method. Note that, in the
considered scenario, the messages belong to [0, 1) ⊂ R and, therefore, to derive
a histogram one needs to define a quantization rule. To this end, divide the
interval [0, 1) into L bins B1, . . . , BL, each of width 1/L. At this point, it is
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possible to associate the vector (m
(out)
1 , . . . ,m

(out)
N ) with a quantized vector

(m̃
(out)
1 , . . . , m̃

(out)
N ), where

m̃
(out)
i = min{j : m

(out)
i ∈ Bj}

=
⌊
m

(out)
i L

⌋
.

The correct choice of the number of bins L is important and should be chosen
so that 1 � L � N . The two extremal choices, L = 1 or L = N , will result
in a MI equal to 0 and 1, respectively. Clearly the quantization operation
would not have been necessary, had we analyzed a SISO block operating with
quantized messages. The histogram approximation can therefore be obtained
based on the sequence (a1, . . . , aN ) and the quantized message sequence and
is represented by the following joint pmf:

p̃(a, m̃) =
1

N

N∑
i=1

1(ai = a ∧ m̃
(out)
i = m̃)

where 1(·) is the indicator function previously introduced and ∧ denotes the
logical and.

Given the estimate pmf of the quantized messages, we can compute the
MI between a transmitted bit A and the corresponding message M using the
following approximation:

I(A;M) �
∑

a

∑
m̃

p̃(a, m̃) log2

p̃(a, m̃)

p̃(a)p̃(m̃)

where

p̃(m̃) =
∑

a

p̃(a, m̃)

and

p̃(a) =
∑
m̃

p̃(a, m̃) .

By changing the MI I characterizing the input set, and by re-performing
all the above described steps, one can obtain a new set of output messages
and compute the new output MI IS(I) = I(A;M), thus obtaining all desired
points of the EXIT curve IS(I).

(in)
1 , . . . ,m

(in)
N )

of input messages characterized by an MI I(A;M (in)) equal to I. A possible
solution is starting with an input vector of probabilities all equal to 1/2, i.e.,

All the above considerations assume we can generate a vector (m
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declaring to the SISO block that there is no a priori information on the trans-
mitted bits. This corresponds to start with I = 0. We can compute the
output message vector and characterize its MI IS(0). At this point, the out-
put message vector is a vector of probabilities for which we know the MI and,
in principle, could be used as input vector for the estimation of IS(IS(0)).
This can be recursively combined to obtain several point of the EXIT curve.
However, this approach could lead to inaccurate results and requires to keep
the same transmitted bit sequence since all message set will refer to that par-
ticular sequence. A common approach to generate an a priori probability
message sequence for a bit sequence (a1, . . . , aN ) is as follows.

Considering a BPSK transmission over an AWGN channel, fix the channel
noise variance σ2 so that the MI between the input and the output of the chan-
nel is equal to I. This can be done numerically by inverting the MI expression
given in Example 1.1. Transmit the bit sequence (a1, . . . , aN ) through the
obtained channel, i.e., for each bit ai apply the BPSK mapping rule, obtain-
ing a transmitted symbol ci, and add an AWGN noise sample characterized by
variance σ2, obtaining an output observable yi. Now, compute the a posteriori
probability of the bit:

mi =
e−

(yi+1)2

2σ2

e−
(yi+1)2

2σ2 + e−
(yi−1)2

2σ2

. (4.6)

Since mi is an invertible function of yi, by the data processing inequality,

I(A;M) = I(A;Y ) = I .

This implies that the vector (m1, . . . ,mN ) is a vector of messages, where each
element represents the probability that the corresponding transmitted bit is
equal to 1 and whose MI (i.e., the MI between the message and the transmitted
bit RVs) is equal to I.

Note that there are infinite methods of generating messages characterized
by a MI equal to I, and each method is characterized by a conditional distribu-
tion of the messages. The above described method is particularly interesting
since the generated message sequence, in the log-likelihood domain, is condi-
tionally Gaussian. This is an appealing property, since there are several useful
SISO block output messages that are characterized by a Gaussian distribution
in the log-likelihood domain. In other words, a message set generated with
the above described method will exhibit statistical properties similar to those
of a real SISO block.
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4.5 EXIT Charts for LDPC Codes

The following example describes a method to compute the EXIT curves asso-
ciated with the VND and the CND, i.e., the component blocks of a standard
LDPC decoder.

Example 4.3 EXIT curves for the belief propagation LDPC decoder: Gaus-
sian approximation

Consider the variable and check node algorithm (3.9) and (3.10), involving
messages in the LLR domain . Assume to approximate the distribution of
the messages with a Gaussian distribution and assume also that all the input
messages have equal distribution (which, as stated in the previous section, is
a common assumption in density evolution analysis). In [13], it is shown that
the distribution p(m) of a message m in an LDPC belief propagation decoder
in the LLR domain must fulfill the following symmetry condition:

p(m) = emp(−m)

which, for a Gaussian distribution, implies that

Var{m} = 2E{m} .

Therefore, tracking the variance is sufficient to completely describe the evolu-
tion of the distribution.

Assuming, without loss of generality, the transmission of an all-0 sequence,
given a Gaussian LLR message set fulfilling the above symmetry condition, the
MI between the generic message and the corresponding codeword bit is [69]

J(σ) �
∫ +∞

−∞

1√
2πσ2

e−
(x−σ2/2)2

2σ2 log2
2

1 + e−x
dx . (4.7)

where σ denotes the standard deviation of the message set.
Consider now the operation (3.9) performed during iterative decoding by

the variable node and operating in the log likelihood domain. Assuming that
the messages at the input of the variable node are independent, the variance
of the output message will be equal to the sum of the variances of the input
messages. As a consequence, the input-output relation of the MI in a degree
dv variable node, under the Gaussianity assumption, will be:

Iout = J
(√

(dv − 1)(J−1(Iin))2 + (J−1(I0))2
)

(4.8)

where Iout and Iin denote the MI between the transmitted codeword bit and
a corresponding output and input message, respectively and
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1.

J−1(·)
is the inverse of the J(·) function

2.

J−1(Iin)

is the standard deviation σin associated with the input message set

3.

(dv − 1)(J−1(Iin))
2

is the sum of the variances of the input messages

4. I0 is the MI between the external observation (leading in (3.9) to the
LLR m0) and the corresponding codeword bit

5.

(J−1(I0))
2

is the variance of the message associated with the external observation

6. and, finally, (√
(dv − 1)(J−1(Iin))2 + (J−1(I0))2

)
is the standard deviation of the message at the output of the variable
node.

If the LDPC code is irregular, one can obtain an average MI associated to
the generic message from the VND and input to the CND according to (4.5),
which leads to

IVND
out =

∑
i

λiJ
(√

(i− 1)(J−1(Iin))2 + (J−1(I0))2
)

(4.9)

where {λi} are the variable node degree distribution coefficients

An approximate formula for the input/output relation for a degree-dc check
node, based on a property of the BEC, is given by

Iout = 1− J
(√

dc − 1 J−1(1− Iin)
)

. (4.10)

For a detailed overview on how to derive the approximate formula (4.10) and
the exact one, we refer the interested reader to [70,71].
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S1 S2

r IS1

IS2

â

Figure 4.4: Schematic diagram of an iterative receiver comprising two SISO
modules.

The average MI at the output of the CND, computed according to (4.5),
is as follows:

IB = 1−
∑

j

ρjJ
(√

j − 1J−1(1− IA)
)

(4.11)

where {ρj} are the check node degree distribution coefficients.
The MI of the message, computed according to (3.11), at the output of a

degree-dv variable node at the last iteration is

Iout = J
(√

(dv)(J−1(Iin))2 + (J−1(I0))2
)

(4.12)

and the corresponding average MI is

IVND
out =

∑
i

λiJ
(√

(i)(J−1(Iin))2 + (J−1(I0))2
)

. (4.13)

In the following chapters, the receiver will be divided into two distinct
processing blocks. This allows to simplify the analysis by decomposing the
MI input-output relation into two simpler functions. A generic example of
this scheme is shown in Figure 4.4, where two SISO modules S1 and S2 are
connected in a turbo-like configuration. In Figure 4.5, the EXIT curves of these
two hypothetical blocks S1 and S2 are shown. In the graph, the horizontal axis
refers to the output MI of SISO module S2 and the vertical axis refers to the
output MI of SISO module S1, i.e., the inverse I−1

S2
(I) of the S2 EXIT curve

is actually plotted. This representation of a pair of EXIT curves is referred to
as EXIT chart, and is useful to investigate the decoding process as a recursive
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MI Evolution
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S2

Figure 4.5: Example of EXIT chart: two SISO modules S1 and S2 iteratively
exchange messages; the evolution trajectory of the MI is also shown.

update of the MI. A trajectory representing the evolution of the MI at the
output of the SISO modules S1 and S2 in the EXIT chart is also shown. If the
MI becomes equal to 1, the decoding process is said to converge, in the sense
that a low BER can be expected.

In Chapter 5, the relation between the MI and the BER will be investigated
and used for LDPC code design purposes.

4.6 Concluding Remarks

In this chapter, the main analysis tools for iterative receivers have been dis-
cussed. In particular, EXIT chart-based analyses will play an important role
in the rest of the book, since it provides a simplified, yet accurate, convergence
analysis tool which is well suited for LDPC code design for coded modulations.



Chapter 5

LDPC Coded Modulations:
Analysis and Design

5.1 Introduction

As discussed in the previous chapters, low-density parity-check (LDPC) cod-
ing is gaining increasing attention, from an implementation viewpoint, in the
scientific community and the industry. In particular, since LDPC codes ex-
hibit near-capacity performance on a variety of memoryless channels, there is
high interest in investigating their performance on practical channels.

A simple, although powerful, technique for exploiting LDPC codes over
generic channels is based on the use of the LDPC coded modulations, which
represent the focus of this book. This approach is based on the concatenation
of an LDPC encoder and a coded modulator (CM) characterized by “good”
properties for transmission over the considered channel. This is the approach
followed in [69], where an LDPC encoder is concatenated with a multiple-input
multiple-output (MIMO) channel modulator. At the receiver, a soft-input soft-
output (SISO) module [66], designed for the considered CM/channel pair, iter-
atively exchanges soft reliabilities with a standard LDPC decoder. In [69], it is
shown how to analyze, using extrinsic information transfer (EXIT) charts [60],
the performance of LDPC codes transmitted over a MIMO channel through a
proper modulator, with a corresponding soft-input soft-output (SISO) module
at the receiver side—a description of a SISO block can be found in Chapters 2
and 4. This system can be interpreted as a special instance of a bit interleaved
coded modulation (BICM) scheme with iterative decoding (ID) [72–75]. Usu-
ally BICM or BICM-ID would require an interleaver between the encoded bits
and the modulator. However if the LDPC is unstructured, i.e., chosen at ran-
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dom from a family of LDPC codes defined by their degree distributions, the
interleaver is not required. This can be easily seen by observing that an LDPC
code followed by a random interleaver is a new LDPC code whose parity check
matrix columns are permuted according to the interleaver. This preserves the
degree distributions associated with the LDPC code, and more generally, the
connection structure of the LDPC code. Therefore, the performance of a belief
propagation decoder operating on its graph is also preserved.1 In practical ap-
plications, structured LDPC codes are appealing because the implementations
of the corresponding encoder and decoder can take advantage of the structure
resulting in lower hardware requirements. In this case, an interleaver might be
required after the encoder and its introduction should be carefully considered.

In [69], a heuristic optimization technique for the degree distributions of
LDPC codes is also proposed—as a matter of fact, the technique considered
in [69] was originally introduced in [76,77] as a way of designing LDPC codes
suited to memoryless channels and approaching the capacity limit.

In this chapter, we first introduce LDPC coded modulations, describing
possible detection strategies. Then, we give a detailed description of the gen-
eral communication system in [69], considering both the transmitter and the
receiver sides. The main features of the considered scheme, as compared to
a standard BICM-ID scheme, are (i) the possible presence of a modulator
with memory and (ii) the particular sub-block decomposition of the receiver.
We then discuss an EXIT chart-based analysis technique, following the guide-
lines in [69], and give new insights on the decoding convergence based on the
results in [78, 79]. In particular, in order to characterize the extrinsic infor-
mation evolution on the EXIT chart in terms of bit error rate (BER), we
introduce a general upper bound on the BER as a function of the mutual
information (MI) between the observables and the transmitted information
symbols. These bounds are verified through Monte Carlo simulation-based
and density evolution techniques [34]. Finally, we describe a design algorithm
for LDPC coded modulations based on the optimization of the degree distri-
butions of the LDPC code [79]. This algorithm is based on EXIT charts and
consists of a semi-random walk in the degree distribution parametric space.
This optimization algorithm will be applied in a few practical scenarios of
interest, with particular attention to inter-symbol interference (ISI) channels

1This holds assuming that every pair codeword bit/observable has the same statistical
description, i.e., every binary symbol “sees” the same channel. In an LDPC coded modula-
tion, this might not be true and, therefore, specific column permutations might change the
system performance. This can be addressed, whenever needed, by a higher order analysis,
i.e., an analysis that accounts for different message distributions, depending on the mapping
of the codeword bits into symbols.
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and partial response channels (PRCs).

5.2 LDPC Coded Modulation Schemes: Basics

In the literature, the design of schemes based on the concatenation of an en-
coder (either convolutional or block) and a modulator has received substantial
attention. In [80, 81], BICM schemes, consisting of the concatenation of a
binary encoder, a bit interleaver and a high order memoryless mapper, are
proposed and analyzed. At the decoder side, a soft demapper generates relia-
bility values for the bits embedded in each modulated symbol, and these values
feed a decoder corresponding to the binary encoder used at the transmitter
side. As mentioned in the previous section, in [72–75] an extension of BICM
schemes, denoted as BICM-ID, is proposed: iterative information exchange
between the soft demapper and the decoder is considered and performance
advantages are observed.

As mentioned before, LDPC codes can achieve good performance when
transmitted through memoryless channels. However, in many applications,
the cascade of modulator, physical channel, and demodulator usually does
have memory. As a consequence, it would be interesting to exploit the power
of LDPC codes in such more practical scenarios. It should be noted that the
near capacity performance of LDPC codes on memoryless channels does not
necessarily imply that they can achieve similar performance, i.e., close to the
Shannon capacity limit, in other scenarios.

Two main approaches can be devised, from a detection/decoding view-
point, to allow the use of a standard LDPC code on a generic modulation
format and channel. The first approach can be referred to as graph-based,
whereas the second one can be referred to as turbo. These two approaches
differ mainly in the receiver design and implementation. In both cases, the
transmitter consists of the concatenation of an LDPC encoder and a modula-
tor interfacing with the channel. In the following, we will discuss in detail the
assumptions and the implications regarding both approaches

5.2.1 A Graph-Based Detection/Decoding Approach

The corner stone of the graph-based approach has been posed in [82], where the
presence of the modulator and the channel, possibly with memory, is taken
into account by extending the LDPC code graph to a more general factor
graph [37] with the introduction of new nodes. These nodes account for the
new constraints induced by the modulation and the channel, which increase
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the correlation between the channel observables beyond the level introduced
by the LDPC code [25].

This approach can be seen as an elegant extension of the standard LDPC
decoding algorithm. In particular, it becomes appealing if the channel and
the modulator can be modeled by simple correlation schemes, as in the case
of mapping over a high order constellation, such as M -ary phase shift key-
ing (M-PSK) or quadrature amplitude modulation (QAM) or, for example,
transmission of binary PSK (BPSK) over a block fading channel or a phase
uncertain channel. The main disadvantage is that the introduction of new
constraints in the graph usually leads to the presence of short cycles, which
may compromise the performance of the decoding/detection algorithms, if not
duly taken into account.

5.2.2 A “Turbo” Detection/Decoding Approach

In this approach, the modulation and the code are treated separately at the
receiver. In correspondence to the modulator, at the receiver there is a soft
demodulator, or detector, which needs to be designed to take into account
the a priori probabilities of the modulated codeword bits, for example using
techniques similar to those described in Chapter 2 and Section 4.4.2 Typ-
ically, the a priori probability of the transmitted bits is equal to 1/2, i.e.,
“0” and “1” are equiprobable. However, taking into account generic a pri-
ori probabilities in the soft demodulator allows to accept information from
an external processing block. This block may be an LDPC decoder which
exchanges iteratively extrinsic information [8, 83] with the soft detector. An
illustrative example of this iterative scheme is shown in Figure 5.1, where the
soft detector and the soft LDPC decoder are connected in both directions:
the soft detector computes messages and sends them to the LDPC decoder
which, in turn, computes new messages to be sent to the a priori probability
input of the soft detector. This technique was originally proposed for turbo
decoders [8], from which it borrows the name. In this case, the channel and
the modulator are associated with the soft detector and the error correcting
encoder is associated with the LDPC decoder. The main disadvantage of this
approach is that the subdivision into separate blocks, each accounting for a
different aspect of the communication system, is known to be suboptimal. On
the other hand, this approach is simple, since it can be based on widely avail-
able and well known methods, such as the forward-backward (FB) detection
algorithm (see Chapter 2 for more details), the LDPC iterative decoding algo-

2The interested reader can find further details in [65,66].
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Figure 5.1: Pictorial exemplification of the “turbo approach”.

rithm, and communication techniques suitable to combat the specific channel
impairments such as, for example, differential encoding (DE), partial response
coding etc. Moreover, experience shows that this is a robust approach which
allows to devise simple solutions to complex transmission problems still provid-
ing remarkable performance. In the remainder of this chapter, this approach
will be pursued and its characteristics investigated in more detail.

5.3 Communication System Model

The considered transmitter scheme, shown in Figure 5.2, consists of a sim-
ple concatenation of an outer LDPC encoder and an inner CM which is di-
rectly connected to the channel. Consider the discrete-time low-pass equivalent
model of the communication system. A binary information sequence {xi} at
the input of the LDPC encoder is coded into a binary code sequence {yj} (rep-
resenting a codeword). The binary symbols {yj} are then coded and mapped
to high-order modulated symbols {ck}. The goal of the inner CM is to make
the communication system robust against possible channel impairments. A
few possible realistic scenarios include the following:

LDPC
Encoder

Coded

Modulator
ChannelSource

{ck}{xi} {yj}

Figure 5.2: System model: transmitter side.
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Figure 5.3: System model: receiver side.

• a bandpass communication system where an inner differential encoder is
used to solve phase synchronization ambiguities, or to completely avoid
phase synchronization problems [84,85] by means of differential or non-
coherent detection [86,87];

• a system with a modulator which inserts pilot symbols to help synchro-
nization at the receiver side;

• a transmission scheme operating on dispersive or partial response chan-
nels;

• a communication system affected by timing uncertainty, where, at the
receiver, a SISO block performs soft iterative detection accounting for
timing statistical description [88].

In practice, the above scenarios include any scenario comprising a modulator
and/or a channel which introduces dependence between the transmitted bits.

The receiver is depicted in Figure 5.3. At the input of the receiver, the
sequence of channel observations is denoted as {rk}. For simplicity, we are
considering one sample per coded symbol. If two or more samples per symbols
are necessary in order to cope, for example, with a time varying channel, this
derivation can be extended by considering a suitable vector notation.

The receiver is partitioned into two blocks, denoted as A and B. Block A
comprises the following sub-blocks.

• A SISO block matched to the CM/channel pair, and referred to as CM-
SISO block. This block computes the a posteriori reliabilities of the
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binary symbols {yj} at the input of the CM on the basis of the channel
observations and relevant a priori reliabilities (coming from the block
labeled “LDPC VND” and described below).

• An LDPC Variable Node Detector (VND), associated with the variable
nodes in the code bipartite graph. This block computes the reliability
of each binary symbol yj based on the reliabilities from the CM-SISO
block and the information received from block B and based on the code
constraints.

Block B includes the LDPC Check Node Detector (CND), associated with
the check nodes in the code bipartite graph. The LDPC CND computes the
reliability of each binary symbol yj based on the a priori reliabilities received
from the LDPC VND and based on the LDPC code constraints.

The reliabilities at the output of block A, expressed in the log-likelihood
(LL) domain, are computed as follows:

1. the VND processes the messages coming from block B by performing,
at each variable node, a sum of all the incoming messages excluding the
one coming from the CM-SISO block; the obtained messages are passed
to the CM-SISO block as a priori input;

2. the CM-SISO block computes, based on the observations from the chan-
nel and the a priori information, reliability values according to its inter-
nal algorithm (e.g., the FB algorithm [17]);

3. finally, the VND computes the messages to be sent to block B according
to the standard LDPC decoding algorithm, but using, as a priori input,
the messages from the CM-SISO decoder.

It is important to observe that, in all the above computations, only the so-
called extrinsic information is exchanged between the component blocks [8,34].

The overall decoding algorithm at the receiver can be described as follows.

