
5 Using Satellite Data to Estimate Urban Leaf 

Area Index1

Ryan R. Jensen, Department of Geography, Geology, and Anthropology, 
Indiana State University, Terre Haute, Indiana State University 

Perry J. Hardin, Department of Geography, Brigham Young University, 
Provo, Utah

5.1 Introduction 

The social value of the urban forest to local urban populations has long 
been recognized. In contrast, the impact of the urban forest on global and 
local environments is not clearly understood, and the impact of urban trees 
on carbon sequestration, mitigation of urban heat, and removal of pollution 
remain topics of contemporary scientific study.  Land cover conversion in 
urban areas is typically faster than in wildland areas, thus there is a need 
for rapid measurement methods of urban biophysical variables that are re-
peatable and economically efficient. 

Leaf area index (LAI) has been identified as one of the core biophysical 
variables for landscape monitoring at all scales (Pierce and Running 1988; 
Lymburner et al. 2000). LAI has three definitions in the literature but is 
usually standardized to represent the green area (m2) of flat horizontal 
leaves per unit of ground area (m2) (Chen and Black 1992; Chen et al. 
1997; Barclay 1998). Many scenarios of season and landscape allow LAI 
measurement by earth resource satellites, and LAI is a derivative data 
product of many remote sensing initiatives. However, few studies have ex-
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amined methods of combining satellite LAI estimates with those made us-
ing ceptometers in the urban forest to estimate LAI over large urban areas. 

This research extends the work of Peper and McPherson (2003) that com-
pared the accuracy of various nondestructive field measurement devices to 
accurately measure urban tree LAI. In the context of that previous work, 
algorithmically manipulated satellite data used in this study become an ad-
ditional nondestructive method of measuring urban LAI. 

The objective of this research is to develop transfer equations that can be 
used to convert satellite LAI measurements to their gap-fraction equiva-
lents. Our hypothesis proposes that satellite and ground LAI measurements 
are related and that statistical and neural network approaches can be used 
to interconvert between the two methods of measurement. 

5.1.1 Urban Remote Sensing 

Instruments aboard remote sensing satellites measure the electromagnetic 
energy emitted or reflected from Earth or its atmosphere, allowing terres-
trial objects to be distinguished and characterized. For example, when il-
luminated by the noonday sun, grass on an irrigated golf course is not only 
visibly green but also reflects intercepted infrared solar energy in propor-
tion to the amount of its spongy mesophyll. Grass receiving insufficient 
moisture to maintain mesophyll turgidity may appear equally as green as 
adjacent well watered grass but would decrease significantly in infrared re-
flectance. If spatially extensive, this stress would be detectable from 
spaceborne instrumentation and would allow researchers to accurately map 
the affected area. Using similar logic, land cover types are mapped, and 
vegetation biophysical variables are measured from spaceborne instru-
ments. 

Historically, remote sensing in urban areas has been constrained by the 
spatial complexity of urban scenes. The problem is related to the spatial 
resolution of the satellite sensor. A single image resolution element (pixel) 
may be measuring the spectral response of a land cover mixture rather than 
a single land cover type. For example, a suburban pixel may represent a 
mixture of grass, asphalt, concrete, and roof shingles. This kind of spectral 
mixing makes urban remote sensing less amenable to statistical methods 
that assume normal distributions and no measurement error. Newer space-
borne instruments, having finer spatial resolutions, reduce the constraint 
and provide better data for urban remote sensing (Jensen et al. 2003). The 
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improvement in resolution is fortunate, because governments (e.g., state, 
county, city) and private companies annually invest hundreds of millions 
of dollars acquiring remotely sensed data that detail the urban landscape 
more effectively than through traditional “windshield surveys” (Jensen 
1996). 

