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2.1 Introduction 

Timely and accurate change information in the urban environment is es-
sential for successful planning and management.  The change detection 
may range from 1) monitoring general land cover/land use found in multi-
ple dates of imagery, to 2) anomaly (e.g., subsidence) detection on hazard-
ous waste sites.  Remote sensing approaches to change detection have been 
widely used due to its cost-effectiveness, extensibility, and temporal fre-
quency.  Since the advent of high-spatial resolution satellite imagery, it has 
become increasing popular to detect, analyze, and monitor detailed 
changes such as new buildings, roads, and even patios in the urban envi-
ronment. Basically, there are two types of change detection methods: 1) 
detection of the change using various image enhancement methods, and 2) 
extraction of detailed types of land-cover change based on the use of clas-
sification techniques (Chan et al. 2001; Jensen 2005) 

Traditional remote sensing change detection techniques, which are gener-
ally applicable to coarse spatial resolution optical imagery, include image 
algebra multi-band differencing (Coppin and Bauer 1996), image trans-
formation such as principal components analysis (Collins and Woodcock 
1996), and the widely used post-classification comparison method (Jensen 
et al. 1995). More recent change detection methods are based on expert 
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systems, artificial neural networks, fuzzy sets, and object-oriented ap-
proaches.  These change detection methods are explained in Lu et al. 
(2004) and Jensen (2005). 

This chapter provides several examples of remote sensing change detection 
based on new change detection techniques using the remote sensor data 
obtained from 1) a digital frame camera, and 2) a LIDAR (Light Detection 
and Ranging) sensor system.  These sensors function according to the logic 
shown in Figure 1.  The change detection techniques include neighborhood 
correlation image analysis and single date elevation-based subsidence de-
tection. 

2.2 Remote Sensing Change Detection Process 

Jensen (2005) reviews the general steps that are used to conduct change 
detection using remotely sensed data.  The steps include 1) specifying the 
nature of the change detection problem, 2) identifying the remote sensing 
system and environmental considerations associated with change detec-
tion, 3) processing remote sensor data to extract change information by 
applying appropriate change detection techniques, and 4) evaluating the 
change detection results.  Using these steps, scientists are able to decide 
whether their change detection results are of value.  Selecting appropriate 
remote sensor data and change detection techniques according to the na-
ture of the change detection problem under investigation is critical in 
change detection studies.   
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Fig. 1. Two remote sensor systems often used to collect information in the urban 
environment. a) Digital frame camera based on area arrays. b) LIDAR scanner.  
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2.2.1 Digital Frame Camera Remote Sensing 

Digital frame cameras have many similarities to regular cameras.  Instead 
of film, however, they use an area array of charge-couple-devices (CCD) 
detectors (Figure 1).  Like a traditional camera system, the digital CCD 
area array records a “frame” of terrain during a single exposure.  Three pa-
rameters determine the geographic area of the terrain recorded by the CCD 
area array, including 1) the dimension of the CCD array in rows and col-
umns, 2) the focal length of the camera lens (the distance from the rear 
nodal point of the lens to the CCD array), and 3) the altitude of the aircraft 
above ground level (Jensen 2005).  A major advantage of digital frame 
camera remote sensing is its timeliness.  The remote sensor data are avail-
able as soon as they are collected since there is no need for an analog-to-
digital (A to D) conversion.   

2.2.2 LIDAR Remote Sensing 

LIDAR is an optical remote sensing system that uses near-infrared laser 
light to measure the range from the sensor to a target on the surface of the 
Earth.  Three fundamental technologies are used in the LIDAR system, in-
cluding 1) laser range-finding, 2) differential global positioning system 
(DGPS), and 3) inertial measurement units (IMUs).  LIDAR was initially 
introduced to facilitate the data collection for digital elevation models 
(DEM).  Digital elevation information is a critical component of most geo-
graphic databases used by many agencies such as the USGS and FEMA.  
Digital elevation models can be subdivided into digital surface models 
(DSM) and digital terrain models (DTM).  DSM contain elevation infor-
mation about all features in the landscape, including vegetation and build-
ings.  DTM contain elevation information solely about the bare-Earth sur-
face (Jensen 2006).  LIDAR technology can be used to generate the two 
types of elevation models. 