• As initialization step, the a priori reliabilities of the symbols {yj} at the
input of block A (from block B) correspond to complete uncertainty (a
value equal to 0 in the LL domain).

• Decoding starts from block A, which computes output reliabilities and
sends them to block B. At the first step, since all the messages coming
from the CND are 0, the output of block A simply consists of the output
of the CM-SISO block.
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• The CND (i.e., block B) thus computes the extrinsic information to be
passed to block A.

• The algorithm iterates from the second step until a valid LDPC codeword
is obtained or a maximum number of iterations Ni is reached.

• If a valid LDPC codeword is not obtained, an additional standard LDPC
decoding algorithm is applied based on the last extrinsic information at
the input of the VND block. This corresponds to iterating information
only between the VND and the CND. The maximum number of standard
LDPC decoding iterations is NLDPC.

• At the end of the process, the complete (not extrinsic) reliabilities are
computed by the VND and delivered to the destination.

The optional NLDPC iterations during which only the VND and CND exchange
messages can be exploited in order to reduce the computational burden in all
the cases in which a CM-SISO operation is computationally intensive.

5.4 EXIT Chart-Based Performance Analysis

For each block shown in Figure 5.3, it is possible to draw the corresponding
EXIT curve [60,61]. In Figure 5.3, the MI at the output of blocks A and B is
denoted as IA and IB, respectively. Within block A, the MI at the input and
output of the CM-SISO sub-block are labeled IV and IS , respectively. The
decoding process can then be represented as a recursive update of the MI in
the EXIT charts. If the MI converges to 1, it is possible to predict that the
BER will converge to zero. In fact, let Y be a codeword bit which takes values
1 or 0 with equal probability. Let Z be a reliability referring to Y . As already
introduced in Chapter 4, let the MI between Y and Z be

I(Y ;Z) = H(Y ) − H(Y |Z) = 1

where H(·) denotes the entropy. Since I(Y ;Z) ≥ 0 and H(Y ) = 1, it must
hold that

H(Y |Z) = 0

which implies that there exists a function fdec(·) such that Y = fdec(Z) with
probability equal to 1 [1].

At this point, we are interested in the computation of the EXIT charts of
blocks A and B. Block B is simply characterized by the EXIT curve of the
LDPC CND, while the EXIT curve of block A is obtained by combining the
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EXIT curve of the LDPC VND with that of the CM-SISO block. As already
noted in Chapter 4 and using the methods proposed in [69], the following
approximate formulas for the EXIT curves IA (of block A) and IB (of block B)
can be derived:

IB = 1 −
∑

j

ρjJ
(√

j − 1J−1(1 − IA)
)

(5.1)

IA =
∑

i

λiJ
(√

(i − 1)(J−1(IB))2 + (J−1(IS))2
)

(5.2)

where the function J(·) is as defined in (4.7), i.e.,

J(σ) �

∫ +∞

−∞

1√
2πσ2

e− (x−σ2/2)2

2σ2 log2
2

1 + e−x
dx . (5.3)

The MI IS at the output of the CM-SISO block is a function of the MI IV of
the messages passed by the VND to the CM-SISO block and corresponds to
the EXIT function of the CM-SISO block. The MI IV of the messages passed
by the LDPC VND to the CM-SISO block can be approximately computed as
follows [69]:

IV =
∑

i

λiJ
(√

i · J−1(IB)
)

. (5.4)

As mentioned in Chapter 4, the EXIT curve expressions (5.1), (5.2) and (5.4)
are not exact. The exact expressions would account for (i) the particular chan-
nel, (ii) the particular SISO structure and (iii) the current number of iterations,
since all these parameters influence the distribution of the reliabilities which
the EXIT chart depends on. Nevertheless, the bounds, although tight, do not
accurately predict the actual behavior observed in LDPC CM decoding. We
remark that the analysis presented here assumes cycle-free LDPC code graph.
This condition can be achieved assuming infinite-length codes. In practice, the
absence of cycles of order lower than or equal to 6 is sufficient to guarantee
good accuracy of the described analysis.

The “divide and conquer” principle suggests to split the decoding process
into phases which can be treated separately. In the following subsections, the
iterative decoding is analyzed considering two phases: (1) the first iterations
and (2) the asymptotic (with the number of iterations) convergence.

5.4.1 The First Iterations

This is the first part of the decoding process. Consider the illustrative EXIT
chart shown in Figure 5.4. The decoding trajectory starts from the intersection
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Figure 5.4: Decoding trajectory on an EXIT chart of an LDPC coded modu-
lation scheme.

of the IA curve with the vertical axis (I = 0). As previously discussed, this
point represents the MI between the codeword bits and the soft messages at
the output of the CM-SISO block when no a priori information is available.
The decoding process evolves toward the point (1, 1). This decoding phase
determines if there will or will not be convergence, i.e., the operating point
of the system will fall beyond the BER “waterfall region” (typical of iterative
decoding schemes) or before it.

5.4.2 The Asymptotic Convergence Region

Once the MI has reached the neighborhoods of the point (1, 1), any supple-
mentary iteration has the effect of reducing the BER. In this region, the EXIT
curves can be approximated based on proper Taylor series expansions and the
evolution of the MI towards 1 for increasing number of iterations can be ana-
lyzed. This subject will be considered in more detail in the remainder of this
chapter.
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5.5 Upper and Lower Bounds on the BER

In this section, a relation between the MI and the BER is devised. This will be
exploited for code design purposes in the following. Usually, an EXIT chart-
based analysis assumes decoding convergence, i.e., sufficiently low BER, when
the MI between the codeword bits and the vector of reliabilities has become
equal to 1 [60]. This is because, as shown in Section 5.4, a MI equal to 1 implies
that the codeword bits can be expressed as a function of the reliabilities with
probability one.

Nevertheless, it is usually impossible for the MI to become equal to 1 within
a finite number of decoding iterations. On the other hand, if knowledge of the
EXIT curves is available, one can compute the evolution of the MI towards 1
as a function of the number of iterations or, given a maximum number of it-
erations, one can compute the minimum signal-to-noise ratio3 (SNR) required
to achieve a given MI (usually close to 1). Therefore, it becomes useful to
have upper and lower bounds on the BER as functions of the MI.

5.5.1 MI-Based Lower Bound on the BER

The reliability values for the codeword bits are usually computed by iterative
algorithms in two forms: (i) estimates of the probability of each bit to be
equal to 1 and (ii) the corresponding log-likelihood ratios [9]. In general, these
reliabilities are random variables (RV) with a given distribution which is a
function of several parameters such as, for example, the SNR, the number of
iterations, etc. Typically, a reliability value y is used at the end of the iterative
processing to make a decision on the corresponding bit x. This has to be done
by applying a function fdec(·) to the reliability value.

We assume binary equiprobable transmission of information bits equal to
1 or 0. We denote by I = I(X;Y ) the MI between X (a generic bit) and
Y (its corresponding reliability), at given values of the SNR, the number of
iterations, etc. A lower bound on the BER, generally denoted as Pe, is given
by the Fano bound [1]. In fact,

H(X) = 1
I(X;Y ) = 1 − H(X|Y )

H(Pe) ≥ H(X|Y ) (5.5)
Pe ≥ H−1[1 − I(X;Y )] (5.6)

3Here, the SNR is defined, in general terms, as a parameter which completely defines
the channel and such that the MI between the input and the output of the channel is a
monotonic function of it.
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where inequality (5.5) is the Fano bound applied to a binary RV. The bi-
nary entropy function H(p) � −p log(p) − (1 − p) log(1 − p) is invertible if
p ∈ (0, 1/2]. The meaning of inequality (5.6) is that, even choosing the best
decision strategy, the BER cannot be lower than H−1[1 − I].

5.5.2 MI-Based Upper Bound on the BER

In order to characterize the BER performance, we now derive an upper bound
for the BER as a function of the MI. This bound can also be found in [89].
In order to do this, a decision criterion, or, equivalently, a decision function
fdec(·) which maps a reliability to a specific decision bit, has to be chosen. In
many cases of practical interest, the reliability of a bit is represented by the a
posteriori probability for that bit of being “1.” Given a set of constraints on
the code characteristics, a maximum a posteriori (MAP) decision strategy can
be implemented in a straightforward manner simply by deciding for the most
probable bit. Thus, we investigate MAP decision of the bit given its reliability.
In general, this choice requires perfect knowledge of the conditional probability
P{X = x|Y = y}. The following theorem gives an upper bound on the BER,
for a given MI I(X;Y ), assuming MAP decision.

Theorem 5.1. Let X be a binary RV such that P{X = 0} = P{X = 1} =
1/2, Y be a RV and P{X = x|Y = y} be the conditional pdf of X given Y .
Let

X̂ = argmax
x

P{X = x|Y }.
Given the conditional entropy H(X|Y ) = 1 − I(X;Y ), then

Pe = P{X �= X̂} ≤ H(X|Y )
2

. (5.7)

Proof. The MAP strategy entails a decision for x̂, as a function of y, according
to the following rule:

x̂ = argmax
x

P{X = x|Y = y} .

This implies that the conditional probability of the error event E = {X �= x̂}
given {Y = y} can be expressed as

P{E|Y = y} = 1 − max
x

P{X = x|Y = y}
= min

x
P{X = x|Y = y} (5.8)
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which is, obviously, a number lower than or equal to 1/2. Considering (5.8),
one can conclude that

H(X|Y = y) = H(P{X = x|Y = y}) = H(P{E|Y = y}) . (5.9)

Therefore, given H(X|Y = y), assuming that the MAP strategy is used,
P{E|Y = y} becomes

P{E|Y = y} = H−1[H(X|Y = y)] (5.10)

where H−1(·) is the inverse of the function H(p) for p ∈ (0, 1
2 ]. The following

derivation holds:

Pe = E{P{E|Y }
= E{H−1[H(X|Y )]} (5.11)

≤ H(X|Y )
2

(5.12)

where (5.11) follows from (5.10) and (5.12) follows from the fact that H−1(x) <
x/2, ∀x : 0 ≤ x < 1.

In Figure 5.5, the lower bound based on the Fano inequality, the upper
bound based on MAP decision strategy (Fano lower bound and MAP upper
bound, respectively), along with the actual BER performance versus the bit
SNR Eb/N0, are shown considering a regular (3, 6) LDPC code with codeword
length 12000. The MI needed for the bounds is computed based on a message
distribution obtained using density evolution. The considered numbers of
iterations are 3, 6 and 10. The bounds clearly describe the behavior of the
BER curve. Thus, the convergence of the MI has useful implications on the
convergence of the BER.

5.6 Code Design for LDPC Coded Modulations

In order to design LDPC codes suitable to LDPC coded modulations, we now
introduce a code optimization technique based on the use of EXIT charts
and consisting of a “clever” random walk across the parametric space, i.e.,
the LDPC code degree distributions. The key point for this optimization
technique is that, thanks to the underlying EXIT chart-based analysis, it can
take into account channel impairments, which are usually neglected for the
sake of feasibility by other analysis methods. Moreover, as we will readily see,
its simplicity guarantees a low computational complexity.
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Figure 5.5: Actual BER, MAP upper bound and Fano lower bound for a regu-
lar (3, 6) BPSK modulated LDPC code of codeword length 12000 transmitted
over an AWGN channel considering 3, 6 and 10 iterations.

5.6.1 The Need for Optimization

A reader might wonder if there is a real need for an LDPC code optimized
specifically for the used inner CM block, or if the use of a powerful LDPC
code designed for an additive white Gaussian noise (AWGN) channel might
be sufficient to achieve near-channel capacity performance regardless of the
inner CM block. In general, the LDPC code has to be optimized for the
specific application, and an EXIT chart-based analysis can provide additional
insights regarding this aspect.

In Section 5.3, we have chosen to partition the receiver into the two blocks
A and B, including in block A both the CM-SISO block and the LDPC VND
modules. Note that it would have been possible to study the recursive ex-
change of information of the three distinct component modules: CM-SISO
block, LDPC VND, and LDPC CND. The CM-SISO block and the LDPC
CND would have one input and one output (not taking into account the chan-
nel input for the CM-SISO module, since the corresponding messages are con-
stant throughout the decoding process) and the LDPC VND would have two
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inputs and one output. The presence of the feedback from the VND to the
CM-SISO is crucial. By removing the feedback the CM-SISO operated as a
“one-shot” processing block that elaborates the observed singal from the chan-
nel and produces a soft output, i.e., bit reliabilities for the LDPC codeword
bits. Such a block could be referred to as a soft demapper, without a priori
input. Clearly, the EXIT curve of block A with the CM-SISO module can
not be equal to the EXIT curve of block A with a soft demapper only. In
fact, every time the CM-SISO module input changes, the reliability values to
be sent to the variable nodes are recomputed. On the contrary, these relia-
bility values would be unmodified in a scheme with soft demapping only. It
follows that, since the EXIT curves of block A (interpreted as functions of the
parameters {λi}) are different in the two cases and since the EXIT curves of
block B (interpreted as functions of the parameters {ρj}) are equal in the two
cases, considering an optimization technique based on EXIT charts, in general
an LDPC code optimized in the presence of a CM will be different from an
LDPC code optimized in the absence of a CM.

Moreover, one can conclude that LDPC codes optimized for the two sce-
narios should be equal if and only if the EXIT curves of the CM-SISO module
are constant and independent of the MI at the feedback input. This applies,
for example, to a scenario where the CM-SISO module’s feedback input is not
used, as in the case of BICM, or for every BI memoryless channel, such as a
binary symmetric channel (BSC), a binary erasure channel (BEC), as well as
a BI-AWGN channel. These considerations will be useful also in Section 5.7,
where examples of “almost flat” CM-SISO EXIT curves will be presented.

5.6.2 Optimizing the EXIT Charts

Consider again the illustrative EXIT chart shown in Figure 5.4: in [69], it is
shown that “eye-fitting” the two EXIT curves IA(I) and I−1

B
(I), by varying

the degree distributions (λ(x), ρ(x)), leads to a significant performance im-
provement. Since the EXIT curves of VND and CND, relative to the most
powerful known LDPC codes for memoryless channels, are very similar at
“pinch-off,” i.e., when EXIT curves touch, and considering the good results
obtained in [69], at a first glance fitting the EXIT curves seems a good opti-
mization strategy. However, if only low degree nodes are allowed, the number
of degrees of freedom in the fitting procedure becomes small and the best fit
might not have good convergence properties. This is particularly important
since, in order to construct good codes without short cycles, usually “low de-
gree only” distributions are desirable [9,13]. Moreover, it is important to note
that, given a particular SNR (which will be defined exactly later), convergence
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Figure 5.6: Two EXIT curves pairs labeled 1 and 2. Pair 1 has better conver-
gence properties.

of the decoding process can be obtained if the tunnel between the two curves
is open. Hence, our actual goal, while performing optimization, is to keep the
tunnel as open as possible, whereas fitting usually closes the tunnel.

Our optimization algorithm is based on a simple random walk in the degree
distribution parametric space. Before describing how this algorithm operates,
we first provide the reader with some useful considerations and definitions.

Consider Figure 5.6, where two pairs of EXIT curves for blocks A and B,
denoted as (I1,A(·), I−1

1,B(·)) and (I2,A(·), I−1
2,B(·)), respectively, are shown. If

I1,A(I) ≥ I2,A(I) ∀I ∈ (0, 1)
I−1
1,B(I) ≤ I−1

2,B(I) ∀I ∈ (0, 1) (5.13)

i.e., I1,A is higher than I2,A and I−1
1,B is lower than I−1

2,B, then the conver-
gence of the decoding process for the system relative to the EXIT curves
(I1,A(·), I−1

1,B(·)) will not be slower than the convergence of the system relative
to the EXIT curves (I2,A(·), I−1

2,B(·)).
It should be observed that the two EXIT curves touch at the point (1, 1)—

a sufficient condition for this is the absence of degree-1 variable nodes in the
code, as it can be seen by imposing λ1 = 0 in equation (5.2) and letting
IB → 0. The iterative decoding algorithm for a system characterized by
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the EXIT curves (IA(·), I−1
B

(·)) cannot converge if there exists a value I�,
0 < I� < 1, such that IA(I�) < I−1

B
(I�), i.e., the tunnel is closed. We then

need to define a functional which is representative of the tunnel closure: the
more the tunnel is closed, the lower this functional must be. A possible choice
is the following:

f(λ, ρ) = min
I∈[0,1]

{
IA(I) − I−1

B
(I)

}
(5.14)

where we have explicitly indicated the dependence of the functional on the
degree distributions. Since, as previously observed, the EXIT curves touch at
(1, 1), this functional cannot be positive. Moreover, this functional depends
also on the particular channel as well as the CM and the CM-SISO block. As
previously observed, it is reasonable to assume that increasing the SNR raises
the EXIT curve of block A, while decreasing the SNR lowers it. In other
words, if the tunnel between the two EXIT curves is at pinch-off, a small SNR
increment should be sufficient to open it.

The design parametric space is given by the node degree distributions {ρj}
and {λi}. According to the fundamental relations of the degree distributions∑∞

j=1 ρj = 1∑∞
i=1 λi = 1

(5.15)

and ∞∑
j=1

ρj

j
= (1 − R)

∞∑
i=1

λi

i
. (5.16)

three parameters are linearly dependent on the others. Hence, one has to
choose a parameter from the set {λi}, a parameter from the set {ρj}, and an
additional parameter from either {λi} or {ρj}. The chosen parameters have
then to be expressed as functions of the remaining free parameters. There is
no constraint on the number of elements of the sets {λi} and {ρj}, provided
that these sets (i) are not empty, (ii) contain at least four elements, and (iii)
are finite.

We now describe the optimization algorithm. Start with given valid degree
distributions associated with a given code rate, according to (5.16), and deter-
mined by a tuple of free parameters. If the tunnel is not closed, i.e., f(λ, ρ) = 0,
decrease the SNR until the tunnel closes and f(λ, ρ) < 0. New tuples of free
parameters are then obtained, by repeatedly adding to the previous tuple a
Gaussian increment until all inequalities in (5.15) are satisfied. The mean of
the Gaussian increment is zero and the standard deviation is used to “tune”
the optimization algorithm. From the new tuple, evaluate λ(x) and ρ(x) and,
consequently, the value f(λ, ρ): if this value is larger than the previous one,
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Table 5.1: Optimization algorithm: basic steps.

Start Initialize λ(x) and ρ(x)
and compute f(λ, ρ).

1 While tunnel is open
reduce SNR by small steps
and compute the final
value of f(λ, ρ).

2 Find a new (λ′, ρ′)
compatible with code
rate at (small) random
distance from (λ, ρ).

3 Compute new f(λ′, ρ′); if
not larger than previous
f(λ, ρ) goto step 2, else
(λ, ρ) ← (λ′, ρ′).

4 If stop condition is
not reached goto 1 else
output (λ, ρ) and final
SNR.

substitute the previous tuple with the new one. If the tunnel opens, the SNR
is decreased again, and the previous steps are repeated. The algorithm stops
when a specific requirement is met, such as, for example, the obtained code
ensemble corresponds to an EXIT chart with an open (not closed) tunnel for a
desired SNR, or a maximum number of steps (in the random walk) is reached.
The steps of the optimization algorithm are summarized in Table 5.1. As
a possible improvement to the optimization algorithm, one can diminish the
step value, i.e., the standard deviation of the Gaussian increment vector, after
a given number of unsuccessful trials. Unlike the EXIT curve fitting opti-
mization algorithm in [69,90], the described optimization technique offers the
advantage of being effective also for small sets of possible node degrees. This
algorithm can also be seen as a particular instance of the so called “differential
evolution” algorithm [91].

The described algorithm basically performs an optimization of the con-
vergence threshold, defined as the lowest SNR such that the tunnel is open.
Within the approximation of the EXIT chart-based analysis, the decoding
process converges above this SNR threshold. The simplicity of the proposed

CHAPTER 5. ANALYSIS AND DESIGN



5.7. CODE DESIGN FOR FAST DECODING CONVERGENCE 101

optimization algorithm allows a joint optimization of both degree distributions
{λi} and {ρj} in the presence of the CM-SISO block. This would be difficult
to perform using analytical optimization techniques. We also observe that,
although the predicted thresholds are not very accurate in an absolute sense,
they turn out to be proportional to the experimental thresholds obtained by
Monte Carlo simulations for actual codes chosen according to optimized degree
distributions. This observation, together with the good results shown in the
next sections, confirms the validity of the proposed optimization algorithm.

5.7 Code Design for Fast Decoding Convergence

In the previous sections, the convergence of the decoding process for LDPC
coded modulations has been investigated in a “boolean sense,” meaning that
the convergence has been treated as a condition which either can or cannot
occur. This allows the design of LDPC codes guaranteeing convergence, i.e.,
near error free performance, above the threshold SNR.

