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Preface

The book presented to the reader is devoted to time-dependent scheduling.
Scheduling problems, in general, consist in the allocation of resources

over time in order to perform a set of jobs. Any allocation that meets all
requirements concerning the jobs and resources is called a feasible schedule.
The quality of a schedule is measured by a criterion function. The aim of
scheduling is to find, among all feasible schedules, a schedule that optimizes
the criterion function. A solution to an arbitrary scheduling problem consists
in giving a polynomial-time algorithm generating either an optimal schedule
or a schedule that is close to the optimal one, if the given scheduling problem
has been proved to be computationally intractable. The scheduling problems
are subject of interest of the scheduling theory, originated in mid-fifties of
the twentieth century. The theory has been developing dynamically and new
research areas constantly come into existence. The subject of this book, time-
dependent scheduling, is one of such areas.

In time-dependent scheduling, the processing time of a job is variable and
depends on the starting time of the job. This crucial assumption allows us to
apply the scheduling theory to a broader spectrum of problems. For example,
in the framework of the time-dependent scheduling theory we may consider
the problems of repayment of multiple loans, fire fighting and maintenance
assignments. In this book, we will discuss algorithms and complexity issues
concerning various time-dependent scheduling problems.

Time-dependent scheduling is a relatively new subject. Although the first
paper from the area appeared in late 1970s most results have been published
in the last 10 years. So far, time-dependent scheduling has not gained much
attention in books devoted to the scheduling theory. This book, summarizing
the results of almost 15 years of the author’s research into time-dependent
scheduling, hopefully fills this gap.

The book is composed of 14 chapters, organized into four parts.
The first part of the book consists of five chapters and includes the math-

ematical background used in subsequent chapters. The aim of this part is
to give the reader an introductory view of presented topics. Therefore, only
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fundamental notions and concepts are discussed. In Chap. 1, the mathemati-
cal notation, the basic definitions and results used in this book are given. In
Chap. 2, the essential concepts related to decision problems and algorithms
are recalled. Chapter 3 includes the definitions and the most important re-
sults of the theory of NP-completeness. This part is completed by Chaps. 4
and 5, where the basics of the scheduling theory and time-dependent schedul-
ing theory are given, respectively. Each chapter of this part is compleleted
with bibliographic notes including a list of selected references in which the
reader may find a more comprehensive presentation of the particular topics.

The second part of the book includes a detailed survey of the time com-
plexity of time-dependent scheduling problems. This part is composed of three
chapters. In Chap. 6, single-machine time-dependent scheduling problems are
discussed. Chapters 7 and 8 cover results concerning time-dependent schedul-
ing on parallel and dedicated machines, respectively. Each chapter of this part
is completed with the summary and tables.

The third part of the book is devoted to suboptimal algorithms for NP-
hard time-dependent scheduling problems. This part starts with Chap. 9,
which presents approximation and heuristic algorithms. Chapter 10 introduces
two greedy algorithms, which exploit the properties of the so-called signatures
of sequences of job deterioration rates. Finally, local search heuristics for time-
dependent scheduling problems are discussed in Chap. 11.

The fourth part of the book includes selected advanced topics in time-
dependent scheduling. This part begins with Chap. 12, in which applications of
matrix methods to time-dependent scheduling problems are discussed. Chap-
ter 13 is devoted to scheduling proportionally and linearly deteriorating jobs
under precedence constraints. In Chap. 14, closing the book, time-dependent
scheduling problems with two criteria are studied.

Each chapter of these two parts ends with concluding remarks. Chapters
of the fourth part include also comments on selected open problems.

The book is intended for researchers into the scheduling theory, Ph.D.
students and everybody interested in recent advances in computer science.

The prerequisites for reading the book are the standard courses in discrete
mathematics and calculus, fundamentals of the theory of algorithms and basic
knowledge of any high-level programming language. Hence, this book can also
be used by students of graduate studies.

The second part of the book can serve as a basis for an introductory course
in time-dependent scheduling. The material from the next two parts can be
used as a starting point for a research seminar in time-dependent scheduling.

The research presented in the book has been partially supported by grant
N519 18889 33 of the Ministry of Science and Higher Education of Poland.
While working on the book, I was also supported in different ways by different
people. It is my pleasure to list here the names of the people to whom I am
mostly indebted for help.

I heartily thank Dr. Alexander Kononov (Sobolev Institute of Mathemat-
ics, Novosibirsk, Russia), Dr. Wies�law Kurc and Dr. Lidia Pankowska (both
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from Adam Mickiewicz University, Poznań, Poland) for many stipulating dis-
cussions on different aspects of time-dependent scheduling. Many of the results
presented in the book are the effects of my joint work with these researchers.

I sincerely thank Professor Jacek B�lażewicz (Poznań University of Tech-
nology, Poznań, Poland) for his continuous encouragement and support during
the many years of my research into time-dependent scheduling.

I also thank the following people for help in obtaining references concerning
time-dependent scheduling: Gerd Finke (Leibniz-IMAG, Grenoble, France),
Yi-Chih Hsieh (National Chengchi University, Hsinchu, Taiwan), Shi-Er Ju
(Zhongshan University, Guangzhou, P.R. China), Li-Ying Kang (Shanghai
University, Shanghai, P.R. China), Mikhail Y. Kovalyov (National Academy of
Sciences of Belarus, Minsk, Belarus), Wies�law Kubiak (Memorial University of
Newfounland, St. John’s, Canada), Bertrand Miao-Tsong Lin (National Chiao
Tung University, Hsinchu, Taiwan), Yakov M. Shafransky (National Academy
of Sciences of Belarus, Minsk, Belarus), Prabha Sharma (Indian Institute
of Technology Kanpur, Kanpur, India), Vitaly A. Strusevich (University of
Greenwich, London, United Kingdom), Yoichi Uetake (Adam Mickiewicz Uni-
versity, Poznań, Poland), Ji-Bo Wang (Shenyang Institute of Aeronautical
Engineering, Shenyang, P.R. China), Gerhard J. Woeginger (Eindhoven Uni-
versity of Technology, Eindhoven, The Netherlands), Dar-Li Yang (National
Formosa University, Yun-Lin, Taiwan).

I direct special thanks to Mrs. Krystyna Ciesielska, M.A., M.Sc., who
helped me to improve the English of this book.

Last but not the least, I thank my wife Miros�lawa and my daughter
Agnieszka for their love, patience and support during the many months of
my work on this book, when I was not able to be with them.

Poznań, April 2008 Stanis�law Gawiejnowicz
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Part I

FUNDAMENTALS



1

Preliminaries

The scheduling theory uses notions and methods from different disciplines
of mathematics. Therefore, any systematic presentation of an arbitrary

branch of the theory needs some mathematical background. The first part of
the book introduces this background.

The part is composed of five chapters. In Chap. 1, we present the mathe-
matical notation, the basic definitions and the results. The essential concepts
related to decision problems and algorithms are recalled in Chap. 2. The defi-
nitions and the most important results of the theory of NP-completeness are
presented in Chap. 3. The basics of the scheduling theory and time-dependent
scheduling are given in Chap. 4 and Chap. 5, respectively.

Chapter 1 is composed of three sections. In Sect. 1.1, we introduce the
notation and terminology used in this book. In Sect. 1.2, we give some math-
ematical preliminaries used in subsequent chapters. The chapter is completed
with bibliographic notes in Sect. 1.3.

1.1 Mathematical notation

We assume that the reader is familiar with basic mathematical notions. There-
fore, we explain here only the notation that will be used throughout this book.

1.1.1 Sets and vectors

We will write a ∈ A (a /∈ A) if a is (is not) an element of a set A. If a1 ∈ A,
a2 ∈ A, . . . , an ∈ A, we will simply write a1, a2, . . . , an ∈ A.

If an element a is (is not) equal to an element b, we will write a = b (a �= b).
If a = b by definition, we will write a := b. In a similar way, we will denote
the equality (inequality) of numbers, sets, sequences, etc.

The set composed only of elements a1, a2, . . . , an will be denoted by
{a1, a2, . . . , an}. The maximal (minimal) element in set {a1, a2, . . . , an} will
be denoted by max{a1, a2, . . . , an} (min{a1, a2, . . . , an}).
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If set A is a subset of set B, i.e., every element of set A is an element of set
B, we will write A ⊆ B. If A is a strict subset of B, i.e., A ⊆ B and A �= B,
we will write A ⊂ B. The empty set will be denoted by ∅.

The number of elements of set A will be denoted by |A|. The power set of
set A, i.e., the set of all subsets of A, will be denoted by 2A.

For any sets A and B, the union, intersection and difference of A and B
will be denoted by A ∪B, A ∩B and A \B, respectively.

The Cartesian product of sets A and B will be denoted by A × B. The
Cartesian product of n ≥ 2 copies of a set A will be denoted by An.

A partial order, i.e., a reflexive, antisymmetric and transitive binary rela-
tion, will be denoted by ≺. If x ≺ y or x = y, we will write x � y.

The set-theoretic sum (product) of all elements of a set A will be denoted
by

⋃
ai∈A ai (

⋂
ai∈A ai). The union (intersection) of a family of sets Ak, k ∈ K,

will be denoted by
⋃

k∈K Ak (
⋂

k∈K Ak).
The sets of all natural, integer, rational and real numbers will be denoted

by N, Z, Q and R, respectively. The subsets of positive elements of sets Z,
Q and R will be denoted by Z+, Q+ and R+, respectively. The subset of N

composed of the numbers that are not greater than a fixed n ∈ N will be
denoted by {1, 2, . . . , n} or In.

Given a set A and a property P, we will write B = {a ∈ A : P holds for a}
to denote that B is the set of all elements of set A for which property P holds.
For example, a closed interval 〈a, b〉 for a, b ∈ R, a ≤ b, can be defined as the
set 〈a, b〉 = {x ∈ R : a ≤ x ≤ b}.

A (n ≥ 1)-dimensional vector space over R, its positive orthant and the
interior of the orthant will be denoted by R

n, R
n
+ and intRn

+, respectively.
A row (column) vector x ∈ R

n composed of numbers x1, x2, . . . , xn will be
denoted by x = [x1, x2, . . . , xn] (x = [x1, x2, . . . , xn]�). A norm (the lp norm)
of vector x will be denoted by ‖x‖ (‖x‖p). The scalar product of vectors x
and y will be denoted by x ◦ y.

The set of all Pareto (weakly Pareto) optimal solutions from a set of all
feasible solutions X will be denoted by XPar (Xw−Par).

1.1.2 Sequences

A sequence composed of numbers x1, x2, . . . , xn will be denoted by (xj)n
j=1

or (x1, x2, . . . , xn). If the range of indices of elements of sequence (xj)n
j=1 is

fixed, the sequence will be denoted by (xj). In a similar way, we will denote
sequences of sequences, e.g., the sequence of pairs (x1, y1), (x2, y2), . . . , (xn, yn)
will be denoted by ((xj , yj))n

j=1, ((x1, y1), (x2, y2), . . . , (xn, yn)) or ((xj , yj)).
A sequence (zk) that is a concatenation of sequences (xi) and (yj) will be

denoted by (xi|yj). If A and B are sets of numbers, the sequence composed
of elements of A followed by elements of B will be denoted by (A|B).

A sequence (xj) in which elements are arranged in the non-decreasing (non-
increasing) order will be denoted by (xj ↗) ((xj ↘)). An empty sequence will
be denoted by (φ).
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The algebraic sum (product) of numbers xk, xk+1, . . . , xm for k,m ∈ N,
will be denoted by

∑m
i=k xi (

∏m
i=k xi). If the indices of components of the

sum (product) belong to a set J, then the sum (product) will be denoted by∑
j∈J xj (

∏
j∈J xj). If k > m or J = ∅, then

∑m
i=k xi =

∑
j∈J xj := 0 and

∏m
i=k xi =

∏
j∈J xj := 1.

1.1.3 Functions

A function f from a set X to a set Y will be denoted by f : X → Y. The
value of function f : X → Y for some x ∈ X will be denoted by f(x).

If a function f is a monotonically increasing (decreasing) function, we will
write f ↗ (f ↘).

For a given set X, the function f such that f(x) = 1 if x ∈ X and f(x) = 0
if x �∈ X will be denoted 1X .

The absolute value, the binary logarithm and the natural logarithm of
x ∈ R will be denoted by |x|, log x and lnx, respectively. The largest (smallest)
integer number not greater (less) than x ∈ R will be denoted by �x� (�x�).

Given two functions, f : N → R+ and g : N → R+, we will say that
function f(n) is of order O(g(n)), in short f(n) = O(g(n)), if there exist
constants c > 0 and n0 ≥ 0 such that for all n ≥ n0, there holds the inequality
f(n) ≤ cg(n).

Permutations of elements of set In, i.e., bijective functions from set In onto
itself, will be denoted by small Greek characters. For example, permutation σ
with components σ1, σ2, . . . , σn, where σi ∈ In for 1 ≤ i ≤ n and σi �= σj for
i �= j, will be denoted by σ = (σ1, σ2, . . . , σn). In some cases, permutations will
also be denoted by small Greek characters with a superscript. For example,
σ

′
and σ

′′
will refer to two distinct permutations of elements of set In. Partial

permutations defined on In, i.e., bijective functions between two subsets of set
In, will be denoted by small Greek characters with a superscript in brackets.
For example, σ(a) = (σ(a)

1 , σ
(a)
2 , . . . , σ

(a)
k ) is a partial permutation of elements

of set In. The set of all permutations (partial permutations) of set In will be
denoted by Sn (Ŝn).

The sequence (xj)n
j=1 composed of numbers x1, x2, . . . , xn, ordered accord-

ing to permutation σ ∈ Sn, will be denoted by xσ = (xσ1 , xσ2 , . . . , xσn
).

Because of the nature of the problems considered in this book, we will
assume, unless stated otherwise, that all objects (e.g., sets, sequences, etc.)
are finite.

1.1.4 Logical notation

In this book, we will use the following logical notation. A negation, conjunction
and disjunction will be denoted by ¬, ∧ and ∨, respectively. The implication
of formulae p and q will be denoted by p ⇒ q. The equivalence of formulae
p and q will be denoted by p ⇔ q or p ≡ q. The existential and general
quantifiers will be denoted by ∃ and ∀, respectively.
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In the proofs presented in this book, we will use a few proof techniques.
The most often applied proof technique is the pairwise job (element) inter-
change argument: we consider two schedules (sequences) that differ only in the
order of two jobs (elements) and we show which schedule (sequence) is the
better one. A number of proofs are made by contradiction: we assume that a
schedule (a sequence) is optimal and we show that this assumption leads to a
contradiction. Finally, some proofs are made by the mathematical induction.

The use of the rules of inference applied in the proofs will be limited
mainly to De Morgan’s rules (¬(p ∧ q) ≡ (¬p ∨ ¬q), ¬(p ∨ q) ≡ (¬p ∧ ¬q)),
material equivalence ((p ⇔ q) ≡ ((p ⇒ q) ∧ (q ⇒ p)) and transposition
((p ⇒ q) ≡ (¬q ⇒ ¬p)) rules.

1.1.5 Other notation

Lemmas, theorems and properties will be numbered consecutively in each
chapter. In a similar way, we will number definitions, examples, figures and
tables. Examples will be ended by the symbol ‘�’.

Most results will be followed either by a full proof or by the sketch of a
proof. In a few cases, no proof (sketch) will be given and the reader will be
referred to the literature. The proofs, sketches and references to the sources
of proofs will be ended by symbols ‘�’, ‘� ’ and ‘!’, respectively.

1.2 Basic definitions and results

In this section, we include the definitions and results that are used in proofs
presented in this book.

Lemma 1.1. (Elementary inequalities)
(a) If y1, y2, . . . , yn ∈ R, then max{y1, y2, . . . , yn} ≥ 1

n

∑n
j=1 yj .

(b) If y1, y2, . . . , yn ∈ R, then 1
n

∑n
j=1 yj ≥ n

√∏n
j=1 yj .

(c) If a, x ∈ R, x ≥ −1, x �= 0 and 0 < a < 1, then (1 + x)a < 1 + ax.

Proof. (a) This is the arithmetic-mean inequality; see Bullen et al. [37,
Chap. 2, Sect. 1, Theorem 2].

(b) This is a special case of the geometric-arithmetic mean inequality; see
Bullen et al. [37, Chap. 2, Sect. 2, Theorem 1].

(c) This is Bernoulli’s inequality; see Bullen et al. [37, Chap. 1, Sect. 3,
Theorem 1]. !

Lemma 1.2. (Minimizing or maximizing a sum of products)
(a) If x1, x2, . . . , xn, y1, y2, . . . , yn ∈ R, then the sum

∑n
i=1 xσi

∏n
j=i+1 yσj

is
minimized (maximized) when it is calculated over the permutation σ ∈ Sn

in which indices are ordered by non-decreasing (non-increasing) values of the
xi

yi−1 ratios.
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(b) If (x1, x2, . . . , xn) and (y1, y2, . . . , yn) are two sequences of real numbers,
then the sum

∑n
j=1 xjyj is minimized if the sequence (x1, x2, . . . , xn) is ordered

non-decreasingly and the sequence (y1, y2, . . . , yn) is ordered non-increasingly
or vice versa, and it is maximized, if the sequences are ordered in the same
way.

Proof. (a) By pairwise element interchange argument; see Kelly [164, Theo-
rems 1-2], Rau [242, Theorem 1].

(b) By pairwise element interchange argument; see Hardy et al. [131,
p. 269]. !

Definition 1.3. (V-shaped and Λ-shaped sequences)
(a) A sequence (x1, x2, . . . , xn) is said to be V-shaped (has a V-shape) if there
exists an index k, 1 ≤ k ≤ n, such that for 1 ≤ j ≤ k the sequence is non-
increasing and for k ≤ j ≤ n the sequence is non-decreasing.
(b) A sequence (x1, x2, . . . , xn) is said to be Λ-shaped (has a Λ-shape), if the
sequence (−x1,−x2, . . . ,−xn) is V-shaped.

In other words, sequence (xj)n
j=1 is V-shaped (Λ-shaped) if the elements

which are placed before the smallest (largest) xj , 1 ≤ j ≤ n, are arranged in
the non-increasing (non-decreasing) order, and those which are placed after
the smallest (largest) xj are in the non-decreasing (non-increasing) order.

The V-shaped and Λ-shaped sequences will also be called V-sequences
and Λ-sequences, respectively. Moreover, if index k of the minimal (maximal)
element in a V-sequence (Λ-sequence) satisfies the inequality 1 < k < n, we
will say that this sequence is strongly V-shaped (Λ-shaped).

Definition 1.4. (The partial order relation ≺)
Let (u, v), (r, s) ∈ R

2. The partial order relation ≺ is defined as follows:

(u, v) ≺ (r, s), if (u, v) ≤ (r, s) coordinatewise and (u, v) �= (r, s). (1.1)

Lemma 1.5. The relation (u, v) ≺ (0, 0) does not hold when either (u > 0 or
v > 0) or (u = 0 and v = 0).

Proof. By Definition 1.4, (u, v) ≺ (0, 0) if (u, v) ≤ (0, 0) coordinatewise and
(u, v) �= (0, 0). By negation of the conjuction, the result follows. �

Definition 1.6. (A graph and a digraph)
(a) A graph (undirected graph) is an ordered pair G = (N,E), where N �= ∅
is a finite set of nodes and E ⊆ {{n1, n2} ∈ 2N : n1 �= n2} is a set of edges.
(b) A digraph (directed graph) is an ordered pair G = (V,A), where V �= ∅ is
a finite set of vertices and A ⊆ {(v1, v2) ∈ V 2 : v1 �= v2} is a set of arcs.

Example 1.7. Consider graph G1 and digraph G2 given in Fig. 1.1.
In the graph G1 = (N,E), presented in Fig. 1.1a, the set of nodes N =

{1, 2, 3, 4} and the set of edges E = {{1, 2}, {1, 3}, {2, 4}, {3, 4}}.
In the digraph G2 = (V,A), presented in Fig. 1.1b, the set of vertices

V = {1, 2, 3, 4} and the set of arcs A = {(1, 2), (1, 3), (2, 4), (3, 4)}. �
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1

2 3

4

(a) Graph G1

1

2 3

4

(b) Digraph G2

Fig. 1.1: Graph vs. digraph

In this book, we will consider mainly directed graphs. Therefore, all further
definitions and remarks will refer to digraphs, unless stated otherwise.

Definition 1.8. (Basic definitions concerning digraphs)
(a) A digraph G′ = (V ′, A′) is called a subdigraph of a digraph G = (V,A) if
V ′ ⊆ V and (x, y) ∈ A′ implies (x, y) ∈ A.
(b) A directed path in a digraph G = (V,A) is a sequence (v1, v2, . . . , vm) of
distinct vertices from V such that (vk, vk+1) ∈ A for each k = 1, 2, . . . ,m− 1.
The number m is called the length of the path.
(c) A vertex x ∈ V is called a predecessor (successor) of a vertex y ∈ V if in
a digraph G = (V,A) there is a directed path from x to y (from y to x). If the
path has unit length, then x is called a direct predecessor (successor) of y.
(d) A vertex x ∈ V that has no direct predecessor (successor) is called an
initial (a terminal) vertex in a digraph G = (V,A). A vertex x ∈ V that is
neither initial nor terminal is called an internal vertex in the digraph.
(e) A digraph G = (V,A) is connected if for every x, y ∈ V there exists in G a
directed path starting with x and ending with y; otherwise, it is disconnected.

For a given graph (digraph) G and v ∈ N (v ∈ V ), the set of all predeces-
sors and successors of v will be denoted by Pred(v) and Succ(v), respectively.

Definition 1.9. (Parallel and series composition of digraphs)
Let G1 = (V1, A1) and G2 = (V2, A2) be two digraps such that V1∩V2 = ∅ and
let Term(G1) ⊆ V1 and Init(G2) ⊆ V2 denote the set of terminal vertices of
G1 and the set of initial vertices of G2, respectively. Then
(a) digraph GP is said to be a parallel composition of digraphs G1 and G2,
if GP = (V1 ∪ V2, A1 ∪A2);
(b) digraph GS is said to be a series composition of digraphs G1 and G2,
if GS = (V1 ∪ V2, A1 ∪A2 ∪ (Term(G1)× Init(G2)).
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In other words, digraph GP is a disjoint union of digraphs G1 and G2,
while digraph GS is a composition of digraphs G1 and G2 in which the arcs
from all terminal vertices in G1 are connected to all initial vertices in G2.

Definition 1.10. (Special classes of digraphs)
(a) A chain (v1, v2, . . . , vk) is a digraph G = (V,A) with V = {vi : 1 ≤ i ≤ k}
and A = {(vi, vi+1) : 1 ≤ i ≤ k − 1}.
(b) An in-tree (out-tree) is a digraph which is connected, has a single terminal
(initial) vertex called the root of this in-tree (out-tree) and in which any other
vertex has exactly one direct successor (predecessor). The initial (terminal)
vertices of an in-tree (out-tree) are called leaves.
(c) A digraph G = (V,A) is a series-parallel digraph (sp-digraph, in short) if
either |V | = 1 or G is obtained by application of parallel or series composition
to two series-parallel digraphs G1 = (V1, A1) and G2 = (V2, A2), V1 ∩ V2 = ∅.

Remark 1.11. A special type of a tree is a 2-3 tree, i.e., a balanced tree in which
each internal node (vertex) has 2 or 3 successors. In 2-3 trees the operations of
insertion (deletion) of a node (vertex) and the operation of searching through
the tree can be implemented in O(log k) time, where k is the number of nodes
(vertices) in the tree (see, e.g., Aho et al. [2, Chap. 2]).

1

2

(a) A chain

2

1

3

(b) An in-tree

1

2 3

(c) An out-tree

1

3 4

2

(d) An sp-digraph

Fig. 1.2: Examples of digraphs from Definition 1.10

Example 1.12. Consider the four digraphs depicted in Fig. 1.2. The chain given
in Fig. 1.2a is a digraph G1 = (V1, A1) in which V1 = {1, 2} and A1 = {(1, 2)}.
The in-tree given in Fig. 1.2b is a digraph G2 = (V2, A2) in which V2 = {1, 2, 3}
and A2 = {(2, 1), (3, 1)}. The out-tree given in Fig. 1.2c is a digraph G3 =
(V3, A3) in which V3 = {1, 2, 3} and A3 = {(1, 2), (1, 3)}.

The sp-digraph depicted in Fig. 1.2d is a digraph G4 = (V4, A4) in which
V4 = {1, 2, 3, 4} and A4 = {(1, 3), (1, 4), (2, 3), (2, 4)}. The sp-digraph G4 is
a series composition of sp-digraphs G5 = (V5, A5) and G6 = (V6, A6), where
V5 = {1, 2}, V6 = {3, 4} and A5 = A6 = ∅. Notice that the sp-digraph G5,
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in turn, is a parallel composition of single-vertex sp-digraphs G
′

5 = (V
′

5 , A
′

5)
and G

′′

5 = (V
′′

5 , A
′′

5 ), where V
′

5 = {1}, V
′′

5 = {2} and A
′

5 = A
′′

5 = ∅. Similarly,
the sp-digraph G6 is a parallel composition of single-vertex sp-digraphs G

′

6 =
(V

′

6 , A
′

6) and G
′′

6 = (V
′′

6 , A
′′

6 ), where V
′

6 = {3}, V
′′

6 = {4} and A
′

6 = A
′′

6 = ∅. �

Remark 1.13. From Definition 1.9 it follows that every series-parallel digraph
G = (V,A) can be represented in a natural way by a binary decomposition tree
T (G). Each leaf of the tree represents a vertex in G and each internal node is a
series (parallel) composition of its successors. Hence we can construct G, start-
ing from the root of the decomposition tree T (G), by successive compositions
of the nodes of the tree. For a given series-parallel digraph, its decomposition
tree can be constructed in O(|V | + |A|) time (see Valdes et al. [271]). The
decomposition tree of the sp-digraph from Fig. 1.2d is given in Fig. 1.3.

Remark 1.14. Throughout the book, the internal nodes of a decomposition
tree that correspond to the parallel composition and series composition will
be labelled by P and S, respectively.

S

P P

1 2 3 4

Fig. 1.3: The decomposition tree of the sp-digraph from Fig. 1.2d

Theorem 1.15. (Mean value theorems)
(a) If functions f : 〈a, b〉 → R and g : 〈a, b〉 → R are differentiable on the
interval (a, b) and continuous on the interval 〈a, b〉, then there exists at least
one point c ∈ (a, b) such that f ′(c)

g′(c) = f(b)−f(a)
g(b)−g(a) .

(b) If function f : 〈a, b〉 → R is differentiable on the interval (a, b) and contin-
uous on the interval 〈a, b〉, then there exists at least one point c ∈ (a, b) such
that f ′(c) = f(b)−f(a)

b−a .

Proof. (a) This is the generalized mean-value theorem; see Rudin [248, Chap. 5,
Theorem 5.9]. !
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(b) This is the mean-value theorem. Applying Theorem 1.15 (a) for g(x) = x,
we obtain the result. �

Remark 1.16. The counterparts of mean-value theorems for functions defined
in vector spaces are given, e.g., by Maurin [205, Chap. VII]. !

Definition 1.17. (A norm)
A norm on a vector space X is the function ‖ · ‖ : X → R such that for all
x, y ∈ X and any a ∈ R the following conditions are satisfied:
(a) ‖x + y‖ ≤ ‖x‖+ ‖y‖,
(b) ‖ax‖ = |a|‖x‖,
(c) ‖x‖ = 0 ⇔ x = 0.
The value ‖x‖ is called a norm of vector x ∈ X.

Definition 1.18. (Hölder’s vector norm lp)
Given an arbitrary p ≥ 1, the lp norm of vector x ∈ R

n is defined as follows:

‖x‖p :=

⎧
⎨

⎩

(
∑n

i=1 |xi|p)
1
p , 1 ≤ p < +∞,

max1≤i≤n{|xi|} , p = +∞.

Definition 1.19. (A priority-generating function)
Let π′ = (π(1), π(a), π(b), π(2)), π

′′
= (π(1), π(b), π(a), π(2)) ∈ Sn, where

π(1), π(a), π(b), π(2) ∈ Ŝn.
(a) A function F : Sn → R is called a priority-generating function, if there
exists a function ω : Ŝn → R (called priority function) such that there holds
either the implication ω(π(a)) > ω(π(b)) ⇒ F(π′) ≤ F(π′′) or the implication
ω(π(a)) = ω(π(b)) ⇒ F(π′) = F(π′′).
(b) If π(a), π(b) ∈ Ŝ1, then a priority-generating function is called 1-priority-
generating function.

Remark 1.20. Notice that by Definition 1.19, every priority-generating func-
tion is a 1-priority-generating function (but not vice versa).

Remark 1.21. Definition 1.19 concerns the priority-generating function of
a single variable (see Tanaev et al. [264, Chap. 3]).

Remark 1.22. Priority-generating functions of a single variable are also con-
sidered by Gordon et al. [117]. The authors identify several cases in which
an objective function for a scheduling problem with some time-dependent job
processing times is priority generating (see [117, Sect. 7–9]). They also ex-
plore the relationship between the existence of priority functions for different
criterion functions for such problems (see [117, Theorems 1–2]).

Remark 1.23. Priority-generating functions of many variables are considered
by Janiak et al. [149].
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Theorem 1.24. (Tanaev et al. [264]) If F : Sn → R is a 1-priority generating
function and ω : Ŝn → R is a priority function corresponding to F , then the
permutation in which the elements are arranged in the non-increasing order
of their priorities minimizes F over Sn.

Proof. See Tanaev et al. [264, Chap. 3, Theorem 7.1]. !

Let X denote the set of feasible solutions of a bicriterion optimization
problem and let f : X → R

2, f = (f1, f2), be the minimized criterion function,
where fi : X → R are single-valued criteria for i = 1, 2.

Definition 1.25. (Pareto optimal solutions)
(a) A solution x� ∈ X is said to be Pareto optimal, x� ∈ XPar in short, if
there is no x ∈ X such that f(x) ≺ f(x�).
(b) A solution x� ∈ X is said to be weakly Pareto optimal, x� ∈ Xw−Par in
short, if there is no x ∈ X such that fi(x) < fi(x�) for i = 1, 2.

The images of sets XPar and Xw−Par under the function f = (f1, f2),
f(XPar) and f(Xw−Par), will be denoted by Yeff and Yw−eff , respectively.
(Notice that XPar ⊂ Xw−Par and Yeff ⊂ Xw−eff .)

Example 1.26. (Ehrgott [76]) Consider a set X and a function f = (f1, f2),
where X := {(x1, x2) ∈ R

2 : 0 < x1 < 1∧ 0 ≤ x2 ≤ 1}, f1 := x1 and f2 := x2.
Then Yeff = ∅ and Yw−eff = {(x1, x2) ∈ X : 0 < x1 < 1, x2 = 0}.

If we define X := {(x1, x2) ∈ R
2 : 0 ≤ xi ≤ 1 for i = 1, 2}, then for the

function f as above we have Yeff = {(0, 0)} and Yw−eff = {(x1, x2) ∈ X :
x1 = 0 ∨ x2 = 0}. �

Lemma 1.27. (Scalar optimality vs. Pareto optimality)
If x� is an optimal solution with respect to the scalar criterion ω ◦ f for
a certain f = (f1, f2) and ω = (ω1, ω2), then
(a) if ω ∈ R

2, then x� ∈ Xw−Par,
(b) if ω ∈ intR2, then x� ∈ XPar.

Proof. (a), (b) See Ehrgott [76, Proposition 3.7]. !

Definition 1.28. (A convex function)
A function f is convex on the interval 〈a, b〉 if for any x1, x2 ∈ 〈a, b〉 and any
λ ∈ 〈0, 1〉 there holds the inequality f(λx1+(1−λ)x2) ≤ λf(x1)+(1−λ)f(x2).

In other words, a convex function is such a continuous function that the
value at any point within every interval in its domain does not exceed the
value of a convex combination of its values at the ends of the interval. (A
convex combination of elements x1 and x2 is the element y := λx1 +(1−λ)x2,
where λ ∈ 〈0, 1〉 is a given number.)

Remark 1.29. If the symbol ‘≤’ is replaced by ‘<’ in Definition 1.28, then the
function f is strictly convex.
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Remark 1.30. A function f is (strictly) concave, if −f is (strictly) convex.

Definition 1.31. (A convex set)
A set X ⊆ R

n is convex if for any x1, x2 ∈ X and any λ ∈ 〈0, 1〉 the convex
combination λx1 + (1− λ)x2 ∈ X.

In other words, a set X is convex if the line segment joining any pair of
points of X lies entirely in X.

Remark 1.32. Basic facts concerning convex functions and convex sets are
given, e.g., by Walk [278, Chap. 1]. !

Lemma 1.33. (Pareto optimality vs. scalar optimality)
If X is a convex set and f1, f2 are convex functions, then if x� ∈ Xw−Par,
there exists ω ∈ intR2 such that x� is an optimal solution with respect to the
scalar criterion ω ◦ f .

Proof. See Ehrgott [76, Proposition 3.8]. !

With this lemma, we end the presentation of notation, definitions and
auxiliary results used throughout the book. In subsequent chapters, we
will introduce basic definitions and results concerning algorithms (Chap. 2),
NP-complete problems (Chap. 3), the scheduling theory (Chap. 4) and time-
dependent scheduling (Chap. 5).

1.3 Bibliographic notes

A comprehensive presentation of basic mathematical notions and mathemat-
ical notation may be found in Rasiowa [241]. Inference rules and proof tech-
niques are discussed in Copi [65].

Bullen et al. [37], Hardy et al. [131] and Mitrinović et al. [212] give a wide
range of various inequalities.

Berge [22], Harary [130] and Wilson [294] present the graph theory from
different perspectives. Brandstädt et al. [32] study the properties of different
classes of graphs. Applications of graphs in computer science and engineering
are discussed by Deo [70].

Maurin [205] and Rudin [248] give a concise presentation of calculus and
mathematical analysis.

Priority-generating functions are discussed by Tanaev et al. [264, Chap. 3]
and by Gordon et al. [117]. The extension of these functions to the multiple
criteria case is presented by Janiak et al. [149].

The properties of sp-(di)graphs and applications of these (di)graphs in the
scheduling theory are discussed, e.g., by Gordon [116], Gordon et al. [120],
Lawler [185], Möhring [221] and Valdes et al. [271].

Ehrgott [76] presents a comprehensive introduction to Pareto optimality.
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Problems and algorithms

Scheduling problems considered in this book are formulated as either de-
cision or optimization problems. The problems are solved by algorithms

of different types. Therefore, in this chapter we present the essential concepts
related to decision and optimization problems and to algorithms.

Chapter 2 is composed of three sections. In Sect. 2.1, we recall the no-
tions of decision and optimization problems. In Sect. 2.2, we present the basic
concepts related to algorithms. The chapter is completed with bibliographic
notes in Sect. 2.3.

2.1 Decision and optimization problems

A problem is a general question to be answered. The question concerns a
certain mathematical object and it is expressed in terms of a number of pa-
rameters, whose values are left unspecified. A problem is formulated by giving
a general description of all its parameters and a statement concerning proper-
ties that the object must have. This object is called a solution to the problem.

In this book, we will consider decision and optimization problems. A de-
cision problem is a problem of existence of a solution that has properties
specified in the formulation of the problem. An optimization problem is a
problem in which a solution that optimizes (i.e., minimizes or maximizes) a
certain objective (criterion) function is searched.

Example 2.1. An example of a decision problem is the SUBSET PRODUCT
problem: given a set of integer numbers and a threshold integer value, does
there exists a subset of this set such that the product of all elements of this
subset is equal to the threshold? �

Example 2.2. An example of an optimization problem is the problem of min-
imizing the value of a function over a set of elements. �
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Remark 2.3. Formulations of decision problems considered in this book are
given in Sect. 3.2.

Remark 2.4. We will come back to optimization problems in Chap. 11, in
which we will present several methods of solving such problems.

An optimization problem may have a number of solutions which may be
optimal or suboptimal. A solution to an optimization problem is optimal if
the value of the minimized (maximized) objective function for this solution is
minimal (maximal). A solution is suboptimal if the value of objective function
for this solution is only close to an optimal value. Optimal and suboptimal
solutions will be also called feasible solutions.

Remark 2.5. A combinatorial optimization problem is a special case of an op-
timization problem in which the set of solutions is finite (see Sect. 11.1 for
more details). Scheduling problems considered in this book are examples of
combinatorial optimization problems.

The optimization and decision problems are closely related to each other.
For example, suppose that in an optimization problem, an objective function
is minimized. Then, in a decision counterpart of this problem, we ask if there
exists a solution for which the value of the objective function is not greater
than a given threshold value. (If the objective function is maximized, then we
ask for a solution for which the value of the objective function is not lower
than a given threshold.) Therefore, though scheduling problems considered
in this book are formulated mainly as combinatorial optimization problems,
they can be considered either in the optimization or in the decision version.

2.1.1 Encoding schemata

By assigning a specific value to each parameter of a problem, we define an
instance of the problem. (The set of all instances of a given problem P will be
denoted by DP .) The instance, encoded in a certain format, is the input of any
procedure used for finding a solution to this instance. The rules that describe
the coding format constitute an encoding scheme. The encoding scheme en-
codes any instance into a sequence of symbols from a certain finite alphabet.
The length of this sequence is called the length of input for this instance.
(The number of symbols needed for encoding a number k and the length of
input for an instance I in an encoding scheme e will be denoted by |k|e and
|I|e, respectively.)

Remark 2.6. There exist many different encoding schemata. Each encoding
scheme specifies the rules of encoding numbers, sets, graphs and other math-
ematical objects. The most important rules concern the encoding of numbers.
The rules should ensure that the encoding scheme is concise, i.e., it does not
cause an exponential growth of the length of input, and that numbers are
represented in any positional numeral system.
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The simplest scheme is the unary encoding scheme u, in which a number
n is represented by n 1’s, i.e., |n|u = n. The scheme, however, is not concise
(cf. Remark 2.6).

Throughout this book, we will use the binary encoding scheme b. In this
scheme, a number n is represented in the binary system, i.e., |n|b = �log n� =
O(log n). This scheme is concise and unlike the unary encoding scheme, it
does not cause an exponential growth of the length of input.

2.1.2 Undecidable and decidable problems

A problem is solved if a solution to any instance of the problem may be
found. However, the time needed for finding the solution may or may not be
finite. Hence, from the point of view of the computation time, all problems
are divided into two classes of problems: undecidable and decidable ones.

A problem is said to be undecidable (unsolvable) if there is no finite pro-
cedure that solves the problem. An example of such a problem is the halting
problem: given a Turing machine and an input, does the machine halt for this
input? Another example of an undecidable problem is the tenth Hilbert’s prob-
lem: given an arbitrary Diophantine equation (i.e., an equation in which only
integer solutions are allowed), does there exist a solution of this equation?

Remark 2.7. Though from the undecidability of a problem there follows a
negative answer to the question of existence of a finite procedure solving any
instance of the problem, it does not exclude the possibility of finding a solution
procedure for a particular type of instances of the problem. For example, there
are procedures that determine if a Turing machine halts for a given type of an
input and procedures that solve particular types of Diophantine equations.

A problem is said to be decidable (solvable) if there exists a finite procedure
which solves the problem. This means that for any instance of the problem, a
solution to the instance can be found in a finite time.

In this book, we will consider only decidable scheduling problems.

2.2 Basic concepts related to algorithms

A finite procedure that finds a solution to an arbitrary instance of a prob-
lem is called an algorithm. (We say that the algorithm solves the problem.)
Generally speaking, an algorithm consists of an input , a sequence of steps and
an output . The input describes a specific instance. The sequence of steps must
be performed by the algorithm to find a solution to the instance. Each step,
in turn, can be decomposed into a finite number of elementary operations.
Examples of elementary operations are arithmetical operations (addition,
subtraction, multiplication, division), logical operations (negation, conjuc-
tion, disjunction), the assignment statement (assigning a value to a variable)
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and control operations (conditional jump, call of a function or a procedure).
Complex operations which can appear in an algorithm (conditional loops, iter-
ative loops, functions and procedures) are sequences of elementary operations.
The algorithm, for a given input, performs the steps and produces an output,
which is the solution to the input.

Remark 2.8. The solution produced by an algorithm at some step will be
called a partial solution, contrary to the complete solution obtained after the
completion of the algorithm.

2.2.1 Time and space complexity of algorithms

For a given problem, there may exist various algorithms which have differ-
ent efficiency. We will now introduce two basic measures of efficiency of an
algorithm: time and space.

The efficiency of an algorithm may be measured by the number of elemen-
tary operations which must be performed by the algorithm to find a solution
to any instance of a given problem. The number of operations is a function of
the input of this algorithm: if the input is longer, the algorithm will perform
more operations. The time complexity of this algorithm is the function that
maps each length of input into the maximal number of elementary operations
needed for finding a solution to any instance of that length.

The efficiency of an algorithm may also be measured by the total space
needed for the execution of the algorithm. The space complexity of this algo-
rithm is the function that maps each length of input into the maximal amount
of computer memory cells needed for the execution of the algorithm for any
instance of that length.

In this book, we will mainly consider the time complexity of algorithms.

2.2.2 Polynomial-time algorithms

We say that an algorithm is efficient if its time complexity is polynomially
bounded with respect to the length of input. This means that the number
of elementary operations performed by this algorithm for any instance of a
given problem will be not greater than a polynomial of the length of input
for this instance. Such an algorithm is called a polynomial-time (polynomial)
algorithm and is defined as follows.

Definition 2.9. (A polynomial-time algorithm)
An algorithm that solves a problem is said to be a polynomial-time (poly-
nomial) algorithm if there exists a polynomial q such that for any instance I
of the problem the number of elementary operations performed by the algorithm
is bounded from above by q(|I|b).

In other words, the time complexity of a polynomial-time algorithm for an
input of length |I|b is of order O(q(|I|b)) for a certain polynomial q. Through-
out this book, we will say that a problem is polynomially solvable (computa-
tionally tractable) if there exists a polynomial-time algorithm for this problem.
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2.2.3 Exponential-time algorithms

An algorithm which is not a polynomial-time algorithm is called an exponential-
time (exponential) algorithm. This means that the number of elementary
operations performed by such an algorithm cannot be bounded from above by
any polynomial of the length of input. The time complexity of an exponential
algorithm either is an exponential function or grows at least as quickly as an
exponential function. (Notice that the time complexity function of an expo-
nential algorithm need not be an exponential function in the strict sense.)
Since exponential functions grow faster than polynomials, the exponential-
time algorithms are not efficient. The problems for which only exponential-
time algorithms are known will be called computationally intractable.

2.2.4 Pseudopolynomial-time algorithms

Algorithms which are polynomial with respect to both the length of input and
the maximum value in the input are called pseudopolynomial-time (pseudo-
polynomial) algorithms. Since polynomial and pseudopolynomial algorithms
are related in a certain way, we shall make a few remarks concerning the
relation between them.

Remark 2.10. By Definition 2.9, any polynomial algorithm is a pseudopoly-
nomial algorithm as well.

Remark 2.11. Pseudopolynomial algorithms are not polynomial, since the
maximum value in input exponentially depends on the representation of this
value both in the binary encoding scheme and in any other concise encoding
scheme (cf. Remark 2.6).

Remark 2.12. Pseudopolynomial algorithms would be polynomial if either the
unary encoding scheme was used or the maximum value was bounded from
above by a polynomial of the length of input.

Since the existence of a pseudopolynomial algorithm for a computationally
intractable problem has important consequences, we will come back to the
concept of pseudopolynomial-time algorithm in Sect. 3.1.

2.2.5 Exact algorithms

The solutions generated by an algorithm may or may not be exact. For ex-
ample, if different schedules for a set of jobs exist, the schedule which meets
all requirements and which has the smallest value of criterion function is the
exact (optimal) solution, while the schedule which meets all requirements but
has a cost greater than the cost of the optimal schedule is only a feasible
(suboptimal) solution. Throughout this book, by an exact algorithm, we will
understand such an algorithm that finds the exact solution. Polynomial-time
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algorithms are examples of exact algorithms that find the exact solution in a
polynomial-time. For the problems for which no polynomial-time algorithms
are known, exact solutions can be found by enumerative, branch-and-bound
or dynamic programming algorithms.

2.2.6 Enumerative algorithms

An enumerative algorithm directly enumerates all possible solutions. For ex-
ample, if a problem consists in finding such a permutation of n elements of
a set that for this permutation the value of a function is minimal, then a
simple enumerative algorithm generates all possible permutations and selects
the optimal one. However, since there are n! > 2n permutations of set In, this
algorithm runs in exponential time.

2.2.7 Branch-and-bound algorithms

A branch-and-bound algorithm finds an optimal solution by indirect enumer-
ation of all possible solutions through examination of smaller and smaller
subsets of the set of all solutions. The algorithm consists of two procedures:
branching and bounding .

Branching is a procedure of partitioning a large problem into a number
of subproblems. The subproblems, in turn, are partitioned into smaller sub-
problems and so on. The branching procedure allows to construct a tree, in
which a node corresponds to a partial solution (called a child solution) to a
subproblem. Two nodes in the tree are connected by an edge if the solutions
corresponding to these nodes are child solutions of a solution. The leaves of
the tree correspond to complete solutions to the problem.

Bounding is a procedure that allows to cut off a certain part of the so-
lution tree. This part includes the partial solutions for which the value of
the objective function is not better than the currently best value. The pro-
cedure uses an estimation of the optimal value of the objective function, the
so-called lower bound . (If such an estimation is not known, then the value of
the objective function for a known feasible solution is assumed.)

2.2.8 Dynamic programming algorithms

An exact algorithm may also be constructed by dynamic programming . In
this case, the optimal solution is generated by a multi-stage decision process,
which, starting from an initial state, constructs subsequent partial solutions
from previously generated states in a step-by-step manner. The initial state
is defined by some initial conditions, the subsequent states are defined by a
recursive formula, and the final state is the goal we want to achieve. This final
state corresponds to an optimal (exact) solution.
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The theoretical foundation of dynamic programming is given by the so-
called Bellman’s principle of optimality (cf. [20, Chap. III, § 3]). The principle
says that whatever the initial state and initial decision are, the remaining de-
cisions must constitute an optimal solution with respect to the state resulting
from the first decision.

According to this principle, at each stage of the process, the decisions that
lead to subsequent partial solutions are ranked in some way and the ones with
the highest rank are taken into account in subsequent stages until the final
(optimal) solution is achieved.

2.2.9 Approximation algorithms

Not all problems encountered in practice have polynomial-time algorithms.
Many problems have been proved to be computationally intractable, which
means that for such problems polynomial algorithms probably do not exist.

However, even if it is known that a problem is computationally intractable,
there still remains the question how to find a solution to the problem. If all
known algorithms for the problem are inefficient, we may apply an approx-
imation algorithm to solve this problem. The approximation algorithm is a
polynomial algorithm that generates an approximate (suboptimal) solution
that is close (in the sense defined below) to an optimal solution.

Since the solution generated by an approximation algorithm is only a sub-
optimal solution, it is useful to know how close to the optimal one the solution
is. A measure of the closeness is the worst-case ratio of the algorithm.

Definition 2.13. (An approximation algorithm and its worst-case ratio)
Let A(I) and OPT (I) denote a solution generated by an algorithm A and
an optimal solution to a given instance I of a minimization (maximization)
problem, respectively. Let ε > 0 and r = 1 + ε (r = 1− ε). An algorithm A is
said to be an r-approximation algorithm for a problem P if for any instance
I ∈ DP , there holds |A(I)−OPT (I)| ≤ ε ·OPT (I). The value r is called the
worst-case ratio of the algorithm A.

From Definition 2.13, it follows that if the algorithm A solves a minimiza-
tion problem, then A(I) ≤ (1 + ε) ·OPT (I) = r ·OPT (I) and the worst-case
ratio r ∈ 〈1,+∞). (If the algorithm A solves a maximization problem, we
have A(I) ≥ (1 − ε) · OPT (I) = r · OPT (I) and r ∈ 〈0, 1〉.) In other words,
an r-approximation algorithm generates a solution which is at most r times
worse than the optimal one.

Remark 2.14. If I is an arbitrary instance of a minimization problem and A is
an approximation algorithm for the problem, for this instance we can calculate
the absolute ratio Ra

A(I) of the value of the solution A(I) generated by the
algorithm and the value of the optimal solution OPT (I), Ra

A(I) := A(I)
OPT (I) .

(For a maximization problem we have Ra
A(I) := OPT (I)

A(I) .) The worst-case
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ratio r from Definition 2.13 is an infimum (a supremum for a maximization
problem) over the ratios Ra

A(I) over all possible instances I of a given problem.

Remark 2.15. Apart from the absolute ratio Ra
A(I), for an instance I we

can calculate the relative ratio Rr
A(I) := A(I)−OPT (I)

OPT (I) . (For a maximiza-

tion problem we have Rr
A(I) := OPT (I)−A(I)

A(I) .) It is easy to notice that
Rr

A(I) = Ra
A(I)− 1.

2.2.10 Approximation schemata

For some computationally intractable problems, it is possible to construct
a family of approximation algorithms which generate solutions as close to
the optimal one as it is desired. Such a family of algorithms is called an
approximation scheme. There exist two types of approximation schemata:
polynomial-time and fully polynomial-time.

Definition 2.16. (Approximation schemata)
(a) A family of r-approximation algorithms is called a polynomial-time ap-
proximation scheme if for an arbitrary ε > 0 any algorithm from this family
has polynomial time complexity.
(b) If a polynomial-time approximation scheme is running in polynomial time
with respect to 1

ε , it is called a fully polynomial-time approximation scheme.

Throughout this book, a polynomial-time approximation scheme and a
fully polynomial-time approximation scheme will be called PTAS and FPTAS ,
respectively. In Sect. 3.1 we will specify the conditions which have to be sat-
isfied for a problem to have a PTAS (an FPTAS).

2.2.11 Offline algorithms vs. online algorithms

We have assumed so far that all input data of an algorithm are known at the
moment of the start of execution of the algorithm. However, such a complete
knowledge is not always possible. Therefore, we can divide all algorithms into
offline algorithms and online algorithms, depending on whether the whole
input data are available or not when an algorithm begins its execution. These
two classes of algorithms are defined as follows.

Definition 2.17. (Offline algorithm and online algorithm)
(a) An algorithm is called an offline algorithm if it processes its input as one
unit and the whole input data are available at the moment of the start of
execution of this algorithm.
(b) An algorithm is called an online algorithm if it processes its input piece
by piece and only a part of the input is available at the moment of the start
of execution of this algorithm.
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Remark 2.18. Sometimes, even the data concerning a piece of input of an on-
line algorithm may be known only partially. In this case, the online algorithm
is called a semi-online algorithm.

An online (a semi-online) algorithm can be evaluated by its competitive
ratio. The ratio is a counterpart of the worst-case ratio for an approximation
algorithm (cf. Definition 2.13) and it can be defined as follows.

Definition 2.19. (c-competitive algorithm and competitive ratio)
Let A(I) and OPT (I) denote the solutions generated by an online (semi-
online) algorithm A and by optimal offline algorithm, respectively, for a given
instance I of a minimization problem.
(a) Algorithm A is called c-competitive if there exist constant values c and k
such that A(I) ≤ c ·OPT (I) + k for all I.
(b) The constant c defined as above is called the competitive ratio of algo-
rithm A.

Remark 2.20. Definition 2.19 (a) concerns an online minimization algorithm.
An online maximization algorithm is c-competitive if there exist constant
values c and k such that A(I) ≥ c ·OPT (I) + k for all I.

Remark 2.21. In general, the constant k from Definition 2.19 is a non-zero
value. In the case of the problems considered in the book, we have k = 0.

2.2.12 Heuristic algorithms

Sometimes, it is difficult to establish the worst-case ratio (the competitive ra-
tio) of an approximation (online) algorithm. An algorithm is called a heuristic
algorithm (a heuristic, in short) if its worst-case ratio is unknown. This means
that one cannot predict the behaviour of this algorithm for all instances of
the considered problem.

The efficiency of a heuristic algorithm can be evaluated with a computa-
tional experiment . In the experiment, a set of test instances is generated and
the solutions obtained by the heuristic under evaluation are compared with
optimal solutions found by an exact algorithm.

2.2.13 Greedy algorithms

A huge spectrum of heuristics is known. An example of a simple heuristic is
the so-called greedy algorithm.

A greedy algorithm repeatedly executes a procedure which tries to con-
struct a solution by choosing a locally best partial solution at each step. In
some cases, such a strategy leads to finding optimal solutions. In general, how-
ever, greedy algorithms produce only relatively good suboptimal solutions.
Therefore, for more complex problems more sophisticated algorithms such as
local search algorithms have been proposed.
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2.2.14 Local search algorithms

Other examples of heuristics are local search algorithms. These algorithms
start from an initial solution and iteratively generate a neighbourhood of the
solution which is currently the best one. The neighbourhood is a set of all
solutions that can be obtained from the current solution by feasible moves.
The moves are performed by different operators whose definitions depend on
a particular problem. The aim of an operator is to produce a new feasible
solution from another feasible solution.

Given a neighbourhood and all feasible moves, a local search algorithm
finds a new solution by using a strategy of local search of the neighbourhood.

The above described procedure of finding a new solution by a local search
algorithm is performed until a stop condition is met. In this case, the algorithm
stops, since the further decrease (increase) of the minimized (maximized) ob-
jective function is very unlikely.

2.2.15 Metaheuristics

An important group of heuristics algorithms is composed of metaheuristics. A
metaheuristic is a template of a local search algorithm. The template includes
a number of control parameters which have an impact on the quality of the
solutions that are generated by the given metaheuristic and the conditions
that cause the termination of its execution.

Examples of metaheuristics are simulated annealing , tabu search and evo-
lutionary algorithms. In the metaheuristics, different complicated strategies
are applied to construct a new solution from a current solution.

2.2.16 The presentation of algorithms

Throughout this book, algorithms will be presented in a pseudo-code similar
to Pascal. The formulation of an algorithm in the pseudo-code will start with
a header with the name of the algorithm, followed by a description of its
input and output. The remaining part of the pseudo-code will be divided into
sections which will correspond to particular steps of the algorithm.

In the pseudo-code, we will use standard statements of Pascal such as
conditional jump if .. then .. else, iterative loop for .. do, conditional
loops while .. do and repeat .. until. The exit statement will denote an
immediate termination of the execution of a loop and passing the control to the
first statement after the loop. The assignment operator will be denoted by the
symbol ‘←’. The instruction of printing a message will be denoted by write.
The return statement will denote the end of the execution of the current
pseudo-code and the returning of the specified value. The stop statement will
denote unconditional halting of the execution of a given algorithm.

The level of nesting in complex statements will be denoted by indentation
rather than the begin .. end statement. The necessary comments will be
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printed in teletype font and preceded by the symbol ‘�’. The consecutive
operations of an algorithm usually will be followed by a semicolon (‘;’). The
continuation of the previous line of pseudo-code will be denoted by the symbol
‘↪→’. The last statement of an algorithm will be followed by a dot (‘.’).

As an example of application of the pseudo-code, we present the branch-
and-bound algorithm, which is discussed earlier in the section. Let F denote
the set of all possible solutions to an optimization problem.

Algorithm BranchAndBound

Input: a suboptimal solution s0, criterion f
Output: an optimal solution s�

� Step 1: initialization
U ← f(s0);
s� ← s0;
L ← F;

� Step 2: the main loop
while (L �= ∅) do

Choose a solution stmp ∈ L;
L ← L \ {stmp};
Generate all child solutions sn1 , sn2 , . . ., snk

of stmp; � branching
for i ← n1 to nk do � bounding

Calculate LB(sni
);

if (LB(sni
) < U) then

if (sni
is a complete solution) then

U ← LB(sni
);

s� ← sni

else L ← L ∪ {sni
};

� Step 3: the final solution
return s�.

Remark 2.22. Throughout this book, pseudo-codes of exact polynomial-time
algorithms, enumerative algorithms and heuristic algorithms will be denoted
by symbols Ai, Ej and Hk, respectively, where i, j and k will denote the
number of the consecutive algorithm.

Remark 2.23. The formulations of algorithms presented in this book slightly
differ from the original formulations. The reason for that is the desire to unify
the notation and the way of presentation. Therefore, some variable names are
changed, added or deleted, and conditional loops are used instead of uncon-
ditional jump statements.

With these remarks, we end the presentation of fundamental concepts con-
cerning algorithms. In subsequent chapters, we will introduce basic definitions
and results concerning NP-complete problems (Chap. 3), the scheduling the-
ory (Chap. 4) and time-dependent scheduling (Chap. 5).
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NP-complete problems

The theory of NP-completeness has a great impact on the scheduling
theory, since the knowledge of the complexity status of a problem allows

to facilitate further research of the problem. Therefore, in this chapter, we
recall the fundamental concepts related to NP-completeness.

Chapter 3 is composed of three sections. In Sect. 3.1, we recall the basic
definitions and results concerning the theory ofNP-completeness. In Sect. 3.2,
we formulate all NP-complete problems, which appear in NP-completeness
proofs presented in this book. The chapter is completed with bibliographic
notes in Sect. 3.3.

3.1 Basic definitions and results

Let P (NP) denote the class of all decision problems solved in polynomial
time by a deterministic (non-deterministic) Turing machine.

If a decision problem P ∈ P, it means that we can solve this problem by a
polynomial-time algorithm. If a decision problem P ∈ NP, it means that we
can verify in polynomial time whether a given solution to P has the properties
specified in the formulation of this problem. (Notice that if we know how to
solve a decision problem in polynomial time, we can also verify in polynomial
time any solution to the problem. Hence, P ⊆ NP.)

Now we introduce the concept of a polynomial-time transformation.

Definition 3.1. (A polynomial-time transformation)
A polynomial-time transformation of a decision problem P ′ into a decision
problem P is a function f : DP ′ → DP satisfying the following conditions:
(a) the function can be computed in polynomial time ;
(b) for all instances I ∈ DP ′ , there exists a solution to I if and only if there
exists a solution to f(I) ∈ DP .
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If there exists a polynomial-time transformation of the problem P ′ to
the problem P (i.e., if P ′ is polynomially transformable to P ), we will write
P ′ ∝ P .

Definition 3.2. (An NP-complete problem)
A decision problem P is said to be NP-complete, if P ∈ NP and P ′ ∝ P for
any P ′ ∈ NP.

In other words, a problem P is NP-complete if any solution to P can
be verified in polynomial time and any other problem from the NP class is
polynomially transformable to P.

Since the notion of an NP-complete problem is one of the fundamental
notions in the complexity theory, some remarks are necessary.

Remark 3.3. If for a problem P and any P ′ ∈ NP we have P ′ ∝ P, the
problem P is said to be NP-hard .

Remark 3.4. The problems which are NP-complete (NP-hard) with respect
to the binary encoding scheme become polynomial with respect to the unary
encoding scheme. Therefore, such problems are also called NP-complete
(NP-hard) in the ordinary sense, ordinary NP-complete (NP-hard) or binary
NP-complete (NP-hard) problems.

Remark 3.5. All NP-complete problems are related to each other in the sense
that a polynomial-time algorithm which would solve at least oneNP-complete
problem would solve all NP-complete problems. Therefore, NP-complete
problems most probably do not belong to the P class.

Remark 3.6. Since P ⊆ NP and since no polynomial-time algorithm has
been found so far for any problem from the NP class, the question whether
NP ⊆ P is still open. This fact implies conditional truth of NP-completeness
results: they hold, unless P = NP.

Remark 3.7. NP-completeness of a problem is a very strong argument for the
conjecture that this problem cannot be solved by a polynomial-time algorithm,
unless P = NP. (An NP-complete problem, however, may be solved by a
pseudopolynomial-time algorithm.)

The class of all NP-complete problems will be denoted by NPC.

Proving the NP-completeness of a decision problem immediately from
Definition 3.2 is usually a difficult task, since we have to show that any prob-
lem from the NP class is polynomially transformable to our problem. Hence,
in order to prove that a decision problem is NP-complete, the following result
is commonly used.

Lemma 3.8. (Basic properties of the ∝ relation)
(a) The relation ∝ is transitive, i.e., if P1 ∝ P2 and P2 ∝ P3, then P1 ∝ P3.
(b) If P1 ∈ P and P1 ∝ P2, then P2 ∈ P.
(c) If P1 and P2 belong to NP, P1 is NP-complete and P1 ∝ P2, then P2 is
NP-complete.
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Proof. (a) See Garey and Johnson [85, Chap. 2, Lemma 2.2].
(b) See Garey and Johnson [85, Chap. 2, Lemma 2.1].
(c) See Garey and Johnson [85, Chap. 2, Lemma 2.3]. !

Now, by Lemma 3.8 (c), in order to prove that a decision problem P is
NP-complete, it is sufficient to show that P ∈ NP and that there exists an
NP-complete problem P ′ that is transformable to P .

In Sect. 2.2, the so-called pseudopolynomial algorithms were defined.
Pseudopolynomial algorithms exist only for some NP-complete problems.
Hence, there is a need to characterize in more detail those problems from
the NPC class for which such algorithms exist.

Given a decision problem P, let Length : DP → Z+ denote the function
returning the number of symbols used to describe any instance I ∈ DP and let
Max : DP → Z+ denote the function returning the magnitude of the largest
number in any instance I ∈ DP .

For any problem P and any polynomial q over Z, let Pq denote the sub-
problem of P obtained by restricting P to instances I satisfying the inequality
Max(I) ≤ q(Length(I)).

Definition 3.9. (A strongly NP-complete problem)
A decision problem P is said to be strongly NP-complete (NP-complete in
the strong sense) if P ∈ NP and if there exists a polynomial q over Z for
which the problem Pq is NP-complete.

In other words, a decision problem is NP-complete in the strong sense
if the problem is NP-complete in the ordinary sense even if we restrict it to
these instances in which the maximum value in input is polynomially bounded
with respect to the length of the input.

Since the notion of an NP-complete problem in the strong sense is
as important as the notion of an NP-complete problem, a few remarks
are necessary.

Remark 3.10. If for a problem P there exists a polynomial q over Z for which
the problem Pq is NP-hard, the problem P is said to be strongly NP-hard
(NP-hard in the strong sense).

Remark 3.11. Problems which are NP-complete (NP-hard) in the strong
sense with respect to the binary encoding scheme, will remain NP-complete
(NP-hard) also with respect to the unary encoding scheme. Hence, the prob-
lems are sometimes called unary NP-complete (NP-hard).

Remark 3.12. The notion of strongNP-completeness allows to divide all prob-
lems from the NPC class into the problems that can be solved by a pseu-
dopolynomial algorithm and the problems that cannot be solved by such an
algorithm.
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Remark 3.13. A decision problem which is NP-complete in the strong sense
cannot be solved by a pseudopolynomial-time algorithm unless P = NP and
unless this problem is a number problem. (A problem P is called a number
problem, if there exists no polynomial p such that Max(I) ≤ p(Length(I))
for any instance I ∈ DP . The NP-complete problems given in Sect. 3.2 are
examples of number problems.)

Remark 3.14. If a problem is NP-complete in the ordinary sense, then for
the problem there is no difference between a pseudopolynomial and a poly-
nomial algorithm. Such a distinction, however, exists for a problem that is
NP-complete in the strong sense.

The class of all stronglyNP-complete problems will be denoted by SNPC.

Since in order to prove that an optimization problem is ordinary (strongly)
NP-hard it is sufficient to show that its decision counterpart is ordinary
(strongly) NP-complete, from now on we will mainly consider the problems
which are ordinary (strongly) NP-complete.

As in the case of NP-complete problems, it is not easy to prove that a
decision problem is NP-complete in the strong sense, using Definition 3.9.
The notion of a pseudopolynomial transformation is commonly used instead.

Definition 3.15. (A pseudopolynomial transformation)
A pseudopolynomial transformation from a decision problem P to a decision
problem P ′ is a function f : DP → DP ′ such that
(a) for all instances I ∈ DP there exists a solution to I if and only if there
exists a solution to f(I) ∈ DP ′ ;
(b) f can be computed in time which is polynomial with respect to Max(I)
and Length(I);
(c) there exists a polynomial q1 such that for all instances I ∈ DP , there holds
the inequality q1(Length′(f(I))) ≥ Length(I);
(d) there exists a two-variable polynomial q2 such that for all instances
I ∈ DP , there holds the inequality Max′(f(I)) ≤ q2(Max(I), Length(I)),
where functions Length() and Max() correspond to the problem P and func-
tions Length()′ and Max()′ correspond to the problem P ′.

The application of the pseudopolynomial transformation simplifies proofs
of the strong NP-completeness, since there holds the following result.

Lemma 3.16. (Basic properties of the pseudopolynomial transformation)
(a) If P ′ ∈ NP, P is NP-complete in the strong sense and if there exists a
pseudopolynomial transformation from P to P ′, then P ′ is NP-complete in
the strong sense.
(b) If P ′ ∈ NP, P is NP-complete in the strong sense and if there exists
a polynomial transformation from P to P ′, then P ′ is NP-complete in the
strong sense.

Proof. (a) See Garey and Johnson [85, Chap. 4, Lemma 4.1]. !
(b) Note that any polynomial transformation is a pseudopolynomial trans-

formation as well. Applying Lemma 3.16 (a), we obtain the result. � 
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We complete the section with results concerning the application of approx-
imation algorithms and approximation schemata for NP-complete problems.

Theorem 3.17. If there exists a polynomial q of two variables such that for
any instance I ∈ DP , there holds the inequality

OPT (I) < q(Length(I),Max(I)),

then from the existence of an FPTAS for a problem P there follows the exis-
tence of a pseudopolynomial approximation algorithm for this problem.

Proof. See Garey and Johnson [85, Chap. 6]. !

Lemma 3.18. Let P be an optimization problem with integer solutions and
let the assumptions of Theorem 3.17 be satisfied. If P is NP-hard in the strong
sense, then it cannot be solved by an FPTAS unless P = NP.

Proof. The result is a corollary from Theorem 3.17. � 

3.2 Examples of NP-complete problems

The following NP-complete problems will be used in NP-completeness proofs
presented in this book.

PARTITION PROBLEM (PP): given A ∈ Z+ and a set X = {x1, x2, . . . , xk}
of positive integers,

∑k
i=1 xi = 2A, does there exist a subset X ′ ⊂ X such

that
∑

xi∈X′ xi =
∑

xi∈X\X′ xi = A?
The PP problem is NP-complete in the ordinary sense (see Garey and

Johnson [85, Chap. 3, Theorem 3.5]).

SUBSET SUM (SS): given C ∈ Z+, a set R = {1, 2, . . . , r} and a value ui ∈ Z+

for each i ∈ R, does there exist a subset R′ ⊆ R such that
∑

i∈R′ ui = C?
The SS problem is NP-complete in the ordinary sense (see Karp [162]).

SUBSET PRODUCT (SP): given B ∈ Z+, a set P = {1, 2, . . . , p} and a
value yi ∈ Z+ for each i ∈ P , does there exist a subset P ′ ⊆ P such that∏

i∈P ′ yi = B?
The SP problem isNP-complete in the ordinary sense (see Johnson [158]).

EQUAL PRODUCTS PROBLEM (EPP): given a set Q = {1, 2, . . . , q} and
a value zi ∈ Z+ for each i ∈ Q such that

∏
i∈Q zi = E2 for a certain E ∈ Z+,

does there exist a subset Q′ ⊂ Q such that
∏

i∈Q′ zi =
∏

i∈Q\Q′ zi = E?

In order to illustrate the main steps of typical NP-completeness proof, we
will show that the EPP problem is computationally intractable.

Lemma 3.19. The EPP problem is NP-complete in the ordinary sense.
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Proof. We will show that the SP problem is polynomially transformable to
the EPP problem and therefore, by Lemma 3.8 (c), the latter problem is
NP-complete in the ordinary sense.

Consider the following transformation from the SP problem: q = p + 2,
zi = yi for 1 ≤ i ≤ p, zp+1 = 2Y

B , zp+2 = 2B, threshold G = 2Y, where
Y =

∏
i∈P yi.

First, note that the above transformation is polynomial. Second, since for
a given Q′ ⊂ Q we can check in polynomial time whether

∏
i∈Q′ zi = E, we

have EPP ∈ NP.
Hence, to end the proof it is sufficient to show that the SP problem has a

solution if and only if the EPP problem has a solution.
If the SP problem has a solution, define Q′ := P ′ ∪{zp+1}. Then it is easy

to check that
∏

i∈Q′ zi = 2Y = G. Hence the EPP problem has a solution.
If the EPP problem has a solution, then there exists a set Q′ ⊂ Q such

that
∏

i∈Q′ zi ≤ G = 2Y. Since
∏

i∈Q zi = 4Y 2 and Q′ ∩ (Q \ Q′) = ∅, the
inequality

∏
i∈Q′ zi < 2Y does not hold. Hence it must be

∏
i∈Q′ zi = 2Y.

Since zp+1×zp+2 = 4Y, the elements zp+1 and zp+2 cannot both belong to
set Q′. Assume first that zp+1 ∈ Q′. Then

∏
i∈Q′∪{p+1} zi =

∏
i∈Q′ zi×zp+1 =

∏
i∈Q′

2Y
B × zp+1 = 2Y. Hence

∏
i∈Q′ zi =

∏
i∈Q′ yi = B and the SP problem

has a solution. If zm+1 ∈ Q \Q′, then by similar reasoning as above we have∏
i∈Q\Q′\{p+1} yi = B and the SP problem has a solution as well. �

3-PARTITION (3-P): given K ∈ Z+ and a set C = {c1, c2, . . . , c3h} of 3h
integers such that K

4 < ci < K
2 for 1 ≤ i ≤ 3h and

∑3h
i=1 ci = hK, can C be

partitioned into disjoint sets C1, C2, . . . , Ch such that
∑

ci∈Cj
ci = K for each

1 ≤ j ≤ h?
The 3-P problem is NP-complete in the strong sense (see Garey and

Johnson [85, Sect. 4.2, Theorem 4.4]).

NON-NUMBER 3-PARTITION (N3P): given Z ∈ Z+ and 3w positive inte-
gers z1, z2, . . . , z3w such that

∑3w
i=1 hi = wZ, where zi is bounded by a poly-

nomial of w and Z
4 < zi < Z

2 for 1 ≤ i ≤ 3w, does there exist a partition of set
{1, 2, . . . , 3w} into w disjoint subsets Z1, Z2, . . . , Zw such that

∑
i∈Zj

zi = Z
for 1 ≤ j ≤ w?

The N3P problem is NP-complete in the ordinary sense (see Bachman
et al. [13]).

4-PRODUCT (4-P): given D ∈ Q+, a set N = {1, 2, . . . , 4p} and a value
D

1
5 < ui < D

1
3 ∈ Q+ for each i ∈ N ,

∏
i∈N ui = Dp, do there exist dis-

joint subsets N1, N2, . . . , Np such that
⋃p

i=1 Ni = N and
∏

i∈Nj
ui = D for

1 ≤ j ≤ p?

The 4-P problem, which is a multiplicative version of the 4-PARTITION
problem (see Garey and Johnson [85, Sect. 4.2, Theorem 4.3]), isNP-complete
in the strong sense (see Kononov [169]).
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KNAPSACK (KP): given U,W ∈ Z+, a set K = {1, 2, . . . , k} and values
ui ∈ Z+ and wi ∈ Z+ for each k ∈ K, does there exist K ′ ⊆ K such that∑

k∈K′ uk ≤ U and
∑

k∈K′ wk ≤ W?

The KP problem is NP-complete in the ordinary sense (see Karp [162]).

BIN PACKING (BP): given T, V ∈ Z+, a set L = {1, 2, . . . , l} and values
ui ∈ Z+ for each l ∈ L, does there exist a partition of L into disjoint sets
L1, L2, . . . , LV such that

∑
l∈Lk

ul ≤ T for 1 ≤ k ≤ V ?

The BP problem is NP-complete in the strong sense (see Garey and
Johnson [85, p. 226]).

With this remark, we end the presentation of basic definitions and re-
sults concerning NP-complete problems. In Chap. 4 and Chap. 5, we will
introduce the basics of the scheduling theory and time-dependent scheduling,
respectively.

3.3 Bibliographic notes

The definitions and notions of the theory of NP-completeness presented in
this chapter are expressed in terms of decision problems and transformations
between these problems. Alternatively, these definitions and notions can be
expressed in terms of languages and reductions between languages.

Ausiello et al. [9], Bovet and Crescenzi [31], Garey and Johnson [85],
Hopcroft and Ullman [139], Papadimitriou [233], Savage [250], Sipser [258],
Wagner and Wechsung [276] present the theory of NP-completeness from
different perspectives.

From Definition 3.2, it does not follow that NP-complete problems exist
at all. The fact that NPC �= ∅ was proved indepedently by Cook [63] in 1971
and Levin [200] in 1973.

The classes P, NP and NPC have a fundamental meaning in the com-
plexity theory. Johnson [157] presents a detailed review of other complexity
classes.

The list of NP-complete problems, initiated by Cook [63], Karp [162]
and Levin [200], contains a great number of problems and is still growing.
Ausiello et al. [9], Brucker and Knust [35], Garey and Johnson [85] and
Johnson [158] present extensive excerpts from this list, including problems
from different areas of computer science and discrete mathematics.

The functions Length() and Max() are discussed in detail by Garey and
Johnson [85, Sect. 4.2].
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Basics of the scheduling theory

Time-dependent scheduling is a branch of the scheduling theory. Therefore,
before formally introducing the time-dependent scheduling, we need a

precise formulation of fundamentals of the scheduling theory. In this chapter,
we recall the basic facts concerning the scheduling theory.

Chapter 4 is composed of five sections. In Sect. 4.1, we define the param-
eters of problems considered in the framework of the scheduling theory. In
Sect. 4.2, we introduce the notion of schedule. In Sect. 4.3, we define different
criteria of optimality of schedule. In Sect. 4.4, we introduce the notation α|β|γ,
which is used in the book for symbolic description of scheduling problems. The
chapter is completed with bibliographic notes in Sect. 4.5.

4.1 Parameters of the scheduling problem

Regardless of its nature, every scheduling problem S can be formulated as
a quadruple, S = (J ,M,R, ϕ), where J is a set of pieces of work to be
executed, M is a set of entities that will perform the pieces of work, R is a
set of additional entities needed for performing these pieces of work and ϕ is a
function that is used as a measure of quality of solutions to the problem under
consideration. We start this section with a brief description of the parameters
of the quadruple.

4.1.1 Parameters of the set of jobs

The elements of set J are called jobs. Unless otherwise specified, we will as-
sume that |J | = n, i.e., there are n jobs. We will denote jobs by J1, J2, . . . , Jn.
The set of indices of jobs from the set J will be denoted by NJ .

Job Jj , 1 ≤ j ≤ n, consists of nj operations, O1,j , O2,j , . . . , Onj ,j . For each
operation, we define the processing time of the operation, i.e., the time needed
for processing this operation. (If a job consists of one operation only, we will
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identify the job with the operation.) The processing time of job Jj (operation
Oi,j) will be denoted by pj (pi,j), where 1 ≤ j ≤ n (1 ≤ i ≤ nj and 1 ≤ j ≤ n).

For job Jj , 1 ≤ j ≤ n, there may be defined a ready time, rj , a deadline,
dj , and a weight , wj . The first operation of job Jj cannot be started before
the ready time rj and the last operation of the job cannot be completed after
the deadline dj . We will say that there are no ready times (deadlines) if rj = 0
(dj = ∞) for all j. The weight wj indicates the importance of job Jj compared
to other jobs. We will say that job weights are equal, if wj = 1 for all j.

Throughout the book, unless otherwise stated, we will assume that job
(operation) parameters are positive integer numbers, i.e., pj (pi,j), rj , dj ,
wj ∈ Z

+ for 1 ≤ j ≤ n (1 ≤ i ≤ nj and 1 ≤ j ≤ n).

Example 4.1. Let the set J be composed of 4 jobs, J = {J1, J2, J3, J4}, such
that p1 = 1, p2 = 2, p3 = 3 and p4 = 4, with no ready times and deadlines,
and with unit job weights. Then rj = 0, dj = +∞ and wj = 1 for 1 ≤ j ≤ 4.

There may be also defined precedence constraints among jobs, which reflect
the fact that some jobs have to be executed before others. The precedence
constraints correspond to a partial order relation ≺ ⊆ J ×J . We will assume
that precedence constraints between jobs can be given in the form of a set of
chains, a tree, a forest, a series-parallel or an arbitrary acyclic digraph.

If precedence constraints are defined on the set of jobs, ≺�= ∅, we will call
the jobs dependent ; otherwise we will say that the jobs are independent .

Example 4.2. The jobs from Example 4.1 are independent, ≺= ∅. If we assume
that job precedence constraints in the set are as in Fig. 1.1b or Fig. 1.2d, then
the jobs are dependent.

Jobs can be preemptable or non-preemptable. If a job is preemptable, then
the execution of this job can be interrupted at any time without any cost, and
resumed at a later time on the machine on which it was executed before the
preemption, or on another one. Otherwise, the job is non-preemptable.

In this book, we will mainly consider scheduling problems with non-
preemptable and independent jobs. We will also assume that there are no
ready times, no deadlines and all job weights are equal, unless otherwise spec-
ified.

4.1.2 Parameters of the set of machines

The jobs are performed by the elements of set M, called machines. (Some-
times these elements have other names than ‘machines’. For example, in
scheduling problems that arise in computer systems, the elements of set M
are called processors. Throughout the book, we will use the term ‘machine’
to denote a single element of set M.) We will asume that |M| = m, i.e., we
are given m machines. The machines will be denoted by M1,M2, . . . ,Mm.
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In the simplest case, when m = 1, we deal with a single machine. Despite
its simplicity, this case is worth considering, since it appears in more complex
machine environments described below.

If all m ≥ 2 machines are of the same kind and have the same process-
ing speed, we deal with parallel identical machines. In this case, job Jj with
the processing time pj , 1 ≤ j ≤ n, can be performed by any machine and its
execution on the machine will take pj units of time.

If among the available machines, there is a slowest machine, M1, and any
other machine, Mk �= M1, has a speed sk that is a multiple of the speed
s1 of machine M1, we deal with parallel uniform machines. In this case, the
execution of job Jj on machine Mk will take pj

sk
units of time.

Finally, if the machines differ in speed but the speeds depend on the per-
formed job, we deal with parallel unrelated machines. In this case, the symbol
pi,j is used for denoting the processing time of job Jj on machine Mi, where
1 ≤ i ≤ m and 1 ≤ j ≤ n.

So far, we assumed that all machines in a machine environment perform
the same functions, i.e., any job that consists of only one operation can be
performed on any machine. If the available machines have different functions,
i.e., some of them cannot perform some jobs, we deal with dedicated machines.
In this case, any job consists of a number of different operations, which are
performed by different machines. We will consider three main types of such
machine environment: flow shop, open shop and job shop.

A flow shop consists of m ≥ 2 machines, M1,M2, . . . ,Mm. Each job con-
sists of m operations, nj = m for 1 ≤ j ≤ n. The i-th operation of any job has
to be executed by machine Mi, 1 ≤ i ≤ m. Moreover, this operation can start
only if the previous operation of this particular job has been completed. All
jobs follow the same route from the first machine to the last one. (In other
words, precedence constraints between operations of any job in a flow shop
are in the form of a chain whose length is equal to the number of machines in
the flow shop.)

An open shop consists of m ≥ 2 machines. Each job consists of m opera-
tions, nj = m for 1 ≤ j ≤ n, but the order of processing of operations can
be different for different jobs. This means that each job has to go through all
machines but the route can be arbitrary. (In other words, the operations of
any job in an open shop are independent and the number of the operations is
equal to the number of machines in the open shop.)

A job shop consists of m ≥ 2 machines. Each job can consist of nj oper-
ations, where not necessarily nj = m for 1 ≤ j ≤ n. Moreover, each job has
its own route of performing its operations, and it can visit a certain machine
more than once or may not visit some machines at all. (In other words, prece-
dence constraints between operations of any job in a job shop are in the form
of a chain and the number of operations may be arbitrary.)

Remark 4.3. In some dedicated-machine environments, additional constraints,
which restrict the job flow through the machines, may be imposed on available



38 4 Basics of the scheduling theory

machines. For example, a flow shop may be of the ‘no-wait’ type. The no-wait
constraint means that buffers between machines are of zero capacity and a
job after completion of its processing on one machine must immediately start
on the next (consecutive) machine.

In all the above cases of dedicated machine environments, the symbol pi,j

will be used for denoting the processing time of operation Oi,j of job Jj , where
1 ≤ i ≤ nj = m and 1 ≤ j ≤ n for flow shop and open shop problems, and
1 ≤ i ≤ nj and 1 ≤ j ≤ n for job shop problem.

Remark 4.4. Throughout the book, unless otherwise stated, we will assume
that jobs are processed on machines that are continuously available. In some
applications, however, it is required to consider machine non-availability pe-
riods in which the machines are not available for processing due to mainte-
nance operations, rest periods or machine breakdowns. We will come back to
scheduling problems with machine non-availability periods in Sect. 6.1.

We will not define other types of machine environment, since, in this book,
we will consider scheduling problems on a single machine, on parallel machines
and on dedicated machines only.

4.1.3 Parameters of the set of resources

In some problems, the execution of jobs requires additional entities other than
machines. The entities, elements of set R, are called resources. The resources
may be continuous or discrete. A resource is continuous if it can be allocated
to a job in an arbitrary amount. A resource is discrete if it can be allocated
to a job only in a non-negative integer number of units.

Example 4.5. Energy, gas and power are continuous resources. Tools, robots
and automated guided vehicles are discrete resources. �

In real-world applications, the available resources are usually constrained.
A resource is constrained if it can be allocated only in an amount which is
between the minimum and the maximum number of units of the resource;
otherwise, it is unconstrained . Example 4.5 concerns constrained resources.
There also exist applications in which constrained resources are available in
a huge number of units. These resources, as a rule, can be considered as
unconstrained resources.

Example 4.6. Virtual memory in computer systems, manpower in problems of
scheduling very-large-scale projects and money in some finance management
problems are unconstrained resources. �

Since, in this book, we consider the scheduling problems in which jobs do
not need additional resources for execution, R = ∅, we omit a more detailed
description of the parameters of set R.
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4.2 The notion of schedule

The value of a criterion function may be calculated once a solution to the
instance of a particular scheduling problem is known. Before we define possible
forms of the criterion function, we describe the solution.

Given a description of sets J and M for a scheduling problem, we can
start looking for a solution to the problem. Roughly speaking, a solution to a
scheduling problem is an assignment of machines to jobs in time that satisfies
some (defined below) requirements. The solution will be called a schedule. For
the purpose of this book, we assume the following definition of the notion.

Definition 4.7. (A schedule)
A schedule is an assignment of machines (and possibly resources) to jobs in
time such that the following conditions are satisfied:
(a) at every moment of time, each machine is assigned to at most one job and
each job is processed by at most one machine;
(b) job Jj, 1 ≤ j ≤ n, is processed in time interval 〈rj ,+∞);
(c) all jobs are completed;
(d) if there exist precedence constraints for some jobs, then the jobs are exe-
cuted in the order consistent with these constraints;
(e) if there exist resource contraints, then they are satisfied;
(f) if jobs are non-preemptable, then no job is preempted; otherwise the number
of preemptions of each job is finite.

Since the notion of schedule plays a fundamental role in the scheduling
theory, we will now add a few remarks to Definition 4.7.

Remark 4.8. An arbitrary schedule specifies two sets of time intervals. The
first set consists of the time intervals in which available machines perform
some jobs. In every interval of this kind, a job is executed by a machine. If
no job was preempted, then only one time interval corresponds to each job;
otherwise, a number of intervals correspond to each job. The first set is always
non-empty and the intervals are not necessarily disjoint. The second set, which
may be empty, consists of the time intervals in which the available machines
do not work. These time intervals will be called idle times of the machines.

Remark 4.9. In some dedicated machine environments, the available machines
may have some limitations which concern idle times. For example, a flow shop
may be of the ‘no-idle’ type. The no-idle constraint means that each machine,
once it commences its work, must process all operations assigned to it without
idle times. (Another constraint concerning the flow shop environment, ‘no-
wait’, is described in Remark 4.3.)

Remark 4.10. An arbitrary schedule is composed of a number of partial sched-
ules that correspond to particular machines. The partial schedules will be
called subschedules. The number of subschedules of a schedule is equal to the
number of machines in the schedule. Note that a schedule for a single machine
is identical with its subschedule.
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Remark 4.11. In some cases (e.g., no preemptions, no idle times, ready times
of all jobs are equal) a schedule may be fully described by the permutations of
indices of jobs that are assigned to particular machines in that schedule. The
permutation corresponding to such a schedule (subschedule) will be called a
job sequence (subsequence).

4.2.1 The presentation of schedules

Schedules are usually presented by Gantt charts. A Gantt chart is a two-
dimensional diagram composed of a number of labelled rectangles and a num-
ber of horizontal axes. When the rectangles represent jobs (operations) and
the axes correspond to machines, we say that the Gantt chart is machine-
oriented . When the rectangles represent machines and the axes correspond to
jobs (operations), the Gantt chart is job-oriented .

Throughout this book, we will use machine-oriented Gantt charts.

Example 4.12. Consider the set of jobs J defined as in Example 4.1. Since
the jobs are independent and there are no ready times and deadlines, any
sequence of the jobs corresponds to a schedule. An example schedule for this
set of jobs, corresponding to sequence (J4, J3, J1, J2), is depicted in Fig. 4.1.

Fig. 4.1: A schedule for Example 4.1

4.2.2 Parameters characterizing a job in schedule

If we know a schedule σ for an instance of a scheduling problem, then for any
job Jj , 1 ≤ j ≤ n, we may calculate the values of parameters characterizing
this job in schedule σ. Examples of such parameters are the starting time
Sj(σ), the completion time Cj(σ) = Sj(σ) + pj , the waiting time Wj(σ) =
Cj(σ) − rj − pj , the lateness Lj(σ) = Cj(σ) − dj and the tardiness Tj(σ) =
max{0, Lj(σ)} of the job Jj in schedule σ. (If it is clear which schedule we
will consider, we will omit the symbol σ and write Sj , Cj , Wj , Lj and Tj ,
respectively.)

Example 4.13. Consider the Gantt chart given in Fig. 4.1. From the chart we
can read, e.g., that S4 = 0 and C4 = 4, while S1 = 7 and C1 = 8.
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4.2.3 Types of schedules

As a rule, there can be found different schedules for a given scheduling prob-
lem S. The set of all schedules for a given S will be denoted by Z(S). The
schedules which compose the set Z(S) can be of different types. Throughout
this book, we will distinguish the following types of schedules.

Definition 4.14. (A feasible schedule)
(a) A schedule is said to be feasible if it satisfies all conditions of Defini-
tion 4.7, and if other conditions specific for a given problem are satisfied.
(b) A feasible schedule is said to be non-preemptive if no job has been pre-
empted; otherwise, it is preemptive.

Example 4.15. The schedule depicted in Fig. 4.1 is a feasible schedule for the
set of jobs from Example 4.1. Moreover, any other schedule obtained from the
schedule by a rearrangement of jobs is also a feasible schedule.

The set of all feasible schedules for a given scheduling problem S will be
denoted by Zfeas(S).

Definition 4.16. (A semi-active schedule)
A schedule is said to be semi-active if it is obtained from any feasible sched-
ule by shifting all jobs (operations) to start as early as possible but without
changing any job sequence.

In other words, a schedule is semi-active if jobs (operations) in the schedule
cannot be shifted to start earlier without changing the job sequence, violating
precedence constraints or ready times.

Example 4.17. The schedule depicted in Fig. 4.1 is a semi-active schedule for
the set of jobs from Example 4.1, since no job can be shifted to start earlier
without changing the job sequence.

Example 4.18. The schedule depicted in Fig. 4.2 is another feasible schedule
for the set of jobs from Example 4.1. The schedule, however, is not a semi-
active schedule, since we can shift job J2 one unit of time to the left.

Fig. 4.2: A feasible schedule for Example 4.6
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Remark 4.19. Since each job (operation) starts its execution as early as possi-
ble in any semi-active schedule, each semi-active schedule is completely char-
acterized by the job sequence (subsequences) corresponding to the schedule
(subschedules).

Remark 4.20. A schedule that is completely specified by the job sequence(s)
is called a permutation schedule.

Remark 4.21. For any job sequence, there exists only one semi-active schedule.

The set of all semi-active schedules for a given scheduling problem S will
be denoted by Zs−act(S).

Definition 4.22. (An active schedule)
A schedule is said to be active if it is obtained from any semi-active schedule
by shifting all jobs (operations) to start as early as possible even if the shifting
causes a change in some job sequence(s).

In other words, a schedule is active if jobs (operations) in the schedule
cannot be shifted to start earlier without violating precedence constraints or
ready times.

Example 4.23. The semi-active schedule from Fig. 4.1 is also an active schedule
for the set of jobs from Example 4.1.

The set of all active schedules for a given scheduling problem S will be
denoted by Zact(S).

Definition 4.24. (An optimal schedule)
A schedule is said to be optimal if the value of optimality criterion for the
schedule is optimal.

The set of all optimal schedules for a given scheduling problem S will be
denoted by Zopt(S).

Remark 4.25. The criteria of optimality of a schedule will be defined in Defi-
nition 4.29.

Remark 4.26. The optimal schedule need not be unique, i.e., |Zopt(S)| ≥ 1.

Definition 4.27. (A dominant set)
A set of schedules is said to be dominant if it contains at least one optimal
schedule.

Remark 4.28. Notice that there hold the inclusions Zact(S) ⊆ Zs−act(S) ⊂
Zfeas(S) ⊂ Z(S) and Zopt(S) ⊂ Zs−act(S).

In this book, we will consider mainly non-preemptive semi-active schedules.
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4.3 The criteria of schedule optimality

In general, the criterion of optimality in a scheduling problem can be an
arbitrary function, which has real values and has been defined on the set of
all feasible schedules for the problem. In this book, we will consider mainly
the following optimality criteria.

Definition 4.29. (Criteria of optimality of a schedule)
Let C1, C2, . . . , Cn be the completion times of jobs in a schedule. The criteria
of the maximum completion time (Cmax), the maximum lateness (Lmax), the
maximum tardiness (Tmax), the maximum cost (fmax), the total completion
time (

∑
Cj), the total weighted completion time (

∑
wjCj), the total machine

load (
∑

C
(k)
max), the number of tardy jobs (

∑
Uj) and the total cost (

∑
fj)

are defined as follows:
(a) Cmax := max

1≤j≤n
{Cj};

(b) Lmax := max
1≤j≤n

{Lj} := max
1≤j≤n

{Cj − dj};
(c) Tmax := max

1≤j≤n
{Tj} := max

1≤j≤n
{max{0, Lj}};

(d) fmax := max
1≤j≤n

{fj(Cj)}, where f1, f2, . . . , fn are given cost functions;

(e)
∑

Cj :=
∑n

j=1 Cj;
(f)

∑
wjCj :=

∑n
j=1 wjCj;

(g)
∑

C
(k)
max :=

∑m
j=1 C

(k)
max, where C

(k)
max denotes the maximum completion

time over all jobs assigned to machine Mk, 1 ≤ k ≤ m;
(h)

∑
Uj :=

∑n
j=1 Uj , where Uj := 0 if Lj ≤ 0 and Uj := 1 if Lj > 0;

(i)
∑

fj :=
∑n

j=1 fj(Cj), where f1, f2, . . . , fn are given cost functions.

Example 4.30. The schedule depicted in Fig. 4.2 is an optimal schedule for
the set of jobs from Example 4.1 with respect to the Cmax criterion. This
schedule, however, is not optimal with respect to the

∑
Cj citerion.

Since the criteria of optimality have a fundamental meaning to the schedul-
ing theory, we shall make a few remarks concerning the above definition.

Remark 4.31. Some of the above criteria are special cases of the lp norm (cf.
Definition 1.18). For example, if C = [C1, C2, . . . , Cn] is the vector of job
completion times in a schedule, then ‖C‖1 ≡

∑n
j=1 Cj and ‖C‖∞ ≡ Cmax.

We will come back to this topic in Chap. 12.

Remark 4.32. Some criteria may also be defined in terms of other criteria. For
example, Cmax := max

1≤j≤n
{Cj} ≡ max

1≤k≤m
{C(k)

max}.

Remark 4.33. The completion time of a job is the basic parameter character-
izing the job in a schedule, since the optimality criteria from Definition 4.29
are functions of the job completion times. Given any feasible schedule, the
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starting time of a job in the schedule is the startpoint of the first time inter-
val corresponding to the job. Similarly, the completion time of a job in the
schedule is the endpoint of the last time interval corresponding to the job.

Remark 4.34. The criteria of optimality of a schedule given in Definition 4.29
are single-valued functions. In Chap. 14, we will consider bicriterion schedul-
ing problems. In the chapter, we will extend the definition to include schedule
optimality criteria composed of two single-valued functions.

As a rule, the applied criterion of optimality of a schedule is minimized.
Therefore, the criteria that have properties that allow to find the optimum are
of practical interest. Examples of such criteria are regular criteria, introduced
by Conway et al. [62].

Definition 4.35. (A regular criterion)
Let C = [C1, C2, . . . , Cn] be the vector of job completion times and let
ϕ : C → R be a criterion function. Criterion ϕ is said to be a regular cri-
terion if for any other vector of job completion times, C ′ = [C ′

1, C
′
2, . . . , C

′
n],

the inequality ϕ(C ′) ≥ ϕ(C) holds if and only if there exists an index k,
1 ≤ k ≤ n, such that C ′

k ≥ Ck.

In other words, ϕ is a regular criterion only if it is a non-decreasing function
with respect to job completion times.

Example 4.36. The Cmax criterion (also called the schedule length or makespan)
and other criteria from Definition 4.29 are regular criteria. �

Example 4.37. An example of a non-regular criterion is the total absolute devi-
ation of job completion times,

∑
|Cj−dj | :=

∑n
j=1 |Cj−dj | ≡

∑n
j=1(Ej +Tj),

where Ej := max{0, dj − Cj}, for 1 ≤ j ≤ n, is the earliness of job Jj . �

Throughout this book, the value of the criterion function ϕ for a schedule
σ will be denoted by ϕ(σ). The optimal schedule and the optimal value of the
criterion ϕ will be denoted by σ� and ϕ� := ϕ(σ�), respectively.

The following result shows the importance of regular criteria.

Lemma 4.38. (A dominant set for regular criteria)
The set Zs−act(S) is dominant for regular criteria of optimality of schedule.

Proof. See Baker [14, Theorem 2.1], Conway et al. [62, Sect. 6.5]. !

From now on, we will assume that a scheduling problem is defined if the
sets J ,M,R have been described using the parameters given in Sect. 4.1 and
if the form of the criterion ϕ is known. If the parameters have been assigned
specific values, we deal with an instance of a given scheduling problem.

An algorithm which solves a scheduling problem will be called a scheduling
algorithm. Scheduling algorithms can be divided into offline and online algo-
rithms (cf. Definition 2.17). In the case of an offline scheduling algorithm, the
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input data concerning all jobs to be scheduled are given in advance, and the
schedule constructed by the algorithm exploits the knowledge about the whole
set of jobs. An online scheduling algorithm generates a schedule in a job-by-
job manner using only partial data concerning a single job that is currently
processed.

In this book, we will consider offline and online scheduling algorithms.

4.4 Notation of scheduling problems

For simplicity of presentation, we will denote the scheduling problems using
the α|β|γ notation, introduced by Graham et al. [125]. Our description of the
notation will be restricted only to the symbols used in this book.

The description of any scheduling problem in the α|β|γ notation is a com-
plex symbol composed of three fields, separated by the character ‘|’.

The first field, α, refers to the machine environment and is composed of
two symbols, α = α1α2. Symbol α1 characterizes the type of machine. If α1 is
an empty symbol, we deal with a single machine case. Otherwise, symbols P,
Q, R, F, O and J denote parallel identical machine, parallel uniform machine,
parallel unrelated machine, flow shop, open shop and job shop environment,
respectively. Symbol α2 denotes the number of machines. If α1 is not an empty
symbol and α2 = m, we deal with m ≥ 2 machines. If α1 is an empty symbol
and α2 = 1, we deal with a single machine.

Field β describes the parameters of the set of jobs. In this field, we will
use the following symbols (in parentheses we give the meaning of a particu-
lar symbol): pmtn (job preemption is allowed), chains, tree, ser-par, prec
(precedence constraints among jobs are in the form of a set of chains, a tree,
a series-parallel digraph or an arbitrary acyclic digraph), rj (a ready time is
defined for each job), dj (a deadline is defined for each job).

If no symbol appears in β, default values are assumed: no preemption, arbi-
trary (but fixed) job processing times, no additional resources, no precedence
constraints, no ready times and no deadlines.

Field γ contains the form of the criterion function, expressed in terms of
the symbols from Definition 4.29. The dash symbol (‘−’) in this field means
that testing for the existence of a feasible schedule is considered.

Example 4.39.
(a) The symbol 1|prec|

∑
wjCj denotes a single machine scheduling prob-

lem with arbitrary job processing times, arbitrary precedence constraints,
arbitrary job weights, no ready times, no deadlines and the total weighted
completion time criterion.