5.2 Data and Methods 

5.2.1 Study Area 

The city of Terre Haute is located in Vigo County along the banks of the 

Wabash River in west central Indiana, U.S. (39° 25 N, 87° 25  W). Terre 
Haute government officials have made a conscious effort to maintain the 
urban tree canopy through a comprehensive tree ordinance that governs 
both tree removal and planting. The ordinance is administered by a tree 
advisory board consisting of city residents appointed by the city officials to 
make suggestions and recommendations to the mayor, city forester, city 
engineer, and city council. 

5.2.2 LAI Field Measurements 

Traditional field measurement of LAI has taken two approaches. The first 
approach requires the destructive harvesting of leaves within a vertical 
column passing upward through the entire tree canopy. The second in-
volves collection of leaf litterfall. These direct methods are similar — they 
are time intensive and require many replicates to account for spatial vari-
ability in the canopy (Green et al. 1997). However, these direct LAI meas-
urements are accurate for a very specific geographic location, are relatively 
easy to perform by untrained personnel, and are well understood by ecolo-
gists. Gap-fraction analysis is a nondestructive field method that has been 
developed to estimate LAI.  

Gap-fraction analysis is predicated on the theory that the decrease in light 
intensity (light attenuation) with increasing depth in vegetative canopies 
can be described by the relationship: 

)(/ LkLAIeIOIL , (5.1)
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where IL/IO is the fraction of incident light at the top of the canopy (IO)
reaching depth L in the canopy, LAI(L) is the cumulative LAI from the top 
of the canopy to point L, k is a stand or species specific constant, and e is 
the natural logarithm base (Larcher 1975; Aber and Melillo 1991). Differ-
ent types of vegetation have different k values, causing different rates of 
light attenuation for the same leaf area. The principal factor causing this is 
“twig angles and the angles that the foliage subtends with the twig” (Bar-
clay 1998; see also Larcher 1975). Field-measured LAI using gap-fraction 
analysis assumes that leaf area can be calculated from the fraction of direct 
solar energy that penetrates the canopy (canopy transmittance). By apply-
ing gap-fraction techniques to study LAI in many different forest settings, 
standard operating procedures have been developed (Pierce and Running 
1988; Chason et al. 1991; Ellsworth and Reich 1993; Nel and Wessman 
1993; Green et al. 1997). 

In this study, LAI was measured using the gap-fraction approach in 145 
random locations (sampling sites) throughout the study area during July 
and August 2001. Like most urban areas, land cover in Terre Haute con-
sists of a wide variety of vegetated and nonvegetated patches. Vegetated 
areas sampled included trees, shrubs, grasses, and agricultural fields grow-
ing different varieties of corn and soybeans. Unvegetated areas included 
buildings, streets, parking lots, ponds, lakes, and the Wabash River. The 
randomly selected sampling sites represented all major land cover types in 
Terre Haute. 

Each of the 145 sampling sites was defined as a 20 × 20 m (65.6 × 65.6 ft) 
quadrat identified by the global positioning system coordinates of its cen-
ter. At each sampling point, 16 below-canopy, photosynthetically active 
radiation (PAR) measurements were collected, one in each cardinal direc-
tion at each corner of the 20 m quadrat. The PAR measurements were col-
lected using a Decagon AccuPar Ceptometer™ held approximately 1 m 
(3.3 ft) above the ground beneath the tree cover. The AccuPar Ceptometer 
consists of a linear array of 80 adjacent, 1 cm2 (0.16 in2) PAR sensors 
mounted rigidly along a bar and oriented so that when the operator holds 
the ceptometer horizontally, the PAR passing downward through the can-
opy can be measured. The ceptometer stored the 16 PAR samples taken at 
each sampling site and calculated the LAI average automatically. This 
sitewide LAI average was then recorded along with general operator notes 
regarding the sampling site character. 
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5.2.3 Satellite Sensor Data 

