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Of the Earth’s 6.5 billion human inhabitants, nearly three billion live in ur-
ban settlements (UNCHS, 2001).  Natural increase, land tenure practices, 
political policy, environmental degradation, and the dynamics of regional / 
global economics are largely responsible for the ongoing population shift 
from rural agrarian regions to cities.  This increased urbanization is not just 
a developing country phenomenon. Urban areas of North America in 1900 
were home to only 50% of the continent’s population.  In 2000, the per-
centage of North American urban inhabitants rose to 75%. 

Given the importance of urban regions as human habitat, there is an estab-
lished need for accurate intraurban population counts to support decision 
making.  In comparison to population estimates or projections, an exhaus-
tive per-dwelling enumeration acquired through fieldwork is the accepted 
gold standard for counting people and determining their sociodemographic 
characteristics.  A census is a complex undertaking; it requires significant 
human, technological, and fiscal resources to plan and execute.  Because 
of high cost, industrialized nations conduct enumerations only periodi-
cally.  The American decennial census mandated by the U.S. constitution 
is an example.  The United Kingdom also conducts census surveys every 
ten years.  The Australian Bureau of Statistics conducts a census every half 
decade.  In contrast, developing nations experience almost insurmountable 
obstacles to obtain accurate and regular enumerations of their national 
population.  These include vast rural areas, nomadic populations, func-
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tional sovereignty limitations, cultural mistrust, and a lack of technical and 
financial wherewithal. 

The Decennial Census of the US is intended as a temporal snapshot; a de-
piction of the national population on April 1 of the census year.  In areas of 
rapid urban growth, the population counts recorded in a decennial census 
become progressively less representative as the decade progresses.  Rec-
ognizing this, intercensal population estimations are commonly required.  
Additionally, small area population estimates provide a key source of data 
for local planning agencies and businesses.  Often the data are required at a 
geographic level smaller than what is easily found in census data.  In these 
cases, population estimates are the most cost-efficient way to generate the 
required small area data. 

In this chapter we will first briefly review the traditional methods for 
population estimation. Three broad methodologies for estimating intraur-
ban population totals and densities using overhead imagery will then be 
discussed.  Our focus is on the developed urban world rather than develop-
ing or rural areas.  Remote sensing may provide a vital role for population 
estimation in developing countries with significant rural regions, but it is 
not our expertise. 

Once the three broad methodologies have been appraised, a short case 
study will be presented.  In this case study, we use rudimentary image 
processing techniques to estimate the population of the Wasatch Front ur-
ban corridor in Utah, U.S.  After the case study, some concluding com-
ments are then offered about future research directions. 

4.1 Traditional Approaches to Population Estimation 

Population estimates should not be confused with population projections.  
Although data and methods may differ, the primary difference is one of 
time period.  Population estimates are used for the present and the past, 
whereas population projections are used to guesstimate future population 
size.  In this chapter, our focus is on population estimates. 

Estimating population of small areas at various scales of space and time is 
a difficult demographic task. However, because small area population es-
timates are often necessary for local planning departments and businesses 
(billions of dollars in federal funds are allocated to states and local entities 
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based on the estimates), there have been several estimation methodologies 
developed.  Regardless of the method, four preliminary factors must be 
considered; 1) the purpose of the estimation, 2) the spatial scale of the es-
timation, 3) the target temporal period for the estimation, and 4) data 
availability. Once those factors have been considered, three other issues 
must likewise be addressed; 1) the collection of any necessary data, 2) the 
selection of correct statistical methods, and 3) the method for judging the 
goodness of the estimates. 

The collection of necessary data is framed by the purpose and geographic 
scale of the required estimate.  At smaller geographic scales certain admin-
istrative records are aggregated at a county or metropolitan scale and may 
not be available at sub-county levels (e.g. tax returns).  Deciding the scale 
and purpose of the estimate often determines what data can be used, which 
in-turn constricts the choice of appropriate methods.  However, almost all 
traditional population estimation techniques use various types of adminis-
trative records that are correlated with population change. Predictors de-
rived from these records are called symptomatic variables (Plane and 
Rogerson 1994). Ideally, symptomatic variables should be updated regu-
larly.  They should also temporally co-vary with population change in a 
predictable fashion.  Exemplar symptomatic variables include residential 
building permits, utility connections, school enrollments, tax returns, and 
Medicare enrollments. A second important data source is vital records – 
particularly birth and death certificates.  These data are used as major in-
puts into the cohort-component method of population estimation described 
below. 

The U.S. Census Bureau, in cooperation with state partners, is legally re-
quired to provide intercensal population estimates to support federal fund 
allocations.  To comply, the Census Bureau has developed three principle 
methods:   

1. Ratio-correlation procedures.  As the name implies, ratio-correlation 
procedures use the ratio of symptomatic variable values for adjacent 
time periods as independent and dependent variables to estimate 
population.  Changing ratios of symptomatic variables within a 
geographic region are assumed to be a function of the region’s 
changing population ratio (Plane and Rogerson 1994). The ratio of a 
subregion’s population to the larger region population for two time 
periods is regressed on similarly formed symptomatic variables (ratio 
of ratios). These models will generally use vital records (i.e., births 
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and deaths) and administrative records (e.g.,elementary school 
enrollment, vehicle registration, voter registration).   

2. Component-method II procedures.  All component methods are 
predicated on demographic accounting, i.e. population change = 
births - deaths + net migration.  The greatest difficulty with this 
approach is correctly specifying the migration factor.  The 
component-method II procedure utilizes registration data on births 
and deaths, and tries to estimate net migration using other 
administrative information.  The U.S. Census Bureau splits the use of 
different administrative data genres based on age.  For populations 
less than 65 years of age individual tax returns are used.1 For 
populations older than 65 years of age, medicare enrollment is used. 
In this method, migration – based on different tax return addresses or 
medicare payment addresses – is estimated.  Both sources also have 
information on household size.  For entities without access to 
individual tax returns, school enrollment is often used and assumed to 
be indicative of migration in the total population – with adjustments 
being made for the historical differences between the school-age 
migration rate and the total population's rate of migration.  

3. The housing-unit method is based on change in the housing stock of 
an area from the base date to the estimate date.  Data on the housing 
stock and flow are generally derived from; 1) U.S. Bureau of the 
Census survey of building permits and demolitions, and 2) State Data 
Center survey of counties and cities issuing permits for residential 
buildings and demolitions. The housing unit method requires the 
specification (assumption) of  vacancy rates and average household 
size.  Once specified, housing unit count change between base and 
estimate dates is multiplied by the occupancy rate and average 
household size to estimate population change.  Individuals in group 
quarters (prisons, college dormitories, nursing homes, and military 
barracks) are included in the total.  As a refinement, separate 
estimates are constructed by housing structure type (e.g., single-
family dwellings, 2-to-4 unit, 5+ units, mobile homes).  This 
refinement permits different vacancy and household size factors to be 
more precisely tailored to the structure types within the housing 
stock.  

                                                     
1 Only the Census Bureau has access, from the IRS, to the individual tax returns.  

Other governmental or private businesses will use school enrollment data in lieu 
of individual tax returns. 
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Perhaps the most important aspect of population estimation is validation. 
Population estimates are typically based on assumptions of temporally sta-
ble relationships between population change (i.e., births, deaths, migration) 
and their symptomatic variables. The temporal stability of the symptomatic 
variables themselves is likewise assumed.  These are generally safe as-
sumptions, but the estimate will always contain error.  The only way to as-
sess the error is to do an actual count.  This would of course obviate the 
need for the estimate in the first place.   

4.2 Population Estimation Using Remote Sensing 

There are four primary approaches to estimating population with remotely 
sensed data: 

1. The use of allometric population growth models based on place size.  
Typically the area of cities, towns and villages is measured from 
small scale air photography or satellite imagery and submitted to a 
calibrated allometric model to estimate population.  Central place 
theory and road connectivity are sometimes employed to improve 
accuracy.  The allometric technique is very useful in developing 
countries where ground enumeration is impossible and a single 
population total for each city, village, or region is acceptable.  It is 
less useful when population estimates are required for small 
enumeration districts such as US census tracts.  This method is 
beyond the scope of this paper but Lo (2006) provides an excellent 
review.   

2. The use of dwelling unit type as a surrogate for family size.2 This 
technique requires an interpreter to identify, classify, and count 
dwelling units manually from large scale imagery.  A simple model 
relates dwelling type to resident family size.   

3. The use of landtype zones3 as a surrogate for population density.  
Different landtype zones are identified on medium-scale imagery and 

                                                     
2 With some loss of precision, we call this approach dwelling identification.
3 Every student of remote sensing quickly learns the difference between land 

use and land cover. Nonetheless, to simplify phraseology by avoiding the repeti-
tion of the phrase “land use and/or land cover” throughout this chapter, the term 
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a model is employed that links landtype with population density.  
This approach has historically been used with medium scale air 
photography and satellite imagery. 

4. Pixel based approaches that seek to model population or housing unit 
density directly as a function of spectral reflectance or spectral 
texture on a medium-scale satellite images. 