In this section, we provide deeper insights into the decoding convergence of
LDPC coded modulations. The adopted receiver scheme is that considered in
Section 5.3, with its block decomposition. We characterize the behavior of the
EXIT curves in the neighborhood of the point (1, 1) in the EXIT chart, i.e.,
the point of successful decoding convergence. We highlight the dependence
of the EXIT curves of the decoding blocks on the LDPC code parameters,
i.e., the degree distributions, paying particular attention to the final iterations
needed for convergence. A bound on the LDPC code parameters, first intro-
duced in [78], is given as a necessary condition for decoding convergence. This
bound is used in order to justify some of the results obtained in the previous
chapters regarding the structure of LDPC codes optimized for specific coded
modulations and channels, such as DE-PSK on AWGN channel and ISI chan-
nels [79,92]. Moreover, we use the BER bounds, functions of the MI, obtained
in Section 5.5 and describe a code design criterion based on mixed MI-BER
behaviour as a function of the number of decoding iterations [78].

As an illustrative application of the MI-BER evolution criterion we in-
vestigate LDPC codes optimized for a BEC. We fix the number of decoding
iterations and optimize the descriptive parameters of the LDPC code, i.e.,
the degree distributions [13], in order to achieve a given target BER with the
“worst possible channel.” The obtained code structures are significantly differ-
ent from those obtained optimizing for convergence threshold. In particular,
if a small number of iterations (i.e., between 4 and 8) and a low target BER
(i.e., lower than 10−3) are considered, the best codes are very similar to regular
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LDPC codes whose variable node degree is a monotonic function of the target
BER. The described LDPC code optimization framework carried out for a
simple BEC can be straightforwardly applied to several transmission schemes
with arbitrary modulations and channels, both with and without memory.

Consider the iterative receiver for LDPC codes concatenated with a mod-
ulator designed to cope with the specific transmission channel described in
Section 5.4. As shown in Figure 5.3, the receiver can be decomposed into two
main blocks: (i) block A comprising a SISO module for the modulator and
the set of all variable nodes, denoted as VND and (ii) block B comprising the
set of all check nodes, denoted as CND.

Since blocks A and B exchange iteratively vectors of real valued reliabilities
associated with the transmitted LDPC codeword and since for each block
these vectors can be computed as a function of the observed received signal
and of the vector incoming from the other block, an analysis of the decoding
convergence based on EXIT charts can be performed [60, 69]. The analysis
based on EXIT charts tracks the evolution of the MI between the codeword
bits and their corresponding reliabilities. As discussed in Section 5.4, this
analysis is based on the assumption that the MI associated with the output
reliability vector of a block is a function only of the MI associated with the
input vector (and a function of the channel statistical description as well). As
discussed in Section 5.4, this assumption represents an approximation which,
in practical situations, turns out to be quite accurate in predicting the system
performance [60].

In Figure 5.4, the decoding trajectory of the MI on a generic EXIT chart is
shown, with reference to the decoding scheme in [69]. The upper curve is the
EXIT curve of block A, which comprises the CM-SISO block and the VND.
The lower curve is the inverse of the EXIT curve of block B, which comprises
the CND. It is easily recognized that in order for the MI to converge to 1, the
EXIT curve of block A, i.e., IA(I), and the inverse of the EXIT curve of block
B, i.e., I−1

B
(I), must satisfy the following condition:

IA(I) > I−1
B

(I) 0 < I < 1 . (5.17)

Moreover, given the behavior of IA(I) and I−1
B

(I) in proximity of the point
(1, 1), one can completely characterize the convergence of the MI as a function
of the number of iterations.

In Section 3.3, the degree distributions of an LDPC code were defined as
a couple of polynomials λ(x) =

∑
i λix

i−1 and ρ(x) =
∑

j ρjx
j−1, where the

coefficients {λi} and {ρj} denote the fraction of edges in the LDPC code graph
connected to degree-i variable nodes and degree-j check nodes, respectively.
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Figure 5.7: Illustrative representation of block A.

In Figure 5.7, an illustrative representation of block A is given and the
MI related to the reliability vectors involved in the computation is shown. In
particular, the functional relationships of the MI values can be devised: IA is
a function of IB and IS ; IS is a function of IV , which is also a function of IB.
Therefore, one can write

IA = IA(IB, IS(IV (IB))).

In order to characterize the decoding convergence, we now compute the first
order Taylor series expansion of IA as a function of IB centered at IB = 1, i.e.,
in the proximity of error free performance. The derivative of IA is as follows:

dIA
dIB

=
∂IA
∂IB

+
∂IA
∂IS

∂IS

∂IV

∂IV

∂IB
. (5.18)

On the other hand, IA can be expressed as a linear combination of terms
depending on IB and IS , weighed by the coefficients {λi} [69, 77]:

IA =
∑

i

λiI
(i)
V (IB, IS) (5.19)

where I
(i)
V is the EXIT function associated with a generic degree-i variable

node. In the process of obtaining the reliabilities associated to IV , at the
input of the SISO block corresponding to the channel/coded modulator pair
(CM-SISO), a generic degree-i variable node acts as a degree-(i + 1) variable
node with no a priori information, i.e., with input a priori probability equal
to 1/2. This is due to the symmetry in the computation of variable nodes with
respect to the messages coming from both the graph and the channel, i.e., the
a priori probability [9]. As a consequence,

IV =
∑

k

λkI
(k+1)
V (IB, 0) . (5.20)
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Figure 5.8: Illustrative representation of block B.

Substituting (5.19) and (5.20) into (5.18), one obtains

dIA
dIB

=
∑

i

λi

[
∂I

(i)
V

∂IB
+

∂I
(i)
V

∂IS

∂IS

∂IV

∑
k

λk
∂I

(k+1)
V

∂IB

]
(5.21)

where ∂IS
∂IV

denotes the derivative of the CM-SISO EXIT curve with respect to
the MI IV as its a priori input.

The block B, as shown in Figure 5.8, comprises the CND. Similarly to what
has been done for block A, the EXIT curve of block B can be expressed as a
weighed linear combination of the degree distribution {ρj} as follows [69,77]:

IB =
∑

j

ρjI
(j)
C (IA) (5.22)

where I
(j)
C denotes the EXIT function associated with a generic degree-j check

node. From (5.22), one obtains that the derivative of IB, with respect to IA,
can be written as

dIB
dIA

=
∑

j

ρj
dI

(j)
C

dIA
(IA). (5.23)

In [93], it has been shown that the reliability distributions in the conver-
gence region, i.e., around to the point (1, 1) in the EXIT charts, due to a large
variance of the reliability values, tend to behave like the distributions found
for a BEC. In other words, the reliabilities tend to group into high valued
ones, i.e., “sure” decisions, and low valued ones, i.e., “erasure-like.” This fact
suggests that in the convergence region one can approximate the information
transfer functions I

(i)
V (·, ·) and I

(j)
C (·) with the BEC EXIT functions for a single

parity check node and a single variable node [63,94]:

I
(i)
V (IB, IS) 
 1 − (1 − IS)(1 − IB)i−1 (5.24)

I
(j)
C (IA) 
 Ij−1

A
. (5.25)
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The particular cases corresponding to I
(2)
C , I

(1)
V (IB, IS), and I

(2)
V (IB, 0)

need no approximation, since in these three particular cases the check and
variable nodes act as identity blocks:

I
(2)
C (IA) = IA

I
(1)
V (IB, IS) = IS (5.26)

I
(2)
V (IB, 0) = IB.

We remark that from (5.19), (5.22), (5.25), and (5.27), one can derive the
following facts:

• IB(1) = 1;

• IA(1, IS) = 1 − λ1 + ISλ1. In particular, IA < 1 if λ1 > 0 and IS < 1
for IB = 1.

In other words, since IB(1) = 1, in order for the decoding process to converge
it must hold that either λ1 = 0 or IS = 1 for IB = 1.

We now substitute the previously given approximations (5.24) and (5.25)
into (5.21) and (5.23) in order to find the first order Taylor series approxima-
tion of the EXIT curves of blocks A and B at the point (1, 1):

∂I
(i)
V

∂IB
(1, IS) =

⎧⎨⎩
0 i = 1
1 − IS i = 2
0 otherwise

∂I
(i)
V

∂IS
(1, IS) =

{
1 i = 1
0 otherwise.

Substituting these relations into (5.21), one obtains

dIA
dIB

(1) = λ2
1
∂IS

∂IV
+ λ2(1 − IS) . (5.27)

Moreover, from (5.23) and (5.25) it follows that

∂IB
∂IA

(1) 

∑

j

(j − 1)ρj .

The derivative of the inverse of the EXIT curve of block B is therefore given
by

∂I−1
B

∂IA
(1) =

1∑
j(j − 1)ρj

.



106

 0
 0  0.2  0.4  0.6  0.8  1

 0.2

 0.4

 0.6

 0.8

 1

IS

IV

SNR= 3 dB
SNR= 1 dB

SNR= −1 dB

Figure 5.9: EXIT curve IS , as a function of IV , of the CM-SISO block for
BPSK and AWGN channel.

In order for the decoding process to converge, (5.17) must hold and the deriva-
tive of the two functions must satisfy the following inequality:

λ2
1
∂IS

∂IV
+ λ2(1 − IS) <

1∑
j(j − 1)ρj

. (5.28)

This bound gives a relation between λ1, λ2, IS(IV ) and {ρj}, which represents
a necessary condition that an LDPC coded modulation system must satisfy in
order to reach decoding convergence.

In the following, some examples of applications of the results above are
given.

Example 5.1 Consider a single LDPC coded communication system with
BPSK transmission over an AWGN channel. In this case, the CM block is
simply the BPSK modulator and the CM-SISO block could consist of a block
performing a symbol-by-symbol conversion from the received sample domain
to the log-likelihood a priori probability domain. Since no side information
is needed by the CM-SISO block to perform this task, the associated EXIT
curve IS is a constant function of the MI IV of the reliabilities passed by the
VND to the CM-SISO block. This is shown explicitly in Fig 5.9, obtained
through computer simulations. Since IS(1) < 1, it must hold that λ1 = 0.
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Figure 5.10: Comparison of two factors in the bounds on λ2 for BPSK and
AWGN channel.

Moreover, the bound (5.28) becomes

λ2 <
1

(1 − IS)
∑

j(j − 1)ρj
. (5.29)

This condition can be directly related to the following stability condition given
in [13]:

λ2 <
e

1
2σ2∑

j(j − 1)ρj
(5.30)

where σ2 is the variance of the additive noise sample and 1/σ2 is the SNR.
In (5.29) the factor 1 − IS plays the role of the factor e− 1

2σ2 in (5.30). The
two factors are shown in Figure 5.10. Clearly the two values are close, thus
confirming the validity of the bound obtained using the EXIT chart analysis.

Example 5.2 In Chapter 7, we will consider code optimization for DE M -
ary PSK (MPSK) LDPC coded modulations. The optimized LDPC codes
show a structure very different from that of standard LDPC codes for the
AWGN channel. In particular, the fraction of degree-2 variable node λ2 is
significantly increased. In Figure 5.11, EXIT curves for a DE-QPSK CM-
SISO block are shown, for various values of the SNR. One can notice that
IS(1) = 1. Observing that (1− IS) 
 0 in the denominator of (5.29), it follows
that the bound on λ2 is relaxed, thus allowing a larger optimized value for this
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Figure 5.11: EXIT curves IS , as a function of IV , of the CM-SISO block for
DE-QPSK and AWGN channel. The various curves correspond to different
values (equally spaced by 0.5 dB) of SNR, from 0 dB (bottom curve) to 2 dB
(top curve).

coefficient. In Chapter 7, LDPC codes optimized for differential modulation
will be shown to have, in fact, degree distributions characterized by a large
value of λ2. Since the optimization algorithm adopted in Chapter 7 optimizes
the global convergence threshold, it is very likely that the increased value of
λ2 allows to achieve a better decoding threshold at the expense of decoding
convergence speed.

Example 5.3 In [92,95], examples of optimized LDPC codes are given both
for an AWGN channel affected by ISI and for a partial response channel (PRC).
In particular, optimized codes in these scenarios may significantly differ from
AWGN LDPC codes if the channel impulse response is long enough. Sec-
tion 5.9.1 will be devoted to the design of LDPC coded modulations for ISI
channels and PRCs. However, we now present a few results, relative to ISI
channels, in terms of degree distributions.

In Figure 5.12, the EXIT curves of CM-SISO blocks for a few ISI chan-
nels are shown. In particular, the SNR is fixed and ISI channels with impulse
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Figure 5.12: EXIT chart IS of the CM-SISO block for QPSK and several ISI
channels.

response coefficients proportional to4 (1, 1), (1, 1, 1), (1, 2, 1), (1, 2, 3, 2, 1) and
(1, 1, 0,−1,−1) are considered. As noted in [92], a linear trend of the EXIT
curves is easily recognized, as well as an increase in the slope of the EXIT
curves for longer channel impulse response lengths. Since IS(1) < 1, degree-1
variable nodes are not allowed. The bound on λ2 is equal to that for BPSK
transmission over the AWGN channel. Nevertheless, due to the reduced QPSK
input channel capacity of the ISI channels, the SNR needed to achieve conver-
gence at a given code rate is higher that that needed for the AWGN channel.
This leads to a larger value of IS(1) and, therefore, to a larger allowed value
for λ2, bounded as follows:

λ2 <
1

(1 − IS)
∑

j(j − 1)ρj
.

We verified this result by optimizing LDPC codes for ISI channels. The result-
ing codes exhibit high values for λ2 in the case of channels with long impulse
response [92].

4The energies of the considered ISI channel impulse responses are normalized to 1.

Memoryless AWGN
ISI ch. (1, 1)

ISI ch. (1, 1, 1)
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0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
IV

IS



110

5.8 Code Design for a Target BER

The results described in the previous section suggest to exploit the knowledge
of EXIT functions in the proximity of the point (1, 1) of the EXIT charts to
analyze (and determine) the convergence of MI (see Section 5.7). Since bounds
are available which “link” the MI to the BER (see Section 5.5), it is possible
to design LDPC codes in order to achieve a target BER after a fixed number
of decoding iterations.

The considered analysis does not take into account cycles in the code
graph [9, 34]. Cycles are related with three important LDPC coded system
parameters: (i) the codeword length, (ii) the maximum number of iterations,
and (iii) the maximum allowed node degree. In general, the decoding process
delivers a performance close to that of maximum a posteriori probability de-
coding if: (i) the codeword length is large, (ii) the number of iterations needed
for convergence is kept small, and (iii) the maximum node degree is low.

On the basis of considerations similar to the previous ones, in [78] an
LDPC code design method was proposed based on the convergence of the MI
to a given value in a given number of iterations. If the number of iterations
required for convergence is small, the possible presence of short cycles should
not impact the performance of the system, since these reliabilities whose ac-
curacy is affected by the short cycles cannot propagate through the graph.
This enables the use of short codes, i.e., with short codeword lengths, which
are difficult to design without short cycles in the graph. In the following, we
provide an applicative example of the above described criterion.

Given a system such that both the derivatives, evaluated at 1, of the EXIT
functions of blocks A and B are known and non-zero, the convergence law can
be derived as follows.

In the neighborhood of (1, 1) the EXIT curves IA and IB can be approxi-
mated by their first order Taylor series expansions:

IA(I) 
 1 − a(1 − I)
IB(I) 
 1 − b(1 − I)

where

a = λ2
1
∂IS

∂IV
+ λ2(1 − IS(1))

b =
∑

j

(j − 1)ρj .
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The recursion characterizing the decoding behavior is

I2n+1 = 1 − a(1 − I2n)
I2n+2 = 1 − b(1 − I2n+1) .

(5.31)

Substituting the variable Hn = 1 − In in the recursion (5.31), one obtains the
following recursion:

H2n+1 = aH2n

H2n+2 = bH2n+1 .
(5.32)

The start point of the recursion (5.31) is I2n0 (or H2n0 for recursion (5.32))
where n0 is the number of iterations needed to reach the convergence region,
i.e., the region in which the first order Taylor series approximation for IA and
IB holds.

Solving (5.32) gives
H2(n+n0) = (ab)nH2n0

and
I2(n+n0) = 1 − (ab)n(1 − I2n0)

which is the MI at the (n0 + n)-th iteration. Applying the bound (5.7) in
Theorem 5.1, one obtains:

BERn+n0 ≤ (ab)n
Hn0

2
(5.33)

where BERn denotes the BER after n iterations. Inequality (5.33) allows the
computation of the minimum number of additional iterations to be performed,
starting from n0, in order to obtain the desired BER:

nmin =
log(2BER/Hn0)

log(ab)
.

An alternative, more useful, approach could be based on the design of the
degree distributions. Towards this end, by simple manipulations of (5.33) one
obtains

ab ≤
(

2BER
Hn0

)1/n

and, therefore,[
λ2

1
∂IS

∂IV
+ λ2(1 − IS(1))

] ∑
j

(j − 1)ρj ≤
(

2BER
Hn0

)1/n

which represents a design constraint guaranteeing convergence to the desired
BER in n + n0 iterations.
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Figure 5.13: Structure of a standard belief propagation receiver for LDPC
coded modulations and binary input memoryless channel.

5.8.1 Target BER-based LDPC Code Design for BEC

We now investigate the structure of LDPC codes designed for convergence
to a specified BER after a given number of iterations, considering a BEC. A
modified version of the design algorithm presented in Section 5.6 is used. By
optimizing LDPC codes for a wide variety of conditions, we obtain insights
on the structure of LDPC codes suited for a small number of iterations. A
discussion on similar code design conditions can be found in [96], where an
LDPC code optimization algorithm is proposed for a BEC and the codes are
optimized in order to minimize the number of iterations needed to achieve a
target BER.

In Figure 5.13, the structure of a belief propagation iterative receiver for
LDPC coded modulations is depicted. As usual, the receiver is divided into two
main blocks, exchanging vector reliabilities: the block labeled A, comprising a
soft detector for the channel output and the VND, is associated with the LDPC
code variable nodes; the block labeled B, comprising the CND, is associated
with the set of LDPC code check nodes. The main difference with respect to
the system presented in Section 5.3 is the absence of feedback from the VND to
the soft detector. This is due to the fact that the BEC is a memoryless binary
channel and, therefore, does not take any advantage from a priori feedback.

We use the MI between the transmitted codeword bits and the exchanged
reliabilities as a measure of the overall achieved system reliability, i.e., we
perform an EXIT chart-based analysis. As discussed in Section 5.4, the EXIT
chart-based analysis assumes that the MI at the output of each block in the
detector’s scheme is a single-valued function of the MI of the reliabilities at
the input of the block.

In Section 5.5, it is shown that the achievable BER after a given number
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of iterations can be bounded as follows:

H−1[1 − I(X;Y )] ≤ BER ≤ 1 − I(X;Y )
2

(5.34)

where I(X;Y ) is the achieved mutual information between the generic infor-
mation bit X and the associated reliability Y . The bounds in (5.34) are useful,
since they allow an accurate estimate of the BER obtained by a system when
the MI between a generic coded bit and the set of the reliability messages
associated with this bit is close to 1. In the following, we will use the upper
bound in (5.34) as an estimate of the BER after a given number of LDPC de-
coder iterations. As previously proposed, the BER will be used as a functional
which has to be minimized with respect to the descriptive parameters of the
LDPC code, i.e., the degree distributions.

We now characterize the relationship between the number of iterations and
the BER, when the iterative LDPC decoder is in the convergence region, i.e., in
the last few iterations needed to achieve the desired BER. We focus on a BEC
due to its simplicity. Nevertheless, we remark that the characterization relative
to a BEC is useful for other channels as well, since it is known that when the
decoding process converges at low BER, the system behavior approaches that
of an iterative decoder operating on a BEC [93].

