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Basics of time-dependent scheduling

This chapter completes the first, the introductory, part of the book. In
this chapter, we indicate the place of time-dependent scheduling in the

general framework of the scheduling theory, formulate the problems of time-
dependent scheduling in a more formal way and introduce the terminology
used throughout the whole book.

Chapter 5 is composed of five sections. In Sect. 5.1, we present a compar-
ison of the scheduling theory and time-dependent scheduling. In Sect. 5.2, we
give the formulation of a generic time-dependent scheduling problem, which is
the basis for all time-dependent scheduling problems considered in the book.
In Sect. 5.3, we introduce the terminology and notation used in the book
for describing time-dependent scheduling problems. In Sect. 5.4, we discuss
applications of time-dependent scheduling. The chapter is completed with
bibliographic notes in Sect. 5.5.

5.1 The scheduling theory vs. time-dependent scheduling

In Chap. 4, we briefly described the basics of the scheduling theory. The
following are the most important assumptions of this theory:

(A1) at every moment of time, each job (operation) can be processed by at
most one machine and each machine can process at most one job (operation);
(A2) processing speeds of machines may be different but during the execution
of jobs (operations) the speeds do not change in time;
(A3) the processing times of jobs (operations) are fixed and known in advance.

Throughout this book, the scheduling theory with assumptions (A1)–(A3)
will be called the classic scheduling theory , as opposed to the non-classic
scheduling theory , where at least one of these assumptions has been changed.

In the period of almost 60 years that elapsed since the classic scheduling
theory was formulated, numerous practical problems have appeared, which
could not be solved in the framework of this theory. The main reason for
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that was a certain restrictiveness of assumptions (A1)–(A3). For example, a
machine may have a variable speed of processing due to the changing state of
this machine, job processing times may increase due to job deterioration, etc.
In order to overcome these difficulties and to adapt the theory to cover new
problems, assumptions (A1)-(A3) were repeatedly modified. This, in turn,
led to new research directions in the scheduling theory, such as scheduling
multiprocessor tasks, scheduling on machines with variable processing speed
and scheduling jobs with variable processing times. For the completeness of
further presentation, we will now shortly describe each of these directions.

5.1.1 Scheduling multiprocessor tasks

In this case, assumption (A1) has been modified: the same operations (called
tasks) may be performed at the same time by two or more different machines
(processors).

The applications of scheduling multiprocessor tasks concern reliable com-
puting in fault-tolerant systems, which are able to detect errors and recover
the status of the systems from before an error. Examples of fault-tolerant
systems are aircraft control systems, in which the same tasks are executed
by two or more machines simultaneously in order to increase the safety of
the systems. Other applications of scheduling multiprocessor tasks concern
modelling the work of parallel computers, problems of dynamic bandwidth
allocation in communication systems and loom scheduling in textile industry.

5.1.2 Scheduling on machines with variable processing speeds

In this case, assumption (A2) has been modified: the machines have variable
processing speeds, i.e., the speeds change in time.

There are three main approaches to the phenomenon of the variable pro-
cessing speeds. In the first approach, it is assumed that the speed is described
by a differential equation and depends on a continuous resource. Alternatively,
the speed is described by a continuous (the second approach) or a discrete (the
third approach) function. In both cases, the speed depends on a resource that
is either continuous or discrete.

Scheduling with continuous resources has applications in such production
environments in which jobs are executed on machines driven by a common
power source, for example, common mixing machines or refueling terminals.
Scheduling with discrete resources is applied in modern manufacturing sys-
tems, in which jobs to be executed need machines as well as other resources
such as robots or automated guided vehicles.

5.1.3 Scheduling jobs with variable processing times

In this case, assumption (A3) has been modified: the processing times of jobs
are variable and can change in time.
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The variability of job processing times can be modelled in different ways.
For example, one can assume that the processing time of a job is a fuzzy
number, a function of a continuous resource, a function of the job waiting
time, a function of the position of the job in a schedule or is varying in some
interval between a certain minimum and maximum value.

Scheduling with variable job processing times has numerous applications,
e.g., in the modelling of the forging process in steel plants, manufacturing
of preheated parts in plastic molding or in silverware production, finance
management and scheduling maintenance or learning activities.

The time-dependent scheduling problems that we will consider in this book
are scheduling problems with variable job processing times.