4.2.1 Dwelling Identification 

The process of estimating population density via dwelling identification is 
conceptually simple and requires the following general steps.  A schema of 
dwelling unit types based on family size is initially itemized.  For example, 
the schema may include designations such as duplexes, single family resi-
dential homes, and apartments.  Using information acquired from census 
data, interviews, or rental agencies, average resident counts for each dwell-
ing unit type in the schema are determined.  Each dwelling unit in the 
study area is then placed into one of the a priori schema classes by its ap-
pearance on large scale photography.  Total estimated population is the 
sum of the dwelling units of each type weighted by their corresponding 
average resident population. 

The success of the procedure outlined above depends on the successful 
identification of various dwelling types from high-resolution imagery. This 
was established early by Green (1956, 1957) who postulated that the social 
structure of a city could be determined through the analysis of aerial pho-
tography. Green suggested that this identification of dwelling type is the 
first step to the use of air photography for demographic, sociological, and 
urban ecological applications.  In this pioneering research, Green (1956) 
examined 17 residential neighborhoods in Birmingham, AL to ascertain 
whether stereo air photography (1:8,000 scale) facilitated the identification 
of urban dwelling structure type.  Although the research focused on meas-
uring; 1) the percentage of detached single-unit homes, and 2) the dwelling 
unit density per block, several other residential structural types were dis-
criminated as part of the study (e.g., duplexes, multiunit).  Green utilized 
the following characteristics in his photographic key to housing identifica-
tion: 

                                                                                                                         
“landtype” will be used instead.  Where differentiating between land cover and 
land use is important to the discussion, the two separate terms will be used. 
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1. Roof structure and form (i.e., gables, dormers, porches) including the 
existence and number of chimney stacks and rooftop plumbing 
fixtures.

2. The overall shape and size of the building. 
3. The situation of the building i.e., “the location of the building with 

respect to the street, the building line, and other structures” (p. 143). 
4. Vehicle accommodations, including carports, parking areas, garages, 

and driveways. 
5. Pedestrian accommodations such as footpaths, sidewalks, and 

entryways. 
6. The shape and size of yards, courts, etc. 

Not surprisingly, Green found that the error rates in classification were de-
pendent on structure type rather than uniformly distributed across all struc-
ture classes. Nearly all the problems involved multiunit residences.4   Spe-
cifically, Green had trouble with universally distinguishing multiunit 
complexes from duplexes, and differentiating between duplexes and sin-
gle-unit dwellings. Summarizing, the total study area housing unit count 
and multiunit structure count were slightly underestimated whereas the 
single-unit dwellings were overestimated.  Overall however, “the results 
[showed] 1) that 99.8 percent of the 3,629 existing residential structures in 
the 228 city blocks observed were correctly identified as such, and 2) that 
89 percent of these structures were correctly classified by categories of 
numbers of dwelling units.”   For other related dwelling unit studies akin 
to Green (1956), see Hadfield (1963) and Binsell (1967). 

Extending Green’s groundbreaking research, the objective of Lindgren’s 
(1971) study was to determine; 1) whether the same dwelling unit identifi-
cation success reported in foregoing research could be obtained with me-
dium-scale imagery (1:20,000), and 2) whether the use of color infrared 
(CIR) photography improved dwelling type identification success rates ob-
tainable from natural color or panchromatic imagery.  Lindgren’s operat-
ing assumption was that “in high-density areas, CIR imagery would allow 
for easier identification of urban signatures” (p. 374).  Although originat-
ing with Binsell (1967), Lindgren’s final list of dwelling identification 
keys deviates little from Green (1956).    

After developing the clues using three blocks of high-density housing in 
the metropolitan Boston area (i.e., East Boston, Chelsea, Charlestown), the 

                                                     
4 The identification and treatment of multiunit structures is a reoccurring theme 

in population estimation with overhead imagery. 
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indicators were tested in 15 additional blocks containing 655 residential 
structures and 1744 dwellings.  Lindgren’s total residential structure count 
from the photography underestimated the actual total by only three.  How-
ever, the ability to count infrastructure dwelling units was more difficult 
because of the prevalence of multiunit buildings within the study area – the 
interpretation underestimated the total number of dwelling units by 54.  
These summary figures obscure the seriousness of some interpretation 
problems – in both residential structure and dwelling unit counts, signifi-
cant overestimates were offset by substantial underestimates. Overall, only 
59% of the residential structures were assigned the correct number of 
dwelling units.   

In concluding, Lindgren offered two observations.  First, any personal fa-
miliarity of the study area enjoyed by the interpreter would dramatically 
increase chances for a successful outcome.  For example, structures that 
Lindgren found in Charlestown with a particular roof-type were consis-
tently mis-categorized.  A single visit to Charlestown before the interpreta-
tion began would have prevented the mistake. Second, the high quality of 
the CIR transparencies used (i.e., their sharpness and contrast), in conjunc-
tion with the infrared distinction between built-up and nonbuilt-up urban 
areas more than counteracted any disadvantage of the small CIR image 
scale. 

In coincident research, Collins and El-Beik (1971) used dwelling identifi-
cation methods to estimate the population of the City of Leeds.  The goal 
of the study was to determine whether population estimates made from air 
photography agreed with census estimates. Like researchers before them, 
the operational hypothesis was that dwelling type was strongly correlated 
with resident population count.  Given earlier work by El-Beik (1967) 
demonstrating that housing types in Leeds could be identified classified 
from air photography, that hypothesis was reasonable.   

The schema for the population estimation study required the discrimination 
of semidetached, terraced, and back-to-back dwelling types.  Based on the 
interpretation of 1963 photographs of 1:10,000 scale, all the housing struc-
tures within the study area were classified into one of those three catego-
ries.  Multiplication factors linking dwelling type to inhabitant number 
were derived from 1961 census enumeration maps and data.  Only half of 
the enumeration districts were used to derive these factors whereas the 
other half was cloistered for validation purposes.  For semidetached dwell-
ings, it was found that 3.03 people lived in each house.  The linear nature 
of semidetached and terraced dwellings in Leeds suggested a different tack 
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for designating a multiplier.  For these structures the multiplier was the to-
tal housefront linear feet per person with 4.62 and 4.27 ft / person being 
adopted for terraced and back-to-back houses respectively.   

For validation, these factors were applied to the housing within the seques-
tered enumeration districts and population totals were calculated.  When 
compared against 1961 census data, Collins and El-Beik found that the av-
erage error for enumeration districts dominated by terraced houses, back-
to-back houses, and semidetached dwellings was +0.87%, +0.32%, and -
6.4% respectively.  The largest errors among individual enumeration dis-
tricts were underestimates among semidetached homes with unexpectedly 
large families.   

According to Collins and El-Beik, the accuracy of this approach depended 
primarily on two variables.  The first was the ability of the photointerpreter 
to properly identify housing type.  The second was how well the calibrated 
multiplier correctly represented target areas of the same dwelling category.  
The authors also observed that refinements in the method were possible.  
Multipliers could be adjusted according to structure age and proximity to 
schools.  Social and economic variables could likewise be used to create a 
more sophisticated multiplier set. 

Watkins (1984) focused his research on the problem of correctly counting 
the number of dwelling units in a multiunit structure.  Error resulting from 
this prevalent problem was also investigated – Watkins observed that “no 
studies to date have explicitly investigated the nature of multiple dwelling 
unit counting errors with respect to the ways in which they relate to differ-
ent structure types, nor have they considered the actual impact that multi-
ple unit structures as a whole have on the accuracy of enumerations of all 
dwelling units within a residential area” (p. 1599).   

Watkins subdivided multiunit structures into two groups; 1) those origi-
nally designed to house multiple families, and 2) structures originally built 
as single-family dwellings.  Watkins observed that the diagnostic photo-
graphic elements needed to estimate the number of households were dif-
ferent in each group.  The photographic key developed included not only 
guidelines for differentiating between residential and nonresidential but in-
structions for discriminating between converted single-family structures 
and archetypical apartment structures.  Telltale features of apartment 
buildings included roof divisions, outside fire escapes and porches, en-
trance location and number, parking, and apparent socioeconomic level.  
Converted structures were distinguished by structure symmetry, quality 
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and amount of vegetation, number of sidewalks from the structure to the 
roadway, walkways between sides of the same structure, site context, and 
the apparent method of property subdivision.  Structure size, shape and 
height, as well as vents and chimneys were important to identifying both 
types.  

After developing the photographic key employing these factors, Watkins 
conducted tests in Boulder, Colorado for three study areas.  Dwelling 
count estimates made from 1:20,000 panchromatic imagery acquired in 
1970 were compared to 1970 census block dwelling counts.  Similarly, 
dwelling counts from the 1980 census were compared to estimates derived 
from 1979 1:6000 scale panchromatic photography.  The photographic key 
was highly successful.  For the 1970 data involving 695 buildings, errors 
in multiunit counts within the three study areas ranged from an underesti-
mation of 1.61% to 0.37%.   The error rates for 1980 (2545 buildings) 
were significantly higher, ranging from 1.64% to 4.91%.   As hypothe-
sized, error rates differed by multiunit structure type.  Converted single 
dwelling units were overestimated by 8.45% whereas dwelling units within 
traditional apartment buildings were underestimated by 5.51%.  Single 
units (unconverted) were underestimated by 4.80%. 

Lo (1986) stands alone as the only researcher who has actually applied the 
dwelling unit identification method to an entire city.  The goal of Lo’s re-
search was to estimate population in 93 traffic zones in Athens, Georgia 
from 1:20,000 aerial photography.  Like preceding researchers, Lo used a 
simplified residential structure schema that included only a few structural 
types; 1) small single family structures, 2) large single family structures, 
and 3) multifamily structures.  Estimated resident counts used in the popu-
lation calculations were 3.0 and 4.0 for small and large family dwellings 
respectively, and 2.0 per dwelling unit within multifamily structures.  