Data from the Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) sensor were used for comparison to the field LAI 
measurements. ASTER data are collected in several wavelengths, often re-
ferred to as bands. This study employed ASTER bands 1, 2, and 3 measur-
ing the green, red, and near-infrared segments of the electromagnetic spec-
trum (520–600 nm, 630–690 nm, and 790–860 nm), respectively. These 
wavelengths are used in vegetation studies because of their correlation to 
the quantity and health of green vegetation (Jensen 2000). Remote sensing 
data are commonly used to calculate vegetation indices — dimensionless, 
radiometric measures of the relative abundance of green vegetation, in-
cluding LAI (Jensen 2000). One of the most common vegetation indices is 
the Normalized Difference Vegetation Index (NDVI). The NDVI is calcu-
lated using the equation (Rouse et al. 1974): 

REDNIR

REDNIR
NDVI

,
(5.2) 

where NIR is the near-infrared reflected radiant flux, and RED is the red 
reflected radiant flux.  

An ASTER image of the study area acquired in July 2001 was used for this 
investigation. The image had a spatial resolution of 15 m (49.5 ft). Using a 
United States Geological Survey digital raster graphic image, the ASTER 
scene was geometrically adjusted to the same coordinate system used for 
the field data collection. This adjustment ensured that the 145 sample sites 
could be accurately registered to the ASTER data. 

5.2.4 Estimating LAI Using Regression 

As mentioned above, the principal objective of this research was to create 
transfer equations that could be used to convert satellite LAI measure-
ments to their gap-fraction equivalents. Because correlation and regression 
are common methods used to model forest biophysical characteristics with 
remotely sensed data (e.g., Jensen et al. 2000), their use was suggested. In 
this instance, multiple regression analysis was performed using brightness 
values from the three ASTER bands as the independent variables (Table 
1). Because previous remote sensing research has shown that ratios and 
vegetation indexes derived from brightness values (e.g., NDVI) frequently 
measure vegetation differences better than the direct brightness values 
alone (Fassnacht et al. 1997; Jensen 2000), five derived independent vari-
ables were also explored in the regression process. 
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Table 1. ASTER bands and derived variables used in the study  

Variable Meaning Variable Meaning 

GREEN 520 – 600 nm Band 
(Green band) 

RDIR_RAT Red / Infrared ratio 

RED 630 – 690 nm band 
(Red band) 

NDVI  (See Formula 5.2) 

IR 790 – 860 nm band 
(Infrared band) 

GRRD_DIF Green – Red band  
difference 

GRRD_RAT Green / Red ratio RDIR_DIF Red – Infrared band  
difference 

These variables are described in Table 1. In all regressions, the average 
field site LAI value (LAIobs) was the dependent variable.  

The goodness of the regression models were measured in two ways. The 
first is the standard error of the estimate (SEE).  The standard of the esti-
mate is synonymous for root mean square error; the former term is pre-
ferred in regression, whereas the latter term is preferred in neural network 
studies.  The standard error of the estimate is defined as: 

n

LAILAI

SEE

n

i

obspred

1

2)(

,

(5.3)

where LAIpred is the LAI for a given fieldsite predicted by the regression. 
The summation is iterated over all the observations in the dataset (i = 1 to 
n). Smaller values of SEE indicate better fit between model and observed 
data and can be interpreted as the best estimate of the standard deviation of 
the observations around the regression line. The second method was the 
common multiple correlation coefficient (R) as described in Marascuilo 
and Levin (1983). The minimum acceptable level of significance in all the 
statistical analyses was 0.05. 

5.2.5 Estimating LAI Using a Back-Propagation Feed-Forward 
Network 

Artificial neural networks (ANNs) grew out of research in artificial intelli-
gence, specifically attempts to mimic the fault tolerance and learning ca-
pacity of biological neural systems by modeling the low-level structure of 
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the brain. Research on ANNs has been motivated from their inception by 
the recognition that the brain computes in a very different way than digital 
computers (Haykin 1994).  