5.2 Formulation of time-dependent scheduling problems

As we said in Sect. 5.1, in time-dependent scheduling problems, the processing
time of each job is variable. The general form of the job processing time is as
follows.

In parallel-machine time-dependent scheduling problems, the processing
time of each job depends on the starting time of the job, i.e.,

pj(Sj) = gj(Sj), (5.1)

where gj are arbitrary non-negative functions of Sj ≥ 0 for 1 ≤ j ≤ n.
In dedicated-machine time-dependent scheduling problems, the processing

time of each operation is in the form of

pi,j(Si,j) = gi,j(Si,j), (5.2)

where gi,j are arbitrary non-negative functions of Si,j ≥ 0 for 1 ≤ i ≤ nj and
1 ≤ j ≤ n.

These two forms of presentation, (5.1) and (5.2), are rarely used, since
they do not give us any information about the way in which the processing
times are changing.

The second way of describing the time-dependent processing time of a job,

pj(Sj) = aj + fj(Sj), (5.3)

where aj ≥ 0 and functions fj are arbitrary non-negative functions of Sj ≥ 0
for 1 ≤ j ≤ n, is more often encountered. Similarly, the following form of the
processing time of an operation,

pi,j(Si,j) = ai,j + fi,j(Si,j), (5.4)

where ai,j ≥ 0 and fi,j are arbitrary non-negative functions of Si,j ≥ 0 for
1 ≤ i ≤ nj and 1 ≤ j ≤ n, is more common than the form (5.2). The
main reason for that is the fact that in (5.3) and (5.4), we indicate the
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constant part aj (ai,j) and the variable part fj(Sj) (fi,j(Si,j)) of the job
(operation) processing time.

The constant part of a job (operation) processing time, aj (ai,j), will be
called the basic processing time.

Remark 5.1. The assumption that functions gj(Sj) and fj(Sj) (gi,j(Si,j) and
fi,j(Si,j)) are non-negative for non-negative arguments is essential and from
now on, unless otherwise stated, we will consider it to be satisfied.

Remark 5.2. Since the forms (5.3) and (5.4) of job processing times give us
more information, in further considerations, we will mainly use the functions
fj(Sj) (fi,j(Si,j)).

Remark 5.3. Since the starting time Sj is the variable on which the processing
time pj depends, we will write pj(t) and fj(t) instead of pj(Sj) and fj(Sj),
respectively. Similarly, we will write pi,j(t) and fi,j(t) instead of pi,j(Si,j) and
fi,j(Si,j), respectively.

Remark 5.4. A few authors (Cheng and Sun [45], Lee [192], Lee et al. [195],
Toksarı and Güner [268], Wang [281], Wang and Cheng [282, 290]) consid-
ered time-dependent scheduling problems with the so-called learning effect
(cf. Bachman and Janiak [12], Biskup [24]). Since, in this case, job processing
times are functions of both the starting time of the job and the job position
in the schedule, the problems of this type will be not studied in the book.

Other parameters which describe a time-dependent scheduling problem,
such as the parameters of a set of jobs (machines) or the applied optimality
criterion, are as those in the classical scheduling (cf. Chap. 4).

Example 5.5. Assume that the set J is composed of 3 jobs, J = {J1, J2, J3},
such that p1 = 1 + 3t, p2 = 2 + t and p3 = 3 + 2t, there are no ready times
and deadlines, and all jobs have unit weights.

Fig. 5.1: The optimal schedule for Example 5.5

For this set of jobs, there exist the following semi-active schedules (cf.
Definition 4.16): σ1 = (1, 2, 3), σ2 = (1, 3, 2), σ3 = (2, 1, 3), σ4 = (2, 3, 1),
σ5 = (3, 1, 2) and σ6 = (3, 2, 1). The optimal schedule for the Cmax criterion
is schedule σ2, Cmax(σ2) = 14. The schedule is presented in Fig. 5.1. �



5.3 Terminology and notation 51

Example 5.6. In time-dependent scheduling problems the processing time of
the same job may be different in different schedules. For example, consider
schedules σ1 and σ5 from Example 5.5. The processing time of job J2 in
schedule σ1 is equal to 4, while in schedule σ5 it is equal to 41.

Algorithms that solve time-dependent scheduling problems will be called
time-dependent scheduling algorithms. In this book, we will consider mainly
offline time-dependent scheduling algorithms. Examples of online and semi-
online time-dependent scheduling algorithms will be given in Chap. 9.