(b) The symbol Pm|rj = r, pj = 1, tree|Cmax denotes an m-identical-
machine scheduling problem with unit processing time jobs, a common ready
time for all jobs, no deadlines, precedence constraints among jobs in the form
of a tree and the maximum completion time criterion.
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(c) The symbol F2|no-wait|
∑

Cj denotes a two-machine ‘no-wait’ flow
shop problem (see Remark 4.3 for the description of the ‘no-wait’ constraint),
with arbitrary job processing times, no precedence constraints, no ready times,
arbitrary deadlines and the total completion time criterion.

(d) The symbol O3||Lmax denotes a three-machine open shop problem with
arbitrary job processing times, no precedence constraints, no ready times, ar-
bitrary deadlines and the maximum lateness criterion. (Note that since dead-
lines dj are used in definition of the Lmax criterion, symbol dj does not appear
in the field β.)

(e) The symbol Jm||Cmax denotes an m-machine job shop problem with
arbitrary job processing times, no precedence constraints, no ready times, no
deadlines and the maximum completion time criterion. �
Remark 4.40. In Sect. 5.3, we will extend the α|β|γ notation to include the
symbols describing time-dependent job processing times. In Sect. 6.1.1, we
will extend the notation further to include the symbols describing time-
dependent scheduling problems on machines with non-availability periods and
time-dependent batch scheduling problems.

With this remark, we end the presentation of the basics of the scheduling
theory. In Chap. 5, we will introduce time-dependent scheduling.
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present general description of scheduling problems.

Brucker [34, Chap. 1] presents a detailed description of different machine
environments.

B�lażewicz et al. [26] give a comprehensive description of the set R of
resources and problems of scheduling under resource constraints.

Definitions of criteria other than these from Definition 4.29 may be found
in B�lażewicz et al. [27, Chap. 3] and Brucker [34, Chap. 1].

Numerous books have been published on the scheduling theory, including
Baker [14], B�lażewicz et al. [26, 27], Brucker [34], Chrétienne et al. [60],
Coffman [61], Conway et al. [62], Dempster et al. [69], Elmaghraby [78],
French [84], Hartmann [133], Leung [198], Morton and Pentico [214], Muth
and Thompson [223], Parker [235], Pinedo [237], Rinnooy Kan [245], S�lowiński
and Hapke [259], Sule [262], Tanaev et al. [264, 266]. These books cover a
huge spectrum of different aspects of scheduling with single-valued criteria
and may serve as excellent references on the theory.

Problems of scheduling with multiple criteria are discussed by Dileepan
and Sen [71], Hoogeveen [137, 138], Lee and Vairaktarakis [191], Nagar
et al. [224] and T’kindt and Billaut [267].

Full explanation of the α|β|γ notation may be found, e.g., in B�lażewicz
et al. [27, Chap. 3], Graham et al. [125, Sect. 2] and Lawler et al. [186].
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Basics of time-dependent scheduling

This chapter completes the first, the introductory, part of the book. In
this chapter, we indicate the place of time-dependent scheduling in the

general framework of the scheduling theory, formulate the problems of time-
dependent scheduling in a more formal way and introduce the terminology
used throughout the whole book.

Chapter 5 is composed of five sections. In Sect. 5.1, we present a compar-
ison of the scheduling theory and time-dependent scheduling. In Sect. 5.2, we
give the formulation of a generic time-dependent scheduling problem, which is
the basis for all time-dependent scheduling problems considered in the book.
In Sect. 5.3, we introduce the terminology and notation used in the book
for describing time-dependent scheduling problems. In Sect. 5.4, we discuss
applications of time-dependent scheduling. The chapter is completed with
bibliographic notes in Sect. 5.5.

5.1 The scheduling theory vs. time-dependent scheduling

In Chap. 4, we briefly described the basics of the scheduling theory. The
following are the most important assumptions of this theory:

(A1) at every moment of time, each job (operation) can be processed by at
most one machine and each machine can process at most one job (operation);
(A2) processing speeds of machines may be different but during the execution
of jobs (operations) the speeds do not change in time;
(A3) the processing times of jobs (operations) are fixed and known in advance.

Throughout this book, the scheduling theory with assumptions (A1)–(A3)
will be called the classic scheduling theory , as opposed to the non-classic
scheduling theory , where at least one of these assumptions has been changed.

In the period of almost 60 years that elapsed since the classic scheduling
theory was formulated, numerous practical problems have appeared, which
could not be solved in the framework of this theory. The main reason for
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that was a certain restrictiveness of assumptions (A1)–(A3). For example, a
machine may have a variable speed of processing due to the changing state of
this machine, job processing times may increase due to job deterioration, etc.
In order to overcome these difficulties and to adapt the theory to cover new
problems, assumptions (A1)-(A3) were repeatedly modified. This, in turn,
led to new research directions in the scheduling theory, such as scheduling
multiprocessor tasks, scheduling on machines with variable processing speed
and scheduling jobs with variable processing times. For the completeness of
further presentation, we will now shortly describe each of these directions.

5.1.1 Scheduling multiprocessor tasks

In this case, assumption (A1) has been modified: the same operations (called
tasks) may be performed at the same time by two or more different machines
(processors).

The applications of scheduling multiprocessor tasks concern reliable com-
puting in fault-tolerant systems, which are able to detect errors and recover
the status of the systems from before an error. Examples of fault-tolerant
systems are aircraft control systems, in which the same tasks are executed
by two or more machines simultaneously in order to increase the safety of
the systems. Other applications of scheduling multiprocessor tasks concern
modelling the work of parallel computers, problems of dynamic bandwidth
allocation in communication systems and loom scheduling in textile industry.

5.1.2 Scheduling on machines with variable processing speeds

In this case, assumption (A2) has been modified: the machines have variable
processing speeds, i.e., the speeds change in time.

There are three main approaches to the phenomenon of the variable pro-
cessing speeds. In the first approach, it is assumed that the speed is described
by a differential equation and depends on a continuous resource. Alternatively,
the speed is described by a continuous (the second approach) or a discrete (the
third approach) function. In both cases, the speed depends on a resource that
is either continuous or discrete.

Scheduling with continuous resources has applications in such production
environments in which jobs are executed on machines driven by a common
power source, for example, common mixing machines or refueling terminals.
Scheduling with discrete resources is applied in modern manufacturing sys-
tems, in which jobs to be executed need machines as well as other resources
such as robots or automated guided vehicles.

5.1.3 Scheduling jobs with variable processing times

In this case, assumption (A3) has been modified: the processing times of jobs
are variable and can change in time.
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The variability of job processing times can be modelled in different ways.
For example, one can assume that the processing time of a job is a fuzzy
number, a function of a continuous resource, a function of the job waiting
time, a function of the position of the job in a schedule or is varying in some
interval between a certain minimum and maximum value.

Scheduling with variable job processing times has numerous applications,
e.g., in the modelling of the forging process in steel plants, manufacturing
of preheated parts in plastic molding or in silverware production, finance
management and scheduling maintenance or learning activities.

The time-dependent scheduling problems that we will consider in this book
are scheduling problems with variable job processing times.

5.2 Formulation of time-dependent scheduling problems

As we said in Sect. 5.1, in time-dependent scheduling problems, the processing
time of each job is variable. The general form of the job processing time is as
follows.

In parallel-machine time-dependent scheduling problems, the processing
time of each job depends on the starting time of the job, i.e.,

pj(Sj) = gj(Sj), (5.1)

where gj are arbitrary non-negative functions of Sj ≥ 0 for 1 ≤ j ≤ n.
In dedicated-machine time-dependent scheduling problems, the processing

time of each operation is in the form of

pi,j(Si,j) = gi,j(Si,j), (5.2)

where gi,j are arbitrary non-negative functions of Si,j ≥ 0 for 1 ≤ i ≤ nj and
1 ≤ j ≤ n.

These two forms of presentation, (5.1) and (5.2), are rarely used, since
they do not give us any information about the way in which the processing
times are changing.

The second way of describing the time-dependent processing time of a job,

pj(Sj) = aj + fj(Sj), (5.3)

where aj ≥ 0 and functions fj are arbitrary non-negative functions of Sj ≥ 0
for 1 ≤ j ≤ n, is more often encountered. Similarly, the following form of the
processing time of an operation,

pi,j(Si,j) = ai,j + fi,j(Si,j), (5.4)

where ai,j ≥ 0 and fi,j are arbitrary non-negative functions of Si,j ≥ 0 for
1 ≤ i ≤ nj and 1 ≤ j ≤ n, is more common than the form (5.2). The
main reason for that is the fact that in (5.3) and (5.4), we indicate the
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constant part aj (ai,j) and the variable part fj(Sj) (fi,j(Si,j)) of the job
(operation) processing time.

The constant part of a job (operation) processing time, aj (ai,j), will be
called the basic processing time.

Remark 5.1. The assumption that functions gj(Sj) and fj(Sj) (gi,j(Si,j) and
fi,j(Si,j)) are non-negative for non-negative arguments is essential and from
now on, unless otherwise stated, we will consider it to be satisfied.

Remark 5.2. Since the forms (5.3) and (5.4) of job processing times give us
more information, in further considerations, we will mainly use the functions
fj(Sj) (fi,j(Si,j)).

Remark 5.3. Since the starting time Sj is the variable on which the processing
time pj depends, we will write pj(t) and fj(t) instead of pj(Sj) and fj(Sj),
respectively. Similarly, we will write pi,j(t) and fi,j(t) instead of pi,j(Si,j) and
fi,j(Si,j), respectively.

Remark 5.4. A few authors (Cheng and Sun [45], Lee [192], Lee et al. [195],
Toksarı and Güner [268], Wang [281], Wang and Cheng [282, 290]) consid-
ered time-dependent scheduling problems with the so-called learning effect
(cf. Bachman and Janiak [12], Biskup [24]). Since, in this case, job processing
times are functions of both the starting time of the job and the job position
in the schedule, the problems of this type will be not studied in the book.

Other parameters which describe a time-dependent scheduling problem,
such as the parameters of a set of jobs (machines) or the applied optimality
criterion, are as those in the classical scheduling (cf. Chap. 4).

Example 5.5. Assume that the set J is composed of 3 jobs, J = {J1, J2, J3},
such that p1 = 1 + 3t, p2 = 2 + t and p3 = 3 + 2t, there are no ready times
and deadlines, and all jobs have unit weights.

Fig. 5.1: The optimal schedule for Example 5.5

For this set of jobs, there exist the following semi-active schedules (cf.
Definition 4.16): σ1 = (1, 2, 3), σ2 = (1, 3, 2), σ3 = (2, 1, 3), σ4 = (2, 3, 1),
σ5 = (3, 1, 2) and σ6 = (3, 2, 1). The optimal schedule for the Cmax criterion
is schedule σ2, Cmax(σ2) = 14. The schedule is presented in Fig. 5.1. �
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Example 5.6. In time-dependent scheduling problems the processing time of
the same job may be different in different schedules. For example, consider
schedules σ1 and σ5 from Example 5.5. The processing time of job J2 in
schedule σ1 is equal to 4, while in schedule σ5 it is equal to 41.

Algorithms that solve time-dependent scheduling problems will be called
time-dependent scheduling algorithms. In this book, we will consider mainly
offline time-dependent scheduling algorithms. Examples of online and semi-
online time-dependent scheduling algorithms will be given in Chap. 9.

5.3 Terminology and notation

As we said in Sect. 5.2, in any time-dependent scheduling problem, job pro-
cessing times are described by the functions fj(t) and fi,j(t), which appear
in (5.3) and (5.4), respectively. The form of these functions is related to the
problem we consider. For example, if we know nothing about the properties
of these functions, then we deal with the alteration of job processing time:
the processing time of a job varies in time in an unknown way. If we know
something more, e.g., whether these functions are monotonic, then two cases
are worth considering:

1◦ fj(t) and fi,j(t) are increasing (or non-decreasing);
2◦ fj(t) and fi,j(t) are decreasing (non-increasing).
The first case is more often encountered in the literature and, as it seems,

it is easier to study. The case when job processing times are described by
increasing (non-decreasing) functions will be called deteriorating processing
times: while waiting for processing, the jobs deteriorate and as a result the
processing time of each job increases in time.

The second case may cause some problems already at the stage of problem
formulation, since we have to make some additional assumptions to avoid the
case of negative job processing times. The case when job processing times
are described by decreasing (non-increasing) functions will be called short-
ening processing times: unlike the previous case, jobs grow shorter and the
processing time of each job is reduced in time.

Remark 5.7. Regardless of the type of functions that we have chosen to de-
scribe job processing times in our problem, we still deal with deterministic
scheduling, since all parameters of the problem are assumed to be known in
advance. This objection is important, since stochastic scheduling problems
with deteriorating jobs are also considered (see, e.g., Glazebrook [112]).

Generally, the time-scheduling problems considered in this book will be
denoted using the α|β|γ notation (see Sect. 4.4 for details). Each problem
will be denoted by α1α2|pj(t) = aj + fj(t)|ϕ or α1α2|pi,j(t) = ai,j + fi,j(t)|ϕ,
where α1α2, fj(t) and ϕ denote the machine environment, the form of the
variable part of job processing time and the criterion function, respectively.
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Remark 5.8. We will use the α|β|γ notation if it will yield a simple notation
for the considered scheduling problem. In some cases, however, we will resign
from the notation in favour of the description by words if the descriptive
approach will be more readable.

The short form of the symbol α1α2|pj(t) = aj + fj(t)|ϕ is the symbol
α1α2|pj = aj + fj(t)|ϕ. The short form of the symbol α1α2|pi,j(t) = ai,j +
fi,j(t)|ϕ is the symbol α1α2|pi,j = ai,j + fi,j(t)|ϕ. Throughout this book,
we will use the short form of the symbols which will denote time-dependent
scheduling problems.

If the form of the functions fj(t) (fi,j(t)) is known, we will call the process-
ing times pj = aj +fj(t) (pi,j = ai,j +fi,j(t)) by the name of the function. For
example, if the functions fj(t) (fi,j(t)) are proportional (linear, polynomial,
etc.), the processing times will be called proportional (linear , polynomial ,
etc.) processing times. If the functions are non-negative (non-positive), the
processing times will be called deteriorating (shortening) processing times.

In a similar way, we will call the processing times of jobs, if non-linear forms
of job deterioration are considered. For example, if the functions fj(t) are step
functions or piecewise proportional-step functions, the processing times will
be called step and proportional-step processing times, respectively.

If the same function f(t) is used for all jobs, fj(t) = f(t) for 1 ≤ j ≤ n
or fi,j(t) = f(t) for 1 ≤ i ≤ nj and 1 ≤ j ≤ n, we will speak about simple
deterioration (shortening) of job processing times. In the opposite case, we
will speak about general deterioration (shortening) of job processing times.

Example 5.9.
(a) The symbol 1|pj = bjt|Cmax will denote a single machine scheduling

problem with proportional job processing times and the Cmax criterion.
(b) The symbol Pm|pj = aj + f(t)|

∑
Cj will denote a multiple identical

machine scheduling problem with simple general deterioration of jobs and the∑
Cj criterion.
(c) The symbol F2|pi,j = ai,j + bi,jt|Lmax will denote a two-machine flow

shop problem with linear job processing times and the Lmax criterion.
(d) The symbol O3|pi,j = bi,jt, bi,3 = b|Cmax will denote a three-machine

open shop problem with proportional job processing times such that all job
processing times on machine M3 are equal to each other, and with the Cmax

criterion.
(e) The symbol J2|pi,j = bi,jt|Cmax will denote a two-machine job shop

problem with proportional job processing times and the Cmax criterion. �

Remark 5.10. In Sect. 6.1, we will extend the α|β|γ notation to include the
symbols describing time-dependent scheduling problems in batch environ-
ments and on machines with non-availability periods.
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5.4 Applications of time-dependent scheduling

The motivation for research into time-dependent scheduling follows from the
existence of many real-life problems which can be formulated in terms of
scheduling jobs with time-dependent processing times. Such problems appear
in all cases in which any delay in processing causes an increase (a decrease)
of the processing times of executed jobs. If job processing times increase, we
deal with deteriorating job processing times; if they decrease, we deal with
shortening job processing times. In this section, we give a few examples of
problems which can be modelled in time-dependent scheduling.

5.4.1 Scheduling problems with deteriorating job processing times

Gupta et al. [129] consider the problem of the repayment of multiple loans. We
have to repay n loans, L1, L2, . . . , Ln. A loan may represent an amount of bor-
rowed cash or a payment to be made for a credit purchase. Loan Lk qualifies
for a discount uk if it is paid on or before a specified time bk. A penalty at the
rate vk per day is imposed if the loan is not paid by due date dk, 1 ≤ k ≤ n.
The debtor earmarks a constant amount of q dollars per day, q < vk, for re-
payment of the loans. Cash flows are continuously discounted with discount
factor (1+ r)−1. The aim is to find an optimal repayment schedule that mini-
mizes the present value PV of all cash outflows, PV :=

∑n
k=1

Ak

(1+r)Tk
, where

Ak and Tk denote, respectively, the actual amount paid for loan Lk and the
time at which the loan Lk is repaid, 1 ≤ k ≤ n. This problem can be modelled
as a single-machine scheduling problem with time-dependent job processing
times and the PV criterion.

Mosheiov [217] considers the following problem of scheduling maintenance
procedures. A set of n maintenance procedures Pk, 1 ≤ k ≤ n, has to be
executed by m ≥ 1 machines. A maintenance procedure Pk has to take place
before a specified deadline dk. The procedure consists of a series of actions,
which last altogether p1

k time units. If the procedure does not complete by the
deadline, several additional actions are required. The new processing time of
procedure Pk is p2

k > p1
k time units. The aim is to find an order of execution of

maintenance procedures P1, P2, . . . , Pn, which minimizes the maximum com-
pletion time of the last executed procedure. This problem can be modelled as
a single- or multiple-machine scheduling problem with two-step deteriorating
job processing times.

Gawiejnowicz et al. [103] consider the following problem of scheduling
derusting operations. We are given n items (e.g., parts of devices), which
are subject to maintenance (e.g., they should be cleared from rust). This
maintenance is performed by a single worker, who can himself determine the
sequence of maintenance procedures. All procedures are non-preemptable, i.e.,
no maintenance procedure can be interrupted once it has started. At the mo-
ment t = 0, all items need the same amount of time for maintenance, e.g., one
unit of time. As time elapses, each item corrodes at a rate that depends on the
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kind of the material from which the particular item is made. The rate of cor-
rosion for the j-th item is equal to bj , 1 ≤ j ≤ n, and the time needed for the
maintenance of each item grows proportionally to the time that elapsed from
the moment t = 0. The problem is to choose such a sequence of the mainte-
nance procedures that minimizes the total completion time of maintenance of
all items. This problem can be modelled as the single-machine time-dependent
scheduling problem 1|pj = 1 + bjt|

∑
Cj .

Rachaniotis and Pappis [240] consider the problem of scheduling a single
fire-fighting resource in the case when there are several fires to be controlled.
The aim is to find such order of supressing n existing fires that the total
damage caused by the fires is minimized. The problem can be modelled as a
single machine scheduling problem with time-dependent processing times and
the total cost minimization criterion.

5.4.2 Scheduling problems with shortening job processing times

Ho et al. [135] consider the problem of recognizing aerial threats. A radar sta-
tion recognizes some aerial threats approaching the station. The time required
to recognize the threats decreases as they get closer. The aim is to find an
optimal order of recognizing the threats which minimizes the maximum com-
pletion time. This problem can be modelled as a single-machine scheduling
problem with shortening job processing times and the Cmax criterion.

Kunnathur and Gupta [178] and Ng et al. [226] consider the problem of
producing ingots in a steel mill . A set of ingots has to be produced in a steel
mill. After being heated in a blast furnace, hot liquid metal is poured into
steel ladles and next into ingot moulds, where it solidifies. Next, after the
ingot stripper process, the ingots are segregated into batches and transported
to the soaking pits, where they are preheated up to a certain temperature. Fi-
nally, the ingots are hot-rolled on the blooming mill. If the temperature of an
ingot, while waiting in a buffer between the furnace and the rolling machine,
has dropped below a certain value, then the ingot needs to be reheated to
the temperature required for rolling. The reheating time depends on the time
spent by the ingot in the buffer. The problem is to find a sequence of pre-
heating the ingots which minimizes the maximum completion time of the last
ingot produced. This problem can be modelled as a single machine scheduling
problem with shortening job processing times and the Cmax criterion.

5.4.3 Other examples of time-dependent scheduling problems

Shakeri and Logendran [254] consider the following problem of maximizing
satisfaction level in a multitasking environment. Several plates are spinning
on vertical poles. An operator has to ensure all plates spin as smoothly as
possible. A value, called the satisfaction level , can be assigned to each plate’s
spinning state. The satisfaction level of a plate is ranging from 0% (i.e., the
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plate is not spinning) up to 100% (the plate is spinning perfectly). The ob-
jective is to maximize the average satisfaction level of all plates over time.

The above problem is applicable to multitasking environments in which
we cannot easily determine the completion time of any job. Examples of such
environments are the environments of the control of a plane flight parameters,
monitoring air traffic or the work of nuclear power plants. A special case of
the problem, when a 100% satisfaction level is equivalent to the completion
of a job, is a single-machine time-dependent scheduling problem.

Other examples of practical problems which can be modelled in terms of
time-dependent scheduling include the control of queues in communication
systems in which jobs deteriorate as they wait for processing (Browne and
Yechiali [33]), search for an object in worsening weather or growing dark-
ness, performance of medical procedures under deterioration of the patient
conditions and repair of machines or vehicles under deteriorating mechanical
conditions (Mosheiov [216]).

We refer the reader to the literature (see Alidaee and Womer [6] and Cheng
et al. [55]) for more examples of time-dependent scheduling applications.

5.4.4 Scheduling problems with time-dependent parameters

The time dependence may concern not only job processing times but also other
parameters of a scheduling problem. For example, Cai et al. [38] consider the
following crackdown scheduling problem. There are n illicit drug markets, all
of which need to be brought down to a negligible level of activity. Each market
is eliminated by a procedure consisting in a crackdown phase and a mainte-
nance phase. The crackdown phase utilizes all the available resources until the
market is brought down to the desired level. The maintenance phase, which
follows after the crackdown phase and uses a significantly smaller amount of
resources, maintains the market at this level. The aim is to find an order of
elimination of the drug markets that minimizes the total time spent in elim-
inating all drug markets. The problem can be modelled as a single-machine
scheduling problem of minimizing the total cost

∑
fj , where fj are monoton-

ically increasing time-dependent cost functions.

Other examples of scheduling problems in which some parameters are time
dependent include multiprocessor tasks scheduling (Bampis and Kononov [16]),
scheduling in a contaminated area (Janiak and Kovalyov [147, 148]), multi-
criteria project sequencing (Klamroth and Wiecek [165]), selection problems
(Seegmuller et al. [253]) and scheduling jobs with deteriorating job values
(Voutsinas and Pappis [275]).

With these remarks, we end the presentation of the basics of time-
dependent scheduling. This chapter also ends the first part of the book. In
the next part, we will consider the complexity of time-dependent scheduling
problems.
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5.5 Bibliographic notes
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Womer [6] and Cheng et al. [55].
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framework of scheduling with discrete and continuous resources.
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Single-machine time-dependent scheduling

The knowledge of the complexity of a scheduling problem is essential in
further research of the problem. Therefore, the second part of the book

is devoted to the complexity of time-dependent scheduling problems. To give
the reader full insight into the subject, we include proofs or sketches of proofs
of the greater part of discussed results. We also present the pseudo-codes of
formulations of exact polynomial-time algorithms.

This part is composed of three chapters. In Chap. 6, we present the com-
plexity results concerning time-dependent scheduling on a single machine.
The complexity of the problems of time-dependent scheduling on parallel and
dedicated machines is considered in Chaps. 7 and 8, respectively.

Chapter 6 is composed of five sections. In Sect. 6.1, we present the re-
sults concerning a single machine and minimization of the Cmax criterion. In
Sect. 6.2, we present the results concerning a single machine and minimization
of the

∑
Cj criterion. In Sect. 6.3, we present the results concerning a single

machine and minimization of the Lmax criterion. In Sect. 6.4, we present the
results concerning a single machine and minimization of criteria other than
Cmax,

∑
Cj and Lmax. The chapter is completed with Sect. 6.5 including the

summary and tables.

6.1 Minimizing the maximum completion time

In this section, we consider the results concerning the criterion Cmax.

6.1.1 Proportional deterioration

This is the simplest form of job deterioration. In this case, we assume that

pj = bjt, (6.1)

where bj > 0 for 1 ≤ j ≤ n and S1 ≡ t0 > 0. This form of job deterioration
was introduced by Mosheiov [216]. Number bj will be called the deterioration
rate of job Jj , 1 ≤ j ≤ n.
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Equal ready times and deadlines

First, we consider the single machine time-dependent scheduling problems
with proportional job processing times, in which neither non-zero ready times
nor finite deadlines have been defined, i.e., we will assume that rj = 0 and
dj = ∞ for 1 ≤ j ≤ n.

Theorem 6.1. (Mosheiov [216]) The problem 1|pj = bjt|Cmax is solvable in
O(n) time, and the maximum completion time does not depend on the schedule
of jobs.

Proof. Let σ be an arbitrary schedule and let [j] denote the index of the j-th
job in σ. Since

C[j](σ) = S1

j∏

i=1

(1 + b[i]) = t0

j∏

i=1

(1 + b[i]), (6.2)

we have Cmax = C[n](σ) = t0
∏n

i=1(1 + b[i]). Since the product
∏n

i=1(1 + b[i])
can be calculated in O(n) time and it is independent of the schedule, the
result follows.

An alternative proof uses pairwise job interchange argument. We con-
sider schedule σ

′
in which job J[i] is immediately followed by job J[j], and

schedule σ
′′

in which the jobs are in the reverse order. Since we have
C[j](σ

′
)− C[i](σ

′′
) = 0, the result follows. � 

The problem 1|pj = bjt|Cmax can be a basis for more general problems.
Below, we consider two of them.

Cheng and Sun [44] reformulated the problem 1|pj = bjt|Cmax into the
following time-dependent batch scheduling problem.

We are given n jobs J1, J2, . . . , Jn, which are available starting from time
t0 = 0. The jobs are classified into m groups G1, G2, . . . , Gm. Group Gi is
composed of ki jobs, where 1 ≤ i ≤ m and

∑m
i=1 ki = n. Jobs in the same

group Gi, 1 ≤ i ≤ m, are processed consecutively and without idle times.
The setup time θi precedes the processing of the group Gi, 1 ≤ i ≤ m. The
processing time of the j-th job in group Gi is in the form of pi,j = bi,jt, where
bi,j > 0 for 1 ≤ i ≤ m and 1 ≤ j ≤ ki. The aim is to find the sequence of
groups and the sequence of jobs in each group, which together minimize the
Cmax criterion.

Remark 6.2. The assumption that jobs in the same group are processed con-
secutively and without idle times is called group technology ; see Potts and
Kovalyov [238], Tanaev et al. [265] for more details.

Remark 6.3. If we put symbols GT and θi in field β of a symbol in the α|β|γ
notation (cf. Sect. 4.4), the whole symbol will denote a batch scheduling
problem with group technology and setup times. For example, the symbol
1|pi,j = bi,jt, θi, GT |Cmax will denote the above described time-dependent
batch scheduling problem.
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For the problem 1|pi,j = bi,jt, θi, GT |Cmax, Cheng and Sun [44] proposed
the following algorithm.

Algorithm A1 for the problem 1|pi,j = bi,jt, θi, GT |Cmax ([44])

Input: sequences (θ1, θ2, . . . , θm), (bi,j) for 1 ≤ i ≤ m and 1 ≤ j ≤ ki

Output: an optimal schedule

� Step 1:

for i ← 1 to m do Bi ←
ki∏

j=1

(1 + bi,j);

� Step 2:
Schedule groups of jobs in the non-decreasing order of θiBi

Bi−1 ratios;
� Step 3:

for i ← 1 to m do Schedule jobs in group Gi in an arbitrary order.

Theorem 6.4. (Cheng and Sun [44]) The problem 1|pi,j = bi,jt, θi, GT |Cmax

is solvable in O(n log n) time by algorithm A1.

Proof. Let Gi, 1 ≤ i ≤ m, denote the i-th group of jobs. Note that the
completion time Ci,ki

of the last job in group Gi is given by the equation

Ci,ki
= (Ci−1,ki−1 + θi)

ki∏

j=1

(1 + bi,j),

where 1 ≤ i ≤ m and C0,0 := 0.
Let σ1 = (G1, G2, . . . , Gi−1, Gi, Gi+1, . . . , Gm) be a schedule such that

θi

ki∏

j=1

(1 + bi,j)

ki∏

j=1

(1 + bi,j)− 1
≥

θi+1

ki+1∏

j=1

(1 + bi+1,j)

ki+1∏

j=1

(1 + bi+1,j)− 1
(6.3)

for some 1 ≤ i ≤ m−1. Let σ2 = (G1, G2, . . . , Gi−1, Gi+1, Gi, . . . , Gm) be the
schedule obtained from σ1 by mutual exchange of groups Gi and Gi+1. Since

Ci+1,ki+1(σ
1)− Ci,ki

(σ2) =

(
ki+1∏

j=1

(1 + bi+1,j)− 1

)(
ki∏

j=1

(1 + bi,j)− 1

)

×

×

⎛

⎜
⎝

θi

ki∏

j=1
(1+bi,j)

ki∏

j=1
(1+bi,j)−1

−
θi+1

ki+1∏

j=1
(1+bi,j)

ki+1∏

j=1
(1+bi,j)−1

⎞

⎟
⎠ ,

by (6.3) the difference is non-positive. Hence, σ2 is better than σ1.
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Repeating, if necessary, the above described exchange, we obtain a schedule

in which all groups of jobs are in the non-decreasing order of
θi

ki∏

j=1
bi,j

ki∏

j=1
bi,j−1

ratios.

To complete the proof, it is sufficient to note that by Theorem 6.1, the
sequence of jobs in each group is immaterial. The overall time complexity of
algorithm A1 is O(n log n), since Step 1 needs O(m log m) time, Step 2 needs
O(n) time and m = O(n). � 

Theorem 6.4 has been generalized by Wu et al. [300], who considered time-
dependent setup times, θi = δit, where δi > 0 for 1 ≤ i ≤ m.

Theorem 6.5. (Wu et al. [300]) The problem 1|GT, pi,j = bi,jt, θi = δit|Cmax

is solvable in O(n) time, and the maximum completion time does not depend
either on the schedule of jobs in the group or on the order of groups.

Proof. Consider an arbitrary schedule σ for the problem 1|GT, pi,j = bi,jt,
θi = δi|Cmax. Without loss of generality, we can assume that σ is in the form of
(σ1,[1], σ1,[2], . . . , σ1,[k1], σ2,[1], σ2,[2], . . . , σ2,[k2], . . . , σm,[1], σm,[2], . . . , σm,[km]),
where

∑m
i=1 ki = n. Since, by Theorem 6.1,

Cmax(σ) = t0

m∏

i=1

(1 + δi)
m∏

i=1

ki∏

j=1

(1 + bi,[j]) (6.4)

and since the value of the right side of (6.4) does not depend on the order of
jobs, the result follows. � 
Remark 6.6. Scheduling deteriorating jobs with setup times and batch schedul-
ing of deteriorating jobs are new topics in time-dependent scheduling. In the
classic scheduling (cf. Sect. 5.1), both these topics have been studied since
early 1960s and have an extensive literature. We refer the reader to the re-
views by Allahverdi et al. [7], Potts and Kovalyov [238] and Webster and
Baker [290] and to the book by Tanaev et al. [265] for details.

Remark 6.7. Batch scheduling problems with time-dependent job processing
times are also considered by Barketau et al. [17] and Leung et al. [199]. In
these papers, however, the processing time of a job depends on the waiting
time of the job.

Another generalization of the problem 1|pj = bjt|Cmax is the problem of
scheduling proportionally deteriorating jobs on a single machine with non-
availability periods (cf. Remark 4.4).

Assume that the used machine is not continuously available and there
are given k disjoint periods of machine non-availability . These periods are
described by time intervals 〈Wi,1,Wi,2〉, where W1,1 > t0 and Wi,1 < Wi,2 for
1 ≤ i ≤ k < n. Since any non-availability period can interrupt the processing
of a job, we have to decide what to do in the case when the job has been
interrupted by the start time of a non-availability period (cf. Lee [188]).
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Remark 6.8. If in field α of the α|β|γ notation appears the symbol hik, where
1 ≤ i ≤ m is the number of machines and k is the number of non-availability
periods, it will denote the number of non-availability periods. For example, the
symbols 1, h11|pj = bjt|Cmax and 1, h1k|pj = bjt|Cmax will denote the problem
1|pj = bjt|Cmax with a single non-availability period and an arbitrary number
of non-availability periods, respectively.

Definition 6.9. (Job preemption vs. machine non-availability periods)
(a) A job is said to be non-resumable if in the case when the job has been
interrupted by the start time of a non-availability period this job has to be
restarted after the machine becomes available again.
(b) A job is said to be resumable if in the case when the job has been inter-
rupted by the start time of a non-availability period this job does not need to
be restarted and can be completed after the machine becomes available again.

Remark 6.10. The fact that jobs are non-resumable (resumable) will be de-
noted in field β of the α|β|γ notation by symbol nres (res). For example, the
symbols 1, h11|pj = bjt, nres|Cmax and 1, h11|pj = bjt, res|Cmax will denote
the problem 1, h11|pj = bjt|Cmax with non-resumable jobs and resumable jobs,
respectively.

The problem of scheduling proportional jobs on a machine with a single
non-availability period was introduced, for the case of resumable jobs, by Wu
and Lee [298]. Gawiejnowicz [91] and Ji et al. [155] proved that scheduling non-
resumable jobs with proportional processing times and one period of machine
non-availability is a computationally intractable problem.

Theorem 6.11. (Gawiejnowicz [91], Ji et al. [155]) The decision version of
the problem 1, h11|pj = bjt, nres|Cmax is NP-complete in the ordinary sense.

Proof. Gawiejnowicz [91] uses the following transformation from the SP prob-
lem (cf. Sect. 3.2): n = p, t0 = 1, αj = yj − 1 for 1 ≤ j ≤ n, k = 1,
W1,1 = B,W1,2 = 2B and threshold G = 2Y, where Y =

∏p
j=1 yj .

Note that by Lemma 6.1, we can check in polynomial time whether
Cmax(σ) ≤ G for a given schedule σ for the above instance of the problem
1|pj = bjt|Cmax with a single non-availability period. Therefore, the decision
version of this problem is in the NP class.

Since the above transformation can be done in polynomial time, in order
to complete the proof, it is sufficient to show that the SP problem has a
solution if and only if there exists a feasible schedule σ for the above instance
of the problem 1, h11|pj = bjt, nres|Cmax with the non-availability period
〈W1,1,W1,2〉 such that Cmax(σ) ≤ G (see Fig. 6.1 and Remark 6.12).

Ji et al. [155] use the following transformation from the SP problem: n = p,
t0 arbitrary, W1,1 = t0B, W1,2 > W1,1 arbitrary, bj = yj − 1 for 1 ≤ j ≤ n
and threshold G = W1,2

Y
B . The rest of the proof is as above. � 
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Fig. 6.1: Example schedule in the proof of Theorem 6.11

Remark 6.12. In figures included in some NP-completeness proofs, by JX

we will denote the set of jobs with deterioration rates corresponding to the
elements of set X. For example, in Fig. 6.1, the symbols JP ′ and JP\P ′ denote
the set of jobs with deterioration rates corresponding to the elements of set
P ′ and P \ P ′, respectively.

Remark 6.13. Ji et al. [155], using a dynamic programming approach, formu-
lated for the problem 1, h11|pj = bjt, nres|Cmax a pseudopolynomial algorithm
that runs in O(n(W1,1 − t0)) time; see [155, Sect. 2.1] for details. Hence, by
Lemma 3.18, the problem cannot be NP-hard in the strong sense.

Remark 6.14. Since in the book we will consider mainly such problems for
which it is easy to show that the decision versions of the problems are in the
NP class or that the applied transformations are polynomial (pseudopolyno-
mial), in most cases we will omit these parts of NP-completeness proofs.

The case of an arbitrary number of non-availability periods has been con-
sidered by Gawiejnowicz.

Theorem 6.15. (Gawiejnowicz [91]) The decision version of the problem
1, h1k|pj = bjt, nres|Cmax is NP-complete in the strong sense.

Proof. The transformation from the 4-P problem (cf. Sect. 3.2) is as follows:
n = 4p, t0 = 1, bj = uj − 1 for 1 ≤ j ≤ n, k = p, Wi,1 =

∑i
j=1 Dj and

Wi,2 =
∑i

j=0 Dj for 1 ≤ i ≤ k, and threshold G =
∑p

j=1 Dj .
To complete the proof, it is sufficient to show that the 4-P problem has

a solution if and only if there exists a feasible schedule σ for the above in-
stance of the problem 1, h1k|pj = bjt, nres|Cmax with non-availability periods
〈Wi,1,Wi,2〉, 1 ≤ i ≤ p, such that Cmax(σ) ≤ G. � 

Gawiejnowicz and Kononov proved the the problem with a single non-
availability period remains computationally intractable for resumable jobs.

Theorem 6.16. (Gawiejnowicz and Kononov [92]) The decision version of
the problem 1, h11|pj = bjt, res|Cmax is NP-complete in the ordinary sense.

Proof. The transformation from the SP problem (cf. Sect. 3.2) is as follows:
n = p + 1, t0 = 1, αj = yj − 1 for 1 ≤ j ≤ p, αp+1 = B − 1, k = 1,
W1,1 = B+1,W1,2 = 2B+1 and threshold G = (B+1)Y, where Y =

∏p
j=1 yj .
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In order to complete the proof, it is sufficient to show that the SP problem
has a solution if and only if there exists a feasible schedule σ for the above
instance of the problem 1, h11|pj = bjt, res|Cmax with the non-availability
period 〈W1,1,W1,2〉 such that Cmax(σ) ≤ G. � 
Remark 6.17. Scheduling deteriorating jobs on machines with non-availability
periods is a new topic in time-dependent scheduling. In the classic scheduling
(cf. Sect. 5.1), however, the matter has been studied since the early 1980s and
it has an extensive literature; see the reviews by Lee [188, 189], Lee et al. [190]
and Schmidt [251].

Distinct ready times and deadlines

Now, we pass to the single-machine time-dependent scheduling problems with
proportional job processing times in which jobs have distinct ready times and
(or) distinct deadlines.

Theorem 6.18. (Gawiejnowicz [91]) The decision version of the problem
1|pj = bjt, rj , dj |Cmax with two distinct ready times and two distinct dead-
lines is NP-complete in the ordinary sense.

Proof. We use the following transformation from the SP problem (cf. Sect. 3.2):
n = p + 1, t0 = 1, bj = yj − 1, rj = 1 and dj = BY for 1 ≤ j ≤ p,
bp+1 = B − 1, rp+1 = B, dp+1 = B2 and threshold G = BY, where
Y =

∏p
j=1 yj .

Notice that the completion time of the j-th job in any feasible schedule
for the problem 1|pj = bjt, rj , dj |Cmax is equal to C[j] = S[j](1 + b[j]) =
max

{
C[j−1], r[j]

}
(1 + b[j]), where 1 ≤ j ≤ n and C[0] := t0. Hence, the

decision version of the problem 1|pj = bjt, rj , dj |Cmax is in the NP class.

Fig. 6.2: Example schedule in the proof of Theorem 6.18

In order to complete the proof it is sufficient to show that the SP problem
has a solution if and only if there exists a feasible schedule σ for the above
instance of the problem 1|pj = bjt, rj , dj |Cmax (see Fig. 6.2 and Remark 6.12)
such that Cmax(σ) ≤ G. � 
Theorem 6.19. (Gawiejnowicz [91]) The decision version of the problem
1|pj = bjt, rj , dj |Cmax with an arbitrary number of distinct ready times and
an arbitrary number of deadlines is NP-complete in the strong sense.
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Proof. We use the following transformation from the 4-P problem (cf. Sect. 3.2).
Let n = 5p and t0 = 1. Job deterioration rates, ready times and deadlines
are defined as follows: bj = uj − 1, rj = t0 and dj = G for 1 ≤ j ≤ 4p,
b4p+k = D − 1, r4p+k = D2k−1 and d4p+k = D2k for 1 ≤ k ≤ p, where the
threshold G = D2p.

In order to complete the proof, it is sufficient to show that the 4-P
problem has a solution if and only if for the above instance of the problem
1|pj = bjt, rj , dj |Cmax there exists a feasible schedule σ such that Cmax(σ) ≤ G.

� 

6.1.2 Proportional-linear deterioration

Equal ready times and deadlines

Theorem 6.1 was generalized by Kononov to the case of proportional-linear
job processing times:

pj = bj(A + Bt), (6.5)

where 1 ≤ j ≤ n and S1 ≡ t0 ≥ 0.

Theorem 6.20. (Kononov [173]) If there hold inequalities

Bt0 + A > 0 (6.6)

and
1 + bjB > 0 for 1 ≤ j ≤ n, (6.7)

then the problem 1|pj = bj(A + Bt)|Cmax is solvable in O(n) time, the maxi-
mum completion time

Cmax =

⎧
⎪⎪⎨

⎪⎪⎩

t0 + A
n∑

j=1

bj , if B = 0,

(t0 + A
B )

n∏

j=1

(bjB + 1)− A
B , if B �= 0,

(6.8)

and it does not depend on the schedule of jobs.

Proof. We proceed by induction with respect to the number of jobs. For n = 1,
the equality (6.8) is satisfied. Assume that it is satisfied for n = k−1. If B = 0,

then we have Ck = Ck−1 + pk = t0 + A
∑k−1

j=1 bj + Abk = t0 + A
∑k

j=1 bj .
If B �= 0, then we have Ck = Ck−1 + pk = Ck−1 + bk(A + BCk−1) =

(t0 + A
B )

∏k−1
j=1 (bjB + 1) − A

B + bkB((t0 + A
B )

∏k−1
j=1 (bjB + 1) − A

B ) + bkA =

(bkB+1)(t0 + A
B )

∏k−1
j=1 (bjB+1)+bkA−bkA− A

B = (t0 + A
B )

k∏

j=1

(bjB+1)− A
B .

�
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Remark 6.21. A slightly different form of Theorem 6.20, without conditions
(6.6) and (6.7) but with assumptions A > 0, B > 0, bj > 0 for 1 ≤ j ≤ n, was
given by Zhao et al. [304, Theorem 1].

Guo and Wang [127] generalized Theorem 6.4 to the case of proportional-
linear job processing times. For the problem 1|pi,j = bi,j(A+Bt), θi, GT |Cmax

the authors proposed the following algorithm.

Algorithm A2 for the problem 1|pi,j = bi,j(A + Bt), θi, GT |Cmax ([127])

Input: sequences (θ1, θ2, . . . , θm), (bi,j) for 1 ≤ i ≤ m and 1 ≤ j ≤ ki,
numbers A,B

Output: an optimal schedule

� Step 1:

Schedule groups of jobs in the non-decreasing order of
θi

ki∏

j=1
bi,j

ki∏

j=1
bi,j−1

ratios;

� Step 2:
for i ← 1 to m do Schedule jobs in group Gi in an arbitrary order.

Theorem 6.22. (Guo and Wang [127]) The problem 1|pi,j = bi,j(A+Bt), θi,
GT |Cmax is solvable in O(n log n) time by algorithm A2.

Proof. Similar to the proof of Theorem 6.4. � 
Theorem 6.5 and Theorem 6.22 have been generalized by Wang et al. [284].

The authors assumed that job processing times are in the form of (6.5) and
setup times are proportional-linear, i.e., for 1 ≤ i ≤ m, we have

θi = δi(A + Bt). (6.9)

Theorem 6.23. (Wang et al. [284]) The problem 1|pi,j = bi,j(A + Bt), θi =
δi(A + Bt), GT |Cmax is solvable in O(n) time, and the maximum completion
time does not depend either on the schedule of jobs in the group or on the
order of groups.

Proof. Similar to the proof of Theorem 6.5; see [284, Theorem 1]. !

6.1.3 Linear deterioration

This is the next form of job deterioration. In this case, the job processing time
is a linear function of time,

pj = aj + bjt, (6.10)

where S1 ≡ t0 = 0, aj > 0 and bj > 0 for 1 ≤ j ≤ n. This form of job
deterioration was introduced by Tanaev et al. [264]. Numbers aj and bj will
be called, respectively, the basic processing time and the deterioration rate of
job Jj , 1 ≤ j ≤ n.
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Equal ready times and deadlines

In this subsection, we consider the single-machine time-dependent schedul-
ing problems with linear job processing times in which all ready times and
deadlines are equal.

The following result has been obtained independently by a number of
authors. Since the authors used different proof techniques, we will shortly
describe the approaches which have been applied in order to prove the result.

Theorem 6.24. (Gawiejnowicz andPankowska [109]; Gupta and Gupta [128];
Tanaev et al. [264]; Wajs [277]) The problem 1|pj = aj + bjt|Cmax is solvable
in O(n log n) time by scheduling jobs in the non-increasing order of bj

aj
ratios.

Proof. Notice that for a given schedule σ there holds the equality

Cj(σ) =
j∑

i=1

aσi

j∏

k=i+1

(1 + bσk
), (6.11)

where 1 ≤ j ≤ n. (The equality can be proved by induction with respect to j.)
The first and simplest proof uses the pairwise job interchange argument:

we assume that in schedule σ
′
job Ji precedes job Jj and in schedule σ

′′
job Ji

follows job Jj . Next, we calculate the difference between Cmax(σ
′
) ≡ Cn(σ

′
)

and Cmax(σ
′′
) ≡ Cn(σ

′′
). Finally, we show that the difference does not depend

on time. (The approach has been used by Gupta and Gupta [128], Wajs [277].)
The second proof is more complicated and uses a priority-generating func-

tion (see Definition 1.19). Let Cmax(σ) denote the length of a schedule for a
given job sequence σ. It has been proved (see [264, Chap. 3]) that function
ω(σ) = Ψ(σ)

Cmax(σ) , where

Ψ(σ) =
n∑

j=1

bπj
(1 + xσj

), xσ1 = 0, xσj
=

j−1∑

i=1

bσi
(1 + xσi

),

is a priority function and Cmax is a priority generating function for the problem
1|pj = aj + bjt|Cmax. Thus, by Remark 1.20 and Theorem 1.24, the optimal
schedule for the problem can be obtained in O(n log n) time by scheduling jobs
in the non-increasing order of their priorities. (This approach to the proof has
been used by Tanaev et al. [264].)

The third way of proving the result uses the following idea. Denote by
F = {f1, f2, . . . , fn}, where fj = aj + bjt for 1 ≤ j ≤ n, the set of linear
functions, which describe jobs processing times. Let σ = (σ1, σ2, . . . , σn) and
π = (π1, π2, . . . , πn), σ �= π, be permutations of elements of set In, and let
� be an ordering relation on set NJ such that i � j ⇔ aibj − ajbi ≤ 0.
Let sequence pπ1 , pπ2 , . . . , pπn

be defined in the following way: pπ1 = fπ1(0),
pπ2 = fπ2(pπ1), . . . , pπn

= fπn
(
∑n−1

j=1 pπj
), where fπj

∈ F for 1 ≤ j ≤ n. Then
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n∑

j=1

pσj
= min

π∈Sn

n∑

j=1

pπj
⇔ σ1 � σ2 � . . . � σn. (6.12)

In other words, the optimal schedule for the problem 1|pj = aj + bjt|Cmax

(equivalently, the permutation of job indices) is generated by non-decreasing
sorting of job indices according to the � relation. The rest of this proof is
technical: the main idea is to consider an expanded form of the formulae,
which describe the length of a schedule. (This approach, exploiting an ordering
relation in the set of functions which describe processing times, has been
applied by Gawiejnowicz and Pankowska [109].) � 

Remark 6.25. A probabilistic counterpart of Theorem 6.24 is known. Namely,
Browne and Yechiali [33] have used Lemma 1.2 (a) for deriving the expected
value and the variance of a single machine schedule length for linearly deteri-
orating jobs. The authors proved that scheduling jobs in the non-decreasing
order of E(aj)

bj
ratios minimizes the expected maximum completion time and

scheduling jobs in the non-decreasing order of V ar(aj)
(1+bj)2−1 ratios minimizes the

variance of the maximum completion time, where E(aj) and V ar(aj) are the
expected maximum completion time and the variance of the maximum com-
pletion time for 1 ≤ j ≤ n, respectively; see [33, Sect. 1] for details. !

Remark 6.26. Note that by formula (6.11), we can easily prove that sequence
(Cj)n

j=0 is non-decreasing, since Cσj
−Cσj−1 = aσj

+(1+bσj
)Cσj−1 −Cσj−1 =

aσj
+ bσj

Cσj−1 > 0 for j = 1, 2, . . . , n.

Remark 6.27. Formula (6.11) is an extension of formula (6.2) to the case when
aσj

�= 0 for 1 ≤ j ≤ n.

Remark 6.28. Formula (6.11), in turn, is a special case of the formula

Cj(σ) =
j∑

i=1

aσi

j∏

k=i+1

(1 + bσk
) + t0

j∏

i=1

(1 + bσi
), (6.13)

which describes Cj(σ) in the case when t0 �= 0. Some authors give special
cases of (6.13); see, e.g., Zhao et al. [305, Lemma 2].

By Theorem 6.24, we can construct the following scheduling algorithm.

Algorithm A3

for the problem 1|pj = aj + bjt|Cmax ([33, 128, 129, 264, 277])

Input: sequence ((a1, b1), (a2, b2), . . . , (an, bn))
Output: an optimal schedule

Schedule jobs in the non-increasing order of bj

aj
ratios.
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Remark 6.29. Note that algorithm A3 is equivalent to sorting a sequence of
numbers. For simplicity of further presentation, for algorithms similar to A3,
which for a given input number sequence (xj) schedule jobs according to an or-
der of a number sequence (yj), we will use the notation Q : (xj) $→ (yj), where
Q is one of symbols introduced in Remark 2.22. In the notation, algorithm
A3 can be denoted as ‘A3 : (aj |bj) $→ ( bj

aj
↘)’.

We can, however, consider a more general case than (6.10). The next al-
gorithm, proposed by Gawiejnowicz and Pankowska [109], additionally covers
the case when in (6.10) for 1 ≤ j ≤ n, we have either aj = 0 or bj = 0.

Algorithm A4 for the problem 1|pj = aj + bjt|Cmax ([109])

Input: sequences (a1, a2, . . . , an), (b1, b2, . . . , bn)
Output: an optimal schedule

� Step 1:
Schedule jobs with bj = 0 in an arbitrary order;

� Step 2:

Schedule jobs with aj , bj > 0 in the non-increasing order of bj

aj
ratios;

� Step 3:
Schedule jobs with aj = 0 in an arbitrary order.

There exists yet another algorithm for the problem 1|pj = aj + bjt|Cmax,
also proposed by Gawiejnowicz and Pankowska [108]. The algorithm is based
on equivalence (6.12) and hence it does not use division operation. This is
important in the case when some aj are very small numbers, since then the
calculation of the quotients bj

aj
may lead to numerical errors.

The algorithm uses two matrices, A and B. Matrix A contains all products
in the form of ai ∗ bj , 1 ≤ i, j ≤ n. Matrix B is a {0, 1}-matrix in which
B[i, j] = 0 if A[i, j] = ai ∗ bj < aj ∗ bi = A[j, i] and B[i, j] = 1 otherwise.

Though the algorithm runs in O(n2) time, it needs only O(klogk) time
in the case of adding k new jobs to the set J , while algorithms A3 and A4

need O((n + k)log(n + k)) time. (This is caused by the fact that we do not
need to fill the whole matrices A and B again but only their new parts.) The
pseudo-code of the algorithm can be formulated as follows.

Algorithm A5 for the problem 1|pj = aj + bjt|Cmax ([108])

Input: sequences (a1, a2, . . . , an), (b1, b2, . . . , bn)
Output: an optimal schedule σ�

� Step 1:
for i ← 1 to n do

for j ← 1 to n do
Ai,j ← ai ∗ bj ;
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� Step 2:
for i ← 1 to n do

for j ← 1 to n do
if (i �= j) then Bi,j ← 0
else Bi,j ← 1;

� Step 3:
for i ← 1 to n do

for j ← 1 to n do
if (Ai,j �= Aj,i) then
if (Ai,j < Aj,i) then Bj,i ← 0
else Bi,j ← 1;

� Step 4:
for i ← 1 to n do

σ�
i ← 0;

for j ← 1 to n do
σ�

i ← σ�
i + Bi,j .

Example 6.30. Let jobs J1, J2, J3 have the processing times in the form of
p1 = 1 + 2t, p2 = 2 + t, p3 = 5. Then

A =

⎡

⎣
2 1 0
4 2 0

10 5 0

⎤

⎦ and B =

⎡

⎣
1 0 0
1 1 0
1 1 1

⎤

⎦ .

Hence, σ� = (1, 2, 3) is an optimal schedule, with Cmax(σ�) = 9. The
schedule is depicted in Fig. 6.3. �

Fig. 6.3: Gantt chart for schedule σ� in Example 6.30

Example 6.31. Let jobs J1, J2, J3 now have the processing times p1 = 1 + 2t,
p2 = 2 + t, p3 = 4 + 2t. In this case,

A =

⎡

⎣
2 1 2
4 2 4
8 4 8

⎤

⎦ and B =

⎡

⎣
1 0 0
1 1 0
1 0 1

⎤

⎦ .
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The sums of the second and the third rows of B are the same and equal
to 2. This means that in the optimal schedule, the order of jobs J2 and J3

is immaterial. Therefore, there are two optimal schedules, σ�′
= (1, 2, 3) and

σ�′′
= (1, 3, 2), both of which have the schedule length equal to 16. The

schedules are depicted in Fig. 6.4a and Fig. 6.4b, respectively. �

(a) Schedule σ�′

(b) σ�′′

Fig. 6.4: Optimal schedules in Example 6.31

Remark 6.32. Algorithm A5 is a time-dependent scheduling algorithm that
uses matrices. Other examples of applications of matrices in time-dependent
scheduling will be given in Chap. 12.

Distinct ready times and deadlines

Now we pass to single machine time-dependent scheduling problems with
linear job processing times (6.10), distinct ready times and distinct deadlines.

The general problem, with an arbitrary number of distinct ready times
and distinct deadlines, is computationally intractable.

Theorem 6.33.The decision version of the problem 1|pj = aj+bjt, rj , dj |Cmax

is NP-complete in the strong sense.

Proof. It is sufficient to note that assuming aj = 0 for 1 ≤ j ≤ n, we obtain
the problem 1|pj = bjt, rj , dj |Cmax. The decision version of the problem, by
Theorem 6.19, is NP-complete in the strong sense.

Alternatively, assuming bj = 0 for 1 ≤ j ≤ n, we obtain the problem
1|rj , dj |Cmax. The decision version of the problem is NP-complete in the
strong sense as well (cf. Lenstra et al. [197]). �

The problem remains computationally intractable if all ready times are
equal to zero, i.e., if rj = 0 for 1 ≤ j ≤ n.
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Theorem 6.34. (Cheng and Ding [52]) The decision version of the problem
1|pj = aj + bjt, dj |Cmax is NP-complete in the strong sense.

Proof. The transformation from the 3-P problem (cf. Sect. 3.2) is as follows.
Let v denote an integer larger than 28h3K3. Define n = 4h jobs with aj = vcj

and bj = cj

v for 1 ≤ j ≤ 3h, a3h+i = v and b3h+i = 0 for 1 ≤ i ≤ h. Deadlines
dj = D = vh(K + 1) +

∑n
i=1

∑i−1
j=1 cicj + 1

2h(h− 1)K + 1 for 1 ≤ j ≤ 3h and
d3h+i = iv + (i− 1)(vK + 4hK2) for 1 ≤ i ≤ h. The threshold G = D.

To complete the proof, it is sufficient to show that the 3-P problem has a
solution if and only if for the instance of the problem 1|pj = aj + bjt, dj |Cmax

there exists a schedule σ such that Cmax(σ) ≤ G; see [52, Lemmata 6–7]. � 

If we simplify the problem, some cases are polynomially solvable.

Theorem 6.35. (Cheng and Ding [53]) The problem 1|pj = a + bjt, dj ,
bj ∈ {B1, B2}|Cmax is solvable in O(n log n) time by a version of algorithm A14.

Proof. Similar to the proof of Theorem 6.92. � 

The problem 1|pj = aj + bjt, rj , dj |Cmax still remains computationally
intractable even if all basic processing times and all ready times are equal,
i.e., if aj = 1 and rj = 0 for 1 ≤ j ≤ n.

Theorem 6.36. (Cheng and Ding [53]) The problem of whether there exists
a feasible schedule for the problem 1|pj = 1 + bjt, dj |Cmax is NP-complete in
the strong sense.

Proof. Given an instance of the 3-P problem (cf. Sect. 3.2), construct an
instance of the problem 1|pj = 1 + bjt, dj |Cmax as follows.

The set of jobs J = V ∪R∪Q1∪. . .∪Qm−1, where q = 32h2K, v = 16h2qK,
V = {J0,1, J0,2, . . . , J0,v}, R = {J1, J2, . . . , J3h} and Qi = {Ji,1, Ji,2, . . . , Ji,q}
for 1 ≤ i ≤ h− 1. Define n = v + 3h + (h− 1)q, E = 4hnK and A = 32n3E2.

The job deterioration rates and deadlines are the following: b0,i = 0 and
d0,i = v for 1 ≤ i ≤ v, bi,j = 0 and di,j = Di for 1 ≤ i ≤ h− 1 and 1 ≤ j ≤ q,
bi = E+ci

A and di = G for 1 ≤ i ≤ 3h, where the threshold

G = n +
h−1∑

k=0

3E(v + qk + 3k + 1)
A

+
h−1∑

k=0

K(v + qk + 3k + 1)
A

+
2hK

A

and the constants Di = v+qi+3i+
∑i−1

k=0
3E(v+qk+3k+1)

A +
∑i−1

k=0
K(v+qk+3k+1)

A +
2hK

A for 1 ≤ i ≤ h− 1.
By showing that the 3-P problem has a solution if and only if for the above

instance of the problem 1|pj = 1+bjt, dj |Cmax, there exists a feasible schedule
σ such that Cmax(σ) ≤ G, we obtain the result. � 

The restricted version of the problem 1|pj = 1 + bjt, dj |Cmax, with only
two distinct deadlines, is also computationally intractable.
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Theorem 6.37. (Cheng and Ding [53]) The problem whether there exists a
feasible schedule for the problem 1|pj = 1 + bjt, dj ∈ {D1,D2}|Cmax is NP-
complete in the ordinary sense.

Proof. We use the following transformation from the PP problem (cf. Sect. 3.2).
Define n = (k + 1)(k + 2), E = n222kk2kA and B = 16n3E2. Job deterio-
ration rates are as follows: b0,0 = b0,1 = 2E

B , b0,j = 0 for 2 ≤ j ≤ k + 1,

bi,0 = E+22k−2i+2k2k−2i+2A+xj

(i+1)B , bi,j = xi

(i+1)A for 1 ≤ i ≤ k and 1 ≤ j ≤ k + 1.

The deadlines are the following: d0,j = D1 and di,j = D2 for 1 ≤ i ≤ k

and 0 ≤ j ≤ k + 1, where D1 = 2k + 2 + 4E−2A+1
2B +

∑k
i=1(i + 1)bi,0 and

D2 = n + 4E+2kA+1
2B +

∑k
i=1(i + 1)bi,0

∑k
i=1

∑k
j=0 ((i + 1)(k + 1) + j) bi,j+1.

The threshold G = D2.
To complete the proof, it is sufficient to construct a schedule for the above

instance of the problem 1|pj = 1 + bjt, dj ∈ {D1,D2}|Cmax and to show that
the PP problem has a solution if and only if this schedule is feasible. � 

Simplifying the problem 1|pj = aj + bjt, dj |Cmax further, we can obtain
polynomially solvable cases. Let bj = b for 1 ≤ j ≤ n, i.e.,

pj = aj + bt, (6.14)

where b > 0 and aj > 0 for 1 ≤ j ≤ n. This problem was considered for
the first time by Cheng and Ding [52]. The authors proposed the following
algorithm for job processing times given by (6.14) and for distinct deadlines.
For a given σi ∈ Ŝn, let J (σi) denote the set of jobs with indices from σi.

Algorithm A6 for the problem 1|pj = aj + bt, dj |Cmax ([52])

Input: sequences (a1, a2, . . . , an), (d1, d2, . . . , dn), number b
Output: an optimal schedule

� Step 1:
Arrange jobs in the non-decreasing order of aj values;
σ1 ← ([1], [2], . . . , [n]);
σ2 ← (φ);
C[0] ← 0;
C ← 0;

� Step 2:
for i ← 1 to n do

C[i] ← (1 + b)C[i−1] + a[i];
� Step 3:

while (C �= C[n]) do
s ← C[n];
for i ← n downto 1 do

t ← max{C[i], s};
Find job J(i) ∈ J (σ1) with maximal a(i) and d(i) ≥ t;
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if (there exists no such J(i)) then
write ‘There exists no feasible schedule’;
stop

else s ← t−a(i)

1+b ;
σ1 ← σ1 \ {(i)};
σ2 ← σ2 ∪ {(i)};

C ← C[n];
σ1 ← σ2;
for i ← 1 to n do

C[i] ← (1 + b)C[i−1] + a[i].

Theorem 6.38. (Cheng and Ding [52]) The problem 1|pj = aj + bt, dj |Cmax

is solvable in O(n5) time by algorithm A6.

Proof. The optimality of the schedule generated by algorithm A6 follows from
some results concerning a special form of schedules for the problem, which
are very similar to canonical schedules (cf. Definition 6.89) considered in
Sect. 6.1.7. We refer the reader to [53, Sect. 3] for more details. !

The time complexity of algorithm A6 can be established as follows. Step 1
and Step 2 can be completed in O(n log n) and O(n) time, respectively. The
‘while’ loop in Step 3 needs O(n2) time, while the loop ‘for’ in this step needs
O(n2) time. Finding job J(i) ∈ J (σ1) with maximal a(i) and d(i) ≥ t needs
O(n) time. Therefore, the overall time complexity of A6 is O(n5). � 

The problems of scheduling linearly deteriorating jobs with non-zero ready
times are considered in Sect. 6.1.7, since they are closely related to problems
of scheduling with linearly shortening job processing times.

6.1.4 Simple non-linear deterioration

Equal ready times and deadlines

Now, we pass to more general forms of job deterioration than the linear one.
The first result from the area concerns the case of simple general non-linear
deterioration, when job processing times are in the form of

pj = aj + f(t), (6.15)

where aj > 0 for 1 ≤ j ≤ n and f(t) is an arbitrary function such that

f(t) ≥ 0 for t ≥ 0. (6.16)

This form of job deterioration was introduced by Melnikov and Shafransky[207].
From the point of view of applications, the most interesting case is when

the function f(t) is a non-decreasing function, i.e., when

if t1 ≤ t2, then f(t1) ≤ f(t2). (6.17)

In such a case, there holds the following result.
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Theorem 6.39. (Melnikov and Shafransky [207]) If f(t) is an arbitrary func-
tion satisfying conditions (6.16)–(6.17), then the problem 1|pj = aj + f(t)|Cmax

is solvable in O(n log n) time by scheduling jobs in the non-decreasing order
of aj values.

Proof. We apply the pairwise job interchange argument. Let the schedule σ
′
,

σ
′
= (σ1, . . . , σi−1, σi, σi+1, σi+2, . . . , σn),

start from time t0 > 0 and let two jobs, Jσi
and Jσi+1 , be such that aσi

≥ aσi+1 .

Consider now schedule σ
′′
,

σ
′′

= (σ1, . . . , σi−1, σi+1, σi, σi+2, . . . , σn),

differing from σ
′

only in the order of jobs Jσi
and Jσi+1 . We will show that

Cmax(σ
′′
) ≤ Cmax(σ

′
).

Note that since the first i−1 jobs in schedule σ
′
are the same as the first i−1

jobs in schedule σ
′′
, job Jσi

in schedule σ
′
and job Jσi+1 in schedule σ

′′
start

at the same time ti. Calculate the completion times Cσi
(σ

′
) and Cσi+1(σ

′′
).

We then have Cσi
(σ

′
) = ti + pσi

(ti) = ti + aσi
+ f(ti) and Cσi+1(σ

′
) =

Cσi
(σ

′
) + pσi+1(Cσi

(σ
′
)) = ti + aσi

+ f(ti) + aσi+1+ f(ti + aσi
+ f(ti)).

Next, we have Cσi+1(σ
′′
) = ti+pσi+1(ti) = ti+aσi+1 +f(ti) and Cσi

(σ
′′
) =

Cσi+1(σ
′′
) + pσi

(Cσi+1(σ
′′
)) = ti + aσi+1 + f(ti)+ aσi

+ f(ti + aσi+1 + f(ti)).
Therefore,

Cσi
(σ

′′
)− Cσi+1(σ

′
) = f(ti + aσi+1 + f(ti))− f(ti + aσi

+ f(ti)) ≤ 0,

since f(t) is an increasing function and aσi
≥ aσi+1 by assumption. From that

it follows that Cmax(σ
′′
) − Cmax(σ

′
) ≤ 0, since the Cmax criterion is regular.

Repeating, if necessary, the above mutual exchange for other pairs of jobs,
we will obtain an optimal schedule in which all jobs are scheduled in the
non-decreasing order of aj values. �

By Theorem 6.39, the problem 1|pj = aj + f(t), f ↗ |Cmax is solved by
the algorithm A7 : (aj) $→ (aj ↗).

Remark 6.40. Kuo and Yang [179, Proposition 1] considered a special case of
Theorem 6.39, with f(t) :=

∑m
i=1 λit

ri and ri ∈ [0,+∞) for 1 ≤ i ≤ n.

If we assume that f(t) is an arbitrary non-increasing function, i.e.,

if t1 ≤ t2, then f(t1) ≥ f(t2), (6.18)

f(t) is differentiable and its first derivative is bounded,
∣
∣
∣
∣
df

dt

∣
∣
∣
∣ ≤ 1, (6.19)

then the following result holds.
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Theorem 6.41. (Melnikov and Shafransky [207]) If f(t) is an arbitrary dif-
ferentiable function satisfying conditions (6.16), (6.18) and (6.19), then the
problem 1|pj = aj + f(t)|Cmax is solvable in O(n log n) time by scheduling jobs
in the non-increasing order of aj values.

Proof. Since there holds condition (6.19), for any t ≥ 0 there holds inequality
|f(t + Δt) − f(t)| ≤ Δt. Repeating the reasoning from the proof of Theo-
rem 6.39, we obtain the result. � 

By Theorem 6.41, the problem 1|pj = aj + f(t), f ↘, |dfdt | ≤ 1|Cmax is
solved by the algorithm A8 : (aj) $→ (aj ↘).

Remark 6.42. Kuo and Yang [179, Proposition 2] considered a special case of
Theorem 6.41, with f(t) :=

∑m
i=1 λit

ri and ri ∈ (−∞, 0] for 1 ≤ i ≤ n.

Another form of simple general non-linear deterioration is the one in which
job processing times proportionally deteriorate according to a certain function,

pj = bjh(t), (6.20)

where h(t) is a convex (concave) function for t ≥ t0. (Convex and concave
functions were introduced in Definition 1.28 and Remark 1.30, respectively.)
This form of job deterioration was introduced by Kononov [173].

Theorem 6.43. (Kononov [173]) If h(t) is a convex (concave) function for
t ≥ 0 and there hold conditions

h(t0) > 0 (6.21)

and

t1 + bjh(t1) ≤ t2 + bj(t2) for all t2 > t1 ≥ t0 and all Jj ∈ J , (6.22)

then the problem 1|pj = bjh(t)|Cmax is solvable in O(n log n) time by schedul-
ing jobs in the non-decreasing (non-increasing) order of bj values.

Proof. The main idea is to prove that the criterion Cmax is a 1-priority-
generating function with priority function ωi = −bi (ωi = bi). Then, by
Theorem 1.24, the result follows. � 
Remark 6.44. The 1-priority-generating functions and priority functions were
introduced in Definition 1.19.

By Theorem 6.43, if h(t) is a convex function and there hold conditions
(6.21) and (6.22), the problem 1|pj = bjh(t)|Cmax is solved by the algorithm
A9 : (bj) $→ (bj ↗).

Remark 6.45. Kuo and Yang [179, Propositions 3–4] considered special cases
of Theorem 6.43, with f(t) := 1 +

∑m
i=1 λit

ri and ri ∈ [1,+∞) or ri ∈ (0, 1)
for 1 ≤ i ≤ n.

Now we pass to the problems with general non-linear processing times.
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6.1.5 General non-linear deterioration

In this subsection, we consider the forms of non-linear deterioration in which
distinct job processing times are described by distinct functions.

In this case, job processing times are in the form of

pj = gj(t), (6.23)

where gj(t) are arbitrary non-negative functions for 1 ≤ j ≤ n. This type of
job deterioration was introduced by Gupta and Gupta [128].

Equal ready times and deadlines

Gupta and Gupta [128] introduced the polynomial job deterioration in which
the processing times of jobs are in the form of

pj = a0,j + a1,jt + a2,jt
2 + . . . + am,jt

m =
m∑

i=0

ai,jt
i, (6.24)

where ai,j are positive constants for 0 ≤ i ≤ m, 1 ≤ j ≤ n and integer m ≥ 1.

Theorem 6.46. (Alidaee [4], Gupta and Gupta [128]) Let σ(1) and σ(2) be
two different partial schedules for the problem 1|pj =

∑m
i=0 ai,jt

i|Cmax, in
which the same subset of set J is scheduled and let τ (r) be a schedule of the
set of remaining jobs. If Cmax(σ(1)) ≤ Cmax(σ(2)), then Cmax(σ(1), τ (r)) ≤
Cmax(σ(2), τ (r)).

Proof. Alidaee [4] gives the proof by pairwise job interchange argument.
Gupta and Gupta [128] state the result without a proof. !

By Theorem 6.46, Gupta and Gupta [128] proposed an exact algorithm for
the problem 1|pj =

∑m
i=0 ai,jt

i|Cmax. The authors also proposed two heuristics
and reported the results of their experimental analysis. We will consider these
heuristics in Chap. 9.

Alidaee [4] considered the problem with general processing times in the
case when gj(t), 1 ≤ j ≤ n, are differentiable and non-decreasing functions.

Theorem 6.47. (Alidaee [4]) Let σ
′
be a sequence of jobs, σ

′′
= σ

′
(i ↔ i+1)

be the sequence σ
′

with mutually exchanged positions i and i + 1, and let T
denote the maximum completion time for the first i− 1 jobs in the sequence.
Then there exist real numbers zj,i ∈ [T, T + pj,i+1(T )] and zj,i+1 ∈ [T, T +
pj,i(T )] such that if there holds inequality

gj,i(zj,i)
gj,i(T )

≥ gj,i+1(zj,i+1)
gj,i+1(T )

, (6.25)

then Cmax(σ
′
) ≤ Cmax(σ

′′
).
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Proof. Consider sequences of jobs σ
′

and σ
′′
, where σ

′′
= σ

′
(i ↔ i + 1). Let

T denote the maximum completion time for the first i− 1 jobs in a sequence
and let Δ(σ

′′
, σ

′
) = Cmax(σ

′′
)− Cmax(σ

′
) be the difference between criterion

values for schedules σ
′′

and σ
′
. Then, if there holds inequality

gj,i(T + gj,i+1(T ))− gj,i(T ) ≥ gj,i+1(T + gj,i(T ))− gj,i+1(T ),

then Δ(σ
′′
, σ

′
) ≥ 0.

By Theorem 1.15 (b), there exist real numbers zj,i and zj,i+1 such that
zj,i ∈ [T, T+gj,i+1(T )], zj,i+1 ∈ [T, T+gj,i(T )] and such that (6.25) is satisfied.

� 

For the problem 1|pj = aj + bjt + . . . + mjt
m|Cmax, Alidaee [4] also pro-

posed a heuristic algorithm, constructed on the basis of Theorem 6.47. We
will consider this algorithm in Chap. 9.

A special case of non-linear job deterioration is an exponential deteriora-
tion. The exponential job deterioration can have a few distinct forms and one
of them is the following one:

pj = ebjt, (6.26)

where 0 < bj < 1 for 1 ≤ j ≤ n. This form of job deterioration was con-
sidered for the first time by Alidaee [4] as an example of general non-linear
deterioration (6.23). Hsieh [140] proposed a heuristic algorithm for a single-
machine time-dependent scheduling problem with exponentially deteriorating
processing times (6.26). We will consider this algorithm in Chap. 9.

Distinct ready times and deadlines

We start this subsection with step deterioration, in which job processing times
are described by step functions.

Mosheiov [217] introduced step deteriorating job processing times

pj =
{

aj , if t ≤ dj ,
bj , if t > dj ,

(6.27)

where
bj ≥ aj for 1 ≤ j ≤ n. (6.28)

Remark 6.48. Without loss of generality, we can also assume that in this case
d1 ≤ d2 ≤ . . . ≤ dn.

Remark 6.49. Non-linear job processing times (6.27) will be denoted in short
as pj ∈ {aj , bj : aj ≤ bj}.

Theorem 6.50. (Cheng and Ding [51], Mosheiov [217]) If there hold inequal-
ities (6.28), the decision version of the problem 1|pj ∈ {aj , bj : aj ≤ bj}|Cmax

is NP-complete in the ordinary sense, even if dj = D for 1 ≤ j ≤ n.
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Proof. Mosheiov [217] transformed an integer programming formulation of the
considered problem to the KP problem (cf. Sect. 3.2) in the following way.
Introduce 0-1 variables xj defined as follows: xj = 1 if job Jj starts not later
than time t = dj and xj = 0 otherwise. Then, the maximum completion time
for a given schedule is equal to

n∑

j=1

xjaj +
n∑

j=1

(1− xj)bj =
n∑

j=1

bj −
n∑

j=1

xj(bj − aj). (6.29)

Since the value
∑n

j=1 bj is a constant in (6.29), the problem of minimizing
the maximum completion time is equal to the problem of maximizing the sum∑n

j=1 xj(bj − aj). Therefore, we can reformulate the problem of minimizing
the Cmax criterion to the following problem (P 1):

max
n∑

j=1

xj(bj − aj)

subject to
i−1∑

j=1

xjaj ≤ di + (1− xi)L, i = 1, 2, . . . , n, (6.30)

xi ∈ {0, 1} for i = 1, 2, . . . , n,

where L ≥ max{dn,
∑n

j=1 aj} is sufficiently large.
Consider a new problem (P 2) obtained by ignoring constraints (6.30) for

i = 1, 2, . . . , n− 1. The problem (P 2) is as follows:

max
n∑

j=1

xjuj

subject to
i−1∑

j=1

xjvj ≤ D,

xi ∈ {0, 1} for i = 1, 2, . . . , n,

where uj = bj − aj for 1 ≤ j ≤ n, cj = aj for 1 ≤ j ≤ n− 1, and D = dn + L.
Since the problem (P 2) is equivalent to the KP problem, the result follows.
Cheng and Ding [51] used the following transformation from the PP prob-

lem (cf. Sect. 3.2). Let a0 and b0 be two numbers larger than A. Define n = k,
aj = bj = xj for 1 ≤ j ≤ k, D = A and G = a0 + 3A.

If the PP problem has a solution, then there exist disjoint subsets of X, X1

and X1, such that X1 ∪X2 = X and
∑

xi∈X1
xi =

∑
xi∈X2

xi = A. Construct
schedule σ in which jobs corresponding to elements of X1 are scheduled first,
the job corresponding to a0 and b0 is scheduled next and is followed by jobs
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corresponding to elements of X2 (see Fig. 6.5 and Remark 6.12). Then, we
have Cmax(σ) =

∑
xj∈X1

aj +a0+
∑

xj∈X2
(aj +bj) = G. Hence, the considered

problem has a solution.
Assume that there exists a schedule σ := (R1, J0, R2) for the problem

1|pj ∈ {aj , bj : aj ≤ bj}, dj = D|Cmax such that Cmax ≤ G and R1 (R2) is the
set of jobs scheduled before (after) job J0. By contradiction one can show that
neither Cmax(R1) > A nor Cmax(R1) < A. Therefore, it must be Cmax(R1) =
A. By the selection of elements of X, which correspond to jobs of R1, we
obtain a solution of the PP problem. � 

Fig. 6.5: Example schedule in the proof of Theorem 6.50

For the problem 1|pj ∈ {aj , bj : aj ≤ bj}|Cmax, Mosheiov [217] proposed a
heuristic algorithm. We will consider this algorithm in Chap. 9.

For the case when dj = D for 1 ≤ j ≤ n, Cheng and Ding [51] proposed
to apply the enumerative algorithm E2. (Since the algorithm was proposed
for the total completion time criterion, it is presented in Sect. 6.2.5; now, we
describe only the general idea behind it.) Roughly speaking, this algorithm
divides the set of jobs J into a number of chains, using the approach applied
for the problems 1|pj ∈ {aj , bj : aj ≤ bj}, dj = D|

∑
Cj (cf. Sect. 6.2.5)

and 1|pj ∈ {aj , bj : aj ≤ bj}, dj = D|
∑

wjCj (cf. Sect. 6.4.5). The modified
algorithm E2 will be denoted by E3.

Theorem 6.51. (Cheng and Ding [51]) If an instance of the problem
1|pj ∈ {aj , bj : aj ≤ bj}, dj = D|Cmax has a fixed number of chains, then
algorithm E3 is a polynomial-time algorithm for the instance.

Proof. Similar to the proof of Theorem 6.154. � 

Remark 6.52. Since in the problem 1|pj ∈ {aj , bj : aj ≤ bj}, dj = D|Cmax jobs
are independent, the chains from Theorem 6.51 are not related to job prece-
dence constraints. The problems of time-dependent scheduling with dependent
jobs will be considered in Chap. 13.

For the general problem, 1|pj ∈ {aj , bj : aj ≤ bj}, dj |Cmax, Jeng and
Lin [151] proposed a pseudopolynomial-time exact algorithm, based on dy-
namic programming.
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Lemma 6.53. (Jeng and Lin [151]) There exists an optimal schedule for
the problem 1|pj ∈ {aj , bj : aj ≤ bj}, dj |Cmax, in which early jobs precede
tardy jobs.

Proof. Assume that in an optimal schedule a tardy job precedes an early job.
If we schedule the tardy job as the last one, we do not increase the Cmax

value, since the processing time of the tardy job will not change. Therefore,
by repeating such a movement for other tardy jobs, we obtain an optimal
schedule in which early jobs precede tardy jobs. � 

Lemma 6.54. (Jeng and Lin [151]) There exists an optimal schedule for the
problem 1|pj ∈ {aj , bj : aj ≤ bj}, dj |Cmax, in which early jobs are scheduled in
the non-decreasing order of aj + bj values.

Proof. By pairwise job interchange argument. � 

The dynamic programming algorithm proposed by Jeng and Lin [151]
exploits Lemmata 6.53–6.54 and is formulated as follows:

Initial conditions : F (j, t) :=
{

0, if j = 0 ∧ t = 0,
+∞, otherwise; (6.31)

Recursive formula for 1 ≤ j ≤ n, 0 ≤ t ≤ amax + dmax :

F (j, t) :=

⎧
⎨

⎩

min
{

F (j − 1, t− aj) + aj

F (j − 1, t) + aj + bj

}

, if t ≥ aj , dj ≥ t− aj ,

F (j − 1, t) + aj + bj , otherwise;
(6.32)

Goal : min {F (n, t) : 0 ≤ t ≤ amax + dmax} , (6.33)

where amax := max1≤j≤n{aj} and dmax := max1≤j≤n{dj}.
The time complexity of the dynamic programming algorithm (6.31)–(6.33)

is O(n(amax + dmax)).
For the problem 1|pj ∈ {aj , bj : aj ≤ bj}, dj |Cmax, Jeng and Lin [151] also

proposed a branch-and-bound algorithm. Computational experiments have
shown that the algorithm is able to solve instances with n = 80 jobs in 10
minutes (see [151, Sect. ‘Computational experiments’]).

Mosheiov [217] extended the step deterioration (6.27), introducing multi-
step deterioration. In this case, we have processing times in the form of

pk
j =

{
ak

j , if dk−1
j < Sj ≤ dk

j ,

am+1
j , if Sj > dm

j ,
(6.34)

where d0
j = 0,

a1
j < a2

j < . . . < am+1
j (6.35)

and
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d1
j < d2

j < . . . < dm+1
j (6.36)

for 1 ≤ j ≤ n. For the problem, Mosheiov [217] proposed a heuristic algorithm.
We will consider this algorithm in Chap. 9.

Kunnathur and Gupta [178] introduced unbounded step-linear processing
times

pj =
{

aj , if t ≤ dj ,
aj + bj(t− dj), if t > dj ,

(6.37)

where 1 ≤ j ≤ n. In this case, job processing times can grow up to infinity
after some prespecified time has elapsed.

Remark 6.55. The equivalent form of job processing times (6.37) is pj = aj +
max{0, bj(t− dj)} for all j. We will use both these forms interchangeably.

Kunnathur and Gupta proved a few properties of the single-machine time-
dependent scheduling problem with job processing times given by (6.37).

Property 6.56. (Kunnathur and Gupta [178]) Let T be the earliest possible
starting time for jobs in the set of unscheduled jobs, U, for the problem
1|pj = aj + max{0, bj(t− dj)}|Cmax. If dj < T for all Jk ∈ U, then scheduling
jobs from U in the non-decreasing order of aj−bjdj

bj
ratios minimizes Cmax(U).

Proof. By pairwise job interchange argument. � 

Theorem 6.57. (Kunnathur and Gupta [178]) The problem 1|pj = aj +
max{0, b(t− d)}|Cmax is solvable in O(n log n) time by scheduling jobs in the
non-decreasing order of aj values.

Proof. The result is a corollary from Property 6.56 for bj = b and dj = d for
1 ≤ j ≤ n. � 

By Theorem 6.57, the problem 1|pj = aj +max{0, b(t−d)}|Cmax is solved
by the algorithm A7 : (aj) $→ (aj ↗).

Property 6.58. (Kunnathur and Gupta [178]) Let S be the set of scheduled
jobs, U := J \ S and T := Cmax(S). Then the maximum completion time
Cmax(S|U) for the problem 1|pj = aj + max{0, bj(t − dj)}|Cmax is not less
than T +

∑
Jj∈S(aj + max{0, bj(T − dj)}).

Proof. The result follows from the fact that for any U the schedule (S|U) starts
with subschedule S, and from the definition of job processing times (6.37). � 

Property 6.59. (Kunnathur and Gupta [178]) Let S
′′

be the set of jobs sched-
uled after jobs from the set S′ := J \ S

′′
. Then, the maximum completion

time for the problem 1|pj = aj +max{0, bj(t− dj)}|Cmax for sequences in the
form of (S′|S′′

) is not less than
∑

Jj∈S′ aj +
∑

Jj∈S′′ (aj +max{0, bj(t−dj)}).

Proof. Similar to the proof of Property 6.58. � 
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Property 6.60. (Kunnathur and Gupta [178]) Let S be the set of jobs for the
problem 1|pj = aj +max{0, bj(t−dj)}|Cmax, scheduled in the non-decreasing
order of aj + dj values. If Sj > dj for any job Jj ∈ S, then there does not
exist a schedule σ such that Cmax(σ) =

∑
Jj∈J aj .

Proof. Since Cmax(σ) =
∑

Jj∈J aj holds only for the schedules in which no
job is tardy, the result follows. � 

Property 6.61. (Kunnathur and Gupta [178]) Let S be the set of jobs for the
problem 1|pj = aj +max{0, bj(t−dj)}|Cmax, scheduled in the non-decreasing
order of aj +dj values, let Sj be computed assuming that bj = 0 for all Jj ∈ S
and let S′ be the set S with job Jj such that bj > 0. Then, Cmax(S′) is not
less than aj + maxJj∈S{0, (Sj − dj)}minJj∈J {bj}.

Proof. If bj = 0 for all Jj ∈ S, then scheduling jobs in the non-decreasing order
of dj values minimizes the maximum tardiness. Since maxJj∈S{0, (Sj − dj)}
equals the minimum value of the maximum tardiness and, simultaneously,
equals the minimum value of the maximum delay in the starting time of any
job in the case when bj > 0 for a job Jj ∈ J , the result follows. � 

Remark 6.62. From now on, if jobs are scheduled in the non-decreasing order
of dj values, we will say that the jobs are in the EDD order.

The time complexity of the problem was established by Kononov.

Theorem 6.63. (Kononov [171]) The decision version of the problem 1|pj =
aj+ max{0, bj(t− dj)}|Cmax is
(a) NP-complete in the strong sense, if deterioration rates bj are arbitrary,
(b) NP-complete in the ordinary sense, if bj = B for 1 ≤ j ≤ n and
(c) NP-complete in the ordinary sense, if dj = D for 1 ≤ j ≤ n.

Proof. (a) The idea is to use a transformation from the strongly NP-hard
problem 1||

∑
wjTj and to show that given an input for this problem and an

arbitrary ε > 0 one can construct such an input for the problem
1|pj = aj+ max{0, bj(t − dj)}|Cmax that the solving of the first problem
reduces to the solving of the second one, and that an optimal schedule for the
second problem is an optimal schedule for the first one for sufficiently small ε;
see [171, Theorem 1].

(b) By applying a similar transformation from the ordinaryNP-hard prob-
lem 1||

∑
Tj , the result follows; see [171, Theorem 2].

(c) Given an instance of the SS problem, (cf. Sect. 3.2), define umax :=
maxi∈R{ui}, U :=

∑
i∈R ui, ε := 1

u2
maxn2 and μ := ε

28Un . Construct an instance
of the problem 1|pj = aj+ max{0, bj(t−dj)}|Cmax as follows: n = r+1, a1 = 1,
b1 = 1

μ , ai = μui and bi = εui for 2 ≤ i ≤ r + 1 and D = μC. By applying the
reasoning similar to (a), the result follows; see [171, Theorem 7]. !
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Remark 6.64. The ordinary NP-hardness of the problem 1||
∑

Tj was proved
by Du and Leung [75]. The strong NP-hardness of the problem 1||

∑
wjCj

was proved by Lawler [184].

Remark 6.65. Since Theorem 6.63 was originally formulated in an optimiza-
tion form, the transformations in its proof were made from optimization ver-
sions of the problems used in these transformations. The decision formulation
has been used for compatibility with other results presented in the book.

For the problem 1|pj = aj+ max{0, bj(t − dj)}|Cmax, Kunnathur and
Gupta [178] proposed two exact algorithms.

The first exact algorithm is based on dynamic programming. Let S′ and
S

′′
be defined as in Lemma 6.59. The algorithm starts with S

′′
:= ∅ and adds

to S
′′

one job from S′ at a time in such a way that the schedule corresponding
to the ordered set S

′′
is always optimal. Let rj := max{0, bj(t� − dj)}, where

t� = minS′′\{Jj}

{∑
Jk∈S′′\{Jj} ak + max{0, bk(t− dk)}

}
. The optimal sched-

ule can be found by the recursive equation Cmax(S
′′
) = Cmax(S

′′ \ {Jj})+ rj ,
with Cmax(∅) := 0. The time complexity of the dynamic programming algo-
rithm is O(n2n).

The second exact algorithm proposed by Kunnathur and Gupta [178] is a
branch-and-bound algorithm. In the algorithm, the lower bound is computed
using Lemma 6.59. The upper bound is obtained by one of the heuristic al-
gorithms and, if possible, improved by pairwise job interchange. Branching
is performed by the standard depth-first search procedure. The branch-and-
bound algorithm was tested on instances with up to n = 15 jobs. We refer the
reader to [178, Sect. 3] for more details on the exact algorithms and to [178,
Sect. 6] for the results of a computational experiment, conducted in order to
evaluate the quality of schedules generated by the algorithms.

Kunnathur and Gupta [178] also proposed five heuristic algorithms to solve
the problem. We will consider these heuristics in Chap. 9.

Cai et al. [39] considered deteriorating job processing times

pj = aj + bjf(t, t0), (6.38)

where f(t, t0) = 0 for t ≤ t0 and f(t, t0) ↗ for t > t0. The first result proved
by the authors concerns the case when f(t, t0) :=1X for a set X. (Definition
of the function 1X was given in Sect. 1.1.)

Theorem 6.66. (Cai et al. [39]) If X := {t : t − t0 > 0}, f(t, t0) :=1X

and
∑n

j=1 aj > t0, then the decision version of the problem 1|pj = aj +
bjf(t, t0)|Cmax is NP-complete in the ordinary sense.

Proof. Let X := {t : t − t0 > 0} and f(t, t0) :=1X . Then, the problem
1|pj = aj + bjf(t, t0)|Cmax is equivalent to a version of the KP problem (cf.
Sect. 3.2). The version of the KP problem can be formulated as follows. Given
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t0 > 0 and k− 1 pairs of positive integers {(a1, b1), (a2, b2), . . . , (ak−1, bk−1)},
find a subset K ⊆ {1, 2, . . . , k − 1} which maximizes

∑
j∈K bj subject to∑

j∈K aj ≤ t0. By letting ak > t0 and bk > max1≤j≤k−1{bj}, we obtain an
instance of the problem 1|pj = aj + bjf(t, t0)|Cmax. Since the latter problem
has an optimal schedule if and only if the KP problem has an optimal solution,
and since the KP problem is NP-complete in the ordinary sense, the result
follows. � 

Cai et al. also considered the case when f(t, t0) := max{t− t0, 0}.

Lemma 6.67. (Cai et al. [39]) For a given schedule σ = (σ1, σ2, . . . , σn) for
the problem 1|pj = aj + bj max{t− t0, 0}|Cmax, the maximum completion time
is equal to

Cmax(σ) = t0 +

⎛

⎝
k∑

j=1

aσj
− t0

⎞

⎠
n∏

r=k+1

(1 + bσr
) +

n∑

j=k+1

aσj

n∏

r=j+1

(1 + bσr
).

Proof. By induction with respect to n. � 

Theorem 6.68. (Cai et al. [39]) Given the set of jobs that start at t ≤ t0, the
maximum completion time for the problem 1|pj = aj + bj max{t− t0, 0}|Cmax

is minimized by scheduling jobs that start after time t0 in the non-decreasing
order of aj

bj
ratios.

Proof. The result follows from Lemma 6.67 and Lemma 1.2 (a). � 

By Theorem 6.68, given the set of jobs that start at t ≤ t0, the problem
1|pj = aj + bj max{t− t0, 0}|Cmax is solved by the algorithm A10 : (aj |bj) $→
(aj

bj
↗).

Theorem 6.69. (Cai et al. [39])
(a) The problem 1|pj = a + bj max{t − t0, 0}|Cmax is solvable in O(n log n)
time by scheduling jobs in the non-increasing order of bj values.
(b) The problem 1|pj = aj + b max{t − t0, 0}|Cmax is solvable in O(n log n)
time by scheduling jobs in the non-decreasing order of aj values.
(c) If aj = kbj for 1 ≤ j ≤ n and a constant k > 0, then the problem
1|pj = aj + bj max{t− t0, 0}|Cmax is solvable in O(n log n) time by scheduling
jobs in the non-decreasing order of bj values.

Proof. (a),(b) The results are corollaries from Theorem 6.68. � 
(c) See [39, Theorem 4]. !

By Theorem 6.69 (a), the problem 1|pj = a + bj max{t − t0, 0}|Cmax is
solved by the algorithm A11 : (bj) $→ (bj ↘).

By Theorem 6.69 (b), the problem 1|pj = aj + b max{t − t0, 0}|Cmax is
solved by the algorithm A7 : (aj) $→ (aj ↗).

By Theorem 6.69 (c), the problem 1|pj = kbj + bj max{t − t0, 0}|Cmax is
solved by the algorithm A9 : (bj) $→ (bj ↗).
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Remark 6.70. Cai et al. also proved that a restricted version of the problem
1|pj = aj + bj max{t− t0, 0}|Cmax is still NP-complete in the ordinary sense;
see [39, Sect. 4.1]. !

Now we pass to bounded step-linear deterioration, in which the processing
time of each job can grow only up to some limit value. Formally,

pj =

⎧
⎨

⎩

aj , if t ≤ d,
aj + bj(t−D), if d < t < D,
aj + bj(D − d), if t ≥ D,

(6.39)

where d and D, d < D, are common critical date and common maximum
deterioration date, respectively. We will also assume that

∑n
j=1 aj > d, since

otherwise the problem is trivial (all jobs can start by time d). This form of
job deterioration was introduced by Kubiak and van de Velde [177].

Remark 6.71. In the case of job processing times given by (6.39), the deteri-
oration will be called bounded if D < ∞ and it will be called unbounded if
D = ∞.

Theorem 6.72. (Kubiak and van de Velde [177]) If d > 0 and D = ∞, then
the decision version of the problem of minimizing the maximum completion
time for a single machine and for job processing times in the form of (6.39)
is NP-complete in the ordinary sense.

Proof. We use the following transformation from the PP problem (cf. Sect. 3.2),
provided that |X| = k = 2l for some l ∈ N. Let n = k + 1 = 2l + 1,
H1 = A2, d = lH1 + a, H2 = A5, H3 = A(H l−1

2 (H2 + A + 1) + 1) and
H4 = H3

∑l
i=0 H l−i

2 Ai + l2H l−1
2 d.

Job processing times are defined as follows: aj = xj + H1 and bj = H2 +
xj − 1 for 1 ≤ j ≤ k, ak+1 = H3 and bk+1 = H4 + 1. The threshold G = H4.

To complete the proof it is sufficient to show that the PP problem has a
solution if and only if for the above instance there exists a feasible schedule
σ such that Cmax(σ) ≤ G (see [177, Lemmata 2-4]). � 

Kubiak and van de Velde established a few properties of the single machine
problem with job processing times in the form of (6.39) and Cmax criterion.
Before we formulate the properties, we introduce a definition (cf. [177]).

Definition 6.73. (Job types in the problem 1|pj ≡ (6.39)|Cmax)
(a) The job that starts by time d and completes after d is called pivotal.
(b) The job that starts before d and completes by d is called early.
(c) The job that starts after d but completes by D is called tardy.
(d) The job that starts after D is called suspended.

Now, we can formulate the above mentioned properties. (We omit simple
proofs by pairwise job interchange argument.)
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Property 6.74. (Kubiak and van de Velde [177]) The sequence of the early jobs
is immaterial.

Property 6.75. (Kubiak and van de Velde [177]) The tardy jobs are sequenced
in the non-increasing order of bj

aj
ratios.

Property 6.76. (Kubiak and van de Velde [177]) The sequence of the suspended
jobs is immaterial.

Property 6.77. (Kubiak and van de Velde [177]) The pivotal job has processing
time not smaller than any of the early jobs.

Property 6.78. (Kubiak and van de Velde [177]) If ak ≤ al and bk ≥ bl, then
job Jk precedes job Jl.

Based on Properties 6.74–6.78, Kubiak and van de Velde proposed a
branch-and-bound algorithm. It is reported (see [177, Sect. 5]) that the al-
gorithm solves instances with n = 50 job within 1 second on a PC, while most
of instances with n = 100 jobs are solved within 7 minutes.

Kubiak and van de Velde proposed also three pseudopolynomial-time
algorithms for the problem. The first algorithm, designed for the case of
unbounded deterioration, runs in O(nd

∑n
j=1 aj) time and O(nd) space.

The second algorithm, designed for the case of bounded deterioration, re-
quires O(n2d(D − d)

∑n
j=1 aj) time and O(nd(D − d)) space. The third

algorithm, also designed for the case of bounded deterioration, requires
O(nd

∑n
j=1 bj(

∑n
j=1 aj)2) time and O(nd

∑n
j=1 bj

∑n
j=1 aj) space; see [177,

Sect. 4] for more details.

Janiak and Kovalyov [146] introduced exponential deterioration of job pro-
cessing times in the form of

pj = aj2bj(t−rj), (6.40)

where aj , bj , rj ≥ 0 for 1 ≤ j ≤ n.

Theorem 6.79. (Janiak and Kovalyov [146]) The decision version of the
problem 1|pj = aj2bj(t−rj)|Cmax is NP-complete in the strong sense.

Proof. The transformation from the 3-P problem (cf. Sect. 3.2) is as follows.
There are n = 4h jobs, rj = 0, aj = cj , bj = 0 for 1 ≤ j ≤ 3h, r3h+i =
iK + i− 1, a3h+i = 1, b3h+i = K for 1 ≤ i ≤ h. The threshold G = hK + h.

In order to complete the proof it is sufficient to show that the 3-P problem
has a solution if and only if there exists a schedule σ for the above instance
of the problem 1|pj = aj2bj(t−rj)|Cmax, such that Cmax(σ) ≤ G. � 

If there are only two distinct ready times, the problem remains computa-
tionally intractable.
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Theorem 6.80. (Janiak and Kovalyov [146]) The decision version of the
problem 1|pj = aj2bj(t−rj), rj ∈ {0, R}|Cmax is NP-complete in the ordinary
sense.