A neuron is the fundamental processing unit of an ANN. Artificial neurons 
are analogous to biological neurons in the human brain. ANN behavior re-
sembles that of the brain in two respects. First, knowledge is acquired by 
the network through a learning process. Secondly, interneuron connection 
strengths known as synaptic weights are used to store knowledge (Haykin 
1994). ANNs do not rely on statistical relationships for function fitting but 
adaptively estimate continuous functions from data without mathemati-
cally describing how outputs depend on inputs (e.g., adaptive model-free 
function estimation using a nonalgorithmic strategy) (Gopal and Wood-
cock 1996). 

ANNs have been used in remote sensing applications to classify images 
(Bischof et al. 1992; Hardin 2000) and incorporate multisource data 
(Benediktsson et al. 1990). ANN classifiers have been successfully used 
with remote sensing data because they take advantage of the ability to in-
corporate non-normally distributed numerical and categorical GIS data and 
image spatial information (Jensen et al. 2000). 

Several forest studies have demonstrated the utility of coupling ANN ap-
proaches with satellite data. For example, Jensen et al. (2000) used an 
ANN to discriminate conifer stand age in southern Brazil using remotely 
sensed imagery. That study demonstrated that ANNs were; (1) competent 
to model the complex nonlinearity of biophysical forest processes, (2) bet-
ter at estimating conifer stand age than traditional image processing tech-
niques, (3) ideal for modeling the latent complexity of plant biophysical 
characteristics during the plant life cycle, and (4) able to explain more 
variance in forest biophysical parameters than their traditional statistical 
counterparts. In another study, Jensen and Binford (2004) found that 
ANNs were more accurate than traditional statistical techniques to estimate 
LAI in forested ecosystems throughout north central Florida. 

For this research, a back-propagation feed-forward ANN was created and 
trained using the variables shown in Table 1 as inputs, and the field site 
LAI (i.e., LAIobs) as the output. This procedure is directly analogous to the 
multiple regression approach described previously in this article, in which 
ASTER variables and LAIobs were the independent and dependent vari-
ables, respectively. 
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The procedure used to build the ANN models generally followed Hardin 
(2000). The calibration of several candidate networks required trial and er-
ror. The networks were trained with different variable combinations, dif-
ferent numbers of hidden neurons, different learning rates, and different 
momentum rates until an acceptable error rate was obtained or further im-
provement was unlikely. Parsimony was also sought in the neural network 
solutions. Given equal predictive value from alternative network configu-
rations, the network with the fewest hidden neurons was considered supe-
rior to more complex networks. 

Like the regression approach described above, the SEE was also used to 
measure the accuracy of the network predictions by comparing LAIobs val-
ues against LAIpred values across all 145 fieldsites. R was also calculated 
for neural networks by regressing predicted LAI values against their ob-
served counterparts.  Use of the same accuracy metrics allowed the regres-
sion results to be compared to the ANN outcome. 

5.3 Results and Discussion 

The field LAI measurements were made at 145 Terre Haute area locations 
(n = 145). The maximum and minimum LAI recorded were 7.7 and 0.0, re-
spectively. The mean LAI measured was 1.2 (s = 1.9). 

5.3.1 Regression Results 

All possible single variable regression models were tested.  Several pro-
vided statistically significant predictive ability. The regression model pro-
viding the highest correlation coefficient (R = 0.60) and lowest error (SEE

= 1.54) was created from the ratio of the ASTER green and ASTER red 
bands (GRRD_RAT). In unstandardized form, the predictive model was 

LAIpred = 4.79 × GRRD_RAT – 5.81.                         (5.4)

The best two-variable model included the same ratio as Equation 4 but 
added the infrared ASTER band. The predictive equation using these two 
variables was 

LAIpred = 3.99 × GRRD_RAT   + 0.02 × IR  – 7.10.               (5.5) 

This model lowered the standard error of the single variable model by only 
3% (SEE = 1.51) and improved the simple correlation by only 5% (R = 
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0.62). The addition of further variables did not improve the predictive abil-
ity of the model. 