The EXIT functions of the VND and CND are given by

IV (I) = 1 −
∑

i

λi(1 − Ich)(1 − I)i−1 (5.35)

where Ich is the BEC channel capacity, and

IB(I) =
∑

j

ρjI
j−1 (5.36)

respectively [63,94]. The decoding process converges if the recursion

I0 = Ich
In = Iv(IB(In−1)) n ≥ 1

(5.37)

tends to 1 as n tends to infinity. Approximating (5.36) with its first-order
Taylor series expansion at the point 1, one obtains

IB(I) 
 1 − (1 − I)
∑

j

ρj(j − 1) . (5.38)

One can also approximate IV (I) by a Taylor approximation at 1, choosing the
minimum order such that the resulting function is not constant:

IV (I) 
 1 − λimin
(1 − Ich)(1 − I)imin−1 (5.39)
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where imin is the lowest variable node degree.
Suppose now that after n0 iterations the MI is sufficiently close to 1 such

that (5.38) and (5.39) are good approximations. After n supplementary it-
erations, the MI is given by the following relation, obtained by substituting
(5.39) and (5.38) into (5.37) and writing explicitly the recursion:

In+n0 
 1 − [(1 − Ich.)λimin
]

bn−1
b−1

·
[∑

j ρj(j − 1)
]b bn−1

b−1 (1 − In0)
bn

(5.40)

where b = imin − 1. Applying the upper bound on the BER in (5.34) with
I(X;Y ) = In+n0, one obtains

BERn+n0 � 1
2 [(1 − Ich.)λimin

]
bn−1
b−1

·
[∑

j ρj(j − 1)
]b bn−1

b−1 (1 − In0)
bn

.
(5.41)

Considering (5.41), one can observe that the behavior of the BER as a
function of the number of iterations in the convergence region is exponential
of exponential. In other words, the BER should exhibit a “threshold behavior,”
both as a function of the iteration number n and as a function of the minimum
variable node degree imin. This result is useful if the goal is to design LDPC
codes which achieve very low BER after a small number of iterations, i.e., codes
which (i) can be decoded with low complexity, (ii) are characterized by low
decoding delay, and (iii) do not need the presence of an algebraic concatenated
coding scheme in order to guarantee “near-error-free” performance. This last
point is particularly relevant from an application point of view. In fact, if the
target BER for an application is, say, 10−12 and one designs a code that gives
a BER less than or equal to 10−12 after 6 iterations and is characterized by
a sufficiently large minimum cycle length, the actual BER will be close (or
equal) to the predicted one, thus relaxing the need for concatenation with an
outer error correction scheme. This also shows that, in order to reach very low
BER, a code with low-degree variable nodes needs many more iterations than
a code with higher minimum variable node degree. This is the case for codes
with performance close to the capacity, which are known to need degree-2
variable nodes [13].

In the following, we perform LDPC code optimization for a small number
of iterations and a low target BER. The obtained results shed light on the
optimal code structure.

We jointly optimize the degree distributions of variable and check nodes
using a slightly modified version of the semi-random walk algorithm presented
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in Section 5.6. Given a target BER and a desired number of iterations, the
modified optimization algorithm can be described as follows:

1. the initial degree distributions (properly chosen) are loaded;

2. the channel is worsened (by increasing the erasure probability) until the
BER upper bound in (5.34), computed using EXIT charts, is higher than
the target BER;

3. new degree distributions (with fixed code rate) are generated considering
small (random) perturbation of the previous degree distributions, until
the corresponding BER is lower than the previous value;

4. if the maximum number of trials (set a priori) is reached the optimiza-
tion process stops and the optimized degree distributions are obtained;
otherwise, it restarts from step 2.

Considering a number of decoding iterations between 4 and 10 and several
values of the target BER, 400 optimization runs were performed for each
couple of iteration and target BER values. The obtained variable node degree
distributions are obtained by averaging over the optimization results. The
following degree distributions were chosen as arbitrary initial set: λ3 = λ4 =
. . . = λ12 = 0.1 and ρ6 = ρ8 = ρ10 = ρ12 = ρ14 = ρ16 = ρ18 = ρ20 = ρ22 =
ρ24 = 0.1. These distributions correspond to a rate-1/2 code ensemble.

In Figure 5.14, the average optimized variable node degree distribution
coefficients are shown as a function of the target BER, considering 5 decoding
iterations. One can observe that as the target BER decreases, the fraction
of edges connected to high degree variable nodes increases. In other words, a
drift towards high degree distributions is observed.

In Figure 5.15, the relationship between the coefficient λ4, i.e., the fraction
of edges in the LDPC code graph connected to degree-4 variable nodes, and the
target BER is investigated. Several curves, corresponding to different number
of decoding iterations, are shown. Clearly, for any number of iterations, the
coefficient λ4 in the optimized degree distributions reaches a maximum close
to 1 and then decays for decreasing values of the target BER—moreover, one
can notice that as the number of decoding iterations increases, the maximum
moves to the right, suggesting that the evolution towards high degree variable
nodes becomes slower.

In order to better understand the structure of an LDPC code designed to
converge within a small number of iterations, we investigate the behavior of
a function of the variable node degree distribution given by the ratio between
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Figure 5.15: Coefficient λ4 of the variable node degree distribution shown as
a function of the target BER. Various decoding iterations are considered.
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the number of edges in the graph and the number of variable nodes, i.e., the
average variable node degree d̄v. This quantity can be computed as follows:

d̄v =

∑
i

ini

n
=

∑
i

i�
λi

i

n

=

∑
i

i�
λi

i∑
i

�
λi

i

=

∑
i

λi∑
i

λi

i

=
1∑

i

λi

i

where ni denotes the fraction of variable nodes of degree i, n is the codeword
length, and � is the total number of edges in the graph. The quantity d̄v is
representative of the “connectivity” of the LDPC code bipartite graph where
the extremes

d̄v = n(1 − R)

and
d̄v = 1

represent, respectively, a fully connected bipartite graph and a minimally con-
nected bipartite graph. In Figure 5.16, the relationship of the average variable
node degree with the target BER is shown, for various numbers of decoding
iterations. The average variable node degree seems to be a monotonically
increasing function of the target BER. Moreover, the smaller the number of
iterations, the higher the average variable node degree. In Figure 5.17, the
relationship between the average variable node degree and the number of iter-
ations is shown at different values of the target BER. The curves are monoton-
ically decreasing. Interestingly, the average variable node degree concentrates
in a short range (between 3.3 and 3.7) as the number of iterations increases.
More precisely, the trend of the curves suggests asymptotic convergence to a
value close to 3.3, regardless of the target BER.

Considering 5 decoding iterations and target BERs equal to 10−2, 10−6,
10−12, we have chosen the best obtained degree distributions. The criterion
for selecting the best degree distribution is: among all the codes that satisfy
the requirements of BER lower than the target value after 5 iterations, select
the one requiring the minimum channel capacity to meet the requirements.
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Figure 5.16: LDPC graph connectivity (average variable node degree) versus
target BER. Various numbers of decoding iterations are considered.
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Figure 5.18: Theoretical and simulation-based BER as a function of the BEC
channel capacity for 4 codes. The number of decoding iterations is 5.

LDPC codes with codeword length 6000 were then generated considering the
selected degree distributions. As a reference, the rate-1/2 degree distributions
number 34 in [97] (referred to as “EPFL”), with performance close to the
AWGN channel capacity, have been considered, and an actual LDPC code has
correspondingly been generated with codeword length 10000. In Figure 5.18,
the BER curves of the generated codes are shown, as functions of the BEC
capacity 1 − pe, where pe is the probability of erasure. In particular, for
each code/degree distribution the figure shows (i) a theoretical BER curve
obtained using EXIT charts and the upper bound in (5.34) and (ii) a BER
curve obtained by Monte Carlo simulation of the actual code. In all cases,
the number of iterations is 5. One can observe that, at BER = 10−2 the “ad
hoc optimized” code performs better than the codes optimized for target BER
equal to 10−6 and 10−12. The “EPFL” code exhibits better performance than
the code optimized for target BER equal to 10−2; this is due to the fact that
in our optimization degree-2 variable nodes were omitted. At a target BER
equal to 10−6, the best code is the ad hoc optimized code. One can observe
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Figure 5.19: Pictorial representation of the transmitter.

that the theoretical BER curve is always lower than or equal to the simulated
one, even if the theoretical curve is obtained using the “upper bound.” This
apparent contradiction is due to the fact that: (i) the actual codes contain
cycles and (ii) for the particular case of a BEC the upper bound is achieved.

Interestingly, the variable node degree distributions of the best optimized
codes are characterized by the presence of a value λimin

close to 1, i.e., these
codes are similar to regular LDPC codes. Moreover, it is clear that codes
optimized for a low target BER after a small number of iterations significantly
differ from the “high performance” LDPC codes designed to reach the channel
capacity. We remark that the presence of short cycles in the code graph is the
major concern when a very low target BER is desired. In particular, a low
target BER calls for higher degree variable nodes, but the design of an LDPC
code without short cycles with high variable node degrees can be troublesome.

5.9
Channels

5.9.1 System Structure and Analysis

The communication system of interest can be characterized as follows. We
refer to the discrete-time equivalent communication model. In Figure 5.19,
the transmitter side is shown. An LDPC code encodes bits coming from an
information source. The resulting length-N codeword {yi} is subdivided into
a sequence of pairs of bits which are encoded into QPSK symbols {c̃k} using a
Gray mapped QPSK modulator. The symbols {c̃k} are then input to a filter
which models pulse shaping and the dispersive behavior of the considered
channel. The filtered signal {ck} is then corrupted by AWGN to yield the
observables {rk} used by the receiver to perform detection. Since the filter
precedes the AWGN insertion, it could be seen as some sort of further encoding
performed by the transmitter as in the case of a partial response channel
(PRC) transmitter. The receiver is implemented as described in Section 5.3.

Code Design for Dispersive and Partial Response
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Figure 5.20: Pictorial representation of the receiver.

In Figure 5.20, this receiver scheme is recalled, specializing block A with the
presence of a SISO block “tailored” for the QPSK/ISI-channel pair. This SISO
module implements the FB algorithm for the FSM modeling the considered
modulator-channel pair, as described in sections 2.3 and 2.2.2. In Figure 5.21,
the FSM structure is shown. The core structure is implemented as a shift
register whose input are the pairs of bits forming the QPSK symbol. The
length of the shift register is equal to the memory of the ISI channel. At each
epoch, the output symbol is obtained by mapping each pair of bits to QPSK
symbols, weighing each symbol with the tap weight αi corresponding to the
i-th tap in the ISI channel filter and summing each weighed symbol. As usual,
the corresponding SISO module iteratively exchanges soft information with the
VND and the CND associated with the LDPC code. Following the notation
in Section 5.4, IA denotes the EXIT curve relative to block A (obtained by
composing the EXIT curves of the CM-SISO block, denoted as IS , and the
VND, denoted as IV ) and IB denotes the EXIT curve of block B

5.9.2 Theoretical Considerations

In this section, the need for optimized LDPC codes for ISI channels is dis-
cussed. In Figure 5.22, various illustrative EXIT curves IA and IB are shown.
The EXIT curve of block A corresponds to a CM-SISO module associated
with the concatenation of a memoryless QPSK Gray mapper and an ISI chan-
nel. As discussed in Section 5.4, the EXIT curve of block B can be assumed
not to depend on the particular CM-SISO block, but only on the check node
degree distribution of the used LDPC code family.

A possible optimization strategy would consist in modifying these curves,
by manipulating the LDPC code degree distributions, in order to guarantee
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convergence in particular conditions, such as, for example, lowest SNR, min-
imum number of iterations, etc. This is the case, for example, for the degree
distribution optimization technique proposed in Section 5.6.

In Section 5.7, it has been shown that IA depends on the CM-SISO block
EXIT curve IS(·). In fact IA = IA

(
IB, IS(IV (IB))

)
, where IV (·) and IA(·, ·)

depend almost only on the variable node degree distribution. Experience
suggests that each one of these functions is monotonically non-decreasing
(recall that the underlying SISO algorithms compute a posteriori probabil-
ities (APPs) relative to the transmitted bits). Figure 5.12 shows the EXIT
curves for several possible CM-SISO modules: a memoryless QPSK demap-
per for transmission over an AWGN channel and FB algorithms for QPSK
transmitted over the ISI channels characterized by the following impulse re-
sponses: (1, 1), (1, 1, 1), (1, 2, 1), (1, 2, 3, 2, 1) and (1, 1, 0,−1,−1). In all cases,
Gray mapping is considered and the SNR is set to 2 dB. One can observe
that, while the memoryless QPSK Gray demapper is characterized by a flat
EXIT curve, the CM-SISO EXIT curves associated with the ISI channels are
increasing functions of the input MI. In particular, as can be observed in
Figure 5.12, the larger the number of significant taps in the channel impulse

5.9. DISPERSIVE AND PARTIAL RESPONSE CHANNELS
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response, the steeper the CM-SISO EXIT curve IS . The composition of the
CM-SISO EXIT curve for an ISI channel and the VND EXIT curve, i.e., IA, is
then expected to differ from the composition of the CM-SISO EXIT curve for
a memoryless demapper and the VND EXIT curve. Thus, the optimal LDPC
code for an ISI channel should differ significantly from the optimal LDPC
code for memoryless Gray QPSK (which is not different from that of memory-
less BPSK). From a practical viewpoint, as we will readily see, the difference
between (i) the composition of the CM-SISO EXIT curve for a memoryless
demapper and the VND EXIT curve and (ii) the composition of the CM-SISO
EXIT curve and the VND EXIT curve is very small in the case of short length
impulse responses, such as, for example, a (1, 1) ISI channel. At the opposite,
this difference becomes significant for longer impulse responses, such as, for
example, a (1, 2, 3, 2, 1) ISI channel.

5.9.3 An ISI Channel SISO Property

By looking at Figure 5.12, one can observe that all the curves “touch” when
the input MI is equal to 1. This is not surprising, since the fact that the
input MI is equal to 1 corresponds to complete knowledge of all coded bits
but the one for which the APP is being computed. In other words, we are
transmitting, with a linear modulation, a single bit over an ISI channel, which,
in case of single bit transmission, reduces to an AWGN channel. Therefore,
the FB algorithm-based EXIT curves for QPSK (or BPSK) transmitted over
any possible ISI channel converge to the same point IS(1) = IAWGN, where
IAWGN is the capacity of an AWGN channel with BPSK input and with noise
sample variance equal to that of the considered ISI channel.

5.9.4 LDPC Codes Designed for ISI channels

Following the approach presented in Section 5.6, we perform optimization of
degree distributions for three different LDPC coded concatenated schemes:
(i) an LDPC coded QPSK transmitted over a channel with impulse response
(1, 1), (ii) an LDPC coded QPSK transmitted over a channel with impulse re-
sponse (1, 2, 3, 2, 1) and (iii) an LDPC coded QPSK transmitted over a memo-
ryless AWGN channel. The code optimized for an AWGN channel will be used
as a reference code, since LDPC codes currently in use are usually optimized
for a memoryless (e.g., AWGN) channel. We recall that the optimization con-
sists of a semi-random walk in the parametric space of LDPC code degree
distributions, in order to obtain the degree distributions which guarantee the
lowest possible convergence threshold (i.e., the lowest SNR for which conver-
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Figure 5.23: BER performance for four systems operating on two different
ISI channels: (i) (1, 1) ISI channel and (ii) (1, 2, 3, 2, 1) ISI channel. For each
channel both an ad hoc optimized LDPC code and an LDPC code optimized
for AWGN channel are considered.

gence is guaranteed). The degree distributions are characterized by degrees
in the set {2, . . . , 12}, in order to allow the construction of moderate length
LDPC codes with a small number of short cycles, as discussed in Chapter 3.
The optimized codes have rate 0.5. Based on the obtained optimized degree
distributions, we construct LDPC codes with codeword length N = 12000.

In Figure 5.23, the BER performance of the obtained codes is shown. The
LDPC code optimized for AWGN channel is transmitted both over the (1, 1)
and (1, 2, 3, 2, 1) ISI channel. For both channels, the performance of the cor-
responding optimized LDPC code is also shown. Considering the decoder
structure parameters presented in Section 5.3, the maximum number of itera-
tions is Ni = 30 and NLDPC = 30. Whenever a codeword is found earlier, the
decoding process stops. The BER curves exhibit a slight change in convexity,
which suggests the appearance of an error floor. This can be attributed to
the presence of a small number of short cycles in the LDPC code graph. The
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presence of this floor is due to the fact that actual codes are extracted at
random from given degree distributions for finite codeword length—this con-
tradicts the implicit assumption, in the EXIT chart-based analysis, of infinite
codeword length.

Considering the BER performance in Figure 5.23, one can observe that the
LDPC code optimized for the (1, 1) ISI channel leads to a performance very
close (i.e., about 0.1 dB) to that of the LDPC code optimized for the AWGN
channel and Gray QPSK modulation. As argued in Section 5.9.2, this seems
to be due to the fact that the EXIT curves of the CM-SISO block for the (1, 1)
ISI channel and for the QPSK memoryless channels are similar, thus leading
to a very small difference in the EXIT curves of the corresponding block A.
On the other hand, considering the BER curves relative to the (1, 2, 3, 2, 1)
ISI channel, one can readily notice that the performance difference increases
to 1.2 dB. This is the result predicted in Section 5.9.2, where we observed
that the EXIT curve of the CM-SISO block for the (1, 2, 3, 2, 1) ISI channel
exhibits higher slope than that relative to the (1, 1) ISI channel.

It is possible to compare the codes simulated in Figure 5.23 with other
codes proposed in the literature. In particular, in [95, 98] an optimization
algorithm is proposed, based on density evolution: the codes are designed in
order to exhibit a BER lower than a given constant at a specified number of
iterations. Since the underlying analysis model involves infinite dimensional
quantities, this optimization algorithm even in an approximate implementa-
tion, is computationally very demanding. In [99], a simplified version of the
analysis proposed in [95] is given, and used to optimize LDPC code degree
distributions for a 1+D PRC, i.e., a (1, 1) ISI channel: the theoretical thresh-
old of 1.35 dB, obtained in [99] by allowing degree-20 variable nodes, can be
compared with the actual codes in Figure 5.23, which exhibit a BER equal to
10−3 at an SNR equal to approximately 1.4 dB.

5.9.5 Comments

The results presented in this section can be easily extended to any ISI chan-
nel. Nevertheless, by looking at the EXIT curves, relative to the ISI channels
with impulse responses (1, 1, 1) and (1, 2, 1), shown in Figure 5.12, one could
conclude that the steepness of the EXIT curves depends almost only on the
number of significant interferers in the impulse response. In particular, chan-
nels with short impulse responses exhibit “almost constant” EXIT curves.
This finding implies that a standard LDPC code, i.e., an LDPC code designed
for a memoryless channel, is a good choice even if the channel were slowly
time-varying, as long as the impulse response of the channel is short. On the
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other hand, it should be noted that ISI channels with long impulse responses
exhibit a steeper EXIT curve, and this makes the optimization of LDPC codes
worthwhile. These considerations have been verified and confirmed through
actual code design and Monte Carlo simulations.

We wish to highlight further simple implications of the results presented
in this section. The following facts hold:

• the EXIT curves of the optimal SISO block for a QPSK-ISI channel pair
are monotonically increasing;

• they intersect when the input MI (i.e., the a priori input to the SISO
module) is equal to 1;

• a memoryless channel exhibits a “flat” EXIT curve;

• IV (·, ·) is a monotonically increasing function in both its arguments.

The above facts imply that, with the considered receiver structure, the mem-
oryless channel will exhibit better (or equal) performance than any other ISI
channel, regardless of the considered degree distributions. In other words, it
is not possible to find a degree distribution pair such that the corresponding
LDPC code, transmitted over an ISI channel, entails a performance better
than that achieved over an AWGN channel. This will not be the case for DE
modulations in Chapter 7—using LDPC codes optimized for DE-PSK over a
PSK AWGN channel entails a worse performance than the performance of the
same code used over DE-PSK (as expected from and ad hoc code optimiza-
tion).

5.10 Concluding Remarks

In this chapter, we have introduced LDPC coded modulations as a concate-
nation of an LDPC code with a (possibly coded) modulator suited for the
particular communication channel. At the receiver, a SISO block associated
with the modulator and the channel is connected to a standard LDPC code
decoder, allowing for iterative exchange of information between the LDPC
decoder and the SISO for the coded modulation.

The use of EXIT charts for the analysis of the considered receiver schemes
has been discussed. This allows to characterize the decoding convergence be-
havior as a function of the LDPC code degree distributions. A degree distribu-
tion optimization algorithm has been illustrated. This algorithm will be used
in the next chapters to obtain optimized LDPC codes for memoryless channels
and for systems using differential modulation to combat phase uncertainty.
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Focusing on the convergence region in an EXIT chart analysis of LDPC
coded modulations, i.e., the point (1, 1) of the EXIT chart, the convergence
analysis gives useful bounds on the degree distributions, which can be inter-
preted as a practical generalization to LDPC coded modulations of the bound
given in [13] for LDPC codes transmitted over memoryless channels.

We have then used an EXIT chart-based analysis in order to estimate the
system BER. This gives the possibility to design LDPC codes satisfying a
BER criterion. Codes have been accordingly optimized for a BEC considering
a small number of decoding iterations. In particular, insights have been given
into the optimized LDPC code structure, showing that LDPC codes designed
for low target BER after a small number of iterations (between 3 and 8) are
similar to regular LDPC codes. The advantage of the proposed approach,
with respect to other approaches, such as density evolution-based optimiza-
tion [13], is that application to other channels, with or without memory, is
straightforward.

Finally, as a significant case study, we have considered the design of LDPC
coded modulations for transmission over ISI channels or PRCs, illustrating
useful insights and practical design guidelines.