Comparison of the photointerpretation results with 1980 census data re-
vealed an average population count underestimate of 1.7% per traffic zone 
with considerable variation from zone to zone.   Counting errors were at-
tributed to the following factors; 1) family sizes different from those as-
sumed in the estimation process, 2) photointerpreter skill, 3) the number of 
multiunit structures, 4) the area of the traffic zone, and 5) the quality of the 
photographic source.   Lo demonstrated that urban population estimation 
for an entire city was feasible, and resulting accuracy could be high.  We 
consider Lo (1986) to represent the state-of-the-art in the dwelling unit 
identification / counting approach to intraurban population estimation.     
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Comments 

Although the identification and counting of dwelling units showed signifi-
cant promise for intraurban population estimation, there is little literature 
mentioning it after Lo (1986).  Of all three methods for intraurban popula-
tion estimation discussed in this chapter, it remains the most accurate, par-
ticularly when enumeration districts are small.  In addition, there is in-
creasing availability of high resolution digital orthophoto and high altitude 
CIR coverage for many urban areas in the U.S. that can be analyzed with 
the method.  These data can generally be downloaded online from state or 
university GIS repositories without cost.  In our experience, these data 
range around 30 to 15 cm in pixel resolution, are geocorrected to a map 
base, and are excellent quality.  These characteristics make the interpreta-
tion of most dwelling diagnostic features a straightforward task.  

These high resolution digital image data have some limitations.  One limi-
tation is the inability to view the photographs in stereo.  Because of this, 
other clues such as shadows must be used to measure building heights. In 
addition, the end user has no control over the date of the photography.  
This not only includes year, but season as well.  Figure 1 is a medium-
density residential block near downtown Salt Lake City, Utah.  The pho-
tography (originally in color) was acquired in late summer 2003 as part of 
a USGS program to acquire high resolution imagery of the most populated 
urban areas in the United States.  The data are available to the public from 
the U.S. Geological Survey, EROS Data Center, Sioux Falls, SD 
(http://www.usgs.gov/). 
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The pixel resolution is 30 cm.  Figure 2 is a similar block in Pittsburgh, 
Pennsylvania, taken in leaf-off conditions.  Classifying the buildings in the 
Pittsburgh imagery would prove a simpler task because the deciduous trees 
are not obscuring dwelling yards, roofs, etc.  In contrast, the interpretation 
of the leaf-on Salt Lake City imagery would be more challenging.  Of 
course if tree cover were an important diagnostic feature in a landtype 
schema, leaf-on imagery may be preferred. 

Adeniyi (1983) summarizes our viewpoint on the dwelling unit identifica-
tion approach when writing “The results have revealed, in general, that 
remotely sensed data have the capability to provide timely, verifiable, and 
relatively accurate intercensal population data, based on uniform criteria at 
local, metropolitan, and regional levels” (p. 546).  Adeniyi is equally per-

Figure 1. Leaf-on 30cm aerial photo of Salt Lake City, UT.
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ceptive regarding the method’s greatest limitation when stating, “[Each] 

exercise of estimating population using remote sensing techniques tends to 
be valid only for the particular area under consideration.  Consequently, 
there seems to be a need to formulate for each cultural area a suitable 
model based on relevant attributes of the area” (p. 546). 

Figure 2. Leaf-off 30cm aerial photo of suburban Pittsburgh, PA. 
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4.2.2 Landtype Surrogates 

Along with the lack of generality in interpretation keys, another drawback 
to counting dwelling units is the intensive labor required to do the photo 
interpretation.  The method also requires the use of large scale photogra-
phy and is not suitable for use with satellite imagery having a pixel resolu-
tion coarser than about 1 meter.  Because of these shortcomings, the use of 
landtype zone as a population surrogate was developed.  The premise of 
the approach is that landtype is related to housing densities which are in- 
stage coupled to population density.    

Two variants are common.  In the first variant, a schema of landtypes is 
developed and a characteristic population density for each type is assumed, 
measured, or estimated.  The landtype zones are delineated on overhead 
imagery.  Given that a district can contain different landtypes, the popula-
tion for a district is next estimated in three steps.  First, the area of each 
landtype in the district is determined.  Landtype area is then multiplied by 
the population density assumed for the category.  The resulting product is 
the total population for that landtype within the district.  Summing those 
totals across all the landtypes in the district produces the total district 
population.   In the second variant, the imagery of the enumeration districts 
is investigated to determine the different landtype percentages constituting 
the district.  Those percentages become carrier variables in transfer equa-
tions relating the landtype constituent amounts to the district population 
density.   

The need for accurate population data with which to calibrate the landtype
 population transfer functions is the logical equivalent of calculating the 

average number of people per dwelling unit type in the structure counting 
approach.  It is generally required for both variants. 

Kraus et al. (1974) were some of the first researchers to advance the land-
type surrogate approach for population estimation.  In their experiment, 
four cities in California (Fresno, Bakersfield, Santa Barbara, and Salinas) 
were chosen for study.  The goal of the research was to estimate the cities’ 
population from high-altitude aerial photography with scales of 1:600,000 
(panchromatic), 1:120,000 (CIR), and 1:60,000 (CIR).   The interpretation 
schema utilized only four land use types; single family residential, multi-
family residential, trailer park residential, and commercial / industrial.  The 
entire built-up area of the four cities was placed into one of those four 
classes based on landscape appearance in the photographs.  The area of 
each land use type was measured with a polar planimeter.   “In order to ob-
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tain characteristic spatial population densities for the three residential land 
use categories, 1970 U.S. Census Block Data was used.  Areas of a single 
residential land use were identified from the land use maps and located on 
Census Block data maps.  Random samples of blocks within each residen-
tial land use category were then obtained to determine population densities 
per square kilometer for that land use.  The spatial population density fig-
ures derived from each random sampling were then averaged to obtain 
characteristic spatial population densities for each residential land use 
category within each city” (p. 39).  The total population for one of the 
mapped zones was the product of the characteristic population density and 
zone area.  Summation of the zonal population across the city produced the 
total population estimate. 

The results of the zonal procedure were a 7.0% population overestimation 
in Santa Barbara, and an average 7.2% underestimation in the other three 
cities.  Two causes of the underestimation in Fresno, Salinas, and Bakers-
field were given.  The first was the inability to identify residences in older 
built-up business districts.  Secondly, the enlargement of the original pho-
tography for easier interpretation unexpectedly increased the difficulty of 
identifying isolated individual apartments, causing an underestimation of 
area in the multifamily residential class.  The overestimation in Santa Bar-
bara was primarily due to the large lot sizes in many single-family residen-
tial zones – the characteristic population density applied to those zones in 
Santa Barbara was too large.  To ameliorate these problems, Kraus et al. 
recommended; 1) a correction factor for “hidden” residential uses in com-
mercial districts, 2) the use of larger scale air photography, and 3) a refined 
residential land classification system that permitted fine tuning of charac-
teristic zonal population density factors. 

In research reported by Adeniyi (1983), the objective was to examine the 
feasibility of systematically estimating Nigerian population with aerial 
photography.  The research was warranted by the historic failure to accu-
rately estimate Nigerian population using traditional methods, a failure at-
tributed to the paucity of accurate social and administrative data.   Addi-
tionally, urban planning demands of Nigeria required population 
estimation for small areas (e.g., voting districts) undergoing rapid urbani-
zation. Based on significant preceding research (Adeniyi 1976, 1980) the 
project began with the simple hypothesis that population estimation based 
on land use zones would be appropriate for Nigeria.  Two reasons were 
given for the use of the landtype zone method in preference to the dwelling 
unit method described above, both related to the communal housing struc-
tures used in Nigeria.  First, the individual dwelling units were not readily 
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countable on the available air photographs.  Second, because each single 
storied structure might house between three and ten families of consider-
able and variable size, the utility of an “average family size factor” was 
dubious and would have produced significant estimation error. 

Adeniyi chose the Federal Capital of Nigeria (Lagos) as the study site.  
The methodology was complex, required several steps, and will only be 
summarized below.  Initially, different residential areas were delineated 
and classified on the 1:20,000 panchromatic photographs acquired in 1974.   
Housing quality and other sociocultural information was next collected 
from the air photographs.  These photographically measured variables in-
cluded building density, plot size, layout, garden existence, number of sto-
ries, dwelling type (e.g., apartment, communal), and building usage. 

Examination of these variables suggested a landtype schema with nine 
species.  Once the schema was completed, the analysis required that the 
population densities of each residential landuse category be gauged.  Using 
a random sampling scheme stratified by landuse category, information on 
family size and number of families for each residential structure type was 
determined by limited field survey.  The total number of field samples 
(i.e., residential blocks) was 58 with the number of samples per land use 
ranging from 1 to 20.  A total of 3,479 buildings were included in the 58 
blocks.  A cluster analysis of these 58 field samples using the field data 
alone regrouped the field samples into nine temporary subsets for the pur-
pose of exploring intraresidential and interresidential class differences and 
similarities.  The clustering exposed two broad divisions in the land zones.  
The first division was the planned land zones – planned residential areas 
with apartment housing of moderate density.  The second division con-
sisted of the higher density communal dwelling structures considered tradi-
tional and unplanned.   It was also observed that many of the residential 
landtypes could be distinguished almost completely by the density of resi-
dential buildings typifying them. 