Most LIDAR systems that are used for terrestrial topographic mapping use 
near-infrared light from 1040 to 1060 nm.  Blue-green laser light centered 
at approximately 532 nm is used for bathymetric mapping due to its water 
penetration capability (Mikhail et al. 2001; Boland et al. 2004).  Since 
LIDAR is an active system, it can also be used at night.  The accurate 
measurement of the laser pulse travel time from a light transmitter to a tar-
get on the ground and back to a receiver is critical in the LIDAR systems.  
The range measurement process produces elevation data points, which are 
commonly referred to as masspoints.   
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One of the advantages of LIDAR remote sensing is that each LIDAR point 
is already georeferenced.  It does not require additional geometric correc-
tion (Flood and Gutelius 1997).   LIDAR systems receive multiple returns 
depending on the type of a target on the Earth surface.  If a laser pulse hits 
directly on the ground, it will be recorded as a single return.  If there are 
any materials (trees, grass) with local relief within the instantaneous foot-
print of a pulse, then the pulse will produce multiple returns (first, second 
… last returns).  First returns including single returns can be used to gen-
erate a DSM, while last returns can be used to create a DTM.  Additional 
processing is generally required to generate a DTM from last returns be-
cause some laser pulses never make it to the ground in heavily forested ar-
eas.

Most LIDAR systems provide intensity information in addition to the mul-
tiple return range data.  The recorded intensity is in most cases just the 
maximum of the returned signals (Baltsavias 1999). The intensity values 
are dependent on several factors including gain setting, bidirectional ef-
fects, the size of the target, range to the target, angle of incidence and at-
mospheric dispersion (Leonard, 2005).   

Neighborhood Correlation Image Analysis 

The Neighborhood Correlation Image (NCI) analysis concept was intro-
duced by Im and Jensen (2005).  Correlation analysis can be applied to bi-
temporal imagery in a specified neighborhood to extract spectral contex-

tual information, which contains three unique variables associated with the 
change in two dates of imagery.  These variables include neighborhood 
correlation, neighborhood slope, and neighborhood intercept.  The 
neighborhood correlation variable represents Pearson’s product-moment 
correlation coefficient between the brightness values from bi-temporal im-
agery in a specified neighborhood.  The neighborhood slope and intercept 
variables are calculated using the least squares estimates from the sets of 
brightness values: 
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where n is the number of pixels in a specified neighborhood, and k is the 
number of bands in each dataset.  s1 and s2 are the standard deviations of 
the brightness values found in all bands of each dataset in a specified 
neighborhood, respectively.  BVij1 and BVij2 are the ith brightness values of 
the pixels found in band k of the Date 1 and Date 2 images in a specified 
neighborhood, and µ1 and µ2 are the means of brightness values found in 
all bands of the Date 1 and Date 2 images in a specified neighborhood, re-
spectively. 

If the spectral changes of the pixels within a specified neighborhood be-
tween the two dates are significant, the correlation coefficient between the 
two sets of brightness values in the neighborhood will decrease to a lower 
value.  The slope and intercept values may increase or decrease depending 
on the magnitude and direction of the spectral changes.   Ideally, if there is 
no change in a certain pixel location between two dates, the pixel will have 
high correlation, a slope around 1, and an intercept around 0.  An example 
of correlation analysis with two sample locations (change vs. no change) 
from bi-temporal ADAR digital frame camera imagery is shown in Figure 
2. 
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Fig. 2. An example of correlation analysis with two sample locations (change ver-
sus no change) based on the analysis of bi-temporal ADAR imagery.  