CHAPTER 5. ANALYSIS AND DESIGN



Chapter 6

Memoryless Channels and
LDPC Codes

6.1 Introduction

As stated in Chapter 1, the introduction of low-density parity-check (LDPC)
codes has allowed to achieve near-capacity transmission over some simple chan-
nels, such as, for example, the binary input additive white Gaussian noise (BI-
AWGN) channel, the binary erasure channel (BEC), or the binary symmetric
channel (BSC) [9,12,13,33]. Although the performance of LDPC codes trans-
mitted over binary-input memoryless channels is known and well studied in
the literature, a formal proof of their potential to achieve channel capacity is
still lacking. Moreover, the application of LDPC codes to generic memoryless
channels, and, in particular, for medium to high spectral efficiency signaling
over the AWGN channel, represents a promising evolution of established cod-
ing techniques, such as, for example, trellis coded modulations (TCM), and
have been the subject of attention in the scientific community.

In this chapter, we address the performance of LDPC codes transmitted
through a memoryless channel, as described in the following paragraphs.

In Section 6.2, we consider an extrinsic information transfer (EXIT) chart-
based analysis of the convergence of the belief propagation decoding algorithm
of LDPC codes [69, 76, 77] for binary input memoryless channels. An in-
depth investigation of this analysis technique suggests that the performance
of LDPC codes depends marginally on the characteristics of the particular
memoryless channel, whereas it is dominated by the mutual information (MI)
between the input and the output of the channel. Related work also appears
in [100–102]. In the following, we will refer to this MI as constrained input

129M. Franceschini, G. Ferrari and R. Raheli, LDPC Coded Modulations,
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130 CHAPTER 6. MEMORYLESS CHANNELS AND LDPC CODES

channel capacity Cci, in order to distinguish it from the MI used in EXIT
chart-based analyses, which refers to the MI between the generic message
in the graph and the corresponding codeword bit and is used to track the
convergence of the decoding process. Each investigated communication scheme
is characterized in terms of the parameter Cci. Moreover, a uniform input
binary distribution is assumed, i.e., the a priori distribution of an information
bit X is such that P{X = 1} = P{X = 0} = 1/2. We will also assume
uniform distribution for the LDPC encoded bits, a property that in general
holds for every codeword bit in a binary linear code whose generator matrix
does not contain all-zero lines.

In Section 6.3, we will use the results obtained in the first part of this chap-
ter to derive an efficient design algorithm for multilevel coding (MLC) [103–
105]. The proposed algorithm exploits the partition into memoryless sub-
channels induced by MLC, and selects, from a given library of LDPC codes, a
subset of codes. The selected subset of LDPC codes is tailored for MLC, and
is optimal, in the sense that it maximizes the spectral efficiency guaranteeing
a fixed bit error rate (BER) performance above a given SNR. This technique
can therefore be used as a practical tool to achieve high spectral efficiency
using LDPC codes.

6.2 Performance of LDPC Codes on Binary-Input
Memoryless Channels

The assumptions considered in [9] for the derivation of the Gallager A, B,
and C iterative decoding algorithms for LDPC codes are valid for a binary in-
put memoryless channel. In [69–71], practical approximations of EXIT charts
are proposed and used for LDPC code design. Tight upper and lower bounds
for EXIT charts have been derived in [62–64,106,107]. These bounds allow to
find transmission conditions, in terms of MI between the input and the output
of the channel, for which it is possible to guarantee convergence regardless of
the specific channel. Nevertheless, these bounds do not completely reflect the
actual behavior of the decoding process of LDPC codes, which, as the number
of iterations increases, seems to converge to that of the BEC bound regardless
of the specific channel [93]. This behavior, which has been experimentally
observed, seems related to the fact that in the last iterations the BER is low.

In the following, we show that a performance analysis of LDPC codes based
on EXIT charts suggests that the behavior of an ensemble of LDPC codes (i.e.,
a set of codes with given degree distributions) does not depend appreciably
on the particular memoryless channel, but only on the MI between the input
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and the output of the channel. This would imply that a code from a given
ensemble will exhibit similar convergence threshold and performance on any
memoryless channel—in other words, different memoryless channels exhibit
minor performance differences for a given value of MI. This observation is
supported by simulation results relative to various LDPC codes and several
memoryless channels. The considered channels are both symmetric—binary-
input AWGN channel, BSC and BEC—and asymmetric—binary asymmetric
channel (BAC) and Z channel (ZC). This confirms the early remark in [13],
where it was observed that LDPC codes optimized for the AWGN channel
show good performance for other memoryless channels, such as BSC and BEC.
Similar conclusions where drawn in [100, 101], where the authors show that
the performance of LDPC codes over any Gaussian channel, not necessarily
AWGN, depends only on the MI between the input and the output of the
channel. We remark that the EXIT chart-based analysis of LDPC codes,
interpreted as functions of their degree distributions, underlies the implicit
assumption that the graphs of the corresponding LDPC codes do not contain
short cycles. This condition can be achieved, for example, by choosing a
sufficiently long codeword length.

6.2.1 The Start Point in EXIT Charts

In Chapter 4, we introduced a statistical characterization of the convergence
behaviour of LDPC coded schemes on the basis of EXIT charts. We now ask
ourselves the following question: what is the meaning of the start point of the
decoding trajectory in an EXIT chart? The messages at the output of variable
nodes at the very first iteration correspond to the logarithmic likelihood ratios
(LLRs), based on channel observations, of the transmitted symbols [9]. These
quantities are sufficient statistics for an optimal decision on the transmitted
sequence. This means that the MI between the transmitted binary sequence
and these LLRs is equal to the MI between the transmitted binary sequence
and the channel output. Since the transmitted bits are assumed to be 0
or 1 with probability 1/2, this MI can also be interpreted as constrained-
input channel capacity Cci. Hence, at the first iteration, the MI generated
at the output of the variable node detector (VND) is IV = Cci. As stated
in Section 5.4, this value corresponds to the start point of the EXIT chart
decoding trajectory in Figure 5.4.

Since simple EXIT chart-based analyses assume that the MI at the output
of a block is independent of the particular distribution of the messages, but de-
pends only on the MI at its input, the check node detector (CND) EXIT curve
(i.e., the curve IB in Figure 5.4) does not depend on the particular channel.
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Nevertheless, the VND EXIT curve may depend on the channel. Experience
suggests, however, that the VND EXIT curve (i.e., IV ) depends on the channel
through Cci only, whereas it depends weakly on the particular channel type.
This is taken into account in the practical approximations currently used for
LDPC code design in [69], where the author expresses IV as a function of
the MI between the input and the output of the channel and the MI of the
messages coming from the CND. Since, as previously stated, Cci = IV (0), i.e.,
the start point of the EXIT chart decoding trajectory, from the considerations
above, it follows that the entire function IV (I) can be characterized by this
start point.

Assuming that the EXIT chart-based analysis is accurate, one can conclude
that the convergence of the decoding process for an ensemble of LDPC codes,
described by their degree distributions, depends only on the constrained-input
channel capacity and not on the particular channel. This means that if a ran-
domly chosen code of a given ensemble shows, with high probability, a good
BER performance when transmitted over a memoryless channel with given
Cci, then this code, with high probability, will guarantee good BER perfor-
mance also when used for transmission over any other memoryless channel
with equal Cci. The previous consideration is valid provided that there is no
feedback from the VND to the soft demapper or that the presence of this
feedback would not change the MI between the message set at the output of
the soft demapper and the generic codeword bit. This occurs in binary input
memoryless channels and other significant scenarios which will be addressed
in Chapter 7.

It is important to note that these considerations rely on an approximated
method, and their accuracy is strictly related to the accuracy of the EXIT
chart-based analysis. In the next section, simulation results will be presented
that allow to understand to what extent LDPC codes belonging to the same en-
semble and transmitted over a memoryless channel show similar performance
regardless of the specific channel.

6.2.2 Numerical Evidence

We consider Monte Carlo simulation-based performance analysis of three LDPC
codes transmitted over five different memoryless channels. The considered
codes have rates 1/4, 1/2, and 3/4, and are generated starting from the degree
distributions, optimized for the binary-input AWGN channel, found in [97].
The used degree distributions (for variable and check nodes) are given in Ta-
ble 6.1. The codeword length is set to 10000 binary symbols in all cases.
The decoding process stops if a codeword is obtained or a maximum allowed
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Table 6.1: Variable and check nodes degree distributions for the considered
LDPC codes.

Code
Rate

Variable Node
Degre Distribution

Check Node
Degre Distribution

i λi j ρj

1
4

2 0.4161610 4 1
3 0.2355160
5 0.0759725
6 0.061250
7 0.0013665
9 0.0158465
10 0.1938870

1
2

2 0.272536 7 0.7
3 0.237552 8 0.3
4 0.070380
10 0.419532

3
4

2 0.201224 16 1
3 0.276439 8 0.3
4 0.033386
10 0.488951

number (equal to 100) of iterations is reached. In both cases, a decision on
a binary symbol is made according to the final corresponding LLR value of
the symbol, computed as the sum of all the messages sent to its correspond-
ing variable node at the last iteration. The receiver is assumed to know the
channel statistics. The soft demapper thus computes the exact APP.

Figure 6.1 shows the considered memoryless channels, which comprise
three symmetric channels (binary input AWGN channel, BSC and BEC) and
two asymmetric channels (BAC and ZC). We evaluate the BER performance
of each considered code over each channel as a function of the constrained-
input capacity. For the BAC, the transition probability P{0 → 1} is different
from the transition probability P{1 → 0}. Two parameters are then neces-
sary to describe this channel (and to compute Cci). We choose to specify the
ratio t � P{0 → 1}/P{1 → 0} as a given constant parameter. The ZC can
be interpreted as a particular instance of the BAC with t = 0. It is then
possible to express Cci for every channel as a function of a single parameter,
namely the SNR γ for the AWGN channel, the transition probability for the

6.2. PERFORMANCE OF LDPC CODES
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Figure 6.1: Pictorial representation of the considered memoryless channels:
(a) the BSC, (b) the BEC, (c) the BAC, (d) the ZC and (e) the BI-AWGN.



135

BSC, the erasure probability for the BEC, the average transition probability
(P{1 → 0} + P{0 → 1})/2 for both BAC and ZC (all these probabilities are
denoted by p in the following expressions). Summarizing, the constrained-
input capacities of the considered channels can be obtained using standard
methods and have the following expressions:

CAWGN
ci =

1
2

∫ ∞

−∞

1√
2πγ

e
− (y−2γ)2

8γ log2
2

1 + e−y
dy (6.1)

CBSC
ci = 1 + p log(p) + (1 − p) log(1 − p) (6.2)

CBEC
ci = 1 − p (6.3)

CBAC
ci|t =

1
2(1 + t)

{
2(1 + t) + pt(1 + t) log

[
pt(1 + t)

(1 + t)(1 − p + pt)

]
+ (1 + t)(1 − p) log

[
(1 + t)(1 − p)

(1 + t)(1 − p + pt)

]
(6.4)

+ p(1 + t) log
[

p(1 + t)
(1 + t)(1 + p − pt)

]
+ (1 − pt)(1 + t) log

[
(1 + t)(1 − pt)

(1 + t)(1 + p − pt)

]}
(6.5)

CZC
ci = CBAC

ci|t=0 =
1
2
[2 + p log p − (1 + p) log(1 + p)]. (6.6)

We remark that for symmetric channels, Cci equals the unconstrained capac-
ity [1].

In Figure 6.2, the BER curves of all three codes, transmitted over the
considered five channels, are shown as functions of Cci—note that Cci can as-
sume values between 0 and 1, since the transmitted symbols are binary. For
the BAC, the ratio t = 3 is chosen as representative. From the results in
Figure 6.2, one can conclude that the convergence threshold, in terms of Cci,
basically depends only on the code and, in a very limited way, on the chan-
nel. Interestingly, this conjecture holds for asymmetric channels as well. The
slight differences between the BER curves relative to a specific code cannot be
predicted by the EXIT chart-based analysis. In fact, the BER curves depend
on the actual code structure, which may contain short cycles [13], and on the
statistical distribution of the LLRs at the output of the channel, which are
not taken into account by the EXIT charts. Moreover, by considering Fig-
ure 6.2 one can quantify the actual difference between the performance of a
code transmitted over the considered channels in terms of small fractions of
bits per channel use (within a few hundredths).

6.2. PERFORMANCE OF LDPC CODES
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Figure 6.2: BER versus constrained-input capacity for three LDPC codes,
characterized by rates 1/4, 1/2 and 3/4, respectively. For each code, the
performance for transmission over five memoryless channels is shown. The
codeword length is 10000 and the codes are optimized for transmission on the
AWGN channel.

6.2.3 Implications

In the previous subsections, we have shown that, with good approximation,
LDPC codes which are good for a particular memoryless channel are also
good for any memoryless channel, in the sense that they guarantee similar
BER performance in the same Cci region, regardless of the channel type.

This allows a characterization of the coding gain in terms of bits per chan-
nel use. Since slight differences between different channels have been observed,
one can expect that a given LDPC code will exhibit equal performance, within
a small fraction of bits per channel use, over different memoryless channels.
More rigorous claims regarding our conjecture would involve the derivation
of new bounds on EXIT curves of LDPC codes, which extend the results
in [62–64, 106, 107], taking into account how the distribution of the messages
varies at each iteration. The fact that the performance of an LDPC code has a
small dependence on the particular channel has some interesting implications,
described in the following.
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LDPC Codes Libraries

The independence of the LDPC code performance from the particular memo-
ryless channel implies that good LDPC codes for memoryless channels could
be collected in code libraries and reused for several different applications, thus
separating the tasks of (i) designing LDPC codes and (ii) fitting them to the
considered scenario, which may consist of the concatenation of one or more
LDPC codes with a high spectrally efficient modulator .

Soft Demapper without Feedback from VND

The presented conjecture may also impact the design of LDPC codes to be
used in a bit interleaved coded modulation (BICM) scheme, which maps binary
symbols onto high-order modulation formats [81]. At the receiver side, a soft
demapper could generate reliability values for the mapped bits to be passed
to the LDPC decoder, which would treat them as channel outputs. In this
case, the decoding process would not depend on the particular mapper or
channel but only on the MI at the output of the soft demapper. Assuming
that iterations between demapper and decoder are not performed or are not
useful, LDPC codes designed for a simple memoryless channel (e.g., BSC) will
be a good choice also if mapped into high-order modulations. This is due
to the fact that, in BICM schemes, the presence of the interleaver after the
binary encoder transforms the channel, as seen by the encoder/decoder, into
a memoryless channel.1 However, if iterations are allowed, these claims are no
longer valid, since at every iteration the LDPC VND operates on a different
input from the soft demapper.

LDPC-MLC Design

Another application of the described property is presented in the following
section, where it is shown how to select LDPC codes belonging to a library of
good codes for memoryless channels, in order to design an LDPC coded MLC
scheme.

6.3 Multilevel Code Design

We now use the concepts developed in the previous sections in order to design
MLC schemes [103–105]. In particular, given a set of LDPC codes which
exhibit good performance on memoryless channels and featuring several code

1This holds exactly only if an ideal random interleaver is used.
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Figure 6.3: MLC transmission scheme.
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Figure 6.4: Multi-stage decoding scheme: each decoder passes its decisions
to every following decoder, which uses this information to compute its own
decisions.

rates, i.e., an LDPC code library, we show how to optimally choose the tuple
of codes for a MLC scheme operating on a given constellation.

6.3.1 Multilevel Scheme Overview

In Figure 6.3, a MLC transmission scheme is shown for transmission over a
2n-point constellation. The information bits are split into n different streams
by a serial to parallel (S/P) conversion block. Each information bit stream is
encoded with a properly chosen LDPC code. The S/P conversion block adjusts
the bit rate delivered to each encoder in order to obtain, at the output of each
encoder the same binary symbol rate, regardless of the code rate. Hence, the
label “Non Uniform S/P.” The obtained encoded bit streams feed a mapper
which encodes n code bits into a constellation symbol. This coding technique
was first proposed in [103], along with a proper decoding algorithm, referred
to as multi-stage decoding (MSD). MLC caught growing attention after [105],
where it is shown how to determine the rate of each component code in order
to retain the full information rate allowed by the considered modulation.

In Figure 6.4, an MSD scheme is shown. For each encoder at the trans-
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mitter side, there is a matched decoder at the receiver side. The received
observables are fed to each decoder. The decoding process starts at decoder 1,
which performs a codeword decision based on the observables from the chan-
nels. The decided bits are passed to the remaining decoders. At each stage,
the i-th decoder makes a decision on the corresponding codeword, based on
the observables from the channel and the codeword decisions corresponding
to codes 1, . . . , i − 1.

Following an information-theoretic viewpoint proposed in [105], we denote
the n bits forming a constellation symbol as X1, . . . ,Xn and the corresponding
noisy received observable as Y . The MI between the input and the output of
the channel can be expressed as follows:

I(X1, . . . ,Xn;Y ) =
n∑

i=1

I(Xi;Y |Xi−1, . . . ,X1) (6.7)

where the right hand side is obtained by applying the chain rule of MI [1].
Equation (6.7) hides a very powerful concept. In fact, it is possible to inter-
pret the stochastic relation between the transmitted bit at the i-th stage Xi

and the received observable Y , given exact knowledge of X1, . . . ,Xi−1, as a
particular memoryless channel. In fact, although it is true that there is depen-
dence between the bits corresponding to a specific constellation symbol, the
successive realizations are conditionally independent over time. The overall
2n-ary input channel can then be seen as as a cascade of channels. Assuming
that it is possible to practically achieve “error-free” performance on a memory-
less channel through channel coding techniques, one can design a good code for
the channel (X1;Y ), then a good code for the channel (X2;Y ) given the knowl-
edge of X1, and so on. MLC-MSD is the straightforward decoding solution
for this scheme. In particular, for each (sub)channel it is possible to achieve
error free performance at any rate below the MI of the (sub)channel (uniform
input is assumed). With MLC-MSD, it is therefore possible to achieve error
free performance at any rate below the MI I(X1, . . . ,Xn;Y ) of the overall
channel. We refer the interested reader to [105], where information theoretic
aspects of MLC-MSD are covered in details. Among the possible code de-
sign techniques for MLC-MSD, selection of the code rate based on the MI
of the (sub)channels is referred to as MI rule in [105]. According to this
rule, efficient coding can be achieved by choosing for the i-th (sub)channel,
i = 1, . . . , n, a powerful (and possibly ad hoc) binary code with rate slightly
lower than I(Xi;Y |Xi−1, . . . ,X1).
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6.3.2 Code Selection with the MI Rule

We now show how the results in Section 6.2 affect MLC design based on the MI
rule and LDPC coding. Since, over a memoryless channel, the performance
of a particular LDPC code without short cycles in the code graph depends
almost only on the MI between the input and the output of the channel, as
discussed in Section 6.2, we collect a library of LDPC codes, characterized by
various rates.

For simplicity, we restrict ourselves to an AWGN channel and linear mod-
ulations with given 2n-ary constellations. The goal is to select an ordered
n-uple of LDPC codes in the code library, in order to obtain an overall MLC
whose performance can be considered error-free for SNR values below a given
threshold. The obtained MLC should have the highest possible rate.

We start with the following consideration: given a constellation, if it is
possible to specify a BER threshold P �

b and to guarantee that at each level in
the MLC scheme the error rate is below this threshold, then by specifying a
sufficiently low value of P �

b , it is possible to obtain arbitrary small BER for the
overall MLC scheme. This reasonable assumption has an important impact
on the code design algorithm described in the following. In fact, consider the
property described in Section 6.2, i.e., that the performance of LDPC codes
does not depend on the particular channel but only on the channel MI. Every
code will be characterized by its own BER versus MI curve. If two LDPC codes
have the same rate, for a specified value of P �

b one of them will have a better
or equal performance, measured as input MI needed to achieve a BER equal to
P �

b , than the other. If both codes fulfill the required design constraints, there
is no point in using the code that requires higher MI to achieve the specified
BER equal to P �

b . Thus, for each code rate in the LDPC code library, it is
possible to eliminate all codes but the best one. We can thus assume that in
the code library the codes will have different rates.

In Figure 6.5, an 8-PSK constellation with natural bit mapping is shown.
In Figure 6.6, the MIs of the three sub-channels, as well as with the overall MI,
are shown for an 8-PSK constellation transmitted through an AWGN channel.
The MI is shown as a function of the SNR Es/N0, where Es is the average
8-PSK symbol energy and N0 is the one-sided noise power spectral density.
The three curves are monotonically non-decreasing. The horizontal dotted
line represents the MI needed for a particular code to achieve a BER equal
to P �

b . One can observe that the first subchannel intersects the horizontal
line in the rightmost point, the third in in the leftmost and the second in the
middle. The meaning of each intersection is that beyond the corresponding
SNR, the considered code will guarantee a BER lower than P �

b if used for
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Figure 6.5: Pictorial representation of an 8-PSK constellation with natural
mapping.

channel coding on the corresponding sub-channel. If the actual SNR is below
that corresponding to the intersection, then the system is in outage.