5.3 Terminology and notation

As we said in Sect. 5.2, in any time-dependent scheduling problem, job pro-
cessing times are described by the functions fj(t) and fi,j(t), which appear
in (5.3) and (5.4), respectively. The form of these functions is related to the
problem we consider. For example, if we know nothing about the properties
of these functions, then we deal with the alteration of job processing time:
the processing time of a job varies in time in an unknown way. If we know
something more, e.g., whether these functions are monotonic, then two cases
are worth considering:

1◦ fj(t) and fi,j(t) are increasing (or non-decreasing);
2◦ fj(t) and fi,j(t) are decreasing (non-increasing).
The first case is more often encountered in the literature and, as it seems,

it is easier to study. The case when job processing times are described by
increasing (non-decreasing) functions will be called deteriorating processing
times: while waiting for processing, the jobs deteriorate and as a result the
processing time of each job increases in time.

The second case may cause some problems already at the stage of problem
formulation, since we have to make some additional assumptions to avoid the
case of negative job processing times. The case when job processing times
are described by decreasing (non-increasing) functions will be called short-
ening processing times: unlike the previous case, jobs grow shorter and the
processing time of each job is reduced in time.

Remark 5.7. Regardless of the type of functions that we have chosen to de-
scribe job processing times in our problem, we still deal with deterministic
scheduling, since all parameters of the problem are assumed to be known in
advance. This objection is important, since stochastic scheduling problems
with deteriorating jobs are also considered (see, e.g., Glazebrook [112]).

Generally, the time-scheduling problems considered in this book will be
denoted using the α|β|γ notation (see Sect. 4.4 for details). Each problem
will be denoted by α1α2|pj(t) = aj + fj(t)|ϕ or α1α2|pi,j(t) = ai,j + fi,j(t)|ϕ,
where α1α2, fj(t) and ϕ denote the machine environment, the form of the
variable part of job processing time and the criterion function, respectively.
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Remark 5.8. We will use the α|β|γ notation if it will yield a simple notation
for the considered scheduling problem. In some cases, however, we will resign
from the notation in favour of the description by words if the descriptive
approach will be more readable.

The short form of the symbol α1α2|pj(t) = aj + fj(t)|ϕ is the symbol
α1α2|pj = aj + fj(t)|ϕ. The short form of the symbol α1α2|pi,j(t) = ai,j +
fi,j(t)|ϕ is the symbol α1α2|pi,j = ai,j + fi,j(t)|ϕ. Throughout this book,
we will use the short form of the symbols which will denote time-dependent
scheduling problems.

If the form of the functions fj(t) (fi,j(t)) is known, we will call the process-
ing times pj = aj +fj(t) (pi,j = ai,j +fi,j(t)) by the name of the function. For
example, if the functions fj(t) (fi,j(t)) are proportional (linear, polynomial,
etc.), the processing times will be called proportional (linear , polynomial ,
etc.) processing times. If the functions are non-negative (non-positive), the
processing times will be called deteriorating (shortening) processing times.

In a similar way, we will call the processing times of jobs, if non-linear forms
of job deterioration are considered. For example, if the functions fj(t) are step
functions or piecewise proportional-step functions, the processing times will
be called step and proportional-step processing times, respectively.

If the same function f(t) is used for all jobs, fj(t) = f(t) for 1 ≤ j ≤ n
or fi,j(t) = f(t) for 1 ≤ i ≤ nj and 1 ≤ j ≤ n, we will speak about simple
deterioration (shortening) of job processing times. In the opposite case, we
will speak about general deterioration (shortening) of job processing times.

Example 5.9.
(a) The symbol 1|pj = bjt|Cmax will denote a single machine scheduling

problem with proportional job processing times and the Cmax criterion.
(b) The symbol Pm|pj = aj + f(t)|

∑
Cj will denote a multiple identical

machine scheduling problem with simple general deterioration of jobs and the∑
Cj criterion.
(c) The symbol F2|pi,j = ai,j + bi,jt|Lmax will denote a two-machine flow

shop problem with linear job processing times and the Lmax criterion.
(d) The symbol O3|pi,j = bi,jt, bi,3 = b|Cmax will denote a three-machine

open shop problem with proportional job processing times such that all job
processing times on machine M3 are equal to each other, and with the Cmax

criterion.
(e) The symbol J2|pi,j = bi,jt|Cmax will denote a two-machine job shop

problem with proportional job processing times and the Cmax criterion. �

Remark 5.10. In Sect. 6.1, we will extend the α|β|γ notation to include the
symbols describing time-dependent scheduling problems in batch environ-
ments and on machines with non-availability periods.
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5.4 Applications of time-dependent scheduling