Several shapes of neighborhood can be applied to neighborhood correla-
tion image analysis within a GIS context, including rectangle, circle, annu-
lus, wedge, and irregular.  A module to create NCIs was developed as a 
dynamic linked library (DLL) in the ESRI ArcMap 9.1 environment using 
Visual Basic.  Two general shapes – rectangle (square) and circle – of 
neighborhood were incorporated into the module.  The size of neighbor-
hood can be specified by users (e.g., 3 × 3). 
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2.3 Case Study 1 – Land Cover Change Detection Using 
NCI Analysis and Decision Tree Classification 

The objectives of this study were to explore three types of neighborhood 
correlation image variables using several neighborhood configurations and 
to extract detailed “from-to” change information from bi-temporal imagery 
plus the NCIs using a decision tree classifier (Im and Jensen 2005).  This 
study examined five different sizes of circular neighborhoods (i.e., 1- to 5-
pixel radius).  The study area, located in Edisto Beach near Charleston, 
SC, exhibited considerable residential development between two dates of 
imagery.  The processing steps required to implement the change detection 
study based on neighborhood correlation image analysis and decision tree 
classification are summarized in Figure 3. 
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Fig. 3. Data processing flow diagram of the urban case study.  

Bi-temporal remote sensing data were collected on September 23, 1999 
and October 10, 2000 over the study area using an ADAR 5500 area array 
frame camera in four spectral bands, which included the blue, green, red, 
and near-infrared (Figure 4a,b).  The multispectral data were preprocessed 
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(coregistered and radiometrically normalized) before the creation of 
neighborhood correlation images and subsequent change detection.   

Eight hundred checkpoints were randomly generated and used as ground 
reference information.  Each checkpoint was investigated using visual in-
terpretation and assigned to one of thirteen land cover change classes.  The 
classes included eight change classes (Barren to Developed, Tree to De-
veloped, Tree to Barren, Grass to Barren, Barren to Grass, Tree to Grass, 
Tree to Shadow, and Change in Grass) and five unchanged classes (Devel-
oped, Barren, Tree, Grass, and Shadow).  Five hundred of the samples 
were used to train a decision tree classifier.  The remaining three hundred 
samples were used to evaluate the accuracy of the change classification. 

Five sizes of circle neighborhoods were explored (1- to 5-pixel radius).  
Figures 4c-e depict the 1-pixel radius neighborhood correlation image 
variables.  Based on visual inspection, large neighborhood sizes (e.g., 5-
pixel radius) reduced noise e.g., caused by shadow difference in the NCIs, 
yielding a smoothing effect in the images.  However, it altered change in-
formation (size) to some extent, e.g., a narrow linear change was barely 
distinguishable in the NCIs.  Conversely, the use of a small neighborhood 
size helps detect change more precisely, but can introduce some noise.  
Two-dimensional planes between the 3-pixel neighborhood correlation im-
age variables based on the eight hundred reference data are shown in Fig-
ure 5.  In most cases, the unchanged samples resulted in high correlation 
values and slope values ~1 and intercept values ~ 0.  Conversely, the 
changed samples generally exhibited low correlation values and variant 
slope and intercept values.  Although a few changed samples yielded rela-
tively high correlation (e.g., Barren to Developed), they were distinguish-
able using the other two variables (i.e., slope and intercept).  These three 
unique change variables were very useful for the identification of change 
versus no change in the study area. 
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Fig. 4.  a), b) Bi-temporal ADAR near-infrared imagery obtained on September 

23, 1999 and on October 10, respectively. c) - e) Neighborhood correlation images 

(correlation, slope, and intercept) created from the bi-temporal ADAR imagery.
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Fig. 5. Two-dimensional planes between the three NCI variables using the refer-
ence data. 

The C5.0 decision tree was utilized to classify the land cover change using 
the bi-temporal data plus the NCI information.  A detail discussion of C5.0 
is found in Jensen (2005) and Quinlan (2003).  Five hundred samples were 
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used to train a decision tree classifier and the remaining three hundred 
samples were used to evaluate the change classification.  In order to apply 
the decision tree generated from C5.0 to the corresponding imagery, a 
C5.0 decision tree inference engine was developed and embedded in the 
ESRI ArcMap 9.1.  All change classifications that included the NCIs re-
sulted in significantly higher Kappa accuracies than the change classifica-
tion based solely on the use of bi-temporal imagery (Table 1a).  The 
change classification that incorporated the 3-pixel neighborhood correla-
tion images produced the highest accuracy (overall accuracy = 94.3%; 
Kappa = 0.94).  Figure 6 shows the change classification output image us-
ing the 3-pixel radius NCIs and the change detection matrix between the 
two dates. 