Average population density figures were calculated from the field data for 
each residential land use.  Regression analyses were then used to optimally 
model the population density of each land use using all of the survey and 
air photograph variables as candidate independents.  For the complete 
sample of 58 blocks, three variables were able to explain 90% of the varia-
tion in the population density; 1) density of communal type buildings, 2) 
average population per building, and the 3) density of all buildings.  Dif-
ferent residential land use classes had different models; however the two 
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variables appearing the most frequently in the models were density of 
communal type buildings and average population per building. 

Because the data gathered had been exhausted in the model building phase, 
validation of the models was impossible, but Adeniyi made the following 
observations. 

1. The Lagos population estimates in zones of planned residential 
development were quite accurate, primarily because the average 
population density value for the planned residential land uses was 
uniformly applicable to all samples of that type.  If air photos were 
used operationally to estimate Nigerian population, fieldwork to 
establish the average building population for planned zones would be 
minimal.   

2. In contrast, fieldwork to support estimates for the unplanned 
residential landuse categories would be necessarily extensive.  The 
highly variable average population density factor would require 
tailoring for different regional areas. 

Another example of the residential landtype approach with a simpler 
methodology is Olorunfemi (1984).  This study was conducted in the city 
of Ilorin, Nigeria, a city of ½ million population that serves as the capital 
of Kwara State.  The goal of the study was to “define a mathematical 
model which may be used in conjunction with data on housing land area 
measured from aerial photography to obtain urban population estimates for 
Nigerian cities” (p. 221).  The photographs for the study were acquired in 
1950 and 1963 at scales of 1:2400 and 1:12000 respectively.  Census data 
to support the research was taken by survey method in 1952 and 1963.  

A total of 74 square sample sites of 4 hectares each were randomly se-
lected from topographic maps and their location transferred to the two sets 
of aerial photography.  The area (percentage) of each major landtype 
within each sample site was measured using a dot grid.  The landtype clas-
sification schema used six categories; 1) indigenous residential type hous-
ing, 2) barrack / flat housing, 3) flat housing, 4) uncompleted housing, 5) 
bare ground / grass / agricultural land, and 6) trees.  The population of 
each sample site was determined from the census data.  Multiple regres-
sion analysis was conducted to model population within the 4 hectare sam-
ple sites as a function of the area in each of the six categories.   
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For the 1950 case, population was significantly correlated with the per-
centage area of uncompleted housing (r = 0.66)5, the percentage of trees (r
= -0.66) and percentage area devoted to barrack / flat housing (r = 0.57).   
A linear regression model using all six variables explained 72.6% of the 
variation in population density.  For the 1963 data set, the only significant 
explanatory variable was the percentage of area devoted to flat housing (r
= - 0.51). 

Olorunfemi concluded there was a functional relationship between land-
type and population density which justified the use of landtype as a popu-
lation surrogate.  The goodness of the regression models was deemed suf-
ficient to warrant an examination of its utility for wider application in 
Nigeria.  “It should be stressed, however, that, for this method to be useful 
in generating nationwide data, there is need for further research aimed at 
testing the applicability of the model in cities with similar and/or different 
characteristics” (p. 227).  Olorunfemi also considers the method particu-
larly appropriate in communities where housing land area is known be-
forehand or population data is unavailable because of “remoteness, politi-
cal obfuscation, or insufficient resources to conduct frequent census 
enumerations” (p.227).  

Since the launch of Landsat-1 in 1972, the mapping of landcover from me-
dium resolution satellites has become operational in many disciplines such 
as range management and agriculture. The potential for adapting the land-
type zone population estimation method from aerial photography to satel-
lite imagery was natural.  The work of Langford et al. (1991) serves as an 
excellent example of this adaptation.  One objective of this study was to 
model the 1981 population of 49 wards in four districts of northern Leices-
tershire, England using the landtype surrogate approach.  The methodology 
was straightforward.  First, using automated image processing methods, a 
satellite image dated July 1984 was classified into various landtype catego-
ries on a pixel-by-pixel basis.  The single satellite image covered all 49 
wards of the study area.  Creation of the landtype map proved challenging, 
primarily because the unsupervised classification highlighted land cover 
differences in the rural hinterlands of the area but did not sufficiently dis-
criminate between important urban landtypes.  After some trial and error, 
principal components analysis of the original seven band TM image re-
sulted in three principal component bands that revealed urban land cover 
differences necessary for accurate discrimination.  The resulting map con-
sisted of 12 landtypes collapsed into five broader categories; 1) commer-

                                                     
5 Unless otherwise noted, correlation coefficients (r) refer to Pearson’s r.   
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cial and industrial, 2) high-density residential, 3) ordinary residential, 4) 
quarries, woods, water bodies, and 5) agriculture.  Once the landtype map 
was complete, the 1981 census ward boundaries were digitized, rasterized, 
and imposed on the digital landtype map.  This permitted the area of each 
type (listed above) to be tallied for each of the 49 wards.   Except for agri-
culture, the greatest difference in cover amounts between the various 
wards was in the ordinary residential category – ordinary residential land 
cover within a ward varied from 10 to 430 hectares with a mean and stan-
dard deviation of 158 and 95 hectares respectively. 

Simple correlation analysis revealed that total ward population was most 
highly correlated with the ordinary residential (r = 0.75) and commercial / 
industrial (r = 0.60) land area in the ward.  Total population was more 
weakly correlated with agriculture (r = -0.28) and high-density residential 
(r = 0.33) area.  Encouraged by the results of the correlation analysis, sev-
eral regression models were created that explained total ward population as 
a function of the five independent variables listed above.  The models dif-
fered primarily on the number of variables used, the use (or not) of a Pois-
son error term, the fitting (or not) of an intercept, and whether negative co-
efficients were permitted.  The last requirement (no negative coefficients) 
was designed to preclude models that might generate negative population 
counts.  Regression equations that had a non-zero intercept were also con-
sidered logically flawed. 6  In summary, it was “argued that that any statis-
tical model linking pixel counts of land cover to population should be sim-
ple, linear, additive, and without any intercept constant” (p. 67).   The most 
effective model produced by Langford et al. included only two variables, 
ordinary residential landcover and high density landcover area. This ordi-
nary least squares model with only additive coefficients produced an R2 of 
0.82.  Areas of underestimation and overestimation, sometimes severe, 
were noted by spatially analyzing the residuals from the regression.  The 
residual patterns from the different models were similar. 

Comments 

Although the required methodology differs slightly, the use of landtypes as 
population surrogates is equally applicable to air photos and satellite data 
alike.  The use of satellite data has some particular advantages.  Unlike 
analog air photography, satellite imagery lends itself to automated inter-
pretation, classification, and georeferencing.  For large areas with no pre-

                                                     
6 Harvey (2002a; p. 2086) discusses the issues of negative coefficients and zero 

intercepts in some detail and provides alternative opinions. 
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existing air photo coverage, purchasing satellite data is much less expen-
sive than contracting for an aerial photography acquisition mission.  For 
example, one Landsat image covering about 34,000 km2 can cost less than 
$1000 U.S.  Because of its lower expense, satellite imagery can be ac-
quired more often (or on demand) and can thus facilitate more timely 
population estimates than air photography.  Although high resolution satel-
lite data are available, the landtype surrogate approach only requires less 
expensive moderate resolution imagery (i.e. 30m - 50m pixel resolution).  
Satellite data can also provide a fine degree of spatial granularity over 
large urban areas. 

The landtype surrogate approach does have disadvantages.  It is less accu-
rate than counting dwelling units.  Although a landtype classification 
schema may only contain five or six categories, the task of creating the 
landtype schema is critical for success.  As illustrated by Langford et al. 
(1991), the task of generating an urban landtype map with sufficient detail 
to support population estimation may require substantial trial and error.  
Nonetheless, the use of landtype surrogates continues to be an important 
tool in geographic urban analysis.   

4.2.3 Pixel-based Estimation 

Pixel-based estimation is an approach designed entirely for moderate reso-
lution satellite imagery.  In its basic form, the goal of pixel-based estima-
tion is to model population or population density directly as either a func-
tion of multiband satellite sensor reflectance values or some mathematical 
derivative thereof.7   Adopting the logic of Iisaka and Hegedus (1982), the 
justification for this approach lies in the nature of the pixel itself.  In an ur-
ban area, a single satellite pixel will contain a variety of land cover types 
that contribute to the spectral reflectance of the pixel.  Figure 3 shows an 
area of several pixels covered by a Landsat MSS image compared to an ae-
rial photo with 6 inch resolution to demonstrate the variety of objects 
within a single 79 x 79 meter pixel.  Exemplar cover types are rooftop 
shingle, road surface concrete, lawn grass, and parking lot asphalt.  As 
population density varies, the relative percentage of these cover types co-
varies.  This variation accordingly modulates the spectral signature of the 
pixels having an urban footprint (Iisaka and Hegedus, 1982).  While the 
causal relationship may be population  housing  landtype  spectral 

                                                     
7 The term “spectral features” is given to these mathematical derivations.  It 

should not be confused with “spatial features.”  Example spectral features include 
vegetation indices, principle components, and texture measures. 
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signature, the pixel based estimation usually proceeds spectral signature
population with the landtype and housing treated implicitly. 