The previous considerations allow one to derive the following MLC design
algorithm based on the selection of the proper LDPC codes. The procedure is
graphical and the basic graph, shown in Figure 6.7 for a specific scenario (rela-
tive to Example 6.1 considered in the following), can be constructed according
to the following steps.

• On a graph, plot the MIs of the subchannels versus the SNR. The ag-
gregate MI should be plotted as well.

• For each code in the LDPC code library, plot a horizontal line intersect-
ing the MI axis at a MI equal to the value needed by the LDPC code to
obtain a BER equal P �

b .

• Find the intersection of each code line with each sub-channel MI curve
and draw the projection of each intersection on the SNR axis.

In order to find the best code, i.e. the highest-rate code with SNR outage
threshold below a given SNR∗, it is sufficient, for each sub-channel, to find the
intersection of the corresponding MI curve with the code line which has the
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Figure 6.6: MIs I(X1;Y ), I(X2;Y |X1) and I(X3;Y |X1,X2) of the sub-
channels and MI I(X1,X2,X3;Y ) of the overall channel for an 8-PSK con-
stellation with natural mapping.

highest SNR below SNR∗.

Example 6.1 In Figure 6.7, the proposed graphical algorithm is illustrated
for an 8-PSK constellation with natural mapping. Three horizontal lines are
plotted, assuming a library which contains only three codes with rates 0.25,
0.57, and 0.88, respectively, for ease of exposition. However, we remark that
the approach is general and the use of larger libraries can lead to better results.
The intersections are shown on the SNR axis. The intersections corresponding
to the first subchannel are marked with triangles, those corresponding to the
second subchannel with squares, and those corresponding to the third sub-
channel are marked with circles. For a given SNR∗ value, it is sufficent to
find the rightmost triangle, the rightmost square and the rightmost circle to
the left of this SNR∗ value. Each symbol, either triangle, circle or square,
identifies exactly a subchannel and a code in the code library.

Three LDPC codes were selected using the graph in Figure 6.7 and con-
sidering SNR∗ equal to 10.5 dB, as reported in the figure. The resulting codes
can be characterized as follows:



6.3. MULTILEVEL CODE DESIGN 143

-10 -5 0 5 10 15
0

0.5

1

1.5

2

2.5

3

I(X1, X2, X3; Y )
I(X3; Y |X1, X2)

I(X2; Y |X1)
I(X1; Y )

SNR [dB]

M
I

[b
it

s]

rate 0.88 code
rate 0.57 code

rate 0.25 code
SNR� = 10.5 dB

Figure 6.7: Graphical scheme used for MLC code selection.

channel 1 (X1;Y ): rate 0.57 code
channel 2 (X2;Y |X1): rate 0.88 code

channel 3 (X3;Y |X1,X2): rate 0.88 code.

Had we chosen SNR∗ equal to 9 dB, the selected codes would have been as
follows:

channel 1 (X1;Y ): rate 0.25 code
channel 2 (X2;Y |X1): rate 0.88 code

channel 3 (X3;Y |X1,X2): rate 0.88 code.

In Figure 6.8, the BER performance of the system designed considering SNR∗

equal to 10.5 dB is shown. The component codes, with codeword length 10000
and rates 0.57, 0.88, and 0.88, correspond to three regular LDPC codes: (3, 7),
(3, 25), and (3, 25), respectively. The overall code rate is 0.57 + 0.88 + 0.88 

2.33 bits per channel use. The predicted convergence threshold, i.e., the SNR
of the rightmost intersection point within the selected codes, is 10.11 dB,
corresponding to a bit SNR Eb/N0 = 6.43. The BER performance of each
sub-channel is shown as well. One can observe that there is a good match
between the design outage threshold and the actual outage threshold.

We remark that, in order to achieve good performance, the first decoding
stages should not introduce errors, since this would affect the next decoding
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Figure 6.8: BER performance of an 8-PSK MLC-MSD system designed for
convergence at SNR equal to 10.11 dB (Eb/N0 = 6.43 dB).

stages, possibly causing avalanche error propagation. The presented numeri-
cal results were obtained with regular and quasi-regular LDPC codes.2 This
choice is due to the fact that the construction of codes without short cycles
is easier for regular LDPC codes, especially in the case of low-degree variable
and check nodes. The absence of short cycles is useful in order to lower (or
make disappear) the error floor characterizing most powerful codes.

6.4 Concluding Remarks

In this chapter, the performance of LDPC codes over memoryless channels has
been discussed. The fact that, with a good approximation, the performance
of an LDPC code transmitted over a binary-input memoryless channel does
not depend on the particular channel but only on the MI between the input
and the output of the channel, has been highlighted. This property has several
implications, among which that of enabling efficient design of multilevel codes.

2We denote as quasi-regular LDPC a code with only two, possibly contiguous, allowed
variable or check node degrees
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In particular, an algorithm for multilevel code design based on the selection of
a group of good LDPC codes from an LDPC code library has been described,
and some design examples have been given.



Chapter 7

LDPC Codes and Differential
Modulations

7.1 Introduction

This chapter investigates the use of differentially encoded (DE) modulations
concatenated with low-density parity-check (LDPC) codes. The chapter is
logically divided in two parts.

In the first part of this chapter (from Section 7.2 till Section 7.5), we dis-
cuss the approach to the design of DE-LDPC coded scheme originally proposed
in [79]. Adopting the optimization technique described in Section 5.6, we show
a method to design good LDPC codes for DE modulations. We analyze the
optimized codes, gaining insights into their graph structures and highlighting
the differences between LDPC codes for DE modulations and standard LDPC
codes, i.e., optimized for transmission over a memoryless channel. We con-
sider the concatenation of an LDPC code with a differential modulator for
both phase shift keying (PSK) and quadrature amplitude modulation (QAM).
At the receiver side, we make an extrinsic information transfer (EXIT) chart-
based system performance evaluation, as described in Section 5.4. We compare
the performance of codes optimized for DE modulations with the performance
of standard LDPC codes. We show that LDPC codes optimized for DE mod-
ulations significantly outperform standard LDPC codes when concatenated
with DE modulations. Vice versa, the obtained optimized codes are shown
to be tailored specifically for the particular DE modulation format and the
considered receiver scheme: in other words, while they perform well if used
jointly with DE, they perform poorly with memoryless modulation schemes.
This will be shown to depend on the presence of a large fraction of degree-2
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In the second part of this chapter (Section 7.6 and Section 7.7), we dis-
cuss an iterative detection/decoding scheme based on the concatenation of an
outer soft-output differential detector and an inner LDPC decoder. The outer
detector makes use of a detection strategy, referred to as detection by multiple
trellises and originally introduced in [108], to perform trellis-based detection
over realistic channels. More precisely, we consider channels with unknown pa-
rameters and apply the concept of detection by multiple trellises using parallel
forward-backward (FB) algorithms (see Chapter 2 for more details). The key
idea of our approach consists, first, in properly quantizing the channel param-
eters and, then, in considering replicated coherent FB algorithms operating on
parallel trellises, one per hypothetical quantized value.

7.2
and DE-PSK

Consider the transmission side of an LDPC coded modulation scheme de-
scribed in Chapter 5 and shown in Figure 7.1. As a representative coded
modulation (CM) for the transmission system in Figure 7.1, we first consider
DE-PSK. For coherent detection, the corresponding CM-SISO module imple-
ments, with very low complexity, the FB algorithm. The performance of the
considered systems, first studied through an EXIT chart-based analysis, is
evaluated in terms of bit error rate (BER) versus bit SNR Eb/N0, where Eb

is the average received energy per bit and N0 is the one-sided AWGN power
spectral density. In all the considered simulations and optimizations, Gray
mapping over the PSK constellation is used.

In Figure 7.2 (a), EXIT charts are shown for a regular rate-1/2 (3, 6) LDPC
code, characterized by the degree distributions λ(x) = x2 and ρ(x) = x5. This
code without DE, mapped to a quaternary PSK (QPSK) modulation format,
is characterized by a good tradeoff, between complexity and performance,
for transmission over an AWGN channel. The EXIT curves are computed

LDPC
Encoder

Coded

Modulator
ChannelSource

{ck}{xi} {yj}

Figure 7.1: System model: transmitter side.
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Figure 7.2: EXIT chart-based analysis of a system with serial concatenation
of an LDPC code and QPSK: (a) EXIT chart of a (3, 6) regular LDPC code
concatenated with a QPSK with DE (Eb/N0 = 2.5dB: tunnel is near pinch-
off ) and QPSK without DE (tunnel is open); (b) EXIT chart of an optimized
rate 1/2 LDPC code concatenated with a QPSK with DE (Eb/N0 = 0.8dB:
tunnel is at pinch-off ) and QPSK without DE (tunnel is closed).

at Eb/N0 = 2.5 dB: the solid curve is the EXIT curve of block A (LDPC
variable node detector, VND, and differential detector, DD) and the dotted
curve is the EXIT curve of block B (LDPC check node detector, CND)—for
more details on the VND and CND, see Section 5.3. Note that the SNR does
not influence the EXIT curve relative to the LDPC CND (the dotted one in
Figure 7.2). It is easy to see that the system is at pinch-off: convergence at
this and lower values of Eb/N0 is not possible. The dashed curve represents
the EXIT curve of the single LDPC VND: this corresponds to the QPSK
system without DE, i.e., LDPC BICM. It can be immediately seen that at
Eb/N0 = 2.5 dB the tunnel, relative to a transmission scheme without DE,
is open. The EXIT chart-based analysis then predicts that, for a bit SNR
slightly lower than 2.5 dB, the system with DE does not converge as opposed
to the system without DE, which instead converges.

We now apply the optimization technique presented in Section 5.6, forcing
the optimization algorithm to use check and variable nodes with specified
degree values. As representative values, check nodes of degree 3, 4, 8, and 15,
and variable nodes of degree 2, 3 and 4 have been used (these are reasonable
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choices, but the approach is general). After a few steps, the optimized degree
distributions converge to the following:

ρ3 = 0.3157 ρ4 = 0.2259 ρ8 = 0.0273 ρ15 = 0.4311
λ2 = 0.5473 λ3 = 0.0116 λ4 = 0.4411.

Figure 7.2 (b) shows the EXIT curves for this optimized code ensemble for
Eb/N0 = 0.8 dB: the solid and dashed curves correspond to block A and the
dotted curve to block B. It is immediate to recognize that the tunnel is at
pinch-off. The dashed curve in Figure 7.2 (b) is the EXIT curve of the LDPC
VND only (i.e., without DD): the tunnel is “heavily” closed, predicting that
the system with DE should perform significantly better than the single LDPC
code without DE. Note that the convergence SNR threshold predicted by the
results in Figure 7.2 (b) is around 0.9 dB.

In order to closely approximate the degree distributions obtained with the
optimization technique, we chose to design LDPC codes with codeword length
equal to 6000 binary symbols. In Figure 7.3, the performance of both op-
timized and regular (3, 6) LDPC codes with and without DE is shown. As
introduced in Section 5.3, we denote the maximum number of iterations be-
tween blocks A and B as Ni, and to the maximum number of standard LDPC
final decoding iterations (between VND and CND) as NLDPC. For DE sys-
tems, these maximum numbers of iterations are Ni = 30 and NLDPC = 30,
whereas for non DE systems a maximum number of 100 standard LDPC it-
erations is allowed—this makes the complexities of the two different systems
very similar. It can be observed that, for a regular (3, 6) LDPC code, while
good performance is obtained without DE (curve marked with diamonds), the
introduction of DE shifts the BER curve to the right, with an SNR loss of
about 1.2 dB (curve marked with squares). When the LDPC code is opti-
mized for DE, i.e., block A includes a CM-SISO module based on the FB
algorithm relative to the DE modulator, it is possible to see the inversion of
performance between the system with and without DE, as predicted by the
EXIT chart-based analysis. In other words, the use of the LDPC code opti-
mized for DE, in the system with DE (curve marked with triangles) leads to
good performance, i.e., it behaves as the regular (3, 6) LDPC code without
DE (curve with diamonds). On the other hand, the use of the LDPC code
optimized for DE, in the system without DE, i.e., LDPC BICM (curve with
crosses) causes unsatisfactory performance, with an SNR loss of more than 2
dB at a BER equal to 10−3, and low curve slope.

It is also possible to use the CM-SISO module, i.e., the DD, only once and
then pass the obtained reliability values to a standard LDPC decoder: the

CHAPTER 7. LDPC CODES AND DIFFERENTIAL MODULATIONS
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Figure 7.3: BER performance of the four communication schemes considered
in Figure 7.2 (a) and (b).

corresponding performance, obtained considering a maximum number of 100
LDPC iterations and using the previous regular (3, 6) LDPC code, is given
by the curve marked with stars. It is easy to recognize that the absence of
iterations between the CM-SISO block and the LDPC VND leads to a loss
of about 1.2 dB with respect to the system with iterative detection/decoding.
This can be interpreted noting that the standard LDPC decoder is based on
the assumption that a memoryless channel is used, as discussed in Chapters 3–
5. When a DE (and the corresponding CM-SISO module) is present, however,
the messages passed to the LDPC decoder are significantly correlated. This
implies that a large amount of information is embedded in the interdepen-
dence of the messages due to the presence of the DE and CM-SISO. The
LDPC decoder does not exploit this correlation, thus causing a non-negligible
performance degradation. Note that the performance degradation is not due
to an ill-conditioned interaction between the correlation structure of the mes-
sages and that of the LDPC codewords because the adopted LDPC code is
randomly generated, i.e., unstructured.

7.2. SERIAL CONCATENATION OF LDPC CODES
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7.3 Optimized LDPC Codes for PSK

In order to understand the features and limits of the described technique,
several optimizations have been carried out, for both a system using DE-PSK
and a system using PSK without DE. The set of allowed variable node degrees
is {2, 3, . . . , 12}, in order to limit the maximum degree and to enable the
construction of codes without short cycles. The set of check node degrees is
{3, 4, 5, 6, 7, 8, 9, 10, 11, 12} for rate-1/2 codes and {3, 6, 8, 9, 12, 16, 20, 24} for
rate-3/4 codes.

LDPC codes with codeword length equal to 12000 have been designed to
match the obtained optimized code ensembles. Each LDPC code has been
concatenated with both a PSK modulator and a DE-PSK modulator. In both
cases, Monte Carlo simulations have been performed. For the DE scheme, the
maximum number of decoding iterations is Ni = 30 and NLDPC = 30, whereas
for the scheme without DE, a maximum number of 100 standard LDPC itera-
tions is allowed. The decoding process stops if a valid codeword is found earlier.
In Figure 7.4, the BER curves relative to three LDPC codes optimized for the
presence of a DE-PSK modulator are shown: the solid curves are relative to
an LDPC code with rate R = 1/2 designed for DE-QPSK, the dashed curves
are relative to an LDPC code with rate R = 1/2 designed for DE-8PSK, and
the dotted curves are relative to an LDPC code with rate R = 3/4 designed
for DE-8PSK. For each LDPC code, the BER curve which exhibits a “cliff”
(i.e., the steepest point) at low SNR corresponds to the system for which the
LDPC code has been optimized, i.e., the system with DE-PSK (curves marked
“with ‘DE”); the other curve represents, instead, the performance of the same
LDPC code employed in a BICM scheme using PSK modulation with Gray
mapping (curves marked “without DE”). For each case, the SNR value corre-
sponding to the capacity limit for the considered coded modulation is shown
as a vertical line. The capacity limit for QPSK with code rate 1/2, i.e., with
a spectral efficiency of 1 bit per channel use, is 0.17 dB; the capacity limit
for 8PSK with code rate 1/2, i.e., with a spectral efficiency equal to 1.5 bit
per channel use, is 1.27 dB; the capacity limit for 8PSK with code rate 3/4,
i.e., with spectral efficiency equal to 2.25 bit per channel use, is 3.66 dB. All
the DE-PSK systems in Figure 7.4 are operating with about 1 ÷ 1.5 dB SNR
gap to capacity. In other words, the optimized codes guarantee near-capacity
performance, even without an exact phase reference.

In Figure 7.5, the performance of LDPC codes optimized for a memoryless
PSK modulator is analyzed, both in the presence and absence of DE. For
each code, the curve which exhibits a cliff at low SNR corresponds to a system
which uses a memoryless PSK modulator (curves marked “without DE”), while

CHAPTER 7. LDPC CODES AND DIFFERENTIAL MODULATIONS



7.3. OPTIMIZED LDPC CODES FOR PSK 153

With DE

Without DE

8PSK R=0.5
QPSK R=0.5

8PSK R=0.75

0 1 2 3 4 5 6 7

B
E

R

10−5

1

10−4

10−1

10−2

10−3

Eb/N0 [dB]

Figure 7.4: Simulated BER for 3 LDPC codes optimized for DE-PSK. Each
code is analyzed both with and without DE. In each case, the SNR corre-
sponding to the capacity bound is shown as a vertical line.

the other curve represents the performance of the same code concatenated
with a DE-PSK modulator (curves marked “with DE”). The system without
DE shows a performance advantage, in terms of SNR corresponding to the
cliff of the BER curve, of about 1.5 dB with respect to a system with DE.
However, it is important to note that LDPC codes optimized for and used
with a memoryless PSK modulator exhibit higher “error floor” with respect
to that obtained when the same LDPC codes are used with DE-PSK. The
presence of the BER floor in the memoryless PSK modulator is due to the
nature of the used code, which contains a small amount of short cycles. On
the other hand, the absence of the floor in the DE-PSK case can be associated
with the fact that the DE-PSK modulator can be interpreted as a rate-1
recursive encoder. As shown in [68], the presence of a rate-1 recursive encoder
can reduce short error patterns, responsible for the BER curve flattening, by
exploiting the so-called interleaving gain.

In Figure 7.6, the coefficients {ρj} and {λi} of several optimized LDPC
codes are shown. Different code ensembles with equal constraints are obtained
considering different initial seeds of the pseudo-random number generator em-
bedded in the random walk-based optimization algorithm. The code ensembles
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Figure 7.5: Simulated BER for 3 LDPC codes optimized for a memoryless
channel. Each code is concatenated with MPSK both with and without DE.
In each case, the SNR corresponding to the capacity bound is shown as a
vertical line.

in Figure 7.6 (a) and (b) are optimized for DE-QPSK with rate 1/2. The algo-
rithm operates over a limited parametric space, i.e., only a small set of possible
node degrees are allowed: the set of variable node degrees is {2, 3, . . . , 12} and
the set of check node degrees is {3, 4, . . . , 12}. These sets of values makes it
possible to design codes without short cycles and reasonable codeword length.
The variable node degree distributions {λi} in Figure 7.6 (c) correspond to
realizations of rate-1/2 LDPC codes optimized for transmission with BICM
PSK. The check node degree distributions appear to give little information,
due to the optimization algorithm “residual noise.” This is not surprising
since, as stated in [13], the performance of LDPC codes exhibit little depen-
dence on the check node degree distribution. Focusing our attention on the
coefficients {λi}, it is possible to observe that degree-2 variable nodes show a
characteristic behavior: in the LDPC code ensembles optimized for DE-QPSK,
λ2 > 0.5 and λ2 >> λi, i > 2. Very similar results, in terms of variable node
degree distributions with a predominance of λ2, were obtained also for LDPC
codes optimized for rate-1/2 DE-8PSK and rate-3/4 DE-8PSK. In the LDPC
code ensembles optimized for a PSK modulator, λ2 is still higher than the
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Figure 7.6: Bar diagrams of degree distribution coefficients of three realizations
of optimized LDPC code ensembles. In (a) and (b), variable and check node
degree distributions for three LDPC codes optimized for rate-1/2 DE-QPSK
are shown, respectively. In (c), the variable node degree distributions of three
LDPC codes optimized for rate-1/2 QPSK are shown.
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other coefficients, but not as high as for DE schemes (see Figure 7.6 (c)).
In [13], a stability condition on λ2 (inequality (5.30) in Chapter 5) for a

standard LDPC decoding algorithm is provided. According to this condition,
in order for the BER to approach zero, a necessary condition is λ2 < ε, where
ε is a parameter which depends on the channel and ρ(x). As a reference value,
in [13] the authors consider ε 
 0.4 for a rate-1/2 standard LDPC code. The
above discussed results show that this condition is violated if a CM is inserted
between the LDPC code and the channel, allowing, in the case of DE-PSK,
higher values of λ2. Note that an LDPC code with a high value of λ2 is a code
whose majority of variable nodes have degree 2, and this corresponds to code
graphs with a smaller number of edges (for a given code rate and codeword
length). In fact, if � is the total number of edges in the graph and N is the
length of the LDPC codeword, it holds

N = �
∑

i

λi

i
.