Table 1. a) Land-cover change classification results based on the thirteen classes 
using a decision tree classifier. 

Category 
Overall

accuracy
Kappa ASE 

Kappa Z-test (between 

the first case and others) 

Bi-temporal data 87.3% 0.86 0.0216 N/A

Bi-temporal data plus 
1-pixel radius NCIs 

92.3% 0.91 0.0175 Significant (1.99) 

Bi-temporal data plus 
2-pixel radius NCIs 

93.3% 0.92 0.0164 Significant (2.47) 

Bi-temporal data plus 
3-pixel radius NCIs 

94.3% 0.94 0.0152 Significant (2.97) 

Bi-temporal data plus 
4-pixel radius NCIs 

93.3% 0.92 0.0164 Significant (2.47) 

Bi-temporal data plus 
5-pixel radius NCIs 

92.7% 0.92 0.0171 Significant (2.16) 
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b) Binary change classification results using a decision tree classifier.

Category 
Number of 

rules 

Overall 

accuracy
Kappa 

Kappa Z-test (between 

the first case and others) 

Bi-temporal data 10 90.7% 0.81 N/A

Bi-temporal data plus 
1-pixel radius NCIs 

4 98% 0.96 Significant (1.99) 

Bi-temporal data plus 
2-pixel radius NCIs 

3 98.3% 0.96 Significant (2.47) 

Bi-temporal data plus 
3-pixel radius NCIs 

5 99% 0.98 Significant (2.97) 

Bi-temporal data plus 
4-pixel radius NCIs 

4 98.3% 0.96 Significant (2.47) 

Bi-temporal data plus 
5-pixel radius NCIs 

6 97.7% 0.95 Significant (2.16) 
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Fig. 6. a) Change classification output including the 3-pixel radius NCIs. b) 
Change detection matrix between two dates. 
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Three hundred samples were not sufficient to evaluate the change classifi-
cation with the thirteen classes.  For more reliable evaluation statistics, bi-
nary change detection was also conducted using the same reference data 
and decision tree classification.  The decision tree binary classifications 
with the NCIs resulted in higher accuracies compared to the binary change 
detection without the NCIs (Table 1b).  In addition, the number of rules 
generated from the decision trees was generally less than one-half of the 
number of rules from the decision tree without the NCIs.  Binary change 
detection using the NCIs (i.e., without bi-temporal imagery) yielded very 
high accuracies over 97%.   

These results support the use of neighborhood correlation image variables 
for change detection.  Various levels of neighborhood correlation images 
have their own characteristics.  The concept of neighborhood correlation 
images can be extended to “objects,” and object correlation images (OCIs) 
may be incorporated into object-oriented change detection. 

2.4 Case Study 2 – Subsidence Detection Using Single-
date LIDAR-derived Elevation Data 

Human beings have produced large amounts of hazardous waste.  Hazard-
ous waste must be stored in safe places to avoid contaminating the envi-
ronment.  Monitoring hazardous waste sites is also an essential safety 
measure.  One of the possible failures on hazardous waste sites is subsi-
dence of surface materials such as claycaps due to damage to the storage 
underneath.  The purpose of this study was to investigate the potential of 
single-date LIDAR data with dense postings to detect subsidence in ex-
perimental waste sites at the Savannah River National Laboratory (SRNL) 
near Aiken, SC.   

SRNL installed claycaps to hold nuclear-related hazardous waste products 
buried in shallow pits (Jensen et al. 2006).  Claycap monitoring is nor-
mally conducted through in-situ visual inspection, which is very costly and 
may miss early claycap failure.  Conversely, it is possible to use remote 
sensing techniques such as photogrammetry or lidargrammetry to identify 
subsidence or other direct topographic expressions of claycap failure on 
the order of just a few centimeters (Garcia-Quijano 2006).    