The motivation for research into time-dependent scheduling follows from the
existence of many real-life problems which can be formulated in terms of
scheduling jobs with time-dependent processing times. Such problems appear
in all cases in which any delay in processing causes an increase (a decrease)
of the processing times of executed jobs. If job processing times increase, we
deal with deteriorating job processing times; if they decrease, we deal with
shortening job processing times. In this section, we give a few examples of
problems which can be modelled in time-dependent scheduling.

5.4.1 Scheduling problems with deteriorating job processing times

Gupta et al. [129] consider the problem of the repayment of multiple loans. We
have to repay n loans, L1, L2, . . . , Ln. A loan may represent an amount of bor-
rowed cash or a payment to be made for a credit purchase. Loan Lk qualifies
for a discount uk if it is paid on or before a specified time bk. A penalty at the
rate vk per day is imposed if the loan is not paid by due date dk, 1 ≤ k ≤ n.
The debtor earmarks a constant amount of q dollars per day, q < vk, for re-
payment of the loans. Cash flows are continuously discounted with discount
factor (1+ r)−1. The aim is to find an optimal repayment schedule that mini-
mizes the present value PV of all cash outflows, PV :=

∑n
k=1

Ak

(1+r)Tk
, where

Ak and Tk denote, respectively, the actual amount paid for loan Lk and the
time at which the loan Lk is repaid, 1 ≤ k ≤ n. This problem can be modelled
as a single-machine scheduling problem with time-dependent job processing
times and the PV criterion.

Mosheiov [217] considers the following problem of scheduling maintenance
procedures. A set of n maintenance procedures Pk, 1 ≤ k ≤ n, has to be
executed by m ≥ 1 machines. A maintenance procedure Pk has to take place
before a specified deadline dk. The procedure consists of a series of actions,
which last altogether p1

k time units. If the procedure does not complete by the
deadline, several additional actions are required. The new processing time of
procedure Pk is p2

k > p1
k time units. The aim is to find an order of execution of

maintenance procedures P1, P2, . . . , Pn, which minimizes the maximum com-
pletion time of the last executed procedure. This problem can be modelled as
a single- or multiple-machine scheduling problem with two-step deteriorating
job processing times.

Gawiejnowicz et al. [103] consider the following problem of scheduling
derusting operations. We are given n items (e.g., parts of devices), which
are subject to maintenance (e.g., they should be cleared from rust). This
maintenance is performed by a single worker, who can himself determine the
sequence of maintenance procedures. All procedures are non-preemptable, i.e.,
no maintenance procedure can be interrupted once it has started. At the mo-
ment t = 0, all items need the same amount of time for maintenance, e.g., one
unit of time. As time elapses, each item corrodes at a rate that depends on the
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kind of the material from which the particular item is made. The rate of cor-
rosion for the j-th item is equal to bj , 1 ≤ j ≤ n, and the time needed for the
maintenance of each item grows proportionally to the time that elapsed from
the moment t = 0. The problem is to choose such a sequence of the mainte-
nance procedures that minimizes the total completion time of maintenance of
all items. This problem can be modelled as the single-machine time-dependent
scheduling problem 1|pj = 1 + bjt|

∑
Cj .

Rachaniotis and Pappis [240] consider the problem of scheduling a single
fire-fighting resource in the case when there are several fires to be controlled.
The aim is to find such order of supressing n existing fires that the total
damage caused by the fires is minimized. The problem can be modelled as a
single machine scheduling problem with time-dependent processing times and
the total cost minimization criterion.

5.4.2 Scheduling problems with shortening job processing times

Ho et al. [135] consider the problem of recognizing aerial threats. A radar sta-
tion recognizes some aerial threats approaching the station. The time required
to recognize the threats decreases as they get closer. The aim is to find an
optimal order of recognizing the threats which minimizes the maximum com-
pletion time. This problem can be modelled as a single-machine scheduling
problem with shortening job processing times and the Cmax criterion.