The goal of Iisaka and Hegedus (1982) was to model the relationship be-
tween spectral reflectance and the population of metropolitan Tokyo.  The 
satellite images acquired from Landsat 1 and Landsat 3 were dated No-
vember 1972 and January 1979 respectively.  Census data required to cali-
brate and validate the modeling were acquired in 1970 and 1975.  One of 
the assumptions required in modeling population as a function of spectral 
signature “is that the environmental alteration…should share similar char-
acteristics in different areas, in both quantitative and qualitative respects” 
(p.261).  This permits measurements made in sample areas to be logically 
applied to other locales.  The authors claimed that the homogeneity of 
housing materials, dwelling size, land use systems, and housing density in 
residential Tokyo satisfied this assumption. 

A total of 88 sample sites (25 hectares each) outside the Tokyo central 
business district were initially identified.  The size of the sample sites (500 

m  500 m) corresponded to the resolution of the government census maps 
of the Tokyo ward area.  Once identified, the population for each sample 
site was extracted from the 1970 and 1975 census maps.  The satellite im-
agery was resampled and georegistered to the census maps and the mean 

Figure 3. Landsat MSS image compared to aerial photo of Provo, Utah.  
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spectral values for the four multispectral scanner (MSS) bands determined 
for each of the 88 sample sites. This created a data set of 88 records having 
five fields each.  Population was the dependent variable whereas the car-
rier variables were the four MSS bands.  

Exploration of the data indicated that the green and infrared bands were 
strongly correlated (linearly) with population.  Regression analyses were 
conducted to determine whether population for the sample sites could be 
explained as a function of the four-band spectral signatures.  As expected, 
regression equations utilizing the green and infrared bands were most ca-
pable of predicting population density. The signs for the coefficients re-
mained the same for the 1972 and 1979 data although the magnitudes of 
the coefficients were different.  Examination of the regression equations 
showed reflectance in the green band increasing and reflection in the two 
infrared bands decreasing with increasing population density.   Iisaka and 
Hegedus do not explain the physical basis for the signs of the coefficients 
or the reason why they are different between the two years.   Based on our 
own research in North America, we cautiously suggest that denser urban 
build-up associated with greater population densities co-occur with less 
urban vegetation, hence the inverse relationship with infrared reflectance.8

At first blush the same argument might also suggest the same inverse rela-
tionship between population and green reflectance.  However the increased 
green reflectance from concrete and other lightly colored inert materials 
more than compensates for the loss of green reflectance from sparse urban 
vegetation in such situations.  Likewise, we suggest that the difference in 
the reported regression coefficient magnitude between the two years might

have been reduced by employing radiometric / atmospheric correction and 
standardization methods which have become common in Landsat data 
processing since that time (e.g. Singh, 1989).  

Overall, the models generated multiple R values of 0.84 and 0.77 for the 
1972 and 1979 studies respectively.  Judicious removal of a few atypical 
sites improved the multiple R values to 0.94 (n = 60) for 1972 and 0.90 (n
= 62) for 1979.  Nonconformant sites were residential sample sites con-
taining train stations, schools, churches and other features not prevalent in 
the Tokyo residential area.   

The next important milestone of intraurban population estimation research 
was reached by Lo (1995) who rigorously evaluated the use of SPOT im-

                                                     
8 An increase in shadow from increased urban “canyonization” is an alternative 

explanation. 
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agery for population estimation9 using methods predicated on Iisaka and 
Hegedus’ (1982) earlier success. Whereas the Landsat MSS used by Iisaka 
and Hegedus (1982) utilized four spectral bands with a pixel size of 79 m,  
the SPOT imagery used by Lo had three bands (i.e., green, red, infrared) 
and a pixel resolution of 20 m.  When the project was initiated, it was 
thought that the smaller SPOT pixel size would be a decided advantage, 
“Because of the low spatial resolution of the Landsat-MSS data, the spec-
tral radiance is the average of reflectance of different cover types over an 
area of 79 m by 79 m in a pixel.  The spectral reflectance of the residential 
cover, on which population estimation has to be based, is therefore highly 
diluted.  This dilution will likely affect the accuracy of the population es-
timates. … Because of its better resolution, each SPOT image pixel covers 
a much smaller area on the ground, and hence the spectra radiance is more 
representative of its ground cover characteristics than the 79-m Landsat-
MSS counterpart” (p. 18).  In the exploratory work of Iisaka and Hegedus 
(1982) cited above no attempt was made by the authors to incorporate any 
a priori knowledge about the study area that might permit different regres-
sion models to be used in different neighborhoods.  In contrast, the objec-
tive of  Lo was to model population density in a metropolitan Hong Kong 
study area (i.e., Kowloon) as a function of SPOT spectral reflectance while 
employing GIS technology to permit different regression transfer equa-
tions to be used with different landtypes. 

As mentioned by Lo, the mixed landuse in Kowloon was a significant 
challenge.  Landuse was complex with residential areas intricately mixed 
with non residential areas.  Transitions between low-density residential ar-
eas and high-density overcrowded areas were abrupt.  Multistoried build-
ings in Kowloon not only housed multiple dwelling units, but the buildings 
themselves were multiple-use, serving commercial and industrial functions 
too.

Population data for Kowloon used to support the research was collected by 
the Hong Kong Census and Statistics Department in 1986 for 60 planning 
units via complete enumeration.  Because of computer storage limitations, 
only 44 of the planning units were examined in the study.  These ranged in 
area from 6 to 291 hectares.  The SPOT data used for the population esti-
mation was acquired in January, 1987.  After significant preprocessing, the 

                                                     
9 Lo (1995) also treated the counting of dwelling units with SPOT imagery.  To 

simplify the review, we cite only the results for the population estimation compo-
nent of the research.  The dwelling unit estimation results closely paralleled those 
of the population estimation.   
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SPOT data was georegistered to the boundaries of the planning units.  This 
permitted mean spectral reflectance values to be calculated for each unit.  
By calculating the area of each planning unit with the GIS, population den-
sities for each were also determined. 

Exploratory analysis indicated a moderate negative correlation (r = -0.62) 
between mean infrared reflectance and population density.  After these ini-
tial findings, several regression analyses were performed to model plan-
ning unit population as a function of mean planning unit spectral reflec-
tance.  Twelve of the planning units were manually selected to calibrate 
the regression equations and the remaining 32 were reserved for testing re-
gression goodness.  Regression models were built using all three bands as 
well as simplified regression models using only the infrared band.    The 
dependent variable in the regression model was population density rather 
than population counts.10 The model using three bands was capable of es-
timating population of the whole study area with a relative error of 1.7%, 
whereas the infrared band model resulted in an error of 15.0%.  When 
population estimation was attempted at the smaller scale of the planning 
unit, serious estimation errors sometimes exceeding 500% were encoun-
tered, primarily in commercial and industrial planning units.  The mean 
relative error for the micro-scale planning unit estimation was about 75%. 

Because each planning unit in both Kowloon and the greater Hong Kong 
metropolitan area was a mixture of both residential and nonresidential land 
uses, Lo sought to refine the population estimation process.  The refine-
ment required that the pixels actually representing residential land use be 
identified within each planning unit.  This would permit the regression 
equations to be applied to those residential pixels alone and avoided the er-
rors associated with attempting prediction for those pixels known to be 
predominantly commercial or industrial. 

This refinement was completed by classifying the SPOT image into eight 
landtypes which included both low-density residential and high-density 
residential categories.  An average per-pixel population density for high 
and low density residential zones was calculated using the census data for 
the 12 calibration planning units.  The refinement produced a modest de-
crease in the population estimation errors of the smaller planning units, 
and the absolute mean relative error dropped to 67%. 

                                                     
10 When multiplied by the area of a single SPOT pixel (0.04 hectares), the 

population per pixel could be easily estimated from the density.   
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For its rigor in methodology and actual success in modeling population 
density of small districts, Harvey (2002a) represents a landmark work of 
significant dimensions that should be read in its entirety.  Harvey’s goal 
was to model small-area population densities for Australian census collec-
tion districts (CDs) using spectral features measured from Landsat TM im-
agery. 

Imagery of Ballarat Statistical District (west of Melbourne Australia) con-
taining 138 CDs was used to build models of urban population density.  
Thematic Mapper imagery of Geelong Statistical District (225 CDs), 
nearly 100 km southeast of Ballarat was then used for model validation.  
Population data supporting the study was collected in 1986 by the Austra-
lian Bureau of Statistics and was preprocessed to correspond more closely 
to the February 1988 imagery date.11

Recognizing that “one obvious problem was that the values of the depend-
ent variable ranged over three orders of magnitude” (p. 2079), both loga-
rithmic and square root transformations of CD population density were 
calculated before multiple regression modeling began.  A set of 80 predic-
tor variables was submitted to a host of stepwise regression analyses in an 
effort to find the best predictive variable subset.  These included the fol-
lowing classes of transformations, calculated for each CD by using the 
pixels captured within the digitized boundaries of the CD: 

- Mean TM band reflectance 
- The square of the mean of TM band reflectance 
- The cross product of the mean TM band reflectance 
- The ratio of mean reflectance for two TM bands 
- The difference-to-sum ratio for two TM bands 
- The TM band variance 
- The TM band standard deviation 
- The TM band coefficient of variation 
- Normalized bands 

The following spectral transforms were calculated on a per-pixel basis and 
then summarized for each CD by calculating means and measures of varia-
tion.  These were numbered among the 80 multiple regression variables. 