This project used LIDAR data obtained by an Optech ALTM 2050 sensor 
mounted on a Cessna 337 aircraft flown by Sanborn, Inc. of Charlotte, NC.  
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The LIDAR data were collected over SRNL on November 14, 2004.  The 
LIDAR data collection included small footprint first and last return loca-
tion (x, y, and z) and intensity data using a 1064 nm laser at a pulse repeti-
tion frequency (PRF) of 50 kHz.  The nominal post spacing was 0.4 m at 
an altitude of 700 m above ground level (AGL) over an area of 2.6 km2.
Last return LIDR data were processed using TerraModel’s TerraScan mor-
phological filtering software, eliminating obstructions on the ground such 
as trees and buildings to generate a bare-Earth elevation.  An accuracy as-
sessment of the LIDAR-derived elevation is found in Garcia-Quijano et al. 
(2006).  The elevation and hillshaded surfaces of the first returns and bare 
Earth LIDAR data using the IDW interpolation method are shown Figure 
7.  The experimental waste sites, which were used for subsidence investi-
gation, are located in the middle-left of the surfaces.  Figure 8 depicts the 
LIDAR-derived digital terrain model overlaid with 25 cm contours show-
ing two locations of potential subsidence. 
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Fig. 7. Elevation surfaces of the first returns and bare-Earth LIDAR data using the 
IDW interpolation method (a and c) and the hillshaded surfaces of the elevation 
data (b and d).
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Fig. 8. LIDAR-derived digital terrain model with 25 cm contours showing two lo-
cations of potential subsidence. 
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The processing flow diagram of the study focusing on single date eleva-
tion-based subsidence analysis is summarized in Figure 9.  The tabular 
LIDAR bare Earth data were imported into ESRI ArcMap 9.1 as a point 
shapefile.  An elevation surface was generated based on the LIDAR bare 
Earth masspoints using an Inverse Distance Weighted (IDW) interpolation 
method (Figure 7).  The elevation surface was used as reference elevation 
in the single elevation-based subsidence detection module.  The logic of 
the single elevation-based subsidence detection include extraction of regu-
lar samples using the user-defined parameters, generation of simulated 
elevation surface using the regular samples and the IDW interpolation 
method, and creation of subsidence images from the difference between 
the reference and simulated elevation surfaces with a user-specified subsi-
dence threshold. 
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Fig. 9. Data processing flow diagram of single LIDAR-derived elevation-based 
subsidence detection. 
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Various user-specified parameters were applied to the single elevation-
based subsidence detection module.  The four selected subsidence detec-
tion results are shown in Figure 10.  The subsidence detection based on the 
3 m-interval sampling and 0.4 m threshold parameters yielded the best re-
sult (two locations inside the circle in Figure 10b).  Although other combi-
nations of parameters also detected the subsidence, most of them tended to 
overestimate subsidence, which resulted in false alarms on the normal 
claycaps.  Those false alarms can be easily found in Figures 10c and 10d. 
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Fig. 10. Subsidence detection results associated with the experimental waste sites 
and using different parameters.  The 3 m-interval sampling and 0.4 m threshold 
for subsidence resulted in the best result based on visual inspection. 
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Subsidence detection using multiple date (LIDAR-derived) elevation data 
may provide much more accurate and precise subsidence information.  
However, obtaining multiple date elevation data with high quality is not 
always possible.  This study suggests that single-date quality elevation-
based subsidence analysis can be an alternative to the multiple date ap-
proach in hazardous waste site monitoring.   

2.5 Conclusion 

As advanced remote sensors provide improved high-quality data, new 
and/or more sophisticated techniques are needed to extract accurate and re-
liable change information from the data.  This chapter provided examples 
of the application of new digital change detection techniques using two 
different remote sensing data sources for change detection in urban envi-
ronments. 
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