Proof. The transformation from the PP problem (cf. Sect. 3.2) is as follows.
There are n = k + 1 jobs, rj = 0, aj = xj , bj = 0 for 1 ≤ j ≤ k, rk+1 = A,
ak+1 = 1, bk+1 = 1. The threshold G = 2A + 1.

In order to complete the proof, it is sufficient to show that the PP problem
has a solution if and only if there exists a schedule σ for the above instance
of the problem 1|pj = aj2bj(t−rj), rj ∈ {0, R}|Cmax, such that Cmax(σ) ≤ G
(see Fig. 6.6 and Remark 6.12). � 

Fig. 6.6: Example schedule in the proof of Theorem 6.80

Remark 6.81. Janiak and Kovalyov state Theorem 6.80 (see [146, Theorem 2])
without proof. The above reduction comes from the present author.

6.1.6 Proportional-linear shortening

A separate group of results concerns job shortening, i.e., the case when job
processing times are non-increasing linear functions of job starting times.

The simplest case of the shortening is proportional-linear shortening in
which job processing times are in the form of

pj = aj(A−Bt), (6.41)

for 1 ≤ j ≤ n, the shortening rates bj are rational and satisfy condition

0 < ajB < 1 (6.42)

and condition

B

(
n∑

i=1

ai − aj

)

< 1 (6.43)

hold for 1 ≤ j ≤ n. Conditions (6.42) and (6.43) eliminate some trivial cases
and assure that the constructed instances of scheduling problems with job
processing times (6.41) make sense from the practical point of view. This
form of job processing times has been introduced by Wang and Xia [289].
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Equal ready times and deadlines

Wang and Xia [289] considered job processing times in the form of (6.41) with
A = 1 and B := k,

pj = aj(1− kt) (6.44)

where 1 ≤ j ≤ n and k = const > 0. In this case, condition (6.43) takes the
form of

k

⎛

⎝
n∑

j=1

aj − amin

⎞

⎠ < 1, (6.45)

where amin := min1≤j≤n{aj}.

Theorem 6.82. (Wang and Xia [289]) The problem 1|pj = aj(1− kt), k > 0,

k

(
n∑

j=1

aj − amin

)

< 1|Cmax is solvable in O(n) time and the maximum com-

pletion time Cmax(σ) = 1
k

(
1−

∏n
j=1(1− kaσj

)
)

does not depend on the
schedule of jobs.

Proof. By induction with respect to n. � 

6.1.7 Linear shortening

The next type of job shortening is linear shortening in which the processing
times are non-increasing linear functions of job starting times.

In linear shortening, the processing times of jobs are in the form of

pj = aj − bjt, (6.46)

for 1 ≤ j ≤ n, the shortening rates bj are rational and conditions

0 < bj < 1 (6.47)

and

bj

(
n∑

i=1

ai − aj

)

< aj (6.48)

hold for 1 ≤ j ≤ n. This form of job processing times (with an additional
assumption, see (6.51) below) has been introduced by Ho et al. [135].

Remark 6.83. Conditions (6.47) and (6.48) are counterparts of conditions
(6.42) and (6.43), respectively. Moreover, in conjuction with condition (6.51)
they eliminate some trivial cases and assure that the constructed instances
of scheduling problems with job processing times (6.46) make sense from the
practical point of view.
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Equal ready times and deadlines

Wang et al. [283] considered the problem of single-machine batch scheduling
(cf. Remarks 6.2, 6.3 and 6.6) with job processing times pi,j = ai,j − bi,jt,
where

0 < bi,j < 1 (6.49)

and

bi,j

⎛

⎝
m∑

i=1

ki∑

j=1

(θi + ai,j)− ai,j

⎞

⎠ < ai,j (6.50)

for 1 ≤ i ≤ m and 1 ≤ j ≤ ki,
∑m

i=1 ki = n.

Remark 6.84. Conditions (6.50) and (6.50) for time-dependent batch schedul-
ing problems with group technology (cf. Remark 6.2) are counterparts of
conditions (6.47) and (6.48) for time-dependent scheduling problems with-
out batching, respectively. Both groups of conditions have the same aim (see
Remark 6.83 for details).

For the problem 1|pi,j = ai,j−bi,jt, θi, GT |Cmax, Wang et al. [283] proposed
the following algorithm.

Algorithm A12

for the problem 1|pi,j = ai,j − bi,jt, θi, GT |Cmax([283])

Input: sequences (ai,j), (bi,j), (θi) for 1 ≤ i ≤ m and 1 ≤ j ≤ ki,
Output: an optimal schedule σ�

� Step 1:
for i ← 1 to m do

Arrange jobs in group Gi in the non-increasing order of the bi,j

ai,j
ratios;

Call the sequence σ(i);
� Step 2:

for i ← 1 to m do

Calculate ρ(Gi) :=

ki∑

j=1
ai,j

ki∏

k=j+1
(1−bi,k)+θi

ki∏

j=1
(1−bi,j)

1−
ki∏

j=1
(1−bi,j)

;

� Step 3:
Schedule groups in the non-increasing order of ρ(Gi) values;

� Step 4:
σ� ← (σ([1])|σ([2])| . . . |σ([m]));
return σ�.

Theorem 6.85. (Wang et al. [283]) The problem 1|pi,j = ai,j−bi,jt, θi, GT |Cmax

is solvable by algorithm A12 in O(n log n) time.
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Proof. By pairwise job interchange; see [283, Theorems 1–2] for details. !

Remark 6.86. A special case of the Theorem 6.85, with ai,j = 1 for 1 ≤ i ≤ m
and 1 ≤ j ≤ ki, where

∑m
i=1 ki = n, has been considered by Cheng and

Sun [44, Algorithm C, Theorem 9].

Distinct ready times and deadlines

In this case, processing times given by (6.46) are such that condition (6.47) and

bjdj < aj ≤ dj . (6.51)

hold for 1 ≤ j ≤ n. All jobs have ready times equal to zero. This form of
shortening job processing times has been introduced by Ho et al. [135].

Theorem 6.87. (Ho et al. [135]) If aj , bj and dj satisfy conditions (6.47) and
(6.51), then the problem 1|pj = aj − bjt, dj |− is
(a) NP-complete in the strong sense, if there is an arbitrary number of dead-
lines;
(b) NP-complete in the ordinary sense, if there are only two distinct dead-
lines;
(c) solvable in O(n log n) time by scheduling jobs in the non-increasing order
of aj

bj
ratios if all deadlines are identical.

Proof. (a) The transformation from the 3-P problem (cf. Sect. 3.2) is as fol-
lows:
n = 4h− 1,

di =
{

i(K + 1) for 1 ≤ i ≤ h− 1,
hK + h− 1 for h ≤ i ≤ 4h− 1,

ai =
{

iK − 1 for 1 ≤ i ≤ h− 1,
ci−h+1 for h ≤ i ≤ 4h− 1,

bi =
{

iK+i−1
iK+i−1 for 1 ≤ i ≤ h− 1,

1
16h6K6 , for h ≤ i ≤ 4h− 1.

To complete the proof, it is sufficient to show that the 3-P problem has a solu-
tion if and only if for the above instance of the problem 1|pj = aj − bjt, dj |Cmax,
there exists a non-preemptive feasible schedule.

(b) The transformation from the PP problem (cf. Sect. 3.2) is as follows:
n = k + 1,

di =
{

A + 1 for i = 1,
2A + 1 for 2 ≤ i ≤ k + 1,

ai =
{

A for i = 1,
xi−1 for 2 ≤ i ≤ k + 1.

bi =
{

A−1
A for i = 1,
1

3k2A , for 2 ≤ i ≤ k + 1.
To complete the proof, it is sufficient to show that the PP problem has a solu-
tion if and only if for the above instance of the problem 1|pj = aj − bjt, dj |Cmax,
there exists a non-preemptive feasible schedule.
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(c) Since di = D for 1 ≤ i ≤ n, it is sufficient to start scheduling jobs from
time t = 0, to apply Theorem 6.24 to construct a schedule and to check if the
maximum completion time for the schedule does not exceed time t = D. � 

By Theorem 6.87 (c), if aj , bj and dj satisfy conditions (6.47) and (6.51),
the problem 1|pj = aj − bjt, dj = D|Cmax is solved by the algorithm
A13 : (aj |bj) $→ (aj

bj
↘).

For the case when job processing times given by (6.46), all shortening rates
are equal,

pj = aj − bt (6.52)

for 1 ≤ j ≤ n, a number of results are known.
The problem of the complexity of minimizing the maximum completion

time in the case when there are arbitrary deadlines and equal shortening rates,
stated by Ho et al. [135], has been solved by Cheng and Ding.

Theorem 6.88. (Cheng and Ding [50]) The decision version of the problem
1|pj = aj − bt, dj |Cmax is NP-complete in the strong sense.

Proof. The transformation is from the 3-P problem (cf. Sect. 3.2). Define q =
26h3K2, the identical decreasing procesing rate b = 1

23q3hK and the number

of jobs n = 3h + (h− 1)q. Define Dj = 1− b((q− 1)(jK + j − 1) + 1
q

∑q−1
k=1 k)

for 1 ≤ j ≤ h− 1. The deadlines are as follows: di = d0 = hK +
∑h−1

j=1 Dj for
1 ≤ i ≤ 3h, dj

k = dj = jK + j for 1 ≤ j ≤ h − 1 and 1 ≤ k ≤ q. The basic
processing times are the following: ai = ci for 1 ≤ i ≤ 3h, and aj

k = a = 1
q for

1 ≤ j ≤ h− 1 and 1 ≤ k ≤ q. The threshold value is d0.
To complete the proof, it is sufficient to show that an instance of the

3-P problem has a solution if and only if the above constructed instance of
the problem 1|pj = aj − bt, dj |Cmax has a solution. The idea which simplifies
the proof is introducing a special form of a feasible schedule for the problem
1|pj = aj − bt, dj |Cmax. Due to regularity of the schedule, further calculations
are easier (see [50, Lemmata 1–4]). � 

If we simplify the problem 1|pj = aj − bt, dj |Cmax, assuming that aj = a
and bj ∈ {B1, B2} for 1 ≤ j ≤ n, then the new problem can be solved in
polynomial time. Before we state the result, we introduce a definition proposed
by Cheng and Ding [53].

Definition 6.89. (A canonical schedule)
Given an instance of the problem 1|pj = aj − bt, dj , bj ∈ {B1, B2}|Cmax with
m distinct deadlines D1 < D2 < . . . < Dm, a schedule σ is called canonical if
the jobs with the same bj are scheduled in σ in the EDD order and the jobs
in sets Rj := {Jj ∈ J : Dj−1 < Cj ≤ Dj}, where 1 ≤ j ≤ m and D0 := 0,
are scheduled in the non-decreasing order of bj values.

Lemma 6.90. (Cheng and Ding [53]) If there exists a feasible (optimal) sched-
ule for an instance of the problem 1|pj = aj − bt, dj , bj ∈ {B1, B2}|Cmax, then
there exists a canonical feasible (optimal) schedule for the instance.
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Proof. See [53, Lemma 1]. !

Now, we briefly describe the construction of a schedule for the problem
1|pj = aj − bt, dj , bj ∈ {B1, B2}|Cmax, [53]. The construction is composed of
the following three steps.

In the first step, we schedule jobs with same bj value in the EDD order,
obtaining two chains of jobs, C1 and C2.

In the second step, we construct the middle schedule M(C1). To this end,
we insert jobs from C2 into the time interval 〈0,Dm〉 backwards as follows. We
assign the jobs with the largest deadline Dm to a subschedule σ1,m of M(C1)
in such a way that the jobs are started at some time T 1

m and completed at
Dm. Next, we assign the jobs with the deadline Dm−1 to a subschedule σ1,m−1

in such a way that the jobs are started at some time T 1
m−1 and completed at

min{Dm−1, T
1
m}. We continue until all jobs have been assigned to subschedules

σ1,j for 1 ≤ j ≤ k ≤ m. (Note that it must be T 1
j ≥ Dj−1, where 1 ≤ j ≤ k

and D0 := 0; hence, if some jobs cannot be put in σ1,j , we move them to the
set of late jobs L(C1).) After the completion of this step, we obtain the schedule
M(C1) := (σ1,1|σ1,2| . . . |σ1,k) in the form of (I1|W1|I2|W2| . . . |Ik|Wk),
k ≤ m, where Ij and Wj denote, respectively, the j-th idle time and the
j-th period of continuous machine working time, 1 ≤ j ≤ k.

In the third step, we construct the final schedule F (C1, C2). To this end
we insert jobs from C1 into the idle times of M(C1) as follows. Starting
from the beginning of I1, we assign jobs to I1 until an assigned job can-
not meet its deadline. This job is moved to the set of late jobs L(C2). We
continue the procedure with the remaining jobs until the end of I1. Then
we shift σ1,1 forward to connect it with σ2,1, where σ2,1 denotes the sched-
ule of jobs assigned to I1. We continue until all jobs have been assigned
to idle times Ij , 2 ≤ j ≤ k. After the completion of this step, we obtain the
schedule F (C1, C2) := (σ2,1|σ1,1|σ2,2|σ1,2| · · · |σ2,k|σ1,k) and the set of late jobs
L(C1, C2) := L(C1) ∪ L(C2).

Lemma 6.91. (Cheng and Ding [53]) Let I be an instance of the problem
1|pj = aj − bjt, dj , bj ∈ {B1, B2}|Cmax. Then
(a) if L(I) = ∅, then the final schedule is optimal;
(b) if L(I) �= ∅, then for I there does not exists a feasible schedule.

Proof. (a) See [53, Lemma 5].
(b) See [53, Lemma 6]. !

On the basis of Lemma 6.91, Cheng and Ding proposed for the problem
1|pj = a − bjt, dj , bj ∈ {B1, B2}|Cmax an optimal algorithm. Given an in-
stance I of the problem, the algorithm first constructs described above sched-
ules M(C1), F (C1, C2) and the set L(C1, C2). Next, it verifies whether L �= ∅.
If L = ∅, the final schedule is optimal by Lemma 6.91; otherwise, for I there
does not exist a feasible schedule.

The pseudo-code of the algorithm can be formulated as follows.
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Algorithm A14

for the problem 1|pj = a− bjt, dj , bj ∈ {B1, B2}|Cmax ([53])

Input: numbers a, B1, B2, sequence (d1, d2, . . . , dn)
Output: an optimal schedule σ�

� Step 1:
C1 ← {Jj ∈ J : bj = B1};
C2 ← {Jj ∈ J : bj = B2};

� Step 2:
Construct schedules M(C1), F (C1, C2) and the set L(C1, C2);
σ� ← (F |L);

� Step 3:
if (L �= ∅) then write ‘there exists no feasible schedule’;

stop
else return σ�.

Theorem 6.92. (Cheng and Ding [53]) The problem 1|pj = a − bjt, dj ,
bj ∈ {B1, B2}|Cmax is solvable in O(n log n) time by algorithm A14.

Proof. The correctness of algorithm A14 follows from Lemma 6.91. Since no
step needs more than O(n log n) time, the overall time complexity of the
algorithm is O(n log n). � 

Theorem 6.93. (Cheng and Ding [53]) The problem of whether there exists
a feasible schedule for the problem 1|pj = 1− bjt, dj |Cmax is NP-complete in
the strong sense.

Proof. The transformation from the 3-P problem (cf. Sect. 3.2) is as follows.
Define q = 2hK, v = 32h2qK, n = v + 3h + (h − 1)q, A1 = 3n3 and A2 =
A3 = 2nhK.

The deterioration rates and deadlines are the following: b0,i = 0, d0,i = v
for 1 ≤ i ≤ v, bi,j = 1

A1A3
, di,j = Di for 1 ≤ i ≤ h − 1 and 1 ≤ j ≤ q,

bi = ci

A1A2A3
, di = G for 1 ≤ i ≤ 3h, where the deadlines

Di = v + qi + 3i−
i−1∑

k=1

q∑

l=1

v + qk + 3k − l

A1A3
−

i−1∑

k=0

(v + qk + 3k)K
A1A2A3

for 1 ≤ i ≤ h− 1 and

G = n−
h−1∑

k=1

q∑

l=1

v + qk + 3k − l

A1A3
−

h−1∑

k=0

(v + qk + 3k)K
A1A2A3

.

The set of jobs in the above instance of the problem 1|pj = 1−bjt, dj |Cmax

is divided into sets of jobs V = {J0,1, J0,2, . . . , J0,v}, R = {J1, J2, . . . , J3h}
and Qi = {Ji,1, Ji,2, . . . , Ji,q} for 1 ≤ i ≤ h− 1. Construct for this instance a
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schedule in the form of (V,R1, Q1, R2, . . . , Qh−1, Rh), where the job order in
any of these sets is arbitrary. By showing that the 3-P problem has a solution
if and only if the schedule is feasible for the problem 1|pj = 1 − bjt, dj |Cmax

(see [53, Lemmata 1–3]), we obtain the result. � 

The restricted version of the above problem, when there are only two
distinct deadlines, is also computationally intractable.

Theorem 6.94. (Cheng and Ding [53]) The problem of whether there exists
a feasible schedule for the problem 1|pj = 1 − bjt, dj ∈ {D1,D2}|Cmax is
NP-complete in the ordinary sense.

Proof. The transformation is from the PP problem (cf. Sect. 3.2). Define n =
(k + 1)(k + 2), A1 = 4n3 and A2 = A3 = 2k+1kkn2A.

The job deterioration rates are the following: b0,0 = b0,1 = 0, b0,j = 1
A2A3

for 2 ≤ j ≤ k + 1, bi,0 = 2ikiA−xi

(i+1)A1A2A3
, bi,j = 2ikiA

(i+1)A1A2A3
for 1 ≤ i ≤ k and

1 ≤ j ≤ k + 1.
The deadlines are the following: d0,j = D1 and di,j = D2 for 1 ≤ i ≤ k and

0 ≤ j ≤ k + 1, where D1 = 2k + 2−
k∑

i=1

(i + 1)bi,1−
k+1∑

j=2

(k + j)b0,j+ A
A1A2A3

+

1
2A1A2A3

, D2 = n −
k∑

i=1

(i + 1)bi,1 −
k+1∑

j=2

(k + j)b0,j−
k∑

i=1

(i + 1)(k + 1)bi,0−
k∑

i=1

k∑

j=1

((i + 1)(k + 1) + j) bi,j+1− kA
A1A2A3

+ 1
2A1A2A3

. The threshold G = D2.

In order to complete the proof, it is sufficient to show that the PP problem
has a solution if and only if for the above instance of the problem 1|pj = 1−bjt,
dj ∈ {D1,D2}|Cmax there exists a feasible schedule. � 

Another restricted version of the problem, when job basic processing times
are distinct, all deterioration rates are equal and there are only two distinct
deadlines, is computationally intractable as well.

Theorem 6.95. (Cheng and Ding [48]) The decision version of the problem
1|pj = aj − bt, dj ∈ {D1,D2}|Cmax is NP-complete in the ordinary sense.

Proof. The transformation from the PP problem (cf. Sect. 3.2) is as follows.
Let B = 2n+3n2A and v = 26n3B. Define n = 2k + 1 shortening jobs, where
a0 = v, a1,i = v(B + 2n−i+A + xi) and a2,i = v(B + 2n−i+1A) for 1 ≤ i ≤ n,
b = 2

v , d0 = v(nB + 2n+1A − A + 1) and d1,i = d2,i = G for 1 ≤ i ≤ n,

where the threshold G =
∑2n+1

i=0 (xi − b(E − (n + 1)Av) + 1), with constant
E =

∑n
i=1(2n + 1)a2,i + na0 +

∑n−1
i=1 (n− i)a1,i.

In order to complete the proof, it is sufficient to show that the PP problem
has a solution if and only if for the above instance of the problem 1|pj = aj−bt,
dj ∈ {D1,D2}|Cmax there exists a feasible schedule σ such that Cmax(σ) ≤ G
(see [48, Lemmata 1–4]). � 
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The problem when dj = ∞ and rj �= 0 for 1 ≤ j ≤ n has been considered
by Cheng and Ding. The authors proposed the following algorithm.

Algorithm A15 for the problem 1|pj = aj − bt, rj |Cmax ([49])

Input: sequences (a1, a2, . . . , an), (r1, r2, . . . , rn), number b := v
u

Output: an optimal schedule

� Step 1:
B1 ← max

1≤j≤n
{rj};

B2 ← un−1

(
n∑

j=1

aj + B1

)

;

� Step 2:
while (B2 −B1 > 1) do

G′ ← �B1+B2
2 �; G ← G′

un−1 ;
Use Lemma 6.97 to construct instance I of 1|pj = aj + bt, dj |Cmax;
Apply Algorithm A6 to instance I to find an optimal schedule;
if (there exists an optimal schedule for I) then B1 ← G′

else G ← B2
un−1 .

Theorem 6.96. (Cheng and Ding [49]) The problem 1|pj = aj − bt, rj |Cmax

is solvable in O(n6 log n) time by algorithm A15.

Proof. Consider any instance I of the problem 1|pj = aj − bt, rj |Cmax. By
Lemma 6.97, for this instance there exists an instance I ′ of the problem 1|pj =
aj + bt, dj |Cmax. Changing iteratively the threshold value G and applying
algorithm A6 to I ′, we can check whether there exists an optimal schedule σ′

for I ′. Due to the symmetry between problems 1|pj = aj − bt, rj |Cmax and
1|pj = aj + bt, dj |Cmax, from σ′ we can construct an optimal schedule σ for I.

The value of G can be determined in at most log(B2 − B1) ≡ O(n log n)
time. In each iteration of the loop while at most O(n5) time is needed for
execution of algorithm A6. Therefore, the overall time complexity of algorithm
A15 is O(n6 log n). � 

Linear shortening vs. linear deterioration

There exists a kind of symmetry between single-machine time-dependent
scheduling problems with shortening job processing times and ready times
and their counterparts with deteriorating job processing times and deadlines.
In this subsection, we will present a few results that illustrate the symmetry.

By the symmetry reduction, we will mean that we are able to obtain a
schedule for the problem with deadlines using a schedule for its counterpart
with ready times, and vice versa. For example, given a schedule for an instance
of the 1|pj = aj − bjt, rj |Cmax problem, we can take it as a schedule for a
corresponding instance of the 1|pj = aj + bjt, dj |Cmax problem, viewed from
the reverse direction.
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Lemma 6.97. (Cheng and Ding [49]) There exists a symmetry reduction be-
tween the problem 1|pj = aj−bjt, rj |Cmax and problem 1|p′j = a′

j+b′jt, dj |Cmax

such that any schedule for the first problem defines a schedule for the second
one and vice versa.

Proof. Given an instance I of the problem 1|pj = aj−bjt, rj |Cmax and thresh-
old G > max1≤j≤n{rj}, an instance II of the problem 1|pj = aj +bjt, dj |Cmax

can be constructed in the following way: a′
j = aj−bjG

1−bj
, b′j = bj

1−bj
and

dj = G− rj for 1 ≤ j ≤ n.
Since it is sufficient to consider only schedules without idle times and since

the above reduction can be done in polynomial time, the result follows. � 
By Lemma 6.97, we obtain the following result.

Lemma 6.98. (Cheng and Ding [49]) There exists a symmetry reduction be-
tween the following pairs of problems:
(a) 1|pj = aj + bjt, rj |Cmax and 1|p′j = a′

j − b′jt, dj |Cmax,
(b) 1|pj = aj + bt, rj |Cmax and 1|p′j = a′

j − b′jt, dj |Cmax,
(c) 1|pj = aj − bt, rj |Cmax and 1|p′j = a′

j + b′jt, dj |Cmax,
(d) 1|pj = aj + bt, rj ∈ {0, R}|Cmax and 1|p′j = a′

j − b′t, dj ∈ {D1,D2}|Cmax,
(e) 1|pj = aj − bt, rj ∈ {0, R}|Cmax and 1|p′j = a′

j + b′t, dj ∈ {D1,D2}|Cmax,
such that any schedule for the first problem from a pair defines a schedule for
the second one and vice versa.

Remark 6.99. In Sect. 12.4, we will consider the so-called equivalent problems,
which are similar, in some sense, to the problems from Lemma 6.98.

Theorem 6.100. (Cheng and Ding [49]) The decision versions of the prob-
lems 1|pj = aj + bjt, rj |Cmax and 1|pj = aj − bjt, dj |Cmax are NP-complete
in the strong sense.

Proof. By Theorem 6.88 and Lemma 6.97, the results follow. � 
Theorem 6.101. (Cheng and Ding [49]) The decision versions of the prob-
lems 1|pj = aj +bjt, rj ∈ {0, R}|Cmax and 1|pj = aj−bjt, dj ∈ {D1,D2}|Cmax

are NP-complete in the ordinary sense.

Proof. By Theorem 6.95 and Lemma 6.97, the results follow. � 
Bosio and Righini [29] proposed an exact dynamic programming algorithm

for the problem 1|pj = aj + bjt, rj |Cmax. The algorithm starts from an empty
schedule and iteratively adds an unscheduled job to the partial schedule con-
structed so far. In order to speed up the process of finding the final schedule,
the authors used some upper and lower bounds on the optimal value of Cmax.

Lee et al. [194] considered the above problem in the case when bj = b for
1 ≤ j ≤ n. The authors established a few properties of an optimal schedule
for the latter problem.

Let Ji and Jj , 1 ≤ i, j ≤ n, be two adjacent jobs in a schedule for the
problem 1|pj = aj + bt, rj |Cmax.
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Property 6.102. (Lee et al. [194]) If Si < ri and (1 + b)ri + ai < rj , then there
exists an optimal schedule in which job Ji immediately precedes job Jj .

Proof. Let σ be any feasible schedule for the problem 1|pj = aj + bt, rj |Cmax

in which job Ji immediately precedes job Jj . Since Si < ri and (1+b)ri +ai =
Ci(σ) < rj , we have Cj(σ) = (1 + b)rj + aj .

Let now σ
′
denote the schedule σ in which job Ji and Jj have been mutually

replaced. Since Si < ri < (1 + b)ri + ai < rj , we have Si < rj and ri < rj .

Therefore, Cj(σ
′
) = (1 + b)rj + aj and Ci(σ

′
) = (1 + b)2rj + (1 + b)aj + ai.

Since Cj(σ) < Ci(σ
′
), we have Cmax(σ) < Cmax(σ

′
). �

Applying similar reasoning as above, one can prove the following properties.

Property 6.103. (Lee et al. [194]) If Si ≥ max{ri, rj} and aj > ai, then there
exists an optimal schedule in which job Ji immediately precedes job Jj .

Property 6.104. (Lee et al. [194]) If ri ≤ Si ≤ rj , (1 + b)Si + ai ≥ rj and
aj > ai, then there exists an optimal schedule in which job Ji immediately
precedes job Jj .

Property 6.105. (Lee et al. [194]) If ri ≤ Si and (1+ b)Si +ai < rj , then there
exists an optimal schedule in which job Ji immediately precedes job Jj .

Property 6.106. (Lee et al. [194]) If rj ≤ Si < ri, (1 + b)Si + aj ≥ ri and
b(aj − ai) + (1 + b)2(Si − ri) > 0, then there exists an optimal schedule in
which job Ji immediately precedes job Jj .

Property 6.107. (Lee et al. [194]) If rj > ri > Si, (1 + b)ri + ai ≥ rj and
aj > ai, then there exists an optimal schedule in which job Ji immediately
precedes job Jj .

The authors also proposed the following lower bound on the optimal value
of the schedule length for the problem.

Lemma 6.108. (Lee et al. [194]) Let σ(k) be a partial schedule for the problem
1|pj = aj + bt, rj |Cmax such that |σ(k)| = k and let σ be a complete schedule
obtained from σ(k). Then Cmax(σ) ≥ max{LB1, LB2}, where

LB1 = (1 + b)lC[k](σ) +
l∑

j=1

(1 + b)l−ja(k+j),

LB2 = max{(1 + b)rk+j + ak+j : 1 ≤ j ≤ l}
and a(k+1) ≤ a(k+2) ≤ . . . ≤ a(k+l).

Proof. By a direct computation, see [194, Sect. 3.2] for details. !
Based on Properties 6.102–6.107 and Lemma 6.108, Lee et al. [194] pro-

posed a branch-and-bound algorithm for the problem 1|pj = aj + bt, rj |Cmax.
The algorithm has been tested on instances with 12 ≤ n ≤ 28 jobs; see [194,
Sect. 5] for details.

The authors also proposed two heuristic algorithms for the above problem.
We will consider these algorithms in Chap. 9.
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6.1.8 Non-linear shortening

Distinct ready times and deadlines

Now, we pass to single-machine time-dependent scheduling problems with
shortening job processing times other than linear ones.

Cheng et al. [56] introduced decreasing step job processing times

pi,j =
{

aj , if t < D,
aj − bj , if t ≥ D,

(6.53)

where
∑n

j=1 aj ≥ D and 0 ≤ bj ≤ aj for 1 ≤ j ≤ n.

Theorem 6.109. (Cheng et al. [56]) The decision version of the problem
1|pj ∈ {aj , aj − bj : 0 ≤ bj ≤ aj}|Cmax is NP-complete in the ordinary sense.

Proof. The transformation from the PP problem (cf. Sect. 3.2) is as follows.
Let n = k, aj = 2xj and bj = xj for 1 ≤ j ≤ n, D = 2A and the threshold
G = 3A.

To complete the proof, it is sufficient to show that the PP problem has a
solution if and only if for the above instance of the problem 1|pj ∈ {aj , aj−bj :
0 ≤ bj ≤ aj}|Cmax there exists a schedule σ such that Cmax(σ) ≤ G. � 

There exists a relationship between the KP problem and the problem
1|pj ∈ {aj , aj − bj : 0 ≤ bj ≤ aj}|Cmax.

Lemma 6.110. (Cheng et al. [56]) A version of the KP problem is equivalent
to the problem 1|pj ∈ {aj , aj − bj : 0 ≤ bj ≤ aj}|Cmax.

Proof. Consider an optimal schedule σ for the above scheduling problem. Let
JE := {Jk ∈ J : Sk < D} and JT := J \ JE = {Jk ∈ J : Sk ≥ D}. Let
E and T denote sets of indices of jobs from the set JE and JT , respectively.
Only two cases are possible: either

∑
j∈E aj ≤ D − 1 or

∑
j∈E aj ≥ D.

In the first case, we have Cmax(σ) = D +
∑

j∈T (aj − bj). This, in turn,
corresponds to the solution of the following KP problem: min

∑
j∈T (aj − bj)

subject to
∑

j∈T aj ≥
∑n

j=1 aj −D + 1 for T ⊆ {1, 2, . . . , n}.
In the second case, we have Cmax(σ) =

∑
j∈E(aj) +

∑
j∈T (aj − bj) =

∑
j∈E bj +

∑
j∈E(aj − bj) +

∑
j∈T (aj − bj) =

∑n
j=1(aj − bj) +

∑
j∈E bj . This,

in turn, corresponds to the solution of the following KP problem: min
∑

j∈T bj

subject to
∑

j∈E aj ≥ D for E ⊆ {1, 2, . . . , n}.
The optimal Cmax value equals min{D + z1,

∑n
j=1(aj − bj) + z2}, where

z1 (z2) is the solution of the first (the second) KP problem. � 

By Lemma 6.110, we obtain the following result.

Theorem 6.111. (Cheng et al. [56])
The problem 1|pj ∈ {aj , aj − bj : 0 ≤ bj ≤ aj}|Cmax is solvable in
O(n

∑n
j=1 aj) time by a pseudopolynomial algorithm.
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Proof. Since, by Lemma 6.110, a version of the KP problem is equivalent to
the problem 1|pj ∈ {aj , aj−bj : 0 ≤ bj ≤ aj}|Cmax, and since the KP problem
can be solved in O(n

∑n
j=1 uj) time by a pseudopolynomial algorithm (see,

e.g., Kellerer et al. [163]), the result follows. � 

Cheng et al. [56] and Ji et al. [156] proposed approximation algorithms for
the problem 1|pj ∈ {aj , aj − bj : 0 ≤ bj ≤ aj}|Cmax. We will consider these
algorithms in Chap. 9.

Cheng et al. [54] introduced the decreasing step-linear job processing times.
In this case, the processing time pi,j of the job Ji scheduled on machine Mj ,
1 ≤ i ≤ n and 1 ≤ j ≤ m, is as follows:

pi,j =

⎧
⎨

⎩

ai,j , if t ≤ y,
ai,j − bi,j(t− y), if y < t < Y,
ai,j − bi,j(Y − y), if t ≥ Y,

(6.54)

where ai,j > 0, bi,j > 0, y ≥ 0 and Y ≥ y are the basic processing time, the
shortening rate, the common initial shortening date and the common final
shortening date, respectively. It is also assumed that

0 < bi,j < 1 (6.55)

and

ai,j > bi,j

(

min{
n∑

k=1

ai,k − ai,j , Y } − y

)

(6.56)

for 1 ≤ j ≤ n and 1 ≤ i ≤ m.

Remark 6.112. The decreasing step-linear processing times given by (6.54) are
counterparts of the increasing step-linear processing times given by (6.39).

Remark 6.113. Conditions (6.55) and (6.56) are generalizations of conditions
(6.47) and (6.48) for the case of parallel machines.

Cheng et al. [54] considered the case of job processing times (6.54) for a
single machine, i.e., when m = 1.

Theorem 6.114. (Cheng et al. [54]) The decision version of the problem
1|pj = aj − bj(t − y), y = 0, 0 < bj < 1, Y < ∞|Cmax is NP-complete in
the ordinary sense.

Proof. The transformation from the PP problem (cf. Sect. 3.2) is as follows.
Let V = (k!)(2k)3k+6A2, B = V 4, α = 1

V 20 and β = 1
V 22 . Define 2k jobs with

the following job processing times: a1,j = B + 2jA + xj and a2,j = B + 2jA
for 1 ≤ j ≤ k, b1,j = αa1,j − β(2k)jA− xj

k−j+1 , b2,j = αa2,j − β(2k)jA for
1 ≤ j ≤ k.

The common initial shortening date is y = 0 and the common final short-
ening date Y = kB +A(2k+1−1). The threshold G = 2Y −αE +βBF +2αV,
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where the constants E and F are defined as follows: E = 3Y 2−kB2

2 −
BA(2k+1 − 1) and F =

∑k
j=1

(
(k + j − 1)(2k)k+j−1A + kxj

k−j+1

)
−A.

To complete the proof, it is sufficient to show that the PP problem has a
solution if and only if for the above instance of the problem 1|pj = aj−bj(t−y),
y = 0, 0 < bj < 1, Y < ∞|Cmax there exists a feasible schedule σ such that
Cmax(σ) ≤ G (see [54, Lemmata 1–3]. � 

Cheng et al. [54] also proved a few properties of optimal schedules of the
problem 1|pj = aj − bj(t − y), y > 0, 0 < bj < 1, Y < ∞|Cmax, where∑n

j=1 aj > y. The terminology used in formulations of the properties is equiv-
alent to the terminology introduced in Definition 6.73 for bounded step-linear
processing times (6.39), provided that y ≡ d and Y ≡ D.

Property 6.115. (Cheng et al. [54]) The order of the early jobs and the order
of the suspended jobs are immaterial.

Proof. Since both the early and suspended jobs have fixed processing times
and the completion time of the last early (suspended) job does not depend on
the order of the early (suspended) jobs, the result follows. � 

Property 6.116. (Cheng et al. [54]) The tardy jobs are sequenced in the non-
increasing order of aj

bj
ratios.

Proof. The result is a corollary from Theorem 6.87 (c). � 

Property 6.117. (Cheng et al. [54]) The pivotal job has a processing time not
larger than that of any of the early jobs.

Proof. By pairwise job interchange argument. � 

Property 6.118. (Cheng et al. [54]) If ai ≥ aj and bi ≤ bj , then job Ji precedes
job Jj .

Proof. By pairwise job interchange argument. � 

Theorem 6.119. (Cheng et al. [54])
(a) The problem 1|pj = aj − b(t − y), y > 0, 0 < bj < 1, Y < ∞|Cmax is
solvable in O(n log n) time by scheduling jobs in the non-increasing order of
aj values.
(b) The problem 1|pj = a − bj(t − y), y > 0, 0 < bj < 1, Y < ∞|Cmax is
solvable in O(n log n) time by scheduling jobs in the non-decreasing order of
bj values.

Proof. (a), (b) The results are corollaries from Property 6.118. � 

By Theorem 6.119, the problems 1|pj = aj − b(t − y), y > 0, 0 < bj < 1,
Y < ∞|Cmax and 1|pj = a − bj(t − y), y > 0, 0 < bj < 1, Y < ∞|Cmax
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are solved by the algorithms A8 : (aj) $→ (aj ↘) and A9 : (aj) $→ (bj ↗),
respectively.

For the problem 1|pj = aj − bj(t − y), y = 0, 0 < bj < 1, Y < ∞|Cmax

Cheng et al. proposed a pseudopolynomial-time algorithm. The algorithm
runs in O(n2

∑n
j=1 aj

∑n
j=1 vj) time, where vj = bjL, L = const; see [54,

Sect. 2.3] for details.
Cheng et al. [54] also proposed three heuristic algorithms for the problem

1|pj = aj − bj(t − y), y = 0, 0 < bj < 1, Y < ∞|Cmax. We will present these
algorithms in Chap. 9.

6.2 Minimizing the total completion time

In this section, we consider single-machine time-dependent scheduling prob-
lems with the

∑
Cj criterion.

6.2.1 Proportional deterioration

Equal ready times and deadlines

The case of jobs with proportional processing times (6.1) is polynomially
solvable.

Theorem 6.120. (Mosheiov [216]) The problem 1|pj = bjt|
∑

Cj is solvable
in O(n log n) time by scheduling jobs in the non-decreasing order of bj values.

Proof. First, note that by summing Cj ≡ C[j](σ) from (6.2) for 1 ≤ j ≤ n we
obtain the formula for the total completion time:

n∑

j=1

Cj = S1

n∑

j=1

j∏

k=1

(1 + b[k]) = t0

n∑

j=1

j∏

k=1

(1 + b[k]). (6.57)

Now we can prove that the right side of formula (6.57) is minimized by
sequencing bj in the non-decreasing order in two different ways. The first way
is to apply pairwise job interchange argument. To this end, we calculate the
total completion time for schedule σ

′
in which job Ji is followed by job Jj

and ai > aj . Next, we show that schedule σ
′′
, which is obtained from σ

′
by

changing the order of jobs Ji and Jj , has lower total completion time than σ
′
.

Repeating the above reasoning for all such pairs of jobs, we obtain the result.
The second way of proof is to apply Lemma 1.2 (a) to formula (6.57). � 

By Theorem 6.120, the problem 1|pj = bjt|
∑

Cj is solved by the algorithm
A9 : (bj) $→ (bj ↗).

The problem 1|pj = bjt|
∑

Cj was also considered in more general settings.
Wu et al. [300] reformulated the problem 1|pj = bjt|

∑
Cj into a batch

scheduling problem (cf. Theorem 6.5 and Remark 6.6).
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Theorem 6.121. (Wu et al. [300]) In the optimal schedule for the prob-
lem 1|pi,j = bi,jt, θi = δi, GT |

∑
Cj in each group jobs are scheduled in

the non-decreasing order of bi,j values and groups are scheduled in the non-
decreasing order of (1+δi)Aki

−1

(1+δi)Bki
ratios, where Aki

:=
∏ki

j=1(1 + bi,j) and

Bki
:=

∑ki

k=1

∏k
j=1(1 + bi,j) for 1 ≤ i ≤ m.

Proof. The first part of the theorem is a corollary from Theorem 6.120. The
second part can be proved by contradiction, see [300, Theorem 2]. !

On the basis of Theorem 6.121 Wu et al. proposed the following algorithm.

Algorithm A16 for the problem 1|pi,j = bi,jt, θi = δi, GT |
∑

Cj ([300])

Input: sequences (δ1, δ2, . . . , δn), (bi,j) for 1 ≤ i ≤ m and 1 ≤ j ≤ ki

Output: an optimal schedule σ�

� Step 1:
for i ← 1 to m do
Arrange jobs in group Gi in the non-decreasing order of bi,j values;

� Step 2:

Arrange groups G1, G2, . . . , Gm in the non-decreasing order of (1+δi)Aki
−1

(1+δi)Bki

↪→ ratios, where Aki
:=

∏ki

j=1(1 + bi,j) and Bki
:=

∑ki

k=1

∏k
j=1(1 + bi,j)

↪→ for 1 ≤ i ≤ m;
� Step 3:

σ� ← the schedule obtained in Step 2;
return σ�.

Theorem 6.122. (Wu et al. [300]) The problem 1|pi,j = bi,jt, θi = δi, GT |
∑

Cj

is solvable in O(n log n) time by algorithm A16.

Proof. The result is a consequence of Theorem 6.121 and the fact that Step 1
and Step 2 need O(n log n) and O(m log m) time, respectively. � 

The problem 1|pj = bjt|
∑

Cj becomes computationally intractable, if the
applied machine is not continuously available (cf. Remark 4.4) and if jobs are
non-resumable (cf. Definition 6.9).

Theorem 6.123. (Ji et al. [155]) The decision version of the problem
1, h11|pj = bjt, nres|

∑
Cj is NP-complete in the ordinary sense.

Proof. Ji et al. [155] use the following transformation from the SP problem
(cf. Sect. 3.2): n = p + 4, arbitrary t0, W1,1 = t0B

5, arbitrary W1,2 > W1,1,
bj = yj−1 for 1 ≤ j ≤ p, bp+1 = Y B−1, bp+2 = Y 2

B −1, bp+3 = bp+4 = Y 3−1
and threshold G = (p + 2)W1,2B

2 + (t0 + W1,2)B5, where Y =
∏p

j=1 yj .
To complete the proof, it is sufficient to show that the SP problem has a

solution if and only if there exists a feasible schedule σ for the above instance
of the problem 1|pj = bjt|

∑
Cj with the non-availability period 〈W1,1,W1,2〉

such that
∑

Cj(σ) ≤ G. � 
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Remark 6.124. For the problem 1, h11|pj = bjt, nres|
∑

Cj Ji et al. [155] pro-
posed a pseudopolynomial algorithm which runs in O(n(W1,1 − t0)W, where
W :=

∏n
j=1(1+ bj). Hence, by Lemma 3.18, this problem cannot be NP-hard

in the strong sense.

Distinct ready times and deadlines

If all jobs have distinct deadlines, the problem 1|pj = bjt, dj |
∑

Cj is poly-
nomially solvable. Provided that there exists a schedule in which all jobs are
completed before their deadlines, the following algorithm solves the problem.

Algorithm A17 for the problem 1|pj = bjt, dj |
∑

Cj

Input: sequences (b1, b2, . . . , bn), (d1, d2, . . . , dn)
Output: an optimal schedule σ�

� Step 1:

B ←
n∏

j=1

(bj + 1);

NJ ← {1, 2, . . . , n};
k ← n;
σ� ← (φ);

� Step 2:
while (NJ �= ∅) do

JB ← {Ji ∈ J : di ≥ B};
Choose job Jj ∈ JB with maximal bj ;
Schedule Jj in σ� in position k;
k ← k − 1;
NJ ← NJ \ {j};
B ← B

bj+1 ;
� Step 3:

return σ�.

Theorem 6.125. (Cheng et al. [55]) The problem 1|pj = bjt, dj |
∑

Cj is solv-
able in O(n log n) time by algorithm A17.

Proof. The result follows from the fact that algorithm A17 is an adaptation
of Smith’s backward scheduling rule for the problem 1|dj |

∑
Cj (Smith [260])

to the problem 1|pj = bjt, dj |
∑

Cj . � 

Remark 6.126. Cheng et al. [55] give the result without a proof. The formu-
lation of algorithm A17 comes from the present author.



106 6 Single-machine time-dependent scheduling

6.2.2 Proportional-linear deterioration

The problem of minimizing the
∑

Cj criterion with job processing times given
by (6.5) is polynomially solvable.

Theorem 6.127. The problem 1|pj = bj(A+Bt)|
∑

Cj is solvable in O(n log n)
time by scheduling jobs in the non-decreasing order of bj

1+Bbj
ratios.

Proof. The result is a corollary from Theorem 6.197 for wj = 1 for 1 ≤ j ≤ n.
�

By Theorem 6.127, the problem 1|pj = bj(A + Bt)|
∑

Cj is solved by the
algorithm A18 : (bj |B) $→ ( bj

1+Bbj
↗).

6.2.3 Linear deterioration

Now, we pass to single-machine time-dependent scheduling problems with job
processing times given by (6.10).

Equal ready times and deadlines

If we consider the problem of single-machine scheduling jobs with linear pro-
cessing times, the situation is unclear. On the one hand, it seems that the
problem is not difficult since by summing the right side of (6.13) for 1 ≤ j ≤ n
we obtain the formula for the total completion time:

n∑

j=1

Cj(σ) =
n∑

i=1

i∑

j=1

aσj

i∏

k=j+1

(1 + bσk
) + t0

n∑

i=1

i∏

j=1

(1 + bσj
), (6.58)

from which we can obtain formulae for special cases, e.g., when aσj
= 0 for

1 ≤ j ≤ n or t0 = 0. Therefore, for a given schedule we can easily calculate
job completion times.

On the other hand, the complexity of the problem 1|pj = aj + bjt|
∑

Cj is
still unknown, even if aj = 1 for 1 ≤ j ≤ n. In this case, the following result
is known.

Property 6.128. (Mosheiov [215]) If k = arg max
1≤j≤n

{bj}, then in an optimal

schedule for the problem 1|pj = 1 + bjt|
∑

Cj job Jk is scheduled as the first
one.

Proof. Consider job Jk with the greatest deterioration rate, k = arg max{bj}.
(If there are several jobs that have the same rate, choose any of them.) Since
the completion time of job Jk is Ck = 1 + (1 + bk)Sk, this completion time
(and thus the total completion time) will be the smallest if Sk = 0. �
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Notice that by Property 6.128, we may reduce the original problem to
the problem with only n − 1 jobs, since the greatest job (i.e., the one with
the greatest deterioration rate) has to be scheduled as the first one. More-
over, since in this case this job contributes only one unit of time to the total
completion time, we can also reformulate the criterion function. Namely, for
any schedule σ for the problem 1|pj = 1 + bjt|

∑
Cj there holds the equality∑

Cj(σ) = g(σ) + n. The function g is defined in the next property.

Property 6.129. (Mosheiov [215]) Let g(σ) :=
∑n

i=1

∑i
k=1

∏i
j=k b[j] and let

σ and σ̄ be a schedule for the problem 1|pj = 1 + bjt|
∑

Cj and the reverse
schedule to σ, respectively. Then g(σ) = g(σ̄).

Proof. Since
∑n

i=1

∑i
j=1

∏i
k=j+1(1 + bk) =

∑n
i=1

∑i
j=1

∏i
k=j+1(1 + bn−k+1),

the result follows. �

By Property 6.129, we obtain the following symmetry property for the∑
Cj criterion in the problem 1|pj = 1 + bjt|

∑
Cj .

Property 6.130. (Mosheiov [215]) If σ and σ̄ are defined as in Property 6.129,
then

∑
Cj(σ) =

∑
Cj(σ̄).

Proof. We have
∑

Cj(σ) = g(σ) + n. But, by Property 6.129, g(σ) = g(σ̄).
Hence

∑
Cj(σ) = g(σ) + n = g(σ̄) + n =

∑
Cj(σ̄). �

From Property 6.129 follows the next property.

Property 6.131. (Mosheiov [215]) Let k = arg min
1≤j≤n

{bj}. Then, in the optimal

schedule for the problem 1|pj = 1 + bjt|
∑

Cj , job Jk is scheduled neither as
the first nor as the last one.

Proof. Let σ = (k, σ2, . . . , σn) be any schedule in which job Jk is scheduled
as the first one. Consider schedule σ′ = (σ2, k, . . . , σn). Then we have g(σ′)−
g(σ) = (bk − b2)

∑n
i=3

∏i
j=3(1 + bj) ≤ 0, since bk − b2 ≤ 0 by assumption.

Hence, schedule σ′ is better than schedule σ.
By Property 6.129, job Jk cannot be scheduled as the last one either. � 

Property 6.131 allows us to prove the following result.

Property 6.132. (Mosheiov [215]) Let Ji−1, Ji and Ji+1 be three consecutive
jobs in a schedule for the problem 1|pj = 1 + bjt|

∑
Cj . If bi > bi−1 and

bi > bi+1, then this schedule cannot be optimal.

Proof. The main idea of the proof is to show that the exchange of jobs Ji−1

and Ji or of jobs Ji and Ji+1 leads to a better schedule.
Let σ, σ

′
and σ

′′
denote schedules in which jobs Ji−1, Ji, Ji+1 are scheduled

in the order (σ(a), i− 1, i, i + 1, σ(b)), (σ(a), i, i− 1, i + 1, σ(b)) and (σ(a), i− 1,
i + 1, i, σ(b)), respectively, where σ(a) (σ(b)) denotes the part of schedule σ
before (after) the jobs Ji−1, Ji, Ji+1.
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Since

g(σ
′
)− g(σ) = (bi − bi−1)

i−2∑

k=1

i−2∏

j=k

(1 + bj) + (bi−1 − bi)
n∑

k=i+1

k∏

j=i+1

(1 + bj)

and

g(σ
′′
)− g(σ) = (bi+1 − bi)

i−1∑

k=1

i−1∏

j=k

(1 + bj) + (bi − bi+1)
n∑

k=i+2

k∏

j=i+2

(1 + bj),

it can be shown (see [215, Lemma 2]) that the two differences cannot be both
positive. Hence, either σ

′
or σ

′′
are better schedules than schedule σ. � 

From Properties 6.131–6.132, there follows the result describing the so-
called V-shape property for the problem 1|pj = 1 + bjt|

∑
Cj .

Theorem 6.133. (Mosheiov [215]) The optimal schedule for the problem
1|pj = 1 + bjt|

∑
Cj is V-shaped with respect to deterioration rates bj.

Proof. The result is a consequence of Property 6.131 and Property 6.132. � 
Remark 6.134. V-shaped sequences were introduced in Definition 1.3.

Theorem 6.133 allows to decrease the number of possible schedules from
n! to 2n−3 − 1. In some cases, we can obtain a V-shaped sequence that is
optimal.

Definition 6.135. (Mosheiov [215]) A sequence (xj), 1 ≤ j ≤ n, is said to be
perfectly symmetric V-shaped (to have a perfect V-shape), if it is V -shaped
and xi = xn−i+2, 2 ≤ i ≤ n.

The following result shows the importance of perfectly symmetric V-shaped
sequences for the problem 1|pj = 1 + bjt|

∑
Cj .

Theorem 6.136. (Mosheiov [215]) If a perfectly symmetric V -shaped se-
quence can be constructed from the sequence of deterioration rates of an in-
stance of the problem 1|pj = 1 + bjt|

∑
Cj, then the sequence is optimal.

Proof. See Mosheiov [215, Proposition 3]. !

For the problem 1|pj = 1+bjt|
∑

Cj , Mosheiov [215] proposed two heuris-
tic algorithms, both running in O(n log n) time. We will consider these heuris-
tics in Chap. 9.

Now we consider some special cases of the problem 1|pj = 1 + bjt|
∑

Cj .
Assume that in the set {b1, b2, . . . , bn} there exist only k different values, i.e.,

bj ∈ {B1, B2, . . . , Bk}, (6.59)

where 1 ≤ j ≤ n and k < n is fixed. Without loss of generality, we can assume
that

B1 ≥ B2 ≥ . . . Bk−1 ≥ Bk.
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Lemma 6.137. (Gawiejnowicz et al. [106]) If condition (6.59) is satisfied,
then in the optimal schedule for the problem 1|pj = 1+bjt|

∑
Cj the jobs with

the smallest deterioration rate bk are scheduled as one group without inserting
between them jobs with deterioration rates greater than bk.

Proof. The result is a corollary from Theorem 6.133. � 

For purposes of the next result, we will say that a deterioration rate b is
of type bk, if b = Bk.

Theorem 6.138. (Gawiejnowicz et al. [106]) If condition (6.59) is satisfied,
then the optimal schedule for the problem 1|pj = 1 + bjt|

∑
Cj is V -shaped

with respect to types of jobs.

Proof. By mathematical induction with respect to the number of types k and
by Lemma 6.137, the result follows. � 

On the basis of Theorem 6.138, we can construct the following algorithm.

Algorithm E1

for the problem 1|pj = 1 + bjt, bj ∈ {B1, B2, . . . , Bk}|
∑

Cj ([106])

Input: sequence (b1, b2, . . . , bn)
Output: an optimal schedule σ�

� Step 1:
Construct set V of the schedules which have the V-shape property
↪→ described in Theorem 6.138;

� Step 2:
for all ν ∈ V do calculate

∑
Cj(ν);

� Step 3:
σ� ← arg min{

∑
Cj(τ) : τ ∈ V};

return σ�.

Theorem 6.139. (Gawiejnowicz et al. [106]) If bj ∈ {B1, B2, . . . , Bk}, the
problem 1|pj = 1 + bjt|

∑
Cj is solvable by algorithm E1 in O(nk+1) time.

Proof. Since Step 1 and Step 3 need O(nk) time and calculation of
∑

Cj(σ)
for a given σ ∈ V needs O(n) time, the result follows. �

Another polynomial case of the problem 1|pj = 1 + bjt|
∑

Cj has been
considered by Ocetkiewicz [228]. The author has shown that if for any i and
j such that 1 ≤ i �= j ≤ n there holds the implication

bi > bj =⇒ bi ≥
bmin + 1

bmin
+

1
bmin

, (6.60)

with bmin := min1≤j≤n{bj}, the optimal V-shaped job sequence for the prob-
lem (cf. Definition 1.3) can be constructed in polynomial time. This is caused
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by the fact that implication (6.60) allows to indicate to which branch of the
constructed V-shaped sequence a given ratio bi should be added.

The pseudo-code of the algorithm can be formulated as follows.

Algorithm A19 for the problem 1|pj = 1 + bjt|
∑

Cj ([228])

Input: sequence (b1, b2, . . . , bn)
Output: an optimal schedule σ�

� Step 1:
Arrange jobs in the non-decreasing order of bj values;
L ← (1 + b[n−1]);
σ(L) ← (b[n−1]);
R ← 0;
σ(R) ← (φ);

� Step 2:
for i ← n− 2 downto 2 do

if (L > R) then σ(R) ← (b[i]|σ(R));
R ← (R + 1)(1 + b[i])

else σ(L) ← (σ(L)|b[i]);
L ← (L + 1)(1 + b[i]);

� Step 3:
σ� ← (b[n]|σ(L)|b[1]|σ(R));
return σ�.

Theorem 6.140. (Ocetkiewicz [228]) If all jobs have distinct deterioration
rates and for any 1 ≤ i �= j ≤ n there holds implication (6.60), then the
problem 1|pj = 1 + bjt|

∑
Cj is solvable by algorithm A19 in O(n log n) time.

Proof. By direct calculation, see [228, Sect. 2] !

Unlike the case of proportional job processing times (6.1), the problem
of minimization of the total completion time for a set of jobs with linear
processing times (6.10) is computationally intractable even if all deadlines
are equal.

Theorem 6.141. (Cheng et al. [55]) The decision version of the problem
1|pj = aj + bjt, dj = D|

∑
Cj is NP-complete in the ordinary sense.

Proof. The authors state the result without proof, see [55, Theorem 2]. !

Distinct ready times and deadlines

If deadlines are arbitrary, then the problem of minimizing
∑

Cj is also com-
putationally intractable.
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Theorem 6.142. (Cheng and Ding [52]) The problem 1|pj = aj+bjt, dj |
∑

Cj

is NP-complete in the strong sense.

Proof. The authors give only a sketch of proof, see [52, Theorem 6]. !

If bj = b for 1 ≤ j ≤ n, then there holds the following result.

Lemma 6.143. (Cheng and Ding [52]) The problem 1pj = aj + bt, dj |Cmax is
equivalent to the problem 1|pj = aj + bt, dj |

∑
Cj .

Proof. Let σ be an arbitrary schedule for the problem 1pj = aj + bt, dj |Cmax.
Then

Ci(σ) = ai + Bai−1 + . . . + Bi−1a1 =
i∑

k=1

Bi−kak,

where B = 1 + b.
Since Ci(σ) =

∑i
j=1 pj and pj = aj + bSj , we have

Ci(σ) =
i∑

j=1

(aj + bSj) =
i∑

j=1

aj + b
i∑

j=1

Sj =
i∑

j=1

aj + b
i∑

j=1

1
B (Cj(σ)− aj) =

1
B

i∑

j=1

aj + b
B

i∑

j=1

Cj .

Therefore, the problem of minimizing the maximum completion time is
equivalent to the problem of minimizing the total completion time. �
Remark 6.144. Lemma 6.143 gives an example of two time-dependent schedul-
ing problems that are equivalent in some sense. In Sect. 12.4, we will consider
other forms of equivalent time-dependent scheduling problems.

Theorem 6.145. (Cheng and Ding [48]) The problem 1|pj = aj +bt, dj |
∑

Cj

is solvable in O(n5) time by algorithm A6.

Proof. By Lemma 6.143 and Theorem 6.38, the result follows. � 

6.2.4 Simple non-linear deterioration

Equal ready times and deadlines

A single-machine time-dependent scheduling problem with simple non-linear
job processing times given by (6.15) is polynomially solvable.

Theorem 6.146. (Gawiejnowicz [89]) The problem 1|pj = aj + f(t)|
∑

Cj ,
where f(t) is an arbitrary increasing function, is optimally solved in O(n log n)
time by scheduling jobs in the non-decreasing order of aj values.

Proof. Since
∑n

j=1 Cj =
∑n

j=1(n−j+1)(aj +f(Sj)), and sequence (n−j+1)
is decreasing, the result follows from Lemma 1.2 (a). �

By Theorem 6.146, the problem 1|pj = aj + f(t), f ↗ |
∑

Cj is solved by
the algorithm A7 : (aj) $→ (aj ↗).
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6.2.5 General non-linear deterioration

Equal ready times and deadlines

For job processing times given by (6.27), the following result is known.

Theorem 6.147. (Cheng and Ding [51]) The decision version of the problem
1|pj ∈ {aj , bj : aj ≤ bj}|

∑
Cj is NP-complete in the ordinary sense even if

dj = D for 1 ≤ j ≤ n.

Proof. Given an instance of the PP problem (cf. Sect. 3.2), construct an in-
stance of the problem 1|pj ∈ {aj , bj : aj ≤ bj}, dj = D|

∑
Cj as follows. Let

n = 2k + 1 and B = 2k+1A. Define a0 = (k + 1)B, a2j−1 = B + 2jA + xj and
a2k = B + 2jA for 1 ≤ j ≤ k. Let C = 4kA, E =

∑k
j=1(2k + 2 − j)a2j−1+

(k + 1)a0 + (A + 1)C and F = E + E
∑k

j=1(k + 1 − j)kj . Define b0 = F 2,

b2j−1 = F − a2j + kjE + Cxj

k+1−j and b2j = F − a2j + kjE for 1 ≤ j ≤ k.

The identical deteriorating rate D = kB + 2k+1A − A. The threshold
G = F + F

∑k
j=1(k + 1− j).

To complete the proof, it is suficient to show that the PP problem has a
solution if and only if for the above instance of the considered problem there
exists a schedule σ such that Cmax(σ) ≤ G (see [51, Appendix A]). � 

For the case when dj = D for 1 ≤ j ≤ n, Jeng and Lin [152] formulated a
branch-and-bound algorithm. Before we formulate the next result concerning
this case, we define a new type of a schedule.

Definition 6.148. (A normal schedule)
A schedule for the problem 1|pj ∈ {aj , bj : aj ≤ bj}, dj = D|

∑
Cj is called

normal, if the last job in the set of early jobs is started by the common due
date D and finished after D.

The given below result allows to estimate the number of early jobs in a
normal schedule.

Lemma 6.149. Jeng and Lin [152]) Let E := {Jk ∈ J : Ck ≤ d} and let
U (L) be the smallest (largest) integer satisfying the inequality

∑U
j=1 ai > D

(
∑U

j=n−U ai > D). Then for an arbitrary normal schedule for the problem
1|pj ∈ {aj , bj : aj ≤ bj}, dj = D|

∑
Cj we have U ≤ |E| ≤ L.

Proof. Note that without loss of generality, we can consider only the schedules
in which jobs are indexed in the non-decreasing order of aj values. Since time
interval 〈0, d〉 can be considered as a one-dimensional bin, and job processing
times aj as the items to pack into the bin, the result follows. � 

Remark 6.150. The terminology used in the proof of Lemma 6.149 is related
to the BP problem (cf. Sect. 3.2).
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Lemma 6.151. (Jeng and Lin [152]) Let b(j) be the j-th smallest deterioration
rate in an instance of the problem 1|pj ∈ {aj , bj : aj ≤ bj}, dj = D|

∑
Cj .

Then for any schedule σ for the problem there holds the inequality
∑

Cj(σ) ≥
∑n

j=1(n− j + 1)aj +
∑n−U

j=1 (n− U − j + 1)b(j).

Proof. Let E := {Jk ∈ J : Ck ≤ D}. By definition of the problem
1|pj ∈ {aj , bj : aj ≤ bj}, dj = D|

∑
Cj , for any schedule σ we have

∑
Cj(σ) =

∑n
j=1(n − j + 1)a[j] +

∑n−|E|
j=1 (n − |E| − j + 1)b[j]. Since jobs are indexed

in the non-decreasing order of aj values,
∑

Cj(σ) =
∑n

j=1(n − j + 1)a[j] ≥∑n
j=1(n−j+1)aj . By Lemma 6.149, |E| ≤ U and hence |L| = |J \E| ≥ n−U.

Since b(j) ≤ b[j] for any 1 ≤ j ≤ n, the result follows. � 

By Lemma 6.151, the value
∑n

j=1(n− j + 1)aj +
∑n−U

j=1 (n−U − j + 1)b(j)

may be used as an initial lower bound of the
∑

Cj criterion.
Jeng and Lin also obtained a few results, concerning the possible domi-

nance relationships between jobs. One of the results is the following.

Lemma 6.152. (Jeng and Lin [152]) Let σ and E be an arbitrary subschedule
for the problem 1|pj ∈ {aj , bj : aj ≤ bj}, dj = D|

∑
Cj and the set of early

jobs in the subschedule, respectively. If there exists a job Jj not belonging to
σ and such that

∑
j∈E aj +

∑n
i=j ai ≤ d, then each subtree rooted at E ∪ {k},

j ≤ k ≤ n, can be eliminated.

Proof. See [152, Lemma 4]. !

Based on Lemmata 6.149–6.152 and some other results (see [152, Sect. 4])
Jeng and Lin constructed the mentioned above branch-and-bound algorithm
for the problem 1|pj ∈ {aj , bj : aj ≤ bj}, dj = D|

∑
Cj . The reported results

of conducted computational experiments (see [152, Sect. 5]) suggest that the
algorithm is quite effective, since it can solve most instances with n = 100
jobs in time not longer than 3 minutes.

Cheng and Ding identified some polynomially solvable cases of the prob-
lem 1|pj ∈ {aj , bj : aj ≤ bj}, dj = D|

∑
Cj . Assume that the conjunction

ai �= aj ∧ bi �= bj holds for any 1 ≤ i, j ≤ n. Let E := {Jk ∈ J : Ck ≤ d} and
L := J \ E.

Lemma 6.153. (Cheng and Ding [51]) If ai ≤ aj and ai + bi ≤ aj + bj , then
job Ji precedes job Jj in any optimal schedule for the problem 1|pj ∈ {aj , bj :
aj ≤ bj}|

∑
Cj .

Proof. By pairwise job interchange argument. � 

By Lemma 6.153, we can divide the set of jobs J into a number of chains
as follows. Renumber jobs in the non-decreasing order of aj values, ties in the
non-increasing order of aj + bj values. Assume that a job is the head of a
chain. Put the next job at the end of the chain, if it has agreeable parameters



114 6 Single-machine time-dependent scheduling

with the last job in the chain. Repeat the procedure until all jobs are checked.
Create other chains from the remaining jobs in the same way.

Notice that knowing all chains, we know which jobs are early and tardy
in each chain. Moreover, since the early jobs have known processing times
and in this case the total completion time is minimized by scheduling the
jobs in the non-decreasing order with respect to aj values, we obtain a lo-
cal optimal schedule. If we enumerate all locally optimal schedules, we find
an optimal schedule.

Based on the above reasoning, Cheng and Ding [51] proposed the following
exact algorithm.

Algorithm E2

for the problem 1|pj ∈ {aj , bj : aj ≤ bj}, dj = D|
∑

Cj ([51])

Input: sequences (a1, a2, . . . , an), (b1, b2, . . . , bn), number D
Output: an optimal schedule σ�

� Step 1:
Construct all chains of jobs C1, C2, . . . , Ck;

� Step 2:
for all possible (e1, e2, . . . , ek) such that ei ≤ |Ci| for 1 ≤ i ≤ k do

for C ← C1 to Ck do
Set the number of elements of {Jk ∈ C : Ck ≤ D} to eC ;

E ← {Jk ∈ J : Ck ≤ D}; L ← J \ E;
Schedule jobs in E in the non-decreasing order of aj values;
Schedule jobs in L in the non-increasing order of aj + bj values;
if (Cmax(E) ≤ D) then compute

∑
Cj(E);

� Step 3:
σ� ← the best schedule among all schedules generated in Step 2;
return σ�.

Algorithm E2 runs in O(nk log n) time, where k is the number of chains
created in Step 1. If k is a fixed number, then there holds the following result.

Theorem 6.154. (Cheng and Ding [51]) If for an instance of the problem
1|pj ∈ {aj , bj : aj ≤ bj}, dj = D|

∑
Cj there is a fixed number of chains k,

then algorithm E2 is a polynomial-time algorithm for this instance.

Proof. For a fixed k, the total running time of algorithm E2 becomes polyno-
mial with respect to n. � 

6.2.6 Linear shortening

We will end this section with the results concerning single-machine time-
dependent scheduling problems with shortening job processing times.
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Equal ready times and deadlines

First we consider shortening job processing times given by (6.46), where for
1 ≤ j ≤ n there hold conditions (6.47) and (6.48). The assumptions eliminate
some trivial cases and assure that the constructed instances make sense from
the practical point of view.

Property 6.155. (Ng et al. [226]) The problem 1|pj = aj − bt|
∑

Cj is solvable
in O(n log n) time by scheduling jobs in the non-decreasing order of aj values.

Proof. By pairwise job interchange argument. � 

Property 6.156. (Ng et al. [226]) The problem 1|pj = aj(1− kt)|
∑

Cj is solv-
able in O(n log n) time by scheduling jobs in the non-decreasing order of aj

values.

Proof. By pairwise job interchange argument. � 

By Properties 6.155–6.156, the problems 1|pj = aj − bt, 0 < b < 1|
∑

Cj

and 1|pj = aj − kajt|
∑

Cj are both solved by the algorithm A7 : (aj) $→
(aj ↗).

Property 6.157. (Ng et al. [226]) Any optimal schedule for the problem
1|pj = a− bjt|

∑
Cj is Λ-shaped with respect to job shortening rates bj .

Proof. Let Ji−1, Ji, Ji+1 be three consecutive jobs such that bi < bi−1 and
bi < bi+1. Assume that job sequence σ� is optimal, where σ� = (1, 2, . . . , i−2,
i−1, i, i+1, i+2, . . . , n). Consider two job sequences: σ

′
= (1, 2, . . . , i−2, i, i−1,

i+1, i+2, . . . , n) and σ
′′

= (1, 2, . . . , i−2, i−1, i+1, i, i+2, . . . , n). Since the
differences

∑
wjCj(σ�)−

∑
wjCj(σ

′
) and

∑
wjCj(σ�)−

∑
wjCj(σ

′′
) cannot

be both negative (see [226, Property 3]), either σ
′
or σ

′′
is a better sequence

than σ�. A contradiction. � 

Property 6.158. (Ng et al. [226]) If σ is a schedule for the problem
1|pj = a−bjt|

∑
Cj and σ̄ is a schedule reverse to σ, then

∑
Cj(σ) =

∑
Cj(σ̄).

Proof. By direct calculation, see [226, Property 4]. !

Property 6.159. (Ng et al. [226]) In any optimal schedule for the problem
1|pj = a− bjt|

∑
Cj , the job with the smallest deterioration rate is scheduled

in the first position.

Proof. Assuming that the job with the smallest deterioration rate is not sched-
uled in the first position, by Property 6.158, we obtain a contradiction, see
[226, Property 5]. !

Remark 6.160. For the problem 1|pj = a− bjt|
∑

Cj , Ng et al. also proposed
a pseudopolynomial-time dynamic programming algorithm with running time
O(n3h2), where h is the product of denominators of all shortening rates bj ,
1 ≤ j ≤ n; see [226, Sect. 4] for more details. !
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Theorem 6.161. (Cheng and Ding [55]) The decision version of the problem
1|pj = aj − bt, dj = D|

∑
Cj is NP-complete in the ordinary sense.

Proof. The authors only give the idea of the proof; see [55, Theorem 1]. !

Wang et al. [283] considered the problem of single-machine batch schedul-
ing (cf. Remarks 6.2, 6.3 and 6.6) with job processing times pi,j = ai,j − bi,jt,
where

0 < bi,j < 1 (6.61)

and

bi,j

⎛

⎝
m∑

i=1

ki∑

j=1

(θi + ai,j)− ai,j

⎞

⎠ < ai,j (6.62)

for 1 ≤ i ≤ m and 1 ≤ j ≤ ki,
∑m

i=1 ki = n.

Remark 6.162. Conditions (6.61) and (6.62) for time-dependent scheduling
problems with group technology (cf. Remark 6.2) are counterparts of condi-
tions (6.47) and (6.48), respectively, for time-dependent scheduling problems
without batching (cf. Remark 6.83).

For the problem 1|pi,j = ai,j − bi,jt, θi, GT |
∑

Cj , with bi,j = bi for all j,
the authors proposed the following algorithm.

Algorithm A20

for the problem 1|pi,j = ai,j − bit, θi, GT |
∑

Cj([283])

Input: sequences (ai,j), (bi), (θi) for 1 ≤ i ≤ m and 1 ≤ j ≤ ki

Output: an optimal schedule σ�

� Step 1:
for i ← 1 to m do

Arrange jobs in group Gi in the non-increasing order of the ai,j values;
Call the sequence σ(i);

� Step 2:
for i ← 1 to m do

Calculate ρ(Gi) :=
θi(1−bi)

ki+
∑ki

j=1 ai,j(1−bi)
ki−j

∑ki
j=1 ai,j(1−bi)j

;

� Step 3:
Schedule groups in the non-decreasing order of ρ(Gi) values;

� Step 4:
σ� ← (σ([1])|σ([2])| . . . |σ([m]));
return σ�.

Theorem 6.163. (Wang et al. [283]) The problem 1|pi,j = ai,j − bit, θi,
GT |

∑
Cj is solvable by algorithm A20 in O(n log n) time.

Proof. By pairwise job interchange; see [283, Theorems 4–5] for details. !
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Remark 6.164. Wang et al. [283] also considered the case when bi,j = Bai,j

for all i, j. This case is solved by an algorithm that is similar to A20; see[283,
Algorithm 3, Theorems 7–8] for details. !

Now we pass to the results concerning job processing times given by (6.54).

Theorem 6.165. (Cheng et al. [54]) The decision version of the problem
1|pj = aj − bj(t − y), y = 0, 0 < bj < 1, Y < ∞|

∑
Cj is NP-complete in

the ordinary sense.

Proof. The transformation from the PP problem (cf. Sect. 3.2) is as follows.
Let V = (2kA)6 and B = V 3. Define 2k + 1 jobs with shortening processing
times as follows: a0 = 4k2B, b0 = 1, a1,j = jB + xj( 1

2 + (2k − 3j + 2)) and
a2,j = jB for 1 ≤ j ≤ k, and b1,j = 0, b2,j = xj

jB for 1 ≤ j ≤ k.
The common initial shortening date is y = 0 and the common final short-

ening date Y =
∑k

j=1(a1,j + a2,j) −
∑k

j=1(j − 1)xj − A. The threshold
G = E + a0 − F + H

2 + 1
V , where constants E and F are defined as fol-

lows: E =
∑k

j=1

(
(4k − 4j + 3)jB + (2k − 2j − 1)(1

2 + (2k − 3j + 2))xj

)
and

F = 2
∑k

j=1(k − j + 1)(j − 1)xj .
To complete the proof, it is sufficient to show that the PP problem has a

solution if and only if for the above instance of the problem 1|pj = aj − bjt,
0 < bj < 1, 0 ≤ t ≤ Y |

∑
Cj there exists a schedule σ such that

∑
Cj(σ) ≤ G.

� 
Cheng et al. [54] also established two properties of an optimal schedule for

the problem 1|pj = aj − bj(t− y), y > 0, 0 < bj < 1, Y < ∞|
∑

Cj .

Property 6.166. (Cheng et al. [54]) The early jobs are sequenced in the non-
decreasing order of aj values.

Proof. By pairwise job interchange argument. � 
Property 6.167. (Cheng et al. [54]) The suspended jobs are sequenced in the
non-decreasing order of aj − bj(Y − y) values.

Proof. By pairwise job interchange argument. � 
The authors also proposed four heuristic algorithms for the latter problem.

We will consider these algorithms in Chap. 9.

Distinct ready times and deadlines

The problem of minimizing the total completion time for a set of jobs that
have the same shortening rate, bj = b, and only two distinct deadlines,
dj ∈ {D1,D2}, is computationally intractable.

Theorem 6.168. (Cheng and Ding [48]) The decision version of the problem
1|pj = aj − bt, dj ∈ {D1,D2}|

∑
Cj is NP-complete in the ordinary sense.

Proof. The result is a corollary from Theorem 6.95. � 
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6.3 Minimizing the maximum lateness

In this section, we consider single-machine time-dependent scheduling prob-
lems with the Lmax criterion.

6.3.1 Proportional deterioration

Equal ready times and deadlines

The single-machine time-dependent scheduling problem with proportional job
processing times given by (6.1) is easy to solve.

Theorem 6.169. (Mosheiov [216]) The problem 1|pj = bjt|Lmax is solvable
in O(n log n) time by scheduling jobs in the non-decreasing order of dj values.

Proof. The first proof is by pairwise job interchange argument. Consider
schedule σ

′
in which job Ji is followed by job Jj and di > dj . Then

Li(σ
′
) = (1 + bi)Si − di and Lj(σ

′
) = (1 + bj)(1 + bi)Si − dj .

Consider now schedule σ
′′
, obtained from σ

′
by interchanging jobs Ji and

Jj . Then Lj(σ
′′
) = (1 + bj)Si − dj and Li(σ

′′
) = (1 + bi)(1 + bj)Si − di.

Since Lj(σ
′
) > Lj(σ

′′
) and Lj(σ

′
) > Li(σ

′′
), schedule σ

′′
is better than

schedule σ
′
.

Repeating this reasoning for all other pairs of jobs that are scheduled in
the non-increasing order of dj , we obtain an optimal schedule in which all jobs
are scheduled in the non-decreasing order of deadlines. � 

By Theorem 6.169, the problem 1|pj = bjt|Lmax is solved by the algorithm
A21 : (bj |dj) $→ (dj ↗). In the final schedule, the jobs are in the EDD order.

6.3.2 Proportional-linear deterioration

Theorem 6.169 was generalized by Kononov for proportional-linear job pro-
cessing times given by (6.5).

Theorem 6.170. (Kononov [173]) If there hold inequalities (6.6) and (6.7),
then the problem 1|pj = bj(A + Bt)|Lmax is solvable in O(n log n) time by
scheduling jobs in the non-increasing order of dj values.

Proof. By pairwise job interchange argument. � 

By Theorem 6.170, the problem 1|pj = bj(A + Bt)|Lmax is solved by the
algorithm A21 : (bj |dj) $→ (dj ↗).

Remark 6.171. A version of Theorem 6.170, without conditions (6.6) and (6.7)
but with assumptions A > 0, B > 0, bj > 0 for 1 ≤ j ≤ n, was given by Zhao
et al., see [304, Theorem 4].

Now we pass to the presentation of the results concerning more general
job processing times than proportional or proportional-linear ones.
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6.3.3 Linear deterioration

Distinct ready time and deadlines

The general problem, with linearly deteriorating processing times (6.10), is
computationally intractable.

Theorem 6.172. (Kononov [172]) The decision version of the problem
1|pj = aj + bjt|Lmax is NP-complete in the ordinary sense even if only one
ak �= 0 for some 1 ≤ k ≤ n, and dj = D for jobs with aj = 0.

Proof. The transformation from the SP problem (cf. Sect. 3.2) is as follows.
We are given n = p + 1 jobs, where a0 = 1, b0 = 0, d0 = B + 1 and aj = 0,

bj = yj − 1, dj = Y (B+1)
B for 1 ≤ j ≤ p, with Y =

∏p
j=1 yj . The threshold

G = 0. To prove the result, it is sufficient to apply (6.2) and to show that the
SP problem has a solution if and only if for the above instance of the problem
1|pj = aj + bjt|Lmax there exists a schedule σ such that Lmax(σ) ≤ G. � 

The problem 1|pj = aj + bjt|Lmax was also studied by other authors.

Theorem 6.173. (Bachman and Janiak [11]) The decision version of the
problem 1|pj = aj + bjt|Lmax is NP-complete in the ordinary sense even
if there are only two distinct deadlines.

Proof. The transformation from the PP problem (cf. Sect. 3.2) is as fol-
lows. We have n = k + 1 jobs, di =

(
kq+2A + kA + k + A + 1 + 1

kq + 1
kq−1

)
×(

1 + 2
2kq−1

)
− kqA, ai = xi and bi = xi

kqA for 1 ≤ i ≤ k, and dk+1 =

kq+2A + kA + A + k + 1 + (A+2)(k+1)
2kq−1 , ak+1 = kq+2A, bk+1 = k, where

q = � ln(A+1)−ln(2)
ln k �+ 3. The threshold G = 0. In order to complete the proof,

it is sufficient to show that the PP problem has a solution if and only if for
the above instance of the problem 1|pj = aj + bjt|Lmax there exists a schedule
σ such that Lmax(σ) ≤ G. � 

Theorem 6.174. (Cheng and Ding [52]) The decision version of the problem
1|pj = aj + bjt|Lmax is NP-complete in the strong sense.

Proof. The authors give only a sketch of proof, see [52, Theorem 6]. !

Bachman and Janiak [11] also proposed two heuristic algorithms for the
problem. We will present these algorithms in Chap. 9.

Hsu and Lin [142] proposed a branch-and-bound algorithm for deriving
exact solutions for the problem 1|pj = aj + bjt|Lmax. The algorithm exploits
several properties concerning dominance relations among different schedules.

Property 6.175. (Hsu and Lin [142]) Let σ(a) and σ(b) be two schedules of a
given subset of jobs. If Cmax(σ(a)) ≤ Cmax(σ(b)) and Lmax(σ(a)) ≤ Lmax(σ(b)),
then the subtree rooted at σ(b) can be eliminated.
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Proof. The result follows from the regularity of the Cmax and Lmax criteria.
� 

Property 6.176. (Hsu and Lin [142]) Let Ji, Jj ∈ J be any two jobs scheduled
consecutively. If ai

bi
≤ aj

bj
and di ≤ dj , then there exists an optimal schedule

in which job Ji is an immediate predecessor of job Jj .

Proof. Let σ
′
(σ

′′
) be a schedule in which job Ji (job Jj) precedes job Jj (job

Ji). First, note that if ai

bi
≤ aj

bj
and di ≤ dj , then by Theorem 6.24 we have

Cmax(σ
′
) ≤ Cmax(σ

′′
). Second, since then Li(σ

′
) ≤ Li(σ

′′
) and Lj(σ

′′
) =

Cj(σ
′
)− dj ≤ Li(σ

′′
), we have max{Li(σ

′
), Lj(σ

′′
)} ≤ max{Li(σ

′′
), Lj(σ

′′
)}.

Hence, Lmax(σ
′
) ≤ Lmax(σ

′′
). � 

Let (σ(a)|τ (a)) denote a schedule composed of partial schedules σ(a) and
τ (a), where |τ (a)| ≥ 0.

Property 6.177. (Hsu and Lin [142]) Given a partial schedule (σ(a)|j) and an
unscheduled job Ji, if ai

bi
≤ aj

bj
and Cmax(σ(a)|i|j) − dj ≤ Lmax(σ(a)|j), then

the subtree rooted at (σ(a)|j|i) can be eliminated.

Proof. First, inequality ai

bi
≤ aj

bj
implies that Cmax(σ(a)|i|j) ≤ Cmax(σ(a)|j|i).

Second, Li(σ(a)|i|j) ≤ Li(σ(a)|j|i). Finally, Cmax(σ(a)|i|j)−dj ≤ Lmax(σ(a)|j)
by assumption. Hence, Lmax(σ(a)|i|j) ≤ max{Cmax(σ(a)|j|i)−di, Lmax(σ(a)|j)}
= Lmax(σ(a)|j|i). � 

Properties 6.175–6.177 allow to cut off some subtrees during the process
of searching for an optimal schedule in the tree of all possible schedules. In
order to estimate the lateness of an optimal schedule from below, we need a
lower bound on the value of Lmax for the optimal schedule.

Property 6.178. (Hsu and Lin [142]) Let σ(a) and τ (a) denote, respectively,
a schedule of a subset of jobs and a schedule with the remaining jobs ar-
ranged in the non-decreasing order of aj

bj
ratios. Then Lmax(σ(a)|τ (a)′) ≤

Cmax(σ(a)|τ (a))−max{dj : j ∈ NJ \N(σ(a))}, where τ (a)′ �= τ (a) and N(σ(a))
denotes the set of indices of jobs from the subschedule σ(a).

Proof. See [142, Lemma 4]. !

Another lower bound is obtained by a transformation of the initial set of
jobs into a new one, called an ideal set (see [142, Lemma 5]).

The branch-and-bound algorithm, obtained by implementation of the
above properties and using the above lower bounds, appears to be quite ef-
fective, since it is reported (see [142, Sect. 5]) that problems of no more than
100 jobs can be solved, on average, within 1 minute.

If we assume that all jobs deteriorate at the same rate, the problem is
polynomially solvable.
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Algorithm A22 for the problem 1|pj = aj + bt|Lmax ([52])

Input: sequence (a1, a2, . . . , an), (d1, d2, . . . , dn), number b := v
u

Output: the minimal value of Lmax

� Step 1:

B1 ← un−1

(

min
1≤j≤n

{dj − aj}
)

;

B2 ← (u + v)n−1
n∑

j=1

aj ;

� Step 2:
while (B2 −B1 > 1) do

L′ ← �B1+B2
2 �; L ← L′

un−1 ;
for i ← 1 to n do d′i ← di + L;
Apply Algorithm A6 to the modified instance I;
if (there exists an optimal schedule for I) then B1 ← L′

else B2 ← L′;
L ← B1

un−1 ;
return L.

Theorem 6.179. (Cheng and Ding [52]) The problem 1|pj = aj + bt|Lmax is
solvable in O(n6 log n) time by algorithm A22.

Proof. The optimality of the schedule generated by algorithm A22 follows
from the relation betweeen the problem 1|pj = aj + bt|Lmax and the problem
1|pj = aj + bt, dj |Cmax; see [52, Sect. 5].

The time complexity of algorithm A22 follows from the fact that the
‘while’ loop in Step 2 is executed at most O(n log n) times and each iter-
ation of the loop needs O(n5) time due to the execution of algorithm A6. � 

6.3.4 Simple non-linear deterioration

Kononov proved that a simple non-linear deterioration is polynomially solv-
able for convex (concave) functions.

Theorem 6.180. (Kononov [173]) If h(t) is a convex (concave) function
for t ≥ 0 and there hold conditions (6.21) and (6.22), then the problem
1|pj = bjh(t)|Lmax is solvable in O(n log n) time by scheduling jobs in the
non-decreasing (non-increasing) order of bj + dj values.

Proof. The main idea is to prove that the criterion Lmax is a 1-priority-
generating function (cf. Definition 1.19) with priority function ωi = −bi − di

(ωi = bi + di). Then, by Theorem 1.24, the result follows. � 
By Theorem 6.180, if h(t) is a convex or concave function for t ≥ 0 and

there hold conditions (6.21) and (6.22), the problem 1|pj = bjh(t)|Lmax is
solved, respectively, by the algorithm A23 : (bj |dj) $→ (bj + dj ↘) or by the
algorithm A24 : (bj |dj) $→ (bj + dj ↗).
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6.3.5 General non-linear deterioration

Distinct ready times and deadlines

In this subsection, we consider results concerning an exponential deterioration.
In this case, the processing time of a job is in the form of

pj = aj2−bjt, (6.63)

where aj > 0, bj ≥ 0 for 1 ≤ j ≤ n. This form of job deterioration was
introduced by Janiak and Kovalyov [146].

Theorem 6.181. (Janiak and Kovalyov [146]) The decision version of the
problem 1|pj = aj2−bjt|Lmax is NP-complete in the strong sense.

Proof. The transformation from the 3-P problem (cf. Sect. 3.2) is as follows.
There are n = 4h jobs, aj = cj , bj = 0, dj = hK + h−1

2 for 1 ≤ j ≤ 3h,
a3h+i = 1, b3h+i = (iK + i−1

2 )−1 for 1 ≤ i ≤ h. The threshold G = 0.
To complete the proof, it is sufficient to show that the 3-P problem has

a solution if and only if for the above instance of the 1|pj = aj2−bjt|Lmax

problem there exists a schedule σ such that Lmax(σ) ≤ G. � 
The restricted version of the above problem, with only two distinct dead-

lines, is computationally intractable as well.

Theorem 6.182. (Janiak and Kovalyov [146]) The decision version of the
problem 1|pj = aj2−bjt, dj ∈ {d,D}|Lmax is NP-complete in the ordinary
sense.

Proof. The transformation from the PP problem (cf. Sect. 3.2) is as follows.
There are n = k + 1 jobs, aj = xj , bj = 0, dj = 2A+1 for 1 ≤ j ≤ k, ak+1 = 1,
bk+1 = 0 and dk+1 = A + 1. The threshold G = 0.

To complete the proof, it is sufficient to show that the PP problem
has a solution if and only if for the above instance of the 1|pj = aj2−bjt,
dj ∈ {d,D}|Lmax problem there exists a schedule σ such that Lmax(σ) ≤ G.

� 
Remark 6.183. Janiak and Kovalyov state Theorem 6.182 (see [146, Theo-
rem 4]) without proof. The above reduction comes from the present author.

6.3.6 Linear shortening

Distinct ready times and deadlines

The problem of minimizing the maximum lateness for a set of jobs which
have the same shortening rate, bj = b, and only two distinct deadlines,
dj ∈ {D1,D2}, is computationally intractable.

Theorem 6.184. (Cheng and Ding [48]) The decision version of the problem
1|pj = aj − bt, dj ∈ {D1,D2}|Lmax is NP-complete in the ordinary sense.

Proof. The result is a corollary from Theorem 6.95. � 
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6.4 Other criteria

In this section, we consider results concerning the problems of single-machine
time-dependent scheduling with criteria other than Cmax,

∑
Cj or Lmax.

6.4.1 Proportional deterioration

Equal ready times and deadlines

The
∑

wjCj criterion. For proportional job processing times given by (6.1),
the following result is known.

Theorem 6.185. (Mosheiov [216]) The problem 1|pj = bjt|
∑

wjCj is solv-
able in O(n log n) time by scheduling jobs in the non-decreasing order of

bj

(1+bj)wj
ratios.

Proof. By pairwise job interchange argument. � 

By Theorem 6.185, the problem 1|pj = bjt|
∑

wjCj is solved by the algo-
rithm A25 : (bj |wj) $→ ( bj

(1+bj)wj
↗).

Remark 6.186. Note that if wj = 1 for 1 ≤ j ≤ n, the scheduling rule from
Theorem 6.185 is reduced to the rule given in Theorem 6.57.

The fmax criterion. The problem of minimizing the maximum cost for pro-
portionally deteriorating jobs is polynomially solvable as well.

Theorem 6.187. The problem 1|pj = bjt|fmax is solvable in O(n2) time by
algorithm A29.

Proof. The result is a corollary from Theorem 6.204 for A = 0 and B = 1. �

The
∑

(Ci −Cj) criterion. Oron [229] considered the total deviation of job
completion times criterion,

∑
(Ci − Cj) :=

∑n
i=1

∑n
k=i+1(C[k] − C[i]).

Notice that
∑

(Ci − Cj) ≡
∑n

i=1

∑n
k=i+1 C[k] −

∑n
i=1

∑n
k=i+1 C[i] =∑n

i=1(i − 1)C[i] −
∑n

i=1(n − i)C[i] =
∑n

i=1(2i − n − 1)C[i]. Hence, by (6.2),
∑

(Ci − Cj) ≡ S1

∑n
i=1(2i− n− 1)

∏i
j=1(1 + b[j]).

Oron [229] proved a few properties of an optimal schedule for the problem
1|pj = bjt|

∑
(Ci − Cj).

Property 6.188. (Oron [229]) If n ≥ 2, then there exists an optimal schedule
for the problem 1|pj = bjt|

∑
(Ci − Cj) in which the job with the smallest

deterioration rate is not scheduled as the first one.

Proof. Let b1 := min1≤j≤n{bj}, σ1 := (1, [2], . . . , [n]) and σ2 := ([2], 1, . . . , [n]).
Since

∑
(Ci − Cj)(σ1) −

∑
(Ci − Cj)(σ2) = (n − 1)(b[2] − b1) ≥ 0, the result

follows. �
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Property 6.189. (Oron [229]) If n ≥ 3, then there exists an optimal schedule
for the problem 1|pj = bjt|

∑
(Ci − Cj) in which the job with the smallest

deterioration rate is not scheduled as the last one.

Proof. Similar to the proof of Property 6.188, see [229, Proposition 2]. !

Property 6.190. (Oron [229]) Let J[i−1], J[i] and J[i+1] be three consecutive
jobs in a schedule for the problem 1|pj = bjt|

∑
(Ci − Cj). If b[i] > b[i−1] and

b[i] > b[i+1], then this schedule cannot be optimal.

Proof. Similar to the proof of Property 6.132, see [229, Proposition 3]. !

Property 6.191. (Oron [229]) Let b[k] := min{bj : 1 ≤ j ≤ n} and b[l] :=
min{bj : 1 ≤ j �= k ≤ n} be two smallest job deterioration rates.
(a) If n is even, then in optimal schedule for the problem 1|pj = bjt|

∑
(Ci − Cj)

the job J[k] is scheduled in the n
2 + 1 position.

(b) If n is odd, then in optimal schedule for the problem 1|pj = bjt|
∑

(Ci−Cj)
the jobs J[k] and J[l] are scheduled in positions n+1

2 and n+3
2 , respectively.

Proof. By direct calculation, see [229, Propositions 4–5]. !

Property 6.192. (Oron [229]) The optimal value of the total deviation of job
completion times for the problem 1|pj = bjt|

∑
(Ci − Cj) is not less than

n
2∑

i=1

(2i− n− 1)
i∏

j=1

(1 + b[n+2−2j]) +
n∑

i= n
2 +1

(2i− n− 1)
i∏

j=1

(1 + b[j]).

Proof. By direct computations, see [229, Proposition 8]. !

Oron proved also that for the problem 1|pj = bjt|
∑

(Ci −Cj) there holds
the following counterpart of Theorem 6.133.

Theorem 6.193. (Oron [229]) The optimal schedule for the problem 1|pj =
bjt|

∑
(Ci − Cj) is V-shaped with respect to deterioration rates bj.

Proof. The result is a consequence of Properties 6.188–6.190. � 

For the problem 1|pj = bjt|
∑

(Ci−Cj), Oron [229] proposed two heuristic
algorithms. We will consider these heuristics in Chap. 9.

Distinct ready times and deadlines

The criteria
∑

Lj and Tmax. For proportional job processing times given
by (6.1), the following results are known.
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Theorem 6.194. (Mosheiov [216]) The problem 1|pj = bjt|ϕ is solvable in
O(n log n) time by scheduling jobs
(a) in the non-decreasing order of bj values, if ϕ is the total lateness criterion
(ϕ ≡

∑
Lj);

(b) in the non-decreasing order of dj values, if ϕ is the maximum tardiness
criterion (ϕ ≡ Tmax).

Proof. (a) Since the total lateness
∑n

j=1 Lj =
∑n

j=1(Cj − dj) =
∑n

j=1 Cj −∑n
j=1 dj , and the sum

∑n
j=1 dj is a constant value, the problem of minimiz-

ing the sum
∑n

j=1 Lj is equivalent to the problem of minimizing the sum
∑n

j=1 Cj . The latter problem, by Theorem 6.57, is solvable in O(n log n) time
by scheduling jobs in the non-decreasing order of bj values.

(b) Since for any schedule σ, we have Ti(σ) = max{0, Li(σ)}, 1 ≤ i ≤ n,
the result follows by the reasoning from the proof of Theorem 6.169. � 

By Theorem 6.194, problems 1|pj = bjt|
∑

Lj and 1|pj = bjt|Tmax are
solved by algorithms A9 : (bj |dj) $→ (bj ↗) and A17 : (bj |dj) $→ (dj ↗),
respectively.

The
∑

Uj criterion. The problem of minimizing the number of tardy
jobs, which proportionally deteriorate, is optimally solved by the following
algorithm, which is an adaptation of Moore–Hodgson’s algorithm for the prob-
lem 1||

∑
Uj (Moore [213]).

Algorithm A26 for the problem 1|pj = bjt|
∑

Uj ([216])

Input: sequences (b1, b2, . . . , bn), (d1, d2, . . . , dn)
Output: an optimal schedule σ�

� Step 1:
Arrange jobs in the non-decreasing order of dj values;
Call the sequence σ�;

� Step 2:
while (TRUE) do

if (no jobs in sequence σ� are late) then exit
else find in σ� the first late job, J[m];
Find a job, J[k], such that b[k] = max

1≤i≤m
{b[i]};

Move job J[k] to the end of σ�;
� Step 3:

return σ�.

Remark 6.195. By the constant TRUE we will denote the logical truth. Sim-
ilarly, by FALSE we will denote the logical false.

Theorem 6.196. (Mosheiov [216]) The problem 1|pj = bjt|
∑

Uj is solvable
in O(n log n) time by algorithm A26.
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Proof. The proof of optimality of algorithm A26 is similar to the original
proof of optimality of Moore–Hodgson’s algorithm (cf. [213]) and consists of
the following two steps.

In the first step, we prove that if there exists a schedule with no late jobs,
then there are no late jobs in the schedule obtained by arranging jobs in the
EDD order.

In the second step, by mathematical induction, we prove that if algorithm
A26 generates a schedule σ that has k late jobs, then there does not exist
another schedule, σ′, with only k − 1 late jobs. � 

6.4.2 Proportional-linear deterioration

The
∑

wjCj criterion. Theorem 6.185 was generalized by Kononov for job
processing times given by (6.5).

Theorem 6.197. (Kononov [173]) If there hold inequalities (6.6) and (6.7),
then the problem 1|pj = bj(A + Bt)|

∑
wjCj is solvable in O(n log n) time by

scheduling jobs in the non-increasing order of wi(b−1
i + A) values.

Proof. By pairwise job interchange argument. � 

By Theorem 6.197, if there hold inequalities (6.6) and (6.7), the problem
1|pj = bj(A + Bt)|

∑
wjCj is solved by the algorithm A27 : (bj |wj |A|B) $→

(wj(b−1
j + A) ↗).

Remark 6.198. A version of Theorem 6.197, without conditions (6.6) and (6.7)
but with assumptions A > 0, B > 0, bj > 0 for 1 ≤ j ≤ n, was given by Zhao
et al., see [304, Theorem 2].

Wang et al. [284] considered the problem of single-machine batch schedul-
ing with proportional-linear job processing times and setup times. The authors
proposed the following algorithm for this problem.

Algorithm A28

for the problem 1|pi,j = bi,j(A + Bt), θi = δi(A + Bt), GT |
∑

wjCj ([284])

Input: sequences (δ1, δ2, . . . , δm), (bi,j), (wi,j) for 1 ≤ i ≤ m and
1 ≤ j ≤ ki, numbers A,B

Output: an optimal schedule σ�

� Step 1:
for i ← 1 to m do

Arrange jobs in group Gi in the non-decreasing order of
↪→ the bi,j

wi,j(1+bi,j)
values;

Call the sequence σ(i);
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� Step 2:

for i ← 1 to m do Calculate ρ(Gi) :=
(1+Bδi)

∏ki
j=1(1+Bbi,j)−1

(1+Bδi)
∑kj

j=1 wi,j

∏ j
l=1(1+Bbi,l)

;

� Step 3:
Schedule groups in the non-decreasing order of ρ(Gi) values;

� Step 4:
σ� ← (σ([1])|σ([2])| . . . |σ([m]));
return σ�.

Theorem 6.199. (Wang et al. [284]) The problem 1|GT, pi,j = bi,j(A + Bt),
θi = δi(A + Bt)|

∑
wjCj is solvable by algorithm A28 in O(n log n) time.