Considering two codes with equal codeword length, variable node degree dis-
tributions {λi} and {λ′

i} and number of edges � and �′, respectively, the ratio
between the number of edges in the code graph can be written as

�′

�
=

∑
i

λi
i∑

i
λ′

i
i

. (7.1)

If we substitute in (7.1) the degree distributions obtained optimizing for AWGN
and for DE, respectively, we obtain a reduction of the edges in the graph of
about 20%. Since the computational cost of the decoding algorithm for an
LDPC code is proportional to the number of edges in the graph, it follows
that LDPC codes optimized for DE-PSK have the pleasant side effect of al-
lowing decoding with lower complexity.

It is generally believed that degree-2 variable nodes exhibit weaker error
protection than higher-order variable nodes [13, 34]. However, considering
Figure 7.6 (a), one notices that the presence of a large percentage of degree-2
variable nodes is associated with an increase of the fractions of high-degree
variable nodes. A possible intuitive interpretation of this behavior is as follows.
While a standard LDPC decoder exploits all the available information from
the very first iteration, in the considered iterative detector/decoder for LDPC
coded modulations the information made available at the “channel input” of
the LDPC VND by the CM-SISO block increases with the iterations. This is
possible since, at every iteration, the VND passes information to the a priori
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Figure 7.7: Pictorial representation of a DE-16QAM modulation format.

input of the CM-SISO block (see Figure 5.3). Therefore, the critical part of the
decoding algorithm corresponds to the first iterations, when the information
from CM-SISO block is limited. High-degree variable nodes seem to help the
convergence of the iterative algorithm in the first iterations.

7.4 LDPC Codes for DE-QAM

In this subsection, the transmission of LDPC codes concatenated with 16QAM
and DE-16QAM is considered. In Figure 7.7, a pictorial representation of a
DE-16QAM modulation format is shown. One can observe that two of the
four bits at its input are encoded by a Gray mapped DE-QPSK modulator:
the obtained point is used to rotate, by an angle equal to a multiple of π/2, a
first-quadrant 16QAM constellation point selected by the other two bits (one
bit per dimension).

In Figure 7.8, the BER performance for two communication systems with
16QAM, with and without DE, is shown. Both systems use the same rate-7/8
LDPC code with codeword length 65536. For reference purposes, a vertical
dash-dotted line is also shown in correspondence to the capacity SNR, equal
to approximately 6.16 dB. The LDPC code is chosen from an ensemble of
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Figure 7.8: BER of a rate-7/8 LDPC code optimized for DE-16QAM and
concatenated with DE-16QAM (solid line) and with a 16QAM memoryless
modulator (dashed line). The vertical (dash-dotted) line indicates the SNR
corresponding to the capacity limit for 16-QAM at the considered code rate.

codes optimized for the presence of DE-16QAM modulator. For DE-QAM,
the maximum numbers of iterations are Ni = 30 and NLDPC = 30, whereas
for QAM without DE a maximum number of 100 standard LDPC iterations
is allowed. The solid curve corresponds to a system with a DE-16QAM and
the dashed curve corresponds to the system with a Gray mapped 16QAM.

The results in Figure 7.8 show that the code designed for DE-16QAM
performs better if used without DE. A possible interpretation of this result is
that the iteration gain of the DE-QAM SISO module, i.e., the gain enabled
by allowing the VND to pass messages to the CM-SISO, is very low. In other
words, from an EXIT chart point of view, the considered DE-QAM modulator
is similar to a memoryless, Gray-mapped QAM modulator, and this implies
that good codes for DE-QAM may also be good codes for QAM. However, the
memory introduced by the DE and the corresponding CM-SISO block leads to
strong sub-optimality of the processing at the LDPC VND and CND, which
assume an underlying memoryless channel. Another immediately noticeable
fact is that the BER curve relative to the system without DE is characterized
by an error floor, whereas the curve relative to the system with DE does not
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show any floor in the considered BER range. The floor in the QAM case can
be attributed to the presence of a small amount of short cycles in the code
graph, which is typical of random LDPC codes. Moreover, the differential
encoder can be reinterpreted as a rate-1 recursive encoder (at least for the
bits which select the quadrant) which, as observed for DE-PSK, is likely to
reduce short error patterns.

7.5 LDPC Codes for DE-PSK with Noncoherent
Detection

Since the design method described in Section 5.6 can take into account the
particular channel, as well as the modulation format and the detection algo-
rithm used in the CM-SISO block, the optimization has been carried out also
for LDPC codes concatenated with DE-PSK with noncoherent detection. In
the presence of phase uncertainty, the received observation can be modeled as

rk = cke
jθ + nk (7.2)

where θ is a random variable constant over the transmitted block and uni-
formly distributed over [0, 2π). While coherent detection can be based on
the standard FB algorithm in the CM-SISO module, noncoherent maximum a
posteriori (MAP) symbol detection requires some approximations. Following
the approach in [109, 110], one can derive a detection algorithm based on a
quantization of the phase rotation introduced by the channel. First, the a
posteriori probability (APP) are computed by the FB algorithm conditionally
on one hypothetical channel phase value; then, the conditional APPs are av-
eraged over all possible phase values. The a posteriori symbol probability can
be written as

P{ak|r} ∝ P{ak}p(r|ak)

= P{ak}
∫

θ
p(r|ak, θ)pθ(θ)dθ

(7.3)

where r is the vector of all received observations and ∝ means that the left
member is equal to the right member times a constant independent of ak. In
(7.3), p(r|ak, θ) can be interpreted as the extrinsic information generated by
a coherent FB algorithm, which assumes a phase rotation θ. The integral in
(7.3) can be approximated as a sum over a properly chosen discrete set P of
quantized phase values, obtaining:

P{ak|r} ∼∝ P{ak}
∑
θ∈P

p(r|ak, θ)P (θ) (7.4)
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where
∼∝ denotes an approximation in the relationship described by symbol ∝.

Since DE-PSK is insensitive to rotations of the received signal by multiples
of 2π/M , where M is the cardinality of the PSK symbols, the set of phases
can be a subset of [0, 2π/M) [109]. We then choose two possible sets: the
first includes 8 equally spaced points (in [110], this is shown to lead to neg-
ligible performance degradation), i.e., P = {0, 1

8
2π
M , . . . , 7

8
2π
M }, and the second

includes 4 equally spaced points, i.e., P = {0, 1
4

2π
M , 2

4
2π
M , 3

4
2π
M }. The optimiza-

tion algorithm is then run over the same set of node degrees as in the previous
subsection. The difference between the degree distributions of LDPC code
ensembles optimized for DE-PSK and noncoherent detection and those rela-
tive to coherent detection is not noticeable. This is true even if the number
of quantization levels used for the computation of (7.4) is reduced to two.
An intuitive explanation of this fact is that DE is a technique which makes
the communication system insensitive to phase uncertainties, so that the in-
troduction of a further, possibly continuous, phase uncertainty cannot induce
a severe system change. Moreover, theoretical results show that, asymptoti-
cally, the performance of a noncoherent system approaches that of a coherent
system [26,111–113].

In Figure 7.9, the performance of optimized LDPC codes for DE-PSK with
coherent and noncoherent detection is compared. The considered LDPC codes
are optimized for DE-QPSK (with rate 1/2) and DE-8PSK (with rates equal
to 1/2 and 3/4, respectively); the length of the codeword is 12000 and the
maximum allowed numbers of inner and outer iterations are Ni = 30 and
NLDPC = 30, respectively. The considered numbers of discrete phase values
are 8 (curves marked by a triangle) and 4 (curves marked by a square). The
curves relative to coherent detection are marked by a circle. It is clear that
the phase uncertainty introduces a limited performance loss, as long as the
phase quantization is sufficiently fine. Moreover, the results in Figure 7.9 show
that, while an 8-level phase quantization introduces negligible performance
loss, a 4-level quantization introduces a performance loss of about 0.4 dB.
Further analysis on the described noncoherent detection algorithm shows that
the number of quantization levels can be reduced to a minimum number of 2,
causing a performance loss of about 1.7 dB with respect to coherent detection.

7.6 Detection by Multiple Trellises

In the previous sections, LDPC codes were designed for AWGN and nonco-
herent channel, i.e., an AWGN channel with a constant and unknown phase
uncertainty. Practical channels are often influenced by a number of parame-
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Figure 7.9: BER of LDPC codes optimized for DE-QPSK (rate 1/2) and DE-
8PSK (rates 1/2 and 3/4) optimized both for AWGN channel and noncoherent
channel.

ters, which in general may vary with time. The problem of designing an effec-
tive CM-SISO algorithm in the presence of time-varying parameters is often
nontrivial and pursueing optimal solutions might entail a significant compu-
tational burden. In this section, a family of CM-SISO algorithms accounting
for time varying parameters in the channel/system model are described, with
particular emphasis on the phase uncertain channel and the fading channel.

In order to set the problem under study and present the mathematical
notation, we begin by reviewing a modified version of the FB algorithm suit-
able for generic finite-memory channels affected by time-invariant stochastic
parameters (see also Chapter 2 for more details on the design of FB algo-
rithms for channels with memory). Afterwards, we will describe the extension
to time-varying parameters and analyze two different multi-trellis SISO algo-
rithms.

7.6.1 Time-Invariant Parameters

Let us assume that the channel output is observed for a period of K + 1
symbol intervals. The channel can be completely described by the following
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joint probability density function (pdf)

p(rK
0 , ξ|aK

0 ) (7.5)

where rK
0 (or, simply, r) is the vector of the observables (r0, . . . , rK), ξ ∈ Dξ

is a stochastic constant channel parameter independent of the transmitted
data, Dξ is the domain of the channel parameter, and aK

0 is the vector of
information symbols ak transmitted through this channel. Note that (7.5) can
take into account possible coding of the information symbol sequence {ak}
into a code sequence {ck}. We remark that the parameter ξ could be either a
scalar parameter or a vector parameter, i.e., ξ could represent a whole set of
parameters.

The APP of an information symbol ak can be expressed as follows:

P{ak|rK
0 } ∝ p(rK

0 |ak)P{ak}

= P{ak}
∫

Dξ

p(rK
0 |ak, ξ).p(ξ) dξ (7.6)

If, conditionally on the parameter realization ξ, the channel has finite mem-
ory [26], the conditional pdf p(r|ak, ξ) can be computed via a standard FB
algorithm [17, 65]. This is possible whenever the transmission system can be
modeled as a finite state machine (FSM) whose input and output are, respec-
tively, the information symbol ak and a random variable (RV) whose statistics
depend only on the FSM state and the input symbol (see Chapter 2).

A simple approximation for the computation of the integral in (7.6) is
obtained by performing the following finite sum:

P{ak|r} ∼∝ P{ak}
L∑

i=1

p
(
r|ak, ξ

(i)
)

p(ξ(i)) (7.7)

where {ξ(1), . . . , ξ(L)} is a set of hypothetical quantized values for the channel
parameter whose actual values and number L are chosen to obtain the desired
accuracy in the numerical integration in (7.6). This corresponds to running
L standard FB algorithms in parallel, each one associated with a value ξ(i),
i = 1, . . . , L, and computing a weighted average of their outputs to obtain a
quantity approximately proportional to the APP.1

In the following, we denote the forward state metrics computed during
the forward recursion of an FB algorithm as {α(i)(sk)}, where the superscript

1A detailed explanation of the FB algorithm can be found in Chapter 2; further references
include [17,25,65].
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i refers to the FB algorithm associated with the quantized parameter value
ξ(i) and sk denotes the state of the FSM in the corresponding trellis diagram.
In particular, we assume that sk ∈ {0, . . . ,Ξ − 1}, where Ξ is the number
of states characterizing each trellis. Similarly, we denote the backward state
metrics associated with the i-th trellis diagram as {β(i)(sk)}.

Several practical scenarios can be cast within the model described by (7.5),
(7.6) and (7.7). In particular, as useful examples, we will consider phase-
uncertain and flat fading channels.

Phase-Uncertain Channel

In a communication scenario where the channel introduces a time-invariant
phase rotation, the stochastic channel parameter ξ can be equivalently mod-
eled as a phase rotation θ of the transmitted symbol sequence. The discrete-
time equivalent observation can be expressed as

rk = cke
jθ + nk (7.8)

where rk is the received observable, ck is the (possibly encoded) transmitted
symbol, and nk is a (noise) sample of a sequence of independent and identically
distributed (i.i.d.) zero mean Gaussian RVs.

Flat Fading Channel

The generic observation model given by (7.5) applies directly to a flat fading
channel, provided that ξ has the proper statistical distribution. In particular,
in a scenario with unresolvable multipath, ξ corresponds to a fading coefficient
f and the channel input-output relation can be expressed as follows:

rk = f ck + nk (7.9)

where, in the case of Rayleigh fading, f has a complex circularly-symmetric
Gaussian distribution with zero mean.

7.6.2 Time-Varying Parameters

The idea of detection by multiple trellises stems from an extension of the
previous static-parameter approach to a scenario with time-varying channel
parameters.

In order to obtain insights on the impact of the presence of a time-varying
parameter, let us consider a useful case study where the channel parameter
process {ξk} is discrete and block constant. Let us assume that ξk is uniformly
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distributed over the set {ξ(1), . . . , ξ(L)} and constant over blocks of length
N < K. In other words,

ξlN+i = ξlN+j ∀i, j ∈ {0, . . . , N − 1}
and the realizations {ξk} are i.i.d. from block to block, i.e.,

p(ξlN , ξnN ) = p(ξlN )p(ξnN ) =
1
L2 ∀l �= n .

As a consequence, the process {ξk} is a time-varying Markov chain, charac-
terized by an L × L transition matrix Pk = (p(k)

ij ) at the k-th epoch such
that

p
(k)
ij =

{
δij if k �= N − 1 mod N
1
L

if k = N − 1 mod N

where δij denotes the Kronecker delta. We further assume that the information
sequence {ak} is encoded into a code symbol sequence {ck} by means of an
FSM. Considering that the observed sequence of length K comprises more
than one length-N block with constant channel parameter, the application
of a MAP detection strategy to this scenario leads to a time-varying trellis.
In Figure 7.10, a representative time-varying trellis for this illustrative block-
constant discrete parameter channel is shown. Within a block, i.e., for N − 1
consecutive time epochs, the trellis structure consists of L “coherent” trellises,
each assuming knowledge of ξ, one for each hypothetical quantized value of
ξ. In the sections of the various trellis diagrams connecting the states at the
end of a block with the states at the beginning of the next block, each state in
each coherent trellis is connected with the corresponding state in all the other
coherent trellises. In other words, each coherent trellis is connected with any
other trellis by the non-zero probability of variation of the parameter value.

A general formulation can be obtained considering an extension of the
standard FB algorithm to a channel whose statistics at epoch k are a function
of the state ξk of a Markov chain. Assume that, given {ξk}, the modulator-
channel pair can be described by an FSM, in the sense that the observable
statistics are functions of the state σk of an FSM whose input is the informa-
tion symbol sequence {ak}. Moreover, let us assume that (i) {ak} and {ξk}
are independent and (ii), given {ak} and {ξk}, the observables are indepen-
dent. Following the guidelines in [26,110,114,115], it can be shown that the a
posteriori probability of the symbol ak can be computed as follows:

P{ak|r} =
∑

(σk ,σk+1):ak

βk+1(σk+1)αk(σk) γk(σk, σk+1, ak) (7.10)
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Figure 7.10: Time-varying trellis for detection on block-constant discrete pa-
rameter channel.

where, as before, r denotes the vector of the observables and σk = (sk, ξk) is
the (extended) state of the system, the notation (σk, σk+1) : ak denotes “the
set of all (σk, σk+1) pairs compatible with the input symbol ak” and the branch
“metric” γk(σk, σk+1, ak) is defined as2

γk(σk, σk+1, ak) = p(rk|ak, ξk, sk) · P{ak} · P{ξk+1|ξk} (7.11)

in which P{ξk+1|ξk} is the transition probability between the Markov chain
states ξk and ξk+1, and p(rk|ak, ξk, sk) is the channel statistical description,
i.e., the observable PDF given the data sequence and the channel parameter ξk

computed at the observation value rk. The forward and backward “metrics”
αk(σk) and βk(σk) are obtained by the following recursions:

αk(σk) =
∑

(σk−1,ak−1):σk

αk−1(σk−1) γk−1(σk−1, σk, ak−1)

βk(σk) =
∑

(σk+1,ak):σk

βk+1(σk+1) γk(σk, σk+1, ak) .

The FB algorithm in (7.10) operates on a trellis with a number of states equal
to the number Ξ of states of the modulator-channel FSM times the number L

2Strictly speaking, log γk(σk, σk+1, ak) is a metric.
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of states of the channel parameter Markov chain. This can be interpreted as
a “super-trellis” comprising L trellises, each with Ξ states.

As special case, if the Markov chain {ξk} is time varying and the transition
matrix differs from the identity matrix only at time epochs k = Nl, with l ∈ N,
it can be easily shown that the forward and backward recursions in the above
extended FB algorithm are equivalent to the computation of L independent
forward and backward recursions in the Ξ-state trellises for N −1 time epochs.
Every N time epochs, the recursions involve, in general, all trellises. This cor-
responds to a block-constant discrete parameter ξk, which has been discussed
in Section 7.6.2 assuming uniform distribution of the parameter realization.
The corresponding super-trellis is pictorially exemplified in Figure 7.10.

Applying the above general formulation, the forward and backward metrics
αk(sk, ξk) and βk(sk, ξk) are functions of the “extended” state σk = (sk, ξk).
They can be computed recursively by running L separate coherent FB al-
gorithms, one for each parameter value. Every N time epochs, in general,
αk(sk+1, ξk+1) and βk(sk, ξk) depend on all forward and backward metrics in
all coherent trellises, respectively, i.e., a “mix” of the forward and backward
metrics in the coherent FB algorithms is performed. The above considerations
can be equivalently drawn by following the guidelines in [110], where a Markov
chain model for the channel phase is assumed.

At this point, the idea underlying detection by multiple trellises can be
outlined. As for a constant channel parameter ξ, several coherent FB algo-
rithms, characterized by forward and backward metrics α

(i)
k (sk) = αk(sk, ξ

(i))
and β

(i)
k (sk) = βk(sk, ξ

(i)), respectively, are run independently. The difference
with respect to the time-invariant channel parameter case is that every N time
epochs, the forward (backward) metrics in the different trellises are properly
“mixed” to account for the possible variation of the channel parameter. In the
following, we will refer to N as “inter-mix interval.”

The idea of considering parallel trellises which occasionally “talk” to each
other is appealing, since it is likely to allow both low-complexity and parallel
processing. In this sense, performing detection by multiple trellises can be
equivalently interpreted as an instance of the divide et impera approach to
tackle complicated problems with limited complexity.

We remark that the “mixing strategy” should be tailored for the specific
communication scenario at hand. Nevertheless, some general considerations
can be drawn:

• If ξ is time invariant, the quantity p(r|ak, ξ
(i)), computed via a coherent

FB algorithm, is expected to be maximum in correspondence to the value
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ξ(i) closest to the true3 channel parameter ξ. In fact, numerical analyses
carried out in several scenarios showed that the forward and backward
state metrics {α(i)

k (sk)} and {β(i)
k (sk)} exhibit an exponential decay in

the probability domain. as a function of the epoch k. This is due to the
fact that, denoting by α

(i)
k the vector of the forward metrics at epoch k

in the i-th trellis, the forward recursion can be equivalently expressed as

α
(i)
k = Γ(i)

k−1α
(i)
k−1 (7.12)

where Γ(i)
k is a matrix whose elements are the pdfs of the observable

rk conditioned on every possible transitions in the i-th coherent trel-
lis. In particular, as expected, the decay exponent is higher (i.e., de-
cay is slower) in the FB algorithm associated with the phase value ξ(i)

which is closest to the true channel parameter ξ, leading to state metrics
{α(i)

k (sk)} and {β(i)
k (sk)} relatively much larger than those computed by

the j-th FB algorithm with j �= i.

• If ξ is time varying, we expect that {α(i)
k (sk)} and {β(i)

k (sk)} will try
to adapt to the parameter changes. This adaptiveness is limited by the
fact that state metrics exhibit a “low-pass filter” behavior, i.e., they
have memory and can change only slowly. This is due to the recursive
structure of the metric computation algorithm (7.12). In other words,
the FB metric computation process can be equivalently described as a
recursive time-varying vector filtering.

• While in standard applications an FB algorithm is insensitive to a possi-
ble multiplication of all forward or backward state metrics by a constant,
in the algorithm underlying (7.7), the relative weights of different trel-
lises are important. Accordingly, the multi-trellis SISO algorithm turns
out to be insensitive to a normalization of the metrics only if this nor-
malization is carried out, at a given epoch, over all forward or backward
state metrics of all parallel FB algorithms.

In the following, two possible “mix” strategies are described.