- Selected normalized bands 
- Selected band ratios 
- Difference / sum ratios of selected bands 

                                                     
11 See Harvey (1999) for a discussion of this preprocessing. 
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- Hue transforms of selected bands using both rectangular and 
cylindrical coordinates.12

Summarizing Harvey’s voluminous results, model R2 values of about 0.90 
were obtained with model subsets containing between four and nine vari-
ables.  The best predictors were the mean and standard deviation of per-
pixel spectral features listed above.  The dependent variable transform as-
sociated with the highest R2 regressions was the square root rather than 
logarithmic transform. 

For validation, six multiple regression models predicated on the Ballarat 
study area were applied to the TM imagery of the Geelong Statistical Dis-
trict.  Population counts and densities for the 225 Geelong Statistical Dis-
trict CDs were thus estimated and then compared against the true CD 
population counts.  The two models based on band means alone produced 
very poor total population estimates.  The model based on the per pixel 
measures listed above produced the best total population estimate in the 
validation CDs and had an urban total underestimation of only 3%.  The 
following observations were made: 

1. Models of high complexity performed better than simpler models.   

2. Populations of lower density in rural areas were consistently and 
seriously overestimated.  The errors were not large in terms of 
population numbers, but rather in percentages of the true population 
counts.  Regarding this rural overestimation, Harvey comments, “It is 
concluded that the potential of this methodology is limited by 
heterogeneity of both land cover and population density within the 
individual CDs, and that are, in principle, unlikely using this 
approach.  In particular, the sacrifice of detailed spatial information 
leaves no way to respond to the problem of over-estimation of 
population in large areas of low density” (p. 2093).  

3. Given that models driven by per-pixel spectral indicators were 
superior to those calculated for the CDs (e.g., CD band means), 
Harvey conjectures that “models formulated [at a lower] spatial level 
can produce relatively accurate…population estimates for larger 
spatial aggregates, but not for spatial units at the same level of 
aggregation” (p. 2093).   Harvey concludes that future modeling 

                                                     
12 See Jensen (2005; pp. 164-167) for a discussion of hue transforms. 
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should be logically done at a lower level of aggregation than the CD 
to minimize errors in population prediction.  He also points out the 
difficulty operationalizing this within his Australia study area – while 
spectral data may be available at the smaller pixel level, the census 
calibration data is available only at the larger level of the CD, and 
thus precludes lower level modeling.  Methods to overcome this 
obstacle by exploiting an expectation-maximization statistical 
algorithm are presented in Harvey (2002b). 

The primary objective of the research conducted by Li and Weng (2005) 
was to develop and compare methodologies for estimating the population 
density of Indianapolis, Indiana using Landsat ETM+ data.  As a justifica-
tion for their research, Li and Weng claimed that previous research “rarely 
[had] explored the integration of spectral, textural, temperature data, and 
advanced transformed remote sensing variables to estimate population. 13

Such incorporation may provide new insights for population density esti-
mation” (p. 948).  The ETM+ satellite data were acquired on 22 June 2000.  
The population data, based on census blocks, were obtained from a GIS 
vendor and aggregated into census block groups (CBGs). 

Li and Weng’s research objective required that several spectral features be 
examined to determine their correlation strength with population density.  
These spectral features included; 1) the first principle components of the 
ETM+ visible and optical infrared bands, 2) six different vegetation indi-
ces, 3) variance images (with various local window sizes) calculated from 
ETM+ red and middle-infrared bands, 4) surface temperature from ETM+ 
Band 614  and 5) impervious surface and green vegetation fraction images 
produced from decomposition of the six ETM+ visible and optical infrared 
bands.15

The study area consisted of 658 CBGs.  An initial investigation required 
162 samples for model building and the remainder for model validation.  
Like their predecessors, the samples used for creating the models were not 
entirely chosen at random.  In this Indianapolis study, all the block groups 
with low and high population densities were included among the 162, 
whereas the medium population density CBGs were sampled randomly.   

                                                     
13 Harvey (2002a) is an obvious exception to this generalization. 
14 See Weng et al. (2004) for detailed information on how surface temperature 

was derived. 
15 See Lu and Weng (2004) for more explanation about the fraction images. 
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Simple correlation analysis was used to explore the relationship between 
population density and the spectral features mentioned above.  The simple 
Pearson’s r showed only a weak correlation between population density 
and the spectral bands, principle components, vegetation indices, fraction 

data, and texture r never exceeded 0.4 in absolute value.  The correlation 
between temperature and population density was moderate (r = 0.519).  It 
is notable that while the correlation between population density and the 
middle-infrared band was nearly zero, the correlation between the texture 
calculated in that band with a 7 x 7 window was substantive (r = -0.402).  
It was also found that transformations of the dependent variable (i.e., natu-
ral logarithm, square root) improved correlations moderately.  The best 
multiple regression equation using a subset of the spectral features gener-
ated an R2 of 0.83. A residual error map showed the greatest misestimation 
occurring in CBGs of extremely high and low population density. 

According to Li and Weng, “In order to improve population estimation re-
sults, separating the population density into sub-categories such as low, 
medium and high densities, and developing models for each category” (p. 
952) was deemed a necessity.  However, the results of using separate re-
gression models for the three strata of population density were mixed.  In 
general, stratification improved the results, nonetheless, with R2 values for 
low and high density population density CBGs never even reaching 0.2, Li 
and Weng questioned whether Landsat ETM+ data was suitable for model-
ing extremes in population.  For medium density population, the results 
were much better with R2 approaching 0.90.  The best predictor variables 
for the medium density models included red band texture (7 x 7 window), 
thermal temperature, the simple ratio of the near infrared and red bands, 
the transformed normalized difference vegetation index,16 the soil adjusted 
vegetation index,17 infrared reflectance, and the value of the first principle 
component image.  Although misestimations for low and high density 
population CBGs were still significant the total population estimate error 
for the Indianapolis study area was only 3.2%. 

Comments 

We consider pixel-based estimation insufficiently explored to provide a 
generalized judgment of its worth. Because of differences in urban physi-
ognomy, the results of the urban Tokyo, Ballarat, Hong Kong, and Indian-
apolis studies are difficult to apply to other worldwide cites.  However, we 

                                                     
16 See Deering et al. (1975) 
17 See Huete (1988) 
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agree with Li and Weng (2005) that “using remote sensing techniques to 
estimate population density is still a challenging task both in terms of the-
ory and methodology, due to remotely sensed data, the complexity of ur-
ban landscapes, and the complexity of population distribution” (p. 955).   

The foregoing review suggests several things.  First, practitioners using 
per-pixel estimation should expect estimation problems in areas of ex-
tremely low or high population density.  Second, per-pixel estimation us-
ing spectral radiance can benefit from stratification of the landscape that 
permits different regression equations to be built for specific landtypes.  
Third, because population errors of underestimation and overestimation 
tend to be compensating, accuracy of the approach will increase propor-
tionally with the area of the enumeration units.  Fourth, efforts to define 
spectral features more related to population density than reflected spectral 
radiance are warranted.  The use of texture by Li and Weng (2005) and the 
spectral measures of Harvey (2002a) have already been mentioned.  Web-
ster (1996) presented several other texture measures appropriate to urban 
population modeling, all of which can be automatically derived from satel-
lite imagery.  In addition, indices derived from spectral reflectance com-
monly used in vegetation analysis18 may likewise be more closely related 
to population density than spectral reflectance values used alone.  Other 
indices specifically related to population density may require development.   
Finally, as illustrated by Li and Weng (2005), urban temperature measured 
by satellites is modulated by the amount of inert or built-up land within the 
thermal sensor footprint.  Further exploring the use of thermal temperature 
as a surrogate for population density might likewise prove fruitful.  If so, 
then the use of imagery from the Advanced Spaceborne Thermal Emission 
and Reflection Radiometer (ASTER) with its five thermal bands may pro-
vide improved estimates of population density than those possible with 
ETM+. 

4.3 Case Study 

The goal of this preliminary case study was to determine whether the 
pixel-based approach to population estimation developed by Iisaka and 
Hegedus (1982) and extended by Lo (1995) would be successful in model-
ing population density in the Wasatch Front of Utah.  Three specific objec-
tives were outlined. 

                                                     
18 See Jensen (2007; pp. 382-393) for a review of popular vegetation indices. 
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1. To determine whether the population density among 1990 census 
block groups (CBGs) could be modeled as a function of the spectral 
characteristics of the census blocks as measured by Landsat Thematic 
Mapper data acquired in 1990. 

2. To determine whether other spectral measures such as texture and the 
Normalized Difference Vegetation Index could model population 
density more accurately than simple spectral reflectance used alone. 

3. To determine whether thermal data collected by Landsat Thematic 
Mapper could be effectively used to model population density in the 
study area. 

This case study is a small part of a larger project to determine whether the 
pixel-based approach can be used to create accurate intercensal population 
estimates of the same Wasatch Front region. 