For all the regression equations previously cited, their coefficients, and 
constants were significant at the 0.05 level. Use of the single variable 
model (Equation 4) is suggested because of its simplicity. The direction of 
the coefficient signs for the regression variables is logical. As the amount 
of green reflectance increases and red reflectance decreases, the ratio 
GRRD_RD increases mathematically and LAIpred also increases. In addi-
tion, as infrared reflectance increases, so does LAIpred. These results sug-
gest that both the ratio and the infrared band are measuring the same physi-
cal phenomena; they are measuring the increase in green reflectance as leaf 
area increases with the co-occurring loss of ground reflectance. 

5.3.2 Artificial Neural Network Results 

All the variables in Table 1 were submitted separately to ANN analysis to 
create a single variable model explaining LAI. Three single-variable net-
works produced nearly equivalent LAI predictive accuracy (R 0.69, SEE 

1.40). These three models employed, respectively, the ASTER green 
band, NDVI, and the ratio between the ASTER red and infrared variables 
(RDIR_RAT). In all three cases, networks with two neurons in a single 
hidden layer were sufficient for fitting the network. The best two variable 
models tested included the ASTER green band (GREEN) and the ratio be-
tween the ASTER red and infrared bands (RDIR_RAT) trained on single 
hidden layer of three neurons. This network produced a moderately high R
value (R = 0.71) with an SEE of 1.35. A Visual Basic function that repro-
duces the network output is shown in Figure 1. This function returns 
LAIpred when passed GREEN, RED, and INFRARED brightness values. The 
variable RDIR_RAT is calculated inside the function from RED and 
INFRARED and then used with GREEN in the network calculations. No 
three-variable network models significantly exceeded the predictability of 
this two-variable network model. 

The interpretation of the neural network results follows the same logic 
used in discussing the regression results. LAIpred increases with increased 
reflectance in the ASTER green band. The ratio of the red to infrared re-
flectance (RDIR_RAT) assumes the role that GRRD_RAT played in the re-
gression analysis; it is a measure of the ratio of background to photosyn-
thetically active vegetation or healthy, spongy leaf mesophyll. With an 
increase in vegetation at the expense of impervious material, infrared re-
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flectance in the ratio increases while red reflectance decreases. This causes 
a corresponding increase in LAIpred.

5.4 Conclusion 

As shown in Table 2, the ANN technique was superior to the multiple re-
gression approach. In all cases, the ANN produced higher values of R and
lower values of SEE than did regression. These results provide another 
case study demonstrating that a biophysical variable critical to urban study 
(i.e., LAI) can be predicted from remotely sensed satellite data and be 
more accurately predicted using a feed-forward back-propagation neural 
network than multiple linear regression. 

Using ANNs to estimate LAI could enhance the accuracy of some studies 
that have relied on traditional regression techniques in the past. To im-
prove such studies, ANNs could be created and trained using representa-
tive ecosystem in situ LAI samples and then used to estimate LAI in other 
image areas. For example, after measuring in situ urban LAI using one of 
the methods described by Peper and McPherson (2003), an ANN could be 
created and trained that is unique to that specific urban area. A program 
such as that shown in Figure 1 could then be used to estimate LAI in the 
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Fig. 1. Visual Basic function of neural network to predict LAI from 
ASTER band data values 

'Input ASTER green, red and infrared brightness values  
'Function will produce a predicted LAI 
Function PredictLAI(ByVal GREEN As Double, _ 
                    ByVal RED As Double, _ 
                    ByVal INFRARED As Double) As Double 
    Dim NetSum As Double 
    Dim LAI As Double 
    Static HiddenNeuron(3) As Double 

    'Handle water and outside image 
    If INFRARED = 0.0 then Return 0.0 

    'Calculate ratio of red and infrared  
    Dim RDIR_RAT As Double = RED / INFRARED 