3Depending on the symmetry structure of the modulation code, i.e., the law encoding the
information symbols ak into the transmitted symbols ck, there can be a set of ξ values which
are optimal, in the sense that they are undistinguishable at the receiver. This may occur,
for example, in differential M -PSK transmitted over a phase uncertain channel, where phase
rotations of the observed sequences by multiples of 2π/M cannot be distinguished [109,110].
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Multi-Trellis SISO Algorithm 1

At each length-N interval, i.e., at epochs k = lN , l ∈ N, one could ma-
nipulate the forward metrics {α(i)

k (sk)} (and, similarly, the backward metrics
{β(i)

k (sk)}) according to the following rule:

α
(i)
k (sk) ←−

L∑
j=1

α
(j)
k (sk) i = 1, . . . , L ∀sk (7.13)

where the notation “←−” represents the assignment of a new value. This
corresponds to averaging, for every given state sk, the metrics relative to all
quantized phase values: in other words, the metrics associated with a given
state in the various trellises are averaged. We will refer to this algorithm as
Algorithm 1. This is the exact APP computation algorithm for the channel
with block-constant parameter described at the beginning of Section 7.6.2, if
the observables are independent (conditionally on the parameter and the data
sequence).

Multi-Trellis SISO Algorithm 2

Assume that the channel is slowly time varying, i.e., assume that ξk can exhibit
small changes at adjacent epochs. If a suitable manipulation of {α(i)

k (sk)} and
{β(i)

k (sk)} is allowed only at epochs k = lN , with l ∈ N, the possible transitions
of the parameter from one quantization interval to another, occurring amid the
block, should be taken into account. Heuristically, it was discovered in [108]
that the impact of slow parameter changes within the block can be limited
by performing a normalization of the forward state metrics {α(i)

k (sk)} (and,
similarly, of the backward state metrics {β(i)

k (sk)}) as follows:

α
(i)
k (sk) ←− α

(i)
k (sk)∑

s′
k

α
(i)
k (s′

k)
i = 1, . . . , L ∀sk . (7.14)

where s′
k is a dummy state in the summation, running over all Ξ states of

a coherent trellis. This corresponds to a normalization of the state metrics
within each FB algorithm, i.e., trellis by trellis, as opposed to a normalization
amongst all trellises (as considered in Algorithm 1). We will refer to this
algorithm as Algorithm 2.
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Figure 7.11: Pictorial exemplification of the metric mixes in the two considered
algorithms.

Metric Mix in the Algorithms: a Comparison

The manipulations corresponding to (7.13) and (7.14) can be interpreted as
a combining or mixing of the metrics {α(i)

k (sk)} (similarly for the metrics
{β(i)

k (sk)}). Figure 7.11 gives a pictorial description of the described algorith-
mic family, highlighting the metric mix for both Algorithms 1 and 2. Each
depicted trellis diagram is associated with a coherent FB algorithm which
assumes a given channel parameter ξ(i), i = 1, . . . , L. The metric mix for Al-
gorithm 1 is shown to “manipulate” the metrics of all trellises summing all
metrics on a per-state basis, whereas the metric mix for Algorithm 2 “manipu-
lates” each trellis independently of the other trellises, performing a per-trellis
normalization. The mixing epochs {lN}, i.e., the beginning of the blocks, refer
to the forward metric computation. The backward metric computation mix is
performed at epochs {lN − 1}.

In both Algorithms 1 and 2, the value of L, i.e., the number of quantized
values of the channel parameter, must be chosen considering its impact on
both performance and complexity. In particular, by increasing L the perfor-
mance of the described detection algorithms can be improved, even though
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for sufficiently large value of L the performance improvement becomes negligi-
ble. On the other hand, it can be shown that the complexity of the detection
algorithms increases linearly with L [108].

7.7 LDPC Coded Schemes with Detection by Mul-
tiple Trellises

7.7.1 Phase-Uncertain Channels

In this subsection, a phase-uncertain channel is considered. First, the algo-
rithms introduced in Section 7.6 are specialized to this type of channel. Then,
these algorithms are analyzed and numerical results are given to characterize
their performance.

In Section 7.6.1, the model for a channel introducing a time-invariant phase
rotation θ is given. In this case, the APP of an information symbol ak is given
by (7.6). Assuming that θ is uniformly distributed, i.e., pθ(ϑ) = 1/2π for
ϑ ∈ [0, 2π) (and 0 otherwise), expression (7.7) specializes to the following:

P{ak|r} ∼∝ P{ak}
L∑

i=1

p(r|ak, ϑ
(i)) (7.15)

where {ϑ(1), . . . , ϑ(L)} is a set of L properly chosen phase values [79]. This
detection approach for channels with a block-constant random phase was used
in [109].

If we assume a slowly varying channel phase (i.e., the bandwidth of the
channel parameter process is small compared with the receiver filter band-
width), the discrete-time observable can be modeled as in (7.8) by incorporat-
ing a time-varying phase process {θk}4:

rk = cke
jθk + nk . (7.16)

where |ck| = 1 since DE-QPSK is considered and nk is a discrete-time com-
plex AWGN process with Var{nk} = (REb/N0)−1, in which R is the system
spectral efficiency in bits per channel use. By suitably modeling the stochastic
process {θk}, one could try to develop an exact APP algorithm. Since we do
not want to rely on the exact knowledge of the channel parameter statistics,
which is seldom available at the receiver, we resort to the multi-trellis SISO
algorithms described in Section 7.6.2.

4This discrete-time model can be obtained from the continuous-time multiplicative model
assuming that the phase process has a bandwidth much smaller than the signal bandwidth.
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In this section, we assume that transmission over an AWGN channel is
affected by a Wiener phase noise process {θk} described by the following re-
cursive relation:

θk = θk−1 + wk mod 2π (7.17)

where {wk} is a sequence of i.i.d zero mean Gaussian variables. The standard
deviation of wk, denoted as σθ, is representative of the phase noise intensity.

The adopted LDPC coded modulation scheme uses a regular (3,6) LDPC
code. The codeword length is set to 6000 bits. The decoder structure is that
described in Chapter 5. The number of inner and outer final iterations is
Ni = 30 and NLDPC = 30, respectively.

In Figure 7.12, the performance of the described schemes is shown in terms
of BER versus SNR. The performance for transmission over an AWGN chan-
nel without phase noise, considering an ideal coherent FB algorithm as inner
detector, is shown as a reference. The remaining curves show the performance
obtained with the considered algorithms. In particular, the curves marked as
“Alg1” and “Alg2” correspond to the performance of the schemes with Algo-
rithms 1 and 2, respectively. For each algorithm, several values of the phase
noise standard deviation σθ (given in degrees in the figure legend) are consid-
ered. In each case, the inter-mix interval N is heuristically optimized. The
results in Figure 7.12 show that, even in the presence of a significant phase
noise (for instance, σθ = 10◦), it is possible to “blindly” process the metrics of
the trellises while still achieving an SNR loss as limited as 1 dB. Heuristically,
the optimum value of N turns out to be inversely proportional to σθ. The
results in Figure 7.12 show that Algorithm 2 entails better performance than
Algorithm 1. In particular, for very strong phase noise, i.e., σθ = 10◦, Algo-
rithm 1 suffers an SNR penalty larger than 1 dB with respect to Algorithm 2.
This is due to the fact that Algorithm 1 completely erases the phase infor-
mation every N time epochs, whereas Algorithm 2 performs only a “trellis
balancing” as described in Section 7.6.2.

In Figure 7.13, a direct comparison between the performance (in terms of
BER as a function of the SNR) with Algorithm 1 and Algorithm 2, for a fixed
value of the inter-mix distance N = 15, and several values of σθ, is shown.
The value N = 15 optimizes the system performance at σθ = 5◦, as shown
in Figure 7.12. The remaining system and simulation parameters are those of
Figure 7.12. The BER curves show clearly that for values of the phase noise
parameter σθ lower than or equal to 5◦, decoding convergence is guaranteed
for approximately the same value of SNR, whereas if σθ > 5◦ convergence
is not guaranteed any longer, i.e., an error floor may appear. In particular,
the error floor characterizing the BER curve corresponding to Algorithm 2
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Figure 7.12: BER performance of LDPC coded DE-QPSK schemes based on
algorithms 1 and 2.

with σθ = 10◦ is due to the fact that, in order to cope with a strong phase
noise, Algorithm 2 needs a very small inter-mix interval N , as clearly shown
in Figure 7.12. From the results in Figure 7.13, one can conclude that the
described algorithms are blind with respect to the phase noise intensity as long
as this intensity is lower than the value considered in the algorithm design.

7.7.2 Flat Fading Channels

In this section, a flat fading channel is considered. First, we derive the FB
algorithm assuming a Markov chain model for the fading channel. Then, we
specialize the algorithm introduced in Section 7.6 to the case of flat fading
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Figure 7.13: BER performance, as a function of the SNR, of the considered
Algorithms 1 and 2. Several values of σθ are considered and N = 15.

channel, highlighting its similarities with the Markov chain-based approach.
Finally, the algorithms are analyzed and their performance is characterized
through numerical results.

The time-invariant flat fading model given in (7.9) can be extended to a
more realistic model with time-varying flat fading. Accordingly, the discrete-
time observable can be expressed as

rk = fk ck + nk (7.18)

where {fk} is the fading process.5 In the presence of Rayleigh fading, each
realization fk can be modeled as a zero-mean complex circularly symmetric

5We remark that this discrete-time model can be obtained from the continuous-time
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Figure 7.14: Partitioning of the fading complex plane into fading regions.

Gaussian RV. We assume that the fading process {fk} is modeled according to
Clarke [116, 117], with zero mean, unit variance and autocorrelation function
Rf (n) = J0(2πnfDT ), where J0(·) is the zero-th order Bessel function and
fDT is the maximum normalized Doppler shift, which characterizes the speed
of the fading process.

We now outline the derivation of a simple first-order Markov chain model
which approximately describes the evolution of the complex fading process.
Several papers deal with Markov chain modeling of the fading process—for
more details, we refer the reader to [118,119] and references therein. We first
partition the complex plane into Nphase angular sectors [2π i−1

Nphase
, 2π i

Nphase
),

i = 1, . . . , Nphase. Then, we further split each sector into Nampl “ring-shaped”
regions. As a consequence, the complex plane is split into NphaseNampl sub-
domains {Dij} where Dij denotes the domain corresponding to the i-th phase
sector and the j-th ring-shaped region. In Figure 7.14, an illustrative example
with Nphase = 8 angular sectors and Nampl = 2 ring-shaped regions is shown.

By associating the fading regions with states, it is possible to describe
the evolution of the fading process through the use of a Markov chain. In

multiplicative fading model assuming that the fading process has a bandwidth much smaller
than the signal bandwidth.
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general, considering a first-order Markov modeling for the fading process,6

the total number of fading states is L = NamplNphase. The probabilities of
transition through different fading states can be computed by proper numerical
integrations. For example, in order to evaluate the probability of transition
from the region Dij to the region Dkl, one can follow the method in [118],
which is accurate as long as the first-order Markov chain modeling of the
fading process holds and, in turns, corresponds to a scenario where the fading
process is sufficiently slow [119].

Since the fading process is modeled through a Markov chain whose state
corresponds to the current fading subregion Dij, it is possible to derive a
proper FB algorithm for the computation of the APPs of the transmitted
symbols {ak}. A general formulation accounting for a finite-memory channel
depending on a generic process {ξk} modeled by a Markov chain can be found
in [108].

In the following, we will assume that the symbols {ak} are quaternary
and encoded by a DE-QPSK encoder before transmission. The channel pa-
rameter ξk corresponds to the fading region f̂k ∈ {Dij} i = 1, . . . , Nphase,
j = 1, . . . , Nampl. The extended state described in Section 7.6.2 here is
σk = (sk, f̃k), where sk is the DE-QPSK encoder state at epoch k, and the fad-
ing region f̃k = Dij for some i, j, has been substituted to the generic parameter
ξk.

The two essential ingredients needed for actual implementation of the
Markov chain-based SISO algorithm in a scenario with fading are the tran-
sition probability P{f̃k+1|f̃k} between the Markov chain states f̃k and f̃k+1,
obtained by suitably modeling the fading Markov chain, and the conditional
PDF of the observable p(rk|ak, f̃k, sk), given by the following expressions:

p(rk|ak, f̃k, sk) =
p(rk, f̃k|ak, sk)

p{f̃k}

=

∫
f̃k

p(rk|f, ak, sk)pf (f)df∫
f̃k

pf (f)df

(7.19)

where the independence between the fading process and the DE-QPSK coded
data sequence ck is exploited, p(rk|f, ak, σk) is a Gaussian PDF (with mean
fck), and pf (f) is the PDF of the fading coefficient.

6 We remark that the considered approach can easily be extended to higher-order Markov
models of the fading process, at the expense of an increased number of fading states.
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The concept of detection by multiple trellises can be now directly applied
to a fading channel. In particular, as for the phase-uncertain channel, if the
channel is characterized by block-constant fading, Algorithm 1 is an optimum
solution. In order to simplify the metric computation, the integral in (7.19)
will be approximated by a finite sum of simple Gaussian metrics. However, it
was observed that this can lead to numerical problems at high SNR, where the
noise variance becomes small. To overcome this problem, one may increase
the accuracy of the numerical integration techniques used to compute (7.19)
or prevent the variance of the Gaussian pdfs to become too small and trigger
numerical problems.

Observe that every concatenated scheme with a powerful error correction
code is characterized by a bad BER performance below a given SNR threshold
and an operational BER performance beyond this threshold.7 If the detection
algorithm assumes a given, fixed, SNR value, one is guaranteed to obtain
optimal performance only when the actual SNR value equals the assumed
value. The BER of the fixed-SNR receiver as a function of the SNR, is still
expected to be monotonically decreasing. Therefore, if the assumed SNR is
fixed to guarantee an operational BER at that very SNR value, the fixed-SNR
algorithm will guarantee operational BER beyond this SNR as well. As a
consequence, we chose to fix the variance of the Gaussian metric, i.e., the SNR
assumed by the detection algorithm, and to make it independent of the actual
noise variance. This allows to overcome numerical problems and leads to a
completely blind detection algorithm, which does not need either knowledge
of fading or noise statistics.

Unlike commonly considered in the literature, where the fading process
used in the simulations is generated according to the considered Markov chain
model, in the following the fading process used in the simulations is generated
according to a realistic Clarke model.

In order to verify the effectiveness of the described detection by multiple
trellises, we consider applications to DE-QPSK, both uncoded and coded by
a regular (3,6) LDPC code with codeword length 32000—this length allows
to counteract long fades. The code should, in fact, “observe” a received se-
quence long enough to accurately describe the statistics of the channel, i.e.,
to exploit its ergodicity. We performed simulations considering Nampl = 2
and Nphase = 16 and considering Algorithm 1 and the above described sim-
plified metric scheme. Algorithm 2, in the case of fading channel, exhibits

7In actual systems, the transition from bad BER performance to operational BER is not
perfectly sharp, i.e., it happens within a small SNR region, usually referred to as waterfall
region.
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Figure 7.15: BER performance, as a function of the SNR, in a scenario with a
flat Rayleigh fading channel. Various schemes are considered: (i) BPSK with
perfect CSI, (ii) LDPC coded QPSK with Markov chain-based FB detection,
(iii) LDPC coded QPSK with multi-trellis SISO detection, and (iv) LDPC
coded QPSK with perfect CSI.

unacceptable performance, and, therefore, is not shown. This is due to the
fact that the mix operation in Algorithm 2 normalizes independently every
trellis thus assigning large weights to trellises characterized by incorrect fad-
ing amplitudes. The considered normalized Doppler rate fDT is equal to 0.01,
corresponding to a moderately fast fading channel. The obtained results are
shown in Figure 7.15. The multi-trellis curve is obtained assuming a noise
variance value corresponding to an SNR of about 7 dB. The inter-mix interval
is heuristically optimized by trial and error and set to 20. In every LDPC
coded scheme, a number of inner iterations and final LDPC decoder itera-
tions equal to Ni = 30 and NLDPC = 30, respectively, is used. The Markov
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chain-based algorithm presented at the beginning of this subsection is also
investigated and its performance is shown. As a reference, the performance of
(i) the described concatenated scheme and (ii) an uncoded BPSK signaling,
both considering perfect CSI, is also shown. As one can immediately see, the
performance loss incurred by the use of the described detection by multiple
trellises can be quantified at about 1 dB in comparison with the Markov chain
model performance and 1.8 dB compared with the perfect CSI scenario.

7.8 Concluding Remarks

In this chapter, LDPC coded modulation for differential modulation schemes
has been considered. The two main aspects of LDPC coded modulation design
are the design of the LDPC code and the selection/design of the proper modu-
lation and corresponding CM-SISO. The first important consideration is that
using standard LDPC codes for memoryless channels in a DE scheme leads to
a significant performance loss, which can be avoided using properly designed
LDPC codes. A second consideration arises from the analysis of the perfor-
mance of LDPC coded modulation schemes with multiple trellises detection.
Multiple trellis detection is a suboptimal detection which cannot be used in the
absence of coding since its use in an uncoded scheme leads to a significant er-
ror floor. Nevertheless, in an LDPC coded modulation scheme this remarkable
sub-optimality becomes negligible. This highlights the fact that a suboptimal
CM-SISO scheme cannot be characterized by its performance in the absence
of coding: the use of a concatenated LDPC coded modulation scheme allows
powerful simplifications which might be catastrophic in an uncoded scenario.

CHAPTER 7. LDPC CODES AND DIFFERENTIAL MODULATIONS



Chapter 8

Final Remarks

In this book, we have described a method for using low-density parity-check
(LDPC) codes for constructing coded modulation schemes for generic commu-
nication channels. The basic idea is to use, at the transmitter side, an LDPC
code concatenated with a modulator suitable for the particular channel. A
good practical choice is to use a modulator whose behavior on the particular
channel is well understood and whose practice of use is consolidated. At the
receiver side, a soft demodulator, associated with the modulator and account-
ing for the communication channel statistical behavior, and a standard LDPC
decoder iteratively exchange messages. We have shown how to design LDPC
codes optimized for the particular transmission scheme. Depending on the
specific choice of channel and modulation scheme, the optimized codes might
entail remarkable performance gains with respect to standard LDPC codes,
i.e., optimized for memoryless channels. It is interesting to note that LDPC
codes optimized for a specific scenario are not, in general, good when applied
to a different context. For example, a code optimized for the presence of a dif-
ferential phase shift keying (PSK) modulator and a noncoherent channel has
extremely poor performance if used jointly with a (non-differential) binary
PSK (BPSK) modulator for transmission over an additive white Gaussian
noise (AWGN) channel.

With the help of the techniques described in this book, it is possible to
design family of codes corresponding to respective communication systems
which exhibit very good performance. In all the investigated cases, in fact,
the performance is very close to the theoretical limit given by the mutual
information of the corresponding channel.

Nonetheless, it is important to note that the path to the design of the
“perfect” communication system is still unfinished. Several factors should be

179M. Franceschini, G. Ferrari and R. Raheli, LDPC Coded Modulations,
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taken into account and two of them may be a concern in practical scenarios.
The first and most important factor is the system complexity. In a rela-

tively slow communication system, e.g., with transmission rate below 10Mbit/s,
the technology available today allows to implement an LDPC coded modula-
tion schemes by means of standard general purpose digital signal processors.
This obviously guarantees a significant flexibility, which enables:

• the use of codes with a non-optimized structure;

• the use of long codewords;

• high precision arithmetics.

In a high-speed and, possibly, low-latency scenario, properly designed encod-
ing and decoding schemes become a necessity and the use of generic unstruc-
tured LDPC codes would result in a prohibitive cost both for storing the code
structure itself and for implementing the required ad-hoc interconnection in
the LDPC coded modulation transmitter and receiver. Therefore, high-speed,
low-latency systems pose challenging tasks such as:

• the design of highly structured and powerful LDPC codes for the LDPC
coded modulation scheme of interest;

• the need to devise iterative message passing algorithm that guarantee
good convergence properties even though used with low precision mes-
sages;

• the design of low complexity soft-input soft-output (SISO) modules for
LDPC coded modulations; such a low complexity SISO algorithm for
LDPC coded modulations is not necessarily a good SISO algorithm for
uncoded modulation.

The second important factor that may be a concern is the sub-optimality
of the considered encoding and decoding structures. The discussed analysis
methods based on extrinsic information transfer (EXIT) charts give a useful
estimate of the performance attainable with a given LDPC coded modulation
system. This, however, does not guarantee that the considered scheme can
always achieve the channel capacity.

Nevertheless, LDPC coded modulations represent a practical way of achiev-
ing good performance in a wide variety of channels with the currently avail-
able technology and may be regarded as a medium term flexible intermedi-
ate step toward yet-to-come low-complexity capacity-achieving communication
schemes.
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