Study Area 

Demographics.  As shown in Figure 4, the study region includes the major 
metropolitan areas of Utah.  Over a dozen incorporated entities are part of 
the study area, including Bountiful, Salt Lake City, Taylorsville, Sandy 
City, Orem, Provo, American Fork, and Spanish Fork.  It is an area of 
steady population increase. The average population growth along the Wa-
satch Front between 1970 and 2005 was about 2.5% per year.19  The popu-
lation growth has been steady primarily because of Utah’s historically 
large family size and relatively high fertility levels. These factors make 
Utah somewhat unique in the U.S.; the majority of its population growth 
(80%) is from natural increase (GOPB 2005).  Even when net migration is 
low or negative, Utah still experiences population growth driven by natural 
increase.  Nonetheless, migration will continue to be an important factor in 
Utah population growth. Over the last fifteen years the Wasatch Front has 
averaged about 25,000 new residents a year and the GOPB predicts that 
about 42,000 new residents a year will make the Wasatch Front region 
their home between 2005 and 2030. Given the rapid and steady population 
growth, as well as its concomitant affect on the housing and construction 
sector and land use change, the Wasatch Front region is an excellent case 
study site. 

                                                     
19 This is slightly below the 2.6% average annual population growth experi-

enced by other states in the Mountain West census region, but significantly higher 
than the U.S. annual average population growth of 1.1% 



4 Intraurban Population Estimation      77 

Figure 4. Municipalities in the study area along Utah’s Wasatch Front. 

Landtypes.  Based on research conducted primarily in Salt Lake City, 
Utah, Ridd (1995) categorized urban fabric into three components; 1) 
vegetation, 2) impervious surfaces, and 3) bare soil.  The common abbre-
viation for this triad is VIS.  Impervious surfaces include concrete, asphalt 
streets, asphalt roofing, shingles, and metal roofing.  Vegetation includes 
grass, tree, and shrub categories (after Ridd, 1995). 
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Using Ridd’s model, Hung (2002) extensively studied the VIS components 
in Salt Lake City, findings we consider generally applicable to the whole 
study area.  Hung found that urban commercial districts in Salt Lake City 
are strongly dominated by impervious surface (86%).  Low density resi-
dential (i.e., single-family residential) zones are a mix of vegetation and 
impervious surface with vegetation representing nearly 70% of the land 
cover.  Change from low through moderate to high density residential 

zones showed an increase in impervious surface area (24%  34% 

46%) at the expense of vegetation (69%  56%  43%).   Soil was a 
large component only in industrial zones (24%) and was about equal to 
vegetation coverage (26%). 

Data and Methods 

Two data sources were required to conduct this study.  The first source 
was the 1990 Decennial Census of the United States.  The specific variable 
extracted from the census was total population aggregated by census block 
groups (CBGs).  A total of 812 CBGs were initially part of the study area.  
The average CBG size was 3053 hectares with a range from 11.3 to 
520,000 hectares. Figure 5 is a map of population density in 1990 for the 
study area.  The average population density among CBGs was 16.8 people 
/ hectare (s = 12.6) and the average density of housing units was 6.3 units / 
hectare (s = 5.8).  The densest population and housing recorded among the 
CBGs was 110.4 people / hectare and 48.5 units / hectare respectively.  
These high densities are found in areas of student housing adjacent to 
Brigham Young University in Provo, Utah.   

The second data source was a Landsat ETM+ image dated May 28, 2000 
(Figure 6).  Table 1 shows the fundamental characteristics of the Landsat 
TM sensor.  The quality of the image was good, but cloud cover masking 
was required to avoid problems relating spectral signature to population 
density -- portions of CBGs containing clouds were removed from the 
analysis.  Unfortunately, thin smoke also partially obscured a few of the 
CBGs.  Since this smoke was found at the interface between the suburban 
and rural areas, the affected image areas were not eliminated from the 
study.  Instead, the areas were manually delimited and the contrast and 
brightness adjusted until they matched the surrounding area.  This manual 
approach was only partially successful.  The image data was radiometri-
cally corrected, and standardized to reflectance/emittance as measured at 
the sensor.   
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Recognizing from the reviewed literature that derived spectral features 
may be more predictive of population density than simple spectral reflec-
tance alone, several derived variables were generated from the seven TM 
bands for each CBG.   

Figure 5. Population density of census block groups in the study area. 
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Figure 6. Band 4 (IR-1) of a Landsat ETM+ image acquired of the study area  
May 28, 2000 (2  contrast stretch).
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Table 1. Fundamental characteristics of the Landsat TM sensor.  Columns 1, 3, 
and 4 from Landsat 4 Data Users Handbook (1984). 

Band 
Number 

Band 
Name

Band Wavelength (micrometers) Nominal 
Resolution 

(meters)

1 Blue 0.45-0.52 30 
2 Green 0.52-0.60 30 
3 Red 0.63-0.69 30 
4 IR-1 0.76-0.90 30 
5 IR-2 1.55-1.75 30 
6 Thermal 10.40-12.50 120 
7 Mid-IR 2.08-2.35 30 

The final variable set used in the correlation and regression analyses in-
cluded the following: 

- Mean Blue reflectance (B )

- Mean Green  reflectance (G )

- Mean Red reflectance (R )

- Mean IR-1 reflectance (I1 )

- Mean IR-2 reflectance (I2 )

- Mean thermal brightness temperature (T )

- Mean Mid-IR reflectance (I3 )

- Standard deviation of Blue reflectance (B )

- Standard deviation of Green reflectance (G )

- Standard deviation of Red reflectance (R )

- Standard deviation of IR-1 reflectance (I1 )

- Standard deviation of IR-2 reflectance (I2 )

- Standard deviation of thermal brightness temperature (T )
- Minimum of thermal brightness temperature (Tn)
- Maximum of thermal brightness temperature (Tx)
- Range of thermal brightness temperature (Tr)

- Standard deviation of Mid-IR reflectance (I3 )

The standard deviation, range variables, maximums and minimums were 
designed to be rough measure of spectral texture20 in the CBG.   

After exploratory correlation analysis, stepwise multiple regression analy-
sis was utilized to build regression models explaining population density in 

                                                     
20 Several popular texture measures, including fractal measures, were tried, but 

all proved less effective than these simple statistics. 
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the CBGs as a function of the variables listed above.  Following the pattern 
of Harvey (2000a), several issues were considered in judging the goodness 
of a regression.  The magnitude of the adjusted R2 was considered.  If all 
else were equal, a regression equation producing a higher R2 was preferred.  
Simplicity was a second consideration.  When regression equations pro-
ducing similar R2 values were compared, the equation using the fewest 
predictor variables was deemed best.  Logical consistency was also neces-
sary.  Equations likely to produce negative population densities were dis-
carded.  Equations with variable combinations that appeared illogical were 

discarded.  For example, it made little sense to include both I1 and I2  in 
the same equation unless we could reasonably explain why the addition of 
the second band added explanatory power not contained in the first.  Equa-
tions exhibiting multicollinearity symptoms in the stepwise regression 
process were also discarded.  Although a logarithmic transform of popula-
tion density was required to improve linearity, we otherwise avoided vari-
able transformations and higher order terms. 

Results 

Table 2 shows the simple correlation between the natural logarithm of 
population density (Pln) and the independent variables listed above.  The 
correlation between population density and spectral reflectance follows the 
same pattern reported by Li and Weng (2005, Table 3).  Correlations are 
low but explainable patterns emerge.  Blue, Green, Red, and IR-1 reflec-
tance increase with increasing population density.  Thermal temperature 
also increased with increasing density.  In contrast, Mid-IR reflectance and 
IR-2 reflectance are inversely related to population density. 

In the context of Hung (2002) summarized above, we consider these rela-
tionships largely a function of the relative amounts of vegetation and im-
pervious material within the CBG.  As housing unit density increases, the 
amount of concrete, asphalt, shingle, and other nonporous surfaces in-
creases with the concurrent loss of grass, trees, and shrubbery.  Since im-
pervious surfaces reflect a larger proportion of incident visible light than 
vegetation does, the increase in reflectance with increased housing density 
is logical.  Our interpretation of the similar increase in IR-1 reflectance is 
less obvious.  Vegetation has a high IR-1 reflectance.   Our tentative ex-
planation for the sign in Table 2 is that the IR-1 reflectance increase from 
impervious surfaces more than offsets the loss of IR-1 reflectance due to 
vegetation loss. 
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Table 2. Pearson’s r correlation between CBG spectral features and Pln.
Given the sample size of 807 CBGs, all are significant at the 0.01 level. 

Spectral feature r

Blue reflectance Mean 0.202 
 S.D. -0.184 
Green reflectance Mean 0.185 
 S.D. -0.190 

Red reflectance Mean 0.117 
 S.D. -0.219 

IR-1 reflectance Mean 0.210 
 S.D. -0.203 

IR-2 reflectance Mean -0.176 
 S.D. -0.427 

Thermal temperature Mean 0.238 
 S.D. -0.671 
 Minimum 0.653 
 Maximum -0.488 
 Range -0.773 

Mid-IR reflectance Mean -0.127 
 S.D. -0.352 

Table 2 also demonstrates that spectral reflectance variability within a 
CBG is frequently a better predictor of population density than mean spec-
tral reflectance.  This agrees with the results of Harvey (2002) among oth-
ers.   This is clearly the case for the IR-2, Mid-IR and Thermal bands.  In 
all cases, population density was inversely related to the variability fea-
tures.  We tentatively suggest that the increase in impervious surface asso-
ciated with increased housing density is betrayed as an increase in urban 
surface homogeneity as vegetation amounts become more limited. 