Proof. By pairwise job interchange; see [284, Theorem 2] for details. !
Remark 6.200. A special case of Theorem 6.199, with A = 0, B = 1 and
δi = 0, was given by Cheng and Sun [44, Theorem 5].

Remark 6.201. A special case of Theorem 6.199, with θi = const, was given
by Xu et al. [302, Theorems 1–2].

The
∑

Uj criterion. Theorem 6.196 was generalized by Kononov for job
processing times given by (6.5).

Theorem 6.202. (Kononov [173]) If there hold inequalities (6.6) and (6.7),
then the problem 1|pj = bj(A + Bt)|

∑
Uj is solvable in O(n log n) time by

algorithm A26.

Proof. Similar to the proof of Theorem 6.196. � 
The fmax criterion. The problem of minimizing the maximum cost for jobs
with proportional-linear processing times is solved by the following algorithm.

Algorithm A29 for the problem 1|pj = bj(A + Bt)|fmax ([169])

Input: sequences (b1, b2, . . . , bn), (f1, f2, . . . , fn), numbers A,B
Output: an optimal schedule σ�

� Step 1:
σ� ← (φ);
NJ ← {1, 2, . . . , n};
T ← (t0 + A

B )
n∏

j=1

(1 + Bbj);

� Step 2:
while (NJ �= ∅) do

Find job Jk such that fk(T ) = min{fj(T ) : j ∈ NJ };
σ� ← (σ�|k);
T ← T−Abk

1+Bbk
;

NJ ← NJ \ {k};
� Step 3:

return σ�.
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Remark 6.203. Algorithm A29 is an adaptation of Lawler’s algorithm for the
problem 1|prec|fmax (Lawler [182]). Since, so far, we assumed that between
jobs there are no precedence constraints, A29 is a simplified version of Lawler’s
algorithm. The full version of the algorithm, for dependent jobs with propor-
tional processing times, will be presented in Chap. 13.

Theorem 6.204. (Kononov [173]) If there hold inequalities (6.6) and (6.7),
the problem 1|pj = bj(A+Bt)|fmax is solvable in O(n2) time by algorithm A29.

Proof. Similar to the proof of Theorem 13.35. � 

Remark 6.205. Kononov proved Theorem 6.204 in a more general form, ad-
mitting arbitrary job precedence constraints in the problem. For simplicity of
presentation (cf. Remark 6.203), we assumed no precedence constraints.

Remark 6.206. A version of Theorem 6.204, without job precedence con-
straints, without conditions (6.6) and (6.7) but with assumptions A > 0,
B > 0, bj > 0 for 1 ≤ j ≤ n, was given by Zhao et al. [304, Theorem 3].

6.4.3 Linear deterioration

Equal ready times and deadlines

The
∑

wjCj criterion. The problem of minimizing the total weighted com-
pletion time,

∑
wjCj , for a single machine and linear deterioration given by

(6.10) was considered for the first time by Mosheiov [218].

Remark 6.207. Browne and Yechiali [33] studied the problem earlier, but they
considered the expected total weighted completion time. Namely, if E(a1)

b1
<

E(a1)
b1

< . . . < E(an)
bn

and b1
w1(1+a1)

< b2
w2(1+a2)

< . . . < bn

wn(1+an) , then schedule
(1, 2, . . . , n) minimizes the expected value of

∑
wjCj ; see [33, Proposition 2].

!

Mosheiov [218] considered the weights of jobs which are proportional to
the basic job processing times, i.e., wj = δaj for a given constant δ > 0 and
bj = b for 1 ≤ j ≤ n. The criterion function is in the form of

∑
wjCj ≡

n∑

j=1

wjCj = δ
n∑

j=1

aj

j∑

k=1

ak(1 + b)j−k.

The following properties of the problem 1|pj = aj + bt|
∑

wjCj , with
wj = δaj , are known. First, there holds the symmetry property similar to
Property 6.129.

Property 6.208. For any job sequence σ, let σ̄ denote the sequence reverse to
σ. Then, there holds the equality

∑
wjCj(σ) =

∑
wjCj(σ̄).
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Proof. By direct calculation, see [218, Proposition 1]. !

Property 6.209. (Mosheiov [218]) If wj = δaj for 1 ≤ j ≤ n, then the optimal
schedule for the problem 1|pj = aj +bt|

∑
wjCj , where wj = δaj , is Λ-shaped.

Proof. Let Ji−1, Ji, Ji+1 be three consecutive jobs such that ai < ai−1 and
ai < ai+1. Assume that job sequence σ� = (1, 2, . . . , i − 2, i − 1, i, i + 1,
i + 2, . . . , n) is optimal. Consider job sequences σ

′
= (1, 2, . . . , i− 2, i, i− 1,

i + 1, i + 2, . . . , n) and σ
′′

= (1, 2, . . . , i − 2, i − 1, i + 1, i, i + 2, . . . , n). Cal-
culate differences v1 =

∑
wjCj(σ�) −

∑
wjCj(σ

′
) and v2 =

∑
wjCj(σ�) −

∑
wjCj(σ

′′
).

Since v1 and v2 cannot both be negative (see [218, Proposition 2]), either
σ

′
or σ

′′
is a better sequence than σ�. A contradiction. � 

By Property 6.209, the dominant set (cf. Definition 4.27) for the prob-
lem 1|pj = aj + bt|

∑
wjCj , where wj = δaj , is composed of Λ-shaped

schedules. Since there exist O(2n) Λ-shaped sequences for a given sequence
a = (a1, a2, . . . , an), the problem seems to be computationally intractable.
However, there holds the following result.

Property 6.210. (Mosheiov [218]) If wj = δaj for 1 ≤ j ≤ n and if in an
instance of the problem 1|pj = aj + bt|

∑
wjCj jobs are numbered in the non-

decreasing order of aj values, then the optimal permutation for the problem
is in the form of σ1 = (1, 3, . . . , n− 2, n, n− 1, n− 3, . . . , 4, 2) if n is odd, and
it is in the form of σ2 = (1, 3, . . . , n− 1, n, n− 2, . . . , 4, 2) if n is even.

Proof. By direct calculation, see [218, Proposition 3]. !

By Property 6.210, the problem 1|pj = aj +bjt|
∑

wjCj with equal deteri-
oration rates and weights proportional to basic job processing times is solvable
in O(n) time.

Mosheiov [218] stated also the conjecture that the problem 1|pj = aj +
bt|

∑
wjCj with arbitrary weigths is NP-hard and proposed a heuristic algo-

rithm for the problem. We will consider this algorithm in Chap. 9.

Bachman et al. [13] proved that the problem with arbitrary deterioration
rates and arbitrary weights is computationally intractable.

Theorem 6.211. (Bachman et al. [13]) If S1 = 1, then the decision version
of the problem 1|pj = aj + bjt|

∑
wjCj is NP-complete in the ordinary sense.

Proof. Assume that jobs start at time S1 = 1. The transformation from the
N3P problem (cf. Sect. 3.2) is as follows. Let n = 4w, ai = 0, bi = Dzi − 1
and wi = 1 for 1 ≤ i ≤ 3w and a3w+i = DiZ , b3w+i = 0, w3w+i = D(w+1−i)Z

for 1 ≤ i ≤ w, where D = 2w2 + 1. The threshold G = 2w2D(w+1)Z .
To complete the proof, it is sufficient to show that the N3P problem has

a solution if and only if for the above instance of the problem 1|pj = aj +
bjt|

∑
wjCj there exists a schedule σ such that

∑
wjCj(σ) ≤ G. � 
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Remark 6.212. Notice that the assumption S1 = 1 is not essential. If we as-
sume that S1 = 0 and add to the instance described above an additional job
J0 with parameters a0 = 1, b0 = 0, w0 = G+1, and if we change the threshold
value to 2G + 1, then it can be shown that the result of Theorem 6.211 also
holds in this case; see [13, Sect. 2]. !

Wu et al. proved a few properties of the problem 1|pj = aj + bjt|
∑

wjCj .

Property 6.213. (Wu et al. [301]) Let Ji, Jk ∈ J be any two jobs. If ai < ak,
bi = bk and wi ≥ wk, then for the problem 1|pj = aj + bjt|

∑
wjCj there

exists an optimal schedule in which job Ji precedes job Jk.

Proof. By direct calculation, see [301, Property 1]. !

Property 6.214. (Wu et al. [301]) Let Ji, Jk ∈ J be any two jobs to be sched-
uled consecutively. If ai = ak, bi > bk and bi

bk
≤ wi

wk
, then for the problem

1|pj = aj + bjt|
∑

wjCj there exists an optimal schedule in which job Ji

immediately precedes job Jk.

Proof. By direct calculation, see [301, Property 2]. !

The next three properties are similar to Property 6.214, Wu et al. state
them without proofs.

Property 6.215. (Wu et al. [301]) Let Ji, Jk ∈ J be any jobs to be scheduled
consecutively and let t0 be the completion time of the last job scheduled
before these two jobs. If ai

bi
= ak

bk
, wi ≥ wk and ai+bit0

wi
< ak+bkt0

wk
, then for the

problem 1|pj = aj + bjt|
∑

wjCj there exists an optimal schedule in which
job Ji immediately precedes job Jk.

Property 6.216. (Wu et al. [301]) Let Ji, Jk ∈ J be any jobs to be scheduled
consecutively and let t0 be the completion time of the last job scheduled before
these two jobs. If ai

bi
≤ ak

bk
, wi = wk and ai + bit0 < ak + bkt0, then for the

problem 1|pj = aj + bjt|
∑

wjCj there exists an optimal schedule in which
job Ji immediately precedes job Jk.

Property 6.217. (Wu et al. [301]) Let Ji, Jk ∈ J be any jobs to be scheduled
consecutively and let t0 be the completion time of the last job scheduled before
these two jobs. If ai

bi
≤ ak

bk
, wk

wi
< 1+bi

1+bk
min{ak

ai
, bk

bi
}, then for the problem

1|pj = aj + bjt|
∑

wjCj there exists an optimal schedule in which job Ji

immediately precedes job Jk.

Wu et al. proposed also a lower bound for the considered problem.

Theorem 6.218. (Wu et al. [301]) Let σ = (σ(1), σ(2)) be a schedule for the
problem 1|pj = aj + bjt|

∑
wjCj , where σ(1) (σ(2)) denotes the sequence of

scheduled (unscheduled) jobs, |σ(1)| = m and |σ(2)| = r = n−m. Then the op-
timal weighted completion time

∑
wjCj(σ) is not less than max{LB1, LB2},
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where

LB1 =
m∑

k=1

w[k]C[k](σ) + C[m](σ)
r∑

k=1

w(m+r+1−k)

k∏

i=1

(1 + b(m+i))+

a(m+1)

r−1∑

k=1

(
k∏

j=1

(1 + b(m+j))(
r−k∑

i=1

w(m+i)) + a(m+1)

r∑

k=1

wm+k,

and

LB2 =
m∑

k=1

w[k]C[k](σ) + C[m](σ)
r∑

k=1

w(m+r+1−k)

k∏

i=1

(1 + b(m+1))k+

r−1∑

k=1

a(m+k)

r∑

i=k

w(m+r+1−i)(1 + b(m+1))i,

and all parameters of unscheduled jobs are in non-decreasing order, i.e.,
am+1) ≤ a(m+2) ≤ · · · ≤ a(m+r), bm+1) ≤ b(m+2) ≤ · · · ≤ b(m+r) and
wm+1) ≤ w(m+2) ≤ · · · ≤ w(m+r).

Proof. By direct calculation, see [301, Sect. 3.1]. !

Based on Properties 6.213–6.217 and Theorem 6.218, Wu et al. [301] pro-
posed a branch-and-bound algorithm for the problem 1|pj = aj +bjt|

∑
wjCj .

Computational experiments have shown that the algorithm can solve instances
with n = 16 jobs in time no longer than 3 hours (see [301, Sect. 5]).

For the problem 1|pj = aj + bjt|
∑

wjCj , Wu et al. [301] proposed three
heuristic algorithms. We will consider these heuristics in Chap. 9.

The Pmax criterion. Alidaee and Landram [5] considered linear job pro-
cessing times and the criterion of minimizing the maximum processing time,
Pmax. The problem is to find such a schedule σ ∈ Sn that minimizes
max1≤j≤n{p[j](σ)}. The following example shows that the problem of min-
imizing Pmax is not equivalent to the problem of minimizing Cmax.

Example 6.219. (Alidaee and Landram [5]) Let p1 = 100+ 1
5 t, p2 = 2+ 2

9 t and
p3 = 70 + 3

10 t. Then schedule (1, 3, 2) is optimal for the Pmax criterion, while
schedule (2, 3, 1) is optimal for the Cmax criterion. �

For the Pmax criterion, the following results are known.

Property 6.220. (Alidaee and Landram [5]) If aj > 0 and bj ≥ 1 for 1 ≤ j ≤ n,
then for any sequence of jobs with processing times in the form of pj = aj +bjt
the maximum processing time occurs for the last job.

Proof. The result follows from the fact that all processing times are described
by increasing functions and the jobs start their execution at increasingly or-
dered starting times. � 

Remark 6.221. By Property 6.220, the problem of minimizing the maximum
processing time is equivalent to the problem of minimizing the processing time
of the last job in a schedule.
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Alidaee and Landram [5] also proposed an O(n2) heuristic algorithm H43

for the problem 1pj = aj + bjt|Pmax. (We will consider algorithm H43 in
Chap. 9.) This algorithm is optimal under some additional assumptions.

Theorem 6.222. (Alidaee and Landram [5]) If aj > 0 and bj ≥ 1 for
1 ≤ j ≤ n, then the problem of minimizing the processing time of the last job
in a single-machine schedule of a set of linearly deteriorating jobs is solvable
in O(n log n) time by algorithm H43.

Proof. See [5, Proposition 2]. !

Another polynomially solvable case is when pj = aj + bt.

Theorem 6.223. (Alidaee and Landram [5]) If aj > 0 and bj = b for
1 ≤ j ≤ n, then the problem of minimizing the maximum processing time is
optimally solved by scheduling jobs in the non-decreasing order of aj values.

Proof. By pairwise job interchange argument; see [5, Proposition 3]. !

By Theorem 6.223, if aj > 0 for 1 ≤ j ≤ n, the problem 1|pj = aj +bt|Pmax

is solved by the algorithm A7 : (aj) $→ (aj ↗).

The
∑

Uj criterion. Chakaravarthy et al. [41, Theorem 4.2] considered the
problem 1|pj = aj +bjt, dj = D|

∑
Uj . For the problem, the authors proposed

a dynamic programming algorithm. We will call this algorithm A30.

Theorem 6.224. (Chakaravarthy et al. [41]) The problem 1|pj = aj + bjt,
dj = D|

∑
Uj is solved in O(n2) time by algorithm A30.

Proof. Algorithm A30 uses a dynamic programming approach as follows.
Arrange jobs in the non-increasing order of bj

aj
ratios. By Theorem 6.24, the

schedule corresponding to this order is optimal for the Cmax criterion. Let
T (i, j) denote the minimum schedule length for a subset of j jobs from the
first i jobs arranged in the bj

aj
↘ order. The values of T (i, j) can be calculated

by using the formula

T (i, j) := min {T (i− 1, j), T (i− 1, j − 1) + ai × T (i− 1, j − 1) + bi}

if j ≤ i (they are not defined if j > i). By insertion of the values of T (i, j) in
an n× n table and calculating them row by row, the result follows. � 

Remark 6.225. Chakaravarthy et al. [41] also considered the above problem
with

∑
wjUj criterion. Since the problem 1|pj = aj + bjt, dj = D|

∑
wjUj

is a generalization of the KP problem (cf. Sect. 3.2), it is computationally
intractable. Applying a dynamic programming approach, the authors have
shown (cf. [41, Theorem 4.3]) that for the problem there exists an FPTAS.
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The
∑

(αEj+βTj+γd) criterion. Cheng et al. [57] considered the problem of
minimizing the sum of earliness, tardiness and due-date penalties and common
due-date assignment.

Job processing times are in the form of

pj = aj + bt, (6.64)

where b > 0 and aj > 0 for 1 ≤ j ≤ n.
The authors proved the following properties of the problem.

Property 6.226. (Cheng et al. [57] ) For any schedule σ for the problem 1|pj =
aj + bt|

∑
(αEj + βTj + γd), there exists an optimal due-date d� = C[k] such

that k = �nβ−nγ
α+β � and exactly k jobs are non-tardy.

Proof. It is an adaptation of the proof of Panwalkar et al. [232, Lemma 1]. !

Property 6.227. (Cheng et al. [57] ) If k is defined as in Property 6.226, then
in any optimal schedule σ� for the problem 1|pj = aj + bt|

∑
(αEj +βTj +γd)

there hold inequalities a[k+1] ≤ a[k+2] ≤ . . . ≤ a[n].

Proof. By pairwise job interchange argument. � 

Before we formulate the next property, we will introduce new notation.
Let

mi :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

b
k∑

j=1

(α(j − 1) + nγ)(1 + b)j−1+

+b
n∑

j=k+1

β(n + 1− j)(1 + b)j−1 for 2 ≤ i ≤ k,

b
n∑

j=i

β(n + 1− j)(1 + b)j−i for k + 1 ≤ i ≤ n.

(6.65)

Define also the following two functions:

g(i) := α(i− 1) + nγ + mi+1 for 1 ≤ i ≤ k (6.66)

and
f(b) := (α + nγ)b− α + bm3. (6.67)

Based on definitions (6.65)–(6.67), Cheng et al. proved a few properties
concerning possible relations between f(b), g(i) and mi.

Property 6.228. (Cheng et al. [57])
(a) If f(b) = (α + nγ)b − α + bm3 > 0, then (αi + nγ)b − α + bmi+2 > 0 for
1 ≤ i ≤ k − 1.
(b) (c) The implication (a) in which the symbol ‘>’ has been replaced by the
symbol ‘<’ and ‘=’, respectively.

Proof. (a),(b),(c) By induction with respect to i. � 
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Since the next property is similar to Property 6.228, we do not give its
formulation (see [57, Property 5]).

Property 6.229. (Cheng et al. [57]) If k is defined as in Property 6.226 and
(a) f(b) ≥ 0, then for the problem 1|pj = aj + bt|

∑
(αEj + βTj + γd) there

exists an optimal schedule σ� such that aσ�
1
≤ aσ�

2
≤ . . . ≤ aσ�

k
;

(b) f(b) < 0, then for the problem 1|pj = aj + bt|
∑

(αEj + βTj + γd) in any
optimal schedule σ� there hold inequalities aσ�

1
≥ aσ�

2
≥ . . . ≥ aσ�

k
.

Proof. (a), (b) By pairwise job interchange argument. � 

Based on the above properties, the authors proved the following result.

Theorem 6.230. (Cheng et al. [57]) If k is defined as in Property 6.226 and
(a) f(b) ≥ 0, then for the problem 1|pj = aj+bt|

∑
(αEj+βTj+γd) there exists

an optimal schedule σ� in which aσ�
1
≤ aσ�

2
≤ . . . ≤ aσ�

k
and aσ�

k+1
≤ . . . ≤ aσ�

n
;

(b) f(b) < 0, then for the problem 1|pj = aj + bt|
∑

(αEj + βTj + γd) there
exists an optimal schedule σ� which is V-shaped with respect to aj values and
such that aσ�

k
= min1≤j≤n{aj}.

Proof. (a) (b) The results follow from Properties 6.228–6.229. � 

Based on the proved properties, the authors proposed also an algorithm
for the problem. We will call the algorithm A31. Since algorithm A31 is rather
complicated (see [57, Algorithm 1] for details), we present only the following
result.

Theorem 6.231. (Cheng et al. [57]) The problem 1|pj = aj + bt|
∑

(αEj +
βTj + γd) is solvable in O(n log n) time by algorithm A31.

Proof. See [57, Properties 9–11, Theorem 12]. !

For the same problem, 1|pj = aj + bt|
∑

(αEj + βTj + γd), Kuo and
Yang [180] proposed another O(n log n) algorithm simpler than A31. We will
call the new algorithm A32.

Algorithm A32 is based on Lemma 1.2 (a) and on the following observation.
Given a due-date d and a job sequence σ, we have

∑
(αEj + βTj + γd) =

n∑

j=1

(αE[j](σ) + βT[j](σ) + γd) =
n∑

j=1

Wja[j],

where the coefficients Wj , 1 ≤ j ≤ n, called positional weights, are as follows:

W1 = w1 + w2b + w3b(1 + b) + . . . + wnb(1 + b)n−2,
W2 = w2 + w3b + w4b(1 + b) + . . . + wnb(1 + b)n−3,

. . . ,
Wn−1 = wn−1 + wnb,
Wn = wn
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(see [180, Sect. ‘Preliminary results’] for details). Algorithm A32 calculates
the positional weights Wj for 1 ≤ j ≤ n and assigns jobs to the weights in an
apropriate way. The pseudo-code of the algorithm is as follows.

Algorithm A32 for the problem 1|pj = aj + bt|
∑

(αEj + βTj + γd) ([180])

Input: sequence (a1, a2, . . . , an), numbers b, α, β, γ
Output: an optimal due-date d�, an optimal schedule σ�

� Step 1:
NJ ← {1, 2, . . . , n};
W ← {1, 2, . . . , n};
k ←

⌈
n(β−γ)

α+β

⌉
;

Assign to the due-date d� the completion time of the k-th job;
� Step 2:

for j ← 1 to n do Calculate Wj ;
� Step 3:

Arrange jobs in the non-decreasing order of aj values;
while (NJ �= ∅) do

Assign job Jk such that ak = max{aj : j ∈ NJ } to the r-th position
↪→ in σ�, where r is such that Wr = min{Wj : j ∈ NJ };
NJ ← NJ \ {k};
W ← W \ {r};

� Step 4:
return σ�.

Remark 6.232. Scheduling deteriorating jobs with earliness and tardiness penal-
ties and common due-date assignment are new topics in time-dependent
scheduling. In the classic scheduling (cf. Sect. 5.1), however, both these topics
have been studied since early 1970s; see the reviews by Baker and Scudder [15]
and Gordon et al. [118, 119].

6.4.4 Simple non-linear deterioration

The
∑

wjCj criterion. Kononov [173] proved that some problems with sim-
ple non-linear job deterioration, described by convex functions, are polynomi-
ally solvable.

Theorem 6.233. (Kononov [173]) If h(t) is a convex function for t ≥ 0 and
there hold conditions (6.21) and (6.22), then
(a) if h(t) ≥ 0 for all t, limt→∞

dh(t)
dt = ∞ and wi ≥ wl for all Ji, Jl ∈ J such

that bi < bl, then the problem 1|pj = bjh(t)|
∑

wjCj is solvable in O(n log n)
time by scheduling jobs in the non-decreasing order of bj − wj values;
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(b) if h(t) ≥ 0 for all t, limt→∞
dh(t)

dt = H and wi(b−1
i + H) ≥ wl(b−1

l + H)
for all Ji, Jl ∈ J such that bi < bl, then the problem 1|pj = bjh(t)|

∑
wjCj is

solvable in O(n log n) time by scheduling jobs in the non-decreasing order of
bj − wj(b−1

j + H) values;
(c) if there exists T > t0 such that h(T ) = 0 and h(t) > 0 for any t ∈ 〈t0, T ),
limt→∞

dh(t)
dt = H and wi(b−1

i +H) ≥ wl(b−1
l +H) for all Ji, Jl ∈ J such that

bi < bl, then the problem 1|pj = bjh(t)|
∑

wjCj is solvable in O(n log n) time
by scheduling jobs in the non-decreasing order of bj − wj(b−1

j + H) values.

Proof. See [173, Theorem 8]. !

By Theorem 6.233, if h(t) is a convex function for t ≥ 0, there hold
conditions (6.21) and (6.22) and according to other assumptions specified
in the theorem, the problem 1|pj = bjh(t)|

∑
wjCj is solved by the algo-

rithm A33 : (bj |wj) $→ ((bj − wj) ↗) or by the algorithm A34 : (bj |wj |H) $→
((bj − wj(b−1

j + H)) ↗).

Remark 6.234. Kononov proved also a similar result for concave functions; see
[173, Theorem 10]. !

The
∑

Ck
j criterion. Kuo and Yang [179] considered single-machine time-

dependent scheduling problems with non-linear job processing times and with
the criterion

∑
Ck

j , where k is a given positive integer.

Theorem 6.235. (Kuo and Yang [179])
(a) If f(t) :=

∑m
i=1 λit

ri and ri ∈ 〈0,+∞) for 1 ≤ i ≤ m, then there exists an
optimal schedule for the problem 1|pj = aj + f(t)|

∑
Ck

j in which jobs are in
the non-decreasing order of aj values;
(b) If f(t) := 1+

∑m
i=1 λit

ri and ri ∈ 〈1,+∞) for 1 ≤ i ≤ m, then there exists
an optimal schedule for the problem 1|pj = ajf(t)|

∑
Ck

j in which jobs are in
the non-decreasing order of aj values;
(c) If f(t) := 1 +

∑m
i=1 λit

ri and ri ∈ (−∞, 0〉 for 1 ≤ i ≤ m, then there
exists an optimal schedule for the problem 1|pj = ajf(t)|

∑
Ck

j in which all
jobs except the first one are in the non-decreasing order of aj values.

Proof. (a) By pairwise job interchange argument; see [179, Proposition 6].
(b) By pairwise job interchange argument; see [179, Proposition 7].
(c) By pairwise job interchange argument; see [179, Proposition 8]. !

By Theorem 6.235, if f(t) :=
∑m

i=1 λit
ri and ri ∈ 〈0,+∞) or ri ∈ 〈1,+∞)

for 1 ≤ i ≤ m, then the problem 1|pj = aj +f(t)|
∑

Ck
j is solved by algorithm

A7 : (aj |λj |ri) $→ (aj ↗).

Remark 6.236. The criterion
∑

Ck
j is nothing else than the k-th power of the

lp norm (cf. Definition 1.18), where p := k. In Chap. 12, we will consider
time-dependent scheduling problems with the lp norm as optimality criterion.
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6.4.5 General non-linear deterioration

Distinct ready times and deadlines

We begin this subsection with results concerning step deterioration. In this
case, the processing time of each job is described by a step function.

There exist a few forms of the step deterioration. In the simplest case

pj =
{

a, if t ≤ D,
a + bj , if t > D,

(6.68)

where a > 0, bj > 0 for 1 ≤ j ≤ n and D > 0 is the common critical start
time for all jobs in a schedule. This form of job deterioration was introduced
by Sundararaghavan and Kunnathur [263].

The
∑

wjCj criterion. For job processing times given by (6.68), a few results
are known. Let J denote the set of jobs and let the jobs have only two distinct
weights, wj ∈ {w1, w2} for 1 ≤ j ≤ n. Let k := �D

a �+ 1 denote the maximum
number of jobs that can be scheduled without job processing time increase.

Lemma 6.237. (Sundararaghavan and Kunnathur [263]) For a given in-
stance of the problem of minimizing the criterion

∑
wjCj for a single machine

and job processing times in the form of (6.68), let wj ∈ {w1, w2 : w1 > w2}.
Let E := {Jk ∈ J : Ck ≤ D}, L := J − E, Wi := {Jj ∈ J : wj = wi},
1 ≤ i ≤ 2, and let J[r] denote the job with the greatest starting time among
the jobs in E∩W1. Then the following conditions are necessary for optimality
of a schedule for the problem:
(a) w[i] ≥ w[i+1] for 1 ≤ i ≤ k − 1 and J[i] ∈ E,

(b) a+b[j]
w[j]

≤ a+b[j+1]

w[j+1]
for k + 1 ≤ j ≤ n− 1 and J[j] ∈ L,

(c) b[r] ≥ bi for i ∈ L ∩W1, J[r] ∈ E,
(d) b[r+1] ≥ bi for i ∈ L ∩W2, J[r+1] ∈ E.

Proof. The result follows directly from the properties of an optimal schedule
for this problem. � 

Remark 6.238. By Lemma 6.237, we know that in an optimal schedule for
the problem with two distinct weights there are k jobs in set E, which are
arranged in the non-increasing order of bj values, and r jobs in set L, which
are arranged in the non-decreasing order of a+bj

wj
ratios.

For a given schedule σ, let Ji ↔ Jj denote mutual exchange of job Ji ∈ E
with job Jj ∈ L, i.e., rearrangement of the jobs in the set {Jj} ∪ E \ {Ji} in
the non-increasing order of wj values and rearrangement of the jobs in the set
{Ji}∪L\{Jj} in the non-decreasing order of a+bj

wj
ratios. For a given Ji ↔ Jj ,

let Δ(Ji ↔ Jj) denote the difference between total weighted completion time
for the schedule before the exchange Ji with Jj and after it.
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Algorithm A35 for the problem 1|pj ≡ (6.68)|
∑

wjCj ([263])

Input: (b1, b2, . . . , bn), numbers a,D, w1, w2

Output: an optimal schedule σ�

� Step 1:
W1 ← {Jk : wk = w1};
W2 ← {Jk : wk = w2};
k ← �D

a �+ 1;

� Step 2:
E ← W1;
Arrange E in the non-increasing order of bj values;
if (|E| < k) then E′ ← {J[k] ∈ W ′

2 ⊆ W2 : |W ′
2| = |W1| − k};

Arrange E′ in the non-increasing order of bj values;
E ← E ∪ E′;
L ← {1, 2, . . . , n} \ E;
σ� ← (E,L);

� Step 3:
repeat

if (J[i] ∈E ∩W1 ∧J[j] ∈L ∩W2 ∧Δ(J[i] ↔ J[j])>0) then
↪→ exchange J[i] with J[j];
Call the obtained schedule σ′;
σ� ← σ′;

until (no more exchange J[i] ↔ J[j] exists for J[i] ∈ E∩W1∧J[j] ∈ L∩W2);
� Step 4:

repeat
if (J[i] ∈E ∩W2 ∧J[j] ∈L ∩W1 ∧Δ(J[i] ↔ J[j])>0) then

↪→ exchange J[i] with J[j];
Call the obtained schedule σ′;
σ� ← σ′;

until (no more exchange J[i] ↔ J[j] exists for J[i] ∈ E∩W2∧J[j] ∈ L∩W1);
� Step 5:

return σ�.

Theorem 6.239. (Sundararaghavan and Kunnathur [263]) The problem of
minimizing the

∑
wjCj criterion for a single machine, job processing times

in the form of (6.68) and two distinct weights is solvable in O(n log n) time
by algorithm A35.

Proof. Let σ� be the final schedule generated by algorithm A35, let J[r] be
the job with the greatest starting time among the jobs in set E ∩ W1 and
k := �D

a � + 1. Then, by Lemma 6.237, b[1] ≥ b[2] ≥ . . . ≥ b[r] and b[r+1] ≤
b[r+2] ≤ . . . ≤ b[k]. Since in σ� there do not exist J[i] ∈ E and J[j] ∈ L such that
Δ(J[i] ↔ J[j]) < 0 (otherwise σ� would not be a final schedule), for any J[r] ∈
E ∩W1 and any J[i] ∈ L ∩W2 there holds the inequality Δ(J[i] ↔ J[j]) ≥ 0.
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Since J[r] has the lowest deterioration rate of all jobs in E ∩W1, it follows
that the exchange of any subset of jobs in E ∩W1 with any subset of jobs in
L∩W2 cannot improve the schedule σ�. To complete the proof, it is sufficient
to show that also other possible exchanges cannot improve σ�, and hence it
is optimal.

Since in the exchanges that are performed in either Step 3 or Step 4 a job
is exchanged exactly once, and since Step 1 and Step 2 are performed in at
most O(n log n) time, algorithm A35 runs in O(n log n) time. � 

Now let us assume that there are only two distinct deterioration rates,
bj ∈ {b1, b2}, b1 > b2. Let B1 := {Jj ∈ J : bj = b1} and B2 := {Jj ∈ J :
bj = b2}. Let σ, E and L be defined as in Lemma 6.237.

Lemma 6.240. (Sundararaghavan and Kunnathur [263]) For a given in-
stance of the problem of minimizing the criterion

∑
wjCj for a single ma-

chine and job processing times in the form of (6.68), let bj ∈ {b1, b2}, where
b1 > b2. Let E denote the set of jobs which can be scheduled before time D,
L := J − E, Bi := {Jj ∈ J : bj = bi}, 1 ≤ i ≤ 2, and let J[r] denote the job
with the greatest starting time among the jobs in E ∩ B1. Then the following
conditions are necessary for optimality of a schedule for the problem:
(a) if Ji ∈ E ∩B1 and Jj ∈ L ∩B1, then wi ≥ wj ,
(b) if Ji ∈ E ∩B2 and Jj ∈ L ∩B2, then wi ≥ wj ,
(c) if Ji ∈ E ∩B1 and Jj ∈ L ∩B1, then wi > wj .

Proof. The result follows directly from the properties of an optimal schedule
for this problem. � 

For the problem with only two deterioration rates, Sundararaghavan and
Kunnathur propose to use algorithm A35 in which (b1, b2, . . . , bn) and (w1, w2)
are replaced with (b1, b2) and (w1, w2, . . . , wn) in the input, respectively, and
Wi is replaced with Bi, 1 ≤ i ≤ 2, in each step of the algorithm. Let us call
the modified algorithm A36.

Theorem 6.241. (Sundararaghavan and Kunnathur [263]) The problem of
minimizing the

∑
wjCj criterion for a single machine, job processing times in

the form of (6.68) and two distinct deterioration rates is solvable in O(n log n)
time by algorithm A36.

Proof. Similar to the proof of Theorem 6.239. � 

Sundararaghavan and Kunnathur considered also the case of agreeable job
weights and deterioration rates, when

wi ≥ wj ⇒ bi ≥ bj (6.69)

for any 1 ≤ i, j ≤ n.
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Lemma 6.242. (Sundararaghavan and Kunnathur [263]) For a given in-
stance of the problem of minimizing the criterion

∑
wjCj for a single machine

and job processing times in the form of (6.68), let the inequality wi ≥ wj imply
the inequality bi ≥ bj for any 1 ≤ i, j ≤ n. Let E denote the set of jobs which
can be scheduled before time D and L := J − E. Then the condition

if wi < wj and Ji ∈ E, then Jj ∈ E

is a necessary condition for optimality of a schedule for the problem.

Proof. Consider two jobs, Ji and Jj , such that (6.69) is satisfied. Assume that
schedule σ�, in which job Ji is followed by Jj , Ci < D and Cj > D, is optimal.
Consider schedule σ′ in which jobs Ji and Jj have been mutually exchanged.
Let R ⊆ L denote the set of job started after Jj in σ� (started after Ji in σ′).
Since

Cj(σ′) = Ci(σ�) (6.70)

and
Ci(σ′) = Cj(σ�)− (bj − bi), (6.71)

we have
∑

wjCj(σ′) =
∑

wjCj(σ�)−wiCi(σ�)−wjCj(σ�)+wiCi(σ′)+wjCj(σ′)+r,

where r is the change in the deterioration of jobs in R. By (6.69), we
have r < 0. From that and from (6.70) and (6.71), we have

∑
wjCj(σ′) −∑

wjCj(σ�) < 0. A contradiction. � 

For the problem with agreeable parameters (6.69), Sundararaghavan and
Kunnathur [263] proposed the following algorithm.

Algorithm A37 for the problem 1|pj ≡ (6.68) ∧ (6.69)|
∑

wjCj ([263])

Input: sequences (b1, b2, . . . , bn), (w1, w2, . . . , wn), numbers a, D
Output: an optimal schedule

� Step 1:
k ← �D

a �+ 1;
Arrange k jobs in the non-increasing order of 1

wj
ratios;

� If necessary, ties are broken in favour of jobs with larger bj;
� Step 2:

Arrange the remaining n−k jobs in the non-decreasing order of a+bj

wj
ratios.

� Ties are broken arbitrarily

Theorem 6.243. (Sundararaghavan and Kunnathur [263]) The problem of
minimizing the

∑
wjCj criterion for a single machine, job processing times

given by (6.68) and agreeable parameters is solvable in O(n log n) time by
algorithm A37.
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Proof. The proof is based on Lemma 6.242 and a lemma concerning the case
when wi = wj for some 1 ≤ i, j ≤ n; see [263, Lemmata 3–5]. !

The authors also proposed an algorithm for the problem 1|pj |
∑

wjCj ,
where job processing times pj are given by (6.68), and stated the conjecture
that it is optimal. We will show in Chap. 9 that the conjecture is false.

Cheng and Ding [51] proposed for the general problem an enumerative al-
gorithm, which under some assumptions allows to solve the problem in poly-
nomial time. First, note that there holds the result similar to Lemma 6.153.

Lemma 6.244. (Cheng and Ding [51]) If ai ≤ aj ,
ai

wi
≤ aj

wj
and ai+bi

wi
≤

aj+bj

wj
, then job Ji precedes job Jj in any optimal schedule for the problem

1|pj ∈ {aj , bj : aj ≤ bj}|
∑

Cj .

Proof. By pairwise job interchange argument. � 

By Lemma 6.244, we can divide the set of jobs J into a number of chains,
using the approach applied in algorithm E2 for the problem 1|pj ∈ {aj , bj :
aj ≤ bj}, dj = D|

∑
Cj . In order to do that, it is sufficient to renumber jobs

in the non-decreasing order of aj values, breaking ties in the non-decreasing
order of aj

wj
ratios, if jobs have the same values of aj , and breaking ties in the

non-decreasing order of aj+bj

wj
ratios, if jobs have the same values of aj

wj
ratios.

Let us call the modified algorithm E2 as E4.

Theorem 6.245. (Cheng and Ding [51]) If an instance of the problem
1|pj ∈ {aj , bj : aj ≤ bj}, dj = D|

∑
wjCj has a fixed number of chains,

then algorithm E4 is a polynomial-time algorithm for the instance.

Proof. Similar to the proof of Theorem 6.154. � 

We end this subsection with a single result concerning the exponential
deterioration given by (6.63).

Theorem 6.246. (Janiak and Kovalyov [146]) The decision version of the
problem 1|pj = aj2−bjt|

∑
wjCj is NP-complete in the ordinary sense.

Proof. The transformation from the PP problem (cf. Sect. 3.2) is as follows.
Define n = k + 1 jobs, where wj = xj , aj = xj , bj = 0 for 1 ≤ j ≤ k,
wk+1 = A, ak+1 = 2A(2 ln 2 + 1), bk+1 = 1

A . The threshold G = 1
2

∑k
j=1 x2

j +

A2
(
3 + 2

2 ln 2+1

)
. To complete the proof, it is sufficient to show that the PP

problem has a solution if and only if for the above instance of the problem
1|pj = aj2−bjt|

∑
wjCj there exists a schedule σ such

∑
wjCj(σ) ≤ G. � 
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6.4.6 Proportional-linear shortening

Distinct ready times and deadlines

The
∑

Uj criterion. Wang and Xia considered job processing times given
by (6.44) and proved the following result.

Theorem 6.247. (Wang and Xia [289]) The problem 1|pj = aj(1−kt), k > 0,

k

(
n∑

j=1

aj − amin

)

< 1|
∑

Uj is solvable in O(n log n) time by algorithm A26.

Proof. Similar to the proof of Theorem 6.196. � 

The fmax criterion. Wang and Xia considered job processing times given by
(6.44) and proved the following result.

Theorem 6.248. (Wang and Xia [289]) The problem 1|pj = aj(1−kt), k > 0,

k

(
n∑

j=1

aj − amin

)

< 1|fmax is solvable in O(n2) time by algorithm A29.

Proof. Similar to the proof of Theorem 6.204. � 

6.4.7 Linear shortening

Equal ready times and deadlines

The
∑

wjCj criterion. For proportional job processing times given by (6.46),
the following results are known.

Theorem 6.249. (Bachman et al. [10]) The decision version of the problem
1|pj = aj − bjt, 0 ≤ bj < 1, bi(

∑n
j=1 aj − ai) < ai|

∑
wjCj is NP-complete in

the ordinary sense, even if there exists only one non-zero shortening rate.

Proof. The transformation from the PP problem (cf. Sect. 3.2) is as follows.
We have n = k + 1 jobs with the following parameters: ai = xi, bi = 0 and
wi = xi for 1 ≤ i ≤ k, and ak+1 = 2A, bk+1 = 1 − 1

A , and wk+1 = 2A2. The
threshold G = 1

2

∑k
i=1 x2

i + A2 + A(2A + 1)2.
To complete the proof, it is sufficient to show that the PP problem has a

solution if and only if for the above instance of the problem 1|pj = aj − bjt,
0 ≤ bj < 1, bi(

∑n
j=1 aj − ai) < ai|

∑
wjCj there exists a schedule σ such that

the total weighted completion time
∑

wjCj(σ) ≤ G. The equivalence can
be proved using the equalities 1

2

∑k
i=1 x2

i = 1
2 (
∑k

i=1 xi)2 −
∑

1≤i<j≤k xixj =
A2 −

∑
1≤i<j≤m xixj , (see [10, Theorem 1]). � 

The authors also proved a few properties of special cases of the problem
1|pj = aj − bjt, 0 ≤ bj < 1, bi(

∑n
j=1 aj − ai) < ai|

∑
wjCj .
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Property 6.250. (Bachman et al. [10]) The problem 1|pj = a − bt|
∑

wjCj is
solvable in O(n log n) time by scheduling jobs in the non-increasing order of
wj values.

Proof. Since all jobs have the same form of job processing times, the result
follows from Lemma 1.2 (b). �

By Property 6.250, if 0 ≤ bj < 1 and bi(
∑n

j=1 aj − ai) < ai for any
1 ≤ i, j ≤ n, the problem 1|pj = a − bt|

∑
wjCj is solved by the algorithm

A38 : (a|b|wj) $→ (wj ↘).

Property 6.251. (Bachman et al. [10]) The problem 1|pj = aj − kajt|
∑

wjCj ,
where k is a given constant, k(

∑n
j=1 aj−amin) < 1 and amin = min1≤j≤n{aj},

is solvable in O(n log n) time by scheduling jobs in the non-decreasing order
of aj

wj(1−kaj)
ratios.

Proof. By pairwise job interchange argument, see [10, Property 2]. !

By Property 6.250, if k(
∑n

j=1 aj − amin) < 1 for 1 ≤ i ≤ n, amin :=
min1≤j≤n{aj} and a given constant k, the problem 1|pj = a − kajt|

∑
wjCj

is solved by the algorithm A39 : (a|k|aj |wj) $→ ( aj

wj(1−kaj)
↗).

Property 6.252. (Bachman et al. [10]) Let σ = (σ1, σ2, . . . , σn) be a schedule
for the problem 1|pj = aj − bt|

∑
wjCj , where wj = kaj for 1 ≤ j ≤ n, and

let σ̄ = (σn, σn−1, . . . , σ1). Then
∑

wjCj(σ) =
∑

wjCj(σ̄).

Proof. By direct calculation, see [10, Property 3]. !

Property 6.253. (Bachman et al. [10]) For the problem 1|pj = aj−bt|
∑

wjCj ,
where wj = kaj for 1 ≤ j ≤ n, there exists an optimal schedule that is V-
shaped with respect to aj values.

Proof. Consider three schedules σ�, σ
′

and σ
′′
, differing only in the order

of jobs Jσi−1 , Jσi
and Jσi+1 . Assume that aσi

− aσi−1 > 0, aσi
− aσi+1 > 0

and that σ� is optimal. Calculate differences
∑

wjCj(σ�)−
∑

wjCj(σ
′
) and

∑
wjCj(σ�) −

∑
wjCj(σ

′′
). Since σ� is optimal, both these differences are

positive. This, in turn, leads to a contradiction (see [10, Property 4]). � 

Before we state the next property, we will introduce a new notion (cf. [10]).

Definition 6.254. (An even-odd V-shaped sequence)
A sequence (xj) is said to be even-odd V-shaped (has an even-odd V-shape),
if non-increasingly ordered numbers with even (odd) indices are followed by
non-decreasingly ordered numbers with odd (even) indices.

Property 6.255. (Bachman et al. [10]) If in an instance of the problem
1|j = aj − bt|

∑
kajCj , the jobs are numbered in the non-decreasing order

of aj values, then an even-odd V-shaped schedule is not optimal.
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Proof. By direct calculation, see [10, Property 5]. !

For the problem 1|pj = aj− bjt, 0 ≤ bj < 1, bi(
∑n

j=1 aj−ai) < ai|
∑

wjCj

Bachman et al. [10] proposed two heuristic algorithms. We will consider this
algorithms in Chap. 9.

Distinct ready times and deadlines

The
∑

Uj criterion. Theorem 6.87 implies that if in the set of jobs there are
identical ready times and deadlines, the problem of minimizing the number of
tardy jobs is NP-complete. Ho et al. [135] stated the problem of minimizing
the number of tardy jobs for a set of jobs with a common deadline, D, as an
open problem. The problem has been solved independently by two authors:
Chen [42] and Woeginger [295]. First, we consider the result obtained by Chen.

Lemma 6.256. (Chen [42]) There exists an optimal schedule where the on-
time jobs are scheduled in the non-increasing order of aj

bj
ratios, and the late

jobs are scheduled in an arbitrary order.

Proof. First, note that without loss of generality, we can consider only sched-
ules without idle times. Second, since di = D, each on-time job is processed
before all late jobs. Finally, since by Theorem 6.24 scheduling jobs in the non-
increasing order of bj

aj
ratios minimizes Cmax, the result follows. � 

Chen [42] proposed to construct a schedule for the problem 1|rj , pj =
aj − bjt|

∑
Uj , where rj = R, 0 < bj < 1, bjdj < aj ≤ dj and dj = D, by

assigning an unscheduled job with the largest ratio aj

bj
either to the position

immediately following the current last on-time job or to the position following
the current last late job. Some recursive relations, Lemma 6.256 and a dynamic
programming aproach allowed Chen to obtain an O(n2) time algorithm.

Before we formulate the algorithm proposed by Chen, we need some new
notation. Let C(j, k) and S(j, k) denote the minimum completion time of the
on-time jobs in a partial schedule containing the first j jobs, 1 ≤ j ≤ n, among
which there are exactly k ≤ j on-time jobs, and the set of on-time jobs in the
schedule corresponding to C(j, k), respectively.

Define function F (j, k) as follows:

F (j, k) :=
{

aj + (1− bj)C(j − 1, k − 1), if aj + (1− bj)C(j − 1, k − 1) ≤ D,
∞, otherwise.

Define the set S(j, k) as follows:

S(j, k) :=

⎧
⎨

⎩

{j} ∪ S(j − 1, k − 1), if C(j, k) = F (j, k) ≤ D,
S(j − 1, k), if C(j, k) = C(j − 1, k) ≤ D,
∅, otherwise.
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Applying the above notation, the algorithm proposed for the problem
1|rj = R, pj = aj − bjt, aj > 0, 0 < bj < 1, bjdj < aj ≤ dj , dj = D|

∑
Uj

by Chen [42] can be formulated as follows.

Algorithm A40 for the problem
1|rj = R, pj = aj − bjt, aj > 0, 0 < bj < 1, bjdj < aj ≤ dj , dj = D|

∑
Uj ([42])

Input: sequences (a1, a2), . . . , an), (b1, b2, . . . , bn) numbers R, D
Output: the minimum number of late jobs

� Step 1:
Arrange jobs according to the non-increasing order of aj

bj
ratios;

C(1, 1) ←
{

a[1], if a[1] ≤ D,
∞, otherwise;

� Step 2:
for j ← 1 to n do

C(j, 0) ← 0;
S(j, 0) ← ∅;
S(1, 1) ←

{
{1}, if C(1, 1) = a[1],
∅, otherwise;

� Step 3:
for j ← 2 to n do

for k ← 1 to j − 1 do
C(j, k) ← min{C(j − 1, k), F (j, k)};
x ← a[j] + (1− b[j])C(j − 1, j − 1);

C(j, j) ←
{

x, if x ≤ D,
∞, otherwise,

S(j, j) ←
{
{j} ∪ S(j − 1, j − 1), if C(j, j) ≤ D,
∅, otherwise;

� Step 4:
Calculate k� ← arg max{k : C(n, k) ≤ D};

� Step 5:
return n− k�.

Theorem 6.257. (Chen [42]) The problem 1|rj , pj = aj − bjt|
∑

Uj , where
rj = R, 0 < bj < 1, bjdj < aj ≤ dj and dj = D is solvable in O(n2) time by
algorithm A40.

Proof. Knowing the minimum number of late jobs, we can construct an op-
timal schedule by scheduling jobs from the set S(n, k�) in the order of their
rearranged indices, and then scheduling the remaining jobs in an arbitrary
order. Since in algorithm A40 for each 1 ≤ j ≤ n there are j possible states,
the overall time complexity of the algorithm is O(n2). � 

The problem 1|rj = R, pj = aj − bjt, aj > 0, 0 < bj < 1, bjdj < aj ≤ dj ,
dj = D|

∑
Uj has also been considered by Woeginger [295].
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Lemma 6.258. (Woeginger [295]) A subset of jobs, j1, j2, . . . , jm, can be ex-
ecuted during the time interval 〈t1, t2〉 if and only if the jobs are processed in
the non-decreasing order of bj

aj
ratios.

Proof. See [295, Lemma 2]. !

Using Lemma 6.258, Woeginger proposed to find the solution using dy-
namic programming in O(n3) time (see [295, Theorem 3] for details).

The
∑

g(Ej) criterion. Zhao and Tang [303] considered job processing times
given by (6.52). Let g be a non-decreasing function.

Theorem 6.259. (Zhao and Tang [303]) The problem 1|pj = aj−bt|
∑

g(Ej)
is solvable in O(n log n) time by scheduling jobs in the non-increasing order
of aj values.

Proof. By pairwise job interchange argument. � 

By Theorem 6.259, the problem 1|pj = aj − bt|
∑

g(Ej) is solved by the
algorithm A8 : (aj |b|g) $→ (aj ↘).

The criterion
∑

(αEj+βTj+γd). Cheng et al. [59] considered the problem of
minimizing the sum of earlines, tardiness and due-date penalties and common
due-date assignment for job processing times in the form of

pj = aj − bt, (6.72)

where
0 < b < 1 (6.73)

and

b

⎛

⎝
n∑

j=1

aj − ai

⎞

⎠ < ai (6.74)

for 1 ≤ i ≤ n.

Remark 6.260. Job processing times (6.72) and conditions (6.73) and (6.74)
are special cases, respectively, of job processing times (6.46) and conditions
(6.47) and (6.48) for bj = b and 1 ≤ j ≤ n.

Cheng et al. [59], applying the approach used previously for the problem
1|pj = aj + bt|

∑
(αEj + βTj + γd) (cf. Sect. 6.4.3), proposed for the prob-

lem 1|pj = aj − bt, 0 < b < 1, b(
∑n

j=1 aj − ai) < ai|
∑

(αEj + βTj + γd)
an algorithm (see [59, Algorithm A]). Let us call the algorithm A41. Since
the properties (see [59, Properties 1–8]) on which algorithm A41 is based are
counterparts of the properties from Sect. 6.4.3, we do not present their for-
mulations, giving only the formulation of the main result.
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Theorem 6.261. (Cheng et al. [59]) The problem 1|pj = aj − bt, 0 < b < 1,
b(
∑n

j=1 aj − ai) < ai|
∑

(αEj + βTj + γd) is solvable in O(n log n) time by
algorithm A41.

Proof. See [59, Properties 10–13, Theorem 14]. !

With this theorem we end the review of single-machine time-dependent
scheduling. In Chap. 7 and Chap. 8 we will consider the results concerning
time-dependent scheduling on parallel and dedicated machines, respectively.

6.5 Summary and tables

In this chapter, we reviewed single-machine time-dependent scheduling prob-
lems. We considered different deteriorating or shortening job processing times.
The criteria of schedule optimality include the most popular criteria such as
the Cmax,

∑
Cj or Lmax, as well as less popular criteria such as the

∑
wjCj ,∑

Uj or
∑

(αEj + βTj + γd).
Approximately two-thirds of the problems presented in the chapter are

polynomially solvable. For these problems, we presented pseudo-codes of op-
timal algorithms, including different variants of these algorithms if they exist.
For the remaining problems that are ordinary or strongly NP-complete, we
presented NP-completeness proofs or sketches of such proofs.

Below, we classify in the tabular form the single-machine time-dependent
scheduling problems and polynomial algorithms considered in the chapter. The
problems and algorithms are divided into groups with respect to the applied
optimality criterion. The problems with a particular criterion are divided into
tractable and intractable problems.

Tables 6.1 and 6.2 present the problems concerning, respectively, tractable
and intractable single-machine time-dependent scheduling problems with the
Cmax criterion.

Tables 6.3 and 6.4 present the problems concerning, respectively, tractable
and intractable single-machine time-dependent scheduling problems with the∑

Cj criterion.
Tables 6.5 and 6.6 present the problems concerning, respectively, tractable

and intractable single-machine time-dependent scheduling problems with the
Lmax criterion.

Tables 6.7 and 6.8 present the problems concerning, respectively, tractable
and intractable single-machine time-dependent scheduling problems with cri-
teria other than Cmax,

∑
Cj or Lmax.

Tables 6.9, 6.10 and 6.11 present polynomial algorithms for the Cmax,∑
Cj and Lmax criteria, respectively.
Table 6.12 presents polynomial algorithms for other criteria than Cmax,∑
Cj or Lmax.
Table 6.13 presents exact algorithms for single-machine time-dependent

scheduling problems.
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Table 6.1: Tractable Single-Machine Time-Dependent Problems (Cmax Criterion)

Problem Complexity References This book

1|pj = bjt|Cmax
(a) O(n) [216] Theorem 6.1

1|pi,j = bi,jt, θi, GT |Cmax O(n log n) [44] Theorem 6.4
1|pi,j = bi,jt, θi = δit, GT |Cmax O(n) [300] Theorem 6.5

1|pj = bj(A + Bt)|Cmax
(a) O(n log n) [173,

304]
Theorem 6.20

1|pi,j = bi,j(A+Bt), θi, GT |Cmax O(n log n) [127] Theorem 6.22
1|pi,j ≡ (6.5),

θi ≡ (6.9), GT |Cmax

O(n) [284] Theorem 6.23

1|pj = aj + bjt|Cmax
(b) O(n log n) [33, 128,

264, 277]
Theorem 6.24

1|pj = aj + bjt|Cmax
(c) O(n log n) [109] Sect. 6.1.3, p. 70

1|pj = a + bjt,
bj ∈ {B1, B2}, dj |Cmax

O(n log n) [53] Theorem 6.35

1|pj = aj + bt, dj |Cmax O(n5) [52] Theorem 6.38
1|pj = aj + f(t), f(t) ↗ |Cmax O(n log n) [207] Theorem 6.39

1|pj = aj +f(t), f(t) ↘ |Cmax
(d) O(n log n) [207] Theorem 6.41

1|pj = bjh(t)|Cmax
(e) O(n log n) [173] Theorem 6.43

1|pj = aj +max{0, b(t−d)}|Cmax O(n log n) [178] Theorem 6.57
1|pj = aj +bj max{t−t0, 0}|Cmax O(n log n) [39] Theorem 6.68
1|pj = a+ bj max{t− t0, 0}|Cmax O(n log n) [39] Theorem 6.69 (a)
1|pj = aj + b max{t− t0, 0}|Cmax O(n log n) [39] Theorem 6.69 (b)
1|pj = aj+

bj max{t− t0, 0}|Cmax
(f)

O(n log n) [39] Theorem 6.69 (c)

1|pj = aj(1− kt)|Cmax
(a,g) O(n) [289] Theorem 6.82

1|pj = aj − bjt, dj = D|Cmax
(h) O(n log n) [135] Theorem 6.87 (c)

1|pj = a− bjt, dj |Cmax
(i) O(n log n) [53] Theorem 6.92

1|pj = aj − bt, rj |Cmax
(j) O(n6 log n) [49] Theorem 6.96

1|pj = aj − b(t− y)|Cmax
(k) O(n log n) [54] Theorem 6.119 (a)

1|pj = a− bj(t− y)|Cmax
(k) O(n log n) [54] Theorem 6.119 (b)

(a) the value of Cmax does not depend on schedule
(b) S1 ≡ t0 = 0
(c) S1 ≡ t0 ≥ 0
(d) | df(t)

dt
| ≤ 1

(e) h(t) is convex or concave, other assumptions see Theorem 6.43
(f) aj = bjk, where k = const > 0
(g) k > 0, k(

∑n
j=1 aj − amin) < 1 for 1 ≤ j ≤ n, where amin := min1≤j≤n{aj}

(h) 0 < bj < 1, bjD < aj ≤ D for 1 ≤ j ≤ n
(i) 0 < bj < 1, bjdj < a ≤ dj for 1 ≤ j ≤ n
(j) 0 < b < 1, bj(

∑n
i=1 ai − aj) < aj for 1 ≤ j ≤ n

(k) y > 0, Y < ∞, 0 < bj < 1 for 1 ≤ j ≤ n
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Table 6.2: Intractable Single-Machine Time-Dependent Problems (Cmax Criterion)

Problem Class References This book

1, h11|pj = bjt, nres|Cmax NPC [91, 155] Theorem 6.11
1, h1k|pj = bjt, nres|Cmax SNPC [91] Theorem 6.15
1, h11|pj = bjt, res|Cmax NPC [92] Theorem 6.16
1|pj = bjt, rj ∈ {R1, R2},

dj ∈ {D1, D2}|Cmax

NPC [91] Theorem 6.18

1|pj = bjt, rj , dj |Cmax SNPC [91] Theorem 6.19
1|pj = aj + bjt, rj , dj |Cmax SNPC − Theorem 6.33
1|pj = aj + bjt, dj |Cmax SNPC [52] Theorem 6.34
1|pj = 1 + bjt, dj |− SNPC [53] Theorem 6.36
1|pj = 1 + bjt, dj ∈ {D1, D2}|− NPC [53] Theorem 6.37
1|pj ∈ {aj , bj : aj ≤ bj},

dj = D|Cmax

NPC [51, 217] Theorem 6.50

1|pj = aj+
max{0, bj(t− dj)}|Cmax

SNPC [171] Theorem 6.63 (a)

1|pj = aj + max{0, bj(t− dj)},
bj = B|Cmax

NPC [171] Theorem 6.63 (b)

1|pj = aj + max{0, bj(t− dj)},
dj = D|Cmax

NPC [171] Theorem 6.63 (c)

1|pj = aj + bj 1X |Cmax
(a,b) NPC [39] Theorem 6.66

1|pj ≡ (6.39)|Cmax
(c) NPC [177] Theorem 6.72

1|pj = aj2
bj(t−rj), rj |Cmax SNPC [146] Theorem 6.79

1|pj = aj2
bj(t−rj),

rj ∈ {0, R}|Cmax

NPC [146] Theorem 6.80

1|pj = aj − bjt, dj |Cmax
(d) SNPC [135] Theorem 6.87 (a)

1|pj = aj − bjt,
dj ∈ {D1, D2}|Cmax

(d)
NPC [135] Theorem 6.87 (b)

1|pj = aj − bt, dj |Cmax
(e) SNPC [50] Theorem 6.88

1|pj = 1− bjt, dj |Cmax
(f) SNPC [53] Theorem 6.93

1|pj = 1− bjt,
dj ∈ {D1, D2}|Cmax

(f)
NPC [53] Theorem 6.94

1|pj = aj − bt,
dj ∈ {D1, D2}|Cmax

(e)
NPC [48] Theorem 6.95

1|pj = aj + bjt, rj |Cmax SNPC [49] Theorem 6.100
1|pj = aj + bjt, rj ∈ {0, R}|Cmax SNPC [49] Theorem 6.101
1|pj ∈ {aj , aj − bj} :

0 ≤ bj ≤ aj |Cmax

NPC [56] Theorem 6.109

1|pj = aj − bj(t− y)|Cmax
(g) NPC [54] Theorem 6.114

(a) X := {t : t− t0 > 0}
(b) ∑n

j=1 aj > t0
(c) d > 0, D = ∞
(d) 0 < bj < 1, bjdj < aj ≤ dj for 1 ≤ j ≤ n
(e) 0 < b < 1, bdj < aj ≤ dj for 1 ≤ j ≤ n
(f) 0 < bj < 1, bjdj < 1 ≤ dj for 1 ≤ j ≤ n
(g) y = 0, Y < ∞, 0 < bj < 1 for 1 ≤ j ≤ n
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Table 6.3: Tractable Single-Machine Time-Dependent Problems (
∑

Cj Criterion)

Problem Complexity References This book

1|pj = bjt|
∑

Cj O(n log n) [216] Theorem 6.120
1|pi,j = bi,jt, θi = δi, GT |

∑
Cj O(n log n) [300] Theorem 6.122

1|pj = bjt, dj |
∑

Cj O(n log n) [55] Theorem 6.125
1|pj = bj(A + Bt)|

∑
Cj O(n log n) − Theorem 6.127

1|pj = 1 + bjt,
bj ∈ {B1, B2, . . . , Bk}|

∑
Cj

O(nk+1) [106] Theorem 6.139

1|pj = aj + bt, dj |
∑

Cj O(n5) [48] Theorem 6.145
1|pj = aj + f(t), f(t) ↗ |

∑
Cj O(n log n) [89] Theorem 6.146

1|pj = aj − bt|
∑

Cj
(a) O(n log n) [226] Property 6.155

1|pj = aj − kajt|
∑

Cj
(b) O(n log n) [226] Property 6.156

1|pi,j = ai,j − bit, θi, GT |
∑

Cj O(n log n) [283] Theorem 6.163

(a) 0 < b < 1
(b) k = const > 0

Table 6.4: Intractable Single-Machine Time-Dependent Problems (
∑

Cj Criterion)

Problem Complexity References This book

1, h11|pj = bjt, nres|
∑

Cj NPC [155] Theorem 6.123
1|pj = aj + bjt, dj = D|

∑
Cj NPC [55] Theorem 6.141

1|pj = aj + bjt, dj |
∑

Cj SNPC [52] Theorem 6.142
1|pj ∈ {aj , bj : aj ≤ bj},

dj = D|
∑

Cj

NPC [51] Theorem 6.147

1|pj = aj − bt, dj = D|
∑

Cj
(a) NPC [55] Theorem 6.161

1|pj = aj − bj(t− y)|
∑

Cj
(b) NPC [54] Theorem 6.165

1|pj = aj − bt,
dj ∈ {D1, D2}|

∑
Cj

(a)
NPC [48] Theorem 6.168

(a) 0 < b < 1
(b) y = 0, Y < ∞, 0 < bj < 1 for 1 ≤ j ≤ n

Table 6.5: Tractable Single-Machine Time-Dependent Problems (Lmax Criterion)

Problem Complexity References This book

1|pj = bjt|Lmax O(n log n) [216] Theorem 6.169
1|pj = bj(A + Bt)|Lmax O(n log n) [173] Theorem 6.170
1|pj = aj + bt|Lmax O(n6 log n) [52] Theorem 6.179

1|pj = bjh(t)|Lmax
(a) O(n log n) [173] Theorem 6.180

(a) h(t) is convex or concave, other assumptions see Theorem 6.180
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Table 6.6: Intractable Single-Machine Time-Dependent Problems (Lmax Criterion)

Problem Complexity References This book

1|pj = aj + bjt|Lmax SNPC [11, 172, 52] Theorems 6.172– 6.174

1|pj = aj2
−bjt|Lmax SNPC [146] Theorem 6.181

1|pj = aj2
−bjt, dj ∈ {d, D}|Lmax NPC [146] Theorem 6.182

1|pj = aj − bt,
dj ∈ {D1, D2}|Lmax

(a)
NPC [48] Theorem 6.184

(a) 0 < b < 1

Table 6.7: Tractable Single-Machine Time-Dependent Problems (Criteria other than
Cmax,

∑
Cj and Lmax)

Problem Complexity References This book

1|pj = bjt|
∑

wjCj O(n log n) [216] Theorem 6.185
1|pj = bjt|fmax O(n2) − Theorem 6.187
1|pj = bjt|

∑
Lj O(n log n) [216] Theorem 6.194 (a)

1|pj = bjt|Tmax O(n log n) [216] Theorem 6.194 (b)
1|pj = bjt|

∑
Uj O(n log n) [216] Theorem 6.196

1|pj = bj(A + Bt)|
∑

wjCj O(n log n) [173] Theorem 6.197
1|pj = bj(A + Bt)|

∑
Uj O(n log n) [173] Theorem 6.202

1|pj = bj(A + Bt)|fmax O(n2) [173] Theorem 6.204

1|pj = aj + bt|
∑

wjCj
(a) O(n) [218] Property 6.210

1|pj = aj + bjt|Pmax
(b) O(n log n) [5] Theorem 6.222

1|pj = aj + bt|Pmax
(c) O(n log n) [5] Theorem 6.223

1|pj = aj + bt|
∑

(αEj + βTj + γd) O(n log n) [57] Theorem 6.231

1|pj = bjh(t)|
∑

wjCj
(d) O(n log n) [173] Theorem 6.233

1|pj = aj + f(t)|
∑

Ck
j

(e) O(n log n) [179] Theorem 6.235

1|pj ≡ (6.68), wj ∈ {W1, W2}|
∑

wjCj O(n log n) [263] Theorem 6.239
1|pj ≡ (6.68), bj ∈ {B1, B2}|

∑
wjCj O(n log n) [263] Theorem 6.241

1|pj ≡ (6.68) ∧ (6.69)|
∑

wjCj
(f) O(n log n) [263] Theorem 6.243

1|pj = aj(1 − kt)|
∑

Uj
(g) O(n log n) [289] Theorem 6.247

1|pj = aj(1 − kt)|fmax
(g) O(n2) [289] Theorem 6.248

1|pj = a − bt|
∑

wjCj
(h) O(n log n) [10] Property 6.250

1|pj = aj − kajt|
∑

wjCj
(g) O(n log n) [10] Property 6.251

1|rj = R, pj = aj − bjt, dj = D|
∑

Uj
(i) O(n2) [42, 295] Theorem 6.257

1|pj = aj − bt|
∑

g(Ej) O(n log n) [303] Theorem 6.259

1|pj = aj − bt|
∑

(αEj + βTj + γd) (h) O(n log n) [59] Theorem 6.261

(a) wj = δaj for 1 ≤ j ≤ n, δ = const > 0, jobs are numbered in the aj ↗ order
(b) aj > 0, bj ≥ 1 for 1 ≤ j ≤ n
(c) b ≥ 1, aj > 0 for 1 ≤ j ≤ n
(d) h(t) is convex or concave, other assumptions see Theorem 6.233
(e) for assumptions concerning the function f(t) see Theorem 6.235
(f) wi ≥ wj ⇒ bi ≥ bj for 1 ≤ i, j ≤ n
(g) k(

∑n
j=1 aj − amin) < 1, where k = const > 0 and amin := min1≤j≤n{aj}

(h) 0 ≤ b < 1, b(
∑n

i=1 ai − aj) < aj for 1 ≤ j ≤ n
(i) 0 < bj < 1, bjD < aj ≤ D for 1 ≤ j ≤ n
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Table 6.8: Intractable Single-Machine Time-Dependent Problems (Criteria other
than Cmax,

∑
Cj and Lmax)

Problem Complexity References This book

1|pj = aj + bjt|
∑

wjCj NPC [13] Theorem 6.211

1|pj = aj2
−bjt|

∑
wjCj NPC [146] Theorem 6.246

1|pj = aj − bjt|
∑

wjCj
(a) NPC [10] Theorem 6.249

(a) 0 ≤ bj < 1, bj(
∑n

i=1 ai − aj) < aj for 1 ≤ j ≤ n

Table 6.9: Polynomial Algorithms for Single-Machine Time-Dependent Problems
(Cmax Criterion)

Algorithm Complexity Problem This book

A1 O(n log n) 1|pi,j = bi,jt, θi, GT |Cmax Sect. 6.1.1, p. 61
A2 O(n log n) 1|pi,j = bi,j(A + Bt), θi, GT |Cmax Sect. 6.1.2, p. 67
A3 O(n log n) 1|pj = aj + bjt|Cmax Sect. 6.1.3, p. 69
A4 O(n log n) 1|pj = aj + bjt|Cmax Sect. 6.1.3, p. 70
A5 O(n2) 1|pj = aj + bjt|Cmax Sect. 6.1.3, p. 70
A14 O(n log n) 1|pj = a + bjt, dj , bj ∈ {B1, B2}|Cmax Sect. 6.1.7, p. 95
A6 O(n5) 1|pj = aj + bt, dj |Cmax Sect. 6.1.3, p. 74
A7 O(n log n) 1|pj = aj + f(t), f ↗ |Cmax Sect. 6.1.4, p. 76

A8 O(n log n) 1|pj = aj + f(t), f ↘, | df
dt
| ≤ 1|Cmax Sect. 6.1.4, p. 77

A9 O(n log n) 1|pj = bjh(t)|Cmax Sect. 6.1.4, p. 77
A10 O(n log n) 1|pj = aj + bj max{t− t0, 0}|Cmax Sect. 6.1.5, p. 86
A11 O(n log n) 1|pj = a + bj max{t− t0, 0}|Cmax Sect. 6.1.5, p. 86
A12 O(n log n) 1|pi,j = ai,j − bi,jt, θi, GT |Cmax Sect. 6.1.7, p. 91
A13 O(n log n) 1|pj = aj − bjt, dj = D|Cmax Sect. 6.1.7, p. 93
A14 O(n log n) 1|pj = a− bjt, dj , bj ∈ {B1, B2}|Cmax Sect. 6.1.7, p. 95
A15 O(n log n) 1|pj = aj − bt, rj |Cmax Sect. 6.1.7, p. 97

Table 6.10: Polynomial Algorithms for Single-Machine Time-Dependent Problems
(
∑

Cj Criterion)

Algorithm Complexity Problem This book

A16 O(n log n) 1|pi,j = bi,jt, θi = δi, GT |
∑

Cj Sect. 6.2.1, p. 104
A17 O(n log n) 1|pj = bjt, dj |

∑
Cj Sect. 6.2.1, p. 105

A18 O(n log n) 1|pj = bj(A + Bt)|
∑

Cj Sect. 6.2.2, p. 106
A19 O(n log n) 1pj = 1 + bjt|

∑
Cj Sect. 6.2.3, p. 110

A20 O(n log n) 1|pi,j = ai,j − bit, θi, GT |
∑

Cj Sect. 6.2.6, p. 116
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Table 6.11: Polynomial Algorithms for Single-Machine Time-Dependent Problems
(Lmax Criterion)

Algorithm Complexity Problem This book

A21 O(n log n) 1|pj = bj |Lmax Sect. 6.3.1, p. 118
A22 O(n log n) 1|pj = aj + bt|Lmax Sect. 6.3.3, p. 121
A23 O(n log n) 1|pj = bjh(t)|Lmax Sect. 6.3.4, p. 121
A24 O(n log n) 1|pj = bjh(t)|Lmax Sect. 6.3.4, p. 121

Table 6.12: Polynomial Algorithms for Single-Machine Time-Dependent Problems
(Criteria other than Cmax,

∑
Cj and Lmax)

Algorithm Complexity Problem This book

A25 O(n log n) 1|pj = bjt|
∑

wjCj Sect. 6.4.1, p. 123
A26 O(n log n) 1|pj = bjt|

∑
Uj Sect. 6.4.1, p. 125

A27 O(n log n) 1|pj = aj(A + Bt)|
∑

wjCj Sect. 6.4.2, p. 126
A28 O(n log n) 1|pi,j ≡ (6.5), θi ≡ (6.9), GT |

∑
wjCj Sect. 6.4.2, p. 126

A29 O(n2) 1|pj = bj(A + Bt)|fmax Sect. 6.4.2, p. 127
A30 O(n2) 1|pj = aj + bjt, dj = D|

∑
Uj Sect. 6.4.3, p. 132

A31 O(n log n) 1|pj = aj + bt|
∑

(αEj + βTj + γd) Sect. 6.4.3, p. 134
A32 O(log n) 1|pj = aj + bt|

∑
(αEj + βTj + γd) Sect. 6.4.3, p. 135

A33 O(n log n) 1|pj = bjh(t)|
∑

wjCj Sect. 6.4.4, p. 136
A34 O(n log n) 1|pj = bjh(t)|

∑
wjCj Sect. 6.4.4, p. 136

A35 O(n log n) 1|pj ≡ (6.68), wj ∈ {W1, W2}|
∑

wjCj Sect. 6.4.5, p. 138
A36 O(n log n) 1|pj ≡ (6.68), bj ∈ {B1, B2}|

∑
wjCj Sect. 6.4.5, p. 139

A37 O(n log n) 1|pj ≡ (6.68)|
∑

wjCj
(a) Sect. 6.4.5, p. 140

A38 O(n log n) 1|pj = a− bt|
∑

wjCj Sect. 6.4.7, p. 143
A39 O(n log n) 1|pj = aj − kajt|

∑
wjCj Sect. 6.4.7, p. 143

A40 O(n log n) 1|rj = R, pj = aj − bjt, dj = D|
∑

Uj Sect. 6.4.7, p. 145
A41 O(n log n) 1|pj = aj − bt|

∑
(αEj + βTj + γd) Sect. 6.4.7, p. 146

(a) wi ≥ wj ⇒ bi ≥ wj for 1 ≤ i, j ≤ n

Table 6.13: Exact Algorithms for Single-Machine Time-Dependent Problems

Algorithm Complexity Problem This book

E1 O(nk+1) 1|pj = 1 + bjt,
bj ∈ {B1, B2, . . . , Bk}|

∑
Cj

Sect. 6.2.3, p. 109

E2 O(nk log n) 1|pj ∈ {aj , bj : aj ≤ bj},
dj = D|

∑
Cj

Sect. 6.2.5, p. 114

E3 O(nk log n) 1|pj ∈ {aj , bj : aj ≤ bj},
dj = D|Cmax

Sect. 6.2.3, p. 81

E4 O(nk log n) 1|pj ∈ {aj , bj : aj ≤ bj},
dj = D|

∑
wjCj

Sect. 6.4.5, p. 141
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Parallel-machine time-dependent scheduling

In the previous chapter, we discussed the complexity of single-machine time-
dependent scheduling problems. In this chapter, we present the complexity

results concerning time-dependent scheduling on parallel machines. In order
to give the reader full insight into the subject, we give proofs or sketches of
proofs of most discussed results. We also present pseudo-codes of algorithms
for polynomially solvable problems.

Chapter 7 is composed of four sections. In Sect. 7.1, we present the re-
sults concerning parallel machines and minimization of the Cmax criterion.
In Sect. 7.2, we present the results concerning parallel machines and mini-
mization of the

∑
Cj criterion. In Sect. 7.3, we present the results concerning

parallel machines and minimization of other criteria than Cmax and
∑

Cj .
The chapter is completed with Sect. 7.4 including the summary and tables.

7.1 Minimizing the maximum completion time

In this section, we consider parallel-machine time-dependent scheduling prob-
lems with the Cmax criterion.

7.1.1 Proportional deterioration

Equal ready times and deadlines

The problem of multi-machine time-dependent scheduling with proportionally
deteriorating jobs and the Cmax criterion is computationally intractable.

Theorem 7.1. (Kononov [172], Mosheiov [219]) The decision version of the
problem Pm|pj = bjt|Cmax is NP-complete in the ordinary sense even if
m = 2.
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Proof. Kononov [172] uses the following transformation from the SP problem
(cf. Sect. 3.2): n = p + 2, t0 = 1, bj = yj − 1 for 1 ≤ j ≤ p, bp+1 = 2Y

B − 1,
bp+2 = 2B−1, where Y =

∏p
j=1 yj . The threshold value for the Cmax criterion

is G = 2Y .
Mosheiov [219] uses the following transformation from the EPP problem

(cf. Sect. 3.2): n = q, t0 = 1, bj = zj − 1 for 1 ≤ j ≤ q. The threshold

G =
√∏n

j=1 zj .

To complete the proof, it is sufficient to show that the SP (ESP) prob-
lem has a solution if and only if for the above instance of the problem
P2|pj = bjt|Cmax there exists a schedule σ such that Cmax(σ) ≤ G. (Ex-
ample schedule for the first transformation is depicted in Fig. 7.1; see also
Remark 6.12.) � 

Fig. 7.1: Example schedule in the proof of Theorem 7.1

The following lower bound on the value of Cmax for the problem with
m ≥ 2 machines is known.

Lemma 7.2. (Hsieh and Bricker [141], Mosheiov [219]) The optimal value of
the maximum completion time for the problem Pm|pj = bjt|Cmax is not less

than LB := m

√∏n
j=1(1 + bj).

Proof. Let NMk
, 1 ≤ k ≤ m, denote the set of indices of jobs assigned to

machine Mk in an optimal schedule. Then

C�
max = max

1≤k≤m

⎧
⎨

⎩

∏

j∈NMk

(1 + bj)

⎫
⎬

⎭
.

Since, by Lemma 1.1 (a), we have C�
max ≥ 1

m

∑m
k=1

∏
j∈NMk

(1 + bj) and, by

Lemma 1.1 (b), we have C�
max ≥ m

√∏n
j=1(1 + bj) = LB, the result follows.

� 
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The following example shows that in the worst case the above bound LB
can be arbitrarily large.

Example 7.3. (Mosheiov [219]) Let n = 2, m = 2, t0 = 1, b1 = B > 0,
b2 = ε > 0. Then C�

max = 1 + B, while LB =
√

(1 + B)(1 + ε) →
√

(1 + B),
if ε → 0. Hence C�

max
LB →

√
(1 + B) →∞, if B →∞ and ε → 0. �

It has been shown, however, that if the deterioration rates bj , 1 ≤ j ≤ n,
are independently drawn from a distribution with a finite second moment and
positive density at 0, then limn→∞

C�
max
LB = 1 almost surely (see Mosheiov [219,

Proposition 3]).

Remark 7.4. A sequence (xn) converges almost surely to a limit x if the prob-
ability of the event limn→∞ xn = x is equal to 1.

If the number of machines is variable, then there holds the following result.

Theorem 7.5. (Kononov [169]) The decision version of the problem
P |pj = bjt|Cmax is NP-complete in the strong sense.

Proof. The transformation from the 4-P problem (cf. Sect. 3.2) is as follows:
n = 4p, t0 = 1 and bj = uj − 1 for 1 ≤ j ≤ 4p. The threshold value is G = D.

To complete the proof, it is sufficient to show that the 4-P problem has a
solution if and only if for the above instance of the problem P |pj = bjt|Cmax

there exists a schedule σ such that Cmax(σ) ≤ G. � 
In Chap. 9, we will consider a number of heuristics proposed for the prob-

lem Pm|pj = bjt|Cmax.

Lee and Wu [193] reformulated the problem Pm|pj = bjt|Cmax as the
problem Pm, hm1|pj = bjt|Cmax in which on each machine there is a known,
single non-availablity period (cf. Remark 6.8). For the latter problem, they
proposed the following two lower bounds on the optimal value of Cmax.

Lemma 7.6. (Lee and Wu [193]) Let W1,i and W2,i denote the start time
and the end time of the non-availability period on machine Mi, 1 ≤ i ≤ m,
respectively. Let xi be a binary variable such that xi := 1 if

W2,i ≤
t0 m

√∏n
j=1(1 + bjt)

∏m−1
j=1 (1 + bj)

and xi := 0 otherwise. Then the optimal value of the maximum completion
time for the problem Pm, hm1|pj = bjt|Cmax is not less than

(a) t0

(
m

√∏n
j=1(1 + bj)

)(
1 + m

√∏m
i=1

xi(W2,i−W1,i)
W1,i(1+bi)

)
, if jobs are resumable,

(b) t0

(
m

√∏n
j=1(1 + bj)

)(
1 + m

√∏m
i=1

xi(W2,i−W1,i)
W1,i

)
, if jobs are non-

resumable.

Proof. (a) By direct calculation, see [193, Proposition 1].
(b) By direct calculation, see [193, Proposition 2]. !
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7.1.2 Linear deterioration

Equal ready times and deadlines

Since proportional processing times are special cases of linear processing times,
the results from Sect. 7.1.1 also hold for linear processing times.

Theorem 7.7.
(a) The decision version of the problem Pm|pj = aj + bjt|Cmax is NP-
complete in the ordinary sense even if m = 2.
(b) The decision version of the problem P |pj = aj + bjt|Cmax is NP-complete
in the strong sense.

Proof. (a) Since the special case of the problem P2|pj = aj + bjt|Cmax, when
aj = 0 for 1 ≤ j ≤ n, is NP-complete in the ordinary sense by Theorem 7.1,
the result follows.

(b) (a) Since the special case of the problem P |pj = aj + bjt|Cmax, when
aj = 0 for 1 ≤ j ≤ n, is NP-complete in the strong sense by Theorem 7.5,
the result follows. � 

In the case when aj = a > 0 for 1 ≤ j ≤ n, the following properties of the
problem Pm|pj = a + bjt|

∑
Cj are known.

The first property is a multi-machine counterpart of Property 6.128.

Property 7.8. (Gawiejnowicz et al. [101]) Let ki = arg max{bj : j ∈ U}, where
i = 1, 2, . . . , m and U is the set of indices of jobs not considered yet. Then ki

is the first job on machine Mi in the optimal schedule.

Proof. Let job Jki
, ki ∈ U, be scheduled as the first one on the machine Mi,

i ∈ {1, 2, . . . ,m}. Then, the processing time and the completion time of this
job are equal to pki

= a+ bki
· 0 = a and Cki

= a, respectively. Since Cki
does

not depend on bki
, it is easy to see that in an optimal schedule as the first job

should be choosen such a job that its index ki = arg max{bj : j ∈ U}. �
The second property does not have a single-machine counterpart.

Property 7.9. (Gawiejnowicz et al. [101]) If n ≥ 2m − 1, then in any optimal
schedule at least two jobs are scheduled on each machine.

Proof. Assume that there are given n ≥ 2m− 1 jobs and that there exists an
optimal schedule, σ1, such that on some machine, Ml, is assigned only one job.
Let Mk be a machine with the largest load in the schedule σ1, jk be the index
of the job assigned to Mk as the last one and Sjk

> a denote the starting time
of this job. Then, Cjk

(σ1) = a + (1 + bjk
)Sjk

and the total completion time
for the schedule σ1 is

∑
Cj(σ1) = T + a + (1 + bjk

)Sjk
, where T denotes the

total completion time for jobs other than Jjk
.

Construct now a new schedule, σ2, by assigning the job with the index jk

on the machine Ml. Then, Cjk
(σ2) = a + (1 + bjk

)a and the total completion
time for the schedule σ2 is

∑
Cj(σ2) = T + a + (1 + bjk

)a. Since
∑

Cj(σ2)−
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∑
Cj(σ1) = (1 + bjk

)(a − Sjk
) < 0, the schedule σ2 is better than σ1.

A contradiction. �

The third property is a multi-machine counterpart of Property 6.130.

Property 7.10. (Gawiejnowicz et al. [101]) The total completion time for any
sequence of indices of jobs assigned to a given machine and for the sequence
in reversed order, starting from the second job, has the same value.

Proof. Consider any sequence of indices of jobs assigned to a given machine
Mi, i ∈ {1, 2, . . . ,m}. The result follows, since starting from the second
argument the

∑
Cj criterion is symmetric with respect to its arguments,

∑n
j=0

∑j
k=0

∏j
l=k+1(1 + bk) =

∑n
j=0

∑j
k=0

∏j
l=k+1(1 + bn−k+1). �

Finally, the last result is a multi-machine counterpart of Theorem 6.133.

Theorem 7.11. (Gawiejnowicz et al. [101]) The optimal schedule for the
problem Pm|pj = a + bjt|

∑
Cj is composed of V-shaped subschedules.

Proof. Assume that there exists such an optimal schedule that for some ma-
chine, Mk, the sequence of jobs assigned to the machine is not V-shaped. By
rearranging the jobs in such a way that their sequence has a V-shape, we
obtain a new schedule with decreased value of the criterion function since, by
V-shape property for a single machine (cf. Theorem 6.133), we decreased the
total completion time for the machine Mk. A contradiction. �

7.1.3 Linear shortening

Distinct ready times and deadlines

Parallel-machine scheduling of jobs with decreasing step-linear processing
times given by (6.54) is a computationally intractable problem.

Theorem 7.12. (Cheng et al. [54]) The decision version of the problem
Pm|pj = aj − b(t − y), y = 0, Y = ∞|Cmax is NP-complete in the ordinary
sense even if m = 2.

Proof. The main idea is to show that the two-machine problem with variable
processing times, P2|pj = aj − b(t − y), y = 0, Y = ∞|Cmax, is equivalent to
the problem with fixed procesing times, P2||Cmax, if b is sufficiently small.
Let qj , 1 ≤ j ≤ n, and G denote job processing times and the threshold value
of the Cmax criterion in the decision version of the problem P2||Cmax.

Define job processing times and the value of the Cmax criterion in the
problem P2|pj = aj − b(t − y), y = 0, Y = ∞|Cmax as follows: aj = qj for
1 ≤ j ≤ n, b = 1− (1− 1

a2
max

)
1
n , where amax := max{a1, a2, . . . , an}.

Let J (Mk) and CMk
denote the set of jobs assigned to machine Mk in

an arbitrary schedule for the problem P2||Cmax and the completion time of
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the last job from the set J (Mk), 1 ≤ k ≤ m, respectively. Let us call the
schedule σ.

Then ∑

Jj∈J (Mk )

aj − 1 < CMk
(σ) <

∑

Jj∈J (Mk )

aj

for 1 ≤ k ≤ m. Hence, C
′

max(σ) − 1 < Cmax(σ) < C
′

max(σ), where Cmax(σ)
and C

′

max(σ) denote the maximum completion time for the schedule σ with
fixed and variable job processing times, respectively.

Since all aj are integers, we have Cmax(σ) ≤ G if and only if C
′

max(σ) ≤ G.
Hence, the result follows because the decision version of the problem P2||Cmax

is NP-complete in the ordinary sense. � 

Theorem 7.13. (Cheng et al. [54]) The decision version of the problem
P |pj = aj − b(t − y), y = 0, Y = ∞|Cmax is NP-complete in the strong
sense.

Proof. Applying the reasoning from the proof of Theorem 7.12 to the problem
P ||Cmax, we obtain the result. � 

7.2 Minimizing the total completion time

In this section, we will consider the problems of parallel-machine time-
dependent scheduling with the

∑
Cj criterion.

7.2.1 Proportional deterioration

Equal ready times and deadlines

Theorem 7.14. (Chen [43], Kononov [172]) The decision version of the prob-
lem Pm|pj = bjt|

∑
Cj is NP-complete in the ordinary sense even if m = 2.

Proof. Chen [43] uses the following transformation from the SP problem
(cf. Sect. 3.2): n = p + 4, t0 > 0 arbitrary, bj = yj − 1 for 1 ≤ j ≤ p,

bp+1 = Y 2

B − 1, bp+2 = Y B − 1, bp+3 = bp+4 = Y 3 − 1. The threshold
G = (2Y 5 + Y 4)t0, where Y =

∏p
j=1 yj .

Kononov [172] uses the transformation from the same problem, SP, but
his transformation is slightly different: n = p + 4, t0 = 1, bj = yj − 1 for
1 ≤ j ≤ p, bp+1 = 2Y

B − 1, bp+2 = 2B − 1, bp+3 = bp+4 = 6Y − 1. The
threshold G = 24Y 2 + 8Y, where Y is defined as previously.

To complete the proof, it is sufficient to show that the SP problem has a
solution if and only if for the above instance of the problem P2|pj = bjt|

∑
Cj

there exists a schedule σ such that
∑

Cj(σ) ≤ G. (An example schedule for
the second transformation is depicted in Fig. 7.2; see also Remark 6.12.) � 
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Fig. 7.2: Example schedule in the proof of Theorem 7.14

The problem with variable number of machines is hard to approximate.

Theorem 7.15. (Chen [43]) If P �= NP, for the problem P |pj = bjt|
∑

Cj

there does not exist a polynomial-time heuristic algorithm with a constant
worst-case ratio.

Proof. Assume that for the problem P |pj = bjt|
∑

Cj there exists an algo-
rithm A such that its worst-case ratio r ≤ V. Given any instance of the 3-P
problem, construct an instance of the problem P |pj = bjt|

∑
Cj as follows:

there are h machines, n = 4h jobs, t0 = 1, job deterioration rates bj = U cj −1
for 1 ≤ j ≤ 3h, b3h+i = UhK+1 − 1 for 1 ≤ i ≤ h, where U = (h + 1)V.

If we solved the instance by algorithm A with the relative error at most
V , we would obtain a pseudopolynomial-time algorithm for the 3-P problem,
which is strongly NP-complete. A contradiction, since by Lemma 3.18 this is
impossible if P �= NP. � 

Though from Theorems 7.14–7.15 it follows that Pm|pj = bjt|
∑

Cj is hard
to solve, some properties of an optimal schedule for this problem are known.

Property 7.16. (Gawiejnowicz et al. [102]) In an optimal schedule for problem
Pm|pj = bjt|

∑
Cj , jobs assigned to a machine are arranged in the non-

decreasing order of deterioration rates and scheduled without idle times.

Proof. Assume that σ is a schedule in which jobs assigned to a machine are
not in a non-decreasing order of deterioration rates bj , 1 ≤ j ≤ n. By chang-
ing the order into a non-decreasing order, we obtain a schedule σ′ such that∑

Cj(σ′) ≤
∑

Cj(σ), since by Theorem 6.120 in an optimal schedule for a
single machine, jobs have to be in non-decreasing order of bj values. Changing,
if necessary, the order of jobs on other machines, we obtain such an optimal
schedule σ� that on each machine jobs are arranged in non-decreasing order of
bj ’s. Since any idle time increases job completion times, the optimal schedule
cannot contain idle times. �



162 7 Parallel-machine time-dependent scheduling

Theorem 7.17. (Gawiejnowicz et al. [102]) Let σi = (bi
1, b

i
2, . . . , b

i
ni

) and
σ̄i = (bi

ni
, bi

ni−1, . . . , b
i
1) denote a subsequence of jobs assigned to machine

Mi and the sequence reversed to σi, respectively, where bi
j denotes deterio-

ration rate of job Jj assigned to machine Mi, 1 ≤ j ≤ ni, 1 ≤ i ≤ m and∑m
i=1 ni = n. Then for every schedule σ = (σ1, σ2, . . . , σm) for the problem

Pm|pj = bjt|
∑

Cj there exists a corresponding schedule σ̄ = (σ̄1, σ̄2, . . . , σ̄m)
for the problem Pm|pj = 1 + bjt|

∑
C

(k)
max and for every schedule σ̄ for the

problem Pm|pj = 1 + bjt|
∑

C
(k)
max there exists a corresponding schedule σ

for the problem Pm|pj = bjt|
∑

Cj such that
∑

Cj(σ) =
∑

C
(k)
max(σ̄) − m,

provided that both these schedules start at time t0 = 1.

Proof. (Sufficiency) Assume that t0 = 1 and let σ = (σ1, σ2, . . . , σm) be a
schedule for the problem Pm|pj = bjt|

∑
Cj , where σi = (bi

1, b
i
2, . . . , b

i
ni

) for
1 ≤ i ≤ m. Then, we have

∑
Cj(σ) =

m∑

k=1

nk∑

i=1

i∏

j=1

(1 + bk
j ) =

m∑

k=1

nk∑

i=0

i∏

j=1

(1 + bk
j )−m =

m∑

k=1

nk∑

i=0

i∏

j=1

(1 + Bk
nk−j+1)−m =

∑
C(k)

max(σ̄)−m,

where Bk
nk−j+1 = bk

j and σ̄i = (bi
nk

, bi
nk−1, . . . , b

i
1) = (Bi

1, B
i
2, . . . , B

i
nk

) for
1 ≤ i ≤ m. The proof of necessity can be done in an analogous way. �

Remark 7.18. Problems which satisfy the conditions of Theorem 7.17 will be
called equivalent problems. We will come back to this topic in Chap. 12.

In Chap. 9, we will consider a number of heuristic algorithms proposed for
the problem Pm|pj = bjt|

∑
Cj . Local search algorithms for the problem will

be considered in Chap. 11.

7.2.2 Linear deterioration

Equal ready times and deadlines

Since proportional processing times are a special case of linear processing
times, the results from Sect. 7.2.1 also hold for linear processing times.

Theorem 7.19. The decision version of the problem Pm|pj = aj+ bjt|
∑

Cj

is NP-complete in the ordinary sense even if m = 2.

Proof. Since the special case of the problem Pm|pj = aj + bjt|
∑

Cj , when
aj = 0 for 1 ≤ j ≤ n and m = 2, is NP-complete in the ordinary sense by
Theorem 7.14, the result follows. � 
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7.2.3 Simple non-linear deterioration

Equal ready times and deadlines

Results from Sects. 7.1.2–7.2.2 suggest that all problems concerning
parallel machine scheduling subject to job deterioration are computationally
intractable. There is known, however, a problem from this area which can be
solved in polynomial time.

Theorem 7.20. (Gawiejnowicz [89]) If f(t) is an arbitrary increasing func-
tion such that f(t) ≥ 0 for t ≥ 0, then the problem Pm|pj = aj +f(t)|

∑
Cj is

optimally solved in O(n log n) by scheduling jobs in the non-decreasing order
of aj values.

Proof. Let σ be a schedule for the problem Pm|pj = aj +f(t)|
∑

Cj such that
not all jobs are scheduled in the non-decreasing order of aj values. Then there
must exist a machine Mk, 1 ≤ k ≤ m, such that some jobs assigned to the
machine are scheduled in the non-increasing order of aj values. By changing
the order of the jobs into the non-decreasing one we obtain, by Theorem 6.146,
a new schedule σ′ such that

∑
Cj(σ′) ≤

∑
Cj(σ). Repeating, if necessary, the

above change for other machines we obtain an optimal schedule σ� in which
all jobs are scheduled in the non-decreasing order of aj values. �

By Theorem 7.20, the problem Pm|pj = aj + f(t), f ↗ |
∑

Cj is solved
by the algorithm A7 : (aj |f) $→ (aj ↗).

7.2.4 Linear shortening

Distinct ready times and deadlines

Some time-dependent scheduling problems with shortening job processing
times (6.54) are polynomially solvable, if we deal with parallel uniform and
parallel unrelated machines.

Theorem 7.21. (Cheng et al. [54]) The problem Q|pj = aj − b(t − y),
y = 0, Y = ∞|

∑
Cj is solvable in O(n log n) time by scheduling jobs in the

non-increasing order of aj values.

Proof. If the machines are uniform, then al,j = aj

sl
. In this case, the total

completion time is a weighted sum of aj values, with weights bl,r = 1−(1−b)r

bsl
.

No weight may be used more than once. Therefore, to minimize the value of∑
Cj criterion, one should select the n smallest of all mn weights and match

the selected weights with the largest aj values. This can be done in O(n log n)
time. � 

By Theorem 7.21, the problem Q|pj = aj − b(t− y), y = 0, Y = ∞|
∑

Cj

is solved by the algorithm A7 : (aj |b|y|Y ) $→ (aj ↗).
The next problem is solvable by an algorithm that solves a matching prob-

lem. Call the algorithm A42.
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Theorem 7.22. (Cheng et al. [54]) The problem R|pi,j = ai,j−b(t−y), y = 0,
Y = ∞|

∑
Cj is solvable in O(n3) time by algorithm A42.

Proof. Introduce the variables x(l,r),j such that x(l,r),j = 1 if job j is sequenced
rth last on machine Ml, and x(l,r),j = 0 otherwise. The problem under con-
sideration is equivalent to the following weighted bipartite matching problem:

minimize
∑

l,r

∑

j

x(l,r),jal,j
1− (1− b)r

b

subject to ∑

l,r

x(l,r),j = 1, j = 1, 2, . . . , n,

∑

j

x(l,r),j ≤ 1, l = 1, 2, . . . ,m, r = 1, 2, . . . , n,

x(l,r),j ∈ {0, 1} l = 1, 2, . . . ,m, r = 1, 2, . . . , n,

where the summation is taken over all values of l and r or j. This matching
problem can be solved in O(n3) by algorithm A42. � 

7.3 Other criteria

In this section, we consider the problems of parallel-machine time-dependent
scheduling with the criteria other than Cmax or

∑
Cj .

7.3.1 Proportional deterioration

Equal ready times and deadlines

We start with a result concerning the total machine load criterion,
∑

C
(k)
max,

introduced to time-dependent scheduling by Mosheiov, [219].

Lemma 7.23. (Mosheiov [219]) The optimal total machine load for the prob-
lem Pm|pj = bjt|

∑
C

(k)
max is not less than m× m

√∏n
j=1(1 + bj).

Proof. Let A1, A2, . . . , Am and C
(1)
max, C

(2)
max, . . . , C

(m)
max denote the sets of jobs

assigned to machines M1,M2, . . . ,Mm and the corresponding total loads, re-
spectively. Then, by Lemma 1.1 (b), 1

m

∑m
i=1 C

(i)
max = 1

m

∑m
i=1

∏
j∈Ai

(1+bj) ≥
m

√∏n
j=1(1 + bj). � 

Theorem 7.24. (Mosheiov [219], Gawiejnowicz et al. [102]) The decision
version of the problem Pm|pj = bjt|

∑
C

(k)
max is NP-complete in the ordinary

sense even if m = 2.