Kunnathur and Gupta [178] and Ng et al. [226] consider the problem of
producing ingots in a steel mill . A set of ingots has to be produced in a steel
mill. After being heated in a blast furnace, hot liquid metal is poured into
steel ladles and next into ingot moulds, where it solidifies. Next, after the
ingot stripper process, the ingots are segregated into batches and transported
to the soaking pits, where they are preheated up to a certain temperature. Fi-
nally, the ingots are hot-rolled on the blooming mill. If the temperature of an
ingot, while waiting in a buffer between the furnace and the rolling machine,
has dropped below a certain value, then the ingot needs to be reheated to
the temperature required for rolling. The reheating time depends on the time
spent by the ingot in the buffer. The problem is to find a sequence of pre-
heating the ingots which minimizes the maximum completion time of the last
ingot produced. This problem can be modelled as a single machine scheduling
problem with shortening job processing times and the Cmax criterion.

5.4.3 Other examples of time-dependent scheduling problems

Shakeri and Logendran [254] consider the following problem of maximizing
satisfaction level in a multitasking environment. Several plates are spinning
on vertical poles. An operator has to ensure all plates spin as smoothly as
possible. A value, called the satisfaction level , can be assigned to each plate’s
spinning state. The satisfaction level of a plate is ranging from 0% (i.e., the
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plate is not spinning) up to 100% (the plate is spinning perfectly). The ob-
jective is to maximize the average satisfaction level of all plates over time.

The above problem is applicable to multitasking environments in which
we cannot easily determine the completion time of any job. Examples of such
environments are the environments of the control of a plane flight parameters,
monitoring air traffic or the work of nuclear power plants. A special case of
the problem, when a 100% satisfaction level is equivalent to the completion
of a job, is a single-machine time-dependent scheduling problem.

Other examples of practical problems which can be modelled in terms of
time-dependent scheduling include the control of queues in communication
systems in which jobs deteriorate as they wait for processing (Browne and
Yechiali [33]), search for an object in worsening weather or growing dark-
ness, performance of medical procedures under deterioration of the patient
conditions and repair of machines or vehicles under deteriorating mechanical
conditions (Mosheiov [216]).

We refer the reader to the literature (see Alidaee and Womer [6] and Cheng
et al. [55]) for more examples of time-dependent scheduling applications.

5.4.4 Scheduling problems with time-dependent parameters

The time dependence may concern not only job processing times but also other
parameters of a scheduling problem. For example, Cai et al. [38] consider the
following crackdown scheduling problem. There are n illicit drug markets, all
of which need to be brought down to a negligible level of activity. Each market
is eliminated by a procedure consisting in a crackdown phase and a mainte-
nance phase. The crackdown phase utilizes all the available resources until the
market is brought down to the desired level. The maintenance phase, which
follows after the crackdown phase and uses a significantly smaller amount of
resources, maintains the market at this level. The aim is to find an order of
elimination of the drug markets that minimizes the total time spent in elim-
inating all drug markets. The problem can be modelled as a single-machine
scheduling problem of minimizing the total cost

∑
fj , where fj are monoton-

ically increasing time-dependent cost functions.

Other examples of scheduling problems in which some parameters are time
dependent include multiprocessor tasks scheduling (Bampis and Kononov [16]),
scheduling in a contaminated area (Janiak and Kovalyov [147, 148]), multi-
criteria project sequencing (Klamroth and Wiecek [165]), selection problems
(Seegmuller et al. [253]) and scheduling jobs with deteriorating job values
(Voutsinas and Pappis [275]).

With these remarks, we end the presentation of the basics of time-
dependent scheduling. This chapter also ends the first part of the book. In
the next part, we will consider the complexity of time-dependent scheduling
problems.
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The problems of scheduling multiprocessor tasks are reviewed in detail by
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Sriskandarajah and Goyal [261]), a function of a continuous resource (see, e.g.,
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The processing time of a job may also depend on the position of the job
in a schedule (Bachman and Janiak [12], Biskup [24]), the length of machine
non-availability period (Lahlou and Dauzère-Pérès [181]) or varies in some
interval between a certain minimum and maximum value (see, e.g., Nowicki
and Zdrza�lka [227], Shakhlevich and Strusevich [255], Vickson [273]).

The problems of time-dependent scheduling are reviewed by Alidaee and
Womer [6] and Cheng et al. [55].

Gawiejnowicz [87] discusses time-dependent scheduling problems in the
framework of scheduling with discrete and continuous resources.