Given the weak correlations generally throughout the table, the strength of 
the thermal band features as predictors of population density is striking.   
This agrees with findings by Li and Weng (2005) for the Indianapolis, 
Indiana metropolitan study site.  The reason for thermal temperature and 
population density covariance is well reported.  Thermal temperature in-
creases with the increased proportion of inert material associated with in-
creased dwelling structure density.  The high negative correlation between 
population density and temperature indicates that CBGs with higher popu-
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lation densities also have less temperature variability because the impervi-
ous material is ubiquitous throughout the CBG. Areas of lower population 
density will have built-up zones of housing (warmer) interspersed with 
parks, grass, empty vegetated lots, pastures, and agricultural areas (cooler).   

Given that the relative amounts of vegetation and impervious material 
within a CBG were fundamentally responsible for the spectral reflectance

 population density relationship, we generated some ratios to better rep-
resent the inverse relationship between vegetation and impervious material 
within the study area.  These included: 

- Mean CBG red band reflectance / Mean CBG IR-2 reflectance (R3/5)
- Mean CBG red band reflectance / Mean CBG Mid-IR reflectance 

(R3/7)

Multiple Regression Models. Table 3 contains the best regression models 
as judged by the criteria discussed previously.  In all the models, the natu-
ral logarithm of the CBG population density (Pln) was the dependent vari-
able.  All of the regression equations, constants and variables are signifi-
cant at a 0.05 level minimum. 

From the perspective of parsimony, it appears that the three-variable model 
would be preferred for practical application.  This model produced a mul-
tiple R of 0.80 and an adjusted R2 of 0.64.  Models with more predictor 
variables produced models with R2 values exceeding 0.70, but were diffi-
cult to interpret.  As the three variable model shows, the best predictive 
combination includes temperature range, the first TM infrared band, and 
the ratio of the red band to IR-2 reflectance.  

Table 3. Best regression equations to model Pln.

Number of 
predictors 

Equation R2

(adjusted) 

1 4.390 – 0.176 Tr 0.60 
2 2.389 – 0.173 Tr + 6.65 I1 0.62

3* -0.164 Tr + 8.685 I1  + 3.107 R3/5 0.64

4* -0.161 Tr + 9.362 I1  + 3.528 R3/5 -3.003  I3 0.64

* = the constant of the regression equation was not significant and is not 
included in the equation shown. 

Residual Analysis.  Figure 7 is a map of standardized residuals from the 
regression.  Generally speaking, the best prediction was obtained in CBGs 
with moderate to small area in the central corridor of the study area.  The 
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relationship between CBG area and total population error21 is linear and 
strong (r = +0.853, n = 812).  These results are different from Lo (1996) 
but correspond to the results of Harvey (2002a).  In the Wasatch Front, the 
large CBGs have boundaries which cross mountain slopes perpendicularly 
and capture areas of rural desert, agriculture, woodland and forest that 
form the hinterland of the core city area.  Obviously the mean spectral val-
ues of these CBGs do not fairly represent the spectral character of the ur-
banized proportion of the CBG.  

Any error in the population density produced by the regression equation 
also resulted in enormous estimation errors when multiplied by the area of 
large CBGs.  For example, the largest CBG in the study exceeded 520,000 
hectares, and had a true population of only 192. With very sparse vegeta-
tion, it has an average spectral signature similar to high density residential 
zones.  Using that spectral signature information, the regression equation 
estimated a population density of 0.83 people per hectare and a total CBG 
population of over 431,000 inhabitants.  It is an understatement to con-
clude that some manual adjustment of CBG boundaries to better fit the ac-
tual urban / suburban area within a CBG is warranted.   

                                                     
21 Total population error was calculated as the absolute value of (true CBG 

population - modeled CBG population).   
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Figure 7. Map of residuals showing areas of over and underestimation by the re-
gression equations 
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4.4 Concluding Comments 

Research into population estimation using overhead imagery naturally 
leads to the question of whether the Decennial Census of the United States 
could be built upon remotely sensed data.  In the early 1980’s, there was a 
flurry of discussion regarding that question. The dialog was formally 
started by Brugioni (1983) who sided with the Secretary of the Commerce 
in his belief that the accuracy of the 1980 census could have been in-
creased while concurrently decreasing the cost.  At the time of Brugioni’s 
writing, politicians in many large U.S. cities were unwilling to accept the 
enumeration as accurate, generally claiming the undercounting of urban 
subgroups.  The primary issue was not apportioned representation in con-
gress but rather the disbursement of federal funds based on population.  
City mayors observed that minorities and illegal immigrants used federally 
funded services and an accurate count of them was essential.   Brugioni 
proposed, “It is time to stop and assess the prospects for better perform-
ance of the 1990 census.  By using overhead reconnaissance systems 
which carry sophisticated cameras and remote sensing equipment, and by 
employing modern interpretation methods backed up by the latest com-
puter technology,  I am convinced that the census can be done more accu-
rately, cheaper, faster, and better than by previous methods” (p. 1337).  
Given that the article was a commentary designed to elicit comments from 
the journal readership, Brugioni can be forgiven for such enthusiasm.  The 
stated reasons for his certainty are hazy. Brugioni discusses the wealth of 
technology available for the task and recites a paragraph of remote sensing 
success stories such as weather prediction, forest inventory, and strategic 
intelligence.  He then wonders why the Bureau of the Census has “not at-
tempted to use these same technologies to determine the number of people 
living in a given area of a U.S. city” (p. 1338).   Brugioni also cites the on-
going military use of overhead imagery to estimate urban populations 
abroad. Brugioni fails to mention that such foreign estimations seldom 
have an accuracy check.  In conclusion, Brugioni appeals to his own au-
thority, “From my nearly 40 years of experience in all phases of reconnais-
sance and analysis activity, I am thoroughly convince [sic] that a census 
using space-age technology is not only feasible but can be performed bet-
ter and cheaper, and be more responsive to the needs of modern-day Amer-
ica.” 

Academics were quick to highlight the logical flaws of Brugioni’s argu-
ments as well as other problems with conducting a census with space-age 
technology.  Morrow-Jones and Watkins (1984), both human / population 
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geographers, believed that overhead imagery could never become the pri-
mary data source for the census.  Several problems were articulated.  They 
cited the practical hurdle of imaging the whole nation in a timely manner 
that could provide the same April 1st national snapshot as the census.  Op-
erational definitions (e.g., the distinction between de jure and de facto

counting) long used by the census bureau and long valued by social scien-
tists because of their constancy through several decades would change, 
“interrupting an exceptionally valuable source of evenly spaced historical 
data” (p. 230).  While some census variables (e.g. house size) might be 
amenable to collection on overhead imagery, “their meanings would be 
changed to the detriment of long term comparative research” (p. 230).  
Morrow-Jones and Watkins also claimed that too little was known about 
using image characteristics as surrogates for social characteristics meas-
ured in the census.  “Can these methods tell us the change in age structure, 
household composition, family income, race, sex ratio, or other character-

istics of the people?  This is a crucial part of the census and the largest 
drawback to the suggested method for improving it” (p. 231).   Ethical 
considerations of privacy and image data use also troubled Morrow-Jones 
and Watkins.  Sinclair (1984) was similarly troubled and wrote, “In Amer-
ica, is there not a right to ignore the Census and the Census taker?  Or is it 
so important that we be counted that our own spy networks must be trained 
on us?” (p. 80).  In conclusion, Morrow-Jones and Watkins admitted that a 
decennial census might be possible using remotely sensed data, but “the 
tradeoff would mean a great deal less information” (p. 232). 

We suspect that Paul (1984) probably states the present convergence of 
opinion on this matter.  First is the opinion that the use of remotely sensed 
data for human disciplines such as social science and public health has 
been historically undervalued and inadequately studied.  The studies col-
lected by Liverman et al. (1988) demonstrated the kind of progress that 
might be possible.  However, as regarding population geography, while 
“remote sensing technology can be useful in conjunction with traditional 
demographic enumeration techniques [it] cannot be used as a replacement” 
(Paul 1984, p.1611).   Expanding Paul’s thought, we likewise do not con-
sider remote sensing a replacement for traditional Census enumeration, but 
as an important source of urban data nonetheless.  As reviewed by Lo 
(2006), many researchers have found that remotely sensed data is the only 
source of population information available in many developing countries.  
The intelligent use of imagery to augment traditional approaches may 
likewise be an efficient and accurate way of completing intercensal popu-
lation estimates in areas of rapid urban growth.  Furthermore, as scientists 
seek ways to improve the human condition, it may be profitable to con-
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sider gathering new kinds of urban data via remote sensing rather than de-
veloping new high-tech ways to capture traditional measures.  See Jensen 
and Cowan (1999) for a review.  For example, Weber and Hirsch (1992) 
demonstrated the calculation of spatial urban quality of life indices from 
imagery that are not amenable to a ground survey.   Lo and Faber (1997) 
likewise demonstrated the generation of quality of life variables from 
overhead imagery.  Unfortunately, the works of Weber and Hirsch as well 
as Lo and Faber have not been widely studied and have certainly not pene-
trated mainstream urban social science.  Thus, although remote sensing 
will not likely supplant the typical Census enumeration, it nonetheless may 
provide critical measures of import to social scientists and policy makers 
in the pursuit of both knowledge and social justice. 
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