7.3 Other criteria 165

Proof. Mosheiov [219] gives the following idea of the proof. The problem
P2|pj = bjt|

∑
C

(k)
max is equivalent to finding min{L1 + L2} subject to

L1 × L2 = A2 for some positive integer constant A, where L1 and L2 de-
note products of deterioration rates of the jobs assigned to machine M1

and machine M2, respectively. Since this is equivalent to the EPP problem
(cf. Sect. 3.2), the result follows.

Gawiejnowicz et al. [102] proved the result using the notion of equivalent
problems (cf. Theorem 7.17, see also Chap. 12). � 

Remark 7.25. Mosheiov [219] gives only a sketch of the proof of Theorem 7.24.
The formal transformation may be the following. Given an instance of the
EPP problem, define n = q, bj = zj for 1 ≤ j ≤ q and the threshold

G = 2
√∏q

j=1 zj . Let E2 =
√∏q

j=1 zj . To complete the proof, it is suffi-
cient to show that the EPP problem has a solution if and only if for the above
instance of the problem P2|pj = bjt|

∑
C

(k)
max there exists a schedule σ such

that
∑

C
(k)
max(σ) ≤ 2E = G.

7.3.2 Linear deterioration

Equal ready times and deadlines

The
∑

C
(k)
max criterion. Since linear job processing times are generalization

of proportional job processing times, there holds the following result.

Theorem 7.26. The decision version of the problem Pm|pj =aj+ bjt|
∑

C
(k)
max

is NP-complete in the ordinary sense even if m = 2.

Proof. Since the special case of the Pm|pj = aj+bjt|
∑

C
(k)
max, when aj = 0 for

1 ≤ j ≤ n and m = 2, is NP-complete in the ordinary sense by Theorem 7.24,
the result follows. � 

For the problem Pm|pj = bjt|
∑

C
(k)
max, Mosheiov [219] proposed a heuristic

algorithm. We will consider this algorithm in Chap. 9. Local search algorithms
for the problem will be considered in Chap. 11.

Distinct ready times and deadlines

The
∑

(αEj +βTj +γd) criterion. Cheng et al. [58] considered the problem
Pm|pj = aj + bt|

∑
(αEj + βTj + γd).

Theorem 7.27. (Cheng et al. [58]) The decision version of the problem
Pm|pj = aj + bt|

∑
(αEj + βTj + γd) is NP-complete in the ordinary sense

even if m = 2.
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Proof. Define M := 1
2

∑n
j=1 xj and e :=

∑n
j=1 jaj . The reduction from the

PP problem (cf. Sect. 3.2) is as follows: n = k jobs, aj = xj for 1 ≤ j ≤ n,

b = (1 + 1
a2

n
)

1
2n4 , α = 1, β = (2M+1)e+1

b and γ = 2e
n . The threshold G =

(2M + 1)e + 1.
To complete the proof, it is sufficient to show that the PP problem has a

solution if and only if there exists a schedule σ for the above instance of the
P2|pj = aj + bt|

∑
(αEj + βTj + γd) such that

∑
(αEj + βTj + γd) ≤ G. � 

Cheng et al. [58] also proved that the problem under consideration can
be solved in polynomial time, if γ = 0. Before we state the result, we will
introduce new notation.

Let σ = (σ1, σ2, . . . , σm) be a schedule for the problem Pm|pj = aj +
bt|

∑
(αEj + βTj), ni be the number of jobs scheduled on machine Mi and di

be the optimal due-date for jobs scheduled on machine Mi, 1 ≤ i ≤ m. (By
Lemma 6.226 we have di = Cσi(Ki), where Ki = � niβ

α+β � and Cσi(Ki) denotes
the index of the job scheduled as the Ki-th in subschedule σi, 1 ≤ i ≤ m.)

Define mi,ki
:= b

∑Ki

j=ki
(α(j − 1))Bj−ki + b

∑ni

j=Ki+1 β(ni + 1 − j)Bj−ki

for 1 ≤ i ≤ m, 2 ≤ ki ≤ Ki and mi,ki
:= b

∑ni

j=ki
(β(ni + 1 − ki)Bj−ki for

1 ≤ i ≤ m,Ki + 1 ≤ ki ≤ ni, where B := 1 + b.
For 1 ≤ j ≤ n and 1 ≤ i ≤ m define cj,(i,ki) := (α(k − 1) + mi,ki+1)aj if

1 ≤ ki ≤ Ki and cj,(i,ki) := (β(ni + 1− ki) + mi,ki+1)aj if Ki + 1 ≤ ki ≤ ni.
Applying the notation, we have d = max{Cσi(Ki) : 1 ≤ i ≤ m} and∑

(αEj + βTj) ≡
∑m

i=1

∑ni

ki=1 cσi(ki),(i,ki).
Let A := {(n1, n2, . . . , nm)} ∈ Z

m be the set of all m-elements sequences

such that 1 ≤ ni ≤ n − m and
m∑

i=1

ni = n. For any (n1, n2, . . . , nm) ∈ A,

1 ≤ i ≤ m, 1 ≤ j ≤ n and 1 ≤ ki ≤ ni, let xj,(i,ki) be the variable such
that xj,(i,ki) = 1 if job Jj is scheduled as the ki-th job on machine Mi and
xj,(i,ki) = 0 otherwise. Then, the problem Pm|pj = aj + bt|

∑
(αEj + βTj) is

equivalent to the following weighted bipartite matching problem:

Minimize
∑

j

∑

(i,ki)

cj,(i,ki)xj,(i,ki) (7.1)

subject to ∑

(i,ki)

xj,(i,ki) = 1 for j = 1, 2, . . . , m; (7.2)

∑

j

xj,(i,ki) = 1 for i = 1, 2, . . . , m; j = 1, 2, . . . ,m; (7.3)

xj,(i,ki) ∈ {0, 1} for j = 1, 2, . . . , n; i = 1, 2 . . . , m; ki = 1, 2, . . . , n. (7.4)

Now we can formulate an exact algorithm, proposed by Cheng et al. [58]
for the problem Pm|pj = aj + bt|

∑
(αEj + βTj). Let g(n1, n2, . . . , nm) :=

min{
∑

j

∑
(i,ki)

cj,(i,ki)xj,(i,ki)}, σ(n1, n2, . . . , nm) be the schedule correspond-
ing to (n1, n2, . . . , nm), and d(n1, n2, . . . , nm) := max{Cσi(Ki) : 1 ≤ i ≤ m}.
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(If Cσi(Ki) < d(n1, n2, . . . , nm), then we change the starting time of machine
Mi to d(n1, n2, . . . , nm)− Cσi(Ki).)

Algorithm A43 for the problem Pm|pj = aj + bt|
∑

(αEj + βTj) ([58])

Input: sequence (a1, a2, . . . , an), numbers b, α, β
Output: an optimal schedule σ�

� Step 1:

Construct set A := {(n1, n2, . . . , nm) ∈ Z
m : 1 ≤ ni ≤ n−m ∧

m∑

i=1

ni = n};
� Step 2:

For all (n1, n2, . . . , nm) ∈ A do solve the problem (7.1)–(7.4);
� Step 3:

Calculate min{g(n1, n2, . . . , nm) : (n1, n2, . . . , nm) ∈ A};
� Step 4:

σ� ← the schedule corresponding to the minimum computed in Step 3;
return σ�.

Theorem 7.28. (Cheng et al. [58]) The problem Pm|pj = aj + bt|
∑

(αEj +
βTj) is solvable in O(nm+1 log n) time by algorithm A43.

Proof. Algorithm A43 generates O(nm) all possible sequences (n1, n2, . . . , nm)
in which 1 ≤ ni ≤ n−m and

∑m
i=1 ni = n. Since each sequence (n1, n2, . . . , nm)

corresponds to a schedule for the problem Pm|pj = aj + bt|
∑

(αEj + βTj)
and since the solution of the problem (7.1)–(7.4) needs O(n log n) time for
jobs arranged in the aj ↗ order, the result follows. � 

With this theorem, we end the review of parallel-machine time-dependent
scheduling. In the next chapter, we will consider the results concerning time-
dependent scheduling on dedicated machines.

7.4 Summary and tables

In this chapter, we reviewed parallel-machine time-dependent scheduling prob-
lems. We considered proportionally and linearly deteriorating or shortening
job processing times. The criteria of schedule optimality include the most pop-
ular criteria such as the Cmax or

∑
Cj , as well as less popular criteria such as

the
∑

C
(k)
max or

∑
(αEj + βTj + γd).

Approximately one-third of the problems presented in the chapter are poly-
nomially solvable. For these problems, we presented pseudo-codes of optimal
algorithms. For the remaining problems that are ordinary or strongly NP-
complete, we presented NP-completeness proofs or sketches of such proofs.

Below, we classify in the tabular form the parallel-machine time-dependent
scheduling problems and polynomial algorithms considered in the chapter. As
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in Chap. 6, the results and algorithms are divided into groups with respect to
the applied criterion.

Tables 7.1 and 7.2 present the problems concerning, respectively, tractable
and intractable parallel-machine time-dependent scheduling problems with
Cmax, C

(k)
max,

∑
Cj and

∑
(αEj + βTj + γd) criteria.

Table 7.3 presents polynomial algorithms for the
∑

Cj criterion.
Table 7.4 presents polynomial algorithms for criteria other than

∑
Cj .

Table 7.1: Tractable Parallel-Machine Time-Dependent Scheduling Problems (
∑

Cj

Criterion)

Problem Complexity References This book

Pm|pj = aj + f(t), f(t) ↗ |
∑

Cj O(n log n) [89] Theorem 7.20

Q|pj = aj − b(t− y)|
∑

Cj
(a) O(n log n) [54] Theorem 7.21

R|pij = aij − b(t− y)|
∑

Cj
(a) O(n3) [54] Theorem 7.22

(a) y = 0, Y = ∞

Table 7.2: Intractable Parallel-Machine Time-Dependent Scheduling Problems
(Criteria Cmax,

∑
Cj ,

∑
C

(k)
max) and

∑
(αEj + βTj + γd)

Problem Complexity References This book

P2|pj = bjt|Cmax NPC [172, 219] Theorem 7.1
P |pj = bjt|Cmax SNPC [169] Theorem 7.5
P2|pj = aj + bjt|Cmax NPC − Theorem 7.7 (a)
P |pj = aj + bjt|Cmax SNPC − Theorem 7.7 (b)

P2|pj = aj − b(t− y)|Cmax
(a) NPC [54] Theorem 7.12

P |pj = aj − b(t− y)|Cmax
(a) SNPC [54] Theorem 7.13

P2|pj = bjt|
∑

Cj NPC [43, 172] Theorem 7.14
P2|pj = aj + bjt|

∑
Cj NPC − Theorem 7.19

P2|pj = bjt|
∑

C
(k)
max NPC [219, 102] Theorem 7.24

P2|pj = aj + bjt|
∑

C
(k)
max NPC − Theorem 7.26

P2|pj = aj + bt|
∑

(αEj + βTj + γd) NPC [58] Theorem 7.27

(a) y = 0, Y = ∞
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Table 7.3: Polynomial Algorithms for Parallel-Machine Time-Dependent Scheduling
Problems (

∑
Cj Criterion)

Algorithm Complexity Problem This book

A7 O(n log n) Pm|pj = aj + f(t), f(t) ↗ |
∑

Cj Sect. 7.2.3, p. 163
A7 O(n log n) Q|pj = aj − b(t− y)|

∑
Cj Sect. 7.2.4, p. 163

A42 O(n3) R|pij = aij − b(t− y)|
∑

Cj Sect. 7.2.4, p. 164

Table 7.4: Polynomial Algorithms for Parallel-Machine Time-Dependent Scheduling
Problems (Criteria other than

∑
Cj)

Algorithm Complexity Problem This book

A43 O(nm+1 log n) Pm|pj = aj + bt|
∑

(αEj + βTj) Sect. 7.3.2, p. 167
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Dedicated-machine time-dependent scheduling

This chapter completes the second part of the book, which is devoted to
the complexity of time-dependent scheduling problems. In this chapter,

we present the complexity results concerning time-dependent scheduling on
dedicated machines. In order to give the reader full insight into the subject,
we give proofs or sketches of proofs of most discussed results. We also present
pseudo-codes of algorithms for polynomially solvable problems.

Chapter 8 is composed of five sections. In Sect. 8.1, we present the re-
sults concerning dedicated machines and minimization of the Cmax criterion.
In Sect. 8.2, we present the results concerning dedicated machines and mini-
mization of the

∑
Cj criterion. In Sect. 8.3, we present the results concerning

dedicated machines and minimization of the Lmax criterion. In Sect. 8.4, we
present the results concerning dedicated machines and minimization of other
criteria than Cmax,

∑
Cj and Lmax. The chapter is completed with Sect. 8.5

including the summary and tables.

8.1 Minimizing the maximum completion time

In this section, we consider dedicated-machine time-dependent scheduling
problems with the Cmax criterion.

8.1.1 Proportional deterioration

Unlike parallel machine time-dependent scheduling problems with propor-
tional job processing times (6.1), some dedicated machine time-dependent
scheduling with these job processing times are solvable in polynomial time.

Flow shop problems

Lemma 8.1. (Mosheiov [220]) There exists an optimal schedule for the prob-
lem F2|pi,j = bi,jt|Cmax, in which the job sequence is identical on both
machines.
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Proof. The result is a special case of Lemma 8.15. � 

Before we state the next result, we define the notion of isomorphic prob-
lems, introduced by Kononov [169].

Let P be an optimization problem and IP be an instance of P. More-
over, let s = (s1, s2, . . . , sn) denote a feasible solution of the instance IP and
fP (s1, s2, . . . , sn) denote the value of criterion function fP for this solution.
Finally, let γ : R

+ → R
+ be a strictly increasing function.

Definition 8.2. (Isomorphic problems)
A problem P1 is said to be isomorphic to problem P2 (problems P1 and P2 are
isomorphic, in short) with respect to function γ, if
(a) for any instance IP1 of problem P1, there exists an instance IP2 of problem
P2 such that function γ transforms any feasible solution s = (s1, s2, . . . , sn) of
instance IP1 into a feasible solution s′ = (γ(s1), γ(s2), . . . , γ(sn)) of instance
IP2 , and for any feasible solution s′ = (s′1, s

′
2, . . . , s

′
n) of instance IP2 the solu-

tion s = (γ−1(s′1), γ
−1(s′2), . . . , γ

−1(s′n)) is a feasible solution of instance IP1 ;
(b) for any feasible solution s of an instance IP1 , the criterion functions fP1

and fP2 satisfy the equality fP2(γ(s1), γ(s2), . . . , γ(sn))=γ(fP1(s1, s2, . . . , sn)).

The basic tool used in proofs of the results concerning isomorphic problems
is the following lemma about optimal solutions to such problems.

Lemma 8.3. (Kononov [169]) Let problem P2 be isomorphic to problem P1

with respect to a function γ. Then if s� = (s�
1, s

�
2, . . . , s

�
n) is an optimal solution

for an instance IP1 of problem P1, then s�′ = (γ(s�
1), γ(s�

2), . . . , γ(s�
n)) is an

optimal solution for an instance IP2 of problem P2.

Proof. Let s� be an optimal solution to problem P1 for an instance IP1 and let
P1 be isomorphic to P2. Then s�′, by condition (a) of Definition 8.2, is a feasible
solution of problem P2. Since fP2(s

�′) = γ(fP1(s
�)) and since γ is a strictly

increasing function, s�′ is also optimal by condition (b) of Definition 8.2. � 

The next result shows that two-machine flow shop problems with fixed
and proportional job processing times are isomorphic.

Theorem 8.4. (Kononov [169]) The problem F2|pi,j = bi,jt|Cmax is isomor-
phic to the problem F2||Cmax with respect to function γ = 2x.

Proof. Let P1 and P2 denote the problem F2||Cmax and F2|pi,j = bi,jt|Cmax,
respectively. Let IP1 be an arbitrary instance of the problem P1.

Construct instance IP2 of the problem P2 as follows: bi,j = 2pi,j − 1 for
1 ≤ i ≤ 2 and 1 ≤ j ≤ n.

Denote by Si,j(IP1) and by Ci,j(IP1) (Si,j(IP2) and Ci,j(IP2)) the starting
time and the completion time of operation Oi,j , 1 ≤ i ≤ 2 and 1 ≤ j ≤ n, in
a schedule for instance IP1 (IP2), respectively. Then, we have

Ci,j(IP2) = (1 + bi,j)Si,j(IP2) = 2pi,j 2Si,j(IP1 ) = 2Si,j(IP1 )+pi,j = 2Ci,j(IP1 ).
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Hence, condition (a) of Definition 8.2 is satisfied.
Equivalence of criterion functions follows from the equality

max
Oi,j∈J

{
2Ci,j(IP1 )

}
= 2

max
Oi,j∈J

{Ci,j(IP1)}
.

Hence, condition (b) of Definition 8.2 is satisfied as well. � 

Now it is not difficult to prove that the problem F2|pi,j = bi,jt|Cmax is
polynomially solvable. The algorithm that solves the problem is an adapted
version of Johnson’s algorithm for the problem F2||Cmax (Johnson [159]):
instead of processing times pi,j we use deterioration rates bi,j , where 1 ≤ i ≤ m
and 1 ≤ j ≤ n, and each addition (subtraction) we replace by a multiplication
(division). The pseudo-code of the algorithm can be formulated as follows.

Algorithm A44 for the problem F2|pi,j = bi,jt|Cmax ([169])

Input: sequence ((b1,1, b2,1), (b1,2, b2,2), . . . , (b1,n, b2,n))
Output: an optimal schedule σ�

� Step 1:
J1 ← {Jj ∈ J : b1,j ≤ b2,j};
J2 ← {Jj ∈ J : b1,j > b2,j};

� Step 2:
Arrange jobs in J1 in the non-decreasing order of b1,j values;
Call this sequence σ(1);
Arrange jobs in J2 in the non-increasing order of b2,j values;
Call this sequence σ(2);

� Step 3:
σ� ← (σ(1)|σ(2));
return σ�.

Theorem 8.5. (Kononov [169], Mosheiov [220]) The problem F2|pi,j = bi,jt|
Cmax is solvable in O(n log n) time by algorithm A44.

Proof. Kononov [169] proves the result applying Lemma 8.3 and Theorem 8.4;
see [169, Sect. 5].

Mosheiov [220] analyses possible cases in which jobs are scheduled in an-
other order than the one generated by algorithm A44 and proves that in each
case, the respective schedule cannot be optimal (see [220, Theorem 1]). !

The flow shop problem with proportional job processing times and m ≥ 3
machines is computationally intractable.

Theorem 8.6. (Mosheiov [220]) The decision version of the problem
F3|pi,j = bi,jt|Cmax is NP-complete in the ordinary sense.
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Proof. The transformation from the EPP problem (cf. Sect. 3.2) is as follows.
Let n = q + 3 jobs and t0 = 1

2 . Job deterioration rates are defined in the
following way: b1,j = 0, b2,j = zj − 1, b3,j = 0 for 1 ≤ j ≤ q, b1,q+1 = 0,

b2,q+1 = 1, b3,q+1 = E + 1, b1,q+2 = 2E + 1, b2,q+2 = 1
E+1 , b3,q+2 = E2+2E+1

E+2 ,

b1,q+3 = E2+2E+1
E+1 , b2,q+3 = 1

E2+3E+2 , b3,q+3 = 0. The threshold G = E2 +
3E + 3.

To complete the proof, it is sufficient to show that the EPP problem has
a solution if and only if for the above instance of the problem F3|pi,j =
bi,jt|Cmax there exists a schedule σ such that Cmax(σ) ≤ G. � 

Theorem 8.7. (Kononov [169]) The decision version of the problem
F3|pi,j = bi,jt|Cmax is NP-complete in the strong sense.

Proof. The transformation from the 4-P problem (cf. Sect. 3.2) is as follows.
Let n = 5p+1 and t0 = 1. Job deterioration rates are defined in the following
way: b1,j = 0, b2,j = uj − 1, b3,j = 0 for 1 ≤ j ≤ 4p, b1,4p+1 = 0, b2,4p+1 = 0,
b3,4p+1 = 2D − 1, b1,4p+2 = D − 1, b2,4p+2 = 1, b3,4p+2 = 2D − 1, b1,4p+k =
2D − 1, b2,4p+k = 1, b3,4p+k = 2D − 1 for 1 ≤ k ≤ p − 1, b1,5p = 2D − 1,
b2,5p = 1, b3,5p = D − 1, b1,5p+1 = 2D − 1, b2,5p+1 = 0, b3,5p+1 = 0. The
threshold G = 2p−1Dp.

To complete the proof, it is sufficient to show that the 4-P problem has
a solution if and only if for the above instance of the problem F3|pi,j =
bi,jt|Cmax there exists a schedule σ such that Cmax(σ) ≤ G. � 

The problem F3|pi,j = bi,jt|Cmax is hard to approximate, even if deterio-
ration rates of the operations executed on machines M1 and M3 are equal.

Theorem 8.8. (Kononov and Gawiejnowicz [174]) If P �= NP, then for the
problem F3|pi,j = bi,jt, bi,1 = bi,3 = b|Cmax there does not exist a polynomial-
time approximation algorithm with the worst case ratio bounded by a constant.

Proof. Suppose that there exists a polynomial-time approximation algorithm
A for the problem F3|pi,j = bi,jt, bi,1 = bi,3 = b|Cmax such that the ratio
r < U = const. We will show that this assumption leads to a contradiction.

Let Q be an instance of the 3-P problem (cf. Sect. 3.2). Construct instance
QU of the F3|pi,j = bi,jt, bi,1 = bi,3 = b|Cmax problem as follows: t0 = 1,
n = 4h + 1, b1,j = b3,j = UK − 1 for 1 ≤ j ≤ 4h + 1, b2,j = U cj − 1 for
1 ≤ j ≤ 3h, b2,3h+k = U3K − 1 for 1 ≤ k ≤ h + 1.

If we applied algorithm A to the instance, we would obtain a pseudopoly-
nomial algorithm for the stronglyNP-complete 3-P problem. A contradiction,
since by Lemma 3.18 this is impossible if P �= NP. � 

Remark 8.9. Wang and Xia [287] considered a number of flow shop problems
with dominating machines (cf. Definitions 8.19–8.20). Since the results (see
[287, Sect. 3]) are special cases of the results for job processing times given
by (8.3), we do not present them here.
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Open shop problems

We start the subsection with a lower bound on the optimal value of the max-
imum completion time in a two-machine open shop.

Lemma 8.10. (Mosheiov [220]) The optimal value of the maximum comple-
tion time for the problem O2|pi,j = bi,jt|Cmax is not less than

max

⎧
⎨

⎩

n∏

j=1

(1 + b1,j),
n∏

j=1

(1 + b2,j), max
1≤j≤n

{(1 + b1,j)(1 + b2,j)}

⎫
⎬

⎭
. (8.1)

Proof. The first component of (8.1),
∏n

j=1(1 + b1,j), is equal to the ma-
chine load of machine M1. The second component of (8.1),

∏n
j=1(1 + b2,j), is

equal to the the machine load of machine M2. The third component of (8.1),
max1≤j≤n{(1 + b1,j)(1 + b2,j)}, is equal to the total processing time of the
largest jobs on both machines.

Since the maximum completion time is not less than each of the three
components, the result follows. � 

The two-machine open shop problem with proportional job processing
times is polynomially solvable. The algorithm that solves the problem is
an adapted version of Gonzales-Sahni’s algorithm for the problem O2||Cmax

(Gonzales and Sahni [115]). Let σ(J1−p) and σ(J2−q) denote an arbitrary se-
quence of jobs from the set J1 \ {p} and J2 \ {q}, respectively.

Algorithm A45 for the problem O2|pi,j = bi,jt|Cmax ([169])

Input: sequence ((b1,1, b2,1), (b1,2, b2,2), . . . , (b1,n, b2,n))
Output: an optimal schedule

� Step 1:
J1 ← {Jj ∈ J : b1,j ≤ b2,j};
J2 ← J \ J1;

� Step 2:
In the set J1, find job Jp such that b2,p ≥ max

Jj∈J1
{b1,j};

In the set J2, find job Jq such that b1,q ≥ max
Jj∈J2

{b2,j};
� Step 3:

σ1 ← (σ(J1−p) | σ(J2−q) | q | p);
σ2 ← (p | σ(J1−p) | σ(J2−q) | q);
Schedule jobs on machine M1 according to sequence σ1

↪→ and jobs on machine M2 according to sequence σ2

↪→ in such a way that no two operations of the same job overlapp.

Theorem 8.11. (Kononov [169], Mosheiov [220]) The problem O2|pi,j =
bi,jt| Cmax is solvable in O(n) time by algorithm A45.
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Proof. Kononov [169] proves the result using the notion of isomorphic prob-
lems (cf. Definition 8.2); the proof is similar to the proof of Theorem 8.5. � 

Mosheiov [220] analyses five possible types of schedules which can be gen-
erated by algorithm A45 and proved that in each case the respective schedule
is optimal (see [220, Theorem 3]). !

Theorem 8.12. (Kononov [169], Mosheiov [220]) The decision version of the
problem O3|pi,j = bi,jt|Cmax is NP-complete in the ordinary sense.

Proof. Kononov [169] uses the following transformation from the SP problem
(cf. Sect. 3.2): n = p+3, t0 = 1, bi,j = yj−1, bi,p+1 = 2Y

B −1, bi,p+2 = 2B−1,
bi,p+3 = 2Y−1 for 1 ≤ i ≤ 3 and 1 ≤ j ≤ p, where Y =

∏p
j=1 yj . The threshold

G = 8Y 3.
Mosheiov [220] uses the following transformation from the EPP problem

(cf. Sect. 3.2): n = q + 1, t0 = 1, b1,j = b2,j = b3,j = zj − 1 for 1 ≤ j ≤ q,
b1,q+1 = b2,q+1 = b3,q+1 = E − 1. The threshold G = E3.

In order to complete the proof, it is sufficient to show that the SP (EPP)
problem has a solution if and only if for the above instance of the problem
O3|pi,j = bi,jt|Cmax there exists a schedule σ such that Cmax(σ) ≤ G. � 

Kononov and Gawiejnowicz proved that the problem O3|pi,j = bi,jt|Cmax

remains computationally intractable even if all deterioration rates on machine
M3 are equal.

Theorem 8.13. (Kononov and Gawiejnowicz [174]) The decision version of
the problem O3|pi,j = bi,jt, bi,3 = b|Cmax is NP-complete in the ordinary sense.

Proof. The transformation from the SP problem is as follows. Let
∏p

j=1 yj = Y,

Ȳ = 2Y, t0 = 1 and n = p + 4. The job deterioration rates are as follows:
b1,j = 0, b2,j = y2

j − 1, b3,j = Ȳ 2 − 1 for 1 ≤ j ≤ p,

b1,p+1 = 0, b2,p+1 = Ȳ 2

Y 2 − 1, b3,p+1 = Ȳ 2 − 1,
b1,p+2 = 0, b2,p+2 = 4Ȳ 2 − 1, b3,p+2 = Ȳ 2 − 1,
b1,p+3 = Ȳ p+3 − 1, b2,p+3 = Ȳ p+3 − 1, b3,p+3 = Ȳ 2 − 1,
b1,p+4 = Ȳ p+5 − 1, b2,p+4 = Ȳ p+1 − 1, b3,p+4 = Ȳ 2 − 1.
The threshold G = Ȳ 2p+8.

To complete the proof it is sufficient to show that the SP problem has a
solution if and only if for the above instance of the problem O3|pi,j = bi,jt,
bi,3 = b|Cmax there exists a schedule σ such that Cmax(σ) ≤ G. � 

Job shop problems

Kononov and Gawiejnowicz [174] stated the conjecture that the two-machine
job shop with proportional processing times is a computationally intractable
problem. The conjecture has been proved by Mosheiov.

Theorem 8.14. (Mosheiov [220]) The decision version of the problem
J2|pi,j = bi,jt|Cmax is NP-complete in the ordinary sense.
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Proof. The transformation from the EPP problem (cf. Sect. 3.2) has the fol-
lowing form. Let n = q + 1, t0 = 1 and b1,j = zj for 1 ≤ j ≤ q. Job
Jq+1 consists of three operations: O1,q+1, O2,q+1 and O3,q+1. The operations
have to be done on machine M2, machine M1 and machine M2, respectively.
The deterioration rates for the job Jq+1 are the following: b1,q+1 = 1

E and
b2,q+1 = E − 1. The threshold value G = (E + 1)E.

To complete the proof, it is sufficient to show that the EPP prob-
lem has a solution if and only if for the above instance of the problem
J2|pi,j = bi,jt|Cmax there exists a schedule σ such that Cmax(σ) ≤ G. � 

8.1.2 Proportional-linear deterioration

Now we pass to the time-dependent scheduling problems on dedicated ma-
chines, in which the job processing times are proportional-linear ones, i.e.,

pi,j = bi,j(A + Bt) (8.2)

for A ≥ 0, B ≥ 0, bi,j ≥ 0 and 1 ≤ i ≤ nj , 1 ≤ j ≤ n. This form of job
deterioration has been introduced by Kononov [169].

Flow shop problems

We start this subsection with the following result.

Lemma 8.15. (Kononov and Gawiejnowicz [174]) There exists an optimal
schedule for the problem Fm|pi,j = bi,j(A + Bt)|Cmax, in which
(a) machines M1 and M2 perform jobs in the same order,
(b) machines Mm−1 and Mm perform jobs in the same order.

Proof. (a) Assume that in a schedule σ jobs executed on machine M1 are
processed according to sequence σ1 = (i1, . . . , in), while jobs executed on
machine M2 are processed according to sequence σ2 = (j1 = i1, j2 = i2, . . . ,
jp = ip, jp+1 = ir+1, . . . , jp+q = ir, . . . , jn), q > 1, r > p ≥ 0.

By Theorem 6.20, the following equations are satisfied for schedule σ :

S2,ir+1(σ) = max{A

B

r+1∏

k=1

(b2,ik
B + 1)− A

B
,C2,jp

(σ)},

S2,ir
(σ) = max{A

B

r∏

k=1

(b2,ik
B + 1)− A

B
,C2,jp+q−1(σ)} = C2,jp+q−1(σ) ≥

≥ C2,ir+1(σ) ≥ C1,ir+1(σ) =
A

B

r+1∏

k=1

(b2,ik
B + 1)− A

B
.

Consider schedule σ′, differing from schedule σ only in that machine M1

performs jobs according to sequence σ3 = (i1, . . . , ir−1, ir+1, ir, ir+2, . . . , in).
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For schedule σ′, by Theorem 6.20, we obtain the following equalities:

S2,ir+1(σ
′) = max{A

B
(b2,ir+1B + 1)

r−1∏

k=1

(b2,ik
B + 1)− A

B
,C2,jp

(σ′)},

S2,ir
(σ′) = max{A

B

r∏

k=1

(b2,ik
A + 1)− A

B
,C2,jp+q−1(σ

′)}.

Since C2,jp
(σ) = C2,jp

(σ′), we have S2,ir+1(σ) ≥ S2,ir+1(σ
′). From this, it

follows that C2,jp+q−1(σ) ≥ C2,jp+q−1(σ
′) and hence, S2,ir

(σ) ≥ S2,ir
(σ′).

Repeating the above considerations no more than O(n2) times, we obtain
a schedule σ̄ in which machines M1 and M2 perform jobs in the same order,
and such that inequality C2,j(σ) ≥ C2,j(σ̄) holds for all Jj ∈ J . From this, it
follows that Cmax(σ) ≥ Cmax(σ̄).

(b) Similar to the proof of (a). �

Lemma 8.16. (Kononov and Gawiejnowicz [174]) If m ∈ {2, 3}, then there
exists an optimal schedule for the problem Fm|pi,j = bi,j(A + Bt)|Cmax, in
which jobs are executed on all machines in the same order.

Proof. Applying Lemma 8.15 for m = 2, 3, we obtain the result. � 

Kononov generalized Theorem 8.5 to the case of proportional-linear job
processing times given by (6.5).

Theorem 8.17. (Kononov [170]) If there hold inequalities (6.6) and (6.7),
then the problem F2|pi,j = bi,j(A+Bt)|Cmax is solvable in O(n log n) time by
algorithm A44.

Proof. Similar to the proof of Theorem 8.5, see [170, Theorem 33]. !

Remark 8.18. A special case of Theorem 8.17, without conditions (6.6) and
(6.7) but with assumptions A > 0, B > 0, bi,j > 0 for 1 ≤ i ≤ 2 and 1 ≤ j ≤ n,
was given by Zhao et al. [304, Theorem 5].

Wang and Xia [288] considered job processing times

pi,j = bi,j(A + t), (8.3)

where 1 ≤ i ≤ m and 1 ≤ j ≤ n. (Notice that the job processing times
(8.3) are special case of (8.2) for B = 1.) The authors, assuming that there
hold some relations between the job processing times, defined the so-called
dominated machines (see Definitions 8.19 and 8.20) and proved a number of
results for multi-machine flow shop with machines of this type.

Definition 8.19. (Dominated machines)
The machine Mr is said to be dominated by machine Mk, 1 ≤ k �= r ≤ m, if
and only if max{br,j : 1 ≤ j ≤ n} ≤ min{bk,j : 1 ≤ j ≤ n}.
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If machine Mr is dominated by machine Mk, we will write Mr � Mk or
Mk � Mr.

Definition 8.20. (Series of dominating machines)
(a) The machines M1,M2, . . . ,Mm form an increasing series of dominating
machines (idm) if and only if M1 � M2 � . . . � Mm;
(b) The machines M1,M2, . . . ,Mm form a decreasing series of dominating
machines (ddm) if and only if M1 � M2 � . . . � Mm;
(c) The machines M1,M2, . . . ,Mm form an increasing–decreasing series of
dominating machines (idm-ddm) if and only if M1 � M2 � . . . � Mh and
Mh � Mh+1 � . . . � Mm for some 1 ≤ h ≤ m;
(d) The machines M1,M2, . . . ,Mm form an decreasing–increasing series of
dominating machines (ddm-idm) if and only if M1 � M2 � . . . � Mh and
Mh � Mh+1 � . . . � Mm for some 1 ≤ h ≤ m.

Wang and Xia [288] proposed the following algorithm for the case when a
flow shop is of idm-ddm, no-wait and idm-ddm, or no-idle and idm-ddm type.

Algorithm A46 for the problem Fm|pi,j = bi,j(A + t), δ|Cmax ([288]),
where δ ∈ {idm-ddm;no-wait, idm-ddm;no-idle, idm-ddm}

Input: sequences (b1,j , b2,j , . . . , bm,j) for 1 ≤ j ≤ n, numbers A, h
Output: an optimal schedule σ�

� Step 1:

Find job Ju such that
h−1∏

i=1

(1 + bi,u) = min
{

h−1∏

i=1

(1 + bi,j) : 1 ≤ j ≤ n

}

;

Find job Jv such that
m∏

i=h+1

(1+bi,v) = min

{
m∏

i=h+1

(1 + bi,j) : 1 ≤ j ≤ n

}

;

� Step 2:
if (u = v) then Find job Jw such that

↪→
h−1∏

i=1

(1 + bi,w) = min
{

h−1∏

i=1

(1 + bi,j) : 1 ≤ j �= u ≤ n

}

;

Find job Jz such that

↪→
m∏

i=h+1

(1+bi,z) = min

{
m∏

i=h+1

(1 + bi,j) : 1 ≤ j �= v ≤ n

}

;

if
h−1∏

i=1

(1+bi,w)
m∏

i=h+1

(1+bi,v) ≤
h−1∏

i=1

(1+bi,u)
m∏

i=h+1

(1+bi,z)

↪→ then u ← w
else v ← z;

� Step 3:
σ� ← (u|(J \ {u, v})|v);
return σ�.
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Theorem 8.21. (Wang and Xia [288]) The problems Fm|pi,j = bi,j(A + t),
δ|Cmax, where δ ∈ {idm-ddm;no-wait, idm-ddm;no-idle, idm-ddm}, are solv-
able in O(mn) time by algorithm A46.

Proof. See [288, Theorem 1]. !

Remark 8.22. For other cases of the multi-machine flow shop with dominated
machines, the authors proposed algorithms which are modifications of algo-
rithm A46 (see [288, Theorems 2–4]). !

Open shop problems

Kononov [170] generalized Theorem 8.11 to the case of proportional-linear job
processing times given by (6.5).

Theorem 8.23. (Kononov [170]) If there hold inequalities (6.6) and (6.7),
then the problem O2|pi,j = bi,j(A + Bt)|Cmax is solvable in O(n) time by
algorithm A45.

Proof. Similar to the proof of Theorem 8.11, see [170, Theorem 33]. !

8.1.3 Linear deterioration

Flow shop problems

The two-machine flow shop problem with linear job processing times is com-
putationally intractable.

Theorem 8.24. (Kononov and Gawiejnowicz [174]) The decision version of
the problem F2|pi,j = ai,j + bi,jt|Cmax is NP-complete in the strong sense.

Proof. The transformation from the 3-P problem (cf. Sect. 3.2) has the fol-
lowing form. Let t0 = 0 and n = 4h. The job processing times are defined in
the following way: p1,1 = 0, p2,1 = 1+nt, p1,j = K +1, p2,j = 1

(j−1)(K+1) t for
2 ≤ j ≤ h, p1,j = 0, p2,j = cj for h + 1 ≤ j ≤ 4h. The threshold G = hK + h.

In order to complete the proof, it is sufficient to show that the 3-P prob-
lem has a solution if and only if for the above instance of the problem
F2|pi,j = ai,j + bi,jt|Cmax there exists a schedule σ such that Cmax(σ) ≤ G.

� 

Lee et al. [196] gave a lower bound on the optimal value of the total
completion time for the problem F2|pi,j = ai,j + bt|Cmax. Let B := 1 + b.

Lemma 8.25. (Lee et al. [196]) Let k be the number of already scheduled jobs
in a subschedule σ(1) and let Jσ(1) denote the set of jobs in σ(1). Then the
maximum completion time Cmax(σ) for the schedule σ = (Jσ(1) |J \ Jσ(1)) for
the problem F2|pi,j = ai,j + bt|Cmax is not less than max{LB1, LB2}, where
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LB1 := Bn−k+1C1,[k] +
n−k∑

i=1

Bn−k−i+1a1,(k+i) + a2,(k+1),

LB2 := Bn−kC2,[k] +
n∑

i=k+1

Bn−ia2,(i),

a1,(k+1) ≤ a1,(k+2) ≤ . . . ≤ a1,(n) and a2,(k+1) ≤ a2,(k+2) ≤ . . . ≤ a2,(n)

are non-decreasingly ordered basic processing times of unscheduled jobs on
machine M1 and M2, respectively, and a2,(k+1) := min{a2,i : i ∈ J \ Jσ(1)}.

Proof. See [196, Sect. 3]. !

Lee et al. [196] also formulated a number of dominance properties (see
[196, Properties 1–5]) and proposed a branch-and-bound algorithm for the
problem (see [196, Sect. 4.1]). The branch-and-bound algorithm was tested
on a number of instances with 8 ≤ n ≤ 32 jobs (see [196, Sect. 5] for details).

The authors also proposed four heuristic algorithms for the problem. We
will consider these heuristics in Chap. 9.

Cheng et al. [47] considered a few multi-machine flow shop problems
with dominating machines (cf. Definition 8.20) and equal deterioration rates,
bi,j = b for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Let B := 1 + b.

Lemma 8.26. (Cheng et al. [47]) Let σ = ([1], [2], . . . , [n]) be a schedule for
the problem Fm|pi,j = ai,j + bt, δ|Cmax, where δ ∈ {no-idle, idm;no-idle,
ddm;no-idle, idm-ddm;no-idle, ddm-idm}. Then

(a) C[j] =
m∑

i=1

ai,[1]B
m+j−i+1 +

j∑

k=2

am,[k]B
j−k, if δ ≡ no-idle, idm;

(b) C[j] =
n−1∑

k=1

a1,[k]B
m+j−k+1 +

m∑

i=1

ai,[n]B
m−n+j−i −

n∑

k=j+1

am,[k]B
j−k, if

δ ≡ no-idle, ddm;

(c) C[j] =
h∑

i=1

ai,[1]B
m−i+j−1 +

n−1∑

k=2

ah,[k]B
m−h−k+j +

m∑

i=h

ai,[n]B
m−n+j−i −

n∑

k=j+1

am,[k]B
j−k, if δ ≡ no− idle, idm− ddm;

(d) C[j] =
n−1∑

k=1

a1,[k]B
m+j−k−1 +

h−1∑

i=1

ai,[n]B
m+j−n−i −

n−1∑

k=2

ah,[k]B
m+j−h−k +

m∑

i=h+1

ai,[1]B
m+j−i−1 +

j∑

k=2

am,[k]B
j−k, if δ ≡ no− idle, ddm− idm.

Proof. (a) Since machines M1,M2, . . . ,Mm are of no-idle, idm type, in any
feasible schedule σ, we have Ci,[j] ≤ Ci+1,[j] for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

Therefore, C[j] =
∑m

i=1 pi,[1] +
∑j

k=2 pm,[k].
(b)(c)(d) Similar to (a). � 

Using Lemma 8.26, one can prove the next result.
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Theorem 8.27. (Cheng et al. [47])
(a) Let

∑m
i=1 ai,kBm+n−i−1 = min

{∑m
i=1 ai,jB

m+n−i−1 : 1 ≤ j ≤ n
}

for some
1 ≤ k ≤ n and σ(J−k) be a subschedule obtained by scheduling jobs from the
set J \ {Jk} in the non-decreasing order of am,j values. Then the schedule
(k|σ(J−k)) is optimal for the problem Fm|pi,j = ai,j + bt, no-idle, idm|Cmax.
(b) Let

∑m
i=1 ai,kBm−i = min

{∑m
i=1 ai,jB

m−i : 1 ≤ j ≤ n
}

for some
1 ≤ k ≤ n and σ(J−k) be a subschedule obtained by scheduling jobs from
the set J \ {Jk} in the non-decreasing order of a1,j values. Then the schedule
(k|σ(J−k)) is optimal for the problem Fm|pi,j = ai,j + bt, no-idle, ddm|Cmax.

Proof. (a) (b) The results are consequences of Lemma 8.26. � 

On the basis of Theorem 8.27, Cheng et al. [47] proposed for the problem
Fm|pi,j = ai,j + bt, no-idle, idm-ddm|Cmax the following algorithm.

Algorithm A47

for the problem Fm|pi,j = ai,j + bt, no-idle, idm-ddm|Cmax ([47])

Input: sequences (a1,j , a2,j , . . . , am,j) for 1 ≤ j ≤ n, number B := 1 + b
Output: an optimal schedule σ�

� Step 1:
Find job Ju such that

↪→
h∑

i=1

ai,uBm+h−i−1 = min
{

h∑

i=1

ai,jB
m+h−i−1 : 1 ≤ j ≤ n

}

;

Find job Jv such that
m∑

i=h

ai,vBm−i = min
{

m∑

i=h

ai,jB
m−i : 1 ≤ j ≤ n

}

;

� Step 2:
if (u = v) then Find job Jw such that

↪→
h∑

i=1

ai,wBm+h−i−1 =min
{

h∑

i=1

ai,jB
m+h−i−1 : 1≤j≤n

}

;

Find job Jz such that

↪→
m∑

i=h

ai,zB
m−i = min

{
m∑

i=h

ai,jB
m−i : 1 ≤ j �= v ≤ n

}

;

if
h∑

i=1

ai,uBm+h−i−1+
m∑

i=h

ai,zB
m−i ≤

h∑

i=1

ai,wBm+h−i−1+

↪→
m∑

i=h

ai,vBm−i then v ← z

else u ← w;
� Step 3:

σ� ← (v|(J \ {u, v})|u);
return σ�.

Theorem 8.28. (Cheng et al. [47]) The problem Fm|pi,j = ai,j + bt, no-idle,
idm-dd|Cmax is solvable in O(n3 log n) by algorithm A47.
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Proof. The result is a consequence of Theorem 8.27 (a). � 

For the problem Fm|pi,j = ai,j + bt, no − idle, ddm − idm|Cmax Cheng
et al. [47] proposed the following algorithm.

Algorithm A48

for the problem Fm|pi,j = ai,j + bt, no-idle, ddm-idm|Cmax ([47])

Input: sequences (a1,j , a2,j , . . . , am,j) for 1 ≤ j ≤ n, number B := 1 + b
Output: an optimal schedule σ�

� Step 1:

Find job Ju such that
m∑

i=h+1

(
ai,uB1−i + a1,u

m−h

)
Bm+n−2 =

↪→ min

{
m∑

i=h+1

(
ai,jB

1−i + a1,j

m−h

)
Bm+n−2 : 1 ≤ j ≤ n

}

;

Find job Jv such that

↪→
h−1∑

i=1

(
ai,vBm−i + am,v

h−1

)
= min

{
h−1∑

i=1

(
ai,jB

m−i + am,j

h−1

)
: 1 ≤ j ≤ n

}

;

� Step 2:
if (u = v) then Find job Jw such that

↪→
h∑

i=1

ai,wBm+h−i−1 = min
{

h∑

i=1

ai,jB
m+h−i−1 : 1≤j≤n

}

;

Find job Jz such that

↪→
m∑

i=h

ai,zB
m−i = min

{
m∑

i=h

ai,jB
m−i : 1 ≤ j �= v ≤ n

}

;

if
h∑

i=1

ai,uBm+h−i−1 +
m∑

i=h

ai,zB
m−i ≤

h∑

i=1

ai,wBm+h−i−1+

↪→
m∑

i=h

ai,vBm−i then v ← z

else u ← w;
� Step 3:

σ� ← (v|(J \ {u, v})|u);
return σ�.

Theorem 8.29. (Cheng et al. [47]) The problem Fm|pi,j = ai,j + bt, no-idle,
ddm-idm|Cmax is solvable in O(n3 log n) by algorithm A48.

Proof. The result is a consequence of Theorem 8.27 (b). � 

Open shop problems

The two-machine open shop problem with linear job processing times is com-
putationally intractable.
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Theorem 8.30. (Kononov and Gawiejnowicz [174]) The decision version of
the problem O2|pi,j = ai,j + bi,jt|Cmax is NP-complete in the ordinary sense.

Proof. The transformation from the PP problem (cf. Sect. 3.2) is as follows:
t0 = 1, n = k + 1, a1,j = a2,j = xj and b1,j = b2,j = 0 for 1 ≤ j ≤ k,
a1,k+1 = a2,k+1 = 0, b1,k+1 = b2,k+1 = A. The threshold G = (A + 1)2 + A.

In order to complete the proof, it is sufficient to show that the PP prob-
lem has a solution if and only if for the above instance of the problem
O2|pi,j = ai,j + bi,jt|Cmax there exists a schedule σ such that Cmax(σ) ≤ G
(see Fig. 8.1 and Remark 6.12). � 

Fig. 8.1: Example schedule in the proof of Theorem 8.30

Job shop problems

As in the case of multi-machine flow shop and open shop problems, two-
machine job shop problem with linear job processing times is already compu-
tationally intractable.

Theorem 8.31. The decision version of the problem J2|pi,j = ai,j+bi,jt|Cmax

is NP-complete in the ordinary sense.

Proof. The result is a corollary from Theorem 8.14. � 

8.1.4 Simple non-linear deterioration

Flow shop problems

Melnikov and Shafransky [207] considered multi-machine flow shop with job
processing times given by (6.15), Fm|pi,j = ai,j + f(t)|Cmax, where function
f(t) is differentiable, it satisfies (6.16) and

df(t)
dt

≥ λ > 0 for t ≥ 0. (8.4)
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For the above problem, the authors estimated the difference between the
optimal maximum completion time C�

max and the maximum completion time
Cmax(σ↗) for the schedule σ↗ obtained by scheduling jobs in non-decreasing
order of a1,j values, 1 ≤ j ≤ n.

Before we formulate the result, we state an auxiliary result.

Lemma 8.32. (Melnikov and Shafransky [207]) For any differentiable func-
tion f(t), satisfying conditions (6.16) and (8.4), there exists a finite number
N0 such that for all n ≥ N0 the inequality

n∑

j=1

ai,j + f

⎛

⎝
n−1∑

j=0

C1,j

⎞

⎠ ≥
n−1∑

j=l−1

ai+1,j + f

⎛

⎝
l−2∑

j=0

C1,j

⎞

⎠ (8.5)

holds for any i and l, where 1 ≤ i ≤ m − 1, 2 ≤ l ≤ n, C1,0 := 0 and
C1,j = a1,j + f(

∑j−1
k=0 C1,k) for 1 ≤ j ≤ n.

Proof. See [207, Theorem 3]. !

Assuming that f(t) is a differentiable function and it satisfies conditions
(6.16) and (8.4), there holds the following result.

Theorem 8.33. (Melnikov and Shafransky [207]) Let σ↗ denote the schedule
for the problem Fm|pi,j = ai,j +f(t)|Cmax in which jobs are scheduled in non-
decreasing order of a1,j values, 1 ≤ j ≤ n. If the number of jobs n satisfies the
inequality (8.5), then either σ↗ is an optimal schedule or the optimal schedule
is one of k ≤ n− 1 schedules π, in which the last job satisfies the inequality

m∑

i=2

ai,πn
<

m∑

i=2

ai,σ↗
n

and the first n− 1 jobs are scheduled in non-decreasing order of a1,j values.

Proof. By Lemma 8.32 and Theorem 6.39, the result follows; see [207, Theo-
rem 4] for details. !

If we pass to two-machine flow shop problem with job processing times
given by (6.15), F2|pi,j = ai,j + f(t)|Cmax, where f(t) is defined as in Theo-
rem 8.33, there holds the following result.

Theorem 8.34. (Melnikov and Shafransky [207]) Let σ↗ denote the schedule
for the problem F2|pi,j = ai,j + f(t)|Cmax in which jobs are scheduled in non-
decreasing order of a1,j values, 1 ≤ j ≤ n. Then there holds the inequality

C�
max − Cmax(σ↗) ≤ a2,σ↗

n
− min

1≤j≤n
{a2,j}.

Proof. See [207, Theorem 5]. !
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8.1.5 Proportional-linear shortening

Flow shop problems

Wang and Xia [289] considered multi-machine flow shop with job processing
times given by (6.44). Let bmin := mini,j{bi,j}.

Theorem 8.35. (Wang and Xia [289]) The problem F2|pi,j = bi,j(1 − kt),

k > 0, k

(
m∑

i=1

n∑

j=1

bi,j − bmin

)

< 1|Cmax is solvable in O(n log n) time by

algorithm A44.

Proof. Similar to the proof of Theorem 8.5. � 

Assuming that bi,j = bj for all 1 ≤ i ≤ m, the authors obtained the
following result.

Theorem 8.36. (Wang and Xia [289]) For the problem F2|pi,j = bi,j(1−kt),

bi,j = bj , k > 0, k

(

n
m∑

i=1

bi − bmin

)

< 1|Cmax the maximum completion time

does not depend on the schedule of jobs.

Proof. The result follows from Theorem 6.1. � 

Remark 8.37. Wang [280] considered multi-machine flow shop problems with
job processing times in the form of (6.44) and dominated machines (cf. Defi-
nitions 8.19–8.20). Since all the problems are solved by algorithms which are
similar to algorithms A47 and A48 (see [280, Theorems 1–4] for details), we
do not present the algorithms here.

8.2 Minimizing the total completion time

In this section, we consider dedicated-machine time-dependent scheduling
problems with the

∑
Cj criterion.

8.2.1 Proportional deterioration

Flow shop problems

Wang et al. [286] considered the problem F2|pi,j = bi,jt|
∑

Cj , where deteri-
oration rates bi,j ∈ (0, 1) for 1 ≤ i ≤ 2 and 1 ≤ j ≤ n.

Lemma 8.38. (Wang et al. [286]) There exists an optimal schedule for the
problem F2|pi,j = bi,jt, 0 < bi,j < 1|

∑
Cj in which the job sequence is iden-

tical on both machines.
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Proof. Similar to the proof of Lemma 8.15 for m = 2. � 
The next two results concern the cases when some deterioration rates in

the problem F2|pi,j = bi,jt|
∑

Cj are equal.

Theorem 8.39. (Wang et al. [286]) If b2,j = b for 1 ≤ j ≤ n, then the problem
F2|pi,j = bi,jt, 0 < bi,j < 1|

∑
Cj is solvable in O(n log n) time by scheduling

jobs in the non-decreasing order of b1,j values.

Proof. Consider schedule σ in which jobs are scheduled in the non-decreasing
order of b1,j values and an arbitrary other schedule τ. By showing that Cj(σ) ≤
C[j](τ) for 1 ≤ j ≤ n, the result follows (see [286, Theorem 1]). � 

By Theorem 8.39, if b2,j = b for 1 ≤ j ≤ n, then the problem F2|pi,j =
bi,jt, 0 < bi,j < 1|

∑
Cj is solved by the algorithm A7 : (b1,j |b2,j) $→ (b1,j ↗).

Theorem 8.40. (Wang et al. [286]) If b1,j = b2,j for 1 ≤ j ≤ n, then the
problem F2|pi,j = bi,jt, 0 < bi,j < 1|

∑
Cj is solvable in O(n log n) time by

scheduling jobs in the non-decreasing order of b1,j values.

Proof. By pairwise job interchange argument. � 
By Theorem 8.40, if b1,j = b2,j for 1 ≤ j ≤ n, then the problem F2|pi,j =

bi,jt, 0 < bi,j < 1|
∑

Cj is solved by the algorithm A5 : (b1,j |b2,j) $→ (b1,j ↗).
The next two results concern the cases when flow shop machines are dom-

inating (cf. Definitions 8.19–8.20).

Lemma 8.41. (Wang et al. [286]) If in an instance of the problem F2|pi,j =
bi,jt, 0 < bi,j < 1,M1 � M2|

∑
Cj the first scheduled job is fixed, then in an

optimal schedule the remaining jobs are in the non-decreasing order of b2,j

values.

Proof. By direct calculation and Lemma 6.120, the result follows. � 
By Lemma 8.41 Wang et al. [286] constructed the following algorithm.

Algorithm A49

for the problem F2|pi,j = bi,jt, 0 < bi,j < 1, M1 � M2|
∑

Cj ([286])

Input: sequences (b1,j , b2,j) for 1 ≤ j ≤ n
Output: an optimal schedule σ�

� Step 1:
for j ← 1 to n do

Schedule first job Jj ;
Schedule remaining jobs in the non-decreasing order of b2,j values;
Call the obtained schedule σj ;

� Step 2:
σ� ← the best schedule from the schedules σ1, σ2, . . . , σn;

� Step 3:
return σ�.
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Theorem 8.42. (Wang et al. [286]) The problem F2|pi,j = bi,jt, 0 < bi,j < 1,
M1 � M2|

∑
Cj is solvable in O(n log n) time by algorithm A49.

Proof. By Lemma 8.41 we can construct n distinct schedules for the problem,
with a fixed first job in each of them. Since each such a schedule can be
constructed in O(n log n) time, the result follows. � 

Theorem 8.43. (Wang et al. [286]) The problem F2|pi,j = bi,jt, 0 < bi,j < 1,
M1 � M2|

∑
Cj is solvable in O(n log n) time by scheduling jobs in the non-

decreasing order of b1,j

(1+b1,j)(1+b2,j)
ratios.

Proof. By pairwise job interchange argument. � 

By Theorem 8.43, the problem F2|pi,j = bi,jt, 0 < bi,j < 1,M1 �M2|
∑

Cj

is solved by the algorithm A50 : (b1,j |b2,j) $→ ( b1,j

(1+b1,j)(1+b2,j)
↗).

Wang et al. [286] formulated also dominance properties (see [286, Propo-
sitions 1–8; Theorems 5–6]) and proposed a branch-and-bound algorithm for
the problem F2|pi,j = bi,jt, 0 < bi,j < 1|

∑
Cj (see [286, Sect. 5.3]). The

algorithm is based on the properties and the following lower bound.

Lemma 8.44. (Wang et al. [286]) Let k be the number of already scheduled
jobs in a subschedule σ(1) and let Jσ(1) denote the set of jobs in σ(1). Then the
total completion time

∑
Cj(σ) for the schedule σ = (Jσ(1) |J \ Jσ(1)) for the

problem F2|pi,j = bi,jt, 0 < bi,j < 1|
∑

Cj is not less than max{LB1, LB2},
where

LB1 :=
k∑

j=1

C[j](σ(1)) + C[k](σ(1))
n∑

j=k+1

j∏

i=k+1

(1 + b2,(i)),

LB2 :=
k∑

j=1

C[j](σ(1)) + t0

(

1 + min
k+1≤j≤n

{b2,j}
)

k∏

j=1

(1 + b1,[j])×

×
(

n∑

i=k+1

i∏

j=k+1

(1 + b1,(j))

)

,

b1,(k+1) ≤ b1,(k+2) ≤ . . . ≤ b1,(n) and b2,(k+1) ≤ b2,(k+2) ≤ . . . ≤ b2,(n) are non-
decreasingly ordered basic processing times of unscheduled jobs on machine M1

and machine M2, respectively.

Proof. See [286, Sect. 5.2]. !

The branch-and-bound algorithm proposed by Wang et al. was tested on
100 instances with n ≤ 14 jobs (see [286, Sect. 6] for details).

The same authors also proposed a heuristic for the problem F2|pi,j = bi,jt,
0 < bi,j < 1|

∑
Cj . We will consider this algorithm in Chap. 9.

Shiau et al. [257] gave a lower bound on the optimal value of the total
completion time for the general problem F2|pi,j = bi,jt|

∑
Cj .



8.2 Minimizing the total completion time 189

Lemma 8.45. (Shiau et al. [257]) Let k be the number of already scheduled
jobs in a subschedule σ(1) and let Jσ(1) denote the set of jobs in σ(1). Let

B :=
k∏

i=1

(1 + b1,[i]). Then the total completion time
∑

Cj(σ) for the schedule

σ = (Jσ(1) |J \ Jσ(1)) for the problem F2|pi,j = bi,jt|
∑

Cj is not less than
max{LB1, LB2, LB3}, where

LB1 :=
k∑

j=1

C[j](σ(1)) + C[k](σ(1))
n∑

j=k+1

j∏

i=k+1

(1 + b2,(i)),

LB2 :=
k∑

j=1

C[j](σ(1)) + B ×
n∑

i=k+1

(1 + b2,(n+k+1−i))
i∏

j=k+1

(1 + b1,(j)),

LB3 :=
k∑

j=1

C[j](σ(1)) + (n− k)B × n−k

√
n∏

i=k+1

(1 + b2,i)
n∏

i=k+1

(1 + b1,(i))n+1−i,

b1,(k+1) ≤ b1,(k+2) ≤ . . . ≤ b1,(n) and b2,(k+1) ≤ b2,(k+2) ≤ . . . ≤ b2,(n) are non-
decreasingly ordered basic processing times of unscheduled jobs on machine M1

and machine M2, respectively.

Proof. See [257, Sect. 4]. !

Remark 8.46. The lower bound LB1 from Lemma 8.45 is a generalization of
the lower bound LB1 from Lemma 8.44.

Shiau et al. [257] also formulated a number of dominance properties (see
[257, Propositions 1–11]) and proposed a branch-and-bound algorithm for the
problem F2|pi,j = bi,jt|

∑
Cj (see [257, Sect. 5.1]). The branch-and-bound

algorithm was tested on 450 instances with 6 ≤ n ≤ 14 jobs (see [257, Sect. 7]
for details).

The authors also proposed three heuristics and a simulated annealing al-
gorithm for the problem. We will consider these heuristics and this algorithm
in Chaps. 9 and 11, respectively.

8.2.2 Linear deterioration

Flow shop problems

The two-machine flow shop problem with linear job processing times and the
total completion time criterion is computationally intractable.

Theorem 8.47. The decision version of the problem F2|pi,j = ai,j + bi,jt|∑
Cj is NP-complete in the strong sense.

Proof. Since the special case of the problem is the problem F2||
∑

Cj , which
is NP-complete in the strong sense (Garey et al. [86]), the result follows. �

Theorem 8.48. (Wu and Lee [299]) The decision version of the problem
F2|pi,j = ai,j + bt|

∑
Cj is NP-complete in the strong sense.
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Proof. Similar to the proof of Theorem 8.47. � 

Wu and Lee proposed for the problem F2|pi,j = ai,j + bt|
∑

Cj a branch-
and-bound algorithm, based on a number of dominance properties and a lower
bound. First, we briefly describe some of these properties. Let Θ := C2,[n] −
(b + 1)C1,[n], where b > 0 is the common job deterioration rate.

Property 8.49. (Wu and Lee [299]) If jobs Ji and Jj are scheduled consecu-
tively, a1,i ≥ Θ, max{a1,i, a2,i} < a1,j and a2,j ≤ min{a1,i, a2,i}, then there
exists an optimal schedule for the problem F2|pi,j = ai,j + bt|

∑
Cj in which

job Ji is the immediate predecessor of job Jj .

Proof. By pairwise job interchange argument; see [299, Appendix A]. !

Property 8.50. (Wu and Lee [299]) If jobs Ji and Jj are scheduled consecu-
tively, a1,i ≥ Θ, a1,j ≥ a1,i and

min
{

a1,j , a2,j ,
b + 1
b + 2

a1,j +
1

b + 2
a2,j ,

ba1,j

b + 1
+

ba2,j + a2,i

(b + 1)2

}

> a1,i,

then there exists an optimal schedule for the problem F2|pi,j = ai,j +bt|
∑

Cj

in which job Ji is the immediate predecessor of job Jj .

Proof. The result is given without proof; see [299, Property 2]. !

Other properties given by Wu and Lee without proof (see [299, Proper-
ties 3–12]) are similar to Property 8.50.

The authors proposed also the following lower bound for the problem.

Lemma 8.51. (Wu and Lee [299]) Let k be the number of already scheduled
jobs in a subschedule σ(1), Jσ(1) denote the set of jobs in σ(1) and r := n− k.
Then the total completion time

∑
Cj(σ) for the schedule σ = (Jσ(1) |(J \Jσ(1)))

for the problem F2|pi,j = ai,j + bi,jt|
∑

Cj is not less than max{LB1, LB2},
where

LB1 :=
k∑

j=1

C2,[j](σ) + C1,[k](σ(1))
r∑

j=1

(1 + b)j+1 +
r∑

j=1

r−j+1∑

i=1

a1,(k+j)(1 + b)j+

+
r∑

j=1

a2,k+j ,

LB2 :=
k∑

j=1

C2,[j](σ) + C2,[k](σ)
r∑

j=1

(1 + b)j +
r∑

j=1

r−j∑

i=1

a2,(k+j)(1 + b)i−1,

a1,(k+1) ≤ a1,(k+2) ≤ . . . ≤ a1,(k+r) and a2,(k+1) ≤ a2,(k+2) ≤ . . . ≤ a2,(k+r)

are non-decreasingly ordered basic processing times of unscheduled jobs on
machine M1 and M2, respectively, and

∑r
j=1 a2,k+j , is the sum of the basic

processing times of the unscheduled jobs on machine M2.

Proof. See [299, Sect. 4]. !
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The branch-and-bound algorithm, based on the mentioned properties and
Lemma 8.51, was tested on instances with n ≤ 27 jobs (see [299, Sect. 6]).

Cheng et al. [47] considered two multi-machine flow shop problems with
dominating machines (cf. Definition 8.20) and equal deterioration rates,
bi,j = b for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Let B := 1 + b.

Theorem 8.52. (Cheng et al. [47])
(a)Let

∑m
i=1 ai,kBm−i =min

{∑m
i=1 ai,jB

m−i : 1 ≤ j ≤ n
}

for some 1 ≤ k ≤ n

and let σ(J−k) be a subschedule obtained by scheduling jobs from the set
J \ {Jk} in the non-decreasing order of am,j values. Then the schedule
(k|σ(J−k)) is optimal for the problem Fm|pi,j = ai,j + bt, no-idle, idm|

∑
Cj .

(b) Let N := Bn−1
B−1 and m − n + 1 := r. Let N

m−1∑

i=1

ai,kBr−i + am,k =

min
{

N
m−1∑

i=1

ai,jB
r−i + am,k : 1 ≤ j ≤ n

}

for some 1 ≤ k ≤ n and let σ(J−k)

be a subschedule obtained by scheduling jobs from the set J \{Jk} in the non-
decreasing order of (a1,jB

m − am,j)(Bn − 1) + am,jB
n+1 values. Then the

schedule (k|σ(J−k)) is optimal for the problem Fm|pi,j = ai,j + bt, no-idle,
ddm|

∑
Cj .

Proof. (a) See [47, Theorem 10].
(b) See [47, Theorem 11]. !

On the basis of Theorem 8.52, for the problem Fm|pi,j = ai,j +bt, no-idle,
idm-ddm|

∑
Cj , Cheng et al. [47] proposed two algorithms (see [47, Sect. 4])

that are modifications of algorithms A47 nd A48 (cf. Sect. 8.1.3). We will call
the algorithms A51 and A52.

Theorem 8.53. (Cheng et al. [47])
(a) The problem Fm|pi,j =ai,j+bt, no-idle, idm|

∑
Cj is solvable in O(n3 log n)

by algorithm A51.
(b) The problem Fm|pi,j =ai,j+bt, no-idle, ddm|

∑
Cj is solvable in O(n3 log n)

by algorithm A52.

Proof. (a) The result is a consequence of Theorem 8.52 (a).
(b) The result is a consequence of Theorem 8.52 (b). � 

8.2.3 Proportional-linear shortening

Flow shop problems

Wang and Xia [289] considered multi-machine flow shop with job processing
times given by (6.44). Let bmin := mini,j{bi,j}.



192 8 Dedicated-machine time-dependent scheduling

Theorem 8.54. (Wang and Xia [289]) The problem Fm|pi,j = bi,j(1 − kt),

bi,j = bj , k > 0, k

(
n∑

j=1

bj − bmin

)

< 1|
∑

Cj is solvable in O(n log n) time by

scheduling jobs in the non-decreasing order of bj values.

Proof. The result follows from Theorem 6.120. � 

By Theorem 8.54, the problem Fm|pi,j = bi,j(1 − kt), bi,j = bj , k > 0,

k

(
n∑

j=1

bj − bmin

)

< 1|
∑

Cj is solved by the algorithm A7 : (b1,j |b2,j) $→

(bj ↗).

8.3 Minimizing the maximum lateness

In this section, we consider dedicated-machine time-dependent scheduling
problems with the Lmax criterion.

8.3.1 Proportional deterioration

Flow shop problems

Theorem 8.55. (Kononov [169]) The decision version of the problem
F2|pi,j = bi,jt|Lmax is NP-complete in the strong sense.

Proof. The transformation is from the 4-P problem (cf. Sect. 3.2): n = 5p− 1
and t0 = 1, b1,j = 0, b2,j = uj−1, dj = 2p−1Dp for 1 ≤ j ≤ 4p, b1,4p+1 = D−1,
b2,4p+1 = 1, d4p+1 = 2D, b1,4p+k = 2D − 1, b2,4p+k = 1, d4p+k = 2kDk for
2 ≤ k ≤ m− 1. The threshold G = 0.

To complete the proof, it is sufficient to show that the 4-P problem has a so-
lution if and only if for the above instance of the problem F2|pi,j = bi,jt|Lmax

there exists a schedule σ such that Lmax(σ) ≤ G. � 

Remark 8.56. Wang and Xia [287] considered a number of flow shop problems
with dominating machines (cf. Definitions 8.19–8.20) and the Lmax criterion.
Since the results (see [287, Sect. 5]) are special cases of the results for job
processing times given by (8.3), we do not present them here.

Open shop problems

Theorem 8.57. (Kononov [169]) The decision version of the problem
O2|pi,j = bi,jt|Lmax is NP-complete in the ordinary sense.
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Proof. The transformation from the SP problem (cf. Sect. 3.2) is as follows:
n = p + 3 and t0 = 1, bi,j = yj − 1, bi,p+1 = 2Y

B − 1, bi,p+2 = 2B − 1,
bi,p+3 = 2Y − 1 for 1 ≤ i ≤ 2, dj = 8Y 3 for 1 ≤ j ≤ p + 2 and dp+3 = 4Y 2,
where Y =

∏p
j=1 yj . The threshold G = 0.

To complete the proof, it is sufficient to show that the SP problem has a so-
lution if and only if for the above instance of the problem O2|pi,j = bi,jt|Lmax

there exists a schedule σ such that Lmax(σ) ≤ G. � 

8.3.2 Proportional-linear deterioration

Flow shop problems

Wang and Xia [288] considered job processing times given by (8.3), assuming
that flow shop machines are dominating (cf. Definitions 8.19–8.20).

Lemma 8.58. (Wang and Xia [288]) If in an instance of the problem
Fm|pi,j = bi,j(A + t), δ|Lmax, where δ ∈ {idm;no-wait, idm;no-idle, idm},
the first scheduled job is fixed, then in an optimal schedule the remaining jobs
are in the EDD order.

Proof. By a contradiction; see [288, Theorem 10]. !
By Lemma 8.58, Wang and Xia [288] proposed an algorithm for the

problem Fm|pi,j = bi,j(A + t), δ|Lmax, where δ ∈ {idm;no-wait, idm;no-
idle, idm}. The algorithm is an adaptation of algorithm A47 in which in Step 1
all jobs except the first one are scheduled in the EDD order instead of in the
non-decreasing order of b2,j values. Call the new algorithm A53.

Theorem 8.59. (Wang and Xia [288]) The problems Fm|pi,j = bi,j(A + t),
δ|Lmax, where δ ∈ {idm;no-wait, idm;no-idle, idm}, are solvable in O(n log n)
time by algorithm A53.

Proof. By Lemma 8.58, in order to find an optimal schedule for the problems
Fm|pi,j = bi,j(A + t), δ|Lmax, where δ ∈ {idm;no-wait, idm;no-idle, idm}, it
is sufficient to construct n distinct schedules by inserting at the first position
in the j-th schedule the j-th job and scheduling the remaining jobs in the
EDD order. Since each such a schedule can be obtained in O(n log n) time,
the result follows. � 
Remark 8.60. For other cases of the multi-machine flow shop with dominated
machines and the Lmax criterion, the authors applied a similar approach; see
[288, Theorems 11–12]. !

8.3.3 Linear deterioration

Flow shop problems

Theorem 8.61. The decision version of the problem F2|pi,j = ai,j+bi,jt|Lmax

is NP-complete in the ordinary sense.

Proof. The result is a corollary from Theorem 8.55. �
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8.3.4 Proportional-linear shortening

Flow shop problems

Wang and Xia considered two-machine flow shop with job processing times
given by (6.44).

Theorem 8.62. (Wang and Xia [289]) The problem F2|pi,j = bi,j(1 − kt),

bi,j = bj , k > 0, k

(
n∑

j=1

bj − bmin

)

< 1|Lmax is solvable in O(n log n) time by

scheduling jobs in the non-decreasing order of dj values.

Proof. The result follows from Theorem 6.169. � 

By Theorem 8.62, the problem F2|pi,j = bi,j(1 − kt), bi,j = bj , k > 0,

k

(
n∑

j=1

bj − bmin

)

< 1|Lmax is solved by the algorithm A17 : (b1,j |b2,j |dj) $→

(dj ↗).

Remark 8.63. Wang [280] considered multi-machine flow shop problems with
job processing times in the form of (6.44) and dominated machines (cf. Defi-
nitions 8.19–8.20). Since all the problems are solved by algorithms which are
similar to algorithm A53 (see [280, Theorems 10–12] for details), we do not
present the algorithms here.

8.4 Other criteria

In this section, we consider the problems of time-dependent scheduling on
dedicated machines with criteria other than Cmax,

∑
Cj or Lmax.

8.4.1 Proportional deterioration

Flow shop problems

Wang and Xia [287] considered a number of flow shop problems with domi-
nating machines (cf. Definitions 8.19–8.20) and the

∑
wjCj criterion. Since

the results (see [287, Sect. 4]) are special cases of the results for job processing
times given by (8.3), we do not present them here.

8.4.2 Proportional-linear deterioration

Flow shop problems

Wang and Xia [288] considered multi-machine flow shop with dominating
machines (cf. Definitions 8.19–8.20) and job processing times given by (8.3).
The authors prove a number of results for the

∑
wjCj criterion.
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Lemma 8.64. (Wang and Xia [288]) If in an instance of the problem
Fm|pi,j = bi,j(A+t), δ|

∑
wjCj , where δ ∈ {idm;no-wait, idm;no-idle, idm},

the first scheduled job is fixed, then in an optimal schedule the remaining jobs
are scheduled in the non-decreasing order of bm,j

wj(1+bm,j)
ratios.

Proof. The result follows from the formula for
∑

wjCj and Theorem 6.185.
� 

By Lemma 8.64, Wang and Xia [288] proposed an algorithm for the prob-
lem Fm|pi,j = bi,j(A + t), δ|

∑
wjCj , where δ ∈ {idm;no-wait, idm;no-

idle, idm}. The algorithm is an adaptation of algorithm A47 in which in
Step 1 all jobs except the first one are scheduled in the non-decreasing or-
der of bm,j

wj(1+bm,j)
ratios instead of in the non-decreasing order of b2,j values.

Call the new algorithm A54.

Theorem 8.65. (Wang and Xia [288]) The problems Fm|pi,j = bi,j(A + t),
δ|
∑

wjCj , where δ ∈ {idm;no-wait, idm;no-idle, idm}, are solvable in
O(n log n) time by algorithm A54.

Proof. By Lemma 8.64, in order to find an optimal schedule for the problems
Fm|pi,j = bi,j(A+t), δ|

∑
wjCj , where δ ∈ {idm;no-wait, idm;no-idle, idm},

it is sufficient to construct n distinct schedules by inserting at the first position
in the j-th schedule the j-th job. Since each such a schedule can be obtained
in O(n log n) time, the result follows. � 

Remark 8.66. For other cases of the multi-machine flow shop with dominated
machines and the

∑
wjCj criterion, the authors applied similar approach; see

[288, Theorems 6–9]. !

8.4.3 Proportional-linear shortening

Flow shop problems

Wang and Xia [289] considered multi-machine flow shop with job processing
times given by (6.44). For this problem modified algorithm A29 (see [289,
Modified Algorithm 1]) can be used appropriately. Let bmin := mini,j{bi,j}.

Theorem 8.67. (Wang and Xia [289]) The problem Fm|pi,j = bi,j(1 − kt),

k > 0, k

(
n∑

j=1

bj − bmin

)

< 1, bi,j = bj |fmax is solvable in O(n2) time by the

modified algorithm A29.

Proof. The result follows from Theorem 13.35. � 

For the problem with the
∑

Uj criterion, the authors used appropriately
modified algorithm A26 (see [289, Algorithm 2]).
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Theorem 8.68. (Wang and Xia [289]) The problem Fm|pi,j = bi,j(1 − kt),

k > 0, k

(
n∑

j=1

bj − bmin

)

< 1, bi,j = bj |
∑

Uj is solvable in O(n log n) time by

the modified algorithm A26.

Proof. The result follows from Theorem 6.196. � 
Remark 8.69. Wang [280] considered a number of multi-machine flow shop
problems with job processing times (6.44) and dominated machines (cf. Def-
initions 8.19–8.20). Since all the problems are solved by algorithms that are
similar to algorithm A54 (see [280, Theorems 5–9] for details), we do not
present the algorithms here.

With this remark, we end the review of dedicated-machine time-dependent
scheduling. This chapter also ends the second part of the book, which is de-
voted to the complexity of time-dependent scheduling problems. In the next
part of the book, we will consider different classes of algorithms for computa-
tionally intractable time-dependent scheduling problems.

8.5 Summary and tables

In this chapter, we reviewed dedicated-machine time-dependent scheduling
problems. We considered different deteriorating and shortening job processing
times. The criteria of schedule optimality include the most popular criteria
such as the Cmax,

∑
Cj or Lmax, as well as less popular criteria such as the∑

wjCj , fmax or
∑

Uj .
Approximately two-thirds of the problems presented in the chapter are

polynomially solvable. For these problems, we presented pseudo-codes of opti-
mal algorithms. For the remaining problems that are ordinary or stronglyNP-
complete, we presented NP-completeness proofs or sketches of such proofs.

Below, we classify in the tabular form the dedicated-machine time-
dependent scheduling problems and algorithms considered in the chapter. As
in Chaps. 6 and 7, the results are divided into groups with respect to the
applied criterion.

Tables 8.1 and 8.2 present, respectively, tractable and intractable
dedicated-machine time-dependent scheduling problems with the Cmax

criterion.
Table 8.11 presents polynomial algorithms for dedicated-machine time-

dependent scheduling problems with criteria other than Cmax,
∑

Cj and Lmax.
Tables 8.3 and 8.4 present, respectively, tractable and intractable

dedicated-machine time-dependent scheduling problems with the
∑

Cj

criterion.
Tables 8.5 and 8.6 present, respectively, tractable and intractable

dedicated-machine time-dependent scheduling problems with the Lmax

criterion.
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Table 8.7 presents tractable dedicated-machine time-dependent scheduling
problems with other criteria than Cmax,

∑
Cj or Lmax.

Tables 8.8, 8.9 and 8.10 present, respectively, polynomial algorithms for
dedicated-machine time-dependent scheduling problems with the Cmax,

∑
Cj

and Lmax criteria.
Table 8.11 presents polynomial algorithms for dedicated-machine time-

dependent scheduling problems with criteria other than Cmax,
∑

Cj and Lmax.

Table 8.1: Tractable Dedicated-Machine Time-Dependent Scheduling Problems
(Cmax Criterion)

Problem Complexity References This book

F2|pi,j = bi,jt|Cmax O(n log n) [169], [220] Theorem 8.5
O2|pi,j = bi,jt|Cmax O(n) [169], [220] Theorem 8.11
F2|pi,j = bi,j(a + bt)|Cmax O(n log n) [170] Theorem 8.17
Fm|pi,j = bi,j(a + t), O(mn) [288] Theorem 8.21

idm-ddm|Cmax

Fm|pi,j = bi,j(a + t), O(mn) [288] Theorem 8.21
no-wait, idm-ddm|Cmax

Fm|pi,j = bi,j(a + t), O(mn) [288] Theorem 8.21
no-idle, idm-ddm|Cmax

O2|pi,j = bi,j(a + bt)|Cmax O(n log n) [170] Theorem 8.23
Fm|pi,j = ai,j + bt, no-idle, idm-dd|Cmax O(n3 log n) [47] Theorem 8.28
Fm|pi,j = ai,j + bt, no-idle, ddm-idm|Cmax O(n3 log n) [47] Theorem 8.29

F2|pi,j = bi,j(1− kt)|Cmax
(a) O(n log n) [289] Theorem 8.35

F2|pi,j = bi,j(1− kt)|Cmax
(b,c) O(n) [289] Theorem 8.36

(a) k > 0, k(
∑m

i=1

∑n
j=1 bi,j − bmin) < 1, where bmin := min{bi,j}

(b) bi,j = bj , k > 0, k(n
∑m

i=1 bi − bmin) < 1, where bmin := min{bi,j}
(c) the value of Cmax does not depend on schedule

Table 8.2: Intractable Dedicated-Machine Time-Dependent Scheduling Problems
(Cmax Criterion)

Problem Complexity References This book

F3|pi,j = bi,jt|Cmax SNPC [169], [220] Theorems 8.6–8.7
O3|pi,j = bi,jt|Cmax NPC [169], [220] Theorem 8.12
O3|pi,j = bi,jt, bi,3 = b|Cmax NPC [174] Theorem 8.13
J2|pi,j = bi,jt|Cmax NPC [220] Theorem 8.14
F2|pi,j = ai,j + bi,jt|Cmax SNPC [174] Theorem 8.24
O2|pi,j = ai,j + bi,jt|Cmax NPC [174] Theorem 8.30
J2|pi,j = ai,j + bi,jt|Cmax NPC − Theorem 8.31



198 8 Dedicated-machine time-dependent scheduling

Table 8.3: Tractable Dedicated-Machine Time-Dependent Scheduling Problems
(
∑

Cj Criterion)

Problem Complexity References This book

F2|pi,j = bi,jt, b2,j = b|
∑

Cj
(a) O(n log n) [286] Theorem 8.39

F2|pi,j = bi,jt, b1,j = b2,j |
∑

Cj
(a) O(n log n) [286] Theorem 8.40

F2|pi,j = bi,jt, M1 � M2|
∑

Cj
(a) O(n log n) [286] Theorem 8.42

F2|pi,j = bi,jt, M1 � M2|
∑

Cj
(a) O(n log n) [286] Theorem 8.43

Fm|pi,j = ai,j + bt, no-idle, idm|
∑

Cj O(n3 log n) [47] Theorem 8.53 (a)
Fm|pi,j = ai,j + bt, no-idle, ddm|

∑
Cj O(n3 log n) [47] Theorem 8.53 (b)

Fm|pi,j = bi,j(1− kt)|
∑

Cj
(b) O(n log n) [289] Theorem 8.54

(a)0 < bi,j < 1
(b) k > 0, k(

∑n
j=1 bj − bmin) < 1, bi,j = bj , where bmin := min{bi,j}

Table 8.4: Intractable Dedicated-Machine Time-Dependent Scheduling Problems
(
∑

Cj Criterion)

Problem Complexity References This book

F2|pi,j = ai,j + bi,jt|
∑

Cj SNPC − Theorem 8.47
F2|pi,j = ai,j + bt|

∑
Cj SNPC [299] Theorem 8.48

Table 8.5: Tractable Dedicated-Machine Time-Dependent Scheduling Problems
(Lmax Criterion)

Problem Complexity References This book

Fm|pi,j = bi,j(A + t), idm|Lmax O(n log n) [288] Theorem 8.59
Fm|pi,j = bi,j(A + t), no-wait, idm|Lmax O(n log n) [288] Theorem 8.59
Fm|pi,j = bi,j(A + t), no-idle, idm|Lmax O(n log n) [288] Theorem 8.59

F2|pi,j = bi,j(1− kt)|Lmax
(a) O(n log n) [289] Theorem 8.62

(a) k > 0, k(
∑n

j=1 bj − bmin) < 1, bi,j = bj , where bmin := min{bi,j}

Table 8.6: Intractable Dedicated-Machine Time-Dependent Scheduling Problems
(Lmax Criterion)

Problem Complexity References This book

F2|pi,j = bi,jt|Lmax SNPC [169] Theorem 8.55
O2|pi,j = bi,jt|Lmax NPC [169] Theorem 8.57
F2|pi,j = ai,j + bi,jt|Lmax SNPC − Theorem 8.61
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Table 8.7: Tractable Dedicated-Machine Time-Dependent Scheduling Problems (Cri-
teria other than Cmax,

∑
Cj and Lmax)

Problem Complexity References This book

Fm|pi,j = bi,j(A + t), O(n log n) [288] Theorem 8.65
idm|

∑
wjCj

Fm|pi,j = bi,j(A + t), O(n log n) [288] Theorem 8.65
no-wait, idm|

∑
wjCj

Fm|pi,j = bi,j(A + t), O(n log n) [288] Theorem 8.65
no-idle, idm|

∑
wjCj

Fm|pi,j = bi,j(1− kt)|fmax
(a) O(n2) [289] Theorem 8.67

Fm|pi,j = bi,j(1− kt)|
∑

Uj
(a) O(n log n) [289] Theorem 8.68

(a) k > 0, k(
∑n

j=1 bj − bmin) < 1, bi,j = bj , where bmin := min{bi,j}

Table 8.8: Polynomial Algorithms for Dedicated-Machine Time-Dependent Schedul-
ing Problems (Cmax Criterion)

Algorithm Complexity Problem This book

A44 O(n log n) F2|pi,j = bi,jt|Cmax Sect. 8.1.1, p. 173
A44 O(n log n) F2|pi,j = bi,j(A + Bt)|Cmax Sect. 8.1.2, p. 178
A44 O(n log n) Fm|pi,j = bi,j(1− kt)|Cmax Sect. 8.1.5, p. 186
A45 O(n) O2|pi,j = bi,jt|Cmax Sect. 8.1.1, p. 175
A45 O(n) O2|pi,j = bi,j(A + Bt)|Cmax Sect. 8.1.2, p. 180

A46 O(mn) Fm|pi,j = bi,j(A + t), δ|Cmax
(a) Sect. 8.1.2, p. 179

A48 O(n log n) Fm|pi,j = ai,j + bt, Sect. 8.1.3, p. 183
no-idle, ddm-idm|Cmax

(a) δ ∈ {idm-ddm; no-wait, idm-ddm; no-idle, idm-ddm}

Table 8.9: Polynomial Algorithms for Dedicated-Machine Time-Dependent Schedul-
ing Problems (

∑
Cj Criterion)

Algorithm Complexity Problem This book

A7 O(n log n) F2|pi,j = bi,jt|
∑

Cj Sect. 8.2.1, p. 187
A7 O(n log n) Fm|pi,j = bi,j(1− kt)|

∑
Cj Sect. 8.2.3, p. 192

A47 O(n log n) F2|pi,j = bi,jt, M1 � M2|
∑

Cj
(a) Sect. 8.2.1, p. 182

A49 O(n log n) F2|pi,j = bi,jt, M1 � M2|
∑

Cj Sect. 8.2.1, p. 187
A50 O(n log n) F2|pi,j = bi,jt, M1 � M2|

∑
Cj Sect. 8.2.1, p. 188

(a) 0 < bi,j < 1
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Table 8.10: Polynomial Algorithms for Dedicated-Machine Time-Dependent Schedu-
ling Problems (Lmax Criterion)

Algorithm Complexity Problem This book

A17 O(n log n) F2|pi,j = bi,j(1− kt)|Lmax Sect. 8.3.4, p. 194
A51 O(n3 log n) Fm|pi,j = ai,j + bt, Sect. 8.3.2, p. 191

no-idle, idm|
∑

Cj

A52 O(n3 log n) Fm|pi,j = ai,j + bt, Sect. 8.3.2, p. 191
no-idle, ddm|

∑
Cj

A53 O(n log n) Fm|pi,j = bi,j(A + t), δ|Lmax
(a) Sect. 8.3.2, p. 193

(a) δ ∈ {idm; no-wait, idm; no-idle, idm}

Table 8.11: Polynomial Algorithms for Single-Machine Time-Dependent Problems
(Criteria other than Cmax,

∑
Cj and Lmax)

Algorithm Complexity Problem This book

A26
(a) O(n log n) Fm|pi,j = bi,j(1− kt), bi,j = bj |

∑
Uj Sect. 8.4.3, p. 196

A29 O(n2) Fm|pi,j = bi,j(1− kt), bi,j = bj |fmax Sect. 8.4.3, p. 195

A54 O(n log n) Fm|pi,j = bi,j(A + t), δ|
∑

wjCj
(b) Sect. 8.4.2, p. 195

(a) modified version
(b) δ ∈ {idm; no-wait, idm; no-idle, idm}
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Approximation and heuristic algorithms

Computationally intractable time-dependent scheduling problems may be
solved by different near-optimal algorithms. Therefore, the third part of

the book is devoted to the main classes of such algorithms.
This part is composed of three chapters. In Chap. 9, we present approx-

imation and heuristic algorithms, which construct the final schedule in a step-
by-step manner. Greedy algorithms based on signatures of sequences of job
deterioration rates are discussed in Chap. 10. Local search algorithms are
presented in Chap. 11.

Chapter 9 is composed of five sections. In Sect. 9.1, we present approx-
imation and heuristic algorithms for the Cmax criterion. In Sects. 9.2 and 9.3,
we present the algorithms for the

∑
Cj and Lmax criteria, respectively. In

Sect. 9.4, we discuss heuristic algorithms for criteria other than Cmax,
∑

Cj

and Lmax. Concluding remarks and tables are given in Sect. 9.5.

9.1 Minimizing the maximum completion time

In this section, we present approximation and heuristic algorithms for the
Cmax criterion.

9.1.1 Proportional deterioration

Equal ready times and no deadlines

Single-machine problems. Recall that the problem of minimizing the Cmax

criterion for a single machine and proportionally deteriorating jobs is solvable
in O(n) time (cf. Theorem 6.1), while the problem with a single period of the
machine non-availability is computationally intractable (cf. Theorem 6.11).
Therefore, unless P = NP, only aproximation or heuristic polynomial-time
algorithms can be found for the latter problem (cf. Remark 3.7).
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There exist various approaches to constructing polynomial-time heuristics
for an intractable time-dependent scheduling problem. For example, we can
adapt algorithms proposed for scheduling problems with fixed job processing
times. We will show on examples that this approach fails in the case of time-
dependent scheduling if job deterioration rates are unbounded.

A scheduling algorithm may be an offline (cf. Definition 2.17 (a)), an online
(cf. Definition 2.17 (b)) or a semi-online algorithm (cf. Remark 2.18). The
same classification will be applied to time-dependent scheduling algorithms. In
the previous two parts of this book, we considered only offline time-dependent
scheduling algorithms. In this chapter, we also present online and semi-online
time-dependent scheduling algorithms.

As the first algorithm in the chapter, we consider an online algorithm,
which we will call H1. In this algorithm, as long as there are jobs to be
scheduled, the first available job is assigned to the first available machine.
(Notice that H1 is an adaptation of the algorithm proposed by Graham [122]
for scheduling jobs with fixed processing times.)

Ji et al. [155] applied algorithm H1 to the computationally intractable
problem 1, h11|pj = bjt, nres|Cmax (cf. Theorem 6.11) and established the
competitive ratio (cf. Definition 2.19) for the algorithm. (The symbols h11

and nres are explained in Remark 6.10).

Theorem 9.1. (Ji et al. [155]) Let W1,1 ≥ t0 ≡ S[1] denote the start time
of the non-availability period in the problem 1, h11|pj = bjt, nres|Cmax. Then
algorithm H1 is W1,1

t0
-competitive for the problem.

Proof. Let NJ1 (NJ2) denote the set of indices of jobs scheduled before (after)
the non-availability period in an optimal schedule. Let C�

max and CH1
max denote

the length of the optimal schedule and the schedule constructed by H1 algo-
rithm, respectively.

If NJ2 = ∅, then by (6.2) we have C�
max = CH1

max = t0
∏n

j=1(1 + bj) and
CH1

max
C�

max
= 1 ≤ W1,1

t0
.

Assume that NJ2 �= ∅. Then

t0
∏

j∈NJ1

(1 + bj) ≤ W1,1 (9.1)

and
C�

max = W1,2

∏

j∈NJ2

(1 + bj), (9.2)

where W1,2 > W1,1 denotes the end time of the non-availability period.
From (9.2) it follows that

W1,2

n∏

j=1

(1 + bj) = C�
max

∏

j∈NJ1

(1 + bj). (9.3)
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Hence, by (9.2) and (9.3), we have

CH1
max ≤ W1,2

n∏

j=1

(1 + bj). (9.4)

From (9.4), by (9.1) and (9.3), it follows that CH1
max ≤

W1,1
t0

C�
max. �

Remark 9.2. Analysis of online algorithms is a new topic in time-dependent
scheduling. In the classic scheduling (cf. Sect. 5.1), however, the matter has
been studied since the mid-1960s and it has an extensive literature; see the
references given in Sect. 2.3 for details.

For the problem 1, h11|pj = bjt, nres|Cmax, Ji et al. [155] also proposed an
offline algorithm, H2. The algorithm is an adaptation of another algorithm for
scheduling jobs with fixed processing times, LPT, proposed by Graham [123].
In algorithm LPT, jobs first are arranged in a list in the non-increasing order
of the processing times of the jobs. Next, as long as there are unscheduled jobs,
the first available job from the list is assigned to the first available machine.
In algorithm H2, job processing times are replaced by job deterioration rates.
The pseudo-code of the algorithm can be formulated as follows.

Algorithm H2 for the problem 1, h11|pj = bjt, nres|Cmax ([155])

Input: sequence (b1, b2, . . . , bn)
Output: a suboptimal schedule

� Step 1:
Arrange jobs in the non-increasing order of bj values;

� Step 2:
Apply algorithm H1 to the list of jobs obtained in Step 1.

Theorem 9.3. (Ji et al. [155]) If bmin := min1≤j≤n{bj}, then algorithm H2

is an approximation algorithm for the problem 1, h11|pj = bjt, nres|Cmax with
the worst-case ratio Ra

H2
= 1+bmin if 1+bmin ≤ W1,1

t0
and Ra

H2
= 1 otherwise.

Proof. See [155, Lemmata 4–5, Theorem 4]. !

Parallel-machine problems. Algorithm H1 has also been applied to the
computationally intractable problem Pm|pj = bjt|Cmax (cf. Theorem 7.1). We
will show now that if job deterioration rates in the problem are unbounded,
algorithm H1 can produce schedules which are arbitrarily bad.

Example 9.4. (Gawiejnowicz [89]) Consider the following instance I of the
problem P2|pj = bjt|Cmax. Let p1 = p2 = Kt, p3 = K2t for some constant

K > 0. Let both machines start at time t0 > 0. Then CH1
max(I)

C�
max(I) = K2+1

K+1 → ∞
as K →∞. �
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Cheng and Sun [46] considered the performance of algorithm H1 for the
problem Pm|pj = bjt|Cmax in the case when m = 2 and bj ∈ (0, 1〉 for all j.

Theorem 9.5. (Cheng and Sun [46]) If bj ∈ (0, 1〉 for 1 ≤ j ≤ n, then
algorithm H1 is

√
2-competitive for the problem P2|pj = bjt|Cmax.

Proof. Let σH1 and σ� denote the schedule constructed by algorithm H1 and
an optimal schedule for the considered problem, respectively. Let NJ1 and
NJ2 , where NJ1 ∩NJ2 = ∅ and NJ1 ∪NJ2 = NJ := {1, 2, . . . , n}, denote the
set of indices of jobs assigned to machine M1 and M2, respectively. Then,

Cmax(σ�) = max

⎧
⎨

⎩

∏

j∈NJ1

(1 + bj),
∏

j∈NJ2

(1 + bj)

⎫
⎬

⎭
≥

√
√
√
√

n∏

j=1

(1 + bj). (9.5)

Let Jk be the job that determines the maximum completion time in σ�. Then,

Sk ≤

√
√
√
√

n∏

j=1,j �=k

(1 + bj). (9.6)

Hence, by (9.5) and (9.6), we have

Cmax(σH1)
Cmax(σ�)

=
Sk(1 + bk)
Cmax(σ�)

≤

√
n∏

j=1,j �=k

(1 + bj)(1 + bk)

√
n∏

j=1

(1 + bj)

≤
√

1 + bk ≤
√

2. �

Remark 9.6. Cheng and Sun stated without proof a similar result for an arbi-
trary m : if bj ∈ (0, 1〉 for 1 ≤ j ≤ n, then algorithm H1 is 2

m−1
m -competitive

for the problem Pm|pj = bjt|Cmax; see [46, Theorem 2]. !

Remark 9.7. In the case when only the largest deterioration rate, bmax :=
max1≤ j ≤n {bj}, is known in advance, algorithm H1 is (1 + bmax)1−

1
m -

competitive for the problem Pm|pj = bjt, bj ≤ bmax|Cmax; see
[46, Theorem 6]. !

Cheng and Sun also proposed a semi-online algorithm (cf. Remark 2.18)
for the problem P2|pj = bjt|Cmax in the case when only the largest possible
deterioration rate, bmax, is known in advance.

Algorithm H3 for the problem P2|pj = bjt, bj ≤ bmax|Cmax ([46])

Input: sequence (b1, b2, . . . , bn); numbers t0, bmax

Output: a suboptimal schedule

� Step 1:
L ← t0;
b ← deterioration rate of the current job;
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� Step 2:
while ((b �= bmax) ∧ ((1 + b)L > (1 + bmax)2)) do

Assign the current job to machine M1;
L ← (1 + b)L;
b ← deterioration rate of the current job;

� Step 3:
Assign the current job to machine M2;

� Step 4:
Apply algorithm H1 to all subsequent jobs.

Theorem 9.8. (Cheng and Sun [46]) If bj ∈ (0, 1〉 for 1 ≤ j ≤ n and bmax :=
max1≤j≤n{bj}, then algorithm H3 is

√
1 + bmax-competitive for the problem

P2|pj = bjt, bj ≤ bmax|Cmax.

Proof. See [46, Theorem 5]. !

For the problem Pm|pj = bjt|Cmax, Mosheiov [219] proposed to use al-
gorithm H2. Unfortunately, if deterioration rates are unbounded, in this case
also, the algorithm can produce arbitrarily bad schedules.

Example 9.9. (Mosheiov [219]) Consider the following instance I of the prob-
lem P2|pj = bjt|Cmax : n = 5, b1 = b2 = K

1
2 − 1, b3 = b4 = b5 = K

1
3 − 1 for

some constant K > 1. Then Ra
H2

(I) = CH2
max(I)

C�
max(I) = K

7
6

K = K
1
6 →∞ as K →∞.

�

Examples 9.4 and 9.9 show that well-known scheduling algorithms for jobs
with fixed processing times are a risky choice for problems with unbounded
deterioration. The situation changes if we bound job deterioration rates.

Lemma 9.10. (Hsieh and Bricker [141]) If I is an arbitrary instance of the
problem Pm|pj = bjt|Cmax, then

CH2
max(I \ {Jn}) ≤

⎛

⎝
n−1∏

j=1

(1 + bj)

⎞

⎠

1
m

.

Proof. See [141, Proposition 1 (b)]. !