    'Prescale 
    If (GREEN < 48.9) Then GREEN = 48.9  'Brightness 
    If (GREEN > 206) Then GREEN = 206 
    GREEN = (GREEN - 48.9) / 157.1 
    If (RDIR_RAT < 0.18) Then RDIR_RAT = 0.18 'Ratio 
    If (RDIR_RAT > 1.7) Then RDIR_RAT = 1.7 
    RDIR_RAT = (RDIR_RAT - 0.18) / 1.52 

    'Function for the hidden neurons 
    NetSum = 0.03620234   
    NetSum = NetSum + GREEN * 22.74368 
    NetSum = NetSum + RDIR_RAT * 6.679393 
    HiddenNeuron(1) = 1.0 / (1.0 + Math.Exp(-NetSum)) 
    NetSum = 0.7550668 
    NetSum = NetSum + GREEN * -3.907263 
    NetSum = NetSum + RDIR_RAT * 10.81035 
    HiddenNeuron(2) = 1.0 / (1.0 + Math.Exp(-NetSum)) 
    NetSum = -1.42035 
    NetSum = NetSum + GREEN * -2.62758 
    NetSum = NetSum + RDIR_RAT * 5.134643 
    HiddenNeuron(3) = 1.0 / (1.0 + Math.Exp(-NetSum)) 

    'Accumulate results across all hidden neurons. 
    NetSum = 5.523126 
    NetSum = NetSum + HiddenNeuron(1) * -5.202937 
    NetSum = NetSum + HiddenNeuron(2) * -1.52756 
    NetSum = NetSum + HiddenNeuron(3) * -1.493804 
    LAI = 1.0 / (1.0 + Math.Exp(-NetSum)) 

    'Final scaling of result and return 
    LAI = 7.71 * (LAI - 0.1) / 0.8 
    If (LAI < 0) Then LAI = 0 
    If (LAI > 7.71) Then LAI = 7.71 
    Return LAI 

End Function
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Table 2. Comparison of regression and neural network models.  In all 
cases, the neural network models were superior to the regression-based 
models for predicting LAI. 

Model 
Reference 

Building 
Method Variables R SEE

Equation 3 Regression GRRD_RAT 0.60 1.54 
Equation 4 Regression GRRD_RAT, IR 0.62 1.51 
* ANN GREEN 0.69 1.39 
* ANN NDVI 0.68 1.39
* ANN RDIR_RAT 0.69 1.39 
Fig. 1 ANN GREEN, RDIR_RAT 0.71 1.35 

unsampled remainder of the urban area. This is demonstrated in Figure 2. 
In this example, LAI has been estimated for the Terre Haute region using 
the ANN represented in Figure 1. This kind of map may be useful when 
urban planners and others examine the distribution of LAI in urban and 
suburban areas. 

While the ANN method proved most accurate in Terre Haute, this may not 
be the case in other urban areas under different environmental conditions. 
Future research could focus on these issues and determine whether ANNs 
provide the most accurate method to estimate LAI elsewhere. Also, care 
should be taken to ensure that the network algorithms and regression equa-
tions developed in this research are only applied in areas having similar so-
lar zenith angles and vegetation types. While this study was completed at 
the landscape level, it suggests that artificial neural networks may be cre-
ated and trained in other areas throughout the world to provide an accurate 
method to remotely estimate LAI. Further, these models can be used to an-
swer important geographic questions by describing temporal and spatial 
LAI dynamics at landscape to regional scales (e.g., Jensen 2002). Of equal 
importance, this methodology can help land managers, conservationists, 
and urban foresters formulate urban environmental policy that is empiri-
cally supported by inexpensive remotely sensed biophysical data. 
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Fig. 2.  Estimated LAI map of the Terre Haute area computed using the artificial 
neural network and three ASTER bands. Lighter areas represent higher LAI val-
ues. Note the city center in the middle left of the image and Terre Haute Interna-
tional Airport in the middle right of the image. 
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