Theorem 9.11. (Hsieh and Bricker [141]) Let I be an arbitrary instance of
the problem Pm|pj = bjt|Cmax. If bj ∈ (0, 1) for 1 ≤ j ≤ n and job Jn

is assigned to the machine whose maximum completion time determines the
overall maximum completion time, then

Ra
H2

(I) ≤ (1 + bn)1−
1
m .
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Proof. Let I be an arbitrary instance of the problem Pm|pj = bjt|Cmax.

First, by Lemma 7.2 we have C�
max(I) ≥

(∏n
j=1(1 + bj)

) 1
m

. Second, there

holds the equality CH2
max(I) = CH2

max(I \{Jn})(1+ bn). Finally, by Lemma 9.10,

CH2
max(I \ {Jn}) ≤

(∏n−1
j=1 (1 + bj)

) 1
m

. Therefore, Ra
H2

(I) is not greater than

CH2
max(I \ {Jn})(1 + bn)
(∏n

j=1(1 + bj)
) 1

m

≤

(∏n−1
j=1 (1 + bj)

) 1
m

(1 + bn)
(∏n

j=1(1 + bj)
) 1

m

= (1 + bn)1−
1
m .

�

Theorem 9.12. (Hsieh and Bricker [141]) Let I be an arbitrary instance of
the problem Pm|pj = bjt|Cmax. If bj ∈ (0, 1) for 1 ≤ j ≤ n, and if job
Jk, 1 < k < n, is assigned to the machine whose maximum completion time
determines the overall maximum completion time, then

Ra
H2

(I) ≤ (1 + bk)1−
1
m (1 + bn)−

n−k
m .

Proof. Let I be an arbitrary instance of the problem Pm|pj = bjt|Cmax.
First, there holds the equality CH2

max(I) = CH2
max(I \ {Jk})(1 + bk). Second, by

Lemma 9.10, we have CH2
max(I \ {Jn}) ≤

(∏k−1
j=1 (1 + bj)

) 1
m

. Hence,

Ra
H2

(I) ≤ CH2
max(I \ {Jk})(1 + bk)
(∏n

j=1(1 + bj)
) 1

m

≤

(∏k−1
j=1 (1 + bj)

) 1
m

(1 + bk)
(∏n

j=1(1 + bj)
) 1

m

=

(1 + bk)1−
1
m

(
n∏

k+1

(1 + bj)

)− 1
m

≤ (1 + bk)1−
1
m (1 + bn)−

n−k
m .

�

Remark 9.13. In the formulation of Theorem 9.12, one can assume 1 < k ≤ n
instead of 1 < k < n. The new formulation covers formulations of both
Theorem 9.11 and Theorem 9.12.

Remark 9.14. From Theorem 9.12 it follows that if the values of bj are uni-
formly distributed in the (0, 1) interval, then limn→∞

Cmax(H2)
C�

max
= 1, i.e., algo-

rithm H2 is asymptotically optimal.

Hsieh and Bricker [141] conducted a computational experiment in which
instances with up to n = 500 jobs were solved by algorithm H2. The results
of the experiment confirmed the observation from Remark 9.14.
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Fully polynomial-time approximation schemata

Single-machine problems. Ji et al. [155] proposed an FPTAS for the prob-
lem 1, h11|pj = bjt, nres|Cmax. The main idea of the scheme is to construct
from a given instance of the problem an instance of the KP problem (cf.
Sect. 3.2) and apply a standard FPTAS for the KP problem. The proposed
FPTAS runs in O(n2ε−1) time; see [155, Theorem 7] for details. !
Parallel-machine problems. Ren and Kang [243] proposed an FPTAS
(cf. Definition 2.16) for the problem Pm|pj = bjt|Cmax. The scheme, based
on the same idea as the scheme proposed by Kovalyov and Kubiak [176], is
a modification of the FPTAS proposed by Kang et al. [160] for the problem
Pm|pj = aj + bjt|Cmax (cf. Sect. 9.1.2).

In the modified FPTAS, the variables xj , 1 ≤ j ≤ n, and the set X are
defined as those from Sect. 9.1.2. By Theorem 6.1 we can assume that all
jobs, available starting from time t0 > 0, have been indexed in an arbitrary
way. Definitions of the functions F i

j and Q(x) are as follows: F i
0(x) := t0 for

1 ≤ i ≤ m, F i
j (x) := F i

j−1(x) + bjF
i
j−1(x) for i = xj , F i

j (x) := F i
j−1(x) for

i �= xj and Q(x) := max{F i
n(x) : 1 ≤ i ≤ m}. The remaining parts of this

FPTAS are organized similarly to those in the FPTAS from Sect. 9.1.2.
For L := log max{n, 1

ε , 1 + bmax, S1}, where bmax := max1≤j≤n{bj}, the
modified scheme runs in O(n2m+1Lm+1ε−m) time. We refer the reader to
[243, Sect. 3] for more details on this FPTAS. !

Remark 9.15. Ren and Kang [243] also proposed an FPTAS for the problem
P2|pj = bjt|Cmax, running in O(n5L3ε−2) time; see [243, Sect. 2]. !

9.1.2 Linear deterioration

Equal ready times and no deadlines

Parallel-machine problems. Hsieh and Bricker [141] proposed three
heuristic algorithms for the problem Pm|pj = aj + bjt|Cmax, where bj ∈ (0, 1)
for 1 ≤ j ≤ n. All of these algorithms are adaptations of algorithm H2.

The first heuristic algorithm exploits Theorem 6.24.

Algorithm H4 for the problem Pm|pj = aj + bjt|Cmax ([141])

Input: sequences (a1, a2, . . . , an), (b1, b2, . . . , bn)
Output: a suboptimal schedule

� Step 1:
Arrange jobs in the non-increasing order of aj

bj
ratios;

� Step 2:
for i ← 1 to n do

Assign job J[i] to the machine with the smallest completion time.
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The second heuristic algorithm uses slightly another rule of jobs ordering.

Algorithm H5 for the problem Pm|pj = aj + bjt|Cmax ([141])

Input: sequences (a1, a2, . . . , an), (b1, b2, . . . , bn)
Output: a suboptimal schedule

� Step 1:

Arrange jobs in the non-increasing order of 1−bj

aj
ratios;

� Step 2:
for i ← 1 to n do

Assign job J[i] to the machine with the smallest machine load.

The third heuristic algorithm contains a random step and is based on the
following observation. The optimal schedule for the problem Pm|pj = aj+
bjt|Cmax is often very similar to the schedules generated by algorithm H5.
Since H5 assigns jobs with smaller values of the ratio aj

bj
before those with

larger ratios, it seems reasonable to choose the jobs to be assigned with a
probability inversely proportional to the ratio aj

bj
.

Algorithm H6 for the problem Pm|pj = aj + bjt|Cmax ([141])

Input: sequences (a1, a2, . . . , an), (b1, b2, . . . , bn)
Output: a suboptimal schedule

� Step 1:
NJ ← {1, 2, . . . , n};
Z0 ← 0;
Zn+1 ← 1;
j ← 1;

� Step 2:
while (j ≤ n) do

tmp ←
∑

k∈NJ

bk

ak
;

for all i ∈ NJ do
zi ← bi

ai∗tmp ;
Zi ←

∑

j∈NJ
j≤i

zj ;

Generate a random number r ∈ (0, 1);
if ((Zi−1 < r ≤ Zi) ∧ (i ∈ NJ )) then Tj ← i
else if ((Zi−1 < r ≤ Zi) ∧ (i = n + 1)) then Tj ← n + 1;
NJ ← NJ \ {i};
j ← j + 1

� Step 3:
Rearrange jobs according to table T .
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Computational experiments conducted for n = 10 and n = 15 jobs show
that for these values of n, algorithms H4, H5 and H6 generate schedules that
are close to optimal ones; see [141, Sect. 5].

Dedicated-machine problems. Lee et al. [196] proposed four heuristics for
the problem F2|pi,j = ai,j + bt|Cmax. The first of them is algorithm A39. The
next two algorithms are in the form of H7 : (a1,j , a2,j , b) $→ (a1,j) ↗ and
H8 : (a1,j , a2,j , b) $→ (a2,j) ↗, respectively. All these heuristic algorithms run
in O(n log n). The fourth heuristic algorithm, H9, is composed of two phases.
In the first phase, one of the above three heuristics is applied to obtain an
initial schedule. In the second phase, this schedule is improved by all possible
exchanges of two jobs. This algorithm runs in O(n2) time.

The results of computational experiments suggest that the best schedules
are generated by heuristic H9, if the initial schedule was generated by heuristic
H8; we refer the reader to [196, Sect. 4–5] for more details.

Fully polynomial-time approximation schemata

Parallel-machine problems. Kang and Ng [161] proposed an FPTAS
(cf. Definition 2.16) for the problem Pm|pj = aj + bjt|Cmax. The scheme,
based on the same idea as the scheme proposed by Kovalyov and Kubiak [176],
is a modification of the FPTAS proposed by Kang et al. [160] for the problem
Pm|pj = aj − bjt|Cmax (cf. Sect. 9.1.4).

In the modified FPTAS, the variables xj , 1 ≤ j ≤ n, and the set X are
defined as those from Sect. 9.1.4. By Theorem 6.24 we can assume that all
jobs have been indexed in such a way that a1

b1
≤ a2

b2
≤ . . . ≤ an

bn
. Definitions

of the functions F i
j and Q(x) are as follows: F i

0(x) := 0 for 1 ≤ i ≤ m,

F i
j (x) := F i

j−1(x) + aj + bjF
i
j−1(x) for i = xj , F i

j (x) := F i
j−1(x) for i �= xj

and Q(x) := max{F i
n(x) : 1 ≤ i ≤ m}. The remaining parts of this FPTAS

are organized similarly to those in the FPTAS presented in Sect. 9.1.4.
For L := log max{n, 1

ε , amax, 1 + bmax}, where amax := max1≤j≤n{aj} and
bmax := max1≤j≤n{bj}, the modified scheme runs in O(n2m+1Lm+1ε−m) time.
We refer the reader to [161, Sect. 2] for more details on this FPTAS. !

Distinct ready times and deadlines

Lee et al. [194] proposed two heuristics for the problem 1|pj = aj +bt, rj |Cmax.
Both these algorithms run in O(n2) time and are composed of two phases.

The first of these algorithms constructs a schedule by selecting at each
stage the job with the smallest completion time. The initial schedule con-
structed in the first phase, is iteratively improved in the second phase.

For a given 1 < k < n, let τ(J[k] → J[l]) denote a schedule τ in which
job J[k] has been moved immediately before job J[l], while all other jobs are
scheduled as in τ. The pseudo-code of the first algorithm is as follows.
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Algorithm H10 for the problem 1|pj = aj + bt, rj |Cmax ([194])

Input: sequences (a1, a2, . . . , an), (r1, r2, . . . , rn), number b
Output: a suboptimal schedule σ

� Step 1:
k ← 1;
C[0] ← 0;
rmax ← max

1≤j≤n
{rj};

NJ ← {1, 2, . . . , n};
σ ← (φ);

� Step 2: Phase I
while (k < n) do

if C[k−1] < rmax then Choose i ∈ NJ with the smallest value of
↪→ (1 + b)max{ri, C[k−1]}+ ai

else Choose i ∈ NJ with the smallest ai;
σk ← i;
C[k] ← (1 + b)max{ri, C[k−1]}+ ai;
NJ ← NJ \ {i};
k ← k + 1;

σ = (σ1, σ2, . . . , σn−1, NJ ); � initial schedule σ
� Step 3: Phase II

τ ← σ;
l ← 1;
k ← l + 1;
while (k < n) do

σ ← τ(J[k] → J[l]);
if Cmax(σ) < Cmax(τ) then τ ← σ;
if k < n then k ← k + 1
else l ← l + 1;

� Step 4:
return σ.

The second heuristic also generates the final schedule in two phases. The
algorithm, however, in a slightly different way constructs the schedule gener-
ated in the first phase. The pseudo-code of the algorithm is as follows.

Algorithm H11 for the problem 1|pj = aj + bt, rj |Cmax ([194])

Input: sequences (a1, a2, . . . , an), (r1, r2, . . . , rn), number b
Output: a suboptimal schedule σ

� Step 1:
k ← 1;
C[0] ← 0;
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rmax ← max
1≤j≤n

{rj};
NJ ← {1, 2, . . . , n};
σ ← (φ);

� Step 2: Phase I
while (k < n) do

if C[k−1] < rmax then A ← {i ∈ NJ : ri < C[k−1]};
if (A �= ∅) then Choose i ∈ A with the smallest ai;

C[k] ← (1 + b)C[k−1] + ai

else Choose i ∈ NJ with the smallest ri;
C[k] ← (1 + b)ri + ai;

σk ← i;
NJ ← NJ \ {i};
k ← k + 1;

σ = (σ1, σ2, . . . , σn−1, NJ ); � initial schedule σ
� Step 3: Phase II

τ ← σ;
l ← 1;
k ← l + 1;
while (k < n) do

σ ← τ(J[k] → J[l]);
if Cmax(σ) < Cmax(τ) then τ ← σ;
if k < n then k ← k + 1
else l ← l + 1;

� Step 4:
return σ.

The performance of algorithms H10 and H11 was tested on instances with
12 ≤ n ≤ 28 jobs. The results of the computational experiment suggest that
on average the algorithms produce schedules of satisfactory quality; see [194,
Sect. 5] for details.

9.1.3 General non-linear deterioration

Equal ready times and no deadlines

Single-machine problems. Gupta and Gupta [128] proposed two heuristics
for a single machine time-dependent scheduling problem with job processing
times in the form of (6.23), defined by a polynomial of m ≥ 2 degree. Both
heuristics are based on the calculation of a set of ratios.

In the first algorithm, the ratios are independent of time. Since the pro-
cessing times of jobs are polynomials of m ≥ 2 degree, the algorithm first
calculates m different ratios in a loop. Next, it generates m different sched-
ules by arranging jobs in the non-increasing order of the j-th ratio values,
1 ≤ j ≤ m. The pseudo-code of the algorithm can be formulated as follows.
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Algorithm H12 for the problem 1|pj = aj + bjt + . . . + njt
m|Cmax ([128])

Input: sequences (aj , bj , . . . , nj), 1 ≤ j ≤ n
Output: a suboptimal schedule

� Step 1:
NJ ← {1, 2, . . . , n};

� Step 2:
for each j ∈ NJ do

qj(a) ← aj ;
qj(b) ← aj

bj
;

...
...

...
qj(m) ← aj

mj
;

� Step 3:
Generate m schedules by arranging jobs in the non-increasing order
↪→ of the qj(x) values for a ≤ x ≤ m;

� Step 4:
Select the schedule with the minimal completion time.

In the second algorithm, the calculated parameters qj(x) are functions of
time. We formulate this algorithm for the case of quadratic job processing
times, pj = aj + bjt + cjt

2 for 1 ≤ j ≤ n.

Algorithm H13 for the problem 1|pj = aj + bjt + cjt
2|Cmax ([128])

Input: sequences (aj , bj , cj), 1 ≤ j ≤ n
Output: a suboptimal schedule σ

� Step 1:
σ ← (φ);
NJ ← {1, 2, . . . , n};
T ← 0;

� Step 2:
while (NJ �= ∅) do

for each j ∈ NJ do
qj(a) ← aj

bj+cjT ;

qj(b) ← aj+bjT+cjT 2

bj+2cjT ;
qj(c) ← aj + bjT + cjT

2;
Find k ∈ NJ such that qk(x) = min{qj(x) : j ∈ NJ ∧ x ∈ {a, b, c}};
σ ← (σ|k);
NJ ← NJ \ {k};
T ← T + Ck;

� Step 3:
return σ.
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The performance of algorithms H12 and H13 was tested on small instances
with 4 ≤ n ≤ 7 jobs. Since the heuristics were found to be unpredictable in
producing schedules close to the optimal one, a technique for improvement of
the final schedule has also been proposed; see [128, Tables 6–7].

The problem 1|pj = fj(t)|Cmax with general non-linear processing times
was also considered by Alidaee [4]. On the basis of Theorem 6.47, Alidaee
proposed the following algorithm.

Algorithm H14 for the problem 1|pj = fj(t)|Cmax ([4])

Input: sequence (f1, f2, . . . , fn)
Output: a suboptimal schedule σ

� Step 1:
T ← 0;
NJ ← {1, 2, . . . , n};
K ← n;
σ ← (φ);

� Step 2:
while (NJ �= ∅) do

z ← T + 1
2K

∑

k∈NJ

fk(T );

Choose the smallest i ∈ NJ such that f ′
i(z)

fi(T ) = max
j∈NJ

{
f ′

j(z)

fj(T )

}
;

σ ← (σ|i);
T ← T + fi(T );
NJ ← NJ \ {i};
K ← K − 1;

� Step 3:
return σ.

Algorithm H14 has been tested on two sets of instances. In the first set of
instances, the job processing times were quadratic, i.e. pj = aj + bjt + cjt

2

for 1 ≤ j ≤ n, where 5 ≤ n ≤ 8 (see [4, Table 1]). In the second set, the job
processing times were exponential, pj = eajt for 1 ≤ j ≤ n, where 5 ≤ n ≤ 9.
Twenty instances were generated for each value of n.

For quadratic processing times, algorithm H14 gave better results than
algorithm H13. However, the results became worse for a polynomial of degree
higher than two, and for the case when the coefficients aj , bj , . . . , nj were
considerably different in size for 1 ≤ j ≤ n.

Another algorithm for the problem with exponential job processing times,
pj = eajt for 1 ≤ j ≤ n, has been proposed by Hsieh [140]. Before we formulate
the algorithm, we will state an auxiliary result.

Lemma 9.16. (Hsieh [140]) Let function h(t) be in the form of

h(t) ≡ fj+1(t) + fj(t + fj+1(t))− fj(t)− fj+1(t + fj(t)),



216 9 Approximation and heuristic algorithms

where fj(t) := eajt. Then the equation h(t) = 0
(a) has exactly one solution in (0,∞) for ai ∈ (0, aj), where aj ∈ (0, 1);
(b) has no solution for t ∈ [0, 1].

Proof. (a) See [140, Lemma 2].
(b) See [140, Lemma 4]. !

On the basis of Lemma 9.16 and some other results (see [140, Sect. 3]),
Hsieh proposed the following algorithm.

Algorithm H15 for the problem 1|pj = eajt|Cmax ([140])

Input: sequence (a1, a2, . . . , an)
Output: a suboptimal schedule σ

� Step 1:
Arrange jobs in the non-decreasing order of aj values;
NJ ← {1, 2, . . . , n};

� Step 2:
while (NJ �= ∅) do

for i ← 1 to n do
for j ← 1 to n do

Ta[i],a[j] ← solution of the equation h(t) = 0; � cf. Lemma 9.16
σ ← (n, n− 1);
NJ ← NJ \ {n, n− 1};
T ← 1 + ean−1 ;
if (T < Ta[i],a[j] for all i, j ∈ NJ ) then k = arg max

i∈NJ
{a[i]}

else k ← p, where (p, q) = arg min
(i,j)

{T − Ta[i],a[j] |T > Ta[i],a[j]};
T ← T + fk(T );
NJ ← NJ \ {i};

� Step 3:
return σ.

For exponential job processing times given by (6.40), Janiak and
Kovalyov [146] proposed three heuristics. Applying the notation introduced in
Remark 6.29, the heuristics can be denoted as H16 : (aj |bj |rj |dj) $→ (rj ↗),
H17 : (aj |bj |rj |dj) $→ (rj ↗ |bj ↘) and H18 : (aj |bj |rj |dj) $→ (rj ↗ |aj ↘).
According to the authors (see [146, Sect. 4]), algorithm H16 gives, on average,
the best results.

Distinct ready times and deadlines

Single-machine problems. For step deteriorating processing times given
by (6.27), Mosheiov [217] proposed the following heuristic algorithm.
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Algorithm H19 for the problem 1|pj ≡ (6.27)|Cmax ([217])

Input: sequences (a1, a2, . . . , an), (b1, b2, . . . , bn), (d1, d2, . . . , dn)
Output: a suboptimal schedule σ

� Step 1:
L ← ∅;
E ← {1, 2, . . . , n};
Arrange jobs in the non-increasing order of dj values;
Schedule jobs in the obtained order;

� Step 2:
while (there exist j ∈ E such that Sj > dj) do

k ← min{j ∈ E : Sj > dj};
l ← arg min{ bj−aj

aj
: j ∈ E, j ≤ k, aj ≥ Sk − dk};

L ← L ∪ {l};
E ← E \ {l};

� Step 3:
σ ← (E|L);
return σ.

Algorithm H19 is an adaptation of Moore-Hodgson’s algorithm for the
problem 1||

∑
Uj (cf. [213]). Though in the worst case algorithm H19 may

produce arbitrarily bad schedules (see [217, Example 1]), the results of the
computational experiment reported in [217, Sect. 2.3] suggest that on average
the performance of the algorithm is quite satisfactory.

For multi-step deteriorating processing times given by (6.34), Mosheiov
proposed the following heuristic, which is an adaptation of algorithm H19.
For simplicity of presentation, we formulate the algorithm for the case of
two-step deterioration.

Algorithm H20 for the problem 1|pj ≡ (6.34)|Cmax ([217])

Input: sequences (a1
1, a

1
2, . . . , a

1
n), (a2

1, a
2
2, . . . , a

2
n),

(d1
1, d

1
2, . . . , d

1
n), (d2

1, d
2
2, . . . , d

2
n),

Output: a suboptimal schedule σ

� Step 1:
L1 ← ∅;
E1 ← {1, 2, . . . , n};
L2 ← ∅;
E2 ← {1, 2, . . . , n};
Arrange jobs in the non-increasing order of d1

j values;
T ← 0; � the current time
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� Step 2:
while (there exist j ∈ E1 such that Sj > d1

j ) do
l1 ← min{j ∈ E1 : Sj > d1

j};
l2 ← arg min{a2

j−a1
j

a1
j

: j ∈ E1, j ≤ k, a1
j ≥ Sl1 − d1

l1
};

L1 ← L1 ∪ { l1};
E1 ← E1 \ { l1};
T ← T + Cl1 ;

� Step 3:
Arrange jobs in L1 in the non-decreasing order of a2

j values;
Call the obtained sequence τ ;
Starting at time T, schedule jobs in L1 according to τ ;
while (there exist j ∈ E2 such that Sj > d2

j ) do
l1 ← min{j ∈ E2 : Sj > d2

j};
l2 ← arg min{a3

j−a2
j

a2
j

: j ∈ E2, j ≤ l1, a
2
j ≥ Sl1 − d2

l1
};

L2 ← L2 ∪ { l1};
E2 ← E2 \ { l2};

� Step 4:
σ ← (E1|(L1 \ L2)|L2);
return σ.

The reported results of computational experiments (see [217, Sect. 4.2])
suggest that on average the schedules generated by algorithm H20 are about
10% worse than the optimal ones.

For job processing times given by (6.37), Kunnathur and Gupta [178] pro-
posed five heuristic algorithms. All the algorithms construct the final schedule
iteratively, but they differently select the job to be added to the subschedule
constructed so far.

The first heuristic algorithm proposed by the authors iteratively chooses
the job with the minimal value of the function L, where L(σ|k) := Cmax(σ|k)+
∑

j∈NJ
(aj + max{0, bj(Cmax(σ|j)− dj)}) for σ ∈ Ŝn and k ∈ {1, 2, . . . , n}.

Algorithm H21 for the problem 1|pj ≡ (6.37)|Cmax ([178])

Input: sequences (aj , bj , dj), 1 ≤ j ≤ n
Output: a suboptimal schedule σ

� Step 1:
σ ← (φ);
NJ ← {1, 2, . . . , n};
T ← 0;

� Step 2:
while (NJ �= ∅) do

Find j ∈ NJ such that L(σ|j) = min{L(σ|k) : k ∈ NJ };
� Break ties by using the smallest dk, then the largest bk

� ↪→ and then the smallest ak
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σ ← (σ|j);
NJ ← NJ \ {j};
T ← T + pj ;

� Step 3:
return σ.

The second heuristic algorithm iteratively chooses the job with the minimal
value of the ratio aj

bj
.

Algorithm H22 for the problem 1|pj ≡ (6.37)|Cmax ([178])

Input: sequences (aj , bj , dj), 1 ≤ j ≤ n
Output: a suboptimal schedule σ

� Step 1:
σ ← (φ);
NJ ← {1, 2, . . . , n};
T ← 0;

� Step 2:
while (NJ �= ∅) do

repeat
L ← {k ∈ NJ : dk < T};
F ← NJ \ L;
Find j ∈ F such that aj

bj
= min

k∈F
{ak

bk
};

� Break ties by selecting the job with the smallest dk

σ ← (σ|j);
NJ ← NJ \ {j};
T ← T + pj ;

until (F = ∅)
Arrange L in the non-decreasing order of aj−djbj

bj
ratios;

σ ← (σ|L);
T ← T +

∑

i∈L

pi;

� Step 3:
return σ.

The remaining three heuristics proposed in [178] differ from algorithm
H22 only in Step 2 (see [178, Sect. 4] for details). The reported results of
computational experiments (see [178, Sect. 6]) suggest that algorithm H21 is
the best of all the five algorithms.

Parallel-machine problems. Mosheiov [217] extended algorithm H19 to
parallel-machine settings. Let JMi

and CMi
denote the set of all jobs assigned

to machine Mi and the completion time of the last job assigned to machine Mi,
1 ≤ i ≤ m, respectively. The pseudo-code of the algorithm can be formulated
as follows.
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Algorithm H23 for the problem Pm|pj ≡ (6.27)|Cmax ([217])

Input: sequences (a1, a2, . . . , an), (b1, b2, . . . , bn), (d1, d2, . . . , dn)
Output: a suboptimal schedule σ

� Step 1:
Arrange jobs in the non-decreasing order of aj values;
L ← ∅;
E ← {1, 2, . . . , n};
j ← 0;
for i ← 1 to m do

CMi
← 0;

� Step 2:
while (j ≤ n) do

j ← j + 1;
k ← arg min{CMi

: 1 ≤ i ≤ m};
if (CMk

≤ dj) then CMk
← CMk

+ aj

else
l ← arg min{ bi−ai

ai
: i ≤ j, Ji ∈ JMk

, ai ≥ CMk
− dj};

L ← L ∪ {l};
E ← E \ {l};
CMk

← CMk
− ai;

� Step 3:
Arrange jobs in L in the non-increasing order of bj values;
j ← 0;
repeat

j ← j + 1;
k ← arg min{CMk

: 1 ≤ i ≤ m};
CMk

← CMk
+ aj ;

until (j > r);
σ ← (JM1 |JM2 | . . . |JMm

);
return σ.

Algorithm H23 runs in O(n(n + m)) ≈ O(n2) time, since usually n ) m.
In the worst case, algorithm H23, similarly to H19, may produce arbitrarily

bad schedules (see [217, Example 2]). Computational experiments for m = 2
machines suggest, however, that average behaviour of H23 is quite satisfactory
(see [217, Sect. 3.3] for details).

Fully polynomial-time approximation schemata

Single-machine problems. Cai et al. [39] proposed a fully polynomial-
time approximation scheme (an FPTAS, see Definition 2.16) for the problem
1|pj = a + bj max{t − d0, 0}| Cmax, where d0 > 0 is the time after which job
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processing times start to deteriorate. The scheme is based on the observation
that finding an optimal schedule is equivalent to finding the set of jobs that
are completed before d0 and the first job, Jd0 , that is completed after d0. (By
Theorem 6.68, all jobs which start after time t = d0 should be arranged in the
non-decreasing order of aj

bj
ratios.) Iteratively constructing, for each possible

choice of Jd0 , a polynomial number of sets of schedules which differ by the
factor 1 + ε

2n , and choosing from each such set the schedule with the minimal
value of a certain function, we obtain an approximate schedule differing from
the optimal one by the factor 1 + ε.

For a given ε > 0 and for n jobs, the FPTAS runs in O(n6ε−2) time. We
refer the reader to [39, Sect. 5] for more details on this FPTAS. !

Another FPTAS, for the single-machine problem with job processing times
given by (6.39) and the maximum completion time criterion, has been devel-
oped by Kovalyov and Kubiak [176]. The main idea of the scheme is as follows.

Let xj , for 1 ≤ j ≤ n, be a 0-1 variable such that xj := 0 if job Jj is
early, and xj := 1 if job Jj is tardy or suspended (cf. Sect. 6.1.5). Let X
be the set of all 0-1 vectors x = [x1, x2, . . . , xn−1]. Define functions Fj , Gj

and Pj as follows: F0(x) := s, G0(x) := s− d, P0(x) := 0; Fj(x) := Fj−1(x)+
xj(aj +bjGj−1(x)), Gj(x) := min{Fj(x),D}−d and Pj(x) :=

∑j
i=1 aj(1−xi),

where x ∈ X, 1 ≤ j ≤ n−1, and s is the starting time of the earliest tardy job.
The FPTAS iteratively constructs a sequence of sets Y1, Y2, . . . , Yn−1,

where Yj ⊆ Xj := {x ∈ X : xi = 0, j + 1 ≤ i ≤ n − 1} for 1 ≤ j ≤ n − 1. In
each iteration of the algorithm, set Yj is partitioned into subsets in such a way
that for any two vectors from the same subset the values of functions Fj and
Gj are close enough. Next, from each such subset, only the solution with the
minimal value of function Pj is chosen and used in the next iteration, while all
remaning solutions are discarded. The final solution is the vector x◦ ∈ Yn−1

such that Fn−1(x◦) = min{Fn−1(x) : x ∈ Yn−1}.
For L := log max{n,D, 1

ε , amax, bmax}, where amax := max1≤j≤n{aj} and
bmax := max1≤j≤n{bj}, the FPTAS runs in O(n5L4ε−2). We refer the reader
to [176, Sects. 2–3] for more details. !

Remark 9.17. Woeginger [296, Sect. 8.4] proved the existence of an FPTAS
for the single-machine problem with job processing times given by (6.39) and
the Cmax criterion applying dynamic programming approach and the notion
of cc-benevolent problem (cf. [296, Sect. 7]).

9.1.4 Linear shortening

Equal ready times and deadlines

Single-machine problems. For the problem 1|pj = aj − bj(t − y), y > 0,
0 < bj < 1, Y < ∞|Cmax, Cheng et al. [54] proposed three heuristic algo-
rithms. The time complexity of all these algorithms is O(n log n).
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The first algorithm is based on Property 6.116 and is equivalent to the
algorithm A8 : (aj |bj |y|Y ) $→ (aj

bj
↘).

In the second algorithm, the jobs starting by time t = y are sequenced in
the non-decreasing order of aj

bj
ratios and Property 6.116 is applied only to

jobs that start after time y.

Algorithm H24 for the problem
1|pj = aj − bj(t− y), y > 0, 0 < bj < 1, Y < ∞|Cmax ([54])

Input: sequences (a1, a2, . . . , an), (b1, b2, . . . , bn), numbers y, Y
Output: a suboptimal schedule σ

� Step 1:
Arrange jobs in the non-decreasing order of aj

bj
ratios;

i ← 1;
j ← n;
σ ← (φ);
T ← 0;

� Step 2:
while (T < y) do

σ ← (σ|[i]);
T ← T + a[i];
i ← i + 1;

� Step 3:
while (i < j) do

σ ← (σ|[j]);
if (y ≤ T < Y ) then T ← T + a[j] − b[j](T − y);
if (T ≥ Y ) then T ← T + a[j] − b[j](Y − y);
j ← j − 1;

� Step 4:
return σ.

The third algorithm can be formulated as follows.

Algorithm H25 for the problem
1|pj = aj − bj(t− y), y > 0, 0 < bj < 1, Y < ∞|Cmax ([54])

Input: sequences (a1, a2, . . . , an), (b1, b2, . . . , bn), numbers y, Y
Output: a suboptimal schedule σ

� Step 1:
Arrange jobs in the non-decreasing order of aj

bj
ratios;

σ(1) ← (φ);
σ(2) ← (φ);
NJ ← {1, 2, . . . , n};
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� Step 2:
while (NJ �= ∅) do

Choose k ∈ NJ such that ak = max
j∈NJ

{aj};

σ(1) ← (σ(1)|k);
NJ ← NJ \ {k};
Choose l ∈ NJ such that bl = max

j∈NJ
{bj};

σ(2) ← (l|σ(2));
NJ ← NJ \ {l};

� Step 3:
σ ← (σ(1)|σ(2));
return σ.

These three algorithms were tested on instances with n = 10, 50, 100, 500
and 1,000 jobs. The results of computational experiments suggest (see [54,
Sect. 2.3]) that the algorithm A8 : (aj |bj |y|Y ) $→ (aj

bj
↘) is the best one.

Fully polynomial-time approximation schemata

Parallel-machine problems. Kang et al. [160] proposed an FPTAS for the
problem Pm|pj = aj − bjt|Cmax, where deterioration rates satisfy inequality
(6.48). The scheme is based on the same idea as the scheme proposed by
Kovalyov and Kubiak [176].

The main idea is as follows. By Theorem 6.87 (c), we can assume that all
jobs have been indexed in such a way that a1

b1
≥ a2

b2
≥ . . . ≥ an

bn
. Let xj , for

1 ≤ j ≤ n, be a variable such that xj := k if job Jj is executed on machine Mk,
where k ∈ {1, 2, . . . ,m}. Let X be the set of all vectors x = [x1, x2, . . . , xn]
such that xj := k, 1 ≤ j ≤ n, 1 ≤ k ≤ m. Define functions Fj and Q as
follows: F i

0(x) := 0 for 1 ≤ i ≤ m; F k
j (x) := F k

j−1(x) + aj − bjF
k
j−1(x) for

xj = k; F i
j := F i

j−1(x) for xj �= k and Q(x) := max{F j
n(x) : 1 ≤ j ≤ m}.

Starting from the set Y0 := {(0, 0, . . . , 0)}, the FPTAS iteratively con-
structs a sequence of sets Y1, Y2, . . . , Yn, where Yj , 1 ≤ j ≤ n, is obtained
from Yj−1 by adding k, k = 1, 2, . . . ,m, in the j-th position of each vector in
Yj−1 and by applying to all obtained vectors the functions F k

j (x) and F i
j (x).

Next, Yj is partitioned into subsets in such a way that any two solutions in
the same subset are close enough. From each such subset, only the solution
with the minimal value of a certain function is chosen as the subset’s rep-
resentative for the next iteration (all remaning solutions are discarded). The
final solution is the vector x◦ ∈ Yn such that Q(x◦) = min{Q(x) : x ∈ Yn}.

For L := log max{n, 1
ε , amax}, where amax := max1≤j≤n{aj}, the scheme

runs in O(nm+1Lm+1ε−m) time. We refer the reader to [160, Sect. 3] for more
details on this FPTAS. !

Remark 9.18. Kang et al. [160] also proposed an FPTAS for the problem
P2|pj = aj−bjt|Cmax, running in O(n3L3ε−2) time; see [160, Sect. 2]. !
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9.1.5 General non-linear shortening

Equal ready times and deadlines

Single-machine problems. Now, we come back to the single-machine prob-
lem 1|pj ∈ {aj , aj − bj : 0 ≤ bj ≤ aj}|Cmax. Cheng et al. [56] proposed for
the problem the following online algorithm (cf. Definition 2.17): schedule every
new job Jj+1 after the jobs J1, J2, . . . , Jj without any idle time, 1 ≤ j ≤ n−1.
(Note that the algorithm is an adaptation of the H1 algorithm discussed in
Sect. 9.1.1.) We will call the algorithm H26.

Theorem 9.19. (Cheng et al. [56]) Algorithm H26 is 2-competitive for the
problem 1|pj ∈ {aj , aj − bj} : 0 ≤ bj ≤ aj}|Cmax.

Proof. We start with the following three observations. First, note that if D >∑n
j=1 aj the problem is trivial: we can schedule all jobs in an arbitrary order

before time D. Hence, without loss of generality, we can assume that D ≤∑n
j=1 aj . Second, from the assumption that D ≤

∑n
j=1 aj it follows that there

exists a unique index k such that
∑k−1

j=1 aj < D ≤
∑k

j=1 aj . Third, algorithm
H26 schedules the jobs with indices from set N1 (N2) before (after) time D,
where N1 := {1, 2, . . . , k − 1} and N2 := {k + 1, k + 2, . . . , n}.

Consider now job Jk. There are two possible cases: Jk is executed either
in the interval 〈D,D + ak − bk〉 or in the interval 〈

∑
j∈N1

aj ,
∑

j∈N1
+ak〉.

In the first case, the maximum online completion time is equal to D +∑
j∈N2∪{k}(aj − bj) ≤ D +

∑n
j=1(aj − bj). In the second case, the maximum

online completion time is equal to
∑

j∈N1
aj + ak +

∑
j∈N2

(aj − bj) ≤ D −
bk + ak +

∑
j∈N2

(aj − bj) ≤ D +
∑n

j=1(aj − bj).
Since the maximum offline completion time is not less than D and not less

than
∑n

j=1(aj − bj), the result follows. � 

Remark 9.20. A c-competitive algorithm is introduced in Definition 2.19.

Ji et al. [156] proposed offline version of the online algorithm H26. We will
call the modified algorithm H27.

Algorithm H27

for the problem 1|pj ∈ {aj , aj − bj : 0 ≤ bj ≤ aj}|Cmax ([56])

Input: sequences (a1, a2, . . . , an), (b1, b2, . . . , bn), number D
Output: a suboptimal schedule σ

� Step 1:

Arrange jobs in the non-decreasing order of bj

aj
ratios;

Find k := min{j :
∑j

i=1 ai > D};
� Step 2:

Schedule jobs J1, J2, . . . , Jk−1 before time D;
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� Step 3:
If (Ck−1 > D − bk) then schedule jobs Jk, Jk+1, . . . , Jn

↪→ starting from time D
else schedule jobs Jk, Jk+1, . . . , Jn starting from time Ck−1;

� Step 4:
σ ← (1, 2, . . . , k, k + 1, . . . , n);
return σ.

Theorem 9.21. (Ji et al. [156]) For an arbitrary instance I of the problem
1|pj ∈ {aj , aj− bj : 0 ≤ bj ≤ aj}|Cmax there holds the inequality Ra

H27
(I) ≤ 5

4 .

Proof. See [156, Theorem 2]. !

Fully polynomial-time approximation schemata

Single-machine problems. Cheng et al. [56] proved that for the problem
1|pj ∈ {aj , aj − bj : 0 ≤ bj ≤ aj}|Cmax there exists an FPTAS. The proof is
based on Lemma 6.110 and exploits the fact that for the KP problem there
exists an FPTAS (see, e.g., Kellerer et al. [163]); we refer the reader to [56,
Theorem 3] for more details. !
Parallel-machine problems. Ji and Cheng [153] proposed an FPTAS for
the problem Pm|pj ≡ (9.7)|Cmax in which for a given D > 0, we have

pj = aj − bj min{t,D} (9.7)

and 0 < bj ≤ aj

2D for 1 ≤ j ≤ n.
The scheme for the problem Pm|pj = aj − bj min{t,D}|Cmax is based on

the same idea as the scheme proposed by Kovalyov and Kubiak [176].
The main idea is as follows. By Theorem 6.87 (c), we can assume that all

jobs have been indexed in such a way that a1
b1
≥ a2

b2
≥ . . . ≥ an

bn
. Let xj , for

1 ≤ j ≤ 2m, be a variable such that xj := 2k − 1 (xj := 2k) if job Jj is
processed on machine Mk, k ∈ {1, 2, . . . ,m}, and its starting time is less (no
less) than D. Let X be the set of all vectors x = [x1, x2, . . . , xn] with xj = k,
1 ≤ j ≤ n, 1 ≤ k ≤ m. Define functions F i

j , Gi
j and Q as follows: F i

0(x) := 0
for 1 ≤ i ≤ m, Gi

0(x) := 0 for 1 ≤ i ≤ m, F k
j (x) := F k

j−1(x) + aj − bjG
k
j−1(x)

if xj = 2k − 1, F k
j (x) := F k

j−1(x) + aj − bjD if xj = 2k, F i
j (x) := F i

j−1(x) if
xj = 2k − 1 or xj = 2k, i �= k, Gk

j (x) := min{Gk
j−1(x) + aj − bjG

k
j−1(x),D}

if xj = 2k − 1, Gi
j(x) := Gi

j−1(x) if xj = 2k − 1 or xj = 2k, i �= k, and
Q(x) := max{F i

n(x) : 1 ≤ i ≤ m}.
The remaining parts of the FPTAS are organized similarly to those from

other FPTASes based on the scheme proposed by Kovalyov and Kubiak [176]
(see Sects. 9.1.1, 9.1.2 and 9.1.4 for details).

For L := log max{n, 1
ε , amax}, where amax := max1≤j≤n{aj}, the modified

scheme runs in O(n2m+1L2m+1ε−2m) time. We refer the reader to [153, Sect. 3]
for more details on this FPTAS. !
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Remark 9.22. Ji and Cheng [153] proposed also an FPTAS for the problem
1|pj = aj − bj min{t,D}|Cmax with 0 < bj ≤ aj

2D for 1 ≤ j ≤ n.
For L := log max{n, 1

ε , amax}, where amax := max1≤j≤n{aj}, the scheme
runs in O(n3L3ε−2) time. We refer the reader to [153, Sect. 2] for more details
on this FPTAS. !

9.2 Minimizing the total completion time

In this section, we present approximation and heuristic algorithms for the∑
Cj criterion.

9.2.1 Proportional deterioration

Equal ready times and no deadlines

Parallel-machine problems. Since the problem 1|pj = bjt|
∑

Cj is solvable
in O(n log n) time by the algorithm A11 : (bj) $→ (bj ↗) (cf. Theorem 6.120),
a natural question is how the algorithm will perform for m ≥ 2 parallel
identical machines. (Since by Theorem 7.14 the parallel-machine problem is
computationally intractable already for m = 2 machines, it is clear that the
adapted algorithm can be only a heuristic.) Algorithm A11 has been applied by
Mosheiov [219] to the two-machine problem, P2|pj = bjt|

∑
Cj . (The gener-

alization of the algorithm for m > 2 machines is straightforward.)

Algorithm H28 for the problem P2|pj = bjt|
∑

Cj ([219])

Input: sequence (b1, b2, . . . , bn)
Output: a suboptimal schedule σ

� Step 1:
Arrange jobs in the non-increasing order of bj values;
tM1 ← t0;
tM2 ← t0;
σ(1) ← (φ);
σ(2) ← (φ);
NJ ← {1, 2, . . . , n};

� Step 2:
while (NJ �= ∅) do

k ← the index of the job with the smallest bj value;
if (tM1 ≤ tM2) then σ(1) ← (σ(1)|k);

tM1 ← (1 + bk)tM1

else σ(2) ← (σ(2)|k);
tM2 ← (1 + bk)tM2 ;

NJ ← NJ \ {k};
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� Step 3:
σ ← (σ(1)|σ(2));
return σ.

The following example shows that in the case of unbounded deterioration
rates algorithm H28 can produce arbitrarily bad schedules.

Example 9.23. (Chen [43]) Consider the following instance I of the problem
P2|pj = bjt|

∑
Cj : m = 2, n = 3, S1 = S2 = 1, p1 = p2 = (B − 1)t,

p3 = (B2 − 1)t, where B > 0 is a constant. Then Ra
H28

(I) =
∑

C
H27
j (I)

∑
C�

j (I) =
B3+2B
2B2+B →∞ as B →∞. �

Chen showed that even for the two-machine case, the absolute worst-case
ratio of algorithm H28 is unbounded.

Theorem 9.24. (Chen [43]) For an arbitrary instance I of the problem
P2|pj = bjt|

∑
Cj there holds the inequality

Ra
H28

(I) ≤ max
{

1 + bn

1 + b1
,

2
n− 1

+
(1 + b1)(1 + bn)

1 + b2

}

.

Proof. First, note that without loss of generality we can assume that jobs
have been rearranged so that b1 ≤ b2 ≤ . . . ≤ bn.

Second, if n = 2k for some k ∈ N, the schedule generated by algorithm
H28 is in the form of (1, 3, . . . , 2k − 1) for machine M1 and (2, 4, . . . , 2k) for
machine M2. The total completion time of the schedule is equal to

k∑

j=1

(
j∏

i=1

(1 + b2i−1)

)

+
k∑

j=1

(
j∏

i=1

(1 + b2i)

)

≤ 2
k∑

j=1

(
j∏

i=1

(1 + b2i)

)

. (9.8)

Similarly, if n = 2k + 1 for some k ∈ N, the schedule generated by algorithm
H28 is in the form of (1, 3, . . . , 2k−1, 2k+1) for machine M1 and (2, 4, . . . , 2k)
for machine M2. The total completion time of the schedule is equal to

k∑

j=0

(
j∏

i=0

(1 + b2i+1)

)

+
k∑

j=1

(
j∏

i=1

(1 + b2i)

)

≤ 2
k∑

j=0

(
j∏

i=0

(1 + b2i)

)

. (9.9)

Third, by direct calculations (see [43, Lemma 4.2] for details) and by
Lemma 1.1 (b), we have that if n = 2k for some k ∈ N, the minimal to-
tal completion time is not less than

2
k∑

j=1

(
j∏

i=1

(1 + b2i−1)). (9.10)

Similarly, if n = 2k + 1 for some k ∈ N, then the minimal total completion
time is not less than
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2
k∑

j=1

(
j∏

i=1

(1 + b2i)). (9.11)

By calculating the ratio of the right sides of (9.8) and (9.10) and the ratio
of the right sides of (9.9) and (9.11), the result follows. � 

Theorem 9.24 concerns only algorithm H28, so we may hope to find for the
considered problem a better algorithm, with a bounded absolute the worst-
case ratio. This, however, is impossible, since the problem Pm|pj = bjt|

∑
Cj

with an arbitrary number of machines is difficult to approximate.

Theorem 9.25. (Chen [43]) There is no polynomial-time approximation al-
gorithm with a constant worst-case bound for the problem Pm|pj = bjt|

∑
Cj

with an arbitrary number of machines, unless P = NP.

Proof. Assuming that there is a polynomial-time approximation algorithm for
the problem Pm|pj = bjt|

∑
Cj with an arbitrary number of machines, we

would be able to solve the strongly NP-complete 3-P problem (cf. Sect. 3.2) in
pseudopolynomial time. A contradiction, since by Lemma 3.18 a stronglyNP-
complete problem cannot be solved by a pseudopolynomial-time algorithm,
unless P = NP. � 

Jeng and Lin [150] observed that a modification of algorithm H2 leads to a
new heuristic algorithm for the problem Pm|pj = bjt|

∑
Cj . We will call the

modified algorithm H29. The pseudo-code of the new algorithm is as follows.

Algorithm H29 for the problem Pm|pj = bjt|
∑

Cj ([150])

Input: sequence (b1, b2, . . . , bn)
Output: a suboptimal schedule

� Step 1:
Arrange jobs in the non-increasing order of bj values;

� Step 2:
for i ← 1 to n do

Assign job J[i] to the machine with the smallest machine load;
� Step 3:

Reverse the job sequence on each machine.

Since in Step 3 algorithm, H29 reverses the sequence of jobs on each ma-
chine, in the final schedule the jobs are arranged in the non-decreasing order
of deterioration rates. The time complexity of the algorithm is O(n log n).

Dedicated-machine problems. Wang et al. [286] proposed the following
heuristic algorithm for the problem F2|pi,j = bi,jt, 0 < bi,j < 1|

∑
Cj .
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Algorithm H30 for the problem F2|pi,j = bi,jt, 0 < bi,j < 1|
∑

Cj ([286])

Input: sequences (b1,1, b1,2, . . . , b1,n), (b2,1, b2,2, . . . , b2,n)
Output: a suboptimal schedule σ

� Step 1: the beginning of Phase I
k ← 1;
NJ ← {1, 2, . . . , n};
σ ← (φ);

� Step 2:
Find Ji such that (1 + b1,i)(1 + b2,i) = min{(1 + b1,k)(1 + b2,k) : k ∈ NJ };
σk ← i; � Schedule job Ji in position k
Ak ← t0(1 + b1,i);
C[k] ← t0(1 + b1,i)(1 + b2,i);
NJ ← NJ \ {i};

� Step 3:
while (NJ �= ∅) do

E ← {Jl ∈ J : Ak(1 + b1,l) ≤ C[k]};
if (|E| ≥ 1) then

Find Ji ∈ E such that b1,i = min{b1,k : Jk ∈ E}
else

Find Ji ∈ J such that b1,i = min{b1,k : k ∈ NJ };
σk+1 ← i;
C[k+1] ← max{Ak(1 + b1,i), C[k]}(1 + b2,i);
Ak+1 ← Ak(1 + b1,i);
NJ ← NJ \ {i};
k ← k + 1;

� Step 4: the beginning of Phase II
repeat

k ← 1;
i ← k + 1;
while (k ≤ n) do

σ′ ← the schedule obtained from σ by moving J[i]

↪→ forward to position k;
if (

∑
Cj(σ′) <

∑
Cj(σ)) then σ ← σ′;

i ← i + 1;
k ← k + 1;

until (k ≥ n).
� Step 5:

return σ.

Algorithm H30 was tested on 100 instances with n ≤ 14 jobs. In the ex-
periments (see [286, Sect. 6] for details), the mean and the maximum error of
generated schedules did not exceed 6.9% and 21.4%, respectively.
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Remark 9.26. Shiau et al. [257] proposed three heuristic algorithms for the
problem F2|pi,j = bi,jt|

∑
Cj . However, since the schedules generated by the

algorithms are worse compared to the schedules generated by the simulated
annealing algorithm H60 (cf. Sect. 11.3) proposed by the same authors for
the same problem, we do not present them here. We refer the reader to [257,
Sects. 5–6] for more details on these heuristics. !

Fully polynomial-time approximation schemata

Parallel-machine problems. Woeginger [296, Sect. 6.4] proved the exis-
tence of an FPTAS for the problem P2|pj = bjt|

∑
Cj , applying dynamic

programming approach and the notion of ex-benevolent problem (cf. [296,
Sect. 5]). The main idea of the proof is to show that the proposed dynamic
programming algorithm satisfies some structural conditions.

The dynamic programming algorithm goes through n phases. In the k-th
phase, given input vector Xk = [bk], it produces set Sk of states, where
1 ≤ k ≤ n. Any state s ∈ Sk is a vector, s := [s1, s2, s3], where s1 is the total
completion time on machine M1, s2 is the total completion time on machine
M2 and s3 is the criterion value of the current schedule. Elements of set Sk

are constructed from the elements of set Sk−1 using two functions, F1 and F2,
where F1(bk, s1, s2, s3) := [s1(1+bk), s2, s3+s1(1+bk)] and F2(bk, s1, s2, s3) :=
[s1, s2(1 + bk), s3 + s2(1 + bk)]. The initial state S0 := {[1, 1, 1]} and the final
schedule is the one which gives min{G(s) : s ∈ Sn}, where G(s1, s2, s3) := s3.
We refer the reader to [296, Sect. 6.4] for more details on this FPTAS. !

Remark 9.27. The above approach can also be carried over to the problems
Pm|pj = bjt|

∑
Cj , Qm|pj = bjt|

∑
Cj , Pm|pj = bjt|

∑
wjCj and Qm|pj =

bjt|
∑

wjCj , (cf. [296, Sect. 6.4]).

Ji and Cheng [154] proposed for the problem Pm|pj = bjt|
∑

Cj an FPTAS,
based on the idea from the scheme proposed by Kovalyov and Kubiak [176].

The main idea is as follows. By Theorem 6.120, we can assume that all
jobs, available starting from time t0 > 0, are indexed in such a way that
b1 ≤ b2 ≤ . . . ≤ bn. The variables xj , 1 ≤ j ≤ n, and the set X are defined as
in Sect. 9.1.4. Define functions F i

j and Gj as follows: F i
0(x) := t0 for 1 ≤ i ≤ m,

G0(x) := 0, F k
j (x) := F k

j−1(x) + bjF
k
j−1(x) for xj = k, F k

j (x) := F k
j−1(x) for

xj = k and i �= k, Gj(x) := Gj−1 +
∑m

i=1 F i
j (x), where x ∈ X.

The remaining parts of the FPTAS are organized similarly to those from
other FPTASes based on the scheme proposed by Kovalyov and Kubiak [176]
(see Sects. 9.1.1, 9.1.2, 9.1.4 and 9.1.5 for details).

For L := log max{n, 1
ε , 1 + bmax, S0}, where bmax := max1≤j≤n{bj}, the

scheme runs in O(n2m+3Lm+2ε−(m+1)) time. We refer the reader to [154,
Sect. 2] for more details on this FPTAS. !
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9.2.2 Linear deterioration

Equal ready times and deadlines

Single-machine problems. As mentioned in Sect. 6.2, the complexity of the
problem 1|pj = aj + bjt|

∑
Cj is still unknown, even if aj = 1 for 1 ≤ j ≤ n.

For the problem 1|pj = 1 + bjt|
∑

Cj , a few heuristic algorithms are known.
Two of them have been proposed by Mosheiov [215].

The first of these heuristics, acting on the non-increasingly ordered se-
quence of deterioration rates b1, b2, . . . , bn, adds the job corresponding to a
given bj either to the left or to the right branch of the constructed V-shaped
sequence.

Algorithm H31 for the problem 1|pj = 1 + bjt|
∑

Cj ([215])

Input: sequence (b1, b2, . . . , bn)
Output: a suboptimal V-shaped schedule σ

� Step 1:
Arrange jobs in the non-increasing order of bj values;

� Step 2:
l ← (φ);
r ← (φ);
i ← 1;
while (i ≤ n) do

if (i is odd) then l ← (l|b[i])
else r ← (b[i]|r);
i ← i + 1;

� Step 3:
σ ← (l|r);
return σ.

The next algorithm is as follows. Step 1 is the same as in H31. In Step 2,
an element is joined either to the left or to the right branch of the constructed
V-shaped sequence if the sum of deterioration rates of the left (right) branch
is lower than the sum of deterioration rates of the right (left) branch.

Algorithm H32 for the problem 1|pj = 1 + bjt|
∑

Cj ([215])

Input: sequence (b1, b2, . . . , bn)
Output: a suboptimal V-shaped schedule σ

� Step 1:
Arrange jobs in the non-increasing order of bj values;

� Step 2:
l ← (φ);
suml ← 0;
r ← (φ);
sumr ← 0;
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i ← 1;
while (i ≤ n) do

if (suml ≤ sumr) then l ← (l|b[i]);
suml ← suml + b[i]

else r ← (b[i]|r);
sumr ← sumr + b[i];

i ← i + 1;
� Step 3:

σ ← (l|r);
return σ.

Both H31 and H32 run in O(n log n) time and are easy to implement. Fur-
thermore, it has been shown (see [215, Sect. 4]) that they are asymptotically
optimal, under the assumption that all deterioration rates are independent,
identically distributed random variables. The reported results of computa-
tional experiments (see [215, Sect. 5]) suggest that the heuristics are, on av-
erage, quite efficient, with much better behaviour of H32 than of H31.

Remark 9.28. In Chap. 10, we will present two other heuristics for the prob-
lem, H51 and H52, based on the so-called signatures of the deterioration rates
sequence (cf. Gawiejnowicz et al. [95]). It will be shown that for certain classes
of instances algorithms H51 and H52 give better results than algorithm H32.

Remark 9.29. Sharma [256] proposed a heuristic for the single machine prob-
lem of minimizing the variance of the completion times of jobs with fixed
processing times. According to the author, this heuristic can also be applied
to the problem 1|pj = 1 + bjt|

∑
Cj (see [256, Sects. 4–5] for details).

Dedicated-machine problems. For the problem F2|pi,j = ai,j + bt|
∑

Cj

Wu and Lee [299] proposed six heuristics. The first three of them are O(n log n)
algorithms: H33 : (a1,j |a2,j |b) $→ (aj,1 ↗), H34 : (a1,j |a2,j |b) $→ (aj,2 ↗) and
H35 : (a1,j |a2,j |b) $→ ((aj,1 + aj,2) ↗). The remaining three O(n2) algorithms
are modified versions of the above algorithms. The modification consists in
adding a procedure PI which uses pairwise job interchange to improve a given
schedule. The modified algorithms have been evaluated by an experiment in
which 4440 instances with n ≤ 27 jobs have been tested (see [299, Sect. 6] for
details). The experiment has shown that the heuristic H33 combined with the
procedure PI is the best one.

Fully polynomial-time approximation schemata

Single-machine problems. Gawiejnowicz et al. [100], applying the approach
proposed by Woeginger [296], proved that for the problem 1|pj = 1+bjt|

∑
Cj

there exists an FPTAS. The authors have shown that the problem is cc-
benevolent (cf. [296, Sect. 7]) and hence an FPTAS for this problem can be
constructed using a dynamic programming approach. We refer the reader to
[100, Sect. 7] for more details on this FPTAS. !
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9.2.3 Linear shortening

Equal ready times and deadlines

Single-machine problems. For the problem 1|pj = aj − bj(t − y), y > 0,
0 < bj < 1, Y < ∞|

∑
Cj Cheng et al. [54] proposed four heuristic algorithms.

The first algorithm is equivalent to the algorithm A5 : (aj |bj |y|Y ) $→ (aj ↗).
The second algorithm is based on Properties 6.166–6.167. The algorithm first
arranges jobs in the non-decreasing order of aj values. Next, it iteratively
constructs the final schedule. The pseudo-code of this algorithm is as follows.

Algorithm H36 for the problem
1|pj = aj − bj(t− y), y > 0, 0 < bj < 1, Y < ∞|

∑
Cj ([54])

Input: sequences (a1, a2, . . . , an), (b1, b2, . . . , bn), numbers y, Y
Output: a suboptimal schedule

� Step 1:
Arrange jobs in the non-decreasing order of aj values;
C ← 0;
k ← 1;
NJ ← {1, 2, . . . , n};

� Step 2:
while (C ≤ y) do

Schedule job J[k];
C ← C + p[k](C);
NJ ← NJ \ {[k]};
k ← k + 1;

� Step 3:
while (C ≤ Y ) do

for all j ∈ NJ do
rj ← C−aj

1−bj
;

Choose job J[k] such that r[k] = min{rj : j ∈ NJ };
Schedule job J[k];
C ← C + p[k](C);
NJ ← NJ \ {[k]};
k ← k + 1;

� Step 4:
Schedule remaining jobs in the non-decreasing order of aj−bj(Y−y) values.

The third algorithm is a modification of algorithm H36. The two algorithms
differ mainly in Step 2 and Step 3 in which are selected and arranged jobs
satisfying some conditions.

The pseudo-code of the third algorithm can be formulated as follows.



234 9 Approximation and heuristic algorithms

Algorithm H37 for the problem
1|pj = aj − bj(t− y), y > 0, 0 < bj < 1, Y < ∞|

∑
Cj ([54])

Input: sequences (a1, a2, . . . , an), (b1, b2, . . . , bn), numbers y, Y
Output: a suboptimal schedule σ

� Step 1:
σ(1) ← (φ);
σ(2) ← (φ);
NJ ← {1, 2, . . . , n};

� Step 2:
while (NJ �= ∅) do

Choose job Jk such that ak = min
j∈NJ

{aj};

σ(1) ← (σ(1)|k);
NJ ← NJ \ {k};
Choose job Jl such that bl = max

j∈NJ
{aj − bj(Y − y)};

σ(2) ← (l|σ(2));
NJ ← NJ \ {l};

� Step 3:
Arrange σ(1) in the non-decreasing order of aj values;
Arrange σ(2) in the non-decreasing order of aj − bj(Y − y) values;

� Step 4:
σ ← (σ(1)|σ(2));
return σ.

The fourth algorithm proposed by Cheng et al. [54] for the problem
1|pj = aj − bj(t− y), y > 0, 0 < bj < 1, Y < ∞|

∑
Cj is algorithm H24. All

the mentioned algorithms run in O(n log n) time, except algorithm H36, which
runs in O(n2) time.

These four algorithms were tested on instances with n = 10, 50, 100, 500
and 1000 jobs. Computational experiments have shown (see [54, Sect. 2.3])
that the algorithm equivalent to A5 : (aj |bj |y|Y ) $→ (aj ↗) is the best one.

9.3 Minimizing the maximum lateness

In this section, we present heuristic algorithms for time-dependent scheduling
problems with the Lmax criterion.

9.3.1 Linear deterioration

Distinct ready times and deadlines

Single-machine problems. Bachman and Janiak [11] proposed two heuris-
tics for the problem 1|pj = aj + bjt|Lmax. The first one is equivalent to the
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algorithm A15 : (aj |bj |dj) $→ (dj ↗), which schedules jobs in the EDD order.
The second one, given below, first arranges jobs in the non-decreasing order
of aj

bj
ratios and then iteratively improves the solution.

Algorithm H38 for the problem 1|pj = aj + bjt|Lmax ([11])

Input: sequences (a1, a2, . . . , an), (b1, b2, . . . , bn), (d1, d2, . . . , dn)
Output: a suboptimal schedule σ

� Step 1:
Arrange jobs in the non-decreasing order of aj

bj
ratios;

Call the obtained schedule σ;
σ′ ← σ;

� Step 2:
while (Lmax(σ) ≤ Lmax(σ′)) do

Find in σ the position k such that k = arg max{Cj − dj};
while (TRUE) do

Denote the subset of jobs before job Jk by Tk;
Find in {Jj ∈ Tk : 0 ≤ j ≤ k − 1} job Ji such that di > dk;
if (i = 0) then return σ;
Construct schedule σ′ by inserting job Ji after job Jk;
if (Lmax(σ′) < Lmax(σ)) then σ ← σ′

else if (i > 0) then k ← i.

� Step 3:
return σ.

The results of the computational experiment conducted for instances with
n = 10 and n = 50 jobs (see [11, Sect. 4]) have shown that algorithm H38 in
most cases is better than A15.

For the same problem, 1|pj = aj + bjt|Lmax, Hsu and Lin [142, Sect. 4]
proposed two heuristic algorithms. The algorithms combine algorithm H38

with the so-called hill-climbing procedure. However, the reported results of
a computational experiment (see [142, Sect. 5]) do not allow to formulate a
clear conclusion about the performance of these algorithms.

9.3.2 General non-linear deterioration

Distinct ready times and deadlines

Single-machine problems. Janiak and Kovalyov [146] proposed three
following heuristics for exponential job processing times given by (6.40):
A15 : (aj |bj |rj |dj) $→ (dj ↗), H39 : (aj |bj |rj |dj) $→ ( aj

bj+dj
↗) and

H40 : (aj |bj |rj |dj) $→ (bj ↗ |dj ↘). According to the authors (see [146,
Sect. 4]), algorithms A15 and H40 give the best results.
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9.4 Other criteria

In this section, we present heuristics for time-dependent scheduling problems
with criteria other than Cmax,

∑
Cj or Lmax.

9.4.1 Proportional deterioration

Equal ready times and deadlines

Single-machine problems. For the problem 1|pj = bjt|
∑

(Ci − Cj)
Oron [229] proposed two heuristic algorithms.

Both these heuristics construct the final schedule in two steps. In the first
step, jobs are arranged in the non-increasing order of deterioration rates. In
the second step, the jobs are assigned to predetermined positions in schedule.
The indices of the positions change in dependence of the number of jobs n is
even or odd (cf. Properties 6.188–6.192, Theorem 6.193). The running time of
both the algorithms is O(n log n).

The pseudo-code of the first of these heuristic algorithms is as follows.

Algorithm H41 for the problem 1|pj = bjt|
∑

(Ci − Cj) ([229])

Input: sequence (b1, b2, . . . , bn)
Output: a suboptimal schedule σ

� Step 1:
Arrange jobs in the non-increasing order of bj values;
σ ← (φ);

� Step 2:
if n is even then
for i ← 1 to n

2 + 1 do
Schedule job Jn

2 +2−i in the i-th position in σ;
for i ← n

2 + 2 to n do
Schedule job Ji in the i-th position in σ;

� the final schedule is (n
2 + 1, n

2 , . . . , 3, 2, 1, n
2 + 2, n

2 + 3, . . . , n)
else � n is odd
for i ← 1 to n+3

2 do
Schedule job Jn+5

2 −i in the i-th position in σ;
for i ← n+5

2 to n step 2 do
Schedule job Ji in the i-th position in σ;

� the final schedule is (n+3
2 , n+1

2 , . . . , 3, 2, 1, n+5
2 , n+7

2 , . . . , n)
� Step 3:

return σ.

The second of these heuristic algorithms can be formulated as follows.
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Algorithm H42 for the problem 1|pj = bjt|
∑

(Ci − Cj) ([229])

Input: sequence (b1, b2, . . . , bn)
Output: a suboptimal schedule σ

� Step 1:
Arrange jobs in the non-increasing order of bj values;
σ ← (φ);

� Step 2:
if n is even then
for i ← 1 to n

2 do
Schedule job Jn

2 +2−i in the i-th position in σ;
Schedule job J2i−1 in the n

2 + i-th position in σ;
� the final schedule is (n, n− 2, . . . , 4, 2, 1, 3, . . . , n− 3, n)
else � n is odd
for i ← 1 to n+1

2 do
Schedule job Jn+2−2i in the i-th position in σ;

for i ← 1 to n−1
2 do

Schedule job J2i in the n+1
2 + i-th position in σ;

� the final schedule is (n, n− 2, . . . , 5, 3, 1, 2, 4, . . . , n− 3, n− 1)
� Step 3:

return σ.

The performance of algorithms H41 and H42, compared to the lower bound
from Property 6.192, was tested on instances with n = 20, 50 or n = 100 jobs.
For each value of n, 1000 random instances were generated, with deterioration
rates bj from random uniform distribution U(0.05, 1). The results of these
computational experiments (see [229, Sect. 4]) suggest that the algorithm
H41, on average, is more effective than H42.

Parallel-machine problems. For the problem Pm|pj = bjt|
∑

C
(k)
max,

Mosheiov [219] proposed to apply heuristic H2. Moreover, he proved that
if n →∞, then the absolute worst-case ratio of the heuristic for the

∑
C

(k)
max

criterion is bounded and is asymptotically close to 1.

9.4.2 Linear deterioration

Equal ready times and deadlines

Single-machine problems. Alidaee and Landram [5] proposed an O(n2)
algorithm for the problem 1|pj = gj(t)|Pmax. The algorithm is based on the
algorithm for the problem 1|prec|fmax (Lawler [182]). Let Cmax(J ) denote the
maximum completion time of the last job in set J .
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Algorithm H43 for the problem 1|pj = gj(t)|Pmax ([5])

Input: sequence (g1, g2, . . . , gn)
Output: a suboptimal schedule σ

� Step 1:
NJ ← {1, 2, . . . , n};
σ ← (φ);

� Step 2:
for i ← n downto 1 do

for all j ∈ NJ do
Schedule job Jj in the i-th position in σ;
T ← Cmax(NJ \ {j});
pj ← gj(T );

k ← arg min
j∈NJ

{pj};
σ ← (k|σ);
NJ ← NJ \ {k};

� Step 3:
return σ.

To evaluate the quality of schedules generated by algorithm H43, Alidaee
and Landram conducted a computational experiment in which gj(t) = aj + bjt.
For each n, where 6 ≤ n ≤ 9, 50 random instances were generated, with
aj ∈ (0, 1) and bj ∈ (1, 10). Since the performance was rather poor (see [5,
Sect. 3]), H43 is not recommended for arbitrary aj ’s and bj ’s. The algorithm,
however, is optimal when either aj > 0 ∧ bj ≥ 1 or bj = b for 1 ≤ j ≤ n (see
Sect. 6.4 for details).

For the problem 1|pj = aj +bt|
∑

wjCj , Mosheiov [218] proposed a heuris-
tic algorithm, based on the following observation. Applying pairwise job in-
terchange argument, one can show that for a given starting time t, jobs in an
optimal schedule will be executed in the increasing order of aj

wj
+ b

wj
t values.

Therefore, for small values of t the order aj

wj
↗ seems to be more attractive,

while for large t values the order wj ↘ is better.

Algorithm H44 for the problem 1|pj = aj + bt|
∑

wjCj ([218])

Input: sequences (a1, a2, . . . , an), (w1, w2, . . . , wn), number b
Output: a suboptimal schedule σ

� Step 1:
Schedule jobs in the increasing order of aj

wj
ratios;

Call the obtained schedule σ1;
G1 ←

∑
wjCj(σ1);
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� Step 2:
Schedule jobs in the decreasing order of wj values;
Call the obtained schedule σ2;
G2 ←

∑
wjCj(σ2);

� Step 3:
if (G1 < G2) then σ ← σ1

else σ ← σ2;
return σ.

The results of a computational experiment (see [218, Sect. ‘The case of
general weights’]) suggest that algorithm H44 is, on average, quite good.

Distinct ready times and deadlines

Parallel-machine problems. Cheng et al. [58] proposed a heuristic algo-
rithm for the problem Pm|pj = aj + bt|

∑
(αEj +βTj +γd). The heuristic ex-

ploits the idea of algorithm A41 for the problem Pm|pj = aj+bt|
∑

(αEj+βTj)
and has been tested on a few instances with 5 ≤ n ≤ 8. We refer the reader
to [58, Table 1] for more details.

9.4.3 General non-linear deterioration

Distinct ready times and deadlines

Single-machine problems. Janiak and Kovalyov [146] proposed three
heuristic algorithms for processing times given by (6.40) and the criterion∑

wjCj : H45 : (aj |bj |rj |wj) $→ ( pj

wj
↗), H46 : (aj |bj |rj |wj) $→ (wi ↘ |bj ↗)

and H47 : (aj |bj |rj |wj) $→ ( ai

wi
↗ |bj ↘). In the opinion of the authors (see

[146, Sect. 4]), algorithm H45 gives, on average, the best results.

Sundararaghavan and Kunnathur proposed an algorithm for job process-
ing times given by (6.68) and the criterion

∑
wjCj . Applying the notation

introduced in Sect. 6.4.5, the algorithm can be formulated as follows.

Algorithm H48 for the problem 1|pj ≡ (6.68)|
∑

wjCj ([263])

Input: sequences (b1, b2, . . . , bn), (w1, w2, . . . , wn), numbers a, D
Output: a suboptimal schedule

� Step 1:
Arrange jobs in the non-increasing order of wj values;
Call the obtained sequence σ;

� Step 2:
k ← �D

a �+ 1;
Schedule k jobs according to the order given by σ;
E ← {Jk ∈ J : Ck ≤ D};
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L ← J \ E;
Arrange jobs in L in the non-decreasing order of a+bj

wj
ratios;

� Step 3:
repeat

if (J[i] ∈ E ∧ J[j] ∈ L∧Δ(J[i] ↔ J[j]) > 0) then exchange J[i] with J[j];
until (no more exchange J[i] ↔ J[j] exists for J[i] ∈ E and J[j] ∈ L).

Sundararaghavan and Kunnatur [263] conjectured that algorithm H48 is
optimal. Cheng and Ding presented the following counter-example which re-
futes this conjecture.

Example 9.30. (Cheng and Ding [51]) Given a sufficiently large number Y > 0,
define Z = 2Y 4. Let n = 4, a = 1, D = 1, w1 = 2Y + 3 + 1

3Y , w2 = 2Y,
w3 = Y +1, w4 = Y, b1 = Y Z, b2 = (Y +1)Z, b3 = 2Y Z, b4 = (2Y +3+ 2

3Y )Z.
Since algorithm H48 generates schedule σ = (1, 3, 2, 4), and for schedule

σ′ = (2, 4, 1, 3) we have
∑

wjCj(σ′) <
∑

wjCj(σ), the algorithm cannot be
optimal (see [51, Sect. 4]). �

9.4.4 Linear shortening

Equal ready times and deadlines

Single-machine problems. For the problem 1|pj = aj − bjt, 0 ≤ bj < 1,
bi(
∑n

j=1 aj−ai) < ai|
∑

wjCj , Bachman et al. [10] have proposed two heuris-
tics. In the first of the two, which is based on Property 6.251, jobs are sched-
uled by algorithm H49 : (aj |bj |wj) $→ ( aj

wj(1−bj)
↗). In the second one, H50,

which is based on Properties 6.253-6.255, an even-odd V-shaped schedule is
constructed. The results of a computational experiment (see [10, Sect. ‘Heuris-
tic algorithms’]) suggest that H50 outperforms H49.

With this remark, we end the review of heuristic and approximation algo-
rithms for computationally intractable time-dependent scheduling problems.
In Chaps. 10 and 11, we will consider heuristic algorithms based on signatures
of deterioration rates and local search time-dependent scheduling algorithms,
respectively.

9.5 Concluding remarks

In this chapter, we considered approximation and heuristic algorithms for
time-dependent scheduling problems.

The algorithms presented in the chapter have a few common features.
First, the algorithms have low running times, e.g., O(n log n) or O(n2). Second,
they construct the final schedule either step by step or using a list of jobs
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ordered in some way. Finally, though the heuristics can, on average, produce
schedules of acceptable quality, there are instances of scheduling problems for
which the worst-case behaviour of the algorithms is especially bad.

Below, we classify, in the tabular form, the considered heuristic algorithms
for time-dependent scheduling problems. The problems are divided into groups
with respect to the applied optimality criterion.

Tables 9.1 and 9.2 present the heuristics concerning single- and parallel-
machine time-dependent scheduling problems with the Cmax criterion.

Table 9.3 presents the heuristics concerning dedicated-machine time-
dependent scheduling problems with the Cmax criterion.

Tables 9.4, 9.5 and 9.6 present the heuristics concerning, respectively,
single-, parallel- and dedicated-machine time-dependent scheduling problems
with the

∑
Cj criterion.

Tables 9.7 and 9.8 present the heuristics concerning, respectively, single-
machine time-dependent scheduling problems with the Lmax criterion and
with criteria other than Cmax,

∑
Cj and Lmax.

Finally, Tables 9.9 and 9.10 present fully polynomial-time approximation
schemata for single-machine and parallel-machine problems, respectively.

Table 9.1: Heuristic Algorithms for Single-Machine Problems (Cmax Criterion)

Heuristic Complexity Problem References This book

H1 O(n) 1, h11|pj = bjt, nres|Cmax [155] Sect. 9.1.1, p. 204
H2 O(n log n) 1, h11|pj = bjt, nres|Cmax [155] Sect. 9.1.1, p. 205
H10 O(n2) 1|pj = aj + bt, rj |Cmax [194] Sect. 9.1.2, p. 212
H11 O(n2) 1|pj = aj + bt, rj |Cmax [194] Sect. 9.1.2, p. 212
H12 O(n log n) 1|pj ≡ (6.24)|Cmax [128] Sect. 9.1.3, p. 214
H13 O(n2) 1|pj = aj + bjt + cjt

2|Cmax [128] Sect. 9.1.3, p. 214
H14 O(n2) 1|pj = fj(t)|Cmax [4] Sect. 9.1.3, p. 215
H15 O(n3) 1|pj = eajt|Cmax [140] Sect. 9.1.3, p. 216

H16 O(n log n) 1|pj = aj2
bj(t−rj)|Cmax [146] Sect. 9.1.3, p. 216

H17 O(n log n) 1|pj = aj2
bj(t−rj)|Cmax [146] Sect. 9.1.3, p. 216

H18 O(n log n) 1|pj = aj2
bj(t−rj)|Cmax [146] Sect. 9.1.3, p. 216

H19 O(n log n) 1|pj ≡ (6.27)|Cmax [217] Sect. 9.1.3, p. 217
H20 O(n log n) 1|pj ≡ (6.34)|Cmax [217] Sect. 9.1.3, p. 217
H21 O(n2) 1|pj ≡ (6.37|Cmax [178] Sect. 9.1.3, p. 218
H22 O(n2) 1|pj ≡ (6.37)|Cmax [178] Sect. 9.1.3, p. 219

H24 O(n log n) 1|pj = aj − bj(t− y)|Cmax
(a) [54] Sect. 9.1.4, p. 222

H25 O(n log n) 1|pj = aj − bj(t− y)|Cmax
(a) [54] Sect. 9.1.4, p. 222

H26 O(n) 1|pj ∈ {aj , aj − bj :
0 ≤ bj ≤ aj}|Cmax

[56] Sect. 9.1.5, p. 224

H27 O(n) 1|pj ∈ {aj , aj − bj}|Cmax
(b) [56] Sect. 9.1.5, p. 224

(a) 0 < bj < 1 for 1 ≤ i ≤ n, y > 0, Y < ∞
(b) 0 ≤ bj ≤ aj
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Table 9.2: Heuristic Algorithms for Parallel-Machine Problems (Cmax Criterion)

Heuristic Complexity Problem References This book

H1 O(n) Pm|pj = bjt|Cmax [46] Sect. 9.1.1, p. 204

H2 O(n log n) Pm|pj = bjt|Cmax
(a) [141],[219] Sect. 9.1.1, p. 205

H3 O(n) Pm|pj = bjt|Cmax [46] Sect. 9.1.1, p. 206
H4 O(n log n) Pm|pj = aj + bjt|Cmax [141] Sect. 9.1.2, p. 209
H5 O(n log n) Pm|pj = aj + bjt|Cmax [141] Sect. 9.1.2, p. 210
H6 O(n2) Pm|pj = aj + bjt|Cmax [141] Sect. 9.1.2, p. 210
H23 O(n(n + m)) Pm|pj ≡ (6.27)|Cmax [217] Sect. 9.1.3, p. 220

(a) 0 < bj < 1 for 1 ≤ i ≤ n

Table 9.3: Heuristic Algorithms for Dedicated-Machine Problems (Cmax Criterion)

Heuristic Complexity Problem References This book

H7 O(n log n) F2|pi,j = ai,j + bt|Cmax [196] Sect. 9.1.2, p. 211
H8 O(n log n) F2|pi,j = ai,j + bt|Cmax [196] Sect. 9.1.2, p. 211
H9 O(n2) F2|pi,j = ai,j + bt|Cmax [196] Sect. 9.1.2, p. 211

(a) 0 < bj < 1 for 1 ≤ i ≤ n

Table 9.4: Heuristic Algorithms for Single-Machine Problems (
∑

Cj Criterion)

Heuristic Complexity Problem References This book

H31 O(n log n) 1|pj = 1 + bjt|
∑

Cj [215] Sect. 9.2.2, p. 231
H32 O(n log n) 1|pj = 1 + bjt|

∑
Cj [215] Sect. 9.2.2, p. 231

H36 O(n log n) 1|pj = aj − bj(t− y)|
∑

Cj
(a) [54] Sect. 9.2.3, p. 233

H37 O(n log n) 1|pj = aj − bj(t− y)|
∑

Cj
(a) [54] Sect. 9.2.3, p. 234

H51 O(n log n) 1|pj = 1 + bjt|
∑

Cj [95] Sect. 9.2.2, p. 232
H52 O(n log n) 1|pj = 1 + bjt|

∑
Cj [95] Sect. 9.2.2, p. 232

(a) y > 0, 0 < bj < 1 for 1 ≤ j ≤ n, Y < ∞

Table 9.5: Heuristic Algorithms for Parallel-Machine Problems (
∑

Cj Criterion)

Heuristic Complexity Problem References This book

H28 O(n log n) P2|pj = bjt|
∑

Cj [219] Sect. 9.2.1, p. 226
H29 O(n log n) Pm|pj = bjt|

∑
Cj [150] Sect. 9.2.1, p. 228

Table 9.6: Heuristic Algorithms for Dedicated-Machine Problems (Criterion
∑

Cj)

Heuristic Complexity Problem References This book

H30 O(n2) F2|pi,j = bi,jt|
∑

Cj [286] Sect. 9.2.1, p. 229
H33 O(n log n) F2|pi,j = ai,j + bt|

∑
Cj [299] Sect. 9.2.2, p. 232

H34 O(n log n) F2|pi,j = ai,j + bt|
∑

Cj [299] Sect. 9.2.2, p. 232
H35 O(n log n) F2|pi,j = ai,j + bt|

∑
Cj [299] Sect. 9.2.2, p. 232
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Table 9.7: Heuristic Algorithms for Single-Machine Problems (Lmax Criterion)

Heuristic Complexity Problem References This book

H38 O(n2) 1|pj = aj + bjt|Lmax [11] Sect. 9.3.1, p. 235

H39 O(n log n) 1|pj = aj2
bj(t−rj)|Lmax [146] Sect. 9.3.2, p. 235

H40 O(n log n) 1|pj = aj2
bj(t−rj)|Lmax [146] Sect. 9.3.2, p. 235

Table 9.8: Heuristic Algorithms for Single-Machine Problems (Criteria other than
Cmax,

∑
Cj and Lmax)

Heuristic Complexity Problem References This book

H41 O(n log n) 1|pj = bj(t)|
∑

(Ci − Cj) [229] Sect. 9.4.1, p. 236
H42 O(n log n) 1|pj = bj + bt|

∑
(Ci − Cj) [229] Sect. 9.4.1, p. 237

H43 O(n2) 1|pj = gj(t)|Pmax [5] Sect. 9.4.2, p. 238
H44 O(n log n) 1|pj = aj + bt|

∑
wjCj [218] Sect. 9.4.2, p. 238

H45 O(n log n) 1|pj = aj2
bj(t−rj)|

∑
wjCj [146] Sect. 9.4.3, p. 239

H46 O(n log n) 1|pj = aj2
bj(t−rj)|

∑
wjCj [146] Sect. 9.4.3, p. 239

H47 O(n log n) 1|pj = aj2
bj(t−rj)|

∑
wjCj [146] Sect. 9.4.3, p. 239

H48 O(n2) 1|pj ≡ (6.68)|
∑

wjCj [263] Sect. 9.4.3, p. 239

H49 O(n log n) 1|pj = aj − bjt|
∑

wjC
(a)
j [10] Sect. 9.4.4, p. 240

H50 O(n log n) 1|pj = aj − bjt|
∑

wjC
(a)
j [10] Sect. 9.4.4, p. 240

(a) 0 ≤ bj < 1, bi(
∑n

j=1 aj − ai) < ai for 1 ≤ i ≤ n

Table 9.9: Fully Polynomial-Time Approximation Schemata (Single Machine Prob-
lems)

Problem Running Time References This book

1, h11|pj = bjt, nres|Cmax O(n2ε−1) [155] Sect. 9.1.1, p. 209
1|pj = a + bj max{t− d0, 0}|Cmax O(n6ε−2) [39] Sect. 9.1.3, p. 221

1|pj ≡ (6.39)|Cmax O(n5L4ε−2)(a) [176],[296] Sect. 9.1.3, p. 221

1|pj = aj − bj min{t, D}|Cmax
(b) O(n3L3ε−2)(c) [153] Sect. 9.1.5, p. 226

(a) L := log max{n, D, 1
ε
, amax, bmax}

(b) 0 < bj ≤ aj

2D
for 1 ≤ j ≤ n,

(c) L := log max{n, 1
ε
, 1 + bmax, S1}, where amax := max1≤j≤n{aj} and bmax :=

max1≤j≤n{bj}
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Table 9.10: Fully Polynomial-Time Approximation Schemata (Parallel Machine
Problems)

Problem Running Time References This book

Pm|pj = bjt|Cmax O(n2m+1Lm+1ε−m)(a) [243] Sect. 9.1.1, p. 209

Pm|pj = aj + bjt|Cmax O(n2m+1Lm+1ε−m)(b) [161] Sect. 9.1.2, p. 211

Pm|pj = aj − bjt|Cmax O(nm+1Lm+1ε−m)(c) [160] Sect. 9.1.4, p. 223

Pm|pj ≡ (9.7)|Cmax O(n2m+1L2m+1ε−2m)(c) [153] Sect. 9.1.5, p. 225

Pm|pj = bj |
∑

Cj O(n2m+3Lm+2ε−(m+1))(a) [154], [296] Sect. 9.2.1, p. 230

(a) L :=log max{n, 1
ε
, 1 + bmax, S1}

(b) L :=log max{n, 1
ε
, amax, 1 + bmax}

(c) L :=log max{n, 1
ε
, amax}, where amax :=max1≤j≤n{aj} and bmax :=max1≤j≤n{bj}
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Greedy algorithms based on signatures

Heuristic algorithms for intractable time-dependent scheduling problems
may be constructed in many various ways. In this chapter, we present two

greedy heuristic time-dependent scheduling algorithms which exploit certain
properties of the so-called ‘signatures’ of job deterioration rates.

Chapter 10 is composed of five sections. In Sect. 10.1, we formulate the
problem that is the subject of this chapter and introduce the signatures. In
Sect. 10.2, we present basic properties of signatures. In Sect. 10.3, we formulate
the first greedy algorithm based on the properties of signatures. In Sect. 10.4,
we introduce the so-called regular sequences and formulate the second greedy
algorithm based on signatures. We also give arguments for the conjecture that
the greedy algorithms find optimal schedules for regular sequences. Concluding
remarks are given in Sect. 10.5.

10.1 Preliminaries

In this section, we give the formulation of the problem under consideration
and define the notion of signatures of job deterioration rates.

10.1.1 Problem formulation

We consider the following version of the problem 1|pj = 1 + bj |
∑

Cj . A set
J of n + 1 deteriorating jobs, J0, J1, J2, . . . , Jn, is to be processed on a single
machine, which is available from time t0 = 0. The job processing times are in
the form of pj = 1+ bjt, where bj > 0 for 0 ≤ j ≤ n. The criterion of schedule
optimality is the total completion time,

∑
Cj =

∑n
j=0 Cj , where C0 := 1 and

Cj−1 + pj(Cj−1) = 1 + (1 + bj)Cj−1 for 1 ≤ j ≤ n. For simplicity of further
presentation, let βj = 1 + bj for 0 ≤ j ≤ n and β̂ := (β0, β1, β2, . . . , βn).

Recall that the time complexity of the problem is still unknown (cf.
Sect. 6.2.3), though there exists a hypothesis that it is at leastNP-complete in
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the ordinary sense (Cheng et al. [55, Sect. 3]). Therefore, in accordance with
a recommendation by Garey and Johnson [85, Chap. 4], the consideration of
special cases of the problem may lead to finding polynomially solvable cases
of the problem and delineating the border between its easy and hard cases.
Hence, through the chapter we assume that job deterioration rates are of a
special form, e.g., they are consecutive natural numbers.

10.1.2 Definition of signatures

Lemma 10.1. (Gawiejnowicz et al. [95]) Let C(β̂) = [C0, C1, C2, . . . , Cn] be
the vector of job completion times in the form of (6.11) for a given sequence
β̂ = (β0, β1, β2, . . . , βn). Then

(a) ‖C(β̂)‖1 :=
n∑

j=0

Cj(β̂) =
n∑

j=0

(1 +
j∑

i=1

j∏

k=i

βk) =
n∑

j=1

j∑

i=1

j∏

k=i

βk + (n + 1),

(b) ‖C(β̂)‖∞ := max
0≤j≤n

{Cj(β̂)} = 1 +
n∑

i=1

n∏

k=i

βk.

Proof. (a) The result follows from equality (6.11) and Definition 1.18 of the
norm lp for p = 1.

(b) The result follows from equality (6.11), Definition 1.18 of the norm lp
for p = ∞ and the fact that max0≤j≤n{Cj(β̂)} = Cn(β̂). � 

Remark 10.2. By Lemma 10.1, ‖C(β̂)‖1 ≡
∑

Cj(β̂) and ‖C(β̂)‖∞ ≡ Cmax(β̂).
Hence, minimizing the norm l1 (l∞) is equivalent to minimizing the criterion∑

Cj (Cmax); see Gawiejnowicz et al. [105] for details.

Remark 10.3. Notice that since S[0] = t0 = 0, the coefficient β[0] has no influ-
ence on the value of Cj(β̂) for 0 ≤ j ≤ n. Moreover, Cj(β̂) depends on βi in
a monotone non-decreasing way for each 1 ≤ i ≤ j. Therefore, given any per-
mutation of sequence β̂, the best strategy for minimizing

∑
Cj(β̂) is to set as

β[0] the maximal element in this sequence (cf. Theorem 6.128). In other words,
if we start at t0 = 0, the subject of our interest is the remaining n-element
subsequence β = (β1, β2, . . . , βn) of β̂, with β[0] maximal. Hence, from now
on, we assume that β[0] = max0≤j≤n{βj} and consider mainly sequence β.

Definition 10.4. (Gawiejnowicz et al. [95]) Let C(β) = [C1, C2, . . . , Cn]
be the vector of job completion times (6.11) for a given sequence β =
(β1, β2, . . . , βn). Functions F (β) and M(β) are defined as follows:

F (β) :=
n∑

j=1

j∑

i=1

j∏

k=i

βk

and

M(β) := 1 +
n∑

i=1

n∏

k=i

βk.
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Remark 10.5. We refer to the minimizing of functions F (β) and M(β) as to
the F -problem and M -problem, respectively. Since, by Lemma 10.1, ‖C(β̂)‖1 =
F (β) + (n + 1) and ‖C(β̂)‖∞ = M(β), the M -problem and F -problem
are closely related to the problems of minimization of the Cmax criterion
(cf. Sect. 6.1.3) and

∑
Cj criterion (cf. Sect. 6.2.3), respectively.

Now, we define the basic notion in the chapter (cf. Gawiejnowicz et al. [95]).

Definition 10.6. (Signatures of deterioration rate sequence β)
For a given sequence β = (β1, β2, . . . , βn), signatures S−(β) and S+(β) of
sequence β are defined as follows:

S−(β) := M(β̄)−M(β) =
n∑

i=1

i∏

j=1

βj −
n∑

i=1

n∏

j=i

βj (10.1)

and
S+(β) := M(β̄) + M(β), (10.2)

where β̄ := (βn, βn−1, . . . , β1) is the reverse permutation of elements of β.

Since the signatures (10.1) and (10.2) are essential in further considera-
tions, we now prove some of their properties.

10.2 Basic properties of signatures

Let us introduce the following notation. Given a sequence β = (β1, . . . , βn)
and any two numbers α > 1 and γ > 1, let (α|β|γ) and (γ|β|α) denote concate-
nations of α, β and γ in the indicated orders, respectively. Let B :=

∏n
j=1 βj .

We start with a lemma which shows how to calculate the values of function
F (·) for sequence β extended with the elements α and γ if we know the values
of F (β), M(β) and M(β̄).

Lemma 10.7. (Gawiejnowicz et al. [95]) For a given sequence β and any
numbers α > 1 and γ > 1, there hold the following equalities:

F (α|β|γ) = F (β) + α M(β̄) + γ M(β) + α B γ (10.3)

and
F (γ|β|α) = F (β) + γ M(β̄) + α M(β) + α B γ. (10.4)

Proof. Let β = (β1, . . . , βn), β0 = α > 1, βn+1 = γ > 1. Then F (β0|β|βn+1) =
∑n+1

j=0

∑j
i=0 βiβi+1 · · ·βj = F (β)+

∑n
j=0 β0β1 · · ·βj +

∑n+1
i=0 βiβi+1 · · ·βn+1 =

F (β)+β0(1+
∑n

j=1 β1β2 · · ·βj)+βn+1(1+
∑n

i=1 βiβi+1 · · ·βn)+β0β1 · · ·βn+1,
and equality (10.3) follows. To prove (10.4), it is sufficient to exchange α and
γ in (10.3) and to note that the last term remains unchanged. �
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By Lemma 10.7, we obtain general formulae concerning the difference and
the sum of values of F (·) for sequences (α|β|γ) and (γ|β|α).

Lemma 10.8. (Gawiejnowicz et al. [95]) For a given sequence β and any
numbers α > 1 and γ > 1, there hold the following equalities:

F (α|β|γ)− F (γ|β|α) = (α− γ)S−(β) (10.5)

and

F (α|β|γ) + F (γ|β|α) = (α + γ)S+(β) + 2(F (β) + α B γ). (10.6)

Proof. Let β = (β1, . . . , βn), α > 1 and γ > 1 be given. Then by subtracting
the left and the right sides of equalities (10.3) and (10.4), respectively, and by
applying Definition 10.6, equation (10.5) follows.

Similarly, by adding the left and the right sides of equalities (10.3)
and (10.4), respectively, and by applying Definition 10.6, we obtain equa-
tion (10.6). �

Lemma 10.8 shows the relation which holds between a signature and a
change of the value of function F (·), if the first and the last element in sequence
β have been mutually exchanged.

From identities (10.5) and (10.6), we can obtain another pair of equalities,
expressed in terms of signatures S−(·) and S+(·).

Lemma 10.9. (Gawiejnowicz et al. [95]) For a given sequence β and any
numbers α > 1 and γ > 1, there hold the following equalities:

F (α|β|γ) = F (β) +
1
2
((α + γ)S+(β) + (α− γ)S−(β)) + α B γ (10.7)

and

F (γ|β|α) = F (β) +
1
2
((α + γ)S+(β)− (α− γ)S−(β)) + α B γ. (10.8)

Proof. Indeed, by adding the left and the right sides of equalities (10.5) and
(10.6), respectively, we obtain equality (10.7).

Similarly, by subtracting the left and the right sides of equalities (10.6)
and (10.5), respectively, we obtain equality (10.8). �

The next result shows how to concatenate new elements α and γ with a
given sequence β in order to decrease the value of function F (·).

Theorem 10.10. (Gawiejnowicz et al. [95]) Let there be given a sequence β
related to the F -problem and the numbers α > 1 and γ > 1. Then there holds
the following equivalence:

F (α|β|γ) ≤ F (γ|β|α) iff (α− γ)S−(β) ≤ 0. (10.9)

Moreover, there holds a similar equivalence, if in equivalence (10.9) the symbol
‘≤’ is replaced with ‘≥’.
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Proof. The result follows from identity (10.5) in Lemma 10.8. �

From Theorem 10.10, it follows that in order to decrease the value of
F (·|β|·) we should choose (α|β|γ) instead of (γ|β|α) when (α− γ)S−(β) ≤ 0,
and (γ|β|α) instead of (α|β|γ) in the opposite case. Therefore, the behaviour
of function F (·) for such concatenations is determined by the sign of the
signature S−(β) of the original sequence β.

In the next theorem, we give a greedy strategy for solving the F -problem.
This strategy is based on the behaviour of the signature S−(·) only.

Theorem 10.11. (Gawiejnowicz et al. [95]) Let β = (β1, . . . , βn) be a non-
decreasingly ordered sequence for the F -problem, let u = (u1, . . . , uk−1) be a
V-sequence constructed from the first k− 1 elements of β, let α = βk > 1 and
γ = βk+1 > 1, where 1 < k < n, and let α ≤ γ. Then there holds the following
implication:

if S−(u) ≥ 0, then F (α|u|γ) ≤ F (γ|u|α). (10.10)

Moreover, there holds a similar implication, if in implication (10.10) the sym-
bol ‘≥’ is replaced by ‘≤’ and the symbol ‘≤’ is by replaced ‘≥’.

Proof. Assume that the sign of the signature S−(u) is known. Then it
is sufficient to note that by equivalence (10.9) the sign of the difference
F (α|u|γ)− F (γ|u|α) is determined by the sign of the difference α− γ. �

Theorem 10.11 indicates which one of the two sequences, (α|u|γ) or
(γ|u|α), should be chosen if the sign of the signature S−(u) is known.

The next result shows a relation between signatures of sequences (α|β|γ)
and (γ|β|α) and the values of function M(·) for sequences β and β̄.

Theorem 10.12. (Gawiejnowicz et al. [95]) For a given sequence β and any
numbers α > 1 and γ > 1, there hold the following equalities:

S−(α|β|γ) = α M(β̄)− γ M(β) (10.11)

and
S−(γ|β|α) = γ M(β̄)− α M(β). (10.12)

Proof. Let β = (β1, . . . , βn), β0 = α > 1 and βn+1 = γ > 1. Then we have
S−(α|β|γ) =

∑n+1
i=0 β0β1 · · ·βi−

∑n+1
i=0 βi · · ·βnβn+1 = β0(1+

∑n
i=1 β1 · · ·βi)−

βn+1(1+
∑n

i=1 βi · · ·βn). Since the expressions in the brackets are nothing else
than M(β̄) and M(β), respectively, identity (10.11) follows.

Similarly, by exchanging α and γ in (10.11), we obtain (10.12). �

From Theorem 10.12, there follow identities which determine the behaviour
of subsequently calculated signatures S−(·).
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Theorem 10.13. (Gawiejnowicz et al. [95]) For a given sequence β and any
numbers α > 1 and γ > 1, there hold the following identities:

S−(α|β|γ) + S−(γ|β|α) = (α + γ)S−(β), (10.13)

S−(α|β|γ)− S−(γ|β|α) = (α− γ)S+(β) (10.14)

and

S−(α|β|γ)2 − S−(γ|β|α)2 = (α2 − γ2) (M(β̄)2 −M(β)2)
= (α2 − γ2) S−(β) S+(β). (10.15)

Proof. Indeed, by adding the left and right sides of equalities (10.11) and
(10.12), respectively, we obtain identity (10.13).

Similarly, by subtracting the left and right sides of equalities (10.11) and
(10.12), respectively, we obtain identity (10.14).

Multiplying the left and the right sides of identities (10.13) and (10.14),
respectively, we obtain identity (10.15). �

Remark 10.14. The analysis of these identities shows that in general, we can-
not determine uniquely the sign of signatures S−(α|β|γ) and S−(γ|β|α) in
terms of the sign of the signature S−(β) only even if we know that α ≤ γ
(or α ≥ γ). Indeed, if we know the sign of F (α|β|γ) − F (γ|β|α) or, equiv-
alently, the sign of (α − γ)S−(β), then from identities (10.13), (10.14) and
(10.15), it follows that for the consecutive signatures we only know the sign
of |S−(α|β|γ)| − |S−(γ|β|α)|.

Finally, by Theorem 10.13, we can prove one more pair of identities.

Theorem 10.15. (Gawiejnowicz et al. [95]) For a given sequence β and any
numbers α > 1 and γ > 1, there hold the following identities:

S−(α|β|γ) =
1
2
((α + γ)S−(β) + (α− γ)S+(β)) (10.16)

and
S−(γ|β|α) =

1
2
((α + γ)S−(β)− (α− γ)S+(β)). (10.17)

Proof. Indeed, by adding the left and right sides of identities (10.13) and
(10.14), respectively, we obtain identity (10.16).

Similarly, by subtracting the left and right sides of identities (10.14) and
(10.13), respectively, we obtain identity (10.17). �

Remark 10.16. Considering sequence β̄ instead of β, we can formulate and
prove counterparts of Lemmata 10.7–10.9 and Theorems 10.10–10.13 and
10.15. We omit the formulations of these results, since they do not intro-
duce new insights into the problem. Note only that there holds the equality
S−(β)+S−(β̄) = 0, i.e., the signatures S−(β) and S−(β̄) have opposite signs.
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10.3 A greedy algorithm

In this section, we introduce the first greedy heuristic algorithm for the prob-
lem 1|pj = 1+bjt|

∑
Cj . The algorithm is based on the properties of signatures

presented in Sect. 10.2.
Let u denote a V-shaped sequence composed of the first k ≥ 1 elements of

sequence β, which have been ordered non-decreasingly. Let α = βk+1 > 1 and
γ = βk+2 > 1 be two consecutive elements of β, where α ≤ γ. Then there are
two ways of extending sequence u: by concatenating α at the beginning of the
left branch and γ at the end of the right branch of the constructed sequence,
or conversely. On the basis of the results from Sect. 10.2, we can formulate
the following algorithm.

Algorithm H51 for the problem 1|pj = 1 + bjt|
∑

Cj ([94])

Input: sequence β̂ = (β0, β1, . . . , βn)
Output: a suboptimal sequence u

� Step 1:
Arrange sequence β̂ in the non-decreasing order;

� Step 2:
if (n is odd) then

u ← (β[1]);
for i ← 2 to n− 1 step 2 do

if (S−(u) ≤ 0) then u ← (β[i+1]|u|β[i])
else u ← (β[i]|u|β[i+1])

else � n is even
u ← (β[1], β[2]);
for i ← 3 to n− 1 step 2 do

if (S−(u) ≤ 0) then u ← (β[i+1]|u|β[i])
else u ← (β[i]|u|β[i+1]);

� Step 3:
u ← (β0|u);
return u.

The greedy algorithm, starting from an initial sequence, iteratively con-
structs a new sequence, concatenating the previous sequence with new ele-
ments according to the sign of the signature S−(u) of this sequence.

Notice that since Step 1 runs in O(n log n) time, Step 2 is a loop running
in O(n) time and Step 3 runs in a constant time, the total running time of
algorithm H51 is O(n log n).

We illustrate the performance of algorithm H51 with two examples (cf.[94]).

Example 10.17. Let β = (2, 3, 4, 6, 8, 16, 21). The optimal V-shaped sequence
is β� = (21, 8, 6, 3, 2, 4, 16), with

∑
Cj(β�) = 23226. Algorithm H51 generates

the sequence uH51 = (21, 8, 6, 2, 3, 4, 16), with
∑

Cj(uH51) = 23240.
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Other algorithms, e.g., algorithms H31 and H32 (cf. Sect. 9.2.2) give worse
results: uH31 = (21, 8, 4, 2, 3, 6, 16), uH32 = (21, 6, 3, 2, 4, 8, 16), with∑

Cj(uH31) = 23418 and
∑

Cj(uH32) = 24890, respectively. �
Thus, in general, algorithm H51 is not optimal. The following example

shows, however, that this algorithm can be optimal for sequences of consecu-
tive natural numbers.

Example 10.18. Let β = (2, 3, 4, 5, 6, 7, 8). Algorithm H51 generates the opti-
mal V-sequence β� = (8, 6, 5, 2, 3, 4, 7) with

∑
Cj(β�) = 7386.

The sequences generated by algorithms H31 and H32 are the following:
βH31 = (8, 6, 4, 2, 3, 5, 7) and βH32 = (8, 5, 4, 2, 3, 6, 7), with

∑
Cj(βH31) =

7403 and
∑

Cj(βH32) = 7638, respectively. �
In order to evaluate the quality of schedules generated by algorithm H51,

a number of computational experiments have been conducted.

Table 10.1: Experiment results for consecutive integer deterioration rates

n OPT (I) Rr
H51(I) Rr

H31(I) Rr
H32(I)

2 8 	 	 	
3 21 	 	 0.142857142857
4 65 	 0.015384615385 0.138461538462
5 250 	 0.008000000000 0.084000000000
6 1,232 	 0.008928571429 0.060876623377
7 7,559 	 0.003571901045 0.053049345151
8 55,689 	 0.002621702670 0.033884609169
9 475,330 	 0.000995098142 0.020871815370

10 4,584,532 	 0.000558835667 0.014906428835
11 49,111,539 	 0.000244423210 0.011506155407
12 577,378,569 	 0.000142137247 0.009070282967
13 7,382,862,790 	 0.000080251254 0.007401067385
14 101,953,106,744 	 0.000052563705 0.006210868342
15 1,511,668,564,323 	 0.000035847160 0.005304460215
16 23,947,091,701,857 	 0.000025936659 0.004588979235
17 403,593,335,602,130 	 0.000019321905 0.004013033262
18 7,209,716,105,574,116 	 0.000014779355 0.003541270022
19 136,066,770,200,782,755 	 0.000011522779 0.003149229584
20 2,705,070,075,537,727,250 	 0.000009131461 0.002819574105

In the first experiment, the schedules generated by algorithm H51 have
been compared with schedules obtained by algorithms H31 and H32. In this
experiment, job deterioration coefficients were consecutive natural numbers,
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βj = j + 1 for 0 ≤ j ≤ n. The results of the experiment are summa-
rized in Table 10.1 (cf. [95]). The star (‘�’) denotes that for a particular
value of n, instance I and algorithm A the ratio Rr

A(I) (cf. Remark 2.15) is
equal to 0.

The aim of the second computational experiment was to find optimal so-
lutions to the problem 1|pj = 1 + bjt|

∑
Cj , where bj = j + 1 for 1 ≤ j ≤ 20.

The results of the experiment are given in Table 10.2 (the case n = 2m) and
Table 10.3 (the case n = 2m− 1), where 1 ≤ m ≤ 10.

Table 10.2: Solutions of the problem 1|pj = 1 + (1 + j)t|
∑

Cj for n ≤ 20, n even

m n = 2m

1 (1, 2)
2 (4, 1, 2, 3)
3 (5, 4, 1, 2, 3, 6)
4 (8, 5, 4, 1, 2, 3, 6, 7)
5 (9, 8, 5, 4, 1, 2, 3, 6, 7, 10)
6 (12, 9, 8, 5, 4, 1, 2, 3, 6, 7, 10, 11)
7 (13, 12, 9, 8, 5, 4, 1, 2, 3, 6, 7, 10, 11, 14)
8 (16, 13, 12, 9, 8, 5, 4, 1, 2, 3, 6, 7, 10, 11, 14, 15)
9 (17, 16, 13, 12, 9, 8, 5, 4, 1, 2, 3, 6, 7, 10, 11, 14, 15, 18)

10 (20, 17, 16, 13, 12, 9, 8, 5, 4, 1, 2, 3, 6, 7, 10, 11, 14, 15, 18, 19)

Table 10.3: Solutions of the problem 1|pj = 1 + (1 + j)t|
∑

Cj for n ≤ 20, n odd

m n = 2m− 1

1 (1)
2 (3, 1, 2)
3 (4, 3, 1, 2, 5)
4 (7, 4, 3, 1, 2, 5, 6)
5 (8, 7, 4, 3, 1, 2, 5, 6, 9)
6 (11, 8, 7, 4, 3, 1, 2, 5, 6, 9, 10)
7 (12, 11, 8, 7, 4, 3, 1, 2, 5, 6, 9, 10, 13)
8 (15, 12, 11, 8, 7, 4, 3, 1, 2, 5, 6, 9, 10, 13, 14)
9 (16, 15, 12, 11, 8, 7, 4, 3, 1, 2, 5, 6, 9, 10, 13, 14, 17)

10 (19, 16, 15, 12, 11, 8, 7, 4, 3, 1, 2, 5, 6, 9, 10, 13, 14, 17, 18)

Remark 10.19. In sequences presented in Tables 10.2 and 10.3 are omitted, by
Remark 10.3, the indices that correspond to the value of β[0].

Remark 10.20. The solutions given in Tables 10.2–10.3 have been found by
an exact algorithm. Since by Theorem 6.133 any optimal sequence for the
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problem 1|pj = 1 + bjt|
∑

Cj has to be V-shaped, the algorithm for a given n
constructed all possible V-shaped sequences and selected the optimal one.

The results of these experiments suggest that for certain types of β
sequences, which will be called regular, algorithm H51 constructs optimal
schedules. A regular sequence is, e.g., the sequence composed of consecu-
tive natural numbers or elements of an arithmetic (a geometric) progression.
(Two latter sequences will be called arithmetic and geometric sequences, re-
spectively.) Moreover, it seems that for regular sequences it is possible to
construct an optimal schedule knowing only the form of sequence β, without
calculation of the signature S−(u). The arguments supporting the conjectures
are given in the next section.

10.4 Signatures of regular sequences

In this section, we present some results which strongly support the conjecture
that algorithm H51 is optimal for regular sequences of job deterioration rates.
We start with the sequence of consecutive natural numbers.

10.4.1 Sequences of consecutive natural numbers

Let us define the following two sequences:

β = (rm + (−1)m, . . . , r2 + 1, r1 − 1, r1, r2, . . . , rm) for n = 2m, (10.18)

β = (sm−1 + 2, . . . , s2 + 2, s1 + 2, s1, s2, . . . , sm) for n = 2m− 1, (10.19)

where

rk = 2k − 1
2 ((−1)k + 3) + 1, k = 1, 2, . . . ,m for n = 2m, (10.20)

sk = 2k − 1
2 ((−1)k + 3), k = 1, 2, . . . ,m for n = 2m− 1. (10.21)

We will refer to sequences rk and sk, and to the related sequence β, as to the
even and odd sequence, respectively.

Remark 10.21. Since sequences given in Tables 10.2 and 10.3 correspond to
sequences (10.20) and (10.21) for 1 ≤ m ≤ 10, respectively, formulae (10.18)
and (10.19) can be considered as generalizations of these sequences for an
arbitrary m ≥ 1.

Now, we prove a formula that can be derived from Definition (10.1) of
the signature S−(β). For simplicity of notation, if sequence β is fixed, we will
write S−

n instead of S−(β):
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S−
n =

m∑

i=1

β1 · · ·βi −
n−m∑

i=1

βn−i+1 · · ·βn +
n−m∑

i=1

β1 · · ·βm+i −
m∑

i=1

βi · · ·βn, (10.22)

where 1 ≤ m ≤ n.
From formula (10.22), we can obtain the following representation of the

signature for n = 2m and n = 2m− 1, respectively.

Lemma 10.22. (Gawiejnowicz et al. [95]) Let β = (β1, . . . , βn). If n = 2m,
then

S−
2m =

m∑

i=1

ηi(m)

⎛

⎝
m−i+1∏

j=1

βj −
2m∏

j=m+i

βj

⎞

⎠ , (10.23)

where η1(m) = 1 and ηi(m) = 1 +
m+i−1∏

j=m−i+2

βj for i = 2, 3, . . . , m.

If n = 2m− 1, then

S−
2m−1 =

m−1∑

i=1

ωi(m)

⎛

⎝
m−i∏

j=1

βj −
2m−1∏

j=m+i

βj

⎞

⎠ , (10.24)

where ωi(m) = 1 +
m+i−1∏

j=m−i+1

βj for i = 1, 2, . . . ,m− 1.

Proof. Let n = 2m. Then

S−
2m =

m∑

i=1

(β1 · · ·βi − β2m−i+1 · · ·β2m) +
m∑

i=1

β1 · · ·βm+i −
m∑

i=1

βi · · ·β2m.

Reducing the last term in the second sum with the first one in the third sum
we have S−

2m =
∑m

i=1 (β1 · · ·βi − β2m−i+1 · · ·β2m) +
∑m−1

i=1 βi+1 · · ·β2m−i ×
(β1 · · ·βi − β2m−i+1 · · ·β2m) . Next, by joining both sums and by changing
the index of summation according to i := m − i + 1, we have S−

2m =∑m
i=2 (1 + βm−i+2 · · ·βm+i−1) × (β1 · · ·βm−i+1 − βm+i · · ·β2m) + β1 · · ·βm−

βm+1 · · ·β2m. Hence, taking into account definitions of the coefficients ηi, for-
mula (10.23) follows.

To prove formula (10.24), we proceed in the same way. Let n = 2m − 1.
Then S−

2m−1 =
∑m

i=1 β1 · · ·βi −
∑m−1

i=1 βm+i · · ·β2m−1 +
∑m−1

i=1 β1 · · ·βm+i −∑m
i=1 βi · · ·β2m−1. Changing the index of the summation in the first sum ac-

cording to i := m − i, in the third sum according to i := i − 1 and in the
last sum according to i := m− i + 1, we obtain S−

2m−1 =
∑m−1

i=0 β1 · · ·βm−i −
∑m−1

i=1 βm+i · · ·β2m−1 +
∑m−1

i=2 (β1 · · ·βm−i) × (βm−i+1 · · ·βm+i−1)−∑m−1
i=1 (βm−i+1 · · ·βm+i−1) × (βm+i · · ·β2m−1) . By moving in the first sum

the term with the index i = 0 to the third one under the index i = 1 and
applying definitions of coefficients ωi, we obtain formula (10.24). �
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Lemma 10.23. (Gawiejnowicz et al. [95]) Let n = 2m, and let β be an even
sequence. Then for each integer m ≥ 1, there holds the following equality:

S−
2m =

m∑

i=1

ηi

⎛

⎝
m∏

j=i

(rj + (−1)j)−
m∏

j=i

rj

⎞

⎠ , (10.25)

where

η1 = 1 and ηi = 1 +
i−1∏

j=1

rj

i−1∏

j=1

(rj + (−1)j) (10.26)

for i = 2, 3, . . . , m.

Proof. Applying Lemma 10.22 to sequence β given by formulae (10.18) and
(10.20), we obtain formula (10.25) for the signature S−

2m. �

Now, on the basis of (10.25), we can state the following result.

Theorem 10.24. (Gawiejnowicz et al. [95]) Let n = 2m, and let β be an even
sequence. Then for the signatures S−

2m+2 and S−
2m, there holds the following

formula:

S−
2m+2 = rm+1S

−
2m + (−1)m+1

m+1∑

i=1

ηi

m∏

j=i

(rj + (−1)j), (10.27)

where the signature S−
2m and coefficients ηi are defined by formulae (10.25)

and (10.26), respectively. Moreover, there holds the following identity:

S−
2m+2 = Rm

(
(−1)m+1 + Θm

)
, (10.28)

where Θm = S−
2m

Rm
(rm+1 + (−1)m+1) and Rm =

m+1∑

i=1

ηi

m∏

j=i

rj .

Proof. Applying Lemma 10.23, we obtain

S−
2m+2 =

m+1∑

i=1

ηi

(
(ri + (−1)i) · · · (rm+1 + (−1)m+1)− ri · · · rm+1

)

=
m∑

i=1

ηi

(
(ri + (−1)i) · · · (rm+1 + (−1)m+1)− ri · · · rm+1

)

+ ηm+1

(
(rm+1 + (−1)m+1)− rm+1

)

= rm+1S
−
2m + (−1)m+1

m∑

i=1

ηi

(
(ri + (−1)i) · · · (rm + (−1)m)

)

+ ηm+1

(
(rm+1 + (−1)m+1)− rm+1

)

= rm+1S
−
2m + (−1)m+1

m+1∑

i=1

ηi

(
(ri + (−1)i) · · · (rm + (−1)m)

)
,
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and formula (10.27) follows in view of the definition of coefficients ηi. Formula
(10.28) follows from the assumed notation and formula (10.27). �

Now we consider the case of an odd sequence. Applying Lemma 10.22 to
sequence β given by formulae (10.19) and (10.21), we obtain the following
formula for the signature S−

2m−1.

Lemma 10.25. (Gawiejnowicz et al. [95]) Let β be an odd sequence and let
n = 2m− 1. Then for every integer m ≥ 1 there holds the following equality:

S−
2m−1 =

m−1∑

i=1

ωi

⎛

⎝
m−1∏

j=i

(sj + 2)−
m∏

j=i+1

sj

⎞

⎠ (10.29)

where ωi = 1 +
i∏

j=1

sj

i−1∏

j=1

(sj + 2) for i = 1, 2, . . . ,m− 1.

Proof. Let n = 2m− 1, and let β be an odd sequence. Then we have βm−i =
si +2 for i = 1, 2, . . . ,m− 1 and βm+i−1 = si for i = 1, 2, . . . ,m. Substituting
these values in formula (10.24) and noticing that ωi = 1+βm−i+1 · · ·βm+i−1 =
1 + s1 · · · si(s1 + 2) · · · (si−1 + 2), formula (10.29) follows. �

On the basis of formula (10.29), we can state the following result, concern-
ing the behaviour of the signature S−

n for n = 2m + 1.

Theorem 10.26. (Gawiejnowicz et al. [95]) Let n = 2m + 1 and let β be
an odd sequence. Then for the signatures S−

2m+1 and S−
2m−1, there holds the

following formula:

S−
2m+1 = (sm + 2) S−

2m−1 + (−1)m+1
m∑

i=1

ωi

m∏

j=i+1

sj , (10.30)

where ωi = 1 +
i∏

j=1

sj

i−1∏

j=1

(sj + 2) for i = 1, 2, . . . ,m. Moreover, for S−
2m+1

there holds the following identity:

S−
2m+1 = Qm

(
(−1)m+1 + Γm

)
, (10.31)

where Γm =
S−

2m−1
Qm

(sm + 2) and Qm =
m∑

i=1

ωi

m∏

j=i+1

sj.

Proof. By Lemma 10.25, for ωi = 1+(s1 · · · si)(s1+2) · · · (si−1+2), we obtain

S−
2m+1 =

m∑

i=1

ωi ((si + 2) · · · (sm + 2)− si+1 · · · sm+1)

=
m−1∑

i=1

ωi ((si + 2) · · · (sm + 2)− qi + qi − si+1 · · · sm+1)

+ ωm ((sm + 2)− sm+1) ,
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where qi ≡ (si+1 · · · sm)(sm + 2). Hence, by Lemma 10.25, we have

S−
2m+1 = (sm + 2)

m−1∑

i=1

ωi ((si + 2) · · · (sm−1 + 2)− si+1 · · · sm)

+
m−1∑

i=1

ωi (si+1 · · · sm) ((sm + 2)− sm+1)

+ ωm ((sm + 2)− sm+1) .

Collecting the last terms, applying identity (10.25) and using the equality
(sm + 2)− sm+1 = (−1)m+1, we obtain formula (10.30).

Formula (10.31) is an immediate consequence of formula (10.30) and the
assumed notation. �

We will now prove that for an arbitrary m, the sign of signatures S−
2m

and S−
2m−1 varies periodically. Knowing the behaviour of the signatures, we

are able to simplify algorithm H51, since we will not have to calculate the
signatures in Step 2 of the algorithm.

Theorem 10.27. (Gawiejnowicz et al. [95]) Let there be given V-sequences
(10.18) and (10.19) of sequence β := (1, 2, . . . , n). Then for each integer m ≥ 1
the sign of the signatures S−

2m and S−
2m−1 for these sequences varies peri-

odically according to the formulae sign(S−
2m) = (−1)m and sign(S−

2m−1) =
(−1)m, respectively.

Before we prove Theorem 10.27, we will prove some technical lemmata.

Lemma 10.28. (Gawiejnowicz et al. [95]) For every integer m ≥ 1, there hold
the following recurrence relations:

Θ1 = −4
5
, Θm+1 = Dm(Θm − (−1)m) for n = 2m (10.32)

and

Γ1 = 0, Γ2 =
8
11

, Γm+1 = Em(Γm − (−1)m) for n = 2m− 1, (10.33)

where
Dm = (rm+1 + 2)

Rm

Rm+1
(10.34)

and
Em = (sm+1 + 2)

Qm

Qm+1
. (10.35)

Proof. Recurrence relations (10.32) and (10.33) follow from Theorem 10.24
and Theorem 10.26, respectively. In the case of formula (10.34), we apply the
equality rm+2 + (−1)m+2 = rm+1 + 2. In both formulae, (10.34) and (10.35),
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it is sufficient to apply definitions of Θm+1 and Γm+1, and the recurrence
formulae (10.25) and (10.29) for S−

2m and S−
2m−1, respectively. Clearly, the

definitions of Rm (cf. Theorem 10.24) and Qm (cf. Theorem 10.26) must be
also applied. �

Remark 10.29. Note that we have |Θ1| < 1, Γ1 = 0 and |Γ2| < 1. Moreover,
Θ1 < 0 and Γ2 > 0.

The next two lemmata are needed in proofs of inequalities 0 < Dm < 1
and 0 < Em < 1.

Lemma 10.30. (Gawiejnowicz et al. [95]) For every integer m ≥ 1 there holds
Rm < 1

2ηm+2.

Proof. We will proceed by induction. The case m = 1 is immediate, since
R1 = η1r1 + η2 = r1 +(1+ r1(r1− 1)) and η3 = 1+ r1r2(r1 +2), where r1 = 2
and r2 = 3.

Now, assume that Rm−1 < 1
2ηm+1. Hence

Rm = rmRm−1 + ηm+1 <
1
2
(rm + 2)ηm+1.

Thus, it is sufficient to prove that (rm + 2)ηm+1 < ηm+2. To prove this, note
first that (rm + 2)ηm+1 = (rm + 2) + 1

rm+1
(ηm+2 − 1). Consequently, we have

to prove that (rm + 1) + (1− 1
rm+1

) < (1− 1
rm+1

)ηm+2, or that

rm+1 < (1− 1
rm+1

)(ηm+2−1) =
rm+1 − 1

rm+1
(r1 · · · rmrm+1)(r1+2) · · · (rm+2).

Since rm+1 = rm + 2 + (−1)m, it is sufficient to check the latter inequality in
the expression

rm + 1
rm + 1 + (−1)m

≤ 1 +
1

rm
< (r1 · · · rm)(r1 + 2) · · · (rm + 2).

Finally, since rm ↗, it is sufficient to check the case m = 1, which is
evident. �

Lemma 10.31. (Gawiejnowicz et al. [95]) For every integer m ≥ 1 there holds
Qm < 1

2ωm+1.

Proof. First, we prove the inequality

(sm + 2)ωm < ωm+1. (10.36)

We have
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(sm + 2)ωm = (sm + 2)(1 + (s1 · · · sm)(s1 + 2) · · · (sm−1 + 2))

= (sm + 2) +
1

sm+1
((1 + (s1 · · · sm+1)(s1 + 2) · · · (sm + 2))− 1)

= (sm + 2) +
1

sm+1
(ωm+1 − 1).

It is sufficient to check that (sm + 2) + 1
sm+1

(ωm+1 − 1) < ωm+1, or that

sm + 1
sm + (1 + (−1)m)

≤ 1 +
1

sm
< (s1 · · · sm)(s1 + 2) · · · (sm + 2). (10.37)

To obtain these inequalities, we have applied the equality sm+1 − 1 =
sm + (1 + (−1)m). Since si ≥ 1, inequalities (10.37) are obviously satisfied,
which completes the proof of inequality (10.36).

To prove the lemma, we will proceed by induction. Let m = 1. Since
2Q1 = 2ω1 = 2(1+s1) and ω2 = 1+(s1s2)(s1 +2), we obtain 2Q1 < ω2, since
s1 = 1 and s2 = 2. Now, assume that Qm−1 < 1

2ωm holds. Since

Qm =
m∑

i=1

ωi si+1 · · · sm = smQm−1 + ωm,

we obtain Qm < 1
2 (sm + 2)ωm. Now, applying inequality (10.36), we obtain

Qm <
1
2
(sm + 2)ωm <

1
2
ωm+1.

�

Lemma 10.32. (Gawiejnowicz et al. [95]) For every integer m ≥ 1, there hold
the following inequalities:

0 < Dm < 1 and 0 < Em < 1.

Proof. It is easy to see that Dm > 0 and Em > 0. From the definition of Dm,
the inequality Dm < 1 is equivalent to Rm < 1

2ηm+2, which is satisfied in
view of Lemma 10.30. To prove that Em < 1, we apply Lemma 10.31. Indeed,
in view of the definition of Em, the inequality Em < 1 is equivalent to the
inequality Qm < 1

2ωm+1 from Lemma 10.31. �

Lemma 10.33. (Gawiejnowicz et al. [95]) For every integer m ≥ 1 there holds
the inequality |Θm| < 1 and the equality sign(Θm) = (−1)m.

Proof. Taking m = 2k or m = 2k − 1, for every integer k ≥ 1 we obtain, by
Lemma 10.28, respectively:

Θ2k+1 = D2k(Θ2k − (−1)2k) = D2k(Θ2k − 1)

and
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Θ2k = D2k−1(Θ2k−1 − (−1)2k−1) = D2k−1(Θ2k−1 + 1).

After substituting the value 2k − 1 for odd indices we have

Θ2k+1 = D2k(D2k−1(Θ2k−1 + 1)− 1).

To prove that |Θ2k−1| < 1 and Θ2k−1 < 0 for every integer k ≥ 1, we will
proceed by induction.

For k = 1 we have |Θ1| < 1 and Θ1 < 0, since Θ1 = − 4
5 by definition.

Assume that |Θ2k−1| < 1 and Θ2k−1 < 0. We will prove that |Θ2k+1| < 1
and Θ2k+1 < 0. By induction assumption, 0 < D2k−1(Θ2k−1+1) < 1 and con-
sequently 0 < 1−D2k−1(Θ2k−1 +1) < 1. Hence, |Θ2k+1| < 1 and Θ2k+1 < 0.

Now, consider the case of even indices 2k. Applying the odd case, we obtain

Θ2k = D2k−1(Θ2k−1 + 1) > 0

with D2k−1(Θ2k−1 + 1) < 1. Consequently, |Θ2k| < 1 with Q2k > 0. �

Lemma 10.34. (Gawiejnowicz et al. [95]) For every integer m > 1 there holds
the inequality |Γm| < 1 and the equality sign(Γm) = (−1)m.

Proof. Taking m = 2k or m = 2k − 1, for every integer k ≥ 1, we obtain, by
Lemma 10.28, respectively:

Γ2k+1 = E2k(Γ2k − (−1)2k) = E2k(Γ2k − 1)

and
Γ2k = E2k−1(Γ2k−1 − (−1)2k−1) = E2k−1(Γ2k−1 + 1).

After substituting the value 2k − 1 for odd indices we have

Γ2k+1 = E2k(E2k−1(Γ2k−1 + 1)− 1).

To prove that |Γ2k−1| < 1 and Γ2k−1 < 0 for every integer k ≥ 2, we proceed
by induction.

Note that for k = 1, we have Γ1 = 0. For k = 2 there holds |Γ3| < 1 and
Γ3 < 0 since Γ3 = E2(Γ2 − 1) = E2( 8

11 − 1) and 0 < Em < 1.
Now, let |Γ2k−1| < 1 and Γ2k−1 < 0 for an arbitrary k > 2. Then

−1 < E2k−1(Γ2k−1 + 1)− 1 < 0,

since 0 < E2k−1(Γ2k−1+1) < 1. Finally, we obtain |Γ2k+1| < 1 and Γ2k+1 < 0,
which finishes the induction step. This result implies that

Γ2k = E2k−1(Γ2k−1 + 1) > 0 and Γ2k < 1

for each integer k ≥ 2. Moreover, Γ2 = 8
11 , i.e., Γ2 > 0 and Γ2 < 1. �
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Lemmata 10.33 and 10.34 allow us to prove Theorem 10.27.

Proof of Theorem 10.27. In view of the formula S−
2m+2 = Rm((−1)m+1 +Θm)

for an arbitrary integer m ≥ 2, from the fact that sign(S−
2 ) = 1 and from

Lemma 10.33, we have that sign(S−
2m) = (−1)m for an arbitrary integer m ≥ 1.

Similarly, in view of the formula S−
2m+1 = Qm((−1)m+1 +Γm) for an arbi-

trary integer m ≥ 1, from the fact that sign(S−
1 ) = −1 and from Lemma 10.34,

we have that sign(S−
2m−1) = (−1)m for an arbitrary integer m ≥ 1. �

The results of this section lead us to the following.

Conjecture 10.35. Algorithm H51 is optimal for the 1|pj = 1+bjt|
∑

Cj prob-
lem in the case when bj = j + 1 for j = 0, 1, 2, . . . , n.

Remark 10.36. If Conjecture 10.35 is true, then in Step 2 of algorithm H51 it
is not necessary to check the sign of the signature S−(u), since the sign varies
periodically. The simplified version of algorithm H51 will be called H52.

Algorithm H52 for the problem 1|pj = 1 + bjt|
∑

Cj ([94])

Input: sequence β̂ = (β0, β1, . . . , βn)
Output: a suboptimal sequence u

� Step 1:
Arrange sequence β̂ in the non-decreasing order;

� Step 2:
if (n is odd) then

u ← (β[1]);
sgn ← (−1); � the sign of signature of u
for i ← 2 to n− 1 step 2 do

sgn ← sgn× (−1);
if (sgn < 0) then u ← (β[i+1]|u|β[i])
else u ← (β[i]|u|β[i+1])

else � n is even
u ← (β[1], β[2]);
sgn ← 1;
for i ← 3 to n− 1 step 2 do
sgn ← sgn× (−1);

if (sgn < 0) then u ← (β[i+1]|u|β[i])
else u ← (β[i]|u|β[i+1]);

� Step 3:
u ← (β0|u);
return u.

In the remaining part of the section, the above results will be extended to
cover arithmetic and geometric sequences (cf. Gawiejnowicz et al. [99]).
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10.4.2 Arithmetic sequences

We start the subsection with two examples that illustrate the behaviour of
algorithms H51 and H52 for arithmetic sequences.

Let αA and ρA denote, respectively, the first term and the common differ-
ence in arithmetic sequence βj = αA + jρA, where 0 ≤ j ≤ n.

Example 10.37. Let β = (1.5, 2.0, . . . , 9.0) be an arithmetic sequence in which
n = 15, αA = 1.5 and ρA = 0.5. Then the optimal V-sequence is

β� = (9.0, 8.5, 7.0, 6.5, 5.0, 4.5, 3.0, 2.5, 1.5, 2.0, 3.5, 4.0, 5.5, 6.0, 7.5, 8.0),

with
∑

Cj(β�) = 7071220899.8750. �

Example 10.38. Let β = (1.5, 1.8, . . . , 6.3) be an arithmetic sequence in which
n = 16, αA = 1.5 and ρA = 0.3, Then the optimal V-sequence is

β� = (6.3, 6.0, 5.1, 4.8, 3.9, 3.6, 2.7, 2.4, 1.5, 1.8, 2.1, 3.0, 3.3, 4.2, 4.5, 5.4, 5.7),

with
∑

Cj(β�) = 642302077.7853. �

Since, in both cases, algorithms H51 and H52 generate the optimal sched-
ules, the examples suggest that in the case of arithmetic sequences the algo-
rithms behave similarly to the case of consecutive natural numbers.

Let us now introduce V-sequences of arithmetic sequences by the formulae

β = (um + (−1)mαA, . . . , u2 + αA, u1 − αA, u1, u2, . . . , um) (10.38)

β = (vm−1 + 2αA, . . . , v2 + 2αA, v1 + 2αA, v1, v2, . . . , vm) (10.39)

for n = 2m and n = 2m − 1, respectively, where sequences uk = αArk + ρA,
vk = αAsk +ρA are such that uk ≥ 1 and vk ≥ 1 for 1 ≤ k ≤ m, and sequences
(rk) and (sk) are defined by (10.20) and (10.21), respectively.

In this case, there holds the following counterpart of Theorem 10.27.

Theorem 10.39. (Gawiejnowicz et al. [99]) Let ρA ≥ 0 and αA + ρA ≥ 1.
Then the sign of signatures S− for the arithmetic sequences (10.38) with αA ≥
0.11 and the sequences (10.39) with αA ≥ 0.50 varies according to formulae
sign(S−

2m) = (−1)m and sign(S−
2m−1) = (−1)m, respectively, where m ≥ 1.

Proof. Let n = 2m, αA ≥ 0.11, ρA ≥ 0 and αA + ρA ≥ 1. Then there holds
the recurrence relation Θm+1 = Dm(Θm + (−1)m+1αA) with

Θ1 = − αA(4αA + ρA)
(2αA + ρA)(αA + ρA + 1) + 1

,

where Dm = (um+1 + 2αA) Rm

Rm+1
.
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Similarly, if n = 2m− 1, αA ≥ 0.50, ρA ≥ 0 and αA + ρA ≥ 1, then there
holds the recurrence relation Γm+1 = Fm(Γm +(−1)m+1αA), with Γ1 = 0 and

Γ2 =
αA(αA + ρA + 1)(4αA + ρA)

(2αA + ρA)(1 + (αA + ρA)(3αA + ρA + 1)) + 1
,

where Fm = (vm+1 + 2αA) Qm

Qm+1
.

To end the proof, it is sufficient to show that 0 < Dm < 1 and Θm < αA,
if n = 2m and that 0 < Fm < 1 and Γn < αA, if n = 2m− 1. � 

10.4.3 Geometric sequences

We start the subsection with two examples that illustrate the behaviour of
algorithms H51 and H52 for geometric sequences.

Let ρG denote the ratio in geometric sequence βj = ρj
G, where 1 ≤ j ≤ n.

Example 10.40. Let β = (3, 9, . . . , 19683) be a geometric sequence for n = 8
and ρG = 3. Then, the optimal V-sequence is

β� = (19683, 6561, 243, 81, 3, 9, 27, 729, 2187),

with
∑

Cj(β�) = 150186346871598597. �

Example 10.41. Let β = (2, 4, . . . , 2048) be a geometric sequence for n = 10
and ρG = 2. Then the optimal V-sequence is

β� = (2048, 256, 128, 16, 8, 2, 4, 32, 64, 512, 1024)

with
∑

Cj(β�) = 36134983945485585. �

As previously, algorithms H51 and H52 generate the optimal schedules.
We now define two sequences which are counterparts of sequences (10.38)

and (10.39) for geometric sequences. We will distinguish the case n = 2m and
the case n = 2m− 1. Let for some ρG > 1

β = (ρrm+(−1)m

G , . . . , ρr2+1
G , ρr1−1

G , ρr1
G , ρr2

G , . . . , ρrm

G ) (10.40)

and
β = (ρsm−1+2

G , . . . , ρs2+2
G , ρs1+2

G , ρs1
G , ρs2

G , . . . , ρsm

G ) (10.41)

for n = 2m and n = 2m− 1, respectively.

In this case, there holds the following counterpart of Theorem 10.39. (We
omit a technical proof.)

Theorem 10.42. (Gawiejnowicz et al. [99]) The sign of signatures S−(β)
of the geometric sequences (10.40) and (10.41) varies according to formulae
sign(S−

2m) = (−1)m and sign(S−
2m−1) = (−1)m, respectively, where m ≥ 1.
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A computational experiment has been conducted in order to evaluate the
quality of schedules generated by algorithms H51 and H52 for arithmetic and
geometric sequences (see Gawiejnowicz et al. [99] for details). In the exper-
iment, random instances of arithmetic and geometric sequences were gener-
ated. Fifty instances were generated for each value of n, where n = 10, 15, 20.
Algorithms H51 and H52 found an optimal schedule for all 150 instances.

10.4.4 Arbitrary sequences

From Example 10.17, we know that algorithm H51 (and hence H52) is not
optimal for arbitrary β sequences. A computational experiment has been con-
ducted in order to evaluate the quality of schedules generated by algorithms
H51 and H52 for arbitrary sequences (see Gawiejnowicz et al. [99] for details).

In the experiment, random instances of β sequence were generated. Fifty
instances were generated for each value of n = 10, 15, 20. The average ratio
RH51(I), calculated for 50 instances, was equal to 6654 × 10−8, 5428× 10−8

and 1695 × 10−8 for n = 10, n = 15 and n = 20, respectively. The average
ratio Rr

H52
(I) was equal to 26988 × 10−8, 12927 × 10−8 and 2698 × 10−8 for

n = 10, n = 15 and n = 20, respectively.
Hence, the performance of algorithms H51 and H52 for random sequences

of average size is quite satisfactory.

With this remark, we end the presentation of heuristic algorithms based
on signatures of sequences of job deterioration rates. In Chap. 11, we will
consider local search algorithms for time-dependent scheduling problems.

10.5 Concluding remarks

In this chapter, we considered two O(n log n) greedy heuristic algorithms for
the problem 1|pj = 1 + bjt|

∑
Cj . Both these algorithms, H51 and H52, are

based on signatures of sequences of job deterioration rates.
We have shown that algorithm H51 generates V-shaped sequences (10.18)

and (10.19), which are optimal for the problem with bj = j +1 for n ≤ 20 (see
Tables 10.2–10.3). We also proved (cf. Theorem 10.27) that signatures of these
sequences vary periodically. (In the latter case, we simplified algorithm H51

and formulated algorithm H52.) Finally, we formulated the conjecture that
algorithm H51 is optimal when job deterioration rates constitute the sequence
of subsequent natural numbers, an arithmetic or a geometric sequence.

Experiments have shown that the proposed algorithms perform very well
for random sequences with n ≤ 20. In general, algorithm H51 is better than
algorithm H52. The former algorithm is recommended for arbitrary sequences,
while the latter one is recommended for regular sequences.

The formal proof of optimality of both these algorithms still remains an
open problem.
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Local search algorithms

Suboptimal schedules for intractable time-dependent scheduling problems
may be found by using various algorithms. In this chapter, which completes

the third part of the book, we consider local search algorithms.
Chapter 11 is composed of four sections. In Sect. 11.1, we recall basic

definitions concerning local search algorithms. In Sect. 11.2, we briefly review
basic types of local search algorithms. In Sect. 11.3, we discuss local search
algorithms for time-dependent scheduling problems. Conclusions and one table
are given in Sect. 11.4.

11.1 Preliminaries

In the section, we introduce basic definitions and present general concepts
related to local search algorithms.

11.1.1 Basic definitions

An optimization problem P is specified by a collection of instances of the prob-
lem. An instance is defined by the implicit specification of a pair (F, f), where
the solution space F is the set of all feasible solutions and f : F → R is a crite-
rion function. (Without loss of generality, cf. Sect. 2.1, we restrict the further
discussion to minimization problems.) A solution s� ∈ F is optimal (a global
minimum), if f(s�) ≤ f(s) for all s ∈ F. The set Fopt := {s ∈ F : f(s) = f�}
is called the set of all optimal solutions (global minima). The problem P is
solved, if a solution s ∈ Fopt has been found.

For a given optimization problem P, a neighbourhood function N : F → 2F

may be defined. For each solution s ∈ F, the function specifies a set N (s) ⊆ F

of neighbours of s. The set N (s) is called the neighbourhood of solution s. A
solution s◦ ∈ F is called a local minimum with respect to N , if f(s◦) ≤ f(s)
for all s ∈ N (s◦). A neighbourhood function N is called exact, if every local
minimum with respect to N is also a global minimum.
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11.1.2 General concepts in local search

The term local search refers to a general approach applied for finding subopti-
mal solutions to intractable optimization problems. The main idea is to start
from an initial solution, s0 ∈ F, construct its neighbourhood N (s0) and look
for better solutions there. Basically, it is assumed that the neighborhood in-
cludes only feasible and complete solutions (cf. Remark 2.8) which are ‘close’,
in the problem-specific sense, to the solution s0. The pseudo-code of a general
local search algorithm is as follows.

Algorithm GeneralLocalSearch

Input: initial solution s0, neighbourhood function N , criterion f
Output: a locally optimal solution sact

� Step 1:
sact ← s0;
Initialization;

� Step 2:
repeat

Generate N (sact);
for all s ∈ N (sact) do

if f(s) < f(sact) then sact ← s;
until (stop condition);

� Step 3:
return sact.

The pseudo-code given above is a generic template of any local search
algorithm. Therefore, some remarks are necessary.

Remark 11.1. The Initialization procedure includes preliminary operations
such as initialization of counters, setting control parameters used during the
construction of the neighbourhood N (sact), etc.

Remark 11.2. The neighbourhood function N is problem-specific and can be
defined in various ways.

Remark 11.3. The form of a stop condition depends on the applied variant of
the local search algorithm.

Remark 11.4. Some steps in the template (e.g. the Initialization procedure)
may be dropped and some (e.g., stop condition ≡ FALSE) may be trivial.

The basic assumptions of the GeneralLocalSearch algorithm may be mod-
ified in various ways. The most often encountered modifications are as follows.

First, the search must not necessarily be conducted in the set F of all
feasible solutions. In some variants of local search, the solutions are searched
in the set E(F), which is an image of the set F under some mapping E.
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Second, the neighbourhood N (sact) can be composed not only of feasible
solutions, if the set E(F) is considered instead of F.

Finally, not only complete solutions can be elements of the neighbourhood
N (sact). In general, partial solutions may also belong to the neighbourhood.

11.1.3 Applicability of local search algorithms

Local search algorithms have the following main advantages. First, due to
its generality, the GeneralLocalSearch template can be applied to various
optimization problems, unlike the constructive heuristics, which use problem-
specific properties and therefore, usually, are not versatile.

Second, since local search algorithms search only the set N (sact), they are
capable of solving problems of larger sizes.

Third, local search algorithms, in most cases, produce solutions of accept-
able quality, even if no special attention has been paid to choosing appropriate
values of the control parameters of the algorithms.

Local search algorithms also have some disadvantages. First, the minimal
exact neighbourhood may be exponential with respect to the size of the input
of a given optimization problem.

Second, exponential time may be needed to find a local minimum.
Third, the solutions obtained by a local search algorithm may deviate

arbitrarily far from the elements of the set Fopt.
Despite the above disadvantages, local search algorithms have been applied

successfully to many intractable optimization problems; see the references
given in Sect. 2.3 for details.

11.2 Selected types of local search algorithms

There exist a great number of types and variants of local search algorithms. In
this section, we shortly describe only those which have been applied to time-
dependent scheduling problems, i.e., iterative improvement, steepest descent
search, simulated annealing, genetic and evolutionary algorithms.

11.2.1 Iterative improvement algorithms

The simplest local search algorithm is the iterative improvement algorithm.
In this case, starting from an initial solution s0 ∈ F, we iteratively search
for a neighbour sloc of the current solution sact, which has the best value of
the criterion function f . The neighbourhood function N defines the way in
which the neighbour sloc is generated. The set N (sact) is composed only of
one solution. The pseudo-code of the algorithm is as follows.
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Algorithm IterativeImprovement

Input: solution s0, neighbourhood function N , criterion f
Output: a locally optimal solution sact

� Step 1:
sact ← s0;

� Step 2:
repeat

Generate a neighbour sloc of sact; � |N (sact)| = 1
if f(sloc) < f(sact) then sact ← sloc;

until (stop condition);
� Step 3:

return sact.

Since the solution generated by the iterative improvement algorithm is
the first-encountered local minimum, the quality of the minimum may be
arbitrarily bad. Therefore, some modifications of the iterative improvement
have been proposed. One of them leads to the so-called steepest descent search.

11.2.2 Steepest descent search algorithms

Unlike the iterative improvement, in the steepest descent search all possible
neighbours of the current solution sact are generated. The best neighbour is
accepted as the final solution. This improves the quality of the final solution at
the cost of increasing the time complexity of the algorithm. The pseudo-code
of the algorithm is as follows.

Algorithm SteepestDescentSearch

Input: solution s0, neighbourhood function N , criterion f
Output: a locally optimal solution sact

� Step 1:
sact ← s0;

� Step 2:
repeat

Generate N (sact); � |N (sact)| ) 1
for all s ∈ N (sact) do

if f(s) < f(sact) then sact ← s;
until (stop condition);

� Step 3:
return sact.

The iterative improvement and the steepest descent search are simple local
search algorithms, which, in many cases, produce solutions that are of poor
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quality. The main reason of this fact is the so-called trap of local optimum:
after finding a solution that is locally optimal, the local search heuristics
are not able to find better solutions, since they cannot move out from the
neighbourhood of a locally optimal solution. Therefore, more powerful local
search algorithms, called metaheuristics, have been proposed in the literature.

Metaheuristics apply more sophisticated strategies of constructing the
neighbourhood N (sact) than the ones used in iterative improvement or steep-
est descent search algorithms. Moreover, instead of a single solution sact they
use populations of solutions. One of metaheuristics is the simulated annealing .

11.2.3 Simulated annealing algorithms

The simulated annealing (SA, in short) is based on a procedure that imitates
the annealing (slow cooling) of a solid after it has been heated to its melting
point. The SA algorithm is a non-deterministic algorithm, since the current
solution sact is selected from the neighbourhood N (sact), and accepted, in a
random way. (So far the only non-deterministic algorithm considered by us
was algorithm H6 presented in Chap. 9.) The behaviour of the SA algorithm
is determined by a number of parameters such as the initial temperature, the
cooling rate and the function mirroring the decrease in temperature during
the annealing. The pseudo-code of the metaheuristic SA is as follows.

Algorithm SimulatedAnnealing

Input: initial solution s0, neighbourhood function N , criterion f,
acceptance probability function p(i)

Output: a locally optimal solution sbest

� Step 1:
sact ← s0;
sbest ← s0;
fbest ← f(sbest);
i ← 1; � procedure Initialization

� Step 2:
repeat

Generate N (sact);
Choose at random sloc ∈ N (sact);
if f(sloc) ≤ f(sact) then sact ← sloc;
if f(sloc) < fbest then fbest ← f(sloc);

sbest ← sloc

else choose at random p ∈ 〈0, 1〉;
if p ≤ p(i) then sact ← sloc; � accept sloc with probability p
i ← i + 1;

until (stop condition);
� Step 3:

return sbest.



272 11 Local search algorithms

The acceptance probability function p(i) is usually in the form of

p(i) := exp
(

− 1
T (i)

Δfi

)

,

where Δfi := f(sloc)− f(sact) and T (i) is a non-increasing function of time.
The function T (i), called the function of temperature or a cooling scheme, is
usually defined as follows. Starting from T0, the temperature is constant for L
consecutive steps, and next it is decreased according to the formula T (iL) ≡
Ti := ciT0, where 0 < c < 1 is a fixed constant factor. The parameters T0,
c and L are called the initial temperature, cooling rate and length of plateau,
respectively. We refer the reader to the literature given in Sect. 2.3 for more
details on the SA metaheuristic.

11.2.4 Genetic and evolutionary algorithms

Another metaheuristic is the genetic algorithm (GA, in short), based on some
mechanisms (selection, crossover, mutation) known from the nature. The GA,
in turn, evolved to the evolutionary algorithm (EA, in short), which is a
combination of the GA and genetic programming, evolutionary strategy and
evolutionary programming (see, e.g., Calégari et al. [40] for more details).

The pseudo-code of the simplest EA, called the SimpleEvolutionaryAlgo-
rithm (SEA), can be formulated as follows.

Algorithm SimpleEvolutionaryAlgorithm

Input: procedures Initialization, Evaluation,
operators Preselection, CrossOver and Mutation, Postselection

Output: a locally optimal solution

� Step 1:
i ← 0;
Initialization(P0); � base population
Evaluation(P0);

� Step 2:
repeat

Ti ← Preselection(Pi); � temporary population
Oi ← CrossOver and Mutation(Ti);
Evaluation(Oi);
Pi+1 ← Postselection(Pi,Oi); � offspring population
t ← i + 1;

until (stop condition).

The SEA works on the base, offspring and temporary populations of indi-
viduals, and produces generations of solutions, indexed by the variable i.

In the initialization step of the SEA, the base population P0 is created in a
random way. Next, the evaluation of P0 is performed, i.e., for each individual
from P0 a fitness function is calculated.
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In the main step of the SEA, the offspring population Pi, i > 0, is created.
First, in the process of preselection, the temporary population Ti is built from
the best individuals of Pi. Next, individuals from Ti are crossed and mutated,
which leads through the postselection to the next offspring population Pi+1.
The process is continued until a certain stop condition is met.

Evolutionary algorithms have many variants, whose description is beyond
the scope of the book; see the literature given in Sect. 2.3 for more details.

11.3 Local search time-dependent scheduling algorithms

In this section, we present a few local search algorithms that have been applied
to time-dependent scheduling problems.

11.3.1 Steepest descent search algorithms

The Cmax criterion. For the parallel-machine problem Pm|pj = bjt|Cmax,
Hindi and Mhlanga [134] proposed a steepest descent search algorithm. Since
in any schedule for this problem, by Theorem 6.1, the order of jobs as-
signed to a machine is immaterial, every subschedule for the problem can
be represented by a subset of indices of jobs assigned to the machine. Hence,
the neighbourhood N (sact) is defined as the set of all partitions of the set
NJ := {1, 2, . . . , n} into m parts. Every new partition is obtained from an-
other partition by a single move. A single move is either a transfer of one job
from one subset of a partition to another subset, or a mutual exchange of two
jobs belonging to two different subsets of a partition. Let σ0 and σact denote
the initial schedule and the current best schedule, respectively.

Algorithm H53 for the problem Pm|pj = bjt|Cmax ([134])

Input: initial schedule σ0, neighbourhood function N
Output: a locally optimal schedule σact

� Step 1:
σact ← σ0;

� Step 2:
repeat

T ← Cmax(σact);
Find machine M∈ {M1,M2, . . . ,Mm} such that Cmax(M) = T ;
N (σact) ← set of schedules obtained by all possible moves of jobs
↪→ assigned to machine M;
for all σ ∈ N (σact) do

if Cmax(σ) < Cmax(σact) then σact ← σ;
until (no improvement of σ is possible);

� Step 3:
return σact.
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Algorithm H53 has been tested on a set of 320 instances in which dete-
rioration rates were randomly generated values from the (0, 1) interval. The
reported results of the experiment (see [134, Sect. 5]) suggest that the sched-
ules generated by the algorithm are, on average, quite satisfactory.

The
∑

Cj criterion. For the problem Pm|pj = bjt|
∑

Cj , Gawiejnowicz
et al. [102] proposed a steepest descent search algorithm. The algorithm checks
iteratively if the necessary condition for the optimality of a schedule σact is
satisfied, i.e., if the inequality

∑
Cj(σact)−

∑
Cj(τ) ≤ 0 holds for any schedule

τ ∈ N (σact). Let Jbj
denote the job corresponding to deterioration rate bj .

The pseudo-code of the algorithm is as follows.

Algorithm H54 for the problem Pm|pj = bjt|
∑

Cj ([102])

Input: sequence (b1, b2, . . . , bn), neighbourhood function N
Output: a locally optimal schedule σact

� Step 1: Construction of the initial schedule σ0

Arrange all jobs in the non-increasing order of bj values;
Assign m− 1 jobs with greatest bj values to machines M2,M3, . . . ,Mm;
Assign the remaining n−m jobs to machine M1;

� Step 2: Construction of the set N (s0)
σact ← σ0;
repeat

σlast ← σact;
N (σact) ← ∅;
for jobs assigned to machine M1 in σact do

Choose a job Jbj
;

for M∈ {M2,M3, . . . ,Mm} do
Construct schedule σ′ by moving job Jbj

to machine M;
N (σact) ← N (σact) ∪ σ′;

� Step 3: Selection of the best schedule in N (σact)
Choose τ ∈ N (σact) such that
↪→ τ = arg max{

∑
Cj(σlast)−

∑
Cj(σ′) : σ′ ∈ N (σact)};

if (
∑

Cj(σlast)−
∑

Cj(τ) > 0) then σact ← τ ;
until (no improvement of σact is possible);

� Step 4:
return σact.

The time complexity of algorithm H54 depends on the number of iterations
of repeat-until loop, which is O(nm), and the cost of checking the condition∑

Cj(σlast)−
∑

Cj(τ) > 0. (Notice that the construction of σ′ in Step 2 can
be done very efficiently, since the jobs assigned to each machine should be
in the non-increasing order of bj values, cf. Theorem 6.120.) Since this latter
cost is O(n), the algorithm runs in O(n2m) ≡ O(n2) time for fixed m.
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The
∑

wjCj criterion. Wu et al. [301] proposed three heuristic algorithms
for the problem 1|pj = aj + bjt|

∑
wjCj . All the algorithms generate an initial

schedule and try to find a better one by iterative improvement of the best
schedule constructed so far.

The first algorithm tries to improve the schedule in which jobs are in the
non-decreasing order of aj

wj
ratios. The pseudo-code of the algorithm can be

formulated as follows.

Algorithm H55 for the problem 1|pj = aj + bjt|
∑

wjCj ([301])

Input: sequences (a1, a2, . . . , an), (b1, b2, . . . , bn), (w1, w2, . . . , wn)
Output: a suboptimal schedule σ

� Step 1:
Arrange jobs in the non-decreasing order of aj

wj
ratios;

Call the obtained sequence σ0;

� Step 2:
Make pairwise interchanges in σ0 until no improvement can be made;
Call the final schedule σ;

� Step 3:
return σ.

The second algorithm tries to improve the schedule in which jobs are in
the non-decreasing order of bj

wj
ratios. The pseudo-code of this algorithm can

be formulated as follows.

Algorithm H56 for the problem 1|pj = aj + bjt|
∑

wjCj ([301])

Input: sequences (a1, a2, . . . , an), (b1, b2, . . . , bn), (w1, w2, . . . , wn)
Output: a suboptimal schedule σ

� Step 1:

Arrange jobs in the non-decreasing order of bj

wj
ratios;

Call the obtained sequence σ0;

� Step 2:
Make pairwise interchanges in σ0 until no improvement can be made;
Call the final schedule σ;

� Step 3:
return σ.

Finally, the third algorithm tries to improve the schedule in which jobs
are in the non-decreasing order of aj+(1+bj)Sj

wj
ratios. The pseudo-code of this

algorithm is as follows.
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Algorithm H57 for the problem 1|pj = aj + bjt|
∑

wjCj ([301])

Input: sequences (a1, a2, . . . , an), (b1, b2, . . . , bn), (w1, w2, . . . , wn),
number t0

Output: a suboptimal schedule σ

� Step 1:
NJ ← {1, 2, . . . , n};
σ ← (φ);

� Step 2:
for k ← 1 to n do
Choose job Ji for which min{aj+(1+bj)tk−1

wj
: j ∈ NJ } is achieved;

σk ← i;
N ← N \ {i};
tk ← ai + (1 + bi)tk−1;
Call the final schedule σ0;

� Step 3:
Make pairwise interchanges in σ0 until no improvement can be made;
Call the final schedule σ;

� Step 4:
return σ.

Algorithms H55–H57 have been tested on a set of 600 instances in which
basic processing times, deterioration rates and job weights were randomly
generated. The reported results of the experiment (see [301, Sect. 5]) suggest
that the best schedules, on average, are generated by the algorithm H55.

11.3.2 Iterative improvement algorithms

The
∑

Cj criterion. For the problem Pm|pj = 1 + bjt|
∑

Cj Gawiejnowicz
et al. [102] proposed an iterative improvement algorithm, based on the follow-
ing idea. If an initial schedule for the problem is known, it can be improved by
successively moving jobs between machines in order to find such an assignment
of jobs that gives the smaller total completion time than the initial one.

The initial schedule can be constructed by an arbitrary heuristic algorithm
for the problem Pm|pj = 1 + bjt|

∑
Cj . The authors used algorithm H54.

Moreover, they assumed that stop condition in the algorithm takes into ac-
count not only the increase of the citerion function but also limits the number
of performed iterations of the algorithm.

Let σ(Ji ↔ Jk) and ind(σ, Ji) denote schedule σ in which jobs Ji and Jk

have been mutually replaced and the index of a machine to which job Ji has
been assigned in schedule σ, respectively. The pseudo-code of the algorithm
can be formulated as follows.
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Algorithm H58 for the problem Pm|pj = 1 + bjt|
∑

Cj ([102])

Input: sequence (b1, b2, . . . , bn), number k
Output: a locally optimal schedule σact

� Step 1: Construction of the initial schedule σ0

Apply algorithm H54 to the sequence (b1, b2, . . . , bn);
Call the obtained schedule σ0;
k ← 0;
σact ← σ0;

� Step 2: Iterative improvement of schedule σact

repeat
k ← k + 1;
σlast ← σact;
for i ← n downto 2 do

for k ← i− 1 downto 1 do
if (ind(σlast, Ji) �= ind(σlast, Jk)) then τ ← σlast(Ji ↔ Jk);
if (

∑
Cj(σ)−

∑
Cj(τ) > 0) then σact ← τ ;

until ((
∑

Cj(σ)−
∑

Cj(σlast) = 0) ∨ (k > n));
� Step 3:

return σact.

The time complexity of algorithm H58 is O(n3), since in the worst case we
have to check n times O(n2) possibilities of a mutual change of two jobs.

11.3.3 Experimental evaluation of algorithms H54 and H58

In order to evaluate the quality of schedules generated by algorithms H54

and H58, a computational experiment for m = 3 machines has been con-
ducted. The obtained schedules were compared to schedules generated by
algorithm H29, presented in Sect. 9.2.

The coefficients βi = bi +1 were randomly generated values from intervals
(2, 99) and (1, 2). The results for βi ∈ (2, 99) and for βi ∈ (1, 2) are presented,
respectively, in Tables 11.1 and 11.2 (cf. Gawiejnowicz et al. [102]). Each value
in the tables is an average of results for 10 instances. In total, 160 instances
have been tested.

Columns Ravg
H29

, Ravg
H54

and Ravg
H58

include an average of ratios Rr
H(I) of the

total completion time (
∑

Cj) for algorithms H29, H54 and H58, respectively,
calculated with respect to the optimal value of

∑
Cj . Columns Rlb

H29
, Rlb

H54

and Rlb
H58

include an average of ratios Rr
H(I) of

∑
Cj for algorithms H29, H54

and H58, respectively, calculated with respect to the lower bound of
∑

Cj .
Tables 11.1 and 11.2 show that algorithm H58 is better than algorithm

H29 for βi ∈ (2, 99), while for βi ∈ (1, 2) the algorithms are comparable. The
quality of schedules generated by algorithm H54, in comparison to H29, is an
open question that needs further research.
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Table 11.1: Results of Computational Experiment for H54 and H58, βi ∈ (2, 99)

n Ravg
H29

Rlb
H29 Ravg

H54
Rlb

H54 Ravg
H58

Rlb
H58

6 0.0 0.186729 0.167711 0.374054 0.0 0.186729
8 0.267105 0.639685 0.167173 0.493273 0.0 0.293706

10 0.366406 0.384822 0.121466 0.127353 0.016173 0.031644
12 0.116080 0.115118 0.459128 0.444614 0.003993 0.014459
14 - 0.476927 - 0.206961 - 0.090330
16 - 0.354809 - 0.237446 - 0.012126
18 - 0.052520 - 0.344081 - 0.054585
20 - 0.475177 - 0.161075 - 0.031898

Table 11.2: Results of Computational Experiment for H54 and H58, βi ∈ (1, 2)

n Ravg
H29

Rlb
H29 Ravg

H54
Rlb

H54 Ravg
H58

Rlb
H58

5 0.0 0.003121 0.0 0.003121 0.0 0.003121
6 0.0 0.002508 0.000693 0.003204 0.0 0.002508
8 0.001603 0.005034 0.004348 0.007798 0.0 0.003425

10 0.001520 0.002659 0.014319 0.015473 0.000026 0.001163
12 0.001170 0.001809 0.020410 0.021059 0.003459 0.004098
14 - 0.002801 - 0.025815 - 0.005598
16 - 0.002348 - 0.031094 - 0.001261
18 - 0.001272 - 0.044117 - 0.013159
20 - 0.003101 - 0.049956 - 0.004320

11.3.4 Simulated annealing algorithms

The Cmax criterion. For the problem Pm|pj = aj + bjt|Cmax, Hindi and
Mhlanga [134] proposed a simulated annealing algorithm. The algorithm will
be called H59. The schedule generated by algorithm H53 was selected in H59

as the initial schedule σ0. The initial temperature T0 was given by the formula

T0 := Δ+

[

ln
(

m+

xm+ − (1− x)(m−m+)

)]−1

,

where m+ is the number of cost increase moves found during the execution of
algorithm H45, Δ+ is the average cost increase over these moves and 0 < x < 1
is the acceptance ratio (the authors assumed x := 0.95).

The temperature decreased according to the formula

Ti+1 :=
Ti

1 + κTi
,

where κ * 1
U with U being the largest absolute move value found during the

execution of algorithm H53.
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The algorithm H59 was tested on a set of 320 instances in which deteri-
oration rates bj were randomly generated values from the interval (0, 1) and
the basic processing times aj were chosen from a normal distribution, with
a mean of 50 and standard deviation of 10. The experiment has shown that
if we use the H59 algorithm in order to improve the schedule generated by
algorithm H53, the results are satisfactory (see [134, Sect. 5] for details).

Shiau et al. [257] proposed a simulated annealing algorithm for the problem
F2|pi,j = bi,jt|

∑
Cj . We will call the algorithm H60.

In the algorithm, the solution space F consists of all schedules that corre-
spond to permutations of sequence (1, 2, . . . , n). New schedules from a neigh-
bourhoodN (σ0) of a given schedule σ0 are generated by a pairwise interchange
of two randomly selected jobs. The probability p(σ0) of acceptance of a sched-
ule σ0 is generated from an exponential distribution. The number of iterations
of algorithm H60 is limited to 50n, where n is the number of jobs.

The algorithm has been tested on a number of instances with 10 ≤ n ≤ 100
jobs, giving satisfactory results; see [257, Sect. 6] for details.

11.3.5 Evolutionary algorithms

We complete this section with some remarks concerning the application of
evolutionary algorithms (EAs) to time-dependent scheduling problems.

The EAs can be constructed in many of ways. However, though all EAs
share the same template, the main difficulty in developing a new EA is the
effort which is needed to implement it in a programming language. There are
various approaches which help overcome this difficulty. One of the approaches
consists in the use of libraries of classes. The libraries allow programmers to
construct new classes in a comfortable way, using mechanisms such as encap-
sulation and inheritance which are built in object programming languages.
Libraries of classes, in particular, can be used for the construction of EAs.

Gawiejnowicz et al. [107] proposed a new library of this kind, developed in
C# and designated for work on the .NET platform. The library, called TEAC
(Toolbox for Evolutionary Algorithms in C#), includes a number of classes,
which allow to implement basic genetic operators applied in EAs. It also
includes a few classes which implement genetic and evolutionary algorithms,
in particular the SimpleEvolutionaryAlgorithm. We refer the reader to [107,
Sect. 2] for more detailed description of the TEAC library.

In order to evaluate the solutions generated by EAs implemented using
the TEAC library, a computational experiment has been conducted. Based
on the classes defined in the TEAC library, an EA was constructed for the
problem Jm||Cmax (cf. Sect. 4.1).

The algorithm was identical to the SimpleEvolutionaryAlgorithm and
it stopped after 2000 generations. The benchmark data files from Beasley’s
OR-Library [19] have been used in the experiment.
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The solutions obtained by the EA for job shop problems are presented
in Table 11.3. Column Size gives the size of a particular instance, n × m,
where n and m are the numbers of jobs and machines, respectively. Columns
OPT, AVR and Best show the optimal, the average and the best found result,
respectively. Column Time presents the running time of the EA (in seconds).
All these results are average values of 10 independent runs of the algorithm.

Table 11.3: Results of Computational Experiment for Job Shop Problems

File Size OPT AVR Best Time

FT06 6x6 55 55.0 55 40.50
FT10 10x10 930 979.1 955 130.44
FT20 20x5 1,165 1,228.8 1,202 199.44
LA01 10x5 666 666.0 666 66.02
LA16 10x10 945 972.9 956 141.70
LA20 10x10 902 914.7 907 141.08
LA21 15x10 1,046 1,111.6 1,097 288.40
LA25 15x10 977 1,032.5 1,019 253.66
LA28 20x10 1,216 1,302.2 1,286 412.35
LA29 20x10 1,152 1,266.9 1,248 409.20
LA39 15x15 1,233 1,320.3 1,291 384.13
LA40 15x15 1,222 1,312.4 1,288 385.36

The results were satisfactory, since suboptimal schedules were generated
in reasonable time. The average error of the obtained solutions was from 0%
(files FT06, LA01) to 9.97% (file LA29); see [107, Sect. 3] for details.

Since no special effort has been made in order to find optimal values of
control parameters of the applied EA, in future experiments more time should
be devoted to this aspect of the algorithm.

Gawiejnowicz and Suwalski [110] used the TEAC library for construc-
tion of an evolutionary algorithm for two- and three-machine time-dependent
flow shop scheduling problems (cf. Sect. 4.1 and Sect. 5.2). We will call the
algorithm H61. As previously, the algorithm was identical to the Simple Evo-
lutionary Algorithm, and exploited basic genetic operators (see [110, Sect. 4]).

The behaviour of the new EA has been tested in a number of experiments
concerning the problems Fm|pij = bijt|Cmax and Fm|pij = bij(a + bt)|Cmax,
where m ∈ {2, 3}. For each problem, job deterioration rates were randomly
generated integer values: bij ∈ 〈1, n− 1〉 and a, b ∈ (1, n

2 〉.
In total, in the experiments, 360 random instances have been generated.
Some of results of the experiments are presented in Tables 11.4 and 11.5.

Each value is an average of data of five distinct instances. Symbols Rmin
H61

, Ravg
H61

and Rmax
H61

denote the minimum, average and maximum absolute ratio Ra
H61

(I),
respectively. Symbol Tavg denotes the computation time (in seconds). Symbol
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FmPn (FmLn) denotes an instance of the m-machine flow shop problem
with n jobs with proportional (proportional-linear) job processing times.

The results of these experiments suggest main directions of further re-
search. First, there is a real need to construct a set of benchmarks for in-
tractable time-dependent scheduling problems. Second, it is worth to conduct
similar experiments for the job shop problems. Finally, the experiments have
shown that it is necessary to use floating-point arithmetic in order to avoid
problems with the range of job completion times.

Table 11.4: EA Solutions vs. Exact Solutions for F2P/F2L Datasets

Dataset Rmin
H61 Ravg

H61
Rmax

H61 Tavg Dataset Rmin
H61 Ravg

H61
Rmax

H61 Tavg

F2P05 1,000 1,000 1,000 0,880 F2L05 1,000 1,000 1,000 1,195
F2P06 1,000 1,000 1,000 1,056 F2L06 1,000 1,000 1,000 1,435
F2P07 1,000 1,000 1,000 1,259 F2L07 1,000 1,000 1,000 1,781
F2P08 1,000 1,000 1,000 1,477 F2L08 1,037 1,184 1,233 2,091
F2P09 1,000 1,109 1,175 1,699 F2L09 1,000 1,083 1,217 2,453
F2P10 1,000 1,000 1,000 1,978 F2L10 1,000 1,077 1,159 2,833
F2P11 1,027 1,000 1,000 2,252 F2L11 1,248 1,535 1,984 3,284
F2P12 1,094 1,018 1,024 2,526 F2L12 1,250 1,567 2,224 3,697

Table 11.5: EA Solutions vs. Exact Solutions for F3P/F3L Datasets

Dataset Rmin
H61 Ravg

H61
Rmax

H61 Tavg Dataset Rmin
H61 Ravg

H61
Rmax

H61 Tavg

F3P05 1,000 1,000 1,000 1,186 F3L05 1,000 1,000 1,000 1,195
F3P06 1,000 1,000 1,000 1,444 F3L06 1,000 1,000 1,000 1,435
F3P07 1,000 1,000 1,000 1,781 F3L07 1,000 1,000 1,000 1,781
F3P08 1,000 1,000 1,000 2,105 F3L08 1,037 1,184 1,233 2,091
F3P09 1,000 1,000 1,000 2,440 F3L09 1,000 1,083 1,217 2,453
F3P10 1,000 1,003 1,013 2,822 F3L10 1,000 1,077 1,159 2,833
F3P11 1,027 1,122 1,249 3,260 F3L11 1,248 1,535 1,984 3,284
F3P12 1,094 1,227 1,319 3,722 F3L12 1,250 1,567 2,224 3,697

With these tables, we end the review of local search algorithms for time-
dependent scheduling problems. This chapter also ends the third part of the
book, which is devoted to the main classes of algorithms for computationally
intractable time-dependent scheduling problems.

In the fourth part of the book, we will consider selected advanced topics
in time-dependent scheduling.
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11.4 Concluding remarks

Many time-dependent scheduling problems are computationally intractable.
Therefore, we are interested in finding suboptimal schedules for them. In this
chapter, we presented local search algorithms (see Table 11.6 for details) that
have been proposed for intractable time-dependent scheduling problems.

Table 11.6: Local Search Algorithms for Time-Dependent Scheduling Problems

Algorithm Complexity Problem Reference This book

H53 O(n2) Pm|pj = bjt|Cmax [134] Sect. 11.3, p. 273
H54 O(mn2) Pm|pj = bjt|

∑
Cj [101] Sect. 11.3, p. 274

H55 O(n3) 1|pj = aj + bjt|
∑

wjCj [301] Sect. 11.3, p. 275
H56 O(n3) 1|pj = aj + bjt|

∑
wjCj [301] Sect. 11.3, p. 275

H57 O(n3) 1|pj = aj + bjt|
∑

wjCj [301] Sect. 11.3, p. 276
H58 O(n3) Pm|aj + bjt|Cmax [134] Sect. 11.3, p. 277

H59
(a) Fm|pij = bij(a + bt)|Cmax [134] Sect. 11.3, p. 278

H60
(a) F2|pi,j = bi,jt|

∑
Cj [257] Sect. 11.3, p. 279

H61 O(n3) Pm|pj = 1 + bjt|
∑

Cj [110] Sect. 11.3, p. 280

(a) depends on the number of iterations

The results presented in the chapter suggest main directions of further
research. First, there is a real need to construct a set of benchmarks for in-
tractable time-dependent scheduling problems. Second, the experiments have
shown that it is necessary to use floating-point arithmetic in order to avoid
problems with the range of job completion times.

Local search time-dependent scheduling algorithms seem to be an at-
tractive alternative for heuristic algorithms applied to such problems so far.
However, though the local search algorithms generate suboptimal schedules
in reasonable time, further experiments with larger instances are needed to
make conclusions about the average performance of these algorithms.
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Matrix methods in time-dependent scheduling

In the first three parts of the book, we have covered the basic topics related to
time-dependent scheduling. The, present, fourth part of the book is devoted

to selected advanced topics in the subject.
This part is composed of three chapters. In Chap. 12, we consider time-

dependent scheduling problems that are formulated in terms of matrices and
vectors. In Chap. 13, we discuss the problems of time-dependent scheduling
with job precedence constraints. Finally, in Chap. 14, we study bicriteria time-
dependent scheduling.

Chapter 12 is composed of five sections. In Sect. 12.1, we introduce the
notation and an auxiliary result. In Sect. 12.2, we show how to formulate time-
dependent scheduling problems in terms of vectors and matrices. In Sect. 12.3,
we consider the problem of minimizing the lp norm. In Sect. 12.4, we introduce
the notion of equivalent time-dependent scheduling problems and show their
properties. Concluding remarks and open problems are given in Sect. 12.5.

12.1 Preliminaries

In this section, we formulate the problem under consideration, introduce the
notation and an auxiliary result.

12.1.1 Problem formulation

Throughout the chapter, we consider different versions of the following parallel-
machine time-dependent scheduling problem.

We are given jobs J1, J2, . . . , Jn to be processed on m ≥ 1 parallel identical
machines M1,M2, . . . ,Mm, which are available at times tk0 ≥ 0, 1 ≤ k ≤ m.
Jobs are independent and no ready times nor deadlines are given. The pro-
cessing time pj of job Jj , 1 ≤ j ≤ n, is in the form of (6.10), i.e., pj = aj +bjt,
where aj ≥ 0, bj > 0 and t ≥ bk

0 := tk0 for 1 ≤ k ≤ m. The objective will be
defined separately for each particular case.



286 12 Matrix methods in time-dependent scheduling

We start with the case when aj = 1 for 1 ≤ j ≤ n and m = 1. Notice
that in this case, in view of the form of job processing times, the following
recurrence equation holds:

Cj =
{

1, j = 0,
Cj−1 + pj(Cj−1) = 1 + βjCj−1, j = 1, 2, . . . , n,

(12.1)

where βj = 1 + bj for j = 0, 1, . . . , n.

12.1.2 Notation

Throughout the chapter, we will use the following notation. The vectors
(β0, β1, . . . , βn) and (β1, β2, . . . , βn) will be denoted by β̂ and β, respectively.
By x we will denote the vector with the reverse order of components with
respect to a vector x. The set of all (p× q)-matrices over R will be denoted by
Mp×q(R). For a given matrix H ∈ Mp×q(R), the transposed matrix and the
transposed matrix in which rows and columns are in the reverse order will be
denoted by Hᵀ and Hᵀ.

12.1.3 Auxiliary result

We complete the section by the following result.

Lemma 12.1. (Gawiejnowicz et al. [97]) Let φ(u,H, v) := uᵀHv be a func-
tion, where u ∈ R

p, v ∈ R
q and H ∈Mp×q(R). Then, there holds the identity

φ(u,H, v) = φ(v,Hᵀ, u). (12.2)

Proof. First, note that we have uᵀHv = vᵀHᵀu = (Pv)ᵀP (Hᵀ)Qᵀ(Qu),
where P ∈ Mp×p(R) and Q ∈ Mq×q(R) are arbitrary permutation matri-
ces. To complete the proof it is sufficient to take P and Q such that Pv = v

and Qu = u. Then uᵀHv = v ᵀHᵀu. �

12.2 A matrix approach

In this section, we show how to represent in a matrix form a schedule for the
time-dependent scheduling problem formulated in Sect. 12.1.

Remark 12.2. So far matrix methods have been applied to different areas of
combinatorial optimization but are not popular in the scheduling theory. An
exception is the so-called Max-plus algebra, applied in dynamic optimization
(Bernhard [23]), theory of discrete event systems (Gunawardena [126]), rail-
way timetabling (Goverde [121]) and scheduling (Bouquard et al. [30]).
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12.2.1 The matrix form of single-machine schedules

Expanding formula (12.1) for j = 0, 1, . . . , n we have C0 = 1, C1 = β1C0 + 1,
C2 = β2C1 + 1, . . . , Cn = βnCn−1 + 1. These equations, in turn, can be
rewritten in the following form:

C0 = 1,
−β1C0 + C1 = 1,
−β2C1 + C2 = 1,

...
...

...
−βnCn−1 + Cn = 1.

(12.3)

Rewriting equations (12.3) in the matrix form, we have
⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 . . . 0 0
−β1 1 . . . 0 0

0 −β2 . . . 0 0
... . . .

...
0 0 . . . −βn 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

C0

C1

C2

...
Cn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1
1
1
...
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, (12.4)

i.e., A(β)C(β) = d(1), where A(β) is the above matrix and both these vectors,
C(β) = [C0(β), C1(β), . . . , Cn(β)]� and d(1) = [1, 1, . . . , 1]�, belong to R

n+1.
Since det A(β) = 1 for matrix A(β) in (12.4), there exists an inverse matrix

A−1(β) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 . . . 0 0
β1 1 . . . 0 0
β1β2 β2 . . . 0 0
β1β2β3 β2β3 . . . 0 0
...

... . . .
...

...
β1β2 . . . βn β2β3 . . . βn . . . βn 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (12.5)

Knowing matrix A−1(β), given by (12.5), we can calculate the components
of vector C(β) = A−1(β)d(1) :

Ck(β) =
k∑

i=0

k∏

j=i+1

βj , (12.6)

where k = 0, 1, . . . , n.
We illustrate the single-machine formulation on a numerical example.

Example 12.3. Consider three jobs with the following job processing times:
p0 = 1 + 10t, p1 = 1 + 2t, p2 = 1 + 3t.

For this set of jobs, we have β̂ = (11, 3, 4) and β = (3, 4). There are only
two schedules possible, σ1 = (1, 2) and σ2 = (2, 1). In this case, we have
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A(βσ1) =

⎡

⎣
1 0 0

−3 1 0
0 −4 1

⎤

⎦ and A(βσ2) =

⎡

⎣
1 0 0

−4 1 0
0 −3 1

⎤

⎦ ,

respectively.
The inverse matrices to the matrices A(βσ1) and A(βσ2) are as follows:

A−1(βσ1) =

⎡

⎣
1 0 0
3 1 0

12 4 1

⎤

⎦ and A−1(βσ2) =

⎡

⎣
1 0 0
4 1 0

12 3 1

⎤

⎦ ,

respectively. For the above data, we have

C(βσ1) = A−1(βσ1)d(1) =

⎡

⎣
1 0 0
3 1 0

12 4 1

⎤

⎦

⎡

⎣
1
1
1

⎤

⎦ = [1, 4, 17]�

and

C(βσ2) = A−1(βσ2)d(1) =

⎡

⎣
1 0 0
4 1 0

12 3 1

⎤

⎦

⎡

⎣
1
1
1

⎤

⎦ = [1, 5, 16]�,

respectively. Hence, we have C0(σ1) = C0(σ2) = 1, C1(σ1) = 4, C1(σ2) = 5,
C2(σ1) = 17, C2(σ2) = 16. �

12.2.2 The matrix form of parallel-machine schedules

Consider a system of linear equations A(β)C(β) = D in the block form of
⎡

⎢
⎢
⎢
⎣

A1 O O
O A2 O

. . .
O O Am

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

C1

C2

. . .
Cm

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

d1

d2

. . .
dm

⎤

⎥
⎥
⎦ , (12.7)

where C(β) = [C1, C2, . . . , Cm]T and Ci = [Ci
0, C

i
1, . . . , C

i
ni

] is a vector of the
completion times of the jobs assigned to machine Mi, 1 ≤ i ≤ m. Moreover,
D = [d1, d2, . . . , dm]T , where di = (d, d, . . . , d) ∈ Rni and

Ai ≡ A(ai) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 . . . 0 0
−βi

1 1 . . . 0 0
0 −βi

2 . . . 0 0
... . . .

...
0 0 . . . −βi

ni
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (12.8)

Since det(A(β)) = 1, matrix A(β) in (12.7) is non-singular. Its inverse, in
block form, is as follows
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A−1(β) =

⎡

⎢
⎢
⎢
⎣

A−1
1 O . . . O
O A−1

2 . . . O
...

...
...

O O . . . A−1
m

⎤

⎥
⎥
⎥
⎦

, A−1(ai) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0 . . . 0 0
βi

1 1 . . . 0 0
βi

1β
i
2 βi

2 . . . 0 0
...

...
...

...
βi

1 . . . βi
ni

βi
2 . . . βi

ni
. . . βi

ni
1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

where A−1
i ∈Mp×q(R) and O denotes a zero matrix of a suitable size.

We illustrate the multi-machine formulation on a numerical example.

Example 12.4. Consider six jobs with the following job processing times:
p0 = 1 + 10t, p1 = 1+2t, p2 = 1+3t, p3 = 1+12t, p4 = 1+5t and p5 = 1+4t.

For this set of jobs and schedule σ1 = ((2, 1)|(4, 5)) in which jobs J0, J2, J1

and J3, J4, J5 are assigned to machine M1 and M2, respectively, we have

A(βσ1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
−4 1 0 0 0 0

0 −3 1 0 0 0
0 0 0 1 0 0
0 0 0 −5 1 0
0 0 0 0 −6 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

�

So far, we only formulated a schedule in a matrix form. Since for a given
β we can calculate by the matrix approach the vector C(β), we can apply to
the vector any criterion function that is a function of components of C(β). In
particular, we can apply the lp norm (cf. Definition 1.18). This is the topic of
the next section.

12.3 The lp norm criterion

In this section, we consider the problem of single machine scheduling with
deteriorating jobs and the criterion of minimization of the lp norm.

12.3.1 Preliminaries

Our aim is to find an approximate solution of the single machine scheduling
problem 1|pj = 1 + bjt|‖C‖p, where C = [C0, C1, . . . , Cn]� ∈ R

n+1, C0 = 1
and ‖C‖p denotes the lp norm of vector C.

Let γ = β(βi ↔ βj) denote sequence β with components βi and βj mutu-
ally exchanged, 1 ≤ i �= j ≤ n. There holds the following result.
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Lemma 12.5. (Gawiejnowicz et al. [105]) Let j = i + 1, where i = 1, 2, . . . ,
n− 1. Then for k = 1, 2, . . . , n and n ≥ 2 there holds the equality

Ck(γ)− Ck(β) =

⎧
⎨

⎩

(βi − βi+1)βi+2 . . . βk , 1 ≤ i < k,

(βi+1 − βi)
∑i−1

l=0 βl+1 . . . βi−1 , i = k,
0 , i > k.

Moreover, C0(γ)− C0(β) = 0.

Proof. By applying formula (12.6) for Ck = Ck(β), the result follows. �

12.3.2 Results

In this subsection, we present a few results concerning the lp norm criterion.

Lemma 12.6. (Gawiejnowicz et al. [105]) Let 1 ≤ p < +∞ and A(β)C(β) =
A(γ)C(γ) = d(1), where γ = β(βi ↔ βj) and 1 ≤ i < j ≤ n. Then for δ(θ) :=
‖C(γ)‖p − ‖C(β)‖p there holds the equality

δ(θ) = ∇‖Cθ(β)‖p(C(γ)− C(β))

=
∑n

k=0

(
Cθ

k(β)
‖Cθ(β)‖p

)(p−1)

(Ck(γ)− Ck(β)),
(12.9)

for some θ ∈ (0, 1).

Proof. Let 1 ≤ p < +∞. The lp−type norm ‖·‖p is a differentiable function in
the interior of the positive cone of R

n+1 and therefore the mean value theorem
(cf. Remark 1.16) can be applied, i.e.,

‖y‖p = ‖x‖p +∇‖xθ‖p(y − x)

where x, y ∈ R
n+1, x, y > 0 (coordinate-wise), xθ = θx + (1 − θ)y for some

θ ∈ (0, 1). Let∇‖xθ‖p denote the gradient of function ‖·‖p at point xθ. Since in
the case under consideration x = C(β) and y = C(γ), there hold xi > 0, yi > 0
and hence, xθ

i (a) > 0. Finally, we conclude that for 1 ≤ p < +∞ there holds

the equality ∇‖Cθ(β)‖p =
[

. . . ,
(

Cθ
i (β)

‖Cθ(β)‖p

)(p−1)

, . . .

]

(i=0,1,...,n)

. �

Formula (12.9) from Lemma 12.6 can be simplified if j = i + 1.

Lemma 12.7. (Gawiejnowicz et al. [105]) Let 1 ≤ p < +∞, i = 1, 2, . . . , n−1,
γ = β(βi ↔ βi+1), i.e. βi and βi+1 are mutually exchanged in β. Then

δ(θ) =
(

Cθ
i (β)

‖Cθ(β)‖p

)(p−1)

(βi+1 − βi)·
[
∑i−1

j=0 βj+1 . . . βi−1 −
∑n

k=i+1

(
Cθ

k(β)

Cθ
i (β)

)(p−1)

βi+2 . . . βk

]

,

where β1, β2, . . . , βi−1 are included in the first sum, βi+2, βi+3, . . . , βn are in-
cluded in the second sum, and βi and βi+1 are included only in the term
(βi+1 − βi).
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Proof. Similar to the proof of Lemma 12.6. � 

Remark 12.8. Note that if for a given sequence β = βσ� , where σ� ∈ Sn, the
norm ‖C(βσ�)‖p has a minimal value, then for each transposition γ = βσ� :=
β(βi ↔ βj) of sequence β, 1 ≤ i < j ≤ n, there exists θ ∈ (0, 1) such that
δ(θ) ≥ 0, since‖C(β)‖p ≤ ‖C(γ)‖p.

Theorem 12.9. (Gawiejnowicz et al. [105]) Let 1 ≤ p < +∞ and let β = βσ�

for σ� ∈ Sn be the sequence for which the minimum of the norm ‖C(βσ�)‖p

is obtained. Then for each i = 1, 2, . . . , n− 1, there exists θ ∈ (0, 1) such that
either

(a) βi+1 − βi ≤ 0 and Ci−1(β) ≤
∑n

k=i+1

(
Cθ

k(β)

Cθ
i (β)

)(p−1)

βi+2 . . . βk

or

(b) βi+1 − βi ≥ 0 and Ci−1(β) ≥
∑n

k=i+1

(
Cθ

k(β)

Cθ
i (β)

)(p−1)

βi+2 . . . βk,

where Cθ
i (β) = θCi(β) + (1− θ)Ci(γ), γ = β(βi ↔ βi+1), i = 0, 1, . . . , n.

Proof. The result is a consequence of Lemma 12.7. � 

The next result states that expressions Cθ
i (β)

Cθ
k(β)

, for 1 ≤ k ≤ n − 1, are
uniformly (strictly) greater than 1. (We omit a technical proof.)

Lemma 12.10. (Gawiejnowicz et al. [105]) There exists σn(β) > 1, not de-
pendent on θ, i and k, such that

1 + σ−1
n (β) <

Cθ
i (β)

Cθ
k(β)

< σn(β)

for each k = 1, 2, . . . , n−1, i = k+1, k+2, . . . , n and θ ∈ 〈0, 1〉. In particular,
σn(β) can be determined by the formula σn(β) = max{ Cn(βσ) : σ ∈ Sn}.

The next result is a generalization of Theorem 6.120.

Theorem 12.11. (Gawiejnowicz et al. [105]) If 1 ≤ p ≤ +∞, then there
exists p1 > 1 such that for all p ≥ p1 the problem 1|pj = 1 + bjt|‖C‖p can be
solved in O(n log n) time.

Proof. From Theorem 12.9, it follows that for a sufficiently large p the optimal
sequence β = (β1, β2, . . . , βn) must be non-increasing and therefore it can be
determined uniquely in O(n log n) time. �

The last result in this subsection is a generalization of Theorem 6.133.

Theorem 12.12. (Gawiejnowicz et al. [105]) If 1 ≤ p ≤ +∞, then there
exists p0, 1 < p0 ≤ p1, such that for all 1 ≤ p ≤ p0 the optimal solution to the
problem 1|pj = 1 + bjt|‖C‖p must have a V-shape.



292 12 Matrix methods in time-dependent scheduling

Proof. Indeed, in view of Lemma 12.10, taking 1 < p0 small enough we can
make σ

(p−1)
n (β) sufficiently close to 1 for all 1 ≤ p ≤ r0. On the other hand, it

is easy to see that for p = 1 either (a) or (b) from Theorem 12.9 must occur
and, due to the continuity of the lp norm, this is true for 1 ≤ p ≤ p0. �

In the next section, we consider the properties of pairs of time-dependent
scheduling problems.

12.4 Equivalent problems

Some authors (see, e.g., Cheng and Ding [49, 52], Cheng et al. [55],
Gawiejnowicz et al. [95]) noticed that there exist pairs of time-dependent
scheduling problems that have similar properties. For example, the single-
machine problem of scheduling jobs with processing times in the form of
pj = bjt and the

∑
Cj criterion is optimally solved by scheduling jobs in

the non-decreasing order of bj values, while the single-machine problem of
scheduling jobs with processing times in the form of pj = 1 + bjt and the
Cmax criterion is optimally solved by scheduling jobs in the non-increasing
order of the bj ’s, 1 ≤ j ≤ n. The aim of the section is to explain the above
phenomenon using the notion of equivalent problems.

12.4.1 The initial problem

Throughout this section, we consider a few different cases of the parallel-
machine problem of minimizing the total weighted starting time of all jobs,
Pm|pj = aj + bjt|

∑
wjSj , which will be called an initial problem.

Remark 12.13. Since Sj = Cj−1 for 1 ≤ j ≤ n, the applied criterion
∑

wjSj

can be replaced by a special version of the total weighted completion time
criterion in which weight wj+1 is assigned to the completion time Cj , i.e.,∑

wjSj :=
∑n

j=0 wj+1Cj . However, since such a form of the criterion
∑

wjCj

may lead to misunderstanding, we only use the criterion
∑

wjSj .

Now we describe the form of an arbitrary schedule for the initial problem,
separately for single- and parallel-machine problems.

Single-machine problems. Let βj := 1+ bj for 1 ≤ j ≤ n and let sequences
(β1, . . . , βn), (a1, . . . , an) and (w1, . . . , wn) be given. Any schedule for the
problem will be identified with a sequence σ = ((a1, β1, w1), . . . , (an, βn, wn))
of the triples (ai, βi, wi), 1 ≤ i ≤ n. The minimization of the criterion

∑
wjSj

will be carried over all σ ∈ Sn(σ◦), where Sn(σ◦) denotes the set of all
permutations of the initial sequence σ◦ of triples.

Any schedule σ can be represented in another way by the following table:
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T (σ) :=

⎡

⎣
a0 a1 a2 . . . an

β1 β2 . . . βn

w1 w2 . . . wn wn+1

⎤

⎦ , (12.10)

in which a0 := t10 is the time at which the machine starts the processing of
jobs and the weight wn+1 has a special meaning, which is defined in (12.15).
Any other schedule σ ∈ Sn(σ◦) can be obtained by a permutation of these
columns of the table T (σ) which correspond to triples (ai, βi, wi), 1 ≤ i ≤ n.

Given a schedule σ ∈ Sn(σ◦), the completion times of jobs in the schedule
are given by the recurrence equation Cj(σ) = βjCj−1(σ)+aj , where 1 ≤ j ≤ n
and C0(σ) := a0. Applying the matrix approach introduced in Sect. 12.2, the
initial problem can be written as follows:

(P 1)
{

minimize WP 1(σ) := wᵀC(σ)
subject to A(σ)C(σ) = a, σ ∈ Sn(σ◦), (12.11)

where w = (w1, . . . , wn+1)ᵀ, a = (a0, . . . , an)ᵀ and C(σ) = (C0, . . . , Cn)ᵀ. The
non-singular matrix A(σ) ∈M(n+1)×(n+1)(R) is defined as in Sect. 12.1.

Our aim is to construct from any instance of the initial problem an instance
of another problem, called the transformed problem, in such a way that both
these problems are equivalent in the sense described below.

To obtain the transformed problem, we replace the formula WP 1(σ) :=
wᵀC(σ), where A(σ)C(σ) = a, by a dual formula, separately for every schedule
σ ∈ Sn(σ◦).

Parallel-machine problems. Now we pass to the parallel-machine problem
Pm|pj = aj + bjt|

∑
wjSj . In this case, the schedule σ = (σ1, . . . , σm) is

composed of subschedules σk, 1 ≤ k ≤ m. The subschedule σk corresponds to
machine Mk and it is in the form of σk = ((ak

1 , βk
1 , wk

1 ), . . . , (ak
nk

, βk
nk

, wk
nk

)),
where 1 ≤ k ≤ m and

∑m
k=1 nk = n.

The subschedule σk can be presented in another way by the table

T (σk) =

⎡

⎣
ak
0 ak

1 ak
2 . . . ak

nk

βk
1 βk

2 . . . βk
nk

wk
1 wk

2 . . . wk
nk

wk
nk+1

⎤

⎦ , (12.12)

where ak
0 := tk0 ≥ 0, 1 ≤ k ≤ m, is the time at which machine Mk starts

the processing of jobs and the weight wk
nk+1 has a special meaning, defined

in (12.20). Any other schedule for the problem can be obtained by permuting
or mutually exchanging the triples (ak

i , βk
i , wk

i ), (al
j , β

l
j , w

l
j) for any possible

1 ≤ k, l ≤ m, 1 ≤ i ≤ nk and 1 ≤ j ≤ nl, including k = l.
Given a subschedule σk, 1 ≤ k ≤ m, the completion times of jobs in the

subschedule are given by the recurrence equation Ck
j (σk) = βk

j Ck
j−1(σ

k)+ak
j ,

where 1 ≤ j ≤ nk and Ck
0 (σk) := ak

0 .
In the matrix form, the problem can be written as follows:

(Pm)
{

minimize WP m(σ) := wᵀC(σ)
subject to A(σ)C(σ) = a, σ ∈ Sn(σ◦), (12.13)
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where A(σ)C(σ) = a denotes the block system of equations defined as in
Sect. 12.1.

12.4.2 The transformed problem

In this subsection, we describe how to transform instances of the initial prob-
lem into instances of the transformed problem.

Single-machine problems. Consider the problem 1|pj = aj + bjt|
∑

wjSj

in the form of (P 1). Define problem (D1), corresponding to (P 1), as follows:

(D1)
{

minimize WD1(σ) := a ᵀC(σ)
subject to A(σ)C(σ) = w, σ ∈ Sn(σ◦), (12.14)

where a = (an, an−1, . . . , a0)ᵀ and w = (wn+1, wn, . . . , w1)ᵀ.
For simplicity of further presentation, introduce the following definition.

Definition 12.14. (Equivalent problems)
Given a schedule σ = ((a1, β1, w1), . . . , (an, βn, wn)) ∈ Sn(σ◦), let σ ∈ Sn(σ◦)
be a schedule such that σ = ((wn, βn, an), . . . , (w1, β1, a1)). Then
(a) the correspondence σ ←→ σ will be called a transformation of the schedule
σ for the problem (P 1) into the schedule σ for the corresponding problem (D1)
and vice versa,
(b) both corresponding problems, (P 1) and (D1), will be called equivalent prob-
lems.

Given a schedule σ ∈ Sn(σ◦) described by the table T (σ), the transformed
schedule σ is fully described by the table

T (σ) :=

⎡

⎣
wn+1 wn wn−1 . . . w1

βn βn−1 . . . β1

an an−1 . . . a1 a0

⎤

⎦ , (12.15)

where C0(σ) := wn+1 is the time at which the machine starts the processing of
jobs in the problem (D1), while C0(σ) := a0 is the time at which the machine
starts the processing of jobs in the problem (P 1).

In Definition 12.14, we have defined an equivalence between the problems
(P 1) and (D1), based on the transformation σ ←→ σ. The equivalence is
justified by the following result.

Theorem 12.15. (Gawiejnowicz et al. [97]) Let σ ∈ Sn(σ◦) and σ ∈ Sn(σ◦),
where σ = ((a1, β1, w1), . . . , (an, βn, wn)), σ = ((wn, βn, an), . . . , (w1, β1, a1)).
Then
(a) if σ has been obtained by the transformation σ ←→ σ, then there holds the
equality

WP 1(σ) = wᵀC(σ) = aᵀC(σ) = WD1(σ); (12.16)

(b) σ� is an optimal schedule for the problem (P 1) if and only if σ� is an
optimal schedule for the problem (D1); moreover, there holds the equality
WP 1(σ�) = WD1(σ�).
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Proof. (a) The implication follows from Lemma 12.1 for H ≡ A(σ)−1, u ≡ w
and v ≡ a with p = q = n + 1.
(b) Let σ� be an optimal schedule for the problem (P 1) and let there exist
a schedule ρ ∈ Sn(σ◦) for the problem (D1), ρ �= σ�, such that WD1(σ�) >
WD1(ρ). Consider a schedule ρ ∈ Sn(σ◦) for (P 1), equivalent to ρ. Then
WP 1(ρ) = WD1(ρ) < WD1(σ�) = WP 1(σ�). A contradiction. The converse
implication can be proved in an analogous way. The equality WP 1(σ�) =
WD1(σ�) follows from (a). �

We illustrate the results of this section with a numerical example.

Example 12.16. (Gawiejnowicz et al. [97]) Consider the following instance of
the single-machine problem 1|pj = bj + αjt|

∑
wjSj . We are given two jobs

with processing times p1 = 1 + 2t, p2 = 2 + 3t and weights w1 = 5, w2 = 6.
Assume that the machine is available from t0 = 0, and w3 = 1.

Then there are only two possible schedules: σ1 = ((1, 3, 5)|(2, 4, 6)) and
σ2 = ((2, 4, 6)|(1, 3, 5)). The tables T (σi), i = 1, 2, are as follows:

T (σ1) =

⎡

⎣
0 1 2

3 4
5 6 1

⎤

⎦ and T (σ2) =

⎡

⎣
0 2 1

4 3
6 5 1

⎤

⎦ . (12.17)

Given the table T (σ1), we can calculate that C0(σ1) = 0, C1(σ1) = 3×0+
1 = 1, C2(σ1) = 4×1+2 = 6. Hence

∑
wjSj(σ1) = 5×0+6×1+1×6 = 12.

Similarly, for T (σ2) we have C0(σ2) = 0, C1(σ2) = 4×0+2 = 2, C2(σ2) =
3× 2 + 1 = 7. Hence

∑
wjSj(σ2) = 6× 0 + 5× 2 + 1× 7 = 17.

In the transformed problem, 1|pj = wj + ajt|
∑

bjSj , we have two jobs
with processing times p1 = 6 + 3t, p2 = 5 + 2t, with weights w1 = 2, w2 = 1.
The machine is available from t0 = 1, and w3 = 0.

The tables T (σi), i = 1, 2, are as follows:

T (σ1) =

⎡

⎣
1 6 5

4 3
2 1 0

⎤

⎦ and T (σ2) =

⎡

⎣
1 5 6

3 4
1 2 0

⎤

⎦ . (12.18)

Since C0(σ1) = 1, C1(σ1) = 4× 1 + 6 = 10, C2(σ1) = 3× 10 + 5 = 35, we
have

∑
wjSj(σ1) = 2× 1 + 1× 10 + 0× 35 = 12 =

∑
wjSj(σ1).

Similarly, since C0(σ2) = 1, C1(σ2) = 3×1+5 = 8, C2(σ2) = 4×8+6 = 38,
we have

∑
wjSj(σ2) = 1× 1 + 2× 8 + 0× 38 = 17 =

∑
wjSj(σ2).

It is easy to see that to the optimal initial schedule, σ1, there corresponds
the transformed schedule, σ1, and vice versa. �

Parallel-machine problems. Consider the problem Pm|pj = aj + bjt|∑
wjSj in the form of (Pm). Define problem (Dm), corresponding to (Pm),

as follows:

(Dm)
{

minimize WDm(σ) := a ᵀC(σ)
subject to A(σ)C(σ) = w, σ ∈ Sn(σ◦), (12.19)
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where a = (a1, . . . , am)ᵀ and w = (w1, . . . , wm)ᵀ, ak = (ak
nk

, ak
nk−1, . . . , b

k
0)ᵀ

and wk = (wk
nk+1, . . . , w

k
1 ) for 1 ≤ k ≤ m.

The following definition is an extension of Definition 12.14.

Definition 12.17. Given a schedule σ = (σ1, . . . , σm) ∈ Sn(σ◦), where
σk = ((ak

1 , βk
1 , wk

1 ), . . . , (ak
nk

, βk
nk

, wk
nk

)), let σ = (σ1, . . . , σm) ∈ Sn(σ◦) be
a schedule such that σk = ((wk

nk
, βk

nk
, ak

nk
), . . . , (wk

1 , βk
1 , ak

1)), 1 ≤ k ≤ m.
Then
(a) the correspondence σ ←→ σ will be called a transformation of the sched-
ule σ for the problem (Pm) into the schedule σ for the corresponding problem
(Dm) and vice versa,
(b) both corresponding problems, (Pm) and (Dm), will be called equivalent
problems.

Given a schedule σ for the initial problem (Pm), described by the tables
T (σk), 1 ≤ k ≤ m, the schedule σ for the transformed problem (Dm) is
described by the tables

T (σk) :=

⎡

⎣
wk

nk+1 wk
nk

wk
nk−1 . . . wk

1

βk
nk

βk
nk−1 . . . βk

1

ak
nk

ak
nk−1 . . . ak

1 ak
0

⎤

⎦ , (12.20)

where 1 ≤ k ≤ m, Ck
0 (σk) := wk

nk+1 is the time at which the machine Mk

starts the processing of jobs in the problem (Dm) and Ck
0 (σk) := ak

0 is the
time at which the machine Mk starts the processing of jobs in the original
problem (Pm), 1 ≤ k ≤ m.

The next theorem, which concerns the equivalence of the problems (Pm)
and (Dm), is a counterpart of Theorem 12.15 for the case of m machines.

Theorem 12.18. (Gawiejnowicz et al. [97]) Let σ = (σ1, . . . , σm), σk =
((ak

1 , βk
1 , wk

1 ), . . . , (ak
nk

, βk
nk

, wk
nk

)), be an arbitrary schedule from Sn(σ◦) and
σ ∈ Sn(σ◦) be the transformed schedule of σ in the form of σ = (σ1, . . . , σm),
σk = ((wk

nk
, βk

nk
, ak

nk
), . . . , (wk

1 , βk
1 , ak

1)), 1 ≤ k ≤ m. Then
(a) if σ has been obtained by the transformation σ ←→ σ, then there holds the
equality

WP m(σ) = wᵀC(σ) = aᵀC(σ) = WDm(σ); (12.21)

(b) σ� is an optimal schedule for the problem (Pm) if and only if σ� is an
optimal schedule for the problem (Dm); moreover, there holds the equality
WP m(σ�) = WDm(σ�).

Proof. (a) (b) Similar to the proof of Theorem 12.15. � 

12.4.3 Detailed results

In this subsection, we show several examples of results that can be obtained
by the general transformations presented in this section.
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We start with the result saying that in multi-machine problems the total
weighted starting time criterion,

∑
wjSj , is equivalent to the total machine

load criterion,
∑

C
(k)
max. (Since in the considered case

∑
wjSj ≡

∑
wjCj , we

write
∑

wjCj instead of
∑

wjSj .)

Theorem 12.19. (Gawiejnowicz et al. [97]) Problems Pm|pj = bjt|
∑

ωCj

and Pm|pj = ω + bjt|
∑

ak
0C

(k)
max are equivalent.

Proof. The result is a corollary from Theorem 12.18 for wj = ω, ak
j = 0 and

ak
0 := tk0 > 0 for 1 ≤ j ≤ nk and 1 ≤ k ≤ m. � 

The next few results show common features of equivalent problems with
m ≥ 2 machines. First, such problems have the same lower bounds on the
optimal value of a criterion.

Property 12.20. (Gawiejnowicz et al. [97]) If ω = 1, tk0 = 1 for 1 ≤ k ≤ m,
h = � n

m� and r = n − hm, the optimal total machine load for the problem

Pm|pj = 1 + bjt|
∑

C
(k)
max is not less than m

∑h
i=1

m

√∏im+r
j=1 βj +

∑r
j=1 βj .

Proof. The result follows from Theorem 12.19 and the lower bound for the
problem Pm|pj = bjt|

∑
Cj (Jeng and Lin [151]). � 

Second, equivalent problems have the same time complexity status.

Theorem 12.21. (Gawiejnowicz et al. [97]) Let tk0 = a0 > 0 and ω > 0
be common machine starting times for machines Mk, 1 ≤ k ≤ m, in the
problem Pm|pj = bjt|

∑
ωCj and in the problem Pm|pj = ω + bjt|

∑
a0C

(k)
max,

respectively. Then the first problem has the same time complexity as the second
problem. In particular, if m ≥ 2, both these problems are NP-hard in the
ordinary sense.

Proof. The result follows from Theorem 12.19 and ordinary NP-hardness of
the problem P2|pj = bjt|

∑
Cj (Chen [43], Kononov [172]). � 

Third, equivalent problems have the same approximability status.

Theorem 12.22. (Gawiejnowicz et al. [97]) There is no polynomial-time
approximation algorithm with a constant worst-case bound for the problem
P |pj = ω + bjt|

∑
a0C

(k)
max, unless P = NP.

Proof. The result follows from Theorem 12.19 and a theorem about non-
approximability of the problem P |pj = bjt|

∑
Cj (Chen [43]). � 

Finally, if for one of equivalent problems there exists an FPTAS, then an
FPTAS also exists for the second of these problems.
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Theorem 12.23. (Gawiejnowicz et al. [97]) For the problem Pm|pj = ω +
bjt|

∑
ak
0C

(k)
max there exists an FPTAS.

Proof. The result follows from Theorem 12.19 and a theorem about existence
of an FPTAS for the problem Pm|pj = bjt|

∑
wjCj (Woeginger [296]). � 

With this theorem, we end the presentation of applications of matrix meth-
ods in time-dependent scheduling. In Chaps. 13 and 14 we will consider time-
dependent scheduling with job precedence constraints and time-dependent
scheduling with two criteria, respectively.

12.5 Concluding remarks and open problems

In this chapter, we have shown that time-dependent scheduling problems can
be formulated in terms of matrices and vectors. Using the matrix approach,
we introduced the lp norm as a schedule optimality criterion and we proved a
number of results concerning minimization of this criterion. Finally, we have
shown that there exist pairs of time-dependent scheduling problems, called
equivalent problems, which have similar properties.

The results presented in the chapter have a few consequences. First, they
explain the similarities between different time-dependent scheduling problems.
Second, they allow to simplify the proofs of considered properties. Third, given
a property of a time-dependent scheduling problem (e.g., its time complex-
ity), we can establish a similar property of another time-dependent scheduling
problem, if we know that the latter problem is equivalent to the first one.
Fourth, if we know that some two NP-hard time-dependent scheduling prob-
lems are equivalent, we can use the same heuristic algorithm for both these
problems. Moreover, the performance of the algorithm will be the same in
both cases. Gawiejnowicz et al. [102] proposed two such algorithms for two
equivalent time-dependent scheduling problems. Finally, note that we assumed
that jobs have neither ready times nor deadlines. Gawiejnowicz et al. [98] have
shown how to extend the results concerning equivalent problems to the case
when jobs have ready times and (or) deadlines.

Further research concerning the application of matrix methods to time-
dependent scheduling problems may be focused on the status of the time
complexity of the problem 1|pj = 1 + bjt|||C||p for p ∈ (p0, p1), where p0 and
p1 are constants defined as in Theorem 12.12 and Theorem 12.11, respectively.



13

Scheduling dependent deteriorating jobs

We devoted the previous chapters to time-dependent scheduling problems
with independent jobs. In this chapter, we consider single machine time-

dependent scheduling problems with job precedence constraints.
Chapter 13 is composed of six sections. In Sect. 13.1, we introduce the

notation and auxiliary results. In Sect. 13.2, we consider job precedence con-
straints in the form of a set of chains. In Sect. 13.3, we consider job precedence
constraints in the form of a tree and a forest. In Sect. 13.4, we consider job
precedence constraints in the form of a series-parallel digraph. In Sect. 13.5, we
consider general precedence constraints. Concluding remarks, open problems
and one table are given in Sect. 13.6.

13.1 Preliminaries

Throughout this chapter, we consider the problems 1|pj = aj + bjt, δ|Cmax

and 1|pj = bjt, prec|fmax, where δ ∈ {chain, chains, tree, ser-par} and aj > 0
and bj > 0 for 1 ≤ j ≤ n.

In this section, we introduce the notation and auxiliary results used in the
chapter. Since basic definitions concerning graphs and digraphs were intro-
duced in Sect. 1.2, we restrict our attention to only new notions.

For simplicity of further presentation, throughout the chapter, we iden-
tify job Jj ∈ J and its index j. We start with the following definition (cf.
Gawiejnowicz et al. [93]).

Definition 13.1. (A module-chain)
Let G be graph of precedence constraints in a time-dependent scheduling prob-
lem. A chain (n1, . . . , nk) in the precedence graph G is called a module-chain
if for every job j ∈ G\{n1, . . . , nk} there holds one of the following conditions:
(a) there are no precedence constraints between an arbitrary job from the chain
(n1, . . . , nk) and job j;
(b) job j precedes all jobs of the chain (n1, . . . , nk);
(c) job j follows all jobs of the chain (n1, . . . , nk).
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We start with a lemma about the total processing time of a chain of jobs.

Lemma 13.2. (Gawiejnowicz et al. [93]) Let there be given a chain (n1, . . . , nk)
of k jobs with processing times form of pj = aj + bjt, j = n1, . . . , nk, and let
these jobs be processed on a single machine sequentially and without idle times
starting from time t0 ≥ 0. Then the total processing time P (n1, . . . , nk) of all
jobs from this chain is equal to

P (n1, . . . , nk) :=
nk∑

j=n1

pj =
nk∑

i=n1

ai

nk∏

j=i+1

(1 + bj) +

(
nk∏

i=n1

(1 + bi)− 1

)

t0.

(13.1)

Proof. We prove the lemma by mathematical induction with respect to k,
the number of jobs in a chain. Formula (13.1) holds for a single job, since
P (n1) = an1 + bn1t0. Assume that (13.1) holds for a chain of jobs (n1, . . . , nk).
We should prove its validity for the chain (n1, . . . , nk+1). We have

P (n1, . . . , nk+1) = P (n1, . . . , nk) + pnk+1 =

P (n1, . . . , nk) + ank+1 + bnk+1(t0 + P (n1, . . . , nk)) =

=
nk∑

i=n1

ai

nk∏

j=i+1

(1 + bj) +

(
nk∏

i=n1

(1 + bi)− 1

)

t0 + ank+1+

+bnk+1(t0 +
nk∑

i=n1

ai

nk∏

j=i+1

(1 + bj) +

(
nk∏

i=n1

(1 + bi)− 1

)

t0) =

=
nk+1∑

i=n1

ai

nk+1∏

j=i+1

(1 + bj) +

(
nk+1∏

i=n1

(1 + bi)− 1

)

t0.

�

Remark 13.3. Lemma 13.2 describes the first property of a chain of linearly
deteriorating jobs: the processing time of the chain is a linear function of the
starting time of the first job from this chain.

By Lemma 13.2, we can express the total processing time P (n1, . . . , nk) as
a function of A(n1, nk) and B(n1, nk) coefficients, i.e.,

P (n1, . . . , nk) := A(n1, nk) + B(n1, nk)t0, (13.2)

where

A(n1, nk) :=
nk∑

i=n1

ai

nk∏

j=i+1

(1 + bj) (13.3)

and

B(n1, nk) :=
nk∏

j=n1

(1 + bj)− 1. (13.4)
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Remark 13.4. If a chain is composed of only one job, we will write P (n1),
A(n1) and B(n1) instead of P (n1, n1), A(n1, n1) and B(n1, n1), respectively.

The next lemma indicates the importance of the ratio B(n1,nk)
A(n1,nk) for a given

chain of jobs (n1, . . . , nk).

Lemma 13.5. (Gawiejnowicz et al. [93]) Let there be given two chains of
jobs, C1 = (n1, . . . , nk) and C2 = (n′

1, . . . , n
′
k), such that there are no prece-

dence constraints between any job from C1 and any job from C2. Let σ
′

(σ
′′
)

denote the schedule in which all jobs from C1 (C2) are executed sequentially
and without idle times, and are followed by all jobs from C2 (C1), and let
the execution of the jobs start at the same time t0 in both schedules. Then,
Cmax(σ

′
) < Cmax(σ

′′
) if and only if B(n1,nk)

A(n1,nk) >
B(n′

1,n′
k)

A(n′
1,n′

k) .

Proof. Let the execution of jobs start at time t0. Calculate the length of both
schedules, Cmax(σ

′
) and Cmax(σ

′′
). Using Lemma 13.2, we have

Cmax(σ
′
) = t0 + A(n1, nk) + B(n1, nk)t0 + A(n′

1, n
′
k)+

B(n′
1, n

′
k)(t0 + A(n1, nk) + B(n1, nk)t0) = t0 + A(n1, nk) + A(n′

1, n
′
k)+

A(n1, nk)B(n′
1, n

′
k) + (B(n1, nk) + B(n′

1, n
′
k) + B(n1, nk)B(n′

1, n
′
k))t0

and
Cmax(σ

′′
) = t0 + A(n′

1, n
′
k) + B(n′

1, n
′
k)t0 + A(n1, nk)+

B(n1, nk)(t0 + A(n′
1, n

′
k) + B(n′

1, n
′
k)t0) = t0 + A(n1, nk) + A(n′

1, n
′
k)+

B(n1, nk)A(n′
1, n

′
k) + (B(n1, nk) + B(n′

1, n
′
k) + B(n1, nk)B(n′

1, n
′
k))t0.

The difference between the length of schedules σ
′
and σ

′′
is then equal to

Cmax(σ
′
)− Cmax(σ

′′
) = A(n1, nk)B(n′

1, n
′
k)−A(n′

1, n
′
k)B(n1, nk)

and schedule σ
′
is shorter than σ

′′
if and only if B(n1,nk)

A(n1,nk) >
B(n′

1,n′
k)

A(n′
1,n′

k) . �

Remark 13.6. Lemma 13.5 describes the second property of the considered
problem: in the optimal schedule the chain (n1, . . . , nk) with the greatest
ratio B(n1,nk)

A(n1,nk) is scheduled as the first one.

Definition 13.7. (The ratio R(n1, nk) for a chain (n1, n2, . . . , nk) of jobs)
Given a chain (n1, n2, . . . , nk) of jobs Jn1 , Jn2 , . . . , Jnk

, the ratio

R(n1, nk) :=
B(n1, nk)
A(n1, nk)

will be called the ratio R(n1, nk) (ratio R, in short) for this chain.
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Remark 13.8. Note that for chain (n1, . . . , nk) the following equations hold:

A(n1, ni+1) = A(n1, ni)(1 + bi+1) + ai+1 (13.5)

and
B(n1, ni+1) = B(n1, ni)(1 + bi+1) + bi+1, (13.6)

where i = 1, 2, . . . , k − 1. Hence, we can calculate the ratio R for a chain in
time that is linear with respect to the length of this chain.

The next lemma describes a monotonicity property of the sequence of
ratios R(n1, j) for j = n1, . . . , nk.

Lemma 13.9. (Gawiejnowicz et al. [93]) Let there be given the chain of
jobs (n1, . . . , nk) and its two subchains, (n1, . . . , nl) and (nl+1, . . . , nk), where
1 ≤ l ≤ k − 1. Then there holds the following implication:

if R(nl+1, nk) > R(n1, nl), then R(nl+1, nk) > R(n1, nk) > R(n1, nl).

Moreover, similar implications hold, if we replace the sign ‘>’ by either ‘<’
or ‘=’, respectively.

Proof. We prove the lemma for the case when R(nl+1, nk) > R(n1, nl); the
two remaining cases can be proved by similar reasoning.

Let the chain (n1, . . . , nk) be processed sequentially and without idle times
and let l be any integer from the set {1, . . . , k−1}. Then the chain (n1, . . . , nk)
is divided by job l into two subchaines, (n1, . . . , nl) and (nl+1, . . . , nk). For
simplicity, introduce the following notation: A(n1, nl) = A1, B(n1, nl) = B1,
A(nl+1, nk) = A2, B(nl+1, nk) = B2, A(n1, nk) = A, B(n1, nk) = B.

From equations (13.3) and (13.4), we have

B = B(n1, nk) =
nk∏

j=n1

(1 + bj)− 1 =

nl∏

j=n1

(1 + bj)
nk∏

j=nl+1

(1 + bj)− 1 = (1 + B1)(1 + B2)− 1

and

A =
nk∑

i=n1

ai

nk∏

j=i+1

(1 + bj) =
nl∑

i=n1

ai

nl∏

j=i+1

(1 + bj)
nk∏

j=nl+1

(1 + bj)+

nk∑

i=nl+1

ai

nk∏

j=i+1

(1 + bj) = A1(1 + B2) + A2.

So, we have
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A = A1(1 + B2) + A2 and B = (1 + B1)(1 + B2)− 1. (13.7)

First, we show that R(nl+1, nk) > R(n1, nk). Since B2
A2

− B
A = AB2−BA2

A2A ,
by (13.7) we have

AB2 −BA2 = (1 + B2)(A1B2 −A2B1). (13.8)

But from assumption of this lemma we know that B2
A2

> B1
A1

. This implies that

A1B2 −A2B1 > 0. (13.9)

Hence, by (13.8) and (13.9), we have

B2

A2
= R(nl+1, nk) >

B

A
= R(n1, nk). (13.10)

In a similar way, we prove the second inequality. Indeed, because

B

A
− B1

A1
=

A1B −B1A

AA1
(13.11)

and A1B −AB1 = A1B2 −B1A2 we have, by (13.9) and (13.11), that

B

A
= R(n1, nk) >

B1

A1
= R(n1, nl). (13.12)

Therefore, by (13.10) and (13.12), R(nl+1, nk) > R(n1, nk) > R(n1, nl). �

On the basis of Lemmata 13.2, 13.5 and 13.9, we get the following result,
showing the role played by the element of a chain for which the maximum
value of the ratio R is obtained.

Theorem 13.10. (Gawiejnowicz et al. [93]) Let nk = arg max
n1≤j≤nk

{R(n1, j)}
for a given module-chain (n1, . . . , nk). Then there exists an optimal schedule
in which jobs of the chain (n1, . . . , nk) are executed sequentially, without idle
times and such that no jobs from other chains are executed between the jobs
of this chain.

Proof. Let σ denote a schedule in which some jobs are executed between jobs
of chain (n1, . . . , nk). We can represent schedule σ as the set of subchains
CL = {C1,L1, C2,L2, . . . , Cl,Ll, Cl+1}, l = 1, . . . , k−1, where each subchain Cj

and Lj contains, respectively, jobs only from and jobs only outside of chain
(n1, . . . , nk). Denote by R(Cj), for j = 1, . . . , l + 1 (R(Lj), for j = 1, . . . , l)
the ratio R of subchain Cj (Lj).

Definition 13.1 implies that there are no precedence constraints between
any job from subchain Cj and any job from subchain Li. Hence, if we swap two
successive subchains from the set CL, then we get a feasible schedule again.
We will show that we always can find two successive subchains such that one
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can swap these subchains without increasing the length of schedule. Contrary,
suppose the opposite. Then, by Lemma 13.5, we have

R(C1) > R(L1) > R(C2) > R(L2) > . . . > R(Cl) > R(Ll) > R(Cl+1). (13.13)

From (13.13), it follows that R(C1) > R(C2) > . . . > R(Cl) > R(Cl+1). But
then Lemma 13.9 implies that R(C1) > R(n1, nk). We obtained a contradiction
with the definition of nk. Therefore, we can conclude that in schedule σ there
exist two successive subchains of jobs, such that we can swap them without
increasing the value of Cmax(σ). This swap decreases the number l of subchains
of jobs that do not belong to the chain (n1, . . . , nk).

Repeating this swapping procedure at most l times, we will obtain a sched-
ule σ′ in which jobs of the chain (n1, . . . , nk) are executed sequentially, without
idle times and such that Cmax(σ′) ≤ Cmax(σ). �

Remark 13.11. Starting from now, we will assume that if there are two values
for which the maximum is obtained, the function ‘arg’ chooses the job with
the larger index.

Remark 13.12. Theorem 13.10 describes the third property of the considered
problem: in the set of chains there exist some subchains which are processed in
the optimal schedule like aggregated jobs, since inserting into these subchains
either a separate job (jobs) or a chain (chains) makes the final schedule longer.

Remark 13.13. Some of the results presented in this section are given in an-
other form by Wang et al. [285]. In particular, the authors give counterparts
of the ratio R(n1, nk) (see [285, p. 2687]), of Lemma 13.5 (see [285, Lemma 2])
and of Theorem 13.10 (see [285, Lemma 7]).

In subsequent sections, we study different forms of job precedence con-
straints in the problem under consideration. We start with the precedence
constraints in the form of chains.

13.2 Chain precedence constraints

Assume that the precedence digraph G is a set of chains. Note that any chain
in G is a module-chain. The results of Sect. 13.1 allow us to construct an exact
polynomial-time algorithm for the problem 1|pj = aj + bjt, chains|Cmax.

We start the section with the formulation of an algorithm that constructs a
partition U of the chain C = (n1, . . . , nk) into subchains Ci = (ni,1, . . . , ni,ki

),
i = 1, 2, . . . , l. The partition U has the following properties:

Property 13.14. C = ∪l
i=1Ci;

Property 13.15. ni,ki
= arg max

ni,1≤j≤ni,ki

{R(ni1 , j)};

Property 13.16. R(C1) > R(C2) > . . . > R(Cl).
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The pseudo-code of the algorithm is as follows.

Algorithm A55 for the problem 1|pj = aj + bjt, chain|Cmax ([93])

Input: sequences (an1 , an2 , . . . , ank
), (bn1 , bn2 , . . . , bnk

)
chain (n1, n2, . . . , nk)

Output: an optimal schedule σ�

� Step 1:
i ← 1; j ← 1;
C1 ← (n1); Compute R(C1);

� Step 2:
while (j + 1 ≤ k) do

i ← i + 1; j ← j + 1;
Ci ← (nj); Compute R(Ci);
while (R(Ci−1) ≤ R(Ci)) do

Ci−1 ← Ci−1 ∪ Ci;
Compute R(Ci−1);
i ← i− 1

� Step 3:
σ� ← (C1, C2, . . . , Ci);
return σ�.

Remark 13.17. Algorithm A55 divides a chain (a module-chain) into subchains
that are like ‘big’ independent jobs: none of such subchaines can be divided
into smaller subchaines and jobs from different subchaines cannot be inter-
leaved without increase of schedule length.

Remark 13.18. The subchains generated by algorithm A55 will be called in-
dependent subchains.

Lemma 13.19. (Gawiejnowicz et al. [93])
(a) Algorithm A55 constructs a partition U of chain C in O(k) time, k = |C|.
(b) The partition U has Properties 13.14–13.16.

Proof. (a) First, notice that algorithm A55 is composed of three steps and
Step 1 is performed in a constant time. Second, the algorithm in Step 2 either
generates a new subchain from an unconsidered vertex of chain C or joins
two consecutive subchains. Third, each of these procedures can be executed
in time at most k units and requires a fixed number of operations. From it
follows that algorithm A55 runs in O(k) time.

(b) Since in Step 2 we consider iteratively each vertex of chain C, the union
of obtained subchains covers C and Property 13.14 holds.

Now we will prove that there holds Property 13.15. Let U = (C1, C2, . . . , Cl)
be the partition of chain C and let for a subchain Cr = (nr1 , . . . , nrk

)
Property 13.15 does not hold, i.e., there exists index p < rk such that
R(nr1 , np) > R(nr1 , nrk

). Without loss of generality, we can assume that
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np = arg max
1≤j≤k

{R(nr1 , nrj
)}. (13.14)

Consider the subset of U , obtained by algorithm A55 before considering
element np+1, and denote it by U ′. Notice that the algorithm in Step 2
joins two last elements. Because in the final partition we have subchains
(C1, C2, . . . , Cr−1), they are obtained before considering element nr1 and, in
conclusion, also belong to the set U ′. Let Ch = (nr1 , np). Then, by (13.14),
we have U ′ = ((C1, C2, . . . , Cr−1), Ch). Contrary, assume the opposite. Let
U ′ = ((C1, C2, . . . , Cr−1), Ch1 , . . . , Chp

). Then, applying algorithm A55, we
have R(Ch1) > R(Ch2) > . . . > R(Chp

). Hence, by Lemma 13.9, we have
R(Ch1) > R(nr1 , np). A contradiction to equality (13.14).

Consider now the subset of U , obtained by algorithm A55 before consider-
ing the element nrk+1, and denote it by U ′′

. From Lemma 13.9 and equality
(13.14) it follows that R(nr1 , np) > R(np+1, nj) for all j = p+1, . . . , rk. Hence
checking the condition in the inner ‘while’ loop for iterations p + 1, . . . , rk

gives a negative answer. Hence and since p < rk, it follows that U ′′
in-

cludes subchain (nr1 , . . . , np) and, in conclusion, does not contain subchain
(nr1 , . . . , nrk

). From the pseudo-code of algorithm A55, it is clear that such a
chain cannot be obtained at subsequent iterations, either. A contradiction.

There remains to prove that Property 13.16 also holds. If for some 2 ≤ i ≤ l
we have R(Ci−1) ≤ R(Ci), then algorithm A55 joins these subchains in Step 2
and from it follows that Property 13.16 holds. �

Let G, Ci, where 1 ≤ i ≤ k and
∑k

i |Ci| = n, and σ� denote the precedence
graph, the i-th module-chain and the optimal job sequence, respectively. On
the basis of algorithm A55, we can formulate the following algorithm for the
problem with precedence constraints in the form of a set of chains.

Algorithm A56 for the problem 1|pj = aj + bjt, chains|Cmax ([93])

Input: sequences (a1, a2, . . . , an), (b1, b2, . . . , bn), chains C1, C2, . . . , Ck

Output: an optimal schedule σ�

� Step 1:
for i ← 1 to k do

Apply algorithm A55 to chain Ci;
� Step 2:

Arrange G in the non-decreasing order of the R ratios
↪→ of independent chains;
Call the obtained sequence σ�;

� Step 3:
return σ�.

Theorem 13.20. (Gawiejnowicz et al. [93]) The problem 1|pj = aj + bjt,
chains|Cmax is solvable in O(n log n) time by algorithm A56.
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Proof. The partition U constructed for each chain has Property 13.16. This
implies the feasibility of the schedule generated by algorithm A56. The opti-
mality of the schedule follows from Theorem 13.10 and Lemma 13.5. Algo-
rithm A55 runs in linear time with respect to the number of vertices. Hence
the running time of algorithm A56 is determined by its Step 2. Since this step
needs ordering of at most n elements, algorithm A56 runs in O(n log n) time.

�

We illustrate the application of algorithm A56 by an example.

Example 13.21. We are given n = 4 jobs with the following processing times:
p1 = 2 + t, p2 = 1 + 3t, p3 = 1 + t, p4 = 3 + 2t. Precedence constraints are as
follows: job J1 precedes job J2, and job J3 precedes job J4 (see Fig. 13.1a).

3 4

1 2

(a) Precedence graph G

3 4

1,2

(b) First iteration

1,2 43

(c) Second iteration

Fig. 13.1: Precedence constraints in Example 13.21

Algorithm A55 for chain (1, 2) starts with i = 1, j = 1, C1 = (1) and
R(C1) = 1

2 . Next, we have i = 2, j = 2, C2 = (2) and R(C2) = 3. Since
R(C1) < R(C2), we join jobs 1 and 2, obtaining subchain C1 = (1, 2) with
R(C1) = 7

9 (see Fig. 13.1b).
The execution of algorithm A55 for chain (3, 4) runs similarly. First, we

set i = 1, j = 1, C′1 = (3) and R(C′1) = 1. Then i = 2, j = 2, C′2 = (4) and
R(C′2) = 2

3 . Since R(C′1) > R(C′2), we cannot join vertices 3 and 4. Therefore,
we get two subchains, C′1 = (3) and C′2 = (4).

After the completion of algorithm A55, we obtain three independent sub-
chains: C1 = (1, 2), C2 = (3) and C3 = (4).

Now we can arrange independent subchains in the non-decreasing order of
the ratios R of subchains. Because R(C3) < R(C1) < R(C2), the optimal job
sequence is σ∗ = (3, 1, 2, 4), see Fig. 13.1c. �

13.3 Tree and forest precedence constraints

In this section, we discuss the case when in considered problem the precedence
constraints among jobs are in the form of a tree or a forest.
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Let the precedence digraph G be an in-tree. Recall that v is called a node
of in-tree G, if v has at least two immediate predecessors (cf. Definition 1.10).

Algorithm A57 for the problem 1|pj = aj + bjt, in-tree|Cmax ([93])

Input: sequences (a1, a2, . . . , an), (b1, b2, . . . , bn), in-tree G
Output: an optimal schedule σ�

� Step 1:
while (G is not a single chain) do

Choose v ∈ G such that Pred(v) is a union of module-chains;
for each module-chain C ∈ Pred(v) do

Apply algorithm A55 to C;
Arrange independent subchains of Pred(v) in the non-increasing
↪→ order of R ratios;
Call the obtained sequence σ;
Replace in G the set Pred(v) by vertices corresponding to its
↪→ independent subchains in sequence σ;

� Step 2:
σ� ← the order given by G;
return σ�.

Theorem 13.22. (Gawiejnowicz et al. [93]) The problem 1|pj = aj + bjt,
in-tree|Cmax is solvable in O(n log n) time by algorithm A57.

Proof. First, note that algorithm A57 generates a feasible schedule, since it
always looks for subsequences of jobs that are feasible with respect to the
precedence digraph G. Now we will show that the schedule generated by the
algorithm is optimal.

Consider a vertex v ∈ G such that set Pred(v) is a union of module-chains,
Pred(v) = C1 ∪C2 ∪ . . .∪Ck, where Ci is a module-chain, 1 ≤ i ≤ k. Note that
if some job j �∈ Pred(v), then either any job from Pred(v) precedes j or there
is no precedence between j and any job from Pred(v). Apply algorithm A55

to the set Pred(v) and consider the final chain C = (Cn1 , Cn2 , . . . , Cns
), where

R(Cn1) ≥ R(Cn2) ≥ . . . ≥ R(Cns
). We will show that there exists an optimal

schedule in which all subchains are executed in the same order as in C.
Let there exist an optimal schedule σ such that for some i < j the jobs

from Cnj
precede the jobs from Cni

. Denote by L the chain of jobs that are
executed in σ, after jobs from Cnj

and before jobs from Cni
. Without loss of

generality, we can assume that an intersection of C and L is empty, C ∩L = ∅.
Indeed, if some Cnk

∈ L, then either a pair (Cnk
, Cnj

) or a pair (Cnk
, Cnj

)
violates the order of C. Since L does not contain the jobs from C, then there
are no precedence constraints between any job of L and any job of C.

Remind that we choosen C in such a way that if some job j �∈ C, then either
any job from C precedes j or there are no precedence constraints between
j and any job from C. The first case is impossible, because σ is a feasible
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schedule. The same reasoning implies that Cni
and Cnj

do not belong to the
same module-chain in C. From that it follows that there are no precedence
constraints between any job of Cni

and any job Cnj
.

Remind that R(Cni
) ≥ R(Cnj

). Let us calculate R(L). If R(L) ≥ R(Cnj
),

then the schedule (L, Cni
, Cnj

) has the length that is at most equal to the
length of σ. If R(L) < R(Cnj

), then the schedule (Cni
, Cnj

,L) has the length
that is at most equal to the length of σ. Repeating this reasoning for all i < j
such that the jobs of Cnj

precede the jobs of Cni
, we get an optimal schedule

σ� in which all jobs from L are in the same order as the jobs from C.
So, we have shown that there exists an optimal schedule σ� in which all jobs

from L are in the order of jobs from C. Applying this procedure a finite number
of times, we obtain from graph G a new graph G� that is a single chain.

The reasoning for the case of an out-tree is similar.
If we apply 2–3 trees (cf. Remark 1.11), algorithm A57 can be implemented

in O(n log n) time. �

We illustrate the application of algorithm A57 by an example.

Example 13.23. Let n = 7, p1 = 1 + t, p2 = 2 + 3t, p3 = 1 + 2t, p4 = 2 + t,
p5 = 2 + t, p6 = 1 + 3t, p7 = 1 + t. Precedence constraints are as in Fig. 13.2.

1

5

7

2 3

6

4

Fig. 13.2: Precedence constraints in Example 13.23

In Step 1 of algorithm A57, we choose a set of module-chains that belong
to the same vertex. In the case, we can choose chains (1), (2) that belong to
vertex 5, or chains (3), (4) that belong to vertex 6.

Assume we choose chains (1) and (2). Since R(2) = 3
2 > R(1) = 1, job 2

has to precede job 1. Moreover, (2) and (1) are independent subchains. We
transform precedence constraints into the ones given in Fig. 13.3a.

Now consider chains (3) and (4). After execution of Step 1, we obtain two
independent subchains, (3) and (4). Since R(3) = 2 > R(4) = 1

2 , job 3 has
to precede job 4. Moreover, (3) and (4) are independent subchains. The new
form of precedence constraints is given in Fig. 13.3b.
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(a) First iteration
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(b) Second iteration

4,6
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(c) Third iteration

4,6 53 2 1 7

(d) Fourth iteration

Fig. 13.3: Subsequent iterations of algorithm A57 in Example 13.23

Now we have two module-chains ((2), (1), 5) and ((3), (4), 6). (We distin-
guish by internal brackets the vertices corresponding to independent sub-
chains.) Applying Step 1 twice, we find two new independent subchains, (5)
and (4, 6). Precedence constraints are as in Fig. 13.3c.

Finally, we arrange all independent subchains in the non-increasing order
of R ratios, obtaining the chain given in Fig. 13.3d.

Now graph G is a single chain, the condition in loop ‘while’ is not satisfied
and algorithm A57 stops. The optimal job sequence is σ� = (3, 2, 1, 4, 6, 5, 7).

�

Note that if for a vertex v the set Succ(v) is a union of module-chains, then
by replacing Pred(v) by Succ(v), we can apply algorithm A57 to an out-tree.
Let us call the modified algorithm A57 by A58.

Theorem 13.24. (Gawiejnowicz et al. [93]) The problem 1|pj = aj + bjt, out-
tree|Cmax is solvable in O(n log n) time by algorithm A58.

Proof. Similar to the proof of Theorem 13.22. � 

We illustrate the application of algorithm A58 by an example.

Example 13.25. Consider Example 13.23 with reversed orientation of arcs.
Precedence constraints are given in Fig. 13.4.



13.3 Tree and forest precedence constraints 311

7

5 6

2 1 3 4

Fig. 13.4: Precedence constraints in Example 13.25

First, we choose a set of module-chains that belong to the same vertex.
Again, we have two possibilities: we can choose chains (1) and (2) that belong
to vertex 5, or chains (3) and (4) that belong to vertex 6. Assume we choose
chains (1) and (2). Applying algorithm A58, we see that job 2 has to precede
job 1, since R(2) = 3

2 > R(1) = 1. Moreover, (2) and (1) are independent
subchains. The new form of job precedence constraints is given in Fig. 13.5a.
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(a) First iteration
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1 4

(b) Second iteration

5,2
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4

(c) Third iteration

5,2 17 6 3 4

(d) Fourth iteration

Fig. 13.5: Subsequent iterations of algorithm A58 in Example 13.25
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Now, consider chains (3) and (4). Since R(3) = 2 > R(4) = 1
2 , job 3 has

to precede job 4. Moreover, (3) and (4) are independent subchains. The new
digraph of job precedence constraints is given in Fig. 13.5b.

Now, we have two module-chains: (5, (2), (1)) and (6, (3), (4)). Applying
algorithm A58, we obtain two new independent subchaines, (5, 2) and (6), with
R(5, 2) = 7

10 and R(6) = 3. The new digraph of job precedence constraints is
given in Fig. 13.5c.

By arranging all independent subchains in the non-increasing order of the
R ratios, we obtain the chain given in Fig. 13.5d.

Now, digraph G of job precedence constraints is a single chain and the
optimal job sequence is σ� = (7, 6, 3, 5, 2, 1, 4). �

If job precedence constraints are in the form of a forest, i.e., a set of trees,
we can proceed in the following way. Assume that precedence constraints are
in the form of an in-forest. By adding a dummy vertex 0, with processing time
p0 = ε = const > 0, and by connecting roots of all in-trees with this vertex,
we obtain a new in-tree. For this in-tree, we can apply algorithm A57 and
ignore the dummy job in the final schedule. In a similar way, we can solve the
case of an out-forest. Hence, we have the following result.

Theorem 13.26. (Gawiejnowicz et al. [93])
(a) Problem 1|pj = aj + bjt, in-forest|Cmax is solvable in O(n log n) time by
algorithm A57.
(b) The problem 1|pj = aj + bjt, out-forest|Cmax is solvable in O(n log n)
time by algorithm A58.

Proof. (a) (b) Similar to the proof of Theorem 13.22. � 

13.4 Series-parallel constraints

In this section, we study the case when in the problem under consideration
the job precedence constraints are in the form of a series-parallel digraph G.
For simplicity, we assume that digraph G does not contain the arc (v, w) if
there is a directed path from v to w not including (v, w).

We start the section with three properties of series-parallel digraphs. We
omit simple proofs.

Property 13.27. (Gawiejnowicz et al. [93]) A chain is a series-parallel digraph.

Property 13.28. (Gawiejnowicz et al. [93]) The series composition of two chains
is a chain.

Property 13.29. (Gawiejnowicz et al. [93]) If a node of the decomposition tree
T (G) of a series-parallel digraph G is parallel composition of two chains, then
each of the chains is a module-chain in the digraph G.
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Since digraph G from Property 13.29 is a union of module-chains, we can
apply algorithm A32 to find the optimal sequence of vertices of this digraph.
Recall that given a union of module-chains in digraph G, algorithm A33 finds
an optimal sequence of vertices from the union. Hence, working from the
bottom of the decomposition tree T (G) upward and merging subsequences of
vertices in an appropriate way, we find the optimal sequence.

The pseudo-code of the algorithm for the considered problem with series-
parallel precedence constraints is as follows.

Algorithm A59 for the problem 1|pj = aj + bjt, ser-par|Cmax ([93])

Input: sequences (a1, a2, . . . , an), (b1, b2, . . . , bn),
decomposition tree T (G) of series-parallel digraph G

Output: an optimal schedule σ�

� Step 1:
while (there exists v ∈ T (G) such that |Succ(v) = 2|) do

if (v has label P ) then
Apply the algorithm A56 to chains C1, C2 ∈ Succ(v);
Replace v, C1 and C2 in T (G) by the obtained chain

else Replace v, C1 and C2 in T (G) by chain (C1, C2);
� Step 2:

σ� ← the order given by G;
return σ�.

Theorem 13.30. (Gawiejnowicz et al. [93]) The problem 1|pj = aj + bjt,
ser-par|Cmax is solvable in O(n log n) time by algorithm A59, provided the
decomposition tree T (G) of the precedence constraints digraph G is given.

Proof. First, notice that algorithm A59 generates always a feasible job se-
quence, since it merges vertices of the decomposition tree T (G). In order to
show that the final sequence is optimal, we shall show how to obtain an op-
timal job sequence in the case of a parallel or series composition, given the
already computed sequence.

Remember that if we find an optimal sequence for some job precedence
digraph (subdigraph), we transform this digraph into a chain. Since each
terminal node (leaf) of the tree T (G) represents a single vertex (job), it is
sufficient to show how to obtain an optimal sequnce of the jobs in a parallel
or series composition if both arguments of the composition are chains.

First, consider the case when some node of T (G) is a parallel composition
of subgraphs G1 and G2. Let C1 and C2 be two chains that present an optimal
sequence of the vertices in the subdigraphs G1 and G2. Applying algorithm
A56 to the chains C1 and C2 we get an optimal sequence C for digraph G.

Let now some node of T (G) be a series composition of subdigraphs G1 and
G2. Without loss of generality, we can assume that G1 precedes G2. Let C1 and
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C2 be two chains that present an optimal order of vertices in the subdigraphs
G1 and G2. Setting the first vertex of C2 after the last vertex of C1, we get an
optimal job sequence for digraph G.

By using 2–3 trees, algorithm A59 can be implemented in O(n log n) time.
�

Remark 13.31. If the decomposition tree T (G) of the series-parallel digraph
G is not given, algorithm A59 must start with the step in which the tree is
constructed (cf. Remark 1.13). Since this step needs O(|V | + |E|) ≡ O(n2)
time, in this case the running time of algorithm A59 increases to O(n2) time.

The following example shows an application of algorithm A59.

Example 13.32. Let n = 6, p1 = 2 + 3t, p2 = 1 + t, p3 = 2 + t, p4 = 3 + 2t,
p5 = 3 + 4t, p6 = 2 + 5t. The digraph G of precedence constraints is given in
Fig. 13.6a. The decomposition tree T (G) is given in Fig. 13.6b.

1

2

43

5 6

(a) Digraph G

S

1 S

P P

4 S 6 5

2 3

(b) Decomposition tree T (G)

Fig. 13.6: Precedence constraints in Example 13.32

We start with the vertex labelled S, whose immediate successors are ver-
tices 2 and 3. We can replace these three vertices by chain (2, 3). The new
decomposition tree is given in Fig. 13.7a.

We proceed with the vertex labelled P, whose immediate successors are
chain (2, 3) and chain (4). Let us calculate R ratios for these vertices. We have
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S

1 S

P P

4 2,3 6 5

(a) First iteration

S

1 S

2,4,3 P

6 5

(b) Second iteration

S

1 S

2,4,3 6,5

(c) Third iteration

2,4,3 6,51

(d) Fourth iteration

Fig. 13.7: Subsequent iterations of algorithm A59 in Example 13.32

R(2) = 1, R(3) = 1
2 and R(4) = 2

3 . Hence, (2), (3) and (4) are independent
chains and their order is ((2), (4), (3)). The new form of the decomposition
tree is given in Fig. 13.7b.

Next, we choose vertices 5 and 6 that are immediate successors of the
vertex labelled P . After calculations, we have R(5) = 4

3 < R(5) = 5
2 . Hence,

the new form of the decomposition tree is as in Fig. 13.7c.
Because now all inner vertices are labelled S, the optimal job sequence is

σ� = (1, 2, 4, 3, 6, 5), see Fig. 13.7d. �
Remark 13.33. A counterpart of algorithm A59 is given by Wang et al. [285,
Algorithm 1].

13.5 General precedence constraints

In this section, we consider the problem 1|pj = bjt, prec|fmax. We assume
that for job Jj , there is defined a non-decreasing cost function fj that spec-
ifies a cost fj(Cj) that has to be paid at the completion time of the job,
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1 ≤ j ≤ n. (Without loss of generality, we can assume that for a given func-
tion fj , 1 ≤ j ≤ n, the cost fj(Cj) can be computed in a constant time.) For
simplicity, we assume also that S1 ≡ t0 = 1.

The main idea of the algorithm that solves the problem is the same as
in Lawler’s algorithm for the problem 1|prec|fmax (Lawler [182]), i.e., from
all jobs that do not have successors we choose these ones that will cause the
smallest cost in the given position.

Let NoSucc(G) denote the set of indices of jobs without immediate suc-
cessors for a given digraph G of precedence constraints. The pseudo-code of
the algorithm for the considered problem is as follows.

Algorithm A60 for the problem 1|pj = bjt, prec|fmax ([93])

Input: sequences (b1, b2, . . . , bn), (f1, f2, . . . , fn),
digraph G of precedence constraints

Output: an optimal schedule σ�

� Step 1:
σ� ← (φ); NJ ← {1, 2, . . . , n}; T ←

∏n
j=1(bj + 1);

� Step 2:
while (NJ �= ∅) do

Construct the set NoSucc(G);
Find k ∈ NoSucc(G) such that fk(T ) = min {fj(T ) : j ∈ NoSucc(G)} ;
σ� ← (σ�|k); T ← T

bk+1 ;
NJ ← NJ \ {k}; NoSucc(G) ← NoSucc(G) \ {k};

� Step 3:
return σ�.

Remark 13.34. Algorithm A60 is a generalization of algorithm A29 presented
in Sect. 6.4 (see Remark 6.203 for details).

Theorem 13.35. (Gawiejnowicz et al. [93]) The problem 1|pj = bjt, prec|fmax

is solvable in O(n2) time by algorithm A60.

Proof. First, notice that without loss of generality, we can consider only sched-
ules without idle times. Second, by Theorem 6.1 the value of Cmax criterion
for jobs with proportional processing times does not depend on the sequence
of the jobs and is given by formula (6.2). Note also that the value of Cmax can
be calculated in O(n) time.

Let f�
max(J ) denote the value of the criterion fmax for an optimal schedule.

Then the following two inequalities are satisfied:

f�
max(J ) ≥ min

j∈NoSucc(G)
{fj(Cn)} (13.15)

and
f�
max(J ) ≥ f�

max(J \ {Jj}) (13.16)
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for j = 1, 2, . . . , n. Let job Jk ∈ J be such that

fk(Cn) = min{fj(Cn) : j ∈ NoSucc(G)}

and let fk(J ) denote the value of the criterion fk, provided that job Jk is
executed as the last one. Then,

fk(J ) = max{fk(Cn), f�
max(J \ {Jk})}. (13.17)

From (13.15), (13.16) and (13.17), it follows that f�
max(J ) ≥ fk(J ) and

there exists an optimal schedule in which job Jk is executed as the last one.
Repeating this procedure for the remaining jobs, we obtain an optimal

schedule. Because in each run of the procedure we have to choose a job from
O(n) jobs, and there are n jobs, algorithm A60 runs in O(n2) time. �

Remark 13.36. Note that algorithm A60 can be easily modified for propor-
tional-linear job processing times (6.5). Therefore, by Theorem 13.35, the
problem 1|pj = bj(A+Bt), prec|fmax is solvable in O(n2) time by the modified
algorithm A60.

We illustrate the application of algorithm A60 by an example.

Example 13.37. Let n = 4, p1 = t, p2 = 3t, p3 = 2t, p4 = t, t0 = 1. Cost
functions are in the form of f1 = 2C2

1 , f2 = C2
2 + 1, f3 = C3, f4 = C4 + 5.

Precedence constraints are given in Fig. 13.8.

1

2

3

4

Fig. 13.8: Precedence constraints in Example 13.37

In Step 1, we have C = 48; in Step 2, we have NoSucc(G) = {2, 4}.
Because f2(48) = 482 + 1 > f4(48) = 48 + 5, job J4 is scheduled as the last
one. Then C = 48

2 = 24 and NoSucc(G) = {2}. Therefore, job J2 is scheduled
as the second job from the end. Next, C = 24

4 = 6 and NoSucc(G) = {1, 2}.
Because f1(6) = 2 · 62 > f3(6) = 6, job J3 is scheduled as the third one from
the end. After that C = 6

2 = 3 and NoSucc(G) = {1}. Therefore, job J1 is
scheduled as the first one. The optimal schedule is σ� = (1, 3, 2, 4). �

The linear case, pj = aj + bjt, seems to be computationally intractable.
Therefore, we state the following.
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Conjecture 13.38. The decision version of the problem 1|pj = aj+bjt, prec|Cmax

is NP-complete in the strong sense.

With this conjecture, we end the presentation of the results concerning
time-dependent scheduling with job precedence constraints. In Chap. 14, we
will consider time-dependent scheduling with two criteria.

13.6 Concluding remarks and open problems

In this chapter, we considered a single machine time-dependent scheduling
problem with job precedence constraints. We proved that the problem with
linear job processing times and precedence constraints in the form of a set of
chains, a tree, a forest or a series-parallel graph can be solved in O(n log n)
time. We also proved that the problem with proportional job processing times
and arbitrary precedence constraints is solvable in O(n2) time. The algorithms
presented in the chapter are summarized in Table 13.1.

Table 13.1: Polynomial-Time Algorithms for Time-Dependent Scheduling Problems
with Dependent Jobs

Algorithm Complexity Problem Reference This book

A55 O(n log n) 1|pj = aj + bjt,
chain|Cmax

[101] Sect. 13.2, p. 305

A56 O(n log n) 1|pj = aj + bjt,
chains|Cmax

[101] Sect. 13.2, p. 306

A57 O(n log n) 1|pj = aj + bjt,
in-tree|Cmax

[101] Sect. 13.3, p. 308

A57 O(n log n) 1|pj = aj + bjt,
in-forest|Cmax

[101] Sect. 13.3, p. 308

A58 O(n log n) 1|pj = aj + bjt,
out-tree|Cmax

[101] Sect. 13.3, p. 310

A58 O(n log n) 1|pj = aj + bjt,
out-forest|Cmax

[101] Sect. 13.3, p. 310

A59 O(n log n) 1|pj = aj + bjt,
ser-par|Cmax

[101] Sect. 13.4, p. 313

A60 O(n2) 1|pj = bjt, prec|Cmax [101] Sect. 13.5, p. 316

Scheduling linearly deteriorating jobs was previously considered by other
authors. The results mentioned in Table 13.1 are counterparts of the results
presented by Tanaev et al. [264, Chap. 3], where two operations on an ar-
bitrary acyclic digraph (the operation of identifying vertices and the opera-
tion of including an arc) have been introduced. Applying the notion of the
priority-generating function (cf. Definition 1.19), Tanaev et al. [264] proved a
number of results concerning different scheduling problems with precedence
constraints, including the linear problems considered in the chapter.
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Some of the results presented in the chapter (cf. Remarks 13.13 and 13.33)
are also given by Wang et al. [285].

Further research in scheduling deteriorating jobs with precedence con-
straints may focus on the following problems. First, we can seek polynomial-
time approximation algorithms for the linear case. It seems that here a cer-
tain role may play decomposition methods, like those discussed by Buer and
Möhring [36] and Muller and Spinrad [222].

Second, we can seek other forms of job deterioration with simple prece-
dence constraints, like chains or trees, which are solvable in polynomial time.
However, it is disputable if there exist other than linear forms of job deterio-
ration for which these precedence constrains are polynomially solvable.

Finally, one can consider other optimality criteria, e.g.,
∑

Cj or Lmax.
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Time-dependent scheduling with two criteria

The evaluation of schedule quality by a single criterion prevails in time-
dependent scheduling. However, advanced scheduling problems require a

multi-criteria approach. Therefore, in the last chapter of the book, we con-
sider bicriteria time-dependent scheduling problems, in which a schedule is
evaluated by two criteria that are minimized either in the Pareto or in the
scalar sense.

Chapter 14 is composed of five sections. In Sect. 14.1, we formulate the
considered problems and give some preliminary results. In Sects. 14.2 and 14.3,
we present the results concerning bicriterion Pareto and bicriterion scalar op-
timality, respectively. In Sect. 14.4, we summarize the results of computational
experiments related to the bicriterion Pareto optimality. Concluding remarks
open problems are given in Sect. 14.5.

14.1 Preliminaries

In this section, we formulate two problems that we will consider. First, we
state the assumptions, which are common for both problems.

14.1.1 Problems formulation

We are given a single machine and a set of n + 1 linearly deteriorating jobs
to be processed on the machine. The processing times of jobs are in the form
of pj = 1 + bjt, where bj > 0 for j = 0, 1, . . . , n. All the jobs are available for
processing at time t0 = 0.

Input data for the problems are described by the sequence (b0, b1, . . . , bn) of
job deterioration rates. For simplicity of further presentation, however, instead
of the sequence (b0, b1, . . . , bn), we use the sequence β̂ = (β0, β1, . . . , βn), where
βj = bj + 1 for j = 0, 1, . . . , n. (The elements βj will be called deterioration
coefficients in order to distinguish them from deterioration rates bj .)
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The first problem is to find such a schedule β� that the pair
⎛

⎝
∑

j

Cj(β�),max
j
{Cj(β�)}

⎞

⎠

of values of the total completion time and the maximum completion time
criteria for this schedule is Pareto optimal, i.e.,

β� ≡ β̂π� = arg min
β̂π

⎧
⎨

⎩
(
∑

j

Cj(β̂π),max
j
{Cj(β̂π)}) : π ∈ Sn

⎫
⎬

⎭
,

where the minimum, with respect to the order relation ≺, is taken in the sense
of Pareto optimum.

Remark 14.1. The partial order relation ≺ and the Pareto optimality are in-
troduced in Definition 1.4 and Definition 1.25, respectively.

Let ‖·‖(λ) denote a convex combination of the
∑

Cj and Cmax criteria, i.e.,

‖C(β̂π)‖(λ) := λ

n∑

j=0

Cj(β̂π) + (1− λ) max
0≤j≤n

{Cj(β̂π)},

where C(β̂π) = [C0(β̂π), C1(β̂π), . . . , Cn(β̂π)] is the vector of job completion
times for a given sequence β̂π and λ ∈ 〈0, 1〉 is an arbitrary but fixed number.

The second problem is to find a schedule β� for which the value of the
criterion ‖ · ‖(λ) is minimal, i.e.,

β� ≡ β̂π� = arg min
β̂π

{
‖C(β̂π)‖(λ) : π ∈ Sn

}
,

where the minimum is taken with respect to the ordinary relation ≤ .
We will refer to the first and the second problem as the TDPS (Time-

Dependent Pareto-optimal Scheduling) and the TDBS (Time-Dependent Bi-
criterion Scheduling) problem, respectively. Optimal schedules for these prob-
lems will be called TDPS-optimal and TDBS-optimal schedules, respectively.

14.1.2 Preliminary results

In this section, we prove some preliminary results that are used in the next
two sections. The results refer to both problems under consideration. Intro-
ductory results concerning only one of the problems, either TDPS or TDBS,
are presented in Sects. 14.2 and 14.3, respectively.

The following result is a generalization of Property 6.128.
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Property 14.2. (Gawiejnowicz et al. [103]) Let βmax := max{βj : 0 ≤ j ≤ n}
for a given sequence β̂. Then in any TDPS-optimal (TDBS-optimal) schedule
for β̂, the job corresponding to deterioration coefficient βmax is scheduled as
the first one.

Proof. Consider the TDPS problem. Assume that there exists a Pareto
optimal schedule β� for the TDPS problem in which the job corresponding to
the greatest deterioration coefficient, βmax, is not scheduled as the first one,
β[0] �= βmax. Let the first job in β� have the coefficient βm, β[0] = βm, where
βm < βmax = β[k]. Consider schedule β′ obtained by switching in β� the first
job and the k-th job. Since the deterioration coefficient of the first scheduled
job does not influence the values of the

∑
Cj and Cmax criteria and, further-

more, by Remark 6.26 both these criteria are monotonically non-decreasing
with respect to β[j] for j = 1, 2, . . . , n, the above switching will decrease the
values of

∑
Cj and Cmax. Thus, in view of Definition 1.25, schedule β� cannot

be optimal. A contradiction.
Consider now the TDBS problem. Since the value of the criterion ‖ · ‖(λ)

decreases with the decreasing values of
∑

Cj and Cmax criteria, then by ap-
plying similar reasoning as above, we complete the proof. �

Remark 14.3. From now on, we assume that β[0] has been established accord-
ing to Property 14.2 and we denote sequence β̂ without the maximal element
β[0] by β = (β1, β2, . . . , βn).

Remark 14.4. We assume that n > 2, i.e., sequence β = (β1, β2, . . . , βn) con-
tains at least three elements such that βj > 1 for j = 1, . . . , n.

Let β(βq ↔ βr) denote sequence β with elements βq and βr mutually
interchanged. The next preliminary result is the following lemma.

Lemma 14.5. (Gawiejnowicz et al. [103]) Let β′ = β(βq ↔ βr) and 1 ≤ q <
r ≤ n. Then for 0 ≤ j ≤ n, there holds the following equality:

Cj(β′)− Cj(β) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

βq−βr

βr

r−1∑

i=q

j∏

k=i+1

βk , 1 ≤ q < r ≤ j ≤ n,

βr−βq

βq

q−1∑

i=0

j∏

k=i+1

βk , 1 ≤ q ≤ j < r ≤ n,

0 , 0 ≤ j < q < r ≤ n.

Proof. The case j = 0 is clear, since C0(β) = C0(β′) = 1. In the case when

0 < j < q < r ≤ n, we have Cj(β) = Cj(β′) =
j∑

i=0

j∏

k=i+1

βk, since j < q.

Let r ≤ j ≤ n and 1 ≤ q < r ≤ n. From formula (6.11), for aσi
= 1 for

1 ≤ i ≤ n, it follows that

Cj(β) =
q−1∑

i=0

βi+1 . . . βq . . . βr . . . βj +
r−1∑

i=q

βi+1 . . . βr . . . βj +
j∑

i=r

βi+1 . . . βj .
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Next, in the corresponding formula for Cj(β′), we have βq and βr mutu-
ally interchanged in the first sum. Clearly, in this case the first sum remains
unchanged. In the second sum in Cj(β′), factor βr must be replaced by factor
βq. Finally, in the third sum, we have no changes related to the transition
from β to β′. Therefore, for 1 ≤ q < r ≤ j ≤ n, there holds the equality

Cj(β′)− Cj(β) =
βq − βr

βr

r−1∑

i=q

j∏

k=i+1

βk.

The case when 1 ≤ q ≤ j < r ≤ n can be proved in a similar way. �

Lemma 14.6. (Gawiejnowicz et al. [96, 103]) Let β′ = β(βq ↔ βq+1), where
q = 1, 2, . . . , n− 1. Then for j = 0, 1, . . . , n, there holds the following equality:

Cj(β′)− Cj(β) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(βq − βq+1)
j∏

k=q+2

βk , 1 ≤ q < j ≤ n,

(βq+1 − βq)
q−1∑

i=0

q−1∏

k=i+1

βk , j = q,

0 , 0 ≤ j < q.

Proof. The result follows from Lemma 14.5 by letting r = q + 1. �

Lemma 14.7. (Gawiejnowicz et al. [96, 103]) Let β′ = β(βq ↔ βq+1), where
q = 1, 2, . . . , n− 1. Then there holds the following equality:

n∑

j=0

Cj(β′)−
n∑

j=0

Cj(β) = (βq+1 − βq)

⎛

⎝
q−1∑

j=0

q−1∏

k=j+1

βk −
n∑

i=q+1

i∏

k=q+2

βk

⎞

⎠ .

Proof. By Lemma 14.6, summing the differences Cj(β′)−Cj(β) for 0 ≤ j ≤ n,
we obtain the result. �

Lemma 14.8. (Gawiejnowicz et al. [96, 103]) Let β′ = β(βq ↔ βq+1), where
q = 1, 2, . . . , n− 1. Then there holds the following equality:

max
0≤j≤n

{Cj(β′)} − max
0≤j≤n

{Cj(β)} = (βq − βq+1)
n∏

k=q+2

βk.

Proof. Since max
0≤j≤n

{Cj(β)} = Cn(β), by letting j = n in Lemma 14.6, the

result follows. �

14.2 Pareto optimality

In this section, we consider the TDPS problem, i.e., the problem of finding a
schedule that is Pareto optimal with respect to the

∑
Cj and Cmax criteria.



14.2 Pareto optimality 325

Let X denote the set of all solutions of a bicriterion scheduling problem.
In our case, X = {β̂π : π ∈ Sn} is discrete and consists of all permutations
of the original sequence β̂. Recall also (cf. Definition 1.25) that for a given
bicriterion optimization problem, XPar (Xw−Par) denotes the set of all Pareto
(weak Pareto) optimal solutions.

Notice that in view of Lemma 14.7 and Lemma 14.8, if β′ = β(βq ↔ βq+1)
is a pairwise transposition of sequence β, where q = 1, 2, . . . , n− 1, we have:

‖C(β′)‖1 − ‖C(β)‖1 = (βq+1 − βq)

⎛

⎝
q−1∑

j=0

q−1∏

k=j+1

βk −
n∑

i=q+1

i∏

k=q+2

βk

⎞

⎠ (14.1)

and

‖C(β′)‖∞ − ‖C(β)‖∞ = −(βq+1 − βq)
n∏

k=q+2

βk. (14.2)

First, we prove a sufficient condition for β� ∈ X to be a (weakly) Pareto
optimal solution to the TDPS problem. (A necessary condition for β ∈ X to be
a (weakly) Pareto optimal solution to the TDPS problem will be given later.)

Theorem 14.9. (Gawiejnowicz et al. [103])
(a) A sufficient condition for sequence β� ∈ X to be weakly Pareto optimal is
that β� is optimal with respect to the scalar criterion ‖ ·‖(λ), where 0 ≤ λ ≤ 1.
(b) A sufficient condition for sequence β� ∈ X to be Pareto optimal is that
β� is optimal with respect to the scalar criterion ‖ · ‖(λ), where 0 ≤ λ < 1.
In particular, the sequence obtained by the non-increasing ordering of β� is
Pareto optimal for the TDPS problem.

Proof. (a) The statement immediately follows from inclusion X(λ) ⊂ Xw−Par,
where 0 ≤ λ ≤ 1.
(b) The statement follows from inclusion X(λ) ⊂ XPar, whenever 0 < λ < 1.
To end the proof it is sufficient to consider the case λ = 0, i.e., the case of
criterion ‖·‖∞. Let β� ∈ X be non-increasing. The sequence is Pareto optimal
when relation

(‖C(β′)‖1, ‖C(β′)‖∞) ≺ (‖C(β�)‖1, ‖C(β�)‖∞)

does not hold for any β′ ∈ X,β′ �= β�. By Lemma 1.5, this means that there
holds either the disjunction

‖C(β′)‖1 − ‖C(β�)‖1 > 0 or ‖C(β′)‖∞ − ‖C(β�)‖∞ > 0 (14.3)

or the conjuction

‖C(β′)‖1 = ‖C(β�)‖1 and ‖C(β′)‖∞ = ‖C(β�)‖∞. (14.4)

If β� contains only distinct elements, then ‖C(β′)‖∞ − ‖C(β�)‖∞ > 0 and
there holds the disjunction (14.3). In the opposite case, either ‖C(β′)‖∞ −
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‖C(β�)‖∞ > 0, and then there holds the disjunction (14.3), or ‖C(β′)‖∞ −
‖C(β�)‖∞ = 0, and then there holds the conjuction (14.4), since in this case
we also have ‖C(β′)‖1−‖C(β�)‖1 = 0 by the uniqueness of β� up to the order
of equal elements.

Concluding, a non-increasing β� ∈ X must be Pareto optimal for the TDPS
problem. �

Example 14.10. (Gawiejnowicz et al. [103]) Consider sequence β̂ = (6, 3, 4, 5, 2).
Then

∑
Cj(β̂) = 281 and Cmax(β̂) = 173. By Theorem 14.9, we know that

each non-increasing sequence is Pareto optimal for the TDPS problem. Thus
β′ = (6, 5, 4, 3, 2) is Pareto optimal for this problem, with

∑
Cj(β′) = 261

and Cmax(β′) = 153. �

Now we prove the necessary condition for β� ∈ X to be a (weakly) Pareto
optimal solution to the TDPS problem. We start with the following result.

Lemma 14.11. (Gawiejnowicz et al. [103]) Let Δq(β) :=
q−1∑

j=0

q−1∏

k=j+1

βk −
n∑

i=q+1

i∏

k=q+2

βk for a given sequence β. Then for any permutation of β there

exists a unique number q0, 1 ≤ q0 ≤ n − 1, such that q0 is the greatest num-
ber for which Δq(β) q = q0 is negative, i.e., Δq(β) < 0 for 1 ≤ q ≤ q0 and
Δq(β) ≥ 0 for q0 < q ≤ n− 1.

Proof. First, note that

Δ1(β) = −
n∑

i=3

i∏

k=3

βk < 0

and

Δn−1(β) =
n−3∑

j=0

n−2∏

k=j+1

βk > 0.

Moreover, sequence Δq(β) is strictly increasing for q = 1, 2, . . . , n− 1, since

Δq+1(β)−Δq(β) =
q∑

j=0

q∏

k=j+1

βk −
n∑

i=q+2

i∏

k=q+3

βk −
q−1∑

j=0

q−1∏

k=j+1

βk +
n∑

i=q+1

i∏

k=q+2

βk

= (βq − 1)
q−1∑

j=0

q−1∏

k=j+1

βk + (βq+2 − 1)
n∑

i=q+2

i∏

k=q+3

βk + 2 > 0.

Thus, there must exist a maximal integer q0 such that Δq(β) < 0 for
1 ≤ q ≤ q0 and Δq(β) ≥ 0 for q0 < q ≤ n− 1. �

Now, assume that β� is a Pareto optimal solution of the TDPS problem,
β� ∈ XPar. Then, by Lemma 14.11, there exists a q�

0 such that

Δq(β�) < 0 for 1 ≤ q ≤ q�
0 (14.5)
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and

Δq(β�) ≥ 0 for q�
0 < q ≤ n− 1. (14.6)

Knowing that there exists a q�
0 which is the point of change of sign of

Δq(β�), we can prove the following result.

Theorem 14.12. (Gawiejnowicz et al. [103]) Let β� = (β�
1 , β�

2 , . . . , β�
n) ∈ XPar

and q�
0 be specified by conditions (14.5) and (14.6). Then for q = 1, 2, . . . , n−1

there holds the inequality β�
q ≥ β�

q+1 or, if q�
0 < q ≤ n − 1, the inequality

β�
q ≤ β�

q+1.

Proof. Let β� = (β�
1 , β�

2 , . . . , β�
n) be Pareto optimal solution of the TDPS

problem. Then there does not exist β′ ∈ X such that

(‖C(β′)‖1, ‖C(β′)‖∞) ≺ (‖C(β�)‖1, ‖C(β�)‖∞)

or, equivalently, for each β′ ∈ X there does not hold the relation

(‖C(β′)‖1 − ‖C(β�)‖1, ‖C(β′)‖∞ − ‖C(β�)‖∞) ≺ 0.

In particular, this relation does not hold for transpositions β′ = β�(β�
q ↔ β�

q+1)
of the optimal sequence for q = 1, 2, . . . , n − 1. Now, applying Lemma 1.5,
(14.1) and (14.2), we see that for q = 1, 2, . . . , n − 1 there holds either the
alternative

‖C(β′)‖1 − ‖C(β�)‖1 = (β�
q+1 − β�

q )Δq(β�) > 0 (14.7)

or

‖C(β′)‖∞ − ‖C(β�)‖∞ = −(β�
q+1 − β�

q )
n∏

k=q+2

β�
k > 0 (14.8)

or the conjuction

‖C(β′)‖1 − ‖C(β�)‖1 = 0 and ‖C(β′)‖∞ − ‖C(β�)‖∞ = 0. (14.9)

If β� contains distinct elements only, then the conjuction (14.9) cannot be
satisfied. Thus, there must hold the disjunction (14.7) or (14.8). Hence, for
q = 1, 2, . . . , n− 1, there holds the inequality β�

q > β�
q+1 or, if q�

0 < q ≤ n− 1,
the inequality β�

q < β�
q+1.

If not all elements of β� are distinct, then apart from the disjunc-
tion (14.7) or (14.8) also the conjuction (14.9) can be satisfied. Hence, for
q = 1, 2, . . . , n− 1 there holds the inequality β�

q ≥ β�
q+1 or, if q�

0 < q ≤ n− 1,
the inequality β�

q ≤ β�
q+1. �

We now introduce a definition (cf. Gawiejnowicz et al. [103]) that allows
us to formulate the previous result in a more concise way.
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Definition 14.13. (A weakly V-shaped sequence)
A sequence β = (β1, β2, . . . , βn) is said to have a weak V-shape (to be weakly
V-shaped) with respect to Δq(β), if β is non-increasing for indices q for which
inequality Δq(β) < 0 holds.

Note that from Definition 14.13 and from properties of function Δq(β)
it follows that, in general, weakly V-shaped sequences are non-increasing for
1 ≤ q ≤ q0 and can vary in an arbitrary way for q0 < q ≤ n− 1, with appro-
priate 1 ≤ q0 ≤ n− 1.

Applying Definition 14.13, we can now reformulate Theorem 14.12 in the
following way.

Theorem 14.12′. (Gawiejnowicz et al. [103]) A necessary condition for se-
quence β� ∈ X to be a Pareto optimal solution to the TDPS problem is that
β� must be weakly V -shaped with respect to Δq(β�).

We illustrate applications of Theorem 14.12′ by two examples (cf. [103]).

Example 14.14. Let sequence β̂ = (β0, β1, . . . , βn) be such that β0 = maxi{βi}
and β1 = mini{βi}. Since Δ1(β̂) < 0 (by Lemma 14.11), we have q0 ≥ 1 and by
Theorem 14.12′ no sequence which is in the form of (β0, β1, βπ2 , βπ3 , . . . , βπn

),
where βπi

∈ {β2, β3, . . . , βn} for 2 ≤ i ≤ n and πi �= πj for i �= j, can be
Pareto optimal. �

Example 14.15. Let β̂ = (7, 3, 2, 4, 5, 6). To check if β̂ can be a solution
to the TDPS problem, we must determine the value of q0. After calcula-
tions we have: Δ1(β̂) = −144, Δ2(β̂) = −32, Δ3(β̂) = 2. Hence, q0 = 2
and sequence β̂, according to Theorem 14.12′, cannot be a Pareto opti-
mal solution to the TDPS problem. Moreover, all schedules which are in
the form of (7, 3, 2, βπ3 , βπ4 , βπ5), where βπi

∈ {4, 5, 6} for 3 ≤ i ≤ 5 and
π3 �= π4 �= π5, cannot be Pareto optimal, either. There are 6 such schedules:
(7, 3, 2, 4, 5, 6), (7, 3, 2, 4, 6, 5), (7, 3, 2, 5, 4, 6), (7, 3, 2, 5, 6, 4), (7, 3, 2, 6, 4, 5) and
(7, 3, 2, 6, 5, 4). �

14.3 Scalar optimality

In this section, we consider the TDBS problem of finding a schedule that is
optimal for the criterion ‖ · ‖(λ).

Recall that the criterion is a convex combination of the total completion
time

∑
Cj and the maximum completion time Cmax, i.e.,

‖C(β)‖(λ) := λ
n∑

j=0

Cj(β) + (1− λ) max
0≤j≤n

{Cj(β)}, (14.10)

where λ ∈ 〈0, 1〉 is arbitrary but fixed. Our aim is to find such a sequence β�

for which the value of ‖C(β�)‖(λ) is minimal.
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Remark 14.16. Notice that if we are interested in minimizing the combination
of the

∑
Cj and Cmax criteria with arbitrary weights, the criterion ‖ · ‖(λ) is

general enough, since for any real numbers α > 0, β > 0, we have α
∑

Cj +

βCmax = (α + β)
(

α
α+β

∑
Cj + β

α+β Cmax

)
= (α + β)‖ · ‖(λ) with λ = α

α+β .

Remark 14.17. Note also that since the criterion ‖·‖(λ) is a convex combination
of the

∑
Cj and Cmax criteria, which are particular cases of the lp norm (cf.

Definition 1.18), ‖ · ‖(λ) is also a norm.

In other words, the sequence β� = (β�
1 , β�

2 , . . . , β�
n) is optimal for the prob-

lem TDBS, if ‖C(β�)‖(λ) = min{‖C(βπ‖(λ) : π ∈ Sn}, i.e., for all π ∈ Sn

there holds the inequality

0 ≤ ‖C(βπ)‖(λ) − ‖C(β�)‖(λ). (14.11)

Remark 14.18. Note that we can modify (14.10); since C(β) is non-decreasing,
we have max

1≤j≤n
{Cj(β)} = Cn(β). Thus, to define the norm ‖ · ‖(λ) we can also

use the formula ‖C(β)‖(λ) = λ
∑n−1

j=0 Cj(β) + Cn(β).

In view of the form of ‖ · ‖(λ), there hold some relations between this
criterion and the

∑
Cj and Cmax criteria.

Lemma 14.19. (Gawiejnowicz et al. [104]) There hold the inequalities:
(a) ‖C(β)‖(λ) − ‖C(β)‖∞ ≤ λ(n− 1)‖C(β)‖∞,

(b) 0 ≤ ‖C(β)‖(λ)−‖C(β)‖∞
‖C(β)‖∞

≤ λ(n− 1),

(c) 0 ≤ ‖C(β)‖1−‖C(β)‖(λ)

‖C(β)‖1
≤ (1− λ)n−1

n .

Proof. (a) By (14.10) and since ‖C‖∞ ≤ ‖C‖1 ≤ n‖C‖∞, the inequality
follows.

(b) The inequalities follow from the definition of the criterion ‖ · ‖(λ) and
from (a).

(c) Similar to the proof of (a). � 

Theorem 14.20. (Gawiejnowicz et al. [104]) If λ ∈ 〈0, 1〉 and n is any natural
number, then there hold inequalities:

‖C(β)‖(λ) ≤ ‖C(β)‖1 ≤
n

1 + λ(n− 1)
‖C(β)‖(λ).

Proof. The result follows from Lemma 14.19. � 

From (14.10), Lemma 14.7 and Lemma 14.8 we get a formula describing
the behaviour of ‖C(β)‖(λ) under transpositions β′ = β(βq ↔ βq+1).

Theorem 14.21. (Gawiejnowicz et al. [103]) Let β′ = β(βq ↔ βq+1). Then
for q = 1, 2, . . . , n− 1 there holds the following equality:
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‖C(β′)‖(λ) − ‖C(β)‖(λ) =

(βq+1 − βq)

⎛

⎝λ

⎛

⎝
q−1∑

j=0

q−1∏

k=j+1

βk −
n−1∑

j=q+1

j∏

k=q+2

βk

⎞

⎠−
n∏

k=q+2

βk

⎞

⎠ .

Proof. From (14.10), it follows that

‖C(β′)‖(λ) − ‖C(β)‖(λ) = λ

⎛

⎝
n∑

j=0

Cj(β′)−
n∑

j=0

Cj(β)

⎞

⎠+

(1− λ)
(

max
0≤j≤n

{Cj(β′)} − max
0≤j≤n

{Cj(β)}
)

.

Consequently, in view of Lemma 14.7 and Lemma 14.8, we obtain

‖C(β′)‖(λ) − ‖C(β)‖(λ) = λ(βq+1 − βq)

⎛

⎝
q−1∑

j=0

q−1∏

k=j+1

βk −
n∑

j=q+1

j∏

k=q+2

βk

⎞

⎠+

(1− λ)(βq − βq+1)
n∏

k=q+2

βk =

= (βq+1 − βq)

(

λ

(
q−1∑

j=0

q−1∏

k=j+1

βk −
n−1∑

j=q+1

j∏

k=q+2

βk

)

−
n∏

k=q+2

βk

)

. �

Now, we will prove that for infinitely many values of the parameter
λ ∈ 〈0, λ0〉, for some 0 < λ0 < 1, the TDBS problem can be solved in
O(n log n) time. We will also show that there exist infinitely many values
of λ ∈ 〈λ1, 1〉, for some λ1, where λ0 < λ1 < 1, such that the optimal schedule
for this problem has a V-shape.

Let q = 1, 2, . . . , n−1 and let λ ∈ 〈0, 1〉 be arbitrary but fixed. For a given
β = (β1, β2, . . . , βn), define function Λq(λ) as follows:

Λq(λ) := λ

⎛

⎝
q−1∑

j=0

q−1∏

k=j+1

βk −
n−1∑

j=q+1

j∏

k=q+2

βk

⎞

⎠−
n∏

k=q+2

βk. (14.12)

The behaviour of function Λq(λ) is crucial for further considerations. We
begin with a necessary condition for the sequence β = (β1, β2, . . . , βn) to be
optimal with respect to the criterion ‖ · ‖(λ).

Lemma 14.22. (Gawiejnowicz et al. [103]) Let sequence β� = (β�
1 , β�

2 , . . . , β�
n)

be optimal with respect to the criterion ‖ · ‖(λ) and let β′ = β�(β�
q ↔ β�

q+1).
Then for q = 1, 2, . . . , n− 1 the following inequality holds:

0 ≤ ‖C(β′)‖(λ) − ‖C(β�)‖(λ) = (β�
q+1 − β�

q )Λq(λ). (14.13)
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Proof. In view of (14.11), (14.12) and Theorem 14.21, the result follows. � 
In view of Lemma 14.22, it is important to know the behaviour of the sign

of function Λq(λ) for q = 1, 2, . . . , n− 1 and λ ∈ 〈0, 1〉, since then, by (14.13),
we can control the sign of difference ‖C(β′)‖(λ) − ‖C(β)‖(λ).

Note that Λ1(λ) is always strictly less than 0, while the sign of Λq(λ), for
q = 2, . . . , n − 1, depends on λ. In fact, from definition of Λq(λ), we obtain
the following lemma.

Lemma 14.23. (Gawiejnowicz et al. [103]) Let λ ∈ 〈0, 1〉 be arbitrary but
fixed. Then Λ1(λ) < 0 and the following inequalities hold:

Λ1(λ) ≤ Λ2(λ) ≤ . . . ≤ Λn−1(λ).

Proof. Indeed, these inequalities hold since for q = 1, 2, . . . , n− 1 we have

Λq+1(λ)− Λq(λ) = λ

(

(βq − 1)
q−1∑

j=0

q−1∏

k=j+1

βk + 1

)

+

λ

(

(βq+2 − 1)
n−1∑

j=q+2

j∏

k=q+3

βk + 1

)

+

n∏

k=q+3

βk(βq+2 − 1) ≥ 0.

To end the proof, it is sufficient to note that for q = 1 there holds

Λ1(λ) = −λ

n−1∑

j=3

j∏

k=3

βk −
n∏

k=3

βk < 0.

�
In view of these results, given the sequence β = (β1, β2, . . . , βn), the fun-

damental problem is to determine λ0 and λ1, 0 < λ0 < λ1 < 1, such that
Λq(λ) ≤ 0 for all λ ∈ 〈0, λ0〉 and q = 1, 2, . . . , n − 1, and Λn−1(λ) ≥ 0 for all
λ ∈ 〈λ1, 1〉. In the first case, sequence Λq(λ) has only non-positive elements
and the non-increasing ordering of sequence β is, by (14.13), a necessary con-
dition for optimality of β. In the second case, there is the change of sign in
sequence Λq(λ), and the sequence β must have a V-shape.

We now prove the following result in which strongly restrictive formulae
for λ0 and λ1 are used. We start with a definition (cf. [103]).

Definition 14.24. (Numbers λ0 and λ1)
Let β̄ := max{β1, β2, . . . , βn} and β := min{β1, β2, . . . , βn}. Define λ0 and λ1

as follows:

λ0 :=
β̄ − 1

β̄n−1 − 1
. (14.14)

and

λ1 :=
β − 1

βn−1 − 1
. (14.15)
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Lemma 14.25. (Gawiejnowicz et al. [103]) Let there be given a sequence
β = (β1, β2, . . . , βn). Then for q = 1, 2, . . . , n − 1 there holds the inequality
Λq(λ) ≤ 0, where λ ∈ 〈0, λ0〉 and λ0 > 0 is defined by (14.14).

Proof. Note that function Λq(λ) is non-decreasing for each λ ∈ 〈0, 1〉 and
q = 1, 2, . . . , n− 1. Therefore, Λq(λ) ≤ 0 for q = 1, 2, . . . , n − 1 if and only if
Λn−1(λ) ≤ 0. This, in turn, is equivalent to

0 ≤ λ ≤ 1
n−2∑

j=0

n−2∏

k=j+1

βk

.

Since
n−2∑

j=0

n−2∏

k=j+1

βk ≤
n−2∑

i=0

β̄i =
β̄n−1 − 1

β̄ − 1
≡ 1

λ0
,

it is sufficient for Λq(λ) ≤ 0 that λ ∈ 〈0, λ0〉, where q = 1, 2, . . . , n− 1. �

Lemma 14.26. (Gawiejnowicz et al. [103]) Let there be given a sequence
β = (β1, β2, . . . , βn). Then for each λ ∈ 〈λ1, 1〉 there holds Λn−1(λ) ≥ 0, where
λ ∈ 〈λ1, 1〉 and λ1 < 1 is defined by formula (14.15).

Proof. Λn−1(λ) ≥ 0 if and only if

λ ≥ 1
n−2∑

j=0

n−2∏

k=j+1

βk

.

Since there holds

n−2∑

j=0

n−2∏

k=j+1

βk ≥
n−2∑

i=0

βi =
βn−1 − 1

β − 1
≡ 1

λ1
,

it is sufficient for Λn−1(λ) ≥ 0 that λ ∈ 〈λ1, 1〉. �

The following result is a corollary from Lemmata 14.22, 14.25 and 14.26.

Theorem 14.27. (Gawiejnowicz et al. [103]) Let sequence β� = (β�
1 ,

β�
2 , . . . , β�

n) be optimal with respect to the criterion ‖·‖(λ) and let λ0 and λ1 be
defined by formulae (14.14) and (14.15), respectively. Then 0 < λ0 ≤ λ1 < 1
and there hold the following implications:
(a) if λ ∈ 〈0, λ0〉, then β� is non-increasing;
(b) if λ ∈ 〈λ1, 1〉, then β� has a V-shape.
Moreover, if sequence β� contains distinct elements, then λ0 < λ1.
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Proof. (a) Let sequence β� = (β�
1 , β�

2 , . . . , β�
n) be optimal with respect to the

criterion ‖ · ‖(λ), let λ0 be defined by formula (14.14) and λ ∈ 〈0, λ0〉 be
arbitrary but fixed. Then, by Lemma 14.25, for q = 1, 2, . . . , n − 1 there
holds inequality Λq(λ) ≤ 0. But this means, by Lemma 14.22, that for
q = 1, 2, . . . , n− 1 we have β�

q+1 − β�
q ≤ 0. Hence, the sequence β� is non-

increasing.
(b) Let sequence β� = (β�

1 , β�
2 , . . . , β�

n) again be optimal with respect to the
criterion ‖ · ‖(λ), let λ1 be defined by (14.15) and λ ∈ 〈λ1, 1〉 be arbitrary
but fixed. Then, by Lemma 14.26, the inequality Λn−1(λ) ≥ 0 holds. But
we know, by Lemma 14.23, that Λ1(λ) < 0 and the sequence Λq(λ), for
q = 1, 2, . . . , n− 1, is non-decreasing. Hence, there must exist 1 < r < n− 1
such that Λr−1(λ) ≤ 0 but Λr(λ) ≥ 0. But this implies, by Lemma 14.22,
that for q = 1, 2, . . . , r − 1 there holds inequality β�

q+1 − β�
q ≤ 0 and for

q = r, r+1, . . . , n−1 there holds inequality β�
q+1−β�

q ≥ 0. Thus the sequence
β� must have a V-shape.

To end the proof, it is sufficient to notice that if β� contains distinct
elements, then β� �= β̄� and λ0 < λ1. �

We can formulate a stronger version of Theorem 14.27, which gives more
precise conditions for the monotonicity and the V-shapeness of the optimal
sequence β�. The version requires, however, O(n log n) additional operations
to determine the respective values of λ0 and λ1.

Before we prove the main result, we introduce a definition (cf. [103]).

Definition 14.28. (Numbers λ• and λ•)
Given a sequence β = (β1, β2, . . . , βn), define λ(β) as follows:

λ(β) :=
1

n−2∑

j=0

n−2∏

k=j+1

βk

. (14.16)

Moreover, let
λ• := min{λ(βπ) : π ∈ Sn}

and
λ• := max{λ(βπ) : π ∈ Sn}.

Theorem 14.29. (Gawiejnowicz et al. [103]) Let sequence β� = (β�
1 ,

β�
2 , . . . , β�

n) be optimal with respect to the criterion ‖ · ‖(λ), and let λ0 and
λ1 be defined by formulae (14.14) and (14.15), respectively. Then there hold
the following implications:
(a) if λ ∈ 〈0, λ•〉, then β� is non-increasing;
(b) if λ ∈ 〈λ•, 1〉, then β� has a V-shape.
Moreover, 0 < λ0 ≤ λ• and λ• ≤ λ1 < 1, and these inequalities are strict,
whenever sequence β� contains only distinct elements.

Proof. Similar to the proof of Theorem 14.27. � 
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Remark 14.30. Note that if n = 2, then we have λ0 = λ1 = 1. Moreover, for
n = 2, 3 there hold equalities λ0 = λ• and λ1 = λ•. Note also that calcu-
lating the minimum (the maximum) in the definition of λ• (λ•) needs only
O(n log n) time, since by Lemma 1.2 (a), the denominator in formula (14.16)
is maximized (minimized) by ordering β non-decreasingly (non-increasingly).
Finally, there exists only one sequence (up to the order of equal elements)
that maximizes (minimizes) this denominator.

Now we present a few examples (cf. Gawiejnowicz et al. [103]) that illus-
trate some consequences and applications of Theorem 14.27.

Example 14.31. Consider the sequence β̂ = (5, 3, 2, 4). Then β = 2, β̄ = 4 and
λ0 = λ• = 1

5 , λ1 = λ• = 1
3 . By Theorem 14.27, for any λ ∈ 〈0, 1

5 〉 the optimal
schedule for the TDBS problem is non-increasing, β� = (5, 4, 3, 2), while for
any λ ∈ 〈1

3 , 1〉 the optimal schedule for the problem has a V-shape. �

Theorem 14.27 is also useful in the case when the form of criterion ‖ · ‖(λ)

is known in advance and we want to check if a given sequence is optimal with
respect to this particular criterion.

Example 14.32. Let ‖C(β̂)‖(λ) = 1
7

∑
Cj(β̂) + 6

7Cmax(β̂) and β̂ = (2, 3, 4, 5).
Then the sequence (5, 4, 3, 2), by Theorem 14.27, is optimal for the criterion
‖ · ‖(λ), since λ = 1

7 < λ0 = 1
5 . �

Example 14.33. Let ‖C(β̂)‖(λ) = 6
7

∑
Cj(β̂) + 1

7Cmax(β̂) and β̂ = (2, 3, 4, 5).
Then, since λ = 6

7 > λ1 = 1
3 , any optimal solution is a V-shaped sequence.

There are three such V-shaped sequences: (5, 4, 2, 3), (5, 2, 3, 4), and (5, 3, 2, 4).
The first sequence is the optimal solution. �

The next example shows the main difference between the values of λ0 and
λ1 and the values of λ• and λ• : in order to calculate λ• and λ•, we must
know all elements of sequence β̂ whereas, to calculate λ0 and λ1, we need only
the values of β and β̄.

Example 14.34. Let β̂ = (1.5, 1.3, 1.1, 1.2, 1.4). Then we have β = 1.1, β̄ = 1.4
and λ0 = 0.23 < λ• = 0.24, λ• = 0.28 < λ1 = 0.30. (Note that we have
the same values of λ0 and λ1 for all sequences with n = 4 elements, in which
β̄ = 1.4 and β = 1.1.) If we knew only the values of β and β̄, we still could
calculate λ0 and λ1 but we would not be able to calculate λ• and λ•. �

The results presented in Theorem 14.27 and Theorem 14.29 were necessary
conditions, i.e., we assumed that β is an optimal sequence and we showed its
properties. Now we give a sufficient condition for sequence β = (β1, β2, . . . , βn)
to be optimal solution to the TDBS problem.

Theorem 14.35. (Gawiejnowicz et al. [103]) A sufficient condition for a se-
quence β = (β1, β2, . . . , βn) to be optimal with respect to the criterion ‖ · ‖(λ),
λ ∈ 〈0, 1〉, is that β is non-increasing and 0 ≤ λ ≤ λ•.
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Proof. Let 0 ≤ λ ≤ λ•. Then, by Theorem 14.29, any sequence β which is
optimal with respect to criterion ‖ · ‖(λ) must be non-increasing. Moreover,
there exists only one (up to the order of equal elements) such optimal sequence.
Thus, since this monotonic sequence is unique (again up to the order of equal
elements), it must coincide with the optimal sequence. �

14.4 Computational experiments

In this section, we present selected results of computational experiments re-
lated to the TDPS problem.

In the first computational experiment, the average behaviour of q0 (cf.
Lemma 14.11) was investigated. In the experiment, 100 random sequences β
have been generated, each with n = 20 elements taken from the interval 〈4, 30〉.

The results of this experiment (see Fig. 14.1, cf. [103]) suggest that for
random sequences composed of elements generated from uniform distribution,
the values of q0 concentrate in the middle part of the domain of Δq(β).

Fig. 14.1: Behaviour of q0 for 100 random sequences

In order to obtain some insight into the structure of the set Y =
f(X) of all solutions of the TDPS problem, where f = (ΣCj , Cmax) and
X = {β̂π : π ∈ Sn} for a given β̂, several other computational experiments
have been conducted.

Examples of such a structure are given in Figs. 14.2 and 14.3 (cf. [103]).
The box ‘�’ denotes a V-shaped solution, the diamond ‘�’ denotes a weakly
V-shaped solution, the circle ‘©’ denotes a Pareto optimal solution and the
symbol ‘×’ denotes a solution that is neither V-shaped nor Pareto optimal.
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Fig. 14.2: The structure of set Y for â = (2, 3, 4, 5, 6)
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Fig. 14.3: The structure of set Y for â = (2, 3, 4, 5, 6, 7)

The results of these experiments suggest that Pareto optimal schedules can
be found only in the triangle with vertices in points (

∑
Cj(β�), Cmax(β�)),

(
∑

Cj(β•), Cmax(β•)) and (
∑

Cj(β�), Cmax(β•)), where β� and β• denote an
optimal schedule for the

∑
Cj and Cmax criterion, respectively.

With these figures, we end the presentation of the results concerning time-
dependent scheduling with two criteria. Also, this chapter ends the book.
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14.5 Concluding remarks and open problems

In this chapter, we considered two bicriterion time-dependent scheduling prob-
lems, TDPS and TDBS. For the TDPS problem, we have given necessary and
sufficient conditions for a schedule to be Pareto optimal. For the TDBS prob-
lem, we have shown that there exists 0 ≤ λ0 ≤ 1 such that for all λ ∈ 〈λ0, 1〉
the problem is solvable in O(n log n) time. We proved that the optimal sched-
ule for the TDBS problem has a V -shape for all λ ∈ 〈λ1, 1〉, where λ1 > λ0.
We also proved a few properties of the criterion applied in the TDBS problem.

There remain some open problems to solve. The first open problem is
the hierarchical minimization of the

∑
Cj and Cmax criteria. On the one

hand, a single machine scheduling problem with job processing times in the
form of pj = 1 + bjt and the Cmax criterion is solvable in O(n log n) time by
arranging jobs in the non-increasing order of deterioration rates bj , while the
optimal schedule for the same problem but with the

∑
Cj criterion must have

a V -shape. On the other hand, these criteria are not agreeable with each other.
In conclusion, the problem of the hierarchical minimization of the

∑
Cj and

Cmax criteria seems to be non-trivial. We suppose that it is at least NP-hard
in the ordinary sense.

The second open problem is establishing the time complexity of the TDPS
problem. We conjecture that the TDPS problem is also intractable.

Finally, an interesting open problem is establishing the status of the time
complexity of the TDBS problem in the interval 〈λ0, λ1〉.



Afterword

Although almost 30 years have elapsed since time-dependent scheduling
was originated, this theory is still developing. Without exaggeration we

can say, however, that the youth of time-dependent scheduling has passed
away, and the theory slowly comes into a mature age. The aim of this afterword
is to summarize the present state of this research area and to delineate its
possible development in the future.

Time-dependent scheduling as a research area

First, one can observe a certain asymmetry in the development of time-
dependent scheduling. The asymmetry manifests itself in the number of results
concerning different forms of job deterioration vs. job shortening: most results
concern problems with unbounded job deteriorating processing times.

Second, most results for problems with deteriorating and shortening job
processing times concern the linear case. This, it seems, is caused by the fact
that linear functions are easier to study than non-linear ones.

Third, at present the status of time complexity of the most important time-
dependent scheduling problems is known. The exceptions, like the problem
1|pj = 1 + bjt|

∑
Cj , are very rare.

Concluding, we can state that although there remain some unclear places,
the general landscape of time-dependent scheduling is known today.

Time-dependent scheduling algorithms

First, since most non-trivial time-dependent scheduling problems are at least
NP-hard in the ordinary sense, only a few polynomial-time algorithms for
such problems exist. Therefore, a considerable research effort in the area is
directed at the construction of polynomial-time suboptimal algorithms.

Second, most of the time-dependent scheduling algorithms are adaptations
of the algorithms known in the classic scheduling. Only a few algorithms have
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been constructed specifically for scheduling problems with deteriorating or
shortening job processing times.

Third, the main tool used in order to evaluate the algorithms is the exper-
imental analysis, since the worst-case analysis for time-dependent scheduling
problems is a difficult task. Hence, only a few worst-case ratios are known for
time-dependent scheduling algorithms.

Finally, most heuristic algorithms for time-dependent scheduling prob-
lems construct the final schedule in a step-by-step manner. Time-dependent
scheduling heuristics based on metaheuristics have been proposed by only
a few authors. Since metaheuristics have been successfully applied to many
NP-hard combinatorial problems, it is possible that their average behaviour
will be acceptable also in the case of time-dependent scheduling problems.

Concluding, we can state that in most cases it is known which algorithm
to apply for a given time-dependent scheduling problem, though the average
behaviour of the algorithm may remain an open question.

Future of time-dependent scheduling

The future development of time-dependent scheduling may go in two direc-
tions. The first direction is connected with possible modifications of the basic
assumption of time-dependent scheduling, concerning job processing time. For
example, some authors assume that job processing time is a function of time
and the position of the job in the schedule (cf. Remark 5.4) or a function of
the waiting time of the job (cf. Sect. 5.5).

The second direction of research is to consider, in the framework of time-
dependent scheduling, the counterparts of the problems known in the classic
scheduling. For example, we can consider time-dependent scheduling problems
on machines with non-availability periods (cf. Sect. 6.1.1), time-dependent
scheduling with batching (cf. Sect. 6.1.1), time-dependent versions of the com-
mon due-date assignment problem (cf. Sect. 6.4.3) or time-dependent schedul-
ing with two criteria (cf. Chap. 14).

Time-dependent scheduling has a clear future. It is a very attractive re-
search field, since there are still many problems that are awaiting a solution.
The author hopes that this book will contribute to increased interest in this
branch of modern scheduling theory. If this hope becomes true, the main aim
of this book will have been achieved.
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221. R.H. Möhring, Computationally tractable classes of ordered sets. In: I. Rival
(ed.), Algorithms and Order . Dordrecht: Kluwer 1989, pp. 105–193.

222. J.H. Muller and J. Spinrad, Incremental modular decomposition. Journal of
Association for Computing Machinery 36 (1989), no. 1, 1–19.

223. J.F. Muth and G.L. Thompson, Industrial Scheduling. Englewood Cliffs:
Prentice-Hall 1963.

224. A. Nagar, J. Haddock and S. Heragu, Multiple and bicriteria scheduling: a
literature survey. European Journal of the Operational Research 81 (1995),
no. 1, 88–104.

225. G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization.
New York: Wiley 1988.

226. C-T. Ng, T-C.E. Cheng, A. Bachman and A. Janiak, Three scheduling prob-
lems with deteriorating jobs to minimize the total completion time. Information
Processing Letters 81 (2002), no. 6, 327–333.



References 353

227. E. Nowicki and S. Zdrza�lka, Optimal control of a complex of independent
operations. International Journal of Systems Sciences 12 (1981), no. 1, 77–93.

228. K. Ocetkiewicz, Polynomial case of V-shaped policies in scheduling deteriorat-
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